++ ~ o

HOW TO PROGRAM

TENTH EDITION

Introducing

PAUL DEITEL the New C++14
HARVEY DEITEL Standard

C++ HOW TO PROGRAM

Introducing the New C++14 Standard

TENTH EDITION

Deitel® Series Page

How To Program Series

e Android™ How to Program, 3/E
C++ How to Program, 10/E
C How to Program, 8/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2015 How to Program, 7/E
Visual C#® 2015 How to Program, 6/E

Deitel® Developer Series

e Android™ 6 for Programmers: An App-Driven Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2015 for Programmers
iOS® 8 for Programmers: An App-Driven Approach with Swift™
Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

Simply Series

e Simply Visual Basic® 2010: An App-Driven Approach, 4/E
Simply C++: An App-Driven Tutorial Approach

VitalSource Web Books

® http://bit.ly/DeitelOnVitalSource
Android™ How to Program, 2/E and 3/E

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E

Simply Visual Basic® 2010: An App-Driven Approach, 4/E
Visual Basic® 2012 How to Program, 6/E

Visual Basic® 2015 How to Program, 7/E

Visual C#® 2012 How to Program, 5/E

Visual C#® 2015 How to Program, 6/E

http://bit.ly/DeitelOnVitalSource

LiveLessons Video Learning
Products

® http://deitel.com/books/LiveLessons/
Android™ 6 App Development Fundamentals, 3/e

C++ Fundamentals
Java™ Fundamentals, 2/e

C# 2012 Fundamentals
iOS® 8 App Development Fundamentals with Swift™, 3/e

JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training
courses, partner offers and more, please join the Deitel communities
on

e Facebook®— http://facebook.com/DeitelFan

Twitter®— http://twitter.com/deitel

Google+ ™ —nttp://google.com/+DeitelFan

YouTube™— http://youtube.com/DeitelTV

Linked|n®—http: //linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:

http://deitel.com/books/LiveLessons/
http://facebook.com/DeitelFan
http://twitter.com/deitel
http://google.com.ezproxy.cul.columbia.edu/+DeitelFan
http://youtube.com/DeitelTV

® http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:

® deitel@deitel.com

For information on programming-languages corporate training
seminars offered by Deitel & Associates, Inc. worldwide, write to

deitel@deitel.com or visit:

® http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:

® http://www.deitel.com

http://www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers, which will help you master
programming languages, software development, Android™ and iOS®

app development, and Internet- and web-related topics:

® http://www.deitel.com/ResourceCenters.html

http://www.deitel.com/newsletter/subscribe.html
mailto://deitel@deitel.com
mailto://deitel@deitel.com
http://www.deitel.com/training/
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

C++ How to Program

Introducing the New C++14 Standard

TENTH EDITION

DEITEI’

Paul Deitel
Deitel & Associates, Inc.
Harvey Deitel

Deitel & Associates, Inc.

PEARSON

Boston Columbus Hoboken Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris
Montreal Toronto Delhi Mexico City Sdo Paulo Sydney Hong Kong
Seoul Singapore Taipei Tokyo

Vice President, Editorial Director: Marcia Horton

Acquisitions Editor: Tracy Johnson

Editorial Assistant: Kristy Alaura

VP of Marketing: Christy Lesko

Director of Field Marketing: Tim Galligan

Product Marketing Manager: Bram Van Kempen

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Director of Product Management: Erin Gregg

Team Lead, Program and Project Management: Scott Disanno
Program Manager: Carole Snyder

Project Manager: Robert Engelhardt

Senior Specialist, Program Planning and Support: Maura Zaldivar-
Garcia

Cover Art: Finevector / Shutterstock

Cover Design: Paul Deitel, Harvey Deitel, Chuti Prasertsith
R&P Manager: Rachel Youdelman

R&P Project Manager: Timothy Nicholls

Inventory Manager: Meredith Maresca

Credits and acknowledgments borrowed from other sources and
reproduced, with permission, in this textbook appear on page vi.

The authors and publisher of this book have used their best efforts in
preparing this book. These efforts include the development, research,
and testing of the theories and programs to determine their
effectiveness. The authors and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or to the

documentation contained in this book. The authors and publisher shall
not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use
of these programs.

© 2017 Pearson Education, Inc. Hoboken, New Jersey 07030

All rights reserved. Printed in the United States of America. This
publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use material from this work, please submit
a written request to Pearson PLC, Permissions Department, 330
Hudson St, New York, NY 10013.

Many of the designations by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on file.

10987654321

PEARSON

ISBN-10: 0-13-444823-5
ISBN-13: 978-0-13-444823-7

In memory of Marvin Minsky, a founding father of the field of artificial
intelligence.

It was a privilege to be your student in two graduate courses at M.I.T.
Every lecture you gave inspired your students to think beyond limits.

Harvey Deitel

Trademarks

Deitel and the double-thumbs-up bug are registered trademarks of
Deitel and Associates, Inc.

Carnegie Mellon Software Engineering Institute ™ is a trademark of
Carnegie Mellon University.

CERT® is registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.
UNIX is a registered trademark of The Open Group.

Microsoft and/or its respective suppliers make no representations
about the suitability of the information contained in the documents and
related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without
warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether
express, implied or statutory, fithess for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective
suppliers be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action,

arising out of or in connection with the use or performance of
information available from the services.

The documents and related graphics contained herein could include
technical inaccuracies or typographical errors. Changes are
periodically added to the information herein. Microsoft and/or its
respective suppliers may make improvements and/or changes in the
product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version
specified.

Microsoft® and Windows® are registered trademarks of the Microsoft

Corporation in the U.S.A. and other countries. Screen shots and icons
reprinted with permission from the Microsoft Corporation. This book is
not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

Throughout this book, trademarks are used. Rather than put a
trademark symbol in every occurrence of a trademarked name, we
state that we are using the names in an editorial fashion only and to
the benefit of the trademark owner, with no intention of infringement of
the trademark.

Contents

1. Chapters 23-26 and Appendices F-J are PDF documents
posted online at the book’s Companion Website, which is
accessible from

http://www.pearsonhighered.com/deitel

See the inside front cover for more information.
2. Preface xxiii
3. Before You Begin xxxix

1. 1 Introduction to Computers and C++ 1
A. 1.1 Introduction 2
B. 1.2 Computers and the Internet in Industry and
Research 3
C. 1.3 Hardware and Software 5
1. 1.3.1 Moore’s Law 5
2. 1.3.2 Computer Organization 6

D. 1.4 Data Hierarchy 7

1.5 Machine Languages, Assembly Languages and
High-Level Languages 10

F. 1.6 C and C++ 11

G. 1.7 Programming Languages 12

m

H. 1.8 Introduction to Object Technology 14
l. 1.9 Typical C++ Development Environment 17
J. 1.10 Test-Driving a C++ Application 20
1. 1.10.1 Compiling and Running an Application
in Visual Studio 2015 for Windows 20
2. 1.10.2 Compiling and Running Using GNU C++
on Linux 25
3. 1.10.3 Compiling and Running with Xcode on
Mac OS X 27

K. 1.11 Operating Systems 32
1. 1.11.1 Windows—A Proprietary Operating
System 32
2. 1.11.2 Linux—An Open-Source Operating
System 32
3. 1.11.3 Apple’s OS X; Apple’s iOS for iPhone®,

iPad® and iPod Touch® Devices 33
4. 1.11.4 Google’s Android 33

L. 1.12 The Internet and the World Wide Web 34

M. 1.13 Some Key Software Development Terminology
36

N. 1.14 C++11 and C++14: The Latest C++ Versions 38

O. 1.15 Boost C++ Libraries 39

P. 1.16 Keeping Up to Date with Information
Technologies 39

2. 2 Introduction to C++ Programming, Input/Output and

Operators 44

A. 2.1 Introduction 45

2.2 First Program in C++: Printing a Line of Text 45
2.3 Modifying Our First C++ Program 49
2.4 Another C++ Program: Adding Integers 50
2.5 Memory Concepts 54
2.6 Arithmetic 55
2.7 Decision Making: Equality and Relational
Operators 59
H. 2.8 Wrap-Up 63

@ mmO O w

3. 3 Introduction to Classes, Objects, Member Functions and
Strings 73
A. 3.1 Introduction 74
B. 3.2 Test-Driving an account Object 75

1. 3.2.1 Instantiating an Object 75
2. 3.2.2 Headers and Source-Code Files 76
3. 3.2.3 Calling Class account’s getname Member

Function 76
4. 3.2.4 Inputtlng d string with getline 77

5. 3.2.5 Calling Class account’s setName Member

Function 77

C. 3.3 account Class with a Data Member and Set and

Get Member Functions 78
1. 3.3.1 account Class Definition 78

N o o s~ Db

3.3.2 Keyword c1ass and the Class Body 79
3.3.3 Data Member name of Type string 79
3.3.4 setname Member Function 80

3.3.5 getname Member Function 82

3.3.6 Access Specifiers private and public 82
3.3.7 account UML Class Diagram 83

D. 3.4 account Class: Initializing Objects with

Constructors 84

1.

2,

3.

3.4.1 Defining an account Constructor for

Custom Object Initialization 85
3.4.2 Initializing account Objects When They’re

Created 86
3.4.3 account UML Class Diagram with a

Constructor 88

E. 3.5 Software Engineering with Sef and Get Member
Functions 88
F. 3.6 account Class with a Balance; Data Validation 89

1.
2.

3.6.1 Data Member balance 89

3.6.2 Two-Parameter Constructor with
Validation 91
3.6.3 deposit Member Function with Validation

91
3.6.4 getBalance Member Function 91

5. 3.6.5 Manipulating account Objects with

Balances 92

6. 3.6.6 account UML Class Diagram with a

Balance and Member Functions deposit and

getBalance 94

G. 3.7 Wrap-Up 94

4. 4 Algorithm Development and Control Statements: Part 1

103

OO w>»

4.1 Introduction 104

4.2 Algorithms 105

4.3 Pseudocode 105

4.4 Control Structures 106

1.

4.4.1 Sequence Structure 106

2. 4.4.2 Selection Statements 108
3.
4. 4.4.4 Summary of Control Statements 109

4.4.3 lteration Statements 108

E. 4.5 if Single-Selection Statement 109

4.6 if...el1se Double-Selection Statement 110

1.

4.6.1 Nested if...e1se Statements 111

2. 4.6.2 Dangling-e1se Problem 113
3.
4. 4.6.4 Conditional Operator (2:) 114

4.6.3 Blocks 113

4.7 student Class: Nested if...e1se Statements 115

H. 4.8 while Iteration Statement 117

|. 4.9 Formulating Algorithms: Counter-Controlled
Iteration 119

1.

4.9.1 Pseudocode Algorithm with Counter-
Controlled Iteration 119

4.9.2 Implementing Counter-Controlled
Iteration 120

4.9.3 Notes on Integer Division and Truncation
122

4.9.4 Arithmetic Overflow 122

4.9.5 Input Validation 123

J. 4.10 Formulating Algorithms: Sentinel-Controlled
Iteration 123

1.

4.10.1 Top-Down, Stepwise Refinement: The
Top and First Refinement 124

4.10.2 Proceeding to the Second Refinement
124

4.10.3 Implementing Sentinel-Controlled
Iteration 126

4.10.4 Converting Between Fundamental
Types Explicitly and Implicitly 129

4.10.5 Formatting Floating-Point Numbers 130
4.10.6 Unsigned Integers and User Input 130

K. 4.11 Formulating Algorithms: Nested Control
Statements 131

1.

4.11.1 Problem Statement 131

©Cz=r

2. 4.11.2 Top-Down, Stepwise Refinement:
Pseudocode Representation of the Top 132

3. 4.11.3 Top-Down, Stepwise Refinement: First
Refinement 132

4. 4.11.4 Top-Down, Stepwise Refinement:
Second Refinement 132

5. 4.11.5 Complete Second Refinement of the
Pseudocode 133

6. 4.11.6 Program That Implements the
Pseudocode Algorithm 134

7. 4.11.7 Preventing Narrowing Conversions with
List Initialization 135

4.12 Compound Assignment Operators 136
4.13 Increment and Decrement Operators 137
4.14 Fundamental Types Are Not Portable 140
4.15 Wrap-Up 140

5. 5 Control Statements: Part 2; Logical Operators 159

A.

@mmO Ow

5.1 Introduction 160

5.2 Essentials of Counter-Controlled Iteration 160
5.3 for Iteration Statement 161

5.4 Examples Using the for Statement 165

5.5 Application: Summing Even Integers 166

5.6 Application: Compound-Interest Calculations 167
5.7 Case Study: Integer-Based Monetary
Calculations with Class poliaramount 171

1. 5.7.1 Demonstrating Class pollaramount 172

2. 5.7.2 Class pollaramount 175

H. 5.8 do...while Iteration Statement 179
l. 5.9 switch Multiple-Selection Statement 180
J. 5.10 break and continue Statements 186

1. 5.10.1 break Statement 186

2. 5.10.2 continue Statement 187

K. 5.11 Logical Operators 188
5.11.1 Logical AND (ss) Operator 188

5.11.2 Logical OR (||) Operator 189

5.11.3 Short-Circuit Evaluation 190
5.11.4 Logical Negation (') Operator 190

5.11.5 Logical Operators Example 191

o w0 b~

L. 5.12 Confusing the Equality (==) and Assignment (=)

Operators 192
5.13 Structured-Programming Summary 194
N. 5.14 Wrap-Up 199

=

6. 6 Functions and an Introduction to Recursion 211
A. 6.1 Introduction 212
6.2 Program Components in C++ 213
6.3 Math Library Functions 214
6.4 Function Prototypes 215
6.5 Function-Prototype and Argument-Coercion
Notes 218

moo w

F.
G.

DO Z=Zrmr X« —

1. 6.5.1 Function Signatures and Function
Prototypes 219

2. 6.5.2 Argument Coercion 219

3. 6.5.3 Argument-Promotion Rules and Implicit
Conversions 219

6.6 C++ Standard Library Headers 220
6.7 Case Study: Random-Number Generation 222
1. 6.7.1 Rolling a Six-Sided Die 223
2. 6.7.2 Rolling a Six-Sided Die 60,000,000 Times
224
3. 6.7.3 Randomizing the Random-Number
Generator with sranda 225

4. 6.7.4 Seeding the Random-Number Generator
with the Current Time 227

5. 6.7.5 Scaling and Shifting Random Numbers
227

6.8 Case Study: Game of Chance; Introducing
Scoped enums 228

6.9 C++11 Random Numbers 232

6.10 Scope Rules 233

6.11 Function-Call Stack and Activation Records 237
6.12 Inline Functions 241

6.13 References and Reference Parameters 242

6.14 Default Arguments 245

6.15 Unary Scope Resolution Operator 247

6.16 Function Overloading 248

6.17 Function Templates 251

6.18 Recursion 254

6.19 Example Using Recursion: Fibonacci Series 257
6.20 Recursion vs. Iteration 260

6.21 Wrap-Up 263

CH»wAO

7. 7 Class Templates array and vector; Catching Exceptions
283

7.1 Introduction 284

7.2 arrays 284

7.3 Declaring arrays 286

OO0 w>

7.4 Examples Using arrays 286
1. 7.4.1 Declaring an array and Using a Loop to
Initialize the array’s Elements 287
2. 7.4.2 Initializing an array in a Declaration with

an Initializer List 288
3. 7.4.3 Specifying an array’s Size with a

Constant Variable and Setting array Elements

with Calculations 289
4. 7.4.4 Summing the Elements of an array 290

5. 7.4.5 Using a Bar Chart to Display array Data

Graphically 291
6. 7.4.6 Using the Elements of an array as

Counters 292
7. 7.4.7 Using arrays to Summarize Survey

Results 293

8. 7.4.8 Static Local arrays and Automatic Local
array S 296

E. 7.5 Range-Based for Statement 298

F. 7.6 Case Study: Class cradeBook Using an array to
Store Grades 300

G. 7.7 Sorting and Searching arrays 306

1. 7.7.1 Sorting 306
2. 7.7.2 Searching 306
3. 7.7.3 Demonstrating Functions sort and

binary search 306

H. 7.8 Multidimensional array S 307
|. 7.9 Case Study: Class cradeBook Using a Two-
Dimensional array 311

J. 7.10 Introduction to C++ Standard Library Class
Template vector 317

K. 7.11 Wrap-Up 323

8. 8 Pointers 339
A. 8.1 Introduction 340
B. 8.2 Pointer Variable Declarations and Initialization
341
1. 8.2.1 Declaring Pointers 341
2. 8.2.2 Initializing Pointers 342
3. 8.2.3 Null Pointers Prior to C++11 342

C. 8.3 Pointer Operators 342
1. 8.3.1 Address (&) Operator 342

2. 8.3.2 Indirection (+) Operator 343
3. 8.3.3 Using the Address (&) and Indirection ()
Operators 344

D. 8.4 Pass-by-Reference with Pointers 345
E. 8.5 Built-In Arrays 349

1. 8.5.1 Declaring and Accessing a Built-In Array
349
8.5.2 Initializing Built-In Arrays 350
8.5.3 Passing Built-In Arrays to Functions 350
8.5.4 Declaring Built-In Array Parameters 351
8.5.5 C++11: Standard Library Functions begin

and end 351

8.5.6 Built-In Array Limitations 351
7. 8.5.7 Built-In Arrays Sometimes Are Required
352

o K 0N

o

F. 8.6 Using const with Pointers 352

1. 8.6.1 Nonconstant Pointer to Nonconstant
Data 353

2. 8.6.2 Nonconstant Pointer to Constant Data
353

3. 8.6.3 Constant Pointer to Nonconstant Data
354

4. 8.6.4 Constant Pointer to Constant Data 355

G. 8.7 sizeof Operator 356

H. 8.8 Pointer Expressions and Pointer Arithmetic 358
1. 8.8.1 Adding Integers to and Subtracting

Integers from Pointers 359

8.8.2 Subtracting Pointers 360

8.8.3 Pointer Assignment 361

8.8.4 Cannot Dereference a void* 361

o >N

8.8.5 Comparing Pointers 361

|. 8.9 Relationship Between Pointers and Built-In
Arrays 361

1. 8.9.1 Pointer/Offset Notation 362

2. 8.9.2 Pointer/Offset Notation with the Built-In
Array’s Name as the Pointer 362

3. 8.9.3 Pointer/Subscript Notation 362

4. 8.9.4 Demonstrating the Relationship Between
Pointers and Built-In Arrays 363

J. 8.10 Pointer-Based Strings (Optional) 364
K. 8.11 Note About Smart Pointers 367
L. 8.12 Wrap-Up 367

9. 9 Classes: A Deeper Look 385
A. 9.1 Introduction 386
B. 9.2 rime Class Case Study: Separating Interface from

Implementation 387
1. 9.2.1 Interface of a Class 388

mmO O

2. 9.2.2 Separating the Interface from the
Implementation 388

9.2.3 rime Class Definition 388

9.2.4 rime Class Member Functions 390
9.2.5 Scope Resolution Operator (::) 391
9.2.6 Including the Class Header in the

Source-Code File 391
7. 9.2.7 time Class Member Function setrime and

2

Throwing Exceptions 392
8. 9.2.8 time Class Member Function

toUniversalString and Strlng Stream

Processing 392
9. 9.2.9 rime Class Member Function

toStandardString 393

10. 9.2.10 Implicitly Inlining Member Functions
393

11. 9.2.11 Member Functions vs. Global Functions
393

12. 9.2.12 Using Class Time 394

13. 9.2.13 Object Size 396

9.3 Compilation and Linking Process 396

9.4 Class Scope and Accessing Class Members 398
9.5 Access Functions and Utility Functions 399

9.6 rime Class Case Study: Constructors with

Default Arguments 399

1. 9.6.1 Constructors with Default Arguments
399

2. 9.6.2 Overloaded Constructors and C++11
Delegating Constructors 404

G. 9.7 Destructors 405
H. 9.8 When Constructors and Destructors Are Called
405
1. 9.8.1 Constructors and Destructors for
Objects in Global Scope 406
2. 9.8.2 Constructors and Destructors for Non-
static Local Objects 406

3. 9.8.3 Constructors and Destructors for static

Local Objects 406
4. 9.8.4 Demonstrating When Constructors and
Destructors Are Called 406

l. 9.9 Time Class Case Study: A Subtle Trap—
Returning a Reference or a Pointer to a private Data
Member 409

9.10 Default Memberwise Assignment 411

. 9.11 const Objects and const Member Functions 413

N~

L. 9.12 Composition: Objects as Members of Classes
415

M. 9.13 friend Functions and friend Classes 421
N. 9.14 Using the this Pointer 423

1. 9.14.1 Implicitly and Explicitly Using the this
Pointer to Access an Object’s Data Members
424

2. 9.14.2 Using the this Pointer to Enable

Cascaded Function Calls 425

0. 9.15 static Class Members 429

1. 9.15.1 Motivating Classwide Data 429

2. 9.15.2 Scope and Initialization of static Data
Members 429

3. 9.15.3 Accessing static Data Members 430

4. 9.15.4 Demonstrating static Data Members
430

P. 9.16 Wrap-Up 433

10. 10 Operator Overloading; Class string 447

A. 10.1 Introduction 448
B. 10.2 Using the Overloaded Operators of Standard
Library Class string 449

C. 10.3 Fundamentals of Operator Overloading 453
1. 10.3.1 Operator Overloading Is Not Automatic
453
2. 10.3.2 Operators That You Do Not Have to
Overload 453
3. 10.3.3 Operators That Cannot Be Overloaded
454

4. 10.3.4 Rules and Restrictions on Operator
Overloading 454

D. 10.4 Overloading Binary Operators 455

E. 10.5 Overloading the Binary Stream Insertion and
Stream Extraction Operators 455

F. 10.6 Overloading Unary Operators 459

G. 10.7 Overloading the Increment and Decrement
Operators 460

H. 10.8 Case Study: A pate Class 461

l. 10.9 Dynamic Memory Management 466
J. 10.10 Case Study: array Class 468

1. 10.10.1 Using the array Class 469
2. 10.10.2 array Class Definition 473

K. 10.11 Operators as Member vs. Non-Member
Functions 480

L. 10.12 Converting Between Types 481

M. 10.13 exp1ricit Constructors and Conversion

Operators 482
N. 10.14 Overloading the Function Call Operator () 485

O. 10.15 Wrap-Up 485

11. 11 Object-Oriented Programming: Inheritance 497
A. 111 Introduction 498
B. 11.2 Base Classes and Derived Classes 499
1. 11.2.1 communityMember Class Hierarchy 499

2.

11.2.2 shape Class Hierarchy 500

C. 11.3 Relationship between Base and Derived

Classes 501

1. 11.3.1 Creating and Using a commissionEmployee
Class 501

2. 11.3.2 Creating a BasePlusCommissionEmployee
Class Without Using Inheritance 506

3. 11.3.3 Creating a
CommissionEmployee —BasePlusCommissionEmployee
Inheritance Hierarchy 511

4. 11.3.4
CommissionEmployee —BasePlusCommissionEmployee
Inheritance Hierarchy Using protecteda Data
515

5. 11.3.5

CommissionEmployee —BasePlusCommissionEmployee

Inheritance Hierarchy Using private Data 519

D. 11.4 Constructors and Destructors in Derived
Classes 523
E. 11.5 public, protected and private Inheritance 525

F. 11.6 Wrap-Up 526

12. 12 Object-Oriented Programming: Polymorphism 531
A. 121 Introduction 532

B. 12.2 Introduction to Polymorphism: Polymorphic
Video Game 533

C. 12.3 Relationships Among Objects in an Inheritance
Hierarchy 534

1.

2.

3.

12.3.1 Invoking Base-Class Functions from
Derived-Class Objects 534

12.3.2 Aiming Derived-Class Pointers at Base-
Class Objects 537

12.3.3 Derived-Class Member-Function Calls
via Base-Class Pointers 538

D. 12.4 Virtual Functions and Virtual Destructors 540

1.
2.
3.

12.4.1 Why virtual Functions Are Useful 540
12.4.2 Declaring virtual Functions 540
12.4.3 Invoking a virtual Function Through a

Base-Class Pointer or Reference 541
12.4.4 Invoking a virtual Function Through an

Object’s Name 541
12.4.5 virtual Functions in the

CommissionEmployee Hierarchy 541

6. 12.4.6 virtual Destructors 546

7. 12.4.7 C++11: £ina1 Member Functions and

Classes 546

E. 12.5 Type Fields and switch Statements 547

F. 12.6 Abstract Classes and Pure virtual Functions

547

1. 12.6.1 Pure virtual Functions 548

2. 12.6.2 Device Drivers: Polymorphism in
Operating Systems 549

G. 12.7 Case Study: Payroll System Using
Polymorphism 549
1. 12.7.1 Creating Abstract Base Class Employee

550

2. 12.7.2 Creating Concrete Derived Class
SalariedEmployee 553

3. 12.7.3 Creating Concrete Derived Class
CommissionEmployee 9956

4. 12.7.4 Creating Indirect Concrete Derived
Class BasePlusCommissionEmployee 558

5. 12.7.5 Demonstrating Polymorphic Processing
560

H. 12.8 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood” 563
|. 12.9 Case Study: Payroll System Using
Polymorphism and Runtime Type Information with
Downcasting, dynamic cast, typeid and type info 567

J. 12.10 Wrap-Up 570

13. 13 Stream Input/Output: A Deeper Look 577
A. 13.1 Introduction 578
B. 13.2 Streams 579
1. 13.2.1 Classic Streams vs. Standard Streams

579
2. 13.2.2 iostream Library Headers 580

3. 13.2.3 Stream Input/Output Classes and
Objects 580

. 13.3 Stream Output 581
1. 13.3.1 Output of char* Variables 581

2. 13.3.2 Character Output Using Member
Function put 582

. 13.4 Stream Input 582
1. 13.4.1 get and getiine Member Functions 583

2. 13.4.2 istream Member Functions peek, putback
and ignore 586
3. 13.4.3 Type-Safe 1/0 586

. 13.5 Unformatted 1/0 Using read, write and gcount

586
. 13.6 Stream Manipulators: A Deeper Look 587
1. 13.6.1 Integral Stream Base: dec, oct, hex and

setbase 588

2. 13.6.2 Floating-Point Precision (precision,
setprecision) 588

3. 13.6.3 Field Width (widath, setw) 590

4. 13.6.4 User-Defined Output Stream
Manipulators 591

G. 13.7 Stream Format States and Stream Manipulators

592

1.

13.7.1 Trailing Zeros and Decimal Points
(showpoint) 593
13.7.2 Justification (left, right and internal)

594
13.7.3 Padding (fi11, setfill) 595

4. 13.7.4 Integral Stream Base (dec, oct, hex,

showbase) 597

13.7.5 Floating-Point Numbers; Scientific and
Fixed Notation (scientific, fixed) 597

13.7.6 Uppercase/Lowercase Control
(uppercase) 598
13.7.7 Specifying Boolean Format (boolalpha)

599
13.7.8 Setting and Resetting the Format State
via Member Function fi1ags 600

H. 13.8 Stream Error States 601
l. 13.9 Tying an Output Stream to an Input Stream 604
J. 13.10 Wrap-Up 605

14. 14 File Processing 615
A. 14.1 Introduction 616
B. 14.2 Files and Streams 616
C. 14.3 Creating a Sequential File 617

1.

14.3.1 Opening a File 618

I O mm

N o o k&

14.3.2 Opening a File via the ocpen Member

Function 619

14.3.3 Testing Whether a File Was Opened
Successfully 619

14.3.4 Overloaded voo1 Operator 620

14.3.5 Processing Data 620
14.3.6 Closing a File 620
14.3.7 Sample Execution 621

14.4 Reading Data from a Sequential File 621

1.

14.4.1 Opening a File for Input 622

2. 14.4.2 Reading from the File 622
3.
4. 14.4.4 Case Study: Credit Inquiry Program 623

14.4.3 File-Position Pointers 622

14.5 C++14: Reading and Writing Quoted Text 626
14.6 Updating Sequential Files 627

14.7 Random-Access Files 628

14.8 Creating a Random-Access File 629

1.

2.

3.
4,

14.8.1 Writing Bytes with ostream Member
Function write 629

14.8.2 Converting Between Pointer Types with
the reinterpret cast Operator 629

14.8.3 Credit-Processing Program 630
14.8.4 Opening a File for Output in Binary
Mode 633

|. 14.9 Writing Data Randomly to a Random-Access
File 633
1. 14.9.1 Opening a File for Input and Output in
Binary Mode 635
2. 14.9.2 Positioning the File-Position Pointer 635

J. 14.10 Reading from a Random-Access File
Sequentially 635

K. 14.11 Case Study: A Transaction-Processing
Program 637

L. 14.12 Object Serialization 643

M. 14.13 Wrap-Up 644

15. 15 Standard Library Containers and Iterators 655
A. 15.1 Introduction 656
15.2 Introduction to Containers 658
15.3 Introduction to Iterators 662
15.4 Introduction to Algorithms 667
15.5 Sequence Containers 667
1. 15.5.1 vector Sequence Container 668

mO O w

2. 15.5.2 1ist Sequence Container 675

3. 15.5.3 deque Sequence Container 680

F. 15.6 Associative Containers 681
1. 15.6.1 muitiset Associative Container 682

2. 15.6.2 set Associative Container 685

3. 15.6.3 multimap Associative Container 687

4. 15.6.4 map Associative Container 689

G. 15.7 Container Adapters 690
1. 15.7.1 stack Adapter 691

2. 15.7.2 queue Adapter 693
3. 15.7.3 priority queue Adapter 694

H. 15.8 Class bitset 695
l. 15.9 Wrap-Up 697

16. 16 Standard Library Algorithms 707

A. 16.1 Introduction 708

B. 16.2 Minimum Iterator Requirements 708

C. 16.3 Lambda Expressions 710
1. 16.3.1 Algorithm for each 711
2. 16.3.2 Lambda with an Empty Introducer 711
3. 16.3.3 Lambda with a Nonempty Introducer—

Capturing Local Variables 712

4. 16.3.4 Lambda Return Types 712

D. 16.4 Algorithms 712
1. 16.4.1 £i11, £ill n, generate and generate n
712
2. 16.4.2 equal, mismatch and

lexicographical compare 715
3. 16.4.3 remove , remove if, remove copy and

remove copy if 718

4. 16.4.4 replace, replace if, replace_copy and

replace copy if 721

5. 16.4.5 Mathematical Algorithms 723
6. 16.4.6 Basic Searching and Sorting

Algorithms 726
7. 16.4.7 swap, iter_ swap and swap_ranges 731

8. 16.4.8 copy_backward, merge, unique and reverse

732
9. 16.4.9 inplace_merge, unique_copy and

reverse_copy 735

10. 16.4.10 Set Operations 737
11. 16.4.11 lower_bound, upper bound and

equal range 740

12. 16.4.12 min, max, minmax and minmax element 742

E. 16.5 Function Objects 744
F. 16.6 Standard Library Algorithm Summary 747
G. 16.7 Wrap-Up 749

17. 17 Exception Handling: A Deeper Look 757
A. 17.1 Introduction 758
B. 17.2 Exception-Handling Flow of Control; Defining
an Exception Class 759
1. 17.2.1 Defining an Exception Class to
Represent the Type of Problem That Might
Occur 759
2. 17.2.2 Demonstrating Exception Handling 760

mmO o

17.2.3 Enclosing Code in a try Block 761

4. 17.2.4 Defining a catch Handler to Process a

DivideByZeroException 762

17.2.5 Termination Model of Exception
Handling 762

17.2.6 Flow of Program Control When the User
Enters a Nonzero Denominator 763

17.2.7 Flow of Program Control When the User
Enters a Denominator of Zero 763

17.3 Rethrowing an Exception 764

17.4 Stack Unwinding 766

17.5 When to Use Exception Handling 767

17.6 noexcept: Declaring Functions That Do Not

Throw Exceptions 768

17.7 Constructors, Destructors and Exception
Handling 768

1.

2,

17.7.1 Destructors Called Due to Exceptions
768

17.7.2 Initializing Local Objects to Acquire
Resources 769

17.8 Processing new Failures 769

1.
2.
3.

17.8.1 new Throwing vad aiioc on Failure 769
17.8.2 new Returning nuiiptr on Failure 770
17.8.3 Handling new Failures Using Function

set_new_handler 771

|. 17.9 Class unique ptr and Dynamic Memory

Allocation 772
1. 17.9.1 unique ptr Ownership 774

2. 17.9.2 unique ptr to a Built-In Array 775

J. 17.10 Standard Library Exception Hierarchy 775
K. 17.11 Wrap-Up 777

18. 18 Introduction to Custom Templates 783
A. 18.1 Introduction 784
B. 18.2 Class Templates 785
1. 18.2.1 Creating Class Template stack<r> 786

2. 18.2.2 Class Template stack<r>’s Data

Representation 787
3. 18.2.3 Class Template stack<r>’s Member

Functions 787

4. 18.2.4 Declaring a Class Template’s Member
Functions Outside the Class Template
Definition 788

5. 18.2.5 Testing Class Template stack<r> 788

C. 18.3 Function Template to Manipulate a Class-
Template Specialization Object 790

D. 18.4 Nontype Parameters 792

E. 18.5 Default Arguments for Template Type
Parameters 792

F. 18.6 Overloading Function Templates 793

G. 18.7 Wrap-Up 793

19. 19 Custom Templatized Data Structures 797
A. 19.1 Introduction 798

1.

2,

19.1.1 Always Prefer the Standard Library’s
Containers, Iterators and Algorithms, if
Possible 799

19.1.2 Special Section: Building Your Own
Compiler 799

B. 19.2 Self-Referential Classes 799
C. 19.3 Linked Lists 800

1.

© ® N o O ke DN

19.3.1 Testing Our Linked List Implementation
802
19.3.2 Class Template ristnode 805

19.3.3 Class Template rist 806

19.3.4 Member Function insertatFront 809
19.3.5 Member Function insertatBack 810
19.3.6 Member Function removeFromrront 810
19.3.7 Member Function removeFromBack 811
19.3.8 Member Function print 812

19.3.9 Circular Linked Lists and Double Linked
Lists 813

D. 19.4 Stacks 814

1.

19.4.1 Taking Advantage of the Relationship
Between stack and rist 815

19.4.2 Implementing a Class Template stack
Class Based By Inheriting from rist 815

19.4.3 Dependent Names in Class Templates
816

4. 19.4.4 Testing the stack Class Template 817

5. 19.4.5 Implementing a Class Template stack

Class With Composition of a List Object 818

E. 19.5 Queues 819

1.
2.

3.

19.5.1 Applications of Queues 819
19.5.2 Implementing a Class Template gueue

Class Based By Inheriting from rist 820
19.5.3 Testing the gueue Class Template 821

F. 19.6 Trees 823

1.

® oA WN

19.6.1 Basic Terminology 823
19.6.2 Binary Search Trees 824
19.6.3 Testing the tree Class Template 824

19.6.4 Class Template Treenode 826

19.6.5 Class Template Tree 827

19.6.6 Tree Member Function insertNodeHelper
829

7. 19.6.7 tree Traversal Functions 829
8. 19.6.8 Duplicate Elimination 830

19.6.9 Overview of the Binary Tree Exercises
830

G.

19.7 Wrap-Up 831

20. 20 Searching and Sorting 841
A. 20.1 Introduction 842
B. 20.2 Searching Algorithms 843

1. 20.2.1 Linear Search 843
2. 20.2.2 Binary Search 846

C. 20.3 Sorting Algorithms 850

D.

1. 20.3.1 Insertion Sort 851

2. 20.3.2 Selection Sort 853

3. 20.3.3 Merge Sort (A Recursive
Implementation) 855

20.4 Wrap-Up 862

21. 21 Class string and String Stream Processing: A Deeper
Look 869

A.

@ m mO O w

21.1 Introduction 870
21.2 string Assignment and Concatenation 871

21.3 Comparing strings 873

21.4 Substrings 876
21.5 Swapping strings 876

21.6 string Characteristics 877
21.7 Finding Substrings and Characters in a string

880
21.8 Replacing Characters in a string 881

J.
K.
L.
M.
N.

21.9 Inserting Characters into a string 883
21.10 Conversion to Pointer-Based char* Strings 884

21.11 lterators 886

21.12 String Stream Processing 887

21.13 C++11 Numeric Conversion Functions 890
21.14 Wrap-Up 892

22. 22 Bits, Characters, C Strings and structs 899

A

O Ow

« — T GO mm

22.1 Introduction 900
22.2 Structure Definitions 900
22.3 typedef and using 902

22.4 Example: Card Shuffling and Dealing Simulation
902

22.5 Bitwise Operators 905

22.6 Bit Fields 914

22.7 Character-Handling Library 918

22.8 C String-Manipulation Functions 923

22.9 C String-Conversion Functions 930

22.10 Search Functions of the C String-Handling
Library 935

22.11 Memory Functions of the C String-Handling
Library 939

22.12 Wrap-Up 943

1. Chapters on the Web 959

2. A Operator Precedence and Associativity 961
3. B ASCII Character Set 963

4. C Fundamental Types 965

5. D Number Systems 967

A. D.1 Introduction 968

B. D.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers 971

C. D.3 Converting Octal and Hexadecimal Numbers to
Binary Numbers 972

D. D.4 Converting from Binary, Octal or Hexadecimal to
Decimal 972

E. D.5 Converting from Decimal to Binary, Octal or
Hexadecimal 973

F. D.6 Negative Binary Numbers: Two’s Complement
Notation 975

6. E Preprocessor 981
A. E.1 Introduction 982
B. E.2 #inciude Preprocessing Directive 982

C. E.3 #define Preprocessing Directive: Symbolic

Constants 983
E.4 #define Preprocessing Directive: Macros 983

E.5 Conditional Compilation 985
E.6 #error and #pragma Preprocessing Directives 987

E.7 Operators # and ## 987

E.8 Predefined Symbolic Constants 987
E.9 Assertions 988

E.10 Wrap-Up 988

« — T O mmaOo

7. Appendices on the Web 993
8. Index 995

9.

10.
11.
12.

13.

14.
15.
16.
17.
18.

Chapters 23-26 and Appendices F-J are PDF documents
posted online at the book’s Companion Website, which is
accessible from

http://www.pearsonhighered.com/deitel

See the inside front cover for more information.

