

C++ HOW TO PROGRAM
Introducing the New C++14 Standard

TENTH EDITION

Deitel Series Page

How To Program Series

Android How to Program, 3/E
C++ How to Program, 10/E
C How to Program, 8/E
Java How to Program, Early Objects Version, 10/E
Java How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic 2015 How to Program, 7/E
Visual C# 2015 How to Program, 6/E

®

™

™

™

®

®

Deitel Developer Series

Android 6 for Programmers: An App-Driven Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2015 for Programmers
iOS 8 for Programmers: An App-Driven Approach with Swift
Java for Programmers, 3/E
JavaScript for Programmers
Swift for Programmers

®

™

® ™

™

™

Simply Series

Simply Visual Basic 2010: An App-Driven Approach, 4/E
Simply C++: An App-Driven Tutorial Approach

®

VitalSource Web Books

http://bit.ly/DeitelOnVitalSource

Android How to Program, 2/E and 3/E
C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java How to Program, 9/E and 10/E
Simply Visual Basic 2010: An App-Driven Approach, 4/E
Visual Basic 2012 How to Program, 6/E
Visual Basic 2015 How to Program, 7/E
Visual C# 2012 How to Program, 5/E
Visual C# 2015 How to Program, 6/E

™

™

®

®

®

®

®

http://bit.ly/DeitelOnVitalSource

LiveLessons Video Learning
Products

http://deitel.com/books/LiveLessons/

Android 6 App Development Fundamentals, 3/e
C++ Fundamentals
Java Fundamentals, 2/e
C# 2012 Fundamentals
iOS 8 App Development Fundamentals with Swift , 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training
courses, partner offers and more, please join the Deitel communities
on

Facebook — http://facebook.com/DeitelFan

Twitter — http://twitter.com/deitel

Google+™— http://google.com/+DeitelFan

YouTube™— http://youtube.com/DeitelTV

LinkedIn — http://linkedin.com/company/deitel-&-associates

and register for the free Deitel Buzz Online e-mail newsletter at:

™

™

® ™

®

®

®

®

http://deitel.com/books/LiveLessons/
http://facebook.com/DeitelFan
http://twitter.com/deitel
http://google.com.ezproxy.cul.columbia.edu/+DeitelFan
http://youtube.com/DeitelTV

http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:

deitel@deitel.com

For information on programming-languages corporate training
seminars offered by Deitel & Associates, Inc. worldwide, write to
deitel@deitel.com or visit:

http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:

http://www.deitel.com

http://www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers, which will help you master
programming languages, software development, Android™ and iOS
app development, and Internet- and web-related topics:

http://www.deitel.com/ResourceCenters.html

®

http://www.deitel.com/newsletter/subscribe.html
mailto://deitel@deitel.com
mailto://deitel@deitel.com
http://www.deitel.com/training/
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

C++ How to Program
Introducing the New C++14 Standard

TENTH EDITION

Paul Deitel

Deitel & Associates, Inc.

Harvey Deitel

Deitel & Associates, Inc.

Boston Columbus Hoboken Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris
Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong
Seoul Singapore Taipei Tokyo

Vice President, Editorial Director: Marcia Horton
Acquisitions Editor: Tracy Johnson
Editorial Assistant: Kristy Alaura
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram Van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project Management: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Senior Specialist, Program Planning and Support: Maura Zaldivar-
Garcia
Cover Art: Finevector / Shutterstock
Cover Design: Paul Deitel, Harvey Deitel, Chuti Prasertsith
R&P Manager: Rachel Youdelman
R&P Project Manager: Timothy Nicholls
Inventory Manager: Meredith Maresca

Credits and acknowledgments borrowed from other sources and
reproduced, with permission, in this textbook appear on page vi.

The authors and publisher of this book have used their best efforts in
preparing this book. These efforts include the development, research,
and testing of the theories and programs to determine their
effectiveness. The authors and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or to the

documentation contained in this book. The authors and publisher shall
not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use
of these programs.

© 2017 Pearson Education, Inc. Hoboken, New Jersey 07030

All rights reserved. Printed in the United States of America. This
publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use material from this work, please submit
a written request to Pearson PLC, Permissions Department, 330
Hudson St, New York, NY 10013.

Many of the designations by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on file.

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-444823-5
ISBN-13: 978-0-13-444823-7

In memory of Marvin Minsky, a founding father of the field of artificial
intelligence.

It was a privilege to be your student in two graduate courses at M.I.T.
Every lecture you gave inspired your students to think beyond limits.

Harvey Deitel

Trademarks
Deitel and the double-thumbs-up bug are registered trademarks of
Deitel and Associates, Inc.

Carnegie Mellon Software Engineering Institute™ is a trademark of
Carnegie Mellon University.

CERT is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

UNIX is a registered trademark of The Open Group.

Microsoft and/or its respective suppliers make no representations
about the suitability of the information contained in the documents and
related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without
warranty of any kind. Microsoft and/or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether
express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective
suppliers be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action,

®

arising out of or in connection with the use or performance of
information available from the services.

The documents and related graphics contained herein could include
technical inaccuracies or typographical errors. Changes are
periodically added to the information herein. Microsoft and/or its
respective suppliers may make improvements and/or changes in the
product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version
specified.

Microsoft and Windows are registered trademarks of the Microsoft
Corporation in the U.S.A. and other countries. Screen shots and icons
reprinted with permission from the Microsoft Corporation. This book is
not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

Throughout this book, trademarks are used. Rather than put a
trademark symbol in every occurrence of a trademarked name, we
state that we are using the names in an editorial fashion only and to
the benefit of the trademark owner, with no intention of infringement of
the trademark.

® ®

Contents
1. Chapters 23–26 and Appendices F–J are PDF documents

posted online at the book’s Companion Website, which is
accessible from

http://www.pearsonhighered.com/deitel

See the inside front cover for more information.
2. Preface xxiii
3. Before You Begin xxxix

1. 1 Introduction to Computers and C++ 1
A. 1.1 Introduction 2
B. 1.2 Computers and the Internet in Industry and

Research 3
C. 1.3 Hardware and Software 5

1. 1.3.1 Moore’s Law 5
2. 1.3.2 Computer Organization 6

D. 1.4 Data Hierarchy 7
E. 1.5 Machine Languages, Assembly Languages and

High-Level Languages 10
F. 1.6 C and C++ 11
G. 1.7 Programming Languages 12

H. 1.8 Introduction to Object Technology 14
I. 1.9 Typical C++ Development Environment 17
J. 1.10 Test-Driving a C++ Application 20

1. 1.10.1 Compiling and Running an Application
in Visual Studio 2015 for Windows 20

2. 1.10.2 Compiling and Running Using GNU C++
on Linux 25

3. 1.10.3 Compiling and Running with Xcode on
Mac OS X 27

K. 1.11 Operating Systems 32
1. 1.11.1 Windows—A Proprietary Operating

System 32
2. 1.11.2 Linux—An Open-Source Operating

System 32
3. 1.11.3 Apple’s OS X; Apple’s iOS for iPhone ,

iPad and iPod Touch Devices 33
4. 1.11.4 Google’s Android 33

L. 1.12 The Internet and the World Wide Web 34
M. 1.13 Some Key Software Development Terminology

36
N. 1.14 C++11 and C++14: The Latest C++ Versions 38
O. 1.15 Boost C++ Libraries 39
P. 1.16 Keeping Up to Date with Information

Technologies 39

®

® ®

2. 2 Introduction to C++ Programming, Input/Output and
Operators 44

A. 2.1 Introduction 45
B. 2.2 First Program in C++: Printing a Line of Text 45
C. 2.3 Modifying Our First C++ Program 49
D. 2.4 Another C++ Program: Adding Integers 50
E. 2.5 Memory Concepts 54
F. 2.6 Arithmetic 55
G. 2.7 Decision Making: Equality and Relational

Operators 59
H. 2.8 Wrap-Up 63

3. 3 Introduction to Classes, Objects, Member Functions and
Strings 73

A. 3.1 Introduction 74
B. 3.2 Test-Driving an Account Object 75

1. 3.2.1 Instantiating an Object 75
2. 3.2.2 Headers and Source-Code Files 76
3. 3.2.3 Calling Class Account ’s getName Member

Function 76
4. 3.2.4 Inputting a string with getline 77
5. 3.2.5 Calling Class Account ’s setName Member

Function 77

C. 3.3 Account Class with a Data Member and Set and
Get Member Functions 78

1. 3.3.1 Account Class Definition 78

2. 3.3.2 Keyword class and the Class Body 79
3. 3.3.3 Data Member name of Type string 79
4. 3.3.4 setName Member Function 80
5. 3.3.5 getName Member Function 82
6. 3.3.6 Access Specifiers private and public 82
7. 3.3.7 Account UML Class Diagram 83

D. 3.4 Account Class: Initializing Objects with
Constructors 84

1. 3.4.1 Defining an Account Constructor for
Custom Object Initialization 85

2. 3.4.2 Initializing Account Objects When They’re
Created 86

3. 3.4.3 Account UML Class Diagram with a
Constructor 88

E. 3.5 Software Engineering with Set and Get Member
Functions 88

F. 3.6 Account Class with a Balance; Data Validation 89
1. 3.6.1 Data Member balance 89
2. 3.6.2 Two-Parameter Constructor with

Validation 91
3. 3.6.3 deposit Member Function with Validation

91
4. 3.6.4 getBalance Member Function 91

5. 3.6.5 Manipulating Account Objects with
Balances 92

6. 3.6.6 Account UML Class Diagram with a
Balance and Member Functions deposit and
getBalance 94

G. 3.7 Wrap-Up 94

4. 4 Algorithm Development and Control Statements: Part 1
103

A. 4.1 Introduction 104
B. 4.2 Algorithms 105
C. 4.3 Pseudocode 105
D. 4.4 Control Structures 106

1. 4.4.1 Sequence Structure 106
2. 4.4.2 Selection Statements 108
3. 4.4.3 Iteration Statements 108
4. 4.4.4 Summary of Control Statements 109

E. 4.5 if Single-Selection Statement 109
F. 4.6 if… else Double-Selection Statement 110

1. 4.6.1 Nested if… else Statements 111
2. 4.6.2 Dangling- else Problem 113
3. 4.6.3 Blocks 113
4. 4.6.4 Conditional Operator (?:) 114

G. 4.7 Student Class: Nested if… else Statements 115

H. 4.8 while Iteration Statement 117
I. 4.9 Formulating Algorithms: Counter-Controlled

Iteration 119
1. 4.9.1 Pseudocode Algorithm with Counter-

Controlled Iteration 119
2. 4.9.2 Implementing Counter-Controlled

Iteration 120
3. 4.9.3 Notes on Integer Division and Truncation

122
4. 4.9.4 Arithmetic Overflow 122
5. 4.9.5 Input Validation 123

J. 4.10 Formulating Algorithms: Sentinel-Controlled
Iteration 123

1. 4.10.1 Top-Down, Stepwise Refinement: The
Top and First Refinement 124

2. 4.10.2 Proceeding to the Second Refinement
124

3. 4.10.3 Implementing Sentinel-Controlled
Iteration 126

4. 4.10.4 Converting Between Fundamental
Types Explicitly and Implicitly 129

5. 4.10.5 Formatting Floating-Point Numbers 130
6. 4.10.6 Unsigned Integers and User Input 130

K. 4.11 Formulating Algorithms: Nested Control
Statements 131

1. 4.11.1 Problem Statement 131

2. 4.11.2 Top-Down, Stepwise Refinement:
Pseudocode Representation of the Top 132

3. 4.11.3 Top-Down, Stepwise Refinement: First
Refinement 132

4. 4.11.4 Top-Down, Stepwise Refinement:
Second Refinement 132

5. 4.11.5 Complete Second Refinement of the
Pseudocode 133

6. 4.11.6 Program That Implements the
Pseudocode Algorithm 134

7. 4.11.7 Preventing Narrowing Conversions with
List Initialization 135

L. 4.12 Compound Assignment Operators 136
M. 4.13 Increment and Decrement Operators 137
N. 4.14 Fundamental Types Are Not Portable 140
O. 4.15 Wrap-Up 140

5. 5 Control Statements: Part 2; Logical Operators 159
A. 5.1 Introduction 160
B. 5.2 Essentials of Counter-Controlled Iteration 160
C. 5.3 for Iteration Statement 161
D. 5.4 Examples Using the for Statement 165
E. 5.5 Application: Summing Even Integers 166
F. 5.6 Application: Compound-Interest Calculations 167
G. 5.7 Case Study: Integer-Based Monetary

Calculations with Class DollarAmount 171
1. 5.7.1 Demonstrating Class DollarAmount 172

2. 5.7.2 Class DollarAmount 175

H. 5.8 do… while Iteration Statement 179
I. 5.9 switch Multiple-Selection Statement 180
J. 5.10 break and continue Statements 186

1. 5.10.1 break Statement 186
2. 5.10.2 continue Statement 187

K. 5.11 Logical Operators 188
1. 5.11.1 Logical AND (&&) Operator 188
2. 5.11.2 Logical OR (||) Operator 189
3. 5.11.3 Short-Circuit Evaluation 190
4. 5.11.4 Logical Negation (!) Operator 190
5. 5.11.5 Logical Operators Example 191

L. 5.12 Confusing the Equality (==) and Assignment (=)
Operators 192

M. 5.13 Structured-Programming Summary 194
N. 5.14 Wrap-Up 199

6. 6 Functions and an Introduction to Recursion 211
A. 6.1 Introduction 212
B. 6.2 Program Components in C++ 213
C. 6.3 Math Library Functions 214
D. 6.4 Function Prototypes 215
E. 6.5 Function-Prototype and Argument-Coercion

Notes 218

1. 6.5.1 Function Signatures and Function
Prototypes 219

2. 6.5.2 Argument Coercion 219
3. 6.5.3 Argument-Promotion Rules and Implicit

Conversions 219

F. 6.6 C++ Standard Library Headers 220
G. 6.7 Case Study: Random-Number Generation 222

1. 6.7.1 Rolling a Six-Sided Die 223
2. 6.7.2 Rolling a Six-Sided Die 60,000,000 Times

224
3. 6.7.3 Randomizing the Random-Number

Generator with srand 225
4. 6.7.4 Seeding the Random-Number Generator

with the Current Time 227
5. 6.7.5 Scaling and Shifting Random Numbers

227

H. 6.8 Case Study: Game of Chance; Introducing
Scoped enums 228

I. 6.9 C++11 Random Numbers 232
J. 6.10 Scope Rules 233
K. 6.11 Function-Call Stack and Activation Records 237
L. 6.12 Inline Functions 241

M. 6.13 References and Reference Parameters 242
N. 6.14 Default Arguments 245
O. 6.15 Unary Scope Resolution Operator 247
P. 6.16 Function Overloading 248

Q. 6.17 Function Templates 251
R. 6.18 Recursion 254
S. 6.19 Example Using Recursion: Fibonacci Series 257
T. 6.20 Recursion vs. Iteration 260
U. 6.21 Wrap-Up 263

7. 7 Class Templates array and vector ; Catching Exceptions
283

A. 7.1 Introduction 284
B. 7.2 arrays 284
C. 7.3 Declaring arrays 286
D. 7.4 Examples Using arrays 286

1. 7.4.1 Declaring an array and Using a Loop to
Initialize the array ’s Elements 287

2. 7.4.2 Initializing an array in a Declaration with
an Initializer List 288

3. 7.4.3 Specifying an array ’s Size with a
Constant Variable and Setting array Elements
with Calculations 289

4. 7.4.4 Summing the Elements of an array 290
5. 7.4.5 Using a Bar Chart to Display array Data

Graphically 291
6. 7.4.6 Using the Elements of an array as

Counters 292
7. 7.4.7 Using arrays to Summarize Survey

Results 293

8. 7.4.8 Static Local arrays and Automatic Local
arrays 296

E. 7.5 Range-Based for Statement 298
F. 7.6 Case Study: Class GradeBook Using an array to

Store Grades 300
G. 7.7 Sorting and Searching arrays 306

1. 7.7.1 Sorting 306
2. 7.7.2 Searching 306
3. 7.7.3 Demonstrating Functions sort and

binary_search 306

H. 7.8 Multidimensional arrays 307
I. 7.9 Case Study: Class GradeBook Using a Two-

Dimensional array 311
J. 7.10 Introduction to C++ Standard Library Class

Template vector 317
K. 7.11 Wrap-Up 323

8. 8 Pointers 339
A. 8.1 Introduction 340
B. 8.2 Pointer Variable Declarations and Initialization

341
1. 8.2.1 Declaring Pointers 341
2. 8.2.2 Initializing Pointers 342
3. 8.2.3 Null Pointers Prior to C++11 342

C. 8.3 Pointer Operators 342
1. 8.3.1 Address (&) Operator 342
2. 8.3.2 Indirection (*) Operator 343
3. 8.3.3 Using the Address (&) and Indirection (*)

Operators 344

D. 8.4 Pass-by-Reference with Pointers 345
E. 8.5 Built-In Arrays 349

1. 8.5.1 Declaring and Accessing a Built-In Array
349

2. 8.5.2 Initializing Built-In Arrays 350
3. 8.5.3 Passing Built-In Arrays to Functions 350
4. 8.5.4 Declaring Built-In Array Parameters 351
5. 8.5.5 C++11: Standard Library Functions begin

and end 351
6. 8.5.6 Built-In Array Limitations 351
7. 8.5.7 Built-In Arrays Sometimes Are Required

352

F. 8.6 Using const with Pointers 352
1. 8.6.1 Nonconstant Pointer to Nonconstant

Data 353
2. 8.6.2 Nonconstant Pointer to Constant Data

353
3. 8.6.3 Constant Pointer to Nonconstant Data

354
4. 8.6.4 Constant Pointer to Constant Data 355

G. 8.7 sizeof Operator 356
H. 8.8 Pointer Expressions and Pointer Arithmetic 358

1. 8.8.1 Adding Integers to and Subtracting
Integers from Pointers 359

2. 8.8.2 Subtracting Pointers 360
3. 8.8.3 Pointer Assignment 361
4. 8.8.4 Cannot Dereference a void* 361
5. 8.8.5 Comparing Pointers 361

I. 8.9 Relationship Between Pointers and Built-In
Arrays 361

1. 8.9.1 Pointer/Offset Notation 362
2. 8.9.2 Pointer/Offset Notation with the Built-In

Array’s Name as the Pointer 362
3. 8.9.3 Pointer/Subscript Notation 362
4. 8.9.4 Demonstrating the Relationship Between

Pointers and Built-In Arrays 363

J. 8.10 Pointer-Based Strings (Optional) 364
K. 8.11 Note About Smart Pointers 367
L. 8.12 Wrap-Up 367

9. 9 Classes: A Deeper Look 385
A. 9.1 Introduction 386
B. 9.2 Time Class Case Study: Separating Interface from

Implementation 387
1. 9.2.1 Interface of a Class 388

2. 9.2.2 Separating the Interface from the
Implementation 388

3. 9.2.3 Time Class Definition 388
4. 9.2.4 Time Class Member Functions 390
5. 9.2.5 Scope Resolution Operator (::) 391
6. 9.2.6 Including the Class Header in the

Source-Code File 391
7. 9.2.7 Time Class Member Function setTime and

Throwing Exceptions 392
8. 9.2.8 Time Class Member Function

toUniversalString and String Stream
Processing 392

9. 9.2.9 Time Class Member Function
toStandardString 393

10. 9.2.10 Implicitly Inlining Member Functions
393

11. 9.2.11 Member Functions vs. Global Functions
393

12. 9.2.12 Using Class Time 394
13. 9.2.13 Object Size 396

C. 9.3 Compilation and Linking Process 396
D. 9.4 Class Scope and Accessing Class Members 398
E. 9.5 Access Functions and Utility Functions 399
F. 9.6 Time Class Case Study: Constructors with

Default Arguments 399

1. 9.6.1 Constructors with Default Arguments
399

2. 9.6.2 Overloaded Constructors and C++11
Delegating Constructors 404

G. 9.7 Destructors 405
H. 9.8 When Constructors and Destructors Are Called

405
1. 9.8.1 Constructors and Destructors for

Objects in Global Scope 406
2. 9.8.2 Constructors and Destructors for Non-

static Local Objects 406
3. 9.8.3 Constructors and Destructors for static

Local Objects 406
4. 9.8.4 Demonstrating When Constructors and

Destructors Are Called 406

I. 9.9 Time Class Case Study: A Subtle Trap—
Returning a Reference or a Pointer to a private Data
Member 409

J. 9.10 Default Memberwise Assignment 411
K. 9.11 const Objects and const Member Functions 413
L. 9.12 Composition: Objects as Members of Classes

415
M. 9.13 friend Functions and friend Classes 421
N. 9.14 Using the this Pointer 423

1. 9.14.1 Implicitly and Explicitly Using the this
Pointer to Access an Object’s Data Members
424

2. 9.14.2 Using the this Pointer to Enable
Cascaded Function Calls 425

O. 9.15 static Class Members 429
1. 9.15.1 Motivating Classwide Data 429
2. 9.15.2 Scope and Initialization of static Data

Members 429
3. 9.15.3 Accessing static Data Members 430
4. 9.15.4 Demonstrating static Data Members

430

P. 9.16 Wrap-Up 433

10. 10 Operator Overloading; Class string 447
A. 10.1 Introduction 448
B. 10.2 Using the Overloaded Operators of Standard

Library Class string 449
C. 10.3 Fundamentals of Operator Overloading 453

1. 10.3.1 Operator Overloading Is Not Automatic
453

2. 10.3.2 Operators That You Do Not Have to
Overload 453

3. 10.3.3 Operators That Cannot Be Overloaded
454

4. 10.3.4 Rules and Restrictions on Operator
Overloading 454

D. 10.4 Overloading Binary Operators 455
E. 10.5 Overloading the Binary Stream Insertion and

Stream Extraction Operators 455
F. 10.6 Overloading Unary Operators 459
G. 10.7 Overloading the Increment and Decrement

Operators 460
H. 10.8 Case Study: A Date Class 461
I. 10.9 Dynamic Memory Management 466
J. 10.10 Case Study: Array Class 468

1. 10.10.1 Using the Array Class 469
2. 10.10.2 Array Class Definition 473

K. 10.11 Operators as Member vs. Non-Member
Functions 480

L. 10.12 Converting Between Types 481
M. 10.13 explicit Constructors and Conversion

Operators 482
N. 10.14 Overloading the Function Call Operator () 485
O. 10.15 Wrap-Up 485

11. 11 Object-Oriented Programming: Inheritance 497
A. 11.1 Introduction 498
B. 11.2 Base Classes and Derived Classes 499

1. 11.2.1 CommunityMember Class Hierarchy 499

2. 11.2.2 Shape Class Hierarchy 500

C. 11.3 Relationship between Base and Derived
Classes 501

1. 11.3.1 Creating and Using a CommissionEmployee
Class 501

2. 11.3.2 Creating a BasePlusCommissionEmployee
Class Without Using Inheritance 506

3. 11.3.3 Creating a
CommissionEmployee– BasePlusCommissionEmployee

Inheritance Hierarchy 511
4. 11.3.4

CommissionEmployee– BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Data
515

5. 11.3.5
CommissionEmployee– BasePlusCommissionEmployee

Inheritance Hierarchy Using private Data 519

D. 11.4 Constructors and Destructors in Derived
Classes 523

E. 11.5 public , protected and private Inheritance 525
F. 11.6 Wrap-Up 526

12. 12 Object-Oriented Programming: Polymorphism 531
A. 12.1 Introduction 532

B. 12.2 Introduction to Polymorphism: Polymorphic
Video Game 533

C. 12.3 Relationships Among Objects in an Inheritance
Hierarchy 534

1. 12.3.1 Invoking Base-Class Functions from
Derived-Class Objects 534

2. 12.3.2 Aiming Derived-Class Pointers at Base-
Class Objects 537

3. 12.3.3 Derived-Class Member-Function Calls
via Base-Class Pointers 538

D. 12.4 Virtual Functions and Virtual Destructors 540
1. 12.4.1 Why virtual Functions Are Useful 540
2. 12.4.2 Declaring virtual Functions 540
3. 12.4.3 Invoking a virtual Function Through a

Base-Class Pointer or Reference 541
4. 12.4.4 Invoking a virtual Function Through an

Object’s Name 541
5. 12.4.5 virtual Functions in the

CommissionEmployee Hierarchy 541
6. 12.4.6 virtual Destructors 546
7. 12.4.7 C++11: final Member Functions and

Classes 546

E. 12.5 Type Fields and switch Statements 547
F. 12.6 Abstract Classes and Pure virtual Functions

547

1. 12.6.1 Pure virtual Functions 548
2. 12.6.2 Device Drivers: Polymorphism in

Operating Systems 549

G. 12.7 Case Study: Payroll System Using
Polymorphism 549

1. 12.7.1 Creating Abstract Base Class Employee
550

2. 12.7.2 Creating Concrete Derived Class
SalariedEmployee 553

3. 12.7.3 Creating Concrete Derived Class
CommissionEmployee 556

4. 12.7.4 Creating Indirect Concrete Derived
Class BasePlusCommissionEmployee 558

5. 12.7.5 Demonstrating Polymorphic Processing
560

H. 12.8 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood” 563

I. 12.9 Case Study: Payroll System Using
Polymorphism and Runtime Type Information with
Downcasting, dynamic_cast , typeid and type_info 567

J. 12.10 Wrap-Up 570

13. 13 Stream Input/Output: A Deeper Look 577
A. 13.1 Introduction 578
B. 13.2 Streams 579

1. 13.2.1 Classic Streams vs. Standard Streams

579
2. 13.2.2 iostream Library Headers 580
3. 13.2.3 Stream Input/Output Classes and

Objects 580

C. 13.3 Stream Output 581
1. 13.3.1 Output of char* Variables 581
2. 13.3.2 Character Output Using Member

Function put 582

D. 13.4 Stream Input 582
1. 13.4.1 get and getline Member Functions 583
2. 13.4.2 istream Member Functions peek , putback

and ignore 586
3. 13.4.3 Type-Safe I/O 586

E. 13.5 Unformatted I/O Using read , write and gcount
586

F. 13.6 Stream Manipulators: A Deeper Look 587
1. 13.6.1 Integral Stream Base: dec , oct , hex and

setbase 588
2. 13.6.2 Floating-Point Precision (precision ,

setprecision) 588
3. 13.6.3 Field Width (width , setw) 590
4. 13.6.4 User-Defined Output Stream

Manipulators 591

G. 13.7 Stream Format States and Stream Manipulators
592

1. 13.7.1 Trailing Zeros and Decimal Points
(showpoint) 593

2. 13.7.2 Justification (left , right and internal)
594

3. 13.7.3 Padding (fill , setfill) 595
4. 13.7.4 Integral Stream Base (dec , oct , hex ,

showbase) 597
5. 13.7.5 Floating-Point Numbers; Scientific and

Fixed Notation (scientific , fixed) 597
6. 13.7.6 Uppercase/Lowercase Control

(uppercase) 598
7. 13.7.7 Specifying Boolean Format (boolalpha)

599
8. 13.7.8 Setting and Resetting the Format State

via Member Function flags 600

H. 13.8 Stream Error States 601
I. 13.9 Tying an Output Stream to an Input Stream 604
J. 13.10 Wrap-Up 605

14. 14 File Processing 615
A. 14.1 Introduction 616
B. 14.2 Files and Streams 616
C. 14.3 Creating a Sequential File 617

1. 14.3.1 Opening a File 618

2. 14.3.2 Opening a File via the open Member
Function 619

3. 14.3.3 Testing Whether a File Was Opened
Successfully 619

4. 14.3.4 Overloaded bool Operator 620
5. 14.3.5 Processing Data 620
6. 14.3.6 Closing a File 620
7. 14.3.7 Sample Execution 621

D. 14.4 Reading Data from a Sequential File 621
1. 14.4.1 Opening a File for Input 622
2. 14.4.2 Reading from the File 622
3. 14.4.3 File-Position Pointers 622
4. 14.4.4 Case Study: Credit Inquiry Program 623

E. 14.5 C++14: Reading and Writing Quoted Text 626
F. 14.6 Updating Sequential Files 627
G. 14.7 Random-Access Files 628
H. 14.8 Creating a Random-Access File 629

1. 14.8.1 Writing Bytes with ostream Member
Function write 629

2. 14.8.2 Converting Between Pointer Types with
the reinterpret_cast Operator 629

3. 14.8.3 Credit-Processing Program 630
4. 14.8.4 Opening a File for Output in Binary

Mode 633

I. 14.9 Writing Data Randomly to a Random-Access
File 633

1. 14.9.1 Opening a File for Input and Output in
Binary Mode 635

2. 14.9.2 Positioning the File-Position Pointer 635

J. 14.10 Reading from a Random-Access File
Sequentially 635

K. 14.11 Case Study: A Transaction-Processing
Program 637

L. 14.12 Object Serialization 643
M. 14.13 Wrap-Up 644

15. 15 Standard Library Containers and Iterators 655
A. 15.1 Introduction 656
B. 15.2 Introduction to Containers 658
C. 15.3 Introduction to Iterators 662
D. 15.4 Introduction to Algorithms 667
E. 15.5 Sequence Containers 667

1. 15.5.1 vector Sequence Container 668
2. 15.5.2 list Sequence Container 675
3. 15.5.3 deque Sequence Container 680

F. 15.6 Associative Containers 681
1. 15.6.1 multiset Associative Container 682
2. 15.6.2 set Associative Container 685
3. 15.6.3 multimap Associative Container 687

4. 15.6.4 map Associative Container 689

G. 15.7 Container Adapters 690
1. 15.7.1 stack Adapter 691
2. 15.7.2 queue Adapter 693
3. 15.7.3 priority_queue Adapter 694

H. 15.8 Class bitset 695
I. 15.9 Wrap-Up 697

16. 16 Standard Library Algorithms 707
A. 16.1 Introduction 708
B. 16.2 Minimum Iterator Requirements 708
C. 16.3 Lambda Expressions 710

1. 16.3.1 Algorithm for_each 711
2. 16.3.2 Lambda with an Empty Introducer 711
3. 16.3.3 Lambda with a Nonempty Introducer—

Capturing Local Variables 712
4. 16.3.4 Lambda Return Types 712

D. 16.4 Algorithms 712
1. 16.4.1 fill , fill_n , generate and generate_n

712
2. 16.4.2 equal , mismatch and

lexicographical_compare 715
3. 16.4.3 remove , remove_if , remove_copy and

remove_copy_if 718

4. 16.4.4 replace , replace_if , replace_copy and
replace_copy_if 721

5. 16.4.5 Mathematical Algorithms 723
6. 16.4.6 Basic Searching and Sorting

Algorithms 726
7. 16.4.7 swap , iter_swap and swap_ranges 731
8. 16.4.8 copy_backward , merge , unique and reverse

732
9. 16.4.9 inplace_merge , unique_copy and

reverse_copy 735
10. 16.4.10 Set Operations 737
11. 16.4.11 lower_bound , upper_bound and

equal_range 740
12. 16.4.12 min , max , minmax and minmax_element 742

E. 16.5 Function Objects 744
F. 16.6 Standard Library Algorithm Summary 747
G. 16.7 Wrap-Up 749

17. 17 Exception Handling: A Deeper Look 757
A. 17.1 Introduction 758
B. 17.2 Exception-Handling Flow of Control; Defining

an Exception Class 759
1. 17.2.1 Defining an Exception Class to

Represent the Type of Problem That Might
Occur 759

2. 17.2.2 Demonstrating Exception Handling 760

3. 17.2.3 Enclosing Code in a try Block 761
4. 17.2.4 Defining a catch Handler to Process a

DivideByZeroException 762
5. 17.2.5 Termination Model of Exception

Handling 762
6. 17.2.6 Flow of Program Control When the User

Enters a Nonzero Denominator 763
7. 17.2.7 Flow of Program Control When the User

Enters a Denominator of Zero 763

C. 17.3 Rethrowing an Exception 764
D. 17.4 Stack Unwinding 766
E. 17.5 When to Use Exception Handling 767
F. 17.6 noexcept : Declaring Functions That Do Not

Throw Exceptions 768
G. 17.7 Constructors, Destructors and Exception

Handling 768
1. 17.7.1 Destructors Called Due to Exceptions

768
2. 17.7.2 Initializing Local Objects to Acquire

Resources 769

H. 17.8 Processing new Failures 769
1. 17.8.1 new Throwing bad_alloc on Failure 769
2. 17.8.2 new Returning nullptr on Failure 770
3. 17.8.3 Handling new Failures Using Function

set_new_handler 771

I. 17.9 Class unique_ptr and Dynamic Memory
Allocation 772

1. 17.9.1 unique_ptr Ownership 774
2. 17.9.2 unique_ptr to a Built-In Array 775

J. 17.10 Standard Library Exception Hierarchy 775
K. 17.11 Wrap-Up 777

18. 18 Introduction to Custom Templates 783
A. 18.1 Introduction 784
B. 18.2 Class Templates 785

1. 18.2.1 Creating Class Template Stack<T> 786
2. 18.2.2 Class Template Stack<T> ’s Data

Representation 787
3. 18.2.3 Class Template Stack<T> ’s Member

Functions 787
4. 18.2.4 Declaring a Class Template’s Member

Functions Outside the Class Template
Definition 788

5. 18.2.5 Testing Class Template Stack<T> 788

C. 18.3 Function Template to Manipulate a Class-
Template Specialization Object 790

D. 18.4 Nontype Parameters 792
E. 18.5 Default Arguments for Template Type

Parameters 792
F. 18.6 Overloading Function Templates 793

G. 18.7 Wrap-Up 793

19. 19 Custom Templatized Data Structures 797
A. 19.1 Introduction 798

1. 19.1.1 Always Prefer the Standard Library’s
Containers, Iterators and Algorithms, if
Possible 799

2. 19.1.2 Special Section: Building Your Own
Compiler 799

B. 19.2 Self-Referential Classes 799
C. 19.3 Linked Lists 800

1. 19.3.1 Testing Our Linked List Implementation
802

2. 19.3.2 Class Template ListNode 805
3. 19.3.3 Class Template List 806
4. 19.3.4 Member Function insertAtFront 809
5. 19.3.5 Member Function insertAtBack 810
6. 19.3.6 Member Function removeFromFront 810
7. 19.3.7 Member Function removeFromBack 811
8. 19.3.8 Member Function print 812
9. 19.3.9 Circular Linked Lists and Double Linked

Lists 813

D. 19.4 Stacks 814
1. 19.4.1 Taking Advantage of the Relationship

Between Stack and List 815

2. 19.4.2 Implementing a Class Template Stack
Class Based By Inheriting from List 815

3. 19.4.3 Dependent Names in Class Templates
816

4. 19.4.4 Testing the Stack Class Template 817
5. 19.4.5 Implementing a Class Template Stack

Class With Composition of a List Object 818

E. 19.5 Queues 819
1. 19.5.1 Applications of Queues 819
2. 19.5.2 Implementing a Class Template Queue

Class Based By Inheriting from List 820
3. 19.5.3 Testing the Queue Class Template 821

F. 19.6 Trees 823
1. 19.6.1 Basic Terminology 823
2. 19.6.2 Binary Search Trees 824
3. 19.6.3 Testing the Tree Class Template 824
4. 19.6.4 Class Template TreeNode 826
5. 19.6.5 Class Template Tree 827
6. 19.6.6 Tree Member Function insertNodeHelper

829
7. 19.6.7 Tree Traversal Functions 829
8. 19.6.8 Duplicate Elimination 830
9. 19.6.9 Overview of the Binary Tree Exercises

830

G. 19.7 Wrap-Up 831

20. 20 Searching and Sorting 841
A. 20.1 Introduction 842
B. 20.2 Searching Algorithms 843

1. 20.2.1 Linear Search 843
2. 20.2.2 Binary Search 846

C. 20.3 Sorting Algorithms 850
1. 20.3.1 Insertion Sort 851
2. 20.3.2 Selection Sort 853
3. 20.3.3 Merge Sort (A Recursive

Implementation) 855

D. 20.4 Wrap-Up 862

21. 21 Class string and String Stream Processing: A Deeper
Look 869

A. 21.1 Introduction 870
B. 21.2 string Assignment and Concatenation 871
C. 21.3 Comparing strings 873
D. 21.4 Substrings 876
E. 21.5 Swapping strings 876
F. 21.6 string Characteristics 877
G. 21.7 Finding Substrings and Characters in a string

880
H. 21.8 Replacing Characters in a string 881

I. 21.9 Inserting Characters into a string 883
J. 21.10 Conversion to Pointer-Based char * Strings 884
K. 21.11 Iterators 886
L. 21.12 String Stream Processing 887

M. 21.13 C++11 Numeric Conversion Functions 890
N. 21.14 Wrap-Up 892

22. 22 Bits, Characters, C Strings and structs 899
A. 22.1 Introduction 900
B. 22.2 Structure Definitions 900
C. 22.3 typedef and using 902
D. 22.4 Example: Card Shuffling and Dealing Simulation

902
E. 22.5 Bitwise Operators 905
F. 22.6 Bit Fields 914
G. 22.7 Character-Handling Library 918
H. 22.8 C String-Manipulation Functions 923
I. 22.9 C String-Conversion Functions 930
J. 22.10 Search Functions of the C String-Handling

Library 935
K. 22.11 Memory Functions of the C String-Handling

Library 939
L. 22.12 Wrap-Up 943

1. Chapters on the Web 959
2. A Operator Precedence and Associativity 961
3. B ASCII Character Set 963
4. C Fundamental Types 965

5. D Number Systems 967
A. D.1 Introduction 968
B. D.2 Abbreviating Binary Numbers as Octal and

Hexadecimal Numbers 971
C. D.3 Converting Octal and Hexadecimal Numbers to

Binary Numbers 972
D. D.4 Converting from Binary, Octal or Hexadecimal to

Decimal 972
E. D.5 Converting from Decimal to Binary, Octal or

Hexadecimal 973
F. D.6 Negative Binary Numbers: Two’s Complement

Notation 975

6. E Preprocessor 981
A. E.1 Introduction 982
B. E.2 #include Preprocessing Directive 982
C. E.3 #define Preprocessing Directive: Symbolic

Constants 983
D. E.4 #define Preprocessing Directive: Macros 983
E. E.5 Conditional Compilation 985
F. E.6 #error and #pragma Preprocessing Directives 987
G. E.7 Operators # and ## 987
H. E.8 Predefined Symbolic Constants 987
I. E.9 Assertions 988
J. E.10 Wrap-Up 988

7. Appendices on the Web 993
8. Index 995

9. Chapters 23–26 and Appendices F–J are PDF documents
posted online at the book’s Companion Website, which is
accessible from

http://www.pearsonhighered.com/deitel

See the inside front cover for more information.
10. 23 Other Topics
11. 24 C++11 and C++14: Additional Features
12. 25 ATM Case Study, Part 1: Object-Oriented Design with

the UM
13. 26 ATM Case Study, Part 2: Implementing an Object-

Oriented Design
14. F C Legacy Code Topics
15. G UML: Additional Diagram Types
16. H Using the Visual Studio Debugger
17. I Using the GNU C++ Debugger
18. J Using the Xcode Debugger

Preface
Welcome to the C++ computer programming language and C++ How
to Program, Tenth Edition. We believe that this book and its support
materials will give you an informative, challenging and entertaining
introduction to C++. The book presents leading-edge computing
technologies in a friendly manner appropriate for introductory college
course sequences, based on the curriculum recommendations of two
key professional organizations—the ACM and the IEEE.1

1. Computer Science Curricula 2013 Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science, December
20, 2013, The Joint Task Force on Computing Curricula, Association
for Computing Machinery (ACM), IEEE Computer Society.

If you haven’t already done so, please read the back cover and check
out the additional reviewer comments on the inside back cover and
the facing page—these capture the essence of the book concisely. In
this Preface we provide more detail for students, instructors and
professionals.

At the heart of the book is the Deitel signature live-code approach—
we present most concepts in the context of complete working
programs followed by sample executions, rather than in code
snippets. Read the Before You Begin section to learn how to set up

your Linux-based, Windows-based or Apple OS X-based computer to
run the hundreds of code examples. All the source code is available at

http://www.deitel.com/books/cpphtp10

and

http://www.pearsonhighered.com/deitel

Use the source code we provide to run each program as you study it.

http://www.deitel.com/books/cpphtp10

Contacting the Authors

As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly. For book updates, visit

http://www.deitel.com/books/cpphtp10

mailto://deitel@deitel.com
http://www.deitel.com/books/cpphtp10

Join the Deitel & Associates, Inc.
Social Media Communities

Join the Deitel social media communities on

Facebook — http://facebook.com/DeitelFan

LinkedIn — http://bit.ly/DeitelLinkedIn

Twitter — http://twitter.com/deitel

Google+ — http://google.com/+DeitelFan

YouTube — http://youtube.com/DeitelTV

and subscribe to the Deitel Buzz Online newsletter

http://www.deitel.com/newsletter/subscribe.html

®

®

®

™

®

®

http://facebook.com/DeitelFan
http://bit.ly/DeitelLinkedIn
http://twitter.com/deitel
http://google.com.ezproxy.cul.columbia.edu/+DeitelFan
http://youtube.com/DeitelTV
http://www.deitel.com/newsletter/subscribe.html

The C++11 and C++14 Standards

These are exciting times in the programming languages community
with each of the major languages striving to keep pace with
compelling new programming technologies. In the three decades of
C++’s development prior to 2011, only a few new versions of the
language were released. Now the ISO C++ Standards Committee is
committed to releasing a new standard every three years and the
compiler vendors are building in the new features promptly. C++ How
to Program, 10/e is based on the C++11 and C++14 standards
published in 2011 and 2014, respectively. C++17 is already under
active development. Throughout the book, C++11 and C++14 features
are marked with the “11” and “14” icons, respectively, that you see
here in the margin. Fig. 1 lists the book’s first references to the 77
C++11 and C++14 features we discuss.

11 14

Fig. 1 First references to C++11 and C++14 features in C++ How
to Program, 10/e.

C++11 and C++14 features in C++ How to Program, 10/e

Chapter 3

In-class initializers

Chapter 4

Keywords new in C++11

Chapter 5

long long int type

Chapter 6

Non-deterministic random number generation
Scoped enum s

Specifying the type of an enum 's constants

Unsigned long long int

Using ' to separate groups of digits in a numeric literals (C++14)

Chapter 7

array container

auto for type inference

List initializing a vector

Range-based for statement

Chapter 8

begin / end functions

nullptr

Chapter 9

Delegating constructors

Chapter 10

delete d member functions

explicit conversion operators

List initializing a dynamically allocated array
List initializers in constructor calls
string object literals (C++14)

Chapter 11

final classes

final member functions

Inheriting base-class constructors

Chapter 12

default ed member functions

override keyword

Chapter 13

operator bool for streams

Chapter 14

quoted stream manipulator (C++14)

string objects for file names

Chapter 15

cbegin / cend container member functions

Compiler fix for >> in template types

crbegin / crend container member functions

forward_list container

Global functions cbegin / cend , rbegin / rend and crbegin / crend (C++14)

Heterogeneous lookup in associative containers (C++14)

Immutable keys in associative containers
insert container member functions return iterators

Key–value pair list initialization
List initialization of pair s

Return value list initialization
shrink_to_fit vector/deque member function

Chapter 16

all_of algorithm

any_of algorithm

copy_if algorithm

copy_n algorithm

equal algorithm that accepts two ranges (C++14)

find_if_not algorithm

Generic lambdas (C++14)
Lambda expressions
min and max algorithms with initializer_list parameters

minmax algorithm

minmax_element algorithm

mismatch algorithm that accepts two ranges (C++14)

none_of algorithm

random_shuffle is deprecated (C++14)—replaced with shuffle

swap non-member function

Chapter 17

make_unique to create a unique_ptr (C++14)

noexcept

unique_ptr smart pointer

Chapter 18

Default type arguments in function templates

Chapter 21

Numeric conversion functions

Chapter 22

Binary literals (C++14)

Chapter 24

Aggregate member initialization (C++14)
auto and decltype(auto) on return types (C++14)

constexpr updated (C++14)

decltype

move algorithm

Move assignment operators
move_backward algorithm

Move constructors
Regular expressions
Rvalue references
shared_ptr smart pointer

static_assert objects for file names

Trailing return types for functions

tuple variadic template

tuple addressing via type (C++14)

weak_ptr smart pointer

Key Features of C++ How to
Program, 10/e

Conforms to the C++11 standard and the new C++14 standard.
Code thoroughly tested on three popular industrial-strength C++14
compilers. We tested the code examples on GNU™ C++ 5.2.1,
Microsoft Visual Studio 2015 Community edition and Apple

Clang/LLVM in Xcode 7.
Smart pointers. Smart pointers help you avoid dynamic memory
management errors by providing additional functionality beyond
that of built-in pointers. We discuss unique_ptr in Chapter 17, and
shared_ptr and weak_ptr in Chapter 24.
Early coverage of Standard Library containers, iterators and
algorithms, enhanced with C++11 and C++14 capabilities. The
treatment of Standard Library containers, iterators and algorithms
in Chapters 15 and 16 has been enhanced with additional C++11
and C++14 features. The vast majority of your data structure
needs can be fulfilled by reusing these Standard Library
capabilities. We’ll show you how to build your own custom data
structures in Chapter 19.
Online Chapter 24, C++11 and C++14 Additional Topics. This
chapter includes discussions of regular expressions, shared_ptr
and weak_ptr smart pointers, move semantics, multithreading,
tuples, decltype , constexpr and more (see Fig. 1).

® ® ®

®

Random-number generation, simulation and game playing. To help
make programs more secure, we include a treatment of C++11’s
non-deterministic random-number generation capabilities.
Pointers. We provide thorough coverage of the built-in pointer
capabilities and the intimate relationship among built-in pointers, C
strings and built-in arrays.
Visual presentation of searching and sorting, with a simple
explanation of Big O.
Printed book contains core content; additional content is online.
Several online chapters and appendices are included. These are
available in searchable PDF format on the book’s password-
protected Companion Website—see the access card information
on the inside front cover.
Getting Started Videos. At http://www.deitel.com/books/cpphtp10 ,
we provide links to our getting-started videos that help readers
begin using Microsoft Visual Studio 2015 Community edition on
Windows, Apple Xcode on OS X and GNU C++ on Linux.
Debugger appendices. On the book’s Companion Website we
provide Appendix H, Using the Visual Studio Debugger, Appendix
I, Using the GNU C++ Debugger and Appendix J, Using the Xcode
Debugger.

http://www.deitel.com/books/cpphtp10

New in This Edition

Discussions of the new C++14 capabilities.
Further integration of C++11 capabilities into the code examples,
because the latest compilers are now supporting these features.
Uniform initialization with list initializer syntax.
Always using braces in control statements, even for single-
statement bodies:

if (condition) {

 single-statement or multi-statement body

}

Replaced the Gradebook class with Account , Student and
DollarAmount class case studies in Chapters 3, 4 and 5,
respectively. DollarAmount processes monetary amounts precisely
for business applications.
C++14 digit separators in large numeric literals.
Type &x is now Type & x in accordance with industry idiom.
Type *x is now Type * x in accordance with industry idiom.
Using C++11 scoped enums rather than traditional C enums.
We brought our terminology in line with the C++ standard.
Key terms in summaries now appear in bold for easy reference.

Removed extra spaces inside [] , () , <> and {} delimiters.
Replaced most print member functions with toString member
functions to make classes more flexible—for example, returning a
string gives the client code the option of displaying it on the
screen, writing it to a file, concatenating it with other strings, etc.
Now using ostringstream to create formatted strings for items like
the string representations of a Time , rather than outputting
formatted data directly to the standard output.
For simplicity, we deferred using the three-file architecture from
Chapter 3 to Chapter 9, so all early class examples define the
entire class in a header.
We reimplement Chapter 10’s Array class operator-overloading
example with unique_ptrs in Chapter 24. Using raw pointers and
dynamic-memory allocation with new and delete is a source of
subtle programming errors, especially “memory leaks”— unique_ptr

and the other smart pointer types help prevent such errors.
Using lambdas rather than function pointers in Chapter 16,
Standard Library Algorithms. This will get readers comfortable with
lambdas, which can be combined with various Standard Library
algorithms to perform functional programming in C++. We’re
planning a more in-depth treatment of functional programming for
C++ How to Program, 11/e.
Enhanced Chapter 24 with additional C++14 features.

Object-Oriented Programming

Early-objects approach. The book introduces the basic concepts
and terminology of object technology in Chapter 1. You’ll develop
your first customized classes and objects in Chapter 3. We worked
hard to make this chapter especially accessible to novices.
Presenting objects and classes early gets you “thinking about
objects” immediately and mastering these concepts more
thoroughly.2
2. For courses that require a late-objects approach, consider our
pre-C++11 book C++ How to Program, Late Objects Version,
which begins with six chapters on programming fundamentals
(including two on control statements) and continues with seven
chapters that gradually introduce object-oriented programming
concepts.

C++ Standard Library string. C++ offers two types of strings
— string class objects (which we begin using in Chapter 3) and C-
style pointer-based strings. We’ve replaced most occurrences of C
strings with instances of C++ class string to make programs more
robust and eliminate many of the security problems of C strings.
We continue to discuss C strings later in the book to prepare you
for working with the legacy code in industry. In new development,
you should favor string objects.

C++ Standard Library array. C++ offers three types of arrays
— arrays and vectors (which we start using in Chapter 7) and C-
style, pointer-based arrays which we discuss in Chapter 8. Our
primary treatment of arrays uses the Standard Library’s array and
vector class templates instead of built-in, C-style, pointer-based
arrays. We still cover built-in arrays because they remain useful in
C++ and so that you’ll be able to read legacy code. In new
development, you should favor class template array and vector
objects.
Crafting valuable classes. A key goal of this book is to prepare you
to build valuable reusable classes. Chapter 10 begins with a test-
drive of class template string so you can see an elegant use of
operator overloading before you implement your own customized
class with overloaded operators. In the Chapter 10 case study,
you’ll build your own custom Array class, then in the Chapter 18
exercises you’ll convert it to a class template. You will have truly
crafted valuable classes.
Case studies in object-oriented programming. We provide several
well-engineered real-world case studies, including the Account
class in Chapter 3, Student class in Chapter 4, DollarAmount class
in Chapter 5, GradeBook class in Chapter 7, the Time class in
Chapter 9, the Employee class in Chapters 11–12 and more.
Optional case study: Using the UML to develop an object-oriented
design and C++ implementation of an ATM. The UML™ (Unified
Modeling Language™) is the industry-standard graphical language
for modeling object-oriented systems. We introduce the UML in the
early chapters. Online Chapters 25 and 26 include an optional

object-oriented design case study using the UML. We design and
fully implement the software for a simple automated teller machine
(ATM). We analyze a typical requirements document that specifies
the system to be built. We determine the classes needed to
implement that system, the attributes the classes need to have, the
behaviors the classes need to exhibit and we specify how objects
of the classes must interact with one another to meet the system
requirements. From the design we produce a complete C++
implementation. Students often report that the case study helps
them “tie it all together” and truly understand object orientation.
Understanding how polymorphism works. Chapter 12 contains a
detailed diagram and explanation of how C++ typically implements
polymorphism, virtual functions and dynamic binding “under the
hood.”
Object-oriented exception handling. We integrate basic exception
handling early in the book (Chapter 7). Instructors can easily pull
more detailed material forward from Chapter 17, Exception
Handling: A Deeper Look.
Custom template-based data structures. We provide a rich multi-
chapter treatment of data structures—see the Data Structures
module in the chapter dependency chart (Fig. 5).
Three programming paradigms. We discuss structured
programming, object-oriented programming and generic
programming.

Hundreds of Code Examples

We include a broad range of example programs selected from
computer science, information technology, business, simulation, game
playing and other topics. The examples are accessible to students in
novice-level and intermediate-level C++ courses (Fig. 2).

Fig. 2 A sampling of the book’s examples.

Examples

Account class

Array class case study

Author class

Bank account program
Bar chart printing program
BasePlusCommissionEmployee class

Binary tree creation and traversal
BinarySearch test program

Card shuffling and dealing
ClientData class

CommissionEmployee class

Comparing strings

Compilation and linking process
Compound interest calculations with for

Converting string objects to C strings

Counter-controlled repetition
Dice game simulation
DollarAmount class

Credit inquiry program
Date class

Downcasting and runtime type information
Employee class

explicit constructor

fibonacci function

fill algorithms

Specializations of function template printArray

generate algorithms

GradeBook Class

Initializing an array in a declaration
Input from an istringstream object

Iterative factorial solution
Lambda expressions
Linked list manipulation
map class template

Mathematical algorithms of the Standard Library
maximum function template

Merge sort program
multiset class template

new throwing bad_alloc on failure

PhoneNumber class

Poll analysis program
Polymorphism demonstration
Preincrementing and postincrementing
priority_queue adapter class

queue adapter class

Random-access files
Random number generation
Recursive function factorial

Rolling a six-sided die 60,000,000 times
SalariedEmployee class

SalesPerson class

Searching and sorting algorithms of the Standard Library
Sequential files
set class template

shared_ptr program

stack adapter class

Stack class

Stack unwinding
Standard Library string class program

Stream manipulator showbase

string assignment and concatenation

string member function substr

Student class

Summing integers with the for statement

Time class

unique_ptr object managing dynamically allocated memory

Validating user input with regular expressions
vector class template

Exercises

Self-Review Exercises and Answers. Extensive self-review
exercises and answers are included for self-study.
Interesting, entertaining and challenging exercises. Each chapter
concludes with a substantial set of exercises, including simple
recall of important terminology and concepts, identifying the errors
in code samples, writing individual program statements, writing
small portions of C++ classes and member and non-member
functions, writing complete programs and implementing major
projects. Figure 3 lists a sampling of the book’s exercises,
including our Making a Difference exercises, which encourage you
to use computers and the Internet to research and work on
significant social problems. We hope you’ll approach these
exercises with your own values, politics and beliefs.

Fig. 3 A sampling of the book’s exercises.

Exercises

Airline Reservations System
Advanced String-Manipulation
Bubble Sort
Building Your Own Compiler
Building Your Own Computer
Calculating Salaries
CarbonFootprint Abstract Class: Polymorphism

Card Shuffling and Dealing

Computer-Assisted Instruction
Computer-Assisted Instruction: Difficulty Levels
Computer-Assisted Instruction: Monitoring Student Performance
Computer-Assisted Instruction: Reducing Student Fatigue
Computer-Assisted Instruction: Varying the Types of Problems
Cooking with Healthier Ingredients
Craps Game Modification
Credit Limits
Crossword Puzzle Generator
Cryptograms
De Morgan’s Laws
Dice Rolling
Eight Queens
Emergency Response
Enforcing Privacy with Cryptography
Facebook User Base Growth
Fibonacci Series
Gas Mileage
Global Warming Facts Quiz
Guess the Number Game
Hangman Game
Health Records
Knight’s Tour
Limericks
Maze Traversal: Generating Mazes Randomly
Morse Code
Payroll System Modification
Peter Minuit Problem
Phishing Scanner
Pig Latin
Polymorphic Banking Program Using Account Hierarchy
Pythagorean Triples
Salary Calculator
Sieve of Eratosthenes

Simple Decryption
Simple Encryption
SMS Language
Spam Scanner
Spelling Checker
Target-Heart-Rate Calculator
Tax Plan Alternatives; The “Fair Tax”
Telephone number word generator
“The Twelve Days of Christmas” Song
Tortoise and the Hare Simulation
Towers of Hanoi
World Population Growth

Illustrations and Figures

Abundant tables, line drawings, UML diagrams, programs and
program outputs are included. A sampling of the book’s drawings and
diagrams is shown in (Fig. 4).

Fig. 4 A sampling of the book’s drawings and diagrams.

Drawings and diagrams

Main text drawings and diagrams
Account class diagrams

Data hierarchy
Multiple-source-file compilation and linking
Order in which a second-degree polynomial is evaluated
if single-selection statement activity diagram

if… else double-selection statement activity diagram

while repetition statement UML activity diagram

for repetition statement UML activity diagram

do… while repetition statement UML activity diagram

switch multiple-selection statement activity diagram

C++’s single-entry/single-exit control statements
Pass-by-value and pass-by-reference analysis
Inheritance hierarchy diagrams
Function-call stack and activation records
Recursive calls to function fibonacci

Pointer arithmetic diagrams
CommunityMember Inheritance hierarchy

Shape inheritance hierarchy

public , protected and private inheritance

Employee hierarchy UML class diagram

How virtual function calls work

Two self-referential class objects linked together
Graphical representation of a list
Operation insertAtFront represented graphically

Operation insertAtBack represented graphically

Operation removeFromFront represented graphically

Operation removeFromBack represented graphically

Circular, singly linked list
Doubly linked list
Circular, doubly linked list
Graphical representation of a binary tree

(Optional) ATM Case Study drawings and diagrams
Use case diagram for the ATM system from the User’s perspective
Class diagram showing an association among classes
Class diagram showing composition relationships
Class diagram for the ATM system model
Classes with attributes
State diagram for the ATM
Activity diagram for a BalanceInquiry transaction

Activity diagram for a Withdrawal transaction

Classes in the ATM system with attributes and operations
Communication diagram of the ATM executing a balance inquiry
Communication diagram for executing a balance inquiry
Sequence diagram that models a Withdrawal executing

Use case diagram for a modified version of our ATM system that also allows users to
transfer money between accounts
Class diagram showing composition relationships of a class Car

Class diagram for the ATM system model including class Deposit

Activity diagram for a Deposit transaction

Sequence diagram that models a Deposit executing

Dependency Chart

C++ How to Program, 10/e is appropriate for most introductory one-
and-two-course programming sequences, often called CS1 and CS2.
The chart in Fig. 5 shows the dependencies among the chapters to
help instructors plan their syllabi. The chart shows the book’s modular
organization.

Teaching Approach

C++ How to Program, 10/e, contains a rich collection of examples. We
stress program clarity and concentrate on building well-engineered
software.

Live-code approach. The book is loaded with “live-code” examples—
most new concepts are presented in complete working C++
applications, followed by one or more executions showing program
inputs and outputs.

Rich early coverage of C++ fundamentals. Chapter 2 provides a
friendly introduction to C++ programming. We include in Chapters 4
and 5 a clear treatment of control statements and algorithm
development.

Fig. 5 Chapter Dependency Chart

Syntax coloring. For readability, we syntax color all the C++ code,
similar to the way most C++ integrated-development environments
and code editors syntax color code. Our coloring conventions are as
follows:

comments appear like this

keywords appear like this

constants and literal values appear like this

all other code appears in black

Code highlighting. We place shaded rectangles around the new
features in each program.

Using fonts for emphasis. We color the defining occurrence of each
key term in bold colored text for easy reference. We emphasize on-
screen components in the bold Helvetica font (e.g., the File menu)
and C++ program text in the Lucida font (for example, int x = 5;).

Objectives. We clearly state the chapter objectives.

Programming tips. We include programming tips to help you focus on
key aspects of program development. These tips and practices

represent the best we’ve gleaned from a combined eight decades of
teaching and industry experience.

 Good Programming Practices
The Good Programming Practices call attention to techniques that will
help you produce programs that are clearer, more understandable and
more maintainable.

 Common Programming Errors
Pointing out these Common Programming Errors reduces the
likelihood that you’ll make them.

 Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from
your programs; many describe aspects of C++ that prevent bugs from
getting into programs in the first place.

 Performance Tips
These tips highlight opportunities for making your programs run faster
or minimizing the amount of memory that they occupy.

 Portability Tips
These tips help you write code that will run on a variety of platforms.

 Software Engineering Observations
These tips highlight architectural and design issues that affect the
construction of software systems, especially large-scale systems.

Summary Bullets. We present a section-by-section, bullet-list
summary of each chapter. Each key term is in bold followed by the
page number of the term’s defining occurrence.

Index. For convenient reference, we’ve included an extensive index,
with defining occurrences of key terms highlighted with a bold page
number.

Secure C++ Programming

It’s difficult to build industrial-strength systems that stand up to attacks
from viruses, worms, and other forms of “malware.” Today, via the
Internet, such attacks can be instantaneous and global in scope.
Building security into software from the beginning of the development
cycle can greatly reduce vulnerabilities.

The CERT Coordination Center (www.cert.org) was created to
analyze and respond promptly to attacks. CERT—the Computer
Emergency Response Team—is a government-funded organization
within the Carnegie Mellon University Software Engineering
Institute™. CERT publishes and promotes secure coding standards
for various popular programming languages to help software
developers implement industrial-strength systems which avoid the
programming practices that leave systems open to attacks.

We’d like to thank Robert C. Seacord, an adjunct professor in the
Carnegie Mellon University School of Computer Science and former
Secure Coding Manager at CERT. Mr. Seacord was a technical
reviewer for our book, C How to Program, 7/e, where he scrutinized
our C programs from a security standpoint, recommending that we
adhere to key guidelines of the CERT C Secure Coding Standard.

We’ve done the same for C++ How to Program, 10/e, adhering to key
guidelines of the CERT C++ Secure Coding Standard, which you can

®

http://www.cert.org

find at:

http://www.securecoding.cert.org

We were pleased to discover that we’ve already been recommending
many of these coding practices in our books since the early 1990s.
We upgraded our code and discussions to conform to these practices,
as appropriate for an introductory/intermediate-level textbook. If you’ll
be building industrial-strength C++ systems, consider reading Secure
Coding in C and C++, Second Edition (Robert Seacord, Addison-
Wesley Professional, 2013).

Online Chapters, Appendices and
Other Content

The book’s Companion Website, which is accessible at

http://www.pearsonhighered.com/deitel

(see the inside front cover for your access key) contains the following
videos as well as chapters and appendices in searchable PDF format:

VideoNotes—The Companion Website (see the inside front cover
for your access key) also includes extensive videos. Watch and
listen as co-author Paul Deitel discusses in-depth the key code
examples from the book’s core programming-fundamentals and
object-oriented-programming chapters.
Chapter 23, Other Topics
Chapter 24, C++11 and C++14 Additional Topics
Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with
the UML
Chapter 26, ATM Case Study, Part 2: Implementing an Object-
Oriented Design
Appendix F, C Legacy Code Topics

Appendix G, UML: Additional Diagram Types
Appendix H, Using the Visual Studio Debugger
Appendix I, Using the GNU C++ Debugger
Appendix J, Using the Xcode Debugger
Building Your Own Compiler exercise descriptions from Chapter
19 (posted at the Companion Website and at http://
www.deitel.com/books/cpphtp10).

http://www.deitel.com/books/cpphtp10

Obtaining the Software Used in
C++ How to Program, 10/e

We wrote the code examples in C++ How to Program, 10/e using the
following free C++ development tools:

Microsoft’s free Visual Studio Community 2015 edition, which
includes Visual C++ and other Microsoft development tools. This
runs on Windows and is available for download at

https://www.visualstudio.com/products/visual-studio-community-

vs

GNU’s free GNU C++ 5.2.1. GNU C++ is already installed on most
Linux systems and can also be installed on Mac OS X and
Windows systems. There are many versions of Linux—known as
Linux distributions—that use different techniques for performing
software upgrades. Check your distribution’s online documentation
for information on how to upgrade GNU C++ to the latest version.
GNU C++ is available at

http://gcc.gnu.org/install/binaries.html

http://www.visualstudio.com/products/visual-studio-community-vs
http://gcc.gnu.org/install/binaries.html

Apple’s free Xcode, which OS X users can download from the Mac
App Store— click the app’s icon in the dock at the bottom of your
screen, then search for Xcode in the app store.

Instructor Supplements

The following supplements are available to qualified instructors only
through Pearson Education’s Instructor Resource Center (http://
www.pearsonhighered.com/irc):

Solutions Manual contains solutions to most of the end-of-chapter
exercises. We include Making a Difference exercises, many with
solutions. Please do not write to us requesting access to the
Pearson Instructor’s Resource Center. Access is restricted to
college instructors teaching from the book. Instructors may
obtain access only through their Pearson representatives. If you’re
not a registered faculty member, contact your Pearson
representative or visit

http://www.pearsonhighered.com/educator/replocator/

Solutions are not provided for “project” exercises. Check out our
Programming Projects Resource Center for lots of additional
exercise and project possibilities.

http://www.deitel.com/ProgrammingProjects

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/educator/replocator/
http://www.deitel.com/ProgrammingProjects

Test Item File of multiple-choice questions.
Customizable PowerPoint slides containing all the code and
figures in the text, plus bulleted items that summarize key points in
the text.

®

Online Practice and Assessment
with MyProgrammingLab™

MyProgrammingLab™ helps students fully grasp the logic, semantics,
and syntax of programming. Through practice exercises and
immediate, personalized feedback, MyProgrammingLab improves the
programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level
programming languages.

An optional self-study and homework tool, a MyProgrammingLab
course consists of hundreds of small practice problems organized
around the structure of this textbook. For students, the system
automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure
out what went wrong— and why. For instructors, a comprehensive
gradebook tracks correct and incorrect answers and stores the code
inputted by students for review.

For a full demonstration, to see feedback from instructors and
students or to get started using MyProgrammingLab in your course,
visit

http://www.myprogramminglab.com

http://www.myprogramminglab.com

Acknowledgments

We’d like to thank Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. She painstakingly researched the new
capabilities of C++11 and C++14.

We’re fortunate to have worked with the dedicated team of publishing
professionals at Pearson Higher Education. We appreciate the
guidance, wisdom and energy of Tracy Johnson, Executive Editor,
Computer Science. Kristy Alaura did an extraordinary job recruiting
the book’s reviewers and managing the review process. Bob
Engelhardt did a wonderful job bringing the book to publication.

Finally, thanks to Abbey Deitel, former President of Deitel &
Associates, Inc., and a graduate of Carnegie Mellon University’s
Tepper School of Management where she received a B.S. in Industrial
Management. Abbey managed the business operations of Deitel &
Associates, Inc. for 17 years, along the way co-authoring a number of
our publications, including the previous C++ How to Program editions’
versions of Chapter 1.

Reviewers
We wish to acknowledge the efforts of our reviewers. Over its ten
editions, the book has been scrutinized by academics teaching C++

courses, current and former members of the C++ standards
committee and industry experts using C++ to build industrial-strength,
high-performance systems. They provided countless suggestions for
improving the presentation. Any remaining flaws in the book are our
own.

Tenth Edition reviewers: Chris Aburime, Minnesota State Colleges
and Universities System; Gašper Ažman, A9.com Search
Technologies and Co-Author of C++ Today: The Beast is Back; Danny
Kalev, Intel and Former Member of the C++ Standards Committee;
Renato Golin, LLVM Tech Lead at Linaro and Co-Owner for the ARM
Target in LLVM; Gordon Hogenson, Microsoft, Author of Foundations
of C++/CLI: The Visual C++ Language for .NET 3; Jonathan Wakely,
Redhat, ISO C++ Committee Secretary; José Antonio González Seco,
Parliament of Andalusia; Dean Michael Berris, Google, Maintainer of
cpp-netlib and Former ISO C++ Committee Member.

Ninth Edition post-publication academic reviewers: Stefano Basagni,
Northeastern University; Amr Elkady, Diablo Valley College; Chris
Aburime, Minnesota State Colleges and Universities System.

Other recent edition reviewers: Virginia Bailey (Jackson State
University), Ed James-Beckham (Borland), Thomas J. Borrelli
(Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox
(Adobe Systems), Gregory Dai (eBay), Peter J. DePasquale (The
College of New Jersey), John Dibling (SpryWare), Susan Gauch
(University of Arkansas), Doug Gregor (Apple, Inc.), Jack Hagemeister
(Washington State University), Williams M. Higdon (University of

http://A9.com

Indiana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis
Integration Solutions), Linda M. Krause (Elmhurst College), Wing-Ning
Li (University of Arkansas), Dean Mathias (Utah State University),
Robert A. McLain (Tide-water Community College), James P. McNellis
(Microsoft Corporation), Robert Myers (Florida State University),
Gavin Osborne (Saskatchewan Institute of Applied Science and
Technology), Amar Raheja (California State Polytechnic University,
Pomona), April Reagan (Microsoft), Robert C. Seacord (Secure
Coding Manager at SEI/CERT, author of Secure Coding in C and
C++), Raymond Stephenson (Microsoft), Dave Topham (Ohlone
College), Anthony Williams (author and C++ Standards Committee
member) and Chad Willwerth (University Washington, Tacoma).

As you read the book, we’d sincerely appreciate your comments,
criticisms and suggestions for improving the text. Please address all
correspondence to:

deitel@deitel.com

We’ll respond promptly. We enjoyed writing C++ How to Program,
Tenth Edition. We hope you enjoy reading it!

Paul Deitel

Harvey Deitel

mailto://deitel@deitel.com

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates,
Inc., has over 30 years of experience in computing. He is a graduate
of MIT, where he studied Information Technology. He holds the Java
Certified Programmer and Java Certified Developer designations and
is an Oracle Java Champion. Paul was also named as a Microsoft
Most Valuable Professional (MVP) for C# in 2012–2014. Through
Deitel & Associates, Inc., he has delivered hundreds of programming
courses worldwide to clients, including Cisco, IBM, Siemens, Sun
Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the
National Severe Storm Laboratory, White Sands Missile Range,
Rogue Wave Software, Boeing, SunGard, Nortel Networks, Puma,
iRobot, Invensys and many more. He and his co-author, Dr. Harvey
Deitel, are the world’s best-selling programming-language
textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel &
Associates, Inc., has over 50 years of experience in the computer
field. Dr. Deitel earned B.S. and M.S. degrees in Electrical
Engineering from MIT and a Ph.D. in Mathematics from Boston
University—he studied computing in each of these programs before
they spun off Computer Science programs. He has extensive college
teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College
before founding Deitel & Associates, Inc., in 1991 with his son, Paul.

®

The Deitels’ publications have earned international recognition, with
translations published in Japanese, German, Russian, Spanish,
French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has
delivered hundreds of programming courses to academic, corporate,
government and military clients.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is
an internationally recognized authoring and corporate training
organization, specializing in computer programming languages, object
technology, Internet and web software technology, and Android and
iOS app development. The company’s clients include academic
institutions, many of the world’s largest corporations, government
agencies and branches of the military. The company offers instructor-
led training courses delivered at client sites worldwide on major
programming languages and platforms, including C++, C, Java™,
Android app development, iOS app development, Swift™, Visual C# ,
Visual Basic , Internet and web programming and a growing list of
additional programming and software-development courses.

Through its 40-year publishing partnership with Prentice Hall/Pearson,
Deitel & Associates, Inc., publishes leading-edge programming
college textbooks, professional books and LiveLessons video courses.
Deitel & Associates, Inc. and the authors can be reached at:

®

®

deitel@deitel.com

To learn more about Deitel’s corporate training curriculum, visit

http://www.deitel.com/training

To request a proposal for worldwide on-site, instructor-led training at
your organization, send an e-mail to deitel@deitel.com .

Individuals wishing to purchase Deitel books can do so via

http://bit.ly/DeitelOnAmazon

Individuals wishing to purchase Deitel LiveLessons video training can
do so at:

http://bit.ly/DeitelOnInformit

mailto://deitel@deitel.com
http://www.deitel.com/training
mailto://deitel@deitel.com
http://bit.ly/DeitelOnAmazon

All Deitel books and LiveLessons videos are also available
electronically to Safari Books Online subscribers at:

http://SafariBooksOnline.com

You can get a free 10-day Safari Books Online trial at:

https://www.safaribooksonline.com/register/

Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For
more information, visit

http://www.informit.com/store/sales.aspx

http://safaribooksonline.com.ezproxy.cul.columbia.edu
http://www.safaribooksonline.com.ezproxy.cul.columbia.edu/register/
http://www.informit.com/store/sales.aspx

Before You Begin
This section contains information you should review before using this
book and instructions to ensure that your computer is set up properly
to compile the example programs.

Font and Naming Conventions

We use fonts to distinguish between features, such as menu names,
menu items, and other elements that appear in your IDE (Integrated
Development Environment), such as Microsoft’s Visual Studio. Our
convention is to emphasize IDE features in a sans-serif bold
Helvetica font (for example, File menu) and to emphasize program
text in a sans-serif Lucida font (for example, bool x = true;).

Obtaining the Software Used in
C++ How to Program, 10/e

Before reading this book, you should download and install a C++
compiler. We wrote C++ How to Program, 10/e’s code examples using
the following free C++ development tools:

Microsoft’s free Visual Studio Community 2015 edition, which
includes the Visual C++ compiler and other Microsoft development
tools. This runs on Windows and is available for download at

https://www.visualstudio.com/products/visual-studio-community-

vs

GNU’s free GNU C++ 5.2.1 compiler. GNU C++ is already installed
on most Linux systems and also can be installed on Mac OS X and
Windows systems. There are many versions of Linux, known as
Linux distributions, that use different techniques for performing
software upgrades. Check your distribution’s online documentation
for information on how to upgrade GNU C++ to the latest version.
GNU C++ is available at

http://gcc.gnu.org/install/binaries.html

Apple’s free Xcode, which OS X users can download from the Mac
App Store— click the app’s icon in the dock at the bottom of your
Mac screen, then search for Xcode in the app store.

We also provide links to our getting-started videos for each of these
C++ tools at:

http://www.visualstudio.com/products/visual-studio-community-vs
http://gcc.gnu.org/install/binaries.html

http://www.deitel.com/books/cpphtp10

Obtaining the Code Examples

The examples for C++ How to Program, 10/e are available for
download at

http://www.deitel.com/books/cpphtp10

Click the Download Code Examples link to download the ZIP archive
file to your computer. Write down the location where you saved the file
—most browsers will save the file into your user account’s Downloads
folder.

Throughout the book, steps that require you to access our example
code on your computer assume that you’ve extracted the examples
from the ZIP file and placed them in C:\examples on Windows or in
your user account’s Documents directory on other platforms. You can
extract them anywhere you like, but if you choose a different location,
you’ll need to update our steps accordingly.

Creating Projects

http://www.deitel.com/books/cpphtp10
http://www.deitel.com/books/cpphtp10

In Section 1.10, we demonstrate how to compile and run programs
with

Microsoft Visual Studio Community 2015 edition on Windows
(Section 1.10.1)
GNU C++ 5.2.1 on Linux (Section 1.10.2)
Apple Xcode on OS X (Section 1.10.3)

For GNU C++ and Xcode, you must compile your programs with
C++14. To do so in GNU C++, include the option -std=c++14 when you
compile your code, as in:

g++ -std=c++14 YourFileName.cpp

For Xcode, after following Section 1.10.3’s steps to create a project:

1. Select the root node at the top of the Xcode Project navigator.
2. Click the Build Settings tab in the Editors area.
3. Scroll down to the Apple LLVM 7.0 - Language - C++ section.
4. For the C++ Language Dialect option, select C++14 [–

std=c++14].

Getting Your C++ Questions

Answered

As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly.

In addition, the web is loaded with programming information. An
invaluable resource for nonprogrammers and programmers alike is the
website

http://stackoverflow.com

on which you can:

Search for answers to most common programming questions
Search for error messages to see what causes them
Ask programming questions to get answers from programmers
worldwide
Gain valuable insights about programming in general

mailto://deitel@deitel.com
http://stackoverflow.com

Online C++ Documentation

For documentation on the C++ Standard Library, visit

http://cppreference.com

and be sure to check out the C++ FAQ at

https://isocpp.org/faq

http://cppreference.com
http://isocpp.org/faq

1 Introduction to Computers and
C++

Objectives
In this chapter you’ll learn:

Exciting recent developments in the computer field.
Computer hardware, software and networking basics.
The data hierarchy.
The different types of programming languages.
Basic object-technology concepts.
Some basics of the Internet and the World Wide Web.
A typical C++ program development environment.
To test-drive a C++ application.
Some key recent software technologies.
How computers can help you make a difference.

Outline
1. 1.1 Introduction
2. 1.2 Computers and the Internet in Industry and Research
3. 1.3 Hardware and Software

A. 1.3.1 Moore’s Law
B. 1.3.2 Computer Organization

4. 1.4 Data Hierarchy
5. 1.5 Machine Languages, Assembly Languages and High-

Level Languages
6. 1.6 C and C++
7. 1.7 Programming Languages
8. 1.8 Introduction to Object Technology
9. 1.9 Typical C++ Development Environment

10. 1.10 Test-Driving a C++ Application
A. 1.10.1 Compiling and Running an Application in

Visual Studio 2015 for Windows
B. 1.10.2 Compiling and Running Using GNU C++ on

Linux
C. 1.10.3 Compiling and Running with Xcode on Mac

OS X

11. 1.11 Operating Systems
A. 1.11.1 Windows—A Proprietary Operating System
B. 1.11.2 Linux—An Open-Source Operating System

® ®

C. 1.11.3 Apple’s OS X; Apple’s iOS for iPhone , iPad
and iPod Touch Devices

D. 1.11.4 Google’s Android

12. 1.12 The Internet and the World Wide Web
13. 1.13 Some Key Software Development Terminology
14. 1.14 C++11 and C++14: The Latest C++ Versions
15. 1.15 Boost C++ Libraries
16. 1.16 Keeping Up to Date with Information Technologies

1. Self-Review Exercises
2. Answers to Self-Review Exercises
3. Exercises
4. Making a Difference
5. Making a Difference Resources

® ®

®

1.1 Introduction
Welcome to C++—a powerful computer programming language that’s
appropriate for technically oriented people with little or no
programming experience, and for experienced programmers to use in
building substantial information systems. You’re already familiar with
the powerful tasks computers perform. Using this textbook, you’ll write
instructions commanding computers to perform those kinds of tasks.
Software (i.e., the instructions you write) controls hardware (i.e.,
computers).

You’ll learn object-oriented programming—today’s key programming
methodology. You’ll create many software objects that model things in
the real world.

C++ is one of today’s most popular software development languages.
This text provides an introduction to programming in C++11 and
C++14—the latest versions standardized through the International
Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC).

11

14

As of 2008 there were more than a billion general-purpose computers
in use. Today, various websites say that number is approximately two
billion, and according to the real-time tracker at gsmaintelligence.com ,
there are now more mobile devices than there are people in the world.
According to the International Data Corporation (IDC), the number of
mobile Internet users will top two billion in 2016.1 Smartphone sales
surpassed personal computer sales in 2011.2 Tablet sales were
expected to overtake personal-computer sales by 2015.3 By 2017, the
smartphone/tablet app market is expected to exceed $77 billion.4 This
explosive growth is creating significant opportunities for programming
mobile applications.

1. https://www.idc.com/getdoc.jsp?containerId=prUS40855515 .

2. http://www.mashable.com/2012/02/03/smartphone-sales-overtake-
pcs/.

3. http://www.forbes.com/sites/louiscolumbus/2014/07/18/gartner-
forecasts-tablet-shipments-will-overtake-pcs-in-2015/ .

4. http://www.entrepreneur.com/article/236832.

https://www-idc-com.ezproxy.cul.columbia.edu/getdoc.jsp?containerId=prUS40855515
http://www.mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://www.forbes.com/sites/louiscolumbus/2014/07/18/gartner-forecasts-tablet-shipments-will-overtake-pcs-in-2015/
http://www.entrepreneur.com/article/236832

1.2 Computers and the Internet in
Industry and Research
These are exciting times in the computer field. Many of the most
influential and successful businesses of the last two decades are
technology companies, including Apple, IBM, Hewlett Packard, Dell,
Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twitter,
eBay and many more. These companies are major employers of
people who study computer science, computer engineering,
information systems or related disciplines. At the time of this writing,
Apple was the most valuable company in the world. Figure 1.1
provides a few examples of the ways in which computers are
improving people’s lives in research, industry and society.

Fig. 1.1 A few uses for computers.

Name Description

Electronic
health
records

These might include a patient’s medical history, prescriptions,
immunizations, lab results, allergies, insurance information and more.
Making this information available to health care providers across a secure
network improves patient care, reduces the probability of error and
increases overall efficiency of the health-care system, helping control
costs.

Human
Genome
Project

The Human Genome Project was founded to identify and analyze the
20,000+ genes in human DNA. The project used computer programs to
analyze complex genetic data, determine the sequences of the billions of

chemical base pairs that make up human DNA and store the information
in databases which have been made available over the Internet to
researchers in many fields.

AMBER

Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert
System is used to find abducted children. Law enforcement notifies TV
and radio broadcasters and state transportation officials, who then
broadcast alerts on TV, radio, computerized highway signs, the Internet
and wireless devices. AMBER Alert recently partnered with Facebook,
whose users can “Like” AMBER Alert pages by location to receive alerts
in their news feeds.

World
Community
Grid

People worldwide can donate their unused computer processing power
by installing a free secure software program that allows the World
Community Grid (http://www.worldcommunitygrid.org) to

harness unused capacity. This computing power, accessed over the
Internet, is used in place of expensive supercomputers to conduct
scientific research projects that are making a difference—providing clean
water to third-world countries, fighting cancer, growing more nutritious
rice for regions fighting hunger and more.

Cloud
computing

Cloud computing allows you to use software, hardware and information
stored in the “cloud”—i.e., accessed on remote computers via the Internet
and available on demand—rather than having it stored on your personal
computer. These services allow you to increase or decrease resources to
meet your needs at any given time, so they can be more cost effective
than purchasing expensive hardware to ensure that you have enough
storage and processing power to meet your needs at their peak levels.
Using cloud-computing services shifts the burden of managing these
applications from the business to the service provider, saving businesses
money.

Medical X-ray computed tomography (CT) scans, also called CAT (computerized

™

http://www.worldcommunitygrid.org

imaging axial tomography) scans, take X-rays of the body from hundreds of
different angles. Computers are used to adjust the intensity of the X-rays,
optimizing the scan for each type of tissue, then to combine all of the
information to create a 3D image. MRI scanners use a technique called
magnetic resonance imaging, also to produce internal images
noninvasively.

GPS Global Positioning System (GPS) devices use a network of satellites to
retrieve location-based information. Multiple satellites send time-stamped
signals to the GPS device, which calculates the distance to each satellite,
based on the time the signal left the satellite and the time the signal
arrived. This information helps determine the device’s exact location.
GPS devices can provide step-by-step directions and help you locate
nearby businesses (restaurants, gas stations, etc.) and points of interest.
GPS is used in numerous location-based Internet services such as
check-in apps to help you find your friends (e.g., Foursquare and
Facebook), exercise apps such as RunKeeper that track the time,
distance and average speed of your outdoor jog, dating apps that help
you find a match nearby and apps that dynamically update changing
traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba
vacuuming robot), entertainment (e.g., robotic pets), military combat,
deep sea and space exploration (e.g., NASA’s Mars rover Curiosity) and
more. RoboEarth (www.roboearth.org) is “a World Wide Web for

robots.” It allows robots to learn from each other by sharing information
and thus improving their abilities to perform tasks, navigate, recognize
objects and more.

E-mail,
Instant
Messaging,
Video Chat
and FTP

Internet-based servers support all of your online messaging. E-mail
messages go through a mail server that also stores the messages.
Instant Messaging (IM) and Video Chat apps, such as Facebook
Messenger, AIM, Skype, Yahoo! Messenger, Google Hangouts, Trillian
and others allow you to communicate with others in real time by sending

http://www.roboearth.org

your messages and live video through servers. FTP (file transfer protocol)
allows you to exchange files between multiple computers (for example, a
client computer such as your desktop and a file server) over the Internet.

Internet TV Internet TV set-top boxes (such as Apple TV, Android TV, Roku and
TiVo) allow you to access an enormous amount of content on demand,
such as games, news, movies, television shows and more, and they help
ensure that the content is streamed to your TV smoothly.

Streaming
music
services

Streaming music services (such as Apple Music, Pandora, Spotify,
Last.fm and more) allow you listen to large catalogues of music over the
web, create customized “radio stations” and discover new music based
on your feedback.

Game
programming

Global video-game revenues are expected to reach $107 billion by 2017
(http://www.polygon.com/2015/4/22/8471789/

worldwide-video-games-market-value-2015). The most

sophisticated games can cost over $100 million to develop, with the most
expensive costing half a billion dollars (http://www.gamespot.com/
gallery/20-of-the-most-expensive-games-ever-made/

2900-104/). Bethesda’s Fallout 4 earned $750 million in its first day of

sales (http://fortune.com/2015/11/16/fallout4-is-

quiet-best-seller/)!

http://www.polygon.com/2015/4/22/8471789/worldwide-video-games-market-value-2015
http://www.gamespot.com/gallery/20-of-the-most-expensive-games-ever-made/2900-104/
http://fortune.com/2015/11/16/fallout4-is-quiet-best-seller/

1.3 Hardware and Software
Computers can perform calculations and make logical decisions
phenomenally faster than human beings can. Many of today’s
personal computers can perform billions of calculations in one second
—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions
per second! China’s National University of Defense Technology’s
Tianhe-2 supercomputer can perform over 33 quadrillion calculations
per second (33.86 petaflops)!5 To put that in perspective, the Tianhe-
2 supercomputer can perform in one second about 3 million
calculations for every person on the planet! And supercomputing
“upper limits” are growing quickly.

5. http://www.top500.org.

Computers process data under the control of sequences of
instructions called computer programs. These programs guide the
computer through ordered actions specified by people called computer
programmers. The programs that run on a computer are referred to
as software. In this book, you’ll learn a key programming
methodology that’s enhancing programmer productivity, thereby
reducing software development costs—object-oriented programming.

http://www.top500.org

A computer consists of various devices referred to as hardware (e.g.,
the keyboard, screen, mouse, hard disks, memory, DVD drives and
processing units). Computing costs are dropping dramatically, owing
to rapid developments in hardware and software technologies.
Computers that might have filled large rooms and cost millions of
dollars decades ago are now inscribed on silicon chips smaller than a
fingernail, costing perhaps a few dollars each. Ironically, silicon is one
of the most abundant materials on Earth—it’s an ingredient in
common sand. Silicon-chip technology has made computing so
economical that computers have become a commodity.

1.3.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most
products and services. The opposite has been the case in the
computer and communications fields, especially with regard to the
hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly.

Every year or two, the capacities of computers have approximately
doubled inexpensively. This remarkable trend often is called Moore’s
Law, named for the person who identified it in the 1960s, Gordon
Moore, co-founder of Intel—a leading manufacturer of the processors
in today’s computers and embedded systems. Moore’s Law and
related observations apply especially to the amount of memory that
computers have for programs, the amount of secondary storage (such
as disk storage) they have to hold programs and data over longer

periods of time, and their processor speeds—the speeds at which they
execute their programs (i.e., do their work). These increases make
computers more capable, which puts greater demands on
programming-language designers to innovate.

Similar growth has occurred in the communications field—costs have
plummeted as enormous demand for communications bandwidth (i.e.,
information-carrying capacity) has attracted intense competition. We
know of no other fields in which technology improves so quickly and
costs fall so rapidly. Such phenomenal improvement is truly fostering
the Information Revolution.

1.3.2 Computer Organization

Regardless of differences in physical appearance, computers can be
envisioned as divided into various logical units or sections (Fig. 1.2).

Fig. 1.2 Logical units of a computer.

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for
processing. Most user input is entered into computers through keyboards,
touch screens and mouse devices. Other forms of input include receiving
voice commands, scanning images and barcodes, reading from secondary
storage devices (such as hard drives, DVD drives, Blu-ray Disc drives

and USB flash drives—also called “thumb drives” or “memory sticks”),
receiving video from a webcam and having your computer receive

™

information from the Internet (such as when you stream videos from
YouTube or download e-books from Amazon). Newer forms of input

include position data from a GPS device, and motion and orientation
information from an accelerometer (a device that responds to up/down,
left/right and forward/backward acceleration) in a smartphone or game
controller (such as Microsoft Kinect for Xbox , Wii™ Remote and Sony

PlayStation Move).

Output
unit

This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside
the computer. Most information that’s output from computers today is
displayed on screens (including touch screens), printed on paper (“going
green” discourages this), played as audio or video on PCs and media
players (such as Apple’s iPods) and giant screens in sports stadiums,
transmitted over the Internet or used to control other devices, such as
robots and “intelligent” appliances. Information is also commonly output to
secondary storage devices, such as hard drives, DVD drives and USB
flash drives. Popular recent forms of output are smartphone and game
controller vibration, and virtual reality devices like Oculus Rift.

Memory
unit

This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by
the output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory).
Main memories on desktop and notebook computers contain as much as
128 GB of RAM, though 2 to 16 GB is most common. GB stands for
gigabytes; a gigabyte is approximately one billion bytes. A byte is eight
bits. A bit is either a 0 or a 1.

Arithmetic This “manufacturing” section performs calculations, such as addition,

®

® ® ® ®

®

and logic
unit (ALU)

subtraction, multiplication and division. It also contains the decision

mechanisms that allow the computer, for example, to compare two items
from the memory unit to determine whether they’re equal. In today’s
systems, the ALU is implemented as part of the next logical unit, the CPU.

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of
the other sections. The CPU tells the input unit when information should be
read into the memory unit, tells the ALU when information from the
memory unit should be used in calculations and tells the output unit when
to send information from the memory unit to certain output devices. Many
of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple
processors on a single integrated-circuit chip—a dual-core processor has
two CPUs, a quad-core processor has four and an octa-core processor

has eight. Today’s desktop computers have processors that can execute
billions of instructions per second. To take full advantage of multi-core
architecture you need to write multithreaded applications, which we
introduce in Section 24.3.

Secondary
storage
unit

This is the long-term, high-capacity “warehousing” section. Programs or
data not actively being used by the other units normally are placed on
secondary storage devices (e.g., your hard drive) until they’re again
needed, possibly hours, days, months or even years later. Information on
secondary storage devices is persistent—it’s preserved even when the
computer’s power is turned off. Secondary storage information takes much
longer to access than information in primary memory, but its cost per unit
is much less. Examples of secondary storage devices include hard drives,
DVD drives and USB flash drives, some of which can hold over 2 TB (TB
stands for terabytes; a terabyte is approximately one trillion bytes). Typical
hard drives on desktop and notebook computers hold up to 2 TB, and
some desktop hard drives can hold up to 6 TB.

1.4 Data Hierarchy
Data items processed by computers form a data hierarchy that
becomes larger and more complex in structure as we progress from
the simplest data items (called “bits”) to richer ones, such as
characters and fields. Figure 1.3 illustrates a portion of the data
hierarchy.

Fig. 1.3 Data hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the
value 1 . It’s called a bit (short for “binary digit”—a digit that can
assume one of two values). Remarkably, the impressive functions
performed by computers involve only the simplest manipulations of 0s
and 1s—examining a bit’s value, setting a bit’s value and reversing a

bit’s value (from 1 to 0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits.
Instead, they prefer to work with decimal digits (0–9), letters (A–Z and
a–z), and special symbols (e.g., $, @, %, &, *, (,), –, +, ", :, ? and /).
Digits, letters and special symbols are known as characters. The
computer’s character set is the set of all the characters used to write
programs and represent data items. Computers process only 1s and
0s, so a computer’s character set represents every character as a
pattern of 1s and 0s. C++ supports various character sets (including
Unicode), with some requiring more than one byte per character.
Unicode supports many of the world’s languages. See Appendix B for
more information on the ASCII (American Standard Code for
Information Interchange) character set—the popular subset of
Unicode that represents uppercase and lowercase letters, digits and
some common special characters.

®

Fields
Just as characters are composed of bits, fields are composed of
characters or bytes. A field is a group of characters or bytes that
conveys meaning. For example, a field consisting of uppercase and
lowercase letters can be used to represent a person’s name, and a
field consisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll
system, for example, the record for an employee might consist of the
following fields (possible types for these fields are shown in
parentheses):

Employee identification number (a whole number)
Name (a string of characters)
Address (a string of characters)
Hourly pay rate (a number with a decimal point)
Year-to-date earnings (a number with a decimal point)
Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. In the preceding example,
all the fields belong to the same employee. A company might have
many employees and a payroll record for each.

Files

A file is a group of related records. [Note: More generally, a file
contains arbitrary data in arbitrary formats. In some operating
systems, a file is viewed simply as a sequence of bytes—any
organization of the bytes in a file, such as organizing the data into
records, is a view created by the application programmer.] It’s not
unusual for an organization to have many files, some containing
billions, or even trillions, of characters of information.

Database
A database is a collection of data organized for easy access and
manipulation. The most popular model is the relational database, in
which data is stored in simple tables. A table includes records and
fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade-point-average fields.
The data for each student is a record, and the individual pieces of
information in each record are the fields. You can search, sort and
otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from
the student database in combination with data from databases of
courses, on-campus housing, meal plans, etc.

Big Data
The amount of data being produced worldwide is enormous and
growing quickly. According to IBM, approximately 2.5 quintillion bytes
(2.5 exabytes) of data are created daily6 and according to
Salesforce.com, 90% of the world’s data was created in just the past

http://Salesforce.com

12 months!7 According to an IDC study, the global data supply will
reach 40 zettabytes (equal to 40 trillion gigabytes) annually by 2020.8
Figure 1.4 shows some common byte measurements. Big data
applications deal with massive amounts of data and this field is
growing quickly, creating lots of opportunity for software developers.
According to a study by Gartner Group, over 4 million IT jobs globally
were expected to support big data in 2015.9

6. http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html .

7. https://www.salesforce.com/blog/2015/10/salesforce-channel-
ifttt.html .

8. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-
again-really/.

9. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/
.

Fig. 1.4 Byte measurements.

Unit Bytes Which is approximately

1 kilobyte (KB) 1024 bytes

1 megabyte (MB) 1024 kilobytes

1 gigabyte (GB) 1024 megabytes

http://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html
http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/
http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/

1 terabyte (TB) 1024 gigabytes

1 petabyte (PB) 1024 terabytes

1 exabyte (EB) 1024 petabytes

1 zettabyte (ZB) 1024 exabytes

1.5 Machine Languages, Assembly
Languages and High-Level
Languages
Programmers write instructions in various programming languages,
some directly understandable by computers and others requiring
intermediate translation steps.

Machine Languages
Any computer can directly understand only its own machine
language (also called machine code), defined by its hardware
architecture. Machine languages generally consist of numbers
(ultimately reduced to 1s and 0s). Such languages are cumbersome
for humans.

Assembly Languages
Programming in machine language was simply too slow and tedious
for most programmers. Instead, they began using English-like
abbreviations to represent elementary operations. These
abbreviations formed the basis of assembly languages. Translator
programs called assemblers were developed to convert assembly-

language programs to machine language. Although assembly-
language code is clearer to humans, it’s incomprehensible to
computers until translated to machine language.

High-Level Languages
To speed up the programming process further, high-level languages
were developed in which single statements could be written to
accomplish substantial tasks. High-level languages, such as C, C++,
Java, C#, Swift and Visual Basic, allow you to write instructions that
look more like everyday English and contain commonly used
mathematical notations. Translator programs called compilers
convert high-level language programs into machine language.

The process of compiling a large high-level language program into
machine language can take a considerable amount of computer time.
Interpreter programs were developed to execute high-level language
programs directly (without the need for compilation), although more
slowly than compiled programs. Scripting languages such as the
popular web languages JavaScript and PHP are processed by
interpreters.

 Performance Tip 1.1

Interpreters have an advantage over compilers in Internet scripting. An
interpreted program can begin executing as soon as it’s downloaded
to the client’s machine, without needing to be compiled before it can

execute. On the downside, interpreted scripts generally run slower
and consume more memory than compiled code.

1.6 C and C++
C was implemented in 1972 by Dennis Ritchie at Bell Laboratories. It
initially became widely known as the UNIX operating system’s
development language. Today, most of the code for general-purpose
operating systems is written in C or C++.

C++ evolved from C, which is available for most computers and is
hardware independent. With careful design, it’s possible to write C
programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes
called hardware platforms) unfortunately led to many variations. A
standard version of C was needed. The American National Standards
Institute (ANSI) cooperated with the International Organization for
Standardization (ISO) to standardize C worldwide; the joint standard
document was published in 1990.

C11 is the latest ANSI standard for the C programming language. It
was developed to evolve the C language to keep pace with
increasingly powerful hardware and ever more demanding user
requirements. C11 also makes C more consistent with C++. For more
information on C and C11, see our book C How to Program, 8/e and
our C Resource Center (located at http://www.deitel.com/C).

http://www.deitel.com/C

C++, an extension of C, was developed by Bjarne Stroustrup in 1979
at Bell Laboratories. Originally called “C with Classes,” it was renamed
to C++ in the early 1980s. C++ provides a number of features that
“spruce up” the C language, but more importantly, it provides
capabilities for object-oriented programming that were inspired by the
Simula simulation programming language. We say more about C++
and its current version in Section 1.14.

You’ll begin developing customized, reusable classes and objects in
Chapter 3. The book is object oriented, where appropriate, from the
start and throughout the text.

We also provide an optional automated teller machine (ATM) case
study in Chapters 25–26, which contains a complete C++
implementation. The case study presents a carefully paced
introduction to object-oriented design using the UML—an industry
standard graphical modeling language for developing object-oriented
systems. We guide you through a friendly design and implementation
experience intended for the novice.

C++ Standard Library
C++ programs consist of pieces called classes and functions. You
can program each piece yourself, but most C++ programmers take
advantage of the rich collections of classes and functions in the C++
Standard Library. Thus, there are really two parts to learning the C++
“world.” The first is learning the C++ language itself (often referred to
as the “core language”); the second is learning how to use the classes

and functions in the C++ Standard Library. We discuss many of these
classes and functions. P. J. Plauger’s book, The Standard C Library
(Upper Saddle River, NJ: Prentice Hall PTR, 1992), is a must-read for
programmers who need a deep understanding of the ANSI C library
functions included in C++. Many special-purpose class libraries are
supplied by independent software vendors.

 Software Engineering Observation 1.1

Use a “building-block” approach to create programs. Avoid reinventing
the wheel. Use existing pieces wherever possible. Called software
reuse, this practice is central to effective object-oriented
programming.

 Software Engineering Observation 1.2

When programming in C++, you typically will use the following building
blocks: classes and functions from the C++ Standard Library, classes
and functions you and your colleagues create, and classes and
functions from various popular third-party libraries.

The advantage of creating your own functions and classes is that
you’ll know exactly how they work. You’ll be able to examine the C++
code. The disadvantage is the time-consuming and complex effort that

goes into designing, developing and maintaining new functions and
classes that are correct and operate efficiently.

 Performance Tip 1.2

Using C++ Standard Library functions and classes instead of writing
your own versions can improve program performance, because
they’re written carefully to perform efficiently. This technique also
shortens program development time.

 Portability Tip 1.1

Using C++ Standard Library functions and classes instead of writing
your own improves program portability, because they’re included in
every C++ implementation.

1.7 Programming Languages
In this section, we provide brief comments on several popular
programming languages (Fig. 1.5).

Fig. 1.5 Some other programming languages.

Programming
language

Description

Fortran Fortran (FORmula TRANslator) was developed by IBM Corporation in
the mid-1950s to be used for scientific and engineering applications that
require complex mathematical computations. It’s still widely used and its
latest versions support object-oriented programming.

COBOL COBOL (COmmon Business Oriented Language) was developed in the
late 1950s by computer manufacturers, the U.S. government and
industrial computer users, based on a language developed by Grace
Hopper, a career U.S. Navy officer and computer scientist. COBOL is
still widely used for commercial applications that require precise and
efficient manipulation of large amounts of data. Its latest version
supports object-oriented programming.

Pascal Research in the 1960s resulted in structured programming—a
disciplined approach to writing programs that are clearer, easier to test
and debug and easier to modify than programs produced with previous
techniques. The Pascal language developed by Professor Niklaus Wirth
in 1971 grew out of this research. It was popular for teaching structured
programming for several decades.

Ada Ada, based on Pascal, was developed under the sponsorship of the U.S.

Department of Defense (DOD) during the 1970s and early 1980s. The
DOD wanted a single language that would fill most of its needs. The
Pascal-based language was named after Lady Ada Lovelace, daughter
of the poet Lord Byron. She’s credited with writing the world’s first
computer program in the early 1800s (for the Analytical Engine
mechanical computing device designed by Charles Babbage). Ada also
supports object-oriented programming.

Basic Basic was developed in the 1960s at Dartmouth College to familiarize
novices with programming techniques. Many of its latest versions are
object oriented.

Objective-C Objective-C is an object-oriented language based on C. It was
developed in the early 1980s and later acquired by NeXT, which in turn
was acquired by Apple. It became the key programming language for the
OS X operating system and all iOS-powered devices (such as iPods,
iPhones and iPads).

Swift Swift, which was introduced in 2014, is Apple’s programming language
of the future for developing iOS and OS X applications (apps). Swift is a
contemporary language that includes popular programming-language
features from languages such as Objective-C, Java, C#, Ruby, Python
and others. In 2015, Apple released Swift 2 with new and updated
features. According to the Tiobe Index, Swift has already become one of
the most popular programming languages. Swift is now open source

(Section 1.11.2), so it can be used on non-Apple platforms as well.

Java Sun Microsystems in 1991 funded an internal corporate research project
led by James Gosling, which resulted in the C++-based object-oriented
programming language called Java. A key goal of Java is to enable
developers to write programs that will run on a great variety of computer
systems and computer-controlled devices. This is sometimes called
“write once, run anywhere.” Java is used to develop large-scale
enterprise applications, to enhance the functionality of web servers (the

computers that provide the content we see in our web browsers), to
provide applications for consumer devices (e.g., smartphones, tablets,
television set-top boxes, appliances, automobiles and more) and for
many other purposes. Java is also the key language for developing
Android smartphone and tablet apps.

Visual Basic Microsoft’s Visual Basic language was introduced in the early 1990s to
simplify the development of Microsoft Windows applications. Its latest
versions support object-oriented programming.

C# Microsoft’s three primary object-oriented programming languages are C#
(based on C++ and Java), Visual C++ (based on C++) and Visual Basic
(based on the original Basic). C# was developed to integrate the web
into computer applications, and is now widely used to develop enterprise
applications and for mobile application development.

PHP PHP is an object-oriented, open-source (see Section 1.11.2) “scripting”
language supported by a community of developers and used by
numerous websites. PHP is platform independent—implementations
exist for all major UNIX, Linux, Mac and Windows operating systems.

Python Python, another object-oriented scripting language, was released
publicly in 1991. Developed by Guido van Rossum of the National
Research Institute for Mathematics and Computer Science in
Amsterdam (CWI), Python draws heavily from Modula-3—a systems
programming language. Python is “extensible”—it can be extended
through classes and programming interfaces.

JavaScript JavaScript is the most widely used scripting language. It’s primarily used
to add programmability to web pages—for example, animations and
interactivity with the user. It’s provided with all major web browsers.

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-
source, object-oriented programming language with a simple syntax
that’s similar to Python. Ruby on Rails combines the scripting language

Ruby with the Rails web application framework developed by the
company 37Signals. Their book, Getting Real (http://

gettingreal.37signals.com/toc.php), is a must read for web

developers. Many Ruby on Rails developers have reported productivity
gains over other languages when developing database-intensive web
applications.

Scala Scala (www.scala-lang.org/node/273)—short for “scalable

language”—was designed by Martin Odersky, a professor at École
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Released
in 2003, Scala uses both the object-oriented programming and functional
programming paradigms and is designed to integrate with Java.
Programming in Scala can reduce the amount of code in your
applications significantly.

http://gettingreal.37signals.com/toc.php
http://www.scala-lang.org/node/273

1.8 Introduction to Object
Technology
Building software quickly, correctly and economically remains an
elusive goal at a time when demands for new and more powerful
software are soaring. Objects, or more precisely—as we’ll see in
Chapter 3—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio
objects, video objects, automobile objects, people objects, etc. Almost
any noun can be reasonably represented as a software object in terms
of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have
discovered that using a modular, object-oriented design-and-
implementation approach can make software development groups
much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and
modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car
and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car,
someone has to design it. A car typically begins as engineering
drawings, similar to the blueprints that describe the design of a house.

These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the
car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the
car. This enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator
pedal to make the car go faster, but even that’s not enough—the car
won’t accelerate on its own (hopefully!), so the driver must press the
pedal to accelerate the car.

Functions, Member Functions and
Classes
Let’s use our car example to introduce some key object-oriented
programming concepts. Performing a task in a program requires a
function. The function houses the program statements that actually
perform its task. It hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of
making the car go faster. In C++, we often create a program unit
called a class to house the set of functions that perform the class’s
tasks—these are known as the class’s member functions. For
example, a class that represents a bank account might contain a
member function to deposit money to an account, another to withdraw
money from an account and a third to query what the account’s

current balance is. A class is similar to a car’s engineering drawings,
which house the design of an accelerator pedal, brake pedal, steering
wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings
before you can actually drive a car, you must build an object from a
class before a program can perform the tasks that the class’s member
functions define. The process of doing this is called instantiation. An
object is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to
build many cars, you can reuse a class many times to build many
objects. Reuse of existing classes when building new classes and
programs saves time and effort. Reuse also helps you build more
reliable and effective systems, because existing classes and
components often have gone through extensive testing, debugging
and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to
the software revolution that has been spurred by object technology.

Messages and Member-Function Calls
When you drive a car, pressing its gas pedal sends a message to the
car to perform a task—that is, to go faster. Similarly, you send

messages to an object. Each message is implemented as a member-
function call that tells a member function of the object to perform its
task. For example, a program might call a particular bank-account
object’s deposit member function to increase the account’s balance.

Attributes and Data Members
A car, besides having capabilities to accomplish tasks, also has
attributes, such as its color, its number of doors, the amount of gas in
its tank, its current speed and its record of total miles driven (i.e., its
odometer reading). Like its capabilities, the car’s attributes are
represented as part of its design in its engineering diagrams (which,
for example, include an odometer and a fuel gauge). As you drive an
actual car, these attributes are carried along with the car. Every car
maintains its own attributes. For example, each car knows how much
gas is in its own gas tank, but not how much is in the tanks of other
cars.

An object, similarly, has attributes that it carries along as it’s used in a
program. These attributes are specified as part of the object’s class.
For example, a bank-account object has a balance attribute that
represents the amount of money in the account. Each bank-account
object knows the balance in the account it represents, but not the
balances of the other accounts in the bank. Attributes are specified by
the class’s data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into
objects created from those classes—an object’s attributes and
member functions are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other
objects are implemented—implementation details are hidden within
the objects themselves. This information hiding, as we’ll see, is
crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by
inheritance—the new class absorbs the characteristics of an existing
class, possibly customizing them and adding unique characteristics of
its own. In our car analogy, an object of class “convertible” certainly is
an object of the more general class “automobile,” but more
specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design
(OOAD)
Soon you’ll be writing programs in C++. How will you create the code
(i.e., the program instructions) for your programs? Perhaps, like many
programmers, you’ll simply turn on your computer and start typing.
This approach may work for small programs (like the ones we present
in the early chapters of the book), but what if you were asked to create
a software system to control thousands of automated teller machines
for a major bank? Or suppose you were asked to work on a team of

thousands of software developers building the next generation of the
U.S. air traffic control system? For projects so large and complex, you
should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis
process for determining your project’s requirements (i.e., defining
what the system is supposed to do) and developing a design that
satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and
have your design reviewed by other software professionals) before
writing any code. If this process involves analyzing and designing your
system from an object-oriented point of view, it’s called an object-
oriented analysis and design (OOAD) process. Languages like
C++ are object oriented. Programming in such a language, called
object-oriented programming (OOP), allows you to implement an
object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical
language for communicating the results of any OOAD process has
come into wide use. This language, known as the Unified Modeling
Language (UML), is now the most widely used graphical scheme for
modeling object-oriented systems. We present our first UML diagrams
in Chapters 3 and 4, then use them in our deeper treatment of object-
oriented programming through Chapter 12. In our optional ATM
Software Engineering Case Study in Chapters 25–26 we present a

simple subset of the UML’s features as we guide you through an
object-oriented design and implementation experience.

1.9 Typical C++ Development
Environment
C++ systems generally consist of three parts: a program development
environment, the language and the C++ Standard Library. C++
programs typically go through six phases: edit, preprocess, compile,
link, load and execute. The following discussion explains a typical C++
program development environment.

Phase 1: Editing a Program
Phase 1 consists of editing a file with an editor program, normally
known simply as an editor (Fig. 1.6). You type a C++ program
(typically referred to as source code) using the editor, make any
necessary corrections and save the program on your computer’s disk.
C++ source code filenames often end with the .cpp , .cxx , .cc or .C
(uppercase) extensions which indicate that a file contains C++ source
code. See the documentation for your C++ compiler for more
information on filename extensions. Two editors widely used on Linux
systems are vim and emacs . You can also use a simple text editor,
such as Notepad in Windows, to write your C++ code.

Fig. 1.6 Typical C++ development environment—editing phase.

Integrated development environments (IDEs) are available from
many major software suppliers. IDEs provide tools that support the
software development process, including editors for writing and editing
programs and debuggers for locating logic errors—errors that cause
programs to execute incorrectly. Popular IDEs include Microsoft
Visual Studio 2015 Community Edition, NetBeans, Eclipse, Apple’s
Xcode , CodeLite and Clion.

Phase 2: Preprocessing a C++ Program
In Phase 2, you give the command to compile the program (Fig. 1.7).
In a C++ system, a preprocessor program executes automatically
before the compiler’s translation phase begins (so we call
preprocessing Phase 2 and compiling Phase 3). The C++
preprocessor obeys commands called preprocessing directives,
which indicate that certain manipulations are to be performed on the
program before compilation. These manipulations usually include (i.e.,
copy into the program file) other text files to be compiled, and perform
various text replacements. The most common preprocessing
directives are discussed in the early chapters; a detailed discussion of
preprocessor features appears in Appendix E, Preprocessor.