23 Other Topics

24 C++11 and C++14: Additional Features

25 ATM Case Study, Part 1: Object-Oriented Design with
the UM

26 ATM Case Study, Part 2: Implementing an Object-
Oriented Design

F C Legacy Code Topics

G UML: Additional Diagram Types

H Using the Visual Studio Debugger

| Using the GNU C++ Debugger

J Using the Xcode Debugger

Preface

Welcome to the C++ computer programming language and C++ How
to Program, Tenth Edition. We believe that this book and its support
materials will give you an informative, challenging and entertaining
introduction to C++. The book presents leading-edge computing
technologies in a friendly manner appropriate for introductory college
course sequences, based on the curriculum recommendations of two
key professional organizations—the ACM and the IEEE.1

1. Computer Science Curricula 2013 Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science, December
20, 2013, The Joint Task Force on Computing Curricula, Association
for Computing Machinery (ACM), IEEE Computer Society.

If you haven'’t already done so, please read the back cover and check
out the additional reviewer comments on the inside back cover and
the facing page—these capture the essence of the book concisely. In
this Preface we provide more detail for students, instructors and
professionals.

At the heart of the book is the Deitel signature live-code approach—
we present most concepts in the context of complete working
programs followed by sample executions, rather than in code
snippets. Read the Before You Begin section to learn how to set up

your Linux-based, Windows-based or Apple OS X-based computer to
run the hundreds of code examples. All the source code is available at

http://www.deitel.com/books/cpphtpl0

and

http://www.pearsonhighered.com/deitel

Use the source code we provide to run each program as you study it.

http://www.deitel.com/books/cpphtp10

Contacting the Authors

As you read the book, if you have questions, we're easy to reach at

deitel@deitel.com

We’'ll respond promptly. For book updates, visit

http://www.deitel.com/books/cpphtpl0

mailto://deitel@deitel.com
http://www.deitel.com/books/cpphtp10

Join the Deitel & Associates, Inc.
Social Media Communities

Join the Deitel social media communities on

Facebook®— http://facebook.com/DeitelFan

LinkedIN®—nhttp://bit.1ly/DeitellinkedIn

Twitter®— http://twitter.com/deitel

Google+“”— http://google.com/+DeitelFan

YouTube®— http://youtube.com/DeitelTV

and subscribe to the Deitel® Buzz Online newsletter

http://www.deitel.com/newsletter/subscribe.html

http://facebook.com/DeitelFan
http://bit.ly/DeitelLinkedIn
http://twitter.com/deitel
http://google.com.ezproxy.cul.columbia.edu/+DeitelFan
http://youtube.com/DeitelTV
http://www.deitel.com/newsletter/subscribe.html

The C++11 and C++14 Standards

These are exciting times in the programming languages community
with each of the major languages striving to keep pace with
compelling new programming technologies. In the three decades of
C++’s development prior to 2011, only a few new versions of the
language were released. Now the ISO C++ Standards Committee is
committed to releasing a new standard every three years and the
compiler vendors are building in the new features promptly. C++ How
to Program, 10/e is based on the C++11 and C++14 standards
published in 2011 and 2014, respectively. C++17 is already under
active development. Throughout the book, C++11 and C++14 features
are marked with the “11” and “14” icons, respectively, that you see
here in the margin. Fig. 1 lists the book’s first references to the 77
C++11 and C++14 features we discuss.

11 14

Fig. 1 First references to C++11 and C++14 features in C++ How
to Program, 10/e.

C++11 and C++14 features in C++ How to Program, 10/e

Chapter 3

e [n-class initializers

Chapter 4

e Keywords new in C++11

Chapter 5

e long long int type

Chapter 6

e Non-deterministic random number generation

e Scoped enums

Specifying the type of an enum's constants

Unsigned long long int

Using ' to separate groups of digits in a numeric literals (C++14)

Chapter 7

e array container
e auto fortype inference
e Listinitializing a vector

e Range-based for statement

Chapter 8

e Dbegin/end functions

e nullptr

Chapter 9

e Delegating constructors

Chapter 10

delete d member functions

e explicit conversion operators

List initializing a dynamically allocated array

List initializers in constructor calls

e string object literals (C++14)

Chapter 11

e final classes
e final member functions

e |nheriting base-class constructors

Chapter 12

e default ed member functions

e override keyword

Chapter 13

® operator bool for streams

Chapter 14

e quoted stream manipulator (C++14)

e string objects for file names

Chapter 15

cbegin/cend container member functions

Compiler fix for >> in template types

crbegin/crend container member functions

e forward list container

Global functions cbegin/cend, rbegin/rend and crbegin/crend (C++14)

Heterogeneous lookup in associative containers (C++14)

Immutable keys in associative containers

insert container member functions return iterators
Key—value pair list initialization

List initialization of pairs

Return value list initialization

shrink to fit vector/deque member function

Chapter 16

all of algorithm

any of algorithm

copy if algorithm

copy n algorithm

equal algorithm that accepts two ranges (C++14)
find if not algorithm

Generic lambdas (C++14)

Lambda expressions

min and max algorithms with initializer list parameters
minmax algorithm

minmax element algorithm

mismatch algorithm that accepts two ranges (C++14)

none of algorithm

random shuffle is deprecated (C++14)—replaced with shuffle

swap nhon-member function

Chapter 17

make unique tocreate a unique ptr (C++14)
noexcept

unique ptr smart pointer

Chapter 18

e Default type arguments in function templates

Chapter 21

e Numeric conversion functions

Chapter 22

e Binary literals (C++14)

Chapter 24

Aggregate member initialization (C++14)
e auto and decltype (auto) on return types (C++14)
e constexpr updated (C++14)

® decltype

e move algorithm

e Move assignment operators

e move backward algorithm

e Move constructors

e Regular expressions

e Rvalue references

e shared ptr smart pointer

e static assert objects for file names
e Trailing return types for functions

e tuple variadic template

e tuple addressing via type (C++14)

e weak ptr smart pointer

Key Features of C++ How to
Program, 10/e

e Conforms to the C++11 standard and the new C++14 standard.

e Code thoroughly tested on three popular industrial-strength C++14
compilers. We tested the code examples on GNU™ C++ 5.2.1,
Microsoft® Visual Studio® 2015 Community edition and Apple®

Clang/LLVM in Xcode® 7.

e Smart pointers. Smart pointers help you avoid dynamic memory
management errors by providing additional functionality beyond
that of built-in pointers. We discuss unique ptr in Chapter 17, and

shared ptr and weak ptr in Chapter 24.

e Early coverage of Standard Library containers, iterators and
algorithms, enhanced with C++11 and C++14 capabilities. The
treatment of Standard Library containers, iterators and algorithms
in Chapters 15 and 16 has been enhanced with additional C++11
and C++14 features. The vast majority of your data structure
needs can be fulfilled by reusing these Standard Library
capabilities. We'll show you how to build your own custom data
structures in Chapter 19.

e Online Chapter 24, C++11 and C++14 Additional Topics. This
chapter includes discussions of regular expressions, shared ptr

and weak ptr smart pointers, move semantics, multithreading,

tuple S, decltype, constexpr and more (see Flg 1)

Random-number generation, simulation and game playing. To help
make programs more secure, we include a treatment of C++11’s
non-deterministic random-number generation capabilities.
Pointers. We provide thorough coverage of the built-in pointer
capabilities and the intimate relationship among built-in pointers, C
strings and built-in arrays.

Visual presentation of searching and sorting, with a simple
explanation of Big O.

Printed book contains core content; additional content is online.
Several online chapters and appendices are included. These are
available in searchable PDF format on the book’s password-
protected Companion Website—see the access card information
on the inside front cover.

Getting Started Videos. At http://www.deitel.com/books/cpphtpl0,

we provide links to our getting-started videos that help readers
begin using Microsoft Visual Studio 2015 Community edition on
Windows, Apple Xcode on OS X and GNU C++ on Linux.
Debugger appendices. On the book’s Companion Website we
provide Appendix H, Using the Visual Studio Debugger, Appendix
|, Using the GNU C++ Debugger and Appendix J, Using the Xcode
Debugger.

http://www.deitel.com/books/cpphtp10

New In This Edition

e Discussions of the new C++14 capabilities.

e Further integration of C++11 capabilities into the code examples,
because the latest compilers are now supporting these features.

e Uniform initialization with list initializer syntax.

e Always using braces in control statements, even for single-
statement bodies:

if (condition) {

single-statement or multi-statement body

® Replaced the cradebook class with Account, Student and
pollaramount Class case studies in Chapters 3, 4 and 5,
respectively. pol1aramount processes monetary amounts precisely

for business applications.
e C++14 digit separators in large numeric literals.
e Type sx isnow Type:s x in accordance with industry idiom.

e Type +x is now Type* x in accordance with industry idiom.
e Using C++11 scoped enuns rather than traditional C enums.

e We brought our terminology in line with the C++ standard.
e Key terms in summaries now appear in bold for easy reference.

Removed extra spaces inside (1, (), <> and ¢} delimiters.
Replaced most print member functions with tostring member

functions to make classes more flexible—for example, returning a
string gives the client code the option of displaying it on the

screen, writing it to a file, concatenating it with other strings, etc.
Now using ostringstrean to create formatted scrings for items like
the string representations of a rine, rather than outputting

formatted data directly to the standard output.

For simplicity, we deferred using the three-file architecture from
Chapter 3 to Chapter 9, so all early class examples define the

entire class in a header.

We reimplement Chapter 10’s 2rray class operator-overloading

example with unique ptrsin Chapter 24. Using raw pointers and
dynamic-memory allocation with new and deiete is a source of
subtle programming errors, especially “memory leaks™—unique ptr

and the other smart pointer types help prevent such errors.

Using lambdas rather than function pointers in Chapter 16,
Standard Library Algorithms. This will get readers comfortable with
lambdas, which can be combined with various Standard Library
algorithms to perform functional programming in C++. We're
planning a more in-depth treatment of functional programming for
C++ How to Program, 11/e.

Enhanced Chapter 24 with additional C++14 features.

Object-Oriented Programming

e Early-objects approach. The book introduces the basic concepts
and terminology of object technology in Chapter 1. You'll develop
your first customized classes and objects in Chapter 3. We worked
hard to make this chapter especially accessible to novices.
Presenting objects and classes early gets you “thinking about
objects” immediately and mastering these concepts more
thoroughly.2
2. For courses that require a late-objects approach, consider our
pre-C++11 book C++ How to Program, Late Objects Version,
which begins with six chapters on programming fundamentals
(including two on control statements) and continues with seven
chapters that gradually introduce object-oriented programming
concepts.

e C++ Standard Library string. C++ offers two types of strings
—string class objects (which we begin using in Chapter 3) and C-
style pointer-based strings. We’ve replaced most occurrences of C
strings with instances of C++ class string to make programs more

robust and eliminate many of the security problems of C strings.
We continue to discuss C strings later in the book to prepare you
for working with the legacy code in industry. In new development,
you should favor string objects.

e C++ Standard Library array. C++ offers three types of arrays
—array$ and vector s (Which we start using in Chapter 7) and C-

style, pointer-based arrays which we discuss in Chapter 8. Our
primary treatment of arrays uses the Standard Library’s array and

vector class templates instead of built-in, C-style, pointer-based

arrays. We still cover built-in arrays because they remain useful in
C++ and so that you'll be able to read legacy code. In new
development, you should favor class template array and vector

objects.

e Crafting valuable classes. A key goal of this book is to prepare you
to build valuable reusable classes. Chapter 10 begins with a test-
drive of class template string SO you can see an elegant use of

operator overloading before you implement your own customized
class with overloaded operators. In the Chapter 10 case study,
you'’ll build your own custom array class, then in the Chapter 18
exercises you'll convert it to a class template. You will have truly
crafted valuable classes.

e Case studies in object-oriented programming. We provide several
well-engineered real-world case studies, including the account
class in Chapter 3, student class in Chapter 4, poi11aramount class
in Chapter 5, craderook class in Chapter 7, the time class in
Chapter 9, the enp1oyee class in Chapters 11-12 and more.

e Optional case study: Using the UML to develop an object-oriented
design and C++ implementation of an ATM. The UML™ (Unified
Modeling Language ™) is the industry-standard graphical language
for modeling object-oriented systems. We introduce the UML in the
early chapters. Online Chapters 25 and 26 include an optional

object-oriented design case study using the UML. We design and
fully implement the software for a simple automated teller machine
(ATM). We analyze a typical requirements document that specifies
the system to be built. We determine the classes needed to
implement that system, the attributes the classes need to have, the
behaviors the classes need to exhibit and we specify how objects
of the classes must interact with one another to meet the system
requirements. From the design we produce a complete C++
implementation. Students often report that the case study helps
them “tie it all together” and truly understand object orientation.
Understanding how polymorphism works. Chapter 12 contains a
detailed diagram and explanation of how C++ typically implements
polymorphism, virtual functions and dynamic binding “under the

hood.”

Object-oriented exception handling. We integrate basic exception
handling early in the book (Chapter 7). Instructors can easily pull
more detailed material forward from Chapter 17, Exception
Handling: A Deeper Look.

Custom template-based data structures. We provide a rich multi-
chapter treatment of data structures—see the Data Structures
module in the chapter dependency chart (Fig. 5).

Three programming paradigms. We discuss structured
programming, object-oriented programming and generic
programming.

Hundreds of Code Examples

We include a broad range of example programs selected from
computer science, information technology, business, simulation, game
playing and other topics. The examples are accessible to students in
novice-level and intermediate-level C++ courses (Fig. 2).

Fig. 2 A sampling of the book’s examples.

Examples

Account class

Array class case study

Author class

Bank account program

Bar chart printing program
BasePlusCommissionEmployee class
Binary tree creation and traversal
BinarySearch test program

Card shuffling and dealing

ClientData class
CommissionEmployee class
Comparing strings

Compilation and linking process
Compound interest calculations with for
Converting string objects to C strings
Counter-controlled repetition

Dice game simulation

DollarAmount class

Credit inquiry program

Date class

Downcasting and runtime type information
Employee class

explicit constructor

fibonacci function

£i11 algorithms

Specializations of function template printArray
generate algorithms

GradeBook Class

Initializing an array in a declaration
Input from an istringstream object
Iterative factorial solution

Lambda expressions

Linked list manipulation

map class template

Mathematical algorithms of the Standard Library
maximum function template

Merge sort program

multiset class template

new throwing bad alloc on failure
PhoneNumber class

Poll analysis program

Polymorphism demonstration
Preincrementing and postincrementing
priority queue adapter class
queue adapter class
Random-access files
Random number generation
Recursive function factorial
Rolling a six-sided die 60,000,000 times
SalariedEmployee class

SalesPerson class

Searching and sorting algorithms of the Standard Library
Sequential files

set class template
shared ptr program
stack adapter class
Stack class

Stack unwinding

Standard Library string class program
Stream manipulator showbase

string assignment and concatenation
string member function substr
Student class

Summing integers with the for statement

Time class

unique ptr object managing dynamically allocated memory

Validating user input with regular expressions

vector class template

Exercises

e Self-Review Exercises and Answers. Extensive self-review
exercises and answers are included for self-study.

e [nteresting, entertaining and challenging exercises. Each chapter
concludes with a substantial set of exercises, including simple
recall of important terminology and concepts, identifying the errors
in code samples, writing individual program statements, writing
small portions of C++ classes and member and non-member
functions, writing complete programs and implementing major
projects. Figure 3 lists a sampling of the book’s exercises,
including our Making a Difference exercises, which encourage you
to use computers and the Internet to research and work on
significant social problems. We hope you’ll approach these
exercises with your own values, politics and beliefs.

Fig. 3 A sampling of the book’s exercises.

Exercises

Airline Reservations System

Advanced String-Manipulation

Bubble Sort

Building Your Own Compiler

Building Your Own Computer

Calculating Salaries

CarbonFootprint Abstract Class: Polymorphism

Card Shuffling and Dealing

Computer-Assisted Instruction

Computer-Assisted Instruction: Difficulty Levels

Computer-Assisted Instruction: Monitoring Student Performance

Computer-Assisted Instruction: Reducing Student Fatigue

Computer-Assisted Instruction: Varying the Types of Problems

Cooking with Healthier Ingredients
Craps Game Modification

Credit Limits

Crossword Puzzle Generator
Cryptograms

De Morgan’s Laws

Dice Rolling

Eight Queens

Emergency Response

Enforcing Privacy with Cryptography
Facebook User Base Growth
Fibonacci Series

Gas Mileage

Global Warming Facts Quiz
Guess the Number Game
Hangman Game

Health Records

Knight's Tour

Limericks

Maze Traversal: Generating Mazes Randomly

Morse Code

Payroll System Modification
Peter Minuit Problem
Phishing Scanner

Pig Latin

Polymorphic Banking Program Using Account Hierarchy

Pythagorean Triples
Salary Calculator

Sieve of Eratosthenes

Simple Decryption

Simple Encryption

SMS Language

Spam Scanner

Spelling Checker

Target-Heart-Rate Calculator

Tax Plan Alternatives; The “Fair Tax”
Telephone number word generator
“The Twelve Days of Christmas” Song
Tortoise and the Hare Simulation
Towers of Hanoi

World Population Growth

lllustrations and Figures

Abundant tables, line drawings, UML diagrams, programs and
program outputs are included. A sampling of the book’s drawings and
diagrams is shown in (Fig. 4).

Fig. 4 A sampling of the book’s drawings and diagrams.

Drawings and diagrams

Main text drawings and diagrams

Account class diagrams

Data hierarchy

Multiple-source-file compilation and linking

Order in which a second-degree polynomial is evaluated
if single-selection statement activity diagram

if ... else double-selection statement activity diagram
while repetition statement UML activity diagram

for repetition statement UML activity diagram
do...while repetition statement UML activity diagram
switch multiple-selection statement activity diagram
C++’s single-entry/single-exit control statements
Pass-by-value and pass-by-reference analysis
Inheritance hierarchy diagrams

Function-call stack and activation records

Recursive calls to function fibonacci

Pointer arithmetic diagrams

CommunityMember Inheritance hierarchy

Shape inheritance hierarchy

public, protected and private inheritance
Employee hierarchy UML class diagram

How virtual function calls work

Two self-referential class objects linked together
Graphical representation of a list

Operation insertAtFront represented graphically
Operation insertAtBack represented graphically
Operation removeFromFront represented graphically
Operation removeFromBack represented graphically
Circular, singly linked list

Doubly linked list

Circular, doubly linked list

Graphical representation of a binary tree

(Optional) ATM Case Study drawings and diagrams

Use case diagram for the ATM system from the User’s perspective
Class diagram showing an association among classes

Class diagram showing composition relationships

Class diagram for the ATM system model

Classes with attributes

State diagram for the ATM

Activity diagram for a BalanceInquiry transaction

Activity diagram for a Withdrawal transaction

Classes in the ATM system with attributes and operations
Communication diagram of the ATM executing a balance inquiry
Communication diagram for executing a balance inquiry
Sequence diagram that models a Withdrawal executing

Use case diagram for a modified version of our ATM system that also allows users to
transfer money between accounts

Class diagram showing composition relationships of a class Car

Class diagram for the ATM system model including class Deposit

Activity diagram for a Deposit transaction

Sequence diagram that models a Deposit executing

Dependency Chart

C++ How to Program, 10/e is appropriate for most introductory one-
and-two-course programming sequences, often called CS1 and CS2.
The chart in Fig. 5 shows the dependencies among the chapters to
help instructors plan their syllabi. The chart shows the book’s modular

organization.

Teaching Approach

C++ How to Program, 10/e, contains a rich collection of examples. We
stress program clarity and concentrate on building well-engineered
software.

Live-code approach. The book is loaded with “live-code” examples—
most new concepts are presented in complete working C++
applications, followed by one or more executions showing program
inputs and outputs.

Rich early coverage of C++ fundamentals. Chapter 2 provides a
friendly introduction to C++ programming. We include in Chapters 4
and 5 a clear treatment of control statements and algorithm
development.

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

Introduction

| Introduction to
Computers and C++

Intro to Programming,
Classes and Objects

2 Intro to C4++ Programming,
Input/Output and Operators

3 Intro to Classes,
Objects and Strings

ﬂ:ontrol Statementsx
Methods and Arrays

4 Algorithm Development and
Control Statements: Part |

5 Control Statements: Part 2;
Logical Operators

6 Functions and an
Intro to Recursion

'

7 Class Templates array and

Legacy C Topics

22 Bits, Characters, -
C Strings and structs

Object-Oriented
Design with the UML

25 (Optional) Object-Criented
Design with the UML
26 (Optional) Implementing an
Object-Oriented Design

vector; Catching Exceptions

- poi y

/ Object-Oriented \
Programming

9 Classes: A Deeper Look

10 Operator Overloading;
Class string

1 | QOP: Inheritance

12 OOP: Polymorphism ———

—}———= |3 Stream

Input/Qutput: A Deeper Look

14 File 21 Class string
Processing and String Stream
Processing: A
\ Deeper Look

|7 Exception Handling:
A Deeper Look

A 4

Other Topics, C++1 |
and C++14 Features

23 Other 24 C++11 and
Topics C++14 Additional
Features

/ Data Structures \

» |5 Standard Library
Containers and lterators

16 Standard Library Algorithms
Sections 6.18-6.20 Recursion ——

= | 8 Intro to Custom Templates

‘

19 Custom Templatized —=—{-
Data Structures

\ 20 Searching and Sortingj

Fig. 5 Chapter Dependency Chart

Syntax coloring. For readability, we syntax color all the C++ code,
similar to the way most C++ integrated-development environments
and code editors syntax color code. Our coloring conventions are as
follows:

keywords appear like this

all other code appears in black

Code highlighting. We place shaded rectangles around the new
features in each program.

Using fonts for emphasis. We color the defining occurrence of each
key term in bold colored text for easy reference. We emphasize on-
screen components in the bold Helvetica font (e.g., the File menu)
and C++ program text in the Lucida font (for example, int x = 5;).

Objectives. We clearly state the chapter objectives.

Programming tips. We include programming tips to help you focus on
key aspects of program development. These tips and practices

represent the best we've gleaned from a combined eight decades of
teaching and industry experience.

) 3
e /B

Bl Good Programming Practices

=

The Good Programming Practices call attention to techniques that will
help you produce programs that are clearer, more understandable and
more maintainable.

“ Common Programming Errors

&

Pointing out these Common Programming Errors reduces the
likelihood that you’ll make them.

> Error-Prevention Tips

These tips contain suggestions for exposing and removing bugs from
your programs; many describe aspects of C++ that prevent bugs from
getting into programs in the first place.

@ Performance Tips

These tips highlight opportunities for making your programs run faster
or minimizing the amount of memory that they occupy.

Pon‘ability Tips

These tips help you write code that will run on a variety of platforms.

9% Software Engineering Observations

These tips highlight architectural and design issues that affect the
construction of software systems, especially large-scale systems.

Summary Bullets. We present a section-by-section, bullet-list
summary of each chapter. Each key term is in bold followed by the
page number of the term’s defining occurrence.

Index. For convenient reference, we’ve included an extensive index,
with defining occurrences of key terms highlighted with a bold page
number.

Secure C++ Programming

It's difficult to build industrial-strength systems that stand up to attacks
from viruses, worms, and other forms of “malware.” Today, via the
Internet, such attacks can be instantaneous and global in scope.
Building security into software from the beginning of the development
cycle can greatly reduce vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to

analyze and respond promptly to attacks. CERT—the Computer
Emergency Response Team—is a government-funded organization
within the Carnegie Mellon University Software Engineering
Institute™. CERT publishes and promotes secure coding standards
for various popular programming languages to help software
developers implement industrial-strength systems which avoid the
programming practices that leave systems open to attacks.

We’d like to thank Robert C. Seacord, an adjunct professor in the
Carnegie Mellon University School of Computer Science and former
Secure Coding Manager at CERT. Mr. Seacord was a technical
reviewer for our book, C How to Program, 7/e, where he scrutinized
our C programs from a security standpoint, recommending that we
adhere to key guidelines of the CERT C Secure Coding Standard.

We've done the same for C++ How to Program, 10/e, adhering to key
guidelines of the CERT C++ Secure Coding Standard, which you can

http://www.cert.org

find at:

http://www.securecoding.cert.org

We were pleased to discover that we’ve already been recommending
many of these coding practices in our books since the early 1990s.
We upgraded our code and discussions to conform to these practices,
as appropriate for an introductory/intermediate-level textbook. If you'll
be building industrial-strength C++ systems, consider reading Secure
Coding in C and C++, Second Edition (Robert Seacord, Addison-
Wesley Professional, 2013).

Online Chapters, Appendices and
Other Content

The book’s Companion Website, which is accessible at

http://www.pearsonhighered.com/deitel

(see the inside front cover for your access key) contains the following
videos as well as chapters and appendices in searchable PDF format:

VideoNotes—The Companion Website (see the inside front cover

for your access key) also includes extensive videos. Watch and

listen as co-author Paul Deitel discusses in-depth the key code

examples from the book’s core programming-fundamentals and

object-oriented-programming chapters.

e Chapter 23, Other Topics

e Chapter 24, C++11 and C++14 Additional Topics

e Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with
the UML

e Chapter 26, ATM Case Study, Part 2: Implementing an Object-
Oriented Design

e Appendix F, C Legacy Code Topics

Appendix G, UML: Additional Diagram Types

Appendix H, Using the Visual Studio Debugger

Appendix |, Using the GNU C++ Debugger

Appendix J, Using the Xcode Debugger

Building Your Own Compiler exercise descriptions from Chapter
19 (posted at the Companion Website and at nttp://

www.deitel.com/books/cpphtpl0)

http://www.deitel.com/books/cpphtp10

Obtaining the Software Used in
C++ How to Program, 10/e

We wrote the code examples in C++ How to Program, 10/e using the
following free C++ development tools:

e Microsoft’s free Visual Studio Community 2015 edition, which
includes Visual C++ and other Microsoft development tools. This
runs on Windows and is available for download at

https://www.visualstudio.com/products/visual-studio-community-

vs

e GNU’s free GNU C++ 5.2.1. GNU C++ is already installed on most
Linux systems and can also be installed on Mac OS X and
Windows systems. There are many versions of Linux—known as
Linux distributions—that use different techniques for performing
software upgrades. Check your distribution’s online documentation
for information on how to upgrade GNU C++ to the latest version.
GNU C++ is available at

http://gcc.gnu.org/install/binaries.html

http://www.visualstudio.com/products/visual-studio-community-vs
http://gcc.gnu.org/install/binaries.html

e Apple’s free Xcode, which OS X users can download from the Mac
App Store— click the app’s icon in the dock at the bottom of your
screen, then search for Xcode in the app store.

Instructor Supplements

The following supplements are available to qualified instructors only
through Pearson Education’s Instructor Resource Center (nttp://

www.pearsonhighered.com/irc):

e Solutions Manual contains solutions to most of the end-of-chapter
exercises. We include Making a Difference exercises, many with
solutions. Please do not write to us requesting access to the
Pearson Instructor’s Resource Center. Access is restricted to
college instructors teaching from the book. Instructors may
obtain access only through their Pearson representatives. If you're
not a registered faculty member, contact your Pearson
representative or visit

http://www.pearsonhighered.com/educator/replocator/

Solutions are not provided for “project” exercises. Check out our
Programming Projects Resource Center for lots of additional
exercise and project possibilities.

http://www.deitel.com/ProgrammingProjects

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/educator/replocator/
http://www.deitel.com/ProgrammingProjects

e Test Item File of multiple-choice questions.
e Customizable PowerPoint® slides containing all the code and

figures in the text, plus bulleted items that summarize key points in
the text.

Online Practice and Assessment
with MyProgrammingLab ™

MyProgrammingLab™ helps students fully grasp the logic, semantics,
and syntax of programming. Through practice exercises and
immediate, personalized feedback, MyProgrammingLab improves the
programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level
programming languages.

An optional self-study and homework tool, a MyProgramminglLab
course consists of hundreds of small practice problems organized
around the structure of this textbook. For students, the system
automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure
out what went wrong— and why. For instructors, a comprehensive
gradebook tracks correct and incorrect answers and stores the code
inputted by students for review.

For a full demonstration, to see feedback from instructors and
students or to get started using MyProgrammingLab in your course,
visit

http://www.myprogramminglab.com

Acknowledgments

We'd like to thank Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. She painstakingly researched the new
capabilities of C++11 and C++14.

We're fortunate to have worked with the dedicated team of publishing
professionals at Pearson Higher Education. We appreciate the
guidance, wisdom and energy of Tracy Johnson, Executive Editor,
Computer Science. Kristy Alaura did an extraordinary job recruiting
the book’s reviewers and managing the review process. Bob
Engelhardt did a wonderful job bringing the book to publication.

Finally, thanks to Abbey Deitel, former President of Deitel &
Associates, Inc., and a graduate of Carnegie Mellon University’s
Tepper School of Management where she received a B.S. in Industrial
Management. Abbey managed the business operations of Deitel &
Associates, Inc. for 17 years, along the way co-authoring a number of
our publications, including the previous C++ How to Program editions’
versions of Chapter 1.

Reviewers

We wish to acknowledge the efforts of our reviewers. Over its ten
editions, the book has been scrutinized by academics teaching C++

courses, current and former members of the C++ standards
committee and industry experts using C++ to build industrial-strength,
high-performance systems. They provided countless suggestions for
improving the presentation. Any remaining flaws in the book are our
own.

Tenth Edition reviewers: Chris Aburime, Minnesota State Colleges
and Universities System; Gasper AZzman, A9.com Search
Technologies and Co-Author of C++ Today: The Beast is Back; Danny
Kalev, Intel and Former Member of the C++ Standards Committee;
Renato Golin, LLVM Tech Lead at Linaro and Co-Owner for the ARM
Target in LLVM; Gordon Hogenson, Microsoft, Author of Foundations
of C++/CLI: The Visual C++ Language for .NET 3; Jonathan Wakely,
Redhat, ISO C++ Committee Secretary; José Antonio Gonzalez Seco,
Parliament of Andalusia; Dean Michael Berris, Google, Maintainer of
cpp-netlib and Former ISO C++ Committee Member.

Ninth Edition post-publication academic reviewers: Stefano Basagni,
Northeastern University; Amr Elkady, Diablo Valley College; Chris
Aburime, Minnesota State Colleges and Universities System.

Other recent edition reviewers: Virginia Bailey (Jackson State
University), Ed James-Beckham (Borland), Thomas J. Borrelli
(Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox
(Adobe Systems), Gregory Dai (eBay), Peter J. DePasquale (The
College of New Jersey), John Dibling (SpryWare), Susan Gauch
(University of Arkansas), Doug Gregor (Apple, Inc.), Jack Hagemeister
(Washington State University), Williams M. Higdon (University of

http://A9.com

Indiana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis
Integration Solutions), Linda M. Krause (EImhurst College), Wing-Ning
Li (University of Arkansas), Dean Mathias (Utah State University),
Robert A. McLain (Tide-water Community College), James P. McNellis
(Microsoft Corporation), Robert Myers (Florida State University),
Gavin Osborne (Saskatchewan Institute of Applied Science and
Technology), Amar Raheja (California State Polytechnic University,
Pomona), April Reagan (Microsoft), Robert C. Seacord (Secure
Coding Manager at SEI/CERT, author of Secure Coding in C and
C++), Raymond Stephenson (Microsoft), Dave Topham (Ohlone
College), Anthony Williams (author and C++ Standards Committee
member) and Chad Willwerth (University Washington, Tacoma).

As you read the book, we’d sincerely appreciate your comments,

criticisms and suggestions for improving the text. Please address all
correspondence to:

deitel@deitel.com

We’ll respond promptly. We enjoyed writing C++ How to Program,
Tenth Edition. We hope you enjoy reading it!

Paul Deitel

Harvey Deitel

mailto://deitel@deitel.com

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates,
Inc., has over 30 years of experience in computing. He is a graduate
of MIT, where he studied Information Technology. He holds the Java
Certified Programmer and Java Certified Developer designations and
is an Oracle Java Champion. Paul was also named as a Microsoft®

Most Valuable Professional (MVP) for C# in 2012—-2014. Through
Deitel & Associates, Inc., he has delivered hundreds of programming
courses worldwide to clients, including Cisco, IBM, Siemens, Sun
Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the
National Severe Storm Laboratory, White Sands Missile Range,
Rogue Wave Software, Boeing, SunGard, Nortel Networks, Puma,
iRobot, Invensys and many more. He and his co-author, Dr. Harvey
Deitel, are the world’s best-selling programming-language
textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel &
Associates, Inc., has over 50 years of experience in the computer
field. Dr. Deitel earned B.S. and M.S. degrees in Electrical
Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before
they spun off Computer Science programs. He has extensive college
teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College
before founding Deitel & Associates, Inc., in 1991 with his son, Paul.

The Deitels’ publications have earned international recognition, with
translations published in Japanese, German, Russian, Spanish,
French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has
delivered hundreds of programming courses to academic, corporate,
government and military clients.

About Deitel & Associates, Inc.

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is
an internationally recognized authoring and corporate training
organization, specializing in computer programming languages, object
technology, Internet and web software technology, and Android and
IOS app development. The company’s clients include academic
institutions, many of the world’s largest corporations, government
agencies and branches of the military. The company offers instructor-
led training courses delivered at client sites worldwide on major
programming languages and platforms, including C++, C, Java™,
Android app development, iOS app development, Swift™, Visual C#®,
Visual Basic®, Internet and web programming and a growing list of

additional programming and software-development courses.

Through its 40-year publishing partnership with Prentice Hall/Pearson,
Deitel & Associates, Inc., publishes leading-edge programming
college textbooks, professional books and LivelLessons video courses.
Deitel & Associates, Inc. and the authors can be reached at:

deitel@deitel.com

To learn more about Deitel’s corporate training curriculum, visit

http://www.deitel.com/training

To request a proposal for worldwide on-site, instructor-led training at
your organization, send an e-mail t0 deiteledeitel.com.

Individuals wishing to purchase Deitel books can do so via

http://bit.ly/DeitelOnAmazon

Individuals wishing to purchase Deitel LiveLessons video training can

do so at:

http://bit.ly/DeitelOnInformit

mailto://deitel@deitel.com
http://www.deitel.com/training
mailto://deitel@deitel.com
http://bit.ly/DeitelOnAmazon

All Deitel books and LiveLessons videos are also available
electronically to Safari Books Online subscribers at:

http://SafariBooksOnline.com

You can get a free 10-day Safari Books Online trial at:

https://www.safaribooksonline.com/register/

Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For
more information, visit

http://www.informit.com/store/sales.aspx

http://safaribooksonline.com.ezproxy.cul.columbia.edu
http://www.safaribooksonline.com.ezproxy.cul.columbia.edu/register/
http://www.informit.com/store/sales.aspx

Before You Begin

This section contains information you should review before using this
book and instructions to ensure that your computer is set up properly
to compile the example programs.

Font and Naming Conventions

We use fonts to distinguish between features, such as menu names,
menu items, and other elements that appear in your IDE (Integrated
Development Environment), such as Microsoft's Visual Studio. Our
convention is to emphasize IDE features in a sans-serif bold
Helvetica font (for example, File menu) and to emphasize program
text in a sans-serif Lucida font (for example, ool x = true;).

Obtaining the Software Used in
C++ How to Program, 10/e

Before reading this book, you should download and install a C++
compiler. We wrote C++ How to Program, 10/e’s code examples using
the following free C++ development tools:

e Microsoft’s free Visual Studio Community 2015 edition, which
includes the Visual C++ compiler and other Microsoft development
tools. This runs on Windows and is available for download at

https://www.visualstudio.com/products/visual-studio-community-

vs

e GNU’s free GNU C++ 5.2.1 compiler. GNU C++ is already installed
on most Linux systems and also can be installed on Mac OS X and
Windows systems. There are many versions of Linux, known as
Linux distributions, that use different techniques for performing
software upgrades. Check your distribution’s online documentation
for information on how to upgrade GNU C++ to the latest version.
GNU C++ is available at

http://gcc.gnu.org/install/binaries.html

e Apple’s free Xcode, which OS X users can download from the Mac
App Store— click the app’s icon in the dock at the bottom of your
Mac screen, then search for Xcode in the app store.

We also provide links to our getting-started videos for each of these
C++ tools at:

http://www.visualstudio.com/products/visual-studio-community-vs
http://gcc.gnu.org/install/binaries.html

http://www.deitel.com/books/cpphtpl0

Obtaining the Code Examples

The examples for C++ How to Program, 10/e are available for
download at

http://www.deitel.com/books/cpphtpl0

Click the Download Code Examples link to download the ZIP archive
file to your computer. Write down the location where you saved the file
—most browsers will save the file into your user account’s pownioads

folder.

Throughout the book, steps that require you to access our example
code on your computer assume that you've extracted the examples
from the ZIP file and placed them in c:\exampies on Windows or in

your user account’s pocuments directory on other platforms. You can

extract them anywhere you like, but if you choose a different location,
you'll need to update our steps accordingly.

Creating Projects

http://www.deitel.com/books/cpphtp10
http://www.deitel.com/books/cpphtp10

In Section 1.10, we demonstrate how to compile and run programs
with

e Microsoft Visual Studio Community 2015 edition on Windows
(Section 1.10.1)

e GNU C++ 5.2.1 on Linux (Section 1.10.2)

e Apple Xcode on OS X (Section 1.10.3)

For GNU C++ and Xcode, you must compile your programs with
C++14. To do so in GNU C++, include the option -sta=c++14 when you

compile your code, as in:

gt+ -std=c++14 YourFileName.cpp

For Xcode, after following Section 1.10.3’s steps to create a project:

Select the root node at the top of the Xcode Project navigator.
Click the Build Settings tab in the Editors area.
Scroll down to the Apple LLVM 7.0 - Language - C++ section.

N~

For the C++ Language Dialect option, select C++14 [-
std=c++14].

Getting Your C++ Questions

Answered

As you read the book, if you have questions, we're easy to reach at

deitel@deitel.com

We’ll respond promptly.

In addition, the web is loaded with programming information. An
invaluable resource for nonprogrammers and programmers alike is the
website

http://stackoverflow.com

on which you can:

Search for answers to most common programming questions
Search for error messages to see what causes them

Ask programming questions to get answers from programmers
worldwide
Gain valuable insights about programming in general

mailto://deitel@deitel.com
http://stackoverflow.com

Online C++ Documentation

For documentation on the C++ Standard Library, visit

http://cppreference.com

and be sure to check out the C++ FAQ at

https://isocpp.org/faq

http://cppreference.com
http://isocpp.org/faq

1 Introduction to Computers and
C++

Objectives

In this chapter you'll learn:

e Exciting recent developments in the computer field.

e Computer hardware, software and networking basics.
e The data hierarchy.

e The different types of programming languages.

e Basic object-technology concepts.

e Some basics of the Internet and the World Wide Web.
e A typical C++ program development environment.

e To test-drive a C++ application.

e Some key recent software technologies.

e How computers can help you make a difference.

Outline

—_—

. 1.1 Introduction

2. 1.2 Computers and the Internet in Industry and Research
3. 1.3 Hardware and Software

A. 1.3.1 Moore’s Law

B. 1.3.2 Computer Organization

4. 1.4 Data Hierarchy
5. 1.5 Machine Languages, Assembly Languages and High-
Level Languages
6. 1.6 C and C++
7. 1.7 Programming Languages
8. 1.8 Introduction to Object Technology
9. 1.9 Typical C++ Development Environment
0. 1.10 Test-Driving a C++ Application
A. 1.10.1 Compiling and Running an Application in
Visual Studio 2015 for Windows
B. 1.10.2 Compiling and Running Using GNU C++ on
Linux
C. 1.10.3 Compiling and Running with Xcode on Mac
0S X

11. 1.11 Operating Systems
A. 1.11.1 Windows—A Proprietary Operating System
B. 1.11.2 Linux—An Open-Source Operating System

12,
13.
14.
15.
16.

o K 0D~

C. 1.11.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad®
and iPod Touch® Devices
D. 1.11.4 Google’s Android

1.12 The Internet and the World Wide Web

1.13 Some Key Software Development Terminology
1.14 C++11 and C++14: The Latest C++ Versions

1.15 Boost C++ Libraries

1.16 Keeping Up to Date with Information Technologies

Self-Review Exercises

Answers to Self-Review Exercises
Exercises

Making a Difference

Making a Difference Resources

1.1 Introduction

Welcome to C++—a powerful computer programming language that’s
appropriate for technically oriented people with little or no
programming experience, and for experienced programmers to use in
building substantial information systems. You're already familiar with
the powerful tasks computers perform. Using this textbook, you'll write
instructions commanding computers to perform those kinds of tasks.
Software (i.e., the instructions you write) controls hardware (i.e.,
computers).

You'll learn object-oriented programming—today’s key programming
methodology. You'll create many software objects that model things in
the real world.

C++ is one of today’s most popular software development languages.
This text provides an introduction to programming in C++11 and
C++14—the latest versions standardized through the International
Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC).

11

14

As of 2008 there were more than a billion general-purpose computers
in use. Today, various websites say that number is approximately two
billion, and according to the real-time tracker at gsmaintelligence.com,
there are now more mobile devices than there are people in the world.
According to the International Data Corporation (IDC), the number of
mobile Internet users will top two billion in 2016.1 Smartphone sales
surpassed personal computer sales in 2011.2 Tablet sales were
expected to overtake personal-computer sales by 2015.3 By 2017, the
smartphone/tablet app market is expected to exceed $77 billion.4 This
explosive growth is creating significant opportunities for programming
mobile applications.

1. https://www.idc.com/getdoc. jsp?containerId=prUsS40855515.

2. http://www.mashable.com/2012/02/03/smartphone-sales-overtake-

pcs/.

3. http://www. forbes.com/sites/louiscolumbus/2014/07/18/gartner-

forecasts-tablet-shipments-will-overtake-pcs-in-2015/.

4, http://www.entrepreneur.com/article/236832.

https://www-idc-com.ezproxy.cul.columbia.edu/getdoc.jsp?containerId=prUS40855515
http://www.mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://www.forbes.com/sites/louiscolumbus/2014/07/18/gartner-forecasts-tablet-shipments-will-overtake-pcs-in-2015/
http://www.entrepreneur.com/article/236832

1.2 Computers and the Internet In
Industry and Research

These are exciting times in the computer field. Many of the most
influential and successful businesses of the last two decades are
technology companies, including Apple, IBM, Hewlett Packard, Dell,
Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twitter,
eBay and many more. These companies are major employers of
people who study computer science, computer engineering,
information systems or related disciplines. At the time of this writing,
Apple was the most valuable company in the world. Figure 1.1
provides a few examples of the ways in which computers are
improving people’s lives in research, industry and society.

Fig. 1.1 A few uses for computers.

Name Description

Electronic These might include a patient’s medical history, prescriptions,

health immunizations, lab results, allergies, insurance information and more.
records Making this information available to health care providers across a secure

network improves patient care, reduces the probability of error and
increases overall efficiency of the health-care system, helping control

costs.
Human The Human Genome Project was founded to identify and analyze the
Genome 20,000+ genes in human DNA. The project used computer programs to

Project analyze complex genetic data, determine the sequences of the billions of

chemical base pairs that make up human DNA and store the information
in databases which have been made available over the Internet to

researchers in many fields.

AMBER™
Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert
System is used to find abducted children. Law enforcement notifies TV
and radio broadcasters and state transportation officials, who then
broadcast alerts on TV, radio, computerized highway signs, the Internet
and wireless devices. AMBER Alert recently partnered with Facebook,
whose users can “Like” AMBER Alert pages by location to receive alerts
in their news feeds.

World
Community
Grid

People worldwide can donate their unused computer processing power
by installing a free secure software program that allows the World
Community Grid (http://www.worldcommunitygrid.org)to
harness unused capacity. This computing power, accessed over the
Internet, is used in place of expensive supercomputers to conduct
scientific research projects that are making a difference—providing clean
water to third-world countries, fighting cancer, growing more nutritious

rice for regions fighting hunger and more.

Cloud

computing

Cloud computing allows you to use software, hardware and information
stored in the “cloud”—i.e., accessed on remote computers via the Internet
and available on demand—rather than having it stored on your personal
computer. These services allow you to increase or decrease resources to
meet your needs at any given time, so they can be more cost effective
than purchasing expensive hardware to ensure that you have enough
storage and processing power to meet your needs at their peak levels.
Using cloud-computing services shifts the burden of managing these
applications from the business to the service provider, saving businesses
money.

Medical

X-ray computed tomography (CT) scans, also called CAT (computerized

http://www.worldcommunitygrid.org

imaging

axial tomography) scans, take X-rays of the body from hundreds of
different angles. Computers are used to adjust the intensity of the X-rays,
optimizing the scan for each type of tissue, then to combine all of the
information to create a 3D image. MRI scanners use a technique called
magnetic resonance imaging, also to produce internal images

noninvasively.

GPS

Global Positioning System (GPS) devices use a network of satellites to
retrieve location-based information. Multiple satellites send time-stamped
signals to the GPS device, which calculates the distance to each satellite,
based on the time the signal left the satellite and the time the signal
arrived. This information helps determine the device’s exact location.
GPS devices can provide step-by-step directions and help you locate
nearby businesses (restaurants, gas stations, etc.) and points of interest.
GPS is used in numerous location-based Internet services such as
check-in apps to help you find your friends (e.g., Foursquare and
Facebook), exercise apps such as RunKeeper that track the time,
distance and average speed of your outdoor jog, dating apps that help
you find a match nearby and apps that dynamically update changing
traffic conditions.

Robots

Robots can be used for day-to-day tasks (e.g., iRobot's Roomba
vacuuming robot), entertainment (e.g., robotic pets), military combat,
deep sea and space exploration (e.g., NASA’s Mars rover Curiosity) and
more. RoboEarth (www . roboearth.org) is “a World Wide Web for
robots.” It allows robots to learn from each other by sharing information
and thus improving their abilities to perform tasks, navigate, recognize
objects and more.

E-mail,
Instant
Messaging,
Video Chat
and FTP

Internet-based servers support all of your online messaging. E-mail
messages go through a mail server that also stores the messages.
Instant Messaging (IM) and Video Chat apps, such as Facebook
Messenger, AIM, Skype, Yahoo! Messenger, Google Hangouts, Trillian

and others allow you to communicate with others in real time by sending

http://www.roboearth.org

your messages and live video through servers. FTP (file transfer protocol)
allows you to exchange files between multiple computers (for example, a

client computer such as your desktop and a file server) over the Internet.

Internet TV Internet TV set-top boxes (such as Apple TV, Android TV, Roku and
TiVo) allow you to access an enormous amount of content on demand,
such as games, news, movies, television shows and more, and they help
ensure that the content is streamed to your TV smoothly.

Streaming Streaming music services (such as Apple Music, Pandora, Spotify,

music Last.fm and more) allow you listen to large catalogues of music over the

services web, create customized “radio stations” and discover new music based
on your feedback.

Game Global video-game revenues are expected to reach $107 billion by 2017

programming

(http://www.polygon.com/2015/4/22/8471789/
worldwide-video-games-market-value-2015). The most
sophisticated games can cost over $100 million to develop, with the most
expensive costing half a billion dollars (http: //www.gamespot.com/
gallery/20-of-the-most-expensive-games-ever-made/
2900-104/). Bethesda’s Fallout 4 earned $750 million in its first day of
sales (http://fortune.com/2015/11/16/falloutd-is-

quiet-best-seller/)

http://www.polygon.com/2015/4/22/8471789/worldwide-video-games-market-value-2015
http://www.gamespot.com/gallery/20-of-the-most-expensive-games-ever-made/2900-104/
http://fortune.com/2015/11/16/fallout4-is-quiet-best-seller/

1.3 Hardware and Software

Computers can perform calculations and make logical decisions
phenomenally faster than human beings can. Many of today’s
personal computers can perform billions of calculations in one second
—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions
per second! China’s National University of Defense Technology’s
Tianhe-2 supercomputer can perform over 33 quadrillion calculations
per second (33.86 petaflops)!5 To put that in perspective, the Tianhe-
2 supercomputer can perform in one second about 3 million
calculations for every person on the planet! And supercomputing
“‘upper limits” are growing quickly.

5. http://www.top500.0rg.

Computers process data under the control of sequences of
instructions called computer programs. These programs guide the
computer through ordered actions specified by people called computer
programmers. The programs that run on a computer are referred to
as software. In this book, you'll learn a key programming
methodology that’s enhancing programmer productivity, thereby
reducing software development costs—object-oriented programming.

http://www.top500.org

A computer consists of various devices referred to as hardware (e.qg.,
the keyboard, screen, mouse, hard disks, memory, DVD drives and
processing units). Computing costs are dropping dramatically, owing
to rapid developments in hardware and software technologies.
Computers that might have filled large rooms and cost millions of
dollars decades ago are now inscribed on silicon chips smaller than a
fingernail, costing perhaps a few dollars each. Ironically, silicon is one
of the most abundant materials on Earth—it’s an ingredient in
common sand. Silicon-chip technology has made computing so
economical that computers have become a commodity.

1.3.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most
products and services. The opposite has been the case in the
computer and communications fields, especially with regard to the
hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly.

Every year or two, the capacities of computers have approximately
doubled inexpensively. This remarkable trend often is called Moore’s
Law, named for the person who identified it in the 1960s, Gordon
Moore, co-founder of Intel—a leading manufacturer of the processors
in today’s computers and embedded systems. Moore’s Law and
related observations apply especially to the amount of memory that
computers have for programs, the amount of secondary storage (such
as disk storage) they have to hold programs and data over longer

periods of time, and their processor speeds—the speeds at which they
execute their programs (i.e., do their work). These increases make
computers more capable, which puts greater demands on
programming-language designers to innovate.

Similar growth has occurred in the communications field—costs have
plummeted as enormous demand for communications bandwidth (i.e.,
information-carrying capacity) has attracted intense competition. We
know of no other fields in which technology improves so quickly and
costs fall so rapidly. Such phenomenal improvement is truly fostering
the Information Revolution.

1.3.2 Computer Organization

Regardless of differences in physical appearance, computers can be
envisioned as divided into various logical units or sections (Fig. 1.2).

Fig. 1.2 Logical units of a computer.

Logical unit | Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for
processing. Most user input is entered into computers through keyboards,
touch screens and mouse devices. Other forms of input include receiving
voice commands, scanning images and barcodes, reading from secondary
storage devices (such as hard drives, DVD drives, Blu-ray Disc" drives
and USB flash drives—also called “thumb drives” or “memory sticks”),

receiving video from a webcam and having your computer receive

information from the Internet (such as when you stream videos from
YouTube® or download e-books from Amazon). Newer forms of input
include position data from a GPS device, and motion and orientation
information from an accelerometer (a device that responds to up/down,
left/right and forward/backward acceleration) in a smartphone or game

controller (such as Microsoft® Kinect® for Xbox®, Wii™ Remote and Sony®

PIayStation® Move).

Output

unit

This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside
the computer. Most information that’s output from computers today is
displayed on screens (including touch screens), printed on paper (“going
green” discourages this), played as audio or video on PCs and media
players (such as Apple’s iPods) and giant screens in sports stadiums,
transmitted over the Internet or used to control other devices, such as
robots and “intelligent” appliances. Information is also commonly output to
secondary storage devices, such as hard drives, DVD drives and USB
flash drives. Popular recent forms of output are smartphone and game

controller vibration, and virtual reality devices like Oculus Rift.

Memory

unit

This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by
the output unit. Information in the memory unit is volatile—it’'s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory).
Main memories on desktop and notebook computers contain as much as
128 GB of RAM, though 2 to 16 GB is most common. GB stands for
gigabytes; a gigabyte is approximately one billion bytes. A byte is eight
bits. A bitis eithera 0 ora 1.

Arithmetic

This “manufacturing” section performs calculations, such as addition,

and logic
unit (ALU)

subtraction, multiplication and division. It also contains the decision
mechanisms that allow the computer, for example, to compare two items
from the memory unit to determine whether they’re equal. In today’s

systems, the ALU is implemented as part of the next logical unit, the CPU.

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of
the other sections. The CPU tells the input unit when information should be
read into the memory unit, tells the ALU when information from the
memory unit should be used in calculations and tells the output unit when
to send information from the memory unit to certain output devices. Many
of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple
processors on a single integrated-circuit chip—a dual-core processor has
two CPUs, a quad-core processor has four and an octa-core processor
has eight. Today’s desktop computers have processors that can execute
billions of instructions per second. To take full advantage of multi-core
architecture you need to write multithreaded applications, which we
introduce in Section 24.3.

Secondary
storage
unit

This is the long-term, high-capacity “warehousing” section. Programs or
data not actively being used by the other units normally are placed on
secondary storage devices (e.g., your hard drive) until they’re again
needed, possibly hours, days, months or even years later. Information on
secondary storage devices is persistent—it’s preserved even when the
computer’s power is turned off. Secondary storage information takes much
longer to access than information in primary memory, but its cost per unit
is much less. Examples of secondary storage devices include hard drives,
DVD drives and USB flash drives, some of which can hold over 2 TB (TB
stands for terabytes; a terabyte is approximately one trillion bytes). Typical
hard drives on desktop and notebook computers hold up to 2 TB, and
some desktop hard drives can hold up to 6 TB.

1.4 Data Hierarchy

Data items processed by computers form a data hierarchy that
becomes larger and more complex in structure as we progress from
the simplest data items (called “bits”) to richer ones, such as

characters and fields. Figure 1.3 illustrates a portion of the data
hierarchy.

Sally Black \

Tom Blue |
I|
—= Judy Green }- File
III
Iris Orange |
|
Randy Red |
;'I
Judy Green Record

+

Judy Field

A
I
01001010 Byte (ASCII character |)
1 Bit

Fig. 1.3 Data hierarchy.

Bits

The smallest data item in a computer can assume the value o or the
value 1. It's called a bit (short for “binary digit’—a digit that can

assume one of two values). Remarkably, the impressive functions
performed by computers involve only the simplest manipulations of os

and 1s—examining a bit’s value, setting a bit’s value and reversing a

bit’s value (from 1 to o or from o to 1).

Characters

It's tedious for people to work with data in the low-level form of bits.
Instead, they prefer to work with decimal digits (0-9), letters (A—Z and
a-z), and special symbols (e.g., $, @, %, &, %, (,),—, +, ", ;, 2 and /).
Digits, letters and special symbols are known as characters. The
computer’s character set is the set of all the characters used to write
programs and represent data items. Computers process only 1s and

0S, SO a computer’s character set represents every character as a
pattern of 1s and os. C++ supports various character sets (including
Unicode®), with some requiring more than one byte per character.

Unicode supports many of the world’s languages. See Appendix B for
more information on the ASCIl (American Standard Code for
Information Interchange) character set—the popular subset of
Unicode that represents uppercase and lowercase letters, digits and
some common special characters.

Fields

Just as characters are composed of bits, fields are composed of
characters or bytes. A field is a group of characters or bytes that
conveys meaning. For example, a field consisting of uppercase and
lowercase letters can be used to represent a person’s name, and a
field consisting of decimal digits could represent a person’s age.

Records

Several related fields can be used to compose a record. In a payroll
system, for example, the record for an employee might consist of the
following fields (possible types for these fields are shown in
parentheses):

Employee identification number (a whole number)

Name (a string of characters)

Address (a string of characters)
Hourly pay rate (a number with a decimal point)

Year-to-date earnings (a number with a decimal point)
Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. In the preceding example,
all the fields belong to the same employee. A company might have
many employees and a payroll record for each.

Files

A file is a group of related records. [Note: More generally, a file
contains arbitrary data in arbitrary formats. In some operating
systems, a file is viewed simply as a sequence of bytes—any
organization of the bytes in a file, such as organizing the data into
records, is a view created by the application programmer.] It's not
unusual for an organization to have many files, some containing
billions, or even ftrillions, of characters of information.

Database

A database is a collection of data organized for easy access and
manipulation. The most popular model is the relational database, in
which data is stored in simple tables. A table includes records and
fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade-point-average fields.
The data for each student is a record, and the individual pieces of
information in each record are the fields. You can search, sort and
otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from
the student database in combination with data from databases of
courses, on-campus housing, meal plans, etc.

Big Data

The amount of data being produced worldwide is enormous and
growing quickly. According to IBM, approximately 2.5 quintillion bytes
(2.5 exabytes) of data are created dailyé and according to
Salesforce.com, 90% of the world’s data was created in just the past

http://Salesforce.com

12 months!7 According to an IDC study, the global data supply will
reach 40 zettabytes (equal to 40 trillion gigabytes) annually by 2020.8
Figure 1.4 shows some common byte measurements. Big data
applications deal with massive amounts of data and this field is
growing quickly, creating lots of opportunity for software developers.
According to a study by Gartner Group, over 4 million IT jobs globally
were expected to support big data in 2015.9

6. http://www—-01.ibm.com/software/data/bigdata/what-is-big-data.html.

7. https://www.salesforce.com/blog/2015/10/salesforce-channel-

ifttt.html.

8. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-

again-really/.

9. http://tech. fortune.cnn.com/2013/09/04/big-data-employment-boom/

Fig. 1.4 Byte measurements.

Unit Bytes Which is approximately
1 kilobyte (KB) 1024 bytes 10° (1024) bytes exactly
1 megabyte (MB) | 1024 kilobytes 10% (1,000,000) bytes

1 gigabyte (GB) 1024 megabytes | 10° (1,000,000, 000) bytes

http://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html
http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/
http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/

1 terabyte (TB)

1024 gigabytes

10'% (1,000,000, 000,000) bytes

1 petabyte (PB)

1024 terabytes

10'® (1,000,000, 000,000,000) bytes

1 exabyte (EB)

1024 petabytes

108 (1,000, 000,000, 000, 000,
000) bytes

1 zettabyte (ZB)

1024 exabytes

10?* (1,000, 000,000, 000, 000, 000,
000) bytes

1.5 Machine Languages, Assembly
Languages and High-Level
Languages

Programmers write instructions in various programming languages,
some directly understandable by computers and others requiring
intermediate translation steps.

Machine Languages

Any computer can directly understand only its own machine
language (also called machine code), defined by its hardware
architecture. Machine languages generally consist of numbers
(ultimately reduced to 1s and Os). Such languages are cumbersome
for humans.

Assembly Languages

Programming in machine language was simply too slow and tedious
for most programmers. Instead, they began using English-like
abbreviations to represent elementary operations. These
abbreviations formed the basis of assembly languages. Translator
programs called assemblers were developed to convert assembly-

language programs to machine language. Although assembly-
language code is clearer to humans, it's incomprehensible to
computers until translated to machine language.

High-Level Languages

To speed up the programming process further, high-level languages
were developed in which single statements could be written to
accomplish substantial tasks. High-level languages, such as C, C++,
Java, C#, Swift and Visual Basic, allow you to write instructions that
look more like everyday English and contain commonly used
mathematical notations. Translator programs called compilers
convert high-level language programs into machine language.

The process of compiling a large high-level language program into
machine language can take a considerable amount of computer time.
Interpreter programs were developed to execute high-level language
programs directly (without the need for compilation), although more
slowly than compiled programs. Scripting languages such as the
popular web languages JavaScript and PHP are processed by
interpreters.

Performance Tip 1.1

Interpreters have an advantage over compilers in Internet scripting. An
interpreted program can begin executing as soon as it’s downloaded
to the client’s machine, without needing to be compiled before it can

execute. On the downside, interpreted scripts generally run slower
and consume more memory than compiled code.

1.6 C and C++

C was implemented in 1972 by Dennis Ritchie at Bell Laboratories. It
initially became widely known as the UNIX operating system’s
development language. Today, most of the code for general-purpose
operating systems is written in C or C++.

C++ evolved from C, which is available for most computers and is
hardware independent. With careful design, it's possible to write C
programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes
called hardware platforms) unfortunately led to many variations. A
standard version of C was needed. The American National Standards
Institute (ANSI) cooperated with the International Organization for
Standardization (ISO) to standardize C worldwide; the joint standard
document was published in 1990.

C11 is the latest ANSI standard for the C programming language. It
was developed to evolve the C language to keep pace with
increasingly powerful hardware and ever more demanding user
requirements. C11 also makes C more consistent with C++. For more
information on C and C11, see our book C How to Program, 8/e and
our C Resource Center (located at nttp://www.deitel.com/C).

http://www.deitel.com/C

C++, an extension of C, was developed by Bjarne Stroustrup in 1979
at Bell Laboratories. Originally called “C with Classes,” it was renamed
to C++ in the early 1980s. C++ provides a number of features that
“spruce up” the C language, but more importantly, it provides
capabilities for object-oriented programming that were inspired by the
Simula simulation programming language. We say more about C++
and its current version in Section 1.14.

You'll begin developing customized, reusable classes and objects in
Chapter 3. The book is object oriented, where appropriate, from the
start and throughout the text.

We also provide an optional automated teller machine (ATM) case
study in Chapters 25-26, which contains a complete C++
implementation. The case study presents a carefully paced
introduction to object-oriented design using the UML—an industry
standard graphical modeling language for developing object-oriented
systems. We guide you through a friendly design and implementation
experience intended for the novice.

C++ Standard Library

C++ programs consist of pieces called classes and functions. You
can program each piece yourself, but most C++ programmers take
advantage of the rich collections of classes and functions in the C++
Standard Library. Thus, there are really two parts to learning the C++
“world.” The first is learning the C++ language itself (often referred to
as the “core language”); the second is learning how to use the classes

and functions in the C++ Standard Library. We discuss many of these
classes and functions. P. J. Plauger’s book, The Standard C Library
(Upper Saddle River, NJ: Prentice Hall PTR, 1992), is a must-read for
programmers who need a deep understanding of the ANSI C library
functions included in C++. Many special-purpose class libraries are
supplied by independent software vendors.

5% Software Engineering Observation 1.1

Use a “building-block” approach to create programs. Avoid reinventing
the wheel. Use existing pieces wherever possible. Called software
reuse, this practice is central to effective object-oriented
programming.

=55 Software Engineering Observation 1.2

When programming in C++, you typically will use the following building
blocks: classes and functions from the C++ Standard Library, classes
and functions you and your colleagues create, and classes and
functions from various popular third-party libraries.

The advantage of creating your own functions and classes is that
you'll know exactly how they work. You'll be able to examine the C++
code. The disadvantage is the time-consuming and complex effort that

goes into designing, developing and maintaining new functions and
classes that are correct and operate efficiently.

<>| Performance Tip 1.2

Using C++ Standard Library functions and classes instead of writing
your own versions can improve program performance, because
they’re written carefully to perform efficiently. This technique also
Shortens program development time.

Portability Tip 1.1

Using C++ Standard Library functions and classes instead of writing
your own improves program portability, because they’re included in
every C++ implementation.

1.7 Programming Languages

In this section, we provide brief comments on several popular
programming languages (Fig. 1.5).

Fig. 1.5 Some other programming languages.

Programming

language

Description

Fortran

Fortran (FORmula TRANslator) was developed by IBM Corporation in
the mid-1950s to be used for scientific and engineering applications that
require complex mathematical computations. It’s still widely used and its

latest versions support object-oriented programming.

COBOL

COBOL (COmmon Business Oriented Language) was developed in the
late 1950s by computer manufacturers, the U.S. government and
industrial computer users, based on a language developed by Grace
Hopper, a career U.S. Navy officer and computer scientist. COBOL is
still widely used for commercial applications that require precise and
efficient manipulation of large amounts of data. Its latest version

supports object-oriented programming.

Pascal

Research in the 1960s resulted in structured programming—a
disciplined approach to writing programs that are clearer, easier to test
and debug and easier to modify than programs produced with previous
techniques. The Pascal language developed by Professor Niklaus Wirth
in 1971 grew out of this research. It was popular for teaching structured
programming for several decades.

Ada

Ada, based on Pascal, was developed under the sponsorship of the U.S.

Department of Defense (DOD) during the 1970s and early 1980s. The
DOD wanted a single language that would fill most of its needs. The
Pascal-based language was named after Lady Ada Lovelace, daughter
of the poet Lord Byron. She’s credited with writing the world’s first
computer program in the early 1800s (for the Analytical Engine
mechanical computing device designed by Charles Babbage). Ada also
supports object-oriented programming.

Basic

Basic was developed in the 1960s at Dartmouth College to familiarize
novices with programming techniques. Many of its latest versions are
object oriented.

Objective-C

Objective-C is an object-oriented language based on C. It was
developed in the early 1980s and later acquired by NeXT, which in turn
was acquired by Apple. It became the key programming language for the
OS X operating system and all iOS-powered devices (such as iPods,

iPhones and iPads).

Swift

Swift, which was introduced in 2014, is Apple’s programming language
of the future for developing iOS and OS X applications (apps). Swift is a
contemporary language that includes popular programming-language
features from languages such as Objective-C, Java, C#, Ruby, Python
and others. In 2015, Apple released Swift 2 with new and updated
features. According to the Tiobe Index, Swift has already become one of
the most popular programming languages. Swift is now open source

(Section 1.11.2), so it can be used on non-Apple platforms as well.

Java

Sun Microsystems in 1991 funded an internal corporate research project
led by James Gosling, which resulted in the C++-based object-oriented
programming language called Java. A key goal of Java is to enable
developers to write programs that will run on a great variety of computer
systems and computer-controlled devices. This is sometimes called
“write once, run anywhere.” Java is used to develop large-scale

enterprise applications, to enhance the functionality of web servers (the

computers that provide the content we see in our web browsers), to
provide applications for consumer devices (e.g., smartphones, tablets,
television set-top boxes, appliances, automobiles and more) and for
many other purposes. Java is also the key language for developing

Android smartphone and tablet apps.

Visual Basic

Microsoft’s Visual Basic language was introduced in the early 1990s to
simplify the development of Microsoft Windows applications. Its latest

versions support object-oriented programming.

C#

Microsoft’s three primary object-oriented programming languages are C#
(based on C++ and Java), Visual C++ (based on C++) and Visual Basic
(based on the original Basic). C# was developed to integrate the web
into computer applications, and is now widely used to develop enterprise
applications and for mobile application development.

PHP

PHP is an object-oriented, open-source (see Section 1.11.2) “scripting”
language supported by a community of developers and used by
numerous websites. PHP is platform independent—implementations

exist for all major UNIX, Linux, Mac and Windows operating systems.

Python

Python, another object-oriented scripting language, was released
publicly in 1991. Developed by Guido van Rossum of the National
Research Institute for Mathematics and Computer Science in
Amsterdam (CWI), Python draws heavily from Modula-3—a systems
programming language. Python is “extensible”—it can be extended
through classes and programming interfaces.

JavaScript

JavaScript is the most widely used scripting language. It's primarily used
to add programmability to web pages—for example, animations and

interactivity with the user. It's provided with all major web browsers.

Ruby on Rails

Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-
source, object-oriented programming language with a simple syntax

that’s similar to Python. Ruby on Rails combines the scripting language

Ruby with the Rails web application framework developed by the
company 37Signals. Their book, Getting Real (http://
gettingreal.37signals.com/toc.php), is a must read for web
developers. Many Ruby on Rails developers have reported productivity
gains over other languages when developing database-intensive web
applications.

Scala

Scala (www.scala-lang.org/node/273)—short for “scalable
language”—was designed by Martin Odersky, a professor at Ecole
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Released
in 2003, Scala uses both the object-oriented programming and functional
programming paradigms and is designed to integrate with Java.
Programming in Scala can reduce the amount of code in your

applications significantly.

http://gettingreal.37signals.com/toc.php
http://www.scala-lang.org/node/273

1.8 Introduction to Object
Technology

Building software quickly, correctly and economically remains an
elusive goal at a time when demands for new and more powerful
software are soaring. Objects, or more precisely—as we’ll see in
Chapter 3—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio
objects, video objects, automobile objects, people objects, etc. Almost
any noun can be reasonably represented as a software object in terms
of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have
discovered that using a modular, object-oriented design-and-
implementation approach can make software development groups
much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and
modify.

The Automobile as an Object

Let’s begin with a simple analogy. Suppose you want to drive a car
and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car,
someone has to design it. A car typically begins as engineering
drawings, similar to the blueprints that describe the design of a house.

These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the
car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the
car. This enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator
pedal to make the car go faster, but even that’s not enough—the car
won'’t accelerate on its own (hopefully!), so the driver must press the
pedal to accelerate the car.

Functions, Member Functions and
Classes

Let's use our car example to introduce some key object-oriented
programming concepts. Performing a task in a program requires a
function. The function houses the program statements that actually
perform its task. It hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of
making the car go faster. In C++, we often create a program unit
called a class to house the set of functions that perform the class’s
tasks—these are known as the class’s member functions. For
example, a class that represents a bank account might contain a
member function to deposit money to an account, another to withdraw
money from an account and a third to query what the account’s

current balance is. A class is similar to a car’s engineering drawings,
which house the design of an accelerator pedal, brake pedal, steering
wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings
before you can actually drive a car, you must build an object from a
class before a program can perform the tasks that the class’s member
functions define. The process of doing this is called instantiation. An
object is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to
build many cars, you can reuse a class many times to build many
objects. Reuse of existing classes when building new classes and
programs saves time and effort. Reuse also helps you build more
reliable and effective systems, because existing classes and
components often have gone through extensive testing, debugging
and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to
the software revolution that has been spurred by object technology.

Messages and Member-Function Calls

When you drive a car, pressing its gas pedal sends a message to the
car to perform a task—that is, to go faster. Similarly, you send

messages to an object. Each message is implemented as a member-
function call that tells a member function of the object to perform its
task. For example, a program might call a particular bank-account
object’s deposit member function to increase the account’s balance.

Attributes and Data Members

A car, besides having capabilities to accomplish tasks, also has
attributes, such as its color, its number of doors, the amount of gas in
its tank, its current speed and its record of total miles driven (i.e., its
odometer reading). Like its capabilities, the car’s attributes are
represented as part of its design in its engineering diagrams (which,
for example, include an odometer and a fuel gauge). As you drive an
actual car, these attributes are carried along with the car. Every car
maintains its own attributes. For example, each car knows how much
gas is in its own gas tank, but not how much is in the tanks of other
cars.

An object, similarly, has attributes that it carries along as it's used in a
program. These attributes are specified as part of the object’s class.
For example, a bank-account object has a balance attribute that
represents the amount of money in the account. Each bank-account
object knows the balance in the account it represents, but not the
balances of the other accounts in the bank. Attributes are specified by
the class’s data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into
objects created from those classes—an object’s attributes and
member functions are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other
objects are implemented—implementation details are hidden within
the objects themselves. This information hiding, as we’ll see, is
crucial to good software engineering.

Inheritance

A new class of objects can be created quickly and conveniently by
inheritance—the new class absorbs the characteristics of an existing
class, possibly customizing them and adding unique characteristics of
its own. In our car analogy, an object of class “convertible” certainly is
an object of the more general class “automobile,” but more
specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design
(OOAD)

Soon you’ll be writing programs in C++. How will you create the code
(i.e., the program instructions) for your programs? Perhaps, like many
programmers, you’ll simply turn on your computer and start typing.
This approach may work for small programs (like the ones we present
in the early chapters of the book), but what if you were asked to create
a software system to control thousands of automated teller machines
for a major bank? Or suppose you were asked to work on a team of

thousands of software developers building the next generation of the
U.S. air traffic control system? For projects so large and complex, you
should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis
process for determining your project’s requirements (i.e., defining
what the system is supposed to do) and developing a design that
satisfies them (i.e., deciding how the system should do it). Ideally,
you'd go through this process and carefully review the design (and
have your design reviewed by other software professionals) before
writing any code. If this process involves analyzing and designing your
system from an object-oriented point of view, it’s called an object-
oriented analysis and design (OOAD) process. Languages like
C++ are object oriented. Programming in such a language, called
object-oriented programming (OOP), allows you to implement an
object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical
language for communicating the results of any OOAD process has
come into wide use. This language, known as the Unified Modeling
Language (UML), is now the most widely used graphical scheme for
modeling object-oriented systems. We present our first UML diagrams
in Chapters 3 and 4, then use them in our deeper treatment of object-
oriented programming through Chapter 12. In our optional ATM
Software Engineering Case Study in Chapters 25-26 we present a

simple subset of the UML’s features as we guide you through an
object-oriented design and implementation experience.

1.9 Typical C++ Development
Environment

C++ systems generally consist of three parts: a program development
environment, the language and the C++ Standard Library. C++
programs typically go through six phases: edit, preprocess, compile,
link, load and execute. The following discussion explains a typical C++
program development environment.

Phase 1: Editing a Program

Phase 1 consists of editing a file with an editor program, normally
known simply as an editor (Fig. 1.6). You type a C++ program
(typically referred to as source code) using the editor, make any
necessary corrections and save the program on your computer’s disk.
C++ source code filenames often end with the .cpp, .cxx, .cc Or .c

(uppercase) extensions which indicate that a file contains C++ source
code. See the documentation for your C++ compiler for more
information on filename extensions. Two editors widely used on Linux
systems are vim and emacs. YOu can also use a simple text editor,

such as Notepad in Windows, to write your C++ code.

alEsS 0 | Phase I:
\-_-__.—-’) Programmer creates program
LNk in the editor and stores it on
disk

Editor -

Fig. 1.6 Typical C++ development environment—editing phase.

Integrated development environments (IDEs) are available from
many major software suppliers. IDEs provide tools that support the
software development process, including editors for writing and editing
programs and debuggers for locating logic errors—errors that cause
programs to execute incorrectly. Popular IDEs include Microsoft®

Visual Studio 2015 Community Edition, NetBeans, Eclipse, Apple’s
Xcode®, Codelite and Clion.

Phase 2: Preprocessing a C++ Program

In Phase 2, you give the command to compile the program (Fig. 1.7).
In a C++ system, a preprocessor program executes automatically
before the compiler’s translation phase begins (so we call
preprocessing Phase 2 and compiling Phase 3). The C++
preprocessor obeys commands called preprocessing directives,
which indicate that certain manipulations are to be performed on the
program before compilation. These manipulations usually include (i.e.,
copy into the program file) other text files to be compiled, and perform
various text replacements. The most common preprocessing
directives are discussed in the early chapters; a detailed discussion of
preprocessor features appears in Appendix E, Preprocessor.

) | Phase2:

-
Preprocessor Preprocessor program
processes the code

Fig. 1.7 Typical C++ development environment—preprocessor
phase.

Phase 3: Compiling a C++ Program

In Phase 3, the compiler translates the C++ program into machine-
language code—also referred to as object code (Fig. 1.8).

adBEEs | Phase 3:
Compiler creates
Disk object code and stores
it on disk

Compiler -—

Fig. 1.8 Typical C++ development environment—compilation
phase.

Phase 4: Linking

Phase 4 is called linking. C++ programs typically contain references
to functions and data defined elsewhere, such as in the standard
libraries or in the private libraries of groups of programmers working
on a particular project (Fig. 1.9). The object code produced by the
C++ compiler typically contains “holes” due to these missing parts. A
linker links the object code with the code for the missing functions to
produce an executable program (with no missing pieces). If the
program compiles and links correctly, an executable image is
produced.

e Phase 4:

EE. &8) Linker links the object
Linker - *‘[Ek-’/ code with the libraries,

creates an executable file and
stores it on disk

Fig. 1.9 Typical C++ development environment—Ilinking phase.

Phase 5: Loading

Phase 5 is called loading. Before a program can be executed, it must
first be placed in memory (Fig. 1.10). This is done by the loader,
which takes the executable image from disk and transfers it to
memory. Additional components from shared libraries that support the
program are also loaded.

Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the
program one instruction at a time (Fig. 1.11). Some modern computer
architectures often execute several instructions in parallel.

Primary b

Phase 5:
> Loader puts program
in memory

7

Fig. 1.10 Typical C++ development environment—loading phase.

Primary A
Memory

CPU
Phase 6&:

CPU takes each
instruction and

- executes it, possibly
storing new data
values as the program
executes

J

Fig. 1.11 Typical C++ development environment—execution
phase.