®

®

Fig. 1.7 Typical C++ development environment—preprocessor
phase.

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-
language code—also referred to as object code (Fig. 1.8).

Fig. 1.8 Typical C++ development environment—compilation
phase.

Phase 4: Linking
Phase 4 is called linking. C++ programs typically contain references
to functions and data defined elsewhere, such as in the standard
libraries or in the private libraries of groups of programmers working
on a particular project (Fig. 1.9). The object code produced by the
C++ compiler typically contains “holes” due to these missing parts. A
linker links the object code with the code for the missing functions to
produce an executable program (with no missing pieces). If the
program compiles and links correctly, an executable image is
produced.

Fig. 1.9 Typical C++ development environment—linking phase.

Phase 5: Loading
Phase 5 is called loading. Before a program can be executed, it must
first be placed in memory (Fig. 1.10). This is done by the loader,
which takes the executable image from disk and transfers it to
memory. Additional components from shared libraries that support the
program are also loaded.

Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the
program one instruction at a time (Fig. 1.11). Some modern computer
architectures often execute several instructions in parallel.

Fig. 1.10 Typical C++ development environment—loading phase.

Fig. 1.11 Typical C++ development environment—execution
phase.

Problems That May Occur at Execution
Time

Programs might not work on the first try. Each of the preceding
phases can fail because of various errors that we’ll discuss throughout
this book. For example, an executing program might try to divide by
zero (an illegal operation for integer arithmetic in C++). This would
cause the C++ program to display an error message. If this occurred,
you’d have to return to the edit phase, make the necessary corrections
and proceed through the remaining phases again to determine that
the corrections fixed the problem(s). [Note: Most programs in C++
input or output data.] Certain C++ functions take their input from cin
(the standard input stream; pronounced “see-in”), which is normally
the keyboard, but cin can be redirected to another device. Data is
often output to cout (the standard output stream; pronounced “see-
out”), which is normally the computer screen, but cout can be
redirected to another device. When we say that a program prints a
result, we normally mean that the result is displayed on a screen. Data
may be output to other devices, such as disks, hardcopy printers or
even transmitted over the Internet. There is also a standard error
stream referred to as cerr. The cerr stream (normally connected to
the screen) is used for displaying error messages.

 Common Programming Error 1.1

Errors such as division by zero occur as a program runs, so they’re
called runtime errors or execution-time errors. Fatal runtime
errors cause programs to terminate immediately without having
successfully performed their jobs. Nonfatal runtime errors allow
programs to run to completion, often producing incorrect results.

1.10 Test-Driving a C++
Application
In this section, you’ll compile, run and interact with your first C++
application—an entertaining guess-the-number game, which picks a
number from 1 to 1000 and prompts you to guess it. If your guess is
correct, the game ends. If your guess is not correct, the application
indicates whether your guess is higher or lower than the correct
number. There is no limit on the number of guesses you can make.
[Note: For this test drive only, we’ve modified this application from the
exercise you’ll be asked to create in Chapter 6, Functions and an
Introduction to Recursion. Normally this application randomly selects
the correct answer as you execute the program. The modified
application uses the same correct answer every time the program
executes (though this may vary by compiler), so you can use the
same guesses we use in this section and see the same results as we
walk you through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using

Visual Studio 2015 Community for Windows (Section 1.10.1)
GNU C++ in a shell on Linux (Section 1.10.2)
Clang/LLVM in Xcode on Mac OS X (Section 1.10.3).

The application runs similarly on all three platforms. You need to read
only the section that corresponds to your operating system and
compiler. Many development environments are available in which you
can compile, build and run C++ applications—CodeLite, Clion,
NetBeans and Eclipse are just a few. Consult your instructor or the
online documentation for information on your specific development
environment.

In the following steps, you’ll run the application and enter various
numbers to guess the correct number. The elements and functionality
that you see in this application are typical of those you’ll learn to
program in this book. We use fonts to distinguish between features
you see on the screen and elements that are not directly related to the
screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif bold font and emphasize
filenames, text displayed by an application and values you should
enter into an application (e.g., GuessNumber or 500) in a sans-serif
font .

1.10.1 Compiling and Running an
Application in Visual Studio 2015
for Windows

In this section, you’ll run a C++ program on Windows using Microsoft
Visual Studio 2015 Community Edition. We assume that you’ve
already read the Before You Begin section for instructions on installing
the IDE and downloading the book’s code examples.

There are several versions of Visual Studio available—on some
versions, the options, menus and instructions we present might differ
slightly. From this point forward, we’ll refer to Visual Studio 2015
Community Edition simply as “Visual Studio” or “the IDE.”

Step 1: Checking Your Setup
It’s important to read this book’s Before You Begin section to make
sure that you’ve installed Visual Studio and copied the book’s
examples to your hard drive correctly.

Step 2: Launching Visual Studio

Open Visual Studio from the Start menu. The IDE displays the Start
Page (Fig. 1.12), which provides links for creating new programs,
opening existing programs and learning about the IDE and various
programming topics. Close this window for now by clicking the X in its
tab—you can access this window any time by selecting View > Start
Page. We use the > character to indicate selecting a menu item from
a menu. For example, the notation File > Open indicates that you
should select the Open menu item from the File menu.

Fig. 1.12 Visual Studio 2015 Community Edition window showing
the Start Page.

Step 3: Creating a Project
A project is a group of related files, such as the C++ source-code files
that compose an application. Visual Studio organizes applications into
projects and solutions, which contain one or more projects. Multiple-

project solutions are used to create large-scale applications. Each
application in this book will be a solution containing a single project.

The Visual Studio projects we created for this book’s examples are
Win32 Console Application projects that you’ll execute from the IDE.
To create a project:

1. Select File > New > Project….
2. At the New Project dialog’s left side, select the category

Installed > Templates > Visual C++ > Win32 (Fig. 1.13).
3. In the New Project dialog’s middle section, select Win32

Console Application.
4. Provide a name for your project in the Name field—we

specified Guess Number—then click OK to display the Win32
Application Wizard window, then click Next > to display the
Application Settings step.

Fig. 1.13 Visual Studio 2015 Community Edition New
Project dialog.

5. Configure the settings as shown in Fig. 1.14 to create a
solution containing an empty project, then click Finish.

Fig. 1.14 Win32 Application Wizard window’s Application
Settings step .

At this point, the IDE creates your project and places its folder in

C:\Users\YourUserAccount\Documents\Visual Studio 2015\Projects

then opens the window in Fig. 1.15. This window displays editors as
tabbed windows (one for each file) when you’re editing code. Also

displayed is the Solution Explorer in which you can view and
manage your application’s files. In this book’s examples, you’ll
typically place each program’s code files in the Source Files folder. If
the Solution Explorer is not displayed, you can display it by selecting
View > Solution Explorer.

Fig. 1.15 Visual Studio window after creating the Guess Number
project.

Step 4: Adding the GuessNumber.cpp File
into the Project
Next, you’ll add GuessNumber.cpp to the project you created in Step 3.
In Windows Explorer (Windows 7) or File Explorer (Windows 8 and

10), open the ch01 folder in the book’s examples folder, then drag
GuessNumber.cpp onto the Source Files folder in the Solution
Explorer.10

10. For the multiple source-code-file programs that you’ll see
beginning in Chapter 3, drag all the files for a given program to the
Source Files folder. When you begin creating multiple source-code-
file programs yourself, you can right click the Source Files folder and
select Add > New Item… to display a dialog for adding a new file.

Step 5: Compiling and Running the Project
To compile and run the project so you can test-drive the application,
select Debug > Start without debugging or simply type Ctrl + F5. If
the program compiles correctly, the IDE opens a Command Prompt
window and executes the program (Fig. 1.16)—we changed the
Command Prompt’s color scheme to make the screen captures more
readable. The application displays "Please type your first guess .",
then displays a question mark (?) as a prompt on the next line.

Fig. 1.16 Command Prompt showing the running program.

Step 6: Entering Your First Guess
Type 500 and press Enter. The application displays "Too high. Try
again." (Fig. 1.17), meaning that the value you entered is greater than
the number the application chose as the correct guess.

Fig. 1.17 Entering an initial guess and receiving feedback.

Step 7: Entering Another Guess
At the next prompt, enter 250 (Fig. 1.18). The application displays
"Too high. Try again." , because the value you entered once again is
greater than the correct guess.

Fig. 1.18 Entering a second guess and receiving feedback.

Step 8: Entering Additional Guesses
Continue to play the game (Fig. 1.19) by entering values until you
guess the correct number. When you guess correctly, the application
displays "Excellent! You guessed the number."

Step 9: Playing the Game Again or Exiting
the Application
After you guess the correct number, the application asks if you’d like
to play another game. At the "Would you like to play again (y or n)?"
prompt, entering the one character y

Fig. 1.19 Entering additional guesses and guessing the correct
number.

causes the application to choose a new number and displays the
message "Please type your first guess." followed by a question-
mark prompt so you can make your first guess in the new game.
Entering the character n terminates the application. Each time you
execute this application from the beginning (Step 5), it will choose the
same numbers for you to guess.

1.10.2 Compiling and Running
Using GNU C++ on Linux

For this test drive, we assume that you read the Before You Begin
section and that you placed the downloaded examples in your home
directory on your Linux system. Please see your instructor if you have
any questions regarding copying the files to your home directory. In
this section’s figures, we use bold text to highlight the text that you
type. The prompt in the shell on our system uses the tilde (~)
character to represent the home directory, and each prompt ends with
the dollar sign ($) character. The prompt will vary among Linux
systems.

Step 1: Locating the Completed
Application
From a Linux shell, use the command cd to change to the completed
application directory (Fig. 1.20) by typing

cd examples/ch01

then pressing Enter.

Fig. 1.20 Changing to the GuessNumber application’s directory.

Step 2: Compiling the Application
Before running the application, you must first compile it (Fig. 1.21) by
typing

g++ -std=c++14 GuessNumber.cpp -o GuessNumber

This command compiles the application for C++14 (the current C++
version) and produces an executable file called GuessNumber .

Fig. 1.21 Compiling the GuessNumber application using the g++
command.

Step 3: Running the Application

To run the executable file GuessNumber, type ./GuessNumber at the next
prompt, then press Enter (Fig. 1.22). The ./ tells Linux to run from the
current directory and is required to indicate that GuessNumber is an
executable file.

Fig. 1.22 Running the GuessNumber application.

Step 4: Entering Your First Guess
The application displays "Please type your first guess." , then
displays a question mark (?) as a prompt on the next line (Fig. 1.22).
At the prompt, enter 500 (Fig. 1.23). [Note that the outputs may vary
based on the compiler you’re using.]

Fig. 1.23 Entering an initial guess.

Step 5: Entering Another Guess

The application displays "Too high. Try again." , meaning that the
value you entered is greater than the number the application chose as
the correct guess (Fig. 1.23). At the next prompt, enter 250 (Fig.
1.24). This time the application displays "Too low. Try again." ,
because the value you entered is less than the correct guess.

Fig. 1.24 Entering a second guess and receiving feedback.

Step 6: Entering Additional Guesses
Continue to play the game (Fig. 1.25) by entering values until you
guess the correct number. When you guess correctly, the application
displays "Excellent! You guessed the number."

Fig. 1.25 Entering additional guesses and guessing the correct
number.

Step 7: Playing the Game Again or Exiting
the Application
After you guess the correct number, the application asks if you’d like
to play another game. At the "Would you like to play again (y or n)?"
prompt, entering the one character y causes the application to choose
a new number and displays the message "Please type your first
guess." followed by a question-mark prompt so you can make your
first guess in the new game. Entering the character n ends the
application, returns you to the shell and awaits your next command.
Each time you execute this application from the beginning (i.e., Step
3), it will choose the same numbers for you to guess.

1.10.3 Compiling and Running with
Xcode on Mac OS X

In this section, we present how to run a C++ program on a Mac OS X
using Apple’s Xcode IDE.

Step 1: Checking Your Setup
It’s important to read this book’s Before You Begin section to make
sure that you’ve installed Apple’s Xcode IDE and copied the book’s
examples to your hard drive correctly.

Step 2: Launching Xcode
Open a Finder window, select Applications and double click the
Xcode icon (). If this is your first time running Xcode, the Welcome
to Xcode window will appear (Fig. 1.26). Close this window for now—
you can access it any time by selecting Window > Welcome to
Xcode. We use the > character to indicate selecting a menu item from
a menu. For example, the notation File > Open… indicates that you
should select the Open… menu item from the File menu.

Fig. 1.26 Welcome to Xcode window.

Step 3: Creating a Project
A project is a group of related files, such as the C++ source-code files
that compose an application. The Xcode projects we created for this
book’s examples are OS X Command Line Tool projects that you’ll
execute directly in the IDE. To create a project:

1. Select File > New > Project….
2. In the OS X subcategory Application, select Command Line

Tool and click Next.
3. Provide a name for your project in the Product Name field—we

specified Guess Number.
4. Ensure that the selected Language is C++ and click Next.

5. Specify where you want to store your project, then click Create.
(See the Before You Begin section for information on
configuring a project to use C++14.)

Figure 1.27 shows the workspace window that appears after you
create the project. By default, Xcode creates a main.cpp source-code
file containing a simple program that displays "Hello, World!" . The
window is divided into four main areas below the toolbar: the
Navigator area, Editor area and Utilities area are displayed initially.
We’ll explain momentarily how to display the Debug area in which
you’ll run and interact with the program.

Fig. 1.27 Sample Xcode C++ project with main.cpp selected.

At the left of the workspace window is the Navigator area, which has
icons at its top for the navigators that can be displayed there. For this
book, you’ll primarily work with

Project ()—Shows all the files and folders in your project.
Issue ()—Shows you warnings and errors generated by the
compiler.

You choose which navigator to display by clicking the corresponding
button above the Navigator area of the window.

To the right of the Navigator area is the Editor area for editing source
code. This area is always displayed in your workspace window. When
you select a file in the Project navigator, the file’s contents are
displayed in the Editor area. At the right side of the workspace
window is the Utilities area, which you will not use in this book. The
Debug area, when displayed, appears below the Editor area.

The toolbar contains options for executing a program (Fig. 1.28(a)), a
display area (Fig. 1.28(b)) to shows the progress of tasks executing in
Xcode (such as the compilation status) and buttons (Fig. 1.28(c)) for
hiding and showing areas in the workspace window.

Fig. 1.28 Xcode 7 toolbar.

Step 4: Deleting the main.cpp File from
the Project
You won’t use main.cpp in this test-drive, so you should delete the file.
In the Project navigator, right click the main.cpp file and select Delete.
In the dialog that appears, select Move to Trash to delete the file from
your system—the file will not be removed completely until you empty
your trash.

Step 5: Adding the GuessNumber.cpp File
into the Project
Next, you’ll add GuessNumber.cpp to the project you created in Step 3.
In a Finder window, open the ch01 folder in the book’s examples folder,
then drag GuessNumber.cpp onto the Guess Number folder in the
Project navigator. In the dialog that appears, ensure that Copy items
if needed is checked, then click Finish.11

11. For the multiple source-code-file programs that you’ll see
beginning in Chapter 3, drag all the files for a given program to the
project’s folder. When you begin creating programs with multiple
source-code files, you can right click the project’s folder and select
New File… to display a dialog for adding a new file.

Step 6: Compiling and Running the Project
To compile and run the project so you can test-drive the application,
simply click the run () button at the left side of Xcode’s toolbar. If the
program compiles correctly, Xcode opens the Debug area (at the
bottom of the Editor area) and executes the program in the right half
of the Debug area (Fig. 1.29). The application displays "Please type
your first guess." , then displays a question mark (?) as a prompt on
the next line.

Fig. 1.29 Debug area showing the running program.

Step 7: Entering Your First Guess
Click in the Debug area, then type 500 and press Return. The
application displays "Too low. Try again." (Fig. 1.30), meaning that
the value you entered is less than the number the application chose
as the correct guess.

Fig. 1.30 Entering an initial guess and receiving feedback.

Step 8: Entering Another Guess
At the next prompt, enter 750 (Fig. 1.31). The application displays
"Too low. Try again." , because the value you entered once again is
less than the correct guess.

Fig. 1.31 Entering a second guess and receiving feedback.

Step 9: Entering Additional Guesses
Continue to play the game (Fig. 1.32) by entering values until you
guess the correct number. When you guess correctly, the application
displays "Excellent! You guessed the number."

Fig. 1.32 Entering additional guesses and guessing the correct
number.

Playing the Game Again or Exiting the

Application
After you guess the correct number, the application asks if you’d like
to play another game. At the "Would you like to play again (y or n)?"
prompt, entering the character y causes the application to choose a
new number and displays the message "Please type your first
guess." followed by a question-mark prompt so you can make your
first guess in the new game. Entering the character n terminates the
application. Each time you execute this application from the beginning
(Step 6), it will choose the same numbers for you to guess.

1.11 Operating Systems
Operating systems are software systems that make using computers
more convenient for users, application developers and system
administrators. They provide services that allow each application to
execute safely, efficiently and concurrently (i.e., in parallel) with other
applications. The software that contains the core components of the
operating system is called the kernel. Popular desktop operating
systems include Linux, Windows and OS X (formerly called Mac OS
X)—we used all three in developing this book. Popular mobile
operating systems used in smartphones and tablets include Google’s
Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices) and
Windows 10 Mobile. You can develop applications in C++ for all of
these operating systems.

1.11.1 Windows—A Proprietary
Operating System

In the mid-1980s, Microsoft developed the Windows operating
system, consisting of a graphical user interface built on top of DOS
(Disk Operating System)—an enormously popular personal-computer
operating system that users interacted with by typing commands.
Windows borrowed from many concepts (such as icons, menus and

windows) developed by Xerox PARC and popularized by early Apple
Macintosh operating systems. Windows 10 is Microsoft’s latest
operating system—its features include enhancements to the Start
menu and user interface, Cortana personal assistant for voice
interactions, Action Center for receiving notifications, Microsoft’s new
Edge web browser, and more. Windows is a proprietary operating
system—it’s controlled by Microsoft exclusively. Windows is by far the
world’s most widely used desktop operating system.

1.11.2 Linux—An Open-Source
Operating System

The Linux operating system is perhaps the greatest success of the
open-source movement. Open-source software departs from the
proprietary software development style that dominated software’s
early years. With open-source development, individuals and
companies contribute their efforts in developing, maintaining and
evolving software in exchange for the right to use that software for
their own purposes, typically at no charge. Open-source code is often
scrutinized by a much larger audience than proprietary software, so
errors often get removed faster. Open source also encourages
innovation. Enterprise systems companies, such as IBM, Oracle and
many others, have made significant investments in Linux open-source
development.

Some key organizations in the open-source community are

the Eclipse Foundation (the Eclipse Integrated Development
Environment helps programmers conveniently develop software)
the Mozilla Foundation (creators of the Firefox web browser)
the Apache Software Foundation (creators of the Apache web
server used to develop web-based applications)
GitHub (which provides tools for managing open-source projects—
it has millions of them under development).

Rapid improvements to computing and communications, decreasing
costs and open-source software have made it much easier and more
economical to create a software-based business now than just a
decade ago. A great example is Facebook, which was launched from
a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely
distributed, full-featured operating system. It’s developed by a loosely
organized team of volunteers and is popular in servers, personal
computers and embedded systems (such as the computer systems at
the heart of smartphones, smart TVs and automobile systems). Unlike
that of proprietary operating systems like Microsoft’s Windows and
Apple’s OS X, Linux source code (the program code) is available to
the public for examination and modification and is free to download
and install. As a result, Linux users benefit from a huge community of
developers actively debugging and improving the kernel, and the
ability to customize the operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small
number of user-friendly Linux applications and the diversity of Linux

distributions, such as Red Hat Linux, Ubuntu Linux and many others—
have prevented widespread Linux use on desktop computers. Linux
has become extremely popular on servers and in embedded systems,
such as Google’s Android-based smartphones.

1.11.3 Apple’s OS X; Apple’s iOS
for iPhone , iPad and iPod
Touch Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly
became a leader in personal computing. In 1979, Jobs and several
Apple employees visited Xerox PARC (Palo Alto Research Center) to
learn about Xerox’s desktop computer that featured a graphical user
interface (GUI). That GUI served as the inspiration for the Apple
Macintosh, launched with much fanfare in a memorable Super Bowl
ad in 1984.

The Objective-C programming language, created by Brad Cox and
Tom Love at Stepstone in the early 1980s, added capabilities for
object-oriented programming (OOP) to the C programming language.
Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT
licensed Objective-C from StepStone and developed an Objective-C
compiler and libraries which were used as the platform for the
NeXTSTEP operating system’s user interface, and Interface Builder—
used to construct graphical user interfaces.

® ®

®

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s OS
X operating system is a descendant of NeXTSTEP. Apple’s
proprietary operating system, iOS, is derived from Apple’s OS X and
is used in the iPhone, iPad and iPod Touch devices. In 2014, Apple
introduced its new Swift programming language, which became open
source in 2015. The iOS app-development community is gradually
shifting from Objective-C to Swift.

1.11.4 Google’s Android

Android—the fastest growing mobile and smartphone operating
system—is based on the Linux kernel and Java. Android apps can
also be developed in C++ and C. One benefit of developing Android
apps is the openness of the platform. The operating system is open
source and free.

The Android operating system was developed by Android, Inc., which
was acquired by Google in 2005. In 2007, the Open Handset
Alliance™

http://www.openhandsetalliance.com/oha_members.html

was formed to develop, maintain and evolve Android, driving
innovation in mobile technology and improving the user experience

http://www.openhandsetalliance.com/oha_members.html

while reducing costs. According to IDC, after the first six months of
2015, Android had 82.8% of the global smartphone market share,
compared to 13.9% for Apple, 2.6% for Microsoft and 0.3% for
Blackberry.12 The Android operating system is used in numerous
smartphones, e-reader devices, tablets, in-store touch-screen kiosks,
cars, robots, multimedia players and more. There are now more than
1.4 billion Android users.13

12. http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

13. http://www.techtimes.com/articles/90028/20151002/google-says-
android-has-more-than-1-4-billion-active-users-worldwide-with-300-

million-on-lollipop.htm.

http://www.idc.com.ezproxy.cul.columbia.edu/prodserv/smartphone-os-market-share.jsp
http://www.techtimes.com/articles/90028/20151002/google-says-android-has-more-than-1-4-billion-active-users-worldwide-with-300-million-on-lollipop.htm

1.12 The Internet and the World
Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of
the United States Department of Defense—rolled out plans for
networking the main computer systems of approximately a dozen
ARPA-funded universities and research institutions. The computers
were to be connected with communications lines operating at speeds
on the order of 50,000 bits per second, a stunning rate at a time when
most people (of the few who even had networking access) were
connecting over telephone lines to computers at a rate of 110 bits per
second. Academic research was about to take a giant leap forward.
ARPA proceeded to implement what quickly became known as the
ARPANET, the precursor to today’s Internet. Today’s fastest Internet
speeds are on the order of billions of bits per second with trillion-bits-
per-second speeds on the horizon!

Things worked out differently from the original plan. Although the
ARPANET enabled researchers to network their computers, its main
benefit proved to be the capability for quick and easy communication
via what came to be known as electronic mail (e-mail). This is true
even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of
people worldwide to communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET
became known as the Transmission Control Protocol (TCP). TCP
ensured that messages, consisting of sequentially numbered pieces
called packets, were properly routed from sender to receiver, arrived
intact and were assembled in the correct order.

The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations
worldwide were implementing their own networks for both
intraorganization (that is, within an organization) and interorganization
(that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to
enable these different networks to communicate with each other.
ARPA accomplished this by developing the Internet Protocol (IP),
which created a true “network of networks,” the current architecture of
the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could
improve their operations and offer new and better services to their
clients. Companies started spending large amounts of money to
develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and
software suppliers to meet the increased infrastructure demand. As a
result, bandwidth—the information-carrying capacity of
communications lines—on the Internet has increased tremendously,
while hardware costs have plummeted.

The World Wide Web: Making the Internet
User-Friendly
The World Wide Web (simply called “the web”) is a collection of
hardware and software associated with the Internet that allows
computer users to locate and view multimedia-based documents
(documents with various combinations of text, graphics, animations,
audios and videos) on almost any subject. The introduction of the web
was a relatively recent event. In 1989, Tim Berners-Lee of CERN (the
European Organization for Nuclear Research) began to develop a
technology for sharing information via “hyperlinked” text documents.
Berners-Lee called his invention the HyperText Markup Language
(HTML). He also wrote communication protocols such as HyperText
Transfer Protocol (HTTP) to form the backbone of his new hypertext
information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium
(W3C, http://www.w3.org), devoted to developing web technologies.
One of the W3C’s primary goals is to make the web universally
accessible to everyone regardless of disabilities, language or culture.

Web Services
Web services are software components stored on one computer that
can be accessed by an app (or other software component) on another
computer over the Internet. With web services, you can create
mashups, which enable you to rapidly develop apps by combining

http://www.w3.org

complementary web services, often from multiple organizations and
possibly other forms of information feeds. For example, 100
Destinations (http://www.100destinations.co.uk) combines the photos

and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos
of others.

Programmableweb (http://www.programmableweb.com/) provides a
directory of over 11,150 APIs and 7,300 mashups, plus how-to guides
and sample code for creating your own mashups. According to
Programmableweb, the three most widely used APIs for mashups are
Google Maps, Twitter and YouTube.

Ajax
Ajax technology helps Internet-based applications perform like
desktop applications—a difficult task, given that such applications
suffer transmission delays as data is shuttled back and forth between
your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance
and approach the look-and-feel of desktop applications.

The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet
of Things. A thing is any object with an IP address and the ability to
send data automatically over the Internet—e.g., a car with a
transponder for paying tolls, a heart monitor implanted in a human, a

http://www.100destinations.co.uk
http://www.programmableweb.com/

smart meter that reports energy usage, mobile apps that can track
your movement and location, and smart thermostats that adjust room
temperatures based on weather forecasts and activity in the home.

1.13 Some Key Software
Development Terminology
Figure 1.33 lists a number of buzzwords that you’ll hear in the
software development community.

Fig. 1.33 Software technologies.

Technology Description

Agile
software
development

Agile software development is a set of methodologies that try to get
software implemented faster and using fewer resources. Check out the
Agile Alliance (www.agilealliance.org) and the Agile Manifesto

(www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and
easier to maintain while preserving their correctness and functionality. It’s
widely employed with agile development methodologies. Many IDEs
contain built-in refactoring tools to do major portions of the reworking
automatically.

Design
patterns

Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP LAMP is an acronym for the open-source technologies that many
developers use to build web applications inexpensively—it stands for

http://www.agilealliance.org
http://www.agilemanifesto.org

Linux, Apache, MySQL and PHP (or Perl or Python—two other popular
scripting languages). MySQL is an open-source database-management
system. PHP is a popular open-source server-side “scripting” language
for developing web applications. Apache is the most popular web server
software. The equivalent for Windows development is WAMP—Windows,
Apache, MySQL and PHP.

Software as
a Service
(SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for
organizations that must maintain tens of thousands of systems on a
diverse array of computer equipment. With Software as a Service
(SaaS), the software runs on servers elsewhere on the Internet. When
that server is updated, all clients worldwide see the new capabilities—no
local installation is needed. You access the service through a browser.
Browsers are quite portable, so you can run the same applications on a
wide variety of computers from anywhere in the world. Sales-force.com,
Google, Microsoft and many other companies offer SaaS.

Platform as a
Service
(PaaS)

Platform as a Service (PaaS) provides a computing platform for
developing and running applications as a service over the web, rather
than installing the tools on your computer. Some PaaS providers are
Google App Engine, Amazon EC2 and Windows Azure™.

Cloud
computing

SaaS and PaaS are examples of cloud computing. You can use software
and data stored in the “cloud”—i.e., accessed on remote computers (or
servers) via the Internet and available on demand—rather than having it
stored locally on your desktop, notebook computer or mobile device. This
allows you to increase or decrease computing resources to meet your
needs at any given time, which is more cost effective than purchasing
hardware to provide enough storage and processing power to meet

http://Sales-force.com

occasional peak demands. Cloud computing also saves money by
shifting to the service provider the burden of managing these apps (such
as installing and upgrading the software, security, backups and disaster
recovery).

Software
Development
Kit (SDK)

Software Development Kits (SDKs) include the tools and
documentation developers use to program applications.

Software is complex. Large, real-world software applications can take
many months or even years to design and implement. When large
software products are under development, they typically are made
available to the user communities as a series of releases, each more
complete and polished than the last (Fig. 1.34).

Fig. 1.34 Software product-release terminology.

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and
unstable and are released to a relatively small number of developers for
testing new features, getting early feedback, etc.

Beta Beta versions are released to a larger number of developers later in the
development process after most major bugs have been fixed and new
features are nearly complete. Beta software is more stable, but still subject
to change.

Release
candidates

Release candidates are generally feature complete, (mostly) bug free and
ready for use by the community, which provides a diverse testing
environment—the software is used on different systems, with varying
constraints and for a variety of purposes.

Final
release

Any bugs that appear in the release candidate are corrected, and
eventually the final product is released to the general public. Software
companies often distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach (for example, Google search
or Gmail) generally does not have version numbers. It’s hosted in the cloud

(not installed on your computer) and is constantly evolving so that users
always have the latest version.

1.14 C++11 and C++14: The
Latest C++ Versions
C++11 was published by ISO/IEC in 2011. Bjarne Stroustrup, the
creator of C++, expressed his vision for the future of the language—
the main goals were to make C++ easier to learn, improve library-
building capabilities and increase compatibility with the C
programming language. C++11 extended the C++ Standard Library
and added several features and enhancements to improve
performance and security. The three compilers we use in this book

11

Visual Studio 2015 Community Edition (Microsoft Windows)
GNU C++ (Linux)
Clang/LLVM in Xcode (Mac OS X)

14

have implemented most C++11 features.

The current C++ standard, C++14, was published by ISO/IEC in 2014.
It added several language features and C++ Standard Library
enhancements, and fixed bugs from C++11. Throughout this book, we

cover features of C++11 and C++14 as appropriate for a book at this
level. For a list of C++11 and C++14 features and the compilers that
support them, visit

http://en.cppreference.com/w/cpp/compiler_support

The next version of the C++ standard, C++17, is currently under
development. For a list of proposed features, see

17

https://en.wikipedia.org/wiki/C%2B%2B17

http://en.cppreference.com/w/cpp/compiler_support

1.15 Boost C++ Libraries
The Boost C++ Libraries (www.boost.org) are free, open-source
libraries created by members of the C++ community. They are peer
reviewed and portable across many compilers and platforms. Boost
has grown to over 130 libraries, with more being added regularly.
Today there are thousands of programmers in the Boost open-source
community. The Boost libraries work well with the existing C++
Standard Library and often act as a proving ground for capabilities that
are eventually absorbed into the C++ Standard Library. For example,
the C++11 “regular expression” and “smart pointer” libraries, among
others, are based on work done by the Boost community.

Regular expressions are used to match specific character patterns in
text. They can be used to validate data to ensure that it’s in a
particular format, to replace parts of one string with another, or to split
a string.

Many common bugs in C and C++ code are related to pointers, a
powerful programming capability that C++ absorbed from C. As you’ll
see, smart pointers help you avoid some key errors associated with
traditional pointers.

http://www.boost.org

1.16 Keeping Up to Date with
Information Technologies
Figure 1.35 lists key technical and business publications that will help
you stay up-to-date with the latest news, trends and technology. You
can also find a growing list of Internet-and web-related Resource
Centers at www.deitel.com/ResourceCenters.html .

Fig. 1.35 Technical and business publications.

Publication URL

AllThingsD allthingsd.com

Bloomberg
BusinessWeek

www.businessweek.com

CNET news.cnet.com

Communications of the
ACM

cacm.acm.org

Computerworld www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com

http://www.deitel.com/ResourceCenters.html
http://allthingsd.com.ezproxy.cul.columbia.edu
http://www.businessweek.com.ezproxy.cul.columbia.edu
http://news.cnet.com
http://cacm.acm.org.ezproxy.cul.columbia.edu
http://www.computerworld.com.ezproxy.cul.columbia.edu
http://www.engadget.com
http://www.eweek.com
http://www.fastcompany.com

Fortune fortune.com

GigaOM gigaom.com

Hacker News news.ycombinator.com

IEEE Computer
Magazine

www.computer.org/portal/web/computingnow/

computer

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Slashdot slashdot.org

Stack Overflow stackoverflow.com

Technology Review technologyreview.com

Techcrunch techcrunch.com

The Next Web thenextweb.com

The Verge www.theverge.com

Wired www.wired.com

http://fortune.com
http://gigaom.com
http://news.ycombinator.com
http://www.computer.org.ezproxy.cul.columbia.edu/portal/web/computingnow/computer
http://www.infoworld.com
http://mashable.com
http://www.pcworld.com.ezproxy.cul.columbia.edu
http://www.sdtimes.com
http://stackoverflow.com
http://technologyreview.com
http://techcrunch.com
http://thenextweb.com
http://www.theverge.com
http://www.wired.com

Self-Review Exercises
1. 1.1 Fill in the blanks in each of the following statements:

A. Computers process data under the control of sets of
instructions called .

B. The key logical units of the computer are the ,
 , , , and .

C. The three types of languages discussed in the chapter
are , and .

D. The programs that translate high-level language
programs into machine language are called .

E. is an operating system for mobile devices based
on the Linux kernel and Java.

F. software is generally feature complete and
(supposedly) bug free and ready for use by the
community.

G. The Wii Remote, as well as many smartphones, uses
a(n) which allows the device to respond to
motion.

2. 1.2 Fill in the blanks in each of the following sentences about
the C++ environment.

A. C++ programs are normally typed into a computer using
a(n) program.

B. In a C++ system, a(n) program executes before
the compiler’s translation phase begins.

C. The program combines the output of the compiler
with various library functions to produce an executable
program.

D. The program transfers the executable program
from disk to memory.

3. 1.3 Fill in the blanks in each of the following statements (based
on Section 1.8):

A. Objects have the property of —although objects
may know how to communicate with one another across
well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

B. C++ programmers concentrate on creating , which
contain data members and the member functions that
manipulate those data members and provide services to
clients.

C. The process of analyzing and designing a system from
an object-oriented point of view is called .

D. With , new classes of objects are derived by
absorbing characteristics of existing classes, then
adding unique characteristics of their own.

E. is a graphical language that allows people who
design software systems to use an industry-standard
notation to represent them.

F. The size, shape, color and weight of an object are
considered of the object’s class.

Exercises
1. 1.4 Fill in the blanks in each of the following statements:

A. The logical unit of the computer that receives information
from outside the computer for use by the computer is the
 .

B. The process of instructing the computer to solve a
problem is called .

C. is a type of computer language that uses English-
like abbreviations for machine-language instructions.

D. is a logical unit of the computer that sends
information which has already been processed by the
computer to various devices so that it may be used
outside the computer.

E. and are logical units of the computer that
retain information.

F. is a logical unit of the computer that performs
calculations.

G. is a logical unit of the computer that makes logical
decisions.

H. languages are most convenient to the
programmer for writing programs quickly and easily.

I. The only language a computer can directly
understand is that computer’s .

J. is a logical unit of the computer that coordinates
the activities of all the other logical units.

2. 1.5 Fill in the blanks in each of the following statements:
A. initially became widely known as the development

language of the UNIX operating system.
B. The programming language was developed by

Bjarne Stroustrup in the early 1980s at Bell Laboratories.

3. 1.6 Fill in the blanks in each of the following statements:
A. C++ programs normally go through six phases— ,

 , , , and .
B. A(n) provides many tools that support the

software development process, such as editors for
writing and editing programs, debuggers for locating
logic errors in programs, and many other features.

4. 1.7 You’re probably wearing on your wrist one of the world’s
most common types of objects— a watch. Discuss how each of
the following terms and concepts applies to the notion of a
watch: object, attributes, behaviors, class, inheritance
(consider, for example, an alarm clock), modeling, messages,
encapsulation, interface and information hiding.

Making a Difference
Throughout the book we’ve included Making a Difference exercises in
which you’ll be asked to work on problems that really matter to
individuals, communities, countries and the world.

1. 1.8 (Test Drive: Carbon Footprint Calculator) Some
scientists believe that carbon emissions, especially from the
burning of fossil fuels, contribute significantly to global warming
and that this can be combatted if individuals take steps to limit
their use of carbon-based fuels. Various organizations and
individuals are increasingly concerned about their “carbon
footprints.” Websites such as TerraPass

http://www.terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these
calculators to determine your carbon footprint. Exercises in
later chapters will ask you to program your own carbon footprint

http://www.terrapass.com/carbon-footprint-calculator-2/
http://www.carbonfootprint.com/calculator.aspx

calculator. To prepare for this, research the formulas for
calculating carbon footprints.

2. 1.9 (Test Drive: Body Mass Index Calculator) By recent
estimates, two-thirds of the people in the United States are
overweight and about half of those are obese. This causes
significant increases in illnesses such as diabetes and heart
disease. To determine whether a person is overweight or
obese, you can use a measure called the body mass index
(BMI). The United States Department of Health and Human
Services provides a BMI calculator at http://
www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm . Use it
to calculate your own BMI. An exercise in Chapter 2 will ask
you to program your own BMI calculator. To prepare for this,
research the formulas for calculating BMI.

3. 1.10 (Attributes of Hybrid Vehicles) In this chapter you
learned the basics of classes. Now you’ll begin “fleshing out”
aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are
becoming increasingly popular, because they often get much
better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular
hybrid cars, then list as many of their hybrid-related attributes
as you can. For example, common attributes include city-miles-
per-gallon and highway-miles-per-gallon. Also list the attributes
of the batteries (type, weight, etc.).

4. 1.11 (Gender Neutrality) Some people want to eliminate
sexism in all forms of communication. You’ve been asked to
create a program that can process a paragraph of text and
replace gender-specific words with gender-neutral ones.

http://www.nhlbi.nih.gov.ezproxy.cul.columbia.edu/guidelines/obesity/BMI/bmicalc.htm

Assuming that you’ve been given a list of gender-specific words
and their gender-neutral replacements (e.g., replace “wife” with
“spouse,” “man” with “person,” “daughter” with “child” and so
on), explain the procedure you’d use to read through a
paragraph of text and manually perform these replacements.
How might your procedure generate a strange term like
“woperchild,” which is actually listed in the Urban Dictionary
(www.urbandictionary.com)? In Chapter 4, you’ll learn that a
more formal term for “procedure” is “algorithm,” and that an
algorithm specifies the steps to be performed and the order in
which to perform them.

5. 1.12 (Privacy) Some online e-mail services save all e-mail
correspondence for some period of time. Suppose a disgruntled
employee of one of these online e-mail services were to post all
of the e-mail correspondences for millions of people, including
yours, on the Internet. Discuss the issues.

6. 1.13 (Programmer Responsibility and Liability) As a
programmer in industry, you may develop software that could
affect people’s health or even their lives. Suppose a software
bug in one of your programs were to cause a cancer patient to
receive an excessive dose during radiation therapy and that the
person either was severely injured or died. Discuss the issues.

7. 1.14 (2010 “Flash Crash”) An example of the consequences
of our dependency on computers was the so-called “flash
crash” which occurred on May 6, 2010, when the U.S. stock
market fell precipitously in a matter of minutes, wiping out
trillions of dollars of investments, and then recovered within

http://www.urbandictionary.com

minutes. Use the Internet to investigate the causes of this crash
and discuss the issues it raises.

Making a Difference Resources
The Microsoft Imagine Cup is a global competition in which students
use technology to try to solve some of the world’s most difficult
problems, such as environmental sustainability, ending hunger,
emergency response, literacy and more. For more information about
the competition and to learn about previous winners’ projects, visit
https://www.imaginecup.com/Custom/Index/About . You can also find
several project ideas submitted by worldwide charitable organizations.
For additional ideas for programming projects that can make a
difference, search the web for “making a difference” and visit the
following websites:

http://www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major
worldwide issues such as environmental sustainability, gender
equality, child and maternal health, universal education and more.

http://www.ibm.com/smarterplanet

The IBM Smarter Planet website discusses how IBM is using
technology to solve issues related to business, cloud computing,
education, sustainability and more.

http://www.gatesfoundation.org

The Bill and Melinda Gates Foundation provides grants to

®

http://www.imaginecup.com/Custom/Index/About
http://www.un.org.ezproxy.cul.columbia.edu/millenniumgoals
http://www.ibm.com/smarterplanet
http://www.gatesfoundation.org

organizations that work to alleviate hunger, poverty and disease in
developing countries.

http://nethope.org

NetHope is a collaboration of humanitarian organizations worldwide
working to solve technology problems such as connectivity,
emergency response and more.

http://www.rainforestfoundation.org

The Rainforest Foundation works to preserve rainforests and to
protect the rights of the indigenous people who call the rainforests
home. The site includes a list of things you can do to help.

http://www.undp.org

The United Nations Development Programme (UNDP) seeks solutions
to global challenges such as crisis prevention and recovery, energy
and the environment, democratic governance and more.

http://www.unido.org

The United Nations Industrial Development Organization (UNIDO)
seeks to reduce poverty, give developing countries the opportunity to
participate in global trade, and promote energy efficiency and
sustainability.

http://www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict
prevention, humanitarian aid and more.

http://nethope.org
http://www.rainforestfoundation.org
http://www.undp.org
http://www.unido.org.ezproxy.cul.columbia.edu
http://www.usaid.gov/

Answers to Self-Review Exercises
1. 1.1

A. programs.
B. input unit, output unit, memory unit, central processing

unit, arithmetic and logic unit, secondary storage unit.
C. machine languages, assembly languages, high-level

languages.
D. compilers.
E. Android.
F. Release candidate.
G. accelerometer.

2. 1.2
A. editor.
B. preprocessor.
C. linker.
D. loader.

3. 1.3
A. information hiding.
B. classes.
C. object-oriented analysis and design (OOAD).
D. inheritance.
E. The Unified Modeling Language (UML).
F. attributes.

2 Introduction to C++
Programming, Input/Output and
Operators

Objectives
In this chapter you’ll:

Write basic computer programs in C++.
Write input and output statements.
Use fundamental types.
Learn computer memory concepts.
Use arithmetic operators.
Understand the precedence of arithmetic operators.
Write decision-making statements.

Outline
1. 2.1 Introduction
2. 2.2 First Program in C++: Printing a Line of Text
3. 2.3 Modifying Our First C++ Program
4. 2.4 Another C++ Program: Adding Integers
5. 2.5 Memory Concepts
6. 2.6 Arithmetic
7. 2.7 Decision Making: Equality and Relational Operators
8. 2.8 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

2.1 Introduction
We now introduce C++ programming, which facilitates a disciplined
approach to program development. Most of the C++ programs you’ll
study in this book process data and display results. In this chapter, we
present five examples that demonstrate how your programs can
display messages and obtain data from the user for processing. The
first three examples display messages on the screen. The next
obtains two numbers from a user at the keyboard, calculates their sum
and displays the result. The accompanying discussion shows you how
to perform arithmetic calculations and save their results for later use.
The fifth example demonstrates decision making by showing you how
to compare two numbers, then display messages based on the
comparison results. We analyze each program one line at a time to
help you ease into C++ programming.

Compiling and Running Programs
We’ve posted videos that demonstrate compiling and running
programs in Microsoft Visual C++, GNU C++ and Xcode Clang/LLVM
at

http://www.deitel.com/books/cpphtp10

http://www.deitel.com/books/cpphtp10

2.2 First Program in C++: Printing
a Line of Text
Consider a simple program that prints a line of text (Fig. 2.1). This
program illustrates several important features of the C++ language.
The text in lines 1–10 is the program’s source code (or code). The line
numbers are not part of the source code.

Fig. 2.1 Text-printing program.

Comments
Lines 1 and 2

// Fig. 2.1: fig02_01.cpp

// Text-printing program.

each begin with // , indicating that the remainder of each line is a
comment. You insert comments to document your programs and to
help other people read and understand them. Comments do not cause
the computer to perform any action when the program is run—they’re
ignored by the C++ compiler and do not cause any machine-language
object code to be generated. The comment Text-printing program
describes the purpose of the program. A comment beginning with //
is called a single-line comment because it terminates at the end of
the current line. You also may use comments containing one or more
lines enclosed in /* and */ , as in

/* Fig. 2.1: fig02_01.cpp

 Text-printing program. */

 Good Programming Practice 2.1

Every program should begin with a comment that describes the
purpose of the program.

#include Preprocessing Directive
Line 3

#include <iostream> // enables program to output data to the

screen

is a preprocessing directive, which is a message to the C++
preprocessor (introduced in Section 1.9). Lines that begin with # are
processed by the preprocessor before the program is compiled. This
line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream> . This header is a file
containing information the compiler uses when compiling any program
that outputs data to the screen or inputs data from the keyboard using
C++’s stream input/output. The program in Fig. 2.1 outputs data to the
screen, as we’ll soon see. We discuss headers in more detail in
Chapter 6 and explain the contents of <iostream> in Chapter 13.

 Common Programming Error 2.1

Forgetting to include the <iostream> header in a program that inputs

data from the keyboard or outputs data to the screen causes the
compiler to issue an error message.

Blank Lines and White Space
Line 4 is simply a blank line. You use blank lines, space characters
and tab characters (i.e., “tabs”) to make programs easier to read.

Together, these characters are known as white space. White-space
characters are normally ignored by the compiler.

The main Function
Line 5

// function main begins program execution

is a single-line comment indicating that program execution begins at
the next line.

Line 6

int main() {

is a part of every C++ program. The parentheses after main indicate
that main is a program building block called a function. C++ programs
typically consist of one or more functions and classes (as you’ll learn
in Chapter 3). Exactly one function in every program must be named
main . Figure 2.1 contains only one function. C++ programs begin
executing at function main , even if main is not the first function defined
in the program. The keyword int to the left of main indicates that main

“returns” an integer (whole number) value. A keyword is a word in
code that is reserved by C++ for a specific use. The complete list of
C++ keywords can be found in Fig. 4.3. We’ll explain what it means
for a function to “return a value” when we demonstrate how to create
your own functions in Section 3.3. For now, simply include the
keyword int to the left of main in each of your programs.

The left brace, { , (end of line 6) must begin the body of every
function. A corresponding right brace, } , (line 10) must end each
function’s body.

An Output Statement
Line 7

std::cout << "Welcome to C++!\n"; // display message

instructs the computer to perform an action—namely, to print the
characters contained between the double quotation marks. Together,
the quotation marks and the characters between them are called a
string, a character string or a string literal. In this book, we refer to
characters between double quotation marks simply as strings. White-
space characters in strings are not ignored by the compiler.

The entire line 7, including std::cout , the << operator, the string
"Welcome to C++!\n" and the semicolon (;), is called a statement.
Most C++ statements end with a semicolon, also known as the
statement terminator (we’ll see some exceptions to this soon).
Preprocessing directives (such as #include) do not end with a
semicolon. Typically, output and input in C++ are accomplished with
streams of data. Thus, when the preceding statement is executed, it
sends the stream of characters Welcome to C++!\n to the standard
output stream object— std::cout—which is normally “connected” to
the screen.

 Common Programming Error 2.2

Omitting the semicolon at the end of a C++ statement is a syntax
error. The syntax of a programming language specifies the rules for
creating proper programs in that language. A syntax error occurs
when the compiler encounters code that violates C++’s language rules
(i.e., its syntax). The compiler normally issues an error message to
help you locate and fix the incorrect code. Syntax errors are also
called compiler errors, compile-time errors or compilation errors,
because the compiler detects them during the compilation phase. You
cannot execute your program until you correct all the syntax errors in
it. As you’ll see, some compilation errors are not syntax errors.

 Good Programming Practice 2.2

Indent the body of each function one level within the braces that
delimit the function’s body. This makes a program’s functional
structure stand out, making the program easier to read.

 Good Programming Practice 2.3

Set a convention for the size of indent you prefer, then apply it
uniformly. The tab key may be used to create indents, but tab stops
may vary. We prefer three spaces per level of indent.

The std Namespace
The std:: before cout is required when we use names that we’ve
brought into the program by the preprocessing directive #include
<iostream> . The notation std::cout specifies that we are using a
name, in this case cout , that belongs to namespace std . The names
cin (the standard input stream) and cerr (the standard error stream)
—introduced in Chapter 1—also belong to namespace std .
Namespaces are an advanced C++ feature that we discuss in depth in
Chapter 23, Other Topics. For now, you should simply remember to
include std:: before each mention of cout , cin and cerr in a

program. This can be cumbersome—we’ll soon introduce using
declarations and the using directive, which will enable you to omit
std:: before each use of a name in the std namespace.

The Stream Insertion Operator and
Escape Sequences
In the context of an output statement, the << operator is referred to as
the stream insertion operator. When this program executes, the
value to the operator’s right, the right operand, is inserted in the
output stream. Notice that the << operator points toward where the
data goes. A string literal’s characters normally print exactly as they
appear between the double quotes. However, the characters \n are
not printed on the screen (Fig. 2.1). The backslash (\) is called an
escape character. It indicates that a “special” character is to be
output. When a backslash is encountered in a string of characters, the
next character is combined with the backslash to form an escape
sequence. The escape sequence \n means newline. It causes the
cursor (i.e., the current screen-position indicator) to move to the
beginning of the next line on the screen. Some common escape
sequences are listed in Fig. 2.2.

Fig. 2.2 Escape sequences.

Escape
sequence

Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the current
line; do not advance to the next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\' Single quote. Used to print a single-quote character.

\" Double quote. Used to print a double-quote character.

The return Statement
Line 9

return 0; // indicate that program ended successfully

is one of several means we’ll use to exit a function. When the return
statement is used at the end of main , as shown here, the value 0
indicates that the program has terminated successfully. The right
brace, } , (line 10) indicates the end of function main . According to the
C++ standard, if program execution reaches the end of main without
encountering a return statement, it’s assumed that the program
terminated successfully—exactly as when the last statement in main is

a return statement with the value 0 . For that reason, we omit the
return statement at the end of main in subsequent programs.

A Note About Comments
As you write a new program or modify an existing one, you should
keep your comments up-to-date with the program’s code. You’ll often
need to make changes to existing programs— for example, to fix
errors (commonly called bugs) that prevent a program from working
correctly or to enhance a program. Updating your comments as you
make code changes helps ensure that the comments accurately
reflect what the code does. This will make your programs easier for
you and others to understand and modify in the future.

2.3 Modifying Our First C++
Program
We now present two examples that modify the program of Fig. 2.1 to
print text on one line by using multiple statements and to print text on
several lines by using a single statement.

Printing a Single Line of Text with Multiple
Statements
Welcome to C++! can be printed several ways. For example, Fig. 2.3
performs stream insertion in multiple statements (lines 7–8), yet
produces the same output as the program of Fig. 2.1. [Note: From this
point forward, we use a colored background to highlight the key
features each program introduces.] Each stream insertion resumes
printing where the previous one stopped. The first stream insertion
(line 7) prints Welcome followed by a space, and because this string did
not end with \n , the second stream insertion (line 8) begins printing on
the same line immediately following the space.

Fig. 2.3 Printing a line of text with multiple statements.

Printing Multiple Lines of Text with a
Single Statement
A single statement can print multiple lines by using newline
characters, as in line 7 of Fig. 2.4. Each time the \n (newline) escape
sequence is encountered in the output stream, the screen cursor is
positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 7.

Fig. 2.4 Printing multiple lines of text with a single statement.

2.4 Another C++ Program: Adding
Integers
Our next program obtains two integers typed by a user at the
keyboard, computes their sum and outputs the result using std::cout .
Figure 2.5 shows the program and sample inputs and outputs. In the
sample execution, we highlight the user’s input in bold. The program
begins execution with function main (line 6). The left brace (line 6)
begins main ’s body and the corresponding right brace (line 21) ends it.

Fig. 2.5 Addition program that displays the sum of two integers.

Variable Declarations and List Initialization
Lines 8–10

int number1{0}; // first integer to add (initialized to 0)

int number2{0}; // second integer to add (initialized to 0)

int sum{0}; // sum of number1 and number2 (initialized to 0)

are declarations. The identifiers number1 , number2 and sum are the
names of variables. A variable is a location in the computer’s memory
where a value can be stored for use by a program. These declarations
specify that the variables number1 , number2 and sum are data of type
int , meaning that these variables will hold integer (whole number)
values, such as 7, –11, 0 and 31914.

Lines 8–10 also initialize each variable to 0 by placing a value in
braces ({ and }) immediately following the variable’s name—this is
known as list initialization,1 which was introduced in C++11.
Previously, these declarations would have been written as:

1. List initialization is also known as uniform initialization.

11

int number1 = 0; // first integer to add (initialized to 0)

int number2 = 0; // second integer to add (initialized to 0)

int sum = 0; // sum of number1 and number2 (initialized to 0)

 Error-Prevention Tip 2.1

Although it’s not always necessary to initialize every variable explicitly,
doing so will help you avoid many kinds of problems.

All variables must be declared with a name and a data type before
they can be used in a program. Several variables of the same type
may be declared in one declaration—for example, we could have
declared and initialized all three variables in one declaration by using
a comma-separated list as follows:

int number1{0}, number2{0}, sum{0};

This makes the program less readable and prevents us from providing
comments that describe each variable’s purpose.

 Good Programming Practice 2.4

Declare only one variable in each declaration and provide a comment
that explains the variable’s purpose in the program.

Fundamental Types
We’ll soon discuss the type double for specifying real numbers and
the type char for specifying character data. Real numbers are
numbers with decimal points, such as 3.4, 0.0 and –11.19. A char
variable may hold only a single lowercase letter, uppercase letter, digit
or special character (e.g., $ or *). Types such as int , double and
char are called fundamental types. Fundamental-type names consist
of one or more keywords and therefore must appear in all lowercase
letters. Appendix C contains the complete list of fundamental types.

Identifiers
A variable name (such as number1) is any valid identifier that is not a
keyword. An identifier is a series of characters consisting of letters,
digits and underscores (_) that does not begin with a digit. C++ is
case sensitive—uppercase and lowercase letters are different, so a1
and A1 are different identifiers.

 Portability Tip 2.1

C++ allows identifiers of any length, but your C++ implementation may
restrict identifier lengths. Use identifiers of 31 characters or fewer to
ensure portability (and readability).

 Good Programming Practice 2.5

Choosing meaningful identifiers helps make a program self-
documenting—a person can understand the program simply by
reading it rather than having to refer to program comments or
documentation.

 Good Programming Practice 2.6

Avoid using abbreviations in identifiers. This improves program
readability.

 Good Programming Practice 2.7

Do not use identifiers that begin with underscores and double
underscores, because C++ compilers use names like that for their
own purposes internally.

Placement of Variable Declarations
Declarations of variables can be placed almost anywhere in a
program, but they must appear before their corresponding variables
are used in the program. For example, in the program of Fig. 2.5, the
declaration in line 8

int number1{0}; // first integer to add (initialized to 0)

could have been placed immediately before line 13

std::cin >> number1; // read first integer from user into number1

the declaration in line 9

int number2{0}; // second integer to add (initialized to 0)

could have been placed immediately before line 16

std::cin >> number2; // read second integer from user into

number2

and the declaration in line 10

int sum{0}; // sum of number1 and number2 (initialized to 0)

could have been placed immediately before line 18

sum = number1 + number2; // add the numbers; store result in sum

Obtaining the First Value from the User
Line 12

std::cout << "Enter first integer: "; // prompt user for data

displays Enter first integer: followed by a space. This message is
called a prompt because it directs the user to take a specific action.
We like to pronounce the preceding statement as “ std::cout gets the
string "Enter first integer: " .” Line 13

std::cin >> number1; // read first integer from user into number1

uses the standard input stream object cin (of namespace std) and
the stream extraction operator, >> , to obtain a value from the
keyboard. Using the stream extraction operator with std::cin takes
character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “ std::cin
gives a value to number1 ” or simply “ std::cin gives number1 .”

When the computer executes the preceding statement, it waits for the
user to enter a value for variable number1 . The user responds by
typing an integer (as characters), then pressing the Enter key
(sometimes called the Return key) to send the characters to the
computer. The computer converts the character representation of the
number to an integer and assigns (i.e., copies) this number (or value)
to the variable number1 . Any subsequent references to number1 in this

program will use this same value. Pressing Enter also causes the
cursor to move to the beginning of the next line on the screen.

Users can, of course, enter invalid data from the keyboard. For
example, when your program is expecting the user to enter an integer,
the user could enter alphabetic characters, special symbols (like # or
@) or a number with a decimal point (like 73.5), among others. In
these early programs, we assume that the user enters valid data. As
you progress through the book, you’ll learn how to deal with data-entry
problems.

Obtaining the Second Value from the User
Line 15

std::cout << "Enter second integer: "; // prompt user for data

prints Enter second integer: on the screen, prompting the user to take
action. Line 16

std::cin >> number2; // read second integer from user into

number2

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by
the User
The assignment statement in line 18

sum = number1 + number2; // add the numbers; store result in sum

adds the values of variables number1 and number2 and assigns the
result to variable sum using the assignment operator = . We like to
read this statement as, “ sum gets the value of number1 + number2 .”
Most calculations are performed in assignment statements. The =
operator and the + operator are called binary operators because
each has two operands. In the case of the + operator, the two
operands are number1 and number2 . In the case of the preceding =
operator, the two operands are sum and the value of the expression
number1 + number2 .

 Good Programming Practice 2.8

Place spaces on either side of a binary operator. This makes the
operator stand out and makes the program more readable.

Displaying the Result
Line 20

std::cout << "Sum is " << sum << std::endl; // display sum; end

line

displays the character string Sum is followed by the numerical value of
variable sum followed by std::endl—a so-called stream manipulator.
The name endl is an abbreviation for “end line” and belongs to
namespace std . The std::endl stream manipulator outputs a newline,
then “flushes the output buffer.” This simply means that, on some
systems where outputs accumulate in the machine until there are
enough to “make it worthwhile” to display them on the screen,
std::endl forces any accumulated outputs to be displayed at that
moment. This can be important when the outputs are prompting the
user for an action, such as entering data.

The preceding statement outputs multiple values of different types.
The stream insertion operator “knows” how to output each type of
data. Using multiple stream insertion operators (<<) in a single
statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could
have combined the statements in lines 18 and 20 into the statement

std::cout << "Sum is " << number1 + number2 << std::endl;

thus eliminating the need for the variable sum .

A powerful feature of C++ is that you can create your own data types
called classes (we discuss this capability in Chapter 3 and explore it
in depth in Chapter 9). You can then “teach” C++ how to input and
output values of these new data types using the >> and << operators
(this is called operator overloading—a topic we explore in Chapter
10).

2.5 Memory Concepts
Variable names such as number1 , number2 and sum actually
correspond to locations in the computer’s memory. Every variable
has a name, a type, a size and a value.

In the addition program of Fig. 2.5, when the statement in line 13

std::cin >> number1; // read first integer from user into number1

is executed, the integer typed by the user is placed into a memory
location to which the name number1 has been assigned by the
compiler. Suppose the user enters 45 for number1 . The computer will
place 45 into the location number1 , as shown in Fig. 2.6. When a value
is placed in a memory location, the value overwrites the previous
value in that location; thus, placing a new value into a memory
location is said to be a destructive operation.

Fig. 2.6 Memory location showing the name and value of variable
number1 .

Returning to our addition program, suppose the user enters 72 when
the statement

std::cin >> number2; // read second integer from user into

number2

is executed. This value is placed into the location number2 , and
memory appears as in Fig. 2.7. The variables’ locations are not
necessarily adjacent in memory.

Fig. 2.7 Memory locations after storing values in the variables for
number1 and number2 .

Once the program has obtained values for number1 and number2 , it
adds these values and places the total into the variable sum . The
statement

sum = number1 + number2; // add the numbers; store result in sum

replaces whatever value was stored in sum . The calculated sum of
number1 and number2 is placed into variable sum without regard to what
value may already be in sum—that value is lost. After sum is
calculated, memory appears as in Fig. 2.8. The values of number1 and
number2 appear exactly as they did before the calculation. These
values were used, but not destroyed, as the computer performed the
calculation. Thus, when a value is read out of a memory location, the
operation is nondestructive.

Fig. 2.8 Memory locations after calculating and storing the sum of
number1 and number2 .

2.6 Arithmetic
Most programs perform arithmetic calculations. Figure 2.9
summarizes the arithmetic operators. Note the use of various
special symbols not used in algebra. The asterisk (*) indicates
multiplication and the percent sign (%) is the remainder operator,
which we’ll discuss shortly. The arithmetic operators in Fig. 2.9 are all
binary operators—they each take two operands. For example, the
expression number1 + number2 contains the binary operator + and the
two operands number1 and number2 .

Fig. 2.9 Arithmetic operators.

Operation Arithmetic operator Algebraic expression C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b · m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Integer division (i.e., where both the numerator and the denominator
are integers) yields an integer quotient; for example, the expression

7/4 evaluates to 1 and the expression 17/5 evaluates to 3 . Any

fractional part in integer division is truncated (i.e., discarded)—no
rounding occurs.

The remainder operator, % , yields the remainder after integer

division and can be used only with integer operands. The expression
x % y yields the remainder after x is divided by y . Thus, 7 % 4 yields
3 and 17 % 5 yields 2 . In later chapters, we discuss interesting
applications of the remainder operator, such as determining whether
one number is a multiple of another (a special case of this is
determining whether a number is odd or even).

Arithmetic Expressions in Straight-Line
Form
Arithmetic expressions in C++ must be entered into the computer in
straight-line form. Thus, expressions such as “ a divided by b ” must
be written as a / b , so that all constants, variables and operators
appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-
purpose software packages do support more natural notation for
complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in
algebraic expressions. For example, to multiply a times the quantity b
+ c we write a * (b + c) .

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order
determined by the following rules of operator precedence, which are
generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses
are evaluated first. Parentheses are said to be at the “highest
level of precedence.” In cases of nested, or embedded,
parentheses, such as

(a * (b + c))

the operators in the innermost pair of parentheses are applied
first.

2. Multiplication, division and remainder operations are evaluated
next. If an expression contains several multiplication, division
and remainder operations, operators are applied from left to
right. These three operators are said to be on the same level of
precedence.

3. Addition and subtraction operations are applied last. If an
expression contains several addition and subtraction
operations, operators are applied from left to right. Addition and
subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++
applies operators. When we say that certain operators are applied
from left to right, we are referring to the associativity of the operators.
For example, the addition operators (+) in the expression

a + b + c

associate from left to right, so a + b is calculated first, then c is added
to that sum to determine the whole expression’s value. We’ll see that
some operators associate from right to left. Figure 2.10 summarizes
these rules of operator precedence. We expand this table as we
introduce additional C++ operators. Appendix A contains the
complete precedence chart.

Fig. 2.10 Precedence of arithmetic operators.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. For nested parentheses, such as in the
expression a * (b + c / (d + e)) , the expression

in the innermost pair evaluates first. [Caution: If you have
an expression such as (a + b) * (c - d) in which

two sets of parentheses are not nested, but appear “on
the same level,” the C++ Standard does not specify the
order in which these parenthesized subexpressions will
evaluate.]

*

/

%

Multiplication
Division
Remainder

Evaluated second. If there are several, they’re evaluated
left to right.

+

-

Addition
Subtraction

Evaluated last. If there are several, they’re evaluated left
to right.

Sample Algebraic and C++ Expressions
Now consider several expressions in light of the rules of operator
precedence. Each example lists an algebraic expression and its C++
equivalent. The following is an example of an arithmetic mean
(average) of five terms:

The parentheses are required because division has higher
precedence than addition. The entire quantity (a + b + c + d + e) is

to be divided by 5 . If the parentheses are erroneously omitted, we
obtain a + b + c + d + e / 5 , which evaluates incorrectly as

The following is an example of the equation of a straight line:

No parentheses are required. The multiplication is applied first
because multiplication has a higher precedence than addition.

The following example contains remainder (%), multiplication, division,
addition, subtraction and assignment operations:

The circled numbers under the statement indicate the order in which
C++ applies the operators. The multiplication, remainder and division
operations are evaluated first in left-to-right order (i.e., they associate
from left to right) because they have higher precedence than addition
and subtraction. The addition and subtraction are applied next. These
are also applied left to right. The assignment operator is applied last

because its precedence is lower than that of any of the arithmetic
operators.

Evaluation of a Second-Degree
Polynomial
To develop a better understanding of the rules of operator
precedence, consider the evaluation of a second-degree polynomial

:

There is no arithmetic operator for exponentiation in C++, so we’ve
represented as x * x . The circled numbers under the statement
indicate the order in which C++ applies the operators. In Chapter 5,
we’ll discuss the standard library function pow (“power”) that performs
exponentiation.

Suppose variables a , b , c and x in the preceding second-degree
polynomial are initialized as follows: a = 2 , b = 3 , c = 7 and x = 5 .
Figure 2.11 illustrates the order in which the operators are applied
and the final value of the expression.

Fig. 2.11 Order in which a second-degree polynomial is
evaluated.

Redundant Parentheses
As in algebra, it’s acceptable to place unnecessary parentheses in an
expression to make it clearer. These are called redundant
parentheses. For example, the second-degree polynomial could be
parenthesized as follows:

y = (a * x * x) + (b * x) + c;

2.7 Decision Making: Equality and
Relational Operators
We now introduce C++’s if statement , which allows a program to take
alternative action based on whether a condition is true or false.
Conditions in if statements can be formed by using the relational
operators and equality operators summarized in Fig. 2.12. The
relational operators all have the same level of precedence and
associate left to right. The equality operators both have the same level
of precedence, which is lower than that of the relational operators, and
associate left to right.

Fig. 2.12 Relational and equality operators.

Algebraic relational or
equality operator

C++ relational or
equality operator

Sample C++
condition

Meaning of C++
condition

Relational operators

> > x > y x is greater than
y

< < x < y x is less than y

≥ >= x >= y x is greater than

or equal to y

≤ <= x <= y x is less than or

equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to
y

 Common Programming Error
2.3

Reversing the order of the pair of symbols in the operators != , >= and

<= (by writing them as =! , => and =< , respectively) is normally a

syntax error. In some cases, writing != as =! will not be a syntax

error, but almost certainly will be a logic error that has an effect at
execution time. You’ll understand why when you learn about logical
operators in Chapter 5. A fatal logic error causes a program to fail
and terminate prematurely. A nonfatal logic error allows a program
to continue executing, but usually produces incorrect results.

 Common Programming Error

2.4

Confusing the equality operator == with the assignment operator =

results in logic errors. We like to read the equality operator as “is
equal to” or “double equals,” and the assignment operator as “gets” or
“gets the value of” or “is assigned the value of.” As you’ll see in
Section 5.12, confusing these operators may not necessarily cause
an easy-to-recognize syntax error, but may cause subtle logic errors.

Using the if Statement
The following example (Fig. 2.13) uses six if statements to compare
two numbers input by the user. If a given if statement’s condition is
true, the output statement in the body of that if statement executes. If
the condition is false, the output statement in the body does not
execute.

Fig. 2.13 Comparing integers using if statements, relational
operators and equality operators.

using Declarations
Lines 6–8

using std::cout; // program uses cout

using std::cin; // program uses cin

using std::endl; // program uses endl

are using declarations that eliminate the need to repeat the std::
prefix as we did in earlier programs. We can now write cout instead of
std::cout , cin instead of std::cin and endl instead of std::endl ,
respectively, in the remainder of the program.

In place of lines 6–8, many programmers prefer to provide the using
directive

using namespace std;

which enables a program to use all the names in any standard C++
header (such as <iostream>) that a program might include. From this
point forward in the book, we’ll use the preceding directive in our
programs.2

2. In Chapter 23, Other Topics, we’ll discuss some issues with using
directives in large-scale systems.

Variable Declarations and Reading the
Inputs from the User
Lines 12–13

int number1{0}; // first integer to compare (initialized to 0)

int number2{0}; // second integer to compare (initialized to 0)

declare the variables used in the program and initialize them to 0 .

Line 16

cin >> number1 >> number2; // read two integers from user

uses cascaded stream extraction operations to input two integers.
Recall that we’re allowed to write cin (instead of std::cin) because of
line 7. First a value is read into variable number1 , then a value is read
into variable number2 .

Comparing Numbers
The if statement in lines 18–20

if (number1 == number2) {

 cout << number1 << " == " << number2 << endl;

}

compares the values of variables number1 and number2 to test for
equality. If the values are equal, the statement in line 19 displays a
line of text indicating that the numbers are equal. If the conditions are
true in one or more of the if statements starting in lines 22, 26, 30,
34 and 38, the corresponding body statement displays an appropriate
line of text.

Each if statement in Fig. 2.13 contains a single body statement
that’s indented. Also notice that we’ve enclosed each body statement
in a pair of braces, { } , creating what’s called a compound
statement or a block.

 Good Programming Practice 2.9

Indent the statement(s) in the body of an if statement to enhance

readability.

 Error-Prevention Tip 2.2

You don’t need to use braces, { } , around single-statement bodies,

but you must include the braces around multiple-statement bodies.
You’ll see later that forgetting to enclose multiple-statement bodies in

braces leads to errors. To avoid errors, as a rule, always enclose an
if statement’s body statement(s) in braces.

 Common Programming Error 2.5

Placing a semicolon immediately after the right parenthesis after the
condition in an if statement is often a logic error (although not a

syntax error). The semicolon causes the body of the if statement to

be empty, so the if statement performs no action, regardless of

whether or not its condition is true. Worse yet, the original body
statement of the if statement now becomes a statement in sequence
with the if statement and always executes, often causing the

program to produce incorrect results.

White Space
Note our use of blank lines in Fig. 2.13. We inserted these for
readability. Recall that white-space characters, such as tabs, newlines
and spaces, are normally ignored by the compiler. So, statements
may be split over several lines and may be spaced according to your
preferences. It’s a syntax error to split identifiers, strings (such as
"hello") and constants (such as the number 1000) over several lines.

 Good Programming Practice 2.10

A lengthy statement may be spread over several lines. If a statement
must be split across lines, choose meaningful breaking points, such as
after a comma in a comma-separated list, or after an operator in a
lengthy expression. If a statement is split across two or more lines,
indent all subsequent lines and left-align the group of indented lines.

Operator Precedence
Figure 2.14 shows the precedence and associativity of the operators
introduced in this chapter. The operators are shown top to bottom in
decreasing order of precedence. All these operators, with the
exception of the assignment operator = , associate from left to right.
Addition is left-associative, so an expression like x + y + z is
evaluated as if it had been written (x + y) + z . The assignment
operator = associates from right to left, so an expression such as x =
y = 0 is evaluated as if it had been written x = (y = 0) , which, as we’ll
soon see, first assigns 0 to y , then assigns the result of that
assignment— 0—to x .

Fig. 2.14 Precedence and associativity of the operators
discussed so far.

Operators Associativity Type

() [See caution in Fig. 2.10] grouping parentheses

* / % left to right multiplicative

+ - left to right additive

<< >> left to right stream insertion/extraction

< <= > >= left to right relational

== != left to right equality

= right to left assignment

 Good Programming Practice 2.11

Refer to the operator precedence and associativity chart (Appendix A)
when writing expressions containing many operators. Confirm that the
operators in the expression are performed in the order you expect. If
you’re uncertain about the order of evaluation in a complex
expression, break the expression into smaller statements or use
parentheses to force the order of evaluation, exactly as you’d do in an
algebraic expression. Be sure to observe that some operators such as
assignment (=) associate right to left rather than left to right.

2.8 Wrap-Up
You learned many important basic features of C++ in this chapter,
including displaying data on the screen, inputting data from the
keyboard and declaring variables of fundamental types. In particular,
you learned to use the output stream object cout and the input stream
object cin to build simple interactive programs. We explained how
variables are stored in and retrieved from memory. You also learned
how to use arithmetic operators to perform calculations. We discussed
the order in which C++ applies operators (i.e., the rules of operator
precedence), as well as the associativity of the operators. You also
learned how C++’s if statement allows a program to make decisions.
Finally, we introduced the equality and relational operators, which we
used to form conditions in if statements.

The non-object-oriented applications presented here introduced you to
basic programming concepts. As you’ll see in Chapter 3, C++
applications typically contain just a few lines of code in function main
—these statements normally create the objects that perform the work
of the application, then the objects “take over from there.” In Chapter
3, you’ll learn how to implement your own classes and use objects of
those classes in applications.

Summary

Section 2.2 First Program in C++: Printing
a Line of Text

Single-line comments (p. 46) begin with // . You insert comments
to document your programs and improve their readability.
Comments do not cause the computer to perform any action (p.
47) when the program is run— they’re ignored by the compiler.
A preprocessing directive (p. 46) begins with # and is a
message to the C++ preprocessor. Preprocessing directives are
processed before the program is compiled.
The line #include <iostream> (p. 46) tells the C++ preprocessor to
include the contents of the input/output stream header, which
contains information necessary to compile programs that output
data to the screen or input data from the keyboard.
White space (i.e., blank lines, space characters and tab
characters; p. 46) makes programs easier to read. White-space
characters outside of string literals are ignored by the compiler.
C++ programs begin executing at main (p. 47), even if main does
not appear first in the program.
The keyword int to the left of main indicates that main “returns” an
integer value.
The body (p. 47) of every function must be contained in braces ({
and }).
A string (p. 47) in double quotes is sometimes referred to as a
character string, message or string literal. White-space
characters in strings are not ignored by the compiler.

Most C++ statements (p. 47) end with a semicolon, also known as
the statement terminator (we’ll see some exceptions to this soon).
Output and input in C++ are accomplished with streams (p. 47) of
data.
The output stream object std::cout (p. 47)—normally connected to
the screen—is used to output data. Multiple data items can be
output by concatenating stream insertion (<< ; p. 48) operators.
The input stream object std::cin—normally connected to the
keyboard—is used to input data. Multiple data items can be input
by concatenating stream extraction (>>) operators.
The notation std::cout specifies that we are using cout from
“namespace” std .
When a backslash (i.e., an escape character) is encountered in a
string of characters, the next character is combined with the
backslash to form an escape sequence (p. 48).
The newline escape sequence \n (p. 48) moves the cursor to the
beginning of the next line on the screen.
C++ keyword return (p. 49) is one of several means to exit a
function.

Section 2.4 Another C++ Program: Adding
Integers

All variables (p. 51) in a C++ program must be declared before
they can be used.
Variables of type int (p. 51) hold integer values, i.e., whole
numbers such as 7, –11, 0, 31914.
A variable can be initialized in its declaration using list
initialization (p. 51; introduced in C++11)—the variable’s initial
value is placed in braces ({ and }) immediately following the
variable’s name.
A variable name is any valid identifier (p. 51) that is not a
keyword. An identifier is a series of characters consisting of letters,
digits and underscores (_). Identifiers cannot start with a digit.
Identifiers can be any length, but some systems or C++
implementations may impose length restrictions.
A message that directs the user to take a specific action is known
as a prompt (p. 52).
C++ is case sensitive (p. 52).
A program reads the user’s input with the std::cin (p. 53) object
and the stream extraction (>> ; p. 53) operator.
Most calculations are performed in assignment statements (p.
53).

Section 2.5 Memory Concepts
A variable is a location in memory (p. 54) where a value can be
stored for use by a program.
Every variable stored in the computer’s memory has a name, a
value, a type and a size.
Whenever a new value is placed in a memory location, the process
is destructive (p. 54); i.e., the new value replaces the previous
value in that location. The previous value is lost.
When a value is read from memory, the process is
nondestructive (p. 55); i.e., a copy of the value is read, leaving
the original value undisturbed in the memory location.
The std::endl stream manipulator (p. 54) outputs a newline, then
“flushes the output buffer.”

Section 2.6 Arithmetic
C++ evaluates arithmetic expressions (p. 55) in a precise
sequence determined by the rules of operator precedence (p.
56) and associativity (p. 56).
Parentheses may be used to group expressions.
Integer division (p. 56) yields an integer quotient. Any fractional
part in integer division is truncated.
The remainder operator, % (p. 56), yields the remainder after
integer division.

Section 2.7 Decision Making: Equality and
Relational Operators

The if statement (p. 59) allows a program to take alternative
action based on whether a condition is met. The format for an if
statement is

if (condition) {

 statement;

}

If the condition is true, the statement in the body of the if is
executed. If the condition is not met, i.e., the condition is false, the
body statement is skipped.
Conditions in if statements are commonly formed by using
equality and relational operators (p. 59). The result of using
these operators is always the value true or false.
The using declaration (p. 61)

using std::cout;

informs the compiler where to find cout (namespace std) and
eliminates the need to repeat the std:: prefix. The using directive

(p. 61)

using namespace std;

enables the program to use all the names in any included C++
standard library header.

Self-Review Exercises
1. 2.1 Fill in the blanks in each of the following.

A. Every C++ program begins execution at the function
 .

B. A(n) begins the body of every function and a(n)
 ends the body.

C. Most C++ statements end with a(n) .
D. The escape sequence \n represents the

character, which causes the cursor to position to the
beginning of the next line on the screen.

E. The statement is used to make decisions.

2. 2.2 State whether each of the following is true or false. If false,
explain why. Assume the statement using std::cout; is used.

A. Comments cause the computer to print the text after the
// on the screen when the program is executed.

B. The escape sequence \n , when output with cout and
the stream insertion operator, causes the cursor to
position to the beginning of the next line on the screen.

C. All variables must be declared before they’re used.
D. All variables must be given a type when they’re

declared.
E. C++ considers the variables number and NuMbEr to be

identical.

F. Declarations can appear almost anywhere in the body of
a C++ function.

G. The remainder operator (%) can be used only with
integer operands.

H. The arithmetic operators * , / , % , + and – all have the
same level of precedence.

I. A C++ program that prints three lines of output must
contain three statements using cout and the stream
insertion operator.

3. 2.3 Write a single C++ statement to accomplish each of the
following (assume that neither using declarations nor a using
directive have been used):

A. Declare the variables c , thisIsAVariable , q76354 and
number to be of type int (in one statement) and initialize
each to 0 .

B. Prompt the user to enter an integer. End your prompting
message with a colon (:) followed by a space and leave
the cursor positioned after the space.

C. Read an integer from the user at the keyboard and store
it in integer variable age .

D. If the variable number is not equal to 7 , print "The
variable number is not equal to 7" .

E. Print the message "This is a C++ program" on one line.
F. Print the message "This is a C++ program" on two lines.

End the first line with C++ .

G. Print the message "This is a C++ program" with each
word on a separate line.

H. Print the message "This is a C++ program". Separate
each word from the next by a tab.

4. 2.4 Write a statement (or comment) to accomplish each of the
following (assume that using declarations have been used for
cin , cout and endl):

A. Document that a program calculates the product of three
integers.

B. Declare the variables x , y , z and result to be of type
int (in separate statements) and initialize each to 0.

C. Prompt the user to enter three integers.
D. Read three integers from the keyboard and store them in

the variables x , y and z .
E. Compute the product of the three integers contained in

variables x , y and z , and assign the result to the
variable result .

F. Print "The product is " followed by the value of the
variable result .

G. Return a value from main indicating that the program
terminated successfully.

5. 2.5 Using the statements you wrote in Exercise 2.4, write a
complete program that calculates and displays the product of
three integers. Add comments to the code where appropriate.

[Note: You’ll need to write the necessary using declarations or
directive.]

6. 2.6 Identify and correct the errors in each of the following
statements (assume that the statement using std::cout; is
used):

A.

if (c < 7); {

 cout << "c is less than 7\n";

}

B.
if (c => 7) {

 cout << "c is equal to or greater than 7\n";

}

Exercises
1. 2.7 Discuss the meaning of each of the following objects:

A. std::cin

B. std::cout

2. 2.8 Fill in the blanks in each of the following:
A. are used to document a program and improve its

readability.
B. The object used to print information on the screen is

 .
C. A C++ statement that makes a decision is .
D. Most calculations are normally performed by

statements.
E. The object inputs values from the keyboard.

3. 2.9 Write a single C++ statement or line that accomplishes
each of the following:

A. Print the message "Enter two numbers" .
B. Assign the product of variables b and c to variable a .
C. State that a program performs a payroll calculation (i.e.,

use text that helps to document a program).
D. Input three integer values from the keyboard into integer

variables a , b and c .

4. 2.10 State which of the following are true and which are false. If
false, explain your answers.

A. All operators are evaluated from left to right.
B. The following are all valid variable names: _under_bar_ ,

m928134 , t5 , j7 , her_sales , his_account_total , a , b , c ,
z , z2 .

C. The statement cout << "a = 5;" ; is a typical example of
an assignment statement.

D. A valid arithmetic expression with no parentheses is
evaluated from left to right.

E. The following are all invalid variable names: 3g , 87 ,
67h2 , h22 , 2h .

5. 2.11 Fill in the blanks in each of the following:
A. What arithmetic operations are on the same level of

precedence as multiplication? .
B. When parentheses are nested, which set of parentheses

is evaluated first in an arithmetic expression? .
C. A location in the computer’s memory that may contain

different values at various times throughout the
execution of a program is called a(n) .

6. 2.12 What, if anything, prints when each of the following
statements is performed? If nothing prints, then answer
“nothing.” Assume x = 2 and y = 3 .

A. cout << x;

B. cout << x + x;

C. cout << "x=" ;
D. cout << "x = " << x;
E. cout << x + y << " = " << y + x;
F. z = x + y;

G. cin >> x >> y;

H. // cout << "x + y = " << x + y;

I. cout << "\n" ;

7. 2.13 Which of the following statements contain variables whose
values are replaced?

A. cin >> b >> c >> d >> e >> f;

B. p = i + j + k + 7;

C. cout << "variables whose values are replaced" ;
D. cout << "a = 5" ;

8. 2.14 Given the algebraic equation , which of the
following, if any, are correct C++ statements for this equation?

A. y = a * x * x * x + 7;

B. y = a * x * x * (x + 7);

C. y = (a * x) * x * (x + 7);

D. y = (a * x) * x * x + 7;

E. y = a * (x * x * x) + 7;

F. y = a * x * (x * x + 7);

9. 2.15 (Order of Evaluation) State the order of evaluation of the
operators in each of the following C++ statements and show

the value of x after each statement is performed.
A. x = 7 + 3 * 6 / 2 - 1;

B. x = 2 % 2 + 2 * 2 - 2 / 2;

C. x = (3 * 9 * (3 + (9 * 3 / (3))));

10. 2.16 (Arithmetic) Write a program that asks the user to enter
two numbers, obtains the two numbers from the user and prints
the sum, product, difference, and quotient of the two numbers.

11. 2.17 (Printing) Write a program that prints the numbers 1 to 4
on the same line with each pair of adjacent numbers separated
by one space. Do this several ways:

A. Using one statement with one stream insertion operator.
B. Using one statement with four stream insertion

operators.
C. Using four statements.

12. 2.18 (Comparing Integers) Write a program that asks the user
to enter two integers, obtains the numbers from the user, then
prints the larger number followed by the words "is larger." If
the numbers are equal, print the message "These numbers are
equal . "

13. 2.19 (Arithmetic, Smallest and Largest) Write a program that
inputs three integers from the keyboard and prints the sum,
average, product, smallest and largest of these numbers. The
screen dialog should appear as follows:

Input three different integers: 13 27 14

Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

14. 2.20 (Diameter, Circumference and Area of a Circle) Write a
program that reads in the radius of a circle as an integer and
prints the circle’s diameter, circumference and area. Use the
constant value 3.14159 for π. Do all calculations in output
statements. [Note: In this chapter, we’ve discussed only integer
constants and variables. In Chapter 4 we discuss floating-point
numbers, i.e., values that have decimal points.]

15. 2.21 (Displaying Shapes with Asterisks) Write a program
that prints a box, an oval, an arrow and a diamond as follows:

********* *** * *

* * * * *** * *

* * * * ***** * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

********* *** * *

16. 2.22 What does the following code print?

cout << "*\n**\n***\n****\n*****" << endl;

17. 2.23 (Largest and Smallest Integers) Write a program that
reads in five integers and determines and prints the largest and
the smallest integers in the group. Use only the programming
techniques you learned in this chapter.

18. 2.24 (Odd or Even) Write a program that reads an integer and
determines and prints whether it’s odd or even. [Hint: Use the
remainder operator (%). An even number is a multiple of two.
Any multiple of 2 leaves a remainder of zero when divided by
2.]

19. 2.25 (Multiples) Write a program that reads in two integers and
determines and prints if the first is a multiple of the second.
[Hint: Use the remainder operator (%).]

20. 2.26 (Checkerboard Pattern) Display the following
checkerboard pattern with eight output statements, then display
the same pattern using as few statements as possible.

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

21. 2.27 (Integer Equivalent of a Character) Here is a peek
ahead. In this chapter you learned about integers and the type
int . C++ can also represent uppercase letters, lowercase
letters and a considerable variety of special symbols. C++ uses
small integers internally to represent each different character.
The set of characters a computer uses and the corresponding
integer representations for those characters are called that
computer’s character set. You can print a character by
enclosing that character in single quotes, as with

cout << 'A'; // print an uppercase A

You can print the integer equivalent of a character using
static_cast as follows:

cout << static_cast<int>('A'); // print 'A' as an integer

This is called a cast operation (we formally introduce casts in
Chapter 4). When the preceding statement executes, it prints
the value 65 (on systems that use the ASCII character set).
Write a program that prints the integer equivalent of a character
typed at the keyboard. Store the input in a variable of type
char . Test your program several times using uppercase letters,
lowercase letters, digits and special characters (such as $).

22. 2.28 (Digits of an Integer) Write a program that inputs a five-
digit integer, separates the integer into its digits and prints them
separated by three spaces each. [Hint: Use the integer division
and remainder operators.] For example, if the user types in
42339, the program should print:

4 2 3 3 9

23. 2.29 (Table) Using the techniques of this chapter, write a
program that calculates the squares and cubes of the integers
from 0 to 10. Use tabs to print the following neatly formatted
table of values:

integer square cube

0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

Making a Difference
1. 2.30 (Body Mass Index Calculator) We introduced the body

mass index (BMI) calculator in Exercise 1.9. The formulas for
calculating BMI are

or

Create a BMI calculator application that reads the user’s weight
in pounds and height in inches (or, if you prefer, the user’s
weight in kilograms and height in meters), then calculates and
displays the user’s body mass index. Also, the application
should display the following information from the Department of
Health and Human Services/National Institutes of Health so the
user can evaluate his/her BMI:

BMI VALUES

Underweight: less than 18.5

Normal: between 18.5 and 24.9

Overweight: between 25 and 29.9

Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to
represent whole numbers. The BMI calculations when done
with int values will both produce whole-number results. In
Chapter 4 you’ll learn to use the double type to represent
numbers with decimal points. When the BMI calculations are
performed with doubles, they’ll each produce numbers with
decimal points—these are called “floating-point” numbers.]

2. 2.31 (Car-Pool Savings Calculator) Research several car-
pooling websites. Create an application that calculates your
daily driving cost, so that you can estimate how much money
could be saved by car pooling, which also has other
advantages such as reducing carbon emissions and reducing
traffic congestion. The application should input the following
information and display the user’s cost per day of driving to
work:

A. Total miles driven per day.
B. Cost per gallon of gasoline.
C. Average miles per gallon.
D. Parking fees per day.
E. Tolls per day.

Answers to Self-Review Exercises
1. 2.1

A. main .
B. left brace ({), right brace (}).
C. semicolon.
D. newline.
E. if .

2. 2.2
A. False. Comments do not cause any action to be

performed when the program is executed. They’re used
to document programs and improve their readability.

B. True.
C. True.
D. True.
E. False. C++ is case sensitive, so these variables are

different.
F. True.
G. True.
H. False. The operators * , / and % have the same

precedence, and the operators + and - have a lower
precedence.

I. False. One statement with cout and multiple \n escape
sequences can print several lines.

3. 2.3
A. int c{0}, thisIsAVariable{0}, q76354{0}, number{0};

B. std::cout << "Enter an integer: " ;
C. std::cin >> age;

D.

if (number != 7) {

 std::cout << "The variable number is not equal to

7\n";

}

E. std::cout << "This is a C++ program\n" ;
F. std::cout << "This is a C++\nprogram\n" ;
G. std::cout << "This\nis\na\nC++\nprogram\n" ;
H. std::cout << "This\tis\ta\tC++\tprogram\n" ;

4. 2.4
A. // Calculate the product of three integers

B.

int x{0};

int y{0};

int z{0};

int result{0};

C. cout << "Enter three integers: ";

D. cin >> x >> y >> z;

E. result = x * y * z;

F. cout << "The product is " << result << endl;

G. return 0;

5. 2.5 (See program below.)

6. 2.6
A. Error: Semicolon after the right parenthesis of the

condition in the if statement. Correction: Remove the
semicolon after the right parenthesis. [Note: The result of
this error is that the output statement executes whether
or not the condition in the if statement is true.] The
semicolon after the right parenthesis is an empty
statement that does nothing. We’ll say more about the
empty statement in Chapter 4.

B. Error: The incorrect relational operator => .

Correction: Change => to >= , and you may want to
change “equal to or greater than” to “greater than or
equal to” as well.

3 Introduction to Classes, Objects,
Member Functions and Strings

Objectives
In this chapter you’ll:

Begin programming with the object-oriented concepts introduced in
Section 1.8.
Define a class and use it to create an object.
Implement a class’s behaviors as member functions.
Implement a class’s attributes as data members.
Call an object’s member functions to make them perform their
tasks.
Access and manipulate private data members through their
corresponding public get and set functions to enforce
encapsulation of the data.
Learn what local variables of a member function are and how they
differ from data members of a class.
Use a constructor to initialize an object’s data.
Validate the data passed to a constructor or member function.
Become familiar with UML class diagrams.

Outline
1. 3.1 Introduction
2. 3.2 Test-Driving an Account Object

A. 3.2.1 Instantiating an Object
B. 3.2.2 Headers and Source-Code Files
C. 3.2.3 Calling Class Account’s getName Member

Function
D. 3.2.4 Inputting a string with getline
E. 3.2.5 Calling Class Account’s setName Member

Function

3. 3.3 Account Class with a Data Member and Set and Get
Member Functions

A. 3.3.1 Account Class Definition
B. 3.3.2 Keyword class and the Class Body
C. 3.3.3 Data Member name of Type string
D. 3.3.4 setName Member Function
E. 3.3.5 getName Member Function
F. 3.3.6 Access Specifiers private and public
G. 3.3.7 Account UML Class Diagram

4. 3.4 Account Class: Initializing Objects with Constructors

A. 3.4.1 Defining an Account Constructor for Custom
Object Initialization

B. 3.4.2 Initializing Account Objects When They’re
Created

C. 3.4.3 Account UML Class Diagram with a Constructor

5. 3.5 Software Engineering with Set and Get Member
Functions

6. 3.6 Account Class with a Balance; Data Validation
A. 3.6.1 Data Member balance
B. 3.6.2 Two-Parameter Constructor with Validation
C. 3.6.3 deposit Member Function with Validation
D. 3.6.4 getBalance Member Function
E. 3.6.5 Manipulating Account Objects with Balances
F. 3.6.6 Account UML Class Diagram with a Balance and

Member Functions deposit and getBalance

7. 3.7 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

3.1 Introduction 1
1. This chapter depends on the terminology and concepts introduced
in Section 1.8, Introduction to Object Technology.

Section 1.8 presented a friendly introduction to object orientation,
discussing classes, objects, data members (attributes) and member
functions (behaviors).2 In this chapter’s examples, we make those
concepts real by building a simple bank-account class. The class
maintains as data members the attributes name and balance , and
provides member functions for behaviors including

2. Unlike classes, fundamental types (like int) do not have member
functions.

querying the balance (getBalance),
making a deposit that increases the balance (deposit) and
making a withdrawal that decreases the balance (withdraw).

We’ll build the getBalance and deposit member functions into the
chapter’s examples. You’ll add the withdraw member function in
Exercise 3.9.

As you’ll see, each class you create becomes a new type you can use
to create objects, so C++ is an extensible programming language. If
you become part of a development team in industry, you might work
on applications that contain hundreds, or even thousands, of custom
classes.

3.2 Test-Driving an Account
Object
Classes cannot execute by themselves. A Person object can drive a
Car object by telling it what to do (go faster, go slower, turn left, turn
right, etc.)—without knowing how the car’s internal mechanisms work.
Similarly, the main function can “drive” an Account object by calling its
member functions—without knowing how the class is implemented. In
this sense, main is referred to as a driver program. We show the
main program and its output first, so you can see an Account object in
action. To help you prepare for the larger programs you’ll encounter
later in this book and in industry, we define main in its own file (file
AccountTest.cpp , Fig. 3.1). We define class Account in its own file as
well (file Account.h , Fig. 3.2).

Fig. 3.1 Creating and manipulating an Account object.

3.2.1 Instantiating an Object

Typically, you cannot call a member function of a class until you
create an object of that class.3 Line 10

3. You’ll see in Section 9.15 that static member functions are an
exception.

Account myAccount; // create Account object myAccount

creates an object of class Account called myAccount . The variable’s
type is Account—the class we define in Fig. 3.2.

3.2.2 Headers and Source-Code
Files

When we declare variables of type int , as we did in Chapter 2, the
compiler knows what int is—it’s a fundamental type that’s “built into”
C++. In line 10, however, the compiler does not know in advance what
type Account is—it’s a user-defined type.

When packaged properly, new classes can be reused by other
programmers. It’s customary to place a reusable class definition in a
file known as a header with a .h filename extension.4 You include
(via #include) that header wherever you need to use the class. For
example, you can reuse the C++ Standard Library’s classes in any
program by including the appropriate headers.

4. C++ Standard Library headers, like <iostream> do not use the .h
filename extension.

Class Account is defined in the header Account.h (Fig. 3.2). We tell
the compiler what an Account is by including its header , as in line 5
(Fig. 3.1):

#include "Account.h"

If we omit this, the compiler issues error messages wherever we use
class Account and any of its capabilities. In an #include directive, a
header that you define in your program is placed in double quotes
(""), rather than the angle brackets (<>) used for C++ Standard
Library headers like <iostream> . The double quotes in this example tell
the compiler that header is in the same folder as Fig. 3.1, rather than
with the C++ Standard Library headers.

Files ending with the .cpp filename extension are source-code files.
These define a program’s main function, other functions and more, as
you’ll see in later chapters. You include headers into source-code files
(as in Fig. 3.1), though you also may include them in other headers.

3.2.3 Calling Class Account’s
getName Member Function

The Account class’s getName member function returns the account
name stored in a particular Account object. Line 13

cout << "Initial name is: " << myAccount.getName();

displays myAccount ’s initial name by calling the object’s getName
member function with the expression myAccount.getName() . To call this
member function for a specific object, you specify the object’s name
(myAccount), followed by the dot operator (.), then the member
function name (getName) and a set of parentheses. The empty

parentheses indicate that getName does not require any additional
information to perform its task. Soon, you’ll see that the setName
function requires additional information to perform its task.

From main ’s view, when the getName member function is called:

1. The program transfers execution from the call (line 13 in main)
to member function getName . Because getName was called via

the myAccount object, getName “knows” which object’s data to
manipulate.

2. Next, member function getName performs its task—that is, it
returns (i.e., gives back) myAccount ’s name to line 13 where the
function was called. The main function does not know the
details of how getName performs its task.

3. The cout object displays the name returned by member
function getName , then the program continues executing at line
16 in main .

In this case, line 13 does not display a name, because we have not
yet stored a name in the myAccount object.

3.2.4 Inputting a string with
getline

Line 17

string theName;

creates a string variable called theName that’s used to store the
account name entered by the user. string variables can hold
character string values such as "Jane Green" . A string is actually an
object of the C++ Standard Library class string , which is defined in
the header <string>.5 The class name string , like the name cout ,
belongs to namespace std . To enable line 17 to compile, line 4
includes the <string> header. The using directive in line 7 allows us
to write string in line 17 rather than std::string .

5. You’ll learn additional string capabilities in subsequent chapters.
Chapter 21 discusses class string in detail, presenting many of its
member functions.

getline Function Receiving a Line of
Text from the User
Sometimes functions are not members of a class. Such functions are
called global functions. Line 18

getline(cin, theName); // read a line of text

reads the name from the user and places it in the variable theName ,
using the C++ Standard Library global function getline to perform the
input. Like class string , function getline requires the <string>
header and belongs to namespace std .

Consider why we cannot simply write

cin >> theName;

to obtain the account name. In our sample program execution, we
entered the name “ Jane Green ,” which contains multiple words
separated by a space. (Recall that we highlight user inputs in bold in
our sample program executions.) When reading a string , cin stops
at the first white-space character (such as a space, tab or newline).

Thus, the preceding statement would read only "Jane" . The
information after "Jane" is not lost—it can be read by subsequent
input statements later in the program.

In this example, we’d like the user to type the complete name
(including the space) and press Enter to submit it to the program.
Then, we’d like to store the entire name in the string variable
theName . When you press Enter (or Return) after typing data, the
system inserts a newline in the input stream. Function getline reads
from the standard input stream object cin the characters the user
enters, up to, but not including, the newline, which is discarded;
getline places the characters in the string variable theName .

3.2.5 Calling Class Account’s
setName Member Function

The Account class’s setName member function stores an account name
in a particular Account object. Line 19

myAccount.setName(theName); // put theName in myAccount

calls myAccounts ’s setName member function. A member-function call
can supply arguments that help the function perform its task. You
place the arguments in the function call’s parentheses. Here,
theName ’s value (input by line 18) is the argument that’s passed to
setName , which stores theName ’s value in the object myAccount .

From main ’s view, when setName is called:

1. The program transfers execution from line 19 in main to
setName member function’s definition. The call passes to the
function the argument value in the call’s parentheses—that is,
theName object’s value. Because setName was called via the

myAccount object, setName “knows” the exact object to
manipulate.

2. Next, member function setName stores the argument’s value in
the myAccount object.

3. When setName completes execution, program execution returns
to where setName was called (line 19), then continues at line 22.

Displaying the Name That Was Entered by
the User
To demonstrate that myAccount now contains the name the user
entered, lines 22–23

cout << "Name in object myAccount is: "

 << myAccount.getName() << endl;

call member function getName again. As you can see in the last line of
the program’s output, the name entered by the user in line 18 is
displayed. When the preceding statement completes execution, the
end of main is reached, so the program terminates.

3.3 Account Class with a Data
Member and Set and Get Member
Functions
Now that we’ve seen class Account in action (Fig. 3.1), we present
class Account ’s details. Then, we present a UML diagram that
summarizes class Account ’s attributes and operations in a concise
graphical representation.

3.3.1 Account Class Definition

Class Account (Fig. 3.2) contains a name data member that stores the
account holder’s name. A class’s data members maintain data for
each object of the class. Later in the chapter, we’ll add a balance data
member to keep track of the money in each Account . Class Account
also contains member function setName that a program can call to
store a name in an Account object, and member function getName that
a program can call to obtain a name from an Account object.

Fig. 3.2 Account class that contains a name data member and
member functions to set and get its value.

3.3.2 Keyword class and the
Class Body

The class definition begins in line 6:

class Account {

Every class definition contains the keyword class followed
immediately by the class’s name—in this case, Account . Every class’s
body is enclosed in an opening left brace (end of line 6) and a closing
right brace (line 19). The class definition terminates with a required
semicolon (line 19). For reusability, place each class definition in a
separate header with the .h filename extension (Account.h in this
example).

 Common Programming Error 3.1
Forgetting the semicolon at the end of a class definition is a syntax
error.

Identifiers and Camel-Case Naming
Class names, member-function names and data-member names are
all identifiers. By convention, variable-name identifiers begin with a
lowercase letter, and every word in the name after the first word
begins with a capital letter—e.g., firstNumber starts its second word,
Number , with a capital N . This naming convention is known as camel
case, because the uppercase letters stand out like a camel’s humps.
Also by convention, class names begin with an initial uppercase letter,
and member-function and data-member names begin with an initial
lowercase letter.

3.3.3 Data Member name of Type
string

Recall from Section 1.8 that an object has attributes, implemented as
data members. The object carries these with it throughout its lifetime.
Each object has its own copy of the class’s data members. Normally,
a class also contains one or more member functions. These
manipulate the data members belonging to particular objects of the
class. The data members exist

before a program calls member functions on an object,
while the member functions are executing and
after the member functions complete execution.

Data members are declared inside a class definition but outside the
bodies of the class’s member functions. Line 18

std::string name; // data member containing account holder’s name

declares data member name of type string . If there are many Account
objects, each has its own name . Because name is a data member, it
can be manipulated by each of the class’s member functions. The

default value for a string is the empty string (i.e., "")—this is why
line 13 in main (Fig. 3.1) did not display a name the first time we
called myAccount ’s getName member function. Section 3.4 explains
how a string receives its default value.

 Good Programming Practice 3.1
By convention, place a class’s data members last in the class’s body.
You can list the class’s data members anywhere in the class outside
its member-function definitions, but scattering the data members can
lead to hard-to-read code.

Use std:: with Standard Library
Components in Headers
Throughout the Account.h header (Fig. 3.2), we use std:: when
referring to string (lines 9, 14 and 18). For subtle reasons that we
explain in Section 23.4, headers should not contain using directives or
using declarations.

3.3.4 setName Member Function

Let’s walk through the code of member function setName ’s definition
(lines 9–11):

void setName(std::string accountName) {

 name = accountName; // store the name

}

We refer to the first line of each function definition (line 9) as the
function header. The member function’s return type (which appears
to the left of the function’s name) specifies the type of data the
member function returns to its caller after performing its task. The
return type void (line 9) indicates that when setName completes its
task, it does not return (i.e., give back) any information to its calling
function —in this example, line 19 of the main function (Fig. 3.1). As
you’ll soon see, Account member function getName does return a value.

setName Parameter
Our car analogy from Section 1.8 mentioned that pressing a car’s gas
pedal sends a message to the car to perform a task—make the car go
faster. But how fast should the car accelerate? The farther down you

press the pedal, the faster the car accelerates. So the message to the
car includes both the task to perform and information that helps the
car perform that task. This information is known as a parameter —the
parameter’s value helps the car determine how fast to accelerate.
Similarly, a member function can require one or more parameters that
represent the data it needs to perform its task.

Member function setName declares the string parameter accountName
—which receives the name that’s passed to setName as an argument.
When line 19 in Fig. 3.1

myAccount.setName(theName); // put theName in myAccount

executes, the argument value in the call’s parentheses (i.e., the value
stored in theName) is copied into the corresponding parameter

(accountName) in the member function’s header (line 9 of Fig. 3.2). In
Fig. 3.1’s sample execution, we entered "Jane Green" for theName , so
"Jane Green" was copied into the accountName parameter.

setName Parameter List
Parameters like accountName are declared in a parameter list located
in the required parentheses following the member function’s name.
Each parameter must specify a type (e.g., string) followed by a

parameter name (e.g., accountName). When there are multiple
parameters, each is separated from the next by a comma, as in

(type1 name1, type2 name2, …)

The number and order of arguments in a function call must match the
number and order of parameters in the function definition’s parameter
list.

setName Member Function Body
Every member function body is delimited by an opening left brace
(end of line 9 of Fig. 3.2) and a closing right brace (line 11). Within the
braces are one or more statements that perform the member
function’s task(s). In this case, the member function body contains a
single statement (line 10)

name = accountName; // store the account name

that assigns the accountName parameter’s value (a string) to the
class’s name data member, thus storing the account name in the object
for which setName was called— myAccount in this example’s main
program.6 After line 10 executes, program execution reaches the

member function’s closing brace (line 11), so the function returns to its
caller.

6. We used different names for the setName member function’s
parameter (accountName) and the data member (name). It’s common
idiom in industry to use the same name for both. We’ll show you how
to do this without ambiguity in Chapter 9.

Parameters Are Local Variables
In Chapter 2, we declared all of a program’s variables in the main
function. Variables declared in a particular function’s body are local
variables which can be used only in that function. When a function
terminates, the values of its local variables are lost. A function’s
parameters also are local variables of that function.

Argument and Parameter Types Must Be
Consistent
The argument types in the member function call must be consistent
with the types of the corresponding parameters in the member
function’s definition. (As you’ll see in Chapter 6, Functions and an
Introduction to Recursion, an argument’s type and its corresponding
parameter’s type are not required to be identical.) In our example, the
member function call passes one argument of type string (theName)—
and the member function definition specifies one parameter of type

string (accountName). So in this example, the type of the argument in
the member function call happens to exactly match the type of the
parameter in the member function header.

3.3.5 getName Member Function

Member function getName (lines 14–16)

std::string getName() const {

 return name; // return name’s value to this function’s caller

}

returns a particular Account object’s name to the caller—a string , as
specified by the function’s return type. The member function has an
empty parameter list, so it does not require additional information to
perform its task. When a member function with a return type other
than void is called and completes its task, it must return a result to its
caller. A statement that calls member function getName on an Account
object expects to receive the Account ’s name.

The return statement in line 15

return name; // return name’s value to this function’s caller

passes the string value of data member name back to the caller,
which then can use the returned value. For example, the statement in
lines 22–23 of Fig. 3.1

cout << "Name in object myAccount is: "

 << myAccount.getName() << endl;

uses the value returned by getName to output the name stored in the
myAccount object.

const Member Functions
We declared member function getName as const in line 14 of Fig. 3.2

std::string getName() const {

because in the process of returning the name the function does not,
and should not, modify the Account object on which it’s called.

 Error-Prevention Tip 3.1

Declaring a member function with const to the right of the parameter

list tells the compiler, “this function should not modify the object on
which it’s called—if it does, please issue a compilation error.” This can
help you locate errors if you accidentally insert in the member function
code that would modify the object.

3.3.6 Access Specifiers private
and public

The keyword private (line 17)

private:

is an access specifier. Access specifiers are always followed by a
colon (:). Data member name ’s declaration (line 18) appears after

access specifier private: to indicate that name is accessible only to
class Account ’s member functions.7 This is known as data hiding —
the data member name is encapsulated (hidden) and can be used only

in class Account ’s setName and getName member functions. Most data-
member declarations appear after the private: access specifier. For
the remainder of the text, when we refer to the access specifiers
private and public in the text, we’ll often omit the colon as we did in
this sentence.

7. Or to “friends” of the class as you’ll see in Section 9.13.

This class also contains the public access specifier (line 7)

public:

Data members or member functions listed after access specifier
public (and before the next access specifier if there is one) are
“available to the public.” They can be used by other functions in the
program (such as main), and by member functions of other classes (if
there are any). In Chapter 11, we’ll introduce the protected access
specifier.

Default Access for Class Members
By default, everything in a class is private , unless you specify
otherwise. Once you list an access specifier, everything from that
point has that access until you list another access specifier. We prefer
to list public only once, grouping everything that’s public , and we
prefer to list private only once, grouping everything that’s private .
The access specifiers public and private may be repeated, but this is
unnecessary and can be confusing.

 Error-Prevention Tip 3.2

Making a class’s data members private and member functions public
facilitates debugging because problems with data manipulations are
localized to the member functions.

 Common Programming Error 3.2

An attempt by a function that’s not a member of a particular class to
access a private member of that class is a compilation error.

3.3.7 Account UML Class Diagram

We’ll often use UML class diagrams to summarize a class’s attributes
and operations. In industry, UML diagrams help systems designers
specify systems in a concise, graphical, programming-language-
independent manner, before programmers implement the systems in
specific programming languages. Figure 3.3 presents a UML class
diagram for class Account of Fig. 3.2.

Top Compartment
In the UML, each class is modeled in a class diagram as a rectangle
with three compartments. In this diagram the top compartment
contains the class name Account centered horizontally in boldface
type.

Fig. 3.3 UML class diagram for class Account of Fig. 3.2.

Middle Compartment

The middle compartment contains the class’s attribute name , which
corresponds to the data member of the same name in C++. Data
member name is private in C++, so the UML class diagram lists a
minus sign (–) access modifier before the attribute name. Following
the attribute name are a colon and the attribute type, in this case
string .

Bottom Compartment
The bottom compartment contains the class’s operations, setName
and getName , which correspond to the member functions of the same
names in C++. The UML models operations by listing the operation
name preceded by an access modifier, in this case + setName . This
plus sign (+) indicates that setName is a public operation in the UML
(because it’s a public member function in C++). Operation getName is
also a public operation.

Return Types
The UML indicates the return type of an operation by placing a colon
and the return type after the parentheses following the operation
name. Account member function setName does not return a value
(because it returns void in C++), so the UML class diagram does not
specify a return type after the parentheses of this operation. Member
function getName has a string return type.

Parameters
The UML models a parameter by listing the parameter name, followed
by a colon and the parameter type in the parentheses after the
operation name. The UML has its own data types similar to those of
C++—for simplicity, we use the C++ types. Account member function
setName has a string parameter called accountName , so the class
diagram lists accountName : string between the parentheses following
the member function name. Operation getName does not have any
parameters, so the parentheses following the operation name in the
class diagram are empty, just as they are in the member function’s
definition in line 14 of Fig. 3.2.

3.4 Account Class: Initializing
Objects with Constructors
As mentioned in Section 3.3, when an Account object is created, its
string data member name is initialized to the empty string by default

—we’ll discuss how that occurs shortly. But what if you want to
provide a name when you first create an Account object? Each class
can define a constructor that specifies custom initialization for
objects of that class. A constructor is a special member function that
must have the same name as the class. C++ requires a constructor
call when each object is created, so this is the ideal point to initialize
an object’s data members.8

8. In Section 9.6, you’ll learn that classes can have multiple
constructors.

Like member functions, a constructor can have parameters—the
corresponding argument values help initialize the object’s data
members. For example, you can specify an Account object’s name
when the object is created, as you’ll do in line 11 of Fig. 3.5:

Account account1{"Jane Green"};

In this case, the string argument "Jane Green" is passed to the
Account class’s constructor and used to initialize the name data
member of the account1 object. The preceding statement assumes
that the Account class has a constructor that takes only a string
parameter.

3.4.1 Defining an Account
Constructor for Custom Object
Initialization

Figure 3.4 shows class Account with a constructor that receives an
accountName parameter and uses it to initialize data member name
when an Account object is created.

Fig. 3.4 Account class with a constructor that initializes the
account name .

Account Class’s Constructor Definition
Lines 8–11 of Fig. 3.4

explicit Account(std::string accountName)

 : name{accountName} { // member initializer

 // empty body

}

define Account ’s constructor. Normally, constructors are public .9

9. Section 10.10.2 discusses why you might use a private
constructor.

A constructor’s parameter list specifies pieces of data required to
initialize an object. Line 8

explicit Account(std::string accountName)

indicates that the constructor has one string parameter called
accountName . When you create a new Account object, you must pass a
person’s name to the constructor, which will receive that name in the

parameter accountName . The constructor will then use accountName to
initialize the data member name .

The constructor uses a member-initializer list (line 9)

: name{accountName}

to initialize the name data member with the value of the parameter
accountName . Member initializers appear between a constructor’s
parameter list and the left brace that begins the constructor’s body.
The member initializer list is separated from the parameter list with a
colon (:). Each member initializer consists of a data member’s
variable name followed by parentheses containing the member’s initial
value. In this example, name is initialized with the parameter
accountName ’s value. If a class contains more than one data member,
each member initializer is separated from the next by a comma. The
member initializer list executes before the constructor’s body
executes.

 Performance Tip 3.1

You can perform initialization in the constructor’s body, but you’ll learn
in Chapter 9 that it’s more efficient to do it with member initializers,
and some types of data members must be initialized this way.

explicit Keyword
We declared this constructor explicit, because it takes a single
parameter—this is important for subtle reasons that you’ll learn in
Section 10.13. For now, just declare all single-parameter constructors
explicit . Line 8 of Fig. 3.4 does not specify a return type, because
constructors cannot return values—not even void . Also, constructors
cannot be declared const (because initializing an object modifies it).

Using the Same Parameter Name in the
Constructor and Member Function
setName

Recall from Section 3.3.4 that member function parameters are local
variables. In Fig. 3.4, the constructor and member function setName
both have a parameter called accountName . Though their identifiers are
identical, the parameter in line 8 is a local variable of the constructor
that’s not visible to member function setName . Similarly, the parameter
in line 14 is a local variable of setName that’s not visible to the
constructor. Such visibility is called scope, which is discussed in
Section 6.10.

3.4.2 Initializing Account Objects
When They’re Created

The AccountTest program (Fig. 3.5) initializes two different Account
objects using the constructor. Line 11

Account account1{"Jane Green"};

creates the Account object account1 . When you create an object, C++
implicitly calls the class’s constructor to initialize that object. If the
constructor has parameters, you place the corresponding arguments
in braces, { and } , to the right of the object’s variable name. In line
11, the argument "Jane Green" initializes the new object’s name data
member. Line 12

Account account2{"John Blue"};

repeats this process, passing the argument "John Blue" to initialize
name for account2 . Lines 15–16 use each object’s getName member

function to obtain the names and show that they were indeed
initialized when the objects were created. The output shows different
names, confirming that each Account maintains its own copy of data
member name .

Fig. 3.5 Using the Account constructor to initialize the name data
member at the time each Account object is created.

Default Constructor
Recall that line 10 of Fig. 3.1

Account myAccount;

creates an Account object without placing braces to the right of the
object’s variable name. In this case, C++ implicitly calls the class’s
default constructor. In any class that does not explicitly define a
constructor, the compiler provides a default constructor with no
parameters. The default constructor does not initialize the class’s
fundamental-type data members, but does call the default constructor
for each data member that’s an object of another class. For example,
in the Account class of Fig. 3.2, the class’s default constructor calls
class string ’s default constructor to initialize the data member name to
the empty string . An uninitialized fundamental-type variable contains
an undefined (“garbage”) value.10

10. We’ll see an exception to this in Section 6.10.

There’s No Default Constructor in a Class
That Defines a Constructor
If you define a custom constructor for a class, the compiler will not
create a default constructor for that class. In that case, you will not be
able to create an Account object using

Account myAccount;

as we did in Fig. 3.1, unless the custom constructor you define has an
empty parameter list. We’ll show later that C++11 allows you to force
the compiler to create the default constructor even if you’ve defined
non-default constructors.

11

 Software Engineering Observation 3.1

Unless default initialization of your class’s data members is
acceptable, you should generally provide a custom constructor to
ensure that your data members are properly initialized with meaningful
values when each new object of your class is created.

3.4.3 Account UML Class Diagram
with a Constructor

The UML class diagram of Fig. 3.6 models class Account of Fig. 3.4,
which has a constructor with a string accountName parameter. Like
operations (Fig. 3.3), the UML models constructors in the third
compartment of a class diagram. To distinguish a constructor from the
class’s operations, the UML requires that the word “constructor” be
enclosed in guillemets (≪ and ≫) and placed before the
constructor’s name. It’s customary to list constructors before other
operations in the third compartment.

Fig. 3.6 UML class diagram for the Account class of Fig. 3.4.

3.5 Software Engineering with Set
and Get Member Functions
As you’ll see in the next section, set and get member functions can
validate attempts to modify private data and control how that data is
presented to the caller, respectively. These are compelling software
engineering benefits.

If a data member were public , any client of the class—that is, any
other code that calls the class’s member functions—could see the
data and do whatever it wanted with it, including setting it to an invalid
value.

You might think that even though a client of the class cannot directly
access a private data member, the client can nevertheless do
whatever it wants with the variable through public set and get

functions. You’d think that you could peek at the private data (and
see exactly how it’s stored in the object) any time with the public get

function and that you could modify the private data at will through the
public set function.

Actually, set functions can be programmed to validate their arguments
and reject any attempts to set the data to bad values, such as

a negative body temperature
a day in March outside the range 1 through 31
a product code not in the company’s product catalog, etc.

And a get function can present the data in a different form, while the
actual data representation remains hidden from the user. For
example, a Grade class might store a grade data member as an int
between 0 and 100, but a getGrade member function might return a
letter grade as a string , such as "A" for grades between 90 and 100,
"B" for grades between 80 and 89, etc. Tightly controlling the access

to and presentation of private data can greatly reduce errors, while
increasing the robustness, security and usability of your programs.

Conceptual View of an Account Object
with Encapsulated Data
You can think of an Account object as shown in Fig. 3.7. The private
data member name is hidden inside the object (represented by the
inner circle containing name) and protected by an outer layer of public
member functions (represented by the outer circle containing getName
and setName). Any client code that needs to interact with the Account
object can do so only by calling the public member functions of the
protective outer layer.

Fig. 3.7 Conceptual view of an Account object with its
encapsulated private data member name and protective layer of
public member functions.

 Software Engineering Observation 3.2

Generally, data members should be private and member functions

public . In Chapter 9, we’ll discuss why you might use a public data

member or a private member function.

 Software Engineering Observation 3.3

Using public set and get functions to control access to private data

makes programs clearer and easier to maintain. Change is the rule

rather than the exception. You should anticipate that your code will be
modified, and possibly often.

3.6 Account Class with a
Balance; Data Validation
We now define an Account class that maintains a bank account’s
balance in addition to the name . In Chapter 2 we used the data type
int to represent integers. For simplicity, we’ll use data type int to
represent the account balance. In Chapter 4, you’ll see how to
represent numbers with decimal points.

3.6.1 Data Member balance

A typical bank services many accounts, each with its own balance. In
this updated Account class (Fig. 3.8), line 42

int balance{0}; // data member with default initial value

declares a data member balance of type int and initializes its value to
0 . This is known as an in-class initializer and was introduced in
C++11. Every object of class Account contains its own copies of both

the name and the balance .

11

Fig. 3.8 Account class with name and balance data members, and a
constructor and deposit function that each perform validation.

Account ’s Member Functions Can All Use
balance

The statements in lines 15, 22 and 28 use the variable balance even
though it was not declared in any of the member functions. We can
use balance in these member functions because it’s a data member in
the same class definition.

3.6.2 Two-Parameter Constructor
with Validation

The class has a constructor and four member functions. It’s common
for someone opening an account to deposit money immediately, so
the constructor (lines 9–17) now receives a second parameter—
initialBalance of type int that represents the starting balance. We
did not declare this constructor explicit (as in Fig. 3.4), because this
constructor has more than one parameter.

Lines 14–16 of Fig. 3.8

if (initialBalance > 0) { // if the initialBalance is valid

 balance = initialBalance; // assign it to data member balance

}

ensure that data member balance is assigned parameter
initialBalance ’s value only if that value is greater than 0 —this is
known as validation or validity checking. If so, line 15 assigns
initialBalance ’s value to data member balance . Otherwise, balance
remains at 0—its default initial value that was set at line 42 in class
Account ’s definition.

3.6.3 deposit Member Function
with Validation

Member function deposit (lines 20–24) does not return any data when
it completes its task, so its return type is void . The member function
receives one int parameter named depositAmount . Lines 21–23

if (depositAmount > 0) { // if the depositAmount is valid

 balance = balance + depositAmount; // add it to the balance

}

ensure that parameter depositAmount ’s value is added to the balance
only if the parameter value is valid (i.e., greater than zero)—another
example of validity checking. Line 22 first adds the current balance
and depositAmount , forming a temporary sum which is then assigned
to balance , replacing its prior value (recall that addition has a higher
precedence than assignment). It’s important to understand that the
calculation

balance + depositAmount

on the right side of the assignment operator in line 22 does not modify
the balance—that’s why the assignment is necessary. Section 4.12
shows a more concise way to write line 22.

3.6.4 getBalance Member
Function

Member function getBalance (lines 27–29) allows the class’s clients to
obtain the value of a particular Account object’s balance . The member
function specifies return type int and an empty parameter list. Like
member function getName , getBalance is declared const , because in
the process of returning the balance the function does not, and should
not, modify the Account object on which it’s called.

3.6.5 Manipulating Account
Objects with Balances

The main function in Fig. 3.9 creates two Account objects (lines 10–
11) and attempts to initialize them with a valid balance of 50 and an
invalid balance of -7 , respectively—for the purpose of our examples,
we assume that balances must be greater than or equal to zero. Lines
14–17 output the account names and balances, which are obtained by
calling each Account ’s getName and getBalance member functions.

Fig. 3.9 Displaying and updating Account balances.

Displaying the Account Objects’ Initial
Balances
When member function getBalance is called for account1 from line 15,
the value of account1 ’s balance is returned from line 28 of Fig. 3.8 and
displayed by the output statement in lines 14–15 (Fig. 3.9). Similarly,
when member function getBalance is called for account2 from line 17,
the value of the account2 ’s balance is returned from line 28 of Fig. 3.8
and displayed by the output statement (Fig. 3.9, lines 16–17). The
balance of account2 is initially 0 , because the constructor rejected the
attempt to start account2 with a negative balance, so the data member
balance retains its default initial value.

Reading a Deposit Amount from the User
and Making a Deposit
Line 19 prompts the user to enter a deposit amount for account1 . Line
20 declares local variable depositAmount to store each deposit amount
entered by the user. We did not initialize depositAmount , because as
you’ll learn momentarily, variable depositAmount ’s value will be input
by the user’s input.

 Error-Prevention Tip 3.3

Most C++ compilers issue a warning if you attempt to use the value of
an uninitialized variable. This helps you avoid dangerous execution-
time logic errors. It’s always better to get the warnings and errors out
of your programs at compilation time rather than execution time.

Line 21 reads the deposit amount from the user and places the value
into local variable depositAmount . Line 22 displays the deposit amount.
Line 23 calls object account1 ’s deposit member function with the
depositAmount as the member function’s argument. When the member
function is called, the argument’s value is assigned to the parameter
depositAmount of member function deposit (line 20 of Fig. 3.8); then
member function deposit adds that value to the balance . Lines 26–29
(Fig. 3.9) output the names and balance s of both Account s again to
show that only account1 ’s balance has changed.

Line 31 prompts the user to enter a deposit amount for account2 . Line
32 obtains the input from the user. Line 33 displays the depositAmount .
Line 34 calls object account2 ’s deposit member function with
depositAmount as the member function’s argument ; then member
function deposit adds that value to the balance . Finally, lines 37–40
output the names and balance s of both Account s again to show that
only account2 ’s balance has changed.

Duplicated Code in the main Function
The six statements at lines 14–15, 16–17, 26–27, 28–29, 37–38 and
39–40 are almost identical. Each outputs an Account ’s name and
balance , and differs only in the Account object’s name— account1 or
account2 . Duplicate code like this can create code maintenance

problems when that code needs to be updated. For example, if six
copies of the same code all have the same error to fix or the same
update to be made, you must make that change six times, without
making errors. Exercise 3.13 asks you to modify Fig. 3.9 to include
function displayAccount that takes as a parameter an Account object
and outputs the object’s name and balance . You’ll then replace main ’s
duplicated statements with six calls to displayAccount .

 Software Engineering Observation 3.4

Replacing duplicated code with calls to a function that contains only
one copy of that code can reduce the size of your program and
improve its maintainability.

3.6.6 Account UML Class Diagram
with a Balance and Member
Functions deposit and
getBalance

The UML class diagram in Fig. 3.10 concisely models class Account of
Fig. 3.8. The diagram models in its second compartment the private
attributes name of type string and balance of type int .

Fig. 3.10 UML class diagram for the Account class of Fig. 3.8.

Class Account ’s constructor is modeled in the third compartment with
parameters accountName of type string and initialBalance of type
int . The class’s four public member functions also are modeled in

the third compartment—operation deposit with a depositAmount
parameter of type int , operation getBalance with a return type of int ,
operation setName with an accountName parameter of type string and
operation getName with a return type of string .

3.7 Wrap-Up
In this chapter, you created your own classes and member functions,
created objects of those classes and called member functions of those
objects to perform useful actions. You declared data members of a
class to maintain data for each object of the class, and you defined
your own member functions to operate on that data. You passed
information to a member function as arguments whose values are
assigned to the member function’s parameters. You learned the
difference between a local variable of a member function and a data
member of a class, and that only data members that are objects are
initialized automatically with calls to their default constructors. You
also learned how to use a class’s constructor to specify the initial
values for an object’s data members. You saw how to create UML
class diagrams that model the member functions, attributes and
constructors of classes.

In the next chapter we begin our introduction to control statements,
which specify the order in which a program’s actions are performed.
You’ll use these in your member functions to specify how they should
order their tasks.

Summary

Section 3.1 Introduction
Each class you create becomes a new type you can use to declare
variables and create objects.
C++ is an extensible programming language (p. 74)—you can
define new class types as needed.

Section 3.2 Test-Driving an Account
Object

Classes cannot execute by themselves.
A main function can “drive” an object by calling its member
functions—without knowing how the class is implemented. In this
sense, main is referred to as a driver program (p. 75).

Section 3.2.1 Instantiating an Object
Typically, you cannot call a member function of a class until you
create an object of that class.

Section 3.2.2 Headers and Source-Code
Files

The compiler knows about fundamental types that are “built into”
C++.
A new type that you create is known as a user-defined type (p.
76).
New classes, when packaged properly, can be reused by other
programmers.
Reusable code (such as a class definition) is placed in a file known
as a header (p. 76) that you include (via #include) wherever you
need to use the code.
By convention, a header for a user-defined type has a .h filename
extension.
In an #include directive, a user-defined header is placed in double
quotes (""), indicating that the header is located with your
program, rather than with the C++ Standard Library headers.
Files ending in .cpp are known as source-code files (p. 76).

Section 3.2.3 Calling Class Account ’s
getName Member Function

To call a member function for a specific object, you specify the
object’s name, followed by a dot operator (.; p. 76), then the
member function name and a set of parentheses. Empty
parentheses indicate that the function does not require any
additional information to perform its task.
A member function can return a value from the object on which the
function is called.

Section 3.2.4 Inputting a string with
getline

Functions that are not members of a class are called global
functions (p. 77).
An object of C++ Standard Library class string (p. 77) stores
character string values. Class string is defined in the <string>
header (p. 77) and belongs to namespace std .
C++ Standard Library function getline (p. 77), from the <string>
header, reads characters up to, but not including, a newline, which
is discarded, then places the characters in a string .

Section 3.2.5 Calling Class Account ’s
setName Member Function

A member-function call can supply arguments (p. 78) that help the
function perform its task.

Section 3.3.1Account Class Definition
A class’s data members maintain data for each object of the class,
and its member functions manipulate the class’s data members.

Section 3.3.2 Keyword class and the
Class Body

A class definition begins with keyword class (p. 79) followed
immediately by the class’s name.
A class’s body is enclosed in an opening left brace and a closing
right brace.
A class definition terminates with a required semicolon.
Typically, each class definition is placed in a separate header with
the .h filename extension.
Class names, member function names and data member names
are all identifiers. By convention, variable-name identifiers begin
with a lowercase letter, and every word in the name after the first
word begins with a capital letter. This naming convention is known
as camel case, because the uppercase letters stand out like a
camel’s humps. Also by convention, class names begin with an
initial uppercase letter, and member function and data member
names begin with an initial lowercase letter.

Section 3.3.3 Data Member name of Type
string

Each object of a class has its own copy of the class’s data
members.
An object’s data members exist before a program calls member
functions on an object, while they are executing and after the
member functions complete execution.
Data members are declared inside a class definition but outside its
member functions’ bodies.
The default value for a string is the empty string (i.e., "" ; p.
80).
Headers should never contain using directives or using
declarations.

Section 3.3.4 setName Member Function
A function’s return type (p. 79; which appears to the left of the
function’s name) specifies the type of data the function returns to
its caller after performing its task.
The return type void (p. 80) indicates that when a function
completes its task, it does not return (i.e., give back) any
information to its calling function (p. 80).
Parameters (p. 80) specify additional information the function
needs to perform its task.
When you call a function, each argument value in the call’s
parentheses is copied into the corresponding parameter in the
member function definition.
Parameters are declared in a parameter list (p. 81) located in
required parentheses following a function’s name. Each parameter
must specify a type followed by a parameter name.
Multiple parameters in a function definition are separated by
commas.
The number and order of arguments in a function call must match
the number and order of parameters in the function definition’s
parameter list.
Every function body is delimited by an opening left brace and a
closing right brace. Within the braces are one or more statements
that perform the function’s task(s).
When program execution reaches a function’s closing brace, the
function returns to its caller.

Variables declared in a particular function’s body are local
variables (p. 81), which can be used only in that function. When a
function terminates, the values of its local variables are lost.
A function’s parameters also are local variables of that function.
The argument types in the member function call must be
consistent with the types of the corresponding parameters in the
member function’s definition.

Section 3.3.5 getName Member Function
When a member function that specifies a return type other than
void is called and completes its task, it must return a result to its
caller.
The return statement (p. 82) passes a value back to a function’s
caller.
A member function that does not, and should not, modify the object
on which it’s called is declared with const (p. 82) to the right of its
parameter list.

Section 3.3.6 Access Specifiers private
and public

The keyword private (p. 82) is an access specifier (p. 82).
Access specifiers are always followed by a colon (:).
A private data member is accessible only to its class’s member
functions.
Most data-member declarations appear after the private access
specifier.
Variables or functions listed after the public (p. 83) access
specifier (and before the next access specifier, if there is one) are
“available to the public.” They can be used by other functions in the
program, and by member functions of other classes.
By default, everything in a class is private , unless you specify
otherwise.
Once you list an access specifier, everything from that point has
that access until you list another access specifier.
Declaring data members private is known as data hiding (p. 82).
private data members are encapsulated (hidden) in an object and
can be accessed only by member functions of the object’s class.

Section 3.3.7 Account UML Class
Diagram

UML class diagrams (p. 83) can be used to summarize a class’s
attributes and operations.
In the UML, each class is modeled in a class diagram as a
rectangle with three compartments.
The top compartment contains the class name centered
horizontally in boldface type.
The middle compartment contains the class’s attribute names,
which correspond to the data members of a class.
A private attribute lists a minus sign (–) access modifier before the
attribute name.
Following the attribute name are a colon and the attribute type.
The bottom compartment contains the class’s operations (p. 84),
which correspond to the member functions in a class.
The UML models operations by listing the operation name
preceded by an access modifier. A plus sign (+) indicates a public
operation in the UML.
An operation that does not have any parameters specifies empty
parentheses following the operation name.
The UML indicates the return type of an operation by placing a
colon and the return type after the parentheses following the
operation name.
For a void return type a UML class diagram does not specify
anything after the parentheses of the operation.

The UML models a parameter by listing the parameter name,
followed by a colon and the parameter type in the parentheses
after the operation name.

Section 3.4 Account Class: Initializing
Objects with Constructors

Each class can define a constructor (p. 84) for custom object
initialization.
A constructor is a special member function that must have the
same name as the class.
C++ requires a constructor call for every object that’s created.
Like member functions, a constructor can specify parameters—the
corresponding argument values help initialize the object’s data
members.

Section 3.4.1 Declaring an Account
Constructor for Custom Object
Initialization

Normally, constructors are public .
A constructor’s parameter list specifies pieces of data required to
initialize an object.
A constructor uses a member-initializer list (p. 86) to initialize its
data members with the values of the corresponding parameters.
Member initializers appear between a constructor’s parameter list
and the left brace that begins the constructor’s body.
The member-initializer list is separated from the parameter list with
a colon (:).
Each member initializer consists of a data member’s variable name
followed by parentheses containing the member’s initial value.
Each member initializer in a constructor is separated from the next
by a comma.
The member initializer list executes before the constructor’s body
executes.
A constructor that specifies a single parameter should be declared
explicit (p. 86).
A constructor does not specify a return type, because constructors
cannot return values.
Constructors cannot be declared const (because initializing an
object modifies it).

Section 3.4.2 Initializing Account Objects
When They’re Created

When you create an object, C++ calls the class’s constructor to
initialize that object. If a constructor has parameters, the
corresponding arguments are placed in braces, { and } , to the
right of the object’s variable name.
When you create an object without placing braces to the right of
the object’s variable name, C++ implicitly calls the class’s default
constructor (p. 87).
In any class that does not explicitly define a constructor, the
compiler provides a default constructor (which always has no
parameters).
The default constructor does not initialize the class’s fundamental-
type data members, but does call the default constructor for each
data member that’s an object of another class.
A string ’s default constructor initializes the object to the empty
string .
An uninitialized fundamental-type variable contains an undefined
(“garbage”) value.
If a class defines a constructor, the compiler will not create a
default constructor for that class.

Section 3.4.3 Account UML Class
Diagram with a Constructor

Like operations, the UML models constructors in the third
compartment of a class diagram.
To distinguish a constructor from the class’s operations, the UML
requires that the word “constructor” be enclosed in guillemets (≪
and ≫ ; p. 88) and placed before the constructor’s name.
It’s customary to list constructors before other operations in the
third compartment.

Section 3.5 Software Engineering with Set
and Get Member Functions

Through the use of set and get member functions, you can validate
attempted modifications to private data and control how that data
is presented to the caller.
A client (p. 88) of a class is any other code that calls the class’s
member functions.
Any client code can see a public data member and do whatever it
wanted with it, including setting it to an invalid value.
Set functions can be programmed to validate their arguments and
reject any attempts to set the data to bad values.
A get function can present the data to a client in a different form.
Tightly controlling the access to and presentation of private data
can greatly reduce errors, while increasing the usability,
robustness and security of your programs.

Section 3.6.1 Data Member balance
You can initialize fundamental-type data members in their
declarations. This is known as an inclass initializer (p. 90) and
was introduced in C++11.

Section 3.6.2 Two-Parameter Constructor
with Validation

A constructor can perform validation (p. 91) or validity checking
(p. 91) before modifying a data member.

Section 3.6.3 deposit Member Function
with Validation

A set function can perform validity checking before modifying a
data member.

Self-Review Exercises
1. 3.1 Fill in the blanks in each of the following:

A. Every class definition contains the keyword
followed immediately by the class’s name.

B. A class definition is typically stored in a file with the
 filename extension.

C. Each parameter in a function header specifies both a(n)
 and a(n) .

D. When each object of a class maintains its own version of
an attribute, the variable that represents the attribute is
also known as a(n) .

E. Keyword public is a(n) .
F. Return type indicates that a function will perform

a task but will not return any information when it
completes its task.

G. Function from the <string> library reads
characters until a newline character is encountered, then
copies those characters into the specified string .

H. Any file that uses a class can include the class’s header
via a(n) preprocessing directive.

2. 3.2 State whether each of the following is true or false. If false,
explain why.

A. By convention, function names begin with a capital letter
and all subsequent words in the name begin with a

capital letter.
B. Empty parentheses following a function name in a

function definition indicate that the function does not
require any parameters to perform its task.

C. Data members or member functions declared with
access specifier private are accessible to member
functions of the class in which they’re declared.

D. Variables declared in the body of a particular member
function are known as data members and can be used in
all member functions of the class.

E. Every function’s body is delimited by left and right braces
({ and }).

F. The types of arguments in a function call must be
consistent with the types of the corresponding
parameters in the function’s parameter list.

3. 3.3 What is the difference between a local variable and a data
member?

4. 3.4 Explain the purpose of a function parameter. What’s the
difference between a parameter and an argument?

Exercises
1. 3.5 (Default Constructor) What’s a default constructor? How

are an object’s data members initialized if a class has only a
default constructor defined by the compiler?

2. 3.6 (Data Members) Explain the purpose of a data member.
3. 3.7 (Using a Class Without a using Directive) Explain how a

program could use class string without inserting a using
directive.

4. 3.8 (Set and Get Functions) Explain why a class might
provide a set function and a get function for a data member.

5. 3.9 (Modified Account Class) Modify class Account (Fig. 3.8) to
provide a member function called withdraw that withdraws
money from an Account . Ensure that the withdrawal amount
does not exceed the Account ’s balance. If it does, the balance
should be left unchanged and the member function should
display a message indicating "Withdrawal amount exceeded
account balance." Modify class AccountTest (Fig. 3.9) to test
member function withdraw .

6. 3.10 (Invoice Class) Create a class called Invoice that a
hardware store might use to represent an invoice for an item
sold at the store. An Invoice should include four data members
—a part number (type string), a part description (type string),
a quantity of the item being purchased (type int) and a price

per item (type int). Your class should have a constructor that

initializes the four data members. Provide a set and a get
function for each data member. In addition, provide a member
function named getInvoiceAmount that calculates the invoice

amount (i.e., multiplies the quantity by the price per item), then
returns the amount as an int value. If the quantity is not
positive, it should be set to 0 . If the price per item is not
positive, it should be set to 0 . Write a test program that
demonstrates class Invoice ’s capabilities.

7. 3.11 (Employee Class) Create a class called Employee that
includes three pieces of information as data members—a first
name (type string), a last name (type string) and a monthly
salary (type int). Your class should have a constructor that
initializes the three data members. Provide a set and a get
function for each data member. If the monthly salary is not
positive, set it to 0 . Write a test program that demonstrates
class Employee ’s capabilities. Create two Employee objects and
display each object’s yearly salary. Then give each Employee a
10 percent raise and display each Employee ’s yearly salary
again.

8. 3.12 (Date Class) Create a class called Date that includes
three pieces of information as data members—a month (type
int), a day (type int) and a year (type int). Your class should
have a constructor with three parameters that uses the
parameters to initialize the three data members. For the
purpose of this exercise, assume that the values provided for

the year and day are correct, but ensure that the month value is
in the range 1–12; if it isn’t, set the month to 1. Provide a set
and a get function for each data member. Provide a member
function displayDate that displays the month, day and year
separated by forward slashes (/). Write a test program that
demonstrates class Date ’s capabilities.

9. 3.13 (Removing Duplicated Code in the main Function) In
Fig. 3.9, the main function contains six statements (lines 14–
15, 16–17, 26–27, 28–29, 37–38 and 39–40) that each display
an Account object’s name and balance . Study these statements
and you’ll notice that they differ only in the Account object being
manipulated— account1 or account2 . In this exercise, you’ll
define a new displayAccount function that contains one copy of
that output statement. The member function’s parameter will be
an Account object and the member function will output the
object’s name and balance . You’ll then replace the six
duplicated statements in main with calls to displayAccount ,
passing as an argument the specific Account object to output.
Modify Fig. 3.9 to define the following displayAccount function
after the using directive and before main :

void displayAccount(Account accountToDisplay) {

 // place the statement that displays

 // accountToDisplay’s name and balance here

}

Replace the comment in the member function’s body with a
statement that displays accountToDisplay ’s name and balance .
Once you’ve completed displayAccount ’s declaration, modify
main to replace the statements that display each Account ’s
name and balance with calls to displayAccount of the form:

displayAccount(nameOfAccountObject);

In each call, the argument should be the account1 or account2
object, as appropriate. Then, test the updated program to
ensure that it produces the same output as shown in Fig. 3.9.

10. 3.14 (C++11 List Initializers) Write a statement that uses list
initialization to initialize an object of class Account which
provides a constructor that receives an unsigned int , two
strings and a double to initialize the accountNumber , firstName ,
lastName and balance data members of a new object of the
class.

Making a Difference
1. 3.15 (Target-Heart-Rate Calculator) While exercising, you can

use a heart-rate monitor to see that your heart rate stays within
a safe range suggested by your trainers and doctors. According
to the American Heart Association (AHA) (http://bit.ly/
AHATargetHeartRates), the formula for calculating your maximum

heart rate in beats per minute is 220 minus your age in years.
Your target heart rate is a range that’s 50–85% of your
maximum heart rate. [Note: These formulas are estimates
provided by the AHA. Maximum and target heart rates may
vary based on the health, fitness and gender of the individual.
Always consult a physician or qualified health-care
professional before beginning or modifying an exercise
program.] Create a class called HeartRates . The class
attributes should include the person’s first name, last name and
date of birth (consisting of separate attributes for the month,
day and year of birth). Your class should have a constructor
that receives this data as parameters. For each attribute
provide set and get functions. The class also should include a
member function that calculates and returns the person’s age
(in years), a member function that calculates and returns the
person’s maximum heart rate and a member function that
calculates and returns the person’s target heart rate. Write a
program that prompts for the person’s information, instantiates

http://bit.ly/AHATargetHeartRates

an object of class HeartRates and prints the information from

that object—including the person’s first name, last name and
date of birth—then calculates and prints the person’s age in
(years), maximum heart rate and target-heart-rate range.

2. 3.16 (Computerization of Health Records) A health-care
issue that has been in the news lately is the computerization of
health records. This possibility is being approached cautiously
because of sensitive privacy and security concerns, among
others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients
to share their health profiles and histories among their various
health-care professionals. This could improve the quality of
health care, help avoid drug conflicts and erroneous drug
prescriptions, reduce costs and, in emergencies, could save
lives. In this exercise, you’ll design a “starter” HealthProfile
class for a person. The class attributes should include the
person’s first name, last name, gender, date of birth (consisting
of separate attributes for the month, day and year of birth),
height (in inches) and weight (in pounds). Your class should
have a constructor that receives this data. For each attribute,
provide set and get functions. The class also should include
member functions that calculate and return the user’s age in
years, maximum heart rate and target-heart-rate range (see
Exercise 3.15), and body mass index (BMI; see Exercise
2.30). Write a program that prompts for the person’s
information, instantiates an object of class HealthProfile for
that person and prints the information from that object—
including the person’s first name, last name, gender, date of

birth, height and weight—then calculates and prints the
person’s age in years, BMI, maximum heart rate and target-
heart-rate range. It should also display the BMI values chart
from Exercise 2.30.

Answers to Self-Review Exercises
1. 3.1

A. class .
B. .h .
C. type, name.
D. data member.
E. access specifier.
F. void .
G. getline .
H. #include .

2. 3.2
A. False. Function names begin with a lowercase letter and

all subsequent words in the name begin with a capital
letter.

B. True.
C. True.
D. False. Such variables are local variables and can be

used only in the member function in which they’re
declared.

E. True.
F. True.

3. 3.3 A local variable is declared in the body of a function and
can be used only from its declaration to the closing brace of the
block in which it’s declared. A data member is declared in a
class, but not in the body of any of the class’s member
functions. Every object of a class has each of the class’s data
members. Data members are accessible to all member
functions of the class.

4. 3.4 A parameter represents additional information that a
function requires to perform its task. Each parameter required
by a function is specified in the function header. An argument is
the value supplied in the function call. When the function is
called, the argument value is passed into the function
parameter so that the function can perform its task.

4 Algorithm Development and
Control Statements: Part 1

Objectives
In this chapter you’ll:

Learn basic problem-solving techniques.
Develop algorithms through the process of top-down, stepwise
refinement.
Use the if and if… else selection statements to choose between
alternative actions.
Use the while iteration statement to execute statements in a
program repeatedly.
Use counter-controlled iteration and sentinel-controlled iteration.
Use nested control statements.
Use the compound assignment operator and the increment and
decrement operators.
Learn about the portability of fundamental data types.

Outline
1. 4.1 Introduction
2. 4.2 Algorithms
3. 4.3 Pseudocode
4. 4.4 Control Structures

A. 4.4.1 Sequence Structure
B. 4.4.2 Selection Statements
C. 4.4.3 Iteration Statements
D. 4.4.4 Summary of Control Statements

5. 4.5 if Single-Selection Statement
6. 4.6 if… else Double-Selection Statement

A. 4.6.1 Nested if…else Statements
B. 4.6.2 Dangling-else Problem
C. 4.6.3 Blocks
D. 4.6.4 Conditional Operator (?:)

7. 4.7 Student Class: Nested if… else Statements
8. 4.8 while Iteration Statement
9. 4.9 Formulating Algorithms: Counter-Controlled Iteration

A. 4.9.1 Pseudocode Algorithm with Counter-Controlled
Iteration

B. 4.9.2 Implementing Counter-Controlled Iteration
C. 4.9.3 Notes on Integer Division and Truncation

D. 4.9.4 Arithmetic Overflow
E. 4.9.5 Input Validation

10. 4.10 Formulating Algorithms: Sentinel-Controlled Iteration
A. 4.10.1 Top-Down, Stepwise Refinement: The Top and

First Refinement
B. 4.10.2 Proceeding to the Second Refinement
C. 4.10.3 Implementing Sentinel-Controlled Iteration
D. 4.10.4 Converting Between Fundamental Types

Explicitly and Implicitly
E. 4.10.5 Formatting Floating-Point Numbers
F. 4.10.6 Unsigned Integers and User Input

11. 4.11 Formulating Algorithms: Nested Control Statements
A. 4.11.1 Problem Statement
B. 4.11.2 Top-Down, Stepwise Refinement: Pseudocode

Representation of the Top
C. 4.11.3 Top-Down, Stepwise Refinement: First

Refinement
D. 4.11.4 Top-Down, Stepwise Refinement: Second

Refinement
E. 4.11.5 Complete Second Refinement of the

Pseudocode
F. 4.11.6 Program That Implements the Pseudocode

Algorithm
G. 4.11.7 Preventing Narrowing Conversions with List

Initialization

12. 4.12 Compound Assignment Operators
13. 4.13 Increment and Decrement Operators
14. 4.14 Fundamental Types Are Not Portable
15. 4.15 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

4.1 Introduction
Before writing a program to solve a problem, you should have a
thorough understanding of the problem and a carefully planned
approach to solving it. When writing a program, you also should
understand the available building blocks and employ proven program-
construction techniques. In this chapter and the next, we discuss
these issues in presenting the theory and principles of structured
programming. The concepts presented here are crucial in building
classes and manipulating objects. We discuss C++’s if statement in
additional detail and introduce the if… else and while statements—
all of these building blocks allow you to specify the logic required for
functions to perform their tasks. We also introduce the compound
assignment operator and the increment and decrement operators.
Finally, we consider the portability of C++’s fundamental types.

4.2 Algorithms
Any computing problem can be solved by executing a series of actions
in a specific order. A procedure for solving a problem in terms of

1. the actions to execute and
2. the order in which these actions execute

is called an algorithm. The following example demonstrates that
correctly specifying the order in which the actions execute is
important.

Consider the “rise-and-shine algorithm” one executive follows for
getting out of bed and going to work: (1) Get out of bed; (2) take off
pajamas; (3) take a shower; (4) get dressed; (5) eat breakfast; (6)
carpool to work. This routine gets the executive to work well prepared
to make critical decisions. Suppose that the same steps are performed
in a slightly different order: (1) Get out of bed; (2) take off pajamas; (3)
get dressed; (4) take a shower; (5) eat breakfast; (6) carpool to work.
In this case, our executive shows up for work soaking wet. Specifying
the order in which statements (actions) execute in a program is called
program control. This chapter investigates program control using
C++’s control statements.

4.3 Pseudocode
Pseudocode is an informal language that helps you develop
algorithms without having to worry about the strict details of C++
language syntax. The pseudocode we present is particularly useful for
developing algorithms that will be converted to structured portions of
C++ programs. Pseudocode is similar to everyday English—it’s
convenient and user friendly, but it’s not an actual computer
programming language. You’ll see an algorithm written in pseudocode
in Fig. 4.1. You may, of course, use your own native language(s) to
develop your own pseudocode style.

Pseudocode does not execute on computers. Rather, it helps you
“think out” a program before attempting to write it in a programming
language, such as C++. This chapter provides several examples of
using pseudocode to develop C++ programs.

The style of pseudocode we present consists purely of characters, so
you can type pseudocode conveniently, using any text-editor program.
A carefully prepared pseudocode program can easily be converted to
a corresponding C++ program.

Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to
C++ and the program is run on a computer. Such actions might
include input, output, assignments or calculations. In our pseudocode,

we typically do not include variable declarations, but some
programmers choose to list variables and mention their purposes.

Addition Program Pseudocode
Let’s look at an example of pseudocode that may be written to help a
programmer create the addition program of Fig. 2.5. This pseudocode
(Fig. 4.1) corresponds to the algorithm that inputs two integers from
the user, adds these integers and displays their sum. We show the
complete pseudocode listing here—we’ll show how to create
pseudocode from a problem statement later in the chapter.

Notice that the pseudocode statements are simply English statements
that convey what task is to be performed in C++. Lines 1–2
correspond to the C++ statements in lines

Fig. 4.1 Pseudocode for the addition program of Fig. 2.5.

13–14 of Fig. 2.5. Lines 4–5 correspond to the statements in lines 16–
17 and lines 7–8 correspond to the statements in lines 19 and 21.

4.4 Control Structures
Normally, statements in a program are executed one after the other in
the order in which they’re written. This process is called sequential
execution. Various C++ statements, which we’ll soon discuss, enable
you to specify that the next statement to execute is not necessarily the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of
transfers of control was the root of much difficulty experienced by
software development groups. The blame was pointed at the goto
statement (used in most programming languages of the time), which
allows you to specify a transfer of control to one of a wide range of
destinations in a program.

The research of Bohm and Jacopini1 had demonstrated that programs
could be written without any goto statements. The challenge for
programmers of the era was to shift their styles to “ goto -less
programming.” The term structured programming became almost
synonymous with “ goto elimination.” Not until the 1970s did most
programmers start taking structured programming seriously. The
results were impressive. Software development groups reported
shorter development times, more frequent on-time delivery of systems
and more frequent within-budget completion of software projects. The
key to these successes was that structured programs were clearer,

easier to debug and modify, and more likely to be bug free in the first
place.

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and
Languages with Only Two Formation Rules,” Communications of the
ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Bohm and Jacopini’s work demonstrated that all programs could be
written in terms of only three control structures—the sequence
structure, the selection structure and the iteration structure. We’ll
discuss how each of these is implemented in C++.

4.4.1 Sequence Structure

The sequence structure is built into C++. Unless directed otherwise,
the computer executes C++ statements one after the other in the
order in which they’re written—that is, in sequence. The UML activity
diagram in Fig. 4.2 illustrates a typical sequence structure in which
two calculations are performed in order. C++ lets you have as many
actions as you want in a sequence structure. As we’ll soon see,
anywhere a single action may be placed, we may place several
actions in sequence.

Fig. 4.2 Sequence-structure activity diagram.

An activity diagram models the workflow (also called the activity) of
a portion of a software system. Such workflows may include a portion
of an algorithm, like the sequence structure in Fig. 4.2. Activity
diagrams are composed of symbols, such as action-state symbols
(rectangles with their left and right sides replaced with outward arcs),
diamonds and small circles. These symbols are connected by
transition arrows, which represent the flow of the activity—that is, the
order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent
algorithms. Activity diagrams clearly show how control structures
operate. We use the UML in this chapter and Chapter 5 to show the
flow of control in control statements. Online Chapters 25–26 use the
UML in a real-world ATM (automated-teller-machine) case study.

Consider the sequence-structure activity diagram in Fig. 4.2. It
contains two action states, each containing an action expression—
for example, “add grade to total” or “add 1 to counter”—that specifies

a particular action to perform. The arrows in the activity diagram
represent transitions, which indicate the order in which the actions
represented by the action states occur. The program that implements
the activities illustrated in Fig. 4.2 first adds grade to total , then adds
1 to counter .

The solid circle at the top of the activity diagram represents the initial
state—the beginning of the workflow before the program performs the
modeled actions. The solid circle surrounded by a hollow circle at
the bottom of the diagram represents the final state—the end of the
workflow after the program performs its actions.

Figure 4.2 also includes rectangles with the upper-right corners folded
over. These are UML notes (like comments in C++)—explanatory
remarks that describe the purpose of symbols in the diagram. Figure
4.2 uses UML notes to show the C++ code associated with each
action state. A dotted line connects each note with the element it
describes. Activity diagrams normally do not show the C++ code that
implements the activity. We do this here to illustrate how the diagram
relates to C++ code. For more information on the UML, see our
optional online object-oriented design case study (Chapters 25–26) or
visit www.uml.org .

4.4.2 Selection Statements

http://www.uml.org

C++ has three types of selection statements. The if statement

performs (selects) an action (or group of actions), if a condition is true,
or skips it, if the condition is false. The if… else statement performs
an action (or group of actions) if a condition is true and performs a
different action (or group of actions) if the condition is false. The
switch statement (Chapter 5) performs one of many different actions
(or group of actions), depending on the value of an expression.

The if statement is called a single-selection statement because it
selects or ignores a single action (or group of actions). The if… else

statement is called a double-selection statement because it selects
between two different actions (or groups of actions). The switch
statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

4.4.3 Iteration Statements

C++ provides four iteration statements (sometimes called repetition
statements or looping statements) that enable programs to perform
statements repeatedly as long as a condition (called the loop-
continuation condition) remains true. The iteration statements are
the while , do… while , for and range-based for statements.
(Chapter 5 presents the do… while and for statements and Chapter
7 presents the range-based for statement.) The while and for
statements perform the action (or group of actions) in their bodies zero

or more times—if the loop-continuation condition is initially false, the
action (or group of actions) will not execute. The do… while statement

performs the action (or group of actions) in its body one or more times.

Each of the words if , else , switch , while , do and for are C++
keywords. Keywords cannot be used as identifiers, such as variable
names, and must be spelled with only lowercase letters. Figure 4.3
provides a complete list of C++ keywords.

Fig. 4.3 C++ keywords.

C++ Keywords

Keywords common to the C and C++ programming languages

asm auto break case char

const continue default do double

else enum extern float for

goto if inline int long

register return short signed sizeof

static struct switch typedef union

unsigned void volatile while

C++-only keywords

and and_eq bitand bitor bool

catch class compl const_cast delete

dynamic_cast explicit export false friend

mutable namespace new not not_eq

operator or or_eq private protected

public reinterpret_cast static_cast template this

throw true try typeid typename

using virtual wchar_t xor xor_eq

C++11 keywords

alignas alignof char16_t char32_t constexpr

decltype noexcept nullptr static_assert thread_local

11

4.4.4 Summary of Control
Statements

C++ has only three kinds of control structures, which from this point
forward we refer to as control statements: the sequence statement,
selection statements (three types) and iteration statements (four

types). Every program is formed by combining as many of these
statements as is appropriate for the algorithm the program
implements. We can model each control statement as an activity
diagram. Like Fig. 4.2, each diagram contains an initial state and a
final state that represent a control statement’s entry point and exit
point, respectively. Single-entry/single-exit control statements
make it easy to build programs— we simply connect the exit point of
one to the entry point of the next. We call this control-statement
stacking. We’ll learn that there’s only one other way in which control
statements may be connected—control-statement nesting—in
which one control statement appears inside another. Thus, algorithms
in C++ programs are constructed from only three kinds of control
statements, combined in only two ways. This is the essence of
simplicity.

4.5 if Single-Selection
Statement
We introduced the if single-selection statement briefly in Section
2.7. Programs use selection statements to choose among alternative
courses of action. For example, suppose that the passing grade on an
exam is 60. The pseudocode statement

If student’s grade is greater than or equal to 60

 Print “Passed”

represents an if statement that determines whether the condition

“student’s grade is greater than or equal to 60” is true. If so, “Passed”
is printed, and the next pseudocode statement in order is “performed.”
(Remember, pseudocode is not a real programming language.) If the
condition is false, the Print statement is ignored, and the next
pseudocode statement in order is performed. The indentation of the
second line of this selection statement is optional, but recommended,
because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in C++ as

if (studentGrade >= 60) {

 cout << "Passed";

}

The C++ code corresponds closely to the pseudocode. This is a
property of pseudocode that makes it such a useful program
development tool.

bool Data Type
You saw in Chapter 2 that decisions can be based on conditions
containing relational or equality operators. Actually, in C++, a decision
can be based on any expression that evaluates to zero or nonzero—if
the expression evaluates to zero, it’s treated as false; if the expression
evaluates to nonzero, it’s treated as true. C++ also provides the data
type bool for Boolean variables that can hold only the values true
and false—each of these is a C++ keyword.

 Portability Tip 4.1

For compatibility with earlier versions of C, which used integers for
Boolean values, the bool value true also can be represented by any

nonzero value (compilers typically use 1) and the bool value false
also can be represented as the value zero.

UML Activity Diagram for an if
Statement
Figure 4.4 illustrates the single-selection if statement. This figure
contains the most important symbol in an activity diagram—the
diamond, or decision symbol, which indicates that a decision is to be
made. The workflow continues along a path determined by the
symbol’s associated guard conditions, which can be true or false.
Each transition arrow emerging from a decision symbol has a guard
condition (specified in square brackets next to the arrow). If a guard
condition is true, the workflow enters the action state to which the
transition arrow points. In Fig. 4.4, if the grade is greater than or equal
to 60 (i.e., the condition is true), the program prints “Passed,” then
transitions to the activity’s final state. If the grade is less than 60 (i.e.,
the condition is false), the program immediately transitions to the final
state without displaying a message.

Fig. 4.4 if single-selection statement UML activity diagram.

The if statement is a single-entry/single-exit control statement. We’ll
see that the activity diagrams for the remaining control statements
also contain initial states, transition arrows, action states that indicate

actions to perform, decision symbols (with associated guard
conditions) that indicate decisions to be made, and final states.

4.6 if… else Double-Selection
Statement
The if single-selection statement performs an indicated action only
when the condition is true; otherwise, the action is skipped. The if
… else double-selection statement allows you to specify an action
to perform when the condition is true and another action when the
condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60

 Print “Passed”

Else

 Print “Failed”

represents an if… else statement that prints “Passed” if the student’s
grade is greater than or equal to 60, but prints “Failed” if it’s less than
60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.”

The preceding If…Else pseudocode statement can be written in C++
as

if (grade >= 60) {

 cout << "Passed";

}

else {

 cout << "Failed";

}

The body of the else is also indented. Whatever indentation
convention you choose should be applied consistently throughout your
programs.

 Good Programming Practice
4.1

Indent both body statements (or groups of statements) of an if… else

statement. Many IDEs do this for you.

 Good Programming Practice

4.2

If there are several levels of indentation, each level should be
indented the same additional amount of space. We prefer three-space
indents.

UML Activity Diagram for an if… else
Statement
Figure 4.5 illustrates the flow of control in the preceding if… else

statement. Once again, the symbols in the UML activity diagram
(besides the initial state, transition arrows and final state) represent
action states and decisions.

Fig. 4.5 if… else double-selection statement UML activity
diagram.

4.6.1 Nested if… else

Statements

A program can test multiple cases by placing if… else statements
inside other if… else statements to create nested if … else

statements. For example, the following pseudocode represents a
nested if… else that prints A for exam grades greater than or equal
to 90, B for grades 80 to 89, C for grades 70 to 79, D for grades 60 to
69 and F for all other grades:

If student’s grade is greater than or equal to 90

 Print “A”

else

 If student’s grade is greater than or equal to 80

 Print “B”

 else

 If student’s grade is greater than or equal to 70

 Print “C”

 else

 If student’s grade is greater than or equal to

60

 Print “D”

 else

 Print “F”

We use shading to highlight the nesting. This pseudocode may be
written in C++ as

if (studentGrade >= 90) {

 cout << "A";

}

else {

 if (studentGrade >= 80) {

 cout << "B";

 }

 else {

 if (studentGrade >= 70) {

 cout << "C";

 }

 else {

 if (studentGrade >= 60) {

 cout << "D";

 }

 else {

 cout << "F";

 }

 }

 }

}

If variable studentGrade is greater than or equal to 90, the first four
conditions in the nested if… else statement will be true, but only the
statement in the if part of the first if… else statement will execute.
After that statement executes, the else part of the “outermost”

if… else statement is skipped. Many programmers prefer to write the
preceding nested if… else statement in the following form, which is

identical except for the spacing and intentation that the compiler
ignores:

if (studentGrade >= 90) {

 cout << "A";

}

else if (studentGrade >= 80) {

 cout << "B";

}

else if (studentGrade >= 70) {

 cout << "C";

}

else if (studentGrade >= 60) {

 cout << "D";

}

else {

 cout << "F";

}

The latter form avoids deep indentation of the code to the right. Such
indentation often leaves little room on a line of code, forcing lines to
wrap.

 Error-Prevention Tip 4.1
In a nested if… else statement, ensure that you test for all possible

cases.

4.6.2 Dangling- else Problem

Throughout the text, we always enclose control statement bodies in
braces ({ and }). This avoids a logic error called the “dangling- else ”
problem. We investigate this problem in Exercises 4.23–4.25.

4.6.3 Blocks

The if statement normally expects only one statement in its body. To
include several statements in the body of an if (or the body of an
else for an if… else statement), enclose the statements in braces.
As we’ve done throughout the text, it’s good practice to always use the
braces. Statements contained in a pair of braces (such as the body of
a control statement or function) form a block. A block can be placed
anywhere in a function that a single statement can be placed.

The following example includes a block of multiple statements in the
else part of an if… else statement:

if (grade >= 60) {

 cout << "Passed";

}

else

{

 cout << "Failed\n";

 cout << "You must take this course again.";

}

In this case, if grade is less than 60, the program executes both

statements in the body of the else and prints

Failed

You must take this course again.

Without the braces surrounding the two statements in the else clause,
the statement

cout << "You must take this course again.";

would be outside the body of the else part of the if… else statement
and would execute regardless of whether the grade was less than 60.

Syntax and Logic Errors
Syntax errors (such as when one brace in a block is left out of the
program) are caught by the compiler. A logic error (such as an
incorrect calculation) has its effect at execution time. A fatal logic
error causes a program to fail and terminate prematurely. A nonfatal
logic error allows a program to continue executing but causes it to
produce incorrect results.

Empty Statement
Just as a block can be placed anywhere a single statement can be
placed, it’s also possible to have an empty statement, which is
represented by placing a semicolon (;) where a statement would
normally be.

 Common Programming Error 4.1

Placing a semicolon after the parenthesized condition in an if or

if… else statement leads to a logic error in single-selection if
statements and a syntax error in double-selection if… else

statements (when the if -part contains a body statement).

4.6.4 Conditional Operator (?:)

C++ provides the conditional operator (?:) that can be used in place
of an if… else statement. This can make your code shorter and
clearer. The conditional operator is C++’s only ternary operator (i.e.,
an operator that takes three operands). Together, the operands and
the ?: symbol form a conditional expression. For example, the
statement

cout << (studentGrade >= 60 ? "Passed" : "Failed");

prints the value of the conditional expression. The first operand (to the
left of the ?) is a condition, the second operand (between the ? and
:) is the value of the conditional expression if the condition is true and
the third operand (to the right of the :) is the value of the conditional
expression if the condition is false. The conditional expression in this
statement evaluates to the string "Passed" if the condition

studentGrade >= 60

is true and to the string "Failed" if it’s false. Thus, this statement with
the conditional operator performs essentially the same function as the

first if… else statement in Section 4.6. The precedence of the
conditional operator is low, so the entire conditional expression is
normally placed in parentheses. We’ll see that conditional expressions
can be used in some situations where if… else statements cannot.

The values in a conditional expression also can be actions to execute.
For example, the following conditional expression also prints "Passed"
or "Failed" :

grade >= 60 ? cout << "Passed" : cout << "Failed";

The preceding is read, “If grade is greater than or equal to 60 , then
cout << "Passed" ; otherwise, cout << "Failed" .” This is comparable to
an if… else statement. Conditional expressions can appear in some
program locations where if… else statements cannot.

4.7 Student Class: Nested
if… else Statements

The example of Figs. 4.6–4.7 demonstrates a nested if… else

statement that determines a student’s letter grade based on the
student’s average in a course.

Class Student
Class Student (Fig. 4.6) stores a student’s name and average and
provides member functions for manipulating these values. The class
contains:

Data member name of type string (line 65) to store a Student ’s
name.
Data member average of type int (line 66) to store a Student ’s
average in a course.
A constructor (lines 8–13) that initializes the name and average .
Member functions setName and getName (lines 16–23) to set and
get the Student ’s name .
Member functions setAverage and getAverage (lines 26–39) to set

and get the Student ’s average—in Section 5.11, you’ll learn how to

express lines 29–30 more concisely with logical operators that can
test multiple conditions.
Member function getLetterGrade (lines 42–63), which uses nested

if… else statements to determine the Student ’s letter grade
based on the Student ’s average .

After the constructor initializes name in the member-initializer list, the
constructor calls member function setAverage , which uses nested if
statements (lines 29–33) to validate the value used to set the average .
These statements ensure that the value is greater than 0 and less
than or equal to 100 ; otherwise, average ’s value is left unchanged.
Each if statement contains a simple condition—i.e., one that makes
only a single test. In Section 5.11, you’ll see how to use logical
operators to write compound conditions that conveniently combine
several simple conditions. If the condition in line 29 is true, only then
will the condition in line 30 be tested, and only if the conditions in both
lines 29 and 30 are true will the statement in line 31 execute.

Fig. 4.6 Student class that stores a student name and average.

Class StudentTest
To demonstrate the nested if… else statements in class Student ’s
getLetterGrade member function, the main function (Fig. 4.7) creates
two Student objects (lines 8–9). Next, lines 11–16 display each
Student ’s name, average and letter grade by calling the objects’

getName , getAverage and getLetterGrade member functions,

respectively.

Fig. 4.7 Create and test Student objects.

4.8 while Iteration Statement
An iteration statement allows you to specify that a program should
repeat an action while some condition remains true. The pseudocode
statement

While there are more items on my shopping list

 Purchase next item and cross it off my list

describes the iteration during a shopping trip. The condition “there are
more items on my shopping list” may be true or false. If it’s true, then
the action “Purchase next item and cross it off my list” is performed.
This action will be performed repeatedly while the condition remains
true. The statement(s) contained in the While iteration statement
constitute its body, which may be a single statement or a block.
Eventually, the condition will become false (when the shopping list’s
last item has been purchased and crossed off). At this point, the
iteration terminates, and the first statement after the iteration
statement executes.

As an example of C++’s while iteration statement, consider a
program segment that finds the first power of 3 larger than 100. After

the following while statement executes, the variable product contains
the result:

int product{3};

while (product <= 100) {

 product = 3 * product;

}

Each iteration of the while statement multiplies product by 3, so
product takes on the values 9, 27, 81 and 243 successively. When
product becomes 243, product <= 100 becomes false. This terminates
the iteration, so the final value of product is 243. At this point, program
execution continues with the next statement after the while statement.

 Common Programming Error
4.2

Not providing in the body of a while statement an action that

eventually causes the condition in the while to become false results in

a logic error called an infinite loop (the loop never terminates).

UML Activity Diagram for a while
Statement
The UML activity diagram in Fig. 4.8 illustrates the flow of control in
the preceding while statement. Once again, the symbols in the
diagram (besides the initial state, transition arrows, a final state and
three notes) represent an action state and a decision. This diagram
introduces the UML’s merge symbol. The UML represents both the
merge symbol and the decision symbol as diamonds. The merge
symbol joins two flows of activity into one. In this diagram, the merge
symbol joins the transitions from the initial state and from the action
state, so they both flow into the decision that determines whether the
loop should begin (or continue) executing.

Fig. 4.8 while iteration statement UML activity diagram.

The decision and merge symbols can be distinguished by the number
of “incoming” and “outgoing” transition arrows. A decision symbol has

one transition arrow pointing to the diamond and two or more pointing
out from it to indicate possible transitions from that point. In addition,
each transition arrow pointing out of a decision symbol has a guard
condition next to it. A merge symbol has two or more transition arrows
pointing to the diamond and only one pointing from the diamond, to
indicate multiple activity flows merging to continue the activity. None of
the transition arrows associated with a merge symbol has a guard
condition.

Figure 4.8 clearly shows the iteration of the while statement
discussed earlier in this section. The transition arrow emerging from
the action state points back to the merge, from which program flow
transitions back to the decision that’s tested at the beginning of each
iteration of the loop. The loop continues executing until the guard
condition product > 100 becomes true. Then the while statement exits
(reaches its final state), and control passes to the next statement in
sequence in the program.

4.9 Formulating Algorithms:
Counter-Controlled Iteration
To illustrate how algorithms are developed, we solve two variations of
a problem that averages student grades. Consider the following
problem statement:

A class of ten students took a quiz. The grades (integers in the
range 0–100) for this quiz are available to you. Determine the class
average on the quiz.

The class average is equal to the sum of the grades divided by the
number of students. The algorithm for solving this problem on a
computer must input each grade, keep track of the total of all grades
entered, perform the averaging calculation and print the result.

4.9.1 Pseudocode Algorithm with
Counter-Controlled Iteration

Let’s use pseudocode to list the actions to execute and specify the
order in which they should execute. We use counter-controlled
iteration to input the grades one at a time. This technique uses a
variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled iteration
is often called definite iteration, because the number of iterations is
known before the loop begins executing. In this example, iteration
terminates when the counter exceeds 10. This section presents a fully
developed pseudocode algorithm (Fig. 4.9) and a corresponding C++
program (Fig. 4.10) that implements the algorithm. In Section 4.10,
we demonstrate how to develop pseudocode algorithms from scratch.

Fig. 4.9 Pseudocode algorithm that uses counter-controlled

iteration to solve the class-average problem.

Note the references in the algorithm of Fig. 4.9 to a total and a
counter. A total is a variable used to accumulate the sum of several
values. A counter is a variable used to count—in this case, the grade
counter indicates which of the 10 grades is about to be entered by the
user. Variables used to store totals normally are initialized to zero
before being used in a program. In pseudocode, we do not use braces
around the statements that form the body of the pseudocode While
structure, but you could.

 Software Engineering Observation
4.1
Experience has shown that the most difficult part of solving a problem
on a computer is developing the algorithm for the solution. Once a
correct algorithm has been specified, producing a working C++
program from it is usually straightforward.

4.9.2 Implementing Counter-
Controlled Iteration

In Fig. 4.10, the main function implements the class-averaging
algorithm described by the pseudocode in Fig. 4.9—it allows the user
to enter 10 grades, then calculates and displays the average.

Fig. 4.10 Solving the class-average problem using counter-
controlled iteration.

Local Variables in main

Lines 8, 9, 14 and 21 declare local variables total , gradeCounter ,
grade and average , respectively. Variable gradeCounter is of type
unsigned int , because it can assume only the values from 1 through
11 (11 terminates the loop), which are all positive values. In general,
counters that should store only nonnegative values should be
declared with unsigned types. Variables of unsigned integer types can
represent values from 0 to approximately twice the positive range of
the corresponding signed integer types. You can determine your
platform’s maximum unsigned int value with the constant UINT_MAX
from <climits> . The program’s other variables are of type int .
Variable grade stores the user input.

A variable declared in a function body is a local variable and can be
used only from the line of its declaration to the closing right brace of
the block in which the variable is declared. A local variable’s
declaration must appear before the variable is used; otherwise, a
compilation error occurs. Variable grade—declared in the body of the
while loop—can be used only in that block.

Initialization Phase: Initializing Variables
total and gradeCounter
Lines 8–9 declare and initialize total to 0 and gradeCounter to 1 .
These initializations occur before the variables are used in
calculations.

 Error-Prevention Tip 4.2

Initialize each total and counter, either in its declaration or in an
assignment statement. Totals are normally initialized to 0. Counters
are normally initialized to 0 or 1, depending on how they’re used (we’ll
show examples of when to use 0 and when to use 1).

Processing Phase: Reading 10 Grades
from the User
Line 12 indicates that the while statement should continue looping
(also called iterating) as long as gradeCounter ’s value is less than or
equal to 10. While this condition remains true, the while statement
repeatedly executes the statements between the braces that delimit its
body (lines 12–18).

Line 13 displays the prompt "Enter grade: " . Line 15 inputs the grade
entered by the user and assigns it to variable grade . Then line 16
adds the new grade entered by the user to the total and assigns the
result to total , replacing its previous value.

Line 17 adds 1 to gradeCounter to indicate that the program has
processed a grade and is ready to input the next grade from the user.
Incrementing gradeCounter eventually causes it to exceed 10. Then
the loop terminates, because its condition (line 12) becomes false.

Termination Phase: Calculating and
Displaying the Class Average
When the loop terminates, line 21 performs the averaging calculation
in the average variable’s initializer. Line 24 displays the text "Total of
all 10 grades is " followed by variable total ’s value. Then, line 25
displays the text "Class average is " followed by variable average ’s
value. When execution reaches line 26, the program terminates.

Notice that this example contains only a main function that performs
all the work. In this chapter and in Chapter 3, you’ve seen examples
consisting of a class and a main program that creates an object of the
class and calls its member functions. When it does not make sense to
try to create a reusable class to demonstrate a concept, we’ll place the
program’s statements entirely within main .

4.9.3 Notes on Integer Division
and Truncation

This example’s averaging calculation produces an integer result. The
program’s output indicates that the sum of the grade values in the
sample execution is 846, which, when divided by 10, should yield the
floating-point number 84.6. However, the result of the calculation
total / 10 (line 21 of Fig. 4.10) is the integer 84, because total and
10 are both integers. Dividing two integers results in integer division
—any fractional part of the calculation is truncated (i.e., lost). In the
next section we’ll see how to obtain a floating-point result from the
averaging calculation.

 Common Programming Error 4.3
Assuming that integer division rounds (rather than truncates) can lead
to incorrect results. For example, 7 ÷ 4, which yields 1.75 in
conventional arithmetic, truncates to 1 in integer arithmetic, rather
than rounding to 2.

4.9.4 Arithmetic Overflow

In Fig. 4.10, line 16

total = total + grade; // add grade to total

adds each grade entered by the user to the total . Even this simple
statement has a potential problem—adding the integers could result in
a value that’s too large to store in an int variable. This is known as
arithmetic overflow and causes undefined behavior, which can lead
to unintended results and security problems. See, for example,

http://en.wikipedia.org/wiki/Integer_overflow#Security_ramifications

Figure 2.5 had the same issue in line 19, which calculated the sum of
two int values entered by the user:

sum = number1 + number2; // add the numbers; store result in sum

The maximum and minimum values that can be stored in an int
variable are represented by the constants INT_MAX and INT_MIN ,
respectively, which are defined in the header <climits> . There are
similar constants for the other integral types and for floating-point
types (header <cfloat>). To see these constants’ values on your
platform, include the appropriate header in a program that outputs the
values with cout , as in

cout << "INT_MAX = " << INT_MAX << "\n";

For arithmetic calculations like those in line 16 of Fig. 4.10 and line 19
of Fig. 2.5, it’s considered a good practice to ensure before you
perform them that they will not overflow. The code for doing this is
shown at www.securecoding.cert.org—just search for guideline “INT32-
CPP.” The code uses the && (logical AND) and || (logical OR)
operators, which are introduced in Chapter 5.

4.9.5 Input Validation

Any time a program receives input from the user, various problems
might occur. For example, in line 15 of Fig. 4.10

cin >> grade; // input next grade

we assume that the user will enter an integer grade in the range 0 to
100. However, the user could enter an integer less than 0, an integer
greater than 100, an integer outside the range of values that can be
stored in an int variable, a number containing a decimal point or a
value containing letters or special symbols that’s not even an integer.

To ensure that inputs are valid, industrial-strength programs must test
for all possible erroneous cases. A program that inputs grades should
validate the grades by using range checking to ensure that they’re
values from 0 to 100. You can then ask the user to reenter any value
that’s out of range. If a program requires inputs from a specific set of
values (e.g., nonsequential product codes), you can ensure that each
input matches a value in the set.

4.10 Formulating Algorithms:
Sentinel-Controlled Iteration
Let’s generalize Section 4.9’s class-average problem. Consider the
following problem:

Develop a class-averaging program that processes grades for an
arbitrary number of students each time it’s run.

In the previous class-average example, the problem statement
specified the number of students, so the number of grades (10) was
known in advance. In this example, no indication is given of how many
grades the user will enter during the program’s execution. The
program must process an arbitrary number of grades. How can it
determine when to stop the input of grades? How will it know when to
calculate and print the class average?

One way to solve this problem is to use a special value called a
sentinel value (also called a signal value, a dummy value or a flag
value) to indicate “end of data entry.” The user enters grades until all
legitimate grades have been entered. The user then types the sentinel
value to indicate that no more grades will be entered. Sentinel-
controlled iteration is often called indefinite iteration because the
number of iterations is not known before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with
an acceptable input value. Grades on a quiz are nonnegative integers,
so –1 is an acceptable sentinel value for this problem. Thus, a run of
the class-averaging program might process a stream of inputs such as
95, 96, 75, 74, 89 and –1. The program would then compute and print
the class average for the grades 95, 96, 75, 74 and 89; since –1 is the
sentinel value, it should not enter into the averaging calculation.

4.10.1 Top-Down, Stepwise
Refinement: The Top and First
Refinement

We approach this class-averaging program with a technique called
top-down, stepwise refinement, which is essential to the
development of well-structured programs. We begin with a
pseudocode representation of the top—a single statement that
conveys the overall function of the program:

Determine the class average for the quiz

The top is, in effect, a complete representation of a program.
Unfortunately, the top rarely conveys sufficient detail from which to
write a C++ program. So we now begin the refinement process. We
divide the top into a series of smaller tasks and list these in the order
in which they’ll be performed. This results in the following first
refinement:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

This refinement uses only the sequence structure—the steps listed
should execute in order, one after the other.

 Software Engineering Observation
4.2
Each refinement, as well as the top itself, is a complete specification
of the algorithm—only the level of detail varies.

4.10.2 Proceeding to the Second
Refinement

The preceding Software Engineering Observation is often all you need
for the first refinement in the top-down process. To proceed to the next
level of refinement—that is, the second refinement—we commit to
specific variables. In this example, we need a running total of the
numbers, a count of how many numbers have been processed, a
variable to receive the value of each grade as it’s entered by the user
and a variable to hold the calculated average. The pseudocode
statement

Initialize variables

can be refined as follows:

Initialize total to zero

Initialize counter to zero

Only the variables total and counter need to be initialized before
they’re used. The variables average and grade (for the calculated
average and the user input, respectively) need not be initialized,
because their values will be replaced as they’re calculated or input.

The pseudocode statement

Input, sum and count the quiz grades

requires iteration to successively input each grade. We do not know in
advance how many grades will be entered, so we’ll use sentinel-
controlled iteration. The user enters grades one at a time. After
entering the last grade, the user enters the sentinel value. The
program tests for the sentinel value after each grade is input and
terminates the loop when the user enters the sentinel value. The
second refinement of the preceding pseudocode statement is then

Prompt the user to enter the first grade

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Prompt the user to enter the next grade

 Input the next grade (possibly the sentinel)

We simply indent the statements under the While to show that they
belong to the While. Again, pseudocode is only an informal program
development aid.

The pseudocode statement

Calculate and print the class average

can be refined as follows:

If the counter is not equal to zero

 Set the average to the total divided by the counter

 Print the average

else

 Print “No grades were entered”

We’re careful here to test for the possibility of division by zero—a logic
error that, if undetected, would cause the program to fail or produce
invalid output. The complete second refinement of the pseudocode for
the class-average problem is shown in Fig. 4.11.

 Error-Prevention Tip 4.3

According to the C++ standard, the result of division by zero in
floating-point arithmetic is undefined. When performing division (/) or

remainder (%) calculations in which the right operand could be zero,

test for this and handle it (e.g., display an error message) rather than
allowing the calculation to proceed.

Fig. 4.11 Class-averaging pseudocode algorithm with sentinel-
controlled iteration.

In Fig. 4.9 and Fig. 4.11, we included blank lines and indentation in
the pseudocode to make it more readable. The blank lines separate
the algorithms into their phases and set off control statements; the
indentation emphasizes the bodies of the control statements.

The pseudocode algorithm in Fig. 4.11 solves the more general class-
average problem. This algorithm was developed after two refinements.
Sometimes more are needed.

 Software Engineering Observation
4.3
Terminate the top-down, stepwise refinement process when you’ve
specified the pseudocode algorithm in sufficient detail for you to
convert the pseudocode to C++.

 Software Engineering Observation
4.4
Some programmers do not use program development tools like
pseudocode. They feel that their ultimate goal is to solve the problem
on a computer and that writing pseudocode merely delays the
production of final outputs. Although this may work for simple and
familiar problems, it can lead to serious errors and delays in large,
complex projects.

4.10.3 Implementing Sentinel-
Controlled Iteration

In Fig. 4.12, the main function implements the pseudocode algorithm
of Fig. 4.11. Although each grade entered by the user is an integer,
the averaging calculation is likely to produce a number with a decimal
point—in other words, a real number or floating-point number (e.g.,
7.33, 0.0975 or 1000.12345). The type int cannot represent such a
number, so this example must use another type to do so. C++
provides data types float and double to store floating-point numbers
in memory. The primary difference between these types is that double
variables can typically store numbers with larger magnitude and finer
detail (i.e., more digits to the right of the decimal point—also known as
the number’s precision). C++ also supports type long double for
floating-point values with larger magnitude and more precision than
double . We say more about floating-point types in Chapter 5.

Fig. 4.12 Solving the class-average problem using sentinel-
controlled iteration.

Recall that integer division produces an integer result. This program
introduces a special operator called a cast operator to force the
averaging calculation to produce a floatingpoint numeric result. This
program also stacks control statements on top of one another (in
sequence)—the while statement (lines 19–26) is followed in
sequence by an if… else statement (lines 30–42). Much of the code
in this program is identical to that in Fig. 4.10, so we concentrate on
the new concepts.

Program Logic for Sentinel-Controlled
Iteration vs. Counter-Controlled Iteration
Line 10 initializes gradeCounter to 0 , because no grades have been
entered yet. Remember that this program uses sentinel-controlled
iteration to input the grades. The program increments gradeCounter
only when the user enters a valid grade. Line 32 declares double
variable average , which stores the class average as a floating-point
number.

Compare the program logic for sentinel-controlled iteration in this
program with that for counter-controlled iteration in Fig. 4.10. In
counter-controlled iteration, each iteration of the while statement
(lines 12–18 of Fig. 4.10) reads a value from the user, for the
specified number of iterations. In sentinel-controlled iteration, the

program prompts for and reads the first value (lines 14 and 16 of Fig.
4.12) before reaching the while . This value determines whether the
program’s flow of control should enter the body of the while . If the
condition of the while is false, the user entered the sentinel value, so
the body of the while does not execute (i.e., no grades were entered).

If, on the other hand, the condition is true, the body begins execution,
and the loop adds the grade value to the total and increments the
gradeCounter (lines 20–21). Then lines 24–25 in the loop body input

the next value from the user. Next, program control reaches the
closing right brace of the loop body at line 26, so execution continues
with the test of the while ’s condition (line 19). The condition uses the
most recent grade entered by the user to determine whether the loop

body should execute again.

The value of variable grade is always input from the user immediately
before the program tests the while condition. This allows the program
to determine whether the value just input is the sentinel value before
the program processes that value (i.e., adds it to the total). If the
sentinel value is input, the loop terminates, and the program does not
add –1 to the total .

 Good Programming Practice 4.3

In a sentinel-controlled loop, prompts should remind the user of the
sentinel.

After the loop terminates, the if… else statement at lines 30–42
executes. The condition at line 30 determines whether any grades
were input. If none were input, the if… else statement’s else part
executes and displays the message "No grades were entered" .

Braces in a while Statement
Notice the while statement’s block in Fig. 4.12 (lines 19–26). Without
the braces, the loop would consider its body to be only the first
statement, which adds the grade to the total . The last three
statements in the block would fall outside the loop body, causing the
computer to interpret the code incorrectly as follows:

while (grade != -1)

 total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user

cout << "Enter grade or -1 to quit: ";

cin >> grade;

The preceding code would cause an infinite loop in the program if the
user did not input the sentinel -1 at line 16 (before the while
statement).

4.10.4 Converting Between
Fundamental Types Explicitly and
Implicitly

If at least one grade was entered, line 32 of Fig. 4.12

double average{static_cast<double>(total) / gradeCounter};

calculates the average. Recall from Fig. 4.10 that integer division
yields an integer result. Even though variable average is declared as a
double , if we had written line 32 as

double average{total / gradeCounter};

it would lose the fractional part of the quotient before the result of the
division was used to initialize average .

static_cast Operator

To perform a floating-point calculation with integers in this example,
you first create temporary floating-point values using the static_cast
operator. Line 32 converts a temporary copy of its operand in
parentheses (total) to the type in angle brackets (double). The value
stored in total is still an integer. Using a cast operator in this manner
is called explicit conversion.

Promotions
After the cast operation, the calculation consists of the temporary
double copy of total divided by the integer gradeCounter . For
arithmetic, the compiler knows how to evaluate only expressions in
which the operand types are identical. To ensure this, the compiler
performs an operation called promotion (also called implicit
conversion) on selected operands. In an expression containing
values of data types int and double , C++ promotes int operands to
double values. So in line 32, C++ promotes a temporary copy of
gradeCounter ’s value to type double , then performs the division.
Finally, average is initialized with the floating-point result. Section 6.5
discusses the allowed fundamental-type promotions.

Cast Operators for Any Type
Cast operators are available for use with every fundamental type and
with class types as well. The operator is formed by following keyword
static_cast with a type name in angle brackets (< and >). It’s a
unary operator—that is, it has only one operand. C++ also supports

unary versions of the plus (+) and minus (-) operators, so that you
can write such expressions as -7 or +5 . Cast operators have the
second highest precedence (Appendix A).

4.10.5 Formatting Floating-Point
Numbers

The formatting capabilities in Fig. 4.12 are discussed here briefly and
explained in depth in Chapter 13, Stream Input/Output: A Deeper
Look.

setprecision Parameterized Stream
Manipulator
The call to setprecision (with the argument 2) in line 37

cout << setprecision(2) << fixed;

indicates that floating-point values should be output with two digits of
precision to the right of the decimal point (e.g., 92.37). setprecision
is a parameterized stream manipulator, because it requires an
argument to perform its task. Programs that use these calls must
include the header <iomanip> (line 4). The manipulator endl (from the
header <iostream>) is a nonparameterized stream manipulator,

because it does not require an argument. By default, floating-point
values are output with six digits of precision.

fixed Nonparameterized Stream
Manipulator
The stream manipulator fixed (line 37) indicates that floating-point
values should be output in fixed-point format, as opposed to
scientific notation. Scientific notation is a way of displaying a number
as a floating-point number between the values of 1.0 and 10.0,
multiplied by a power of 10. For instance, the value 3,100.0 would be
displayed in scientific notation as . Scientific notation is
useful when displaying very large or very small values. Formatting
using scientific notation is discussed further in Chapter 13.

Fixed-point formatting forces a floating-point number to display a
specific number of digits. Fixed-point formatting also forces the
decimal point and trailing zeros to print, even if the value is a whole-
number amount, such as 88.00. Without the fixed-point formatting
option, 88.00 prints as 88 without the trailing zeros and decimal point.

Rounding Floating-Point Numbers
When the stream manipulators fixed and setprecision are used, the
printed value is rounded to the number of decimal positions indicated
by setprecision ’s argument (2 in this example), although the value in
memory remains unaltered. For example, the values 87.946 and

67.543 are output as 87.95 and 67.54, respectively. It’s also possible
to force a decimal point to appear by using stream manipulator
showpoint . If showpoint is specified without fixed , then trailing zeros
will not print. Like endl , the nonparameterized stream manipulators
fixed and showpoint require the header <iostream> .

Together, lines 37 and 38 of Fig. 4.12 output the class average
rounded to the nearest hundredth and with exactly two digits to the
right of the decimal point. The three grades entered during the
execution of the program in Fig. 4.12 total 257, which yields the
average 85.666… and prints with rounding as 85.67.

4.10.6 Unsigned Integers and User
Input

In Fig. 4.10, line 10 declared gradeCounter as an unsigned int ,
because it stores only non-negative values. Figure 4.10 could have
also declared as unsigned int the variables grade , total and average .
Grades are normally values from 0 to 100, so the total and average
should each be greater than or equal to 0. We declared those
variables as ints, however, because we can’t control what the user
actually enters—the user could enter negative values. Worse yet, the
user could enter a value that’s not even a number. (We’ll show
string -processing capabilities later in the book that can be used to
check for erroneous inputs.)

Sometimes sentinel-controlled loops use intentionally invalid values to
terminate a loop. For example, in line 19 of Fig. 4.12, we terminate the
loop when the user enters the sentinel -1 (an invalid grade), so it
would be improper to declare variable grade as an unsigned int . As
you’ll see, the end-of-file (EOF) indicator—which is often used to
terminate sentinel-controlled loops—is also normally implemented
internally in the compiler as a negative number.

4.11 Formulating Algorithms:
Nested Control Statements
For the next example, we once again formulate an algorithm by using
pseudocode and top-down, stepwise refinement, and write a
corresponding C++ program. We’ve seen that control statements can
be stacked on top of one another (in sequence). In this case study, we
examine the only other structured way control statements can be
connected—namely, by nesting one control statement within another.

4.11.1 Problem Statement

Consider the following problem statement:

A college offers a course that prepares students for the state
licensing exam for realestate brokers. Last year, ten of the
students who completed this course took the exam. The college
wants to know how well its students did on the exam. You’ve been
asked to write a program to summarize the results. You’ve been
given a list of these 10 students. Next to each name is written a 1 if
the student passed the exam or a 2 if the student failed.
Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message
“Enter result” on the screen each time the program requests
another test result.

2. Count the number of test results of each type.
3. Display a summary of the test results, indicating the number

of students who passed and the number who failed.
4. If more than eight students passed the exam, print “Bonus

to instructor!”

Problem Statement Observations
After reading the problem statement carefully, we make the following
observations:

1. The program must process test results for 10 students. A
counter-controlled loop can be used, because the number of
test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each
time it reads a test result, the program must determine whether
it’s a 1 or a 2. We test for a 1 in our algorithm. If the number is
not a 1, we assume that it’s a 2. (Exercise 4.20 considers the
consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one
to count the number of students who passed the exam and one
to count the number who failed.

4. After the program has processed all the results, it must decide
whether more than eight students passed the exam.

4.11.2 Top-Down, Stepwise
Refinement: Pseudocode
Representation of the Top

Let’s proceed with top-down, stepwise refinement. We begin with a
pseudocode representation of the top:

Analyze exam results and decide whether a bonus should be paid

Once again, the top is a complete representation of the program, but
several refinements are likely to be needed before the pseudocode
can evolve naturally into a C++ program.

4.11.3 Top-Down, Stepwise
Refinement: First Refinement

Our first refinement is

Initialize variables

Input the 10 exam results, and count passes and failures

Print a summary of the exam results and decide whether a bonus

should be paid

Here, too, even though we have a complete representation of the
entire program, further refinement is necessary. We now commit to
specific variables. Counters are needed to record the passes and
failures, a counter will be used to control the looping process and a
variable is needed to store the user input. The variable in which the
user input will be stored is not initialized at the start of the algorithm,
because its value is read from the user during each iteration of the
loop.

4.11.4 Top-Down, Stepwise
Refinement: Second Refinement

The pseudocode statement

Initialize variables

can be refined as follows:

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

Notice that only the counters are initialized at the start of the
algorithm.

The pseudocode statement

Input the 10 exam results, and count passes and failures

requires a loop that successively inputs the result of each exam. We
know in advance that there are precisely 10 exam results, so counter-
controlled looping is appropriate. Inside the loop (i.e., nested within
the loop), a double-selection structure will determine whether each
exam result is a pass or a failure and will increment the appropriate
counter. The refinement of the preceding pseudocode statement is
then

While student counter is less than or equal to 10

 Prompt the user to enter the next exam result

 Input the next exam result

 If the student passed

 Add one to passes

 Else

 Add one to failures

 Add one to student counter

We use blank lines to isolate the If…Else control structure, which
improves readability.

The pseudocode statement

Print a summary of the exam results and decide whether a bonus

should be paid

can be refined as follows:

Print the number of passes

Print the number of failures

If more than eight students passed

 Print “Bonus to instructor!”

4.11.5 Complete Second
Refinement of the Pseudocode

The complete second refinement appears in Fig. 4.13. Notice that
blank lines are also used to set off the While structure for program
readability. This pseudocode is now sufficiently refined for conversion
to C++.

Fig. 4.13 Pseudocode for examination-results problem.

4.11.6 Program That Implements
the Pseudocode Algorithm

The program that implements the pseudocode algorithm and two
sample executions are shown in Fig. 4.14. Lines 8–10 and 16 of main
declare the variables that are used to process the examination results.

 Error-Prevention Tip 4.4
Initializing local variables when they’re declared helps you avoid any
compilation warnings that might arise from attempts to use
uninitialized variables and helps you avoid logic errors from using
uninitialized variables.

Fig. 4.14 Analysis of examination results using nested control
statements.

The while statement (lines 13–29) loops 10 times. During each
iteration, the loop inputs and processes one exam result. Notice that

the if… else statement (lines 20–25) for processing each result is
nested in the while statement. If the result is 1 , the if… else

statement increments passes ; otherwise, it assumes the result is 2
and increments failures . Line 28 increments studentCounter before
the loop condition is tested again at line 13. After 10 values have been
input, the loop terminates and line 32 displays the number of passes
and failures . The if statement at lines 35–37 determines whether
more than eight students passed the exam and, if so, outputs the
message "Bonus to instructor!"

Figure 4.14 shows the input and output from two sample program
executions. During the first, the condition at line 35 is true—more than
eight students passed the exam, so the program outputs a message
to bonus the instructor.

4.11.7 Preventing Narrowing
Conversions with List Initialization

As you learned in Chapter 2, C++11 introduced list initialization so
that you can use one syntax to initialize a variable of any type.
Consider line 10 of Fig. 4.14:

11

unsigned int studentCounter{1};

You also can write this as

unsigned int studentCounter = {1};

though the form without = is preferred. Prior to C++11, you would
have written this as

unsigned int studentCounter = 1;

For fundamental-type variables, list-initialization syntax prevents
narrowing conversions that could result in data loss. For example,
previously you could write

int x = 12.7;

which attempts to assign the double value 12.7 to the int variable x .
In this case, C++ converts the double value to an int , by truncating

the floating-point part (.7), a narrowing conversion that loses data.
The actual value assigned to x is 12 . Many compilers warn you of
this, but still allow the statement to compile. However, using list
initialization, as in

int x{12.7};

or

int x = {12.7};

yields a compilation error, thus helping you avoid a potentially subtle
logic error. For example, Apple’s Xcode LLVM compiler gives the error

Type 'double' cannot be narrowed to 'int' in initializer list

We’ll discuss additional list-initializer features in later chapters.

A Look Back at Fig. 4.10
You might think that the following statement from Fig. 4.10

int average{total / 10}; // int division yields int result

contains a narrowing conversion, but total and 10 are both int
values, so the initializer value is an int . If in the preceding statement
total were a double variable or if we used the double literal value
10.0 , then the initializer value would have type double . In this case the
compiler would issue an errror message due to an attempted
narrowing conversion.

4.12 Compound Assignment
Operators
The compound assignment operators abbreviate assignment
expressions. Statements like

variable = variable operator expression;

where operator is one of the binary operators + , - , * , / or % (or
others we discuss later in the text) can be written in the form

variable operator= expression;

For example, you can abbreviate the statement

c = c + 3;

with the addition compound assignment operator, += , as

c += 3;

The += operator adds the value of the expression on its right to the
value of the variable on its left and stores the result in the variable on
the left of the operator. Thus, the assignment expression c += 3 adds
3 to c . Figure 4.15 shows the arithmetic compound assignment
operators, sample expressions using the operators and explanations
of what the operators do.

Fig. 4.15 Arithmetic compound assignment operators.

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

4.13 Increment and Decrement
Operators
C++ provides two unary operators (summarized in Fig. 4.16) for
adding 1 to or subtracting 1 from the value of a numeric variable.
These are the unary increment operator, ++ , and the unary
decrement operator, -- . A program can increment by 1 the value of
a variable called c using the increment operator, ++ , rather than the
expression c=c +1 or c+=1 . An increment or decrement operator that’s
prefixed to (placed before) a variable is referred to as the prefix
increment or prefix decrement operator, respectively. An increment
or decrement operator that’s postfixed to (placed after) a variable is
referred to as the postfix increment or postfix decrement operator,
respectively.

Fig. 4.16 Increment and decrement operators.

Operator Operator
name

Sample
expression

Explanation

++ prefix
increment

++a Increment a by 1 , then use the new value of

a in the expression in which a resides.

++ postfix
increment

a++ Use the current value of a in the expression in

which a resides, then increment a by 1 .

-- prefix
decrement

--b Decrement b by 1 , then use the new value of

b in the expression in which b resides.

-- postfix
decrement

b-- Use the current value of b in the expression in

which b resides, then decrement b by 1 .

Using the prefix increment (or decrement) operator to add 1 to (or
subtract 1 from) a variable is known as preincrementing (or
predecrementing). This causes the variable to be incremented
(decremented) by 1; then the new value of the variable is used in the
expression in which it appears.

Using the postfix increment (or decrement) operator to add 1 to (or
subtract 1 from) a variable is known as postincrementing (or
postdecrementing). This causes the current value of the variable to
be used in the expression in which it appears; then the variable’s
value is incremented (decremented) by 1.

 Good Programming Practice
4.4

Unlike binary operators, the unary increment and decrement operators
as a matter of style should be placed next to their operands, with no
intervening spaces.

Difference Between Prefix Increment and
Postfix Increment Operators
Figure 4.17 demonstrates the difference between the prefix increment
and postfix increment versions of the ++ increment operator. The
decrement operator (--) works similarly.

Fig. 4.17 Prefix increment and postfix increment operators.

Line 8 initializes the variable c to 5 , and line 9 outputs c ’s initial
value. Line 10 outputs the value of the expression c++ . This

expression postincrements the variable c , so c ’s original value (5) is
output, then c ’s value is incremented (to 6). Thus, line 10 outputs c ’s
initial value (5) again. Line 11 outputs c ’s new value (6) to prove that
the variable’s value was indeed incremented in line 10.

Line 16 resets c ’s value to 5 , and line 17 outputs c ’s value. Line 18
outputs the value of the expression ++c . This expression
preincrements c , so its value is incremented; then the new value (6)
is output. Line 19 outputs c ’s value again to show that the value of c
is still 6 after line 18 executes.

Simplifying Statements with the Arithmetic
Compound Assignment, Increment and
Decrement Operators
The arithmetic compound assignment operators and the increment
and decrement operators can be used to simplify program statements.
For example, the three assignment statements in Fig. 4.14 (lines 21,
24 and 28)

passes = passes + 1;

failures = failures + 1;

studentCounter = studentCounter + 1;

can be written more concisely with compound assignment operators
as

passes += 1;

failures += 1;

studentCounter += 1;

with prefix increment operators as

++passes;

++failures;

++studentCounter;

or with postfix increment operators as

passes++;

failures++;

studentCounter++;

When incrementing or decrementing a variable in a statement by
itself, the prefix increment and postfix increment forms have the same
effect, and the prefix decrement and postfix decrement forms have the

same effect. It’s only when a variable appears in the context of a
larger expression that preincrementing and postincrementing the
variable have different effects (and similarly for predecrementing and
postdecrementing).

 Common Programming Error 4.4

Attempting to use the increment or decrement operator on an
expression other than one to which a value can be assigned is a
syntax error. For example, writing ++(x + 1) is a syntax error, because

(x + 1) is not a variable.

Operator Precedence and Associativity
Figure 4.18 shows the precedence and associativity of the operators
introduced to this point. The operators are shown top-to-bottom in
decreasing order of precedence. The second column indicates the
associativity of the operators at each level of precedence. Notice that
the conditional operator (?:), the unary operators preincrement (++),
predecrement (--), plus (+) and minus (-), and the assignment
operators = , += , -= , *= , /= and %= associate from right to left. All
other operators in Fig. 4.18 associate from left to right. The third
column names the various groups of operators.

 Good Programming Practice 4.5

Refer to the operator precedence and associativity chart (Appendix
A) when writing expressions containing many operators. Confirm that
the operators in the expression are performed in the order you expect.
If you’re uncertain about the order of evaluation in a complex
expression, break the expression into smaller statements or use
parentheses to force the order of evaluation, exactly as you’d do in an
algebraic expression. Be sure to observe that some operators such as
assignment (=) associate right to left rather than left to right.

Fig. 4.18 Operator precedence for the operators encountered so
far in the text.

Operators Associativity Type

:: () left to right [See Fig.
2.10’s caution regarding

grouping parentheses.]

primary

++ -- static_cast<type>

()

left to right postfix

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -

=

*= /= %= right to left assignment

4.14 Fundamental Types Are Not
Portable
The table in Appendix C lists C++’s fundamental types. Like its
predecessor language C, C++ requires all variables to have a type. In
C and C++, programmers frequently have to write separate versions
of programs to support different computer platforms, because the
fundamental types are not guaranteed to be identical from computer to
computer. For example, an int on one machine might be represented
by 16 bits (2 bytes) of memory, on a second machine by 32 bits (4
bytes), and on another machine by 64 bits (8 bytes).

 Portability Tip 4.2

C++’s fundamental types are not portable across all computer
platforms that support C++.

4.15 Wrap-Up
In this chapter, we demonstrated how to develop algorithms using top-
down, stepwise refinement. Only three types of control statements—
sequence, selection and iteration—are needed to develop any
algorithm. Specifically, we demonstrated the if single-selection
statement, the if… else double-selection statement and the while
iteration statement. We used control-statement stacking to total and
compute the average of a set of student grades with counter- and
sentinel-controlled iteration, and we used control-statement nesting to
analyze and make decisions based on a set of exam results. We
introduced C++’s compound assignment operators and its increment
and decrement operators. Finally, we discussed why C++’s
fundamental types are not portable. In Chapter 5, we continue our
discussion of control statements, introducing the for , do… while and
switch statements.

Summary

Section 4.1 Introduction
Before writing a program to solve a problem, you should have a
thorough understanding of the problem and a carefully planned
approach to solving it.

Section 4.2 Algorithms
A procedure for solving a problem in terms of the actions (p. 105)
to execute and the order (p. 105) in which these actions execute is
called an algorithm (p. 105).
Specifying the order in which statements (actions) execute in a
program is called program control (p. 105). This chapter
investigates program control using C++’s control statements (p.
105).

Section 4.3 Pseudocode
Pseudocode (p. 105) is an informal language similar to everyday
English that helps you develop algorithms without having to worry
about the strict details of C++ language syntax.
Pseudocode helps you “think out” a program before attempting to
write it.
Pseudocode normally describes only statements representing the
actions that occur after you convert a program from pseudocode to
C++ and the program is run on a computer.

Section 4.4 Control Structures
Normally, statements in a program are executed one after the
other in the order in which they’re written—this is called sequential
execution (p. 106).
Various C++ statements enable you to specify that the next
statement to execute is not necessarily the next one in sequence.
This is called transfer of control (p. 106).
Bohm and Jacopini’s work demonstrated that all programs could
be written in terms of only sequence (p. 106), selection (p. 106)
and iteration (p. 106).

Section 4.4.1 Sequence Structure
The sequence (p. 106) structure is built into C++. Unless directed
otherwise, the computer executes C++ statements one after the
other in the order in which they’re written.
A UML activity diagram (p. 106) models the workflow (p. 107;
also called the activity) of a portion of a software system. Such
workflows may include a portion of an algorithm.
Activity diagrams are composed of symbols, such as action-state
symbols (p. 107), diamonds (p. 107) and small circles (p. 107).
These are connected by transition arrows (p. 107), which
represent the flow of the activity—that is, the order in which the
actions should occur.
Like pseudocode, activity diagrams help you develop and
represent algorithms.
An action state (p. 107) contains an action expression (p. 107)
that specifies a particular action to perform.
Transition arrows in the activity diagram represent transitions (p.
107), specifying the order in which the actions represented by the
action states occur.
A solid circle (p. 107) at the top of the activity diagram represents
the initial state (p. 107)—the beginning of the workflow before the
program performs the modeled actions.
A solid circle surrounded by a hollow circle (p. 107) at the
bottom of the diagram represents the final state—the end of the
workflow after the program performs its actions.

UML notes (p. 107; like comments in C++) are explanatory
remarks that describe the purpose of symbols in the diagram. A
dotted line (p. 107) connects each note with the element it
describes.

Section 4.4.2 Selection Statements
C++ has three types of selection statements (p. 108).
The if single-selection statement (p. 108) performs (selects) an
action (or group of actions), if a condition is true, or skips it, if the
condition is false.
The if… else double-selection statement (p. 108) performs an
action (or group of actions) if a condition is true and performs a
different action (or group of actions) if the condition is false.
The switch multiple-selection statement (p. 108) performs one
of many different actions (or group of actions), depending on the
value of an expression.

Section 4.4.3 Iteration Statements
C++ provides four iteration statements (p. 108; sometimes called
repetition statements or looping statements) that enable
programs to perform statements repeatedly as long as a loop-
continuation condition (p. 108) remains true.
The iteration statements are the while , do… while , for and range-
based for statements.
The while and for statements perform the action (or group of
actions) in their bodies zero or more times—if the loop-continuation
condition is initially false, the action (or group of actions) will not
execute.
The do… while statement performs its body action(s) one or more
times.
Each of the words if , else , switch , while , do and for is a C++
keyword. Keywords cannot be used as identifiers, such as variable
names, and must be spelled with only lowercase letters.

Section 4.4.4 Summary of Control
Statements

Every program is formed by combining as many control statements
as is appropriate for the algorithm the program implements.
Single-entry/single-exit control statements (p. 109) make it
easy to build programs by connecting the exit point of one to the
entry point of the next. We call this control-statement stacking
(p. 109).
In control-statement nesting (p. 109), one control statement
appears inside another.

Section 4.5 if Single-Selection
Statement

In C++, a decision can be based on any expression that can be
evaluated as zero or nonzero—if the expression evaluates to zero,
it’s treated as false; if the expression evaluates to nonzero, it’s
treated as true.
C++ provides the data type bool (p. 110) for Boolean variables
that can hold only the values true (p. 110) and false (p. 110)—
each of these is a C++ keyword.
The UML decision symbol (p. 110; a diamond) indicates that a
decision is to be made. The workflow continues along a path
determined by the symbol’s associated guard conditions (p. 110),
which can be true or false. Each transition arrow emerging from a
decision symbol has a guard condition (specified in square
brackets next to the arrow). If a guard condition is true, the
workflow enters the action state to which the transition arrow
points.

Section 4.6 if…else Double-Selection
Statement

The if… else double-selection statement (p. 110) allows you to
specify an action (or group of actions) to perform when the
condition is true and another action (or group of actions) when the
condition is false.

Section 4.6.1 Nested if…else

Statements
A program can test multiple cases by placing if… else statements
inside other if… else statements to create nested if… else

statements (p. 111).

Section 4.6.2 Dangling-else Problem
Enclosing control-statement bodies in braces ({ and }) avoids a
logic error called the “dangling- else ” problem (Exercises
4.23–4.25).

Section 4.6.3 Blocks
Statements contained in a pair of braces (such as the body of a
control statement or function) form a block (p. 113). A block can
be placed anywhere in a function that a single statement can be
placed.
Syntax errors are caught by the compiler.
A logic error (p. 113) has its effect at execution time.
A fatal logic error (p. 114) causes a program to fail and terminate
prematurely.
A nonfatal logic error (p. 114) allows a program to continue
executing but causes it to produce incorrect results.
Just as a block can be placed anywhere a single statement can be
placed, it’s also possible to have an empty statement, ; (p. 114),
where a statement would normally be.

Section 4.6.4 Conditional Operator (?:)
The conditional operator , ?: (p. 114) is C++’s only ternary
operator (p. 114). Together, the operands and the ?: symbol form
a conditional expression (p. 114).
The first operand (to the left of the ?) is a condition, the second
operand (between the ? and :) is the value of the conditional
expression if the condition is true and the third operand (to the right
of the :) is the value of the conditional expression if the condition
is false.

Section 4.8 while Iteration Statement
A while iteration statement (p. 118) allows you to specify that a
program should repeat an action (or group of actions) while some
condition remains true.
UML’s merge symbol (p. 118; a diamond) joins two flows of
activity into one.
A decision symbol has one transition arrow pointing to the diamond
and two or more pointing out from it to indicate possible transitions
from that point. In addition, each transition arrow pointing out of a
decision symbol has a guard condition next to it.
A merge symbol has two or more transition arrows pointing to the
diamond and only one pointing from the diamond, to indicate
multiple activity flows merging to continue the activity. None of the
transition arrows associated with a merge symbol has a guard
condition.

Section 4.9.1 Pseudocode Algorithm with
Counter-Controlled Iteration

Counter-controlled iteration (p. 119) uses a variable called a
counter (p. 119; or control variable) to control the number of
times a set of statements will execute. This is often called definite
iteration (p. 119), because the number of iterations is known
before the loop begins executing.

Section 4.9.2 Implementing Counter-
Controlled Iteration

An unsigned int variable can assume only nonnegative values.
Variables of unsigned integer types can represent values from 0 to
approximately twice the positive range of the corresponding signed
integer types.
You can determine your platform’s maximum unsigned int value
with the constant UINT_MAX from <climits> .
A variable declared in a function body is a local variable and can
be used only from the line of its declaration to the closing right
brace of the block in which the variable is declared.
A local variable’s declaration must appear before the variable is
used; otherwise, a compilation error occurs.

Section 4.9.3 Notes on Integer Division
and Truncation

Integer division yields an integer result—any fractional part of the
calculation is truncated.

Section 4.9.4 Arithmetic Overflow
Adding two integers could result in a value that’s too large to store
in an int variable. This is known as arithmetic overflow (p. 122)
and causes undefined behavior, which can lead to unintended
results and security problems.
The maximum and minimum values that can be stored in an int
variable are represented by the constants INT_MAX and INT_MIN ,
respectively, which are defined in the header <climits> . There are
similar constants for the other integral types and for floating-point
types.
To see these constants’ values on your platform, open the headers
<climits> and <cfloat> in a text editor (you can search your file
system for these files).

Section 4.9.5 Input Validation
A program uses range checking (p. 123) to ensure that values are
within a specific range.

Section 4.10 Formulating Algorithms:
Sentinel-Controlled Iteration

In sentinel-controlled iteration (p. 124), a special value called a
sentinel value (p. 123; also called a signal value, a dummy
value or a flag value) is used to indicate “end of data entry.”
Sentinel-controlled iteration is often called indefinite iteration (p.
124) because the number of iterations is not known before the loop
begins executing.

Section 4.10.1 Top-Down, Stepwise
Refinement: The Top and First
Refinement

Top-down, stepwise refinement (p. 124) is essential to the
development of well-structured programs.
Begin with a pseudocode representation of the top (p. 124)—a
single statement that, in effect, is a complete representation of a
program.
The top rarely conveys sufficient detail from which to write a C++
program. So in the first refinement (p. 124), we refine the top into
a series of smaller tasks and list these in the order in which they’ll
be performed. This refinement uses only tasks in sequence.

Section 4.10.2 Proceeding to the Second
Refinement

In the second refinement (p. 124), we commit to specific
variables and logic.

Section 4.10.3 Implementing Sentinel-
Controlled Iteration

A number with a decimal point is called a real number or floating-
point number (p. 126; e.g., 7.33, 0.0975 or 1000.12345).
C++ provides types float (p. 126) and double (p. 126) to store
floating-point numbers in memory.
double variables can typically store numbers with larger magnitude
and finer detail (i.e., more precision; p. 126).
C++ also supports type long double (p. 126) for floating-point
values with larger magnitude and more precision than double .

Section 4.10.4 Converting Between
Fundamental Types Explicitly and
Implicitly

The static_cast operator (p. 129) converts a temporary copy of
its operand in parentheses to the type in angle brackets (double).
Using a cast operator in this manner is called explicit conversion
(p. 129).
For arithmeitc, the compiler knows how to evaluate only
expressions in which the operand types are identical. To ensure
this, the compiler performs an operation called promotion (p. 129;
also called implicit conversion) on selected operands.
In an expression containing values of data types int and double ,
C++ promotes (p. 129) int operands to double values.
static_cast is a unary operator (p. 129)—it has only one
operand.
C++ also supports unary versions of the plus (+) and minus (-)
operators, so that you can write such expressions as -7 or +5 .

Section 4.10.5 Formatting Floating-Point
Numbers

setprecision (p. 130) is a parameterized stream manipulator (p.
130) that specifies the number of digits of precision to the right of
the decimal point when a floating-point number is output.
Programs that use parameterized stream manipulators must
include the header <iomanip> (p. 130).
The manipulator endl (from the header <iostream>) is a
nonparameterized stream manipulator (p. 130), because it does
not require an argument.
By default, floating-point values are output with six digits of
precision.
The stream manipulator fixed (p. 130) indicates that floating-point
values should be output in fixed-point format (p. 130), as
opposed to scientific notation (p. 130).
Scientific notation displays a floating-point number between 1.0
and 10.0, multiplied by a power of 10. Scientific notation is useful
when displaying very large or very small values.
Fixed-point formatting forces the decimal point and trailing zeros to
print, even if the value is a whole number amount.
When the stream manipulators fixed and setprecision are used in
a program, the printed value is rounded (p. 130) to the number of
decimal positions indicated by setprecision ’s argument, although
the value in memory remains unaltered.

It’s also possible to force a decimal point to appear by using
stream manipulator showpoint (p. 130). If showpoint is specified
without fixed , then trailing zeros will not print.
Nonparameterized stream manipulators fixed and showpoint
require the header <iostream> .

Section 4.11.7 Preventing Narrowing
Conversions with List Initialization

For fundamental-type variables, list-initialization syntax prevents
narrowing conversions (p. 136) that could result in data loss.

Section 4.12 Compound Assignment
Operators

The compound assignment operators += , -= , *= , /= and %= (p.
136) abbreviate assignment expressions.

Section 4.13 Increment and Decrement
Operators

The increment (p. 137; ++) and decrement (p. 137; --) operators
increment or decrement a variable by 1, respectively. If the
operator is prefixed to the variable, the variable is incremented or
decremented by 1 first, then its new value is used in the
expression in which it appears. If the operator is postfixed to the
variable, the variable is first used in the expression in which it
appears, then the variable’s value is incremented or decremented
by 1.

Section 4.14 Fundamental Types Are Not
Portable

All variables must have a type.
The fundamental types are not guaranteed to be identical from
computer to computer. An int on one machine might be
represented by 16 bits (2 bytes) of memory, on a second machine
by 32 bits (4 bytes), and on another machine by 64 bits (8 bytes).

Self-Review Exercises
1. 4.1 Answer each of the following questions.

A. All programs can be written in terms of three types of
control statements: , and .

B. The selection statement is used to execute one
action when a condition is true or a different action when
that condition is false.

C. Repeating a set of instructions a specific number of
times is called iteration.

D. When it isn’t known in advance how many times a set of
statements will be repeated, a(n) value can be
used to terminate the iteration.

2. 4.2 Write four different C++ statements that each add 1 to
integer variable x .

3. 4.3 Write C++ statements to accomplish each of the following:
A. In one statement, assign the sum of the current value of

x and y to z and postincrement the value of x .
B. Determine whether the value of the variable count is

greater than 10. If it is, print "Count is greater than 10" .
C. Predecrement the variable x by 1, then subtract it from

the variable total .
D. Calculate the remainder after q is divided by divisor

and assign the result to q . Write this statement two

different ways.

4. 4.4 Write C++ statements to accomplish each of the following
tasks.

A. Declare variable sum to be of type unsigned int and
initialize it to 0 .

B. Declare variable x to be of type unsigned int and
initialize it to 1 .

C. Add variable x to variable sum and assign the result to
variable sum .

D. Print "The sum is: " followed by the value of variable
sum .

5. 4.5 Combine the statements that you wrote in Exercise 4.4 into
a program that calculates and prints the sum of the integers
from 1 to 10. Use the while statement to loop through the
calculation and increment statements. The loop should
terminate when the value of x becomes 11.

6. 4.6 State the values of each of these unsigned int variables
after the calculation is performed. Assume that, when each
statement begins executing, all variables have the integer value
5.

A. product *= x++;

B. quotient /= ++x;

7. 4.7 Write single C++ statements or portions of statements that
do the following:

A. Input unsigned int variable x with cin and >> .
B. Input unsigned int variable y with cin and >> .
C. Declare unsigned int variable i and initialize it to 1 .
D. Declare unsigned int variable power and initialize it to 1 .
E. Multiply variable power by x and assign the result to

power .
F. Preincrement variable i by 1 .
G. Determine whether i is less than or equal to y .
H. Output integer variable power with cout and << .

8. 4.8 Write a C++ program that uses the statements in Exercise
4.7 to calculate x raised to the y power. The program should
have a while iteration statement.

9. 4.9 Identify and correct the errors in each of the following:
A.

while (c <= 5) {

 product *= c;

 ++c;

B. cin << value;

C.

if (gender == 1) {

 cout << "Woman" << endl;

else; {

 cout << "Man" << endl;

}

10. 4.10 What’s wrong with the following while iteration statement?

while (z >= 0) {

 sum += z;

}

Answers to Self-Review Exercises

1. 4.1
A. Sequence, selection and iteration.
B. if… else .
C. Counter-controlled or definite.
D. Sentinel, signal, flag or dummy.

2. 4.2

x = x + 1;

x += 1;

++x;

x++;

3. 4.3
A. z = x++ + y;

B.

if (count > 10) {

 cout << "Count is greater than 10" << endl;

}

C. total -= --x;

D.

q %= divisor;

q = q % divisor;

4. 4.4
A. unsigned int sum{0};

B. unsigned int x{1};

C.
sum += x;

or

sum = sum + x;

D. cout << "The sum is: " << sum << endl;

5. 4.5 See the following code:

 1 // Exercise 4.5: Calculate.cpp

 2 // Calculate the sum of the integers from 1 to 10

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main() {

 7 unsigned int sum{0};

 8 unsigned int x{1};

 9

10 while (x <= 10) { // while x is less than or equal

to 10

11 sum += x; // add x to sum

12 ++x; // increment x

13 }

14

15 cout << "The sum is: " << sum << endl;

16 }

The sum is: 55

6. 4.6

A. product = 25, x = 6;

B. quotient = 0, x = 6;

7. 4.7
A. cin >> x;

B. cin >> y;

C. unsigned int i{1};

D. unsigned int power{1};

E.

power *= x;

or

power = power * x;

F. ++i;

G. if (i <= y)

H. cout << power << endl;

8. 4.8 See the following code:

 1 // Exercise 4.8 Solution: power.cpp

 2 // Raise x to the y power.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main() {

 7 unsigned int i{1}; // initialize i to begin

counting from 1

 8 unsigned int power{1}; // initialize power

 9

10 cout << "Enter base as an integer: "; // prompt for

base

11 unsigned int x; // base

12 cin >> x; // input base

13

14 cout << "Enter exponent as an integer: "; // prompt

for exponent

15 unsigned int y; // exponent

16 cin >> y; // input exponent

17

18 // count from 1 to y and multiply power by x each

time

19 while (i <= y) {

20 power *= x;

21 ++i;

22 } // end while

23

24 cout << power << endl; // display result

25 } // end main

Enter base as an integer: 2

Enter exponent as an integer: 3

8

9. 4.9
A. Error: Missing the closing right brace of the while body.

Correction: Add closing right brace after the statement
++c; .