Problems That May Occur at Execution
Time

Programs might not work on the first try. Each of the preceding
phases can fail because of various errors that we’ll discuss throughout
this book. For example, an executing program might try to divide by
zero (an illegal operation for integer arithmetic in C++). This would
cause the C++ program to display an error message. If this occurred,
you'd have to return to the edit phase, make the necessary corrections
and proceed through the remaining phases again to determine that
the corrections fixed the problem(s). [Note: Most programs in C++
input or output data.] Certain C++ functions take their input from cin

(the standard input stream; pronounced “see-in”), which is normally
the keyboard, but cin can be redirected to another device. Data is
often output to cout (the standard output stream; pronounced “see-
out”), which is normally the computer screen, but cout can be

redirected to another device. When we say that a program prints a
result, we normally mean that the result is displayed on a screen. Data
may be output to other devices, such as disks, hardcopy printers or
even transmitted over the Internet. There is also a standard error
stream referred to as cerr. The cerr stream (normally connected to

the screen) is used for displaying error messages.

!M Common Programming Error 1.1

Errors such as division by zero occur as a program runs, so they’re
called runtime errors or execution-time errors. Fatal runtime
errors cause programs to terminate immediately without having
successfully performed their jobs. Nonfatal runtime errors allow
programs to run to completion, often producing incorrect results.

1.10 Test-Driving a C++
Application

In this section, you’ll compile, run and interact with your first C++
application—an entertaining guess-the-number game, which picks a
number from 1 to 1000 and prompts you to guess it. If your guess is
correct, the game ends. If your guess is not correct, the application
indicates whether your guess is higher or lower than the correct
number. There is no limit on the number of guesses you can make.
[Note: For this test drive only, we've modified this application from the
exercise you’ll be asked to create in Chapter 6, Functions and an
Introduction to Recursion. Normally this application randomly selects
the correct answer as you execute the program. The modified
application uses the same correct answer every time the program
executes (though this may vary by compiler), so you can use the
same guesses we use in this section and see the same results as we
walk you through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using
e Visual Studio 2015 Community for Windows (Section 1.10.1)

e GNU C++ in a shell on Linux (Section 1.10.2)
e Clang/LLVM in Xcode on Mac OS X (Section 1.10.3).

The application runs similarly on all three platforms. You need to read
only the section that corresponds to your operating system and
compiler. Many development environments are available in which you
can compile, build and run C++ applications—CodelL.ite, Clion,
NetBeans and Eclipse are just a few. Consult your instructor or the
online documentation for information on your specific development
environment.

In the following steps, you'll run the application and enter various
numbers to guess the correct number. The elements and functionality
that you see in this application are typical of those you’ll learn to
program in this book. We use fonts to distinguish between features
you see on the screen and elements that are not directly related to the
screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif bold font and emphasize
filenames, text displayed by an application and values you should
enter into an application (e.g., Guessiumber OF 500)iN @ sans-serif

font.

1.10.1 Compiling and Running an
Application in Visual Studio 2015
for Windows

In this section, you'll run a C++ program on Windows using Microsoft
Visual Studio 2015 Community Edition. We assume that you've
already read the Before You Begin section for instructions on installing
the IDE and downloading the book’s code examples.

There are several versions of Visual Studio available—on some
versions, the options, menus and instructions we present might differ
slightly. From this point forward, we’ll refer to Visual Studio 2015
Community Edition simply as “Visual Studio” or “the IDE.”

Step 1. Checking Your Setup

It's important to read this book’s Before You Begin section to make
sure that you’ve installed Visual Studio and copied the book’s
examples to your hard drive correctly.

Step 2: Launching Visual Studio

Open Visual Studio from the Start menu. The IDE displays the Start
Page (Fig. 1.12), which provides links for creating new programs,
opening existing programs and learning about the IDE and various
programming topics. Close this window for now by clicking the X in its
tab—you can access this window any time by selecting View > Start
Page. We use the > character to indicate selecting a menu item from
a menu. For example, the notation File > Open indicates that you
should select the Open menu item from the File menu.

D StortPage - Microsoft Visual Studic X & | Quick Launch [Cti-Q) B - & =
Fle Edit View Debug Team Took Test Anabze Window Help Paul Deitel -
| -9 - - P Attach.. - | 5 _

a Start Page & Solution Ecplorer = 1 X

Discover Visual Studio Community 2015

Mlews to Visual Studio? Check eut codng tutenals and sample projects
Get traaning on new frameworks, languages, and technologies
Create a private code repo and backlog Fer your project
See how easy it is to get started with cloud services
Start Digcover ways to edend and customize the IDE

Visual Studio

apen Project...
Open from Source Control... New on Microsoft Platforms

=2 Windows

oy Microsoft Azure
Recent ar ASP.NET and Web
ConsoleApplicationl

cpphtpl0_test

Fig. 1.12 Visual Studio 2015 Community Edition window showing
the Start Page.

Step 3: Creating a Project

A project is a group of related files, such as the C++ source-code files
that compose an application. Visual Studio organizes applications into
projects and solutions, which contain one or more projects. Multiple-

project solutions are used to create large-scale applications. Each
application in this book will be a solution containing a single project.

The Visual Studio projects we created for this book’s examples are
Win32 Console Application projects that you’ll execute from the IDE.
To create a project:

1. Select File > New > Project....

2. At the New Project dialog’s left side, select the category
Installed > Templates > Visual C++ > Win32 (Fig. 1.13).

3. In the New Project dialog’s middle section, select Win32
Console Application.

4. Provide a name for your project in the Name field—we
specified cGuess number —then click OK to display the Win32

Application Wizard window, then click Next > to display the

Application Settings step.

New Project
F Recent MET Framewer k452 - Sort by Default ~| & |EZ| Gearch Installed Ternplates (Ctrl+£) O -
4 Installed Type: Visual C++
Visual F& A project for cresting a Win32 console
a Wisual T+ E;i Win3? Project | Win32 Conscle Application | @pplication
& Windows
ATL
CLR
Genera |
MFC
Test
Win32
reer DIzt
b Online Click here to g online and find templates.
Mame: Guess Mumber
Location: C\Users\Paul Deitel\ Do cuments\Wisual Studio 2015 Projects', - | Browse...
Solution name: Guess Nurmnber || Create directory for solution
[Add to source control
[oc]| canca

Fig. 1.13 Visual Studio 2015 Community Edition New
Project dialog.

5. Configure the settings as shown in Fig. 1.14 to create a

solution containing an empty project, then click Finish.
’ Win32 Application Wirard - Suess Number

gy Application Soltings
=

Overview Application type: HAdd common header fles for:
Applcotion Settngs © Windows appleaton =2
(#) Corsole appication
Qo
() Static library
Aocitional optiors:
Empty project

[] S=curity Development Lifecyde (SOL)
checks

< Frevios | ext = ﬂﬂﬂjl Caneel

Fig. 1.14 Win32 Application Wizard window’s Application
Settings step.

At this point, the IDE creates your project and places its folder in

C:\Users\YourUserAccount\Documents\Visual Studio 2015\Projects

then opens the window in Fig. 1.15. This window displays editors as
tabbed windows (one for each file) when you're editing code. Also

displayed is the Solution Explorer in which you can view and
manage your application’s files. In this book’s examples, you'll
typically place each program’s code files in the Source Files folder. If
the Solution Explorer is not displayed, you can display it by selecting
View > Solution Explorer.

w Guess Mumber - Microseft Visual Studie i Quick Launch [Ctid+=T) Pl = [m] x
File Edit View Project Build Debug Team Teols Test Analyze Window Help Paul Deitel -
| B2 e | - - | Debug ~||:86 - P Local Windews Debugger - | 59 _

Solution Bxplorer - b x
@ wes A F -

Searth Solution Explorer (Cirl+:) P

21| Selution ' Guess Number' (1 project)
4 Guess Number
| & External Dependencies
| =8 Header Files
| =@ References
=5 Resource Files
=5 Source Files

wnqon] Jalo)o 230 R

Guess Number Solution Properties

o |
(Narrle,'l Guess Humber
f-‘achvf confia DebualxBb

[Mama) |
The name of the solution file.

S |
Source-code editors appear as tabbed windows here Solution Explorer shows the
solution’s contents

Fig. 1.15 Visual Studio window after creating the cuess Number
project.

Step 4: Adding the GuessNumber.cpp File
into the Project

Next, you'll add cuessnumber.cpp to the project you created in Step 3.

In Windows Explorer (Windows 7) or File Explorer (Windows 8 and

10), open the cho1 folder in the book’s exampies folder, then drag
GuessNumber.cpp ONto the Source Files folder in the Solution

Explorer.10

10. For the multiple source-code-file programs that you'll see
beginning in Chapter 3, drag all the files for a given program to the
Source Files folder. When you begin creating multiple source-code-
file programs yourself, you can right click the Source Files folder and
select Add > New Item... to display a dialog for adding a new file.

Step 5: Compiling and Running the Project

To compile and run the project so you can test-drive the application,
select Debug > Start without debugging or simply type Citrl + F5. If
the program compiles correctly, the IDE opens a Command Prompt
window and executes the program (Fig. 1.16)—we changed the
Command Prompt’s color scheme to make the screen captures more
readable. The application displays "picase type your first guess.',

then displays a question mark (2) as a prompt on the next line.

B C:\Windows\system32\cmd.exe =N R

I have a number between 1 and 1008. &
Can you guess my number? |
Please type your first guess.

2
-

Fig. 1.16 Command Prompt showing the running program.

Step 6: Entering Your First Guess

Type s00 and press Enter. The application displays "too high. Try
again." (Fig. 1.17), meaning that the value you entered is greater than

the number the application chose as the correct guess.

B C:\Windows\system32\cmd.exe o[- E [k
I have a number between 1 and 1888. &
Can you guess my number? [
Please type your first guess.

? 5oe
Too high. Try again.

? v
= m

Fig. 1.17 Entering an initial guess and receiving feedback.

Step 7: Entering Another Guess

At the next prompt, enter 250 (Fig. 1.18). The application displays
"Too high. Try again.", because the value you entered once again is

greater than the correct guess.

B C:\Windows\system32\cmd.exe (3w
I have a number between 1 and 1888. &
Can you guess my number? L
Please type your first guess.

? 588

Too high. Try again.

? 258

Too high. Try again.

? &
= m

Fig. 1.18 Entering a second guess and receiving feedback.

Step 8: Entering Additional Guesses

Continue to play the game (Fig. 1.19) by entering values until you
guess the correct number. When you guess correctly, the application

displays "Excellent! You guessed the number."

Step 9: Playing the Game Again or Exiting
the Application

After you guess the correct number, the application asks if you'd like
to play another game. At the "would you like to play again (y or n)?2"

prompt, entering the one character y

B C:\Windows\system32\cmd.exe o &k
Too high. Try again. -
125 |E|
Too high. Try again. B
? B3

Too high. Try again.

2 31

Too low. Try again.

? 47

Too high. Try again.

¢ 39

Too low. Try again.

? 43

Too high. Try again.

? 41

Too low. Try again.

? 42

Excellent! You guessed the number!

Would you like to play again (y or n)? _ -

Fig. 1.19 Entering additional guesses and guessing the correct
number.

causes the application to choose a new number and displays the
message "please type your first guess." followed by a question-
mark prompt so you can make your first guess in the new game.
Entering the character » terminates the application. Each time you
execute this application from the beginning (Step 5), it will choose the
same numbers for you to guess.

1.10.2 Compiling and Running
Using GNU C++ on Linux

For this test drive, we assume that you read the Before You Begin
section and that you placed the downloaded examples in your home
directory on your Linux system. Please see your instructor if you have
any questions regarding copying the files to your home directory. In
this section’s figures, we use bo1d text to highlight the text that you

type. The prompt in the shell on our system uses the tilde (~)

character to represent the home directory, and each prompt ends with
the dollar sign (s) character. The prompt will vary among Linux

systems.

Step 1: Locating the Completed
Application

From a Linux shell, use the command ca to change to the completed

application directory (Fig. 1.20) by typing

cd examples/ch01

then pressing Enter.

~% cd examples/ch01
~/examples/ch0l1$

Fig. 1.20 Changing to the cuessnumber application’s directory.

Step 2: Compiling the Application

Before running the application, you must first compile it (Fig. 1.21) by
typing

gt+ —-std=c++14 GuessNumber.cpp -o GuessNumber

This command compiles the application for C++14 (the current C++
version) and produces an executable file called cuessnumber .

~/examples/ch0l$ g++ -std=c++14 GuessNumber.cpp -o GuessNumber
~/examples/ch01$%

Fig. 1.21 Compiling the GuessNumber application using the g++
command.

Step 3: Running the Application

To run the executable file cuessnumber, type ./Guessnumber at the next
prompt, then press Enter (Fig. 1.22). The ./ tells Linux to run from the
current directory and is required to indicate that cuessnumver is an

executable file.

~/examples/ch0l$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.
?

Fig. 1.22 Running the GuessNumber application.

Step 4: Entering Your First Guess

The application displays "Please type your first guess.", then
displays a question mark (2) as a prompt on the next line (Fig. 1.22).
At the prompt, enter so00 (Fig. 1.23). [Note that the outputs may vary

based on the compiler you’re using.]

~/examples/ch01% ./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

?

Fig. 1.23 Entering an initial guess.

Step &5: Entering Another Guess

The application displays "too high. Try again.", meaning that the

value you entered is greater than the number the application chose as
the correct guess (Fig. 1.23). At the next prompt, enter 250 (Fig.

1.24). This time the application displays "1oo 1ow. Try again.",

because the value you entered is less than the correct guess.

~/examples/ch01% ./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

7 250

Too low. Try again.
7

Fig. 1.24 Entering a second guess and receiving feedback.

Step 6. Entering Additional Guesses

Continue to play the game (Fig. 1.25) by entering values until you
guess the correct number. When you guess correctly, the application

displays "Excellent! You guessed the number."

Too low. Try again.

s

Too low. Try again.

7 437

Too high. Try again.

? 406

Too high. Try again.

7 391

Too high. Try again.

7 383

Too low. Try again.

7 387

Too high. Try again.

7 385

Too high. Try again.

7 384

Excellent! You guessed the number.
Would you like to play again (y or n)?

Fig. 1.25 Entering additional guesses and guessing the correct
number.

Step 7: Playing the Game Again or Exiting
the Application

After you guess the correct number, the application asks if you'd like
to play another game. At the "wouila you like to play again (y or n)?"

prompt, entering the one character y causes the application to choose
a new number and displays the message "ricase type your first
quess." followed by a question-mark prompt so you can make your
first guess in the new game. Entering the character » ends the

application, returns you to the shell and awaits your next command.
Each time you execute this application from the beginning (i.e., Step
3), it will choose the same numbers for you to guess.

1.10.3 Compiling and Running with
Xcode on Mac OS X

In this section, we present how to run a C++ program on a Mac OS X
using Apple’s Xcode IDE.

Step 1. Checking Your Setup

It's important to read this book’s Before You Begin section to make
sure that you've installed Apple’s Xcode IDE and copied the book’s
examples to your hard drive correctly.

Step 2: Launching Xcode

Open a Finder window, select Applications and double click the
Xcode icon (ﬁ). If this is your first time running Xcode, the Welcome
to Xcode window will appear (Fig. 1.26). Close this window for now—
you can access it any time by selecting Window > Welcome to
Xcode. We use the > character to indicate selecting a menu item from
a menu. For example, the notation File > Open... indicates that you
should select the Open... menu item from the File menu.

We

come to Xcooe

Mo Recent Projects

:_T Get started with a playground
| Explora new ideas quickly and sasily.

:_ﬁ: 1 Create a new Ncode project
[*™% Start building a new iPhone, iPad or Mac application.

@ Check out an existing project
- Start working on semething from an SCM repesitory.

Opan another project..

Fig. 1.26 Welcome to Xcode window.

Step 3: Creating a Project

A project is a group of related files, such as the C++ source-code files
that compose an application. The Xcode projects we created for this
book’s examples are OS X Command Line Tool projects that you'll
execute directly in the IDE. To create a project:

1. Select File > New > Project....

2. In the OS X subcategory Application, select Command Line
Tool and click Next.

3. Provide a name for your project in the Product Name field—we
specified Guess Number.

4. Ensure that the selected Language is C++ and click Next.

5. Specify where you want to store your project, then click Create.
(See the Before You Begin section for information on
configuring a project to use C++14.)

Figure 1.27 shows the workspace window that appears after you
create the project. By default, Xcode creates a nain.cpp source-code

file containing a simple program that displays "#e11o, woridai». The

window is divided into four main areas below the toolbar: the
Navigator area, Editor area and Utilities area are displayed initially.
We’'ll explain momentarily how to display the Debug area in which
you'll run and interact with the program.

e p B ™ Guess Number: Ready | Today at 7:16 PM = O B3O
BE A nNeC=mc B R & Gueas Number Guess Numiser } . maincpp ! No Selection 0O &
v = Guose Mumbar 1 !0'(Quick Help
L Guess Numbser 2 !f‘(main. cpp
B e W 3 // Guess Number No Quick Help
[3 Products A ’a“f
5§ //f Created by Paul Deitel on 1/3/16. D06 o
& ff Copyright © 2016 Deitel & Associates, 2 :
Inc. ALl rights reserved.
11!
1:: #include <iostream= s s
11 int main(int argc, const char = argv[]) {
1 // insert code here...
1 std::cout << "Hello, World!\n";
14 return @;
O] OE 15 } 88 | @ Fit
\u...q___ = - ___,/'I\H"'--—____ S = ____—-"") \-_,_____ i i e
v T TR
Navigator area Editor area occupies the center column Utilities area occupies
occupies the left column the right column

Fig. 1.27 Sample Xcode C++ project with main.cpp selected.

At the left of the workspace window is the Navigator area, which has
icons at its top for the navigators that can be displayed there. For this
book, you'll primarily work with

e Project (1) —Shows all the files and folders in your project.
e Issue (&)—Shows you warnings and errors generated by the
compiler.

You choose which navigator to display by clicking the corresponding
button above the Navigator area of the window.

To the right of the Navigator area is the Editor area for editing source
code. This area is always displayed in your workspace window. When
you select a file in the Project navigator, the file’s contents are
displayed in the Editor area. At the right side of the workspace
window is the Utilities area, which you will not use in this book. The
Debug area, when displayed, appears below the Editor area.

The toolbar contains options for executing a program (Fig. 1.28(a)), a
display area (Fig. 1.28(b)) to shows the progress of tasks executing in
Xcode (such as the compilation status) and buttons (Fig. 1.28(c)) for
hiding and showing areas in the workspace window.

a) The left side of the toolbar

00) M SampleProject » Bl My Mac

Buttons for running Scheme selector
and stopping an app (not used in this book)

b) The middle of the toolbar

SampleProject: Ready | Today at 9:17 AM

Displays pmgms-szwﬂf executing tasks

c) The right side of the toolbar

= @]
St e —r———) L p————
T T
Editor buttons to select which View buttons to toggle
editor is displayed in the Editor display of the Navigator,
area (not used in this book) Debug and Utilities areas

Fig. 1.28 Xcode 7 toolbar.

Step 4: Deleting the main.cpp File from
the Project

You won’t use main.cpp In this test-drive, so you should delete the file.
In the Project navigator, right click the main.cpp file and select Delete.

In the dialog that appears, select Move to Trash to delete the file from
your system—the file will not be removed completely until you empty
your trash.

Step 5: Adding the GuessNumber.cpp File
into the Project

Next, you'll add cuessnumber.cpp to the project you created in Step 3.
In a Finder window, open the cho1 folder in the book’s cxampies folder,
then drag cuessnumber.cpp Onto the Guess Number folder in the

Project navigator. In the dialog that appears, ensure that Copy items
if needed is checked, then click Finish.11

11. For the multiple source-code-file programs that you'll see
beginning in Chapter 3, drag all the files for a given program to the
project’s folder. When you begin creating programs with multiple
source-code files, you can right click the project’s folder and select
New File... to display a dialog for adding a new file.

Step 6: Compiling and Running the Project

To compile and run the project so you can test-drive the application,
simply click the run ("') button at the left side of Xcode’s toolbar. If the
program compiles correctly, Xcode opens the Debug area (at the
bottom of the Editor area) and executes the program in the right half
of the Debug area (Fig. 1.29). The application displays "picase type

your first guess.", then displays a question mark (2) as a prompt on

the next line.

E = [& I | <7 | M Guess Number

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

7

Aute & (&) Filtes Al Dutput £ O |

Fig. 1.29 Debug area showing the running program.

Step 7: Entering Your First Guess

Click in the Debug area, then type s00 and press Return. The
application displays "too 10w. Try again." (Fig. 1.30), meaning that

the value you entered is less than the number the application chose
as the correct guess.

I have a number between 1 and 10080.
Can you guess my number?

Please type your first guess.

7 500

Too low. Try again.

?

Fig. 1.30 Entering an initial guess and receiving feedback.

Step 8: Entering Another Guess

At the next prompt, enter 750 (Fig. 1.31). The application displays
"Too low. Try again.", because the value you entered once again is

less than the correct guess.

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

7 5009

Too low. Try again.

? 750

Too low. Try again.

?

Fig. 1.31 Entering a second guess and receiving feedback.

Step 9: Entering Additional Guesses

Continue to play the game (Fig. 1.32) by entering values until you
guess the correct number. When you guess correctly, the application

displays "Excellent! You guessed the number."

Too low. Try again.

7 875

Too high. Try again.
7 812

Too high. Try again.
7 781

Too low. Try again.
T 797

Too low. Try again.
7 805

Too low. Try again.
7 808

Excellent! You guessed the number!
Would you like to play again (y or n)?

Fig. 1.32 Entering additional guesses and guessing the correct
number.

Playing the Game Again or Exiting the

Application

After you guess the correct number, the application asks if you'd like
to play another game. At the "wouia you like to play again (y or n)?2"

prompt, entering the character y causes the application to choose a
new number and displays the message "picase type your first
quess." followed by a question-mark prompt so you can make your
first guess in the new game. Entering the character » terminates the

application. Each time you execute this application from the beginning
(Step 6), it will choose the same numbers for you to guess.

1.11 Operating Systems

Operating systems are software systems that make using computers
more convenient for users, application developers and system
administrators. They provide services that allow each application to
execute safely, efficiently and concurrently (i.e., in parallel) with other
applications. The software that contains the core components of the
operating system is called the kernel. Popular desktop operating
systems include Linux, Windows and OS X (formerly called Mac OS
X)—we used all three in developing this book. Popular mobile
operating systems used in smartphones and tablets include Google’s
Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices) and
Windows 10 Mobile. You can develop applications in C++ for all of
these operating systems.

1.11.1 Windows—A Proprietary
Operating System

In the mid-1980s, Microsoft developed the Windows operating
system, consisting of a graphical user interface built on top of DOS
(Disk Operating System)—an enormously popular personal-computer
operating system that users interacted with by typing commands.
Windows borrowed from many concepts (such as icons, menus and

windows) developed by Xerox PARC and popularized by early Apple
Macintosh operating systems. Windows 10 is Microsoft’s latest
operating system—its features include enhancements to the Start
menu and user interface, Cortana personal assistant for voice
interactions, Action Center for receiving notifications, Microsoft's new
Edge web browser, and more. Windows is a proprietary operating
system—it’s controlled by Microsoft exclusively. Windows is by far the
world’s most widely used desktop operating system.

1.11.2 Linux—An Open-Source
Operating System

The Linux operating system is perhaps the greatest success of the
open-source movement. Open-source software departs from the
proprietary software development style that dominated software’s
early years. With open-source development, individuals and
companies contribute their efforts in developing, maintaining and
evolving software in exchange for the right to use that software for
their own purposes, typically at no charge. Open-source code is often
scrutinized by a much larger audience than proprietary software, so
errors often get removed faster. Open source also encourages
innovation. Enterprise systems companies, such as IBM, Oracle and
many others, have made significant investments in Linux open-source
development.

Some key organizations in the open-source community are

e the Eclipse Foundation (the Eclipse Integrated Development
Environment helps programmers conveniently develop software)

e the Mozilla Foundation (creators of the Firefox web browser)

e the Apache Software Foundation (creators of the Apache web
server used to develop web-based applications)

e GitHub (which provides tools for managing open-source projects—
it has millions of them under development).

Rapid improvements to computing and communications, decreasing
costs and open-source software have made it much easier and more
economical to create a software-based business now than just a
decade ago. A great example is Facebook, which was launched from
a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely
distributed, full-featured operating system. It's developed by a loosely
organized team of volunteers and is popular in servers, personal
computers and embedded systems (such as the computer systems at
the heart of smartphones, smart TVs and automobile systems). Unlike
that of proprietary operating systems like Microsoft's Windows and
Apple’s OS X, Linux source code (the program code) is available to
the public for examination and modification and is free to download
and install. As a result, Linux users benefit from a huge community of
developers actively debugging and improving the kernel, and the
ability to customize the operating system to meet specific needs.

A variety of issues—such as Microsoft's market power, the small
number of user-friendly Linux applications and the diversity of Linux

distributions, such as Red Hat Linux, Ubuntu Linux and many others—
have prevented widespread Linux use on desktop computers. Linux
has become extremely popular on servers and in embedded systems,
such as Google’s Android-based smartphones.

1.11.3 Apple’s OS X; Apple’s 10S
for iPhone®, iPad® and iPod

Touch® Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly
became a leader in personal computing. In 1979, Jobs and several
Apple employees visited Xerox PARC (Palo Alto Research Center) to
learn about Xerox’s desktop computer that featured a graphical user
interface (GUI). That GUI served as the inspiration for the Apple
Macintosh, launched with much fanfare in a memorable Super Bowl
ad in 1984.

The Objective-C programming language, created by Brad Cox and
Tom Love at Stepstone in the early 1980s, added capabilities for
object-oriented programming (OOP) to the C programming language.
Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT
licensed Objective-C from StepStone and developed an Objective-C
compiler and libraries which were used as the platform for the
NeXTSTEP operating system’s user interface, and Interface Builder—
used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s OS
X operating system is a descendant of NeXTSTEP. Apple’s
proprietary operating system, iOS, is derived from Apple’s OS X and
is used in the iPhone, iPad and iPod Touch devices. In 2014, Apple
introduced its new Swift programming language, which became open
source in 2015. The iOS app-development community is gradually
shifting from Objective-C to Swift.

1.11.4 Google's Android

Android—the fastest growing mobile and smartphone operating
system—is based on the Linux kernel and Java. Android apps can
also be developed in C++ and C. One benefit of developing Android
apps is the openness of the platform. The operating system is open
source and free.

The Android operating system was developed by Android, Inc., which

was acquired by Google in 2005. In 2007, the Open Handset
Alliance™

http://www.openhandsetalliance.com/oha members.html

was formed to develop, maintain and evolve Android, driving
innovation in mobile technology and improving the user experience

http://www.openhandsetalliance.com/oha_members.html

while reducing costs. According to IDC, after the first six months of
2015, Android had 82.8% of the global smartphone market share,
compared to 13.9% for Apple, 2.6% for Microsoft and 0.3% for
Blackberry.12 The Android operating system is used in numerous
smartphones, e-reader devices, tablets, in-store touch-screen kiosks,
cars, robots, multimedia players and more. There are now more than
1.4 billion Android users.13

12. http://www.idc.com/prodserv/smartphone-os-market-share. jsp.

13. http://www.techtimes.com/articles/90028/20151002/google-says-
android-has-more-than-1-4-billion-active-users-worldwide-with-300-

million-on-lollipop.htm.

http://www.idc.com.ezproxy.cul.columbia.edu/prodserv/smartphone-os-market-share.jsp
http://www.techtimes.com/articles/90028/20151002/google-says-android-has-more-than-1-4-billion-active-users-worldwide-with-300-million-on-lollipop.htm

1.12 The Internet and the World
Wide Web

In the late 1960s, ARPA—the Advanced Research Projects Agency of
the United States Department of Defense—rolled out plans for
networking the main computer systems of approximately a dozen
ARPA-funded universities and research institutions. The computers
were to be connected with communications lines operating at speeds
on the order of 50,000 bits per second, a stunning rate at a time when
most people (of the few who even had networking access) were
connecting over telephone lines to computers at a rate of 110 bits per
second. Academic research was about to take a giant leap forward.
ARPA proceeded to implement what quickly became known as the
ARPANET, the precursor to today’s Internet. Today’s fastest Internet
speeds are on the order of billions of bits per second with trillion-bits-
per-second speeds on the horizon!

Things worked out differently from the original plan. Although the
ARPANET enabled researchers to network their computers, its main
benefit proved to be the capability for quick and easy communication
via what came to be known as electronic mail (e-mail). This is true
even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of
people worldwide to communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET
became known as the Transmission Control Protocol (TCP). TCP
ensured that messages, consisting of sequentially numbered pieces
called packets, were properly routed from sender to receiver, arrived
intact and were assembled in the correct order.

The Internet: A Network of Networks

In parallel with the early evolution of the Internet, organizations
worldwide were implementing their own networks for both
intraorganization (that is, within an organization) and interorganization
(that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to
enable these different networks to communicate with each other.
ARPA accomplished this by developing the Internet Protocol (IP),
which created a true “network of networks,” the current architecture of
the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could
improve their operations and offer new and better services to their
clients. Companies started spending large amounts of money to
develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and
software suppliers to meet the increased infrastructure demand. As a
result, bandwidth—the information-carrying capacity of
communications lines—on the Internet has increased tremendously,
while hardware costs have plummeted.

The World Wide Web: Making the Internet
User-Friendly

The World Wide Web (simply called “the web”) is a collection of
hardware and software associated with the Internet that allows
computer users to locate and view multimedia-based documents
(documents with various combinations of text, graphics, animations,
audios and videos) on almost any subject. The introduction of the web
was a relatively recent event. In 1989, Tim Berners-Lee of CERN (the
European Organization for Nuclear Research) began to develop a
technology for sharing information via “hyperlinked” text documents.
Berners-Lee called his invention the HyperText Markup Language
(HTML). He also wrote communication protocols such as HyperText
Transfer Protocol (HTTP) to form the backbone of his new hypertext
information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium
(W3C, nttp://www.w3.org), devoted to developing web technologies.

One of the W3C'’s primary goals is to make the web universally
accessible to everyone regardless of disabilities, language or culture.

Web Services

Web services are software components stored on one computer that
can be accessed by an app (or other software component) on another
computer over the Internet. With web services, you can create
mashups, which enable you to rapidly develop apps by combining

http://www.w3.org

complementary web services, often from multiple organizations and
possibly other forms of information feeds. For example, 100
Destinations (http://www.100destinations.co.uk) cOmbines the photos

and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos
of others.

Programmableweb (http: //www.programmableweb.com/) provides a

directory of over 11,150 APIs and 7,300 mashups, plus how-to guides
and sample code for creating your own mashups. According to
Programmableweb, the three most widely used APIs for mashups are
Google Maps, Twitter and YouTube.

Ajax

Ajax technology helps Internet-based applications perform like
desktop applications—a difficult task, given that such applications
suffer transmission delays as data is shuttled back and forth between
your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance
and approach the look-and-feel of desktop applications.

The Internet of Things

The Internet is no longer just a network of computers—it’s an Internet
of Things. A thing is any object with an |IP address and the ability to
send data automatically over the Internet—e.g., a car with a
transponder for paying tolls, a heart monitor implanted in a human, a

http://www.100destinations.co.uk
http://www.programmableweb.com/

smart meter that reports energy usage, mobile apps that can track
your movement and location, and smart thermostats that adjust room
temperatures based on weather forecasts and activity in the home.

1.13 Some Key Software
Development Terminology

Figure 1.33 lists a number of buzzwords that you’ll hear in the
software development community.

Fig. 1.33 Software technologies.

development

Technology Description
Agile Agile software development is a set of methodologies that try to get
software software implemented faster and using fewer resources. Check out the

Agile Alliance (www.agilealliance.org) and the Agile Manifesto

(www.agilemanifesto.org).

Refactoring

Refactoring involves reworking programs to make them clearer and
easier to maintain while preserving their correctness and functionality. It's
widely employed with agile development methodologies. Many IDEs
contain built-in refactoring tools to do major portions of the reworking

automatically.

Design
patterns

Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP

LAMP is an acronym for the open-source technologies that many

developers use to build web applications inexpensively—it stands for

http://www.agilealliance.org
http://www.agilemanifesto.org

Linux, Apache, MySQL and PHP (or Perl or Python—two other popular
scripting languages). MySQL is an open-source database-management
system. PHP is a popular open-source server-side “scripting” language
for developing web applications. Apache is the most popular web server
software. The equivalent for Windows development is WAMP—Windows,
Apache, MySQL and PHP.

Software as
a Service
(SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for
organizations that must maintain tens of thousands of systems on a
diverse array of computer equipment. With Software as a Service
(SaaS), the software runs on servers elsewhere on the Internet. When
that server is updated, all clients worldwide see the new capabilities—no
local installation is needed. You access the service through a browser.
Browsers are quite portable, so you can run the same applications on a
wide variety of computers from anywhere in the world. Sales-force.com,

Google, Microsoft and many other companies offer SaaS.

Platform as a

Platform as a Service (PaaS) provides a computing platform for

Service developing and running applications as a service over the web, rather

(PaaS) than installing the tools on your computer. Some Paa$S providers are
Google App Engine, Amazon EC2 and Windows Azure™.

Cloud SaaS and PaaS are examples of cloud computing. You can use software

computing and data stored in the “cloud”—i.e., accessed on remote computers (or

servers) via the Internet and available on demand—rather than having it
stored locally on your desktop, notebook computer or mobile device. This
allows you to increase or decrease computing resources to meet your
needs at any given time, which is more cost effective than purchasing

hardware to provide enough storage and processing power to meet

http://Sales-force.com

occasional peak demands. Cloud computing also saves money by
shifting to the service provider the burden of managing these apps (such
as installing and upgrading the software, security, backups and disaster

recovery).

Software Software Development Kits (SDKs) include the tools and
Development | documentation developers use to program applications.
Kit (SDK)

Software is complex. Large, real-world software applications can take
many months or even years to design and implement. When large
software products are under development, they typically are made
available to the user communities as a series of releases, each more
complete and polished than the last (Fig. 1.34).

Fig. 1.34 Software product-release terminology.

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and
unstable and are released to a relatively small number of developers for

testing new features, getting early feedback, etc.

Beta Beta versions are released to a larger number of developers later in the
development process after most major bugs have been fixed and new
features are nearly complete. Beta software is more stable, but still subject

to change.

Release Release candidates are generally feature complete, (mostly) bug free and
candidates | ready for use by the community, which provides a diverse testing
environment—the software is used on different systems, with varying

constraints and for a variety of purposes.

Final Any bugs that appear in the release candidate are corrected, and
release eventually the final product is released to the general public. Software
companies often distribute incremental updates over the Internet.

Continuous | Software that’s developed using this approach (for example, Google search
beta or Gmail) generally does not have version numbers. It's hosted in the cloud
(not installed on your computer) and is constantly evolving so that users

always have the latest version.

1.14 C++11 and C++14: The
Latest C++ Versions

C++11 was published by ISO/IEC in 2011. Bjarne Stroustrup, the
creator of C++, expressed his vision for the future of the language—
the main goals were to make C++ easier to learn, improve library-
building capabilities and increase compatibility with the C
programming language. C++11 extended the C++ Standard Library
and added several features and enhancements to improve
performance and security. The three compilers we use in this book

11

¢ Visual Studio 2015 Community Edition (Microsoft Windows)
e GNU C++ (Linux)
e Clang/LLVM in Xcode (Mac OS X)

14

have implemented most C++11 features.

The current C++ standard, C++14, was published by ISO/IEC in 2014.
It added several language features and C++ Standard Library
enhancements, and fixed bugs from C++11. Throughout this book, we

cover features of C++11 and C++14 as appropriate for a book at this
level. For a list of C++11 and C++14 features and the compilers that
support them, visit

http://en.cppreference.com/w/cpp/compiler support

The next version of the C++ standard, C++17, is currently under
development. For a list of proposed features, see

17

https://en.wikipedia.org/wiki/C%2B%2B17

http://en.cppreference.com/w/cpp/compiler_support

1.15 Boost C++ Libraries

The Boost C++ Libraries (www.boost.oxg) are free, open-source

libraries created by members of the C++ community. They are peer
reviewed and portable across many compilers and platforms. Boost
has grown to over 130 libraries, with more being added regularly.
Today there are thousands of programmers in the Boost open-source
community. The Boost libraries work well with the existing C++
Standard Library and often act as a proving ground for capabilities that
are eventually absorbed into the C++ Standard Library. For example,
the C++11 “regular expression” and “smart pointer” libraries, among
others, are based on work done by the Boost community.

Regular expressions are used to match specific character patterns in
text. They can be used to validate data to ensure thatit's in a
particular format, to replace parts of one string with another, or to split
a string.

Many common bugs in C and C++ code are related to pointers, a
powerful programming capability that C++ absorbed from C. As you'll
see, smart pointers help you avoid some key errors associated with
traditional pointers.

http://www.boost.org

1.16 Keeping Up to Date with
Information Technologies

Figure 1.35 lists key technical and business publications that will help
you stay up-to-date with the latest news, trends and technology. You
can also find a growing list of Internet-and web-related Resource

Centers at www.deitel. com/ResourceCenters.html.

Fig. 1.35 Technical and business publications.

Publication URL
AllThingsD allthingsd.com
Bloomberg www .businessweek.com

BusinessWeek

CNET news.cnet.com
Communications of the cacm.acm.org

ACM

Computerworld www . computerworld.com
Engadget www . engadget.com
eWeek www . eweek . com

Fast Company www . fastcompany . com

http://www.deitel.com/ResourceCenters.html
http://allthingsd.com.ezproxy.cul.columbia.edu
http://www.businessweek.com.ezproxy.cul.columbia.edu
http://news.cnet.com
http://cacm.acm.org.ezproxy.cul.columbia.edu
http://www.computerworld.com.ezproxy.cul.columbia.edu
http://www.engadget.com
http://www.eweek.com
http://www.fastcompany.com

Fortune

fortune.com

GigaOM

gigaom.com

Hacker News

news .ycombinator.com

IEEE Computer

www . computer.org/portal /web/computingnow/

Magazine computer

InfoWorld www.infoworld. com
Mashable mashable.com
PCWorld www . pcworld. com
SD Times www.sdtimes.com
Slashdot slashdot.org

Stack Overflow stackoverflow.com

Technology Review

technologyreview.com

Techcrunch

techcrunch.com

The Next Web

thenextweb.com

The Verge

www . theverge.com

Wired

www.wired.com

http://fortune.com
http://gigaom.com
http://news.ycombinator.com
http://www.computer.org.ezproxy.cul.columbia.edu/portal/web/computingnow/computer
http://www.infoworld.com
http://mashable.com
http://www.pcworld.com.ezproxy.cul.columbia.edu
http://www.sdtimes.com
http://stackoverflow.com
http://technologyreview.com
http://techcrunch.com
http://thenextweb.com
http://www.theverge.com
http://www.wired.com

Self-Review Exercises

1. 1.1 Fill in the blanks in each of the following statements:

A. Computers process data under the control of sets of
instructions called

B. The key logical units of the computer are the :

, , , and .