B. Error: Used stream insertion instead of stream
extraction.
Correction: Change << to >> .

C. Error: Semicolon after else is a logic error. The second
output statement always executes.
Correction: Remove the semicolon after else .

10. 4.10 The value of the variable z is never changed in the while
statement. Therefore, if the loop-continuation condition (z >=
0) is initially true, an infinite loop is created. To prevent the
infinite loop, z must be decremented so that it eventually
becomes less than 0.

Exercises
1. 4.11 (Correct the Code Errors) Identify and correct the

error(s) in each of the following:
A.

if (age >= 65); {

 cout << "Age is greater than or equal to 65" <<

endl;

}

else {

 cout << "Age is less than 65 << endl";

}

B.

if (age >= 65) {

 cout << "Age is greater than or equal to 65" <<

endl;

else; {

 cout << "Age is less than 65 << endl";

}

C.

unsigned int x{1};

unsigned int total;

while (x <= 10) {

 total += x;

 ++x;

}

D.

While (x <= 100)

 total += x;

 ++x;

E.
while (y > 0) {

 cout << y << endl;

 ++y;

}

2. 4.12 (What Does this Program Do?) What does the following
program print?

 1 // Exercise 4.12: Mystery.cpp

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main() {

 6 unsigned int x{1};

 7 unsigned int total{0};

 8

 9 while (x <= 10) {

10 int y = x * x;

11 cout << y << endl;

12 total += y;

13 ++x;

14 }

15

16 cout << "Total is " << total << endl;

17 }

For Exercises 4.13–4.16, perform each of these steps:
A. Read the problem statement.
B. Formulate the algorithm using pseudocode and top-

down, stepwise refinement.
C. Write a C++ program.
D. Test, debug and execute the C++ program.

3. 4.13 (Gas Mileage) Drivers are concerned with the mileage
obtained by their automobiles. One driver has kept track of
several trips by recording miles driven and gallons used for
each trip. Develop a C++ program that uses a while statement
to input the miles driven and gallons used for each trip. The
program should calculate and display the miles per gallon
obtained for each trip and print the combined miles per gallon
obtained for all tankfuls up to this point.

Enter miles driven (-1 to quit): 287

Enter gallons used: 13

MPG this trip: 22.076923

Total MPG: 22.076923

Enter miles driven (-1 to quit): 200

Enter gallons used: 10

MPG this trip: 20.000000

Total MPG: 21.173913

Enter the miles driven (-1 to quit): 120

Enter gallons used: 5

MPG this trip: 24.000000

Total MPG: 21.678571

Enter the miles used (-1 to quit): -1

4. 4.14 (Credit Limits) Develop a C++ program that will
determine whether a department-store customer has exceeded
the credit limit on a charge account. For each customer, the
following facts are available:

A. Account number (an integer)
B. Balance at the beginning of the month
C. Total of all items charged by this customer this month
D. Total of all credits applied to this customer's account this

month
E. Allowed credit limit

The program should use a while statement to input each of
these facts, calculate the new balance (= beginning balance +
charges – credits) and determine whether the new balance
exceeds the customer’s credit limit. For those customers whose
credit limit is exceeded, the program should display the
customer’s account number, credit limit, new balance and the
message “Credit Limit Exceeded.”

Enter account number (or -1 to quit): 100

Enter beginning balance: 5394.78

Enter total charges: 1000.00

Enter total credits: 500.00

Enter credit limit: 5500.00

New balance is 5894.78

Account: 100

Credit limit: 5500.00

Balance: 5894.78

Credit Limit Exceeded.

Enter Account Number (or -1 to quit): 200

Enter beginning balance: 1000.00

Enter total charges: 123.45

Enter total credits: 321.00

Enter credit limit: 1500.00

New balance is 802.45

Enter Account Number (or -1 to quit): -1

5. 4.15 (Sales-Commission Calculator) A large company pays
its salespeople on a commission basis. The salespeople each
receive $200 per week plus 9% of their gross sales for that
week. For example, a salesperson who sells $5000 worth of
chemicals in a week receives $200 plus 9% of $5000, or a total
of $650. Develop a C++ program that uses a while statement
to input each salesperson’s gross sales for last week and
calculates and displays that salesperson’s earnings. Process
one salesperson’s figures at a time.

Enter sales in dollars (-1 to end): 5000.00

Salary is: $650.00

Enter sales in dollars (-1 to end): 6000.00

Salary is: $740.00

Enter sales in dollars (-1 to end): 7000.00

Salary is: $830.00

Enter sales in dollars (-1 to end): -1

6. 4.16 (Salary Calculator) Develop a C++ program that uses a
while statement to determine the gross pay for each of several
employees. The company pays “straight time” for the first 40
hours worked by each employee and pays “time-and-a-half” for
all hours worked in excess of 40 hours. You are given a list of
the employees of the company, the number of hours each
employee worked last week and the hourly rate of each
employee. Your program should input this information for each
employee and should determine and display the employee’s
gross pay.

Enter hours worked (-1 to end): 39

Enter hourly rate of the employee ($00.00): 10.00

Salary is $390.00

Enter hours worked (-1 to end): 40

Enter hourly rate of the employee ($00.00): 10.00

Salary is $400.00

Enter hours worked (-1 to end): 41

Enter hourly rate of the employee ($00.00): 10.00

Salary is $415.00

Enter hours worked (-1 to end): -1

7. 4.17 (Find the Largest) The process of finding the largest
number (i.e., the maximum of a group of numbers) is used
frequently in computer applications. For example, a program
that determines the winner of a sales contest inputs the number
of units sold by each salesperson. The salesperson who sells
the most units wins the contest. Write a C++ program that uses
a while statement to determine and print the largest of 10
numbers input by the user. Your program should use three
variables, as follows:

A. counter—A counter to count to 10 (i.e., to keep track of
how many numbers have been input and to determine
when all 10 numbers have been processed).

B. number—The current number input to the program.
C. largest—The largest number found so far.

8. 4.18 (Tabular Output) Write a C++ program that uses a while
statement and the tab escape sequence \t to print the
following table of values:

N 10*N 100*N 1000*N

1 10 100 1000

2 20 200 2000

3 30 300 3000

4 40 400 4000

5 50 500 5000

9. 4.19 (Find the Two Largest Numbers) Using an approach
similar to that in Exercise 4.17, find the two largest values
among the 10 numbers. [Note: You must input each number
only once.]

10. 4.20 (Validating User Input) The examination-results program
of Fig. 4.14 assumes that any value input by the user that’s not
a 1 must be a 2. Modify the application to validate its inputs. On
any input, if the value entered is other than 1 or 2, keep looping
until the user enters a correct value.

11. 4.21 (What Does this Program Do?) What does the following
program print?

 1 // Exercise 4.21: Mystery2.cpp

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main() {

 6 unsigned int count{1};

 7

 8 while (count <= 10) {

 9 cout << (count % 2 == 1 ? "****" : "++++++++")

<< endl;

10 ++count;

11 }

12 }

12. 4.22 (What Does this Program Do?) What does the following
program print?

 1 // Exercise 4.22: Mystery3.cpp

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main() {

 6 unsigned int row{10};

 7

 8 while (row >= 1) {

 9 unsigned int column{1};

10

11 while (column <= 10) {

12 cout << (row % 2 == 1 ? "<" : ">");

13 ++column;

14 }

15

16 --row;

17 cout << endl;

18 }

19 }

13. 4.23 (Dangling- else Problem) C++ compilers always
associate an else with the immediately preceding if unless
told to do otherwise by the placement of braces ({ and }). This
behavior can lead to what is referred to as the dangling- else
problem. The indentation of the nested statement

if (x > 5)

 if (y > 5)

 cout << "x and y are > 5";

 else

 cout << "x is <= 5";

appears to indicate that if x is greater than 5 , the nested if
statement determines whether y is also greater than 5 . If so,
the statement outputs the string "x and y are > 5" . Otherwise,
it appears that if x is not greater than 5 , the else part of the
if… else outputs the string "x is <= 5" . Beware! This nested
if… else statement does not execute as it appears. The
compiler actually interprets the statement as

if (x > 5)

 if (y > 5)

 cout << "x and y are > 5";

 else

 cout << "x is <= 5";

in which the body of the first if is a nested if… else . The
outer if statement tests whether x is greater than 5 . If so,
execution continues by testing whether y is also greater than
5 . If the second condition is true, the proper string— "x and y

are > 5"—is displayed. However, if the second condition is
false, the string "x is <= 5" is displayed, even though we know
that x is greater than 5 . Equally bad, if the outer if
statement’s condition is false, the inner if… else is skipped
and nothing is displayed. For this exercise, add braces to the
preceding code snippet to force the nested if… else statement
to execute as it was originally intended.

14. 4.24 (Another Dangling- else Problem) Based on the
dangling- else discussion in Exercise 4.23, state the output for
each of the following code snippets when x is 9 and y is 11
and when x is 11 and y is 9 . We eliminated the indentation
from the following code to make the problem more challenging.
[Hint: Apply indentation conventions you’ve learned.]

A.
if (x < 10)

if (y > 10)

cout << "*****" << endl;

else

cout << "#####" << endl;

cout << "$$$$$" << endl;

B.

if (x < 10)

{

if (y > 10)

cout << "*****" << endl;

}

else

{

cout << "#####" << endl;

cout << "$$$$$" << endl;

}

15. 4.25 (Another Dangling- else Problem) Based on the
dangling- else discussion in Exercise 4.23, modify the following
code to produce the output shown. Use proper indentation
techniques. You must not make any additional changes other
than inserting braces. We eliminated the indentation from the
following code to make the problem more challenging. [Note:
It’s possible that no modification is necessary.]

if (y == 8)

if (x == 5)

cout << "@@@@@" << endl;

else

cout << "#####" << endl;

cout << "$$$$$" << endl;

cout << "&&&&&" << endl;

A. Assuming x = 5 and y = 8 , the following output is
produced.

@@@@@

$$$$$

&&&&&

B. Assuming x = 5 and y = 8 , the following output is
produced.

@@@@@

C. Assuming x = 5 and y = 8 , the following output is
produced.

@@@@@

&&&&&

D. Assuming x = 5 and y = 7 , the following output is
produced. [Note: The last three output statements after

the else are all part of a block.]

#####

$$$$$

&&&&&

16. 4.26 (Square of Asterisks) Write a program that reads in the
size of the side of a square, then prints a hollow square of that
size out of asterisks and blanks. Your program should work for
squares of all side sizes between 1 and 20. For example, if
your program reads a size of 5, it should print

* *

* *

* *

17. 4.27 (Palindromes) A palindrome is a number or a text phrase
that reads the same backward as forward. For example, each
of the following five-digit integers is a palindrome: 12321,
55555, 45554 and 11611. Write a program that reads in a five-
digit integer and determines whether it’s a palindrome. [Hint:
Use the division and remainder operators to separate the
number into its individual digits.]

18. 4.28 (Printing the Decimal Equivalent of a Binary Number)
Input an integer containing only 0s and 1s (i.e., a “binary”
integer) and print its decimal equivalent. Use the remainder and
division operators to pick off the “binary” number’s digits one at
a time from right to left. Much as in the decimal number system,
where the rightmost digit has a positional value of 1, the next
digit left has a positional value of 10, then 100, then 1000, and
so on, in the binary number system the rightmost digit has a
positional value of 1, the next digit left has a positional value of
2, then 4, then 8, and so on. Thus the decimal number 234 can
be interpreted as 2 * 100 + 3 * 10 + 4 * 1. The decimal
equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8 or 1 + 0
+ 4 + 8, or 13. [Note: To learn more about binary numbers,
refer to Appendix D.]

19. 4.29 (Checkerboard Pattern of Asterisks) Write a program
that displays the following checkerboard pattern. Your program
must use only three output statements, one of each of the
following forms:

cout << "* ";

cout << ' ';

cout << endl;

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

20. 4.30 (Multiples of 2 with an Infinite Loop) Write a program
that prints the powers of the integer 2, namely 2, 4, 8, 16, 32,
64, etc. Your while loop should not terminate (i.e., you should
create an infinite loop). To do this, simply use the keyword true
as the expression for the while statement. What happens when
you run this program?

21. 4.31 (Calculating a Circle’s Diameter, Circumference and
Area) Write a program that reads the radius of a circle (as a
double value) and computes and prints the diameter, the
circumference and the area. Use the value 3.14159 for π.

22. 4.32 What’s wrong with the following statement? Provide the
correct statement to accomplish what the programmer was
probably trying to do.

cout << ++(x + y);

23. 4.33 (Sides of a Triangle) Write a program that reads three
nonzero double values and determines and prints whether they
could represent the sides of a triangle.

24. 4.34 (Sides of a Right Triangle) Write a program that reads
three nonzero integers and determines and prints whether
they’re the sides of a right triangle.

25. 4.35 (Factorial) The factorial of a nonnegative integer n is
written n! (pronounced “n factorial”) and is defined as follows:

For example, , which is 120. Use while
statements in each of the following:

A. Write a program that reads a nonnegative integer and
computes and prints its factorial.

B. Write a program that estimates the value of the
mathematical constant e by using the formula:

Prompt the user for the desired accuracy of e (i.e., the
number of terms in the summation).

C. Write a program that computes the value of by using
the formula

Prompt the user for the desired accuracy of e (i.e., the
number of terms in the summation).

26. 4.36 (Modified Account Class) Modify class Account (Exercise
3.9) to represent the balance data member as type double .
Also, display all double amounts with two digits to the right of
the decimal point.

Making a Difference
1. 4.37 (Enforcing Privacy with Cryptography) The explosive

growth of Internet communications and data storage on
Internet-connected computers has greatly increased privacy
concerns. The field of cryptography is concerned with coding
data to make it difficult (and hopefully—with the most advanced
schemes—impossible) for unauthorized users to read. In this
exercise you’ll investigate a simple scheme for encrypting and
decrypting data. A company that wants to send data over the
Internet has asked you to write a program that will encrypt the
data so that it may be transmitted more securely. All the data is
transmitted as four-digit integers. Your application should read
a four-digit integer entered by the user and encrypt it as follows:
Replace each digit with the result of adding 7 to the digit and
getting the remainder after dividing the new value by 10. Then
swap the first digit with the third, and swap the second digit with
the fourth. Then print the encrypted integer. Write a separate
application that inputs an encrypted four-digit integer and
decrypts it (by reversing the encryption scheme) to form the
original number. [Optional reading project: Research “public
key cryptography” in general and the PGP (Pretty Good
Privacy) specific public-key scheme. You may also want to
investigate the RSA scheme, which is widely used in industrial-
strength applications.]

2. 4.38 (World Population Growth) World population has grown
considerably over the centuries. Continued growth could
eventually challenge the limits of breathable air, drinkable
water, arable cropland and other precious resources. There is
evidence that growth has been slowing in recent years and that
world population could peak some time this century, then start
to decline.
For this exercise, research world population growth issues
online. Be sure to investigate various viewpoints. Get estimates
for the current world population and its growth rate (the
percentage by which it is likely to increase this year). Write a
program that calculates world population growth each year for
the next 75 years, using the simplifying assumption that the
current growth rate will stay constant. Print the results in a
table. The first column should display the year from year 1 to
year 75. The second column should display the anticipated
world population at the end of that year. The third column
should display the numerical increase in the world population
that would occur that year. Using your results, determine the
year in which the population would be double what it is today, if
this year’s growth rate were to persist.

5 Control Statements: Part 2;
Logical Operators

Objectives
In this chapter you’ll:

Learn the essentials of counter-controlled iteration.
Use the for and do… while iteration statements to execute
statements in a program repeatedly.
Understand multiple selection using the switch selection
statement.
Use the break and continue program-control statements to alter
the flow of control.
Use the logical operators to form compound conditions in control
statements.
Understand the representational errors associated with using
floating-point data types to hold monetary values.
Understand some of the challenges of processing monetary
amounts as we begin building a DollarAmount class, which uses
integers and integer arithmetic to represent and manipulate
monetary amounts.

Outline
1. 5.1 Introduction
2. 5.2 Essentials of Counter-Controlled Iteration
3. 5.3 for Iteration Statement
4. 5.4 Examples Using the for Statement
5. 5.5 Application: Summing Even Integers
6. 5.6 Application: Compound-Interest Calculations
7. 5.7 Case Study: Integer-Based Monetary Calculations with

Class DollarAmount
A. 5.7.1 Demonstrating Class DollarAmount
B. 5.7.2 Class DollarAmount

8. 5.8 do… while Iteration Statement
9. 5.9 switch Multiple-Selection Statement

10. 5.10 break and continue Statements
A. 5.10.1 break Statement
B. 5.10.2 continue Statement

11. 5.11 Logical Operators
A. 5.11.1 Logical AND (&&) Operator
B. 5.11.2 Logical OR (||) Operator
C. 5.11.3 Short-Circuit Evaluation
D. 5.11.4 Logical Negation (!) Operator

E. 5.11.5 Logical Operators Example

12. 5.12 Confusing the Equality (==) and Assignment (=)
Operators

13. 5.13 Structured-Programming Summary
14. 5.14 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

5.1 Introduction
This chapter continues our presentation of structured-programming
theory and principles by introducing all but one of C++’s remaining
control statements. We demonstrate C++’s for , do… while and
switch statements. Through examples using while and for , we
explore the essentials of counter-controlled iteration. We also use
compound-interest calculations to begin investigating the issues of
processing monetary amounts. First, we discuss the representational
errors associated with floating-point types. Then, we develop a new
DollarAmount class that uses very large integers to precisely represent
monetary amounts. As you’ll see, the class uses only precise integer
arithmetic, thus eliminating the kind of representational errors
associated with floating-point types. We use a switch statement to
count the number of A, B, C, D and F grade equivalents in a set of
numeric grades entered by the user. We introduce the break and
continue program-control statements. We discuss C++’s logical
operators, which enable you to combine simple conditions in control
statements. Finally, we summarize C++’s control statements and the
proven problem-solving techniques presented in this chapter and
Chapter 4.

5.2 Essentials of Counter-
Controlled Iteration
This section uses the while iteration statement introduced in Chapter
4 to formalize the elements of counter-controlled iteration:

1. a control variable (or loop counter)
2. the control variable’s initial value
3. the control variable’s increment that’s applied during each

iteration of the loop
4. the loop-continuation condition that determines if looping

should continue.

Consider the application of Fig. 5.1, which uses a loop to display the
numbers from 1 through 10.

Fig. 5.1 Counter-controlled iteration with the while iteration
statement.

In Fig. 5.1, the elements of counter-controlled iteration are defined in
lines 7, 9 and 11. Line 7 declares the control variable (counter) as an
unsigned int , reserves space for it in memory and sets its initial value

to 1 . Declarations that require initialization are executable statements.
In C++, it’s more precise to call a variable declaration that also
reserves memory a definition. Because definitions are declarations,
too, we’ll use the term “declaration” except when the distinction is
important.

Line 10 displays control variable counter ’s value once per iteration of
the loop. Line 11 increments the control variable by 1 for each iteration
of the loop. The while ’s loop-continuation condition (line 9) tests
whether the value of the control variable is less than or equal to 10
(the final value for which the condition is true). The program performs

the while ’s body even when the control variable is 10 . The loop
terminates when the control variable exceeds 10 (that is, when
counter becomes 11).

 Error-Prevention Tip 5.1

Floating-point values are approximate, so controlling counting loops
with floating-point variables can result in imprecise counter values and
inaccurate tests for termination. Control counting loops with integer
values.

5.3 for Iteration Statement
Section 5.2 presented the essentials of counter-controlled iteration.
The while statement can be used to implement any counter-controlled
loop. C++ also provides the for iteration statement, which specifies
the counter-controlled-iteration details in a single line of code. Figure
5.2 reimplements the application of Fig. 5.1 using for .

When the for statement (lines 9–11) begins executing, the control
variable counter is declared and initialized to 1 . (Recall from Section
5.2 that the first two elements of counter-controlled iteration are the
control variable and its initial value.) Next, the program checks the
loop-continuation condition, counter <= 10 , which is between the two

Fig. 5.2 Counter-controlled iteration with the for iteration

statement.

required semicolons. Because counter ’s initial value is 1 , the
condition is true. So, the body statement (line 10) displays control
variable counter ’s value (1). After executing the loop’s body, the
program increments counter in the expression ++counter , which
appears to the right of the second semicolon. Then the program
performs the loop-continuation test again to determine whether the
program should continue with the loop’s next iteration. At this point,
counter ’s value is 2 , so the condition is still true (the final value of 10
is not exceeded)—thus, the program executes the body statement
again. This process continues until the numbers 1–10 have been
displayed and the counter ’s value becomes 11 . At this point, the loop-
continuation test fails, iteration terminates and the program continues
executing at the first statement after the for (line 13).

Figure 5.2 uses (in line 9) the loop-continuation condition counter <=
10 . If you incorrectly specified counter < 10 as the condition, the loop
would iterate only nine times. This is a common logic error called an
off-by-one error.

 Common Programming Error
5.1

Using an incorrect relational operator or an incorrect final value of a
loop counter in the loop-continuation condition of an iteration
statement can cause an off-by-one error.

 Error-Prevention Tip 5.2

Using the final value and operator <= in a loop’s condition helps avoid

off-by-one errors. For a loop that outputs 1 to 10, the loop-continuation
condition should be counter <= 10 rather than counter < 10 (which

causes an off-by-one error) or counter < 11 (which is correct). Many

programmers prefer so-called zero-based counting, in which to count
10 times, counter would be initialized to zero and the loop-

continuation test would be counter < 10 .

 Error-Prevention Tip 5.3

Write loop conditions carefully to prevent loop counters from
overflowing.

A Closer Look at the for Statement’s
Header
Figure 5.3 takes a closer look at the for statement in Fig. 5.2. The
first line—including the keyword for and everything in parentheses
after for (line 9 in Fig. 5.2)—is sometimes called the for statement
header. The for header “does it all”—it specifies each item needed
for counter-controlled iteration with a control variable.

Fig. 5.3 for statement header components.

General Format of a for Statement
The general format of the for statement is

for (initialization; loopContinuationCondition; increment) {

 statement

}

where the initialization expression optionally names the loop’s control
variable and provides its initial value, loopContinuationCondition
determines whether the loop should continue executing and increment
modifies the control variable’s value, so that the loop-continuation
condition eventually becomes false. The two semicolons in the for
header are required. If the loop-continuation condition is initially false,
the program does not execute the for statement’s body. Instead,
execution proceeds with the statement following the for .

Representing a for Statement with an
Equivalent while Statement
The for statement often can be represented with an equivalent while
statement as follows:

initialization;

while (loopContinuationCondition) {

 statement

 increment;

}

In Section 5.10, we show a case in which a for statement cannot be
represented with an equivalent while statement. Typically, for
statements are used for counter-controlled iteration and while
statements for sentinel-controlled iteration. However, while and for
can each be used for either iteration type.

Scope of a for Statement’s Control
Variable
If the initialization expression in the for header declares the control
variable, it can be used only in that for statement—not beyond it. This
restricted use is known as the variable’s scope, which defines where
it can be used in a program. For example, a local variable can be used
only in the function that declares it and only from its declaration point
to the right brace which closes that block. Scope is discussed in detail
in Chapter 6, Functions and an Introduction to Recursion.

 Common Programming Error 5.2

When a for statement’s control variable is declared in the initialization

section of the for ’s header, using the control variable after the for ’s

body is a compilation error.

Expressions in a for Statement’s Header

Are Optional
All three expressions in a for header are optional. If the
loopContinuationCondition is omitted, C++ assumes that the loop-
continuation condition is always true, thus creating an infinite loop.
You might omit the initialization expression if the program initializes
the control variable before the loop. You might omit the increment
expression if the program calculates the increment in the loop’s body
or if no increment is needed. The increment expression in a for acts
as if it were a standalone statement at the end of the for ’s body.
Therefore, the increment expressions

counter = counter + 1

counter += 1

++counter

counter++

are equivalent in a for statement. Many programmers prefer
counter++ because it’s concise and because a for loop evaluates its
increment expression after its body executes, so the postfix increment
form seems more natural. In this case, the variable being incremented
does not appear in a larger expression, so preincrementing and
postincrementing have the same effect. We prefer preincrement.

 Common Programming Error 5.3

Placing a semicolon immediately to the right of the right parenthesis of
a for header makes that for ’s body an empty statement. This is

normally a logic error.

 Error-Prevention Tip 5.4

Infinite loops occur when the loop-continuation condition in an iteration
statement never becomes false. To prevent this situation in a counter-
controlled loop, ensure that the control variable is modified during
each iteration of the loop so that the loop-continuation condition will
eventually become false. In a sentinel-controlled loop, ensure that the
sentinel value is able to be input.

Placing Arithmetic Expressions in a for
Statement’s Header
The initialization, loop-continuation condition and increment portions of
a for statement can contain arithmetic expressions. For example,
assume that x = 2 and y = 10 . If x and y are not modified in the
body of the loop, the statement

for (unsigned int j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement

for (unsigned int j = 2; j <= 80; j += 5)

The increment of a for statement may also be negative, in which
case it’s a decrement, and the loop counts downward.

Using a for Statement’s Control Variable
in the Statement’s Body
Programs frequently display the control-variable value or use it in
calculations in the loop body, but this use is not required. The control
variable is commonly used to control iteration without being mentioned
in the body of the for .

 Error-Prevention Tip 5.5

Although the value of the control variable can be changed in the body
of a for loop, avoid doing so, because this practice can lead to subtle

errors. If a program must modify the control variable’s value in the
loop’s body, use while rather than for .

UML Activity Diagram for the for
Statement
The for statement’s UML activity diagram is similar to that of the
while statement (Fig. 4.8). Figure 5.4 shows the activity diagram of
the for statement in Fig. 5.2. The diagram makes it clear that
initialization occurs only once—before the loop-continuation test is
evaluated the first time—and that incrementing occurs each time
through the loop after the body statement executes.

Fig. 5.4 UML activity diagram for the for statement in Fig. 5.2.

5.4 Examples Using the for
Statement
The following examples show techniques for varying the control
variable in a for statement. In each case, we write only the
appropriate for header. Note the change in the relational operator for
the loops that decrement the control variable.

1. Vary the control variable from 1 to 100 in increments of 1 .

for (unsigned int i{1}; i <= 100; i++)

2. Vary the control variable from 100 down to 1 in decrements of
1 .

for (unsigned int i{100}; i >= 1; i--)

3. Vary the control variable from 7 to 77 in increments of 7 .

for (unsigned int i{7}; i <= 77; i += 7)

4. Vary the control variable from 20 down to 2 in decrements of
2 .

for (unsigned int i{20}; i >= 2; i -= 2)

5. Vary the control variable over the values 2 , 5 , 8 , 11 , 14 , 17 ,
20 .

for (unsigned int i{2}; i <= 20; i += 3)

6. Vary the control variable over the values 99 , 88 , 77 , 66 , 55 ,
44 , 33 , 22 , 11 , 0 . We use int rather than unsigned int here
because the condition does not become false until i ’s value is
-11 , so the control variable must be able to represent both
positive and negative values.

for (int i{99}; i >= 0; i -= 11)

 Common Programming Error
5.4

Using an incorrect relational operator in the loop-continuation
condition of a loop that counts downward (e.g., using i <= 1 instead

of i >= 1 in a loop counting down to 1) is usually a logic error.

 Common Programming Error
5.5

Do not use equality operators (!= or ==) in a loop-continuation

condition if the loop’s control variable increments or decrements by
more than 1. For example, consider the for statement header for

(unsigned int counter{1}; counter != 10; counter += 2) . The loop-

continuation test counter != 10 never becomes false (resulting in an

infinite loop) because counter increments by 2 after each iteration

(and never becomes 10).

5.5 Application: Summing Even
Integers
We now consider two sample applications that demonstrate simple
uses of for . The application in Fig. 5.5 uses a for statement to sum
the even integers from 2 to 20 and store the result in an unsigned int
variable called total . Each iteration of the loop (lines 10–12) adds
control variable number ’s value to variable total .

Fig. 5.5 Summing integers with the for statement.

The initialization and increment expressions can be comma-separated
lists that enable you to use multiple initialization expressions or
multiple increment expressions. For example, although this is

discouraged, you could merge the for statement’s body (line 11) into
the increment portion of the for header by using a comma as in

total += number, number += 2

The comma between the expressions total += number and number +=
2 is the comma operator, which guarantees that a list of expressions
evaluates from left to right. The comma operator has the lowest
precedence of all C++ operators. The value and type of a comma-
separated list of expressions is the value and type of the rightmost
expression. The comma operator is often used in for statements that
require multiple initialization expressions and/ or multiple increment
expressions.

 Good Programming Practice
5.1

Place only expressions involving the control variables in the
initialization and increment sections of a for statement.

 Good Programming Practice
5.2

For readability limit the size of control-statement headers to a single
line if possible.

5.6 Application: Compound-
Interest Calculations
Let’s use the for statement to compute compound interest. Consider
the following problem:

A person invests $1,000 in a savings account yielding 5% interest.
Assuming that all the interest is left on deposit, calculate and print
the amount of money in the account at the end of each year for 10
years. Use the following formula to determine the amounts:

where
p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 5.6) involves a loop that performs
the indicated calculation for each of the 10 years the money remains
on deposit. For this solution, we use double values for the monetary
calculations, then we discuss the problems with using floating-point
types to represent monetary amounts. In the next section, we’ll
develop a new DollarAmount class that uses very large integers to

precisely represent monetary amounts. As you’ll see, the class
performs monetary calculations using only integer arithmetic.

Fig. 5.6 Compound-interest calculations with for .

Lines 12–13 in main declare double variables principal and rate ,
and initialize principal to 1000.00 and rate to 0.05 . C++ treats
floating-point literals like 1000.00 and 0.05 as type double . Similarly,
C++ treats whole-number literals like 7 and -22 as type int . Lines
15–16 display the initial principal and the interest rate.

Formatting with Field Widths and
Justification
The output statement in line 10 before the for loop and the output
statement in line 27 in the for loop combine to print the values of the
variables year and amount with the formatting specified by the
parameterized stream manipulators setprecision and setw and the
nonparameterized stream manipulator fixed . The stream manipulator
setw(4) specifies that the next value output should appear in a field
width of 4—i.e., cout << prints the value with at least four character
positions. If the value to be output is less than four character positions
wide, the value is right justified in the field by default. If the value to
be output is more than four character positions wide, the field width is
extended with additional character positions to the right to
accommodate the entire value. To indicate that values should be
output left justified, simply output nonparameterized stream
manipulator left (found in header <iostream>). Right justification can
be restored by outputting nonparameterized stream manipulator
right .

The other formatting in the output statements indicates that variable
amount is printed as a fixed-point value with a decimal point (specified
in line 10 with the stream manipulator fixed) right justified in a field of
20 character positions (specified in line 27 with setw(20)) and two
digits of precision to the right of the decimal point (specified in line 10
with manipulator setprecision(2)). We applied the stream
manipulators fixed and setprecision to the output stream cout before
the for loop because these format settings remain in effect until
they’re changed—such settings are called sticky settings and they
do not need to be applied during each iteration of the loop. However,
the field width specified with setw applies only to the next value
output. We discuss C++’s powerful input/ output formatting capabilities
in Chapter 13, Stream Input/Output: A Deeper Look.

Performing the Interest Calculations with
Standard Library Function pow
The for statement (lines 22–28) executes its body 10 times, varying
the unsigned int control variable year from 1 to 10 in increments of 1.
This loop terminates when year becomes 11. Variable year
represents n in the problem statement.

C++ does not include an exponentiation operator, so we use the
standard library function pow (line 24) from the header <cmath> . The
call pow(x, y) calculates the value of x raised to the yth power. The
function receives two double arguments and returns a double value.

Line 24 performs the calculation , where a is amount ,
p is principal , r is rate and n is year .

The body of the for statement contains the calculation 1.0 + rate as
pow ’s first argument. This calculation produces the same result each
time through the loop, so repeating it in every iteration of the loop is
wasteful.

 Performance Tip 5.1

In loops, avoid calculations for which the result never changes—such
calculations should typically be placed before the loop. Many of
today’s sophisticated optimizing compilers will place such calculations
before loops in the compiled code.

Floating-Point Number Precision and
Memory Requirements
Variables of type float represent single-precision floating-point
numbers and have approximately seven significant digits on most of
today’s systems. Variables of type double represent double-
precision floating-point numbers. These require twice as much
memory as float variables and provide approximately 15 significant
digits on most of today’s systems—approximately double the precision
of float variables. Most programmers represent floating-point

numbers with type double . In fact, C++ treats all floating-point
numbers you type in a program’s source code (such as 7.33 and
0.0975) as double values by default. Such values in the source code
are known as floating-point literals. See Appendix C for the
fundamental types’ value ranges.

Floating-Point Numbers Are
Approximations
In conventional arithmetic, floating-point numbers often arise as a
result of division—when we divide 10 by 3, the result is 3.3333333…,
with the sequence of 3s repeating infinitely. The computer allocates
only a fixed amount of space to hold such a value, so clearly the
stored floating-point value can be only an approximation. As you can
see, double suffers from what we call representational error.

 Common Programming Error 5.6

Using floating-point numbers in a manner that assumes they’re
represented exactly (e.g., using them in comparisons for equality) can
lead to incorrect results. Floating-point numbers are represented only
approximately.

Floating-point numbers have numerous applications, especially for
measured values. For example, when we speak of a “normal” body
temperature of 98.6 degrees Fahrenheit, we do not need to be precise

to a large number of digits. When we read the temperature on a
thermometer as 98.6, it may actually be 98.5999473210643. Calling
this number simply 98.6 is fine for most applications involving body
temperatures. Due to the imprecise nature of floating-point numbers,
type double is preferred over type float , because double variables
can represent floating-point numbers more precisely. For this reason,
we use type double throughout the book.

A Warning about Displaying Rounded
Values
We declared variables amount , principal and rate to be of type
double in this example. We’re dealing with fractional parts of dollars
and thus need a type that allows decimal points in its values.
Unfortunately, floating-point numbers can cause trouble. Here’s a
simple explanation of what can go wrong when using double (or
float) to represent dollar amounts (assuming that dollar amounts are
displayed with two digits to the right of the decimal point): Two
calculated double dollar amounts stored in the machine could be
14.234 (which would normally be rounded to 14.23 for display
purposes) and 18.673 (which would normally be rounded to 18.67 for
display purposes). When these amounts are added, they produce the
internal sum 32.907, which would normally be rounded to 32.91 for
display purposes. Thus, your output could appear as

but a person adding the individual numbers as displayed would expect
the sum to be 32.90. You’ve been warned!

 Error-Prevention Tip 5.6

Do not use variables of type double (or float) to perform precise

monetary calculations. The imprecision of floating-point numbers can
lead to errors.

Even Common Dollar Amounts Can Have
Representational Error in Floating Point
Even simple dollar amounts, such as those you might see on a
grocery or restaurant bill, can have representational errors when
they’re stored as doubles. To see this, we created a simple program
with the declaration

double d = 123.02;

then displayed variable d ’s value with many digits of precision to the
right of the decimal point—we ask you to do this in Exercise 5.36. The
resulting output showed 123.02 as 123.0199999…, which is another
example of a representational error. Though some dollar amounts can
be represented precisely as double , many cannot. In the next section,
we’ll build a class that represents and processes dollar amounts using
only integer arithmetic. This eliminates the representational errors
associated with double values, because integers are represented
exactly.

5.7 Case Study: Integer-Based
Monetary Calculations with Class
DollarAmount

In Chapter 3, we developed an Account class. A typical dollar Account
balance—such as $437.19—has a whole number of dollars (e.g., 437)
to the left of the decimal point and a whole number of cents (e.g., 19)
to the right. For simplicity, class Account represented its balance with
type int , which of course limited balances to whole dollar amounts.

Representing Dollar Amounts as Floating-
Point Numbers
Rather than int , we need a type that allows us to represent a dollar
amount as a number with a decimal point. In Fig. 5.6’s compound-
interest example, we processed dollar amounts as type double . This
introduced representational error and rounding issues:

1. There were representational errors, because we stored precise
decimal dollar amounts and interest rates as doubles. As you’ll
see in this section, you can avoid these by performing all

calculations using integer arithmetic—even interest
calculations.

2. There was rounding of the floating-point values. We cannot
avoid rounding on interest calculations, because they result in
fractional pennies when working with dollar amounts. Those
fractional pennies must be rounded to the hundredths place.
With integer arithmetic we can exercise precise control over
rounding without suffering the representational errors
associated with floating-point calculations.

In addition, there are many points in monetary calculations in which
rounding may occur. For example, on a restaurant bill, the tax could
be calculated on each individual item, resulting in many separate
rounding operations, or it could be calculated only once on the total bill
amount—these alternate approaches could yield different results.

Performing monetary calculations with double s can cause problems
for organizations that require precise dollar amounts—such as banks,
insurances companies and businesses in general. A bank, for
example, must keep precise track of all its customers’ balances.
Imagine the problems that a large financial institution with millions of
accounts would have if its customer balances didn’t “add up,”
preventing the organization from tying out its books. For this reason,
it’s crucial to perform monetary calculations using integer arithmetic
rather than floating-point arithmetic. As you’ll see in our next example,
even interest calculations can be done with integer arithmetic.

Integer-Based Monetary Calculations
Throughout this book, we focus on crafting valuable classes. In this
section, we begin developing a DollarAmount class for precise control
over monetary amounts. The class represents dollar amounts in whole
numbers of pennies—for example, $1,000 is stored as 100000. A key
benefit of this approach is that integer values are represented exactly
in memory.

First, we’ll assume that class DollarAmount already exists, with
capabilities including

a constructor to initialize a DollarAmount object to a whole number
of pennies
an add member function that adds a DollarAmount object into the
DollarAmount object on which this function is called
a subtract member function that subtracts a DollarAmount object
from the DollarAmount object on which this function is called
an addInterest member function that calculates annual interest on
the amount in the DollarAmount object on which the function is
called and adds the interest to the amount in that object, and
a toString member function that returns a DollarAmount ’s string
representation.

The class performs all calculations using integer arithmetic—no
floating-point calculations are used, so DollarAmounts always
represent their values precisely. We’ll use these capabilities in Fig. 5.7

to demonstrate adding and subtracting DollarAmounts, and to
reimplement Fig. 5.6’s compound-interest example using
DollarAmounts. Then we’ll present the class and walk through the

code. As you’ll see, the interest calculations still require rounding, but
class DollarAmount will control precisely how that rounding occurs
using integer arithmetic.

This version of class DollarAmount will feel a bit clunky, requiring you
to call member functions such as add , subtract , addInterest and
toString . In Chapter 10, Operator Overloading, we’ll do better. There,
you’ll see how to manipulate your DollarAmount objects conveniently
with operators like + , - , >> and << that you’ve used with fundamental
types. You’ll be able to make other refinements to the class as you
work through the later chapters. Crafting a valuable class like
DollarAmount—which helps you solve a practical, real-world problem—
is one of the key “light-bulb moments” in learning C++. We’ll point out
others in the forthcoming chapters.

Representing Monetary Amounts Is a
Complex Issue
Dealing with monetary amounts is more complex than what we show
here. There are many currencies worldwide, with different conventions
for thousands separators, decimal separators, currency symbols, and
more. In addition, rounding rules can vary by currency, government,
company, etc. Some programming languages have types that make it

easier to work with monetary values. Various C++ libraries have
classes for this purpose, but they tend to be complex and beyond our
scope. Boost’s C++ multiprecision library is one such example.

5.7.1 Demonstrating Class
DollarAmount

Figure 5.7 adds DollarAmounts, subtracts DollarAmounts and
calculates compound interest with DollarAmounts. Lines 10–11 create
DollarAmount objects d1 and d2 and initializes them to 12345 pennies
(i.e., $123.45) and 1576 pennies (i.e., $15.76), respectively. Lines 13–
14 display the DollarAmount objects’ values by calling each object’s
toString member function to get a string representation of the object.
Next, line 15 calls d1 ’s add member function, passing d2 as an
argument. This statement adds both objects’ values and stores the
result in the object d1 . Finally, line 16 displays d1 ’s modified value.
Lines 18–21 and 23–26 demonstrate DollarAmount ’s subtract member
function. Line 20 subtracts d2 from d1 , which modifies d1 again. Line
25 subtracts d1 from d2 to demonstrate a negative DollarAmount as
the result of a calculation. The first three lines of the output show the
results of these addition and subtraction operations.

Fig. 5.7 Compound-interest calculations with class DollarAmount
and integers.

Calculating Compound Interest with
DollarAmount

Class DollarAmount ’s addInterest member function calculates an
interest amount and adds it to the DollarAmount object on which the
function is called. The function receives two arguments:

an integer representation of the interest rate and
an integer divisor (a power of 10)

To determine the interest amount, addInterest multiplies the
DollarAmount object’s number of pennies by the integer representation
of the interest rate, then divides the result by the integer divisor. For
example:

To calculate 5% interest, enter the integers 5 and 100. In integer
arithmetic, multiplying a DollarAmount by 5, then dividing the result
by 100 calculates 5% of the DollarAmount ’s value.
To calculate 5.25% interest, enter the integers 525 and 10000. In
integer arithmetic, multiplying a DollarAmount by 525, then dividing
the result by 10000 calculates 5.25% of the DollarAmount ’s value.

Lines 28–35 prompt for and input the rate and divisor . Line 37
creates the DollarAmount object balance and initializes it to 100000
pennies (i.e., $1,000)—the initial principal, which we display at line 38.
Lines 44–50 perform the interest calculations. Line 46 calls the
addInterest member function to perform the interest calculation for the
current year. Then, line 49 displays the current year and a string
representation of the balance . You can confirm that you entered the
interest rate properly by looking at the new balance for year 1 in the
output. For example, when calculating 5% interest, the first year’s end-
of year balance will be 1050.00, and when calculating 5.25% interest,
the first year’s balance will be 1052.50.

5.7.2 Class DollarAmount

Figure 5.8 defines class DollarAmount with data member amount (line
41) representing an integer number of pennies.

Fig. 5.8 DollarAmount class stores dollar amounts as whole
numbers of pennies.

C++11 Type int64_t
11

We’d like data member amount to be able to store from small numbers
of cents to large dollar values so that our DollarAmounts can be used
for all likely monetary applications. On most computers, an int is a
value from –2,147,483,647 to 2,147,483,647. For amounts stored in
pennies, this would limit a DollarAmount to approximately ±$21 million
—way too small for many monetary applications, so we need a much
larger range. C++11’s long long type supports values in the range –
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 as a
minimum. This would enable a DollarAmount ’s value to be ±$92
quadrillion, likely more than enough for every known monetary
application.

11

The range of long long (and C++’s other integer types) can vary
across platforms. For portability, we’d prefer to use a type that’s
identical on all platforms. To help with this, C++11 introduced new
integer-type names so you can choose the appropriate range of
values for your program. For class DollarAmount , we chose int64_t ,
which supports the exact range –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807. For a list of C++11’s other new integer-
type names, see the header <cstdint> .

11

DollarAmount Constructor
For simplicity, class DollarAmount ’s constructor (Fig. 5.8, line 9)
receives a whole number of pennies and uses this value to initialize
the data member amount . In Exercise 5.30, you’ll define a
DollarAmount constructor that receives two parameters representing
the whole number of dollars and whole number of cents, then uses
those values to calculate and store the appropriate number of
pennies. (Exercises 5.30–5.34 are related to enhancing and using
class DollarAmount .)

DollarAmount Member Functions add
and subtract
The add member function (line 12–15) receives another DollarAmount
object as an argument and adds its value to the DollarAmount object
on which add is called. Line 14 uses the += operator to add
right.amount (that is, the amount in the argument object) to the current
object’s amount , thus modifying the object. The expression
right.amount accesses the private amount data member in the object
right . This is a special relationship among objects of the same class
—a member function of a class can access both the private data of
the object on which that function is called and the private data of
other objects of the same class that are passed to the function. The
subtract member function (lines 18–21) works similarly to add, but
uses the -= operator to subtract right.amount from the current object’s
amount .

DollarAmount Member Function
addInterest

The addInterest member function (line 25–32) performs the interest
calculation using its rate and divisor parameters, then adds the
interest to the amount . Interest calculations normally yield fractional
results that require rounding. We perform only integer arithmetic
calculations with integer results here, so we completely avoid the
representational error of double , but as you’ll see, rounding is still
required.

For this example, we use half-up rounding. First, consider rounding
the floating-point values 0.75 and 0.25 to the nearest integer. Using
half-up rounding, values .5 and higher should round up and everything
else should round down, so 0.75 rounds up to 1 and 0.25 rounds
down to 0.

Now, let’s consider rounding the results of an integer interest
calculation. Assume that we’re calculating 5% interest on $10.75. In
integer arithmetic, we treat 10.75 as 1075, and to calculate 5%
interest, we multiply by 5, then divide by 100. In the interest
calculation, we first multiply 1075 by 5, yielding the integer value 5375,
which represents 53 whole pennies and 75 hundredths of a penny. In
this case, the 75 hundredths of a penny should round up to a whole
penny, resulting in 54 whole pennies. More generally:

50 to 99 hundredths should round up to the next higher whole
penny
1 to 49 hundredths should round down to the next lower whole
penny.

If we divide 5375 by 100 to complete the interest calculation, the result
is 53, which is incorrect—remember that integer arithmetic truncates
the fractional part of the calculation. To fix this, we must add an
amount to 5375 so that dividing by 100 yields 54 whole pennies.
Adding 50 enables us to ensure that 50 to 99 hundredths round up.
For example:

5350 + 50 yields 5400—dividing that by 100 yields 54
5375 + 50 yields 5425—dividing that by 100 yields 54
5399 + 50 yields 5449—dividing that by 100 yields 54

Similarly:

5301 + 50 yields 5351—dividing that by 100 yields 53
5325 + 50 yields 5375—dividing that by 100 yields 53
5349 + 50 yields 5399—dividing that by 100 yields 53

Lines 27–29 in addInterest initialize the DollarAmount interest with
the result of the following calculation, which performs the half-up
rounding described above:

(amount * rate + divisor / 2) / divisor

Here, rather than adding 50 to the result of amount * rate , we add
divisor / 2 . Adding 50 is correct when the divisor is 100, but for
other divisors, this would not round to the correct digit position.
Consider 5.25% interest on $10.75. In integer arithmetic, we treat
10.75 as 1075, and to calculate 5.25% interest, we multiply by 525,
then divide by 10000. We first multiply 1075 by 525, yielding the
integer value 564375, which represents 56 whole pennies and 4375
ten-thousandths of a penny. This should round down to 56 whole
pennies. To round correctly, in this case, we need to add 5000—that
is, half of the divisor 10000.

After the interest is calculated, line 31 calls member function add ,
passing the new DollarAmount object interest as an argument—this
updates the amount in the DollarAmount object on which addInterest
was called. Note that any member function of a class can call any
other directly to perform operations on the same object of the class.

Member Function toString
The toString member function (line 35–39) returns a string
representation of the DollarAmount object’s dollar amount. First, lines
36 and 37 use the division and remainder operators to get the
amount ’s dollars and cents portions, respectively. We pass each
integer to the C++ Standard Library function to_string (from header
<string>), which converts a numeric value to a string object. Line 37
also uses the C++ Standard Library function abs (from header
<cmath>) to get the absolute value of the cents. This ensures that the
cents are always represented as a positive number so that a minus
sign does not appear to the right of the decimal point.

Line 38 produces the string to return by “adding” string literals and
string objects using the + operator—this is known as string
concatenation. The resulting string contains the number of dollars, a
decimal point and the number of cents. To ensure that there are
always two digits to the right of the decimal point, we call string
member function size on the string cents—this function returns the
number of characters in the string cents . If the result is 1 , we
concatenate a leading 0 before the number of cents.

Banker’s Rounding
Half-up rounding is a biased technique—fractional amounts of .1, .2,
.3 and .4 round down, and .5, .6, .7, .8 and .9 round up. In this
technique, four values round down and five round up. Because more
values round up than down, this can lead to discrepancies in monetary
calculations. Banker’s rounding fixes this problem by rounding .5 to
the nearest even integer—e.g., 0.5 rounds to 0, 1.5 and 2.5 round to
2, 3.5 and 4.5 round to 4, etc. In Exercise 5.32, you’ll modify
addInterest to use banker’s rounding, then retest the compound-
interest program.

Even int64_t Is Limited
Though class DollarAmount can represent extremely large monetary
values, the range of values supported by int64_t is still limited.
Through C++’s class mechanism, you’ll see that you can define a
class that you might call BigInteger or HugeInteger (as you’ll do in
Exercise 10.9), which could store and manipulate integers of any
size. By doing so, you will have truly crafted another valuable class.

A Note About Arithmetic Operators and
Modifying Operands
Lines 14 and 20 modify the DollarAmount object when performing
arithmetic calculations. This is different from how the arithmetic
operators work with fundamental types. For example, the expression
value1 + value2 adds two values and produces a temporary result, but
the + operator does not modify its left or right operands. In Chapter
10, we’ll demonstrate C++’s operator overloading capabilities that
enable you to define operators for use with your own types.

5.8 do… while Iteration
Statement
The do… while iteration statement is similar to the while statement.
In the while , the program tests the loop-continuation condition at the
beginning of the loop, before executing the loop’s body; if the
condition is false, the body never executes. The do… while statement
tests the loop-continuation condition after executing the loop’s body;
therefore, the body always executes at least once. When a do… while

statement terminates, execution continues with the next statement in
sequence. Figure 5.9 uses a do… while to output the numbers 1–10.

Fig. 5.9 do… while iteration statement.

Line 7 declares and initializes control variable counter . Upon entering
the do… while statement, line 10 outputs counter ’s value and line 11
increments counter . Then the program evaluates the loop-
continuation test at the bottom of the loop (line 12). If the condition is
true, the loop continues at the first body statement (line 10). If the
condition is false, the loop terminates and the program continues at
the next statement after the loop.

UML Activity Diagram for the do…while

Iteration Statement
Figure 5.10 contains the UML activity diagram for the do… while

statement. This diagram makes it clear that the loop-continuation
condition is not evaluated until after the loop performs the action state
at least once. Compare this activity diagram with that of the while
statement (Fig. 4.8).

Fig. 5.10 do… while iteration statement UML activity diagram.

5.9 switch Multiple-Selection
Statement
C++ provides the switch multiple-selection statement to choose
among many different actions based on the possible values of a
variable or expression. Each action is associated with the value of an
integral constant expression (i.e., any combination of character and
integer constants that evaluates to a constant integer value).

Using a switch Statement to Count A, B,
C, D and F Grades
Figure 5.11 calculates the class average of a set of numeric grades
entered by the user, and uses a switch statement to determine
whether each grade is the equivalent of an A, B, C, D or F and to
increment the appropriate grade counter. The program also displays a
summary of the number of students who received each grade.

Fig. 5.11 Using a switch statement to count letter grades.

The main function (Fig. 5.11) declares local variables total (line 8)
and gradeCounter (line 9) to keep track of the sum of the grades
entered by the user and the number of grades entered, respectively.
Lines 10–14 declare and initialize to 0 counter variables for each
grade category. The main function has two key parts. Lines 24–51
read an arbitrary number of integer grades from the user using
sentinel-controlled iteration, update variables total and gradeCounter ,
and increment an appropriate letter-grade counter for each grade
entered. Lines 54–73 output a report containing the total of all grades
entered, the average grade and the number of students who received
each letter grade.

Reading Grades from the User
Lines 16–19 prompt the user to enter integer grades or type the end-
of-file indicator to terminate the input. The end-of-file indicator is a
system-dependent keystroke combination used to indicate that there’s
no more data to input. In Chapter 14, File Processing, you’ll see how
the end-of-file indicator is used when a program reads its input from a
file.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the
sequence

<Ctrl> d

on a line by itself. This notation means to simultaneously press both
the Ctrl key and the d key. On Windows systems, end-of-file can be
entered by typing

<Ctrl> z

[Note: On some systems, you must press Enter after typing the end-
of-file key sequence. Also, Windows typically displays the characters
^Z on the screen when the end-of-file indicator is typed, as shown in
the output of Fig. 5.11.]

 Portability Tip 5.1

The keystroke combinations for entering end-of-file are system
dependent.

The while statement (lines 24–51) obtains the user input. Line 24

while (cin >> grade) {

performs the input in the while statement’s condition. In this case, the
loop-continuation condition evaluates to true if cin successfully reads
an int value. If the user enters the end-of-file indicator, the condition
evaluates to false.

If the condition evaluates to true, line 25 adds grade to total and line
26 increments gradeCounter . These variables are used to compute the
average of the grades. Next, lines 29–50 use a switch statement to
increment the appropriate letter-grade counter based on the numeric
grade entered.

Processing the Grades
The switch statement (lines 29–50) determines which counter to
increment. We assume that the user enters a valid grade in the range

0–100. A grade in the range 90–100 represents A, 80–89 represents
B, 70–79 represents C, 60–69 represents D and 0–59 represents F.
The switch statement consists of a block that contains a sequence of
case labels and an optional default case. These are used in this
example to determine which counter to increment based on the grade.

When the flow of control reaches the switch , the program evaluates
the expression in the parentheses (grade / 10) following keyword
switch . This is the switch ’s controlling expression. The program
compares this expression’s value with each case label. The
expression must have a signed or unsigned integral type— bool , char ,
char16_t , char32_t , wchar_t , int , long or long long . The expression
can also use the C++11 signer or unsigned integral types, such as
int64_t and uint64_t—see the <cstdint> header for a complete list of
these type names.

11

The controlling expression in line 29 performs integer division, which
truncates the fractional part of the result. When we divide a value from
0 to 100 by 10, the result is always a value from 0 to 10. We use
several of these values in our case labels. If the user enters the
integer 85 , the controlling expression evaluates to 8. The switch
compares 8 with each case label. If a match occurs (case 8: at line
35), that case ’s statements execute. For 8 , line 36 increments bCount ,
because a grade in the 80s is a B. The break statement (line 37)

causes program control to proceed with the first statement after the
switch—in this program, we reach the end of the while loop, so
control returns to the loop-continuation condition in line 24 to
determine whether the loop should continue executing.

The cases in our switch explicitly test for the values 10 , 9 , 8 , 7 and
6 . Note the cases at lines 30–31 that test for the values 9 and 10
(both of which represent the grade A). Listing cases consecutively in
this manner with no statements between them enables the cases to
perform the same set of statements—when the controlling expression
evaluates to 9 or 10 , the statements in lines 32–33 will execute. The
switch statement does not provide a mechanism for testing ranges of
values, so every value you need to test must be listed in a separate
case label. Each case can have multiple statements. The switch
statement differs from other control statements in that it does not
require braces around multiple statements in a case .

case without a break Statement
Without break statements, each time a match occurs in the switch ,
the statements for that case and subsequent cases execute until a
break statement or the end of the switch is encountered. This is often
referred to as “falling through” to the statements in subsequent cases.
(This feature is perfect for writing a concise program that displays the
iterative song “The Twelve Days of Christmas” in Exercise 5.28.)

 Common Programming Error 5.7

Forgetting a break statement when one is needed in a switch is a

logic error.

The default Case
If no match occurs between the controlling expression’s value and a
case label, the default case (lines 47–49) executes. We use the
default case in this example to process all controlling-expression
values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program
control simply continues with the first statement after the switch .

 Error-Prevention Tip 5.7

In a switch , ensure that you test for all possible values of the

controlling expression.

Displaying the Grade Report
Lines 54–73 output a report based on the grades entered (as shown in
the input/output window in Fig. 5.11). Line 60 determines whether the
user entered at least one grade—this helps us avoid dividing by zero.
If so, line 62 calculates the average of the grades. Lines 65–69 then

output the total of all the grades, the class average and the number of
students who received each letter grade. If no grades were entered,
line 72 outputs an appropriate message. The output in Fig. 5.11
shows a sample grade report based on 10 grades.

switch Statement UML Activity Diagram
Figure 5.12 shows the UML activity diagram for the general switch
statement. Most switch statements use a break in each case to
terminate the switch statement after processing the case . Figure 5.12
emphasizes this by including break statements in the activity diagram.
The diagram makes it clear that the break statement at the end of a
case causes control to exit the switch statement immediately.

Fig. 5.12 switch multiple-selection statement UML activity
diagram with break statements.

The break statement is not required for the switch ’s last case (or the
optional default case, when it appears last), because execution
continues with the next statement after the switch .

 Error-Prevention Tip 5.8

Provide a default case in switch statements. This focuses you on the

need to process exceptional conditions.

 Good Programming Practice 5.3

Although each case and the default case in a switch can occur in

any order, place the default case last. When the default case is

listed last, the break for that case is not required.

Notes on the Expression in Each case of
a switch
When using the switch statement, remember that each case must
contain a constant integral expression—that is, any combination of
integer constants that evaluates to a constant integer value (e.g., –7, 0
or 221). An integer constant is simply an integer value. In addition, you
can use character constants—specific characters in single quotes,
such as 'A' , '7' or '$'—which represent the integer values of
characters and enum constants (introduced in Section 6.8).
(Appendix B shows the integer values of the characters in the ASCII
character set, which is a subset of the Unicode character set.)

The expression in each case also can be a constant variable—a
variable containing a value which does not change for the entire
program. Such a variable is declared with keyword const (discussed
in Chapter 6).

®

In Chapter 12, Object-Oriented Programming: Polymorphism, we
present a more elegant way to implement switch logic—we use a
technique called polymorphism to create programs that are often
clearer, easier to maintain and easier to extend than programs using
switch logic.

5.10 break and continue
Statements
In addition to selection and iteration statements, C++ provides
statements break (which we discussed in the context of the switch
statement) and continue to alter the flow of control. The preceding
section showed how break can be used to terminate a switch
statement’s execution. This section discusses how to use break in
iteration statements.

5.10.1 break Statement

The break statement, when executed in a while , for , do… while or
switch , causes immediate exit from that statement—execution
continues with the first statement after the control statement. Common
uses of the break statement are to escape early from a loop or to skip
the remainder of a switch (as in Fig. 5.11). Figure 5.13 demonstrates
a break statement exiting a for .

When the if statement nested at lines 10–12 in the for statement
(lines 9–15) detects that count is 5 , the break statement at line 11
executes. This terminates the for statement, and the program

proceeds to line 17 (immediately after the for statement), which

displays a message indicating the value of the control variable when
the loop terminated. The loop fully executes its body only four times
instead of 10.

Fig. 5.13 break statement exiting a for statement.

5.10.2 continue Statement

The continue statement, when executed in a while , for or
do… while , skips the remaining statements in the loop body and
proceeds with the next iteration of the loop. In while and do… while

statements, the program evaluates the loop-continuation test

immediately after the continue statement executes. In a for

statement, the increment expression executes, then the program
evaluates the loop-continuation test.

Fig. 5.14 continue statement terminating an iteration of a for
statement.

Figure 5.14 uses continue (line 9) to skip the statement at line 12
when the nested if determines that count ’s value is 5 . When the
continue statement executes, program control continues with the
increment of the control variable in the for statement (line 7).

In Section 5.3, we stated that while could be used in most cases in
place of for . This is not true when the increment expression in the
while follows a continue statement. In this case, the increment does
not execute before the program evaluates the iteration-continuation

condition, so the while does not execute in the same manner as the
for .

 Software Engineering Observation
5.1
Some programmers feel that break and continue violate structured

programming. Since the same effects are achievable with structured-
programming techniques, these programmers do not use break or

continue .

 Software Engineering Observation
5.2
There’s a tension between achieving quality software engineering and
achieving the best-performing software. Sometimes one of these
goals is achieved at the expense of the other. For all but the most
performance-intensive situations, apply the following rule of thumb:
First, make your code simple and correct; then make it fast and small,
but only if necessary.

5.11 Logical Operators
The if , if… else , while , do… while and for statements each
require a condition to determine how to continue a program’s flow of
control. So far, we’ve studied only simple conditions, such as count <=
10 , number != sentinelValue and total > 1000 . Simple conditions are
expressed in terms of the relational operators > , < , >= and <= and
the equality operators == and != , and each expression tests only one
condition. To test multiple conditions in the process of making a
decision, we performed these tests in separate statements or in
nested if or if… else statements. Sometimes control statements
require more complex conditions to determine a program’s flow of
control.

C++’s logical operators enable you to form more complex conditions
by combining simple conditions. The logical operators are && (logical
AND), || (logical OR) and ! (logical negation).

5.11.1 Logical AND (&&) Operator

Suppose we wish to ensure at some point in a program that two
conditions are both true before we choose a certain path of execution.
In this case, we can use the && (logical AND) operator, as follows:

if (gender == FEMALE && age >= 65) {

 ++seniorFemales;

}

This if statement contains two simple conditions. The condition
gender == FEMALE compares variable gender to the constant FEMALE to
determine whether a person is female. The condition age >= 65 might
be evaluated to determine whether a person is a senior citizen. The
if statement considers the combined condition

gender == FEMALE && age >= 65

which is true if and only if both simple conditions are true. In this case,
the if statement’s body increments seniorFemales by 1 . If either or

both of the simple conditions are false, the program skips the
increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added,
as in

(gender == FEMALE) && (age >= 65)

The table in Fig. 5.15 summarizes the && operator. The table shows
all four possible combinations of the bool values false and true
values for expression1 and expression2. Such tables are called truth
tables. C++ evaluates to zero (false) or nonzero (true) all expressions
that include relational operators, equality operators or logical
operators.

Fig. 5.15 && (logical AND) operator truth table.

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

5.11.2 Logical OR (||) Operator

Now suppose we wish to ensure that either or both of two conditions
are true before we choose a certain path of execution. In this case, we
use the || (logical OR) operator, as in the following program
segment:

if ((semesterAverage >= 90) || (finalExam >= 90)) {

 cout << "Student grade is A\n";

}

This statement also contains two simple conditions. The condition
semesterAverage >= 90 evaluates to determine whether the student
deserves an A in the course because of a solid performance
throughout the semester. The condition finalExam >= 90 evaluates to
determine whether the student deserves an A in the course because
of an outstanding performance on the final exam. The if statement
then considers the combined condition

(semesterAverage >= 90) || (finalExam >= 90)

and awards the student an A if either or both of the simple conditions
are true. The only time the message "Student grade is A" is not

printed is when both of the simple conditions are false. Figure 5.16 is
a truth table for the operator logical OR (||). Operator && has a higher
precedence than operator || . Both operators associate from left to
right.

Fig. 5.16 || (logical OR) operator truth table.

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

5.11.3 Short-Circuit Evaluation

The parts of an expression containing && or || operators are
evaluated only until it’s known whether the condition is true or false.
Thus, evaluation of the expression

(gender == FEMALE) && (age >= 65)

stops immediately if gender is not equal to FEMALE (i.e., the entire
expression is false) and continues if gender is equal to FEMALE (i.e., the
entire expression could still be true if the condition age >= 65 is true).
This feature of logical AND and logical OR expressions is called
short-circuit evaluation.

 Common Programming Error 5.8
In expressions using operator && , a condition—we’ll call this the

dependent condition—may require another condition to be true for the
evaluation of the dependent condition to be meaningful. In this case,
the dependent condition should be placed after the && operator to

prevent errors. Consider the expression (i != 0) && (10 / i == 2) .

The dependent condition (10 / i== 2) must appear after the &&

operator to prevent the possibility of division by zero.

5.11.4 Logical Negation (!)
Operator

The ! (logical negation, also called logical NOT or logical
complement) operator “reverses” the meaning of a condition. Unlike
the logical operators && and || , which are binary operators that
combine two conditions, the logical negation operator is a unary
operator that has only one condition as an operand. To execute code
only when a condition is false, place the logical negation operator
before the original condition, as in the program segment

if (!(grade == sentinelValue)) {

 cout << "The next grade is " << grade << "\n";

}

which executes the body statement only if grade is not equal to
sentinelValue . The parentheses around the condition grade ==
sentinelValue are needed because the logical negation operator has a
higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the
condition differently with an appropriate relational or equality operator.

For example, the previous statement may also be written as follows:

if (grade != sentinelValue) {

 cout << "The next grade is " << grade << "\n";

}

This flexibility can help you express a condition in a more convenient
manner. Figure 5.17 is a truth table for the logical negation operator.

Fig. 5.17 ! (logical negation) operator truth table.

expression ! expression

false true

true false

5.11.5 Logical Operators Example

Figure 5.18 uses logical operators to produce the truth tables
discussed in this section. The output shows each expression that’s
evaluated and its bool result. By default, bool values true and false
are displayed by cout and the stream insertion operator as 1 and 0 ,
respectively. We use stream manipulator boolalpha (a sticky

manipulator) in line 8 to specify that the value of each bool expression
should be displayed as either the word “true” or the word “false.” Lines
8–12 produce the truth table for && . Lines 15–19 produce the truth
table for || . Lines 22–24 produce the truth table for ! .

Fig. 5.18 Logical operators.

Precedence and Associativity of the
Operators Presented So Far

Figure 5.19 shows the precedence and associativity of the C++
operators introduced so far. The operators are shown from top to
bottom in decreasing order of precedence.

Fig. 5.19 Operator precedence and associativity.

Operators Associativity Type

:: () left to right [See caution

in Fig. 2.10 regarding

grouping parentheses.]

primary

++ -- static_cast< type >

()

left to right postfix

++ -- + - ! right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += - *= /= %= right to left assignment

=

, left to right comma

5.12 Confusing the Equality (==)
and Assignment (=) Operators
There’s one error that C++ programmers, no matter how experienced,
tend to make so frequently that we feel it requires a separate section.
That error is accidentally swapping the operators == (equality) and =
(assignment). What makes this so damaging is that it ordinarily does
not cause syntax errors—statements with these errors tend to compile
correctly and the programs run to completion, often generating
incorrect results through runtime logic errors. Some compilers issue a
warning when = is used in a context where == is expected.

Two aspects of C++ contribute to these problems. One is that any
expression that produces a value can be used in the decision portion
of any control statement. If the value of the expression is zero, it’s
treated as the value false , and if the value is nonzero, it’s treated as
the value true . The second is that assignments produce a value—
namely, the value assigned to the variable on the left side of the
assignment operator. For example, suppose we intend to write

if (payCode == 4) { // good

 cout << "You get a bonus!" << endl;

}

but we accidentally write

if (payCode = 4) { // bad

 cout << "You get a bonus!" << endl;

}

The first if statement properly awards a bonus to the person whose
payCode is equal to 4. The second one—which contains the error—
evaluates the assignment expression in the if condition to the
constant 4. Any nonzero value is interpreted as true , so this condition
always evaluates as true and the person always receives a bonus
regardless of what the actual paycode is! Even worse, the paycode
has been modified when it was only supposed to be examined!

lvalues and rvalues
You can prevent the preceding problem with a simple trick, but first it’s
helpful to know what’s allowed to the left of an assignment operator.
Variable names are said to be lvalues (for “left values”) because they
can be used on an assignment operator’s left side. Literals are said to
be rvalues (for “right values”) because they can be used on only an
assignment operator’s right side. Lvalues can also be used as rvalues
on the right side of an assignment, but not vice versa.

 Error-Prevention Tip 5.9

Programmers normally write conditions such as x == 7 with the

variable name (an lvalue) on the left and the literal (an rvalue) on the
right. Placing the literal on the left, as in 7 == x , enables the compiler

to issue an error if you accidentally replace the == operator with = .

The compiler treats this as a compilation error, because you can’t
change a literal’s value.

Using == in Place of =
There’s another equally unpleasant situation. Suppose you want to
assign a value to a variable with a simple statement like

x = 1;

but instead write

x == 1;

Here, too, this is not a syntax error. Rather, the compiler simply
evaluates the expression. If x is equal to 1 , the condition is true and

the expression evaluates to a nonzero (true) value. If x is not equal to
1 , the condition is false and the expression evaluates to 0 .

Regardless of the expression’s value, there’s no assignment operator,
so the value simply is lost. The value of x remains unaltered, probably

causing an execution-time logic error. Error-Prevention Tip 5.10 below
will help you spot these.

 Common Programming Error 5.9

Using operator == for assignment and using operator = for equality

are logic errors.

 Error-Prevention Tip 5.10

Use your text editor to search for all occurrences of = in your program

and check that you have the correct assignment. relational or equality
operator in each place.

5.13 Structured-Programming
Summary
Just as architects design buildings by employing the collective wisdom
of their profession, so should programmers design programs. Our field
is much younger than architecture, and our collective wisdom is
considerably sparser. We’ve learned that structured programming
produces programs that are easier than unstructured programs to
understand, test, debug, modify and even prove correct in a
mathematical sense.

C++ Control Statements Are Single-
Entry/Single-Exit
Figure 5.20 uses UML activity diagrams to summarize C++’s control
statements. The initial and final states indicate the single entry point
and the single exit point of each control statement. Arbitrarily
connecting individual symbols in an activity diagram can lead to
unstructured programs. Therefore, the programming profession has
chosen a limited set of control statements that can be combined in
only two simple ways to build structured programs.

For simplicity, C++ includes only single-entry/single-exit control
statements—there’s only one way to enter and only one way to exit

each control statement. Connecting control statements in sequence to
form structured programs is simple. The final state of one control
statement is connected to the initial state of the next—that is, the
control statements are placed one after another in a program in
sequence. We call this control-statement stacking. The rules for
forming structured programs also allow for control statements to be
nested.

Rules for Forming Structured Programs
Figure 5.21 shows the rules for forming structured programs. The
rules assume that action states may be used to indicate any action.
The rules also assume that we begin with the simplest activity diagram
(Fig. 5.22) consisting of only an initial state, an action state, a final
state and transition arrows.

Fig. 5.20 C++’s single-entry/single-exit sequence, selection and
iteration statements.

Fig. 5.21 Rules for forming structured programs.

Rules for forming structured programs

1. Begin with the simplest activity diagram (Fig. 5.22).
2. Any action state can be replaced by two action states in sequence.
3. Any action state can be replaced by any control statement (sequence of action

states, if , if… else , switch , while , do… while or for).

4. Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.22 Simplest activity diagram.

Applying the rules in Fig. 5.21 always results in a properly structured
activity diagram with a neat, building-block appearance. For example,
repeatedly applying rule 2 to the simplest activity diagram results in an
activity diagram containing many action states in sequence (Fig.
5.23). Rule 2 generates a stack of control statements, so let’s call rule
2 the stacking rule. The vertical dashed lines in Fig. 5.23 are not part

of the UML—we use them to separate the four activity diagrams that
demonstrate rule 2 of Fig. 5.21 being applied.

Fig. 5.23 Repeatedly applying rule 2 of Fig. 5.21 to the simplest
activity diagram.

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the
simplest activity diagram results in one with neatly nested control
statements. For example, in Fig. 5.24, the action state in the simplest
activity diagram is replaced with a double-selection (if… else)
statement. Then rule 3 is applied again to the action states in the
double-selection statement, replacing each with a double-selection
statement. The dashed action-state symbol around each double-
selection statement represents the action state that was replaced.
[Note: The dashed arrows and dashed action-state symbols shown in
Fig. 5.24 are not part of the UML. They’re used here to illustrate that
any action state can be replaced with a control statement.]

Fig. 5.24 Repeatedly applying rule 3 of Fig. 5.21 to the simplest
activity diagram.

Rule 4 generates larger, more involved and more deeply nested
statements. The diagrams that emerge from applying the rules in Fig.

5.21 constitute the set of all possible structured activity diagrams and
hence the set of all possible structured programs. The beauty of the
structured approach is that we use only seven simple single-
entry/single-exit control statements and assemble them in only two
simple ways.

If the rules in Fig. 5.21 are followed, an “unstructured’ activity diagram
(like the one in Fig. 5.25) cannot be created. If you’re uncertain about
whether a particular diagram is structured, apply the rules of Fig. 5.21
in reverse to reduce it to the simplest activity diagram. If you can
reduce it, the original diagram is structured; otherwise, it’s not.

Fig. 5.25 “Unstructured” activity diagram.

Three Forms of Control
Structured programming promotes simplicity. Only three forms of
control are needed to implement an algorithm:

sequence
selection

iteration

The sequence structure is trivial. Simply list the statements to execute
in the order in which they should execute. Selection is implemented in
one of three ways:

if statement (single selection)
if… else statement (double selection)
switch statement (multiple selection)

In fact, it’s straightforward to prove that the simple if statement is
sufficient to provide any form of selection—everything that can be
done with the if… else statement and the switch statement can be
implemented by combining if statements (although perhaps not as
clearly and efficiently).

Iteration is implemented in one of three ways:

while statement
do… while statement
for statement

[Note: There’s a fourth iteration statement—the range-based for
statement—that we discuss in Section 7.5.] It’s straightforward to
prove that the while statement is sufficient to provide any form of
iteration. Everything that can be done with do… while and for can be

done with the while statement (although perhaps not as
conveniently).

Combining these results illustrates that any form of control ever
needed in a C++ program can be expressed in terms of

sequence
if statement (selection)
while statement (iteration)

and that these can be combined in only two ways—stacking and
nesting.

5.14 Wrap-Up
In this chapter, we completed our introduction to control statements,
which enable you to control the flow of execution in member functions.
Chapter 4 discussed if , if… else and while . This chapter
demonstrated for , do… while and switch . We discussed the
representational errors associated with floating-point types, then
developed a DollarAmount class that used very large integers to
precisely represent monetary amounts. We used only precise integer
arithmetic when manipulating DollarAmounts. We showed that any
algorithm can be developed using combinations of the sequence
structure, the three types of selection statements— if , if… else and
switch—and the three types of iteration statements— while ,
do… while and for . In this chapter and Chapter 4, we discussed how
you can combine these building blocks to utilize proven program-
construction and problem-solving techniques. You used the break
statement to exit a switch statement and to immediately terminate a
loop, and used a continue statement to terminate a loop’s current
iteration and proceed with the loop’s next iteration. This chapter also
introduced C++’s logical operators, which enable you to use more
complex conditional expressions in control statements. In Chapter 6,
we examine functions in greater depth.

Summary

Section 5.2 Essentials of Counter-
Controlled Iteration

Counter-controlled iteration (p. 160) requires a control variable,
the initial value of the control variable, the increment by which the
control variable is modified each time through the loop (also known
as each iteration of the loop) and the loop-continuation condition
that determines whether looping should continue.
In C++, a variable declaration that also reserves memory is a
definition (p. 161).

Section 5.3 for Iteration Statement
The while statement can be used to implement any counter-
controlled loop.
The for statement (p. 161) specifies all the details of counter-
controlled iteration in its header
When the for statement begins executing, its control variable is
optionally declared and initialized. If the loop-continuation condition
is initially true, the body executes. After executing the loop’s body,
the increment expression executes. Then the loop-continuation
test is performed again to determine whether the program should
continue with the next iteration of the loop.
The general format of the for statement is

for (initialization; loopContinuationCondition; increment) {

 statement

}

where the initialization expression names the loop’s control
variable and provides its initial value, loopContinuationCondition
determines whether the loop should continue executing and
increment modifies the control variable’s value, so that the loop-
continuation condition eventually becomes false. The two
semicolons in the for header are required.

Most for statements can be represented with equivalent while
statements as follows:

initialization;

while (loopContinuationCondition) {

 statement

 increment;

}

Typically, for statements are used for counter-controlled iteration
and while statements for sentinel-controlled iteration.
If the initialization expression in the for header declares the
control variable, the control variable can be used only in that for
statement—it will not exist outside the for statement.
The expressions in a for header are optional. If the
loopContinuationCondition is omitted, C++ assumes that it’s
always true, thus creating an infinite loop. You might omit the
initialization expression if the control variable is initialized before
the loop. You might omit the increment expression if the increment
is calculated with statements in the loop’s body or if no increment
is needed.
The increment expression in a for acts as if it’s a standalone
statement at the end of the for ’s body.
A for statement can count downward by using a negative
increment—i.e., a decrement (p. 165).

If the loop-continuation condition is initially false, the for
statement’s body does not execute.

Section 5.5 Application: Summing Even
Integers

The initialization and increment expressions can be comma-
separated lists that enable you to use multiple initialization
expressions or multiple increment expressions.
The comma between the expressions is a comma operator, which
guarantees that a list of expressions evaluates from left to right.
The comma operator has the lowest precedence of all C++
operators.
The value and type of a comma-separated list of expressions is the
value and type of the rightmost expression.

Section 5.6 Application: Compound-
Interest Calculations

C++ treats floating-point literals like 1000.0 and 0.05 as type
double . Similarly, C++ treats whole-number literals like 7 and -22
as type int .
Standard library function pow(x, y) (p. 169) calculates the value of
x raised to the y th power. Function pow takes two arguments of
type double and returns a double value.
Parameterized stream manipulator setw (p. 169) specifies the field
width in which the next value output should appear, right justified
by default. If the value is larger than the field width, the field width
is extended to accommodate the entire value. Stream manipulator
left (p. 169) causes a value to be left justified and right (p. 169)
can be used to restore right justification.
Sticky output-formatting settings (p. 169) remain in effect until
they’re changed.
Type double suffers from what we call representational error (p.
170), because double cannot precisely represent all decimal
values.

Section 5.7 Case Study: Integer-Based
Monetary Calculations with Class
DollarAmount

You cannot avoid rounding on interest calculations, because they
result in fractional pennies when working with dollar amounts.
With integer arithmetic you can exercise precise control over
rounding without suffering the representational errors associated
with floating-point calculations.

Section 5.7.2 Class DollarAmount
On most computers, an int is a value from –2,147,483,647 to
2,147,483,647—way too small for many monetary applications.
C++11’s long long (p. 176) type supports values in the range –
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 as a
minimum.
The range of long long (and C++’s other integer types) can vary
across platforms. For portability, C++11 introduced new integer-
type names so you can choose the appropriate range of values for
your program. An int64_t (p. 177) supports the exact range –
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
For a list of C++11’s integer-type names, see the header <cstdint>
(p. 177).
A member function can access both the private data of the object
on which that function is called and the private data of other
objects of the same class that are passed to the function.
In half-up rounding, values .5 and higher round up and everything
else rounds down.
C++ Standard Library function to_string (p. 178; from header
<string>) converts a numeric value to a string object.
C++ Standard Library function abs (p. 178; from header <cmath>)
returns the absolute value of its argument.
“Adding” string literals and string objects using the + operator is
known as string concatenation (p. 178).

string member function size (p. 178) returns the number of
characters in the string .
Half-up rounding is a biased technique, because fewer values
round down than up—fractional amounts of .1, .2, .3 and .4 round
down, and .5, .6, .7, .8 and .9 round up. Banker’s rounding (p.
179) fixes this problem by rounding .5 to the nearest even integer.

Section 5.8 do…while Iteration
Statement

The do… while statement (p. 179) is similar to the while statement.
In the while , the program tests the loop-continuation condition at
the beginning of the loop, before executing its body; if the condition
is false, the body never executes. The do… while statement tests
the loop-continuation condition after executing the loop’s body;
therefore, the body always executes at least once.

Section 5.9 switch Multiple-Selection
Statement

The switch multiple-selection statement (p. 180) performs
different actions based on its controlling expression’s value.
The end-of-file indicator is a system-dependent keystroke
combination that terminates user input. On UNIX/Linux/Mac OS X
systems, end-of-file is entered by typing the sequence <Ctrl> d on
a line by itself. This notation means to simultaneously press both
the Ctrl key and the d key. On Windows systems, enter end-of-file
by typing <Ctrl> z.
When you perform input with cin in a condition, the condition
evaluates to true if the input is successful or evaluates to false if
the user enters the end-of-file indicator.
The switch statement consists of a block that contains a sequence
of case labels (p. 184) and an optional default case (p. 184).
In a switch , the program evaluates the controlling expression and
compares its value with each case label. If a match occurs, the
program executes the statements for that case .
Listing cases consecutively with no statements between them
enables the cases to perform the same set of statements.
Every value you wish to test in a switch must be listed in a
separate case label.
Each case can have multiple statements, and these need not be
placed in braces.

A case ’s statements typically end with a break statement (p. 184)
that terminates the switch ’s execution.
Without break statements, each time a match occurs in the switch ,
the statements for that case and subsequent cases execute until a
break statement or the end of the switch is encountered.
If no match occurs between the controlling expression’s value and
a case label, the optional default case executes. If no match
occurs and the switch does not contain a default case, program
control simply continues with the first statement after the switch .

Section 5.10 break and continue
Statements

The break statement, when executed in a while , for , do… while

or switch , causes immediate exit from that statement.
The continue statement (p. 186), when executed in a while , for
or do… while , skips the loop’s remaining body statements and
proceeds with its next iteration. In while and do… while

statements, the program evaluates the loop-continuation test
immediately. In a for statement, the increment expression
executes, then the program evaluates the loop-continuation test.

Section 5.11 Logical Operators
Simple conditions are expressed in terms of the relational
operators > , < , >= and <= and the equality operators == and != ,
and each expression tests only one condition.
Logical operators (p. 188) enable you to form more complex
conditions by combining simple conditions. The logical operators
are && (logical AND), || (logical OR) and ! (logical negation).
To ensure that two conditions are both true, use the && (logical
AND) operator. If either or both of the simple conditions are false,
the entire expression is false.
To ensure that either or both of two conditions are true, use the ||
(logical OR) operator, which evaluates to true if either or both of its
simple conditions are true.
A condition using && or || operators uses short-circuit
evaluation (p. 190)—they’re evaluated only until it’s known
whether the condition is true or false.
The unary ! (logical negation; p. 190) operator “reverses” the
value of a condition.
By default, bool values true and false are displayed by cout as
1 and 0 , respectively. Stream manipulator boolalpha (p. 191)
specifies that the value of each bool expression should be
displayed as either the word “true” or the word “false.”

Section 5.12 Confusing the Equality (==)
and Assignment (=) Operators

Any expression that produces a value can be used in the decision
portion of any control statement. If the value of the expression is
zero, it’s treated as false , and if the value is nonzero, it’s treated
as true .
An assignment produces a value—namely, the value assigned to
the variable on the left side of the assignment operator.
Programmers normally write conditions such as x == 7 with the
variable name (an lvalue) on the left and the literal (an rvalue) on
the right. Placing the literal on the left, as in 7 == x , enables the
compiler to issue an error if you accidentally replace the ==
operator with = . The compiler treats this as a compilation error,
because you can’t change a literal’s value.

Self-Review Exercises
1. 5.1 Fill in the blanks in each of the following statements:

A. Typically, statements are used for counter-
controlled iteration and statements for sentinel-
controlled iteration.

B. The do… while statement tests the loop-continuation
condition executing the loop’s body; therefore,
the body always executes at least once.

C. The statement selects among multiple actions
based on the possible values of an integer variable or
expression.

D. The statement, when executed in an iteration
statement, skips the remaining statements in the loop
body and proceeds with the next iteration of the loop.

E. The operator can be used to ensure that two
conditions are both true before choosing a certain path
of execution.

F. If the loop-continuation condition in a for header is
initially , the program does not execute the for
statement’s body.

2. 5.2 State whether each of the following is true or false. If the
answer is false, explain why.

A. The default case is required in the switch selection
statement.

B. The break statement is required in the default case of a
switch selection statement to exit the switch properly.

C. The expression (x > y && a <b) is true if either the
expression x > y is true or the expression a < b is
true .

D. An expression containing the || operator is true if
either or both of its operands are true .

3. 5.3 Write a C++ statement or a set of C++ statements to
accomplish each of the following:

A. Sum the odd integers between 1 and 99 using a for
statement. Use the unsigned int variables sum and
count .

B. Print the value 333.546372 in a 15-character field with
precisions of 1 , 2 and 3 . Print each number on the
same line. Left-justify each number in its field. What
three values print?

C. Calculate the value of 2.5 raised to the power 3 using
function pow . Print the result with a precision of 2 in a
field width of 10 positions. What prints?

D. Print the integers from 1 to 20 using a while loop and
the unsigned int counter variable x . Print only 5 integers
per line. [Hint: When x % 5 is 0, print a newline
character; otherwise, print a tab character.]

E. Repeat Exercise 5.3(d) using a for statement.

4. 5.4 Find the errors in each of the following code segments and
explain how to correct them.

A.

unsigned int x{1};

while (x <= 10); {

 ++x;

}

B.

for (double y{0.1}; y != 1.0; y += .1) {

 cout << y << endl;

}

C.
switch (n) {

 case 1:

 cout << "The number is 1" << endl;

 case 2:

 cout << "The number is 2" << endl;

 break;

 default:

 cout << "The number is not 1 or 2" << endl;

}

D. The following code should print the values 1 to 10.

unsigned int n{1};

while (n < 10) {

 cout << n++ << endl;

}

Answers to Self-Review Exercises

1. 5.1
A. for , while .
B. after.
C. switch .
D. continue .
E. && (conditional AND).
F. false .

2. 5.2
A. False. The default case is optional. Nevertheless, it’s

considered good software engineering to always provide
a default case.

B. False. The break statement is used to exit the switch
statement. The break statement is not required when the
default case is the last case. Nor will the break
statement be required if having control proceed with the
next case makes sense.

C. False. When using the && operator, both of the relational
expressions must be true for the entire expression to be
true .

D. True.

3. 5.3
A.

unsigned int sum{0};

for (unsigned int count{1}; count <= 99; count += 2)

{

 sum += count;

}

B.

cout << fixed << left

 << setprecision(1) << setw(15) << 333.546372

 << setprecision(2) << setw(15) << 333.546372

 << setprecision(3) << setw(15) << 333.546372 <<

endl;

Output is:

333.5 333.55 333.546

C. cout << fixed << setprecision(2) << setw(10) <<

pow(2.5, 3) << endl;

Output is:

15.63

D.

unsigned int x{1};

while (x <= 20) {

 if (x % 5 == 0){

 cout << x << endl;

 }

 else {

 cout << x << '\t';

 }

 ++x;

}

E.
for (unsigned int x = 1; x <= 20; ++x) {

 if (x % 5 == 0)

 cout << x << endl;

 }

 else {

 cout << x << '\t';

 }

}

4. 5.4
A. Error: The semicolon after the while header causes an

infinite loop.
Correction: Delete the semicolon after the while header.

B. Error: Using a floating-point number to control a for
iteration statement.
Correction: Use an unsigned int and perform the proper
calculation to get the values.

for (unsigned int y = 1; y != 10; ++y) {

 cout << (static_cast< double >(y) / 10) << endl;

}

C. Error: Missing break statement in the first case .

Correction: Add a break statement at the end of the first
case . This is not an error if you want the statement of
case 2: to execute every time the case 1: statement
executes.

D. Error: Improper relational operator used in the loop-
continuation condition.
Correction: Use <= rather than < , or change 10 to 11 .

Exercises
1. 5.5 Describe the four basic elements of counter-controlled

iteration.
2. 5.6 Compare and contrast the while and for iteration

statements.
3. 5.7 Discuss a situation in which it would be more appropriate to

use a do… while statement than a while statement. Explain
why.

4. 5.8 Compare and contrast the break and continue statements.
5. 5.9 (Find the Code Errors) Find the error(s), if any, in each of

the following:
A.

For (unsigned int x{100}, x >= 1, ++x) {

 cout << x << endl;

}

B. The following code should print whether integer value is
odd or even:

switch (value % 2) {

 case 0:

 cout << "Even integer" << endl;

 case 1:

 cout << "Odd integer" << endl;}

C. The following code should output the odd integers from
19 to 1:

for (unsigned int x{19}; x >= 1; x += 2) {

 cout << x << endl;

}

D. The following code should output the even integers from
2 to 100:

unsigned int counter{2};

do {

 cout << counter << endl;

 counter += 2;

} While (counter < 100);

6. 5.10 What does the following program do?

 1 // Exercise 5.10: Printing.cpp

 2 #include <iostream>

 3 using namespace std;

 4

 5 int main() {

 6 for (int i{1}; i <= 10; i++) {

 7 for (int j{1}; j <= 5; j++) {

 8 cout << '@';

 9 }

10

11 cout << endl;

12 }

13 }

7. 5.11 (Find the Smallest Value) Write an application that finds
the smallest of several integers. Assume that the first value
read specifies the number of values to input from the user.

8. 5.12 (Calculating the Product of Odd Integers) Write an
application that calculates the product of the odd integers from
1 to 15.

9. 5.13 (Factorials) Factorials are used frequently in probability
problems. The factorial of a positive integer n (written n! and
pronounced “n factorial”) is equal to the product of the positive
integers from 1 to n. Write an application that calculates the
factorials of 1 through 20. Use type long . Display the results in
tabular format. What difficulty might prevent you from
calculating the factorial of 100?

10. 5.14 (Modified Compound-Interest Program) Modify the
compound-interest application of Fig. 5.6 to repeat its steps for

interest rates of 5%, 6%, 7%, 8%, 9% and 10%. Use a for loop
to vary the interest rate.

11. 5.15 (Triangle-Printing Program) Write an application that
displays the following patterns separately, one below the other.
Use for loops to generate the patterns. All asterisks (*) should
be printed by a single statement of the form cout << '*'; which
causes the asterisks to print side by side. A statement of the
form cout << '\n'; can be used to move to the next line. A
statement of the form cout << ' '; can be used to display a
space for the last two patterns. There should be no other output
statements in the program. [Hint: The last two patterns require
that each line begin with an appropriate number of blank
spaces.]

A.

*

**

B.

**

*

C.

 **

 *

D.

 *

 **

12. 5.16 (Bar-Chart Printing Program) One interesting application
of computers is to display graphs and bar charts. Write an
application that reads five numbers between 1 and 30. For
each number that’s read, your program should display the
same number of adjacent asterisks. For example, if your
program reads the number 7, it should display ******* . Display
the bars of asterisks after you read all five numbers.

13. 5.17 (Calculating Sales) An online retailer sells five products
whose retail prices are as follows: Product 1, $2.98; product 2,
$4.50; product 3, $9.98; product 4, $4.49 and product 5, $6.87.
Write an application that reads a series of pairs of numbers as
follows:

A. product number
B. quantity sold

Your program should use a switch statement to determine the
retail price for each product. It should calculate and display the
total retail value of all products sold. Use a sentinel-controlled
loop to determine when the program should stop looping and
display the final results.

14. 5.18 Assume that i = 1 , j = 2 , k = 3 and m = 2 . What does
each of the following statements print?

A. cout << (i == 1) << endl;

B. cout << (j == 3) << endl;

C. cout << (i >= 1 && j < 4) << endl;

D. cout << (m <= 99 && k < m) << endl;

E. cout << (j >= i || k == m) << endl;

F. cout << (k + m < j || 3 - j >= k) << endl;

G. cout << (!m) << endl;

H. cout << (!(j - m)) << endl;

I. cout << (!(k > m)) << endl;

15. 5.19 (Calculating the Value of π) Calculate the value of π
from the infinite series

Print a table that shows the value of π approximated by
computing the first 200,000 terms of this series. How many
terms do you have to use before you first get a value that
begins with 3.14159?

16. 5.20 (Pythagorean Triples) A right triangle can have sides
whose lengths are all integers. The set of three integer values
for the lengths of the sides of a right triangle is called a
Pythagorean triple. The lengths of the three sides must satisfy
the relationship that the sum of the squares of two of the sides
is equal to the square of the hypotenuse. Write an application
that displays a table of the Pythagorean triples for side1 , side2
and the hypotenuse , all no larger than 500. Use a triple-nested
for loop that tries all possibilities. This is an example of “brute-
force” computing. You’ll learn in more advanced computer-
science courses that for many interesting problems there’s no
known algorithmic approach other than using sheer brute force.

17. 5.21 (Modified Triangle-Printing Program) Modify Exercise
5.15 to combine your code from the four separate triangles of
asterisks such that all four patterns print side by side. [Hint:
Make clever use of nested for loops.]

18. 5.22 (De Morgan’s Laws) In this chapter, we discussed the
logical operators && , || and ! . De Morgan’s laws can
sometimes make it more convenient for us to express a logical
expression. These laws state that the expression !(condition1

&& condition2) is logically equivalent to the expression
(!condition1 || !condition2) . Also, the expression !
(condition1 || condition2) is logically equivalent to the
expression (!condition1 && !condition2) . Use De Morgan’s
laws to write equivalent expressions for each of the following,
then write an application to show that both the original

expression and the new expression in each case produce the
same value:

A. !(x < 5) && !(y >= 7)

B. !(a == b) || !(g != 5)

C. !((x <= 8) && (y > 4))

D. !((i > 4) || (j <= 6))

19. 5.23 (Diamond-Printing Program) Write an application that
prints the following diamond shape. You may use output
statements that print a single asterisk (*), a single space or a
single new-line character. Maximize your use of iteration (with
nested for statements), and minimize the number of output
statements.

 *

 *

20. 5.24 (Modified Diamond-Printing Program) Modify the
application you wrote in Exercise 5.23 to read an odd number

in the range 1 to 19 to specify the number of rows in the
diamond. Your program should then display a diamond of the
appropriate size.

21. 5.25 (Removing break and continue) A criticism of the break
statement and the continue statement is that each is
unstructured. Actually, these statements can always be
replaced by structured statements, although doing so can be
awkward. Describe in general how you’d remove any break
statement from a loop in a program and replace it with some
structured equivalent. [Hint: The break statement exits a loop
from the body of the loop. The other way to exit is by failing the
loop-continuation test. Consider using in the loop-continuation
test a second test that indicates “early exit because of a ‘break’
condition.”] Use the technique you develop here to remove the
break statement from the application in Fig. 5.13.

22. 5.26 What does the following program segment do?

for (unsigned int i{1}; i <= 5; i++) {

 for (unsigned int j{1}; j <= 3; j++) {

 for (unsigned int k{1}; k <= 4; k++) {

 cout << '*';

 }

 cout << endl;

 }

 cout << endl;

}

23. 5.27 (Replacing continue with a Structured Equivalent)
Describe in general how you’d remove any continue statement
from a loop in a program and replace it with some structured
equivalent. Use the technique you develop here to remove the
continue statement from the program in Fig. 5.14.

24. 5.28 (“The Twelve Days of Christmas” Song) Write an
application that uses iteration and switch statements to print
the song “The Twelve Days of Christmas.” One switch
statement should be used to print the day (“first,” “second,” and
so on). A separate switch statement should be used to print the
remainder of each verse. Visit the website
en.wikipedia.org/wiki/The_Twelve_Days_ of_Christmas_(song) for
the lyrics of the song.

25. 5.29 (Peter Minuit Problem) Legend has it that, in 1626, Peter
Minuit purchased Manhattan Island for $24.00 in barter. Did he
make a good investment? To answer this question, modify the
compound-interest program of Fig. 5.6 to begin with a principal
of $24.00 and to calculate the amount of interest on deposit if
that money had been kept on deposit until this year (e.g., 390
years through 2016). Place the for loop that performs the
compound-interest calculation in an outer for loop that varies
the interest rate from 5% to 10% to observe the wonders of
compound interest.

26. 5.30 (DollarAmount Constructor with Two Parameters)
Enhance class DollarAmount (Fig. 5.8) with a constructor that
receives two parameters representing the whole number of
dollars and the whole number of cents. Use these to calculate

and store in the data member amount the total number of
pennies. Test the class with your new constructor.

27. 5.31 (DollarAmount Arithmetic) Enhance class DollarAmount
from Exercise 5.30 with a divide member function that
receives an int parameter, divides the data member amount by
that value and stores the result in the data member. Use
rounding techniques similar to the addInterest member
function. Test your new divide member function.

28. 5.32 (DollarAmount with Banker’s Rounding) The
DollarAmount class’s addInterest member function uses the
biased half-up rounding technique in which fractional amounts
of .1, .2, .3 and .4 round down, and .5, .6, .7, .8 and .9 round
up. In this technique, four values round down and five round up.
Banker’s rounding fixes this problem by rounding .5 to the
nearest even integer—e.g., 0.5 rounds to 0, 1.5 and 2.5 round
to 2, 3.5 and 4.5 round to 4, etc. Enhance class DollarAmount
from Exercise 5.31 by reimplementing addInterest to use
banker’s rounding, then retest the compound-interest program.

29. 5.33 (DollarAmount with dollars and cents Data Members)
Reimplement class DollarAmount from Exercise 5.32 to store
data members dollars and cents , rather than amount . Modify
the body of each constructor and member function
appropriately to manipulate the dollars and cents data
members.

30. 5.34 (Account Class That Stores a DollarAmount) Upgrade the
Account class from Exercise 3.9 to define its balance data

member as an object of class DollarAmount from Exercise 5.33.
Reimplement the bodies of class Account’s constructor and
member functions accordingly.

31. 5.35 (Displaying the Interest Rate in the DollarAmount
Example) Enhance the main program in Fig. 5.7 to display the
interest rate based on the two integers entered by the user. For
example, if the user enters 2 and 100, display 2.0%, and if the
user enters 2015 and 100000, display 2.015%.

32. 5.36 (Showing That double Values Are Approximate) Create
a program that assigns 123.02 to a double variable, then
displays the variable’s value with many digits of precision to the
right of the decimal point. Which precision first shows you the
representational error of storing 123.02 in a double variable?

Making a Difference
1. 5.37 (Global Warming Facts Quiz) The controversial issue of

global warming has been widely publicized by the film “An
Inconvenient Truth,” featuring former Vice President Al Gore.
Mr. Gore and a U.N. network of scientists, the
Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and
disseminate greater knowledge about man-made climate
change.” Research both sides of the global warming issue
online (you might want to search for phrases like “global
warming skeptics”). Create a five-question multiple-choice quiz
on global warming, each question having four possible answers
(numbered 1–4). Be objective and try to fairly represent both
sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero
through five) and returns a message to the user. If the user
correctly answers five questions, print “Excellent”; if four, print
“Very good”; if three or fewer, print “Time to brush up on your
knowledge of global warming,” and include a list of some of the
websites where you found your facts.

2. 5.38 (Tax Plan Alternatives; The “FairTax”) There are many
(often controversial) proposals to make taxation “fairer.” Check
out the FairTax initiative in the United States at
www.fairtax.org . Research how the proposed FairTax works.
One suggestion is to eliminate income taxes and most other

http://www.fairtax.org

taxes in favor of a 23% consumption tax on all products and
services that you buy. Some FairTax opponents question the
23% figure and say that because of the way the tax is
calculated, it would be more accurate to say the rate is 30%—
check this carefully. Write a program that prompts the user to
enter expenses in various expense categories they have (e.g.,
housing, food, clothing, transportation, education, health care,
vacations), then prints the estimated FairTax that person would
pay.

6 Functions and an Introduction to
Recursion

Objectives
In this chapter you’ll:

Construct programs modularly from functions.
Use common math library functions.
Use function prototypes to declare a function.
Use random-number generation to implement game-playing
applications.
Use C++14 digit separators to make numeric literals more
readable
Understand how the visibility of identifiers is limited to specific
regions of programs.
Understand how the function call/return mechanism is supported
by the function-call stack and activation records.
Understand the mechanisms for passing data to functions and
returning results.
Use inline functions, references and default arguments.
Define with the same name overloaded functions that perform
different tasks based on the number and types of their arguments.
Define function templates that can generate families of overloaded
functions.
Write and use recursive functions.

Outline
1. 6.1 Introduction
2. 6.2 Program Components in C++
3. 6.3 Math Library Functions
4. 6.4 Function Prototypes
5. 6.5 Function-Prototype and Argument-Coercion Notes

A. 6.5.1 Function Signatures and Function Prototypes
B. 6.5.2 Argument Coercion
C. 6.5.3 Argument-Promotion Rules and Implicit

Conversions

6. 6.6 C++ Standard Library Headers
7. 6.7 Case Study: Random-Number Generation

A. 6.7.1 Rolling a Six-Sided Die
B. 6.7.2 Rolling a Six-Sided Die 60,000,000 Times
C. 6.7.3 Randomizing the Random-Number Generator

with srand
D. 6.7.4 Seeding the Random-Number Generator with

the Current Time
E. 6.7.5 Scaling and Shifting Random Numbers

8. 6.8 Case Study: Game of Chance; Introducing Scoped
enums

9. 6.9 C++11 Random Numbers
10. 6.10 Scope Rules

11. 6.11 Function-Call Stack and Activation Records
12. 6.12 Inline Functions
13. 6.13 References and Reference Parameters
14. 6.14 Default Arguments
15. 6.15 Unary Scope Resolution Operator
16. 6.16 Function Overloading
17. 6.17 Function Templates
18. 6.18 Recursion
19. 6.19 Example Using Recursion: Fibonacci Series
20. 6.20 Recursion vs. Iteration
21. 6.21 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

6.1 Introduction
In this chapter, we take a deeper look at functions. Most computer
programs that solve real-world problems are much larger than the
programs presented in the first few chapters of this book. Experience
has shown that the best way to develop and maintain large programs
is to construct them from small, simple pieces, or components. This
technique is called divide and conquer.

We’ll overview a portion of the C++ Standard Library’s math functions.
We’ll introduce function prototypes and discuss how the compiler uses
them, if necessary, to convert the type of an argument in a function
call to the type specified in a function’s parameter list.

Next, we’ll take a brief diversion into simulation techniques with
random number generation and develop a version of a popular casino
dice game that uses most of the programming techniques you’ve
learned.

We then present C++’s scope rules, which determine where identifiers
can be referenced in a program. You’ll learn how C++ keeps track of
which function is currently executing, how parameters and other local
variables of functions are maintained in memory and how a function
knows where to return after it completes execution. We discuss topics
that help improve program performance—inline functions that can

eliminate the overhead of a function call and reference parameters
that can be used to pass large data items to functions efficiently.

Many of the applications you develop will have more than one function
of the same name. This technique, called function overloading, is used
to implement functions that perform similar tasks for arguments of
different types or different numbers of arguments. We consider
function templates—a mechanism for concisely defining a family of
overloaded functions. The chapter concludes with a discussion of
functions that call themselves, either directly, or indirectly (through
another function)—a topic called recursion.

6.2 Program Components in C++
C++ programs are typically written by combining “prepackaged”
functions and classes available in the C++ Standard Library with new
functions and classes you write. The C++ Standard Library provides a
rich collection of functions for common mathematical calculations,
string manipulations, character manipulations, input/output, error
checking and many other useful operations.

Functions allow you to modularize a program by separating its tasks
into self-contained units. You’ve used a combination of library
functions and your own functions in almost every program you’ve
written.

There are several motivations for modularizing a program with
functions:

Software reuse. For example, in earlier programs, we did not have
to define how to read a line of text from the keyboard—C++
provides this capability via the getline function of the <string>
header.
Avoiding code repetition.
Dividing a program into meaningful functions makes the program
easier to test, debug and maintain.

 Software Engineering
Observation 6.1

To promote software reusability, every function should be limited to
performing a single, well-defined task, and the name of the function
should express that task effectively.

As you know, a function is invoked by a function call, and when the
called function completes its task, it either returns a result or simply
returns control to the caller. An analogy to this program structure is the
hierarchical form of management (Figure 6.1).

Fig. 6.1 Hierarchical boss-function/worker-function relationship.

A boss (similar to the calling function) asks a worker (similar to a
called function) to perform a task and report back (i.e., return) the
results after completing the task. The boss function does not know

how the worker function performs its designated tasks. The worker
may also call other worker functions, unbeknownst to the boss. This
hiding of implementation details promotes good software engineering.
Figure 6.1 shows the boss function communicating with several
worker functions. The boss function divides the responsibilities among
the worker functions, and worker1 acts as a “boss function” to worker4
and worker5 . The relationship does not need to be hierarchical, but
often it is, which makes it easier to test, debug, update and maintain
programs.

6.3 Math Library Functions
Some functions, such as main , are not members of a class. These
functions are called global functions. We introduce various functions
from the <cmath> header here to present the concept of global
functions that do not belong to a particular class.

The <cmath> header provides a collection of functions that perform
common mathematical calculations. For example, you can calculate
the square root of 900.0 with the function call

sqrt(900.0)

This expression evaluates to 30.0 . Function sqrt takes an argument
of type double and returns a double result. There’s no need to create
any objects before calling function sqrt . Also, all functions in the
<cmath> header are global functions—therefore, each is called simply
by specifying the name of the function followed by parentheses
containing the function’s arguments.

 Error-Prevention Tip 6.1

Do not call sqrt with a negative argument. For industrial-strength

code, always check that the arguments you pass to math functions are
valid.

Function arguments may be constants, variables or more complex
expressions. If c = 13.0 , d = 3.0 and f = 4.0 , then the statement

cout << sqrt(c + d * f) << endl;

displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0 .
Some math library functions are summarized in Fig. 6.2. In the figure,
the variables x and y are of type double .

Fig. 6.2 Math library functions.

Function Description Example

ceil(x) rounds x to the smallest integer not less
than x

ceil(9.2) is 10.0

 ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

exp(x) exponential function exp(1.0) is
2.718282

 exp(2.0) is

7.389056

fabs(x) absolute value of x fabs(5.1) is 5.1

 fabs(0.0) is 0.0

 fabs(-8.76) is 8.76

floor(x) rounds x to the largest integer not greater
than x

floor(9.2) is 9.0

 floor(-9.8) is
-10.0

fmod(x,

y)

remainder of x/y as a floating-point number fmod(2.6, 1.2) is
0.2

log(x) natural logarithm of x (base e) log(2.718282) is
1.0

 log(7.389056) is
2.0

log10(x) logarithm of x (base 10) log10(10.0) is 1.0

 log10(100.0) is 2.0

pow(x,

y)

x raised to power y pow(2, 7) is 128

 pow(9, .5) is 3

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0

sqrt(x) square root of x (where x is a nonnegative
value)

sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0

6.4 Function Prototypes
In this section, we create a user-defined function called maximum that
returns the largest of its three int arguments. When the application
executes, the main function (lines 9–17 of Fig. 6.3) reads three
integers from the user. Then, the output statement (lines 15–16) calls
maximum , which in this example is defined after main (lines 20–34)—
we’ll discuss the order of this example’s function definitions
momentarily. Function maximum returns the largest value to line 16,
which displays the result. The sample outputs show that maximum
determines the largest value regardless of whether it’s the first,
second or third argument.

Fig. 6.3 maximum function with a function prototype.

Logic of Function maximum
Function maximum first assumes that parameter x has the largest
value, so line 21 declares local variable maximumValue and initializes it
to parameter x ’s value. Of course, it’s possible that parameter y or z
contains the actual largest value, so we must compare each of these
with maximumValue . The if statement in lines 24–26 determines
whether y is greater than maximumValue and, if so, assigns y to
maximumValue . The if statement in lines 29–31 determines whether z
is greater and, if so, assigns z to maximumValue . At this point the
largest value is in maximumValue , so line 33 returns that value to the call
in line 16.

Function Prototype for maximum
In preceding chapters, we created classes Account , Student and
DollarAmount , each with various member functions. We defined each
class in a header (.h) and included it before main in a program’s
source-code file. Doing this ensures that the class (and thus its
member functions) is defined before main creates and manipulates
objects of that class. The compiler then can ensure that we call each
class’s constructors and member functions correcly—for example,
passing each the correct number and types of arguments.

For a function that’s not defined in a class, you must either define the
function before using it or you must declare that the function exists, as

we do in line 7 of Fig. 6.3:

int maximum(int x, int y, int z); // function prototype

This is a function prototype, which describes the maximum function

without revealing its implementation. A function prototype is a
declaration of a function that tells the compiler the function’s name, its
return type and the types of its parameters. This function prototype
indicates that the function returns an int , has the name maximum and
requires three int parameters to perform its task. Notice that the
function prototype is the same as the first line of the corresponding
function definition (line 20), but ends with a required semicolon.

 Good Programming Practice 6.1

Parameter names in function prototypes are optional (they’re ignored
by the compiler), but many programmers use these names for
documentation purposes. We used parameter names in Fig. 6.3’s
function prototype for demonstration purposes, but generally we do
not use them in this book’s subsequent examples.

When compiling the program, the compiler uses the prototype to

Ensure that maximum ’s first line (line 20) matches its prototype (line
7).

Check that the call to maximum (line 16) contains the correct number
and types of arguments, and that the types of the arguments are in
the correct order (in this case, all the arguments are of the same
type).
Ensure that the value returned by the function can be used
correctly in the expression that called the function—for example,
for a function that returns void you cannot call the function on right
side of an assignment.
Ensure that each argument is consistent with the type of the
corresponding parameter—for example, a parameter of type
double can receive values like 7.35, 22 or –0.03456, but not a
string like "hello" . If the arguments passed to a function do not

match the types specified in the function’s prototype, the compiler
attempts to convert the arguments to those types. Section 6.5
discusses this conversion and what happens if the conversion is
not allowed.

 Common Programming Error 6.1

Declaring function parameters of the same type as int x, y instead of

int x, int y is a syntax error—a type is required for each parameter

in the parameter list.

 Common Programming Error 6.2

Compilation errors occur if the function prototype, header and calls do
not all agree in the number, type and order of arguments and
parameters, and in the return type.

 Software Engineering Observation 6.2

A function that has many parameters may be performing too many
tasks. Consider dividing the function into smaller functions that
perform the separate tasks. Limit the function header to one line if
possible.

Commas in Function Calls Are Not
Comma Operators
Multiple parameters are specified in both the function prototype and
the function header as a comma-separated list, as are multiple
arguments in a function call.

 Portability Tip 6.1

The commas used in line 16 of Fig. 6.3 to separate the arguments to
function maximum are not comma operators as discussed in Section
5.5. The comma operator guarantees that its operands are evaluated
left to right. The order of evaluation of a function’s arguments,
however, is not specified by the C++ standard. Thus, different
compilers can evaluate function arguments in different orders.

 Portability Tip 6.2

Sometimes when a function’s arguments are expressions, such as
those with calls to other functions, the order in which the compiler
evaluates the arguments could affect the values of one or more of the
arguments. If the evaluation order changes between compilers, the
argument values passed to the function could vary, causing subtle
logic errors.

 Error-Prevention Tip 6.2

If you have doubts about the order of evaluation of a function’s
arguments and whether the order would affect the values passed to
the function, evaluate the arguments in separate assignment
statements before the function call, assign the result of each

expression to a local variable, then pass those variables as arguments
to the function.

Returning Control from a Function to Its
Caller
Previously, you’ve seen that when a program calls a function, the
function performs its task, then returns control (and possibly a value)
to the point where the function was called. In a function that does not
return a result (i.e., it has a void return type), we showed that control
returns when the program reaches the function-ending right brace.
You also can explicitly return control to the caller by executing the
statement

return;

6.5 Function-Prototype and
Argument-Coercion Notes
A function prototype is required unless the function is defined before
it’s used. When you use a standard library function like sqrt , you do
not have access to the function’s definition, therefore it cannot be
defined in your code before you call the function. Instead, you must
include its corresponding header (<cmath>), which contains the
function’s prototype.

 Common Programming Error
6.3

If a function is defined before it’s called, then its definition also serves
as the function’s prototype, so a separate prototype is unnecessary. If
a function is called before it’s defined, and that function does not have
a function prototype, a compilation error occurs.

 Software Engineering
Observation 6.3

Always provide function prototypes, even though it’s possible to omit
them when functions are defined before they’re used. Providing the
prototypes avoids tying the code to the order in which functions are
defined (which can easily change as a program evolves).

6.5.1 Function Signatures and
Function Prototypes

The portion of a function prototype that includes the name of the
function and the types of its arguments is called the function
signature or simply the signature. The function’s return type is not
part of the function signature. The scope of a function is the region of
a program in which the function is known and accessible. Functions in
the same scope must have unique signatures. We’ll say more about
scope in Section 6.10.

In Fig. 6.3, if the function prototype in line 7 had been written

void maximum(int, int, int);

the compiler would report an error, because the void return type in the
function prototype would differ from the int return type in the function
header. Similarly, such a prototype would cause the statement

cout << maximum(6, 7, 0);

to generate a compilation error, because that statement depends on
maximum to return a value to be displayed.

 Error-Prevention Tip 6.3
Function prototypes help you find many types of errors at compile
time. It’s always better to eliminate errors at compile time rather than
at run time.

6.5.2 Argument Coercion

An important feature of function prototypes is argument coercion—
i.e., forcing arguments to the appropriate types specified by the
parameter declarations. For example, a program can call a function
with an integer argument, even though the function prototype specifies

a double parameter—the function will still work correctly, provided this

is not a narrowing conversion (discussed in Section 4.11.7).

6.5.3 Argument-Promotion Rules
and Implicit Conversions1
1. Promotions and conversions are complex topics discussed in
Section 4 and the beginning of Section 5 of the C++ standard.

Sometimes, argument values that do not correspond precisely to the
parameter types in the function prototype can be converted by the
compiler to the proper type before the function is called. These
conversions occur as specified by C++’s promotion rules, which
indicate the implicit conversions allowed between fundamental types.
An int can be converted to a double . A double can also be converted
to an int , but this narrowing conversion truncates the double ’s
fractional part—recall from Section 4.11.7 that list initializers do not
allow narrowing conversions. Keep in mind that double variables can
hold numbers of much greater magnitude than int variables, so the
loss of data in a narrowing conversion may be considerable. Values
may also be modified when converting large integer types to small
integer types (e.g., long to short), signed to unsigned or unsigned to
signed. Unsigned integers range from 0 to approximately twice the
positive range of the corresponding signed type.

The promotion rules also apply to expressions containing values of
two or more data types; such expressions are referred to as mixed-
type expressions. The type of each value in a mixed-type expression
is promoted to the “highest” type in the expression (actually a
temporary version of each value is created and used for the
expression—the original values remain unchanged). Figure 6.4 lists
the arithmetic data types in order from “highest type” to “lowest type.”

Fig. 6.4 Promotion hierarchy for arithmetic data types; the
“highest” types are at the top.

Data types

long double

double

float

unsigned long long int (synonymous with unsigned long long)

long long int (synonymous with long long)

unsigned long int (synonymous with unsigned long)

long int (synonymous with long)

unsigned int (synonymous with unsigned)

int

unsigned short int (synonymous with unsigned short)

short int (synonymous with short)

unsigned char

char and signed char

bool

Conversions Can Result in Incorrect
Values
Converting values to lower fundamental types can cause errors due to
narrowing conversions. Therefore, a value can be converted to a
lower fundamental type only by explicitly assigning the value to a
variable of lower type (some compilers will issue a warning in this
case) or by using a cast operator (see Section 4.10). Function
argument values are converted to the parameter types in a function
prototype as if they were being assigned directly to variables of those
types. If a square function that uses an integer parameter is called
with a floating-point argument, the argument is converted to int (a
lower type and thus a narrowing conversion), and square could return
an incorrect value. For example, square(4.5) would return 16 , not
20.25 . Some compilers warn you about the narrowing conversion. For
example, Microsoft Visual C++ issues the warning,

'argument': conversion from 'double' to 'int', possible loss of

data

 Common Programming Error 6.4

A compilation error occurs if the arguments in a function call cannot be
implicitly converted to the expected types specified in the function’s
prototype.

6.6 C++ Standard Library Headers
The C++ Standard Library is divided into many portions, each with its
own header. The headers contain the function prototypes for the
related functions that form each portion of the library. The headers
also contain definitions of various class types and functions, as well as
constants needed by those functions. A header “instructs” the
compiler on how to interface with library and user-written components.

Figure 6.5 lists some common C++ Standard Library headers, most of
which are discussed later in this book. The term “macro” that’s used
several times in Fig. 6.5 is discussed in detail in Appendix E,
Preprocessor.

11

Fig. 6.5 C++ Standard Library headers.

Standard Library
header

Explanation

<iostream> Contains function prototypes for the C++ standard input and
output functions, introduced in Chapter 2, and is covered in
more detail in Chapter 13, Stream Input/Output: A Deeper Look.

<iomanip> Contains function prototypes for stream manipulators that format
streams of data. This header is first used in Section 4.10 and is
discussed in more detail in Chapter 13, Stream Input/Output: A

Deeper Look.

<cmath> Contains function prototypes for math library functions (Section
6.3).

<cstdlib> Contains function prototypes for conversions of numbers to text,
text to numbers, memory allocation, random numbers and
various other utility functions. Portions of the header are covered
in Section 6.7; Chapter 11, Operator Overloading; Class
string ; Chapter 17, Exception Handling: A Deeper Look;

Chapter 22, Bits, Characters, C Strings and struct s; and

Appendix F, C Legacy Code Topics.

<ctime> Contains function prototypes and types for manipulating the time
and date. This header is used in Section 6.7.

<array> ,

<vector> ,

<list> ,

<forward_list> ,

<deque> ,

<queue> ,

<stack> , <map> ,

<unordered_map> ,

<unordered_set> ,

<set> , <bitset>

These headers contain classes that implement the C++
Standard Library containers. Containers store data during a
program’s execution. The <vector> header is first introduced

in Chapter 7, Class Templates array and vector ; Catching

Exceptions. We discuss all these headers in Chapter 15,
Standard Library Containers and Iterators. <array> ,

<forward_list> , <unordered_map> and

<unordered_set> were all introduced in C++11.

<cctype> Contains function prototypes for functions that test characters for
certain properties (such as whether the character is a digit or a
punctuation), and function prototypes for functions that can be
used to convert lowercase letters to uppercase letters and vice
versa. These topics are discussed in Chapter 22, Bits,
Characters, C Strings and struct s.

<cstring> Contains function prototypes for C-style string-processing
functions.

<typeinfo> Contains classes for runtime type identification (determining data
types at execution time). This header is discussed in Section
12.9.

<exception> ,
<stdexcept>

These headers contain classes that are used for exception
handling (discussed in Chapter 17, Exception Handling: A
Deeper Look).

<memory> Contains classes and functions used by the C++ Standard
Library to allocate memory to the C++ Standard Library
containers. This header is used in Chapter 17, Exception
Handling: A Deeper Look.

<fstream> Contains function prototypes for functions that perform input
from and output to files on disk (discussed in Chapter 14, File
Processing).

<string> Contains the definition of class string from the C++ Standard

Library (discussed in Chapter 21, Class string and String

Stream Processing).

<sstream> Contains function prototypes for functions that perform input
from strings in memory and output to strings in memory
(discussed in Chapter 21, Class string and String Stream

Processing).

<functional> Contains classes and functions used by C++ Standard Library
algorithms. This header is used in Chapter 16.

<iterator> Contains classes for accessing data in the C++ Standard Library
containers. This header is used in Chapter 15.

<algorithm> Contains functions for manipulating data in C++ Standard Library
containers. This header is used in Chapter 15.

<cassert> Contains macros for adding diagnostics that aid program
debugging. This header is used in Appendix E, Preprocessor.

<cfloat> Contains the floating-point size limits of the system.

<climits> Contains the integral size limits of the system.

<cstdio> Contains function prototypes for the C-style standard
input/output library functions.

<locale> Contains classes and functions normally used by stream
processing to process data in the natural form for different
languages (e.g., monetary formats, sorting strings, character
presentation, etc.).

<limits> Contains classes for defining the numerical data type limits on
each computer platform—this is C++’s version of <climits>

and <cfloat> .

<utility> Contains classes and functions that are used by many C++
Standard Library headers.

6.7 Case Study: Random-Number
Generation2
2. In Section 6.9, we’ll present C++11’s random-number capabilities
for building more secure applications.

We now take a brief and hopefully entertaining diversion into a popular
programming application, namely simulation and game playing. In this
and the next section, we develop a game-playing program that
includes multiple functions.

The element of chance can be introduced into computer applications
by using the C++ Standard Library function rand . Consider the
following statement:

i = rand();

11

The function rand generates an unsigned integer between 0 and
RAND_MAX (a symbolic constant defined in the <cstdlib> header). You

can determine the value of RAND_MAX for your system simply by
displaying the constant. If rand truly produces integers at random,
every number between 0 and RAND_MAX has an equal chance (or
probability) of being chosen each time rand is called.

The range of values produced directly by the function rand often is
different than what a specific application requires. For example, a
program that simulates coin tossing might require only 0 for “heads”
and 1 for “tails.” A program that simulates rolling a six-sided die would
require random integers in the range 1 to 6. A program that randomly
predicts the next type of spaceship (out of four possibilities) that will fly
across the horizon in a video game might require random integers in
the range 1 through 4.

6.7.1 Rolling a Six-Sided Die

To demonstrate rand , Fig. 6.6 simulates 20 rolls of a six-sided die and
displays the value of each roll. The function prototype for the rand
function is in <cstdlib> . To produce integers in the range 0 to 5, we
use the remainder operator (%) with rand as follows:

rand() % 6

This is called scaling. The number 6 is called the scaling factor. We
then shift the range of numbers produced by adding 1 to our previous
result. Figure 6.6 confirms that the results are in the range 1 to 6. If
you execute this program more than once, you’ll see that it produces
the same “random” values each time. We’ll show how to fix this in
Figure 6.8.

Fig. 6.6 Shifted, scaled integers produced by 1 + rand() % 6 .

6.7.2 Rolling a Six-Sided Die
60,000,000 Times

To show that values produced by rand occur with approximately equal
likelihood, Fig. 6.7 simulates 60,000,000 rolls of a die. Each integer in
the range 1 to 6 should appear approximately 10,000,000 times (one-
sixth of the rolls). This is confirmed by the program’s output.

Fig. 6.7 Rolling a six-sided die 60,000,000 times.

As the output shows, we can simulate rolling a six-sided die by scaling
and shifting the values rand produces. The default case (lines 41–42)
in the switch should never execute, because the switch ’s controlling
expression (face) always has values in the range 1–6. We provide the
default case as a matter of good practice. After we study arrays in
Chapter 7, we show how to replace the entire switch in Fig. 6.7
elegantly with a single-line statement. This will be another of those
“light-bulb” moments.

 Error-Prevention Tip 6.4
Provide a default case in a switch to catch errors even if you are

absolutely, positively certain that you have no bugs!

C++14 Digit Separators for Numeric
Literals
Prior to C++14, you’d represent the integer value 60,000,000 as
60000000 in a program. Typing numeric literals with many digits can be
error prone. To make numeric literals more readable, C++14 allows
you to insert between groups of digits in numeric literals the digit
separator ' (a single-quote character)—for example, 60'000'000 (line
18) represents the integer value 60,000,000. You might wonder why
single-quote characters are used rather than commas. If we use
60,000,000 in line 18, C++ treats the commas as comma operators

and the value of 60,000,000 would be the rightmost expression (000).
The loop-continuation condition would immediately be false—a logic
error in this program.

14

6.7.3 Randomizing the Random-
Number Generator with srand

Executing the program of Fig. 6.6 again produces

6 6 5 5 6

5 1 1 5 3

6 6 2 4 2

6 2 3 4 1

This is the same sequence of values shown in Fig. 6.6. How can
these be random numbers?

 Error-Prevention Tip 6.5
When debugging a simulation program, random-number repeatability
is essential for proving that corrections to the program work properly.

Function rand actually generates pseudorandom numbers.
Repeatedly calling rand produces a sequence of numbers that
appears to be random. However, the sequence repeats itself each

time the program executes. Once a program has been thoroughly
debugged, it can be conditioned to produce a different sequence of
random numbers for each execution. This is called randomizing and
is accomplished with the C++ Standard Library function srand from
the header <cstdlib> . Function srand takes an unsigned integer
argument and seeds the rand function to produce a different

sequence of random numbers for each execution.

Demonstrating srand
Figure 6.8 demonstrates function srand . The program produces a
different sequence of random numbers each time it executes,
provided that the user enters a different seed. We used the same
seed in the first and third sample outputs, so the same series of 10
numbers is displayed in each of those outputs.

 Software Engineering Observation 6.4

Ensure that your program seeds the random-number generator
differently (and only once) each time the program executes; otherwise,
an attacker would easily be able to determine the sequence of
pseudorandom numbers that would be produced.

Fig. 6.8 Randomizing the die-rolling program.

6.7.4 Seeding the Random-
Number Generator with the
Current Time

To randomize without having to enter a seed each time, we can use a
statement like

srand(static_cast<unsigned int>(time(0)));

This causes the computer to read its clock to obtain the value for the
seed. Function time (with the argument 0 as written in the preceding
statement) typically returns the current time as the number of seconds
since January 1, 1970, at midnight Greenwich Mean Time (GMT). This
value (which is of type time_t) is converted to an unsigned int and
used as the seed to the random-number generator—the static_cast
in the preceding statement eliminates a compiler warning that’s issued
if you pass a time_t value to a function that expects an unsigned int .
The function prototype for time is in <ctime> .

6.7.5 Scaling and Shifting Random
Numbers

Previously, we simulated the rolling of a six-sided die with the
statement

unsigned int face{1 + rand() % 6};

which always assigns an integer (at random) to variable face in the
range 1 ≤ face ≤ 6. The width of this range (i.e., the number of
consecutive integers in the range) is 6 and the starting number in the
range is 1. Referring to the preceding statement, we see that the width
of the range is determined by the number used to scale rand with the
remainder operator (i.e., 6), and the starting number of the range is
equal to the number (i.e., 1) that is added to the expression rand % 6 .
We can generalize this result as

type variableName{shiftingValue + rand() % scalingFactor};

where the shiftingValue is equal to the first number in the desired
range of consecutive integers and the scalingFactor is equal to the
width of the desired range of consecutive integers.

6.8 Case Study: Game of Chance;
Introducing Scoped enum s
One of the most popular games of chance is a dice game known as
“craps,” which is played in casinos and back alleys worldwide. The
rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces
contain 1, 2, 3, 4, 5 and 6 spots. After the dice have come to rest,
the sum of the spots on the two upward faces is calculated. If the
sum is 7 or 11 on the first roll, the player wins. If the sum is 2, 3 or
12 on the first roll (called “craps”), the player loses (i.e., the
“house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first roll, then
that sum becomes the player’s “point.” To win, you must continue
rolling the dice until you “make your point.” The player loses by
rolling a 7 before making the point.

The program in Fig. 6.9 simulates the game. In the rules, notice that
the player must roll two dice on the first roll and on all subsequent
rolls. We define function rollDice (lines 64–73) to roll the dice and
compute and print their sum. The function is defined once, but called
from lines 19 and 41. The function takes no arguments and returns the
sum of the two dice, so empty parentheses and the return type
unsigned int are indicated in the function prototype (line 8) and
function header (line 64).

Fig. 6.9 Craps simulation.

C++11: Scoped enum s
The player may win or lose on the first roll or on any subsequent roll.
The program tracks this with variable gameStatus , which is declared to
be of the new type Status (line 18). Line 12 declares a user-defined
type called a scoped enumeration (C++11) which is introduced by
the keywords enum class , followed by a type name (Status) and a set
of identifiers representing integer constants. The values of these
enumeration constants are of type int , start at 0 (unless specified
otherwise) and increment by 1 . In the preceding enumeration, the

constant CONTINUE has the value 0, WON has the value 1 and LOST has
the value 2. The identifiers in an enum class must be unique, but

separate enumeration constants can have the same integer value.
Variables of user-defined type Status can be assigned only one of the

three values declared in the enumeration.

11

 Good Programming Practice 6.2

By convention, you should capitalize the first letter of an enum class ’s

name.

 Good Programming Practice 6.3

Use only uppercase letters in enumeration constant names. This
makes these constants stand out in a program and reminds you that
enumeration constants are not variables.

To reference a scoped enum constant, you must qualify the constant
with the scoped enum ’s type name (Status) and the scope-resolution
operator (::), as in Status::CONTINUE . When the game is won, the
program sets variable gameStatus to Status::WON (lines 25 and 45).

When the game is lost, the program sets variable gameStatus to
Status::LOST (lines 30 and 49). Otherwise, the program sets variable
gameStatus to Status::CONTINUE (line 33) to indicate that the dice must
be rolled again.

 Error-Prevention Tip 6.6

Qualifying an enum class ’s constant with its typename and :: explicitly

identifies the constant as being in the scope of the specified enum
class . If another enum class contains the same identifier for one of its

constants, it’s always clear which version of the constant is being
used, because the typename and :: are required.

Another popular scoped enumeration is

enum class Months {JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,

 SEP, OCT, NOV, DEC};

which creates user-defined type Months with enumeration constants
representing the months of the year. The first value in the preceding
enumeration is explicitly set to 1 , so the remaining values increment
from 1 , resulting in the values 1 through 12 . Any enumeration
constant can be assigned an integer value in the enumeration
definition, and subsequent enumeration constants each have a value

1 higher than the preceding constant in the list until the next explicit
setting.

 Error-Prevention Tip 6.7

Use unique values for an enum ’s constants to help prevent hard-to-find

logic errors.

Winning or Losing on the First Roll
After the first roll, if the game is won or lost, the program skips the
body of the while statement (lines 40–52) because gameStatus is not
equal to Status::CONTINUE . The program proceeds to the if… else

statement in lines 55–60, which prints "Player wins" if gameStatus is
equal to WON and "Player loses" if gameStatus is equal to
Status::LOST .

Continuing to Roll
After the first roll, if the game is not over, the program saves the sum
in myPoint (line 34). Execution proceeds with the while statement,
because gameStatus is Status::CONTINUE . During each iteration of the
while , the program calls rollDice to produce a new sum . If sum
matches myPoint , the program sets gameStatus to Status::WON (line
45), the while- test fails, the if… else statement prints "Player wins"

and execution terminates. If sum is equal to 7 , the program sets
gameStatus to Status::LOST (line 49), the while -test fails, the if… else

statement prints "Player loses" and execution terminates.

The craps program uses two functions— main and rollDice—and the
switch , while , if… else , nested if… else and nested if
statements. We further investigate the game of craps in the exercises.

Enumeration Types Prior to C++11
Prior to C++11, enumerations were defined with the keyword enum
followed by a type name and a set of integer constants represented by
identifiers, as in

enum Status {CONTINUE, WON, LOST};

The constants were unscoped—you’d refer to them simply as
CONTINUE , WON and LOST . If two or more unscoped enums contain
constants with the same names, this can lead to naming conflicts and
compilation errors.

 Error-Prevention Tip 6.8t

Use scoped enums to avoid the potential naming conflicts that can

occur with unscoped enum constants.

C++11—Specifying the Type of an enum ’s
Constants (Optional)
An enumeration’s constants have integer values. An unscoped enum ’s
underlying type depends on its constants’ values and is guaranteed to
be large enough to store its constants’ values. A scoped enum ’s
underlying integral type is int , but you can specify a different type by
following the type name with a colon (:) and the integral type. For
example, we can specify that the constants in the enum class Status
should have type unsigned int , as in

11

enum class Status : unsigned int {CONTINUE, WON, LOST};

 Common Programming Error 6.5

A compilation error occurs if an enum constant’s value is outside the

range that can be represented by the enum ’s underlying type.

6.9 C++11 Random Numbers
According to CERT, function rand does not have “good statistical
properties” and can be predictable, which makes programs that use
rand less secure (CERT guideline MSC50-CPP). C++11 provides a
more secure library of random-number capabilities that can produce
nondeterministic random numbers—a set of random numbers that
can’t be predicted. Such random-number generators are used in
simulations and security scenarios where predictability is undesirable.
These new capabilities are located in the C++ Standard Library’s
<random> header.

11

Random-number generation is a mathematically sophisticated topic
for which mathematicians have developed many random-number
generation algorithms with different statistical properties. For flexibility
based on how random numbers are used in programs, C++11
provides many classes that represent various random-number
generation engines and distributions. An engine implements a
random-number generation algorithm that produces pseudorandom
numbers. A distribution controls the range of values produced by an
engine, the types of those values (e.g., int , double , etc.) and the
statistical properties of the values. In this section, we’ll use the default
random-number generation engine— default_random_engine—and a

uniform_int_distribution , which evenly distributes pseudorandom

integers over a specified range of values. The default range is from 0
to the maximum value of an int on your platform.

Rolling a Six-Sided Die
Figure 6.10 uses the default_random_engine and the
uniform_int_distribution to roll a six-sided die. Line 13 creates a
default_random_engine object named engine . Its constructor argument
seeds the random-number generation engine with the current time. If
you don’t pass a value to the constructor, the default seed will be used
and the program will produce the same sequence of numbers each
time it executes—this is useful for testing purposes. Line 14 creates
randomInt—a uniform_int_distribution object that produces unsigned
int values (as specified by <unsigned int>) in the range 1 to 6 (as
specified by the constructor arguments). The expression
randomInt(engine) (line 19) returns one unsigned int value in the
range 1 to 6.

Fig. 6.10 Using a C++11 random-number generation engine and
distribution to roll a six-sided die.

The notation <unsigned int> in line 14 indicates that
uniform_int_distribution is a class template. In this case, any integer
type can be specified in the angle brackets (< and >). In Chapter 18,
we discuss how to create class templates and various other chapters
show how to use existing class templates from the C++ Standard
Library. For now, you should feel comfortable using class template
uniform_int_distribution by mimicking the syntax shown in the
example.

6.10 Scope Rules
The portion of a program where an identifier can be used is known as
its scope. For example, when we declare a local variable in a block, it
can be referenced only in that block and in blocks nested within that
block. This section discusses block scope and global namespace
scope. Later we’ll see other scopes, including class scope in
Chapter 9, and function scope, function-prototype scope and
namespace scope in Chapter 23.

Block Scope
Identifiers declared inside a block have block scope, which begins at
the identifier’s declaration and ends at the terminating right brace (})
of the enclosing block. Local variables have block scope, as do
function parameters (even though they’re declared outside the block’s
braces). Any block can contain variable declarations. When blocks are
nested and an identifier in an outer block has the same name as an
identifier in an inner block, the one in the outer block is “hidden” until
the inner block terminates—the inner block “sees” its own local
variable’s value and not that of the enclosing block’s identically named
variable.

 Common Programming Error 6.6

Accidentally using the same name for an identifier in an inner block
that’s used for an identifier in an outer block, when in fact you want the
identifier in the outer block to be active for the duration of the inner
block, is typically a logic error.

 Error-Prevention Tip 6.9

Avoid variable names in inner scopes that hide names in outer
scopes. Most compilers will warn you about this issue.

Local variables also may be declared static . Such variables also
have block scope, but unlike other local variables, a static local

variable retains its value when the function returns to its caller. The
next time the function is called, the static local variable contains the
value it had when the function last completed execution. The following
statement declares static local variable count and initializes to 1:

static unsigned int count{1};

All static local variables of numeric types are initialized to zero by
default. The following statement declares static local variable count
and initializes it to 0 :

static unsigned int count;

Global Namespace Scope
An identifier declared outside any function or class has global
namespace scope. Such an identifier is “known” in all functions from
the point at which it’s declared until the end of the file. Function
definitions, function prototypes placed outside a function, class
definitions and global variables all have global namespace scope.
Global variables are created by placing variable declarations outside
any class or function definition. Such variables retain their values
throughout a program’s execution.

 Software Engineering Observation 6.5

Declaring a variable as global rather than local allows unintended side
effects to occur when a function that does not need access to the
variable accidentally or maliciously modifies it. This is another
example of the principle of least privilege—except for truly global
resources such as cin and cout , global variables should be avoided.

In general, variables should be declared in the narrowest scope in
which they need to be accessed.

 Software Engineering Observation 6.6

Variables used only in a particular function should be declared as local
variables in that function rather than as global variables.

Scope Demonstration
Figure 6.11 demonstrates scoping issues with global variables, local
variables and static local variables. Line 10 declares and initializes
global variable x to 1. This global variable is hidden in any block (or
function) that declares a variable named x . In main , line 13 displays
the value of global variable x . Line 15 declares a local variable x and
initializes it to 5. Line 17 outputs this variable to show that the global x
is hidden in main . Next, lines 19–23 define a new block in main in
which another local variable x is initialized to 7 (line 20). Line 22
outputs this variable to show that it hides x in the outer block of main
as well as the global x . When the block exits, the variable x with
value 7 is destroyed automatically. Next, line 25 outputs the local
variable x in the outer block of main to show that it’s no longer hidden.

Fig. 6.11 Scoping example.

To demonstrate other scopes, the program defines three functions,
each of which takes no arguments and returns nothing. Function
useLocal (lines 38–44) declares local variable x (line 39) and
initializes it to 25. When the program calls useLocal , the function prints
the variable, increments it and prints it again before the function
returns program control to its caller. Each time the program calls this
function, the function recreates local variable x and reinitializes it to
25.

Function useStaticLocal (lines 49–57) declares static variable x and
initializes it to 50. Local variables declared as static retain their
values even when they’re out of scope (i.e., the function in which
they’re declared is not executing). When the program calls
useStaticLocal , the function prints x , increments it and prints it again
before the function returns program control to its caller. In the next call
to this function, static local variable x contains the value 51. The
initialization in line 50 occurs only once—the first time useStaticLocal
is called.

Function useGlobal (lines 60–64) does not declare any variables.
Therefore, when it refers to variable x , the global x (line 10,
preceding main) is used. When the program calls useGlobal , the
function prints the global variable x , multiplies it by 10 and prints it
again before the function returns to its caller. The next time the
program calls useGlobal , the global variable has its modified value, 10.
After executing functions useLocal , useStaticLocal and useGlobal

twice each, the program prints the local variable x in main again to
show that none of the function calls modified the value of x in main ,
because the functions all referred to variables in other scopes.

6.11 Function-Call Stack and
Activation Records
To understand how C++ performs function calls, we first need to
consider a data structure (i.e., collection of related data items) known
as a stack. Think of a stack as analogous to a pile of dishes. When a
dish is placed on the pile, it’s normally placed at the top—referred to
as pushing the dish onto the stack. Similarly, when a dish is removed
from the pile, it’s normally removed from the top—referred to as
popping the dish off the stack. Stacks are known as last-in, first-out
(LIFO) data structures—the last item pushed (inserted) on the stack
is the first item popped (removed) from the stack.

Function-Call Stack
One of the most important mechanisms for computer science students
to understand is the function-call stack (sometimes referred to as the
program-execution stack). This data structure—working “behind the
scenes”—supports the function call/return mechanism. It also supports
the creation, maintenance and destruction of each called function’s
local variables. As we’ll see in Figs. 6.13–6.15, last-in, first-out (LIFO)
behavior is exactly what a function needs in order to return to the
function that called it.

Stack Frames
As each function is called, it may, in turn, call other functions, which
may, in turn, call other functions—all before any of the functions
return. Each function eventually must return control to the function that
called it. So, somehow, the system must keep track of the return
addresses that each function needs to return control to the function
that called it. The function-call stack is the perfect data structure for
handling this information. Each time a function calls another function,
an entry is pushed onto the stack. This entry, called a stack frame or
an activation record, contains the return address that the called
function needs in order to return to the calling function. It also contains
some additional information we’ll soon discuss. If the called function
returns instead of calling another function before returning, the stack
frame for the function call is popped, and control transfers to the return
address in the popped stack frame.

The beauty of the call stack is that each called function always finds
the information it needs to return to its caller at the top of the call
stack. And, if a function makes a call to another function, a stack
frame for the new function call is simply pushed onto the call stack.
Thus, the return address required by the newly called function to
return to its caller is now located at the top of the stack.

Local Variables and Stack Frames
The stack frames have another important responsibility. Most
functions have local variables—parameters and any local variables

the function declares. Non- static local variables need to exist while a

function is executing. They need to remain active if the function makes
calls to other functions. But when a called function returns to its caller,
the called function’s non- static local variables need to “go away.”

The called function’s stack frame is a perfect place to reserve the
memory for the called function’s non- static local variables. That stack

frame exists as long as the called function is active. When that
function returns—and no longer needs its non- static local variables—
its stack frame is popped from the stack, and those non- static local

variables no longer exist.

Stack Overflow
Of course, the amount of memory in a computer is finite, so only a
certain amount of memory can be used to store activation records on
the function-call stack. If more function calls occur than can have their
activation records stored on the function-call stack, a fatal error known
as stack overflow occurs.3

3. This is how the website stackoverflow.com got its name. This is a
great website for getting answers to your programming questions.

Function-Call Stack in Action
Now let’s consider how the call stack supports the operation of a
square function called by main (lines 9–13 of Fig. 6.12).

http://stackoverflow.com

Fig. 6.12 square function used to demonstrate the function-call
stack and activation records.

First, the operating system calls main—this pushes an activation
record onto the stack (shown in Fig. 6.13). The activation record tells
main how to return to the operating system (i.e., transfer to return
address R1) and contains the space for main ’s local variable (i.e., a ,
which is initialized to 10).

Fig. 6.13 Function-call stack after the operating system calls main
to execute the program.

Function main—before returning to the operating system—now calls
function square in line 12 of Fig. 6.12. This causes a stack frame for
square (lines 16–18) to be pushed onto the function-call stack (Fig.
6.14). This stack frame contains the return address that square needs
to return to main (i.e., R2) and the memory for square ’s local variable
(i.e., x).

After square calculates the square of its argument, it needs to return to
main—and no longer needs the memory for its variable x . So square ’s
stack frame is popped from the stack—giving square the return
location in main (i.e., R2) and losing square ’s local variable (Step 3).

Figure 6.15 shows the function-call stack after square ’s activation
record has been popped.

Fig. 6.14 Function-call stack after main calls square to perform the
calculation.

Fig. 6.15 Function-call stack after function square returns to main .

Function main now displays the result of calling square (Fig. 6.12, line
12). Reaching the closing right brace of main causes its stack frame to
be popped from the stack, giving main the address it needs to return
to the operating system (i.e., R1 in Fig. 6.13)—at this point, main ’s
local variable (i.e., a) no longer exists.

You’ve now seen how valuable the stack data structure is in
implementing a key mechanism that supports program execution.
Data structures have many important applications in computer
science. We discuss stacks, queues, lists, trees and other data
structures in Chapter 15, Standard Library Containers and Iterators,
and Chapter 19, Custom Templatized Data Structures.

6.12 Inline Functions
Implementing a program as a set of functions is good from a software
engineering standpoint, but function calls involve execution-time
overhead. C++ provides inline functions to help reduce function-call
overhead. Placing the qualifier inline before a function’s return type
in the function definition advises the compiler to generate a copy of
the function’s body code in every place where the function is called
(when appropriate) to avoid a function call. This often makes the
program larger. The compiler can ignore the inline qualifier and
generally does so for all but the smallest functions. Reusable inline
functions are typically placed in headers, so that their definitions can
be included in each source file that uses them.

 Software Engineering
Observation 6.7

If you change the definition of an inline function, you must recompile

all of that function’s clients.

 Performance Tip 6.1

Compilers can inline code for which you have not explicitly used the
inline keyword. Today’s optimizing compilers are so sophisticated

that it’s best to leave inlining decisions to the compiler.

Figure 6.16 uses inline function cube (lines 9–11) to calculate the
volume of a cube. Keyword const in function cube ’s parameter list
(line 9) tells the compiler that the function does not modify variable
side . This ensures that side ’s value is not changed by the function
during the calculation. (Keyword const is discussed in additional detail
in Chapters 7–9.)

 Software Engineering
Observation 6.8

The const qualifier should be used to enforce the principle of least

privilege. Using this principle to properly design software can greatly
reduce debugging time and improper side effects and can make a
program easier to modify and maintain.

Fig. 6.16 inline function that calculates the volume of a cube.

6.13 References and Reference
Parameters
Two ways to pass arguments to functions in many programming
languages are pass-by-value and pass-by-reference. When an
argument is passed by value, a copy of the argument’s value is made
and passed (on the function-call stack) to the called function. Changes
to the copy do not affect the original variable’s value in the caller. This
prevents the accidental side effects that so greatly hinder the
development of correct and reliable software systems. So far, each
argument in the book has been passed by value.

 Performance Tip 6.2

One disadvantage of pass-by-value is that, if a large data item is being
passed, copying that data can take a considerable amount of
execution time and memory space.

Reference Parameters
This section introduces reference parameters—the first of the two
means C++ provides for performing pass-by-reference. With pass-by-

reference, the caller gives the called function the ability to access the
caller’s data directly, and to modify that data.

 Performance Tip 6.3

Pass-by-reference is good for performance reasons, because it can
eliminate the pass-by-value overhead of copying large amounts of
data.

 Software Engineering Observation 6.9

Pass-by-reference can weaken security; the called function can
corrupt the caller’s data.

After this section’s example, we’ll show how to achieve the
performance advantage of pass-by-reference while simultaneously
achieving the software engineering advantage of protecting the
caller’s data from corruption.

A reference parameter is an alias for its corresponding argument in a
function call. To indicate that a function parameter is passed by
reference, simply follow the parameter’s type in the function prototype
by an ampersand (&); use the same convention when listing the

parameter’s type in the function header. For example, the parameter
declaration

int& number

when read from right to left is pronounced “ number is a reference to an
int .” In the function call, simply mention the variable by name (e.g.,
number) to pass it by reference. In the called function’s body, the
reference parameter actually refers to the original variable in the
calling function, and the original variable can be modified directly by
the called function. As always, the function prototype and header must
agree. Note the placement of & in the preceding declaration—some
C++ programmers prefer to write the equivalent form int &number .4

4. We used this placement in our prior editions. We now attach the &
to the type name to normalize our book with the C++ standard.

Passing Arguments by Value and by
Reference
Figure 6.17 compares pass-by-value and pass-by-reference with
reference parameters. The “styles” of the arguments in the calls to
function squareByValue and function squareByReference are identical—
both variables are simply mentioned by name in the function calls.

Without checking the function prototypes or function definitions, it isn’t
possible to tell from the calls alone whether either function can modify
its arguments. Because function prototypes are mandatory, the
compiler has no trouble resolving the ambiguity. Chapter 8 discusses
pointers, which enable an alternate form of pass-by-reference in which
the style of the function call clearly indicates pass-by-reference (and
the potential for modifying the caller’s arguments).

 Common Programming Error 6.7

Because reference parameters are mentioned only by name in the
body of the called function, you might inadvertently treat reference
parameters as pass-by-value parameters. This can cause unexpected
side effects if the original variables are changed by the function.

Fig. 6.17 Passing arguments by value and by reference.

References as Aliases within a Function

References can also be used as aliases for other variables within a
function (although they typically are used with functions as shown in
Fig. 6.17). For example, the code

int count{1}; // declare integer variable count

int& cRef{count}; // create cRef as an alias for count

++cRef; // increment count (using its alias cRef)

increments variable count by using its alias cRef . Reference variables
must be initialized in their declarations and cannot be reassigned as
aliases to other variables. In this sense, references are constant. All
operations supposedly performed on the alias (i.e., the reference) are
actually performed on the original variable. The alias is simply another
name for the original variable. Unless it’s a reference to a constant
(discussed below), a reference’s initializer must be an lvalue (e.g., a
variable name), not a constant or rvalue expression (e.g., the result of
a calculation).

const References
To specify that a reference parameter should not be allowed to modify
the corresponding argument, place the const qualifier before the type
name in the parameter’s declaration. For example, consider class
Account (Fig. 3.2). For simplicity in that early example, we used pass-

by-value in the setName member function, which was defined with the
header

void setName(std::string accountName)

When this member function was called, it received a copy of its string
argument. string objects can be large, so this copy operation
degrades an application’s performance.

For this reason, string objects (and objects in general) should be
passed to functions by reference. Class Account ’s setName member
function does not need to modify its argument, so following the
principle of least privilege, we’d declare the parameter as

const std::string& accountName

Read from right to left, the accountName parameter is a reference to a
string constant. We get the performance of passing the string by
reference, but setName treats the argument as a constant, so it cannot
modify the value in the caller—just like with pass-by-value. Code that
calls setName would still pass the string argument exactly as we did in
Fig. 3.1.

 Performance Tip 6.4

For passing large objects, use a const reference parameter to

simulate the appearance and security of pass-by-value and avoid the
overhead of passing a copy of the large object.

Similarly, class Account ’s getName member function was defined with
the header

std::string getName() const

which indicates that a string is returned by value. Changing this to

const std::string& getName() const

indicates that the string should be returned by reference (eliminating
the overhead of copying a string) and that the caller cannot modify
the returned string .

Returning a Reference to a Local Variable

Functions can return references to local variables, but this can be
dangerous. When returning a reference to a local variable—unless
that variable is declared static—the reference refers to a variable
that’s discarded when the function terminates. An attempt to access
such a variable yields undefined behavior. References to undefined
variables are called dangling references.

 Common Programming Error 6.8

Returning a reference to a local variable in a called function is a logic
error for which compilers typically issue a warning. Compilation
warnings indicate potential problems, so most software-engineering
teams have policies requiring code to compile without warnings.

6.14 Default Arguments
It’s common for a program to invoke a function repeatedly with the
same argument value for a particular parameter. In such cases, you
can specify that such a parameter has a default argument, i.e., a
default value to be passed to that parameter. When a program omits
an argument for a parameter with a default argument in a function call,
the compiler rewrites the function call and inserts the default value of
that argument.

boxVolume Function with Default
Arguments
Figure 6.18 demonstrates using default arguments to calculate a
box’s volume. The function prototype for boxVolume (lines 7–8)
specifies that all three parameters have default values of 1 by placing
= 1 to the right of each parameter. We provided variable names in the
function prototype as documentation, so a programmer using this
function understands the purpose of each parameter—recall that
parameter names are not required in function prototypes.

Fig. 6.18 Using default arguments.

The first call to boxVolume (line 12) specifies no arguments, thus using
all three default values of 1. The second call (line 16) passes only a

length argument, thus using default values of 1 for the width and
height arguments. The third call (line 20) passes arguments for only
length and width , thus using a default value of 1 for the height
argument. The last call (line 24) passes arguments for length , width
and height , thus using no default values. Any arguments passed to
the function explicitly are assigned to the function’s parameters from
left to right. Therefore, when boxVolume receives one argument, the
function assigns the value of that argument to its length parameter
(i.e., the leftmost parameter in the parameter list). When boxVolume
receives two arguments, the function assigns the values of those
arguments to its length and width parameters in that order. Finally,
when boxVolume receives all three arguments, the function assigns the
values of those arguments to its length , width and height
parameters, respectively.

Notes Regarding Default Arguments
Default arguments must be the rightmost (trailing) arguments in a
function’s parameter list. When calling a function with two or more
default arguments, if an omitted argument is not the rightmost
argument, then all arguments to the right of that argument also must
be omitted. Default arguments must be specified with the first
occurrence of the function name—typically, in the function prototype. If
the function prototype is omitted because the function definition also
serves as the prototype, then the default arguments should be
specified in the function header. Default values can be any

expression, including constants, global variables or function calls.
Default arguments also can be used with inline functions.

 Good Programming Practice 6.4

Using default arguments can simplify writing function calls. However,
some programmers feel that explicitly specifying all arguments is
clearer.

6.15 Unary Scope Resolution
Operator
C++ provides the unary scope resolution operator (::) to access a
global variable when a local variable of the same name is in scope.5
The unary scope resolution operator cannot be used to access a local
variable of the same name in an outer block. A global variable can be
accessed directly without the unary scope resolution operator if the
name of the global variable is not the same as that of a local variable
in scope.

5. The C++ standard also refers to the scope resolution operator (::)
as the scope operator.

Figure 6.19 shows the unary scope resolution operator with local and
global variables of the same name (lines 6 and 9). To emphasize that
the local and global versions of variable number are distinct, the
program declares one variable int and the other double .

Fig. 6.19 Unary scope resolution operator.

 Good Programming Practice
6.5

Always using the unary scope resolution operator (::) to refer to

global variables (even if there is no collision with a local-variable
name) makes it clear that you’re intending to access a global variable
rather than a local variable.

 Software Engineering
Observation 6.10

Always using the unary scope resolution operator (::) to refer to

global variables makes programs easier to modify by reducing the risk
of name collisions with nonglobal variables.

 Error-Prevention Tip 6.10

Always using the unary scope resolution operator (::) to refer to a

global variable eliminates logic errors that might occur if a nonglobal
variable hides the global variable.

 Error-Prevention Tip 6.11

Avoid using variables of the same name for different purposes in a
program. Although this is allowed in various circumstances, it can lead

to errors.

6.16 Function Overloading
C++ enables several functions of the same name to be defined, as
long as they have different signatures. This is called function
overloading. The C++ compiler selects the proper function to call by
examining the number, types and order of the arguments in the call.
Function overloading is used to create several functions of the same
name that perform similar tasks, but on different data types. For
example, many functions in the math library are overloaded for
different numeric types—the C++ standard requires float , double and
long double overloaded versions of the math library functions
discussed in Section 6.3.

 Good Programming Practice
6.6

Overloading functions that perform closely related tasks can make
programs more readable and understandable.

Overloaded square Functions

Figure 6.20 uses overloaded square functions to calculate the square
of an int (lines 7–10) and the square of a double (lines 13–16). Line
19 invokes the int version of function square by passing the literal
value 7 . C++ treats whole-number literal values as type int . Similarly,
line 21 invokes the double version of function square by passing the
literal value 7.5 , which C++ treats as a double . In each case the
compiler chooses the proper function to call, based on the type of the
argument. The last two lines of the output window confirm that the
proper function was called in each case.

Fig. 6.20 Overloaded square functions

How the Compiler Differentiates Among
Overloaded Functions
Overloaded functions are distinguished by their signatures. A
signature is a combination of a function’s name and its parameter
types (in order). The compiler encodes each function identifier with the
types of its parameters (sometimes referred to as name mangling or
name decoration) to enable type-safe linkage. Type-safe linkage
ensures that the proper overloaded function is called and that the
types of the arguments conform to the types of the parameters.
Figure 6.21 was compiled with GNU C++. Rather than showing the
execution output of the program (as we normally would), we show the
mangled function names produced in assembly language by GNU
C++.

For GNU C++, each mangled name (other than main) begins with two
underscores (__) followed by the letter Z , a number and the function
name. The number that follows Z specifies how many characters are
in the function’s name. For example, function square

Fig. 6.21 Name mangling to enable type-safe linkage.

has 6 characters in its name, so its mangled name is prefixed with
__Z6 . Following the function name is an encoding of its parameter list:

For function square that receives an int (line 5), i represents
int , as shown in the output’s first line.
For function square that receives a double (line 10), d represents
double , as shown in the output’s second line.

For function nothing1 (line 16), i represents an int , f represents
a float , c represents a char and Ri represents an int& (i.e., a
reference to an int), as shown in the output’s third line.
For function nothing2 (line 20), c represents a char , i represents
an int , Rf represents a float& and Rd represents a double& .

The compiler distinguishes the two square functions by their
parameter lists—one specifies i for int and the other d for double .
The return types of the functions are not specified in the mangled
names. Overloaded functions can have different return types, but if
they do, they must also have different parameter lists. Function-name
mangling is compiler specific. For example, Visual C++ produces the
name square@@YAHH@Z for the square function at line 5. The GNU C++
compiler did not mangle main ’s name; however, some compilers do.
For example, Visual C++ uses _main .

 Common Programming Error 6.9

Creating overloaded functions with identical parameter lists and
different return types is a compilation error.

The compiler uses only the parameter lists to distinguish between
overloaded functions. Such functions need not have the same number
of parameters. Use caution when overloading functions with default
parameters, because this may cause ambiguity.

 Common Programming Error 6.10

A function with default arguments omitted might be called identically to
another overloaded function; this is a compilation error. For example,
having a program that contains both a function that explicitly takes no
arguments and a function of the same name that contains all default
arguments results in a compilation error when an attempt is made to
use that function name in a call passing no arguments. The compiler
cannot determine which version of the function to choose.

Overloaded Operators
In Chapter 10, we discuss how to overload operators to define how
they should operate on objects of user-defined data types. (In fact,
we’ve been using many overloaded operators to this point, including
the stream insertion << and the stream extraction >> operators, which
are overloaded for all the fundamental types. We say more about
overloading << and >> to be able to handle objects of user-defined
types in Chapter 10.)

6.17 Function Templates
Overloaded functions are normally used to perform similar operations
that involve different program logic on different data types. If the
program logic and operations are identical for each data type,
overloading may be performed more compactly and conveniently by
using function templates. You write a single function template
definition. Given the argument types provided in calls to this function,
C++ automatically generates separate function template
specializations to handle each type of call appropriately. Thus,
defining a single function template essentially defines a whole family
of overloaded functions.

maximum Function Template
Figure 6.22 defines a maximum function template (lines 3–18) that
determines the largest of three values. All function template definitions
begin with the template keyword (line 3) followed by a template
parameter list enclosed in angle brackets (< and >). Every
parameter in the template parameter list is preceded by keyword
typename or keyword class (they are synonyms in this context). The
type parameters are placeholders for fundamental types or user-
defined types. These placeholders, in this case, T , are used to specify
the types of the function’s parameters (line 4), to specify the function’s
return type (line 4) and to declare variables within the body of the

function definition (line 5). A function template is defined like any other
function, but uses the type parameters as placeholders for actual data
types.

Fig. 6.22 Function template maximum header.

The function template declares a single type parameter T (line 3) as a
placeholder for the type of the data to be tested by function maximum .
The name of a type parameter must be unique in the template
parameter list for a particular template definition. When the compiler
detects a maximum invocation in the program source code, the type of
the arguments in the maximum call is substituted for T throughout the
template definition, and C++ creates a complete function for
determining the maximum of three values of the specified type—all
three must have the same type, since we use only one type parameter

in this example. Then the newly created function is compiled—
templates are a means of code generation. (We’ll use C++ Standard
Library templates that require multiple type parameters in Chapter
15.)

Using Function Template maximum
Figure 6.23 uses the maximum function template to determine the
largest of three int values, three double values and three char
values, respectively (lines 15, 24 and 33). Because each call uses
arguments of a different type, the compiler creates a separate function
definition for each—one expecting three int values, one expecting
three double values and one expecting three char values,
respectively.

Fig. 6.23 Function template maximum test program.

maximum Function Template

Specialization for Type int
The function template specialization created for type int replaces
each occurrence of T with int as follows:

int maximum(int value1, int value2, int value3) {

 int maximumValue{value1}; // assume value1 is maximum

 // determine whether value2 is greater than maximumValue

 if (value2 > maximumValue) {

 maximumValue = value2;

 }

 // determine whether value3 is greater than maximumValue

 if (value3 > maximumValue) {

 maximumValue = value3;

 }

 return maximumValue;

}

6.18 Recursion
For some problems, it’s useful to have functions call themselves. A
recursive function is a function that calls itself, either directly, or
indirectly (through another function). [Note: The C++ standard
document indicates that main should not be called within a program or
recursively. Its sole purpose is to be the starting point for program
execution.] This section and the next present simple examples of
recursion. Recursion is discussed at length in upper-level computer
science courses. Figure 6.29 (at the end of Section 6.20)
summarizes the extensive recursion examples and exercises in the
book.

Recursion Concepts
We first consider recursion conceptually, then examine programs
containing recursive functions. Recursive problem-solving approaches
have a number of elements in common. A recursive function is called
to solve a problem. The function knows how to solve only the simplest
case(s), or so-called base case(s). If the function is called with a base
case, the function simply returns a result. If the function is called with
a more complex problem, it typically divides the problem into two
conceptual pieces—a piece that the function knows how to do and a
piece that it does not know how to do. To make recursion feasible, the
latter piece must resemble the original problem, but be a slightly
simpler or smaller version. This new problem looks like the original, so

the function calls a copy of itself to work on the smaller problem—this
is referred to as a recursive call and is also called the recursion
step. The recursion step often includes the keyword return , because
its result will be combined with the portion of the problem the function
knew how to solve to form the result passed back to the original caller,
possibly main .

 Common Programming Error 6.11

Omitting the base case or writing the recursion step incorrectly so that
it does not converge on the base case causes an infinite recursion
error, typically causing a stack overflow. This is analogous to the
problem of an infinite loop in an iterative (nonrecursive) solution.

The recursion step executes while the original call to the function is
still “open,” i.e., it has not yet finished executing. The recursion step
can result in many more such recursive calls, as the function keeps
dividing each new subproblem with which the function is called into
two conceptual pieces. In order for the recursion to eventually
terminate, each time the function calls itself with a slightly simpler
version of the original problem, this sequence of smaller and smaller
problems must eventually converge on the base case. At that point,
the function recognizes the base case and returns a result to the
previous copy of the function, and a sequence of returns ensues up
the line until the original call eventually returns the final result to main .
This sounds quite exotic compared to the kind of problem solving
we’ve been using to this point. As an example of these concepts at

work, let’s write a recursive program to perform a popular
mathematical calculation.

Factorial
The factorial of a nonnegative integer n, written n! (pronounced “n
factorial”), is the product

n · (n – 1) · (n – 2) · … · 1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the
product 5 · 4 · 3 · 2 · 1, which is equal to 120.

Iterative Factorial
The factorial of an integer, number , greater than or equal to 0, can be
calculated iteratively (nonrecursively) by using a for statement as
follows:

factorial = 1;

for (unsigned int counter{number}; counter >= 1; --counter) {

 factorial *= counter;

}

Recursive Factorial
A recursive definition of the factorial function is arrived at by observing
the following algebraic relationship:

n! = n · (n – 1)!

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

5! = 5 · 4 · 3 · 2 · 1

5! = 5 · (4 · 3 · 2 · 1)

5! = 5 · (4!)

Evaluating 5!
The evaluation of 5! would proceed as shown in Fig. 6.24, which
illustrates how the succession of recursive calls proceeds until 1! is
evaluated to be 1, terminating the recursion. Figure 6.24(b) shows the
values returned from each recursive call to its caller until the final
value is calculated and returned.

Fig. 6.24 Recursive evaluation of 5!.

Using a Recursive factorial Function to
Calculate Factorials
Figure 6.25 uses recursion to calculate and print the factorials of the
integers 0–10. (The choice of the data type unsigned long is explained
momentarily.) The recursive function factorial (lines 18–25) first
determines whether the terminating condition number <= 1 (i.e., the
base case; line 19) is true. If number is less than or equal to 1, the
factorial function returns 1 (line 20), no further recursion is
necessary and the function terminates. If number is greater than 1, line

23 expresses the problem as the product of number and a recursive

call to factorial evaluating the factorial of number - 1 , which is a

slightly simpler problem than the original calculation
factorial(number) .

Fig. 6.25 Recursive function factorial .

Why We Chose Type unsigned long in
This Example
Function factorial has been declared to receive a parameter of type
unsigned long and return a result of type unsigned long . This is
shorthand notation for unsigned long int . The C++ standard requires
that a variable of type unsigned long int be at least as big as an int .
Typically, an unsigned long int is stored in at least four bytes (32
bits); such a variable can hold a value in the range 0 to at least
4,294,967,295. (A long int is also typically stored in at least four
bytes and can hold a value at least in the range –2,147,483,647 to
2,147,483,647.) As can be seen in Fig. 6.25, factorial values become
large quickly. We chose the data type unsigned long so that the
program can calculate factorials greater than 7! on computers with
small (such as two-byte) integers. Unfortunately, the function
factorial produces large values so quickly that even unsigned long
does not help us compute many factorial values before even the size
of an unsigned long variable is exceeded.

C++11 Type unsigned long long int
C++11’s unsigned long long int type (which can be abbreviated as
unsigned long long) enables you to store values in at least 8 bytes (64
bits), which can hold numbers as large as
18,446,744,073,709,551,615.

11

Representing Even Larger Numbers
Variables of type double could be used to calculate factorials of larger
numbers, but as you know, doubles cannot represent all values
precisely. As we’ll see when we discuss object-oriented programming
in more depth, C++ allows us to create classes that can represent
arbitrarily large integers. Such classes already are available in popular
class libraries, and we work on similar classes of our own in Exercise
9.14 and Exercise 10.9.

6.19 Example Using Recursion:
Fibonacci Series
The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent
Fibonacci number is the sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of
spiral. The ratio of successive Fibonacci numbers converges on a
constant value of 1.618…. This number frequently occurs in nature
and has been called the golden ratio or the golden mean. Humans
tend to find the golden mean aesthetically pleasing. Architects often
design windows, rooms and buildings whose length and width are in
the ratio of the golden mean. Postcards are often designed with a
golden mean length/width ratio. A web search for “Fibonacci in nature”
reveals many interesting examples, including flower petals, shells,
spiral galaxies, hurricanes and more.

Recursive Fibonacci Definition

The Fibonacci series can be defined recursively as follows:

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

The program of Fig. 6.26 calculates the nth Fibonacci number
recursively by using function fibonacci . Fibonacci numbers tend to
become large quickly, although slower than factorials do. Therefore,
we chose the data type unsigned long for the parameter type and the
return type in function fibonacci . Figure 6.26 shows the execution of
the program, which displays the Fibonacci values for several numbers.

Fig. 6.26 Recursive function fibonacci .

The application begins with a for statement that calculates and
displays the Fibonacci values for the integers 0–10 and is followed by

three calls to calculate the Fibonacci values of the integers 20, 30 and
35 (lines 15–17). The calls to fibonacci in main (lines 12 and 15–17)
are not recursive calls, but the calls from line 26 of fibonacci are
recursive. Each time the program invokes fibonacci (lines 21–28), the
function immediately tests the base case to determine whether number
is equal to 0 or 1 (line 22). If this is true, line 23 returns number .
Interestingly, if number is greater than 1, the recursion step (line 26)
generates two recursive calls, each for a slightly smaller problem than
the original call to fibonacci .

Evaluating fibonacci(3)
Figure 6.27 shows how function fibonacci would evaluate
fibonacci(3) . This figure raises some interesting issues about the
order in which C++ compilers evaluate the operands of operators. This
is a separate issue from the order in which operators are applied to
their operands, namely, the order dictated by the rules of operator
precedence and associativity. Figure 6.27 shows that evaluating
fibonacci(3) causes two recursive calls, namely, fibonacci(2) and
fibonacci(1) . In what order are these calls made?

Fig. 6.27 Set of recursive calls to function fibonacci .

Order of Evaluation of Operands
Most programmers simply assume that the operands are evaluated
left to right. C++ does not specify the order in which the operands of
most operators (including +) are to be evaluated. Therefore, you must
make no assumption about the order in which these calls execute.
The calls could in fact execute fibonacci(2) first, then fibonacci(1) , or
they could execute in the reverse order: fibonacci(1) , then
fibonacci(2) . In this program and in most others, it turns out that the
final result would be the same. However, in some programs the
evaluation of an operand can have side effects (changes to data
values) that could affect the final result of the expression.

C++ specifies the order of evaluation of the operands of only four
operators— && , || , comma (,) and ?: . The first three are binary
operators whose two operands are guaranteed to be evaluated left to
right. The last operator is C++’s only ternary operator—its leftmost
operand is always evaluated first; if it evaluates to true, the middle
operand evaluates next and the last operand is ignored; if the leftmost
operand evaluates to false, the third operand evaluates next and the
middle operand is ignored.

 Portability Tip 6.3

Programs that depend on the order of evaluation of the operands of
operators other than && , || , ?: and the comma (,) operator can

function differently with different compilers and can lead to logic
errors.

 Common Programming Error 6.12

Writing programs that depend on the order of evaluation of the
operands of operators other than && , || , ?: and the comma (,)

operator can lead to logic errors.

 Error-Prevention Tip 6.12

Do not depend on the order in which operands are evaluated. To
ensure that side effects are applied in the correct order, break
complex expressions into separate statements.

 Common Programming Error 6.13

Recall that the && and || operators use short-circuit evaluation.

Placing an expression with a side effect on the right side of a && or ||
operator is a logic error if that expression should always be evaluated.

Exponential Complexity
A word of caution is in order about recursive programs like the one we
use here to generate Fibonacci numbers. Each level of recursion in
function fibonacci has a doubling effect on the number of function
calls; i.e., the number of recursive calls that are required to calculate
the nth Fibonacci number is on the order of . This rapidly gets out
of hand. Calculating only the 20th Fibonacci number would require on
the order of or about a million calls, calculating the 30th Fibonacci
number would require on the order of or about a billion calls, and
so on. Computer scientists refer to this as exponential complexity.
Problems of this nature can humble even the world’s most powerful

computers as n becomes large! Complexity issues in general, and
exponential complexity in particular, are discussed in detail in the
upper-level computer science course typically called Algorithms.

 Performance Tip 6.5

Avoid Fibonacci-style recursive programs that result in an exponential
“explosion” of calls.

6.20 Recursion vs. Iteration
In the two prior sections, we studied two recursive functions that can
also be implemented with simple iterative programs. This section
compares the two approaches and discusses why you might choose
one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement:
Iteration uses a iteration statement; recursion uses a selection
statement.
Both iteration and recursion involve iteration: Iteration explicitly
uses an iteration statement; recursion achieves iteration through
repeated function calls.
Iteration and recursion each involve a termination test: Iteration
terminates when the loop-continuation condition fails; recursion
terminates when a base case is recognized.
Counter-controlled iteration and recursion each gradually approach
termination: Iteration modifies a counter until the counter assumes
a value that makes the loopcontinuation condition fail; recursion
produces simpler versions of the original problem until the base
case is reached.
Both iteration and recursion can occur infinitely: An infinite loop
occurs with iteration if the loop-continuation test never becomes
false; infinite recursion occurs if the recursion step does not reduce
the problem during each recursive call in a manner that converges
on the base case.

Iterative Factorial Implementation
To illustrate the differences between iteration and recursion, let’s
examine an iterative solution to the factorial problem (Fig. 6.28). An
iteration statement is used (lines 22–24 of Fig. 6.28) rather than the
selection statement of the recursive solution (lines 19–24 of Fig. 6.25).
Both solutions use a termination test. In the recursive solution, line 19
(Fig. 6.25) tests for the base case. In the iterative solution, line 22
(Fig. 6.28) tests the loop-continuation condition—if the test fails, the
loop terminates. Finally, instead of producing simpler versions of the
original problem, the iterative solution uses a counter that is modified
until the loop-continuation condition becomes false.

Fig. 6.28 Iterative function factorial .

Negatives of Recursion
Recursion has negatives. It repeatedly invokes the mechanism, and
consequently the overhead, of function calls. This can be expensive in

both processor time and memory space. Each recursive call causes
another copy of the function variables to be created; this can consume
considerable memory. Iteration normally occurs within a function, so
the overhead of repeated function calls and extra memory assignment
is omitted. So why choose recursion? Software Engineering
Observation 6.11 disusses two reasons.

 Software Engineering Observation 6.11

Any problem that can be solved recursively can also be solved
iteratively (nonrecursively). A recursive approach is normally chosen
when the recursive approach more naturally mirrors the problem and
results in a program that’s easier to understand and debug. Another
reason to choose a recursive solution is that an iterative solution may
not be apparent when a recursive solution is.

 Performance Tip 6.6

Avoid using recursion in performance situations. Recursive calls take
time and consume additional memory.

 Common Programming Error 6.14

Accidentally having a nonrecursive function call itself, either directly or
indirectly (through another function), is a logic error.

Summary of Recursion Examples and Exercises
in This Book

Figure 6.29 summarizes the recursion examples and exercises in the
text.

Fig. 6.29 Summary of recursion examples and exercises in the
text.

Location in text Recursion examples and exercises

Chapter 6

Section 6.18, Fig. 6.25 Factorial function

Section 6.19, Fig. 6.26 Fibonacci function

Exercise 6.36 Recursive exponentiation

Exercise 6.38 Towers of Hanoi

Exercise 6.40 Visualizing recursion

Exercise 6.41 Greatest common divisor

Exercise 6.43, Exercise 6.44 “What does this program do?” exercise

Chapter 7

Exercise 7.17 “What does this program do?” exercise

Exercise 7.20 “What does this program do?” exercise

Exercise 7.28 Determine whether a string is a palindrome

Exercise 7.29 Eight Queens

Exercise 7.30 Print an array

Exercise 7.31 Print a string backward

Exercise 7.32 Minimum value in an array

Exercise 7.33 Maze traversal

Exercise 7.34 Generating mazes randomly

Chapter 19

Section 19.6, Figs. 19.20–19.22 Binary tree insert

Section 19.6, Figs. 19.20–19.22 Preorder traversal of a binary tree

Section 19.6, Figs. 19.20–19.22 Inorder traversal of a binary tree

Section 19.6, Figs. 19.20–19.22 Postorder traversal of a binary tree

Exercise 19.20 Print a linked list backward

Exercise 19.21 Search a linked list

Exercise 19.22 Binary tree search

Exercise 19.23 Level order traversal of a binary tree

Exercise 19.24 Printing tree

Chapter 20

Section 20.3.3, Fig. 20.6 Mergesort

Exercise 20.8 Linear search

Exercise 20.9 Binary search

Exercise 20.10 Quicksort

6.21 Wrap-Up
In this chapter, you learned more about functions, including function
prototypes, function signatures, function headers and function bodies.
We overviewed the math library functions. You learned about
argument coercion, or the forcing of arguments to the appropriate
types specified by the parameter declarations of a function. We
demonstrated how to use functions rand and srand to generate sets
of random numbers that can be used for simulations, then presented
C++11’s nondeterministic capabilities for producing more secure
random numbers. We introduced C++14’s digit separators for more
readable numeric literals. We showed how to define sets of constants
with scoped enums. You learned about the scope of variables. Two
different ways to pass arguments to functions were covered—pass-by-
value and pass-by-reference. For pass-by-reference, a reference is
used as an alias to a variable. We showed how to implement inline
functions and functions that receive default arguments. You learned
that multiple functions in one class can be overloaded by providing
functions with the same name and different signatures. Such functions
can be used to perform the same or similar tasks, using different types
or different numbers of parameters. We demonstrated a simpler way
of overloading functions using function templates, where a function is
defined once but can be used for several different types. You then
studied recursion, where a function calls itself to solve a problem.

In Chapter 7, you’ll learn how to maintain lists and tables of data in
arrays and object-oriented vectors. You’ll see a more elegant array-
based implementation of the dice-rolling application.

Summary

Section 6.1 Introduction
Experience has shown that the best way to develop and maintain a
large program is to construct it from small, simple pieces, or
components. This technique is called divide and conquer (p.
212).

Section 6.2 Program Components in C++
C++ programs are typically written by combining new functions and
classes you write with “prepackaged” functions and classes
available in the C++ Standard Library.
Functions allow you to modularize a program by separating its
tasks into self-contained units.
The statements in the function bodies are written only once, are
reused from perhaps several locations in a program and are
hidden from other functions.

Section 6.3 Math Library Functions
Sometimes functions are not members of a class. These are called
global functions (p. 214).
The prototypes for global functions are often placed in headers, so
that they can be reused in any program that includes the header
and that can link to the function’s object code.

Section 6.4 Function Prototypes
For a function that’s not defined in a class, you must either define
the function before using it or you must declare that the function
exists by using a function prototype.
A function prototype (p. 217) is a declaration of a function that
tells the compiler the function’s name, its return type and the types
of its parameters
A function prototype ends with a required semicolon.
Parameter names in function prototypes are optional (they’re
ignored by the compiler), but many programmers use these names
for documentation purposes.
The compiler uses the prototype to ensure that the function header
matches the function prototype; to check that each function call
contains the correct number and types of arguments and that the
types of the arguments are in the correct order; to ensure that the
value returned by the function can be used correctly in the calling
expression; and to ensure that each argument is consistent with
the type of the corresponding parameter.
In a function with a void return type, control returns to the caller
when the program reaches the function-ending right brace or by
executing the statement

return;

Section 6.5 Function-Prototype and
Argument-Coercion Notes

The portion of a function prototype that includes the name of the
function and the types of its arguments is called the function
signature (p. 219) or simply the signature.
An important feature of function prototypes is argument coercion
(p. 219)—i.e., forcing arguments to the appropriate types specified
by the parameter declarations.
Arguments can be converted by the compiler to the parameter
types as specified by C++’s promotion rules (p. 219). The
promotion rules indicate the implicit conversions that the compiler
can perform between fundamental types.

Section 6.6 C++ Standard Library Headers
The C++ Standard Library is divided into many portions, each with
its own header. The headers also contain definitions of various
class types, functions and constants.
A header “instructs” the compiler on how to interface with library
components.

Section 6.7 Case Study: Random-Number
Generation

Calling rand (p. 222) repeatedly produces a sequence of
pseudorandom numbers (p. 226). The sequence repeats itself
each time the program executes.
To make numeric literals more readable, C++14 allows you to
insert between groups of digits in numeric literals the digit
separator ' (p. 225; a single-quote character).
To randomize the numbers produced by rand , pass an unsigned
integer argument (typically from function time ; p. 227) to function
srand (p. 226), which seeds the rand function.
Random numbers in a range can be generated with

type variableName{shiftingValue + rand() % scalingFactor};

where shiftingValue (p. 227) is equal to the first number in the
desired range of consecutive integers and scalingFactor (p. 227)
is equal to the width of the desired range of consecutive integers.

Section 6.8 Case Study: Game of Chance;
Introducing Scoperd enum s

A scoped enumeration (p. 230)—introduced by the keywords
enum class followed by a type name—is a set of named integer
constants that start at 0 , unless specified otherwise, and increment
by 1 .
To reference a scoped enum constant, you must qualify the
constant with the scoped enum ’s type name and the scope
resolution operator (::). If another scoped enum contains the same
identifier for one of its constants, it’s always clear which version of
the constant is being used.
A scoped enum ’s underlying integral type is int by default.
C++11 allows you to specify an enum ’s underlying integral type by
following the enum ’s type name with a colon (:) and the integral
type.
A compilation error occurs if an enum constant’s value is outside
the range that can be represented by the enum ’s underlying type.
Unscoped enums can lead to naming collisions and logic errors.
An unscoped enum ’s underlying integral type depends on its
constants’ values—the type is guaranteed to be large enough to
store the constant values specified.

Section 6.9 C++11 Random Numbers
According to CERT, function rand does not have “good statistical
properties” and can be predictable, which makes programs that
use rand less secure.
C++11 provides a new, more secure library of random-number
capabilities that can produce nondeterministic random numbers for
simulations and security scenarios where predictability is
undesirable. These new capabilities are located in the C++
Standard Library’s <random> header.
For flexibility based on how random numbers are used in
programs, C++11 provides many classes that represent various
random-number generation engines and distributions. An engine
implements a random-number generation algorithm that produces
pseudorandom numbers. A distribution controls the range of
values produced by an engine, the types of those values and the
statistical properties of the values.
A default_random_engine (p. 232) represents the default random-
number generation engine.
The uniform_int_distribution (p. 232) evenly distributes
pseudorandom integers over a specified range of values. The
default range is from 0 to the maximum value of an int on your
platform.

Section 6.10 Scope Rules
An identifier declared outside any function or class has global
namespace scope (p. 233).
Global variable (p. 234) declarations are placed outside any class
or function definition. Global variables retain their values
throughout the program’s execution. Global variables and functions
can be referenced by any function that follows their declarations or
definitions.
Identifiers declared inside a block have block scope (p. 233),
which begins at the identifier’s declaration and ends at the
terminating right brace (}) of the block in which the identifier is
declared.
static (p. 234) local variables also have block scope, but retain
their values when the function in which they’re declared returns to
its caller.
An identifier declared outside any function or class has global
namespace scope. Such an identifier is “known” in all functions
from the point at which it’s declared until the end of the file.

Section 6.11 Function-Call Stack
and Activation Records

Stacks (p. 237) are known as last-in, first-out (LIFO) data
structures—the last item pushed (inserted; p. 237) on the stack is
the first item popped (removed; p. 237) from the stack.
The function-call stack (p. 237) supports the function call/return
mechanism and the creation, maintenance and destruction of each
called function’s non- static local variables.
Each time a function calls another function, a stack frame or an
activation record (p. 237) is pushed onto the stack containing the
return address that the called function needs to return to the calling
function, and the function call’s non- static local variables and
parameters.
The stack frame exists as long as the called function is active.
When the called function returns, its stack frame is popped from
the stack, and its non- static local variables no longer exist.

Section 6.12 Inline Functions

C++ provides inline functions (p. 241) to help reduce function-call
overhead—especially for small functions. Placing the qualifier
inline (p. 241) before a function’s return type in the function
definition advises the compiler to generate a copy of the function’s
code in every place that the function is called to avoid a function
call.
Compilers can inline code for which you have not explicitly used
the inline keyword. Today’s optimizing compilers are so
sophisticated that it’s best to leave inlining decisions to the
compiler.

Section 6.13 References and
Reference Parameters

With pass-by-value (p. 242), a copy of the argument’s value is
made and passed to the called function. Changes to the copy do
not affect the original variable’s value in the caller.
With pass-by-reference (p. 242), the caller gives the called
function the ability to access the caller’s data directly and to modify
it if the called function chooses to do so.
A reference parameter (p. 243) is an alias for its corresponding
argument in a function call.
To indicate that a function parameter is passed by reference,
follow the parameter’s type in the function prototype and header by
an ampersand (&).
All operations performed on a reference are actually performed on
the original variable.

Section 6.14 Default Arguments

When a function is called repeatedly with the same argument for a
particular parameter, you can specify that such a parameter has a
default argument (p. 245).
When a program omits an argument for a parameter with a default
argument, the compiler inserts the default value of that argument
to be passed to the function call.
Default arguments must be the rightmost (trailing) arguments in a
function’s parameter list.
Default arguments are specified in the function prototype.

Section 6.15 Unary Scope
Resolution Operator

C++ provides the unary scope resolution operator (p. 247; ::)
to access a global variable when a local variable of the same name
is in scope.

Section 6.16 Function Overloading

C++ enables several functions of the same name to be defined, as
long as these functions have different sets of parameters. This
capability is called function overloading (p. 248).
When an overloaded function is called, the C++ compiler selects
the proper function by examining the number, types and order of
the arguments in the call.
Overloaded functions are distinguished by their signatures.
The compiler encodes each function identifier with the types of its
parameters to enable type-safe linkage (p. 249). Type-safe
linkage ensures that the proper overloaded function is called and
that the types of the arguments conform to the types of the
parameters.

Section 6.17 Function Templates

Overloaded functions typically perform similar operations that
involve different program logic on different data types. If the
program logic and operations are identical for each data type,
overloading may be performed more compactly and conveniently
using function templates (p. 251).
Given the argument types provided in calls to a function template,
C++ automatically generates separate function template
specializations (p. 251) to handle each type of call appropriately.
All function template definitions begin with the template keyword
(p. 251) followed by a template parameter list (p. 251) enclosed
in angle brackets (< and >).
The type parameters (p. 252) are preceded by keyword typename
(or class) and are placeholders for fundamental types or user-
defined types. These placeholders are used to specify the types of
the function’s parameters, to specify the function’s return type and
to declare variables within the body of the function definition.

Section 6.18 Recursion

A recursive function (p. 254) calls itself, either directly or
indirectly.
A recursive function knows how to solve only the simplest case(s),
or so-called base case(s). If the function is called with a base case
(p. 254), the function simply returns a result.
If the function is called with a more complex problem, the function
typically divides the problem into two conceptual pieces—a piece
that the function knows how to do and a piece that it does not
know how to do. To make recursion feasible, the latter piece must
resemble the original problem, but be a slightly simpler or slightly
smaller version of it.
For recursion to terminate, the sequence of recursive calls (p.
254) must converge on the base case.
C++11’s unsigned long long int type (which can be abbreviated as
unsigned long long) on some systems enables you to store values
in at least 8 bytes (64 bits) which can hold numbers as large as
18,446,744,073,709,551,615.

Section 6.19 Example Using
Recursion: Fibonacci Series

The ratio of successive Fibonacci numbers converges on a
constant value of 1.618…. This number frequently occurs in nature
and has been called the golden ratio or the golden mean (p.
257).

Section 6.20 Recursion vs. Iteration
Iteration and recursion are similar: both are based on a control
statement, involve iteration, involve a termination test, gradually
approach termination and can occur infinitely.
Recursion repeatedly invokes the mechanism, and overhead, of
function calls. This can be expensive in both processor time and
memory space. Each recursive call (p. 254) causes another copy
of the function’s variables to be created; this can consume
considerable memory.

Self-Review Exercises
1. 6.1 Answer each of the following:

A. Program components in C++ are called and
 .

B. A function is invoked with a(n) .
C. A variable known only within the function in which it’s

defined is called a(n) .
D. The statement in a called function passes the

value of an expression back to the calling function.
E. The keyword is used in a function header to

indicate that a function does not return a value or to
indicate that a function contains no parameters.

F. An identifier’s is the portion of the program in
which the identifier can be used.

G. The three ways to return control from a called function to
a caller are , and .

H. A(n) allows the compiler to check the number,
types and order of the arguments passed to a function.

I. Function is used to produce random numbers.
J. Function is used to set the random-number seed

to randomize the number sequence generated by
function rand .

K. A variable declared outside any block or function is a(n)
 variable.

L. For a local variable in a function to retain its value
between calls to the function, it must be declared
 .

M. A function that calls itself either directly or indirectly (i.e.,
through another function) is a(n) function.

N. A recursive function typically has two components—one
that provides a means for the recursion to terminate by
testing for a(n) case and one that expresses the
problem as a recursive call for a slightly simpler problem
than the original call.

O. It’s possible to have various functions with the same
name that operate on different types or numbers of
arguments. This is called function .

P. The enables access to a global variable with the
same name as a variable in the current scope.

Q. The qualifier is used to declare read-only
variables.

R. A function enables a single function to be
defined to perform a task on many different data types.

2. 6.2 For the program in Fig. 6.30, state the scope (global
namespace scope or block scope) of each of the following
elements:

A. The variable x in main .
B. The variable y in function cube ’s definition.
C. The function cube .
D. The function main .
E. The function prototype for cube .

Fig. 6.30 Program for Exercise 6.2.

3. 6.3 Write a program that tests whether the examples of the
math library function calls shown in Fig. 6.2 actually produce
the indicated results.

4. 6.4 Give the function header for each of the following functions:
A. Function hypotenuse that takes two double-precision,

floating-point arguments, side1 and side2 , and returns a
double-precision, floating-point result.

B. Function smallest that takes three integers, x , y and z ,
and returns an integer.

C. Function instructions that does not receive any
arguments and does not return a value. [Note: Such
functions are commonly used to display instructions to a
user.]

D. Function intToDouble that takes an integer argument,
number , and returns a double-precision, floating-point
result.

5. 6.5 Give the function prototype (without parameter names) for
each of the following:

A. The function described in Exercise 6.4(a).
B. The function described in Exercise 6.4(b).
C. The function described in Exercise 6.4(c).
D. The function described in Exercise 6.4(d).

6. 6.6 Write a declaration for double-precision, floating-point
variable lastVal that should retain its value between calls to
the function in which it’s defined.

7. 6.7 Find the error(s) in each of the following program segments,
and explain how the error(s) can be corrected (see also
Exercise 6.46):

A.

void g() {

 cout << "Inside function g" << endl;

 void h() {

 cout << "Inside function h" << endl;

 }

}

B.

int sum(int x, int y) {

 int result{0};

 result = x + y;

}

C.

int sum(int n) { // assume n is nonnegative

 if (0 == n)

 return 0;

 else

 n + sum(n - 1);

}

D.

void f(double a); {

 float a;

 cout << a << endl;

}

E.

void product() {

 int a{0};

 int b{0};

 int c{0};

 cout << "Enter three integers: ";

 cin >> a >> b >> c;

 int result{a * b * c};

 cout << "Result is " << result;

 return result;

}

8. 6.8 Why would a function prototype contain a parameter type
declaration such as double&?

9. 6.9 (True/False) All arguments to function calls in C++ are
passed by value.

10. 6.10 Write a complete program that prompts the user for the
radius of a sphere, and calculates and prints the volume of that
sphere. Use an inline function sphereVolume that returns the
result of the following expression: (4.0 / 3.0 * 3.14159 *
pow(radius, 3)) .

Answers to Self-Review Exercises

1. 6.1
A. functions, classes.
B. function call.
C. local variable.
D. return .

E. void .
F. scope.
G. return; , return expression ; or encounter the closing

right brace of a function.
H. function prototype.
I. rand .
J. srand .
K. global.
L. static .

M. recursive.
N. base.
O. overloading.
P. unary scope resolution operator (::).
Q. const .
R. template.

2. 6.2
A. block scope.
B. block scope.
C. global namespace scope.
D. global namespace scope.
E. global namespace scope.

3. 6.3 See the following program:

 1 // Exercise 6.3: ex06_03.cpp

 2 // Testing the math library functions.

 3 #include <iostream>

 4 #include <iomanip>

 5 #include <cmath>

 6 using namespace std;

 7

 8 int main() {

 9 cout << fixed << setprecision(1);

10

11 cout << "sqrt(" << 9.0 << ") = " << sqrt(9.0);

12 cout << "\nexp(" << 1.0 << ") = " <<

setprecision(6)

13 << exp(1.0) << "\nexp(" << setprecision(1) <<

2.0

14 << ") = " << setprecision(6) << exp(2.0);

15 cout << "\nlog(" << 2.718282 << ") = " <<

setprecision(1)

16 << log(2.718282)

17 << "\nlog(" << setprecision(6) << 7.389056 << ")

= "

18 << setprecision(1) << log(7.389056);

19 cout << "\nlog10(" << 10.0 << ") = " << log10(10.0)

20 << "\nlog10(" << 100.0 << ") = " << log10(100.0)

;

21 cout << "\nfabs(" << 5.1 << ") = " << fabs(5.1)

22 << "\nfabs(" << 0.0 << ") = " << fabs(0.0)

23 << "\nfabs(" << -8.76 << ") = " << fabs(-8.76);

24 cout << "\nceil(" << 9.2 << ") = " << ceil(9.2)

25 << "\nceil(" << -9.8 << ") = " << ceil(-9.8);

26 cout << "\nfloor(" << 9.2 << ") = " << floor(9.2)

27 << "\nfloor(" << -9.8 << ") = " << floor(-9.8);

28 cout << "\npow(" << 2.0 << ", " << 7.0 << ") = "

29 << pow(2.0, 7.0) << "\npow(" << 9.0 << ", "

30 << 0.5 << ") = " << pow(9.0, 0.5);

31 cout << setprecision(3) << "\nfmod("

32 << 2.6 << ", " << 1.2 << ") = "

33 << fmod(2.6, 1.2) << setprecision(1);

34 cout << "\nsin(" << 0.0 << ") = " << sin(0.0);

35 cout << "\ncos(" << 0.0 << ") = " << cos(0.0);

36 cout << "\ntan(" << 0.0 << ") = " << tan(0.0) <<

endl;

37 }

sqrt(9.0) = 3.0

exp(1.0) = 2.718282

exp(2.0) = 7.389056

log(2.718282) = 1.0

log(7.389056) = 2.0

log10(10.0) = 1.0

log10(100.0) = 2.0

fabs(5.1) = 5.1

fabs(0.0) = 0.0

fabs(-8.8) = 8.8

ceil(9.2) = 10.0

ceil(-9.8) = -9.0

floor(9.2) = 9.0

floor(-9.8) = -10.0

pow(2.0, 7.0) = 128.0

pow(9.0, 0.5) = 3.0

fmod(2.600, 1.200) = 0.200

sin(0.0) = 0.0

cos(0.0) = 1.0

tan(0.0) = 0.0

4. 6.4
A. double hypotenuse(double side1, double side2)

B. int smallest(int x, int y, int z)

C. void instructions()

D. double intToDouble(int number)

5. 6.5
A. double hypotenuse(double, double);

B. int smallest(int, int, int);

C. void instructions();

D. double intToDouble(int);

6. 6.6 static double lastVal;
7. 6.7

A. Error: Function h is defined in function g .
Correction: Move the definition of h out of the definition
of g .

B. Error: The function is supposed to return an integer, but
does not.
Correction: Place a return result; statement at the end
of the function’s body or delete variable result and
place the following statement in the function:

return x + y;

C. Error: The result of n + sum(n - 1) is not returned; sum
returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);

D. Errors: Semicolon after the right parenthesis that
encloses the parameter list, and redefining the
parameter a in the function definition.
Corrections: Delete the semicolon after the right
parenthesis of the parameter list, and delete the
declaration float a; .

E. Error: The function returns a value when it isn’t
supposed to.
Correction: Eliminate the return statement or change
the return type.

8. 6.8 This creates a reference parameter of type “reference to
double ” that enables the function to modify the original variable
in the calling function.

9. 6.9 False. C++ enables pass-by-reference using reference
parameters (and pointers, as we discuss in Chapter 8).

10. 6.10 See the following program:

 1 // Exercise 6.10 Solution: ex06_10.cpp

 2 // Inline function that calculates the volume of a

sphere.

 3 #include <iostream>

 4 #include <cmath>

 5 using namespace std;

 6

 7 const double PI{3.14159}; // define global constant PI

 8

 9 // calculates volume of a sphere

10 inline double sphereVolume(const double radius) {

11 return 4.0 / 3.0 * PI * pow(radius, 3);

12 }

13

14 int main() {

15 // prompt user for radius

16 cout << "Enter the length of the radius of your

sphere: ";

17 double radiusValue;

18 cin >> radiusValue; // input radius

19

20 // use radiusValue to calculate volume of sphere

and display result

21 cout << "Volume of sphere with radius " <<

radiusValue

22 << " is " << sphereVolume(radiusValue) << endl;

23 }

Exercises
1. 6.11 Show the value of x after each of the following statements

is performed:
A. x = fabs(7.5);

B. x = floor(7.5);

C. x = fabs(0.0);

D. x = ceil(0.0);

E. x = fabs(-6.4);

F. x = ceil(-6.4);

G. x = ceil(-fabs(-8 + floor(-5.5)));

2. 6.12 (Parking Charges) A parking garage charges a $20.00
minimum fee to park for up to three hours. The garage charges
an additional $5.00 per hour for each hour or part thereof in
excess of three hours. The maximum charge for any given 24-
hour period is $50.00. Assume that no car parks for longer than
24 hours at a time. Write a program that calculates and prints
the parking charges for each of three customers who parked
their cars in this garage yesterday. You should enter the hours
parked for each customer. Your program should print the
results in a neat tabular format and should calculate and print
the total of yesterday’s receipts. The program should use the
function calculateCharges to determine the charge for each
customer. Your outputs should appear in the following format:

Car Hours Charge

1 1.5 20.00

2 4.0 25.00

3 24.0 50.00

TOTAL 29.5 95.50

3. 6.13 (Rounding Numbers) An application of function floor is
rounding a value to the nearest integer. The statement

y = floor(x + 0.5);

rounds the number x to the nearest integer and assigns the
result to y . Write a program that reads several numbers and
uses the preceding statement to round each of these numbers
to the nearest integer. For each number processed, print both
the original number and the rounded number.

4. 6.14 (Rounding Numbers) Function floor can be used to
round a number to a specific decimal place. The statement

y = floor(x * 10 + 0.5) / 10;

rounds x to the tenths position (the first position to the right of
the decimal point). The statement

y = floor(x * 100 + 0.5) / 100;

rounds x to the hundredths position (the second position to the
right of the decimal point). Write a program that defines four
functions to round a number x in various ways:

A. roundToInteger(number)

B. roundToTenths(number)

C. roundToHundredths(number)

D. roundToThousandths(number)

For each value read, your program should print the original
value, the number rounded to the nearest integer, the number
rounded to the nearest tenth, the number rounded to the
nearest hundredth and the number rounded to the nearest
thousandth.

5. 6.15 (Short-Answer Questions) Answer each of the following
questions:

A. What does it mean to choose numbers “at random?”
B. Why is the rand function useful for simulating games of

chance?
C. Why would you randomize a program by using srand?

Under what circumstances is it desirable not to
randomize?

D. Why is it often necessary to scale or shift the values
produced by rand?

E. Why is computerized simulation of real-world situations a
useful technique?

6. 6.16 (Random Numbers) Write statements that assign random
integers to the variable n in the following ranges:

A.
B.
C.
D.
E.
F.

7. 6.17 (Random Numbers) Write a single statement that prints a
number at random from each of the following sets:

A. 2, 4, 6, 8, 10.
B. 3, 5, 7, 9, 11.
C. 6, 10, 14, 18, 22.

8. 6.18 (Exponentiation) Write a function integerPower(base ,

exponent) that returns the value of
For example, integerPower(3, 4) = 3 * 3 * 3 * 3 . Assume that
exponent is a positive, nonzero integer and that base is an
integer. Do not use any math library functions.

9. 6.19 (Hypotenuse Calculations) Define a function hypotenuse
that calculates the hypotenuse of a right triangle when the other
two sides are given. The function should take two double
arguments and return the hypotenuse as a double . Use this

function in a program to determine the hypotenuse for each of
the triangles shown below.

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

10. 6.20 (Multiples) Write a function isMultiple that determines for
a pair of integers whether the second is a multiple of the first.
The function should take two integer arguments and return
true if the second is a multiple of the first, false otherwise.
Use this function in a program that inputs a series of pairs of
integers.

11. 6.21 (Even Numbers) Write a program that inputs a series of
integers and passes them one at a time to function isEven ,
which uses the remainder operator to determine whether an
integer is even. The function should take an integer argument
and return true if the integer is even and false otherwise.

12. 6.22 (Square of Asterisks) Write a function that displays at the
left margin of the screen a solid square of asterisks whose side
is specified in integer parameter side . For example, if side is
4 , the function displays the following:

13. 6.23 (Square of Any Character) Modify the function created in
Exercise 6.22 to form the square out of whatever character is
contained in character parameter fillCharacter . Thus, if side
is 5 and fillCharacter is # , then this function should print the
following:

#####

#####

#####

#####

#####

14. 6.24 (Separating Digits) Write program segments that
accomplish each of the following:

A. Calculate the integer part of the quotient when integer a
is divided by integer b .

B. Calculate the integer remainder when integer a is
divided by integer b .

C. Use the program pieces developed in (a) and (b) to write
a function that inputs an integer between 1 and 32767
and prints it as a series of digits, each pair of which is

separated by two spaces. For example, the integer 4562

should print as follows:

4 5 6 2

15. 6.25 (Calculating Number of Seconds) Write a function that
takes the time as three integer arguments (hours, minutes and
seconds) and returns the number of seconds since the last time
the clock “struck 12.” Use this function to calculate the amount
of time in seconds between two times, both of which are within
one 12-hour cycle of the clock.

16. 6.26 (Celsius and Fahrenheit Temperatures) Implement the
following integer functions:

A. Function celsius returns the Celsius equivalent of a
Fahrenheit temperature.

B. Function fahrenheit returns the Fahrenheit equivalent of
a Celsius temperature.

C. Use these functions to write a program that prints charts
showing the Fahrenheit equivalents of all Celsius
temperatures from 0 to 100 degrees, and the Celsius
equivalents of all Fahrenheit temperatures from 32 to
212 degrees. Print the outputs in a neat tabular format
that minimizes the number of lines of output while
remaining readable.

17. 6.27 (Find the Minimum) Write a program that inputs three
double-precision, floating-point numbers and passes them to a
function that returns the smallest number.

18. 6.28 (Perfect Numbers) An integer is said to be a perfect
number if the sum of its divisors, including 1 (but not the
number itself), is equal to the number. For example, 6 is a
perfect number, because . Write a function
isPerfect that determines whether parameter number is a
perfect number. Use this function in a program that determines
and prints all the perfect numbers between 1 and 1000. Print
the divisors of each perfect number to confirm that the number
is indeed perfect. Challenge the power of your computer by
testing numbers much larger than 1000.

19. 6.29 (Prime Numbers) An integer is said to be prime if it’s
divisible by only 1 and itself. For example, 2, 3, 5 and 7 are
prime, but 4, 6, 8 and 9 are not.

A. Write a function that determines whether a number is
prime.

B. Use this function in a program that determines and prints
all the prime numbers between 2 and 10,000. How many
of these numbers do you really have to test before being
sure that you’ve found all the primes?

C. Initially, you might think that n/2 is the upper limit for
which you must test to see whether a number is prime,
but you need only go as high as the square root of n.
Why? Rewrite the program, and run it both ways.
Estimate the performance improvement.

20. 6.30 (Reverse Digits) Write a function that takes an integer
value and returns the number with its digits reversed. For
example, given the number 7631, the function should return
1367.

21. 6.31 (Greatest Common Divisor) The greatest common
divisor (GCD) of two integers is the largest integer that evenly
divides each of the numbers. Write a function gcd that returns
the greatest common divisor of two integers.

22. 6.32 (Quality Points for Numeric Grades) Write a function
qualityPoints that inputs a student’s average and returns 4 if a
student’s average is 90–100, 3 if the average is 80–89, 2 if the
average is 70–79, 1 if the average is 60–69 and 0 if the
average is lower than 60.

23. 6.33 (Coin Tossing) Write a program that simulates coin
tossing. For each toss of the coin, the program should print
Heads or Tails . Let the program toss the coin 100 times and
count the number of times each side of the coin appears. Print
the results. The program should call a separate function flip
that takes no arguments and returns 0 for tails and 1 for
heads. [Note: If the program realistically simulates the coin
tossing, then each side of the coin should appear
approximately half the time.]

24. 6.34 (Guess-the-Number Game) Write a program that plays
the game of “guess the number” as follows: Your program
chooses the number to be guessed by selecting an integer at
random in the range 1 to 1000. The program then displays the
following:

I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

The player then types a first guess. The program responds with
one of the following:

1. Excellent! You guessed the number!

 Would you like to play again (y or n)?

2. Too low. Try again.

3. Too high. Try again.

If the player’s guess is incorrect, your program should loop until
the player finally gets the number right. Your program should
keep telling the player Too high or Too low to help the player
“zero in” on the correct answer.

25. 6.35 (Guess-the-Number Game Modification) Modify the
program of Exercise 6.34 to count the number of guesses the
player makes. If the number is 10 or fewer, print "Either you
know the secret or you got lucky!" If the player guesses the
number in 10 tries, then print "Ahah! You know the secret!" If
the player makes more than 10 guesses, then print "You should
be able to do better!" Why should it take no more than 10
guesses? Well, with each “good guess” the player should be

able to eliminate half of the numbers. Now show why any
number from 1 to 1000 can be guessed in 10 or fewer tries.

26. 6.36 (Recursive Exponentiation) Write a recursive function
power(base, exponent) that, when invoked, returns

For example, power(3, 4) = 3 * 3 * 3 * 3 . Assume that
exponent is an integer greater than or equal to 1. Hint: The
recursion step would use the relationship

and the terminating condition occurs when exponent is equal to
1 , because

27. 6.37 (Fibonacci Series: Iterative Solution) Write a
nonrecursive version of the function fibonacci from Fig. 6.26.

28. 6.38 (Towers of Hanoi) In this chapter, you studied functions
that can be easily implemented both recursively and iteratively.
In this exercise, we present a problem whose recursive solution
demonstrates the elegance of recursion, and whose iterative
solution may not be as apparent.
The Towers of Hanoi is one of the most famous classic
problems every budding computer scientist must grapple with.
Legend has it that in a temple in the Far East, priests are
attempting to move a stack of golden disks from one diamond
peg to another (Fig. 6.31). The initial stack has 64 disks

threaded onto one peg and arranged from bottom to top by
decreasing size. The priests are attempting to move the stack
from one peg to another under the constraints that exactly one
disk is moved at a time and at no time may a larger disk be
placed above a smaller disk. Three pegs are provided, one
being used for temporarily holding disks. Supposedly, the world
will end when the priests complete their task, so there is little
incentive for us to facilitate their efforts.

Fig. 6.31 Towers of Hanoi for the case with four disks.

Let’s assume that the priests are attempting to move the disks
from peg 1 to peg 3. We wish to develop an algorithm that
prints the precise sequence of peg-to-peg disk transfers.
If we were to approach this problem with conventional methods,
we would rapidly find ourselves hopelessly knotted up in
managing the disks. Instead, attacking this problem with
recursion in mind allows the steps to be simple. Moving n disks
can be viewed in terms of moving only n – 1 disks (hence, the
recursion), as follows:

A. Move n – 1 disks from peg 1 to peg 2, using peg 3 as a
temporary holding area.

B. Move the last disk (the largest) from peg 1 to peg 3.
C. Move the n – 1 disks from peg 2 to peg 3, using peg 1 as

a temporary holding area. The process ends when the
last task involves moving n = 1 disk (i.e., the base case).
This task is accomplished by simply moving the disk,
without the need for a temporary holding area. Write a
program to solve the Towers of Hanoi problem. Use a
recursive function with four parameters:

1. The number of disks to be moved
2. The peg on which these disks are initially

threaded
3. The peg to which this stack of disks is to be

moved
4. The peg to be used as a temporary holding area

Display the precise instructions for moving the disks
from the starting peg to the destination peg. To move a
stack of three disks from peg 1 to peg 3, the program
displays the following moves:

29. 6.39 (Towers of Hanoi: Iterative Version) Any program that
can be implemented recursively can be implemented iteratively,
although sometimes with more difficulty and less clarity. Try
writing an iterative version of the Towers of Hanoi. If you
succeed, compare your iterative version with the recursive
version developed in Exercise 6.38. Investigate issues of
performance, clarity and your ability to demonstrate the
correctness of the programs.

30. 6.40 (Visualizing Recursion) It’s interesting to watch recursion
“in action.” Modify the factorial function of Fig. 6.25 to print its
local variable and recursive call parameter. For each recursive
call, display the outputs on a separate line and add a level of
indentation. Do your utmost to make the outputs clear,
interesting and meaningful. Your goal here is to design and
implement an output format that helps a person understand
recursion better. You may want to add such display capabilities

to the many other recursion examples and exercises
throughout the text.

31. 6.41 (Recursive Greatest Common Divisor) The greatest
common divisor of integers x and y is the largest integer that
evenly divides both x and y . Write a recursive function gcd
that returns the greatest common divisor of x and y , defined
recursively as follows: If y is equal to 0 , then gcd(x, y) is x ;
otherwise, gcd(x, y) is gcd(y, x % y) , where % is the
remainder operator. [Note: For this algorithm, x must be larger
than y .]

32. 6.42 (Distance Between Points) Write function distance that
calculates the distance between two points (x1, y1) and (x2,
y2). All numbers and return values should be of type double .

33. 6.43 What does the following program do?

 1 // Exercise 6.44: ex06_44.cpp

 2 // What does this program do?

 3 #include <iostream>

 4 using namespace std;

 5

 6 int mystery(int, int); // function prototype

 7

 8 int main() {

 9 cout << "Enter two integers: ";

10 int x{0};

11 int y{0};

12 cin >> x >> y;

13 cout << "The result is " << mystery(x, y) << endl;

14 }

15

16 // Parameter b must be a positive integer to prevent

infinite recursion

17 int mystery(int a, int b) {

18 if (1 == b) { // base case

19 return a;

20 }

21 else { // recursion step

22 return a + mystery(a, b - 1);

23 }

24 }

34. 6.44 After you determine what the program of Exercise 6.43
does, modify the program to function properly after removing
the restriction that the second argument be nonnegative.

35. 6.45 (Math Library Functions) Write a program that tests as
many of the math library functions in Fig. 6.2 as you can.
Exercise each of these functions by having your program print
out tables of return values for a diversity of argument values.

36. 6.46 (Find the Error) Find the error in each of the following
program segments and explain how to correct it:

A.

float cube(float); // function prototype

cube(float number) { // function definition

 return number * number * number;

}

B. int randomNumber{srand()};

C.

float y{123.45678};

int x;

x = y;

cout << static_cast<float>(x) << endl;

D.

double square(double number) {

 double number{0};

 return number * number;

}

E.

int sum(int n) {

 if (0 == n) {

 return 0;

 }

 else {

 return n + sum(n);

 }

}

37. 6.47 (Craps Game Modification) Modify the craps program of
Fig. 6.9 to allow wagering. Package as a function the portion of
the program that runs one game of craps. Initialize variable
bankBalance to 1000 dollars. Prompt the player to enter a wager .
Use a while loop to check that wager is less than or equal to
bankBalance and, if not, prompt the user to reenter wager until a
valid wager is entered. After a correct wager is entered, run one
game of craps. If the player wins, increase bankBalance by
wager and print the new bankBalance . If the player loses,
decrease bankBalance by wager , print the new bankBalance ,
check on whether bankBalance has become zero and, if so, print
the message "Sorry. You busted!" As the game progresses,
print various messages to create some “chatter” such as "Oh,
you're going for broke, huh?" , "Aw cmon, take a chance!" or
"You're up big. Now's the time to cash in your chips!" .

38. 6.48 (Circle Area) Write a C++ program that prompts the user
for the radius of a circle, then calls inline function circleArea
to calculate the area of that circle.

39. 6.49 (Pass-by-Value vs. Pass-by-Reference) Write a
complete C++ program with the two alternate functions
specified below, each of which simply triples the variable count
defined in main . Then compare and contrast the two
approaches. These two functions are

A. function tripleByValue that passes a copy of count by
value, triples the copy and returns the new value and

B. function tripleByReference that passes count by
reference via a reference parameter and triples the
original value of count through its alias (i.e., the
reference parameter).

40. 6.50 (Unary Scope Resolution Operator) What’s the purpose
of the unary scope resolution operator?

41. 6.51 (Function Template minimum) Write a program that uses a
function template called minimum to determine the smaller of two
arguments. Test the program using integer, character and
floating-point number arguments.

42. 6.52 (Function Template maximum) Write a program that uses a
function template called maximum to determine the larger of two
arguments. Test the program using integer, character and
floating-point number arguments.

43. 6.53 (Find the Error) Determine whether the following program
segments contain errors. For each error, explain how it can be
corrected. [Note: For a particular program segment, it’s
possible that no errors are present.]

A.

template <typename A>

int sum(int num1, int num2, int num3) {

 return num1 + num2 + num3;

}

B.

void printResults(int x, int y) {

 cout << "The sum is " << x + y << '\n';

 return x + y;

}

C.

template <A>

A product(A num1, A num2, A num3) {

 return num1 * num2 * num3;

}

D.

double cube(int);

int cube(int);

44. 6.54 (C++11 Random Numbers: Modified Craps Game)
Modify the program of Fig. 6.9 to use the new C++11 random-
number generation features shown in Section 6.9.

45. 6.55 (C++11 Scoped enum) Create a scoped enum named
AccountType containing constants named SAVINGS , CHECKING and
INVESTMENT .

46. 6.56 (Function Prototypes and Definitions) Explain the
difference between a function prototype and a function
definition.

Making a Difference
As computer costs decline, it becomes feasible for every student,
regardless of economic circumstance, to have a computer and use it
in school. This creates exciting possibilities for improving the
educational experience of all students worldwide, as suggested by the
next five exercises. [Note: Check out initiatives such as the One
Laptop Per Child Project (www.laptop.org). Also, research “green”
laptops—and note the key “going green” characteristics of these
devices. Look into the Electronic Product Environmental Assessment
Tool (www.epeat.net), which can help you assess the “greenness” of
desktops, notebooks and monitors to help you decide which products
to purchase.]

1. 6.57 (Computer-Assisted Instruction) The use of computers
in education is referred to as computer-assisted instruction
(CAI). Write a program that will help an elementary-school
student learn multiplication. Use the rand function to produce
two positive one-digit integers. The program should then
prompt the user with a question, such as

How much is 6 times 7?

http://www.laptop.org
http://www.epeat.net

The student then inputs the answer. Next, the program checks
the student’s answer. If it’s correct, display the message "Very
good!" and ask another multiplication question. If the answer is
wrong, display the message "No. Please try again." and let
the student try the same question repeatedly until the student
finally gets it right. A separate function should be used to
generate each new question. This function should be called
once when the application begins execution and each time the
user answers the question correctly.

2. 6.58 (Computer-Assisted Instruction: Reducing Student
Fatigue) One problem in CAI environments is student fatigue.
This can be reduced by varying the computer’s responses to
hold the student’s attention. Modify the program of Exercise
6.57 so that various comments are displayed for each answer
as follows:
Possible responses to a correct answer:

Very good!

Excellent!

Nice work!

Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.

Wrong. Try once more.

Don't give up!

No. Keep trying.

Use random-number generation to choose a number from 1 to
4 that will be used to select one of the four appropriate
responses to each correct or incorrect answer. Use a switch
statement to issue the responses.

3. 6.59 (Computer-Assisted Instruction: Monitoring Student
Performance) More sophisticated computer-assisted
instruction systems monitor the student’s performance over a
period of time. The decision to begin a new topic is often based
on the student’s success with previous topics. Modify the
program of Exercise 6.58 to count the number of correct and
incorrect responses typed by the student. After the student
types 10 answers, your program should calculate the
percentage that are correct. If the percentage is lower than
75%, display " Please ask your teacher for extra help .", then
reset the program so another student can try it. If the
percentage is 75% or higher, display " Congratulations, you are
ready to go to the next level! ", then reset the program so
another student can try it.

4. 6.60 (Computer-Assisted Instruction: Difficulty Levels)
Exercises 6.57–6.59 developed a computer-assisted
instruction program to help teach an elementary-school student
multiplication. Modify the program to allow the user to enter a
difficulty level. At a difficulty level of 1, the program should use

only single-digit numbers in the problems; at a difficulty level of
2, numbers as large as two digits, and so on.

5. 6.61 (Computer-Assisted Instruction: Varying the Types of
Problems) Modify the program of Exercise 6.60 to allow the
user to pick a type of arithmetic problem to study. An option of
1 means addition problems only, 2 means subtraction
problems only, 3 means multiplication problems only, 4 means
division problems only and 5 means a random mixture of all
these types.

7 Class Templates array and
vector ; Catching Exceptions

Objectives
In this chapter you’ll:

Use C++ Standard Library class template array—a fixed-size
collection of related data items.
Declare array s, initialize arrays and refer to the elements of
arrays.
Use array s to store, sort and search lists and tables of values.
Use the range-based for statement.
Pass array s to functions.
Use C++ Standard Library function sort to arrange array
elements in ascending order.
Use C++ Standard Library function binary_search to locate an
element in a sorted array .
Declare and manipulate multidimensional arrays.
Use one- and two-dimensional arrays to build a real-world
GradeBook class.
Use C++ Standard Library class template vector—a variable-size
collection of related data items.

Outline
1. 7.1 Introduction
2. 7.2 arrays
3. 7.3 Declaring arrays
4. 7.4 Examples Using arrays

A. 7.4.1 Declaring an array and Using a Loop to
Initialize the array ’s Elements

B. 7.4.2 Initializing an array in a Declaration with an
Initializer List

C. 7.4.3 Specifying an array ’s Size with a Constant
Variable and Setting array Elements with
Calculations

D. 7.4.4 Summing the Elements of an array
E. 7.4.5 Using a Bar Chart to Display array Data

Graphically
F. 7.4.6 Using the Elements of an array as Counters
G. 7.4.7 Using arrays to Summarize Survey Results
H. 7.4.8 Static Local arrays and Automatic Local arrays

5. 7.5 Range-Based for Statement
6. 7.6 Case Study: Class GradeBook Using an array to Store

Grades
7. 7.7 Sorting and Searching arrays

A. 7.7.1 Sorting
B. 7.7.2 Searching
C. 7.7.3 Demonstrating Functions sort and

binary_search

8. 7.8 Multidimensional arrays
9. 7.9 Case Study: Class GradeBook Using a Two-Dimensional

array

10. 7.10 Introduction to C++ Standard Library Class Template
vector

11. 7.11 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Recursion Exercises
6. Making a Difference

7.1 Introduction
This chapter introduces the topic of data structures—collections of
related data items. We discuss arrays, which are fixed-size

collections consisting of data items of the same type, and vectors,
which are collections (also of data items of the same type) that can
grow and shrink dynamically at execution time. Both array and vector
are C++ standard library class templates. To use them, you must
include the <array> and <vector> headers, respectively.

After discussing how arrays are declared, created and initialized, we
present examples that demonstrate several common array
manipulations. We show how to search arrays to find particular
elements and sort arrays to put their data in order.

We build two versions of an instructor GradeBook case study that use
arrays to maintain sets of student grades in memory and analyze
student grades. We introduce the exception-handling mechanism and
use it to allow a program to continue executing when it attempts to
access an array or vector element that does not exist.

7.2 array s
An array is a contiguous group of memory locations that all have the
same type. To refer to a particular location or element in the array , we
specify the name of the array and the position number of the
particular element in the array .

Figure 7.1 shows an integer array called c that contains 12
elements. You refer to any one of these elements by giving the array
name followed by the particular element’s position number in square
brackets ([]). The position number is more formally called a
subscript or index (this number specifies the number of elements
from the beginning of the array). The first element has subscript 0
(zero) and is sometimes called the zeroth element. Thus, the
elements of array c are c[0] (pronounced “ c sub zero”), c[1] , c[2]
and so on. The highest subscript in array c is 11, which is 1 less than
the number of elements in the array (12). array names follow the
same conventions as other variable names.

Fig. 7.1 array of 12 elements.

A subscript must be an integer or integer expression (using any
integral type). If a program uses an expression as a subscript, then
the program evaluates the expression to determine the subscript. For
example, if we assume that variable a is equal to 5 and that variable
b is equal to 6 , then the statement

c[a + b] += 2;

adds 2 to array element c[11] . A subscripted array name is an lvalue

—it can be used on the left side of an assignment, just as non- array
variable names can.

Let’s examine array c in Fig. 7.1 more closely. The name of the
entire array is c . Each array knows its own size, which can be
determined by calling its size member function as in c.size() . Its 12
elements are referred to as c[0] to c[11] . The value of c[0] is -45 ,
the value of c[7] is 62 and the value of c[11] is 78 . To print the sum
of the values contained in the first three elements of array c , we’d
write

cout << c[0] + c[1] + c[2] << endl;

To divide the value of c[6] by 2 and assign the result to the variable
x , we’d write

x = c[6] / 2;

 Common Programming Error
7.1

Note the difference between the “seventh element of the array ” and

“ array element 7.” Subscripts begin at 0, so the “seventh element of

the array ” has the subscript 6, while “ array element 7” has the

subscript 7 and is actually the eighth element of the array . This

distinction is a frequent source of off-by-one errors. To avoid such
errors, we refer to specific array elements explicitly by their array

name and subscript number (e.g., c[6] or c[7])

The brackets that enclose a subscript are actually an operator that has
the same precedence as parentheses used to call a function. Figure
7.2 shows the precedence and associativity of the operators
introduced so far. The operators are shown top to bottom in
decreasing order of precedence with their associativity and type.

Fig. 7.2 Precedence and associativity of the operators introduced
to this point.

Operators Associativity Type

:: () left to right
[See caution in Fig. 2.10
regarding grouping

parentheses.]

primary

() [] ++ --

static_cast< type >

(operand)

left to right postfix

++ -- + - ! right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

7.3 Declaring array s
arrays occupy space in memory. To specify the type of the elements
and the number of elements required by an array use a declaration of
the form

array<type, arraySize> arrayName;

The notation < type , arraySize > indicates that array is a class

template. The compiler reserves the appropriate amount of memory
based on the type of the elements and the arraySize. (Recall that a
declaration which reserves memory is more specifically known as a
definition.) The arraySize must be an unsigned integer. To tell the
compiler to reserve 12 elements for integer array c , use the
declaration

array<int, 12> c; // c is an array of 12 int values

arrays can be declared to contain values of most data types. For
example, an array of type string can be used to store character

strings.