C. The three types of languages discussed in the chapter
are : and

D. The programs that translate high-level language
programs into machine language are called

E. is an operating system for mobile devices based
on the Linux kernel and Java.

F. software is generally feature complete and
(supposedly) bug free and ready for use by the
community.

G. The Wii Remote, as well as many smartphones, uses
a(n) which allows the device to respond to
motion.

2. 1.2 Fill in the blanks in each of the following sentences about
the C++ environment.
A. C++ programs are normally typed into a computer using
a(n) program.
B. In a C++ system, a(n) program executes before
the compiler’s translation phase begins.

C.

D.

The program combines the output of the compiler
with various library functions to produce an executable
program.

The program transfers the executable program
from disk to memory.

3. 1.3 Fill in the blanks in each of the following statements (based
on Section 1.8):

A.

Objects have the property of —although objects
may know how to communicate with one another across
well-defined interfaces, they normally are not allowed to
know how other objects are implemented.
C++ programmers concentrate on creating , which
contain data members and the member functions that
manipulate those data members and provide services to
clients.
The process of analyzing and designing a system from
an object-oriented point of view is called
With , hew classes of objects are derived by
absorbing characteristics of existing classes, then
adding unique characteristics of their own.

is a graphical language that allows people who
design software systems to use an industry-standard
notation to represent them.
The size, shape, color and weight of an object are
considered of the object’s class.

Exercises

1. 1.4 Fill in the blanks in each of the following statements:

A.

The logical unit of the computer that receives information
from outside the computer for use by the computer is the

The process of instructing the computer to solve a
problem is called

is a type of computer language that uses English-
like abbreviations for machine-language instructions.

is a logical unit of the computer that sends
information which has already been processed by the
computer to various devices so that it may be used
outside the computer.

and are logical units of the computer that
retain information.

is a logical unit of the computer that performs
calculations.

is a logical unit of the computer that makes logical
decisions.

languages are most convenient to the
programmer for writing programs quickly and easily.

The only language a computer can directly
understand is that computer’s

is a logical unit of the computer that coordinates
the activities of all the other logical units.

2. 1.5 Fill in the blanks in each of the following statements:
A. initially became widely known as the development
language of the UNIX operating system.
B. The programming language was developed by
Bjarne Stroustrup in the early 1980s at Bell Laboratories.

3. 1.6 Fill in the blanks in each of the following statements:
A. C++ programs normally go through six phases— :
; ; : and :

B. A(n) provides many tools that support the
software development process, such as editors for
writing and editing programs, debuggers for locating
logic errors in programs, and many other features.

4. 1.7 You're probably wearing on your wrist one of the world’s
most common types of objects— a watch. Discuss how each of
the following terms and concepts applies to the notion of a
watch: object, attributes, behaviors, class, inheritance
(consider, for example, an alarm clock), modeling, messages,
encapsulation, interface and information hiding.

Making a Difference

Throughout the book we’ve included Making a Difference exercises in
which you’ll be asked to work on problems that really matter to
individuals, communities, countries and the world.

1.

1.8 (Test Drive: Carbon Footprint Calculator) Some
scientists believe that carbon emissions, especially from the
burning of fossil fuels, contribute significantly to global warming
and that this can be combatted if individuals take steps to limit
their use of carbon-based fuels. Various organizations and
individuals are increasingly concerned about their “carbon
footprints.” Websites such as TerraPass

http://www. terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these
calculators to determine your carbon footprint. Exercises in
later chapters will ask you to program your own carbon footprint

http://www.terrapass.com/carbon-footprint-calculator-2/
http://www.carbonfootprint.com/calculator.aspx

calculator. To prepare for this, research the formulas for
calculating carbon footprints.

. 1.9 (Test Drive: Body Mass Index Calculator) By recent
estimates, two-thirds of the people in the United States are
overweight and about half of those are obese. This causes
significant increases in illnesses such as diabetes and heart
disease. To determine whether a person is overweight or
obese, you can use a measure called the body mass index
(BMI). The United States Department of Health and Human
Services provides a BMI calculator at nttp://

www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm. Use it

to calculate your own BMI. An exercise in Chapter 2 will ask
you to program your own BMI calculator. To prepare for this,
research the formulas for calculating BMI.

. 1.10 (Attributes of Hybrid Vehicles) In this chapter you
learned the basics of classes. Now you'll begin “fleshing out”
aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are
becoming increasingly popular, because they often get much
better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular
hybrid cars, then list as many of their hybrid-related attributes
as you can. For example, common attributes include city-miles-
per-gallon and highway-miles-per-gallon. Also list the attributes
of the batteries (type, weight, etc.).

. 1.11 (Gender Neutrality) Some people want to eliminate
sexism in all forms of communication. You’ve been asked to
create a program that can process a paragraph of text and
replace gender-specific words with gender-neutral ones.

http://www.nhlbi.nih.gov.ezproxy.cul.columbia.edu/guidelines/obesity/BMI/bmicalc.htm

Assuming that you’ve been given a list of gender-specific words
and their gender-neutral replacements (e.g., replace “wife” with

bE AN 11 LN 11

“spouse,” “man” with “person,” “daughter” with “child” and so
on), explain the procedure you'd use to read through a
paragraph of text and manually perform these replacements.
How might your procedure generate a strange term like
“woperchild,” which is actually listed in the Urban Dictionary

(www.urbandictionary.com)7 In Chapter 4, yOU’” learn that a

more formal term for “procedure” is “algorithm,” and that an
algorithm specifies the steps to be performed and the order in
which to perform them.

. 1.12 (Privacy) Some online e-mail services save all e-mail
correspondence for some period of time. Suppose a disgruntled
employee of one of these online e-mail services were to post all
of the e-mail correspondences for millions of people, including
yours, on the Internet. Discuss the issues.

. 1.13 (Programmer Responsibility and Liability) As a
programmer in industry, you may develop software that could
affect people’s health or even their lives. Suppose a software
bug in one of your programs were to cause a cancer patient to
receive an excessive dose during radiation therapy and that the
person either was severely injured or died. Discuss the issues.

. 1.14 (2010 “Flash Crash”) An example of the consequences
of our dependency on computers was the so-called “flash
crash” which occurred on May 6, 2010, when the U.S. stock
market fell precipitously in a matter of minutes, wiping out
trillions of dollars of investments, and then recovered within

http://www.urbandictionary.com

minutes. Use the Internet to investigate the causes of this crash
and discuss the issues it raises.

Making a Difference Resources

The Microsoft Imagine Cup is a global competition in which students
use technology to try to solve some of the world’s most difficult
problems, such as environmental sustainability, ending hunger,
emergency response, literacy and more. For more information about
the competition and to learn about previous winners’ projects, visit
https://www.imaginecup.com/Custom/Index/About. YOU can also find
several project ideas submitted by worldwide charitable organizations.
For additional ideas for programming projects that can make a
difference, search the web for “making a difference” and visit the
following websites:

http://www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major
worldwide issues such as environmental sustainability, gender
equality, child and maternal health, universal education and more.

http://www.ibm.com/smarterplanet
The IBM® Smarter Planet website discusses how IBM is using

technology to solve issues related to business, cloud computing,
education, sustainability and more.

http://www.gatesfoundation.org

The Bill and Melinda Gates Foundation provides grants to

http://www.imaginecup.com/Custom/Index/About
http://www.un.org.ezproxy.cul.columbia.edu/millenniumgoals
http://www.ibm.com/smarterplanet
http://www.gatesfoundation.org

organizations that work to alleviate hunger, poverty and disease in
developing countries.

http://nethope.org

NetHope is a collaboration of humanitarian organizations worldwide
working to solve technology problems such as connectivity,
emergency response and more.

http://www.rainforestfoundation.org

The Rainforest Foundation works to preserve rainforests and to
protect the rights of the indigenous people who call the rainforests
home. The site includes a list of things you can do to help.

http://www.undp.org

The United Nations Development Programme (UNDP) seeks solutions
to global challenges such as crisis prevention and recovery, energy
and the environment, democratic governance and more.

http://www.unido.org

The United Nations Industrial Development Organization (UNIDO)
seeks to reduce poverty, give developing countries the opportunity to
participate in global trade, and promote energy efficiency and
sustainability.

http://www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict
prevention, humanitarian aid and more.

http://nethope.org
http://www.rainforestfoundation.org
http://www.undp.org
http://www.unido.org.ezproxy.cul.columbia.edu
http://www.usaid.gov/

Answers to Self-Review Exercises

o0

@mmo

2. 1.2

3. 1.3

OO w>

mmUOow >

programs.
input unit, output unit, memory unit, central processing
unit, arithmetic and logic unit, secondary storage unit.
machine languages, assembly languages, high-level
languages.

compilers.

Android.

Release candidate.

accelerometer.

editor.
preprocessor.
linker.
loader.

information hiding.

classes.

object-oriented analysis and design (OOAD).
inheritance.

The Unified Modeling Language (UML).
attributes.

2 Introduction to C++
Programming, Input/Output and
Operators

Objectives

In this chapter you'll:

e Write basic computer programs in C++.

o Write input and output statements.

e Use fundamental types.

e Learn computer memory concepts.

e Use arithmetic operators.

e Understand the precedence of arithmetic operators.
e Write decision-making statements.

Outline

©® N O O~ 0N~

O K 0D~

2.1 Introduction

2.2 First Program in C++: Printing a Line of Text

2.3 Modifying Our First C++ Program

2.4 Another C++ Program: Adding Integers

2.5 Memory Concepts

2.6 Arithmetic

2.7 Decision Making: Equality and Relational Operators
2.8 Wrap-Up

Summary

Self-Review Exercises

Answers to Self-Review Exercises
Exercises

Making a Difference

2.1 Introduction

We now introduce C++ programming, which facilitates a disciplined
approach to program development. Most of the C++ programs you'll
study in this book process data and display results. In this chapter, we
present five examples that demonstrate how your programs can
display messages and obtain data from the user for processing. The
first three examples display messages on the screen. The next
obtains two numbers from a user at the keyboard, calculates their sum
and displays the result. The accompanying discussion shows you how
to perform arithmetic calculations and save their results for later use.
The fifth example demonstrates decision making by showing you how
to compare two numbers, then display messages based on the
comparison results. We analyze each program one line at a time to
help you ease into C++ programming.

Compiling and Running Programs

We've posted videos that demonstrate compiling and running
programs in Microsoft Visual C++, GNU C++ and Xcode Clang/LLVM
at

http://www.deitel.com/books/cpphtpl0

http://www.deitel.com/books/cpphtp10

2.2 First Program in C++: Printing
a Line of Text

Consider a simple program that prints a line of text (Fig. 2.1). This
program illustrates several important features of the C++ language.
The text in lines 1-10 is the program’s source code (or code). The line
numbers are not part of the source code.

74 Eige 2.01% 02201 ¢pp
// Text-printing program.
#include <iostream> // enables program to output data to the screen

// function main begins program execution
int main() {
std::cout << "Welcome to C++!\n"; // display message

return 0; // indicate that program ended successfully
} // end function main

VRNV LR WN=

Welcome to C++!

Fig. 2.1 Text-printing program.

Comments

Lines 1 and 2

// Fig. 2.1: f£ig02 0l.cpp

// Text-printing program.

each begin with //, indicating that the remainder of each line is a

comment. You insert comments to document your programs and to
help other people read and understand them. Comments do not cause
the computer to perform any action when the program is run—they’re
ignored by the C++ compiler and do not cause any machine-language
object code to be generated. The comment text-printing program

describes the purpose of the program. A comment beginning with //

is called a single-line comment because it terminates at the end of
the current line. You also may use comments containing one or more
lines enclosed in /= and «/, asin

/* Fig. 2.1: fig02 Ol.cpp

Text-printing program. */

Eﬁrlrp
| Good Programming Practice 2.1

Every program should begin with a comment that describes the
purpose of the program.

#include Preprocessing Directive

Line 3

#include <iostream> // enables program to output data to the

screen

is a preprocessing directive, which is a message to the C++
preprocessor (introduced in Section 1.9). Lines that begin with # are

processed by the preprocessor before the program is compiled. This
line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header is a file

containing information the compiler uses when compiling any program
that outputs data to the screen or inputs data from the keyboard using
C++’s stream input/output. The program in Fig. 2.1 outputs data to the
screen, as we'll soon see. We discuss headers in more detail in
Chapter 6 and explain the contents of <iostream> in Chapter 13.

ot ©

A Common Programming Error 2.1

Forgetting to include the <iostream> header in a program that inputs

data from the keyboard or outputs data to the screen causes the
compiler to issue an error message.

Blank Lines and White Space

Line 4 is simply a blank line. You use blank lines, space characters
and tab characters (i.e., “tabs”) to make programs easier to read.

Together, these characters are known as white space. White-space
characters are normally ignored by the compiler.

The main Function

Line 5

// function main begins program execution

is a single-line comment indicating that program execution begins at
the next line.

Line 6

int main () {

is a part of every C++ program. The parentheses after main indicate
that main is a program building block called a function. C++ programs

typically consist of one or more functions and classes (as you'll learn
in Chapter 3). Exactly one function in every program must be named
nain. Figure 2.1 contains only one function. C++ programs begin

executing at function m=in, even if nain is not the first function defined

in the program. The keyword int to the left of nain indicates that main

“returns” an integer (whole number) value. A keyword is a word in
code that is reserved by C++ for a specific use. The complete list of
C++ keywords can be found in Fig. 4.3. We’'ll explain what it means
for a function to “return a value” when we demonstrate how to create
your own functions in Section 3.3. For now, simply include the
keyword int to the left of nain in each of your programs.

The left brace, (, (end of line 6) must begin the body of every
function. A corresponding right brace, }, (line 10) must end each

function’s body.

An Output Statement

Line 7

std::cout << "Welcome to C++!\n"; // display message

instructs the computer to perform an action—namely, to print the
characters contained between the double quotation marks. Together,
the quotation marks and the characters between them are called a
string, a character string or a string literal. In this book, we refer to
characters between double quotation marks simply as strings. White-
space characters in strings are not ignored by the compiler.

The entire line 7, including std::cout, the << operator, the string
"elcome to C++!\n" and the semicolon (;), is called a statement.

Most C++ statements end with a semicolon, also known as the
statement terminator (we’ll see some exceptions to this soon).
Preprocessing directives (such as #inciude) do not end with a
semicolon. Typically, output and input in C++ are accomplished with
streams of data. Thus, when the preceding statement is executed, it
sends the stream of characters weicome to c++!\n to the standard
output stream object— std: : cout—which is normally “connected” to

the screen.

‘N Common Programming Error 2.2

Omitting the semicolon at the end of a C++ statement is a syntax
error. The syntax of a programming language specifies the rules for
creating proper programs in that language. A syntax error occurs
when the compiler encounters code that violates C++’s language rules
(i.e., its syntax). The compiler normally issues an error message to
help you locate and fix the incorrect code. Syntax errors are also
called compiler errors, compile-time errors or compilation errors,
because the compiler detects them during the compilation phase. You
cannot execute your program until you correct all the syntax errors in
it. As you’ll see, some compilation errors are not syntax errors.

3| Good Programming Practice 2.2

Indent the body of each function one level within the braces that
delimit the function’s body. This makes a program’s functional
structure stand out, making the program easier to read.

| Good Programming Practice 2.3

Set a convention for the size of indent you prefer, then apply it
uniformly. The tab key may be used to create indents, but tab stops
may vary. We prefer three spaces per level of indent.

The std Namespace

The std:: before cout is required when we use names that we'’ve
brought into the program by the preprocessing directive #inciude
<iostream>. The notation std::cout specifies that we are using a
name, in this case cout, that belongs to namespace sta. The names
cin (the standard input stream) and cerr (the standard error stream)
—introduced in Chapter 1—also belong to namespace stad.

Namespaces are an advanced C++ feature that we discuss in depth in
Chapter 23, Other Topics. For now, you should simply remember to
include std:: before each mention of cout, cin and cerr ina

program. This can be cumbersome—we’ll soon introduce using
declarations and the using directive, which will enable you to omit

std:: before each use of a name in the sta namespace.

The Stream Insertion Operator and
Escape Sequences

In the context of an output statement, the << operator is referred to as

the stream insertion operator. \When this program executes, the
value to the operator’s right, the right operand, is inserted in the
output stream. Notice that the << operator points toward where the

data goes. A string literal’s characters normally print exactly as they
appear between the double quotes. However, the characters \n are

not printed on the screen (Fig. 2.1). The backslash (\) is called an

escape character. It indicates that a “special” character is to be
output. When a backslash is encountered in a string of characters, the
next character is combined with the backslash to form an escape
sequence. The escape sequence \n means newline. It causes the

cursor (i.e., the current screen-position indicator) to move to the
beginning of the next line on the screen. Some common escape
sequences are listed in Fig. 2.2.

Fig. 2.2 Escape sequences.

Escape Description

sequence

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the current

line; do not advance to the next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\' Single quote. Used to print a single-quote character.
\" Double quote. Used to print a double-quote character.

The return Statement

Line 9

return 0; // indicate that program ended successfully

is one of several means we’ll use to exit a function. When the return
statement is used at the end of ~2in, as shown here, the value o

indicates that the program has terminated successfully. The right
brace, 1, (line 10) indicates the end of function nain. According to the

C++ standard, if program execution reaches the end of main without
encountering a return statement, it's assumed that the program

terminated successfully—exactly as when the last statement in nain is

a return Statement with the value o. For that reason, we omit the

return Statement at the end of nain in subsequent programs.

A Note About Comments

As you write a new program or modify an existing one, you should
keep your comments up-to-date with the program’s code. You'll often
need to make changes to existing programs— for example, to fix
errors (commonly called bugs) that prevent a program from working
correctly or to enhance a program. Updating your comments as you
make code changes helps ensure that the comments accurately
reflect what the code does. This will make your programs easier for
you and others to understand and modify in the future.

2.3 Modifying Our First C++
Program

We now present two examples that modify the program of Fig. 2.1 to
print text on one line by using multiple statements and to print text on
several lines by using a single statement.

Printing a Single Line of Text with Multiple
Statements

welcome to C++! can be printed several ways. For example, Fig. 2.3

performs stream insertion in multiple statements (lines 7-8), yet
produces the same output as the program of Fig. 2.1. [Note: From this
point forward, we use a colored background to highlight the key
features each program introduces.] Each stream insertion resumes
printing where the previous one stopped. The first stream insertion
(line 7) prints we1come followed by a space, and because this string did

not end with \n, the second stream insertion (line 8) begins printing on

the same line immediately following the space.

77 BTG 235 Fig02503kicpp
// Printing a line of text with multiple statements.
#include <iostream> // enables program to output data to the screen

int main() {
std: :cout << "Welcome ";
std: :cout << "to C++!\n";

|
2
3
4
5 // function main begins program execution
6
7
8
9 1} // end function main

Welcome to C++!

Fig. 2.3 Printing a line of text with multiple statements.

Printing Multiple Lines of Text with a
Single Statement

A single statement can print multiple lines by using newline
characters, as in line 7 of Fig. 2.4. Each time the \n (newline) escape

sequence is encountered in the output stream, the screen cursor is
positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 7.

I 7/ Eig. 2.4: Tig02_04.¢cpp

2 // Printing multiple lines of text with a single statement.
3 #include <iostream> // enables program to output data to the screen
4

5 // function main begins program execution

6 1int main() {

7 std: :cout << "Welcome\nto\n\nC++!\n";

8 } // end function main

Welcome

to

C++!

Fig. 2.4 Printing multiple lines of text with a single statement.

2.4 Another C++ Program: Adding
Integers

Our next program obtains two integers typed by a user at the
keyboard, computes their sum and outputs the result using std: :cout.

Figure 2.5 shows the program and sample inputs and outputs. In the
sample execution, we highlight the user’s input in bold. The program
begins execution with function nain (line 6). The left brace (line 6)

begins nain’s body and the corresponding right brace (line 21) ends it.

I /7 Fig. 2.5% Fig02:05.cpp
2 // Addition program that displays the sum of two integers.
3 #include <iostream> // enables program to perform input and output
4
5 // function main begins program execution
6 int main() {
7 // declaring and initializing variables
8 int numberl{0}; // first integer to add (initialized to 0)
9 int number2{0}; // second integer to add (initialized to 0)
10 int sum{0}; // sum of numberl and number2 (initialized to 0)
11
12 std::cout << "Enter first integer: "; // prompt user for data
13 std::cin >> numberl; // read first integer from user into numberl
14
15 std: :cout << "Enter second integer: "; // prompt user for data
16 std::cin >> number2; // read second integer from user into number2
17
18 sum = numberl + number2; // add the numbers; store result in sum
19
20 std::cout << "Sum is " << sum << std::endl; // display sum; end 1line

21 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum 1is 117

Fig. 2.5 Addition program that displays the sum of two integers.

Variable Declarations and List Initialization

Lines 8-10
int numberl{0}; // first integer to add (initialized to 0)
int number2{0}; // second integer to add (initialized to 0)

int sum{0}; // sum of numberl and number2 (initialized to 0)

are declarations. The identifiers number1, number2 and sum are the

names of variables. A variable is a location in the computer's memory
where a value can be stored for use by a program. These declarations
specify that the variables numpberi, number2 and sum are data of type

int, meaning that these variables will hold integer (whole number)
values, such as 7, —11, 0 and 31914.

Lines 8-10 also initialize each variable to o by placing a value in
braces ((and ;) immediately following the variable’s name—this is

known as list initialization,1 which was introduced in C++11.
Previously, these declarations would have been written as:

1. List initialization is also known as uniform initialization.

11

int numberl = 0; // first integer to add (initialized to 0)

int number2 = 0; // second integer to add (initialized to 0)

int sum = 0; // sum of numberl and number?2 (initialized to 0)

= Error-Prevention Tip 2.1

Although it’s not always necessary to initialize every variable explicitly,
doing so will help you avoid many kinds of problems.

All variables must be declared with a name and a data type before
they can be used in a program. Several variables of the same type
may be declared in one declaration—for example, we could have
declared and initialized all three variables in one declaration by using
a comma-separated list as follows:

int numberl{0}, number2{0}, sum{0};

This makes the program less readable and prevents us from providing
comments that describe each variable’s purpose.

i‘?" :;.
| Good Programming Practice 2.4

Declare only one variable in each declaration and provide a comment
that explains the variable’s purpose in the program.

Fundamental Types

We’ll soon discuss the type dounie for specifying real numbers and
the type char for specifying character data. Real numbers are
numbers with decimal points, such as 3.4, 0.0 and -11.19. A char

variable may hold only a single lowercase letter, uppercase letter, digit
or special character (e.g., s or »). Types such as int, double and

char are called fundamental types. Fundamental-type names consist

of one or more keywords and therefore must appear in all lowercase
letters. Appendix C contains the complete list of fundamental types.

Identifiers

A variable name (such as nunber1) is any valid identifier that is not a

keyword. An identifier is a series of characters consisting of letters,
digits and underscores (_) that does not begin with a digit. C++ is
case sensitive—uppercase and lowercase letters are different, so a1

and »1 are different identifiers.

Portability Tip 2.1

C++ allows identifiers of any length, but your C++ implementation may
restrict identifier lengths. Use identifiers of 31 characters or fewer to
ensure portability (and readability).

% -

B| Good Programming Practice 2.5

=

Choosing meaningful identifiers helps make a program self-
documenting—a person can understand the program simply by
reading it rather than having to refer to program comments or
documentation.

/B

5| Good Programming Practice 2.6

=

Avoid using abbreviations in identifiers. This improves program
readability.

| Good Programming Practice 2.7

Do not use identifiers that begin with underscores and double
underscores, because C++ compilers use names like that for their
own purposes internally.

Placement of Variable Declarations

Declarations of variables can be placed almost anywhere in a
program, but they must appear before their corresponding variables
are used in the program. For example, in the program of Fig. 2.5, the
declaration in line 8

int numberl1{0}; // first integer to add (initialized to 0)

could have been placed immediately before line 13

std::cin >> numberl; // read first integer from user into numberl

the declaration in line 9

int number2{0}; // second integer to add (initialized to 0)

could have been placed immediately before line 16

std::cin >> number2; // read second integer from user into

number?

and the declaration in line 10

int sum{0}; // sum of numberl and number?2 (initialized to 0)

could have been placed immediately before line 18

sum = numberl + number2; // add the numbers; store result in sum

Obtaining the First Value from the User

Line 12

std::cout << "Enter first integer: "; // prompt user for data

displays mnter first integer: followed by a space. This message is

called a prompt because it directs the user to take a specific action.
We like to pronounce the preceding statement as “sta::cout gets the

Stﬂng "Enter first integer: «.” Line 13

std::cin >> numberl; // read first integer from user into numberl

uses the standard input stream object cin (of namespace std) and
the stream extraction operator, >>, to obtain a value from the
keyboard. Using the stream extraction operator with std::cin takes

character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std::cin

gives a value to number1” or sSimply “std::cin QiveS numberi.”

When the computer executes the preceding statement, it waits for the
user to enter a value for variable numver1. The user responds by

typing an integer (as characters), then pressing the Enter key
(sometimes called the Return key) to send the characters to the
computer. The computer converts the character representation of the
number to an integer and assigns (i.e., copies) this number (or value)
to the variable numveri. Any subsequent references to numberi in this

program will use this same value. Pressing Enter also causes the
cursor to move to the beginning of the next line on the screen.

Users can, of course, enter invalid data from the keyboard. For
example, when your program is expecting the user to enter an integer,
the user could enter alphabetic characters, special symbols (like # or
@) or a number with a decimal point (like 73.5), among others. In
these early programs, we assume that the user enters valid data. As
you progress through the book, you'll learn how to deal with data-entry
problems.

Obtaining the Second Value from the User

Line 15

std::cout << "Enter second integer: "; // prompt user for data

prints enter second integer: ON the screen, prompting the user to take

action. Line 16

std::cin >> number2; // read second integer from user into

number?

obtains a value for variable numver2 from the user.

Calculating the Sum of the Values Input by
the User

The assignment statement in line 18

sum = numberl + number2; // add the numbers; store result in sum

adds the values of variables number1 and number2 and assigns the
result to variable sun using the assignment operator =. We like to
read this statement as, “sun gets the value of numberi + number2.”
Most calculations are performed in assignment statements. The =
operator and the + operator are called binary operators because
each has two operands. In the case of the + operator, the two
operands are number1 and number2 . In the case of the preceding -
operator, the two operands are sun and the value of the expression

numberl + number?2.

ves

%] Good Programming Practice 2.8

=

Place spaces on either side of a binary operator. This makes the
operator stand out and makes the program more readable.

Displaying the Result

Line 20

std::cout << "Sum is " << sum << std::endl; // display sum; end

line

displays the character string sun is followed by the numerical value of
variable sun followed by std::end1 —a so-called stream manipulator.
The name <nd1 is an abbreviation for “end line” and belongs to

namespace std. The std::endl stream manipulator outputs a newline,

then “flushes the output buffer.” This simply means that, on some
systems where outputs accumulate in the machine until there are
enough to “make it worthwhile” to display them on the screen,

std::endl forces any accumulated outputs to be displayed at that

moment. This can be important when the outputs are prompting the
user for an action, such as entering data.

The preceding statement outputs multiple values of different types.
The stream insertion operator “knows” how to output each type of
data. Using multiple stream insertion operators (<<) in a single

statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could
have combined the statements in lines 18 and 20 into the statement

std::cout << "Sum 1is " << numberl + number?2 << std::endl;

thus eliminating the need for the variable sun.

A powerful feature of C++ is that you can create your own data types
called classes (we discuss this capability in Chapter 3 and explore it
in depth in Chapter 9). You can then “teach” C++ how to input and

output values of these new data types using the >> and << operators

(this is called operator overloading—a topic we explore in Chapter
10).

2.5 Memory Concepts

Variable names such as number1, number2 and sum actually

correspond to locations in the computer’'s memory. Every variable
has a name, a type, a size and a value.

In the addition program of Fig. 2.5, when the statement in line 13

std::cin >> numberl; // read first integer from user into numberl

is executed, the integer typed by the user is placed into a memory
location to which the name number1 has been assigned by the

compiler. Suppose the user enters 45 for number1. The computer will
place 45 into the location number1, as shown in Fig. 2.6. When a value

is placed in a memory location, the value overwrites the previous
value in that location; thus, placing a new value into a memory
location is said to be a destructive operation.

numberl 45

Fig. 2.6 Memory location showing the name and value of variable

numberl.

Returning to our addition program, suppose the user enters 72 when

the statement

std::cin >> number2; // read second integer from user into

number?

is executed. This value is placed into the location numver2, and

memory appears as in Fig. 2.7. The variables’ locations are not
necessarily adjacent in memory.

humberl 45

humber?2 72

Fig. 2.7 Memory locations after storing values in the variables for

numberl anNd number2.

Once the program has obtained values for numberi and number2, it
adds these values and places the total into the variable sum. The

statement

sum = numberl + number2; // add the numbers; store result in sum

replaces whatever value was stored in sun. The calculated sum of
numberl and number2 IS placed into variable sun without regard to what
value may already be in sun—that value is lost. After sun is
calculated, memory appears as in Fig. 2.8. The values of number1 and
number2 appear exactly as they did before the calculation. These

values were used, but not destroyed, as the computer performed the
calculation. Thus, when a value is read out of a memory location, the
operation is nondestructive.

humberl 45
number?2 72
sum 1kal7s

Fig. 2.8 Memory locations after calculating and storing the sum of

numberl anNd number2.

2.6 Arithmetic

Most programs perform arithmetic calculations. Figure 2.9

summarizes the arithmetic operators. Note the use of various
special symbols not used in algebra. The asterisk (*) indicates

multiplication and the percent sign (%) is the remainder operator,

which we’ll discuss shortly. The arithmetic operators in Fig. 2.9 are all

binary operators—they each take two operands. For example, the

expression number1 + number2 contains the binary operator + and the

two operands numberi and number2.

Fig. 2.9 Arithmetic operators.

Operation Arithmetic operator Algebraic expression C++ expression
Addition + £ + 7 £+ 7
Subtraction - p - c p - cC
Multiplication * bmorb ' m b * m
Division / x / yorgorx+y x /y
Remainder 5 r mod s r $ s

Integer division (i.e., where both the numerator and the denominator

are integers) yields an integer quotient; for example, the expression

7/4 evaluates to 1 and the expression 17/5 evaluates to 3. Any

fractional part in integer division is truncated (i.e., discarded)—no
rounding occurs.

The remainder operator, %, yields the remainder after integer

division and can be used only with integer operands. The expression
x % vy Yields the remainder after x is divided by . Thus, 7 = 4 yields

3 and 17 = 5 yields 2. In later chapters, we discuss interesting

applications of the remainder operator, such as determining whether
one number is a multiple of another (a special case of this is
determining whether a number is odd or even).

Arithmetic Expressions in Straight-Line
Form

Arithmetic expressions in C++ must be entered into the computer in
straight-line form. Thus, expressions such as “= divided by »” must
be written as 2 / b, so that all constants, variables and operators

appear in a straight line. The algebraic notation

a

b

is generally not acceptable to compilers, although some special-
purpose software packages do support more natural notation for
complex mathematical expressions.

Parentheses for Grouping Subexpressions

Parentheses are used in C++ expressions in the same manner as in
algebraic expressions. For example, to multiply = times the quantity »

+ cwewrite 2 * © + ¢).

Rules of Operator Precedence

C++ applies the operators in arithmetic expressions in a precise order
determined by the following rules of operator precedence, which are
generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses
are evaluated first. Parentheses are said to be at the “highest
level of precedence.” In cases of nested, or embedded,
parentheses, such as

(a * (b + ¢))

the operators in the innermost pair of parentheses are applied
first.

2. Multiplication, division and remainder operations are evaluated
next. If an expression contains several multiplication, division
and remainder operations, operators are applied from left to
right. These three operators are said to be on the same level of
precedence.

3. Addition and subtraction operations are applied last. If an
expression contains several addition and subtraction
operations, operators are applied from left to right. Addition and
subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++
applies operators. When we say that certain operators are applied
from left to right, we are referring to the associativity of the operators.
For example, the addition operators (+) in the expression

a + b + c

associate from left to right, so 2 + © is calculated first, then < is added

to that sum to determine the whole expression’s value. We’'ll see that
some operators associate from right to left. Figure 2.10 summarizes
these rules of operator precedence. We expand this table as we
introduce additional C++ operators. Appendix A contains the
complete precedence chart.

Fig. 2.10 Precedence of arithmetic operators.

Operator(s) | Operation(s) | Order of evaluation (precedence)

() Parentheses Evaluated first. For nested parentheses, such as in the
expression a * (b + ¢ / (d + e)) ,the expression
in the innermost pair evaluates first. [Caution: If you have

an expressionsuchas (a + b) * (¢ - d) inwhich

two sets of parentheses are not nested, but appear “on
the same level,” the C++ Standard does not specify the

order in which these parenthesized subexpressions will

evaluate.]
* Multiplication | Evaluated second. If there are several, they’re evaluated
Division left to right.
/ Remainder
+ Addition Evaluated last. If there are several, they’re evaluated left

Subtraction to right.

Sample Algebraic and C++ Expressions

Now consider several expressions in light of the rules of operator
precedence. Each example lists an algebraic expression and its C++
equivalent. The following is an example of an arithmetic mean
(average) of five terms:

Algebra: m — a+b—|—§+d—|—e
Cy, : m= (a+b+c+d+e)/5;

The parentheses are required because division has higher
precedence than addition. The entire quantity (= + b + ¢ + d +) IS

to be divided by s. If the parentheses are erroneously omitted, we

obtain 2 + b + ¢ + 4 + e / 5, which evaluates incorrectly as

a+b+ctd+ o

The following is an example of the equation of a straight line:
Algebra: y= mx+b
Cyy: y= m*Xx+b;

No parentheses are required. The multiplication is applied first
because multiplication has a higher precedence than addition.

The following example contains remainder (=), multiplication, division,

addition, subtraction and assignment operations:

Algebra: z = pr%q + wix—y
Ci+: Z = p *r % qg+ w / X -Y;
6 1 2 4 3 5

The circled numbers under the statement indicate the order in which
C++ applies the operators. The multiplication, remainder and division
operations are evaluated first in left-to-right order (i.e., they associate
from left to right) because they have higher precedence than addition
and subtraction. The addition and subtraction are applied next. These
are also applied left to right. The assignment operator is applied /ast

because its precedence is lower than that of any of the arithmetic
operators.

Evaluation of a Second-Degree
Polynomial

To develop a better understanding of the rules of operator
precedence, consider the evaluation of a second-degree polynomial

y=azx? + bz +c

VA = A G GEC I AR

6 1, 2 4 S 5

There is no arithmetic operator for exponentiation in C++, so we’ve
represented 22 as « + . The circled numbers under the statement

indicate the order in which C++ applies the operators. In Chapter 5,
we’ll discuss the standard library function pow (“power”) that performs

exponentiation.

Suppose variables a, b, ¢ and x in the preceding second-degree
polynomial are initialized as follows: = = 2, b = 3, c = 7 and x = 5.

Figure 2.11 illustrates the order in which the operators are applied
and the final value of the expression.

Step 1. y=2%5% 85 4+3*%5 % 7; (Leftmost multiplication)
2 *51s 10

|

Step 2. y =10 *5+ 3 * 5 + 7; (Leftmost multiplication)
10 * 5 is 50
Step 3. y =50+ 3 %5+ 7; (Multiplication before addition)
3 * 5 4s 15

|

Step 4. y =50+ 15 + 7; (Leftmost addition)
50 + 15 is 65

1

Step 5. y = 65 + 7; (Last addition)
65 + 7 1is |2

|

Step 6. y =72 (Low-precedence assignment—place 72 in y)

Fig. 2.11 Order in which a second-degree polynomial is
evaluated.

Redundant Parentheses

As in algebra, it's acceptable to place unnecessary parentheses in an
expression to make it clearer. These are called redundant
parentheses. For example, the second-degree polynomial could be
parenthesized as follows:

2.7 Decision Making: Equality and
Relational Operators

We now introduce C++’s if statement, Which allows a program to take

alternative action based on whether a condition is true or false.
Conditions in ir statements can be formed by using the relational

operators and equality operators summarized in Fig. 2.12. The
relational operators all have the same level of precedence and
associate left to right. The equality operators both have the same level
of precedence, which is lower than that of the relational operators, and
associate left to right.

Fig. 2.12 Relational and equality operators.

Algebraic relational or C++ relational or Sample C++ Meaning of C++

equality operator equality operator condition condition

Relational operators

> > X >y % is greater than
y

< < x <y x isless than vy

> >= X >=y % is greater than
orequalto vy

< <= X <=y % is less than or

equal to vy

Equality operators

= == X ==Yy x is equal to vy

= x =y % is not equal to

y

Common Programming Error

Reversing the order of the pair of symbols in the operators =, >= and
<= (by writing them as =!, => and =<, respectively) is normally a
Syntax error. In some cases, writing = as =! will not be a syntax
error, but almost certainly will be a logic error that has an effect at
execution time. You'll understand why when you learn about logical
operators in Chapter 5. A fatal logic error causes a program to fail

and terminate prematurely. A nonfatal logic error allows a program
to continue executing, but usually produces incorrect results.

Common Programming Error

2.4

Confusing the equality operator == with the assignment operator -

results in logic errors. We like to read the equality operator as “is
equal to” or “double equals,” and the assignment operator as “gets” or
“gets the value of” or “is assigned the value of.” As you’ll see in
Section 5.12, confusing these operators may not necessarily cause
an easy-to-recognize syntax error, but may cause subtle logic errors.