7.4 Examples Using array s
The following examples demonstrate how to declare, initialize and
manipulate array s.

7.4.1 Declaring an array and
Using a Loop to Initialize the
array ’s Elements

The program in Fig. 7.3 declares five-element integer array n (line 9).
Line 5 includes the <array> header, which contains the definition of
class template array . Lines 12–14 use a for statement to initialize the
array elements to zeros. Like other non- static local variables, arrays
are not implicitly initialized to zero (static arrays are). The first output
statement (line 16) displays the column headings for the columns
printed in the subsequent for statement (lines 19–21), which prints
the array in tabular format. Remember that setw specifies the field
width in which only the next value is to be output.

Fig. 7.3 Initializing an array ’s elements to zeros and printing the
array .

In this program, the control variables i (line 12) and j (line 19) that
specify array subscripts are declared to be of type size_t . According
to the C++ standard size_t represents an unsigned integral type. This
type is recommended for any variable that represents an array ’s size
or an array ’s subscripts. Type size_t is defined in the std
namespace and is in header <cstddef> , which is included by various
other headers. If you attempt to compile a program that uses type

size_t and receive errors indicating that it’s not defined, simply add
#include <cstddef> to your program.

7.4.2 Initializing an array in a
Declaration with an Initializer List

The elements of an array also can be initialized in the array
declaration by following the array name with a brace-delimited
comma-separated list of initializers. The program in Fig. 7.4 uses an
initializer list to initialize an integer array with five values (line 9) and
prints the array in tabular format (lines 11–16).

Fig. 7.4 Initializing an array in a declaration.

Fewer Initializers Than array Elements
If there are fewer initializers than array elements, the remaining array
elements are initialized to zero. For example, the elements of array n
in Fig. 7.3 could have been initialized to zero with the declaration

array<int, 5> n{}; // initialize elements of array n to 0

which initializes the elements to zero, because there are fewer
initializers (none in this case) than array elements. This technique can
be used only in the array ’s declaration, whereas the initialization
technique shown in Fig. 7.3 can be used repeatedly during program
execution to “reinitialize” an array ’s elements.

More Initializers Than array Elements
If an initializer list is specified in an array declaration, the number of
initializers must be less than or equal to the array size. The array
declaration

array<int, 5> n{32, 27, 64, 18, 95, 14};

causes a compilation error, because there are six initializers and only
five array elements.

7.4.3 Specifying an array ’s Size
with a Constant Variable and
Setting array Elements with
Calculations

Figure 7.5 sets the elements of a 5-element array named values to
the even integers 2 , 4 , 6 , 8 and 10 (lines 14–16) and prints the
array in tabular format (lines 18–23). These numbers are generated
(line 15) by multiplying each successive value of the loop counter, i ,
by 2 and adding 2 .

Fig. 7.5 Set array s to the even integers from 2 to 10.

Constant Variables
Line 10 uses the const qualifier to declare a constant variable
arraySize with the value 5 . Constant variables are also called named
constants or read-only variables. A constant variable must be
initialized when it’s declared and cannot be modified thereafter.
Attempting to modify arraySize after it’s initialized, as in

arraySize = 7;

results in the following errors1 from Visual C++, GNU C++ and LLVM,
respectively:

1. In error messages, some compilers refer to a const fundamental-
type variable as a “ const object.” The C++ standard defines an
“object” as any “region of storage.” Like class objects, fundamental-
type variables also occupy space in memory, so they’re often referred
to as “objects” as well.

Visual C++: 'arraySize': you cannot assign to a variable that is
const

GNU C++: error: assignment of read-only variable ‘x’
LLVM: Read-only variable is not assignable

 Common Programming Error 7.2

Not initializing a constant variable when it’s declared is a compilation
error.

 Common Programming Error 7.3

Assigning a value to a constant variable in a separate statement from
its declaration is a compilation error.

 Good Programming Practice 7.1

Defining the size of an array as a constant variable instead of a literal

constant makes programs clearer and easier to update. This
technique eliminates so-called magic numbers—numeric values that
are not explained. Using a constant variable allows you to provide a
name for a literal constant and can help explain the purpose of the
value in the program.

7.4.4 Summing the Elements of an
array

Often, the elements of an array represent a series of values to be
used in a calculation. For example, if the elements of an array
represent exam grades, a professor may wish to total the elements of
the array and use that sum to calculate the class average for the
exam.

The program in Fig. 7.6 sums the values contained in the four-
element integer array a . The program declares, creates and initializes
the array in line 9. The for statement (lines 13–15) performs the
calculations. The values being supplied as initializers for array a also
could be read into the program—for example, from the user at the
keyboard or from a file on disk (see Chapter 14, File Processing). For
example, the for statement

for (size_t j{0}; j < a.size(); ++j) {

 cin >> a[j];

}

reads one value at a time from the keyboard and stores the value in
element a[j] .

Fig. 7.6 Compute the sum of the elements of an array .

7.4.5 Using a Bar Chart to Display
array Data Graphically

Many programs present data to users graphically. For example,
numeric values are often displayed as bars in a bar chart, with longer
bars representing proportionally larger numeric values. One simple
way to display numeric data graphically is with a bar chart that shows
each numeric value as a bar of asterisks (*).

Professors often like to examine grade distributions on an exam. A
professor might graph the number of grades in each of several
categories to visualize the grade distribution. Suppose the grades
were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87. There was one grade
of 100, two grades in the 90s, four grades in the 80s, two grades in
the 70s, one grade in the 60s and no grades below 60. Our next
program (Fig. 7.7) stores this data in an array of 11 elements, each
corresponding to a grade range. For example, n[0] indicates the
number of grades in the range 0–9, n[7] indicates the number of
grades in the range 70–79 and n[10] indicates the number of grades
of 100. The GradeBook classes that you’ll see in Figs. 7.13 and 7.19
contain code that calculates grade frequencies based on a set of
grades. In this example, we initialize the array n with frequency
values.

The program (Fig. 7.7) reads the numbers from the array and graphs
the information as a bar chart, displaying each grade range followed
by a bar of asterisks indicating the number of grades in that range. To
label each bar, lines 17–25 output a grade range (e.g., "70-79: ")
based on the current value of counter variable i . The nested for
statement (lines 28–30) outputs the current bar as the appropriate
number of asterisks. Note the loop-continuation condition in line 28
(stars < n[i]). Each time the program reaches the inner for , the loop
counts from 0 up to n[i] , thus using a value in array n to determine
the number of asterisks to display. In this example, n[0]– n[5] contain
zeros because no students received a grade below 60. Thus, the
program displays no asterisks next to the first six grade ranges.

Fig. 7.7 Bar chart printing program.

7.4.6 Using the Elements of an
array as Counters

Sometimes, programs use counter variables to summarize data, such
as the results of a survey. In Fig. 6.7, we used separate counters in
our die-rolling program to track the number of occurrences of each
side of a die as the program rolled the die 60,000,000 times. An array
version of this program is shown in Fig. 7.8. This version also uses
the new C++11 random-number generation capabilities that were
introduced in Section 6.9.

11

Figure 7.8 uses the array frequency (line 17) to count the
occurrences of die value. The single statement in line 21 of this
program replaces the entire switch statement in lines 22–43 of Fig.
6.7. Line 21 uses a random value to determine which frequency
element to

Fig. 7.8 Die-rolling program using an array instead of switch .

increment during each iteration of the loop. The calculation in line 21
produces a random subscript from 1 to 6, so array frequency must be
large enough to store six counters. We use a seven-element array in
which we ignore frequency[0]—it’s clearer to have the die face value

1 increment frequency[1] than frequency[0] . Thus, each face value is
used directly as a subscript for array frequency . We also replace lines
46–51 of Fig. 6.7 by looping through array frequency to output the
results (Fig. 7.8, lines 27–29).

7.4.7 Using array s to Summarize
Survey Results

Our next example uses arrays to summarize the results of data
collected in a survey. Consider the following problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality
of the food in the student cafeteria, with 1 being “awful” and 5
being “excellent.” Place the 20 responses in an integer array and

determine the frequency of each rating.

This is a popular type of array -processing application (Fig. 7.9). We
wish to summarize the number of responses of each rating (that is, 1–
5). The array responses (lines 14–15) is a 20-element integer array of
the students’ responses to the survey. The array responses is
declared const , as its values do not (and should not) change. We use
a six-element array frequency (line 18) to count the number of
occurrences of each response. Each element of the array is used as
a counter for one of the survey responses and is initialized to zero. As
in Fig. 7.8, we ignore frequency[0] .

Fig. 7.9 Poll analysis program.

The first for statement (lines 22–24) takes the responses one at a
time from the array responses and increments one of the five counters
in the frequency array (frequency[1] to frequency[5]). The key

statement in the loop is line 23, which increments the appropriate
frequency counter, depending on the value of responses[answer] .

Let’s consider several iterations of the for loop. When control variable
answer is 0 , the value of responses[answer] is the value of
responses[0] (i.e., 1 in line 15), so the program interprets
++ frequency[responses[answer]] as

++frequency[1]

which increments the value in array element 1. To evaluate the
expression in line 23, start with the value in the innermost set of
square brackets (answer). Once you know answer ’s value (which is the
value of the control variable in line 22), plug it into the expression and
evaluate the expression in the next outer set of square brackets (i.e.,
responses[answer] , which is a value selected from the responses array
in lines 14–15). Then use the resulting value as the subscript for the
frequency array to specify which counter to increment.

When answer is 1 , responses[answer] is the value of responses[1] ,
which is 2 , so the program interprets ++ frequency[responses[answer]]

as

++frequency[2]

which increments array element 2.

When answer is 2 , responses[answer] is the value of responses[2] ,
which is 5 , so the program interprets ++ frequency[responses[answer]]

as

++frequency[5]

which increments array element 5, and so on. Regardless of the
number of responses processed in the survey, the program requires
only a six-element array (ignoring element zero) to summarize the
results, because all the response values are between 1 and 5 and the
subscript values for a six-element array are 0 through 5.

Bounds Checking for array Subscripts
If the data in responses contained an invalid value, such as 13, the
program would have attempted to add 1 to frequency[13] , which is
outside the bounds of the array . When you use the [] operator to

access an array element, C++ provides no automatic array bounds
checking to prevent you from referring to an element that does not
exist. Thus, an executing program can “walk off” either end of an

array without warning. In Section 7.10, we demonstrate the class
template vector ’s at member function, which performs bounds
checking for you. Class template array also has an at member
function.

It’s important to ensure that every subscript you use to access an
array element is within the array ’s bounds—that is, greater than or
equal to 0 and less than the number of array elements.

Allowing programs to read from or write to array elements outside the
bounds of arrays are common security flaws. Reading from out-of-
bounds array elements can cause a program to crash or even appear
to execute correctly while using bad data. Writing to an out-of-bounds
element (known as a buffer overflow) can corrupt a program’s data in
memory, crash a program and allow attackers to exploit the system
and execute their own code. For more information on buffer overflows,
see http://en.wikipedia.org/wiki/Buffer_overflow .

 Common Programming Error 7.4

Referring to an element outside the array bounds is an execution-time
logic error, not a syntax error.

 Error-Prevention Tip 7.1

When looping through an array , the index should never go below 0

and should always be less than the total number of array elements

(one less than the size of the array). Make sure that the loop-

termination condition prevents accessing elements outside this range.
In Section 7.5, you’ll learn about the range-based for statement,

which can help prevent accessing elements outside an array’s (or
other container’s) bounds.

7.4.8 Static Local array s and
Automatic Local array s

Chapter 6 discussed the storage-class specifier static . A static
local variable in a function definition exists for the program’s duration
but is visible only in the function’s body.

 Performance Tip 7.1
We can apply static to a local array declaration so that it’s not
created and initialized each time the program calls the function and is
not destroyed each time the function terminates. This can improve
performance, especially when using large arrays.

A program initializes static local arrays when their declarations are
first encountered. If a static array is not initialized explicitly by you,
each element of that array is initialized to zero by the compiler when
the array is created. Recall that C++ does not perform such default
initialization for other local variables.

Figure 7.10 demonstrates functions staticArrayInit (lines 23–40)
with a static local array (line 25) and automaticArrayInit (lines 43–

60) with an automatic local array (line 45)—local variables are
sometimes called automatic variables because they’re automatically
destroyed when the function finishes executing.

Function staticArrayInit is called twice (lines 13 and 17). The static
local array1 is initialized to zero by the compiler the first time the
function is called. The function prints the array ’s elements, then adds
5 to and prints each element again. The second time the function is
called, the static array contains the modified values stored during
the first function call. Function automaticArrayInit also is called twice
(lines 14 and 18). Automatic local array2 ’s elements are initialized
(line 45) with the values 1, 2 and 3. The function prints the array ,
adds 5 to each element and prints the array again. The second time
the function is called, the array elements are reinitialized to 1, 2 and
3. The array is recreated and reinitialized during each call to
automaticArrayInit .

Fig. 7.10 static array initialization and automatic array

initialization.

7.5 Range-Based for Statement
As we’ve shown, it’s common to process all the elements of an array .
The C++11 range-based for statement allows you to do this without

using a counter, thus avoiding the possibility of “stepping outside” the
array and eliminating the need for you to implement your own bounds
checking. Figure 7.11 uses the range-based for to display an array ’s
contents (lines 12–14 and 23–25) and to multiply each of the array ’s
element values by 2 (lines 17–19).

11

 Error-Prevention Tip 7.2

When processing all elements of an array , if you don’t need access to

an array element’s subscript, use the range-based for statement.

Fig. 7.11 Using range-based for to multiply an array 's elements
by 2.

Using the Range-Based for to Display an
array ’s Contents
The range-based for statement simplifies the code for iterating
through an array . Line 12 can be read as “for each iteration, assign
the next element of items to int variable item , then execute the

loop’s body.” Thus, for each iteration, item represents one element
value (but not a subscript) in items . In the range-based for ’s header,
you declare a so-called range variable to the left of the colon (:) and

specify the name of an array to the right. You can use the range-
based for statement with most of the C++ Standard Library’s prebuilt

data structures (commonly called containers). Lines 12–14 are
equivalent to the following counter-controlled iteration:

for (int counter{0}; counter < items.size(); ++counter) {

 cout << items[counter] << " ";

}

Using the Range-Based for to Modify an
array ’s Contents
Lines 17–19 use a range-based for statement to multiply each
element of items by 2. In line 17, the range variable’s declaration
indicates that itemRef is an int&—that is, a reference. Recall that a
reference is an alias for another variable in memory—in this case, one
of the array ’s elements. We use an int reference because items
contains int values and we want to modify each element’s value—
because itemRef is declared as a reference, any change you make to
itemRef changes the corresponding element value in the array .

Using an Element’s Subscript
The range-based for statement can be used in place of the counter-
controlled for statement whenever code looping through an array
does not require access to the element’s subscript. For example,
totaling the integers in an array (as in Fig. 7.6) requires access only
to the element values—the elements’ subscripts are irrelevant.
However, if a program must use subscripts for some reason other
than simply to loop through an array (e.g., to print a subscript number
next to each array element value, as in the examples earlier in this
chapter), you should use the counter-controlled for statement.

7.6 Case Study: Class
GradeBook Using an array to
Store Grades
We now present the first part of our case study on developing a
GradeBook class that instructors can use to maintain students’ grades
on an exam and display a grade report that includes the grades, class
average, lowest grade, highest grade and a grade distribution bar
chart. The version of class GradeBook presented in this section stores
the grades for one exam in a one-dimensional array. In Section 7.9,
we present a version of class GradeBook that uses a two-dimensional
array to store students’ grades for several exams.

Storing Student Grades in an array in
Class GradeBook
Figure 7.12 shows the output that summarizes the 10 grades we store
in an object of class GradeBook (Fig. 7.13), which uses an array of
integers to store the grades of 10 students for a single exam. The
array grades is declared as a data member in line 142 of Fig. 7.13—
therefore, each GradeBook object maintains its own set of grades.

Fig. 7.12 Output of the GradeBook example that stores grades in an
array .

Fig. 7.13 Definition of class GradeBook that uses an array to store
test grades.

The size of the array in line 142 of Fig. 7.13 is specified by public
static const data member students (declared in line 12), which is
public so that it’s accessible to the class’s clients. We’ll soon see an
example of a client program using this constant. Declaring students
with the const qualifier indicates that this data member is constant—
its value cannot be changed after being initialized. Keyword static in
this variable declaration indicates that the data member is shared by
all objects of the class—so in this particular implementation of class
GradeBook , all GradeBook objects store grades for the same number of
students. Recall from Section 3.3 that when each object of a class
maintains its own copy of an attribute, the variable that represents the
attribute is known as a data member—each object of the class has a
separate copy of the variable in memory. There are variables for
which each object of a class does not have a separate copy. That’s
the case with static data members , which are also known as class
variables. When objects of a class containing static data members
are created, all the objects share one copy of the class’s static data
members. A static data member can be accessed within the class
definition and the member-function definitions like any other data
member. As you’ll soon see, a public static data member can also
be accessed outside of the class, even when no objects of the class
exist, using the class name followed by the scope resolution operator

(::) and the name of the data member. You’ll learn more about
static data members in Chapter 9.

Constructor
The class’s constructor (lines 15–18) has two parameters—the course
name and a reference to an array of grades. When a program creates
a GradeBook object (e.g., line 13 of Fig. 7.14), the program passes an
existing int array to the constructor, which copies the array ’s values
into the data member grades (line 17 of Fig. 7.13). The grade values
in the passed array could have been input from a user or read from a
file on disk (as we discuss in Chapter 14, File Processing). In our test
program, we simply initialize an array with a set of grade values (Fig.
7.14, lines 9–10). Once the grades are stored in data member grades
of class GradeBook , all the class’s member functions can access the
grades array as needed to perform various calculations. Note that the
constructor receives both the string and the array by reference—this
is more efficient than receiving copies of the original string and
array . The constructor does not need to modify either the original
string or array , so we also declared each parameter as const to
ensure that the constructor does not accidentally modify the original
data in the caller. We also declared function setCourseName to receives
its string argument by reference.

Member Function processGrades

Member function processGrades (lines 38–50 of Fig. 7.13) contains a
series of member function calls that output a report summarizing the
grades. Line 39 calls member function outputGrades to print the
contents of the array grades . Lines 135–138 in member function
outputGrades use a for statement to output each student’s grade.
Although array indices start at 0, a professor would typically number
students starting at 1. Thus, lines 136–137 output student + 1 as the
student number to produce grade labels "Student 1: " , "Student 2: " ,
and so on.

Member Function getAverage
Member function processGrades next calls member function getAverage
(line 43) to obtain the average of the grades. Member function
getAverage (lines 83–93) totals the values in array grades before
calculating the average. The averaging calculation in line 92 uses
grades.size() to determine the number of grades being averaged.

Member Functions getMinimum and
getMaximum

Lines 46–47 in processGrades call member functions getMinimum and
getMaximum to determine the lowest and highest grades of any student
on the exam, respectively. Let’s examine how member function
getMinimum finds the lowest grade. Because the highest grade allowed
is 100, we begin by assuming that 100 is the lowest grade (line 54).

Then, we compare each of the elements in the array to the lowest
grade, looking for smaller values. Lines 57–62 in member function
getMinimum loop through the array , and line 59 compares each grade
to lowGrade . If a grade is less than lowGrade , lowGrade is set to that
grade. When line 64 executes, lowGrade contains the lowest grade in
the array . Member function getMaximum (lines 68–80) works similarly
to member function getMinimum .

Member Function outputBarChart
Finally, line 49 in member function processGrades calls member
function outputBarChart to print a distribution chart of the grade data
using a technique similar to that in Fig. 7.7. In that example, we
manually calculated the number of grades in each category (i.e., 0–9,
10–19, …, 90–99 and 100) by simply looking at a set of grades. In
Fig. 7.13, lines 104–106 use a technique similar to that in Fig. 7.8 and
Fig. 7.9 to calculate the frequency of grades in each category. Line
100 declares and creates array frequency of 11 unsigned ints to
store the frequency of grades in each grade category. For each grade
in array grades , lines 104–106 increment the appropriate element of
the frequency array . To determine which element to increment, line
105 divides the current grade by 10 using integer division. For
example, if grade is 85 , line 105 increments frequency[8] to update
the count of grades in the range 80–89. Lines 109–127 next print the
bar chart (see Fig. 7.12) based on the values in array frequency . Like
lines 28–30 of Fig. 7.7, lines 122–124 of Fig. 7.13 use a value in

array frequency to determine the number of asterisks to display in

each bar.

Testing Class GradeBook
The program of Fig. 7.14 creates an object of class GradeBook using
the int array grades (declared and initialized in lines 9–10). The
scope resolution operator (::) is used in the expression
GradeBook::students (line 9) to access class GradeBook ’s static
constant students . We use this constant here to create an array that’s
the same size as the array stored as a data member in class
GradeBook . Line 11 declares a string representing the course name.
Line 13 passes the course name and the array of grades to the
GradeBook constructor. Line 14 displays a welcome message, and line
15 invokes the GradeBook object’s processGrades member function.

Fig. 7.14 Creates a GradeBook object’ using an array of grades,
then invokes member function processGrades to analyze them.

7.7 Sorting and Searching
array s

In this section, we use the built-in C++ Standard Library sort function
to arrange the elements in an array into ascending order and the
built-in binary_search function to determine whether a value is in the
array .

7.7.1 Sorting

Sorting data—placing it into ascending or descending order—is one
of the most important computing applications. A bank sorts all checks
by account number so that it can prepare individual bank statements
at the end of each month. Telephone companies sort their phone
directories by last name—and within all entries with the same last
name, sort those by first name—to make it easy to find phone
numbers. Virtually every organization must sort some data and, in
many cases, massive amounts of it. Sorting data is an intriguing
problem that has attracted some of the most intense research efforts
in the field of computer science. In Chapter 20, we investigate and
implement several sorting schemes, discuss their performance and
introduce Big O (pronounced “Big Oh”) notation for characterizing how
hard each scheme works to accomplish its task.

7.7.2 Searching

Often it may be necessary to determine whether an array contains a
value that matches a certain key value. The process of finding a
particular element of an array is called searching. In Chapter 20, we
investigate and implement two search algorithms—the simple but slow
linear search for searching an unordered array and the more complex
but much faster binary search for searching an ordered array .

7.7.3 Demonstrating Functions
sort and binary_search

Figure 7.15 begins by creating an unsorted array of strings (lines
12–13) and displaying the contents of the array (lines 17–19). Next,
line 21 uses C++ Standard Library function sort to sort the elements
of the array colors into ascending order. The sort function’s
arguments specify the range of elements that should be sorted—in
this case, the entire array . The arguments colors.begin() and
colors.end() represent the array ’s beginning and end, respectively—
we’ll discuss the complete details of begin and end in Chapter 15. As
you’ll see, function sort can be used to sort the elements of several
different types of data structures. Lines 25–27 display the contents of
the sorted array .

Fig. 7.15 Sorting and searching arrays.

Lines 30 and 35 use binary_search to determine whether a value is in
the array . The sequence of values first must be sorted in ascending
order— binary_search does not verify this for you. The function’s first
two arguments represent the range of elements to search and the
third is the search key—the value to locate in the array . The function
returns a bool indicating whether the value was found. In Chapter 16,
we’ll use the C++ Standard function find to obtain the location of a
search key in an array .

7.8 Multidimensional array s
You can use arrays with two dimensions (i.e., subscripts) to represent
tables of values consisting of information arranged in rows and
columns. To identify a particular table element, we must specify two
subscripts—by convention, the first identifies the element’s row and
the second identifies the element’s column. arrays that require two
subscripts to identify a particular element are called two-dimensional
arrays or 2-D arrays. arrays with two or more dimensions are known
as multidimensional arrays. Figure 7.16 illustrates a two-
dimensional array , a . The array contains three rows and four
columns, so it’s said to be a 3-by-4 array . In general, an array with m
rows and n columns is called an m-by-n array .

Fig. 7.16 Two-dimensional array with three rows and four
columns.

Every element in array a is identified in Fig. 7.16 by an element
name of the form a[i][j] , where a is the name of the array , and i
and j are the subscripts that uniquely identify each element in a .
Notice that the names of the elements in row 0 all have a first
subscript of 0 ; the names of the elements in column 3 all have a
second subscript of 3 .

 Common Programming Error
7.5

Referencing a two-dimensional array element a[x][y] incorrectly as

a[x, y] is an error. Actually, a[x, y] is treated as a[y] , because

C++ evaluates the expression x, y (containing a comma operator)

simply as y (the last of the comma-separated expressions).

Figure 7.17 demonstrates initializing two-dimensional arrays in
declarations. Lines 12–13 each declare an array of arrays with two
rows and three columns. Notice the nested array type declaration. In
each array , the type of its elements is specified as

array<int, columns>

indicating that each array contains as its elements three-element
arrays of int values— the constant columns has the value 3.

Fig. 7.17 Initializing multidimensional arrays.

The declaration of array1 (line 12) provides six initializers. The
compiler initializes the elements of row 0 followed by the elements of
row 1. So, the first three values initialize row 0’s elements to 1, 2 and
3, and the last three initialize row 1’s elements to 4, 5 and 6. The
declaration of array2 (line 13) provides only five initializers. The
initializers are assigned to row 0, then row 1. Any elements that do not
have an explicit initializer are initialized to zero, so array2[1][2] is 0.

The program calls function printArray to output each array ’s
elements. Notice that the function prototype (line 9) and definition
(lines 23–33) specify that the function receives a two-row and three-
column array . The parameter receives the array by reference and is
declared const because the function does not modify the array ’s
elements.

Nested Range-Based for Statements
11

To process the elements of a two-dimensional array , we use a nested
loop in which the outer loop iterates through the rows and the inner
loop iterates through the columns of a given row. Function
printArray ’s nested loop is implemented with range-based for
statements. Lines 25 and 27 introduce the C++11 auto keyword,
which tells the compiler to infer (determine) a variable’s data type
based on the variable’s initializer value. The outer loop’s range

variable row is initialized with an element from the parameter a .
Looking at the array ’s declaration, you can see that the array

contains elements of type

array<int, columns>

so the compiler infers that row refers to a three-element array of int
values (again, columns is 3). The const& in row ’s declaration indicates
that the reference cannot be used to modify the rows and prevents
each row from being copied into the range variable. The inner loop’s
range variable element is initialized with one element of the array
represented by row , so the compiler infers that element refers to an
int because each row contains three int values. In an IDE, you can
typically hover your mouse over a variable declared with auto and the
IDE will display the variable’s inferred type. Line 28 displays the value
from a given row and column.

Nested Counter-Controlled for
Statements
We could have implemented the nested loop with counter-controlled
iteration as follows:

for (size_t row{0}; row < a.size(); ++row) {

 for (size_t column{0}; column < a[row].size(); ++column) {

 cout << a[row][column] << ' ';

 }

 cout << endl;

}

Other Common Two-Dimensional array
Manipulations
The following for statement sets all the elements in row 2 of array a
in Fig. 7.16 to zero:

for (size_t column{0}; column < 4; ++column) {

 a[2][column] = 0;

}

The for statement varies only the second subscript (i.e., the column
subscript). The preceding for statement is equivalent to the following
assignment statements:

a[2][0] = 0;

a[2][1] = 0;

a[2][2] = 0;

a[2][3] = 0;

The following nested counter-controlled for statement determines the
total of all the elements in array a in Fig. 7.16:

total = 0;

for (size_t row{0}; row < a.size(); ++row) {

 for (size_t column{0}; column < a[row].size(); ++column) {

 total += a[row][column];

 }

}

The for statement totals the elements of the array one row at a time.
The outer for statement begins by setting row (i.e., the row subscript)
to 0 , so the elements of row 0 may be totaled by the inner for
statement. The outer for statement then increments row to 1 , so the
elements of row 1 can be totaled. Then, the outer for statement
increments row to 2 , so the elements of row 2 can be totaled. When
the nested for statement terminates, total contains the sum of all

the array elements. This nested loop can be implemented with range-
based for statements as:

total = 0;

for (auto row : a) { // for each row

 for (auto column : row) { // for each column in row

 total += column;

 }

}

7.9 Case Study: Class
GradeBook Using a Two-
Dimensional array
In Section 7.6, we presented class GradeBook (Fig. 7.13), which used
a one-dimensional array to store student grades on a single exam. In
most semesters, students take several exams. Professors are likely to
want to analyze grades across the entire semester, both for a single
student and for the class as a whole.

Storing Student Grades in a Two-
Dimensional array in Class GradeBook
Figure 7.18 shows the output that summarizes 10 students’ grades on
three exams. We store the grades as a two-dimensional array in an
object of the next version of class GradeBook (Fig. 7.19). Each row of
the array represents a single student’s grades for the entire course,
and each column represents all the grades the students earned for
one particular exam. A client program, such as Fig. 7.20, passes the
array as an argument to the GradeBook constructor. Since there are 10
students and three exams, we use a ten-by-three array to store the
grades.

Fig. 7.18 Output of GradeBook that uses two-dimensional arrays.

Fig. 7.19 Definition of class GradeBook that uses a two-dimensional
array to store test grades.

Overview of Class GradeBook ’s Functions
Each of class GradeBook ’s member functions is similar to its
counterpart in the earlier one-dimensional array version of class
GradeBook (Fig. 7.13). Member function getMinimum (lines 52–66 of
Fig. 7.19) determines the lowest grade of all students for the
semester. Member function getMaximum (lines 69–83) determines the
highest grade of all students for the semester. Member function
getAverage (lines 86–96) determines a particular student’s semester
average. Member function outputBarChart (lines 99–132) outputs a
bar chart of the distribution of all student grades for the semester.
Member function output-Grades (lines 135–161) outputs the two-
dimensional array in a tabular format, along with each student’s
semester average.

Functions getMinimum and getMaximum
Member functions getMinimum , getMaximum , outputBarChart and
outputGrades each loop through array grades by using nested range-
based for or counter-controlled for statements. For example,
consider the nested for statement (lines 56–63) in member function
getMinimum . The outer for statement loops through the rows that

represent each student and the inner for loops through the grades of
a given student. Each grade is compared with variable lowGrade in the
body of the inner for statement. If a grade is less than lowGrade ,
lowGrade is set to that grade. This repeats until all rows and columns
of grades have been traversed. When execution of the nested
statement is complete, lowGrade contains the smallest grade in the
two-dimensional array . Member function getMaximum works similarly to
member function getMinimum .

Function outputBarChart
Member function outputBarChart in Fig. 7.19 is nearly identical to the
one in Fig. 7.13. However, to output the overall grade distribution for a
whole semester, the function uses a nested for statement (lines 107–
111 in Fig. 7.19) to increment the elements of the one-dimensional
array frequency , based on all the grades in the two-dimensional
array . The rest of the code in the two outputBarChart member
functions is identical.

Function outputGrades
Member function outputGrades (lines 135–161) uses nested counter-
controlled for statements to output values of the array grades , in
addition to each student’s semester average. The output in Fig. 7.18
shows the result, which resembles the tabular format of a professor’s
physical grade book. Lines 140–142 print the column headings for

each test. We use a counter-controlled for statement so that we can
identify each test with a number. Similarly, the for statement in lines
147–160 first outputs a row label using a counter variable to identify
each student (line 148). Although array indices start at 0, lines 141
and 148 output test + 1 and student + 1 , respectively, to produce
test and student numbers starting at 1 (see Fig. 7.18). The inner for
statement in lines 151–153 of Fig. 7.19 uses the outer for
statement’s counter variable student to loop through a specific row of
array grades and output each student’s test grade. Finally, line 157
obtains each student’s semester average by passing the current row
of grades (i.e., grades[student]) to member function getAverage .

Function getAverage
Member function getAverage (lines 86–96) takes as an argument a
one-dimensional array of test results for a particular student. When
line 157 calls getAverage , the first argument is grades[student] , which
specifies that a particular row of the two-dimensional array grades
should be passed to getAverage . For example, based on the array
created in Fig. 7.20, the argument grades[1] represents the three
values (a one-dimensional array of grades) stored in row 1 of the
two-dimensional array grades . A two-dimensional array ’s rows are
one-dimensional arrays. Member function getAverage calculates the
sum of the array elements, divides the total by the number of test

results and returns the floating-point result as a double value (Fig.
7.19, line 95).

Testing Class GradeBook
The program in Fig. 7.20 creates an object of class GradeBook (Fig.
7.19) using the two-dimensional array of ints named grades
(declared and initialized in lines 9–19 of Fig. 7.20). Line 9 accesses
class GradeBook ’s static constants students and tests to indicate the
size of each dimension of array grades . Line 21 passes a course
name and grades to the GradeBook constructor. Lines 22–23 then
invoke myGradeBook ’s displayMessage and processGrades member
functions to display a welcome message and obtain a report
summarizing the students’ grades for the semester, respectively.

Fig. 7.20 Creates a GradeBook object using a two-dimensional
array of grades, then invokes member function processGrades to
analyze them.

7.10 Introduction to C++ Standard
Library Class Template vector
We now introduce C++ Standard Library class template vector , which
is similar to class template array , but also supports dynamic resizing.
Except for the features that modify a vector, the other features shown
in Fig. 7.21 also work for arrays. Standard class template vector is
defined in header <vector> (line 5) and belongs to namespace std .
Chapter 15 discusses the full functionality of vector . At the end of this
section, we’ll demonstrate class vector ’s bounds checking capabilities
and introduce C++’s exception-handling mechanism, which can be
used to detect and handle an out-of-bounds vector index.

Fig. 7.21 Demonstrating C++ Standard Library class template
vector .

Creating vector Objects

Lines 13–14 create two vector objects that store values of type int
— integers1 contains seven elements, and integers2 contains 10
elements. By default, all the elements of each vector object are set to
0 . Like arrays, vectors can be defined to store most data types, by
replacing int in vector<int> with the appropriate type.

Notice that we used parentheses rather than braces to pass the size
argument to each vector object’s constructor. When creating a
vector , if the braces contain one value of the vector ’s element type,
the braces are treated as a one-element initializer list, rather than a
call to the constructor that sets the vector ’s size. So the following
declaration

vector<int> integers1{7};

actually creates a one-element vector<int> containing the int value
7 , not a 7-element vector .

vector Member Function size ; Function
outputVector

Line 17 uses vector member function size to obtain the size (i.e., the
number of elements) of integers1 . Line 19 passes integers1 to
function outputVector (lines 95–101), which uses a range-based for

statement to obtain the value in each element of the vector for output.
As with class template array , you can also do this using a counter-
controlled loop and the subscript ([]) operator. Lines 22 and 24
perform the same tasks for integers2 .

Function inputVector
Lines 28–29 pass integers1 and integers2 to function inputVector
(lines 104–108) to read values for each vector ’s elements from the
user. The function uses a range-based for statement with a range
variable that’s a reference to an int . Because the range variable is a
reference to a vector element, the reference can be used t store a
input value in the corresponding element.

Comparing vector Objects for Inequality
Line 40 demonstrates that vector objects can be compared with one
another using the != operator. If the contents of two vectors are not
equal, the operator returns true ; otherwise, it returns false .

Initializing One vector with the Contents
of Another
The C++ Standard Library class template vector allows you to create
a new vector object that’s initialized with the contents of an existing

vector . Line 46 creates a vector object integers3 and initializes it
with a copy of integers1 . This invokes vector ’s so-called copy

constructor to perform the copy operation. You’ll learn about copy
constructors in detail in Chapter 10. Lines 48–50 output the size and
contents of integers3 to demonstrate that it was initialized correctly.

Assigning vector s and Comparing
vector s for Equality
Line 54 assigns integers2 to integers1 , demonstrating that the
assignment (=) operator can be used with vector objects. Lines 56–
59 output the contents of both objects to show that they now contain
identical values. Line 64 then compares integers1 to integers2 with
the equality (==) operator to determine whether the contents of the
two objects are equal (which they are) after the assignment in line 54.

Using the [] Operator to Access and
Modify vector Elements
Lines 69 and 73 use square brackets ([]) to obtain a vector element
and use it as an rvalue and as an lvalue, respectively. Recall from
Section 5.12 that an rvalue cannot be modified, but an lvalue can. As
is the case with arrays, C++ is not required to perform bounds

checking when vector elements are accessed with square brackets.2
Therefore, you must ensure that operations using [] do not

accidentally attempt to manipulate elements outside the bounds of the
vector . Standard class template vector does, however, provide
bounds checking in its member function at (as does class template
array), which we use at line 80 and discuss shortly.

2. Some compilers have options for bounds checking to help prevent
buffer overflows.

Exception Handling: Processing an Out-of-
Range Subscript
An exception indicates a problem that occurs while a program
executes. The name “exception” suggests that the problem occurs
infrequently. Exception handling enables you to create fault-tolerant
programs that can process (or handle) exceptions. In many cases,
this allows a program to continue executing as if no problems were
encountered. For example, Fig. 7.21 still runs to completion, even
though an attempt was made to access an out-of-range subscript.
More severe problems might prevent a program from continuing
normal execution, instead requiring the program to notify the user of
the problem, then terminate. When a function detects a problem, such
as an invalid array subscript or an invalid argument, it throws an
exception—that is, an exception occurs. Here we introduce exception
handling briefly. We’ll discuss it in detail in Chapter 17.

The try Statement

To handle an exception, place any code that might throw an exception
in a try statement (lines 78–84). The try block (lines 78–81)
contains the code that might throw an exception, and the catch block
(lines 82–84) contains the code that handles the exception if one
occurs. As you’ll see in Chapter 17, you can have many catch blocks
to handle different types of exceptions that might be thrown in the
corresponding try block. If the code in the try block executes
successfully, lines 82–84 are ignored. The braces that delimit try and
catch blocks’ bodies are required.

The vector member function at provides bounds checking and
throws an exception if its argument is an invalid subscript. By default,
this causes a C++ program to terminate. If the subscript is valid,
function at returns either

a reference to the element at that location—this is a modifiable
lvalue that can be used to change the value of the corresponding
vector element, or
a const reference to the element at that location—this is a
nonmodifiable lvalue that cannot be used to change the value of
the corresponding vector element.

A nonmodifiable lvalue is treated as a const object. If at is called on a
const array or via a reference that’s declared const , the function
returns a const reference.

Executing the catch Block
When the program calls vector member function at with the
argument 15 (line 80), the function attempts to access the element at
location 15, which is outside the vector ’s bounds— integers1 has only
10 elements at this point. Because bounds checking is performed at
execution time, vector member function at generates an exception—
specifically line 80 throws an out_of_range exception (from header
<stdexcept>) to notify the program of this problem. At this point, the
try block terminates immediately and the catch block begins
executing—if you declared any variables in the try block, they’re now
out of scope and are not accessible in the catch block.

The catch block declares a type (out_of_range) and an exception
parameter (ex) that it receives as a reference. The catch block can
handle exceptions of the specified type. Inside the block, you can use
the parameter’s identifier to interact with a caught exception object.

 Performance Tip 7.2

Catching an exception by reference increases performance by
preventing the exception object from being copied when it’s caught.
You’ll see in later chapters that catching by reference is also important
when defining catch blocks that process related exception types.

what Member Function of the Exception
Parameter
When lines 82–84 catch the exception, the program displays a
message indicating the problem that occurred. Line 83 calls the
exception object’s what member function to get the error message
that’s stored in the exception object and display it. Once the message
is displayed in this example, the exception is considered handled and
the program continues with the next statement after the catch block’s
closing brace. In this example, lines 87–91 execute next. We use
exception handling again in Chapters 9–12 and Chapter 17 presents
a deeper look.

Changing the Size of a vector
One of the key differences between a vector and an array is that a
vector can dynamically grow and shrink as the number of elements it
needs to accommodate varies. To demonstrate this, line 87 shows the
current size of integers3 , line 88 calls the vector ’s push_back member
function to add a new element containing 1000 to the end of the
vector and line 89 shows the new size of integers3 . Line 91 then
displays integers3 ’s new contents.

C++11: List Initializing a vector

Many of the array examples in this chapter used list initializers to
specify the initial array element values. C++11 also allows this for
vectors (and other C++ Standard Library data structures).

11

7.11 Wrap-Up
This chapter began our introduction to data structures, exploring the
use of C++ Standard Library class templates array and vector to
store data in and retrieve data from lists and tables of values. The
chapter examples demonstrated how to declare an array , initialize an
array and refer to individual elements of an array . We passed arrays
to functions by reference and used the const qualifier to prevent the
called function from modifying the array ’s elements, thus enforcing
the principle of least privilege. You learned how to use C++11’s range-
based for statement to manipulate all the elements of an array . We
also showed how to use C++ Standard Library functions sort and
binary_search to sort and search an array , respectively. You learned
how to declare and manipulate multidimensional arrays of arrays. We
used nested counter-controlled and nested range-based for
statements to iterate through all the rows and columns of a two-
dimensional array . We also showed how to use auto to infer a
variable’s type based on its initializer value. Finally, we demonstrated
the capabilities of C++ Standard Library class template vector . In that
example, we discussed how to access array and vector elements
with bounds checking and demonstrated basic exception-handling
concepts. In later chapters, we’ll continue our coverage of data
structures.

We’ve now introduced the basic concepts of classes, objects, control
statements, functions, array objects and vector objects. In Chapter
8, we present one of C++’s most powerful features—the pointer.
Pointers keep track of where data and functions are stored in memory,
which allows us to manipulate those items in interesting ways. As
you’ll see, C++ also provides a language element called an array
(different from the class template array) that’s closely related to
pointers. In contemporary C++ code, its considered better practice to
use C++11’s array class template rather than traditional arrays.

Summary

Section 7.1 Introduction
Data structures (p. 284) are collections of related data items.
arrays (p. 284) are data structures consisting of related data items
of the same type. arrays are “static” entities in that they remain the
same size throughout their lifetimes.

Section 7.2 array s
An array is a consecutive group of memory locations that share
the same type.
Each array knows its own size, which can be determined by
calling its size member function (p. 285).
To refer to a particular location or element in an array , we specify
the name of the array (p. 285) and the position number of the
particular element in the array .
A program refers to any one of an array ’s elements by giving the
name of the array followed by the index (p. 284) of the particular
element in square brackets ([]).
The first element in every array has index zero (p. 285) and is
sometimes called the zeroth element.
An index must be an integer or integer expression (using any
integral type).
The brackets used to enclose the index are an operator with the
same precedence as parentheses.

Section 7.3 Declaring array s
arrays occupy space in memory. You specify the type of each
element and the number of elements required by an array as
follows:

array< type, arraySize> arrayName;

and the compiler reserves the appropriate amount of memory.
arrays can be declared to contain almost any data type. For
example, an array of type char can be used to store a character
string.

Section 7.4 Examples Using array s
The elements of an array can be initialized in the array
declaration by following the array name with an initializer list (p.
288)—a comma-separated list (enclosed in braces) of initializers
(p. 288).
When initializing an array with an initializer list, if there are fewer
initializers than elements in the array , the remaining elements are
initialized to zero. The number of initializers must be less than or
equal to the array size.
A constant variable that’s used to specify an array ’s size must be
initialized when it’s declared and cannot be modified thereafter.
C++ has no array bounds checking (p. 295) by default. You
should ensure that all array references remain within the bounds
of the array .
A static local variable in a function definition exists for the
duration of the program but is visible only in the function body.
A program initializes static local arrays when their declarations
are first encountered. If a static array is not initialized explicitly by
you, each element of that array is initialized to zero by the
compiler when the array is created.

Section 7.5 Range-Based for Statement
The new C++11 range-based for statement (p. 298) allows to
manipulate all the elements of an array without using a counter,
thus avoiding the possibility of “stepping outside” the array and
eliminating the need for you to implement your own bounds
checking.
A range-based for statement’s header contains a range variable
declaration to the left of the colon and the name of a container to
the right, as in

for (rangeVariableDeclaration : container)

The range variable represents successive elements on successive
iterations of the loop.
You can use the range-based for statement with most of the C++
Standard Library’s prebuilt data structures (commonly called
containers).
You can use a range-based for statement to modify each element
by making the range variable a reference.
The range-based for statement can be used in place of the
counter-controlled for statement whenever code looping through
an array does not require access to the element’s subscript.

Section 7.6 Case Study: Class GradeBook
Using an array to Store Grades

Class variables (static data members; p. 304) are shared by all
objects of the class in which the variables are declared.
A static data member can be accessed within the class definition
and the member-function definitions like any other data member.
A public static data member can also be accessed outside of the
class, even when no objects of the class exist, using the class
name followed by the scope resolution operator (::) and the name
of the data member.

Section 7.7 Sorting and Searching array s
Sorting data—placing it into ascending or descending order—is
one of the most important computing applications.
The process of finding a particular element of an array is called
searching.
C++ Standard Library function sort sorts an array ’s elements into
ascending order. The function’s arguments specify the range of
elements that should be sorted. You’ll see that function sort can
be used on other types of containers too.
C++ Standard Library function binary_search determines whether a
value is in an array . The sequence of values must be sorted in
ascending order first. The function’s first two arguments represent
the range of elements to search and the third is the search key—
the value to locate. The function returns a bool indicating whether
the value was found.

Section 7.8 Multidimensional array s
Multidimensional arrays (p. 308) with two dimensions are often
used to represent tables of values (p. 307) consisting of
information arranged in rows and columns.
arrays that require two subscripts to identify a particular element
are called two-dimensional arrays (p. 308). An array with m rows
and n columns is called an m-by-n array (p. 308).

Section 7.9 Case Study: Class GradeBook
Using a Two-Dimensional array

In a variable declaration, the keyword auto (p. 309) can be used
in place of a type name to infer the variable’s type based on the
variable’s initializer value.

Section 7.10 Introduction to C++ Standard
Library Class Template vector

C++ Standard Library class template vector (p. 317) is similar to
array but also supports resizing.
By default, all the elements of an integer vector object are set to 0.
A vector can be defined to store any data type using a declaration
of the form

vector<type> name(size);

Member function size (p. 320) of class template vector returns
the number of elements in the vector on which it’s invoked.
The value of an element of a vector can be accessed or modified
using square brackets ([]).
Objects of standard class template vector can be compared
directly with the equality (==) and inequality (!=) operators. The
assignment (=) operator can also be used with vector objects.
A nonmodifiable lvalue (a const reference) is an expression that
identifies an object in memory (such as an element in a vector), but
cannot be used to modify that object. A modifiable lvalue (a non-
const reference) also identifies an object in memory, but can be
used to modify the object.

An exception (p. 321) indicates a problem that occurs while a
program executes. The name “exception” suggests that the
problem occurs infrequently—if the “rule” is that a statement
normally executes correctly, then the problem represents the
“exception to the rule.”
Exception handling (p. 321) enables you to create fault-tolerant
programs (p. 321) that can resolve exceptions.
To handle an exception, place the code that might throw an
exception (p. 322) in a try statement.
The try block (p. 322) contains the code that might throw an
exception, and the catch block (p. 322) contains the code that
handles the exception if one occurs.
When a try block terminates, any variables declared in the try
block go out of scope.
A catch block declares a type and an exception parameter. Inside
the catch block, you can use the parameter’s identifier to interact
with a caught exception object.
An exception object’s what member function (p. 322) returns the
exception’s error message.

Self-Review Exercises
1. 7.1 (Fill in the Blanks) Answer each of the following:

A. Lists and tables of values can be stored in or
 .

B. An array ’s elements are related by the fact that they
have the same and .

C. The number used to refer to a particular element of an
array is called its .

D. A(n) should be used to declare the size of an
array , because it eliminates magic numbers.

E. The process of placing the elements of an array in order
is called the array .

F. The process of determining if an array contains a
particular key value is called the array .

G. An array that uses two subscripts is referred to as a(n)
 array .

2. 7.2 (True or False) State whether the following are true or
false. If the answer is false, explain why.

A. A given array can store many different types of values.
B. An array subscript should normally be of data type

float .

C. If there are fewer initializers in an initializer list than the
number of elements in the array , the remaining
elements are initialized to the last value in the initializer
list.

D. It’s an error if an initializer list has more initializers than
there are elements in the array .

3. 7.3 (Write C++ Statements) Write one or more statements that
perform the following tasks for an array called fractions :

A. Define a constant variable arraySize to represent the
size of an array and initialize it to 10 .

B. Declare an array with arraySize elements of type
double , and initialize the elements to 0 .

C. Name the fourth element of the array .
D. Refer to array element 4.
E. Assign the value 1.667 to array element 9.
F. Assign the value 3.333 to the seventh element of the

array .
G. Display array elements 6 and 9 with two digits of

precision to the right of the decimal point, and show the
output that’s actually displayed on the screen.

H. Display all the array elements using a counter-controlled
for statement. Define the integer variable i as a control
variable for the loop. Show the output.

I. Display all the array elements separated by spaces
using a range-based for statement.

4. 7.4 (Two-Dimensional array Questions) Answer the following
questions regarding a two-dimensional array called table :

A. Declare the array to store int values and to have 3
rows and 3 columns. Assume that the constant variable
arraySize has been defined to be 3.

B. How many elements does the array contain?
C. Use a counter-controlled for statement to initialize each

element of the array to the sum of its subscripts.
D. Write a nested for statement that displays the values of

each element of array table in tabular format with 3
rows and 3 columns. Each row and column should be
labeled with the row or column number. Assume that the
array was initialized with an initializer list containing the
values from 1 through 9 in order. Show the output.

5. 7.5 (Find the Error) Find and correct the error in each of the
following program segments:

A. #include <iostream>;

B. arraySize = 10; // arraySize was declared const

C. Assume that array<int, 10> b{};

for (size_t i{0}; i <= b.size(); ++i) {

 b[i] = 1;

}

D. Assume that a is a two-dimensional array of int values
with two rows and two columns:

a[1, 1] = 5;

Exercises
1. 7.6 (Fill in the Blanks) Fill in the blanks in each of the

following:
A. The names of the four elements of array p are ,

 , and .
B. Naming an array , stating its type and specifying the

number of elements in the array is called the
array .

C. When accessing an array element, by convention, the
first subscript in a two-dimensional array identifies an
element’s and the second subscript identifies an
element’s .

D. An m-by-n array contains rows, columns
and elements.

E. The name of the element in row 3 and column 5 of array
d is .

2. 7.7 (True or False) Determine whether each of the following is
true or false. If false, explain why.

A. To refer to a particular location or element within an
array , we specify the name of the array and the value
of the particular element.

B. An array definition reserves space for an array .

C. To reserve 100 locations for integer array p , you write

p[100];

D. A for statement must be used to initialize the elements
of a 15-element array to zero.

E. Nested for statements must be used to total the
elements of a two-dimensional array .

3. 7.8 (Write C++ Statements) Write C++ statements to
accomplish each of the following:

A. Display the value of element 6 of character array
alphabet .

B. Input a value into element 4 of one-dimensional floating-
point array grades .

C. Initialize each of the 5 elements of one-dimensional
integer array values to 8 .

D. Total and display the elements of floating-point array
temperatures of 100 elements.

E. Copy array a into the first portion of array b . Assume
that both arrays contain double s and that arrays a and
b have 11 and 34 elements, respectively.

F. Determine and display the smallest and largest values
contained in 99-element floatingpoint array w .

4. 7.9 (Two-Dimensional array Questions) Consider a 2-by-3
integer array t .

A. Write a declaration for t .
B. How many rows does t have?
C. How many columns does t have?
D. How many elements does t have?
E. Write the names of all the elements in row 1 of t .
F. Write the names of all the elements in column 2 of t .
G. Write a statement that sets the element of t in the first

row and second column to zero.
H. Write a series of statements that initialize each element

of t to zero. Do not use a loop.
I. Write a nested counter-controlled for statement that

initializes each element of t to zero.
J. Write a nested range-based for statement that

initializes each element of t to zero.
K. Write a statement that inputs the values for the elements

of t from the keyboard.
L. Write a series of statements that determine and display

the smallest value in array t .
M. Write a statement that displays the elements in row 0 of

t .
N. Write a statement that totals the elements in column 2 of

t .
O. Write a series of statements that prints the array t in

neat, tabular format. List the column subscripts as

headings across the top and list the row subscripts at the
left of each row.

5. 7.10 (Salesperson Salary Ranges) Use a one-dimensional
array to solve the following problem. A company pays its
salespeople on a commission basis. The salespeople each
receive $200 per week plus 9 percent of their gross sales for
that week. For example, a salesperson who grosses $5000 in
sales in a week receives $200 plus 9 percent of $5000, or a
total of $650. Write a program (using an array of counters) that
determines how many of the salespeople earned salaries in
each of the following ranges (assume that each salesperson’s
salary is truncated to an integer amount):

A. $200–299
B. $300–399
C. $400–499
D. $500–599
E. $600–699
F. $700–799
G. $800–899
H. $900–999
I. $1000 and over

6. 7.11 (One-Dimensional array Questions) Write statements
that perform the following one-dimensional array operations:

A. Initialize the 10 elements of integer array counts to zero.
B. Add 1 to each of the 15 elements of integer array bonus .

C. Read 12 values for the array of doubles named
monthlyTemperatures from the keyboard.

D. Print the 5 values of integer array bestScores in column
format.

7. 7.12 (Find the Errors) Find the error(s) in each of the following
statements:

A. Assume that a is an array of three ints.

cout << a[1] << " " << a[2] << " " << a[3] << endl;

B. array<double, 3> f{1.1, 10.01, 100.001, 1000.0001};

C. Assume that d is an array of doubles with two rows and
10 columns.

d[1, 9] = 2.345;

8. 7.13 (Duplicate Elimination with array) Use a one-
dimensional array to solve the following problem. Read in 20
numbers, each of which is between 10 and 100, inclusive. As
each number is read, validate it and store it in the array only if
it isn’t a duplicate of a number already read. After reading all
the values, display only the unique values that the user
entered. Provide for the “worst case” in which all 20 numbers

are different. Use the smallest possible array to solve this

problem.
9. 7.14 (Duplicate Elimination with vector) Reimplement

Exercise 7.13 using a vector . Begin with an empty vector and
use its push_back function to add each unique value to the
vector .

10. 7.15 (Two-Dimensional array Initialization) Label the
elements of a 3-by-5 two-dimensional array sales to indicate
the order in which they’re set to zero by the following program
segment:

for (size_t row{0}; row < sales.size(); ++row) {

 for (size_t column{0}; column < sales[row].size();

++column) {

 sales[row][column] = 0;

 }

}

11. 7.16 (Dice Rolling) Write a program that simulates the rolling
of two dice. The sum of the two values should then be
calculated. [Note: Each die can show an integer value from 1 to
6, so the sum of the two values will vary from 2 to 12, with 7
being the most frequent sum and 2 and 12 being the least
frequent sums.] Figure 7.22 shows the 36 possible
combinations of the two dice. Your program should roll the two
dice 36,000,000 times. Use a one-dimensional array to tally

the numbers of times each possible sum appears. Print the
results in a tabular format. Also, determine if the totals are
reasonable (i.e., there are six ways to roll a 7, so approximately
one-sixth of all the rolls should be 7).

Fig. 7.22 The 36 possible outcomes of rolling two dice.

12. 7.17 (What Does This Code Do?) What does the following
program do?

Fig. 7.23 What does this program do?

13. 7.18 (Craps Game Modification) Modify the program of Fig.
6.9 to play 1000 games of craps. The program should keep
track of the statistics and answer the following questions:

A. How many games are won on the 1st roll, 2nd roll, …,
20th roll, and after the 20th roll?

B. How many games are lost on the 1st roll, 2nd roll, …,
20th roll, and after the 20th roll?

C. What are the chances of winning at craps? [Note: You
should discover that craps is one of the fairest casino
games. What do you suppose this means?]

D. What’s the average length of a game of craps?
E. Do the chances of winning improve with the length of the

game?

14. 7.19 (Converting vector Example of Section 7.10 to array)
Convert the vector example of Fig. 7.21 to use arrays.
Eliminate any vector -only features.

15. 7.20 (What Does This Code Do?) What does the following
program do?

Fig. 7.24 What does this program do?

16. 7.21 (Sales Summary) Use a two-dimensional array to solve
the following problem. A company has four salespeople (1 to 4)
who sell five different products (1 to 5). Once a day, each
salesperson passes in a slip for each different type of product
sold. Each slip contains the following:

A. The salesperson number
B. The product number
C. The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips
per day. Assume that the information from all of the slips for
last month is available. Write a program that will read all this
information for last month’s sales (one salesperson’s data at a
time) and summarize the total sales by salesperson by product.
All totals should be stored in the two-dimensional array sales .

After processing all the information for last month, print the
results in tabular format with each of the columns representing
a particular salesperson and each of the rows representing a
particular product. Cross total each row to get the total sales of
each product for last month; cross total each column to get the
total sales by salesperson for last month. Your tabular printout
should include these cross totals to the right of the totaled rows
and to the bottom of the totaled columns.

17. 7.22 (Knight’s Tour) One of the more interesting puzzlers for
chess buffs is the Knight’s Tour problem. The question is this:
Can the chess piece called the knight move around an empty
chessboard and touch each of the 64 squares once and only
once? We study this intriguing problem in depth in this
exercise.
The knight makes L-shaped moves (over two in one direction
then over one in a perpendicular direction). Thus, from a
square in the middle of an empty chessboard, the knight can
make eight different moves (numbered 0 through 7) as shown
in Fig. 7.25.

A. Draw an 8-by-8 chessboard on a sheet of paper and
attempt a Knight’s Tour by hand. Put a 1 in the first
square you move to, a 2 in the second square, a 3 in
the third, etc. Before starting the tour, estimate how far
you think you’ll get, remembering that a full tour consists
of 64 moves. How far did you get? Was this close to
your estimate?

B. Now let’s develop a program that will move the knight
around a chessboard. The board is represented by an 8-

by-8 two-dimensional array board . Each of the squares
is initialized to zero. We describe each of the eight
possible moves in terms of both their horizontal and
vertical components. For example, a move of type 0, as
shown in Fig. 7.25, consists of moving two squares
horizontally to the right and one square vertically
upward. Move 2 consists of moving one square
horizontally to the left and two squares vertically upward.
Horizontal moves to the left and vertical moves upward
are indicated

Fig. 7.25 The eight possible moves of the knight.

with negative numbers. The eight moves may be
described by two one-dimensional arrays, horizontal
and vertical , as follows:

horizontal[0] = 2 vertical[0] = -1

horizontal[1] = 1 vertical[1] = -2

horizontal[2] = -1 vertical[2] = -2

horizontal[3] = -2 vertical[3] = -1

horizontal[4] = -2 vertical[4] = 1

horizontal[5] = -1 vertical[5] = 2

horizontal[6] = 1 vertical[6] = 2

horizontal[7] = 2 vertical[7] = 1

Let the variables currentRow and currentColumn indicate
the row and column of the knight’s current position. To
make a move of type moveNumber , where moveNumber is
between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];

currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64 . Record the
latest count in each square the knight moves to.
Remember to test each potential move to see if the
knight has already visited that square, and, of course,
test every potential move to make sure that the knight
does not land off the chessboard. Now write a program
to move the knight around the chessboard. Run the
program. How many moves did the knight make?

C. After attempting to write and run a Knight’s Tour
program, you’ve probably developed some valuable
insights. We’ll use these to develop a heuristic (or

strategy) for moving the knight. Heuristics do not
guarantee success, but a carefully developed heuristic
greatly improves the chance of success. You may have
observed that the outer squares are more troublesome
than the squares nearer the center of the board. In fact,
the most troublesome, or inaccessible, squares are the
four corners.
Intuition may suggest that you should attempt to move
the knight to the most troublesome squares first and
leave open those that are easiest to get to, so when the
board gets congested near the end of the tour, there will
be a greater chance of success.
We may develop an “accessibility heuristic” by
classifying each square according to how accessible it’s
then always moving the knight to the square (within the
knight’s L-shaped moves, of course) that’s least
accessible. We label a two-dimensional array
accessibility with numbers indicating from how many
squares each particular square is accessible. On a blank
chessboard, each center square is rated as 8 , each
corner square is rated as 2 and the other squares have
accessibility numbers of 3 , 4 or 6 as follows:

2 3 4 4 4 4 3 2

3 4 6 6 6 6 4 3

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

3 4 6 6 6 6 4 3

2 3 4 4 4 4 3 2

Now write a version of the Knight’s Tour program using
the accessibility heuristic. At any time, the knight should
move to the square with the lowest accessibility number.
In case of a tie, the knight may move to any of the tied
squares. Therefore, the tour may begin in any of the four
corners. [Note: As the knight moves around the
chessboard, your program should reduce the
accessibility numbers as more and more squares
become occupied. In this way, at any given time during
the tour, each available square’s accessibility number
will remain equal to precisely the number of squares
from which that square may be reached.] Run this
version of your program. Did you get a full tour? Now
modify the program to run 64 tours, one starting from
each square of the chessboard. How many full tours did
you get?

D. Write a version of the Knight’s Tour program which,
when encountering a tie between two or more squares,
decides what square to choose by looking ahead to
those squares reachable from the “tied” squares. Your
program should move to the square for which the next
move would arrive at a square with the lowest
accessibility number.

18. 7.23 (Knight’s Tour: Brute Force Approaches) In Exercise
7.22, we developed a solution to the Knight’s Tour problem.
The approach used, called the “accessibility heuristic,”
generates many solutions and executes efficiently.
As computers continue increasing in power, we’ll be able to
solve more problems with sheer computer power and relatively
unsophisticated algorithms. This is the “brute force” approach
to problem solving.

A. Use random number generation to enable the knight to
walk around the chessboard (in its legitimate L-shaped
moves, of course) at random. Your program should run
one tour and print the final chessboard. How far did the
knight get?

B. Most likely, the preceding program produced a relatively
short tour. Now modify your program to attempt 1000
tours. Use a one-dimensional array to keep track of the
number of tours of each length. When your program
finishes attempting the 1000 tours, it should print this
information in neat tabular format. What was the best
result?

C. Most likely, the preceding program gave you some
“respectable” tours, but no full tours. Now “pull all the
stops out” and simply let your program run until it
produces a full tour. [Caution: This version of the
program could run for hours on a powerful computer.]
Once again, keep a table of the number of tours of each
length, and print this table when the first full tour is

found. How many tours did your program attempt before
producing a full tour? How much time did it take?

D. Compare the brute force version of the Knight’s Tour
with the accessibility heuristic version. Which required a
more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer
power? Could we be certain (in advance) of obtaining a
full tour with the accessibility heuristic approach? Could
we be certain (in advance) of obtaining a full tour with
the brute force approach? Argue the pros and cons of
brute-force problem-solving in general.

19. 7.24 (Eight Queens) Another puzzler for chess buffs is the
Eight Queens problem. Simply stated: Is it possible to place
eight queens on an empty chessboard so that no queen is
“attacking” any other, i.e., no two queens are in the same row,
the same column, or along the same diagonal? Use the
thinking developed in Exercise 7.22 to formulate a heuristic for
solving the Eight Queens problem. Run your program. [Hint: It’s
possible to assign a value to each square of the chessboard
indicating how many squares of an empty chessboard are
“eliminated” if a queen is placed in that square. Each of the
corners would be assigned the value 22, as in Fig. 7.26. Once
these “elimination numbers” are placed in all 64 squares, an
appropriate heuristic might be: Place the next queen in the
square with the smallest elimination number. Why is this
strategy intuitively appealing?]

Fig. 7.26 The 22 squares eliminated by placing a queen in
the upper-left corner.

20. 7.25 (Eight Queens: Brute Force Approaches) In this
exercise, you’ll develop several brute-force approaches to
solving the Eight Queens problem introduced in Exercise 7.24.

A. Solve the Eight Queens exercise, using the random
brute force technique developed in Exercise 7.23.

B. Use an exhaustive technique, i.e., try all possible
combinations of eight queens.

C. Why do you suppose the exhaustive brute force
approach may not be appropriate for solving the Knight’s
Tour problem?

D. Compare and contrast the random and exhaustive brute
force approaches in general.

21. 7.26 (Knight’s Tour: Closed-Tour Test) In the Knight’s Tour,
a full tour occurs when the knight makes 64 moves, touching
each square of the board once and only once. A closed tour
occurs when the 64th move is one move away from the location

in which the knight started the tour. Modify the Knight’s Tour
program you wrote in Exercise 7.22 to test for a closed tour if a
full tour has occurred.

22. 7.27 (The Sieve of Eratosthenes) A prime integer is any
integer that’s evenly divisible only by itself and 1. The Sieve of
Eratosthenes is a method of finding prime numbers. It operates
as follows:

A. Create an array with all elements initialized to 1 (true).
array elements with prime subscripts will remain 1. All
other array elements will eventually be set to zero.
You’ll ignore elements 0 and 1 in this exercise.

B. Starting with array subscript 2, every time an array
element is found whose value is 1, loop through the
remainder of the array and set to zero every element
whose subscript is a multiple of the subscript for the
element with value 1. For array subscript 2, all elements
beyond 2 in the array that are multiples of 2 will be set
to zero (subscripts 4, 6, 8, 10, etc.); for array subscript
3, all elements beyond 3 in the array that are multiples
of 3 will be set to zero (subscripts 6, 9, 12, 15, etc.); and
so on.

When this process is complete, the array elements that are still
set to one indicate that the subscript is a prime number. These
can then be printed. Write a program that uses an array of
1000 elements to determine and print the prime numbers
between 2 and 999.

Recursion Exercises
1. 7.28 (Palindromes) A palindrome is a string that’s spelled the

same way forward and backward. Examples of palindromes
include “radar” and “able was i ere i saw elba.” Write a
recursive function testPalindrome that returns true if a string
is a palindrome, and false otherwise. Note that like an array ,
the square brackets ([]) operator can be used to iterate
through the characters in a string .

2. 7.29 (Eight Queens) Modify the Eight Queens program you
created in Exercise 7.24 to solve the problem recursively.

3. 7.30 (Print an array) Write a recursive function printArray that
takes an array , a starting subscript and an ending subscript as
arguments, returns nothing and prints the array . The function
should stop processing and return when the starting subscript
equals the ending subscript.

4. 7.31 (Print a String Backward) Write a recursive function
stringReverse that takes a string and a starting subscript as
arguments, prints the string backward and returns nothing. The
function should stop processing and return when the end of the
string is encountered. Note that like an array the square
brackets ([]) operator can be used to iterate through the
characters in a string .

5. 7.32 (Find the Minimum Value in an array) Write a recursive
function recursiveMinimum that takes an integer array , a starting
subscript and an ending subscript as arguments, and returns
the smallest element of the array . The function should stop
processing and return when the starting subscript equals the
ending subscript.

6. 7.33 (Maze Traversal) The grid of hashes (#) and dots (.) in
Fig. 7.27 is a two-dimensional builtin array representation of a
maze. In the two-dimensional built-in array, the hashes
represent the walls of the maze and the dots represent squares
in the possible paths through the maze. Moves can be made
only to a location in the built-in array that contains a dot.
There is a simple algorithm for walking through a maze that
guarantees finding the exit (assuming that there is an exit). If
there is not an exit, you’ll arrive at the starting location again.
Place your right hand on the wall to your right and begin
walking forward. Never remove your hand from the wall. If the
maze turns to the right, you follow the wall to the right. As long
as you do not remove your hand from the wall, eventually you’ll
arrive at the exit of the maze. There may be a shorter path than
the one you’ve taken, but you are guaranteed to get out of the
maze if you follow the algorithm.

Fig. 7.27 Two-dimensional built-in array representation of a
maze.

Write recursive function mazeTraverse to walk through the maze.
The function should receive arguments that include a 12-by-12
built-in array of chars representing the maze and the starting
location of the maze. As mazeTraverse attempts to locate the
exit from the maze, it should place the character X in each
square in the path. The function should display the maze after
each move, so the user can watch as the maze is solved.

7. 7.34 (Generating Mazes Randomly) Write a function
mazeGenerator that randomly produces a maze. The function
should take as arguments a two-dimensional 12-by-12 built-in
array of chars and references to the int variables that
represent the row and column of the maze’s entry point. Try
your function mazeTraverse from Exercise 7.33, using several
randomly generated mazes.

Making a Difference
1. 7.35 (Polling) The Internet and the web enable people to

network, join a cause, and so on. The presidential candidates
use the Internet to get out their messages and raise money. In
this exercise, you’ll write a polling program that allows users to
rate five social-consciousness issues from 1 to 10 (most
important). Pick five causes (e.g., political issues, global
environmental issues). Use a one-dimensional string array
topics to store the causes. To summarize the survey
responses, use a 5-row, 10-column two-dimensional array
responses (of type int), each row corresponding to an element
in the topics array . When the program runs, it should ask the
user to rate each issue. Have your friends and family respond
to the survey. Then have the program display a summary of the
results, including:

A. A tabular report with the five topics down the left side
and the 10 ratings across the top, listing in each column
the number of ratings received for each topic.

B. To the right of each row, show the average of the ratings
for that issue.

C. Which issue received the highest point total? Display
both the issue and the point total.

D. Which issue received the lowest point total? Display both
the issue and the point total.

Answers to Self-Review Exercises
1. 7.1

A. arrays, vectors.
B. array name, type.
C. subscript or index.
D. constant variable.
E. sorting.
F. searching.
G. two-dimensional.

2. 7.2
A. False. An array can store only values of the same type.
B. False. An array subscript should be an integer or an

integer expression.
C. False. The remaining elements are initialized to zero.
D. True.

3. 7.3
A. const size_t arraySize{10};

B. array<double, arraySize> fractions{0.0};

C. fractions[3]

D. fractions[4]

E. fractions[9] = 1.667;

F. fractions[6] = 3.333;

G.

cout << fixed << setprecision(2);

cout << fractions[6] << ' ' << fractions[9] << endl;

Output: 3.33 1.67

H.

for (size_t i{0}; i < fractions.size(); ++i) {

 cout << "fractions[" << i << "] = " <<

fractions[i] << endl;

}

Output:

fractions[0] = 0.0

fractions[1] = 0.0

fractions[2] = 0.0

fractions[3] = 0.0

fractions[4] = 0.0

fractions[5] = 0.0

fractions[6] = 3.333

fractions[7] = 0.0

fractions[8] = 0.0

fractions[9] = 1.667

I.

for (double element : fractions)

 cout << element << ' ';

4. 7.4
A. array<array<int, arraySize>, arraySize> table;

B. Nine.
C.

for (size_t row{0}; row < table.size(); ++row) {

 for (size_t column{0}; column <

table[row].size(); ++column) {

 table[row][column] = row + column;

 }

}

D.

cout << " [0] [1] [2]" << endl;

for (size_t i{0}; i < arraySize; ++i) {

 cout << '[' << i << "] ";

 for (size_t j{0}; j < arraySize; ++j) {

 cout << setw(3) << table[i][j] << " ";

 }

 cout << endl;

}

Output:

 [0] [1] [2]

[0] 1 2 3

[1] 4 5 6

[2] 7 8 9

5. 7.5
A. Error: Semicolon at end of #include preprocessing

directive.
Correction: Eliminate semicolon.

B. Error: Assigning a value to a constant variable using an
assignment statement.
Correction: Initialize the constant variable in a const
size_t arraySize declaration.

C. Error: Referencing an array element outside the bounds
of the array (b[10]).
Correction: Change the loop-continuation condition to
use < rather than <= .

D. Error: array subscripting done incorrectly.
Correction: Change the statement to a[1][1] = 5;

8 Pointers

Objectives
In this chapter you’ll:

Learn what pointers are.
Declare and initialize pointers.
Use the address (&) and indirection (*) pointer operators.
Learn the similarities and differences between pointers and
references.
Use pointers to pass arguments to functions by reference.
Use built-in arrays.
Use const with pointers.
Use operator sizeof to determine the number of bytes that store a
value of a particular type.
Understand pointer expressions and pointer arithmetic.
Understand the close relationships between pointers and built-in
arrays.
Use pointer-based strings.
Use C++11 capabilities, including nullptr and Standard Library
functions begin and end .

Outline
1. 8.1 Introduction
2. 8.2 Pointer Variable Declarations and Initialization

A. 8.2.1 Declaring Pointers
B. 8.2.2 Initializing Pointers
C. 8.2.3 Null Pointers Prior to C++11

3. 8.3 Pointer Operators
A. 8.3.1 Address (&) Operator
B. 8.3.2 Indirection (*) Operator
C. 8.3.3 Using the Address (&) and Indirection (*)

Operators

4. 8.4 Pass-by-Reference with Pointers
5. 8.5 Built-In Arrays

A. 8.5.1 Declaring and Accessing a Built-In Array
B. 8.5.2 Initializing Built-In Arrays
C. 8.5.3 Passing Built-In Arrays to Functions
D. 8.5.4 Declaring Built-In Array Parameters
E. 8.5.5 C++11: Standard Library Functions begin and

end

F. 8.5.6 Built-In Array Limitations
G. 8.5.7 Built-In Arrays Sometimes Are Required

6. 8.6 Using const with Pointers
A. 8.6.1 Nonconstant Pointer to Nonconstant Data
B. 8.6.2 Nonconstant Pointer to Constant Data
C. 8.6.3 Constant Pointer to Nonconstant Data
D. 8.6.4 Constant Pointer to Constant Data

7. 8.7 sizeof Operator
8. 8.8 Pointer Expressions and Pointer Arithmetic

A. 8.8.1 Adding Integers to and Subtracting Integers
from Pointers

B. 8.8.2 Subtracting Pointers
C. 8.8.3 Pointer Assignment
D. 8.8.4 Cannot Dereference a void*
E. 8.8.5 Comparing Pointers

9. 8.9 Relationship Between Pointers and Built-In Arrays
A. 8.9.1 Pointer/Offset Notation
B. 8.9.2 Pointer/Offset Notation with the Built-In Array’s

Name as the Pointer
C. 8.9.3 Pointer/Subscript Notation
D. 8.9.4 Demonstrating the Relationship Between

Pointers and Built-In Arrays

10. 8.10 Pointer-Based Strings (Optional)
11. 8.11 Note About Smart Pointers
12. 8.12 Wrap-Up

1. Summary

2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Special Section: Building Your Own Computer

8.1 Introduction
This chapter discusses pointers—one of C++’s most powerful, yet
challenging to use, capabilities. We’ll help you determine when it’s
appropriate to use pointers, and show you how to use them correctly
and responsibly.

In Chapter 6, we saw that references can be used to perform pass-
by-reference. Pointers also enable pass-by-reference and can be
used to create and manipulate dynamic data structures that can grow
and shrink, such as linked lists, queues, stacks and trees. This
chapter explains basic pointer concepts. Chapter 19 presents
examples of creating and using pointer-based dynamic data
structures.

We also show the intimate relationship among built-in arrays and
pointers. C++ inherited built-in arrays from the C programming
language. As we saw in Chapter 7, the C++ Standard Library classes
array and vector provide more robust implementations of arrays as
full-fledged objects.

Similarly, C++ actually offers two types of strings— string class
objects (which we’ve been using since Chapter 3) and C-style,
pointer-based strings (C strings). This chapter briefly introduces C
strings to deepen your knowledge of pointers and built-in arrays. C

strings were widely used in older C and C++ software. We discuss C
strings in depth in Appendix F.

 Software Engineering
Observation 8.1

In new software development projects, you should favor array and

vector objects to builtin arrays, and string objects to C strings.

We’ll examine the use of pointers with class objects in Chapter 12,
where we’ll see that the “polymorphic processing” associated with
object-oriented programming is performed with references and
pointers.

8.2 Pointer Variable Declarations
and Initialization
Pointer variables contain memory addresses as their values.
Normally, a variable directly contains a specific value. A pointer
contains the memory address of a variable that, in turn, contains a
specific value. In this sense, a variable name directly references a
value, and a pointer indirectly references a value (Fig. 8.1).
Referencing a value through a pointer is called indirection. Diagrams
typically represent a pointer as an arrow from the variable that
contains an address to the variable located at that address in memory.

Fig. 8.1 Directly and indirectly referencing a variable.

8.2.1 Declaring Pointers

Pointers, like any other variables, must be declared before they can
be used. For example, for the pointer countPtr in Fig. 8.1, the
declaration

int* countPtr, count;

declares the variable countPtr to be of type int* (i.e., a pointer to an
int value) and is read (right to left), “ countPtr is a pointer to int .”
Variable count in the preceding declaration is declared to be an int ,
but not a pointer to an int . The * in the declaration applies only to the
first variable. Each variable being declared as a pointer must be
preceded by an asterisk (*). When * appears in a declaration, it’s not

an operator; rather, it indicates that the variable being declared is a
pointer. Pointers can be declared to point to objects of any data type.

 Common Programming Error 8.1
Assuming that the * used to declare a pointer distributes to all names

in a declaration’s comma-separated list of variables can lead to errors.
Each pointer must be declared with the * prefixed to the name (with

or without spaces in between). Declaring only one variable per
declaration helps avoid these types of errors and improves program
readability.

 Good Programming Practice 8.1
Although it’s not a requirement, we like to include the letters Ptr in
each pointer variable name to make it clear that the variable is a
pointer and must be handled accordingly.

8.2.2 Initializing Pointers

11

Pointers should be initialized to nullptr (added in C++11) or to a
memory address either when they’re declared or in an assignment. A
pointer with the value nullptr “points to nothing” and is known as a
null pointer. From this point forward, when we refer to a “null pointer”
we mean a pointer with the value nullptr .

 Error-Prevention Tip 8.1
Initialize all pointers to prevent pointing to unknown or uninitialized
areas of memory.

8.2.3 Null Pointers Prior to C++11

In earlier versions of C++, the value specified for a null pointer was 0
or NULL . NULL is defined in several standard library headers to
represent the value 0 . Initializing a pointer to NULL is equivalent to
initializing a pointer to 0 , but prior to C++11, 0 was used by
convention. The value 0 is the only integer value that can be assigned
directly to a pointer variable without first casting the integer to a
pointer type (normally via a reinterpret_cast ; Section 14.8).

8.3 Pointer Operators
The unary operators & and * are used to create pointer values and
“dereference” pointers, respectively.

8.3.1 Address (&) Operator

The address operator (&) is a unary operator that obtains the

memory address of its operand. For example, assuming the
declarations

int y{5}; // declare variable y

int* yPtr{nullptr}; // declare pointer variable yPtr

the statement

yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer variable yPtr . Then
variable yPtr is said to “point to” y . Now, yPtr indirectly references
variable y ’s value (5). The use of the & in the preceding statement is
not the same as its use in a reference variable declaration, where it’s
always preceded by a data-type name. When declaring a reference,
the & is part of the type. In an expression like &y , the & is the address

operator.

Figure 8.2 shows a representation of memory after the preceding
assignment. The “pointing relationship” is indicated by drawing an
arrow from the box that represents the pointer yPtr in memory to the
box that represents the variable y in memory.

Fig. 8.2 Graphical representation of a pointer pointing to a
variable in memory.

Figure 8.3 shows another pointer representation in memory with
integer variable y stored at memory location 600000 and pointer
variable yPtr stored at location 500000 . The operand of the address
operator must be an lvalue—the address operator cannot be applied
to literals or to expressions that result in temporary values (like the
results of calculations).

Fig. 8.3 Representation of y and yPtr in memory.

8.3.2 Indirection (*) Operator

The unary * operator—commonly referred to as the indirection
operator or dereferencing operator—returns an lvalue representing
the object to which its pointer operand points. For example (referring
again to Fig. 8.2), the statement

cout << *yPtr << endl;

displays the value of variable y , namely, 5 , just as would the
statement

cout << y << endl;

Using * in this manner is called dereferencing a pointer. A
dereferenced pointer may also be used as an lvalue on the left side of
an assignment statement, as in

*yPtr = 9;

which would assign 9 to y in Fig. 8.3—in the preceding statement,
*yPtr is an alias for y . The dereferenced pointer may also be used to
receive an input value as in

cin >> *yPtr;

which places the input value in y .

 Common Programming Error 8.2
Dereferencing an uninitialized pointer results in undefined behavior
that could cause a fatal execution-time error. This could also lead to
accidentally modifying important data, allowing the program to run to
completion, possibly with incorrect results.

 Error-Prevention Tip 8.2

Dereferencing a null pointer results in undefined behavior and typically
causes a fatal execution-time error. Ensure that a pointer is not null
before dereferencing it.

8.3.3 Using the Address (&) and
Indirection (*) Operators

The program in Fig. 8.4 demonstrates the & and * pointer operators.
Memory locations are output by << in this example as hexadecimal

(i.e., base-16) integers. (See Appendix D, Number Systems, for more
information on hexadecimal integers.) The address of a (line 10) and
the value of aPtr (line 11) are identical in the output, confirming that
the address of a is indeed assigned to the pointer variable aPtr . The
outputs from lines 12–13 confirm that *aPtr has the same value as a .

 Portability Tip 8.1
The memory addresses output by this program with cout and << are

platform dependent, so you may get different results when you run the
program.

Fig. 8.4 Pointer operators & and * .

Precedence and Associativity of the
Operators Discussed So Far
Figure 8.5 lists the precedence and associativity of the operators
introduced to this point. The address (&) and dereferencing operator
(*) are unary operators on the third level.

Fig. 8.5 Operator precedence and associativity of the operators
discussed so far.

Operators Associativity Type

:: () left to right [See caution in Fig. 2.10
regarding grouping parentheses.]

primary

() [] ++ --

static_cast< type >

(operand)

left to right postfix

++ -- + - ! & * right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

<< >> left to right stream
insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

8.4 Pass-by-Reference with
Pointers
There are three ways in C++ to pass arguments to a function:

pass-by-value
pass-by-reference with a reference argument
pass-by-reference with a pointer argument.

Chapter 6 compared and contrasted the first two. Here, we explain
pass-by-reference with a pointer argument.

Chapter 6 showed that return can return one value from a called
function or simply return control. You also learned that arguments can
be passed to a function using reference parameters, which enable the
called function to modify the original values of the arguments in the
caller. Reference parameters also enable programs to pass large data
objects to a function without the overhead of pass-by-value which, of
course, copies the object. Pointers, like references, also can be used
to modify variables in the caller or to pass large data objects by
reference to avoid the overhead of copying the objects.

You can use pointers and the indirection operator (*) to accomplish
pass-by-reference (exactly as pass-by-reference is done in C
programs—C does not have references). When calling a function with

a variable that should be modified, the address of the variable is
passed. This is normally accomplished by applying the address
operator (&) to the name of the variable whose value will be modified.

An Example of Pass-By-Value
Figures 8.6 and 8.7 present two versions of a function that cubes an
integer. Figure 8.6 passes variable number by value (line 12) to
function cubeByValue (lines 17–19), which cubes its argument and
passes the result back to main using a return statement (line 18). The
new value is assigned to number (line 12) in main . The calling function
has the opportunity to examine the function call’s result before
modifying variable number ’s value. For example, we could have stored
the result of cubeByValue in another variable, examined its value and
assigned the result to number only after determining that the returned
value was reasonable.

Fig. 8.6 Pass-by-value used to cube a variable’s value.

An Example of Pass-By-Reference with
Pointers
Figure 8.7 passes the variable number to function cubeByReference
using pass-by-reference with a pointer argument (line 13)—the
address of number is passed to the function. Function cubeByReference
(lines 18–20) specifies parameter nPtr (a pointer to int) to receive its
argument. The function uses the dereferenced pointer— *nPtr , an
alias for number in main—to cube the value to which nPtr points (line
19). This directly changes the value of number in main (line 10). Line
19 can be made clearer with redundant parentheses:

*nPtr = (*nPtr) * (*nPtr) * (*nPtr); // cube *nPtr

Fig. 8.7 Pass-by-reference with a pointer argument used to cube
a variable’s value.

A function receiving an address as an argument must define a pointer
parameter to receive the address. For example, the header for
function cubeByReference (line 18) specifies that cubeByReference
receives the address of an int variable (i.e., a pointer to an int) as
an argument, stores the address in nPtr and does not return a value.

Function cubeByReference ’s prototype (line 7) contains int* in
parentheses. As with other types, it isn’t necessary to include the
names of pointer parameters in prototypes— parameter names
included for documentation purposes are ignored by the compiler.

Insight: Pass-By-Reference with a Pointer
Actually Passes the Pointer By Value
Passing a variable by reference with a pointer does not actually pass
anything by reference— a pointer to that variable is passed by value
and is copied into the function’s corresponding pointer parameter. The
called function can then access that variable in the caller simply by
dereferencing the pointer, thus accomplishing pass-by-reference.

Graphical Analysis of Pass-By-Value and
Pass-By-Reference
Figures 8.8–8.9 analyze graphically the execution of Fig. 8.6 and Fig.
8.7, respectively. In the diagrams, the values in rectangles above a
given expression or variable represent the value of that expression or
variable. Each diagram’s right column shows functions cubeBy-Value
(Fig. 8.6) and cubeByReference (Fig. 8.7) only when they’re executing.

Fig. 8.8 Pass-by-value analysis of the program of Fig. 8.6.
1. Step 1: Before main calls cubeByValue :

2. Step 2: After cubeByValue receives the call:

3. Step 3: After cubeByValue cubes parameter n and before
cubeByValue returns to main :

4. Step 4: After cubeByValue returns to main and before assigning
the result to number :

5. Step 5: After main completes the assignment to number :

Fig. 8.9 Pass-by-reference analysis of the program of Fig. 8.7.
1. Step 1: Before main calls cubeByReference :

2. Step 2: After cubeByReference receives the call and before
*nPtr is cubed:

3. Step 3: Before *nPtr is assigned the result of the calculation 5
* 5 * 5 :

4. Step 4: After *nPtr is assigned 125 and before program control
returns to main :

5. Step 5: After cubeByReference returns to main :

8.5 Built-In Arrays
In Chapter 7, we used the array class template to represent fixed-

size lists and tables of values. Here we present built-in arrays, which
are also fixed-size data structures.

8.5.1 Declaring and Accessing a
Built-In Array

To specify the type of the elements and the number of elements
required by a built-in array, use a declaration of the form:

type arrayName[arraySize];

The compiler reserves the appropriate amount of memory. The
arraySize must be an integer constant greater than zero. For example,
to tell the compiler to reserve 12 elements for built-in array of ints
named c , use the declaration

int c[12]; // c is a built-in array of 12 integers

As with array objects, you use the subscript ([]) operator to access
the individual elements of a built-in array. Recall from Chapter 7 that
the subscript ([]) operator does not provide bounds checking for
array objects—this is also true for built-in arrays.

8.5.2 Initializing Built-In Arrays

You can initialize the elements of a built-in array using an initializer
list. For example,

int n[5]{50, 20, 30, 10, 40};

creates a built-in array of five ints and initializes them to the values in
the initializer list. If you provide fewer initializers than the number of
elements, the remaining elements are value initialized—fundamental
numeric types are set to 0 , bools are set to false , pointers are set to
nullptr and class objects are initialized by their default constructors. If
you provide too many initializers, a compilation error occurs.

If a built-in array’s size is omitted from a declaration with an initializer
list, the compiler sizes the built-in array to the number of elements in

the initializer list. For example,

int n[]{50, 20, 30, 10, 40};

creates a five-element array .

 Error-Prevention Tip 8.3
Always specify a built-in array’s size, even when providing an
initializer list. This enables the compiler to generate an error message
if there are more initializers than array elements.

8.5.3 Passing Built-In Arrays to
Functions

The value of a built-in array’s name is implicitly convertible to the
address of the built-in array’s first element. So arrayName is implicitly
convertible to &arrayName[0] . For this reason, you don’t need to take
the address (&) of a built-in array to pass it to a function—you simply
pass the built-in array’s name. As you saw in Section 8.4, a function
that receives a pointer to a variable in the caller can modify that
variable in the caller. For built-in arrays, this means that the called

function can modify all the elements of a built-in array in the caller—
unless the function precedes the corresponding built-in array
parameter with const to indicate that the elements should not be

modified.

 Software Engineering Observation
8.2
Applying the const type qualifier to a built-in array parameter in a

function definition to prevent the original built-in array from being
modified in the function body is another example of the principle of
least privilege. Functions should not be given the capability to modify
a built-in array unless it’s absolutely necessary.

8.5.4 Declaring Built-In Array
Parameters

You can declare a built-in array parameter in a function header, as
follows:

int sumElements(const int values[], const size_t

numberOfElements)

which indicates that the function’s first argument should be a one-
dimensional built-in array of ints that should not be modified by the
function. Unlike array objects, built-in arrays don’t know their own
size, so a function that processes a built-in array should have
parameters to receive both the built-in array and its size.

The preceding header can also be written as

int sumElements(const int* values, const size_t numberOfElements)

The compiler does not differentiate between a function that receives a
pointer and a function that receives a built-in array. This, of course,
means that the function must “know” when it’s receiving a built-in array
or simply a single variable that’s being passed by reference. When the
compiler encounters a function parameter for a one-dimensional built-
in array of the form const int values[] , the compiler converts the
parameter to the pointer notation const int* values (that is, “ values is
a pointer to an integer constant”). These forms of declaring a one-
dimensional built-in array parameter are interchangeable.

 Good Programming Practice 8.2

When declaring a built-in array parameter, for clarity use the []
notation rather than pointer notation.

8.5.5 C++11: Standard Library
Functions begin and end

In Section 7.7, we showed how to sort an array object with the C++
Standard Library function sort . We sorted an array of strings called
colors as follows:

sort(colors.begin(), colors.end()); // sort contents of colors

The array class’s begin and end functions specified that the entire
array should be sorted. Function sort (and many other C++ Standard
Library functions) can also be applied to built-in arrays. For example,
to sort the built-in array n (Section 8.5.2), you can write

sort(begin(n), end(n)); // sort contents of built-in array n

C++11’s new begin and end functions (from header <iterator>) each
receive a built-in array as an argument and return a pointer that can
be used to represent ranges of elements to process in C++ Standard
Library functions like sort .

8.5.6 Built-In Array Limitations

Built-in arrays have several limitations:

They cannot be compared using the relational and equality
operators—you must use a loop to compare two built-in arrays
element by element.
They cannot be assigned to one another—an array name is
effectively a pointer that is const .
They don’t know their own size—a function that processes a built-
in array typically receives both the built-in array’s name and its size
as arguments.
They don’t provide automatic bounds checking—you must ensure
that array-access expressions use subscripts that are within the
built-in array’s bounds.

8.5.7 Built-In Arrays Sometimes
Are Required

In contemporary C++ code, you should use the more robust array (or
vector) objects to represent lists and tables of values. However, there
are cases in which built-in arrays must be used, such as processing a
program’s command-line arguments. You supply these to a program
by placing them after the program’s name when executing it from the
command line. Such arguments typically pass options to a program.
For example, on a Windows system, the command

dir /p

uses the /p argument to list the contents of the current directory,
pausing after each screen of information. Similarly, on Linux or OS X,
the following command uses the -la argument to list the contents of
the current directory with details about each file and directory:

ls -la

Command-line arguments are passed to main as a built-in array of
pointer-based strings (Section 8.10)—C++ inherited these capabilities
from C. Appendix F shows how to process command-line arguments.

8.6 Using const with Pointers
Recall that const enables you to inform the compiler that the value of
a particular variable should not be modified. Many possibilities exist
for using (or not using) const with function parameters, so how do you
choose the most appropriate? Let the principle of least privilege be
your guide. Always give a function enough access to the data in its
parameters to accomplish its specified task, but no more. This section
discusses how to combine const with pointer declarations to enforce
the principle of least privilege.

Chapter 6 explained that when an argument is passed by value, a
copy of the argument is passed to the function. If the copy is modified
in the called function, the original value in the caller does not change.
In some instances, even the copy of the argument’s value should not
be altered in the called function.

Consider a function that takes a pointer to the initial element of a built-
in array and the array’s size as arguments and subsequently displays
the built-in array’s elements. Such a function should loop through the
elements and output each individually. The built-in array’s size is used
in the function’s body to determine the highest subscript so the loop
can terminate when the displaying completes. The size does not need
to change in the function body, so it should be declared const to
ensure that it will not change. Because the built-in array is only being

displayed, it, too, should be declared const . This is especially

important because built-in arrays are always passed by reference and
could easily be changed in the called function. An attempt to modify a
const value is a compilation error.

 Software Engineering
Observation 8.3

If a value does not (or should not) change in the body of a function to
which it’s passed, the parameter should be declared const .

 Error-Prevention Tip 8.4

Before using a function, check its function prototype to determine the
parameters that it can and cannot modify.

There are four ways to pass a pointer to a function:

a nonconstant pointer to nonconstant data,
a nonconstant pointer to constant data (Fig. 8.10),
a constant pointer to nonconstant data (Fig. 8.11) and

a constant pointer to constant data (Fig. 8.12).

Each combination provides a different level of access privilege.

8.6.1 Nonconstant Pointer to
Nonconstant Data

The highest access is granted by a nonconstant pointer to
nonconstant data:

the data can be modified through the dereferenced pointer, and
the pointer can be modified to point to other data.

Such a pointer’s declaration (e.g., int* countPtr) does not include
const .

8.6.2 Nonconstant Pointer to
Constant Data

A nonconstant pointer to constant data is

a pointer that can be modified to point to any data of the
appropriate type, but

the data to which it points cannot be modified through that pointer.

Such a pointer might be used to receive a built-in array argument to a
function that should be allowed to read the elements, but not modify
them. Any attempt to modify the data in the function results in a
compilation error. The declaration for such a pointer places const to
the left of the pointer’s type, as in1

1. Some programmers prefer to write this as int const* countPtr; to
make it obvious that const applies to the int , not the pointer. They’d
read this declaration from right to left as “ countPtr is a pointer to a
constant integer.”

const int* countPtr;

The declaration is read from right to left as “ countPtr is a pointer to an
integer constant” or more precisely, “ countPtr is a nonconstant pointer
to an integer constant.”

Figure 8.10 demonstrates GNU C++’s compilation error message
produced when attempting to compile a function that receives a
nonconstant pointer to constant data, then tries to use that pointer to
modify the data.

Fig. 8.10 Attempting to modify data through a nonconstant
pointer to const data.

When a function is called with a built-in array as an argument, its
contents are effectively passed by reference because the built-in
array’s name is implicitly convertible to the address of the built-in
array’s first element. However, by default, objects such as arrays and

vectors are passed by value—a copy of the entire object is passed.
This requires the execution-time overhead of making a copy of each
data item in the object and storing it on the function-call stack. When a
pointer to an object is passed, only a copy of the address of the object
must be made—the object itself is not copied.

 Performance Tip 8.1

If they do not need to be modified by the called function, pass large
objects using pointers to constant data or references to constant data,
to obtain the performance benefits of pass-by-reference and avoid the
copy overhead of pass-by-value.

 Software Engineering Observation
8.4
Passing large objects using pointers to constant data, or references to
constant data, offers the security of pass-by-value.

 Software Engineering Observation
8.5
Use pass-by-value to pass fundamental-type arguments (e.g., ints,

doubles, etc.) to a function unless the caller explicitly requires that the

called function be able to directly modify the value in the caller. This is
another example of the principle of least privilege.

8.6.3 Constant Pointer to
Nonconstant Data

A constant pointer to nonconstant data is a pointer that

always points to the same memory location, and
the data at that location can be modified through the pointer.

Pointers that are declared const must be initialized when they’re

declared, but if the pointer is a function parameter, it’s initialized with
the pointer that’s passed to the function.

Figure 8.11 attempts to modify a constant pointer. Line 9 declares
pointer ptr to be of type int* const . The declaration is read from
right to left as “ ptr is a constant pointer to a nonconstant integer.” The
pointer is initialized with the address of integer variable x . Line 12
attempts to assign the address of y to ptr , but the compiler generates
an error message. No error occurs when line 11 assigns the value 7
to *ptr—the nonconstant value to which ptr points can be modified
using the dereferenced ptr , even though ptr itself has been declared
const .

Fig. 8.11 Attempting to modify a constant pointer to nonconstant
data.

8.6.4 Constant Pointer to Constant
Data

The minimum access privilege is granted by a constant pointer to
constant data:

such a pointer always points to the same memory location, and
the data at that location cannot be modified via the pointer.

This is how a built-in array should be passed to a function that only
reads from the array, using array subscript notation, and does not
modify it. The program of Fig. 8.12 declares pointer variable ptr to be

of type const int* const (line 12). This declaration is read from right

to left as “ ptr is a constant pointer to an integer constant.” The figure

shows the Xcode LLVM compiler’s error messages that are generated
when an attempt is made to modify the data to which ptr points (line

16) and when an attempt is made to modify the address stored in the
pointer variable (line 17)—these show up on the lines of code with the
errors in the Xcode text editor. In line 14, no errors occur when the
program attempts to dereference ptr , or when the program attempts
to output the value to which ptr points, because neither the pointer

nor the data it points to is being modified in this statement.

Fig. 8.12 Attempting to modify a constant pointer to constant
data.

8.7 sizeof Operator
The compile time unary operator sizeof determines the size in bytes
of a built-in array or of any other data type, variable or constant during
program compilation. When applied to a built-in array’s name, as in
Fig. 8.13 (line 12), sizeof returns the total number of bytes in the

built-in array as a value of type size_t . The computer we used to
compile this program stores variables of type double in 8 bytes of
memory, and numbers is declared to have 20 elements (line 10), so it
uses 160 bytes in memory. When applied to a pointer parameter (line
20) in a function that receives a built-in array as an argument, the
sizeof operator returns the size of the pointer in bytes (4 on the
system we used)—not the built-in array’s size.

 Common Programming Error
8.3

Using the sizeof operator in a function to find the size in bytes of a

built-in array parameter results in the size in bytes of a pointer, not the
size in bytes of the built-in array.

Fig. 8.13 sizeof operator when applied to a built-in array’s name
returns the number of bytes in the built-in array.

The number of elements in a built-in array can be determined using
the results of two sizeof operations. For example, to determine the
number of elements in the built-in array numbers , use the following
expression (which is evaluated at compile time):

sizeof numbers / sizeof(numbers[0])

The expression divides the number of bytes in numbers (160,
assuming 8-byte doubles) by the number of bytes in the built-in array’s

zeroth element (8)—resulting in the number of elements in numbers

(20).

Determining the Sizes of the Fundamental
Types, a Built-In Array and a Pointer
Figure 8.14 uses sizeof to calculate the number of bytes used to
store many of the standard data types. The output was produced
using the default settings in Xcode 7.2 on Mac OS X. Type sizes are
platform dependent. When we run this program on Windows, for
example, long is 4 bytes and and long long is 8 bytes, whereas on
our Mac, they’re both 8 bytes.

Fig. 8.14 sizeof operator used to determine standard data type
sizes.

 Portability Tip 8.2

The number of bytes used to store a particular data type may vary
among systems. When writing programs that depend on data type
sizes, always use sizeof to determine the number of bytes used to

store the data types.

Operator sizeof can be applied to any expression or type name.
When sizeof is applied to a variable name (which is not a built-in
array’s name) or other expression, the number of bytes used to store
the specific type of the expression is returned. The parentheses used
with sizeof are required only if a type name (e.g., int) is supplied as
its operand. The parentheses used with sizeof are not required when
sizeof ’s operand is an expression. Remember that sizeof is a
compile-time operator, so its operand is not evaluated at runtime.

8.8 Pointer Expressions and
Pointer Arithmetic
This section describes the operators that can have pointers as
operands and how these operators are used with pointers. C++
enables pointer arithmetic—a few arithmetic operations may be
performed on pointers. Pointer arithmetic is appropriate only for
pointers that point to built-in array elements.

A pointer may be incremented (++) or decremented (--), an integer
may be added to a pointer (+ or +=) or subtracted from a pointer (- or
-=), or one pointer may be subtracted from another of the same type
—this particular operation is appropriate only for two pointers that
point to elements of the same built-in array.

 Portability Tip 8.3

Most computers today have four-byte or eight-byte integers. Because
the results of pointer arithmetic depend on the size of the memory
objects a pointer points to, pointer arithmetic is machine dependent.

Assume that int v[5] has been declared and that its first element is
at memory location 3000 . Assume that pointer vPtr has been
initialized to point to v[0] (i.e., the value of vPtr is 3000). Figure 8.15
illustrates this situation for a machine with four-byte integers. Variable
vPtr can be initialized to point to v with either of the following
statements (because a built-in array’s name implicitly converts to the
address of its zeroth element):

int * vPtr{v};

int* vPtr{&v[0]};

Fig. 8.15 Built-in array v and a pointer variable int* vPtr that
points to v .

8.8.1 Adding Integers to and
Subtracting Integers from Pointers

In conventional arithmetic, the addition 3000 + 2 yields the value
3002 . This is normally not the case with pointer arithmetic. When an
integer is added to, or subtracted from, a pointer, the pointer is not
simply incremented or decremented by that integer, but by that integer
times the size of the memory object to which the pointer refers. The
number of bytes depends on the memory object’s data type. For
example, the statement

vPtr += 2;

would produce 3008 (from the calculation 3000 + 2 * 4), assuming
that an int is stored in four bytes of memory. In the built-in array v ,
vPtr would now point to v[2] (Fig. 8.16). If an integer is stored in
eight bytes of memory, then the preceding calculation would result in
memory location 3016 (3000 + 2 * 8).

Fig. 8.16 Pointer vPtr after pointer arithmetic.

If vPtr had been incremented to 3016 , which points to v[4] , the
statement

vPtr -= 4;

would set vPtr back to 3000—the beginning of the built-in array. If a
pointer is being incremented or decremented by one, the increment
(++) and decrement (--) operators can be used. Each of the
statements

++vPtr;

vPtr++;

increments the pointer to point to the built-in array’s next element.
Each of the statements

--vPtr;

vPtr--;

decrements the pointer to point to the built-in array’s previous
element.

 Error-Prevention Tip 8.5
There’s no bounds checking on pointer arithmetic. You must ensure
that every pointer arithmetic operation that adds an integer to or
subtracts an integer from a pointer results in a pointer that references
an element within the built-in array’s bounds.

8.8.2 Subtracting Pointers

Pointer variables pointing to the same built-in array may be subtracted
from one another. For example, if vPtr contains the address 3000 and
v2Ptr contains the address 3008 , the statement

x = v2Ptr - vPtr;

would assign to x the number of built-in array elements from vPtr to
v2Ptr—in this case, 2 . Pointer arithmetic is meaningful only on a

pointer that points to a built-in array. We cannot assume that two
variables of the same type are stored contiguously in memory unless
they’re adjacent elements of a built-in array.

 Common Programming Error 8.4

Subtracting or comparing two pointers that do not refer to elements of
the same built-in array is a logic error.

8.8.3 Pointer Assignment

A pointer can be assigned to another pointer if both pointers are of the
same type. Otherwise, a cast operator (normally a reinterpret_cast ;
discussed in Section 14.8) must be used to convert the value of the
pointer on the right of the assignment to the pointer type on the left of
the assignment. The exception to this rule is the pointer to void (i.e.,
void*), which is a generic pointer capable of representing any pointer
type. Any pointer to a fundamental type or class type can be assigned
to a pointer of type void* without casting. However, a pointer of type
void* cannot be assigned directly to a pointer of another type—the
pointer of type void* must first be cast to the proper pointer type.

 Common Programming Error 8.5
Assigning a pointer of one type to a pointer of another (other than
void*) without using a cast is a compilation error.

8.8.4 Cannot Dereference a void*

A void* pointer cannot be dereferenced. For example, the compiler
“knows” that an int* points to four bytes of memory on a machine
with four-byte integers. Dereferencing an int* creates an lvalue that
is an alias for the int ’s four bytes in memory. A void* , however,
simply contains a memory address for an unknown data type. You
cannot dereference a void* because the compiler does not know the
type of the data to which the pointer refers and thus not the number of
bytes.

 Common Programming Error 8.6
The allowed operations on void* pointers are: comparing void*
pointers with other pointers, casting void* pointers to other pointer

types and assigning addresses to void* pointers. All other operations

on void* pointers are compilation errors.

8.8.5 Comparing Pointers

Pointers can be compared using equality and relational operators.
Comparisons using relational operators are meaningless unless the
pointers point to elements of the same builtin array. Pointer
comparisons compare the addresses stored in the pointers. A
comparison of two pointers pointing to the same built-in array could
show, for example, that one pointer points to a higher-numbered
element of the built-in array than the other pointer does. A common

use of pointer comparison is determining whether a pointer has the
value nullptr , 0 or NULL (i.e., the pointer does not point to anything).

8.9 Relationship Between Pointers
and Built-In Arrays
Built-in arrays and pointers are intimately related in C++ and may be
used almost interchangeably. Pointers can be used to do any
operation involving array subscripting.

Assume the following declarations:

int b[5]; // create 5-element int array b; b is a const pointer

int* bPtr; // create int pointer bPtr, which isn't a const

pointer

We can set bPtr to the address of the first element in the built-in array
b with the statement

bPtr = b; // assign address of built-in array b to bPtr

This is equivalent to assigning the address of the first element as
follows:

bPtr = &b[0]; // also assigns address of built-in array b to bPtr

The expression

b += 3

causes a compilation error, because it attempts to modify the value of
the built-in array’s name with pointer arithmetic.

8.9.1 Pointer/Offset Notation

Built-in array element b[3] can alternatively be referenced with the
pointer expression

*(bPtr + 3)

The 3 in the preceding expression is the offset to the pointer. When
the pointer points to the beginning of a built-in array, the offset
indicates which built-in array element should be referenced, and the
offset value is identical to the subscript. This notation is referred to as

pointer/offset notation. The parentheses are necessary, because
the precedence of * is higher than that of + . Without the parentheses,
the preceding expression would add 3 to a copy of *bPtr ’s value (i.e.,
3 would be added to b[0] , assuming that bPtr points to the beginning
of the built-in array).

Just as the built-in array element can be referenced with a pointer
expression, the address

&b[3]

can be written with the pointer expression

bPtr + 3

8.9.2 Pointer/Offset Notation with
the Built-In Array’s Name as the
Pointer

The built-in array name can be treated as a pointer and used in
pointer arithmetic. For example, the expression

*(b + 3)

also refers to the element b[3] . In general, all subscripted built-in
array expressions can be written with a pointer and an offset. In this
case, pointer/offset notation was used with the built-in array’s name as
a pointer. The preceding expression does not modify the built-in
array’s name; b still points to the built-in array’s first element.

8.9.3 Pointer/Subscript Notation

Pointers can be subscripted exactly as built-in arrays can. For
example, the expression

bPtr[1]

refers to b[1] ; this expression uses pointer/subscript notation.

 Good Programming Practice 8.3
For clarity, use built-in array notation instead of pointer notation when
manipulating built-in arrays.

8.9.4 Demonstrating the
Relationship Between Pointers and
Built-In Arrays

Figure 8.17 demonstrates the four notations we just discussed:

array subscript notation
pointer/offset notation with the built-in array’s name as a pointer
pointer subscript notation
pointer/offset notation with a pointer

to accomplish the same task, namely displaying the four elements of
the built-in array of ints named b .

Fig. 8.17 Using subscripting and pointer notations with built-in
arrays.

8.10 Pointer-Based Strings
(Optional)
We’ve already used the C++ Standard Library string class to
represent strings as full-fledged objects. Chapter 21 presents class
string in detail. This section introduces C-style, pointer-based strings
(as defined by the C programming language), which we’ll simply call C
strings. C++’s string class is preferred for use in new programs,

because it eliminates many of the security problems and bugs that can
be caused by manipulating C strings. We cover C strings here for a
deeper understanding of pointers and built-in arrays, and because
there are some cases (such as command-line arguments) in which C
string processing is required. Also, if you work with legacy C and C++
programs, you’re likely to encounter pointer-based strings. We cover
C strings in detail in Appendix F.

Characters and Character Constants
Characters are the fundamental building blocks of C++ source
programs. Every program is composed of a sequence of characters
that—when grouped together meaningfully—is interpreted by the
compiler as instructions and data used to accomplish a task. A
program may contain character constants. A character constant is
an integer value represented as a character in single quotes. The

value of a character constant is the integer value of the character in
the machine’s character set. For example, 'z' represents the integer
value of z (122 in the ASCII character set; see Appendix B), and
'\n' represents the integer value of newline (10 in the ASCII
character set).

Strings
A string is a series of characters treated as a single unit. A string may
include letters, digits and various special characters such as + , - , * ,
/and $. String literals, or string constants, in C++ are written in
double quotation marks as follows:

"John Q. Doe" (a name)

"9999 Main Street" (a street address)

"Maynard, Massachusetts" (a city and state)

"(201) 555-1212" (a telephone number)

Pointer-Based Strings
A pointer-based string is a built-in array of characters ending with a
null character ('\0'), which marks where the string terminates in
memory. A string is accessed via a pointer to its first character. The

result of sizeof for a string literal is the length of the string including

the terminating null character.

String Literals as Initializers
A string literal may be used as an initializer in the declaration of either
a built-in array of chars or a variable of type const char* . The
declarations

char color[]{"blue"};

const char* colorPtr{"blue"};

each initialize a variable to the string "blue" . The first declaration
creates a five-element built-in array color containing the characters
'b' , 'l' , 'u' , 'e' and '\0' . The second declaration creates pointer
variable colorPtr that points to the letter b in the string "blue" (which
ends in '\0') somewhere in memory. String literals exist for the
duration of the program and may be shared if the same string literal is
referenced from multiple locations in a program. String literals cannot
be modified.

Character Constants as Initializers
The declaration char color[] = "blue"; could also be written

char color[]{'b', 'l', 'u', 'e', '\0'};

which uses character constants in single quotes (') as initializers for
each element of the built-in array. When declaring a built-in array of
chars to contain a string, the built-in array must be large enough to
store the string and its terminating null character. The compiler
determines the size of the built-in array in the preceding declaration,
based on the number of initializers in the initializer list.

 Common Programming Error 8.7

Not allocating sufficient space in a built-in array of chars to store the

null character that terminates a string is a logic error.

 Common Programming Error 8.8

Creating or using a C string that does not contain a terminating null
character can lead to logic errors.

 Error-Prevention Tip 8.6

When storing a string of characters in a built-in array of chars, be sure

that the built-in array is large enough to hold the largest string that will
be stored. C++ allows strings of any length. If a string is longer than
the built-in array of chars in which it’s to be stored, characters beyond

the end of the built-in array will overwrite data in memory following the
built-in array, leading to logic errors and potential security breaches.

Accessing Characters in a C String
Because a C string is a built-in array of characters, we can access
individual characters in a string directly with array subscript notation.
For example, in the preceding declaration, color[0] is the character
'b' , color[2] is 'u' and color[4] is the null character.

Reading Strings into Built-In Arrays of
char with cin
A string can be read into a built-in array of chars using cin . For
example, the following statement reads a string into the built-in 20-
element array of chars named word :

cin >> word;

The string entered by the user is stored in word . The preceding
statement reads characters until a white-space character or end-of-file
indicator is encountered. The string should be no longer than 19
characters to leave room for the terminating null character. The setw
stream manipulator can be used to ensure that the string read into
word does not exceed the size of the built-in array. For example, the
statement

cin >> setw(20) >> word;

specifies that cin should read a maximum of 19 characters into word
and save the 20th location to store the terminating null character for
the string. The setw stream manipulator is not a sticky setting—it
applies only to the next value being input. If more than 19 characters
are entered, the remaining characters are not saved in word , but they
will be in the input stream and can be read by the next input operation.
Of course, any input operation can also fail. We show how to detect
input failures in Section 13.8.

Reading Lines of Text into Built-In Arrays
of char with cin.getline

In some cases, it’s desirable to input an entire line of text into a built-in
array of chars. For this purpose, the cin object provides the member
function getline , which takes three arguments—a built-in array of

chars in which the line of text will be stored, a length and a delimiter

character. For example, the statements

char sentence[80];

cin.getline(sentence, 80, '\n');

declare sentence as a built-in array of 80 characters and read a line of
text from the keyboard into the built-in array. The function stops
reading characters when the delimiter character '\n' is encountered,
when the end-of-file indicator is entered or when the number of
characters read so far is one less than the length specified in the
second argument. The last character in the built-in array is reserved
for the terminating null character. If the delimiter character is
encountered, it’s read and discarded. The third argument to
cin.getline has '\n' as a default value, so the preceding function call
could have been written as

cin.getline(sentence, 80);

Chapter 13, Stream Input/Output: A Deeper Look, provides a detailed
discussion of cin.getline and other input/output functions.

Displaying C Strings
A built-in array of chars representing a null-terminated string can be
output with cout and << . The statement

cout << sentence;

displays the built-in array sentence . Like cin , cout does not care how
large the built-in array of chars is. The characters are output until a
terminating null character is encountered; the null character is not
displayed. [Note: cin and cout assume that built-in arrays of chars
should be processed as strings terminated by null characters; cin and
cout do not provide similar input and output processing capabilities for
other built-in array types.]

8.11 Note About Smart Pointers
Later in the book, we introduce dynamic memory management with
pointers, which allows you at execution time to create and destroy
objects as needed. Improperly managing this process is a source of
subtle errors. We’ll discuss “smart pointers,” which help you avoid
dynamic memory management errors by providing additional
functionality beyond that of built-in pointers.

8.12 Wrap-Up
In this chapter we provided a detailed introduction to pointers—
variables that contain memory addresses as their values. We began
by demonstrating how to declare and initialize pointers. You saw how
to use the address operator (&) to assign the address of a variable to
a pointer and the indirection operator (*) to access the data stored in
the variable indirectly referenced by a pointer. We discussed passing
arguments by reference using pointer arguments.

We discussed how to declare and use built-in arrays, which C++
inherited from the C programming language. You learned how to use
const with pointers to enforce the principle of least privilege. We
demonstrated using nonconstant pointers to nonconstant data,
nonconstant pointers to constant data, constant pointers to
nonconstant data, and constant pointers to constant data. We
discussed the compile-time sizeof operator, which can be used to
determine the sizes of data types and variables in bytes at compile
time.

We discussed how to use pointers in arithmetic and comparison
expressions. You saw that pointer arithmetic can be used to move
from one element of a built-in array to another. We briefly introduced
pointer-based strings.

In the next chapter, we begin our deeper treatment of classes. You’ll
learn about the scope of a class’s members and how to keep objects
in a consistent state. You’ll also learn about using special member
functions called constructors and destructors, which execute when an
object is created and destroyed, respectively. In addition, we’ll
demonstrate using default arguments with constructors and using
default memberwise assignment to assign one object of a class to
another object of the same class. We’ll also discuss the danger of
returning a reference to a private data member of a class.

Summary

Section 8.2 Pointer Variable Declarations
and Initialization

Pointers are variables that contain as their values memory
addresses of other variables.
The declaration

int* ptr;

declares ptr to be a pointer to a variable of type int and is read,
“ ptr is a pointer to int .” The * as used here in a declaration
indicates that the variable is a pointer.
You can initialize a pointer with an address of an object of the
same type or with nullptr (p. 342).
The only integer that can be assigned to a pointer without casting
is 0 .

Section 8.3 Pointer Operators
The & (address) operator (p. 342) obtains the memory address of
its operand.
The operand of the address operator must be a variable name (or
another lvalue); the address operator cannot be applied to literals
or to expressions that result in temporary values (like the results of
calculations).
The * indirection (or dereferencing) operator (p. 343) returns a
synonym for the name of the object that its operand points to in
memory. This is called dereferencing the pointer (p. 343).

Section 8.4 Pass-by-Reference with
Pointers

When calling a function with a variable that the caller wants the
called function to modify, the address of the variable may be
passed. The called function then uses the indirection operator (*)
to dereference the pointer and modify the value of the variable in
the calling function.
A function receiving an address as an argument must have a
pointer as its corresponding parameter.

Section 8.5 Built-In Arrays
Built-in arrays—like array objects—are fixed-size data structures.
To specify the type of the elements and the number of elements
required by a built-in array, use a declaration of the form:

type arrayName[arraySize];

The compiler reserves the appropriate amount of memory. The
arraySize must be an integer constant greater than zero.
As with array objects, you use the subscript ([]) operator to
access the individual elements of a built-in array.
The subscript ([]) operator does not provide bounds checking for
array objects or built-in arrays.
You can initialize the elements of a built-in array using an initializer
list. If you provide fewer initializers than the number of built-in array
elements, the remaining elements are initialized to 0. If you provide
too many initializers, a compilation error occurs.
If the built-in array’s size is omitted from a declaration with an
initializer list, the compiler sizes the built-in array to the number of
elements in the initializer list.
The value of a built-in array’s name is implicitly convertible to the
address in memory of the built-in array’s first element.
To pass a built-in array to a function, simply pass the built-in
array’s name. The called function can modify all the elements of a

built-in array in the caller—unless the function precedes the
corresponding built-in array parameter with const to indicate that
the built-in array’s elements should not be modified.
Built-in arrays don’t know their own size, so a function that
processes a built-in array should have parameters to receive both
the built-in array and its size.
The compiler does not differentiate between a function that
receives a pointer and a function that receives a one-dimensional
built-in array. A function must “know” when it’s receiving a built-in
array or simply a single variable that’s being passed by reference.
The compiler converts a function parameter for a one-dimensional
built-in array like const int values[] to the pointer notation const
int* values . These forms are interchangeable—for clarity you
should use the [] when the function expects a built-in array
argument.
Function sort (and many other library functions) can also be
applied to built-in arrays.
C++11’s begin and end functions (from header <iterator>) each
receive a built-in array as an argument and return a pointer that
can be used with C++ Standard Library functions like sort to
represent the range of built-in array elements to process.
Built-in arrays cannot be compared to one another using the
relational and equality operators.
Built-in arrays cannot be assigned to one another.
Built-in arrays don’t provide automatic bounds checking.
In contemporary C++ code, you should use objects of the more
robust array and vector class templates to represent lists and

tables of values.

Section 8.6 Using const with Pointers
The const qualifier enables you to inform the compiler that the
value of a particular variable cannot be modified through the
specified identifier.
There are four ways to pass a pointer to a function—a
nonconstant pointer to nonconstant data (p. 353), a
nonconstant pointer to constant data (p. 353), a constant
pointer to nonconstant data (p. 354), and a constant pointer to
constant data (p. 355).
To pass a single built-in array element by reference using pointers,
pass the element’s address.

Section 8.7 sizeof Operator
sizeof (p. 356) determines the size in bytes of a type, variable or
constant at compile time.
When applied to a built-in array name, sizeof returns the total
number of bytes in the built-in array. When applied to a built-in
array parameter, sizeof returns the size of a pointer.

Section 8.8 Pointer Expressions and
Pointer Arithmetic

C++ enables pointer arithmetic (p. 358)—arithmetic operations that
may be performed on pointers.
Pointer arithmetic is appropriate only for pointers that point to built-
in array elements.
The arithmetic operations that may be performed on pointers are
incrementing (++) a pointer, decrementing (--) a pointer, adding
(+ or +=) an integer to a pointer, subtracting (- or -=) an integer
from a pointer and subtracting one pointer from another—this
particular operation is appropriate only for two pointers that point to
elements of the same built-in array.
When an integer is added or subtracted from a pointer, the pointer
is incremented or decremented by that integer times the size of the
object to which the pointer refers.
Pointers of the same type can be assigned to one another. A void*
pointer is a generic pointer type that can hold pointer values of any
type.
The only valid operations on a void* pointer are comparing void*
pointers with other pointers, assigning addresses to void* pointers
and casting void* pointers to valid pointer types.
Pointers can be compared using the equality and relational
operators. Comparisons using relational operators are meaningful
only if the pointers point to members of the same array.

Section 8.9 Relationship Between Pointers
and Built-In Arrays

Pointers that point to built-in arrays can be subscripted exactly as
built-in array names can.
In pointer/offset notation (p. 362), if the pointer points to the first
element of a built-in array, the offset is the same as an array
subscript.
All subscripted array expressions can be written with a pointer and
an offset, either using the built-in array’s name as a pointer or
using a separate pointer that points to the built-in array.

Section 8.10 Pointer-Based Strings
(Optional)

A character constant (p. 364) is an integer value represented as
a character in single quotes. The value of a character constant is
the integer value of the character in the machine’s character set.
A string is a series of characters treated as a single unit. A string
may include letters, digits and various special characters such as
+, -, *, /and $.
String literals or string constants (p. 365) are written in double
quotation marks.
A pointer-based string is a built-in array of chars ending with a null
character ('\0' ; p. 365), which marks where the string
terminates in memory. A string is accessed via a pointer to its first
character.
The result of sizeof for a string literal is the length of the string
including the terminating null character.
A string literal may be used as an initializer for a built-in array of
chars or a variable of type const char* .
You should always declare a pointer to a string literal as const
char* .
When declaring a built-in array of chars to contain a C string, the
built-in array must be large enough to store the C string and its
terminating null character.

If a string is longer than the built-in array of chars in which it’s to
be stored, characters beyond the end of the built-in array will
overwrite data in memory following the built-in array, leading to
logic errors.
You can access individual characters in a string directly with array
subscript notation.
A string can be read into a built-in array of chars using stream
extraction with cin . Characters are read until a whitespace
character or end-of-file indicator is encountered. The setw stream
manipulator should be used to ensure that the string read into a
built-in array of chars does not exceed the size of the built-in array.
The cin object provides the member function getline (p. 366) to
input an entire line of text into a built-in array of chars. The
function takes three arguments—a built-in array of chars in which
the line of text will be stored, a length and a delimiter character.
The third argument has '\n' as a default value.
A built-in array of chars representing a null-terminated string can
be output with cout and << . The characters of the string are output
until a terminating null character is encountered.

Self-Review Exercises
1. 8.1 Answer each of the following:

A. A pointer is a variable that contains as its value the
 of another variable.

B. A pointer should be initialized to or .
C. The only integer that can be assigned directly to a

pointer is .

2. 8.2 State whether each of the following is true or false. If the
answer is false, explain why.

A. The address operator & can be applied only to constants
and to expressions.

B. A pointer that is declared to be of type void* can be
dereferenced.

C. A pointer of one type can’t be assigned to one of another
type without a cast operation.

3. 8.3 For each of the following, write C++ statements that
perform the specified task. Assume that double-precision,
floating-point numbers are stored in eight bytes and that the
starting address of the built-in array is at location 1002500 in
memory. Each part of the exercise should use the results of
previous parts where appropriate.

A. Declare a built-in array of type double called numbers
with 10 elements, and initialize the elements to the

values 0.0 , 1.1 , 2.2 , …, 9.9. Assume that the constant
size has been defined as 10 .

B. Declare a pointer nPtr that points to a variable of type
double .

C. Use a for statement to display the elements of built-in
array numbers using array subscript notation. Display
each number with one digit to the right of the decimal
point.

D. Write two separate statements that each assign the
starting address of built-in array numbers to the pointer
variable nPtr .

E. Use a for statement to display the elements of built-in
array numbers using pointer/offset notation with pointer
nPtr .

F. Use a for statement to display the elements of built-in
array numbers using pointer/offset notation with the built-
in array’s name as the pointer.

G. Use a for statement to display the elements of built-in
array numbers using pointer/subscript notation with
pointer nPtr .

H. Refer to the fourth element of built-in array numbers using
array subscript notation, pointer/offset notation with the
built-in array’s name as the pointer, pointer subscript
notation with nPtr and pointer/offset notation with nPtr .

I. Assuming that nPtr points to the beginning of built-in
array numbers , what address is referenced by nPtr + 8?

What value is stored at that location?
J. Assuming that nPtr points to numbers[5] , what address

is referenced by nPtr after nPtr -= 4 is executed?
What’s the value stored at that location?

4. 8.4 For each of the following, write a statement that performs
the specified task. Assume that double variables number1 and
number2 have been declared and that number1 has been
initialized to 7.3 .

A. Declare the variable doublePtr to be a pointer to an
object of type double and initialize the pointer to nullptr .

B. Assign the address of variable number1 to pointer
variable doublePtr .

C. Display the value of the object pointed to by doublePtr .
D. Assign the value of the object pointed to by doublePtr to

variable number2 .
E. Display the value of number2 .
F. Display the address of number1 .
G. Display the address stored in doublePtr . Is the address

the same as that of number1?

5. 8.5 Perform the task specified by each of the following
statements:

A. Write the function header for a function called exchange
that takes two pointers to double-precision, floating-point

numbers x and y as parameters and does not return a
value.

B. Write the function prototype without parameter names
for the function in part (a).

C. Write two statements that each initialize the built-in array
of chars named vowel with the string of vowels, "AEIOU" .

6. 8.6 Find the error in each of the following program segments.
Assume the following declarations and statements:

int* zPtr; // zPtr will reference built-in array z

int number;

int z[5]{1, 2, 3, 4, 5};

A. ++zPtr;

B.

// use pointer to get first value of a built-in

array

number = zPtr;

C.

// assign built-in array element 2 (the value 3) to

number

number = *zPtr[2];

D.

// display entire built-in array z

for (size_t i{0}; i <= 5; ++i) {

 cout << zPtr[i] << endl;

}

E. ++z;

Exercises
1. 8.7 (True or False) State whether the following are true or

false. If false, explain why.
A. Two pointers that point to different built-in arrays cannot

be compared meaningfully.
B. Because the name of a built-in array is implicitly

convertible to a pointer to the first element of the built-in
array, built-in array names can be manipulated in the
same manner as pointers.

2. 8.8 (Write C++ Statements) For each of the following, write
C++ statements that perform the specified task. Assume that
unsigned integers are stored in four bytes and that the starting
address of the built-in array is at location 1002500 in memory.

A. Declare an unsigned int built-in array values with five
elements initialized to the even integers from 2 to 10.
Assume that the constant size has been defined as 5 .

B. Declare a pointer vPtr that points to an object of type
unsigned int .

C. Use a for statement to display the elements of built-in
array values using array subscript notation.

D. Write two separate statements that assign the starting
address of built-in array values to pointer variable vPtr .

E. Use a for statement to display the elements of built-in
array values using pointer/offset notation.

F. Use a for statement to display the elements of built-in
array values using pointer/offset notation with the built-in
array’s name as the pointer.

G. Use a for statement to display the elements of built-in
array values by subscripting the pointer to the built-in
array.

H. Refer to the fifth element of values using array subscript
notation, pointer/offset notation with the built-in array
name’s as the pointer, pointer subscript notation and
pointer/offset notation.

I. What address is referenced by vPtr + 3? What value is
stored at that location?

J. Assuming that vPtr points to values[4] , what address
is referenced by vPtr -= 4? What value is stored at that
location?

3. 8.9 (Write C++ Statements) For each of the following, write a
single statement that performs the specified task. Assume that
long variables value1 and value2 have been declared and
value1 has been initialized to 200000 .

A. Declare the variable longPtr to be a pointer to an object
of type long .

B. Assign the address of variable value1 to pointer variable
longPtr .

C. Display the value of the object pointed to by longPtr .
D. Assign the value of the object pointed to by longPtr to

variable value2 .
E. Display the value of value2 .
F. Display the address of value1 .
G. Display the address stored in longPtr . Is the address

displayed the same as value1 ’s?

4. 8.10 (Function Headers and Prototypes) Perform the task in
each of the following:

A. Write the function header for function zero that takes a
long integer built-in array parameter bigIntegers and a
second parameter representing the array’s size and
does not return a value.

B. Write the function prototype for the function in part (a).
C. Write the function header for function add1AndSum that

takes an integer built-in array parameter oneTooSmall and
a second parameter representing the array’s size and
returns an integer.

D. Write the function prototype for the function described in
part (c).

5. 8.11 (Find the Code Errors) Find the error in each of the
following segments. If the error can be corrected, explain how.

A.

int* number;

cout << number << endl;

B.

double* realPtr;

long* integerPtr;

integerPtr = realPtr;

C.

int* x, y;

x = y;

D.

char s[]{"this is a character array"};

for (; *s != '\0'; ++s) {

 cout << *s << ' ';

}

E.

short* numPtr, result;

void* genericPtr{numPtr};

result = *genericPtr + 7;

F.

double x = 19.34;

double xPtr{&x};

cout << xPtr << endl;

6. 8.12 (Simulation: The Tortoise and the Hare) In this exercise,
you’ll re-create the classic race of the tortoise and the hare.
You’ll use random-number generation to develop a simulation
of this memorable event.
Our contenders begin the race at “square 1” of 70 squares.
Each square represents a possible position along the race
course. The finish line is at square 70. The first contender to
reach or pass square 70 is rewarded with a pail of fresh carrots
and lettuce. The course weaves its way up the side of a
slippery mountain, so occasionally the contenders lose ground.
There is a clock that ticks once per second. With each tick of
the clock, your program should use function moveTortoise and
moveHare to adjust the position of the animals according to the
rules in Fig. 8.18. These functions should use pointer-based
pass-by-reference to modify the position of the tortoise and the
hare.

Fig. 8.18 Rules for moving the tortoise and the hare.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

 Slip 20% 6 squares to the left

 Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

 Big hop 20% 9 squares to the right

 Big slip 10% 12 squares to the left

 Small hop 30% 1 square to the right

 Small slip 20% 2 squares to the left

Use variables to keep track of the positions of the animals (i.e.,
position numbers are 1–70). Start each animal at position 1
(i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1.
Generate the percentages in Fig. 8.18 by producing a random
integer i in the range . For the tortoise, perform a
“fast plod” when , a “slip” when or a
“slow plod” when . Use a similar technique to
move the hare.
Begin the race by displaying

BANG !!!!!

AND THEY'RE OFF !!!!!

For each tick of the clock (i.e., each iteration of a loop), display
a 70-position line showing the letter T in the tortoise’s position
and the letter H in the hare’s position. Occasionally, the
contenders land on the same square. In this case, the tortoise
bites the hare and your program should display OUCH!!!
beginning at that position. All positions other than the T , the H
or the OUCH!!! (in case of a tie) should be blank.
After displaying each line, test whether either animal has
reached or passed square 70. If so, display the winner and
terminate the simulation. If the tortoise wins, display TORTOISE
WINS!!! YAY!!! If the hare wins, display Hare wins. Yuch. If both
animals win on the same clock tick, you may want to favor the
tortoise (the “underdog”), or you may want to display It's a
tie. If neither animal wins, perform the loop again to simulate
the next tick of the clock.

7. 8.13 (What Does This Code Do?) What does this program
do?

Fig. 8.19 What does this program do?

8. 8.14 (What Does This Code Do?) What does this program
do?

Fig. 8.20 What does this program do?

Special Section: Building Your
Own Computer
In the next several problems, we take a temporary diversion away
from the world of high-level-language programming. We “peel open” a
simple hypothetical computer and look at its internal structure. We
introduce machine-language programming and write several machine-
language programs. To make this an especially valuable experience,
we then build a computer (using software-based simulation) on which
you can execute your machine-language programs!2

2. In Exercises 19.30–19.34, we’ll “peel open” a simple hypothetical
compiler that will translate statements in a simple high-level language
to the machine language you use here. You’ll write programs in that
high-level language, compile them into machine language and run that
machine language on your computer simulator.

1. 8.15 (Machine-Language Programming) Let’s create a
computer we’ll call the Simpletron. As its name implies, it’s a
simple machine, but, as we’ll soon see, it’s a powerful one as
well. The Simpletron runs programs written in the only
language it directly understands, that is, Simpletron Machine
Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in
which information is put before the Simpletron uses that
information in calculations or examines it in various ways. All
information in the Simpletron is handled in terms of words. A
word is a signed four-digit decimal number, such as +3364 ,
-1293 , +0007 , -0001 , etc. The Simpletron is equipped with a
100-word memory, and these words are referenced by their
location numbers 00 , 01 , …, 99 .
Before running an SML program, we must load, or place, the
program into memory. The first instruction (or statement) of
every SML program is always placed in location 00 . The
simulator will start executing at this location.
Each instruction written in SML occupies one word of the
Simpletron’s memory; thus, instructions are signed four-digit
decimal numbers. Assume that the sign of an SML instruction is
always plus, but the sign of a data word may be either plus or
minus. Each location in the Simpletron’s memory may contain
an instruction, a data value used by a program or an unused
(and hence undefined) area of memory. The first two digits of
each SML instruction are the operation code that specifies the
operation to be performed. SML operation codes are shown in
Fig. 8.21.

Fig. 8.21 Simpletron Machine Language (SML) operation
codes.

Operation code Meaning

Input/output

operations

const int

read{10};

Read a word from the keyboard into a specific location in
memory.

const int

write{11};

Write a word from a specific location in memory to the
screen.

Load and store

operations

const int

load{20};

Load a word from a specific location in memory into the
accumulator.

const int

store{21};

Store a word from the accumulator into a specific
location in memory.

Arithmetic

operations

const int

add{30};

Add a word from a specific location in memory to the
word in the accumulator (leave result in accumulator).

const int

subtract{31};

Subtract a word from a specific location in memory from
the word in the accumulator (leave result in
accumulator).

const int

divide{32};

Divide a word from a specific location in memory into the
word in the accumulator (leave result in accumulator).

const int

multiply{33};

Multiply a word from a specific location in memory by the
word in the accumulator (leave result in accumulator).

Transfer-of-control

operations

const int

branch{40};

Branch to a specific location in memory.

const int

branchneg{41};

Branch to a specific location in memory if the
accumulator is negative.

const int

branchzero{42};

Branch to a specific location in memory if the
accumulator is zero.

const int

halt{43};

Halt—the program has completed its task.

The last two digits of an SML instruction are the operand—the
address of the memory location containing the word to which
the operation applies.
Now let’s consider two simple SML programs. The first (Fig.
8.22) reads two numbers from the keyboard and computes and
displays their sum. The instruction +1007 reads the first number
from the keyboard and places it into location 07 (which has
been initialized to zero). Instruction +1008 reads the next
number into location 08 . The load instruction, +2007 , places
(copies) the first number into the accumulator, and the add
instruction, +3008 , adds the second number to the number in
the accumulator. All SML arithmetic instructions leave their
results in the accumulator. The store instruction, +2109 , places
(copies) the result back into memory location 09 . Then the write

instruction, +1109 , takes the number and displays it (as a
signed four-digit decimal number). The halt instruction, +4300 ,
terminates execution.

Fig. 8.22 SML Example 1.

Location Number Instruction

00 +1007 (Read A)

01 +1008 (Read B)

02 +2007 (Load A)

03 +3008 (Add B)

04 +2109 (Store C)

05 +1109 (Write C)

06 +4300 (Halt)

07 +0000 (Variable A)

08 +0000 (Variable B)

09 +0000 (Result C)

The SML program in Fig. 8.23 reads two numbers from the
keyboard, then determines and displays the larger value. Note
the use of the instruction +4107 as a conditional transfer of
control, much the same as C++’s if statement.

Fig. 8.23 SML Example 2.

Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to 07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

Now write SML programs to accomplish each of the following
tasks:

A. Use a sentinel-controlled loop to read positive numbers
and compute and display their sum. Terminate input
when a negative number is entered.

B. Use a counter-controlled loop to read seven numbers,
some positive and some negative, and compute and
display their average.

C. Read a series of numbers, and determine and display
the largest number. The first number read indicates how
many numbers should be processed.

2. 8.16 (Computer Simulator) It may at first seem outrageous,
but in this problem you are going to build your own computer.
No, you won’t be soldering components together. Rather, you’ll
use the powerful technique of software-based simulation to
create a software model of the Simpletron. Your Simpletron
simulator will turn the computer you are using into a Simpletron,
and you actually will be able to run, test and debug the SML
programs you wrote in Exercise 8.15.
When you run your Simpletron simulator, it should begin by
displaying

*** Welcome to Simpletron! ***

*** Please enter your program one instruction ***

*** (or data word) at a time. I will type the ***

*** location number and a question mark (?). ***

*** You then type the word for that location. ***

*** Type the sentinel -99999 to stop entering ***

*** your program. ***

Your program should simulate the Simpletron’s memory with a
single-subscripted, 100-element built-in array memory . Now
assume that the simulator is running, and let’s examine the
dialog as we enter the program of the second example of
Exercise 8.15:

00 ? +1009

01 ? +1010

02 ? +2009

03 ? +3110

04 ? +4107

05 ? +1109

06 ? +4300

07 ? +1110

08 ? +4300

09 ? +0000

10 ? +0000

11 ? -99999

*** Program loading completed ***

*** Program execution begins ***

The numbers to the right of each ? in the preceding dialog
represent the SML program instructions input by the user.
The SML program has now been placed (or loaded) into built-in
array memory . Now the Simpletron executes your SML program.
Execution begins with the instruction in location 00 and, like
C++, continues sequentially, unless directed to another part of
the program by a transfer of control.
Use variable accumulator to represent the accumulator register.
Use variable instruction-Counter to keep track of the location
in memory that contains the instruction being performed. Use
variable operationCode to indicate the operation currently being

performed (i.e., the left two digits of the instruction word). Use
variable operand to indicate the memory location on which the
current instruction operates. Thus, operand is the rightmost two
digits of the instruction currently being performed. Do not
execute instructions directly from memory. Rather, transfer the
next instruction to be performed from memory to a variable
called instructionRegister . Then “pick off” the left two digits
and place them in operationCode , and “pick off” the right two
digits and place them in operand . When Simpletron begins
execution, the special registers are all initialized to zero.
Now let’s “walk through” the execution of the first SML
instruction, +1009 in memory location 00 . This is called an
instruction execution cycle.
The instructionCounter tells us the location of the next
instruction to be performed. We fetch the contents of that
location from memory by using the C++ statement

instructionRegister = memory[instructionCounter];

The operation code and operand are extracted from the
instruction register by the statements

operationCode = instructionRegister / 100;

operand = instructionRegister % 100;

Now, the Simpletron must determine that the operation code is
actually a read (versus a write, a load, etc.). A switch
differentiates among the 12 operations of SML. In the switch
statement, the behavior of various SML instructions is
simulated as shown in Fig. 8.24 (we leave the others to you).

Fig. 8.24 Behavior of SML instructions.

SML instruction Behavior

read cin >> memory[operand];

load accumulator = memory[operand];

add accumulator += memory[operand];

branch We’ll discuss the branch instructions shortly.

halt This instruction displays the message
*** Simpletron execution terminated ***

The halt instruction also causes the Simpletron to display the
name and contents of each register, as well as the complete
contents of memory. Such a printout is often called a register
and memory dump. To help you program your dump function, a
sample dump format is shown in Fig. 8.25. Note that a dump
after executing a Simpletron program would show the actual
values of instructions and data values at the moment execution
terminated. To format numbers with their sign as shown in the
dump, use stream manipulator showpos . To disable the display
of the sign, use stream manipulator noshowpos . For numbers

that have fewer than four digits, you can format numbers with
leading zeros between the sign and the value by using the
following statement before outputting the value:

cout << setfill('0') << internal;

Fig. 8.25 A sample register and memory dump.

Parameterized stream manipulator setfill (from header
<iomanip>) specifies the fill character that will appear between
the sign and the value when a number is displayed with a field
width of five characters but does not have four digits. (One
position in the field width is reserved for the sign.) Stream
manipulator internal indicates that the fill characters should
appear between the sign and the numeric value .
Let’s proceed with the execution of our program’s first
instruction— +1009 in location 00 . As we’ve indicated, the

switch statement simulates this by performing the C++

statement

cin >> memory[operand];

A question mark (?) should be displayed on the screen before
the cin statement executes to prompt the user for input. The
Simpletron waits for the user to type a value and press the
Enter key. The value is then read into location 09 .
At this point, simulation of the first instruction is complete. All
that remains is to prepare the Simpletron to execute the next
instruction. The instruction just performed was not a transfer of
control, so we need merely increment the instruction counter
register as follows:

++instructionCounter;

This completes the simulated execution of the first instruction.
The entire process (i.e., the instruction execution cycle) begins
anew with the fetch of the next instruction to execute.
Now let’s consider how to simulate the branching instructions
(i.e., the transfers of control). All we need to do is adjust the
value in the instructionCounter appropriately. Therefore, the
unconditional branch instruction (40) is simulated in the switch
as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is
simulated as

if (0 == accumulator) {

 instructionCounter = operand;

}

At this point, you should implement your Simpletron simulator
and run each of the SML programs you wrote in Exercise 8.15.
The variables that represent the Simpletron simulator’s memory
and registers should be defined in main and passed to other
functions by value or by reference as appropriate.
Your simulator should check for various types of errors. During
the program loading phase, for example, each number the user
types into the Simpletron’s memory must be in the range -9999
to +9999 . Your simulator should use a while loop to test that
each number entered is in this range and, if not, keep
prompting the user to reenter the number until the user enters a
correct number.
During the execution phase, your simulator should check for
various serious errors, such as attempts to divide by zero,
attempts to execute invalid operation codes, accumulator
overflows (i.e., arithmetic operations resulting in values larger

than +9999 or smaller than -9999) and the like. Such serious
errors are called fatal errors. When a fatal error is detected,
your simulator should display an error message such as

*** Attempt to divide by zero ***

*** Simpletron execution abnormally terminated ***

and should display a full register and memory dump in the
format we’ve discussed previously. This will help the user
locate the error in the program.

3. 8.17 (Project: Modifications to the Simpletron Simulator) In
Exercise 8.16, you wrote a software simulation of a computer
that executes programs written in Simpletron Machine
Language (SML). In this exercise, we propose several
modifications and enhancements to the Simpletron Simulator.
In Exercises 19.30–19.34, we propose building a compiler that
converts programs written in a high-level programming
language (a variation of BASIC) to SML. Some of the following
modifications and enhancements may be required to execute
the programs produced by the compiler. [Note: Some
modifications may conflict with others and therefore must be
done separately.]

A. Extend the Simpletron Simulator’s memory to contain
1000 memory locations to enable the Simpletron to
handle larger programs.

B. Allow the simulator to perform remainder calculations.
This requires an additional Simpletron Machine

Language instruction.
C. Allow the simulator to perform exponentiation

calculations. This requires an additional Simpletron
Machine Language instruction.

D. Modify the simulator to use hexadecimal values (see
Appendix D, Number Systems) rather than integer
values to represent Simpletron Machine Language
instructions.

E. Modify the simulator to allow output of a newline. This
requires an additional Simpletron Machine Language
instruction.

F. Modify the simulator to process floating-point values in
addition to integer values.

G. Modify the simulator to handle string input. [Hint: Each
Simpletron word can be divided into two groups, each
holding a two-digit integer. Each two-digit integer
represents the ASCII decimal equivalent of a character.
Add a machine-language instruction that inputs a string
and store the string beginning at a specific Simpletron
memory location. The first half of the word at that
location will be a count of the number of characters in
the string (i.e., the length of the string). Each succeeding
half-word contains one ASCII character expressed as
two decimal digits. The machine-language instruction
converts each character into its ASCII equivalent and
assigns it to a half-word.]

H. Modify the simulator to handle output of strings stored in
the format of part (g). [Hint: Add a machine-language

instruction that will display a string beginning at a certain
Simpletron memory location. The first half of the word at
that location is a count of the number of characters in the
string (i.e., the length of the string). Each succeeding
half-word contains one ASCII character expressed as
two decimal digits. The machine-language instruction
checks the length and displays the string by translating
each two-digit number into its equivalent character.]

I. Modify the simulator to include instruction SML_DEBUG that
displays a memory dump after each instruction
executes. Give SML_DEBUG an operation code of 44 . The
word +4401 turns on debug mode, and +4400 turns off
debug mode.

Answers to Self-Review Exercises
1. 8.1

A. address.
B. nullptr , an address.
C. 0 .

2. 8.2
A. False. The operand of the address operator must be an

lvalue; the address operator cannot be applied to literals
or to expressions that result in temporary values.

B. False. A pointer to void cannot be dereferenced. Such a
pointer does not have a type that enables the compiler to
determine the type of the data and the number of bytes
of memory to which the pointer points.

C. False. Pointers of any type can be assigned to void
pointers. Pointers of type void can be assigned to
pointers of other types only with an explicit type cast.

3. 8.3
A. double numbers[size]{0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6,

7.7, 8.8, 9.9};

B. double* nPtr;

C.

cout << fixed << showpoint << setprecision(1);

for (size_t i{0}; i < size; ++i) {

 cout << numbers[i] << ' ';

}

D.

nPtr = numbers;

nPtr = &numbers[0];

E.

cout << fixed << showpoint << setprecision(1);

for (size_t j{0}; j < size; ++j) {

 cout << *(nPtr + j) << ' ';

}

F.

cout << fixed << showpoint << setprecision(1);

for (size_t k{0}; k < size; ++k) {

 cout << *(numbers + k) << ' ';

}

G.

cout << fixed << showpoint << setprecision(1);

for (size_t m{0}; m < size; ++m) {

 cout << nPtr[m] << ' ';

}

H.

numbers [3]

*(numbers + 3)

nPtr[3]

*(nPtr + 3)

I. The address is 1002500 + 8 * 8 = 1002564 . The value is
8.8 .

J. The address of numbers[5] is 1002500 + 5 * 8 = 1002540 .
The address of nPtr -= 4 is 1002540 - 4 * 8 = 1002508 .
The value at that location is 1.1 .

4. 8.4
A. double* doublePtr{nullptr};

B. doublePtr = &number1;

C. cout << "The value of *fPtr is " << *doublePtr << endl;

D. number2 = *doublePtr;

E. cout << "The value of number2 is " << number2 << endl;

F. cout << "The address of number1 is " << &number1 <<

endl;

G. cout << "The address stored in fPtr is " << doublePtr

<< endl;

Yes, the value is the same.

5. 8.5
A. void exchange(double* x, double* y)

B. void exchange(double*, double*);

C.

char vowel[]{"AEIOU"};

char vowel[]{'A', 'E', 'I', 'O', 'U', '\0'};

6. 8.6
A. Error: zPtr has not been initialized.

Correction: Initialize zPtr with zPtr = z; (Parts b–e

depend on this correction.)
B. Error: The pointer is not dereferenced.

Correction: Change the statement to number = *zPtr;
C. Error: zPtr[2] is not a pointer and should not be

dereferenced.
Correction: Change *zPtr[2] to zPtr[2] .

D. Error: Referring to an out-of-bounds built-in array
element with pointer subscripting.
Correction: To prevent this, change the relational
operator in the for statement to < or change the 5 to a
4 .

E. Error: Trying to modify a built-in array’s name with
pointer arithmetic.
Correction: Use a pointer variable instead of the built-in
array’s name to accomplish pointer arithmetic, or
subscript the built-in array’s name to refer to a specific
element.

9 Classes: A Deeper Look

Objectives
In this chapter you’ll:

Engineer a class to separate its interface from its implementation
and encourage reuse.
Access class members via an object’s name or a reference using
the dot (.) operator.
Access class members via a pointer to an object using the arrow
(->) operator.
Use destructors to perform “termination housekeeping.”
Learn the order of constructor and destructor calls.
Learn about the dangers of returning a reference or a pointer to
private data.
Assign the data members of one object to those of another object.
Create objects composed of other objects.
Use friend functions and learn how to declare friend classes.
Use the this pointer in a member function to access a non- static
class member.
Use static data members and member functions.

Outline
1. 9.1 Introduction
2. 9.2 Time Class Case Study: Separating Interface from

Implementation
A. 9.2.1 Interface of a Class
B. 9.2.2 Separating the Interface from the

Implementation
C. 9.2.3 Time Class Definition
D. 9.2.4 Time Class Member Functions
E. 9.2.5 Scope Resolution Operator (::)
F. 9.2.6 Including the Class Header in the Source-Code

File
G. 9.2.7 Time Class Member Function setTime and

Throwing Exceptions
H. 9.2.8 Time Class Member Function toUniversalString

and String Stream Processing
I. 9.2.9 Time Class Member Function toStandardString
J. 9.2.10 Implicitly Inlining Member Functions
K. 9.2.11 Member Functions vs. Global Functions
L. 9.2.12 Using Class Time

M. 9.2.13 Object Size

3. 9.3 Compilation and Linking Process
4. 9.4 Class Scope and Accessing Class Members

5. 9.5 Access Functions and Utility Functions
6. 9.6 Time Class Case Study: Constructors with Default

Arguments
A. 9.6.1 Constructors with Default Arguments
B. 9.6.2 Overloaded Constructors and C++11

Delegating Constructors

7. 9.7 Destructors
8. 9.8 When Constructors and Destructors Are Called

A. 9.8.1 Constructors and Destructors for Objects in
Global Scope

B. 9.8.2 Constructors and Destructors for Non- static
Local Objects

C. 9.8.3 Constructors and Destructors for static Local
Objects

D. 9.8.4 Demonstrating When Constructors and
Destructors Are Called

9. 9.9 Time Class Case Study: A Subtle Trap—Returning a
Reference or a Pointer to a private Data Member

10. 9.10 Default Memberwise Assignment
11. 9.11 const Objects and const Member Functions
12. 9.12 Composition: Objects as Members of Classes
13. 9.13 friend Functions and friend Classes
14. 9.14 Using the this Pointer

A. 9.14.1 Implicitly and Explicitly Using the this Pointer
to Access an Object’s Data Members

B. 9.14.2 Using the this Pointer to Enable Cascaded
Function Calls

15. 9.15 static Class Members
A. 9.15.1 Motivating Classwide Data
B. 9.15.2 Scope and Initialization of static Data

Members
C. 9.15.3 Accessing static Data Members
D. 9.15.4 Demonstrating static Data Members

16. 9.16 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

9.1 Introduction
This chapter takes a deeper look at classes. We use Time , Date and
Employee class case studies, and other examples, to demonstrate
several class construction capabilities. We begin with a Time class
engineered to separate its interface from its implementation for reuse.
The example also demonstrates using an include guard in a header to
prevent header code from being included in the same source code file
more than once, which typically results in compilation errors. In
addition, class Time uses an ostringstream to create string
representations of the time in standard and universal time formats. We
also explain the compilation and linking process from the standpoint of
the class-implementation programmer, the client-code programmer
and the application user.

We demonstrate how client code can access a class’s public
members via

the name of an object and the dot operator (.)
a reference to an object and the dot operator (.)
a pointer to an object and the arrow operator (->)

We discuss access functions that can read or write an object’s data
members. A common use of access functions is to test the truth or
falsity of conditions—such functions are known as predicate functions.

We also demonstrate the notion of a utility function (also called a
helper function)—a private member function that supports the
operation of the class’s public member functions, but is not intended

for use by clients of the class.

We show how default arguments can be used in constructors to
enable client code to initialize objects using a variety of arguments.
Next, we discuss a special member function called a destructor that’s
part of every class and is used to perform “termination housekeeping”
on an object before it’s destroyed. We demonstrate the order in which
constructors and destructors are called.

We show that returning a reference or pointer to private data breaks
the encapsulation of a class, allowing client code to directly access an
object’s data. We use default memberwise assignment to assign an
object of a class to another object of the same class.

We use const objects and const member functions to prevent
modifications of objects and enforce the principle of least privilege. We
discuss composition—a form of reuse in which a class can have
objects of other classes as members. Next, we use friendship to
specify that a nonmember function can also access a class’s non-
public members—a technique that’s often used in operator
overloading (Chapter 10) for performance and structural reasons. We
discuss the this pointer, which is an implicit argument in all calls to a
class’s non- static member functions, allowing them to access the
correct object’s data members and non- static member functions. We

motivate the need for static class members and show how to use
them in your own classes.

9.2 Time Class Case Study:
Separating Interface from
Implementation
Each of our prior class-definition examples placed a class in a header
for reuse, then included the header into a source-code file containing
main , so we could create and manipulate objects of the class.
Unfortunately, placing a complete class definition in a header reveals
the entire implementation of the class to the class’s clients—a header
is simply a text file that anyone can open and read.

Conventional software engineering wisdom says that to use an object
of a class, the client code (e.g., main) needs to know only

what member functions to call
what arguments to provide to each member function, and
what return type to expect from each member function.

The client code does not need to know how those functions are
implemented.

If client code does know how a class is implemented, the programmer
might write client code based on the class’s implementation details.
Ideally, if that implementation changes, the class’s clients should not

have to change. Hiding the class’s implementation details makes it
easier to change the class’s implementation while minimizing, and
hopefully eliminating, changes to client code.

Our first example in this chapter creates and manipulates an object of
class Time . We demonstrate two important C++ software engineering
concepts:

Separating interface from implementation.
Using an include guard in a header to prevent the header code
from being included into the same source code file more than
once. Since a class can be defined only once, using such
preprocessing directives prevents multiple-definition errors.

9.2.1 Interface of a Class

Interfaces define and standardize the ways in which things such as
people and systems interact with one another. For example, a radio’s
controls serve as an interface between the radio’s users and its
internal components. The controls allow users to perform a limited set
of operations (such as changing the station, adjusting the volume, and
choosing between AM and FM stations). Various radios may
implement these operations differently—some provide push buttons,
some provide dials and some support voice commands. The interface
specifies what operations a radio permits users to perform but does
not specify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class’s
clients can use and how to request those services, but not how the
class carries out the services. A class’s public interface consists of
the class’s public member functions (also known as the class’s
public services). As you’ll soon see, you can specify a class’s
interface by writing a class definition that lists only the class’s
member-function prototypes and the class’s data members.

9.2.2 Separating the Interface from
the Implementation

To separate the class’s interface from its implementation, we break up
class Time into two files—the header Time.h (Fig. 9.1) in which class
Time is defined, and the source-code file Time.cpp (Fig. 9.2) in which
Time ’s member functions are defined—so that

1. the class is reusable,
2. the clients of the class know what member functions the class

provides, how to call them and what return types to expect, and
3. the clients do not know how the class’s member functions are

implemented.

By convention, member-function definitions are placed in a source-
code file of the same base name (e.g., Time) as the class’s header but
with a .cpp filename extension (some compilers support other
filename extensions as well). The source-code file in Fig. 9.3 defines
function main (the client code). Section 9.3 shows a diagram and
explains how this three-file program is compiled from the perspectives
of the Time class programmer and the client-code programmer—and
what the Time application user sees.

9.2.3 Time Class Definition

The header Time.h (Fig. 9.1) contains Time ’s class definition (lines
11–20). Instead of function definitions, the class contains function
prototypes (lines 13–15) that describe the class’s public interface

without revealing the member-function implementations. The function
prototype in line 13 indicates that setTime requires three int
parameters and returns void . The prototypes for member functions
toUniversalString and toStandardString (lines 14–15) each specify
that the function takes no arguments and returns a string . This
particular class does not define a constructor, but classes with
constructors would also declare those constructors in the header (as
we will do in subsequent examples).

Fig. 9.1 Time class definition.

The header still specifies the class’s private data members (lines 17–
19) as well—in this case, each uses a C++11 in-class list initializer to
set the data member to 0 . Again, the compiler must know the data
members of the class to determine how much memory to reserve for
each object of the class. Including the header Time.h in the client code
(line 6 of Fig. 9.3) provides the compiler with the information it needs
to ensure that the client code calls the member functions of class Time
correctly.

11

Include Guard1
1. The nonstandard—but widely supported—preprocessor directive
#pragma once can be used with many C++ compilers as an alternate
way to implement an include guard.

In Fig. 9.1, the class definition is enclosed in the following include
guard (lines 7, 8 and 22):

#ifndef TIME_H

#define TIME_H

 ...

#endif

When we build larger programs, other definitions and declarations will
also be placed in headers. The preceding include guard prevents the
code between #ifndef (which means “if not defined”) and #endif from
being #included if the name TIME_H has been defined. When Time.h is
#included the first time, the identifier TIME_H is not yet defined. In this
case, the #define directive defines TIME_H and the preprocessor
includes the Time.h header’s contents in the .cpp file. If the header is
#included again, TIME_H is defined already and the code between
#ifndef and #endif is ignored by the preprocessor. Attempts to
include a header multiple times (inadvertently) typically occur in large

programs with many headers that may themselves include other
headers.

 Error-Prevention Tip 9.1

Use #ifndef , #define and #endif preprocessing directives to form an

include guard that prevents headers from being included more than
once in a source-code file.

 Good Programming Practice 9.1

By convention, use the name of the header in uppercase with the
period replaced by an underscore in the #ifndef and #define
preprocessing directives of a header.

9.2.4 Time Class Member
Functions

The source-code file Time.cpp (Fig. 9.2) defines class Time ’s member
functions, which were declared in lines 13–15 of Fig. 9.1. Note that for
the const member functions toUniversalString and toStandardString ,
the const keyword must appear in both the function prototypes (Fig.
9.1, lines 14–15) and the function definitions (Fig. 9.2, lines 26 and
34).

Fig. 9.2 Time class member-function definitions.

9.2.5 Scope Resolution Operator
(::)

Each member function’s name (lines 12, 26 and 34) is preceded by
the class name and the scope resolution operator (::). This “ties”
them to the (now separate) Time class definition (Fig. 9.1), which
declares the class’s members. The Time:: tells the compiler that each
member function is within that class’s scope and its name is known
to other class members.

Without “ Time:: ” preceding each function name, these functions would
not be recognized by the compiler as Time member functions. Instead,
the compiler would consider them “free” or “loose” functions, like main
—these are also called global functions. Such functions cannot access
Time ’s private data or call the class’s member functions, without
specifying an object. So, the compiler would not be able to compile
these functions. For example, lines 28–29 and 36–38 in Fig. 9.2 that
access data members hour , minute and second would cause
compilation errors because these variables are not declared as local
variables in each function—the compiler would not know that hour ,
minute and second are already declared in class Time .

 Common Programming Error 9.1
When defining a class’s member functions outside that class, omitting
the class name and scope resolution operator (::) that should

precede the function names causes compilation errors.

9.2.6 Including the Class Header in
the Source-Code File

To indicate that the member functions in Time.cpp are part of class
Time , we must first include the Time.h header (Fig. 9.2, line 7). This
allows us to use the class name Time in the Time.cpp file (lines 12, 26
and 34). When compiling Time.cpp , the compiler uses the information
in Time.h to ensure that

the first line of each member function (lines 12, 26 and 34)
matches its prototype in the Time.h file—for example, the compiler
ensures that setTime accepts three int parameters and returns
nothing, and
each member function knows about the class’s data members and
other member functions—e.g., lines 28–29 and 36–38 can access
data members hour , minute and second because they’re declared
in Time.h as data members of class Time .

9.2.7 Time Class Member
Function setTime and Throwing
Exceptions

Function setTime (lines 12–23) is a public function that declares three
int parameters and uses them to set the time. Line 14 tests each
argument to determine whether the value is in range, and, if so, lines
15–17 assign the values to the hour , minute and second data
members, respectively. The hour value must be greater than or equal
to 0 and less than 24 , because universal-time format represents
hours as integers from 0 to 23 (e.g., 11 AM is hour 11, 1 PM is hour
13 and 11 PM is hour 23; midnight is hour 0 and noon is hour 12).
Similarly, both minute and second must be greater than or equal to 0
and less than 60 .

If any of the values is outside its range, setTime throws an exception
(lines 20–21) of type invalid_argument (from header <stdexcept>),
which notifies the client code that an invalid argument was received.
As you saw in Section 7.10, you can use try… catch to catch
exceptions and attempt to recover from them, which we’ll do in Fig.
9.3. The throw statement creates a new object of type
invalid_argument . The parentheses following the class name indicate

a call to the invalid_argument constructor that allows us to specify a

custom error-message string. After the exception object is created, the
throw statement immediately terminates function setTime and the

exception is returned to the code that attempted to set the time.

Invalid values cannot be stored in the data members of a Time object,
because

when a Time object is created, its default constructor is called and
each data member is initialized to 0, as specified in lines 17–19 of
Fig. 9.1—setting hour , minute and second to 0 is the universal-time
equivalent of 12 AM (midnight)—and
all subsequent attempts by a client to modify the data members
are scrutinized by function setTime .

9.2.8 Time Class Member
Function toUniversalString and
String Stream Processing

Member function toUniversalString (lines 26–31 of Fig. 9.2) takes no
arguments and returns a string containing the time formatted as
universal time with three colon-separated pairs of digits. For example,
if the time were 1:30:07 PM, toUniversalString would return 13:30:07 .

As you know, cout is the standard output stream. Objects of class
ostringstream (from the header <sstream>) provide the same
functionality, but write their output to string objects in memory. You
use class ostringstream ’s str member function to get the formatted
string .

Member function toUniversalString creates an ostringstream object
named output (line 27), then uses it like cout in lines 28–29 to create
the formatted string. Line 28 uses parameterized stream manipulator
setfill to specify the fill character that’s displayed when an integer
is output in a field wider than the number of digits in the value. The fill
characters appear to the left of the digits in the number, because the
number is right aligned by default—for left-aligned values (specified

with the left stream manipulator) the fill characters would appear to
the right. In this example, if the minute value is 2, it will be displayed
as 02, because the fill character is set to zero ('0'). If the number

being output fills the specified field, the fill character will not be
displayed. Once the fill character is specified with setfill , it applies

for all subsequent values that are displayed in fields wider than the
value being displayed— setfill is a sticky setting. This is in contrast
to setw , which applies only to the next value displayed— setw is a
nonsticky setting. Line 30 calls ostringstream ’s str member function
to get the formatted string , which is returned to the client.

 Error-Prevention Tip 9.2
Each sticky setting (such as a fill character or precision) should be
restored to its previous setting when it’s no longer needed. Failure to
do so may result in incorrectly formatted output later in a program.
Section 13.7.8 discusses how to reset the formatting for an output
stream.

9.2.9 Time Class Member
Function toStandardString

Function toStandardString (lines 34–40) takes no arguments and
returns a string containing the time formatted as standard time with
the hour , minute and second values separated by colons and followed
by an AM or PM indicator (e.g., 10:54:27 AM and 1:27:06 PM). Like
function toUniversalString , function toStandardString uses
setfill('0') to format the minute and second as two-digit values with
leading zeros if necessary. Line 36 uses the conditional operator (?:)
to determine the value of hour to be displayed—if the hour is 0 or 12
(AM or PM, respectively), it appears as 12; otherwise, we use the
remainder operator (%) to have the hour appear as a value from 1 to
11. The conditional operator in line 38 determines whether AM or PM
will be displayed. Line 39 calls ostringstream ’s str member function
to return the formatted string .

9.2.10 Implicitly Inlining Member
Functions

If a member function is defined in a class’s body, the member function
is implicitly declared inline. Remember that the compiler reserves the
right not to inline any function.

 Performance Tip 9.1
Defining a member function inside the class definition inlines the
member function (if the compiler chooses to do so). This can improve
performance.

 Software Engineering Observation
9.1
Only the simplest and most stable member functions (i.e., whose
implementations are unlikely to change) should be defined in the class
header, because every change to the header requires you to

recompile every source-code file that’s dependent on that header (a
time-consuming task in large systems).

9.2.11 Member Functions vs.
Global Functions

The toUniversalString and toStandardString member functions take
no arguments, because these member functions implicitly know that
they’re to create string representations of the data for the particular
Time object on which they’re invoked. This can make member-
function calls more concise than conventional function calls in
procedural programming.

 Software Engineering Observation
9.2
Using an object-oriented programming approach often requires fewer
arguments when calling functions. This benefit derives from the fact
that encapsulating data members and member functions within a class
gives the member functions the right to access the data members.

 Software Engineering Observation

9.3
Member functions are usually shorter than functions in non-object-
oriented programs, because the data stored in data members have
ideally been validated by a constructor or by member functions that
store new data. Because the data is already in the object, the
member-function calls often have no arguments or fewer arguments
than function calls in non-object-oriented languages. Thus, the calls,
the function definitions and the function prototypes are shorter. This
improves many aspects of program development.

 Error-Prevention Tip 9.3
The fact that member-function calls generally take either no
arguments or fewer arguments than conventional function calls in non-
object-oriented languages reduces the likelihood of passing the wrong
arguments, the wrong types of arguments or the wrong number of
arguments.

9.2.12 Using Class Time

As you know, once a class like Time is defined, it can be used as a
type in declarations, such as:

Time sunset; // object of type Time

array<Time, 5> arrayOfTimes; // array of 5 Time objects

Time& dinnerTimeRef{sunset}; // reference to a Time object

Time* timePtr{&sunset}; // pointer to a Time object

Figure 9.3 creates and manipulates a Time object. Separating Time ’s
interface from the implementation of its member functions does not
affect the way that this client code uses the class. It affects only how
the program is compiled and linked, which we discuss in Section 9.3.
Line 6 of Fig. 9.3 includes the Time.h header so the compiler knows
how much space to reserve for the Time object t (line 16) and can
ensure that Time objects are created and manipulated correctly in the
client code.

Fig. 9.3 Program to test class Time .

Throughout the program, we display 24-hour and 12-hour string

representations of a Time object using function displayTime (lines 10–
13), which calls Time member functions toUniversalString and
toStandardString . Line 16 creates the Time object t . Recall that class
Time does not define a constructor, so line 16 invokes the compiler-
generated default constructor, and t ’s hour , minute and second are
set to 0 via their initializers in class Time ’s definition. Then, line 18
displays the time in universal and standard formats, respectively, to
confirm that the members were initialized properly. Line 19 sets a new
valid time by calling member function setTime , and line 20 again
displays the time in both formats.

Calling setTime with Invalid Values
To illustrate that the setTime member function validates its arguments,
line 24 calls setTime with invalid arguments of 99 for the hour , minute
and second . This statement is placed in a try block (lines 23–25) in
case setTime throws an invalid_argument exception, which it will do.
When this occurs, the exception is caught at lines 26–28, and line 27
displays the exception’s error message by calling its what member
function. Line 31 displays the time again to confirm that setTime did
not change the time when invalid arguments were supplied.

9.2.13 Object Size

People new to object-oriented programming often suppose that
objects must be quite large because they contain data members and
member functions. Logically, this is true—you may think of objects as
containing data and functions (and our discussion has certainly
encouraged this view); physically, however, this is not the case.

 Performance Tip 9.2
Objects contain only data, so objects are much smaller than if they
also contained member functions. The compiler creates one copy
(only) of the member functions separate from all objects of the class.
All objects of the class share this one copy. Each object, of course,
needs its own copy of the class’s data, because the data can vary
among the objects. The function code is the same for all objects of the
class and, hence, can be shared among them.

9.3 Compilation and Linking
Process
The diagram in Fig. 9.4 shows the compilation and linking process
that results in an executable Time application that can be used by
instructors. Often a class’s interface and implementation will be
created and compiled by one programmer and used by a separate
programmer who implements the client code that uses the class. So,
the diagram shows what’s required by both the class-implementation
programmer and the client-code programmer. The dashed lines in the
diagram show the pieces required by the class-implementation
programmer, the client-code programmer and the Time application

user, respectively. [Note: Figure 9.4 is not a UML diagram.]

A class-implementation programmer responsible for creating a
reusable Time class creates the header Time.h and the source-code
file Time.cpp that #includes the header, then compiles the source-
code file to create Time ’s object code. To hide the class’s member-
function implementation details, the class-implementation programmer
would provide the client-code programmer with the header Time.h
(which specifies the class’s interface and data members) and the Time
object code (i.e., the machine-code instructions that represent Time ’s
member functions). The client-code programmer is not given Time.cpp ,

so the client remains unaware of how Time ’s member functions are

implemented.

The client-code programmer needs to know only Time ’s interface to
use the class and must be able to link its object code. Since the
interface of the class is part of the class definition in the Time.h
header, the client-code programmer must have access to this file and
must #include it in the client’s source-code file. When the client code
is compiled, the compiler uses the class definition in Time.h to ensure
that the main function creates and manipulates objects of class Time
correctly.

To create the executable Time application, the last step is to link

1. the object code for the main function (i.e., the client code),
2. the object code for class Time ’s member-function

implementations, and
3. the C++ Standard Library object code for the C++ classes (e.g.,

string) used by the class-implementation programmer and the
client-code programmer.

The linker’s output is the executable Time application that users can
execute to create and manipulate a Time object. Compilers and IDEs
typically invoke the linker for you after compiling your code.

Fig. 9.4 Compilation and linking process that produces an
executable application.

Compiling Programs Containing Two or

More Source-Code Files
In Section 1.10, we demonstrated how to compile and run C++
applications that contained one source-code (.cpp) file. To perform
the compilation and linking processes for multiple source-code files:

In Microsoft Visual Studio, add to your project (as shown in
Section 1.10.1) all the headers and source-code files that make up
a program, then build and run the project. You can place the
headers in the project’s Header Files folder and the source-code
files in the project’s Source Files folder, but these are mainly for
organizing files in large projects. We tested the book’s programs
by placing all the files for each program in the project’s Source
Files folder.
For GNU C++, open a shell and change to the directory containing
all the files for a given program, then execute the following
command:

g++ -std=c++14 *.cpp -o ExecutableName

The *.cpp specifies that you wish to compile and link all of the
source-code files in the current directory—the preprocessor
automatically locates the program-specific headers in that
directory.
For Apple Xcode, add to your project (as shown in Section 1.10.3)
all the headers and source-code files that make up a program,
then build and run the project.

For further information on compiling multiple-source-file programs with
other compilers, see the compiler’s documentation. We provide links
to various C++ compilers in our C++ Resource Center at http://
www.deitel.com/cplusplus/ .

http://www.deitel.com/cplusplus/

9.4 Class Scope and Accessing
Class Members
A class’s data members and member functions belong to that class’s
scope. Nonmember functions are defined at global namespace scope,
by default. (We discuss namespaces in more detail in Section 23.4.)

Within a class’s scope, class members are immediately accessible by
all of that class’s member functions and can be referenced by name.
Outside a class’s scope, public class members are referenced
through

an object name,
a reference to an object, or
a pointer to an object

We refer to these as handles on an object. The handle’s type enables
the compiler to determine the interface (e.g., the member functions)
accessible to the client via that handle. [We’ll see in Section 9.14 that
an implicit handle (called the this pointer) is inserted by the compiler
on every reference to a data member or member function from within
an object.]

Dot (.) and Arrow (->) Member-

Selection Operators
As you know, you can use an object’s name—or a reference to an
object—followed by the dot member-selection operator (.) to access
an object’s members. To reference an object’s members via a pointer
to an object, follow the pointer name by the arrow member-selection
operator (->) and the member name, as in pointerName -

>memberName.

Accessing public Class Members
Through Objects, References and
Pointers
Consider an Account class that has a public setBalance member
function. Given the following declarations:

Account account; // an Account object

// accountRef refers to an Account object

Account& accountRef{account};

// accountPtr points to an Account object

Account* accountPtr{&account};

You can invoke member function setBalance using the dot (.) and
arrow (->) member selection operators as follows:

// call setBalance via the Account object

account.setBalance(123.45);

// call setBalance via a reference to the Account object

accountRef.setBalance(123.45);

// call setBalance via a pointer to the Account object

accountPtr->setBalance(123.45);

9.5 Access Functions and Utility
Functions

Access Functions
Access functions can read or display data, not modify it. Another
common use of access functions is to test the truth or falsity of
conditions—such functions are often called predicate functions. An
example would be an empty function for any container class—a class
capable of holding many objects, such as an array or a vector . A
program might test empty before attempting to read another item from
the container object.2

2. Many programmers prefer to begin the names of predicate
functions with the word “ is .” For example, useful predicate functions
for our Time class might be isAM and isPM .

Utility Functions
A utility function (also called a helper function) is a private
member function that supports the operation of a class’s other
member functions. Utility functions are declared private because
they’re not intended for use by the class’s clients. A popular use of a

utility function would be to place in a function some common code that
would otherwise be duplicated in several other member functions.

9.6 Time Class Case Study:
Constructors with Default
Arguments
The program of Figs. 9.5–9.7 enhances class Time to demonstrate
how arguments can be passed to a constructor implicitly.

9.6.1 Constructors with Default
Arguments

Like other functions, constructors can specify default arguments. Line
13 of Fig. 9.5 declares a Time constructor with default arguments,
specifying a default value of zero for each argument passed to the
constructor. The constructor is declared explicit because it can be
called with one argument. We discuss explicit constructors in detail
in Section 10.13.

Fig. 9.5 Time class containing a constructor with default
arguments.

In Fig. 9.6, lines 11–13 define the Time constructor that receives
values for parameters hour , minute and second that will be used to
initialize private data members hour , minute and second ,
respectively. A constructor that defaults all its arguments is also a
default constructor—that is, a constructor that can be invoked with no

arguments. There can be at most one default constructor per class.
The version of class Time in this example provides set and get

functions for each data member. The Time constructor now calls
setTime , which calls the setHour , setMinute and setSecond functions to
validate and assign values to the data members.

 Software Engineering Observation
9.4
Any change to the default argument values of a function requires the
client code to be recompiled (to ensure that the program still functions
correctly).

Fig. 9.6 Member-function definitions for class Time .

In Fig. 9.6, line 12 of the constructor calls member function setTime
with the values passed to the constructor (or the default values).
Function setTime calls setHour to ensure that the value supplied for
hour is in the range 0–23, then calls setMinute and setSecond to
ensure that the values for minute and second are each in the range 0–
59. Functions setHour (lines 23–30), setMinute (lines 33–40) and
setSecond (lines 43–50) each throw an exception if an out-of-range
argument is received.

Function main in Fig. 9.7 initializes five Time objects—one with all
three arguments defaulted in the implicit constructor call (line 15), one
with one argument specified (line 16), one with two arguments
specified (line 17), one with three arguments specified (line 18) and
one with three invalid arguments specified (line 28). Each explicit
constructor call (lines 16–18 and 28) uses C++11 list-initializer syntax.
The program displays each object in universal-time and standard-time
formats. For Time object t5 (line 28), the program displays an error
message because the constructor arguments are out of range.

11

Fig. 9.7 Constructor with default arguments.

Notes Regarding Class Time ’s Set and
Get Functions and Constructor
Time ’s set and get functions are called throughout the class’s body. In
particular, function setTime (lines 16–20 of Fig. 9.6) calls functions
setHour , setMinute and setSecond , and functions toUniversalString
and toStandardString call functions getHour , getMinute and getSecond
in lines 64–65 and lines 72–74.

In each case, these functions could have accessed the class’s
private data directly. However, consider changing the representation
of the time from three int values (requiring 12 bytes of memory on
systems with four-byte ints) to a single int value representing the
total number of seconds that have elapsed since midnight (requiring
only four bytes of memory). If we made such a change, only the
bodies of the functions that access the private data directly would
need to change—in particular, the individual set and get functions for
the hour , minute and second . There would be no need to modify the
bodies of functions setTime , toUniversalString or toStandardString ,
because they do not access the data directly.

Similarly, the Time constructor could be written to include a copy of the
appropriate statements from function setTime . Doing so may be
slightly more efficient, because the extra call to setTime is eliminated.

However, duplicating statements in multiple functions or constructors
makes changing the class’s internal data representation more difficult.
Having the Time constructor call setTime and having setTime call
setHour , setMinute and setSecond enables us to limit the changes to
code that validates the hour , minute or second to the corresponding

set function. This reduces the likelihood of errors when altering the
class’s implementation.

 Software Engineering Observation 9.5

If a member function of a class already provides all or part of the
functionality required by a constructor or other member functions of
the class, call that member function from the constructor or other
member functions. This simplifies the maintenance of the code and
reduces the likelihood of an error if the code implementation is
modified. As a general rule: Avoid repeating code.

 Common Programming Error 9.2

A constructor can call other member functions of the class, such as
set or get functions, but because the constructor is initializing the
object, the data members may not yet be initialized. Using data
members before they have been properly initialized can cause logic
errors.

 Software Engineering Observation 9.6

Making data members private and controlling access, especially write

access, to those data members through public member functions

helps ensure data integrity.

 Error-Prevention Tip 9.4

The benefits of data integrity are not automatic simply because data
members are made private—you must provide appropriate validity

checking.

9.6.2 Overloaded Constructors and
C++11 Delegating Constructors

Section 6.16 showed how to overload functions. A class’s
constructors and member functions can also be overloaded.
Overloaded constructors typically allow objects to be initialized with
different types and/or numbers of arguments. To overload a
constructor, provide in the class definition a prototype for each version
of the constructor, and provide a separate constructor definition for
each overloaded version. This also applies to the class’s member
functions.

11

In Figs. 9.5–9.7, the Time constructor with three parameters had a
default argument for each parameter. We could have defined that
constructor instead as four overloaded constructors with the following
prototypes:

Time(); // default hour, minute and second to 0

explicit Time(int); // init hour; default minute and second to 0

Time(int, int); // initialize hour and minute; default second to

0

Time(int, int, int); // initialize hour, minute and second

Just as a constructor can call a class’s other member functions to
perform tasks, C++11 allows constructors to call other constructors in
the same class. The calling constructor is known as a delegating
constructor—it delegates its work to another constructor. This is
useful when overloaded constructors have common code that
previously would have been defined in a private utility function and
called by all the constructors.

The first three of the four Time constructors declared above can
delegate work to one with three int arguments, passing 0 as the
default value for the extra parameters. To do so, you use a member
initializer with the name of the class as follows:

Time::Time() : Time{0, 0, 0} {} // delegate to Time(int, int,

int)

// delegate to Time(int, int, int)

Time::Time(int hour) : Time{hour, 0, 0} {}

// delegate to Time(int, int, int)

Time::Time(int hour, int minute) : Time{hour, minute, 0} {}

9.7 Destructors
A destructor is another type of special member function. The name of
the destructor for a class is the tilde character (~) followed by the
class name. This naming convention has intuitive appeal, because as
we’ll see in a later chapter, the tilde operator is the bitwise
complement operator, and, in a sense, the destructor is the
complement of the constructor. A destructor may not specify
parameters or a return type.

A class’s destructor is called implicitly when an object is destroyed.
This occurs, for example, as an object is destroyed when program
execution leaves the scope in which that object was instantiated. The
destructor itself does not actually release the object’s memory—it
performs termination housekeeping3 before the object’s memory is
reclaimed, so the memory may be reused to hold new objects.

3. For example, we’ll show in Section 14.3.6 that a file stream object’s
destructor closes the file.

Even though destructors have not been defined for the classes
presented so far, every class has exactly one destructor. If you do not
explicitly define a destructor, the compiler defines an “empty”
destructor.4 In Chapter 10, we’ll build destructors appropriate for
classes whose objects contain dynamically allocated memory (e.g., for

arrays and strings) or use other system resources (e.g., files on disk,
which we study in Chapter 14). We discuss how to dynamically
allocate and deallocate memory in Chapter 10. In Chapter 17, we’ll
explain why exceptions should not be thrown from destructors.

4. We’ll see that such an implicitly created destructor does, in fact,
perform important operations on class-type objects that are created
through composition (Section 9.12) and inheritance (Chapter 11).

9.8 When Constructors and
Destructors Are Called
Constructors and destructors are called implicitly when object are
created and when they’re about to be removed from memory,
respectively. The order in which these function calls occur depends on
the order in which execution enters and leaves the scopes where the
objects are instantiated. Generally, destructor calls are made in the
reverse order of the corresponding constructor calls, but as we’ll see
in Figs. 9.8–9.10, the global and static objects can alter the order in
which destructors are called.

9.8.1 Constructors and Destructors
for Objects in Global Scope

Constructors are called for objects defined in global scope (also called
global namespace scope) before any other function (including main) in
that program begins execution (although the order of execution of
global object constructors between files is not guaranteed). The
corresponding destructors are called when main terminates. Function
exit forces a program to terminate immediately and does not execute
the destructors of local objects. The exit function often is used to
terminate a program when a fatal unrecoverable error occurs.
Function abort performs similarly to function exit but forces the
program to terminate immediately, without allowing programmer-
defined cleanup code of any kind to be called. Function abort is
usually used to indicate an abnormal termination of the program. (See
Appendix F for more information on functions exit and abort .)

9.8.2 Constructors and Destructors
for Non- static Local Objects

The constructor for a non- static local object is called when execution
reaches the point where that object is defined—the corresponding
destructor is called when execution leaves the object’s scope (i.e., the
block in which that object is defined has finished executing).
Constructors and destructors for non- static local objects are called
each time execution enters and leaves the scope of the object.
Destructors are not called for local objects if the program terminates
with a call to function exit or function abort .

9.8.3 Constructors and Destructors
for static Local Objects

The constructor for a static local object is called only once, when
execution first reaches the point where the object is defined—the
corresponding destructor is called when main terminates or the
program calls function exit . Global and static objects are destroyed
in the reverse order of their creation. Destructors are not called for
static objects if the program terminates with a call to function abort .

9.8.4 Demonstrating When
Constructors and Destructors Are
Called

The program of Figs. 9.8–9.10 demonstrates the order in which
constructors and destructors are called for global, local and local
static objects of class CreateAndDestroy (Fig. 9.8 and Fig. 9.9). Each
object of class CreateAndDestroy contains an integer (objectID) and a
string (message) that are used in the program’s output to identify the
object (Fig. 9.8, lines 14–15). This mechanical example is purely for
pedagogic purposes. For this reason, line 17 of the destructor in Fig.
9.9 determines whether the object being destroyed has an objectID
value 1 or 6 and, if so, outputs a newline character. This line makes
the program’s output easier to follow.

Fig. 9.8 CreateAndDestroy class definition.

Fig. 9.9 CreateAndDestroy class member-function definitions.

Figure 9.10 defines object first (line 10) in global scope. Its
constructor is actually called before any statements in main execute
and its destructor is called at program termination after the destructors
for all objects with automatic storage duration have run.

Fig. 9.10 Order in which constructors and destructors are called.

Function main (lines 12–22) declares three objects. Objects second
(line 14) and fourth (line 20) are local objects, and object third (line
15) is a static local object. The constructor for each of these objects
is called when execution reaches the point where that object is
declared. The destructors for objects fourth then second are called—
in the reverse of the order in which their constructors were called—

when execution reaches the end of main . Because object third is
static , it exists until program termination. The destructor for object
third is called before the destructor for global object first , but after

all other objects are destroyed.

Function create (lines 25–31) declares three objects— fifth (line 27)
and seventh (line 29) as local automatic objects, and sixth (line 28)
as a static local object. The destructors for objects seventh then
fifth are called—the reverse of the order in which their constructors
were called—when create terminates. Because sixth is static , it
exists until program termination. The destructor for sixth is called
before the destructors for third and first , but after all other objects
are destroyed.

9.9 Time Class Case Study: A
Subtle Trap — Returning a
Reference or a Pointer to a
private Data Member

A reference to an object is an alias for the name of the object and,
hence, may be used on the left side of an assignment statement. In
this context, the reference makes a perfectly acceptable lvalue that
can receive a value.

A member function can return a reference to a private data member
of that class. If the reference return type is declared const , the
reference is a nonmodifiable lvalue and cannot be used to modify the
data. However, if the reference return type is not declared const ,
subtle errors can occur.

The program of Figs. 9.11–9.13 uses a simplified Time class (Fig.
9.11 and Fig. 9.12) to demonstrate returning a reference to a private
data member with member function badSetHour (declared in Fig. 9.11
in line 13 and defined in Fig. 9.12 in lines 25–34). Such a reference
return actually makes a call to member function badSetHour an alias for
private data member hour ! The function call can be used in any way

that the private data member can be used, including as an lvalue in

an assignment statement, thus enabling clients of the class to clobber
the class’s private data at will! A similar problem would occur if a
pointer to the private data were to be returned by the function.

Fig. 9.11 Time class declaration.

Fig. 9.12 Time class member-function definitions.

Figure 9.13 declares Time object t (line 9) and reference hourRef
(line 12), which is initialized with the reference returned by the call
t.badSetHour(20) . Line 14 displays the value of the alias hourRef . This
shows how hourRef breaks the encapsulation of the class—
statements in main should not have access to the private data in an
object of the class. Next, line 15 uses the alias to set the value of hour

to 30 (an invalid value) and line 16 displays the value returned by
function getHour to show that assigning a value to hourRef actually
modifies the private data in the Time object t . Finally, line 20 uses
the badSetHour function call itself as an lvalue and assigns 74 (another
invalid value) to the reference returned by the function. Line 25 again
displays the value returned by function getHour to show that assigning
a value to the result of the function call in line 20 modifies the private
data in the Time object t .

 Software Engineering
Observation 9.7

Returning a reference or a pointer to a private data member breaks

the encapsulation of the class and makes the client code dependent
on the representation of the class’s data. There are cases where
doing this is appropriate—we’ll show an example of this when we build
our custom Array class in Section 10.10.

Fig. 9.13 public member function that returns a reference to a
private data member.

9.10 Default Memberwise
Assignment
The assignment operator (=) can be used to assign an object to
another object of the same class. By default, such assignment is
performed by memberwise assignment (also called copy
assignment)—each data member of the object on the right of the
assignment operator is assigned individually to the same data
member in the object on the left of the assignment operator. Figures
9.14–9.15 define a Date class. Line 15 of Fig. 9.16 uses default
memberwise assignment to assign the data members of Date object
date1 to the corresponding data members of Date object date2 . In this
case, the month member of date1 is assigned to the month member of
date2 , the day member of date1 is assigned to the day member of
date2 and the year member of date1 is assigned to the year member
of date2 . [Caution: Memberwise assignment can cause serious
problems when used with a class whose data members contain
pointers to dynamically allocated memory; we discuss these problems
in Chapter 10 and show how to deal with them.]

Fig. 9.14 Date class declaration.

Fig. 9.15 Date class member-function definitions.

Fig. 9.16 Class objects can be assigned to each other using
default memberwise assignment.

Objects may be passed as function arguments and may be returned
from functions. Such passing and returning is performed using pass-
by-value by default—a copy of the object is passed or returned. In
such cases, C++ creates a new object and uses a copy constructor
to copy the original object’s values into the new object. For each class,
the compiler provides a default copy constructor that copies each
member of the original object into the corresponding member of the
new object. Like memberwise assignment, copy constructors can
cause serious problems when used with a class whose data members
contain pointers to dynamically allocated memory. Chapter 10
discusses how to define customized copy constructors that properly
copy such objects.

9.11 const Objects and const
Member Functions
Let’s see how the principle of least privilege applies to objects. Some
objects need to be modifiable and some do not. You may use const to
specify that an object is not modifiable and that any attempt to modify
the object should result in a compilation error. The statement

const Time noon{12, 0, 0};

declares a const object noon of class Time and initializes it to 12 noon.
It’s possible to instantiate const and non- const objects of the same
class.

 Error-Prevention Tip 9.5

Attempts to modify a const object are caught at compile time rather

than causing execution-time errors.

 Performance Tip 9.3

Declaring variables and objects const when appropriate can improve

performance— compilers can perform optimizations on constants that
cannot be performed on non- const variables.

C++ disallows member-function calls for const objects unless the

member functions themselves are also declared const . This is true
even for get member functions that do not modify the object. This is
also a key reason that we’ve declared as const all member functions

that do not modify the objects on which they’re called.

 Common Programming Error
9.3

Defining as const a member function that calls a non- const member

function of the class on the same object is a compilation error.

 Common Programming Error

9.4

Invoking a non- const member function on a const object is a

compilation error.

An interesting problem arises for constructors and destructors, each of
which typically modifies objects. A constructor must be allowed to
modify an object so that the object can be initialized. A destructor
must be able to perform its termination housekeeping before an
object’s memory is reclaimed by the system. Attempting to declare a
constructor or destructor const is a compilation error. The “ constness”
of a const object is enforced from the time the constructor completes

initialization of the object until that object’s destructor is called.

Using const and Non-const Member
Functions
The program of Fig. 9.17 uses class Time from Figs. 9.5–9.6, but
removes const from function toStandardString ’s prototype and
definition so that we can show a compilation error. We create two
Time objects—non- const object wakeUp (line 6) and const object noon
(line 7). The program attempts to invoke non- const member functions
setHour (line 11) and toStandardString (line 15) on the const object
noon . In each case, the compiler generates an error message. The
program also illustrates the three other member-function-call

combinations on objects—a non- const member function on a non-
const object (line 10), a const member function on a non- const object
(line 12) and a const member function on a const object (lines 13–
14). The error messages generated for non- const member functions
called on a const object are shown in the output window.

Fig. 9.17 const objects and const member functions.

A constructor must be a non- const member function, but it can still be
used to initialize a const object (Fig. 9.17, line 7). Recall from Fig. 9.6
that the Time constructor’s definition calls another non- const member
function— setTime—to perform the initialization of a Time object.

Invoking a non- const member function from the constructor call as
part of the initialization of a const object is allowed.

Line 15 in Fig. 9.17 generates a compilation error even though
member function toStandardString of class Time does not modify the
object on which it’s called. The fact that a member function does not
modify an object is not sufficient—the function must explicitly be
declared const .

9.12 Composition: Objects as
Members of Classes
An AlarmClock object needs to know when it’s supposed to sound its
alarm, so why not include a Time object as a member of the
AlarmClock class? Such a software-reuse capability is called
composition (or aggregation) and is sometimes referred to as a has-
a relationship—a class can have objects of other classes as
members.5

5.derivedinheritance As you’ll see in Chapter 11, classes also may
be $$$ from other classes that provide attributes and behaviors the
new classes can use—this is called .

You’ve actually been using composition since Chapter 3. In that
chapter’s examples, class Account contained a string object as a
data member.

Previously, we saw how to pass arguments to the constructor of an
object we created in main . Now we show how a class’s constructor
can pass arguments to member-object constructors via member
initializers.

 Software Engineering
Observation 9.8

Data members are constructed in the order in which they’re declared
in the class definition (not in the order they’re listed in the constructor’s
member-initializer list) and before their enclosing class objects are
constructed.

The next program uses classes Date (Figs. 9.18–9.19) and Employee
(Figs. 9.20–9.21) to demonstrate composition. Class Employee ’s
definition (Fig. 9.20) contains private data members firstName ,
lastName , birthDate and hireDate . Members birthDate and hireDate
are const objects of class Date , which contains private data
members month , day and year . The Employee constructor’s prototype
(Fig. 9.20, lines 14–15) specifies that the constructor has four
parameters (first , last , dateOfBirth and dateOfHire). The first two
parameters are passed via member initializers to the string class
constructor for the firstName and lastName data members. The last
two are passed via member initializers to the Date class constructor
for the birthDate and hireDate data members.

Fig. 9.18 Date class definition.

Fig. 9.19 Date class member-function definitions.

Fig. 9.20 Employee class definition showing composition.

Fig. 9.21 Employee class member-function definitions.

Employee Constructor’s Member-Initializer
List
The colon (:) following the constructor’s header (Fig. 9.21, line 13)
begins the member-initializer list. The member initializers specify the
Employee constructor parameters being passed to the constructors of
the string and Date data members. Parameters first , last ,
dateOfBirth and dateOfHire are passed to the constructors for objects
firstName , lastName , birthDate and hireDate , respectively. The order

of the member initializers does not matter. They’re executed in the
order that the member objects are declared in class Employee .

 Good Programming Practice 9.2

For clarity, list the member initializers in the order that the class’s data
members are declared.

Date Class’s Default Copy Constructor
As you study class Date (Fig. 9.18), notice that the class does not

provide a constructor that receives a parameter of type Date . So, why
can the Employee constructor’s member-initializer list initialize the
birthDate and hireDate objects by passing Date objects to their Date
constructors? As we mentioned in Section 9.10, the compiler provides
each class with a default copy constructor that copies each data
member of the constructor’s argument object into the corresponding
member of the object being initialized. Chapter 10 discusses how you
can define customized copy constructors.

Testing Classes Date and Employee
Figure 9.22 creates two Date objects (lines 9–10) and passes them
as arguments to the constructor of the Employee object created in line
11. There are actually five constructor calls when an Employee is
constructed:

two calls to the string class’s constructor (lines 13–14 of Fig.
9.21),
two calls to the Date class’s default copy constructor (lines 15–16
of Fig. 9.21),
and the call to the Employee class’s constructor.

Line 13 outputs the Employee object’s data. When each Date object is
created in lines 9–10, the Date constructor defined in lines 12–20 of
Fig. 9.19 displays a line of output to show that the constructor was
called (see the first two lines of the sample output). Note that line 11 of
Fig. 9.22 causes two Date constructor calls that do not appear in this
program’s output. When each of the Employee ’s Date member objects
is initialized in the Employee constructor’s member-initializer list (Fig.
9.21, lines 15–16), the default copy constructor for class Date is
called. Since this constructor is defined implicitly by the compiler, it
does not contain any output statements to demonstrate when it’s
called.]

Fig. 9.22 Demonstrating composition—an object with member
objects.

Class Date and class Employee each include a destructor (lines 30–32
of Fig. 9.19 and lines 31–34 of Fig. 9.21, respectively) that prints a
message when an object of its class is destructed. This enables us to
confirm in the program output that objects are constructed from the
inside out and destructed in the reverse order, from the outside in (i.e.,
the Date member objects are destructed after the Employee object that
contains them).

Notice the last four lines in the output of Fig. 9.22. The last two lines
are the outputs of the Date destructor running on Date objects hire

(Fig. 9.22, line 10) and birth (line 9), respectively. The outputs
confirm that the three objects created in main are destructed in the
reverse of the order in which they were constructed. The Employee
destructor output is five lines from the bottom. The fourth and third
lines from the bottom of the output window show the destructors
running for the Employee ’s member objects hireDate (Fig. 9.20, line
22) and birthDate (line 21). The last two lines of the output
correspond to the Date objects created in lines 10 and 9 of Fig. 9.22.

These outputs confirm that the Employee object is destructed from the
outside in— i.e., the Employee destructor runs first (output shown five
lines from the bottom of the output window), then the member objects
are destructed in the reverse order from which they were constructed.
Class string ’s destructor does not contain output statements, so we
do not see the firstName and lastName objects being destructed.
Again, Fig. 9.22’s output did not show the constructors running for
member objects birthDate and hireDate , because these objects were
initialized with the default Date class copy constructors provided by
the compiler.

What Happens When You Do Not Use the
Member-Initializer List?
If a member object is not initialized through a member initializer, the
member object’s default constructor will be called implicitly. Values, if
any, established by the default constructor can be overridden by set

functions. However, for complex initialization, this approach may
require significant additional work and time.

 Performance Tip 9.4

Initialize member objects explicitly through member initializers. This
eliminates the overhead of “doubly initializing” member objects—once
when the member object’s default constructor is called and again
when set functions are called in the constructor body (or later) to
initialize the member object.

 Common Programming Error 9.5

A compilation error occurs if a member object is not initialized with a
member initializer and the member object’s class does not provide a
default constructor (i.e., the member object’s class defines one or
more constructors, but none is a default constructor).

 Software Engineering Observation 9.9

If a data member is an object of another class, making that member
object public does not violate the encapsulation and hiding of that

member object’s private members. But, it does violate the

encapsulation and hiding of the enclosing class’s implementation, so
member objects of class types should still be private .

9.13 friend Functions and
friend Classes

A friend function of a class is a non-member function that has the
right to access the public and non- public class members.
Standalone functions, entire classes or member functions of other
classes may be declared to be friends of another class.

This section presents a mechanical example of how a friend function
works. In Chapter 10 we’ll show friend functions that overload
operators for use with class objects—as you’ll see, sometimes a
member function cannot be used for certain overloaded operators.

Declaring a friend
To declare a non-member function as a friend of a class, place the
function prototype in the class definition and precede it with the
keyword friend . To declare all member functions of class ClassTwo as
friends of class ClassOne , place a declaration of the form

friend class ClassTwo;

in the definition of class ClassOne . The friend declaration(s) can
appear anywhere in a class and are not affected by access specifiers
public or private (or protected , which we discuss in Chapter 11).

Friendship is granted, not taken—for class B to be a friend of class A,
class A must explicitly declare that class B is its friend . Friendship is
not symmetric—if class A is a friend of class B, you cannot infer that
class B is a friend of class A. Friendship is not transitive—if class A is
a friend of class B and class B is a friend of class C, you cannot
infer that class A is a friend of class C.

Modifying a Class’s private Data with a
friend Function
Figure 9.23 defines friend function setX to set the private data
member x of class Count . As a convention, we place the friend
declaration (line 8) first in the class definition, even before public
member functions are declared—again, this friend declaration can
appear anywhere in the class.

Fig. 9.23 Friends can access private members of a class.

Function setX (lines 17–19) is a standalone (global) function—it isn’t a
member function of class Count . For this reason, when setX is called
for object counter , line 25 passes counter as an argument to setX
rather than using a handle (such as the name of the object) to call the
function, as in

counter.setX(8); // error: setX not a member function

Function setX is allowed to access class Count ’s private data
member x (line 18) only because setX was declared as a friend of
the class (line 8). If you remove the friend declaration in line 8, you’ll
receive error messages indicating that function setX cannot modify
class Count ’s private data member x .

Overloaded friend Functions
It’s possible to specify overloaded functions as friends of a class.
Each function intended to be a friend must be explicitly declared in
the class definition as a friend of the class.

 Software Engineering Observation 9.10

Even though the prototypes for friend functions appear in the class

definition, friends are not member functions.

 Software Engineering Observation 9.11

Member access notions of private , protected and public are not

relevant to friend declarations, so friend declarations can be placed

anywhere in a class definition.

 Good Programming Practice 9.3

Place all friendship declarations first inside the class definition’s body
and do not precede them with any access specifier.

9.14 Using the this Pointer
There’s only one copy of each class’s functionality, but there can be
many objects of a class, so how do member functions know which
object’s data members to manipulate? Every object has access to its
own address through a pointer called this (a C++ keyword). The this
pointer is not part of the object itself—i.e., the memory occupied by
the this pointer is not reflected in the result of a sizeof operation on
the object. Rather, the this pointer is passed (by the compiler) as an
implicit argument to each of the object’s non- static member
functions. Section 9.15 introduces static class members and
explains why the this pointer is not implicitly passed to static
member functions.

Using the this Pointer to Avoid Naming
Collisions
Member functions use the this pointer implicitly (as we’ve done so
far) or explicitly to reference an object’s data members and other
member functions. A common explicit use of the this pointer is to
avoid naming conflicts between a class’s data members and member-
function parameters (or other local variables). If a member function
contains a local variable and data member with the same name, as in
the following setHour function:

// set hour value

void Time::setHour(int hour) {

 if (hour >= 0 && hour < 24) {

 this->hour = hour; // use this-> to access data member

 }

 else {

 throw invalid_argument("hour must be 0-23");

 }

}

the local variable is said to hide or shadow the data member—using
just the variable name in the member function’s body refers to the
local variable rather than the data member. However, you can access
the data member hour by qualifying its name with this-> . So the
following statement assigns the hour parameter’s value to the data

member hour

this->hour = hour; // use this-> to access data member

 Good Programming Practice 9.4

A widely accepted practice to minimize the proliferation of identifier
names is to use the same name for a set function’s parameter and the
data member it sets, and to reference the data member in the set
function’s body via this-> .

Type of the this Pointer
The type of the this pointer depends on the type of the object and
whether the member function in which this is used is declared const :

In a non- const member function of class Employee , the this
pointer has the type Employee* const—a constant pointer to a
nonconstant Employee.
In a const member function, this has the type const Employee*
const—a constant pointer to a constant Employee .

9.14.1 Implicitly and Explicitly
Using the this Pointer to Access
an Object’s Data Members

Figure 9.24 demonstrates the implicit and explicit use of the this
pointer to enable a member function of class Test to print the private
data x of a Test object. In the next example and in Chapter 10, we
show some substantial and subtle examples of using this .

Fig. 9.24 Using the this pointer to refer to object members.

For illustration purposes, member function print (lines 19–30) first
prints x by using the this pointer implicitly (line 21)—only the name of
the data member is specified. Then print uses two different notations
to access x through the this pointer—the arrow operator (->) off the

this pointer (line 25) and the dot operator (.) off the dereferenced

this pointer (line 29). Note the parentheses around *this (line 29)
when used with the dot member-selection operator (.). The
parentheses are required because the dot operator has higher
precedence than the * operator. Without the parentheses, the
expression *this.x would be evaluated as if it were parenthesized as
*(this.x) , which is a compilation error, because the dot operator
cannot be used with a pointer.

One interesting use of the this pointer is to prevent an object from
being assigned to itself. As we’ll see in Chapter 10, self-assignment
can cause serious errors when the object contains pointers to
dynamically allocated storage.

9.14.2 Using the this Pointer to
Enable Cascaded Function Calls

Another use of the this pointer is to enable cascaded member-
function calls—that is, invoking multiple functions sequentially in the
same statement (as in line 10 of Fig. 9.27). The program of Figs.
9.25–9.27 modifies class Time ’s set functions setTime , setHour ,
setMinute and setSecond such that each returns a reference to the
Time object on which it’s called to enable cascaded member-function
calls. Notice in Fig. 9.26 that the last statement in the body of each of
these member functions returns *this (lines 21, 33, 45 and 57) into a
return type of Time& .

Fig. 9.25 Time class modified to enable cascaded member-
function calls.

Fig. 9.26 Time class member-function definitions modified to
enable cascaded member-function calls.

The program of Fig. 9.27 creates Time object t (line 8), then uses it in
cascaded member-function calls (lines 10 and 18). Why does the
technique of returning *this as a reference work? The dot operator
(.) associates from left to right, so line 10

t.setHour(18).setMinute(30).setSecond(22);

first evaluates t.setHour(18) , then returns a reference to (the updated)
object t as the value of this function call. The remaining expression is
then interpreted as

t.setMinute(30).setSecond(22);

The t.setMinute(30) call executes and returns a reference to the
(further updated) object t . The remaining expression is interpreted as

t.setSecond(22);

Fig. 9.27 Cascading member-function calls with the this pointer.

Line 18 (Fig. 9.27) also uses cascading. Note that we cannot chain
another Time member-function call after toStandardString here,
because it does not return a reference to t—we could, however,
place a call to a string member function, because toStandardString
returns a string . Placing the call to toStandardString before the call to
setTime in line 18 results in a compilation error, because the string
returned by toStandardString does not have a setTime function.
Chapter 10 presents several practical examples of using cascaded
function calls. One such example uses multiple << operators with
cout to output multiple values in a single statement.

9.15 static Class Members
There is an important exception to the rule that each object of a class
has its own copy of all the data members of the class. In certain
cases, only one copy of a variable should be shared by all objects of a
class. A static data member is used for these and other reasons.
Such a variable represents “classwide” information, i.e., data that is
shared by all instances and is not specific to any one object of the
class. Recall, for example, that the GradeBook classes in Chapter 7
use static data members to store constants representing the number
of grades that all GradeBook objects can hold.

9.15.1 Motivating Classwide Data

Let’s further motivate the need for static classwide data with an
example. Suppose that we have a video game with Martians and
other space creatures. Each Martian tends to be brave and willing to
attack other space creatures when the Martian is aware that at least
five Martians are present. If fewer than five are present, each Martian
becomes cowardly. So each Martian needs to know the martianCount .
We could endow each object of class Martian with martianCount as a
data member. If we do, every Martian will have a separate copy of the
data member. Every time we create a new Martian , we’ll have to
update the data member martianCount in all Martian objects. Doing
this would require every Martian object to have, or have access to,
handles to all other Martian objects in memory. This wastes space
with the redundant copies of the martianCount and wastes time in
updating the separate copies. Instead, we declare martianCount to be
static . This makes martianCount classwide data. Every Martian can
access martianCount as if it were a data member of the Martian , but
only one copy of the static variable martianCount is maintained in the
program. This saves space. We save time by having the Martian
constructor increment static variable martianCount and having the
Martian destructor decrement martianCount . Because there’s only one

copy, we do not have to increment or decrement separate copies of
martianCount for each Martian object.

 Performance Tip 9.5
Use static data members to save storage when a single copy of the

data for all objects of a class will suffice—such as a constant that can
be shared by all objects of the class.

9.15.2 Scope and Initialization of
static Data Members

A class’s static data members have class scope. A static data
member must be initialized exactly once. Fundamental-type static
data members are initialized by default to 0 . Prior to C++11, a static
const data member of int or enum type could be initialized in its
declaration in the class definition—all other static const data
members had to be defined and intialized at global namespace scope
(i.e., outside the body of the class definition). In C++11, all static
const data members can have in-class initializers. If a static data
member is an object of a class that provides a default constructor, the
static data member need not be initialized because its default
constructor will be called.

11

9.15.3 Accessing static Data
Members

A class’s private (and protected ; Chapter 11) static members are
normally accessed through the class’s public member functions or
friends. A class’s static members exist even when no objects of that

class exist. To access a public static class member when no objects
of the class exist, simply prefix the class name and the scope
resolution operator (::) to the name of the data member. For
example, if our preceding variable martianCount is public , it can be
accessed with the expression Martian::martianCount , even when there
are no Martian objects. (Of course, using public data is discouraged.)

To access a private or protected static class member when no

objects of the class exist, provide a public static member function
and call the function by prefixing its name with the class name and
scope resolution operator. A static member function is a service of
the class, not of a specific object of the class.

 Software Engineering Observation
9.12

A class’s static data members and static member functions exist

and can be used even if no objects of that class have been
instantiated.

9.15.4 Demonstrating static Data
Members

The program of Figs. 9.28–9.30 demonstrates a private static data
member called count (Fig. 9.28, line 23) and a public static member
function called getCount (Fig. 9.28, line 17). In Fig. 9.29, line 8 defines
and initializes the data member count to zero at global namespace

scope and line 12 defines static member function getCount . Notice
that neither line 8 nor line 12 includes keyword static , yet both lines
define static class members. The static keyword cannot be applied
to a member definition that appears outside the class definition. Data
member count maintains a count of the number of objects of class
Employee that have been instantiated. When objects of class Employee
exist, member count can be referenced through any member function
of an Employee object—in Fig. 9.29, count is referenced by both line
18 in the constructor and line 27 in the destructor.

Fig. 9.28 Employee class definition with a static data member to
track the number of Employee objects in memory.

Fig. 9.29 Employee class member-function definitions.

Figure 9.30 uses static member function getCount to determine the
number of Employee objects in memory at various points in the
program. The program calls Employee::getCount() before any Employee
objects have been created (line 11), after two Employee objects have
been created (line 22) and after those Employee objects have been

destroyed (line 33). Lines 15–28 in main define a nested scope. Recall
that local variables exist until the scope in which they’re defined
terminates. In this example, we create two Employee objects in the
nested scope (lines 16–17). As each constructor executes, it
increments class Employee ’s static data member count . These
Employee objects are destroyed when the program reaches line 28. At
that point, each object’s destructor executes and decrements class
Employee ’s static data member count .

Fig. 9.30 static data member tracking the number of objects of a
class.

A member function should be declared static if it does not access
non- static data members or non- static member functions of the
class. Unlike non- static member functions, a static member
function does not have a this pointer, because static data members
and static member functions exist independently of any objects of a
class. The this pointer must refer to a specific object of the class, and
when a static member function is called, there might not be any
objects of its class in memory.

 Common Programming Error 9.6
Using the this pointer in a static member function is a compilation

error.

 Common Programming Error 9.7
Declaring a static member function const is a compilation error. The

const qualifier indicates that a function cannot modify the contents of

the object on which it operates, but static member functions exist

and operate independently of any objects of the class.

9.16 Wrap-Up
This chapter deepened our coverage of classes, using a Time class
case study to introduce several new features. We showed how to
engineer a class to separate its interface from its implementation. We
used an include guard to prevent the code in a header (.h) file from
being included multiple times in the same source code (.cpp) file.

You created formatted strings using ostringstream objects. You
learned how to use the arrow operator to access an object’s members
via a pointer of the object’s class type. You learned that member
functions have class scope—the member function’s name is known
only to the class’s other members unless referred to by a client of the
class via an object name, a reference to an object of the class, a
pointer to an object of the class or the scope resolution operator. We
also discussed access functions (commonly used to retrieve the
values of data members or to test the truth or falsity of conditions),
and utility functions (private member functions that support the
operation of the class’s public member functions).

You learned that a constructor can specify default arguments that
enable it to be called in a variety of ways. You also learned that any
constructor that can be called with no arguments is a default
constructor and that there can be at most one default constructor per
class. We discussed destructors for performing termination

housekeeping on an object of a class before that object is destroyed,
and demonstrated the order in which an object’s constructors and
destructors are called.

We demonstrated the problems that can occur when a member
function returns a reference or a pointer to a private data member,
which breaks the encapsulation of the class. We also showed that
objects of the same type can be assigned to one another using default
memberwise assignment—in Chapter 10, we’ll discuss how this can
cause problems when an object contains pointer members.

You learned how to specify const objects and const member
functions to prevent modifications to objects, thus enforcing the
principle of least privilege. You also learned that, through composition,
a class can have objects of other classes as members. We
demonstrated how to declare and use friend functions.

You learned that the this pointer is passed as an implicit argument to
each of a class’s non- static member functions, allowing them to
access the correct object’s data members and other non- static
member functions. We used the this pointer explicitly to access the
class’s members and to enable cascaded member-function calls. We
motivated the notion of static data members and member functions
and demonstrated how to declare and use them.

In Chapter 10, we continue our study of classes and objects by
showing how to enable C++’s operators to work with class-type

objects—a process called operator overloading. For example, you’ll
see how to overload the << operator so it can be used to output a
complete array without explicitly using an iteration statement.

Summary

Section 9.2 Time Class Case Study:
Separating Interface from Implementation

Placing a complete class definition in a header reveals the entire
implementation of the class to the class’s clients—a header is
simply a text file that anyone can open and read.
Conventional software engineering wisdom says that to use an
object of a class, the client code needs to know only: what member
functions to call, what arguments to provide to each member
function and what return type to expect from each member
function. The client code does not need to know how those
functions are implemented.

Section 9.2.1 Interface of a Class
Interfaces (p. 388) define and standardize the ways in which
things such as people and systems interact with one another.
The interface of a class describes what services a class’s clients
can use and how to request those services, but not how the class
carries out the services.
A class’s public interface consists of the class’s public member
functions (also known as the class’s public services).
You can specify a class’s interface by writing a class definition that
lists only the class’s member-function prototypes and the class’s
data members.

Section 9.2.2 Separating the Interface
from the Implementation

To separate the class’s interface from its implementation, we break
up the class into two files— a header in which the class is defined
and a source-code file in which the class’s member functions are
defined.
By convention, member-function definitions are placed in a source-
code file of the same base name as the class’s header but with a
.cpp filename extension (some compilers support other filename
extensions as well).

Section 9.2.3 Time Class Definition
A class definition that contains function prototypes rather than
definitions describes the class’s public interface without revealing
the class’s member-function implementations.
The class’s header still specifies the class’s private data members
as well—the compiler must know the data members of the class to
determine how much memory to reserve for each object of the
class.
Including the class’s header in the client code provides the
compiler with the information it needs to ensure that the client code
calls the class’s member functions correctly.
An include guard (p. 389)—consisting of #ifndef , #define and
#endif—prevents a header from being #included multiple times in
the same source-code file.
Attempts to include a header multiple times (inadvertently) typically
occur in large programs with many headers that may themselves
include other headers.

Section 9.2.5 Scope Resolution Operator
(::)

When member functions are defined outside a class’s definition,
each member function’s name must be preceded by the class
name and the scope resolution operator (::). This “ties” each
member function to the class definition, which declares the class’s
members, telling the compiler that each member function is within
that class’s scope (p. 391).

Section 9.2.6 Including the Class Header
in the Source-Code File

The source-code file containing a class’s member-function
definitions must include the class’s header. This enables the
compiler to ensure that the first line of each member function
matches its prototype in the class’s header and that each member
function knows about the class’s data members and other member
functions.

Section 9.2.7 Time Class Member
Function setTime and Throwing
Exceptions

A function can throw an exception (p. 392) of type
invalid_argument (p. 392) to notify the client code that an invalid
argument was received.
A throw statement (p. 392) creates and throws an object of the
type specified to the right of the throw keyword.
After an exception object is created, the throw statement
immediately terminates the function and the exception is returned
to the calling function.

Section 9.2.8 Time Class Member
Function toUniversalString and String
Stream Processing

Objects of class ostringstream (p. 392; from the header <sstream>)
provide the same functionality as cout , but write their output to
string objects in memory.
Class ostringstream ’s str (p. 392) member function returns the
string created by an ostring-stream .
Parameterized stream manipulator setfill (p. 392) specifies the
fill character (p. 392) that’s displayed when an integer is output in
a field wider than the number of digits in the value.
The fill characters appear to the left of the digits in the number for
a right-aligned value—for left aligned values, the fill characters
appear to the right.
Once the fill character is specified with setfill , it applies for all
subsequent values that are displayed in fields wider than the value
being displayed—this is a sticky setting.

Section 9.2.10 Implicitly Inlining Member
Functions

A member function defined in a class’s body is implicitly declared
inline.

Section 9.2.11 Member Functions vs.
Global Functions

Classes often contain member functions that take no arguments,
because these member functions implicitly know the data
members for the particular object on which they’re invoked. This
can make member-function calls more concise and less error
prone than conventional function calls in procedural programming.

Section 9.2.12 Using Class Time
Once a class is defined, it can be used as a type in declarations of
objects, references and pointers.

Section 9.2.13 Object Size
People new to object-oriented programming often suppose that
objects must be quite large because they contain data members
and member functions. Logically, this is true; physically, however,
this is not the case—member functions are stored separately from
the objects of a class.

Section 9.3 Compilation and Linking
Process

Often a class’s interface and implementation will be created and
compiled by one programmer and used by a separate programmer
who implements the client code that uses the class.
A class-implementation programmer responsible for creating a
reusable class creates the header and the source-code file that
#includes the header, then compiles the source-code file to create
the class’s object code.
To hide the class’s member-function implementation details, the
class-implementation programmer would provide the client-code
programmer with the class’s header (which specifies the class’s
interface and data members) and the class’s object code (i.e., the
machine-code instructions that represent the class’s member
functions).
The client-code programmer is not given the source-code file with
the class’s member function definitions, so the client remains
unaware of how the class’s member functions are implemented.
The client-code programmer needs to know only the class’s
interface to use the class and must be able to link its object code.
Since the interface of the class is part of the class definition in the
class’s header, the client-code programmer must have access to
this file and must #include it in the client’s source-code file.
To create the executable application, the last step is to link the
object code for the client code, the object code for the member-

function implementations of the class(es) used by the client code
and the C++ Standard Library object code used by the class-
implementation programmer and the client-code programmer.
The linker’s output is the executable application. Compilers and
IDEs typically invoke the linker for you after compiling your code.

Section 9.4 Class Scope and Accessing
Class Members

A class’s data members and member functions belong to that
class’s scope.
Nonmember functions are defined at global namespace scope.
Within a class’s scope, class members are immediately accessible
by all of that class’s member non- static functions and can be
referenced by name.
Outside a class’s scope, class members are referenced through
one of the handles on an object— an object name, a reference to
an object or a pointer to an object.
Variables declared in a member function have block scope and are
known only to that function.
The dot member selection operator (.) is preceded by an object’s
name or by a reference to an object to access the object’s public
members.
The arrow member selection operator (-> ; p. 398) is preceded
by a pointer to an object to access that object’s public members.

Section 9.5 Access Functions and Utility
Functions

Access functions (p. 399) read or display data. They can also be
used to test the truth or falsity of conditions—such functions are
often called predicate functions.
A utility function (p. 399) is a private member function that
supports the operation of the class’s public member functions.
Utility functions are not intended to be used by clients of a class.

Section 9.6.1 Constructors with Default
Arguments

Like other functions, constructors can specify default arguments.

Section 9.6.2 Overloaded Constructors
and C++11 Delegating Constructors

To overload a constructor, provide in the class definition a
prototype for each version of the constructor, and provide a
separate constructor definition for each overloaded version. This
also applies to the class’s member functions.
Just as a constructor can call a class’s other member functions to
perform tasks, C++11 allows constructors to call other constructors
in the same class. To do so, you use a member initializer with the
name of the class.
The calling constructor is known as a delegating constructor (p.
405)—it delegates its work to another constructor. This is useful
when overloaded constructors have common code that previously
would have been defined in a private utility function and called by
all the constructors.

Section 9.7 Destructors
A class’s destructor (p. 405) is called implicitly when an object of
the class is destroyed.
The name of the destructor for a class is the tilde (~) character
followed by the class name.
A destructor does not release an object’s storage—it performs
termination housekeeping (p. 405) before the system reclaims
an object’s memory, so the memory may be reused to hold new
objects.
A destructor receives no parameters and returns no value. A class
may have only one destructor.
If you do not explicitly provide a destructor, the compiler creates an
“empty” destructor, so every class has exactly one destructor.

Section 9.8 When Constructors and
Destructors Are Called

The order in which constructors and destructors are called
depends on the order in which execution enters and leaves the
scopes where the objects are instantiated.
Generally, destructor calls are made in the reverse order of the
corresponding constructor calls, but the global and local static
objects’ destructors are called after all non- static local objects are
destroyed.
Function exit forces a program to terminate immediately and does
not execute the destructors of local objects. exit often is used to
terminate a program when a fatal unrecoverable error occurs.
Function abort forces the program to terminate immediately,
without allowing programmer-defined cleanup code of any kind to
be called. abort is usually used to indicate an abnormal
termination of the program.

Section 9.9 Time Class Case Study: A
Subtle Trap—Returning a Reference or a
Pointer to a private Data Member

A reference to an object is an alias for the name of the object and,
hence, may be used on the left side of an assignment statement.
In this context, the reference makes a perfectly acceptable lvalue
that can receive a value.
If the function returns a reference to const data, then the reference
cannot be used as a modifiable lvalue.

Section 9.10 Default Memberwise
Assignment

The assignment operator (=) can be used to assign an object to
another object of the same type. By default, such assignment is
performed by memberwise assignment (p. 411).
Objects may be passed by value to or returned by value from
functions. C++ creates a new object and uses a copy constructor
(p. 413) to copy the original object’s values into the new object.
For each class, the compiler provides a default copy constructor
that copies each member of the original object into the
corresponding member of the new object.

Section 9.11 const Objects and const
Member Functions

The keyword const can be used to specify that an object is not
modifiable and that any attempt to modify the object should result
in a compilation error.
C++ compilers disallow non- const member function calls on const
objects.
An attempt by a const member function to modify an object of its
class is a compilation error.
A member function is specified as const both in its prototype and
in its definition.
A const object must be initialized.
Constructors and destructors cannot be declared const .

Section 9.12 Composition: Objects as
Members of Classes

A class can have objects of other classes as members—this
concept is called composition.
Member objects are constructed in the order in which they’re
declared in the class definition and before their enclosing class
objects are constructed.
If a member initializer is not provided for a member object, the
member object’s default constructor will be called implicitly.

Section 9.13 friend Functions and
friend Classes

A friend function (p. 421) of a class is defined outside that class’s
scope, yet has the right to access all of the class’s members.
Standalone functions or entire classes may be declared to be
friends.
A friend declaration can appear anywhere in the class.
The friendship relation is neither symmetric nor transitive.

Section 9.14 Using the this Pointer
Every object has access to its own address through the this
pointer (p. 423).
An object’s this pointer is not part of the object itself—i.e., the size
of the memory occupied by the this pointer is not reflected in the
result of a sizeof operation on the object.
The this pointer is passed as an implicit argument to each non-
static member function.
Objects use the this pointer implicitly (as we’ve done to this point)
or explicitly to reference their data members and member
functions.
The this pointer enables cascaded member-function calls (p.
425) in which multiple functions are invoked in the same
statement.

Section 9.15 static Class Members
A static data member (p. 429) represents “classwide” information
(i.e., a property of the class shared by all instances, not a property
of a specific object of the class).
static data members have class scope and can be declared
public , private or protected .
A class’s static members exist even when no objects of that class
exist.
To access a public static class member when no objects of the
class exist, simply prefix the class name and the scope resolution
operator (::) to the name of the data member.
The static keyword cannot be applied to a member definition that
appears outside the class definition.
A member function should be declared static (p. 430) if it does
not access non- static data members or non- static member
functions of the class. Unlike non- static member functions, a
static member function does not have a this pointer, because
static data members and static member functions exist
independently of any objects of a class.