Using the ir Statement

The following example (Fig. 2.13) uses six ir statements to compare
two numbers input by the user. If a given ir statement’s condition is
true, the output statement in the body of that ir statement executes. If

the condition is false, the output statement in the body does not
execute.

oo~y R WN -

W W WWWwWwWNNNNNNNNNN=S = - - - - - - - -
oonbhWN=-=0O0OoO~NONT AR WN=OCOODO~NONUNAE WN=O

// Fig. 2.13: fig02_13.cpp

// Comparing integers using if statements, relational operators

// and equality operators.

#include <iostream> // enables program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses end]

// function main begins program execution
int main() {

int numberl{0}; // first integer to compare (initialized to 0)
int number2{0}; // second integer to compare (initialized to 0)

cout << "Enter two integers to compare:
cin >> numberl

if (number
cout << numberl <<

number2) {

'- // prompt user for data

>> number?2; // read two integers from user

o << number2 << endl;

<< number? << endl;

<< number2 << endl;

}

if (numberl '= number2) {
cout << numberl << " != " << number? << endl;

}

if (numberl = number2) {
cout << numberl << " < "

b

if (numberl > number2) {
cout <= numberl =< " = "

}

if (numberl == number2) {

n n
==

cout <= numberl =<

<< number2 << endl;

37

38 if (numberl >= number2) {
39 cout << numberl << " == " << number? << endl;
40 b

41 1} // end function main

Enter two integers to compare: 3 7
3 =7
3 <7
Bl T

Enter two integers to compare: 22 12
22 1= 12
22 > 12
22 = 12

Enter two integers to compare: 7 7
Te—"7
I <=7
==

Fig. 2.13 Comparing integers using it statements, relational
operators and equality operators.

using Declarations

Lines 6-8

using std::cout; // program uses cout
using std::cin; // program uses cin

using std::endl; // program uses endl

are using declarations that eliminate the need to repeat the sta::
prefix as we did in earlier programs. We can now write cout instead of
std::cout, cin instead of std::cin and end1 instead of std: :endl,

respectively, in the remainder of the program.

In place of lines 6—8, many programmers prefer to provide the using

directive

using namespace std;

which enables a program to use all the names in any standard C++
header (such as <iostream>) that a program might include. From this

point forward in the book, we’ll use the preceding directive in our
programs.2

2. In Chapter 23, Other Topics, we’ll discuss some issues with using

directives in large-scale systems.

Variable Declarations and Reading the
Inputs from the User

Lines 12-13

int numberl1{0}; // first integer to compare (initialized to 0)

int number2{0}; // second integer to compare (initialized to 0)

declare the variables used in the program and initialize them to o.

Line 16

cin >> numberl >> number2; // read two integers from user

uses cascaded stream extraction operations to input two integers.
Recall that we’re allowed to write cin (instead of std::cin) because of

line 7. First a value is read into variable numver1, then a value is read

into variable number2 .

Comparing Numbers

The ir statement in lines 18-20

if (numberl == number2) {

cout << numberl << " == " << number?2 << endl;

compares the values of variables numberi and numver2 to test for

equality. If the values are equal, the statement in line 19 displays a
line of text indicating that the numbers are equal. If the conditions are
true in one or more of the ir statements starting in lines 22, 26, 30,

34 and 38, the corresponding body statement displays an appropriate
line of text.

Each ir statement in Fig. 2.13 contains a single body statement

that’s indented. Also notice that we’ve enclosed each body statement
in a pair of braces, ¢ }, creating what’s called a compound

statement or a block.

T

| Good Programming Practice 2.9

=

Indent the statement(s) in the body of an :ir statement to enhance

readability.

> Error-Prevention Tip 2.2

You don’t need to use braces, ¢ }, around single-statement bodies,

but you must include the braces around multiple-statement bodies.
You'll see later that forgetting to enclose multiple-statement bodies in

braces leads to errors. To avoid errors, as a rule, always enclose an
i Statement’s body statement(s) in braces.

ﬁ Common Programming Error 2.5

Placing a semicolon immediately after the right parenthesis after the
condition in an ir statement is often a logic error (although not a

Syntax error). The semicolon causes the body of the ir statement to
be empty, so the :r statement performs no action, regardless of

whether or not its condition is true. Worse yet, the original body
statement of the ir statement now becomes a statement in sequence

with the ir statement and always executes, often causing the

program to produce incorrect results.

White Space

Note our use of blank lines in Fig. 2.13. We inserted these for
readability. Recall that white-space characters, such as tabs, newlines
and spaces, are normally ignored by the compiler. So, statements
may be split over several lines and may be spaced according to your
preferences. It's a syntax error to split identifiers, strings (such as
"hello") and constants (such as the number 1000) over several lines.

-

#| Good Programming Practice 2.10

=»

A lengthy statement may be spread over several lines. If a statement
must be split across lines, choose meaningful breaking points, such as
after a comma in a comma-separated list, or after an operator in a
lengthy expression. If a statement is split across two or more lines,
indent all subsequent lines and left-align the group of indented lines.

Operator Precedence

Figure 2.14 shows the precedence and associativity of the operators
introduced in this chapter. The operators are shown top to bottom in
decreasing order of precedence. All these operators, with the
exception of the assignment operator =, associate from left to right.

Addition is left-associative, so an expression like x + v + z is
evaluated as if it had been written (x +) + z. The assignment
operator = associates from right to left, so an expression such as x =
y = 0 is evaluated as if it had been written x = (v = 0), which, as we’ll
soon see, first assigns o to v, then assigns the result of that

assignment— o —to x.

Fig. 2.14 Precedence and associativity of the operators
discussed so far.

Operators Associativity Type

() [See caution in Fig. 2.10] grouping parentheses

left to right

multiplicative

+ - left to right additive

<< >> left to right stream insertion/extraction
< <= >= left to right relational

—= = left to right equality

= right to left assignment

Refer to the operator precedence and associativity chart (Appendix A)
when writing expressions containing many operators. Confirm that the

-.al"" d

| Good Programming Practice 2.11

operators in the expression are performed in the order you expect. If

you’re uncertain about the order of evaluation in a complex

expression, break the expression into smaller statements or use

parentheses to force the order of evaluation, exactly as you’d do in an
algebraic expression. Be sure to observe that some operators such as

assignment (=) associate right to left rather than left to right.

2.8 Wrap-Up

You learned many important basic features of C++ in this chapter,
including displaying data on the screen, inputting data from the
keyboard and declaring variables of fundamental types. In particular,
you learned to use the output stream object cout and the input stream

object cin to build simple interactive programs. We explained how

variables are stored in and retrieved from memory. You also learned
how to use arithmetic operators to perform calculations. We discussed
the order in which C++ applies operators (i.e., the rules of operator
precedence), as well as the associativity of the operators. You also
learned how C++’s i¢ statement allows a program to make decisions.

Finally, we introduced the equality and relational operators, which we
used to form conditions in ir statements.

The non-object-oriented applications presented here introduced you to
basic programming concepts. As you'll see in Chapter 3, C++
applications typically contain just a few lines of code in function main

—these statements normally create the objects that perform the work
of the application, then the objects “take over from there.” In Chapter
3, you'll learn how to implement your own classes and use objects of
those classes in applications.

Summary

Section 2.2 First Program in C++: Printing
a Line of Text

e Single-line comments (p. 46) begin with //. You insert comments

to document your programs and improve their readability.

e Comments do not cause the computer to perform any action (p.
47) when the program is run— they’re ignored by the compiler.

e A preprocessing directive (p. 46) begins with # and is a

message to the C++ preprocessor. Preprocessing directives are
processed before the program is compiled.
e The line #include <iostream> (P. 46) tells the C++ preprocessor to

include the contents of the input/output stream header, which
contains information necessary to compile programs that output
data to the screen or input data from the keyboard.

e White space (i.e., blank lines, space characters and tab
characters; p. 46) makes programs easier to read. White-space
characters outside of string literals are ignored by the compiler.

e C++ programs begin executing at main (p. 47), even if main does

not appear first in the program.

e The keyword int to the left of mzin indicates that nain “returns” an
integer value.

e The body (p. 47) of every function must be contained in braces (
and).

e A string (p. 47) in double quotes is sometimes referred to as a
character string, message or string literal. White-space
characters in strings are not ignored by the compiler.

Most C++ statements (p. 47) end with a semicolon, also known as
the statement terminator (we’ll see some exceptions to this soon).
Output and input in C++ are accomplished with streams (p. 47) of
data.

The output stream object std::cout (p. 47)—normally connected to

the screen—is used to output data. Multiple data items can be
output by concatenating stream insertion (<<; p. 48) operators.

The input stream object std::cin—normally connected to the

keyboard—is used to input data. Multiple data items can be input
by concatenating stream extraction (>>) operators.

The notation std::cout specifies that we are using cout from
“namespace” std.

When a backslash (i.e., an escape character) is encountered in a
string of characters, the next character is combined with the
backslash to form an escape sequence (p. 48).

The newline escape sequence \n (p. 48) moves the cursor to the

beginning of the next line on the screen.
C++ keyword return (p. 49) is one of several means to exit a

function.

Section 2.4 Another C++ Program: Adding
Integers

e All variables (p. 51) in a C++ program must be declared before
they can be used.
e Variables of type int (p. 51) hold integer values, i.e., whole

numbers such as 7, —11, 0, 31914.

e A variable can be initialized in its declaration using list
initialization (p. 51; introduced in C++11)—the variable’s initial
value is placed in braces ((and ;) immediately following the

variable’s name.

e A variable name is any valid identifier (p. 51) that is not a
keyword. An identifier is a series of characters consisting of letters,
digits and underscores (). Identifiers cannot start with a digit.

|dentifiers can be any length, but some systems or C++
implementations may impose length restrictions.

e A message that directs the user to take a specific action is known
as a prompt (p. 52).

e C++ is case sensitive (p. 52).

e A program reads the user’s input with the std::cin (p. 53) object

and the stream extraction (>>; p. 53) operator.

e Most calculations are performed in assignment statements (p.
53).

Section 2.5 Memory Concepts

e A variable is a location in memory (p. 54) where a value can be
stored for use by a program.

e Every variable stored in the computer's memory has a name, a
value, a type and a size.

e \Whenever a new value is placed in a memory location, the process
is destructive (p. 54); i.e., the new value replaces the previous
value in that location. The previous value is lost.

e When a value is read from memory, the process is
nondestructive (p. 55); i.e., a copy of the value is read, leaving
the original value undisturbed in the memory location.

e The std::endl1 stream manipulator (p. 54) outputs a newline, then

“flushes the output buffer.”

Section 2.6 Arithmetic

o C++ evaluates arithmetic expressions (p. 55) in a precise
sequence determined by the rules of operator precedence (p.
56) and associativity (p. 56).

e Parentheses may be used to group expressions.

o Integer division (p. 56) yields an integer quotient. Any fractional
part in integer division is truncated.

e The remainder operator, ¢ (p. 56), yields the remainder after

integer division.

Section 2.7 Decision Making: Equality and
Relational Operators

e The it statement (p. 59) allows a program to take alternative
action based on whether a condition is met. The format for an i+

statement is

if (condition) {

statement;

If the condition is true, the statement in the body of the it is

executed. If the condition is not met, i.e., the condition is false, the
body statement is skipped.
e Conditions in if statements are commonly formed by using

equality and relational operators (p. 59). The result of using
these operators is always the value true or false.
e The using declaration (p. 61)

using std::cout;

informs the compiler where to find cout (namespace sta) and

eliminates the need to repeat the std:: prefix. The using directive

(p. 61)

using namespace std;

enables the program to use all the names in any included C++
standard library header.

Self-Review Exercises

1. 2.1 Fill in the blanks in each of the following.

A.

B.

C.

o

Every C++ program begins execution at the function

A(n) begins the body of every function and a(n)
ends the body.

Most C++ statements end with a(n)

The escape sequence \n represents the

character, which causes the cursor to position to the

beginning of the next line on the screen.
The statement is used to make decisions.

2. 2.2 State whether each of the following is frue or false. If false,
explain why. Assume the statement using std::cout; is used.

A.

O O

Comments cause the computer to print the text after the
// on the screen when the program is executed.

The escape sequence \n, when output with cout and

the stream insertion operator, causes the cursor to
position to the beginning of the next line on the screen.
All variables must be declared before they’re used.

All variables must be given a type when they’re
declared.

C++ considers the variables number and wuvoer to be

identical.

F. Declarations can appear almost anywhere in the body of
a C++ function.
G. The remainder operator (=) can be used only with

integer operands.
H. The arithmetic operators «, /, =, + and — all have the

same level of precedence.
l. A C++ program that prints three lines of output must
contain three statements using cout and the stream

insertion operator.

3. 2.3 Write a single C++ statement to accomplish each of the
following (assume that neither using declarations nor a using

directive have been used):
A. Declare the variables ¢, thistsavariable, 976354 and

number tO be of type int (in one statement) and initialize
each to o.

B. Prompt the user to enter an integer. End your prompting
message with a colon (:) followed by a space and leave

the cursor positioned after the space.
C. Read an integer from the user at the keyboard and store
it in integer variable age.

D. If the variable number is not equal to 7, print "rhe
variable number is not equal to 7".

E. Print the message "this is a c++ progran” ON one line.

F. Print the message "this is a c++ program” 0ON two lines.

End the first line with c++.

Print the message "rhis is a ct+ progran” With each

word on a separate line.
Print the message "rhis is a ct+ progran”. Separate

each word from the next by a tab.

4. 2.4 Write a statement (or comment) to accomplish each of the
following (assume that using declarations have been used for

cin, cout and endl):

A.

O O

Document that a program calculates the product of three
integers.
Declare the variables x, v, z and resuit to be of type

int (in separate statements) and initialize each to 0.

Prompt the user to enter three integers.
Read three integers from the keyboard and store them in
the variables x, y and =.

Compute the product of the three integers contained in
variables %, y and z, and assign the result to the

variable resuit.

Print "rhe product is " followed by the value of the
variable resuit.

Return a value from nain indicating that the program

terminated successfully.

5. 2.5 Using the statements you wrote in Exercise 2.4, write a
complete program that calculates and displays the product of
three integers. Add comments to the code where appropriate.

[Note: You'll need to write the necessary using declarations or

directive.]
6. 2.6 Identify and correct the errors in each of the following
statements (assume that the statement using std::cout; is

used):
A.
if (¢ < 7); {
cout << "c is less than 7\n";
}
B.

cout << "c is equal to or greater than 7\n";

Exercises

1. 2.7 Discuss the meaning of each of the following objects:
A. std::cin

B. std: :cout

2. 2.8 Fill in the blanks in each of the following:
A. are used to document a program and improve its
readability.
B. The object used to print information on the screen is

A C++ statement that makes a decision is

Most calculations are normally performed by
statements.

E. The object inputs values from the keyboard.

o 0

3. 2.9 Write a single C++ statement or line that accomplishes
each of the following:
A. Print the message "enter two numbers".
B. Assign the product of variables » and ¢ to variable .

C. State that a program performs a payroll calculation (i.e.,
use text that helps to document a program).

D. Input three integer values from the keyboard into integer
variables 2, » and c.

4. 2.10 State which of the following are frue and which are false. If
false, explain your answers.
A. All operators are evaluated from left to right.
B. The following are all valid variable names: under bar

m928134, t5, j7, her sales, his account total, a, b, c,

Z, Z2.
C. The statement cout << "a = 5;v; is a typical example of

an assignment statement.

D. A valid arithmetic expression with no parentheses is
evaluated from left to right.

E. The following are all invalid variable names: 39, 57,

67h2, h22, 2h.

5. 2.11 Fill in the blanks in each of the following:

A. What arithmetic operations are on the same level of
precedence as multiplication?

B. When parentheses are nested, which set of parentheses
is evaluated first in an arithmetic expression?

C. Alocation in the computer’s memory that may contain
different values at various times throughout the
execution of a program is called a(n)

6. 2.12 What, if anything, prints when each of the following
statements is performed? If nothing prints, then answer
“nothing.” Assume x = 2 and y = 3.

A. cout << x;

B. cout << x + x;

cout << "x=",

cout << "x = " << X;

cout << x + y << " = " <<y +X]
Z = X t+ Vy;

cin >> x >> y;

I ® mm0OOo

// cout << "x + y =" << x + y;

cout << "\n",

7. 2.13 Which of the following statements contain variables whose
values are replaced?

A. cin >> b >> ¢ >> d >> e >> £;

B p=1+3+k+7;

C. cout << "variables whose values are replaced",
D

cout << "a = 5",

8. 2.14 Given the algebraic equation y = ax® + 7, which of the
following, if any, are correct C++ statements for this equation?
/\. V=8 * x * % ¥ x4 T

B. y=a*x*x* (x+ 7);

C. y = (a *x) *x* (x+ 7);
El y = (a * x) *x *x + 7;
E. y=a* (x *x *x) + 7;
F. y =a *x* (x *x + 7);

9. 2.15 (Order of Evaluation) State the order of evaluation of the
operators in each of the following C++ statements and show

10.

11.

12.

13.

the value of = after each statement is performed.
A x=7+3%*6/2-1;
B. x=23%2+2*2-27/2;

C. x=(3*9* (3+ (9*3/ (3))));:

2.16 (Arithmetic) \Write a program that asks the user to enter
two numbers, obtains the two numbers from the user and prints
the sum, product, difference, and quotient of the two numbers.
2.17 (Printing) Write a program that prints the numbers 1 to 4
on the same line with each pair of adjacent numbers separated
by one space. Do this several ways:

A. Using one statement with one stream insertion operator.

B. Using one statement with four stream insertion

operators.
C. Using four statements.

2.18 (Comparing Integers) Write a program that asks the user
to enter two integers, obtains the numbers from the user, then
prints the larger number followed by the words "is 1arger." If

the numbers are equal, print the message "rthese numbers are

equal."

2.19 (Arithmetic, Smallest and Largest) Write a program that
inputs three integers from the keyboard and prints the sum,
average, product, smallest and largest of these numbers. The
screen dialog should appear as follows:

Input three different integers: 13 27 14

Sum is 54
Average 1is 18
Product is 4914
Smallest is 13

Largest is 27

14. 2.20 (Diameter, Circumference and Area of a Circle) Write a
program that reads in the radius of a circle as an integer and
prints the circle’s diameter, circumference and area. Use the
constant value 3.14159 for 1. Do all calculations in output
statements. [Note: In this chapter, we've discussed only integer
constants and variables. In Chapter 4 we discuss floating-point
numbers, i.e., values that have decimal points.]

15. 2.21 (Displaying Shapes with Asterisks) \Write a program
that prints a box, an oval, an arrow and a diamond as follows:

kkkkhKhkkk kK * Kk K * *

* * * * * * *

kkkkh Kk kk k%K * Kk K * *

16. 2.22 What does the following code print?

17.

18.

19.

20.

cout K& PTE\@FF\mEEe\mrass\mEieaw® <L anell g

2.23 (Largest and Smallest Integers) Write a program that
reads in five integers and determines and prints the largest and
the smallest integers in the group. Use only the programming
techniques you learned in this chapter.

2.24 (Odd or Even) Write a program that reads an integer and
determines and prints whether it's odd or even. [Hint: Use the
remainder operator (). An even number is a multiple of two.

Any multiple of 2 leaves a remainder of zero when divided by
2.]

2.25 (Multiples) Write a program that reads in two integers and
determines and prints if the first is a multiple of the second.
[Hint: Use the remainder operator (=).]

2.26 (Checkerboard Pattern) Display the following
checkerboard pattern with eight output statements, then display
the same pattern using as few statements as possible.

*x kX X Kk X*x * X* %k
*x kX X Kk X*x * X*x %
*x Kk kX *x K*x k* * *
*x kX X Kk X*x * X*x %k
*x kX K*x Kk X*x * X*x %k
*x kX X Kk X*x * X*x %
*x Kk kX *x K*x k* * *

*x kX X Kk X*x * X*x %k

21. 2.27 (Integer Equivalent of a Character) Here is a peek
ahead. In this chapter you learned about integers and the type
int . C++ can also represent uppercase letters, lowercase

letters and a considerable variety of special symbols. C++ uses
small integers internally to represent each different character.
The set of characters a computer uses and the corresponding
integer representations for those characters are called that
computer’s character set. You can print a character by
enclosing that character in single quotes, as with

cout << 'A'; // print an uppercase A

You can print the integer equivalent of a character using
static_cast aS follows:

cout << static cast<int>('A'); // print 'A' as an integer

This is called a cast operation (we formally introduce casts in
Chapter 4). When the preceding statement executes, it prints
the value 65 (on systems that use the ASCII character set).
Write a program that prints the integer equivalent of a character
typed at the keyboard. Store the input in a variable of type
char . Test your program several times using uppercase letters,

lowercase letters, digits and special characters (such as s).

22.

23.

2.28 (Digits of an Integer) Write a program that inputs a five-
digit integer, separates the integer into its digits and prints them
separated by three spaces each. [Hint: Use the integer division
and remainder operators.] For example, if the user types in
42339, the program should print:

4 2 3 39

2.29 (Table) Using the techniques of this chapter, write a
program that calculates the squares and cubes of the integers
from 0 to 10. Use tabs to print the following neatly formatted
table of values:

integer square cube

0 0 0

1 1 1

2 4 8

3 9 277
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Making a Difference

1. 2.30 (Body Mass Index Calculator) We introduced the body
mass index (BMI) calculator in Exercise 1.9. The formulas for
calculating BMI are

BMI
wetght In Pounds X 703

- height In Inches x height In Inches

or

BMI
weight In Kilograms

- height In Meters X height In Meters

Create a BMI calculator application that reads the user’s weight
in pounds and height in inches (or, if you prefer, the user’'s
weight in kilograms and height in meters), then calculates and
displays the user’s body mass index. Also, the application
should display the following information from the Department of
Health and Human Services/National Institutes of Health so the
user can evaluate his/her BMI:

BMI VALUES
Underweight: less than 18.5

Normal : between 18.5 and 24.9

Overweight: between 25 and 29.9

Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to

represent whole numbers. The BMI calculations when done
with int values will both produce whole-number results. In

Chapter 4 you'll learn to use the dounie type to represent

numbers with decimal points. When the BMI calculations are
performed with doubies, they’ll each produce numbers with

decimal points—these are called “floating-point” numbers.]
. 2.31 (Car-Pool Savings Calculator) Research several car-
pooling websites. Create an application that calculates your
daily driving cost, so that you can estimate how much money
could be saved by car pooling, which also has other
advantages such as reducing carbon emissions and reducing
traffic congestion. The application should input the following
information and display the user’s cost per day of driving to
work:

A. Total miles driven per day.
Cost per gallon of gasoline.
Average miles per gallon.
Parking fees per day.
Tolls per day.

moO O w

Answers to Self-Review Exercises

1. 2.1

A.

@ m

moO O

moO O w

left brace ((), right brace ()).

semicolon.
newline.

if.

False. Comments do not cause any action to be
performed when the program is executed. They're used
to document programs and improve their readability.
True.

True.

True.

False. C++ is case sensitive, so these variables are
different.

True.

True.

False. The operators , / and = have the same

precedence, and the operators + and - have a lower

precedence.
False. One statement with cout and multiple \n escape

sequences can print several lines.

< 0O 0 w w ¢ T

“
o

. 2.4

™ <

@ m mO O

cout << "Enter three integers: ";

cin >> x >> y >> z;

result = x * y * z;

cout << "The product is " << result << endl;

return O;

5. 2.5 (See program below.)

6.

OO~ NLE WN -~

11
12
13
14
15
16

2.6

/ Calculate the product of three integers

#include <iostream> // enables program to perform input and output

using namespace std; // program uses names from the std namespace

/ Tunction main begins program execution
int main() {

int x{0}; // first integer to multiply
int y{0}; // second integer to multiply
int z{0}; // third integer to multiply
int result{0}; // the product of the three integers

cout << "Enter three integers: "; // prompt user for data

cin >> X »> ¥y >> Z; // read three integers from user

result = x * y * z; // multiply the three integers; store result

cout << "The product 15 " << result << endl; // print result; end line

} // end function main

A. Error: Semicolon after the right parenthesis of the

B.

condition in the if statement. Correction: Remove the

semicolon after the right parenthesis. [Note: The result of
this error is that the output statement executes whether
or not the condition in the ir statement is true.] The

semicolon after the right parenthesis is an empty
statement that does nothing. We'll say more about the
empty statement in Chapter 4.

Error: The incorrect relational operator =-.

Correction: Change => to >=, and you may want to

change “equal to or greater than” to “greater than or
equal to” as well.

3 Introduction to Classes, Objects,
Member Functions and Strings

Objectives

In this chapter you'll:

e Begin programming with the object-oriented concepts introduced in
Section 1.8.

e Define a class and use it to create an object.

e Implement a class’s behaviors as member functions.

e Implement a class’s attributes as data members.

e Call an object’s member functions to make them perform their
tasks.

e Access and manipulate private data members through their

corresponding public get and set functions to enforce

encapsulation of the data.

e Learn what local variables of a member function are and how they
differ from data members of a class.

e Use a constructor to initialize an object’s data.

e Validate the data passed to a constructor or member function.

e Become familiar with UML class diagrams.

Outline

1. 3.1 Introduction
2. 3.2 Test-Driving an account Object

A. 3.2.1 Instantiating an Object
B. 3.2.2 Headers and Source-Code Files
C. 3.2.3 Calling Class account’s getName Member

Function
D. 3.24 Inputting A string with getline

E. 3.2.5 CaIIing Class account’s setName Member

Function

3. 3.3 account Class with a Data Member and Set and Get

Member Functions
A. 3.3.1 account Class Definition

B. 3.3.2 geyword class and the Class Body
3.3.3 Data Member name of Type string
3.3.4 setname Member Function
3.3.5 getname Member Function

3.3.6 Access Specifiers private and public

@ mmO O

3.3.7 account UML Class Diagram

4. 3.4 account Class: Initializing Objects with Constructors

A. 3.4.1 Defining an account Constructor for Custom

B.

C.

Object Initialization

3.4.2 Initializing account Objects When They’re
Created

3.4.3 account UML Class Diagram with a Constructor

5. 3.5 Software Engineering with Sef and Get Member
Functions

6. 3.6 account Class with a Balance; Data Validation

o K 0D~

A. 3.6.1 Data Member balance
B. 3.6.2 Two-Parameter Constructor with Validation
C. 3.6.3 deposit Member Function with Validation
D. 3.6.4 getBalance Member Function
E. 3.6.5 Manipulating account Objects with Balances
F. 3.6.6 account UML Class Diagram with a Balance and
Member Functions deposit and getBalance
3.7 Wrap-Up
Summary

Self-Review Exercises

Answers to Self-Review Exercises
Exercises

Making a Difference

3.1 Introduction 1

1. This chapter depends on the terminology and concepts introduced
in Section 1.8, Introduction to Object Technology.

Section 1.8 presented a friendly introduction to object orientation,
discussing classes, objects, data members (attributes) and member
functions (behaviors).2 In this chapter’'s examples, we make those
concepts real by building a simple bank-account class. The class
maintains as data members the attributes name and vaiance, and

provides member functions for behaviors including

2. Unlike classes, fundamental types (like int) do not have member

functions.

e querying the balance (getBalance),
e making a deposit that increases the balance (deposit) and

e making a withdrawal that decreases the balance (withdraw).

We’'ll build the getrailance and deposit member functions into the
chapter’'s examples. You'll add the withdraw member function in

Exercise 3.9.

As you'll see, each class you create becomes a new type you can use
to create objects, so C++ is an extensible programming language. If
you become part of a development team in industry, you might work
on applications that contain hundreds, or even thousands, of custom
classes.

3.2 Test-Driving an Account
Object

Classes cannot execute by themselves. A rerson Object can drive a
car object by telling it what to do (go faster, go slower, turn left, turn

right, etc.)—without knowing how the car’s internal mechanisms work.
Similarly, the main function can “drive” an account object by calling its

member functions—without knowing how the class is implemented. In
this sense, main is referred to as a driver program. We show the

main program and its output first, so you can see an account object in

action. To help you prepare for the larger programs you’ll encounter
later in this book and in industry, we define nain in its own file (file

AccountTest.cpp, Flg 31) We define class account in its own file as

well (fl|e Account.h, Flg 32)

I // Fig. 3.1: AccountTest.cpp

2 // Creating and manipulating an Account object.

3 #include <iostream>

4 #include <string>

5 #include "Account.h"

6

7 using namespace std;

8

9 Hint main(Q) {

10 Account myAccount; // create Account object myAccount
11

12 // show that the initial value of myAccount's name is the empty string
13 cout << "Initial account name is: " << myAccount.getName();
14

15 // prompt for and read name

16 cout << "\nPlease enter the account name: ";

17 string theName;

18 getline(cin, theName); // read a line of text

19 myAccount . setName(theName); // put theName in myAccount
20
21 // display the name stored in object myAccount
22 cout << "Name in object myAccount is: "
23 << myAccount.getName() << endl;
24 }

Initial account name is:
Please enter the account name: Jane Green
Name in object myAccount is: Jane Green

Fig. 3.1 Creating and manipulating an account object.

3.2.1 Instantiating an Object

Typically, you cannot call a member function of a class until you
create an object of that class.3 Line 10

3. You'll see in Section 9.15 that static member functions are an

exception.

Account myAccount; // create Account object myAccount

creates an object of class account called myaccount . The variable’s

type is account —the class we define in Fig. 3.2.

3.2.2 Headers and Source-Code
Files

When we declare variables of type int, as we did in Chapter 2, the

compiler knows what int is—it's a fundamental type that’s “built into”

C++. In line 10, however, the compiler does not know in advance what
type account is—it's a user-defined type.

When packaged properly, new classes can be reused by other
programmers. It's customary to place a reusable class definition in a
file known as a header with a .» filename extension.4 You include

(via #inc1ude) that header wherever you need to use the class. For

example, you can reuse the C++ Standard Library’s classes in any
program by including the appropriate headers.

4. C++ Standard Library headers, like <iostrean> do not use the .n

filename extension.

Class account is defined in the header account.n (Fig. 3.2). We tell
the compiler what an account is by including its header, as inline 5
(Fig. 3.1):

#include "Account.h"

If we omit this, the compiler issues error messages wherever we use
class arccount and any of its capabilities. In an #inciude directive, a

header that you define in your program is placed in double quotes
(»n), rather than the angle brackets (<>) used for C++ Standard

Library headers like <iostrean>. The double quotes in this example tell

the compiler that header is in the same folder as Fig. 3.1, rather than
with the C++ Standard Library headers.

Files ending with the .cpp filename extension are source-code files.
These define a program’s main function, other functions and more, as

you'll see in later chapters. You include headers into source-code files
(as in Fig. 3.1), though you also may include them in other headers.

3.2.3 Calling Class aAccount’s
getName Member Function

The account class’s getname member function returns the account

name stored in a particular account object. Line 13

cout << "Initial name is: " << myAccount.getName () ;

displays myaccount 's initial name by calling the object’'s getname
member function with the expression myaccount.getname () . To call this

member function for a specific object, you specify the object’'s name
(nyaccount), followed by the dot operator (.), then the member

function name (getname) and a set of parentheses. The empty
parentheses indicate that getname does not require any additional
information to perform its task. Soon, you'll see that the setname

function requires additional information to perform its task.

From main’s view, when the getname member function is called:

1. The program transfers execution from the call (line 13 in main)

to member function getname . Because getname was called via

the myAccount object, getName “*knows” which object’s data to

manipulate.
2. Next, member function getname performs its task—that is, it

returns (i.e., gives back) nyaccount’s name to line 13 where the

function was called. The main function does not know the
details of how getnane performs its task.

3. The cout object displays the name returned by member
function getname, then the program continues executing at line

16 IiN nain.

In this case, line 13 does not display a name, because we have not
yet stored a name in the myaccount Object.

3.2.4 Inputting a string with
getline

Line 17

string theName;

creates a string variable called thename that's used to store the
account name entered by the user. string variables can hold
character string values such as "jane creen". A string is actually an
object of the C++ Standard Library class string, which is defined in
the header <string>.5 The class name string, like the name cout,
belongs to namespace sta. To enable line 17 to compile, line 4
includes the <string> header. The using directive in line 7 allows us

to write string inline 17 rather than std::string.

5. You'll learn additional string capabilities in subsequent chapters.
Chapter 21 discusses class string in detail, presenting many of its

member functions.

getline Function Receiving a Line of
Text from the User

Sometimes functions are not members of a class. Such functions are
called global functions. Line 18

getline (cin, theName); // read a line of text

reads the name from the user and places it in the variable tnhename,

using the C++ Standard Library global function getline to perform the
input. Like class string, function get1ine requires the <string>

header and belongs to namespace stad.

Consider why we cannot simply write

cin >> theName;

to obtain the account name. In our sample program execution, we
entered the name “Jane creen,” which contains multiple words

separated by a space. (Recall that we highlight user inputs in bold in
our sample program executions.) When reading a string, cin stops

at the first white-space character (such as a space, tab or newline).

Thus, the preceding statement would read only "gane". The
information after "sane is not lost—it can be read by subsequent

input statements later in the program.

In this example, we’d like the user to type the complete name
(including the space) and press Enter to submit it to the program.
Then, we’d like to store the entire name in the string variable

thename . When you press Enter (or Return) after typing data, the
system inserts a newline in the input stream. Function get1ine reads
from the standard input stream object cin the characters the user

enters, up to, but not including, the newline, which is discarded,
getline places the characters in the string variable thename.

3.2.5 Calling Class account’s
setName Member Function

The account class’s setname member function stores an account name
in a particular account Object. Line 19

myAccount.setName (theName); // put theName in myAccount

calls myaccounts’s setname member function. A member-function call

can supply arguments that help the function perform its task. You
place the arguments in the function call’s parentheses. Here,

theName 'S Value (input by line 18) is the argument that's passed to

setName , Which stores thename's value in the object myaccount .

From main’s view, when setname is called:

1. The program transfers execution from line 19 in main to
setname mMmember function’s definition. The call passes to the

function the argument value in the call’s parentheses—that is,
theName Object’s value. Because setname was called via the

nyAccount Object, setvame “knows” the exact object to

manipulate.
2. Next, member function sectnane stores the argument’s value in

the myAccount object.
3. When setname completes execution, program execution returns

to where setname was called (line 19), then continues at line 22.

Displaying the Name That Was Entered by
the User

To demonstrate that nyaccount Now contains the name the user

entered, lines 22—-23

cout << "Name in object myAccount is: "

<< myAccount.getName () << endl;

call member function getname again. As you can see in the last line of
the program’s output, the name entered by the user in line 18 is
displayed. When the preceding statement completes execution, the
end of main is reached, so the program terminates.

3.3 Account Class with a Data

Member and Set and Get Member
Functions

Now that we've seen class account in action (Fig. 3.1), we present
class account’s details. Then, we present a UML diagram that
summarizes class account 's attributes and operations in a concise

graphical representation.

3.3.1 account Class Definition

Class nccount (Fig. 3.2) contains a name data member that stores the

account holder's name. A class’s data members maintain data for

each object of the class. Later in the chapter, we’ll add a va1ance data

member to keep track of the money in each account. Class account

also contains member function setname that a program can call to

store a name in an zccount Object, and member function getname that

a program can call to obtain a name from an account object.

OO~ NN R WM -

10
11
12
13
14
15
16
17
I8
19

// Fig. 3.2: Account.h

// Account class that contains a name data member

// and member functions to set and get its value.

#include <string> // enable program to use C++ string data type

class Account {
public:
// member function that sets the account name in the object
void setName(std::string accountName) {
name = accountName; // store the account name

}

// member function that retrieves the account name from the object
std::string getName() const {
return name; // return name's value to this function's caller

}

private:
std::string name; // data member containing account holder's name
}; // end class Account

Fig. 3.2 account class that contains a name data member and

member functions to set and get its value.

3.3.2 Keyword class and the
Class Body

The class definition begins in line 6:

class Account {

Every class definition contains the keyword class followed
immediately by the class’s name—in this case, nccount . Every class’s
body is enclosed in an opening left brace (end of line 6) and a closing
right brace (line 19). The class definition terminates with a required
semicolon (line 19). For reusability, place each class definition in a
separate header with the .» filename extension (2ccount.n in this

example).

s

hy

CA common Programming Error 3.1

Forgetting the semicolon at the end of a class definition is a syntax
error.

Identifiers and Camel-Case Naming

Class names, member-function names and data-member names are
all identifiers. By convention, variable-name identifiers begin with a
lowercase letter, and every word in the name after the first word
begins with a capital letter—e.g., rirstnumber starts its second word,
Number , With a capital w. This naming convention is known as camel
case, because the uppercase letters stand out like a camel’'s humps.
Also by convention, class names begin with an initial uppercase letter,
and member-function and data-member names begin with an initial
lowercase letter.

3.3.3 Data Member name of Type

string

Recall from Section 1.8 that an object has attributes, implemented as
data members. The object carries these with it throughout its lifetime.
Each object has its own copy of the class’s data members. Normally,
a class also contains one or more member functions. These
manipulate the data members belonging to particular objects of the
class. The data members exist

e before a program calls member functions on an object,
e while the member functions are executing and
o after the member functions complete execution.

Data members are declared inside a class definition but outside the
bodies of the class’s member functions. Line 18

std::string name; // data member containing account holder’s name

declares data member nane oOf type string. If there are many account
objects, each has its own name . Because nane is a data member, it

can be manipulated by each of the class’s member functions. The

default value for a string is the empty string (i.e., ")—this is why
line 13 in nain (Fig. 3.1) did not display a name the first time we
called myaccount’s getname member function. Section 3.4 explains

how a string receives its default value.

% ‘B

] Good Programming Practice 3.1

=»

By convention, place a class’s data members last in the class’s body.
You can list the class’s data members anywhere in the class outside
its member-function definitions, but scattering the data members can
lead to hard-to-read code.

Use std:: with Standard Library
Components in Headers

Throughout the account.nh header (Fig. 3.2), we use std:: when
referring to string (lines 9, 14 and 18). For subtle reasons that we
explain in Section 23.4, headers should not contain using directives or

using declarations.

3.3.4 setName Member Function

Let’s walk through the code of member function setname’s definition
(lines 9-11):

void setName (std::string accountName) {

name = accountName; // store the name

We refer to the first line of each function definition (line 9) as the
function header. The member function’s return type (which appears
to the left of the function’s name) specifies the type of data the
member function returns to its caller after performing its task. The
return type void (line 9) indicates that when setname completes its

task, it does not return (i.e., give back) any information to its calling
function —in this example, line 19 of the nain function (Fig. 3.1). As

you'll soon see, account member function getname does return a value.

setName Parameter

Our car analogy from Section 1.8 mentioned that pressing a car’s gas
pedal sends a message to the car to perform a task—make the car go
faster. But how fast should the car accelerate? The farther down you

press the pedal, the faster the car accelerates. So the message to the
car includes both the task to perform and information that helps the
car perform that task. This information is known as a parameter —the
parameter’s value helps the car determine how fast to accelerate.
Similarly, a member function can require one or more parameters that
represent the data it needs to perform its task.

Member function setname declares the string parameter accountname
—which receives the name that’s passed to setname as an argument.
When line 19 in Fig. 3.1

myAccount.setName (theName); // put theName in myAccount

executes, the argument value in the call’s parentheses (i.e., the value
stored in thename) is copied into the corresponding parameter

(accountname) in the member function’s header (line 9 of Fig. 3.2). In
Fig. 3.1’s sample execution, we entered "Jjane Green" fOr thenName, SO

"Jane Green" Was copied into the accountname parameter.

setName Parameter List

Parameters like zccountname are declared in a parameter list located

in the required parentheses following the member function’s name.
Each parameter must specify a type (e.g., string) followed by a

parameter name (e.g., accountname). When there are multiple

parameters, each is separated from the next by a comma, as in

(typel namel, typeZ name2, ..)

The number and order of arguments in a function call must match the
number and order of parameters in the function definition’s parameter
list.

setName Member Function Body

Every member function body is delimited by an opening left brace
(end of line 9 of Fig. 3.2) and a closing right brace (line 11). Within the
braces are one or more statements that perform the member
function’s task(s). In this case, the member function body contains a
single statement (line 10)

name = accountName; // store the account name

that assigns the accountname parameter’s value (a string) to the
class’s name data member, thus storing the account name in the object
for which setname was called— nyaccount in this example’s main

program.6 After line 10 executes, program execution reaches the

member function’s closing brace (line 11), so the function returns to its
caller.

6. We used different names for the setname member function’s
parameter (accountname) and the data member (name). It's common

idiom in industry to use the same name for both. We'll show you how
to do this without ambiguity in Chapter 9.

Parameters Are Local Variables

In Chapter 2, we declared all of a program’s variables in the main

function. Variables declared in a particular function’s body are local
variables which can be used only in that function. When a function
terminates, the values of its local variables are lost. A function’s
parameters also are local variables of that function.

Argument and Parameter Types Must Be
Consistent

The argument types in the member function call must be consistent
with the types of the corresponding parameters in the member
function’s definition. (As you'll see in Chapter 6, Functions and an
Introduction to Recursion, an argument’s type and its corresponding
parameter’s type are not required to be identical.) In our example, the
member function call passes one argument of type string (thename)—

and the member function definition specifies one parameter of type

string (accountname). SO in this example, the type of the argument in

the member function call happens to exactly match the type of the
parameter in the member function header.

3.3.5 getvname Member Function

Member function getname (lines 14—16)

std::string getName () const {

return name; // return name’s value to this function’s caller

returns a particular account object’s name to the caller—a string, as

specified by the function’s return type. The member function has an
empty parameter list, so it does not require additional information to
perform its task. When a member function with a return type other
than void is called and completes its task, it must return a result to its

caller. A statement that calls member function getname On @an account

object expects to receive the account’s name.

The return statement in line 15

return name; // return name’s value to this function’s caller

passes the string value of data member nanme back to the caller,

which then can use the returned value. For example, the statement in
lines 22-23 of Fig. 3.1

cout << "Name in object myAccount is: "

<< myAccount.getName () << endl;

uses the value returned by getname to output the name stored in the

myAccount object.

const Member Functions

We declared member function getnane as const in line 14 of Fig. 3.2

std::string getName () const {

because in the process of returning the name the function does not,

and should not, modify the account Object on which it’s called.

2> Error-Prevention Tip 3.1

Declaring a member function with const to the right of the parameter

list tells the compiler, “this function should not modify the object on
which it’s called—if it does, please issue a compilation error.” This can
help you locate errors if you accidentally insert in the member function
code that would modify the object.

3.3.6 Access Specifiers private
and public

The keyword private (line 17)

private:

is an access specifier. Access specifiers are always followed by a
colon (:). Data member name’s declaration (line 18) appears after

access specifier private: to indicate that nane is accessible only to
class account’'s member functions.7 This is known as data hiding —
the data member nanme is encapsulated (hidden) and can be used only
in class account’s setname and getname member functions. Most data-
member declarations appear after the private: access specifier. For

the remainder of the text, when we refer to the access specifiers
private and public in the text, we'll often omit the colon as we did in

this sentence.

7. Or to “friends” of the class as you’ll see in Section 9.13.

This class also contains the public access specifier (line 7)

public:

Data members or member functions listed after access specifier
public (and before the next access specifier if there is one) are

“available to the public.” They can be used by other functions in the
program (such as main), and by member functions of other classes (if

there are any). In Chapter 11, we'll introduce the protected access

specifier.

Default Access for Class Members

By default, everything in a class is private, unless you specify

otherwise. Once you list an access specifier, everything from that
point has that access until you list another access specifier. We prefer
to list pun1ic only once, grouping everything that’'s pub1ic, and we

prefer to list private only once, grouping everything that's private.
The access specifiers pubiic and private may be repeated, but this is

unnecessary and can be confusing.

2> Error-Prevention Tip 3.2

Making a class’s data members private and member functions public

facilitates debugging because problems with data manipulations are
localized to the member functions.

= N
[. y

fﬁ?ﬂ Common Programming Error 3.2

An attempt by a function that’s not a member of a particular class to
access a private member of that class is a compilation error.

3.3.7 account UML Class Diagram

We'll often use UML class diagrams to summarize a class’s attributes
and operations. In industry, UML diagrams help systems designers
specify systems in a concise, graphical, programming-language-
independent manner, before programmers implement the systems in
specific programming languages. Figure 3.3 presents a UML class
diagram for class account of Fig. 3.2.

Top Compartment

In the UML, each class is modeled in a class diagram as a rectangle
with three compartments. In this diagram the top compartment
contains the class name »ccount centered horizontally in boldface

type.

Account Top compartment

- name : string Middle compartment

+ setName(accountName : string)

+ getName() : string Bottom compartment

Fig. 3.3 UML class diagram for class account of Fig. 3.2.

Middle Compartment

The middle compartment contains the class’s attribute name, which

corresponds to the data member of the same name in C++. Data
member name IS private in C++, so the UML class diagram lists a

minus sign (—) access modifier before the attribute name. Following
the attribute name are a colon and the attribute type, in this case

string.

Bottom Compartment

The bottom compartment contains the class’s operations, sctiame
and getname , Which correspond to the member functions of the same

names in C++. The UML models operations by listing the operation
name preceded by an access modifier, in this case + setname. This

plus sign (+) indicates that setwane is a public operation in the UML
(because it's a pub1ic member function in C++). Operation getname is

also a public operation.

Return Types

The UML indicates the return type of an operation by placing a colon
and the return type after the parentheses following the operation
name. account member function setname does not return a value

(because it returns voida in C++), so the UML class diagram does not

specify a return type after the parentheses of this operation. Member
function getname has a string return type.

Parameters

The UML models a parameter by listing the parameter name, followed
by a colon and the parameter type in the parentheses after the
operation name. The UML has its own data types similar to those of
C++—for simplicity, we use the C++ types. account member function

setName has a string parameter called accountname, SO the class
diagram lists accountname : string between the parentheses following
the member function name. Operation getname does not have any

parameters, so the parentheses following the operation name in the
class diagram are empty, just as they are in the member function’s
definition in line 14 of Fig. 3.2.

3.4 Account Class: Initializing
Objects with Constructors

As mentioned in Section 3.3, when an account Object is created, its
string data member nane is initialized to the empty string by default
—we’ll discuss how that occurs shortly. But what if you want to
provide a name when you first create an account oObject? Each class

can define a constructor that specifies custom initialization for
objects of that class. A constructor is a special member function that
must have the same name as the class. C++ requires a constructor
call when each object is created, so this is the ideal point to initialize
an object’s data members.8

8. In Section 9.6, you'll learn that classes can have multiple
constructors.

Like member functions, a constructor can have parameters—the
corresponding argument values help initialize the object’s data
members. For example, you can specify an account Object’s name

when the object is created, as you'll do in line 11 of Fig. 3.5:

Account accountl{"Jane Green"};

In this case, the string argument "Jane creen" is passed to the
account Class’s constructor and used to initialize the nane data
member of the account1 object. The preceding statement assumes

that the account class has a constructor that takes only a string

parameter.

3.4.1 Defining an Account

Constructor for Custom Object
Initialization

Figure 3.4 shows class account with a constructor that receives an

accountName parameter and uses it to initialize data member nane

when an account Object is created.

|
2
3
4
5
6
T
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

// Fig. 3.4: Account.h
// Account class with a constructor that initializes the account name.
#include <string>

class Account {
public:
// constructor initializes data member name with parameter accountName
explicit Account(std::string accountName)
: name{accountName} { // member initializer
// empty body
}

// function to set the account name
void setName(std::string accounthName) {
name = accountName;

}

// function to retrieve the account name
std::string getName() const {
return name;
e
private:
std::string name; // account name data member
}; // end class Account

Fig. 3.4 account class with a constructor that initializes the

account name.

Account Class’s Constructor Definition

Lines 8-11 of Fig. 3.4

explicit Account (std::string accountName)
: name{accountName} { // member initializer

// empty body

define account’s constructor. Normally, constructors are pubiic.9

9. Section 10.10.2 discusses why you might use a private

constructor.

A constructor’'s parameter list specifies pieces of data required to
initialize an object. Line 8

explicit Account (std::string accountName)

indicates that the constructor has one string parameter called
accountName . When you create a new account Object, you must pass a

person’s name to the constructor, which will receive that name in the

parameter accountname . The constructor will then use accountname to

initialize the data member nane .

The constructor uses a member-initializer list (line 9)

: name {accountName }

to initialize the nane data member with the value of the parameter
accountName . Member initializers appear between a constructor’'s

parameter list and the left brace that begins the constructor’s body.
The member initializer list is separated from the parameter list with a
colon (:). Each member initializer consists of a data member’s

variable name followed by parentheses containing the member’s initial
value. In this example, nanme is initialized with the parameter
accountiame 'S Value. If a class contains more than one data member,
each member initializer is separated from the next by a comma. The
member initializer list executes before the constructor’s body
executes.

=] Performance Tip 3.1

You can perform initialization in the constructor’s body, but you'll learn
in Chapter 9 that it’s more efficient to do it with member initializers,
and some types of data members must be initialized this way.

explicit Keyword

We declared this constructor explicit, because it takes a single
parameter—this is important for subtle reasons that you'll learn in
Section 10.13. For now, just declare all single-parameter constructors
explicit. Line 8 of Fig. 3.4 does not specify a return type, because

constructors cannot return values—not even void. Also, constructors

cannot be declared const (because initializing an object modifies it).

Using the Same Parameter Name in the
Constructor and Member Function

setName

Recall from Section 3.3.4 that member function parameters are local
variables. In Fig. 3.4, the constructor and member function setnane

both have a parameter called accountname. Though their identifiers are

identical, the parameter in line 8 is a local variable of the constructor
that’s not visible to member function setname . Similarly, the parameter

in line 14 is a local variable of setname that’s not visible to the

constructor. Such visibility is called scope, which is discussed in
Section 6.10.

3.4.2 Initializing aAccount Objects
When They're Created

The accountrest program (Fig. 3.5) initializes two different account

objects using the constructor. Line 11

Account accountl{"Jane Green"};

creates the account object account1. When you create an object, C++

implicitly calls the class’s constructor to initialize that object. If the
constructor has parameters, you place the corresponding arguments
in braces, { and ;, to the right of the object’s variable name. In line

11, the argument "jane creenn initializes the new object’s name data

member. Line 12

Account account2{"John Blue"};

repeats this process, passing the argument "jonn B1uer to initialize

name fOr account2. Lines 15—16 use each object’s getname member

function to obtain the names and show that they were indeed
initialized when the objects were created. The output shows different
names, confirming that each account maintains its own copy of data

member name.

I // Fig. 3.5: AccountTest.cpp

2 // Using the Account constructor to initialize the name data
3 // member at the time each Account object is created.

4 #include <iostream>

5 #include "Account.h"

6

7 using namespace std;

8

9 int main() {
10 // create two Account objects
11 Account accountl{"Jane Green"};
12 Account account2{"John Blue"};
13
14 // display initial value of name for each Account
15 cout << "accountl name is: " << accountl.getName() << endl;
16 cout << "account? name is: " << account?.getName() << endl;
17 }

accountl name is: Jane Green
account?2 name is: John Blue

Fig. 3.5 Using the account constructor to initialize the name data
member at the time each account Object is created.

Default Constructor

Recall that line 10 of Fig. 3.1

Account myAccount;

creates an account Object without placing braces to the right of the

object’s variable name. In this case, C++ implicitly calls the class’s
default constructor. In any class that does not explicitly define a
constructor, the compiler provides a default constructor with no
parameters. The default constructor does not initialize the class’s
fundamental-type data members, but does call the default constructor
for each data member that’s an object of another class. For example,
in the account class of Fig. 3.2, the class’s default constructor calls

class string’s default constructor to initialize the data member nare to
the empty string. An uninitialized fundamental-type variable contains

an undefined (“garbage”) value.10

10. We'll see an exception to this in Section 6.10.

There’s No Default Constructor in a Class
That Defines a Constructor

If you define a custom constructor for a class, the compiler will not
create a default constructor for that class. In that case, you will not be
able to create an account object using

Account myAccount;

as we did in Fig. 3.1, unless the custom constructor you define has an
empty parameter list. We'll show later that C++11 allows you to force
the compiler to create the default constructor even if you’ve defined
non-default constructors.

11

=S Software Engineering Observation 3.1

Unless default initialization of your class’s data members is
acceptable, you should generally provide a custom constructor to
ensure that your data members are properly initialized with meaningful
values when each new object of your class is created.

3.4.3 account UML Class Diagram
with a Constructor

The UML class diagram of Fig. 3.6 models class zccount of Fig. 3.4,
which has a constructor with a string accountvame parameter. Like

operations (Fig. 3.3), the UML models constructors in the third
compartment of a class diagram. To distinguish a constructor from the
class’s operations, the UML requires that the word “constructor” be
enclosed in guillemets (K and) and placed before the
constructor’'s name. It's customary to list constructors before other
operations in the third compartment.

Account

— name : string

«constructors Account(accountMame: string)
+ setName(accountName: string)
+ getName() : string

Fig. 3.6 UML class diagram for the account class of Fig. 3.4.

3.5 Software Engineering with Set
and Get Member Functions

As you'll see in the next section, set and get member functions can
validate attempts to modify private data and control how that data is

presented to the caller, respectively. These are compelling software
engineering benefits.

If a data member were pun1ic, any client of the class—that is, any

other code that calls the class’s member functions—could see the
data and do whatever it wanted with it, including setting it to an invalid
value.

You might think that even though a client of the class cannot directly
access a private data member, the client can nevertheless do

whatever it wants with the variable through cun1ic set and get
functions. You'd think that you could peek at the private data (and
see exactly how it's stored in the object) any time with the pun1ic get
function and that you could modify the private data at will through the

public Set function.

Actually, set functions can be programmed to validate their arguments
and reject any attempts to set the data to bad values, such as

e a negative body temperature
e a day in March outside the range 1 through 31
e a product code not in the company’s product catalog, etc.

And a get function can present the data in a different form, while the
actual data representation remains hidden from the user. For
example, a crade class might store a grade data member as an int

between 0 and 100, but a getcrade member function might return a
letter grade as a string, such as "a for grades between 90 and 100,
g+ for grades between 80 and 89, etc. Tightly controlling the access
to and presentation of private data can greatly reduce errors, while

increasing the robustness, security and usability of your programs.

Conceptual View of an account Object
with Encapsulated Data

You can think of an account object as shown in Fig. 3.7. The private
data member nane is hidden inside the object (represented by the
inner circle containing name) and protected by an outer layer of pubiic
member functions (represented by the outer circle containing getname
and setname). Any client code that needs to interact with the account
object can do so only by calling the pubiic member functions of the

protective outer layer.

Fig. 3.7 Conceptual view of an account object with its
encapsulated private data member name and protective layer of
public member functions.

=% Software Engineering Observation 3.2

Generally, data members should be private and member functions
public. In Chapter 9, we’ll discuss why you might use a pubiic data

member or a rrivate member function.

=% Software Engineering Observation 3.3

Using rubiic set and get functions to control access to private data

makes programs clearer and easier to maintain. Change is the rule

rather than the exception. You should anticipate that your code will be
modified, and possibly often.

3.6 Account Class with a
Balance; Data Validation

We now define an account class that maintains a bank account’s
balance in addition to the nane. In Chapter 2 we used the data type
int to represent integers. For simplicity, we’ll use data type int to

represent the account balance. In Chapter 4, you’ll see how to
represent numbers with decimal points.

3.6.1 Data Member palance

A typical bank services many accounts, each with its own balance. In
this updated zccount class (Fig. 3.8), line 42

int balance{0}; // data member with default initial wvalue

declares a data member naiance of type int and initializes its value to
0. This is known as an in-class initializer and was introduced in
C++11. Every object of class account contains its own copies of both

the name and the vailance.

11

1 // Fig. 3.8: Account.h

2 // Account class with name and balance data members, and a

3 // constructor and deposit function that each perform wvalidation.

4 #include <string>

5

6 class Account {

T public:

8 // Account constructor with two parameters

9 Account(std::string accountMame, int initialBalance)

10 : namefaccountName} { // assign accountName to data member name
} |

12 // validate that the initialBalance is greater than 0; if not,
13 // data member balance keeps its default initial value of 0

14 if (initialBalance > 0) { // if the initialBalance 1is valid

15 balance = initialBalance; // assign it to data member balance
16 }

17 }

i8

19 // function that deposits (adds) only a valid amount to the balance
20 void deposit(int depositAmount) {
21 if (depositAmount > 0) { // if the depositAmount is valid
22 balance = balance + depositAmount; // add it to the balance
23 }
24 }
25
26 // function returns the account balance
27 int getBalance() const {
28 return balance;
29 1
30
31 // function that sets the name
32 void setName(std::string accountName) {

33 name = accountName;

34 }

35

36 // function that returns the name

37 std::string getName() const {

38 return name;

39 1
40 private:
41 std::string name; // account name data member
42 int balance{0}; // data member with default initial value

43 1; // end class Account

Fig. 3.8 account class with name and ralance data members, and a
constructor and deposit function that each perform validation.

Account 'S Member Functions Can All Use

balance

The statements in lines 15, 22 and 28 use the variable rai1ance even

though it was not declared in any of the member functions. We can
use balance in these member functions because it's a data member in

the same class definition.

3.6.2 Two-Parameter Constructor
with Validation

The class has a constructor and four member functions. It's common
for someone opening an account to deposit money immediately, so
the constructor (lines 9-17) now receives a second parameter—
initialBalance Of type int that represents the starting balance. We

did not declare this constructor exp1icit (as in Fig. 3.4), because this

constructor has more than one parameter.

Lines 14-16 of Fig. 3.8

if (initialBalance > 0) { // if the initialBalance is valid

balance = initialBalance; // assign it to data member balance

ensure that data member vaiance is assigned parameter
initialBalance S value only if that value is greater than o —this is
known as validation or validity checking. If so, line 15 assigns
initialBalance S Value to data member balance. Otherwise, valance
remains at 0—its default initial value that was set at line 42 in class
Account 'S definition.

3.6.3 deposit Member Function
with Validation

Member function deposit (lines 20—24) does not return any data when
it completes its task, so its return type is voida. The member function

receives one int parameter named depositamount . Lines 21-23

if (depositAmount > 0) { // if the depositAmount is valid

balance = balance + depositAmount; // add it to the balance

ensure that parameter depositamount ’s value is added to the vaiance

only if the parameter value is valid (i.e., greater than zero)—another
example of validity checking. Line 22 first adds the current vailance

and depositamount , forming a temporary sum which is then assigned
to nalance, replacing its prior value (recall that addition has a higher

precedence than assignment). It's important to understand that the
calculation

balance + depositAmount

on the right side of the assignment operator in line 22 does not modify
the balance—that’s why the assignment is necessary. Section 4.12
shows a more concise way to write line 22.

3.64 getBalance Member
Function

Member function getraiance (lines 27-29) allows the class’s clients to
obtain the value of a particular zccount object’s valance. The member
function specifies return type int and an empty parameter list. Like
member function getname, getBalance IS declared const, because in
the process of returning the vaiance the function does not, and should

not, modify the account object on which it’s called.

3.6.5 Manipulating aAccount
Objects with Balances

The nain function in Fig. 3.9 creates two account objects (lines 10—
11) and attempts to initialize them with a valid balance of s0 and an
invalid balance of -7, respectively—for the purpose of our examples,

we assume that balances must be greater than or equal to zero. Lines
14—17 output the account names and balances, which are obtained by
calling each account’s getname and getBalance member functions.

1 // Fig. 3.9: AccountTest.cpp

2 // Displaying and updating Account balances.

3 #include <iostream>

4 #include "Account.h"

5

6 using namespace std;

7

8 1int main()

s 1

10 Account accountl{"Jane Green", 50};

1 Account account2{"John Blue", -7};

12

13 // display initial balance of each object

14 cout << "accountl: " << accountl.getName() << " balance is %"
I5 << accountl.getBalance();

16 cout << "\naccount2: " << account?.getName() << " balance is §"
17 << accountZ.getBalance();

18

19 cout << "\n\nEnter deposit amount for accountl: "; // prompt
20 int depositAmount;
21 cin >> depositAmount; // obtain user input
22 cout << "adding " << depositAmount << " to accountl balance";
23 accountl.deposit(depositAmount); // add to accountl's balance
24
25 // display balances
26 cout << "\n\naccountl: " << accountl.getName() << " balance is %"
27 << accountl.getBalance();
28 cout << "\naccountl: " << account2.getName() << " balance is $"
29 << account2.getBalance();
30
31 cout << "\n\nEnter deposit amount for account2: "; // prompt
32 cin >> depositAmount; // obtain user input
33 cout << "adding " << depositAmount << " to account2 balance";
34 account2.deposit(depositAmount); // add to account2 balance
35
36 // display balances
37 cout << "\n\naccountl: " << accountl.getName() << " balance is %"
38 << accountl.getBalance();
39 cout << "\naccount?2: " << account?.getName() << " balance is §"
40 << account2.getBalance() << endl;
41 }

accountl: Jane Green balance is $50
account2: John Blue balance is $0

Enter deposit amount for accountl: 25
adding 25 to accountl balance

accountl: Jane Green balance is $75
account2: John Blue balance is $0

Enter deposit amount for account?: 123
adding 123 to account2 balance

accountl: Jane Green balance is $75
account2: John Blue balance is $123

Fig. 3.9 Displaying and updating account balances.

Displaying the aAccount Objects’ Initial
Balances

When member function getsaiance is called for account1 from line 15,
the value of account1’s balance is returned from line 28 of Fig. 3.8 and

displayed by the output statement in lines 14-15 (Fig. 3.9). Similarly,
when member function getsalance is called for zccount2 from line 17,

the value of the account2’s balance is returned from line 28 of Fig. 3.8

and displayed by the output statement (Fig. 3.9, lines 16-17). The
palance Of account2 is initially o, because the constructor rejected the

attempt to start zccount2 with a negative balance, so the data member

palance retains its default initial value.

Reading a Deposit Amount from the User
and Making a Deposit

Line 19 prompts the user to enter a deposit amount for account1. Line
20 declares local variable depositamount to store each deposit amount
entered by the user. We did not initialize depositamount , because as
you'll learn momentarily, variable depositamount’s value will be input

by the user’s input.

> Error-Prevention Tip 3.3

Most C++ compilers issue a warning if you attempt to use the value of
an uninitialized variable. This helps you avoid dangerous execution-
time logic errors. It's always better to get the warnings and errors out
of your programs at compilation time rather than execution time.

Line 21 reads the deposit amount from the user and places the value
into local variable depositamount . Line 22 displays the deposit amount.

Line 23 calls object account1’s deposit member function with the
depositamount as the member function’s argument. When the member

function is called, the argument’s value is assigned to the parameter
depositamount Of member function deposit (line 20 of Fig. 3.8); then

member function deposit adds that value to the baiance. Lines 26—29
(Flg 39) output the name s and valance s of both account s again to

show that only accounti’s balance has changed.

Line 31 prompts the user to enter a deposit amount for account2. Line
32 obtains the input from the user. Line 33 displays the depositamount .
Line 34 calls object account2’s deposit member function with
depositamount as the member function’s argument ; then member
function deposit adds that value to the vailance. Finally, lines 37—40
output the name s and valance s of both account s again to show that

only account2 'S balance has Changed.

Duplicated Code in the main Function

The six statements at lines 14-15, 16-17, 26-27, 28-29, 37-38 and
39-40 are almost identical. Each outputs an account’s name and

balance, and differs only in the account Object’s name— account1 oOr
account2 . Duplicate code like this can create code maintenance

problems when that code needs to be updated. For example, if six
copies of the same code all have the same error to fix or the same
update to be made, you must make that change six times, without
making errors. Exercise 3.13 asks you to modify Fig. 3.9 to include
function displayaccount that takes as a parameter an account Object

and outputs the object’s name and vailance. You'll then replace nain’s

duplicated statements with six calls to dispiayaccount.

55 Software Engineering Observation 3.4

Replacing duplicated code with calls to a function that contains only
one copy of that code can reduce the size of your program and
improve its maintainability.

3.6.6 account UML Class Diagram
with a Balance and Member
Functions deposit and

getBalance
The UML class diagram in Fig. 3.10 concisely models class account of
Fig. 3.8. The diagram models in its second compartment the private

attributes name of type string and valance Of type int.

Account

— name : string
— balance : int

«constructors Account(accountName : string, initialBalance : int)
+ deposit{depositAmount : int)

+ getBalance() : int

+ setName(accountName : string)

+ getName() : string

Fig. 3.10 UML class diagram for the account class of Fig. 3.8.

Class account ’s constructor is modeled in the third compartment with
parameters accountname Of type string and initialBalance Of type

int . The class’s four pub1ic member functions also are modeled in

the third compartment—operation deposit with a depositamount
parameter of type int, operation getealance with a return type of int,
operation setname With an accountname parameter of type scring and

operation getname with a return type of string.

3.7 Wrap-Up

In this chapter, you created your own classes and member functions,
created objects of those classes and called member functions of those
objects to perform useful actions. You declared data members of a
class to maintain data for each object of the class, and you defined
your own member functions to operate on that data. You passed
information to a member function as arguments whose values are
assigned to the member function’s parameters. You learned the
difference between a local variable of a member function and a data
member of a class, and that only data members that are objects are
initialized automatically with calls to their default constructors. You
also learned how to use a class’s constructor to specify the initial
values for an object’s data members. You saw how to create UML
class diagrams that model the member functions, attributes and
constructors of classes.

In the next chapter we begin our introduction to control statements,
which specify the order in which a program’s actions are performed.
You'll use these in your member functions to specify how they should
order their tasks.

Summary

Section 3.1 Introduction

e Each class you create becomes a new type you can use to declare
variables and create objects.

e C++is an extensible programming language (p. 74)—you can
define new class types as needed.

Section 3.2 Test-Driving an Account
Object

e Classes cannot execute by themselves.

e A nain function can “drive” an object by calling its member
functions—without knowing how the class is implemented. In this
sense, nain is referred to as a driver program (p. 75).

Section 3.2.1 Instantiating an Object

e Typically, you cannot call a member function of a class until you
create an object of that class.

Section 3.2.2 Headers and Source-Code
Files

e The compiler knows about fundamental types that are “built into”
C++.

e A new type that you create is known as a user-defined type (p.
76).

e New classes, when packaged properly, can be reused by other
programmers.

e Reusable code (such as a class definition) is placed in a file known
as a header (p. 76) that you include (via #inciude) Wherever you

need to use the code.
e By convention, a header for a user-defined type has a .n filename

extension.
e Inan #inciude directive, a user-defined header is placed in double

quotes ("), indicating that the header is located with your

program, rather than with the C++ Standard Library headers.
e Files ending in .cpp are known as source-code files (p. 76).

Section 3.2.3 Calling Class Account’s
getName Member Function

e To call a member function for a specific object, you specify the
object’s name, followed by a dot operator (.; p. 76), then the
member function name and a set of parentheses. Empty
parentheses indicate that the function does not require any
additional information to perform its task.

e A member function can return a value from the object on which the
function is called.

Section 3.2.4 Inputting a string with
getline

e Functions that are not members of a class are called global
functions (p. 77).

e An object of C++ Standard Library class string (p. 77) stores
character string values. Class string is defined in the <string>

header (p. 77) and belongs to namespace std.
e C++ Standard Library function getline (p. 77), from the <string>

header, reads characters up to, but not including, a newline, which
is discarded, then places the characters ina scring.

Section 3.2.5 Calling Class Account’s
setName Member Function

e A member-function call can supply arguments (p. 78) that help the
function perform its task.

Section 3.3.1 Account Class Definition

e A class’s data members maintain data for each object of the class,
and its member functions manipulate the class’s data members.

Section 3.3.2 Keyword class and the
Class Body

¢ A class definition begins with keyword class (p. 79) followed
immediately by the class’s name.

e A class’s body is enclosed in an opening left brace and a closing
right brace.

¢ A class definition terminates with a required semicolon.

e Typically, each class definition is placed in a separate header with
the .n filename extension.

e Class names, member function names and data member names
are all identifiers. By convention, variable-name identifiers begin
with a lowercase letter, and every word in the name after the first
word begins with a capital letter. This naming convention is known
as camel case, because the uppercase letters stand out like a
camel’s humps. Also by convention, class names begin with an
initial uppercase letter, and member function and data member
names begin with an initial lowercase letter.

Section 3.3.3 Data Member name of Type

string

e Each object of a class has its own copy of the class’s data
members.

e An object’s data members exist before a program calls member
functions on an object, while they are executing and after the
member functions complete execution.

e Data members are declared inside a class definition but outside its
member functions’ bodies.

e The default value for a string is the empty string (i.€., "" ; p.
80).

e Headers should never contain using directives or using

declarations.

Section 3.3.4 setname Member Function

o A function’s return type (p. 79; which appears to the left of the
function’s name) specifies the type of data the function returns to
its caller after performing its task.

e The return type void (p. 80) indicates that when a function
completes its task, it does not return (i.e., give back) any
information to its calling function (p. 80).

e Parameters (p. 80) specify additional information the function
needs to perform its task.

e When you call a function, each argument value in the call’s
parentheses is copied into the corresponding parameter in the
member function definition.

e Parameters are declared in a parameter list (p. 81) located in
required parentheses following a function’s name. Each parameter
must specify a type followed by a parameter name.

e Multiple parameters in a function definition are separated by
commas.

e The number and order of arguments in a function call must match
the number and order of parameters in the function definition’s
parameter list.

e Every function body is delimited by an opening left brace and a
closing right brace. Within the braces are one or more statements
that perform the function’s task(s).

e When program execution reaches a function’s closing brace, the
function returns to its caller.

e Variables declared in a particular function’s body are local
variables (p. 81), which can be used only in that function. When a
function terminates, the values of its local variables are lost.

e A function’s parameters also are local variables of that function.

e The argument types in the member function call must be
consistent with the types of the corresponding parameters in the
member function’s definition.

Section 3.3.5 getname Member Function

e When a member function that specifies a return type other than
void is called and completes its task, it must return a result to its

caller.
e The return statement (p. 82) passes a value back to a function’s

caller.
e A member function that does not, and should not, modify the object

on which it’s called is declared with const (p. 82) to the right of its

parameter list.

Section 3.3.6 Access Specifiers private
and public

e The keyword private (p. 82) is an access specifier (p. 82).
e Access specifiers are always followed by a colon (:).

e A private data member is accessible only to its class’s member

functions.

e Most data-member declarations appear after the orivate access
specifier.

e Variables or functions listed after the public (p. 83) access
specifier (and before the next access specifier, if there is one) are
“available to the public.” They can be used by other functions in the
program, and by member functions of other classes.

e By default, everything in a class is private, unless you specify

otherwise.

e Once you list an access specifier, everything from that point has
that access until you list another access specifier.

e Declaring data members private is known as data hiding (p. 82).
private data members are encapsulated (hidden) in an object and

can be accessed only by member functions of the object’s class.

Section 3.3.7 Account UML Class
Diagram

UML class diagrams (p. 83) can be used to summarize a class’s
attributes and operations.

In the UML, each class is modeled in a class diagram as a
rectangle with three compartments.

The top compartment contains the class name centered
horizontally in boldface type.

The middle compartment contains the class’s attribute names,
which correspond to the data members of a class.

A private attribute lists a minus sign (-) access modifier before the

attribute name.

Following the attribute name are a colon and the attribute type.
The bottom compartment contains the class’s operations (p. 84),
which correspond to the member functions in a class.

The UML models operations by listing the operation name
preceded by an access modifier. A plus sign (+) indicates a public

operation in the UML.

An operation that does not have any parameters specifies empty
parentheses following the operation name.

The UML indicates the return type of an operation by placing a
colon and the return type after the parentheses following the
operation name.

For a voia return type a UML class diagram does not specify

anything after the parentheses of the operation.

e The UML models a parameter by listing the parameter name,
followed by a colon and the parameter type in the parentheses
after the operation name.

Section 3.4 Account Class: Initializing
Objects with Constructors

Each class can define a constructor (p. 84) for custom object
initialization.

A constructor is a special member function that must have the
same name as the class.

C++ requires a constructor call for every object that’s created.

Like member functions, a constructor can specify parameters—the
corresponding argument values help initialize the object’s data
members.

Section 3.4.1 Declaring an Account
Constructor for Custom Object
Initialization

e Normally, constructors are pubiic.

e A constructor’s parameter list specifies pieces of data required to
initialize an object.

e A constructor uses a member-initializer list (p. 86) to initialize its
data members with the values of the corresponding parameters.

e Member initializers appear between a constructor’'s parameter list
and the left brace that begins the constructor’s body.

e The member-initializer list is separated from the parameter list with
a colon (:).

e Each member initializer consists of a data member’s variable name
followed by parentheses containing the member’s initial value.

e Each member initializer in a constructor is separated from the next
by a comma.

e The member initializer list executes before the constructor’s body
executes.

e A constructor that specifies a single parameter should be declared
explicit (p. 86).

e A constructor does not specify a return type, because constructors
cannot return values.

e Constructors cannot be declared const (because initializing an

object modifies it).

Section 3.4.2 Initializing Account Objects
When They’re Created

e When you create an object, C++ calls the class’s constructor to
initialize that object. If a constructor has parameters, the
corresponding arguments are placed in braces, (and ;, to the

right of the object’s variable name.

e When you create an object without placing braces to the right of
the object’s variable name, C++ implicitly calls the class’s default
constructor (p. 87).

e |n any class that does not explicitly define a constructor, the
compiler provides a default constructor (which always has no
parameters).

e The default constructor does not initialize the class’s fundamental-
type data members, but does call the default constructor for each
data member that’s an object of another class.

e A string’s default constructor initializes the object to the empty

string.
¢ An uninitialized fundamental-type variable contains an undefined
(“garbage”) value.

e |f a class defines a constructor, the compiler will not create a
default constructor for that class.

Section 3.4.3 account UML Class
Diagram with a Constructor

e Like operations, the UML models constructors in the third
compartment of a class diagram.

e To distinguish a constructor from the class’s operations, the UML
requires that the word “constructor” be enclosed in guillemets (K
and > ; p. 88) and placed before the constructor’'s name.

e |t's customary to list constructors before other operations in the
third compartment.

Section 3.5 Software Engineering with Set
and Get Member Functions

e Through the use of set and get member functions, you can validate
attempted modifications to private data and control how that data

is presented to the caller.

e Aclient (p. 88) of a class is any other code that calls the class’s
member functions.

e Any client code can see a pub1ic data member and do whatever it

wanted with it, including setting it to an invalid value.
e Set functions can be programmed to validate their arguments and
reject any attempts to set the data to bad values.
e A get function can present the data to a client in a different form.
e Tightly controlling the access to and presentation of private data

can greatly reduce errors, while increasing the usability,
robustness and security of your programs.

Section 3.6.1 Data Member balance

e You can initialize fundamental-type data members in their
declarations. This is known as an inclass initializer (p. 90) and
was introduced in C++11.

Section 3.6.2 Two-Parameter Constructor
with Validation

e A constructor can perform validation (p. 91) or validity checking
(p. 91) before modifying a data member.

Section 3.6.3 deposit Member Function
with Validation

e A set function can perform validity checking before modifying a
data member.

Self-Review Exercises

1. 3.1 Fill in the blanks in each of the following:

A.

B.

C.

Every class definition contains the keyword

followed immediately by the class’s name.

A class definition is typically stored in a file with the
filename extension.

Each parameter in a function header specifies both a(n)
and a(n)

When each object of a class maintains its own version of

an attribute, the variable that represents the attribute is

also known as a(n)

Keyword pubiic is a(n)

Return type indicates that a function will perform

a task but will not return any information when it

completes its task.

Function from the <string> library reads

characters until a newline character is encountered, then
copies those characters into the specified string.

Any file that uses a class can include the class’s header
via a(n) preprocessing directive.

2. 3.2 State whether each of the following is frue or false. If false,
explain why.
A. By convention, function names begin with a capital letter

and all subsequent words in the name begin with a

capital letter.

B. Empty parentheses following a function name in a
function definition indicate that the function does not
require any parameters to perform its task.

C. Data members or member functions declared with
access specifier private are accessible to member

functions of the class in which they’re declared.

D. Variables declared in the body of a particular member
function are known as data members and can be used in
all member functions of the class.

E. Every function’s body is delimited by left and right braces
(¢ and ;).

F. The types of arguments in a function call must be

consistent with the types of the corresponding
parameters in the function’s parameter list.

3. 3.3 What is the difference between a local variable and a data
member?

4. 3.4 Explain the purpose of a function parameter. What's the
difference between a parameter and an argument?

Exercises

1. 3.5 (Default Constructor) What's a default constructor? How
are an object’s data members initialized if a class has only a
default constructor defined by the compiler?

2. 3.6 (Data Members) Explain the purpose of a data member.

3. 3.7 (Using a Class Without a using Directive) Explain how a

program could use class string without inserting a using

directive.

4. 3.8 (Set and Get Functions) Explain why a class might
provide a set function and a get function for a data member.

5. 3.9 (Modified account Class) Modify class account (Fig. 3.8) to

provide a member function called withdraw that withdraws
money from an account . Ensure that the withdrawal amount
does not exceed the zccount’s balance. If it does, the balance

should be left unchanged and the member function should
display a message indicating "withdrawal amount exceeded

account balance." MOdIfy class accountTest (Flg 39) to test
member function withdraw.
6. 3.10 (1nvoice Class) Create a class called tnvoice thata

hardware store might use to represent an invoice for an item
sold at the store. An 1nvoice should include four data members

—a part number (type string), a part description (type string),

a quantity of the item being purchased (type int) and a price

per item (type int). Your class should have a constructor that

initializes the four data members. Provide a set and a get
function for each data member. In addition, provide a member
function named get1nvoicermount that calculates the invoice

amount (i.e., multiplies the quantity by the price per item), then
returns the amount as an inc value. If the quantity is not

positive, it should be set to o. If the price per item is not
positive, it should be set to o. Write a test program that
demonstrates class 1nvoice’s capabilities.

. 3.11 (Emp1oyee Class) Create a class called empioyee that

includes three pieces of information as data members—a first
name (type string), a last name (type string) and a monthly

salary (type int). Your class should have a constructor that

initializes the three data members. Provide a set and a get
function for each data member. If the monthly salary is not
positive, set it to o. Write a test program that demonstrates

class employvee’s capabilities. Create two empioyvee Objects and
display each object’s yearly salary. Then give each empioyee a
10 percent raise and display each empioyee’s yearly salary
again.

. 3.12 (pate Class) Create a class called pate that includes

three pieces of information as data members—a month (type
int), a day (type int)and a year (type int). Your class should

have a constructor with three parameters that uses the
parameters to initialize the three data members. For the
purpose of this exercise, assume that the values provided for

the year and day are correct, but ensure that the month value is
in the range 1-12; if it isn’t, set the month to 1. Provide a set
and a get function for each data member. Provide a member
function dispiaypate that displays the month, day and year

separated by forward slashes (/). Write a test program that
demonstrates class pate’s capabilities.

. 3.13 (Removing Duplicated Code in the nain Function) In
Fig. 3.9, the main function contains six statements (lines 14—

15, 1617, 26-27, 28-29, 37-38 and 39-40) that each display
an account object’s name and balance. Study these statements

and you’ll notice that they differ only in the account object being
manipulated— account1 Or account2. In this exercise, you'll
define a new displayaccount function that contains one copy of

that output statement. The member function’s parameter will be
an account Object and the member function will output the

object’s name and nalance. YoU'll then replace the six
duplicated statements in nain with calls to displayaccount,
passing as an argument the specific account object to output.
Modify Fig. 3.9 to define the following dispiayaccount function

after the using directive and before main:

void displayAccount (Account accountToDisplay) {
// place the statement that displays

// accountToDisplay’s name and balance here

10.

Replace the comment in the member function’s body with a
statement that displays accountToDisplay 'S name and balance.

Once you’ve completed dispiayaccount ’s declaration, modify
nain to replace the statements that display each zccount’s

name and balance with calls to displayAccount of the form:

displayAccount (nameOfAccountObject) ;

In each call, the argument should be the account1 Or account?

object, as appropriate. Then, test the updated program to
ensure that it produces the same output as shown in Fig. 3.9.
3.14 (C++11 List Initializers) \Write a statement that uses list
initialization to initialize an object of class account which

provides a constructor that receives an unsigned int, two
string$ and a double to initialize the accountNumber, firstName,
lastName and balance data members of a new object of the

class.

Making a Difference

1. 3.15 (Target-Heart-Rate Calculator) \While exercising, you can
use a heart-rate monitor to see that your heart rate stays within
a safe range suggested by your trainers and doctors. According
to the American Heart Association (AHA) (nttp://bit.1y/

AHATargetHeartRates), the formula for calculating your maximum

heart rate in beats per minute is 220 minus your age in years.
Your target heart rate is a range that’s 50—-85% of your
maximum heart rate. [Note: These formulas are estimates
provided by the AHA. Maximum and target heart rates may
vary based on the health, fitness and gender of the individual.
Always consult a physician or qualified health-care
professional before beginning or modifying an exercise
program.] Create a class called ncartrates. The class

attributes should include the person’s first name, last name and
date of birth (consisting of separate attributes for the month,
day and year of birth). Your class should have a constructor
that receives this data as parameters. For each attribute
provide set and get functions. The class also should include a
member function that calculates and returns the person’s age
(in years), a member function that calculates and returns the
person’s maximum heart rate and a member function that
calculates and returns the person’s target heart rate. Write a
program that prompts for the person’s information, instantiates

http://bit.ly/AHATargetHeartRates

an object of class recartrates and prints the information from

that object—including the person’s first name, last name and
date of birth—then calculates and prints the person’s age in
(years), maximum heart rate and target-heart-rate range.

. 3.16 (Computerization of Health Records) A health-care
issue that has been in the news lately is the computerization of
health records. This possibility is being approached cautiously
because of sensitive privacy and security concerns, among
others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients
to share their health profiles and histories among their various
health-care professionals. This could improve the quality of
health care, help avoid drug conflicts and erroneous drug
prescriptions, reduce costs and, in emergencies, could save
lives. In this exercise, you'll design a “starter” neaithprofiie

class for a person. The class attributes should include the
person’s first name, last name, gender, date of birth (consisting
of separate attributes for the month, day and year of birth),
height (in inches) and weight (in pounds). Your class should
have a constructor that receives this data. For each attribute,
provide set and get functions. The class also should include
member functions that calculate and return the user’s age in
years, maximum heart rate and target-heart-rate range (see
Exercise 3.15), and body mass index (BMI; see Exercise
2.30). Write a program that prompts for the person’s
information, instantiates an object of class neaithprorile for

that person and prints the information from that object—
including the person’s first name, last name, gender, date of

birth, height and weight—then calculates and prints the
person’s age in years, BMI, maximum heart rate and target-
heart-rate range. It should also display the BMI values chart
from Exercise 2.30.

Answers to Self-Review Exercises

1. 3.1

A.

00w

I ® mmOUOoO w

class.
.h.

type, name.
data member.
access specifier.

void.
getline.

#include.

False. Function names begin with a lowercase letter and
all subsequent words in the name begin with a capital
letter.

True.

True.

False. Such variables are local variables and can be
used only in the member function in which they’re
declared.

True.

True.

3. 3.3 Allocal variable is declared in the body of a function and
can be used only from its declaration to the closing brace of the
block in which it's declared. A data member is declared in a
class, but not in the body of any of the class’s member
functions. Every object of a class has each of the class’s data
members. Data members are accessible to all member
functions of the class.

4. 3.4 A parameter represents additional information that a
function requires to perform its task. Each parameter required
by a function is specified in the function header. An argument is
the value supplied in the function call. When the function is
called, the argument value is passed into the function
parameter so that the function can perform its task.

4 Algorithm Development and
Control Statements: Part 1

Objectives

In this chapter you'll:

e |Learn basic problem-solving techniques.

e Develop algorithms through the process of top-down, stepwise
refinement.

e Usethe ir and ir...c1se selection statements to choose between

alternative actions.
e Use the wnhiie iteration statement to execute statements in a

program repeatedly.
e Use counter-controlled iteration and sentinel-controlled iteration.
e Use nested control statements.
e Use the compound assignment operator and the increment and
decrement operators.
e Learn about the portability of fundamental data types.

Outline

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
A. 4.4.1 Sequence Structure
B. 4.4.2 Selection Statements
C. 4.4.3 Iteration Statements
D. 4.4.4 Summary of Control Statements

N~

5. 4.5 it Single-Selection Statement

6. 4.6 if...e1se Double-Selection Statement
A. 4.6.1 Nested if...else Statements
B. 4.6.2 Dangling-else Problem

C. 4.6.3 Blocks
D. 4.6.4 Conditional Operator (?:)

7. 4.7 student Class: Nested if...el1se Statements
8. 4.8 while lteration Statement

9. 4.9 Formulating Algorithms: Counter-Controlled Iteration
A. 4.9.1 Pseudocode Algorithm with Counter-Controlled
Iteration
B. 4.9.2 Implementing Counter-Controlled Iteration
C. 4.9.3 Notes on Integer Division and Truncation

D.
E.

4.9.4 Arithmetic Overflow
4.9.5 Input Validation

10. 4.10 Formulating Algorithms: Sentinel-Controlled Iteration

A.

OO0Ow

4.10.1 Top-Down, Stepwise Refinement: The Top and
First Refinement

4.10.2 Proceeding to the Second Refinement

4.10.3 Implementing Sentinel-Controlled Iteration
4.10.4 Converting Between Fundamental Types
Explicitly and Implicitly

4.10.5 Formatting Floating-Point Numbers

4.10.6 Unsigned Integers and User Input

11. 4.11 Formulating Algorithms: Nested Control Statements

A.
B.

C.

4.11.1 Problem Statement

4.11.2 Top-Down, Stepwise Refinement: Pseudocode
Representation of the Top

4.11.3 Top-Down, Stepwise Refinement: First
Refinement

4.11.4 Top-Down, Stepwise Refinement: Second
Refinement

4.11.5 Complete Second Refinement of the
Pseudocode

4.11.6 Program That Implements the Pseudocode
Algorithm

4.11.7 Preventing Narrowing Conversions with List
Initialization

12.
13.
14.
15.

o K 0N~

4.12 Compound Assignment Operators
4.13 Increment and Decrement Operators
4.14 Fundamental Types Are Not Portable
4.15 Wrap-Up

Summary

Self-Review Exercises

Answers to Self-Review Exercises
Exercises

Making a Difference

4.1 Introduction

Before writing a program to solve a problem, you should have a
thorough understanding of the problem and a carefully planned
approach to solving it. When writing a program, you also should
understand the available building blocks and employ proven program-
construction techniques. In this chapter and the next, we discuss
these issues in presenting the theory and principles of structured
programming. The concepts presented here are crucial in building
classes and manipulating objects. We discuss C++’s ir statement in

additional detail and introduce the ifr...e1se and whiile statements—

all of these building blocks allow you to specify the logic required for
functions to perform their tasks. We also introduce the compound
assignment operator and the increment and decrement operators.
Finally, we consider the portability of C++’s fundamental types.

4.2 Algorithms

Any computing problem can be solved by executing a series of actions
in a specific order. A procedure for solving a problem in terms of

1. the actions to execute and
2. the order in which these actions execute

is called an algorithm. The following example demonstrates that
correctly specifying the order in which the actions execute is
important.

Consider the “rise-and-shine algorithm” one executive follows for
getting out of bed and going to work: (1) Get out of bed; (2) take off
pajamas; (3) take a shower; (4) get dressed; (5) eat breakfast; (6)
carpool to work. This routine gets the executive to work well prepared
to make critical decisions. Suppose that the same steps are performed
in a slightly different order: (1) Get out of bed; (2) take off pajamas; (3)
get dressed; (4) take a shower; (5) eat breakfast; (6) carpool to work.
In this case, our executive shows up for work soaking wet. Specifying
the order in which statements (actions) execute in a program is called
program control. This chapter investigates program control using
C++’s control statements.

4.3 Pseudocode

Pseudocode is an informal language that helps you develop
algorithms without having to worry about the strict details of C++
language syntax. The pseudocode we present is particularly useful for
developing algorithms that will be converted to structured portions of
C++ programs. Pseudocode is similar to everyday English—it’s
convenient and user friendly, but it's not an actual computer
programming language. You'll see an algorithm written in pseudocode
in Fig. 4.1. You may, of course, use your own native language(s) to
develop your own pseudocode style.

Pseudocode does not execute on computers. Rather, it helps you
“think out” a program before attempting to write it in a programming
language, such as C++. This chapter provides several examples of
using pseudocode to develop C++ programs.

The style of pseudocode we present consists purely of characters, so
you can type pseudocode conveniently, using any text-editor program.
A carefully prepared pseudocode program can easily be converted to
a corresponding C++ program.

Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to
C++ and the program is run on a computer. Such actions might
include input, output, assignments or calculations. In our pseudocode,

we typically do not include variable declarations, but some
programmers choose to list variables and mention their purposes.

Addition Program Pseudocode

Let’s look at an example of pseudocode that may be written to help a
programmer create the addition program of Fig. 2.5. This pseudocode
(Fig. 4.1) corresponds to the algorithm that inputs two integers from
the user, adds these integers and displays their sum. We show the
complete pseudocode listing here—we’ll show how to create
pseudocode from a problem statement later in the chapter.

Notice that the pseudocode statements are simply English statements
that convey what task is to be performed in C++. Lines 1-2
correspond to the C++ statements in lines

Prompt the user to enter the first integer
Input the first integer

Prompt the user to enter the second integer
Input the second integer

Add first integer and second integer, store result
Display result

M =~ b W N -

Fig. 4.1 Pseudocode for the addition program of Fig. 2.5.

13-14 of Fig. 2.5. Lines 4-5 correspond to the statements in lines 16—
17 and lines 7—8 correspond to the statements in lines 19 and 21.

4.4 Control Structures

Normally, statements in a program are executed one after the other in
the order in which they’re written. This process is called sequential
execution. Various C++ statements, which we’ll soon discuss, enable
you to specify that the next statement to execute is not necessarily the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of
transfers of control was the root of much difficulty experienced by
software development groups. The blame was pointed at the goto

statement (used in most programming languages of the time), which
allows you to specify a transfer of control to one of a wide range of
destinations in a program.

The research of Bohm and Jacopini1 had demonstrated that programs
could be written without any goto statements. The challenge for

programmers of the era was to shift their styles to “goto-less

programming.” The term structured programming became almost
synonymous with “goto elimination.” Not until the 1970s did most

programmers start taking structured programming seriously. The
results were impressive. Software development groups reported
shorter development times, more frequent on-time delivery of systems
and more frequent within-budget completion of software projects. The
key to these successes was that structured programs were clearer,

easier to debug and modify, and more likely to be bug free in the first
place.

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and
Languages with Only Two Formation Rules,” Communications of the
ACM, Vol. 9, No. 5, May 1966, pp. 336-371.

Bohm and Jacopini’'s work demonstrated that all programs could be
written in terms of only three control structures—the sequence
structure, the selection structure and the iteration structure. We’'ll
discuss how each of these is implemented in C++.

4.4.1 Sequence Structure

The sequence structure is built into C++. Unless directed otherwise,
the computer executes C++ statements one after the other in the
order in which they’re written—that is, in sequence. The UML activity
diagram in Fig. 4.2 illustrates a typical sequence structure in which
two calculations are performed in order. C++ lets you have as many
actions as you want in a sequence structure. As we’ll soon see,
anywhere a single action may be placed, we may place several
actions in sequence.

Corresponding C++ statement:

add grade to total
& total = total + grade;

add | to counter B -------- -
counter = counter + 1;

) Corresponding C++ statement:

Fig. 4.2 Sequence-structure activity diagram.

An activity diagram models the workflow (also called the activity) of
a portion of a software system. Such workflows may include a portion
of an algorithm, like the sequence structure in Fig. 4.2. Activity
diagrams are composed of symbols, such as action-state symbols
(rectangles with their left and right sides replaced with outward arcs),
diamonds and small circles. These symbols are connected by
transition arrows, which represent the flow of the activity—that is, the
order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent
algorithms. Activity diagrams clearly show how control structures
operate. We use the UML in this chapter and Chapter 5 to show the
flow of control in control statements. Online Chapters 25-26 use the
UML in a real-world ATM (automated-teller-machine) case study.

Consider the sequence-structure activity diagram in Fig. 4.2. It
contains two action states, each containing an action expression—
for example, “add grade to total” or “add 1 to counter"—that specifies

a particular action to perform. The arrows in the activity diagram
represent transitions, which indicate the order in which the actions
represented by the action states occur. The program that implements
the activities illustrated in Fig. 4.2 first adds grade t0 tota1, then adds

1 tO counter.

The solid circle at the top of the activity diagram represents the initial
state—the beginning of the workflow before the program performs the
modeled actions. The solid circle surrounded by a hollow circle at
the bottom of the diagram represents the final state—the end of the
workflow after the program performs its actions.

Figure 4.2 also includes rectangles with the upper-right corners folded
over. These are UML notes (like comments in C++)—explanatory
remarks that describe the purpose of symbols in the diagram. Figure
4.2 uses UML notes to show the C++ code associated with each
action state. A dotted line connects each note with the element it
describes. Activity diagrams normally do not show the C++ code that
implements the activity. We do this here to illustrate how the diagram
relates to C++ code. For more information on the UML, see our
optional online object-oriented design case study (Chapters 25-26) or

ViSit www.uml. org.

4.4.2 Selection Statements

http://www.uml.org

C++ has three types of selection statements. The ir statement

performs (selects) an action (or group of actions), if a condition is true,
or skips it, if the condition is false. The ir...ec1se statement performs

an action (or group of actions) if a condition is true and performs a
different action (or group of actions) if the condition is false. The
switch Statement (Chapter 5) performs one of many different actions

(or group of actions), depending on the value of an expression.

The ir statement is called a single-selection statement because it
selects or ignores a single action (or group of actions). The ir...cise

statement is called a double-selection statement because it selects
between two different actions (or groups of actions). The switch

statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

4.4 .3 lteration Statements

C++ provides four iteration statements (sometimes called repetition
statements or looping statements) that enable programs to perform
statements repeatedly as long as a condition (called the loop-
continuation condition) remains frue. The iteration statements are
the while, do...while, for and range-based ror statements.

(Chapter 5 presents the do...while and ror statements and Chapter
7 presents the range-based ror statement.) The whiie and for

statements perform the action (or group of actions) in their bodies zero

or more times—if the loop-continuation condition is initially false, the

action (or group of actions) will not execute. The do...while statement

performs the action (or group of actions) in its body one or more times.

Each of the words if, else, switch, while, do and for are C++

keywords. Keywords cannot be used as identifiers, such as variable
names, and must be spelled with only lowercase letters. Figure 4.3

provides a complete list of C++ keywords.

Fig. 4.3 C++ keywords.

C++ Keywords

Keywords common to the C and C++ programming languages

asm auto break case ch:
const continue default do dot
else enum extern float fo:
goto if inline int lo1
register return short signed si:
static struct switch typedef un:
unsigned void volatile while

C++-only keywords

and and eq bitand bitor boc

catch class compl const cast de.
dynamic cast explicit export false fr:
mutable namespace new not noft
operator or or eq private pre
public reinterpret cast static cast template th:
throw true try typeid tvyi
using virtual wchar t XOr XO:
C++11 keywords

alignas alignof charleo t char32 t col
decltype noexcept nullptr static assert th:

11

4.4.4 Summary of Control

Statements

C++ has only three kinds of control structures, which from this point
forward we refer to as control statements: the sequence statement,

selection statements (three types) and iteration statements (four

types). Every program is formed by combining as many of these
statements as is appropriate for the algorithm the program
implements. We can model each control statement as an activity
diagram. Like Fig. 4.2, each diagram contains an initial state and a
final state that represent a control statement’s entry point and exit
point, respectively. Single-entry/single-exit control statements
make it easy to build programs— we simply connect the exit point of
one to the entry point of the next. We call this control-statement
stacking. We'll learn that there’s only one other way in which control
statements may be connected—control-statement nesting—in
which one control statement appears inside another. Thus, algorithms
in C++ programs are constructed from only three kinds of control
statements, combined in only two ways. This is the essence of
simplicity.

4.5 if Single-Selection
Statement

We introduced the ir single-selection statement briefly in Section

2.7. Programs use selection statements to choose among alternative
courses of action. For example, suppose that the passing grade on an
exam is 60. The pseudocode statement

If student’s grade is greater than or equal to 60

Print “Passed”

represents an ir statement that determines whether the condition

“student’s grade is greater than or equal to 60" is true. If so, “Passed”
is printed, and the next pseudocode statement in order is “performed.
(Remember, pseudocode is not a real programming language.) If the
condition is false, the Print statement is ignored, and the next
pseudocode statement in order is performed. The indentation of the

second line of this selection statement is optional, but recommended,
because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in C++ as

if (studentGrade >= 60) {

cout << "Passed";

The C++ code corresponds closely to the pseudocode. This is a
property of pseudocode that makes it such a useful program
development tool.

bool Data Type

You saw in Chapter 2 that decisions can be based on conditions
containing relational or equality operators. Actually, in C++, a decision
can be based on any expression that evaluates to zero or nonzero—if
the expression evaluates to zero, it's treated as false; if the expression
evaluates to nonzero, it's treated as true. C++ also provides the data
type boo1 for Boolean variables that can hold only the values true

and faise—each of these is a C++ keyword.

Portability Tip 4.1

For compatibility with earlier versions of C, which used integers for
Boolean values, the roo1 value true also can be represented by any

nonzero value (compilers typically use 1) and the roo1 value raise

also can be represented as the value zero.

UML Activity Diagram for an ir
Statement

Figure 4.4 illustrates the single-selection ir statement. This figure

contains the most important symbol in an activity diagram—the
diamond, or decision symbol, which indicates that a decision is to be
made. The workflow continues along a path determined by the
symbol’s associated guard conditions, which can be true or false.
Each transition arrow emerging from a decision symbol has a guard
condition (specified in square brackets next to the arrow). If a guard
condition is true, the workflow enters the action state to which the
transition arrow points. In Fig. 4.4, if the grade is greater than or equal
to 60 (i.e., the condition is frue), the program prints “Passed,” then
transitions to the activity’s final state. If the grade is less than 60 (i.e.,
the condition is false), the program immediately transitions to the final
state without displaying a message.

[grade == 60)]

= print "Passed”

[grade < 60]
®-

Fig. 4.4 it single-selection statement UML activity diagram.

The ir statement is a single-entry/single-exit control statement. We'll

see that the activity diagrams for the remaining control statements
also contain initial states, transition arrows, action states that indicate

actions to perform, decision symbols (with associated guard
conditions) that indicate decisions to be made, and final states.

46 if...else Double-Selection
Statement

The ir single-selection statement performs an indicated action only
when the condition is frue; otherwise, the action is skipped. The it
...else double-selection statement allows you to specify an action

to perform when the condition is true and another action when the
condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”
Else

Print “Failed”

represents an ir...e1se statement that prints “Passed” if the student’s

grade is greater than or equal to 60, but prints “Failed” if it's less than
60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.”

The preceding If...Else pseudocode statement can be written in C++
as

if (grade >= 60) {
cout << "Passed";

}
else {

cout << "Failed";

The body of the c1se is also indented. Whatever indentation

convention you choose should be applied consistently throughout your
programs.

Rl

Good Programming Practice

Indent both body statements (or groups of statements) of an ir...clse

statement. Many IDEs do this for you.

P4

\'!T-f"
» 1

Good Programming Practice

4.2

If there are several levels of indentation, each level should be
indented the same additional amount of space. We prefer three-space
indents.

UML Activity Diagram foran if... else
Statement

Figure 4.5 illustrates the flow of control in the preceding ir...c1se

statement. Once again, the symbols in the UML activity diagram
(besides the initial state, transition arrows and final state) represent

action states and decisions.
I [grade == 60]

rade < 60
print “Failed” '{ le] P
}f.\::

Fig. 4.5 it...e1se double-selection statement UML activity

print “Passed”

diagram.

4.6.1 Nested if...else
Statements

A program can test multiple cases by placing if...e1se statements
inside other if...c1se statements to create nested it ...eilse

statements. For example, the following pseudocode represents a
nested ir...e1se that prints 2 for exam grades greater than or equal

to 90, = for grades 80 to 89, ¢ for grades 70 to 79, o for grades 60 to
69 and = for all other grades:

If student’s grade is greater than or equal to 90

Print “A”
ellise
If student’s grade is greater than or equal to 80
Print “B”
else
If student’s grade is greater than or equal to 70
Print “C”
else
If student’s grade is greater than or equal to
60
Print "“D”
else
Print “F”

We use shading to highlight the nesting. This pseudocode may be
written in C++ as

if (studentGrade >= 90) {
cout << "A";

}

else {
if (studentGrade >= 80) {
cout << "B";

}
else {
if (studentGrade >= 70) {

cout << "C";

}
else {
if (studentGrade >= 60) {

cout << "D";

}
else {

cout << "FH;

If variable studentcrade is greater than or equal to 90, the first four
conditions in the nested ir...c1se statement will be true, but only the
statement in the ir part of the first ir...c1se statement will execute.

After that statement executes, the <1se part of the “outermost”

if...else statementis skipped. Many programmers prefer to write the
preceding nested ir...c1se statement in the following form, which is

identical except for the spacing and intentation that the compiler
ignores:

if (studentGrade >= 90) {

cout << "A";

else 1if (studentGrade >= 80) {

cout << "B";

else if (studentGrade >= 70) {

cout << "C";

else if (studentGrade >= 60) {

cout << "D";

else {

cout << "F";

The latter form avoids deep indentation of the code to the right. Such
indentation often leaves little room on a line of code, forcing lines to
wrap.

b X
#

In a nested ir...ec1se Statement, ensure that you test for all possible

Error-Prevention Tip 4.1

cases.

4.6.2 Dangling-e1se Problem

Throughout the text, we always enclose control statement bodies in
braces ({ and ;). This avoids a logic error called the “dangling-e1se”

problem. We investigate this problem in Exercises 4.23—4.25.

4.6.3 Blocks

The ir statement normally expects only one statement in its body. To
include several statements in the body of an ir (or the body of an
else foran if...e1se statement), enclose the statements in braces.

As we've done throughout the text, it's good practice to always use the
braces. Statements contained in a pair of braces (such as the body of
a control statement or function) form a block. A block can be placed
anywhere in a function that a single statement can be placed.

The following example includes a block of multiple statements in the
else partofan ir...e1se statement:

if (grade >= 60) {

cout << "Passed";
else

cout << "Failed\n";

cout << "You must take this course again.";

In this case, if grade is less than 60, the program executes both
statements in the body of the ci1se and prints

Failed

You must take this course again.

Without the braces surrounding the two statements in the <1se clause,
the statement

cout << "You must take this course again.";

would be outside the body of the c1se part of the if...c1sc statement

and would execute regardless of whether the grade was less than 60.

Syntax and Logic Errors

Syntax errors (such as when one brace in a block is left out of the
program) are caught by the compiler. A logic error (such as an
incorrect calculation) has its effect at execution time. A fatal logic
error causes a program to fail and terminate prematurely. A nonfatal
logic error allows a program to continue executing but causes it to
produce incorrect results.

Empty Statement

Just as a block can be placed anywhere a single statement can be
placed, it's also possible to have an empty statement, which is
represented by placing a semicolon (;) where a statement would

normally be.

Fgﬂ ;
&

-—-’j Common Programming Error 4.1

Placing a semicolon after the parenthesized condition in an ir or
if...else Statement leads to a logic error in single-selection ir
Statements and a syntax error in double-selection ir...cise

statements (when the :r-part contains a body statement).

4.6.4 Conditional Operator (2:)

C++ provides the conditional operator (2:) that can be used in place
of an ir...c1se statement. This can make your code shorter and

clearer. The conditional operator is C++’s only ternary operator (i.e.,
an operator that takes three operands). Together, the operands and
the 2: symbol form a conditional expression. For example, the

statement

cout << (studentGrade >= 60 ? "Passed" : "Failed");

prints the value of the conditional expression. The first operand (to the
left of the 2) is a condition, the second operand (between the - and

.) is the value of the conditional expression if the condition is frue and
the third operand (to the right of the :) is the value of the conditional

expression if the condition is false. The conditional expression in this
statement evaluates to the string "rassear if the condition

studentGrade >= 60

is true and to the string "raiileqr if it's false. Thus, this statement with

the conditional operator performs essentially the same function as the

first ir...c1se statementin Section 4.6. The precedence of the

conditional operator is low, so the entire conditional expression is
normally placed in parentheses. We'll see that conditional expressions
can be used in some situations where ir...c1se statements cannot.

The values in a conditional expression also can be actions to execute.
For example, the following conditional expression also prints "passedr

Or "Failed".

grade >= 60 ? cout << "Passed" : cout << "Failed";

The preceding is read, “If grade is greater than or equal to 60, then
cout << "Passed", otherwise, cout << "Failed".” This is Comparable to
an ir...else statement. Conditional expressions can appear in some

program locations where ir...e1se statements cannot.

4.7 Student Class: Nested
if...else Statements

The example of Figs. 4.6—4.7 demonstrates a nested ir...c1se

statement that determines a student’s letter grade based on the
student’s average in a course.

Class student

Class student (Fig. 4.6) stores a student’s name and average and

provides member functions for manipulating these values. The class
contains:

e Data member nane oOf type string (line 65) to store a student’s

name.
e Data member average of type int (line 66) to store a student’s

average in a course.
e A constructor (lines 8—13) that initializes the name and average.

e Member functions setname and getname (lines 16—-23) to set and
get the student’S name.
e Member functions setaverage and getaverage (lines 26—-39) to set

and get the student’s average—in Section 5.11, you’ll learn how to

express lines 29-30 more concisely with logical operators that can
test multiple conditions.
e Member function getrettercrade (lines 42—63), which uses nested

if...else Statements to determine the student’s letter grade

based on the student’s average .

After the constructor initializes nzne in the member-initializer list, the
constructor calls member function setaverage, which uses nested ir
statements (lines 29—-33) to validate the value used to set the average.
These statements ensure that the value is greater than o and less
than or equal to 100; otherwise, average’s value is left unchanged.
Each ir statement contains a simple condition—i.e., one that makes

only a single test. In Section 5.11, you'll see how to use logical
operators to write compound conditions that conveniently combine
several simple conditions. If the condition in line 29 is true, only then
will the condition in line 30 be tested, and only if the conditions in both
lines 29 and 30 are frue will the statement in line 31 execute.

L- I - B - T R - T

27
28
29
30
31
32
33
34
35

// Fig. 4.6: Student.h
// Student class that stores a student name and average.
#include <string>

class Student {
public:
// constructor initializes data members
Student(std::string studentName, int studentAverage)
: name(studentName) {

// sets average data member if studentAverage 1is valid
setAverage(studentAverage);

T

// sets the Student's name
void setName(std::string studentName) {
name = studentName;

}

// retrieves the Student's name
std::string getName() const {
return name;

}

// sets the Student's average
void setAverage(int studentAverage) {
// validate that studentAverage is > 0 and <= 100; otherwise,
// keep data member average's current value
if (studentAverage > 0) {
if (studentAverage <= 100) {
average = studentAverage; // assign to data member

}

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// retrieves the Student's average
int getAverage() const {

return average;
}

// determines and returns the Student's letter grade
std::string getLetterGrade() const {
J/ initialized to empty string by class string's constructor
std::string letterGrade;

if (average >= 90) {
letterGrade = "A";

}

else if (average >= 80) {
TetterGrade = "B";

}

else if (average >= 70) {
letterGrade = "C";

}

else if (average »= 60) {
letterGrade = "D";

}

else {
letterGrade = "F";

}

return letterGrade;
}
private:
std::string name;
int average{0}; // initialize average to 0
} // end class Student

Fig. 4.6 student class that stores a student name and average.

Class studentTest

To demonstrate the nested ir...c1se statements in class student’s

getLetterGrade mMember function, the nain function (Fig. 4.7) creates

two student Objects (lines 8-9). Next, lines 11-16 display each

student 'S N@ame, average and letter grade by calling the objects’

getName, getAverage and getLetterGrade member functions,

respectively.

1 // Fig. 4.7: StudentTest.cpp

2 // Create and test Student objects.

3 #include <iostream>

4 #include "Student.h”

5 using namespace std;

6

7 dnt main({

8 Student accountl{"Jane Green", 93};

9 Student account2{"John Blue", 72};

10

[} cout << accountl.getName(} << "'s letter grade equivalent of "
12 << accountl.getAverage() << " is: "

13 << accountl.getlLetterGrade() << "\n";

14 cout << accountz2.getName() << "'s letter grade equivalent of "
15 << account2.getAverage() << " is: "

16 << account2.getlLetterGrade() << endl;

17 3

Jane Green's letter grade equivalent of 93 1is: A
John Blue's letter grade equivalent of 72 is: C

Fig. 4.7 Create and test student Objects.

4.8 while lteration Statement

An iteration statement allows you to specify that a program should
repeat an action while some condition remains true. The pseudocode
statement

While there are more items on my shopping list

Purchase next item and cross it off my 1list

describes the iteration during a shopping trip. The condition “there are
more items on my shopping list” may be true or false. If it’s true, then
the action “Purchase next item and cross it off my list” is performed.
This action will be performed repeatedly while the condition remains
frue. The statement(s) contained in the While iteration statement
constitute its body, which may be a single statement or a block.
Eventually, the condition will become false (when the shopping list's
last item has been purchased and crossed off). At this point, the
iteration terminates, and the first statement after the iteration
statement executes.

As an example of C++’s while iteration statement, consider a

program segment that finds the first power of 3 larger than 100. After

the following whiie statement executes, the variable product contains

the result:

int product{3};

while (product <= 100) {

product = 3 * product;

Each iteration of the whi1e statement multiplies product by 3, so
product takes on the values 9, 27, 81 and 243 successively. When
product becomes 243, product <= 100 becomes false. This terminates
the iteration, so the final value of product is 243. At this point, program

execution continues with the next statement after the whi1e statement.

& 4 Common Programming Error
4.2

Not providing in the body of a whiie statement an action that
eventually causes the condition in the whiie to become false results in

a logic error called an infinite loop (the loop never terminates).

UML Activity Diagram for a while
Statement

The UML activity diagram in Fig. 4.8 illustrates the flow of control in
the preceding «nile statement. Once again, the symbols in the

diagram (besides the initial state, transition arrows, a final state and
three notes) represent an action state and a decision. This diagram
introduces the UML’s merge symbol. The UML represents both the
merge symbol and the decision symbol as diamonds. The merge
symbol joins two flows of activity into one. In this diagram, the merge
symbol joins the transitions from the initial state and from the action
state, so they both flow into the decision that determines whether the
loop should begin (or continue) executing.

o
merge -~ . gf
=<
decision e "r\ [product <= 1000]
ae > = product = 3 * product '
[product = 1000]

®

Fig. 4.8 wnile iteration statement UML activity diagram.

The decision and merge symbols can be distinguished by the number
of “incoming” and “outgoing” transition arrows. A decision symbol has

one transition arrow pointing to the diamond and two or more pointing
out from it to indicate possible transitions from that point. In addition,
each transition arrow pointing out of a decision symbol has a guard
condition next to it. A merge symbol has two or more transition arrows
pointing to the diamond and only one pointing from the diamond, to
indicate multiple activity flows merging to continue the activity. None of
the transition arrows associated with a merge symbol has a guard
condition.

Figure 4.8 clearly shows the iteration of the wnhi1c statement

discussed earlier in this section. The transition arrow emerging from
the action state points back to the merge, from which program flow
transitions back to the decision that’s tested at the beginning of each
iteration of the loop. The loop continues executing until the guard
condition product > 100 becomes true. Then the whiie statement exits

(reaches its final state), and control passes to the next statement in
sequence in the program.

4.9 Formulating Algorithms:
Counter-Controlled Iteration

To illustrate how algorithms are developed, we solve two variations of
a problem that averages student grades. Consider the following
problem statement:

e A class of ten students took a quiz. The grades (integers in the
range 0—100) for this quiz are available to you. Determine the class
average on the quiz.

The class average is equal to the sum of the grades divided by the
number of students. The algorithm for solving this problem on a
computer must input each grade, keep track of the total of all grades
entered, perform the averaging calculation and print the result.

4.9.1 Pseudocode Algorithm with
Counter-Controlled Iteration

Let’s use pseudocode to list the actions to execute and specify the
order in which they should execute. We use counter-controlled
iteration to input the grades one at a time. This technique uses a
variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled iteration
is often called definite iteration, because the number of iterations is
known before the loop begins executing. In this example, iteration
terminates when the counter exceeds 10. This section presents a fully
developed pseudocode algorithm (Fig. 4.9) and a corresponding C++
program (Fig. 4.10) that implements the algorithm. In Section 4.10,
we demonstrate how to develop pseudocode algorithms from scratch.

Set total to zero
Set gmdﬁ counter to one

While grade counter is less than or equal to ten
Prompt the user to enter the next gracde
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten

= 0 VO~ ot bW

Print the class average

Fig. 4.9 Pseudocode algorithm that uses counter-controlled

iteration to solve the class-average problem.

Note the references in the algorithm of Fig. 4.9 to a total and a
counter. A total is a variable used to accumulate the sum of several
values. A counter is a variable used to count—in this case, the grade
counter indicates which of the 10 grades is about to be entered by the
user. Variables used to store totals normally are initialized to zero
before being used in a program. In pseudocode, we do not use braces
around the statements that form the body of the pseudocode While
structure, but you could.

.5_... Software Engineering Observation

Experience has shown that the most difficult part of solving a problem
on a computer is developing the algorithm for the solution. Once a
correct algorithm has been specified, producing a working C++
program from it is usually straightforward.

4.9.2 Implementing Counter-
Controlled lteration

In Fig. 4.10, the nain function implements the class-averaging

algorithm described by the pseudocode in Fig. 4.9—it allows the user
to enter 10 grades, then calculates and displays the average.

1 // Fig. 4.10: ClassAverage.cpp

2 // Solving the class-average problem using counter-controlled iteration.
3 #include <iostream>

4 using namespace std;

5

6 int main() {

7 J/ initialization phase

8 int total{0}; // initialize sum of grades entered by the user
9 unsigned int gradeCounter{l}; // initialize grade # to be entered next
10

11 // processing phase uses counter-controlled iteration

12 while (gradeCounter <= 10) { // loop 10