Self-Review Exercises
1. 9.1 Fill in the blanks in each of the following:

A. Class members are accessed via the operator in
conjunction with the name of an object (or reference to
an object) of the class or via the operator in
conjunction with a pointer to an object of the class.

B. Class members specified as are accessible only
to member functions of the class and friends of the
class.

C. class members are accessible anywhere an
object of the class is in scope.

D. can be used to assign an object of a class to
another object of the same class.

E. A nonmember function must be declared by the class as
a(n) of a class to have access to that class’s
private data members.

F. A constant object must be ; it cannot be modified
after it’s created.

G. A(n) data member represents classwide
information.

H. An object’s non- static member functions have access
to a “self pointer” to the object called the pointer.

I. Keyword specifies that an object or variable is not
modifiable.

J. If a member initializer is not provided for a member
object of a class, the object's is called.

K. A member function should be static if it does not
access class members.

L. Member objects are constructed their enclosing
class object.

M. When a member function is defined outside the class
definition, the function header must include the class
name and the , followed by the function name to
“tie” the member function to the class definition.

2. 9.2 Find the error(s) in each of the following and explain how to
correct it (them):

A. Assume the following prototype is declared in class
Time :

void ~Time(int);

B. Assume the following prototype is declared in class
Employee :

int Employee(string, string);

C. The following is a definition of class Example :

class Example {

public:

 Example(int y = 10) : data(y) { }

 int getIncrementedData() const {

 return ++data;

 }

 static int getCount() {

 cout << "Data is " << data << endl;

 return count;

 }

private:

 int data;

 static int count;

};

Exercises
1. 9.3 (Scope Resolution Operator) What’s the purpose of the

scope resolution operator?
2. 9.4 (Enhancing Class Time) Provide a constructor that’s

capable of using the current time from the time and localtime
functions—declared in the C++ Standard Library header
<ctime>—to initialize an object of the Time class. For
descriptions of C++ Standard Library headers, classes and
functions, see http://cppreference.com .

3. 9.5 (Complex Class) Create a class called Complex for
performing arithmetic with complex numbers. Write a program
to test your class. Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use double variables to represent the private data of the class.
Provide a constructor that enables an object of this class to be
initialized when it’s declared. The constructor should contain

http://cppreference.com

default values in case no initializers are provided. Provide
public member functions that perform the following tasks:

A. add—Adds two Complex numbers: The real parts are
added together and the imaginary parts are added
together.

B. subtract—Subtracts two Complex numbers: The real part
of the right operand is subtracted from the real part of
the left operand, and the imaginary part of the right
operand is subtracted from the imaginary part of the left
operand.

C. toString—Returns a string representation of a Complex
number in the form (a, b) , where a is the real part and
b is the imaginary part.

In Chapter 10, you’ll learn how to overload + , - and << so you
can write expressions like a + b and a-b and cout << a to
add, subtract and output Complex objects. [Note: The C++
Standard Library provides its own class complex for complex-
number arithmetic. For information on this class, visit http://
en.cppreference.com/w/cpp/numeric/complex .]

4. 9.6 (Rational Class) Create a class called Rational for
performing arithmetic with fractions. Write a program to test
your class. Use integer variables to represent the private data
of the class— the numerator and the denominator . Provide a
constructor that enables an object of this class to be initialized
when it’s declared. The constructor should contain default

http://en.cppreference.com/w/cpp/numeric/complex

values in case no initializers are provided and should store the
fraction in reduced form. For example, the fraction

would be stored in the object as 1 in the numerator and 2 in the
denominator . Provide public member functions that perform
each of the following tasks:

A. add—Adds two Rational numbers. The result should be
stored in reduced form.

B. subtract—Subtracts two Rational numbers. Store the
result in reduced form.

C. multiply—Multiplies two Rational numbers. Store the
result in reduced form.

D. divide—Divides two Rational numbers. The result
should be stored in reduced form.

E. toRationalString—Returns a string representation of a
Rational number in the form a/b , where a is the
numerator and b is the denominator.

F. toDouble—Returns the Rational number as a double .

In Chapter 10, you’ll learn how to overload + , - , * , / and <<
so you can write expressions like a + b , a-b , a*b , a-b and
cout << a to add, subtract, multiply, divide and output Complex
objects.

5. 9.7 (Enhancing Class Time) Modify the Time class of Figs.
9.5–9.6 to include a tick member function that increments the
time stored in a Time object by one second. Write a program
that tests the tick member function in a loop that prints the
time in standard format during each iteration of the loop to
illustrate that the tick member function works correctly. Be
sure to test the following cases:

A. Incrementing into the next minute.
B. Incrementing into the next hour.
C. Incrementing into the next day (i.e., 11:59:59 PM to

12:00:00 AM).

6. 9.8 (Enhancing Class Date) Modify the Date class of Figs.
9.14–9.15 to perform error checking on the initializer values for
data members month , day and year . Also, provide a member
function nextDay to increment the day by one. Write a program
that tests function nextDay in a loop that prints the date during
each iteration to illustrate that nextDay works correctly. Be sure
to test the following cases:

A. Incrementing into the next month.
B. Incrementing into the next year.

7. 9.9 (Combining Class Time and Class Date) Combine the
modified Time class of Exercise 9.7 and the modified Date
class of Exercise 9.8 into one class called DateAndTime . Modify
the tick function to call the nextDay function if the time

increments into the next day. Modify functions toStandardString
and toUniversalString so that each returns a string containing
the date and time. Write a program to test the new class
DateAndTime . Specifically, test incrementing the time into the
next day.

8. 9.10 (Returning Error Indicators from Class Time ’s set
Functions) Modify the set functions in the Time class of Figs.
9.5–9.6 to return appropriate error values if an attempt is made
to set a data member of an object of class Time to an invalid
value. Write a program that tests your new version of class
Time . Display error messages when set functions return error
values.

9. 9.11 (Rectangle Class) Create a class Rectangle with attributes
length and width , each of which defaults to 1. Provide member
functions that calculate the perimeter and the area of the
rectangle. Also, provide set and get functions for the length
and width attributes. The set functions should verify that length
and width are each floating-point numbers larger than 0.0 and
less than 20.0.

10. 9.12 (Enhancing Class Rectangle) Create a more
sophisticated Rectangle class than the one you created in
Exercise 9.11. This class stores only the Cartesian coordinates
of the four corners of the rectangle. The constructor calls a set
function that accepts four sets of coordinates and verifies that
each of these is in the first quadrant with no single x- or y-
coordinate larger than 20.0. The set function also verifies that

the supplied coordinates do, in fact, specify a rectangle.
Provide member functions that calculate the length , width ,
perimeter and area . The length is the larger of the two
dimensions. Include a predicate function square that
determines whether the rectangle is a square.

11. 9.13 (Enhancing Class Rectangle) Modify class Rectangle
from Exercise 9.12 to include a draw function that displays the
rectangle inside a 25-by-25 box enclosing the portion of the first
quadrant in which the rectangle resides. Include a
setFillCharacter function to specify the character out of which
the body of the rectangle will be drawn. Include a
setPerimeterCharacter function to specify the character that will
be used to draw the border of the rectangle. If you feel
ambitious, you might include functions to scale the size of the
rectangle and move it around within the designated portion of
the first quadrant.

12. 9.14 (HugeInteger Class) Create a class HugeInteger that uses
a 40-element array of digits to store integers as large as 40
digits each. Provide member functions input , output , add and
subtract . For comparing HugeInteger objects, provide functions
isEqualTo , isNotEqualTo , isGreaterThan , isLessThan ,
isGreaterThanOrEqualTo and isLessThanOrEqualTo—each of
these is a “predicate” function that simply returns true if the
relationship holds between the two HugeIntegers and returns
false if the relationship does not hold. Also, provide a
predicate function isZero . If you feel ambitious, provide

member functions multiply , divide and remainder . In Chapter
10, you’ll learn how to overload input, output, arithmetic,
equality and relational operators so that you can write
expressions containing HugeInteger objects, rather than
explicitly calling member functions.

13. 9.15 (TicTacToe Class) Create a class TicTacToe that will
enable you to write a complete program to play the game of tic-
tac-toe. The class contains as private data a 3-by-3 two-
dimensional array of integers. The constructor should initialize
the empty board to all zeros. Allow two human players.
Wherever the first player moves, place a 1 in the specified
square. Place a 2 wherever the second player moves. Each
move must be to an empty square. After each move, determine
whether the game has been won or is a draw. If you feel
ambitious, modify your program so that the computer makes
the moves for one of the players. Also, allow the player to
specify whether he or she wants to go first or second. If you
feel exceptionally ambitious, develop a program that will play
three-dimensional tic-tac-toe on a 4-by-4-by-4 board. [Caution:
This is an extremely challenging project that could take many
weeks of effort!]

14. 9.16 (Friendship) Explain the notion of friendship. Explain the
negative aspects of friendship as described in the text.

15. 9.17 (Constructor Overloading) Can a Time class definition
that includes both of the following constructors:

Time(int h = 0, int m = 0, int s = 0);

Time();

be used to default construct a Time object? If not, explain why.
16. 9.18 (Constructors and Destructors) What happens when a

return type, even void , is specified for a constructor or
destructor?

17. 9.19 (Date Class Modification) Modify class Date in Fig. 9.18
to have the following capabilities:

A. Output the date in multiple formats such as

DDD YYYY

MM/DD/YY

June 14, 1992

B. Use overloaded constructors to create Date objects
initialized with dates of the formats in part (a).

C. Create a Date constructor that reads the system date
using the standard library functions of the <ctime>
header and sets the Date members. See your compiler’s
reference documentation or http://en.cppreference.com/
w/cpp/chrono/c for information on the functions in
header <ctime> . You might also want to check out
C++11’s chrono library at http://en.cppreference.com/w/
cpp/chrono .

http://en.cppreference.com/w/cpp/chrono/c
http://en.cppreference.com/w/cpp/chrono

11

In Chapter 10, we’ll be able to create operators for testing the
equality of two dates and for comparing dates to determine
whether one date is prior to, or after, another.

18. 9.20 (SavingsAccount Class) Create a SavingsAccount class.
Use a static data member annualInterestRate to store the
annual interest rate for each of the savers. Each member of the
class contains a private data member savingsBalance
indicating the amount the saver currently has on deposit.
Provide member function calculateMonthlyInterest that
calculates the monthly interest by multiplying the
savingsBalance by annualInterestRate divided by 12; this
interest should be added to savingsBalance . Provide a static
member function modifyInterestRate that sets the static
annualInterestRate to a new value. Write a driver program to
test class SavingsAccount . Instantiate two different objects of
class SavingsAccount , saver1 and saver2 , with balances of
$2000.00 and $3000.00, respectively. Set the
annualInterestRate to 3 percent. Then calculate the monthly
interest and print the new balances for each of the savers.
Then set the annualInterestRate to 4 percent, calculate the next
month’s interest and print the new balances for each of the
savers.

19. 9.21 (IntegerSet Class) Create class IntegerSet for which
each object can hold integers in the range 0 through 100.

Represent the set internally as a vector of bool values.
Element a[i] is true if integer i is in the set. Element a[j] is
false if integer j is not in the set. The default constructor
initializes a set to the so-called “empty set,” i.e., a set for which
all elements contain false .

A. Provide member functions for the common set
operations. For example, provide a unionOfSets member
function that creates a third set that is the set-theoretic
union of two existing sets (i.e., an element of the result is
set to true if that element is true in either or both of the
existing sets, and an element of the result is set to false
if that element is false in each of the existing sets).

B. Provide an intersectionOfSets member function which
creates a third set which is the set-theoretic intersection
of two existing sets (i.e., an element of the result is set to
false if that element is false in either or both of the
existing sets, and an element of the result is set to true
if that element is true in each of the existing sets).

C. Provide an insertElement member function that places a
new integer k into a set by setting a[k] to true . Provide
a deleteElement member function that deletes integer m
by setting a[m] to false .

D. Provide a toString member function that returns a set
as a string containing a list of numbers separated by
spaces. Include only those elements that are present in

the set (i.e., their position in the vector has a value of
true). Return --- for an empty set.

E. Provide an isEqualTo member function that determines
whether two sets are equal.

F. Provide an additional constructor that receives an array
of integers, and uses the array to initialize a set object.

Now write a driver program to test your IntegerSet class.
Instantiate several IntegerSet objects. Test that all your
member functions work properly.

20. 9.22 (Time Class Modification) It would be perfectly
reasonable for the Time class of Figs. 9.5–9.6 to represent the
time internally as the number of seconds since midnight rather
than the three integer values hour , minute and second . Clients
could use the same public member functions and get the same
results. Modify the Time class of Fig. 9.5 to implement the time
as the number of seconds since midnight and show that there
is no visible change in functionality to the clients of the class.
[Note: This exercise nicely demonstrates the virtues of
implementation hiding.]

21. 9.23 (Card Shuffling and Dealing) Create a program to shuffle
and deal a deck of cards. The program should consist of class
Card , class DeckOfCards and a driver program. Class Card
should provide:

A. Data members face and suit—use enumerations to
represent the faces and suits.

B. A constructor that receives two enumeration constants
representing the face and suit and uses them to initialize
the data members.

C. Two static arrays of strings representing the faces
and suits.

D. A toString function that returns the Card as a string in
the form “face of suit.” You can use the + operator to
concatenate strings.

Class DeckOfCards should contain:
A. An array of Cards named deck to store the Cards.
B. An integer currentCard representing the next card to

deal.
C. A default constructor that initializes the Cards in the

deck.
D. A shuffle function that shuffles the Cards in the deck.

The shuffle algorithm should iterate through the array of
Cards. For each Card , randomly select another Card in
the deck and swap the two Cards.

E. A dealCard function that returns the next Card object
from the deck.

F. A moreCards function that returns a bool value indicating
whether there are more Cards to deal.

The driver program should create a DeckOfCards object, shuffle
the cards, then deal the 52 cards— the output should be similar

to Fig. 9.31.
22. 9.24 (Card Shuffling and Dealing) Modify the program you

developed in Exercise 9.23 so that it deals a five-card poker
hand. Then write functions to accomplish each of the following:

A. Determine whether the hand contains a pair.
B. Determine whether the hand contains two pairs.
C. Determine whether the hand contains three of a kind

(e.g., three jacks).

Fig. 9.31 Sample card-shuffling-and-dealing output.

D. Determine whether the hand contains four of a kind
(e.g., four aces).

E. Determine whether the hand contains a flush (i.e., all five
cards of the same suit).

F. Determine whether the hand contains a straight (i.e., five
cards of consecutive face values).

23. 9.25 (Project: Card Shuffling and Dealing) Use the functions
from Exercise 9.24 to write a program that deals two five-card
poker hands, evaluates each hand and determines which is the
better hand.

24. 9.26 (Project: Card Shuffling and Dealing) Modify the
program you developed in Exercise 9.25 so that it can simulate
the dealer. The dealer’s five-card hand is dealt “face down” so
the player cannot see it. The program should then evaluate the
dealer’s hand, and, based on the quality of the hand, the dealer
should draw one, two or three more cards to replace the
corresponding number of unneeded cards in the original hand.
The program should then reevaluate the dealer’s hand.

25. 9.27 (Project: Card Shuffling and Dealing) Modify the
program you developed in Exercise 9.26 so that it handles the
dealer’s hand, but the player is allowed to decide which cards
of the player’s hand to replace. The program should then
evaluate both hands and determine who wins. Now use this
new program to play 20 games against the computer. Who
wins more games, you or the computer? Have one of your
friends play 20 games against the computer. Who wins more
games? Based on the results of these games, make
appropriate modifications to refine your poker-playing program.
Play 20 more games. Does your modified program play a better
game?

Making a Difference
1. 9.28 (Project: Emergency Response Class) The North

American emergency response service, 9-1-1, connects callers
to a local Public Service Answering Point (PSAP). Traditionally,
the PSAP would ask the caller for identification information—
including the caller’s address, phone number and the nature of
the emergency, then dispatch the appropriate emergency
responders (such as the police, an ambulance or the fire
department). Enhanced 9-1-1 (or E9-1-1) uses computers and
databases to determine the caller’s physical address, directs
the call to the nearest PSAP, and displays the caller’s phone
number and address to the call taker. Wireless Enhanced 9-1-1
provides call takers with identification information for wireless
calls. Rolled out in two phases, the first phase required carriers
to provide the wireless phone number and the location of the
cell site or base station transmitting the call. The second phase
required carriers to provide the location of the caller (using
technologies such as GPS). To learn more about 9-1-1, visit
http://www.fcc.gov/pshs/services/911-services/Welcome.html

and http://people.howstuffworks.com/9-1-1.htm .
An important part of creating a class is determining the class’s
attributes (data members). For this class-design exercise,
research 9-1-1 services on the Internet. Then, design a class
called Emergency that might be used in an object-oriented 9-1-1
emergency response system. List the attributes that an object

http://www.fcc.gov/pshs/services/911-services/Welcome.html
http://people.howstuffworks.com/9-1-1.htm

of this class might use to represent the emergency. For
example, the class might include information on who reported
the emergency (including their phone number), the location of
the emergency, the time of the report, the nature of the
emergency, the type of response and the status of the
response. The class attributes should completely describe the
nature of the problem and what’s happening to resolve that
problem.

Answers to Self-Review Exercises
1. 9.1

A. dot (.), arrow (->).
B. private .
C. public .
D. Default memberwise assignment (performed by the

assignment operator).
E. friend .
F. initialized.
G. static .
H. this .
I. const .
J. default constructor.
K. non- static .
L. before.

M. :: scope resolution operator.

2. 9.2
A. Error: Destructors are not allowed to return values (or

even specify a return type) or take arguments.
Correction: Remove the return type void and the
parameter int from the declaration.

B. Error: Constructors are not allowed to return values.

Correction: Remove the return type int from the
declaration.

C. Error: The class definition for Example has two errors.
The first occurs in function getIncrementedData . The
function is declared const , but it modifies the object.
Correction: To correct the first error, remove the const
keyword from the definition of getIncrementedData . [Note:

It would also be appropriate to rename this member
function, as get functions are typically const member
functions.]
Error: The second error occurs in function getCount . This
function is declared static , so it’s not allowed to access
any non- static class member (i.e., data).
Correction: To correct the second error, remove the
output line from the getCount definition.

10 Operator Overloading; Class
string

Objectives
In this chapter you’ll:

Learn how operator overloading can help you craft valuable
classes.
Overload unary and binary operators.
Convert objects from one class to another.
Use overloaded operators and additional features of class string .
Create PhoneNumber , Date and Array classes that provide
overloaded operators.
Perform dynamic memory allocation with new and delete .
Understand how keyword explicit prevents a constructor from
being used for implicit conversions.
Experience a “light-bulb moment” when you’ll truly appreciate the
elegance and beauty of the class concept.

Outline
1. 10.1 Introduction
2. 10.2 Using the Overloaded Operators of Standard Library

Class string
3. 10.3 Fundamentals of Operator Overloading

A. 10.3.1 Operator Overloading Is Not Automatic
B. 10.3.2 Operators That You Do Not Have to Overload
C. 10.3.3 Operators That Cannot Be Overloaded
D. 10.3.4 Rules and Restrictions on Operator

Overloading

4. 10.4 Overloading Binary Operators
5. 10.5 Overloading the Binary Stream Insertion and Stream

Extraction Operators
6. 10.6 Overloading Unary Operators
7. 10.7 Overloading the Increment and Decrement Operators
8. 10.8 Case Study: A Date Class
9. 10.9 Dynamic Memory Management

10. 10.10 Case Study: Array Class
A. 10.10.1 Using the Array Class
B. 10.10.2 Array Class Definition

11. 10.11 Operators as Member vs. Non-Member Functions
12. 10.12 Converting Between Types

13. 10.13 explicit Constructors and Conversion Operators
14. 10.14 Overloading the Function Call Operator ()
15. 10.15 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

10.1 Introduction
This chapter shows how to enable C++’s operators to work with class
objects—a process called operator overloading. One example of an
overloaded operator built into C++ is << , which is used both as the
stream insertion operator and as the bitwise left-shift operator (which
is discussed in Chapter 22). Similarly, >> also is overloaded; it’s used
both as

the stream extraction operator—defined via operator overloading in
the C++ Standard Library—and
the bitwise right-shift operator—defined as part of the C++
language.

You’ve been using overloaded operators since early in the book.
Various overloads are built into the base C++ language itself. For
example, C++ overloads the addition operator (+) and the subtraction
operator (-) to perform differently, depending on their context in
integer, floating-point and pointer arithmetic with data of fundamental
types.

You can overload most operators to be used with class objects—the
compiler generates the appropriate code based on the types of the
operands. The jobs performed by overloaded operators also can be

performed by explicit function calls, but operator notation is often more
natural.

Our examples start by demonstrating the C++ Standard Library’s class
string , which has lots of overloaded operators. This enables you to
see overloaded operators in use before implementing your own. Next,
we create a PhoneNumber class that enables us to use overloaded
operators >> and << to conveniently input and output fully formatted,
10-digit phone numbers, such as (555) 555-5555. We then present a
Date class that overloads the prefix and postfix increment (++)
operators to add one day to the value of a Date . The class also
overloads the += operator to allow a program to increment a Date by
the number of days specified on the right side of the operator.

Next, we present a capstone case study—an Array class that uses
overloaded operators and other capabilities to solve various problems
with pointer-based arrays. This is one of the most important case
studies in the book. Many of our students have indicated that the
Array case study is their “light bulb moment,” helping them truly
understand what classes and object technology are all about. As part
of this class, we’ll overload the stream insertion, stream extraction,
assignment, equality, relational and subscript operators. Once you
master this Array class, you’ll indeed understand the essence of
object technology— crafting, using and reusing valuable classes.

The chapter concludes with discussions of how you can convert
between types (including class types), problems with certain implicit

conversions and how to prevent those problems.

10.2 Using the Overloaded
Operators of Standard Library
Class string
Figure 10.1 demonstrates many of class string ’s overloaded
operators and several other useful member functions, including empty ,
substr and at . Function empty determines whether a string is empty,
function substr (for “substring”) returns a string that’s a portion of an
existing string and function at returns the character at a specific
index in a string (after checking that the index is in range). Chapter
21 presents class string in detail.

Fig. 10.1 Standard Library string class test program.

Creating string Objects and Displaying
Them with cout and Operator <<
Lines 8–10 create three string objects:

s1 is initialized with the literal "happy" ,
s2 is initialized with the literal " birthday" and
s3 uses the default string constructor to create an empty string .

Lines 13–14 output these three objects, using cout and operator << ,
which the string class designers overloaded to handle string
objects.

Comparing string Objects with the
Equality and Relational Operators
Lines 15–21 show the results of comparing s2 to s1 by using class
string ’s overloaded equality and relational operators, which perform
lexicographical comparisons (that is, like a dictionary ordering) using
the numerical values of the characters in each string (see Appendix
B, ASCII Character Set).

Normally, when you output a condition’s value 0 is displayed for false

or 1 for true. However, we used the stream manipulator boolalpha
(line 15) to set the output stream to display condition values as the
strings "false" and "true" .

string Member Function empty

Line 26 uses string member function empty , which returns true if the
string is empty; otherwise, it returns false . The object s3 was
initialized with the default constructor, so it is indeed empty.

string Copy Assignment Operator
Line 28 demonstrates class string ’s overloaded copy assignment
operator by assigning s1 to s3 . Line 29 outputs s3 to demonstrate
that the assignment worked correctly.

string Concatenation and C++14
string -object Literals
Line 34 demonstrates class string ’s overloaded += operator for string

concatenation assignment. In this case, the contents of s2 are
appended to s1 , thus modifying its value. Then line 35 outputs the
resulting string that’s stored in s1 . Line 39 demonstrates that you
also may append a C-string literal to a string object by using operator
+= . Line 40 displays the result.

Similarly, line 44 concatenates s1 with a C++14 string-object literal
which is indicated by placing the letter s immediately following the
closing " of a string literal, as in

14

", have a great day!"s

The preceding literal actually results in a call to a C++ Standard
Library function that returns a string object containing the literal’s
characters. Line 45 displays the new value of s1 .

string Member Function substr
Class string provides member function substr (lines 50 and 54) to
return a string containing a portion of the string object on which the
function is called. The call in line 50 obtains a 14-character substring
(specified by the second argument) of s1 starting at position 0
(specified by the first argument). The call to substr in line 54 obtains a
substring starting from position 15 of s1 . When the second argument
is not specified, substr returns the remainder of the string on which
it’s called.

string Copy Constructor
Line 57 creates string object s4 and initializes it with a copy of s1 .
This calls class string ’s copy constructor, which copies the contents
of s1 into the new object s4 . You’ll see how to define a custom copy
constructor for your own class in Section 10.10.

Testing Self-Assignment with the string
Copy Assignment Operator
Line 62 uses class string ’s overloaded copy assignment (=) operator
to demonstrate that it handles self-assignment properly—we’ll see
when we build class Array later in the chapter that self-assignment
can be dangerous for objects that manage their own memory, and
we’ll show how to deal with the issues. Line 63 confirms that s4 still
has the same value after the self-assignment.

string Class [] Operator
Lines 66–67 use class string ’s overloaded [] operator to create
lvalues that enable new characters to replace existing characters in
s1 . Lines 68–69 output the new value of s1 . Class string ’s

overloaded [] operator does not perform any bounds checking.

Therefore, you must ensure that operations using class string ’s

overloaded [] operator do not accidentally manipulate elements

outside the bounds of the string . Class string does provide bounds
checking in its member function at , which throws an exception if its
argument is an invalid subscript. If the subscript is valid, function at
returns the character at the specified location as a modifiable lvalue or
a nonmodifiable lvalue (e.g., a const reference), depending on the
context in which the call appears. For example:

If at is called on a non- const string object, the function returns a
modifiable lvalue, which could be used on the left of an assignment
(=) operator to assign a new value to that location in the string .
If at is called on a const string object, the function returns a
nonmodifiable lvalue that can be used to obtain, but not modify, the
value at that location in the string .

Line 74 demonstrates a call to function at with an invalid subscript;
this throws an out_of_range exception.

10.3 Fundamentals of Operator
Overloading
As you saw in Fig. 10.1, overloaded operators provide a concise
notation for manipulating string objects. You can use operators with
your own user-defined types as well. Although C++ does not allow
new operators to be created, it does allow most existing operators to
be overloaded so that, when they’re used with objects, they have
meaning appropriate to those objects.

10.3.1 Operator Overloading Is Not
Automatic

You must write operator-overloading functions to perform the desired
operations. An operator is overloaded by writing a non- static
member function definition or non-member function definition as you
normally would, except that the function name starts with the keyword
operator followed by the symbol for the operator being overloaded.
For example, the function name operator+ would be used to overload
the addition operator (+) for use with objects of a particular user-
defined type. When operators are overloaded as member functions,

they must be non- static , because they must be called on an object of

the class and operate on that object.

10.3.2 Operators That You Do Not
Have to Overload

To use an operator on an object of a class, you must define
overloaded operator functions for that class—with three exceptions:

The assignment operator (=) may be used with most classes to
perform memberwise assignment of the data members—each data
member is assigned from the assignment’s “source” object (on the
right) to the “target” object (on the left). Memberwise assignment is
dangerous for classes with pointer members, so we’ll explicitly
overload the assignment operator for such classes. [Note: This is
also true of the C++11 move assignment operator, which we
discuss in Chapter 24.]
The address (&) operator returns a pointer to the object; this
operator also can be overloaded.
The comma operator evaluates the expression to its left then the
expression to its right, and returns the value of the latter
expression. This operator also can be overloaded.

10.3.3 Operators That Cannot Be

Overloaded

Most of C++’s operators can be overloaded. Figure 10.2 shows the
operators that cannot be overloaded.1

1. Although it’s possible to overload the address (&), comma (,), &&
and || operators, you should avoid doing so to avoid subtle errors.
For insights on this, see CERT guideline DCL10-CPP.

Fig. 10.2 Operators that cannot be overloaded.

Operators that cannot be overloaded

. .* (pointer to member) :: ?:

10.3.4 Rules and Restrictions on
Operator Overloading

As you prepare to overload operators for your own classes, there are
several rules and restrictions you should keep in mind:

An operator’s precedence cannot be changed by overloading.
Parentheses can be used to force the order of evaluation of
overloaded operators in an expression.

An operator’s associativity cannot be changed by overloading—if
an operator normally associates from left to right, then so do all of
its overloaded versions.
An operator’s “arity” (that is, the number of operands an operator
takes) cannot be changed—overloaded unary operators remain
unary operators; overloaded binary operators remain binary
operators. C++’s only ternary operator, ?: , cannot be overloaded.
Operators & , * , + and - all have both unary and binary versions
that can be separately overloaded.
Only existing operators can be overloaded—you cannot create
new ones.
You cannot overload operators to change how an operator works
on fundamental-type values. For example, you cannot make the +
operator subtract two ints. Operator overloading works only with
objects of user-defined types or with a mixture of an object of a
user-defined type and an object of a fundamental type.
Related operators, like + and +=, must be overloaded separately.
When overloading () , [] , -> or any of the assignment operators,
the operator overloading function must be declared as a class
member. For all other overloadable operators, the operator
overloading functions can be member functions or non-member
functions.

 Software Engineering Observation
10.1

Overload operators for class types so they work as closely as possible
to the way built-in operators work on fundamental types.

10.4 Overloading Binary Operators
A binary operator can be overloaded as a non- static member
function with one parameter or as a non-member function with two
parameters (one of those parameters must be either a class object or
a reference to a class object). A non-member operator function often
is declared as friend of a class for performance reasons.

Binary Overloaded Operators as Member
Functions
Consider using < to compare two objects of a String class that you
define. When overloading binary operator < as a non- static member
function, if y and z are String -class objects, then y < z is treated by
the compiler as if y.operator<(z) had been written, invoking the
operator< member function with one argument declared below:

class String {

public:

 bool operator<(const String&) const;

 ...

};

Overloaded operator functions for binary operators can be member
functions only when the left operand is an object of the class in which
the function is a member.

Binary Overloaded Operators as Non-
Member Functions
As a non-member function, binary operator < must take two

arguments—one of which must be an object (or a reference to an
object) of the class that the overloaded operator is associated with. If
y and z are String -class objects or references to String -class
objects, then y < z is treated as if the call operator<(y, z) had been
written in the program, invoking function operator< , which is declared
as follows:

bool operator<(const String&, const String&);

10.5 Overloading the Binary
Stream Insertion and Stream
Extraction Operators
You can input and output fundamental-type data using the stream
extraction operator >> and the stream insertion operator << ,
respectively. The C++ class libraries overload these binary operators
for each fundamental type, including pointers and char * strings. You
can also overload these operators to perform input and output for your
own types. The program of Figs. 10.3–10.5 overloads these operators
to input PhoneNumber objects in the format

(555) 555-5555

and to output them in the format

Area code: 555

Exchange: 555

Line: 5555

(555) 555-5555

The program assumes telephone numbers are input correctly.

Fig. 10.3 PhoneNumber class with overloaded stream insertion and
stream extraction operators as friend functions.

Fig. 10.4 Overloaded stream insertion and stream extraction
operators for class PhoneNumber .

Fig. 10.5 Overloaded stream insertion and stream extraction
operators.

Overloading the Stream Extraction (>>)
Operator
The stream extraction operator function operator>> (Fig. 10.4, lines
20–28) takes the istream reference input and the PhoneNumber
reference number as arguments and returns an istream reference. The

function inputs phone numbers of the form (555) 555-5555 into objects
of class PhoneNumber . When the compiler sees the expression

cin >> phone

in line 15 of Fig. 10.5, the compiler generates the non-member
function call

operator>>(cin, phone);

When this call executes, reference parameter input (Fig. 10.4, line
20) becomes an alias for cin and reference parameter number
becomes an alias for phone .

The operator function reads as strings the three parts of the
telephone number into the areaCode (line 22), exchange (line 24) and
line (line 26) data members of the PhoneNumber object referenced by
parameter number—the function is a friend of the class, so it can
access a PhoneNumber ’s private members. Stream manipulator setw
limits the number of characters read into each string . When used

with cin and strings, setw restricts the number of characters read to

the number of characters specified by its argument (i.e., setw(3)

allows three characters to be read). The parentheses, space and dash
characters are skipped by calling istream member function ignore
(Fig. 10.4, lines 21, 23 and 25), which discards the specified number
of characters in the input stream (one character by default).

Function operator>> returns istream reference input (the alias for
cin). This enables input operations on PhoneNumber objects to be
cascaded with input operations on other PhoneNumber objects or other
data types. For example, a program can input two PhoneNumber objects
in one statement as follows:

cin >> phone1 >> phone2;

First, the expression cin >> phone1 executes by making the non-
member function call

operator>>(cin, phone1);

This call then returns a reference to cin as the value of cin >>
phone1 , so the remaining portion of the expression is interpreted as
cin >> phone2 . This executes by making the non-member function call

operator>>(cin, phone2);

 Good Programming Practice 10.1

Overloaded operators should mimic the functionality of their built-in
counterparts—e.g., the + operator should perform addition, not

subtraction. Avoid excessive or inconsistent use of operator
overloading, as this can make a program cryptic and difficult to read.

Overloading the Stream Insertion (<<)
Operator
The stream insertion operator function (Fig. 10.4, lines 10–16) takes
an ostream reference (output) and a const PhoneNumber reference
(number) as arguments and returns an ostream reference. Function
operator<< displays objects of type PhoneNumber . When the compiler
sees the expression

cout << phone

in line 21 of Fig. 10.5, the compiler generates the non-member
function call

operator<<(cout, phone);

Function operator<< displays the parts of the telephone number as
strings, because they’re stored as string objects. To prove that the
stream extraction operator read the individual pieces of a PhoneNumber
properly, function operator<< displays each data member separately,
then displays a properly formatted phone number.

Overloaded Operators as Non-Member
friend Functions
The functions operator>> and operator<< are declared in PhoneNumber
as non-member, friend functions (Fig. 10.3, lines 10–11). They’re
non-member functions because the object of class PhoneNumber must
be the operator’s right operand. If these were to be PhoneNumber
member functions, the following awkward statements would have to
be used to output and input a PhoneNumber , respectively:

phone << cout;

phone >> cin;

Such statements would be confusing to most C++ programmers, who
are familiar with cout and cin appearing as the left operands of these
operators. Overloaded operator functions for binary operators can be
member functions only when the left operand is an object of the class
in which the function is a member.

Overloaded input and output operators are declared as friends if they

need to access non- public class members directly for performance or

because the class may not offer appropriate get functions. Also, the
PhoneNumber reference in function operator<< ’s parameter list (Fig.
10.4, line 10) is const , because the function simply outputs a
PhoneNumber , and the PhoneNumber reference in function operator>> ’s
parameter list (line 20) is non- const , because the function must
modify the PhoneNumber object to store the telephone number.

 Software Engineering Observation 10.2

New input/output capabilities for user-defined types are added to C++
without modifying standard input/output library classes. This is another
example of C++’s extensibility.

The overloaded stream insertion operator (<<) is used in an
expression in which the left operand has type ostream& , as in cout <<

classObject . To use the operator in this manner where the right

operand is an object of a user-defined class, it must be overloaded as
a non-member function. To be a member function, operator << would
have to be a member of class ostream . This is not possible for user-

defined classes, since we are not allowed to modify C++ Standard
Library classes. Similarly, the overloaded stream extraction operator
(>>) is used in an expression in which the left operand has the type
istream& , as in cin >> classObject , and the right operand is an object

of a user-defined class, so it, too, must be a non-member function.
Also, each of these overloaded operator functions may require access
to the private data members of the class object being output or input,
so these overloaded operator functions can be made friend functions

of the class for performance reasons.

10.6 Overloading Unary Operators
A unary operator for a class can be overloaded as a non- static
member function with no arguments or as a non-member function with
one argument that must be an object (or a reference to an object) of
the class. Member functions that implement overloaded operators
must be non- static so that they can access the non- static data in
each object of the class.

Unary Overloaded Operators as Member
Functions
Consider overloading unary operator ! to test whether an object of
your own String class is empty. Such a function would return a bool
result. When a unary operator such as ! is overloaded as a member
function with no arguments and the compiler sees the expression !s
(in which s is an object of class String), the compiler generates the
function call s.operator!() . The operand s is the String object for
which the String class member function operator! is being invoked.
The function is declared as follows:

class String {

public:

 bool operator!() const;

 ...

};

Unary Overloaded Operators as Non-
Member Functions
A unary operator such as ! may be overloaded as a non-member

function with one parameter. If s is a String class object (or a
reference to a String class object), then !s is treated as if the call
operator!(s) had been written, invoking the non-member operator!
function that’s declared as follows:

bool operator!(const String&);

10.7 Overloading the Increment
and Decrement Operators
The prefix and postfix versions of the increment and decrement
operators can all be overloaded. We’ll see how the compiler
distinguishes between the prefix version and the postfix version of an
increment or decrement operator.

To overload the prefix and postfix increment operators, each
overloaded operator function must have a distinct signature, so that
the compiler will be able to determine which version of ++ is intended.

The prefix versions are overloaded exactly as any other prefix unary
operator would be. Everything stated in this section for overloading
prefix and postfix increment operators applies to overloading
predecrement and postdecrement operators. In the next section, we
examine a Date class with overloaded prefix and postfix increment
operators.

Overloading the Prefix Increment Operator
Suppose that we want to add 1 to the day in a Date object named d1 .
When the compiler sees the preincrementing expression ++d1 , if the
overloaded operator is defined as a member function, the compiler
generates the member-function call

d1.operator++()

The prototype for this operator member function would be

Date& operator++();

If the prefix increment operator is implemented as a non-member
function, then, when the compiler sees the expression ++d1 , the
compiler generates the function call

operator++(d1)

The prototype for this non-member operator function would be
declared as

Date& operator++(Date&);

Overloading the Postfix Increment

Operator
Overloading the postfix increment operator presents a challenge,
because the compiler must be able to distinguish between the
signatures of the overloaded prefix and postfix increment operator
functions. The convention that has been adopted is that, when the
compiler sees the postincrementing expression d1++ , it generates the
member-function call

d1.operator++(0)

The prototype for this operator member function is

Date operator++(int)

The argument 0 is strictly a dummy value that enables the compiler to
distinguish between the prefix and postfix increment operator
functions. The same syntax is used to differentiate between the prefix
and postfix decrement operator functions.

If the postfix increment is implemented as a non-member function,
then, when the compiler sees the expression d1++ , the compiler
generates the function call

operator++(d1, 0)

The prototype for this function would be

Date operator++(Date&, int);

Once again, the 0 argument is used by the compiler to distinguish
between the prefix and postfix increment operators implemented as
non-member functions. Note that the postfix increment operator
returns Date objects by value, whereas the prefix increment operator
returns Date objects by reference—the postfix increment operator
typically returns a temporary object that contains the original value of
the object before the increment occurred. C++ treats such objects as
rvalues, which cannot be used on the left side of an assignment. The
prefix increment operator returns the actual incremented object with its
new value. Such an object can be used as an lvalue in a continuing
expression.

 Performance Tip 10.1

The extra object that’s created by the postfix increment (or decrement)
operator can result in a performance problem—especially when the

operator is used in a loop. For this reason, you should prefer the
overloaded prefix increment and decrement operators.

10.8 Case Study: A Date Class
The program of Figs. 10.6–10.8 demonstrates a Date class, which
uses overloaded prefix and postfix increment operators to add 1 to the
day in a Date object, while causing appropriate increments to the
month and year if necessary. The Date header (Fig. 10.6) specifies
that Date ’s public interface includes an overloaded stream insertion
operator (line 10), a default constructor (line 12), a setDate function
(line 13), an overloaded prefix increment operator (line 14), an
overloaded postfix increment operator (line 15), an overloaded +=
addition assignment operator (line 16), a function to test for leap years
(line 17) and a function to determine whether a day is the last day of
the month (line 18).

Fig. 10.6 Date class definition with overloaded increment
operators.

Fig. 10.7 Date class member- and friend -function definitions.

Fig. 10.8 Date class test program.

Function main (Fig. 10.8) creates two Date objects (lines 8–9)— d1 is
initialized to December 27, 2010 and d2 is initialized by default to
January 1, 1900. The Date constructor (defined in Fig. 10.7, lines 13–
15) calls setDate (defined in Fig. 10.7, lines 18–42) to validate the
month, day and year specified. Invalid values for the month, day or
year result in invalid_argument exceptions.

Line 11 of main (Fig. 10.8) outputs each Date object, using the
overloaded stream insertion operator (defined in Fig. 10.7, lines 105–
111). Line 12 of main uses the overloaded operator += (defined in Fig.
10.7, lines 61–67) to add seven days to d1 . Line 14 in Fig. 10.8 uses
function setDate to set d2 to February 28, 2008, which is a leap year.
Then, line 16 preincrements d2 to show that the date increments
properly to February 29. Next, line 18 creates a Date object, d3 , which
is initialized with the date July 13, 2010. Then line 22 increments d3
by 1 with the overloaded prefix increment operator. Lines 20–23
output d3 before and after the preincrement operation to confirm that it
worked correctly. Finally, line 27 increments d3 with the overloaded
postfix increment operator. Lines 25–28 output d3 before and after the
postincrement operation to confirm that it worked correctly.

Date Class Prefix Increment Operator
Overloading the prefix increment operator is straightforward. The
prefix increment operator (defined in Fig. 10.7, lines 45–48) calls utility
function helpIncrement (defined in lines 86–102) to increment the date.

This function deals with “wraparounds” or “carries” that occur when we
increment past a month’s last day, which requires incrementing the
month. If the month is already 12, then the year must also be
incremented and the month must be set to 1. Function helpIncrement
uses function endOfMonth to determine whether the end of a month has

been reached and increment the day correctly.

The overloaded prefix increment operator returns a reference to the
current Date object (i.e., the one that was just incremented). This
occurs because the current object, *this , is returned as a Date& . This
enables a preincremented Date object to be used as an lvalue, which
is how the built-in prefix increment operator works for fundamental
types.

Date Class Postfix Increment Operator
Overloading the postfix increment operator (defined in Fig. 10.7, lines
52–58) is trickier. To emulate the effect of the postincrement, we must
return an unincremented copy of the Date object. For example, if int
variable x has the value 7 , the statement

cout << x++ << endl;

outputs the original value of x . We’d like our postfix increment
operator to operate the same way on a Date object. On entry to

operator++ , we save the current object (*this) in temp (line 53). Next,
we call helpIncrement to increment the current Date object. Then, line
57 returns temp—the unincremented copy of the original Date object.
This function cannot return a reference to the local Date object temp ,
because a local variable is destroyed when the function in which it’s
declared exits. Thus, declaring the return type to this function as Date&
would return a reference to an object that no longer exists.

10.9 Dynamic Memory
Management
You can control the allocation and deallocation of memory in a
program for objects and for arrays of any built-in or user-defined type.
This is known as dynamic memory management and is performed
with the operators new and delete . We’ll use these capabilities to
implement our Array class in the next section.

You can use the new operator to dynamically allocate (i.e., reserve)
the exact amount of memory required to hold an object or built-in array
at execution time. The object or built-in array is created in the free
store (also called the heap)—a region of memory assigned to each
program for storing dynamically allocated objects.2 Once memory is
allocated, you can access it via the pointer returned by operator new .
When you no longer need the memory, you can return it to the free
store by using the delete operator to deallocate (i.e., release) the
memory, which can then be reused by future new operations.3

2. Operator new could fail to obtain the needed memory, in which case
a bad_alloc exception would occur. Chapter 17 shows how to deal
with new failures.

3. Operators new and delete can be overloaded, but this is beyond
the scope of the book. If you do overload new , then you should
overload delete in the same scope to avoid subtle dynamic memory
management errors.

Obtaining Dynamic Memory with new
Consider the following statement:

Time* timePtr{new Time};

The new operator allocates storage of the proper size for an object of
type Time , calls a constructor to initialize the object and returns a
pointer to the type specified to the right of the new operator (i.e., a
Time *). In the preceding statement, class Time ’s default constructor
is called, because we did not supply arguments to initialize the Time
object. If new is unable to find sufficient space in memory for the
object, it indicates that an error occurred by throwing an exception.

Releasing Dynamic Memory with delete
To destroy a dynamically allocated object and free the space for the
object, use the delete operator as follows:

delete timePtr;

This statement first calls the destructor for the object to which timePtr
points, then deallocates the memory associated with the object,
returning the memory to the free store.

 Common Programming Error 10.1

Not releasing dynamically allocated memory when it’s no longer
needed can cause the system to run out of memory prematurely. This
is sometimes called a “memory leak.”

 Error-Prevention Tip 10.1

Do not delete memory that was not allocated by new. Doing so results
in undefined behavior.

 Error-Prevention Tip 10.2

After you delete a block of dynamically allocated memory, be sure not
to delete the same block again. One way to guard against this is to
immediately set the pointer to nullptr . Deleting a nullptr has no

effect.

Initializing Dynamic Memory
You can provide an initializer for a newly created fundamental-type
variable, as in

double* ptr{new double{3.14159}};

which initializes a newly created double to 3.14159 and assigns the
resulting pointer to ptr . The same syntax can be used to specify
arguments to an object’s constructor, as in

Time* timePtr{new Time{12, 45, 0}};

which initializes a new Time object to 12:45 PM and assigns its pointer
to timePtr .

Dynamically Allocating Built-In Arrays with

new[]

You can also use the new operator to allocate built-in arrays
dynamically. For example, a 10-element integer array can be allocated
and assigned to gradesArray as follows:

int* gradesArray{new int[10]{}};

which declares int pointer gradesArray and assigns to it a pointer to
the first element of a dynamically allocated 10-element array of ints.
The list-initializer braces following new int[10]—which are allowed as
of C++11—initialize the array’s elements, setting fundamental-type
elements to 0 , bools to false and pointers to nullptr . If the elements
are class objects, they’re initialized by their default constructors. The
list-initializer braces may also contain a comma-separated list of
initializers for the array’s elements.

11

The size of a built-in array created at compile time must be specified
using an integral constant expression; however, a dynamically
allocated array’s size can be specified using any nonnegative integral
expression that can be evaluated at execution time.

Releasing Dynamically Allocated Built-In
Arrays with delete[]
To deallocate the memory to which gradesArray points, use the
statement

delete[] gradesArray;

If the pointer points to a built-in array of objects, the statement first
calls the destructor for every object in the array, then deallocates the
memory. If the preceding statement did not include the square
brackets ([]) and gradesArray pointed to a built-in array of objects, the
result is undefined—some compilers call the destructor only for the
first object in the array. Using delete or delete[] on a nullptr has no
effect.

 Common Programming Error 10.2

Using delete instead of delete[] for built-in arrays of objects can lead

to runtime logic errors. To ensure that every object in the array
receives a destructor call, always delete memory allocated as an array
with operator delete[] . Similarly, always delete memory allocated as

an individual element with operator delete—the result of deleting a

single object with operator delete[] is undefined.

C++11: Managing Dynamically Allocated
Memory with unique_ptr
C++11’s unique_ptr is a “smart pointer” for managing dynamically
allocated memory. When a unique_ptr goes out of scope, its
destructor automatically returns the managed memory to the free
store. In Chapter 17, we introduce unique_ptr and show how to use it
to manage dynamically allocated objects or a dynamically allocated
built-in arrays.

11

10.10 Case Study: Array Class
We discussed built-in arrays in Chapter 8. Pointer-based arrays have
many problems, including:

A program can easily “walk off” either end of a built-in array,
because C++ does not check whether subscripts fall outside the
range of the array (though you can still do this explicitly).
Built-in arrays of size n must number their elements 0, …, n – 1;
alternate subscript ranges are not allowed.
An entire built-in array cannot be input or output at once; each
element must be read or written individually (unless the array is a
null-terminated C string).
Two built-in arrays cannot be meaningfully compared with equality
or relational operators (because the array names are simply
pointers to where the arrays begin in memory and two arrays will
always be at different memory locations).
When a built-in array is passed to a general-purpose function
designed to handle arrays of any size, the array’s size must be
passed as an additional argument.
One built-in array cannot be assigned to another with the
assignment operator(s).

Class development is an interesting, creative and intellectually
challenging activity— always with the goal of crafting valuable classes.
With C++, you can implement more robust array capabilities via

classes and operator overloading as has been done with class
templates array and vector in the C++ Standard Library. In this

section, we’ll develop our own custom array class that’s preferable to
built-in arrays. When we refer to “arrays” in this case study, we mean
built-in arrays.

In this example, we create a powerful Array class that performs range
checking to ensure that subscripts remain within the bounds of the
Array . The class allows one Array object to be assigned to another
with the assignment operator. Array objects know their size, so the
size does not need to be passed separately to functions that receive
Array parameters. Entire Arrays can be input or output with the
stream extraction and stream insertion operators, respectively. You
can compare Arrays with the equality operators == and != .

As a new C++ programmer, you’re likely to encounter C++ legacy
code that uses older C++ features and techniques. Though current
C++ compilers fully support using smart pointers to simplify dynamic
memory management, we explicitly manage class Array ’s dynamic
memory using built-in pointers and operators new and delete to help
you understand, maintain and modify the code you’ll see in industry.

10.10.1 Using the Array Class

The program of Figs. 10.9–10.11 demonstrates class Array and its
overloaded operators. First we walk through main (Fig. 10.9) and the
program’s output, then we consider the class definition (Fig. 10.10)
and each of its member-function definitions (Fig. 10.11).

Fig. 10.9 Array class test program.

Creating Array s, Outputting Their Size
and Displaying Their Contents
The program begins by instantiating two objects of class Array
— integers1 (Fig. 10.9, line 9) with seven elements, and integers2
(line 10) with the default Array size—10 elements (specified by the

Array default constructor’s prototype in Fig. 10.10, line 13). Lines 13–
14 in Fig. 10.9 use member function getSize to determine the size of
integers1 , then output integers1 ’s contents, using the Array

overloaded stream insertion operator. The sample output confirms that
the Array elements were set correctly to zeros by the constructor.
Next, lines 17–18 output the size of Array integers2 , then output
integers2 ’s contents, using the Array overloaded stream insertion

operator.

Using the Overloaded Stream Extraction
Operator to Fill an Array
Line 21 prompts the user to input 17 integers. Line 22 uses the Array
overloaded stream extraction operator to read the first seven values
into integers1 and the remaining 10 values into integers2 . Lines 24–
26 output the two arrays with the overloaded Array stream insertion
operator to confirm that the input was performed correctly.

Using the Overloaded Inequality Operator
Line 31 tests the overloaded inequality operator by evaluating the
condition

integers1! = integers2

The program output shows that the Arrays are not equal.

Initializing a New Array with a Copy of an
Existing Array ’s Contents
Line 37 instantiates a third Array called integers3 and initializes it with
a copy of Array integers1 . This invokes class Array ’s copy
constructor to copy the elements of integers1 into integers3 . We
discuss the details of the copy constructor shortly. The copy
constructor can also be invoked by writing line 37 as follows:

Array integers3 = integers1;

The equal sign in the preceding statement is not the assignment
operator. When an equal sign appears in the declaration of an object,
it invokes a constructor for that object. This form can be used to pass
only a single argument to a constructor—specifically, the value on the
right side of the = symbol.

Lines 39–40 output the size of integers3 , then output integers3 ’s
contents, using the Array overloaded stream insertion operator to
confirm that integers3 ’s elements were set correctly by the copy
constructor.

Using the Overloaded Assignment
Operator
Line 44 tests the overloaded assignment operator (=) by assigning
integers2 to integers1 . Line 46 display both Array objects’ contents
to confirm that the assignment was successful. Array integers1
originally held 7 integers, but was resized to hold a copy of the 10
elements in integers2 . As we’ll see, the overloaded assignment
operator performs this resizing operation in a manner that’s
transparent to the client code.

Using the Overloaded Equality Operator
Line 51 uses the overloaded equality operator (==) to confirm that
objects integers1 and integers2 are indeed identical after the
assignment in line 44.

Using the Overloaded Subscript Operator
Line 56 uses the overloaded subscript operator to refer to
integers1[5]—an in-range element of integers1 . This subscripted
name is used as an rvalue to print the value stored in integers1[5] .
Line 60 uses integers1[5] as a modifiable lvalue on the left side of an
assignment statement to assign a new value, 1000 , to element 5 of
integers1 . We’ll see that operator[] returns a reference to use as the

modifiable lvalue after the operator confirms that 5 is a valid subscript
for integers1 .

Line 66 attempts to assign the value 1000 to integers1[15]—an out-

of-range element. In this example, operator[] determines that the
subscript is out of range and throws an out_of_range exception.

Interestingly, the array subscript operator [] is not restricted for use
only with arrays; it also can be used, for example, to select elements
from other kinds of container classes, such as strings and
dictionaries. Also, when overloaded operator[] functions are defined,
subscripts no longer have to be integers—characters, strings or even
objects of user-defined classes also could be used. In Chapter 15, we
discuss the Standard Library map class that allows string subscripts.

10.10.2 Array Class Definition

Now that we’ve seen how this program operates, let’s walk through
the class header (Fig. 10.10). As we refer to each member function in
the header, we discuss that function’s implementation in Fig. 10.11. In
Fig. 10.10, lines 32–33 represent the private data members of class
Array . Each Array object consists of a size member indicating the
number of elements in the Array and an int pointer— ptr—that
points to the dynamically allocated pointer-based array of integers
managed by the Array object.

Fig. 10.10 Array class definition with overloaded operators.

Fig. 10.11 Array class member- and friend -function definitions.

Overloading the Stream Insertion and
Stream Extraction Operators as friend s
Lines 9–10 of Fig. 10.10 declare the overloaded stream insertion
operator and the overloaded stream extraction operator as friends of
class Array . When the compiler sees an expression like cout <<
arrayObject , it invokes non-member function operator<< with the call

operator<<(cout, arrayObject)

When the compiler sees an expression like cin >> arrayObject , it
invokes non-member function operator>> with the call

operator>>(cin, arrayObject)

Again, these stream insertion and stream extraction operator functions
cannot be members of class Array , because the Array object is
always mentioned on the right side of the stream insertion or stream
extraction operator.

Function operator<< (defined in Fig. 10.11, lines 104–112) prints the
number of elements indicated by size from the integer array to which
ptr points. Function operator>> (defined in Fig. 10.11, lines 95–101)
inputs directly into the array to which ptr points. Each of these
operator functions returns an appropriate reference to enable
cascaded output or input statements, respectively. These functions
have access to an Array ’s private data because they’re declared as
friends of class Array . We could have used class Array ’s getSize
and operator[] functions in the bodies of operator<< and operator>> ,
in which case these operator functions would not need to be friends
of class Array .

Range-Based for Does Not Work with
Dynamically Allocated Built-In Arrays
You might be tempted to replace the counter-controlled for statement
in lines 96–98 (Fig. 10.11) and many of the other for statements in
class Array ’s implementation with the C++11 range-based for
statement. Unfortunately, range-based for does not work with
dynamically allocated built-in arrays.

11

Array Default Constructor
Line 13 of Fig. 10.10 declares the class’s default constructor and
specifies a default size of 10 elements. When the compiler sees a
declaration like line 10 in Fig. 10.9, it invokes class Array ’s default
constructor to set the size of the Array to 10 elements. The default
constructor (defined in Fig. 10.11, lines 11–14) validates and assigns
the argument to data member size , uses new to obtain the memory
for the internal pointer-based representation of this Array and assigns
the pointer returned by new to data member ptr . The initializer for ptr

new int[size]{}

uses an empty initializer list to set all the elements of the dynamically
allocated built-in array to 0.

Array Copy Constructor
Line 14 of Fig. 10.10 declares a copy constructor (defined in Fig.
10.11, lines 18–23) that initializes an Array by making a copy of an
existing Array object. Such copying must be done carefully to avoid

the pitfall of leaving both Array objects pointing to the same

dynamically allocated memory. This is exactly the problem that would
occur with default memberwise copying, if the compiler is allowed to
define a default copy constructor for this class. Copy constructors are
invoked whenever a copy of an object is needed, such as in

passing an object by value to a function,
returning an object by value from a function or
initializing an object with a copy of another object of the same
class.

The copy constructor is called in a declaration when an object of class
Array is instantiated and initialized with another object of class Array ,
as in the declaration in line 37 of Fig. 10.9.

The copy constructor for Array copies the size of the initializer Array
into data member size , uses new to obtain the memory for the internal
pointer-based representation of this Array and assigns the pointer
returned by new to data member ptr . Then the copy constructor uses
a for statement to copy all the elements of the initializer Array into
the new Array object. An object of a class can look at the private

data of any other object of that class (using a handle that indicates
which object to access).

 Software Engineering Observation 10.3

The argument to a copy constructor should be a const reference to

allow a const object to be copied.

 Common Programming Error 10.3

If the copy constructor simply copied the pointer in the source object
to the target object’s pointer, then both would point to the same
dynamically allocated memory. The first destructor to execute would
delete the dynamically allocated memory, and the other object’s ptr
would point to memory that’s no longer allocated, a situation called a
dangling pointer—this would likely result in a serious runtime error
(such as early program termination) when the pointer was used.

Array Destructor
Line 15 of Fig. 10.10 declares the class’s destructor (defined in Fig.
10.11, lines 26–28). The destructor is invoked when an object of class
Array goes out of scope. The destructor uses delete[] to release the
memory allocated dynamically by new in the constructor.

 Error-Prevention Tip 10.3

If after deleting dynamically allocated memory, the pointer will
continue to exist in memory, set the pointer’s value to nullptr to
indicate that the pointer no longer points to memory in the free store.
When the pointer is set to nullptr , the program loses access to that

free-store space, which could be reallocated for a different purpose. If
you do not set the pointer to nullptr , your code could inadvertently

access the reallocated memory, causing subtle, nonrepeatable logic
errors. We did not set ptr to nullptr in the destructor, because after

the destructor executes, the Array object no longer exists in memory.

getSize Member Function
Line 16 of Fig. 10.10 declares function getSize (defined in Fig. 10.11,
lines 31–33) that returns the number of elements in the Array .

Overloaded Assignment Operator
Line 18 of Fig. 10.10 declares the overloaded assignment operator
function for the class. When the compiler sees the expression
integers1 = integers2 in line 44 of Fig. 10.9, the compiler invokes
member function operator= with the call

integers1.operator=(integers2)

Member function operator= ’s implementation (Fig. 10.11, lines 37–53)
tests for self-assignment (line 38) in which an Array object is being
assigned to itself. When this is equal to the right operand’s address,
a self-assignment is being attempted, so the assignment is skipped
(i.e., the object already is itself; in a moment we’ll see why self-
assignment is dangerous). If it isn’t a self-assignment, then the
function determines whether the sizes of the two Arrays are identical
(line 41); in that case, the original array of integers in the left-side
Array object is not reallocated. Otherwise, operator= uses delete[]
(line 42) to release the memory originally allocated to the target Array ,
copies the size of the source Array to the size of the target Array
(line 43), uses new to allocate the memory for the target Array and
places the pointer returned by new into the Array ’s ptr member (line
44). Then the for statement in lines 47–49 copies the elements from

the source Array to the target Array . Regardless of whether this is a
self-assignment, the member function returns the current object (i.e.,
*this in line 52) as a constant reference; this enables cascaded Array
assignments such as x = y = z , but prevents ones like (x = y) = z
because z cannot be assigned to the const Array reference that’s
returned by (x = y) . If self-assignment occurs, and function operator=
did not test for this case, operator= would unnecessarily copy the
elements of the Array into itself.

 Software Engineering Observation 10.4

A copy constructor, a destructor and an overloaded assignment
operator are usually provided as a group for any class that uses
dynamically allocated memory. With the addition of move semantics in
C++11, other functions should also be provided, as you’ll see in
Chapter 10.

 Common Programming Error 10.4

Not providing a copy constructor and overloaded assignment operator
for a class when objects of that class contain pointers to dynamically
allocated memory is a potential logic error.

C++11: Move Constructor and Move
Assignment Operator
C++11 adds the notions of a move constructor and a move
assignment operator. We defer a discussion of these new functions
until Chapter 24, C++11 and C++14 Additional Features. This
discussion will affect the two preceding tips.

11

C++11: Deleting Unwanted Member
Functions from Your Class
11

Prior to C++11, you could prevent class objects from being copied or
assigned by declaring as private the class’s copy constructor and
overloaded assignment operator. As of C++11, you can simply delete
these functions from your class. To do so in class Array , replace the
prototypes in lines 14 and 18 of Fig. 10.10 with

Array(const Array&) = delete;

const Array& operator=(const Array&) = delete;

Though you can delete any member function, it’s most commonly
used with member functions that the compiler can auto-generate—the
default constructor, copy constructor, assignment operator, and in
C++ 11, the move constructor and move assignment operator.

Overloaded Equality and Inequality
Operators
Line 19 of Fig. 10.10 declares the overloaded equality operator (==)
for the class. When the compiler sees the expression integers1 ==
integers2 in line 51 of Fig. 10.9, the compiler invokes member
function operator== with the call

integers1.operator==(integers2)

Member function operator== (defined in Fig. 10.11, lines 57–69)
immediately returns false if the size members of the Arrays are not
equal. Otherwise, operator== compares each pair of elements. If
they’re all equal, the function returns true . The first pair of elements to
differ causes the function to return false immediately.

Lines 22–24 of Fig. 10.10 define the overloaded inequality operator
(!=). Member function operator!= uses the overloaded operator==
function to determine whether one Array is equal to another, then
returns the opposite of that result. Writing operator!= in this manner
enables you to reuse operator== , which reduces the amount of code
that must be written in the class. Also, the full function definition for

operator!= is in the Array header. This allows the compiler to inline

the definition of operator!= .

Overloaded Subscript Operators
Lines 27 and 30 of Fig. 10.10 declare two overloaded subscript
operators (defined in Fig. 10.11 in lines 73–80 and 84–91,
respectively). When the compiler sees the expression integers1[5]
(Fig. 10.9, line 56), it invokes the appropriate overloaded operator[]
member function by generating the call

integers1.operator[](5)

The compiler creates a call to the const version of operator[] (Fig.
10.11, lines 84–91) when the subscript operator is used on a const
Array object. For example, if you pass an Array to a function that
receives the Array as a const Array& named z , then the const
version of operator[] is required to execute a statement such as

cout << z[3] << endl;

Remember, a program can invoke only the const member functions of
a const object.

Each definition of operator[] determines whether the subscript it
receives as an argument is in range—and if not, each throws an
out_of_range exception. If the subscript is in range, the non- const
version of operator[] returns the appropriate Array element as a
reference so that it may be used as a modifiable lvalue (e.g., on the
left side of an assignment statement). If the subscript is in range, the
const version of operator[] returns a copy of the appropriate element
of the Array .

C++11: Managing Dynamically Allocated
Memory with unique_ptr
In this case study, class Array ’s destructor used delete[] to return the
dynamically allocated built-in array to the free store. C++11 enables
you to use unique_ptr to ensure that this dynamically allocated
memory is deleted automatically when the Array object goes out of
scope. In Chapter 17, we introduce unique_ptr and show how to use
it to manage dynamically allocated objects or dynamically allocated
built-in arrays.

11

C++11: Passing a List Initializer to a
Constructor
In Fig. 7.4, we showed how to initialize an array object with a comma-
separated list of initializers in braces, as in

11

array<int, 5> n{32, 27, 64, 18, 95};

You can also use list initializers when you declare objects of your own
classes. For example, you can provide an Array constructor that
would enable the following declarations:

Array integers{1, 2, 3, 4, 5};

or

Array integers = {1, 2, 3, 4, 5};

each of which creates an Array object with five elements containing
the integers from 1 to 5.

To support list initialization, you can define a constructor that receives
an object of the class template initializer_list . For class Array ,
you’d include the <initializer_list> header. Then, you’d define a
constructor with the first line:

Array::Array(initializer_list<int> list)

You can determine the number of elements in the list parameter by
calling its size member function. To obtain each initializer and copy it
into the Array object’s dynamically allocated built-in array, you can
use a range-based for as follows:

size_t i{0};

for (int item : list) {

 ptr[i++] = item;

}

10.11 Operators as Member vs.
Non-Member Functions
Whether an operator function is implemented as a member function or
as a non-member function, the operator is still used the same way in
expressions. So which is best?

When an operator function is implemented as a member function, the
leftmost (or only) operand must be an object (or a reference to an
object) of the operator’s class. If the left operand must be an object of
a different class or a fundamental type, this operator function must be
implemented as a non-member function (as we did in Section 10.5
when overloading << and >> as the stream insertion and stream
extraction operators, respectively). A non-member operator function
can be made a friend of a class if that function must access private
or protected members of that class directly.

Operator member functions of a specific class are called (implicitly by
the compiler) only when the left operand of a binary operator is
specifically an object of that class, or when the single operand of a
unary operator is an object of that class.

Commutative Operators

Another reason why you might choose a non-member function to
overload an operator is to enable the operator to be commutative. For
example, suppose we have

a fundamental type variable, number , of type long int and
an object bigInteger , of class HugeInteger—a class in which
integers may be arbitrarily large rather than being limited by the
machine word size of the underlying hardware (class HugeInteger
is developed in the chapter exercises).

Both the expressions bigInteger + number (the sum of a HugeInteger
and a long int) and number + bigInteger (the sum of a long int and
a HugeInteger) can produce a temporary HugeInteger containing the
sum of the values. Thus, we require the addition operator to be
commutative (exactly as it is with two fundamental-type operands).

The problem is that the class object must appear on the left of the
addition operator if that operator is to be overloaded as a member
function. So, we also overload the operator as a non-member function
to allow the HugeInteger to appear on the right of the addition. The
operator+ function that deals with the HugeInteger on the left can still
be a member function. The non-member function can simply swap its
arguments and call the member function. You also could define both
overloads as non-member functions.

10.12 Converting Between Types
Most programs process information of many types. Sometimes all the
operations “stay within a type.” For example, adding an int to an int
produces an int . It’s often necessary, however, to convert data of one
type to data of another type. This can happen in assignments, in
calculations, in passing values to functions and in returning values
from functions. The compiler knows how to perform certain
conversions among fundamental types. You can use cast operators to
force conversions among fundamental types.

But what about user-defined types? The compiler cannot know in
advance how to convert among user-defined types, and between
user-defined types and fundamental types, so you must specify how to
do this. Such conversions can be performed with conversion
constructors—constructors that can be called with a single argument
(we’ll refer to these as single-argument constructors). Such
constructors can turn objects of other types (including fundamental
types) into objects of a particular class.

Conversion Operators
A conversion operator (also called a cast operator) also can be used
to convert an object of one class to another type. Such a conversion

operator must be a non- static member function. The function
prototype

MyClass::operator string() const;

declares an overloaded cast operator function for converting an object
of class MyClass into a temporary string object. The operator function
is declared const because it does not modify the original object. The
return type of an overloaded cast operator function is implicitly the
type to which the object is being converted. If s is a class object,
when the compiler sees the expression static_cast<string>(s) , the
compiler generates the call

s.operator string()

to convert the operand s to a string .

Overloaded Cast Operator Functions
Overloaded cast operator functions can be defined to convert objects
of user-defined types into fundamental types or into objects of other
user-defined types. The prototypes

MyClass::operator int() const;

MyClass::operator OtherClass() const;

declare overloaded cast operator functions that can convert an object
of user-defined type MyClass into an integer or into an object of user-
defined type OtherClass , respectively.

Implicit Calls to Cast Operators and
Conversion Constructors
One of the nice features of cast operators and conversion constructors
is that, when necessary, the compiler can call these functions implicitly
to create temporary objects. For example, if an object s of a user-
defined class appears in a program at a location where a string is
expected, such as

display(s); // argument expected to be a string object

the compiler can call the overloaded cast-operator function operator
string to convert the object into a string and use the resulting string
in the expression. With this cast operator provided for a class, the

function display does not have to be overloaded with a version that
receives an object of your class as an argument.

 Software Engineering Observation 10.5

When a conversion constructor or conversion operator is used to
perform an implicit conversion, C++ can apply only one implicit
constructor or operator function call (i.e., a single user-defined
conversion) to try to match the needs of another overloaded operator.
The compiler will not satisfy an overloaded operator’s needs by
performing a series of implicit, user-defined conversions.

10.13 explicit Constructors
and Conversion Operators
Recall that we’ve been declaring as explicit every constructor that
can be called with one argument, including multiparameter
constructors for which we specify default arguments. With the
exception of copy constructors, any constructor that can be called with
a single argument and is not declared explicit can be used by the
compiler to perform an implicit conversion. The constructor’s argument
is converted to an object of the class in which the constructor is
defined. The conversion is automatic—a cast is not required.

In some situations, implicit conversions are undesirable or error-prone.
For example, our Array class in Fig. 10.10 defines a constructor that
takes a single int argument. The intent of this constructor is to create
an Array object containing the number of elements specified by the
int argument. However, if this constructor were not declared explicit
it could be misused by the compiler to perform an implicit conversion.

 Common Programming Error
10.5

Unfortunately, the compiler might use implicit conversions in cases
that you do not expect, resulting in ambiguous expressions that
generate compilation errors or result in execution-time logic errors.

Accidentally Using a Single-Argument
Constructor as a Conversion Constructor
The program (Fig. 10.12) uses the Array class of Figs. 10.10–10.11
to demonstrate an improper implicit conversion. To allow this implicit
conversion, we removed the explicit keyword from line 13 in Array.h
(Fig. 10.10).

Fig. 10.12 Single-argument constructors and implicit

conversions.

Line 10 in main (Fig. 10.12) instantiates Array object integers1 and
calls the single-argument constructor with the int value 7 to specify
the number of elements in the Array . Recall from Fig. 10.11 that the
Array constructor that receives an int argument initializes all the
Array elements to 0. Line 11 in Fig. 10.12 calls function outputArray
(defined in lines 16–19), which receives as its argument a const
Array& to an Array . The function outputs the number of elements in its
Array argument and the contents of the Array . In this case, the size of
the Array is 7 , so seven 0s are output.

Line 12 calls function outputArray with the int value 3 as an
argument. However, this program does not contain a function called
outputArray that takes an int argument. So, the compiler determines
whether the argument 3 can be converted to an Array object.
Because class Array provides a constructor with one int argument
and that constructor is not declared explicit , the compiler assumes
the constructor is a conversion constructor and uses it to convert the
argument 3 into a temporary Array object containing three elements.
Then, the compiler passes the temporary Array object to function
outputArray to output the Array ’s contents. Thus, even though we do
not explicitly provide an outputArray function that receives an int
argument, the compiler is able to compile line 12. The output shows
the contents of the three-element Array containing 0s.

Preventing Implicit Conversions with
Single-Argument Constructors
The reason we’ve been declaring every single-argument contructor
preceded by the keyword explicit is to suppress implicit conversions

via conversion constructors when such conversions should not be
allowed. A constructor that’s declared explicit cannot be used in an
implicit conversion. In the example of Figure 10.13, we use the
original version of Array.h from Fig. 10.10, which included the
keyword explicit in the declaration of the single-argument

constructor in line 13

explicit Array(int = 10); // default constructor

Figure 10.13 presents a slightly modified version of the program in
Fig. 10.12. When this program in Fig. 10.13 is compiled, the compiler
produces an error message, such as

'void outputArray(const Array &)': cannot convert argument 1

from 'int' to 'const Array &'

on Visual C++, indicating that the integer value passed to outputArray
in line 12 cannot be converted to a const Array& . Line 13
demonstrates how the explicit constructor can be used to create a
temporary Array of 3 elements and pass it to function outputArray .

 Error-Prevention Tip 10.4

Always use the explicit keyword on single-argument constructors

unless they’re intended to be used as conversion constructors.

Fig. 10.13 Demonstrating an explicit constructor.

C++11: explicit Conversion Operators

Just as you can declare single-argument constructors explicit , you
can declare conversion operators explicit to prevent the compiler
from using them to perform implicit conversions. For example, the
prototype

11

explicit MyClass::operator string() const;

declares MyClass ’s string cast operator explicit , thus requiring you
to invoke it explicitly with static_cast .

10.14 Overloading the Function
Call Operator ()
Overloading the function call operator () is powerful, because
functions can take an arbitrary number of comma-separated
parameters. In a customized String class, for example, you could
overload this operator to select a substring from a String—the
operator’s two integer parameters could specify the start location and
the length of the substring to be selected. The operator() function
could check for such errors as a start location out of range or a
negative substring length.

The overloaded function call operator must be a non- static member
function and could be defined with the first line:

String String::operator()(size_t index, size_t length) const

In this case, it should be a const member function because obtaining
a substring should not modify the original String object.

Suppose string1 is a String object containing the string "AEIOU" .
When the compiler encounters the expression string1(2, 3) , it
generates the member-function call

string1.operator()(2,3)

which returns a String containing "IOU" .

Another possible use of the function call operator is to enable an
alternate Array subscripting notation. Instead of using C++’s double-
square-bracket notation, such as in chessBoard[row][column] , you
might prefer to overload the function call operator to enable the
notation chessBoard(row, column) , where chessBoard is an object of a
modified two-dimensional Array class. Exercise 10.7 asks you to
build this class. We demonstrate an overloaded function call operator
in Chapter 16.

10.15 Wrap-Up
In this chapter, you learned how to overload operators to work with
class objects. We demonstrated standard C++ class string , which
makes extensive use of overloaded operators to create a robust,
reusable class that can replace C strings. Next, we discussed several
restrictions that the C++ standard places on overloaded operators. We
then presented a PhoneNumber class that overloaded operators << and
>> to conveniently output and input phone numbers, respectively. You
also saw a Date class that overloaded the prefix and postfix increment
(++) operators and we showed a special syntax that’s required to
differentiate between the prefix and postfix versions of the increment
(++) operator.

Next, we introduced the concept of dynamic memory management.
You learned that you can create and destroy objects dynamically with
the new and delete operators, respectively. Then, we presented a
capstone Array class case study that used overloaded operators and
other capabilities to solve various problems with pointer-based arrays.
This case study helped you truly understand what classes and object
technology are all about—crafting, using and reusing valuable
classes. As part of this class, you saw overloaded stream insertion,
stream extraction, assignment, equality and subscript operators.

You learned reasons for implementing overloaded operators as
member functions or as non-member functions. The chapter
concluded with discussions of converting between types (including
class types), problems with certain implicit conversions defined by
single-argument constructors and how to prevent those problems by
using explicit constructors.

In the next chapter, we continue our discussion of classes by
introducing inheritance. We’ll see that when classes share common
attributes and behaviors, it’s possible to define those attributes and
behaviors in a common “base” class and “inherit” those capabilities
into new class definitions, enabling you to create the new classes with
a minimal amount of code.

Summary

Section 10.1 Introduction
C++ enables you to overload most operators to be sensitive to the
context in which they’re used— the compiler generates the
appropriate code based on the types of the operands.
One example of an overloaded operator built into C++ is operator
<< , which is used both as the stream insertion operator and as the
bitwise left-shift operator. Similarly, >> is also overloaded; it’s used
both as the stream extraction operator and as the bitwise right-shift
operator. Both of these operators are overloaded in the C++
Standard Library.
C++ overloads + and - to perform differently, depending on their
context in integer arithmetic, floating-point arithmetic and pointer
arithmetic.
The jobs performed by overloaded operators can also be
performed by explicit function calls, but operator notation is often
more natural.

Section 10.2 Using the Overloaded
Operators of Standard Library Class
string

Standard class string is defined in header <string> and belongs
to namespace std .
Class string provides many overloaded operators, including
equality, relational, assignment, addition assignment (for
concatenation) and subscript operators.
The stream manipulator boolalpha (p. 452) sets an output stream
to display condition values as the strings "false" and "true" ,
rather than 0 and 1 .
Class string provides member function empty (p. 452), which
returns true if the string is empty; otherwise, it returns false .
A C++14 string-object literal (p. 452) is indicated by placing the
letter s immediately following the closing " of a string literal.
Standard class string member function substr (p. 452) obtains a
substring of a length specified by the second argument, starting at
the position specified by the first argument. When the second
argument is not specified, substr returns the remainder of the
string on which it’s called.
Class string’s overloaded [] operator does not perform any
bounds checking. Therefore, you must ensure that operations
using standard class string ’s overloaded [] operator do not

accidentally manipulate elements outside the bounds of the
string .

Standard class string provides bounds checking with member
function at (p. 453), which “throws an exception” if its argument is
an invalid subscript. By default, this causes the program to
terminate. If the subscript is valid, function at returns a reference
or a const reference to the character at the specified location
depending on the context.

Section 10.3 Fundamentals of Operator
Overloading

An operator is overloaded by writing a non- static member-
function definition or non-member function definition in which the
function name is the keyword operator followed by the symbol for
the operator being overloaded.
When operators are overloaded as member functions, they must
be non- static , because they must be called on an object of the
class and operate on that object.
To use an operator on class objects, you must define an
overloaded operator function, with three exceptions—the
assignment operator (=), the address operator (&) and the comma
operator (,).
You cannot change the precedence and associativity of an
operator by overloading.
You cannot change the “arity” of an operator (i.e., the number of
operands an operator takes).
You cannot create new operators—only existing operators can be
overloaded.
You cannot change the meaning of how an operator works on
objects of fundamental types.
Overloading an assignment operator and an addition operator for a
class does not imply that += is also overloaded. You must explicitly
overload operator += for that class.

Overloaded () , [] , -> and assignment operators must be
declared as class members. For the other operators, the operator
overloading functions can be class members or non-member
functions.

Section 10.4 Overloading Binary
Operators

A binary operator can be overloaded as a non- static member
function with one argument or as a non-member function with two
arguments (one of those arguments must be either a class object
or a reference to a class object).

Section 10.5 Overloading the Binary
Stream Insertion and Stream Extraction
Operators

The overloaded stream insertion operator (<<) is used in an
expression in which the left operand has type ostream& . For this
reason, it must be overloaded as a non-member function. Similarly,
the overloaded stream extraction operator (>>) must be a non-
member function.
When used with cin , setw restricts the number of characters read
to the number of characters specified by its argument.
istream member function ignore discards the specified number of
characters in the input stream (one character by default).
Overloaded input and output operators are declared as friends if
they need to access non- public class members directly for
performance reasons.

Section 10.6 Overloading Unary Operators
A unary operator for a class can be overloaded as a non- static
member function with no arguments or as a non-member function
with one argument; that argument must be either an object of the
class or a reference to an object of the class.
Member functions that implement overloaded operators must be
non- static so that they can access the non- static data in each
object of the class.

Section 10.7 Overloading the Increment
and Decrement Operators

The prefix and postfix increment and decrement operators can all
be overloaded.
To overload the pre- and post-increment operators, each
overloaded operator function must have a distinct signature. The
prefix versions are overloaded like any other unary operator. The
postfix increment operator’s unique signature is accomplished by
providing a second argument, which must be of type int . This
argument is not supplied in the client code. It’s used implicitly by
the compiler to distinguish between the prefix and postfix versions
of the increment operator. The same syntax is used to differentiate
between the prefix and postfix decrement operator functions.

Section 10.9 Dynamic Memory
Management

Dynamic memory management (p. 466) enables you to control
the allocation and deallocation of memory in a program for any
built-in or user-defined type.
The free store (sometimes called the heap; p. 466) is a region of
memory assigned to each program for storing objects dynamically
allocated at execution time.
The new operator (p. 466) allocates storage of the proper size for
an object, runs the object’s constructor and returns a pointer of the
correct type. If new is unable to find space in memory for the
object, it indicates that an error occurred by “throwing” an
“exception.” This usually causes the program to terminate
immediately, unless the exception is handled.
To destroy a dynamically allocated object and free its space, use
the delete operator (p. 466).
A built-in array of objects can be allocated dynamically with new as
in

Type *ptr{new Type [numberOfElements]{}};

The preceding built-in array is deleted with delete[] (p. 468) as in

delete[] ptr;

Section 10.10 Case Study: Array Class
A copy constructor initializes a new object of a class by copying
the members of an existing one. Classes that contain dynamically
allocated memory typically provide a copy constructor, a destructor
and an overloaded assignment operator.
The implementation of member function operator= should test for
self-assignment (p. 478), in which an object is being assigned to
itself.
The compiler calls the const version of operator[] when the
subscript operator is used on a const object and calls the non-
const version of the operator when it’s used on a non- const
object.
The subscript operator ([]) can be used to select elements from
other types of containers. Also, with overloading, the index values
no longer need to be integers.

Section 10.11 Operators as Member vs.
Non-Member Functions

Operator functions can be member or non-member functions—
non-member functions are often made friends for performance
reasons. Member functions use the this pointer implicitly to obtain
one of their class object arguments (the left operand for binary
operators). Arguments for both operands of a binary operator must
be explicitly listed in a non-member function call.
When an operator function is implemented as a member function,
the leftmost (or only) operand must be an object (or a reference to
an object) of the operator’s class.
If the left operand must be an object of a different class or a
fundamental type, this operator function must be implemented as a
non-member function.
A non-member operator function can be made a friend of a class
if that function must access private or protected members of that
class directly.
Another reason to choose a non-member function to overload an
operator is to enable the operator to be commutative.

Section 10.12 Converting Between Types
The compiler cannot know in advance how to convert among user-
defined types, and between user-defined types and fundamental
types, so you must specify how to do this. Such conversions can
be performed with conversion constructors (p. 481)—single-
argument constructors that turn objects of other types (including
fundamental types) into objects of a particular class.
A constructor that can be called with a single argument can be
used as a conversion constructor.
A conversion operator (p. 481) must be a non- static member
function. Overloaded cast-operator functions (p. 481) can be
defined for converting objects of user-defined types into
fundamental types or into objects of other user-defined types.
An overloaded cast operator function does not specify a return
type—the return type is the type to which the object is being
converted.
When necessary, the compiler can call cast operators and
conversion constructors implicitly.

Section 10.13 explicit Constructors and
Conversion Operators

A constructor that’s declared explicit (p. 484) cannot be used in
an implicit conversion.

Section 10.14 Overloading the Function
Call Operator ()

Overloading the function call operator () (p. 485) is powerful,
because functions can have an arbitrary number of parameters.

Self-Review Exercises
1. 10.1 Fill in the blanks in each of the following:

A. Suppose a and b are integer variables and we form the
sum a + b . Now suppose c and d are floating-point
variables and we form the sum c + d . The two +
operators here are clearly being used for different
purposes. This is an example of .

B. Keyword introduces an overloaded-operator
function definition.

C. To use operators on class objects, they must be
overloaded, with the exception of operators ,
 and .

D. The , and of an operator
cannot be changed by overloading the operator.

E. The operators that cannot be overloaded are ,
 , and .

F. The operator reclaims memory previously
allocated by new .

G. The operator dynamically allocates memory for
an object of a specified type and returns a(n) to
that type.

H. Append a(n) after the closing quote (") of a
string literal to indicate that it’s a C++14 string -object
literal.

2. 10.2 Explain the multiple meanings of the operators << and >> .
3. 10.3 In what context might the name operator/ be used?
4. 10.4 (True/False) Only existing operators can be overloaded.
5. 10.5 How does the precedence of an overloaded operator

compare with the precedence of the original operator?

Exercises
1. 10.6 (Memory Allocation and Deallocation Operators)

Compare and contrast dynamic memory allocation and
deallocation operators new , new [] , delete and delete[] .

2. 10.7 (Overloading the Parentheses Operator) One nice
example of overloading the function call operator () is to allow
another form of double-array subscripting popular in some
programming languages. Instead of saying

chessBoard[row][column]

for an array of objects, overload the function call operator to
allow the alternate form

chessBoard(row, column)

Create a class DoubleSubscriptedArray that has similar features
to class Array in Figs. 10.10–10.11. At construction time, the
class should be able to create a DoubleSubscriptedArray of any
number of rows and columns. The class should supply
operator() to perform double-subscripting operations. For

example, in a 3-by-5 DoubleSubscriptedArray called chessBoard ,
the user could write chessBoard(1, 3) to access the element at
row 1 and column 3 . Remember that operator() can receive

any number of arguments. The underlying representation of the
DoubleSubscriptedArray could be a single-subscripted array of

integers with rows * columns number of elements. Function
operator() should perform the proper pointer arithmetic to

access each element of the underlying array. There should be
two versions of operator()—one that returns int& (so that an
element of a DoubleSubscriptedArray can be used as an lvalue)
and one that returns int . The class should also provide the
following operators: == , != , = , << (for outputting the
DoubleSubscriptedArray in row and column format) and >> (for
inputting the entire DoubleSubscriptedArray contents).

3. 10.8 (Complex Class) Consider class Complex shown in Figs.
10.14–10.16. The class enables operations on so-called
complex numbers. These are numbers of the form realPart +
imaginaryPart * i, where i has the value

A. Modify the class to enable input and output of complex
numbers via overloaded >> and << operators,
respectively (you should remove the toString function
from the class).

B. Overload the multiplication operator to enable
multiplication of two complex numbers as in algebra.

C. Overload the == and != operators to allow comparisons
of complex numbers.

After doing this exercise, you might want to read about the
Standard Library’s complex class (from header <complex>).

Fig. 10.14 Complex class definition.

Fig. 10.15 Complex class member-function definitions.

Fig. 10.16 Complex class test program.

4. 10.9 (HugeInteger Class) A machine with 32-bit integers can
represent integers in the range of approximately –2 billion to +2
billion. This fixed-size restriction is rarely troublesome, but there
are applications in which we would like to be able to use a
much wider range of integers. This is what C++ was built to do,
namely, create powerful new data types. Consider class
HugeInteger of Figs. 10.17–10.19, which is similar to the
HugeInteger class in Exercise 9.14. Study the class carefully,
then respond to the following:

A. Describe precisely how it operates.
B. What restrictions does the class have?

C. Overload the * multiplication operator.
D. Overload the / division operator.
E. Overload all the relational and equality operators.

[Note: We do not show an assignment operator or copy
constructor for class HugeInteger , because the assignment
operator and copy constructor provided by the compiler are
capable of copying the entire array data member properly.]

Fig. 10.17 HugeInteger class definition.

Fig. 10.18 HugeInteger member-function and friend-
function definitions.

Fig. 10.19 HugeInteger test program.

5. 10.10 (RationalNumber Class) Create a
RationalNumber (fractions) class like the one in Exercise 9.6.
Provide the following capabilities:

A. Create a constructor that prevents a 0 denominator in a
fraction, reduces or simplifies fractions that are not in
reduced form and avoids negative denominators.

B. Overload the addition, subtraction, multiplication and
division operators for this class.

C. Overload the relational and equality operators for this
class.

6. 10.11 (Polynomial Class) Develop class Polynomial . The
internal representation of a Polynomial is an array of terms.
Each term contains a coefficient and an exponent—e.g., the
term

has the coefficient 2 and the exponent 4. Develop a complete
class containing proper constructor and destructor functions as
well as set and get functions. The class should also provide the
following overloaded operator capabilities:

A. Overload the addition operator (+) to add two
Polynomials.

B. Overload the subtraction operator (-) to subtract two
Polynomials.

C. Overload the assignment operator to assign one
Polynomial to another.

D. Overload the multiplication operator (*) to multiply two
Polynomials.

E. Overload the addition assignment operator (+=),
subtraction assignment operator (-=), and multiplication
assignment operator (*=).

7. 10.12 (DollarAmount Class Enhancement) Enhance class
DollarAmount from Exercise 5.32 with overloaded addition (+),
subtraction (-), multiplication (*) and division (/) operators.

8. 10.13 (DollarAmount Class Enhancement) Enhance class
DollarAmount from Exercise 10.12 to make the overloaded
addition, subtraction and multiplication operators commutative.

Answers to Self-Review Exercises
1. 10.1

A. operator overloading.
B. operator .
C. assignment (=), address (&), comma (,).
D. precedence, associativity, “arity.”
E. . , ?: , .* , and :: .
F. delete .
G. new , pointer.
H. s .

2. 10.2 Operator >> is both the right-shift operator and the stream
extraction operator, depending on its context. Operator << is
both the left-shift operator and the stream insertion operator,
depending on its context.

3. 10.3 For operator overloading: It would be the name of a
function that would provide an overloaded version of the /
operator for a specific class.

4. 10.4 True.
5. 10.5 The precedence is identical.

11 Object-Oriented Programming:
Inheritance

Objectives
In this chapter you’ll:

Learn what inheritance is.
Understand the notions of base classes and derived classes and
the relationships between them.
Use the protected member access specifier.
Use constructors and destructors in inheritance hierarchies.
Understand the order in which constructors and destructors are
called in inheritance hierarchies.
Understand the differences between public , protected and
private inheritance.
Use inheritance to customize existing software.

Outline
1. 11.1 Introduction
2. 11.2 Base Classes and Derived Classes

A. 11.2.1 CommunityMember Class Hierarchy
B. 11.2.2 Shape Class Hierarchy

3. 11.3 Relationship between Base and Derived Classes
A. 11.3.1 Creating and Using a CommissionEmployee Class
B. 11.3.2 Creating a BasePlusCommissionEmployee Class

Without Using Inheritance
C. 11.3.3 Creating a CommissionEmployee–

BasePlusCommissionEmployee Inheritance Hierarchy
D. 11.3.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Data
E. 11.3.5 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using private Data

4. 11.4 Constructors and Destructors in Derived Classes
5. 11.5 public , protected and private Inheritance
6. 11.6 Wrap-Up

1. Summary
2. Self-Review Exercises

3. Answers to Self-Review Exercises
4. Exercises

11.1 Introduction
This chapter continues our discussion of object-oriented programming
(OOP) by introducing inheritance in which you create a class that
absorbs an existing class’s capabilities, then customizes or enhances
them. Inheritance can save time during program development by
taking advantage of proven, high-quality software.

When creating a class, instead of writing completely new data
members and member functions, you can specify that the new class
should inherit the members of an existing class. This existing class is
called the base class, and the new class is called the derived class.
Other programming languages, such as Java and C#, refer to the
base class as the super-class and the derived class as the subclass.
A derived class represents a more specialized group of objects.

C++ offers public , protected and private inheritance. In this chapter,
we concentrate on public inheritance and briefly explain the other
two. With public inheritance, every object of a derived class is also an
object of that derived class’s base class. However, baseclass objects
are not objects of their derived classes. For example, if we have
Vehicle as a base class and Car as a derived class, then all Cars are
Vehicles, but not all Vehicles are Cars—for example, a Vehicle could
also be a Truck or a Boat .

We distinguish between the is-a relationship and the has-a
relationship. The is-a relationship represents inheritance. In an is-a
relationship, an object of a derived class also can be treated as an
object of its base class—for example, a Car is a Vehicle , so any
attributes and behaviors of a Vehicle are also attributes and behaviors
of a Car . By contrast, the hasa relationship represents composition,
which was discussed in Chapter 9. In a has-a relationship, an object
contains one or more objects of other classes as members. For
example, a Car has many components—it has a steering wheel, has a

brake pedal, has a transmission, etc.

11.2 Base Classes and Derived
Classes
Figure 11.1 lists several simple examples of base classes and derived
classes. Base classes tend to be more general and derived classes
tend to be more specific.

Fig. 11.1 Inheritance examples.

Base class Derived classes

Student GraduateStudent , UndergraduateStudent

Shape Circle , Triangle , Rectangle , Sphere , Cube

Loan CarLoan , HomeImprovementLoan , MortgageLoan

Employee Faculty , Staff

Account CheckingAccount , SavingsAccount

Because every derived-class object is an object of its base class, and
one base class can have many derived classes, the set of objects
represented by a base class typically is larger than the set of objects
represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles, including cars, trucks, boats,

airplanes, bicycles and so on. By contrast, derived-class Car

represents a smaller, more specific subset of all vehicles.

Inheritance relationships form class hierarchies. A base class exists
in a hierarchical relationship with its derived classes. Although classes
can exist independently, once they’re employed in inheritance
relationships, they become affiliated with other classes. A class
becomes either a base class—supplying members to other classes, a
derived class—inheriting its members from other classes, or both.

11.2.1 CommunityMember Class
Hierarchy

Let’s develop a simple inheritance hierarchy with five levels
(represented by the UML class diagram in Fig. 11.2). A university
community has thousands of CommunityMember s. These
CommunityMembers consist of Employees, Student s and alumni (each of
class Alumnus). Employees are either Faculty or Staff . Faculty are
either Administrators or Teachers. Some Administrator s, however,
are also Teachers. We’ve used multiple inheritance to form class
AdministratorTeacher . With single inheritance, a class is derived from
one base class. With multiple inheritance, a derived class inherits
simultaneously from two or more (possibly unrelated) base classes.
We discuss multiple inheritance in Chapter 23, Other Topics.

Each arrow in the hierarchy (Fig. 11.2) represents an is-a relationship.
For example, as we follow the arrows in this class hierarchy, we can
state “an Employee is a Community-Member ” and “a Teacher is a Faculty
member.” CommunityMember is the direct base class of Employee ,
Student and Alumnus . In addition, CommunityMember is an indirect base
class of all the other classes in the diagram. An indirect base class is
inherited from two or more levels up the class hierarchy.

Starting from the bottom of the diagram, you can follow the arrows
upward and apply the is-a relationship to the topmost base class. For
example, an AdministratorTeacher is an Administrator , is a Faculty
member, is an Employee and is a CommunityMember .

Fig. 11.2 Inheritance hierarchy for university CommunityMembers.

11.2.2 Shape Class Hierarchy

Now consider the Shape inheritance hierarchy in Fig. 11.3. This
hierarchy begins with base-class Shape . Classes TwoDimensionalShape
and ThreeDimensionalShape derive from base-class Shape—a
TwoDimensionalShape is a Shape and a ThreeDimensionalShape is a

Shape . The third level of this hierarchy contains more specific types of
TwoDimensionalShapes and ThreeDimensionalShapes. As in Fig. 11.2, we
can follow the arrows from the bottom of the diagram upward to the
topmost base class in this hierarchy to identify several is-a
relationships. For instance, a Triangle is a TwoDimensionalShape and is
a Shape , while a Sphere is a ThreeDimensionalShape and is a Shape .

Fig. 11.3 Inheritance hierarchy for Shapes.

To specify that class TwoDimensionalShape (Fig. 11.3) is derived from
(or inherits from) class Shape , class TwoDimensionalShape ’s definition
could begin as follows:

class TwoDimensionalShape : public Shape

This is an example of public inheritance, the most commonly used
form. We’ll also discuss private inheritance and protected inheritance
(Section 11.5). With all forms of inheritance, private members of a
base class are not accessible directly from that class’s derived
classes, but these private base-class members are still inherited (i.e.,
they’re still considered parts of the derived classes). With public
inheritance, all other base-class members retain their original member
access when they become members of the derived class (e.g., public
members of the base class become public members of the derived
class, and, as we’ll soon see, protected members of the base class
become protected members of the derived class). Through inherited
base-class member functions, the derived class can manipulate
private members of the base class (if these inherited member
functions provide such functionality in the base class).

Inheritance is not appropriate for every class relationship. In some
cases, the has-a relationship (composition) is more appropriate. For
example, given the classes Employee , BirthDate and TelephoneNumber ,
it’s improper to say that an Employee is a BirthDate or that an Employee
is a TelephoneNumber . However, it is appropriate to say that an
Employee has a BirthDate and that an Employee has a TelephoneNumber .

It’s possible to treat base-class objects and derived-class objects
similarly; their commonalities are expressed in the members of the
base class. In Chapter 12, we consider many examples that take
advantage of this relationship.

11.3 Relationship between Base
and Derived Classes
In this section, we use an inheritance hierarchy containing types of
employees in a company’s payroll application to discuss the
relationship between a base class and a derived class. Commission
employees (who will be represented as objects of a base class) are
paid a percentage of their sales, while base-salaried commission
employees (who will be represented as objects of a derived class)
receive a base salary plus a percentage of their sales. We divide our
discussion of the relationship between commission employees and
base-salaried commission employees into a carefully paced series of
examples.

11.3.1 Creating and Using a
CommissionEmployee Class

Let’s examine CommissionEmployee ’s class definition (Figs. 11.4–11.5).
The CommissionEmployee header (Fig. 11.4) specifies class
CommissionEmployee ’s public services, which include a constructor
(lines 10–11) and member functions earnings (line 28) and toString
(line 29). Lines 13–26 declare public get and set functions that
manipulate the class’s data members (declared in lines 31–35)
firstName , lastName , socialSecurityNumber , grossSales and
commissionRate . Member functions setGrossSales (defined in lines 46–
52 of Fig. 11.5) and setCommissionRate (defined in lines 58–64 of Fig.
11.5), for example, validate their arguments before assigning the
values to data members grossSales and commissionRate , respectively.

Fig. 11.4 CommissionEmployee class definition represents a
commission employee.

Fig. 11.5 Implementation file for CommissionEmployee class that
represents an employee who is paid a percentage of gross sales.

CommissionEmployee Constructor
The CommissionEmployee constructor definition purposely does not use

member-initializer syntax in the first several examples of this section.
This will enable us to demonstrate how private and protected
specifiers affect member access in derived classes. As shown in Fig.
11.5, lines 12–14, we assign values to data members firstName ,
lastName and socialSecurityNumber in the constructor body. Later in
this section, we’ll return to using member-initializer lists in the
constructors.

We do not validate the values of the constructor’s arguments first ,
last and ssn before assigning them to the corresponding data
members. We certainly could validate the first and last names—
perhaps by ensuring that they’re of a reasonable length. Similarly, a
social security number could be validated to ensure that it contains
nine digits, with or without dashes (e.g., 123-45-6789 or 123456789).

CommissionEmployee Member Functions
earnings and toString
Member function earnings (lines 72–74) calculates a
CommissionEmployee ’s earnings. Line 73 multiplies the commissionRate
by the grossSales and returns the result. Member function toString
(lines 77–85) displays the values of a CommissionEmployee object’s data
members.

Testing Class CommissionEmployee
Figure 11.6 tests class CommissionEmployee . Line 10 instantiates
CommissionEmployee object employee and invokes the constructor to
initialize the object with "Sue" as the first name, "Jones" as the last
name, "222-22-2222" as the social security number, 10000 as the
gross sales amount and .06 as the commission rate. Lines 14–20 use
employee ’s get functions to display the values of its data members.
Lines 22–23 invoke the object’s member functions setGrossSales and
setCommissionRate to change the values of data members grossSales
and commissionRate , respectively. Lines 24–25 then call employee ’s
toString member function to get and output the updated
CommissionEmployee information. Finally, line 28 displays the
CommissionEmployee ’s earnings, calculated by the object’s earnings
member function using the updated values of data members
grossSales and commissionRate .

Fig. 11.6 CommissionEmployee class test program.

11.3.2 Creating a
BasePlusCommissionEmployee

Class Without Using Inheritance

We now discuss the second part of our introduction to inheritance by
creating and testing a completely new and independent class
BasePlusCommissionEmployee (Figs. 11.7–11.8), which contains a
first name, last name, social security number, gross sales amount,
commission rate and base salary.

Fig. 11.7 BasePlusCommissionEmployee class header.

Fig. 11.8 BasePlusCommissionEmployee class represents an employee
who receives a base salary in addition to a commission.

Defining Class
BasePlusCommissionEmployee

The BasePlusCommissionEmployee header (Fig. 11.7) specifies class
BasePlusCommissionEmployee ’s public services, which include the
BasePlusCommissionEmployee constructor (lines 11–12) and member
functions earnings (line 32) and toString (line 33). Lines 14–30

declare public get and set functions for the class’s private data
members (declared in lines 35–40) firstName , lastName ,
socialSecurityNumber , grossSales , commissionRate and baseSalary .

These variables and member functions encapsulate all the necessary
features of a base-salaried commission employee. Note the similarity
between this class and class CommissionEmployee (Figs. 11.4–11.5)—in

this example, we do not yet exploit that similarity.

Class BasePlusCommissionEmployee ’s earnings member function
(defined in lines 93–95 of Fig. 11.8) computes the earnings of a base-
salaried commission employee. Line 94 returns the result of adding
the employee’s base salary to the product of the commission rate and
the employee’s gross sales.

Testing Class
BasePlusCommissionEmployee

Figure 11.9 tests class BasePlusCommissionEmployee . Lines 10–11
instantiate object employee of class BasePlusCommissionEmployee ,
passing "Bob" , "Lewis" , "333-33-3333" , 5000 , .04 and 300 to the
constructor as the first name, last name, social security number, gross
sales, commission rate and base salary, respectively. Lines 15–22
use BasePlusCommissionEmployee ’s get functions to retrieve the values
of the object’s data members for output. Line 23 invokes the object’s
setBaseSalary member function to change the base salary. Member
function setBaseSalary (Fig. 11.8, lines 79–85) ensures that data

member baseSalary is not assigned a negative value, because an

employee’s base salary cannot be negative. Lines 24–25 of Fig. 11.9
invoke the object’s toString member function to get the updated
BasePlusCommissionEmployee ’s information, and line 28 calls member
function earnings to display the BasePlusCommissionEmployee ’s

earnings.

Fig. 11.9 BasePlusCommissionEmployee class test program.

Exploring the Similarities Between Class
BasePlusCommissionEmployee and Class
CommissionEmployee

Most of the code for class BasePlusCommissionEmployee (Figs.
11.7–11.8) is similar, if not identical, to the code for class
CommissionEmployee (Figs. 11.4–11.5). For example, in class
BasePlusCommissionEmployee , private data members firstName and
lastName and member functions setFirstName , getFirstName ,
setLastName and getLastName are identical to those of class
CommissionEmployee . Classes CommissionEmployee and
BasePlusCommissionEmployee also both contain private data members
socialSecurityNumber , commissionRate and grossSales , as well as get

and set functions to manipulate these members. In addition, the
BasePlusCommissionEmployee constructor is almost identical to that of
class CommissionEmployee , except that BasePlusCommissionEmployee ’s
constructor also sets the baseSalary . The other additions to class
BasePlusCommissionEmployee are private data member baseSalary and

member functions setBaseSalary and getBaseSalary . Class
BasePlusCommissionEmployee ’s toString member function is nearly

identical to that of class CommissionEmployee , except that
BasePlusCommissionEmployee ’s toString also outputs the value of data
member baseSalary .

We literally copied code from class CommissionEmployee and pasted it
into class BasePlusCommissionEmployee , then modified class
BasePlusCommissionEmployee to include a base salary and member
functions that manipulate the base salary. This copy-and-paste
approach is error prone and time consuming.

 Software Engineering Observation 11.1

Copying and pasting code from one class to another can spread many
physical copies of the same code and can spread errors throughout a
system, creating a code-maintenance nightmare. To avoid duplicating
code (and possibly errors), use inheritance, rather than the “copy-and-
paste” approach, in situations where you want one class to “absorb”
the data members and member functions of another class.

 Software Engineering Observation 11.2

With inheritance, the common data members and member functions of
all the classes in the hierarchy are declared in a base class. When
changes are required for these common features, you need to make
the changes only in the base class—derived classes then inherit the
changes. Without inheritance, changes would need to be made to all
the source-code files that contain a copy of the code in question.

11.3.3 Creating a
CommissionEmployee–

BasePlusCommissionEmployee

Inheritance Hierarchy

Now we create and test a new BasePlusCommissionEmployee class (Figs.
11.10–11.11) that derives from class CommissionEmployee (Figs.
11.4–11.5). In this example, a BasePlusCommissionEmployee object is a

CommissionEmployee (because inheritance passes on the capabilities of
class CommissionEmployee), but class BasePlusCommissionEmployee also

has data member baseSalary (Fig. 11.10, line 21). The colon (:) in
line 10 of the class definition indicates inheritance. Keyword public
indicates the type of inheritance. As a derived class (formed with
public inheritance), BasePlusCommissionEmployee inherits all the
members of class CommissionEmployee , except for the constructor—
each class provides its own constructors that are specific to the class.
(Destructors, too, are not inherited.) Thus, the public services of
BasePlusCommissionEmployee include its constructor (lines 12–13) and
the public member functions inherited from class CommissionEmployee
—although we cannot see these inherited member functions in
BasePlusCommissionEmployee ’s source code, they’re nevertheless a part
of derived-class BasePlusCommissionEmployee . The derived class’s

public services also include member functions setBaseSalary ,
getBaseSalary , earnings and toString (lines 15–19).

Figure 11.11 shows BasePlusCommissionEmployee ’s member-function
implementations. The constructor (lines 10–16) introduces base-class
initializer syntax (line 14), which uses a member initializer to pass
arguments to the base-class (CommissionEmployee)

Fig. 11.10 BasePlusCommissionEmployee class definition indicating
inheritance relationship with class CommissionEmployee .

Fig. 11.11 BasePlusCommissionEmployee implementation file: private
base-class data cannot be accessed from derived class.

constructor. C++ requires that a derived-class constructor call its
base-class constructor to initialize the base-class data members that
are inherited into the derived class. Line 14 does this by explicitly
invoking the CommissionEmployee constructor by name, passing the
constructor’s parameters first , last , ssn , sales and rate as
arguments to initialize the base-class data members firstName ,
lastName , socialSecurityNumber , grossSales and commissionRate ,
respectively. The compiler would issue an error if
BasePlusCommissionEmployee ’s constructor did not invoke class

CommissionEmployee ’s constructor explicitly—in this case, C++ attempts
to invoke class CommissionEmployee ’s default constructor implicitly, but
the class does not have such a constructor. Recall from Chapter 3
that the compiler provides a default constructor with no parameters in
any class that does not explicitly include a constructor. However,
CommissionEmployee does explicitly include a constructor, so a default
constructor is not provided.

 Common Programming Error 11.1
When a derived-class constructor calls a base-class constructor, the
arguments passed to the base-class constructor must be consistent
with the number and types of parameters specified in one of the base-
class constructors; otherwise, a compilation error occurs.

 Performance Tip 11.1
In a derived-class constructor, invoking base-class constructors and
initializing member objects explicitly in the member initializer list
prevents duplicate initialization in which a default constructor is called,
then data members are modified again in the derived-class
constructor’s body.

Compilation Errors from Accessing Base-
Class private Members
The compiler generates errors for line 35 of Fig. 11.11 because base-
class CommissionEmployee ’s data members commissionRate and
grossSales are private—derived-class BasePlusCommissionEmployee ’s
member functions are not allowed to access base-class
CommissionEmployee ’s private data. The compiler issues additional
errors in lines 44–47 of BasePlusCommissionEmployee ’s toString
member function for the same reason. As you can see, C++ rigidly
enforces restrictions on accessing private data members, so that
even a derived class (which is intimately related to its base class)
cannot access the base class’s private data.

Preventing the Errors in
BasePlusCommissionEmployee

We purposely included the erroneous code in Fig. 11.11 to emphasize
that a derived class’s member functions cannot access its base
class’s private data. The errors in BasePlusCommissionEmployee could
have been prevented by using the get member functions inherited
from class CommissionEmployee . For example, line 35 could have
invoked getCommissionRate and getGrossSales to access
CommissionEmployee ’s private data members commissionRate and
grossSales , respectively. Similarly, lines 44–47 could have used

appropriate get member functions to retrieve the values of the base
class’s data members. In the next example, we show how using
protected data also allows us to avoid the errors encountered in this

example.

Including the Base-Class Header in the
Derived-Class Header with #include
Notice that we #include the base class’s header in the derived class’s
header (line 8 of Fig. 11.10). This is necessary for three reasons.
First, for the derived class to use the base class’s name in line 10, we
must tell the compiler that the base class exists—the class definition in
CommissionEmployee.h does exactly that.

The second reason is that the compiler uses a class definition to
determine the size of an object of that class (as we discussed in
Section 9.3). A client program that creates an object of a class
#includes the class definition to enable the compiler to reserve the
proper amount of memory for the object. When using inheritance, a
derived-class object’s size depends on the data members declared
explicitly in its class definition and the data members inherited from its
direct and indirect base classes. Including the base class’s definition
in line 8 of Fig. 11.10 allows the compiler to determine the memory
requirements for the base class’s data members that become part of a
derived-class object and thus contribute to its total size.

The last reason for line 8 is to allow the compiler to determine whether
the derived class uses the base class’s inherited members properly.
For example, in the program of Figs. 11.10–11.11, the compiler uses
the base-class header to determine that the data members being
accessed by the derived class are private in the base class. Since
these are inaccessible to the derived class, the compiler generates
errors. The compiler also uses the base class’s function prototypes to
validate function calls made by the derived class to the inherited base-
class functions.

Linking Process in an Inheritance
Hierarchy
In Section 9.3, we discussed the linking process for creating an
executable Time application. In that example, you saw that the client’s
object code was linked with the object code for class Time , as well as
the object code for any C++ Standard Library classes used either in
the client code or in class Time .

The linking process is similar for a program that uses classes in an
inheritance hierarchy. The process requires the object code for all
classes used in the program and the object code for the direct and
indirect base classes of any derived classes used by the program.
Suppose a client wants to create an application that uses class
BasePlusCommissionEmployee , which is a derived class of
CommissionEmployee (we’ll see an example of this in Section 11.3.4).
When compiling the client application, the client’s object code must be

linked with the object code for classes BasePlusCommissionEmployee and
CommissionEmployee , because BasePlusCommissionEmployee inherits
member functions from its base-class CommissionEmployee . The code is

also linked with the object code for any C++ Standard Library classes
used in class CommissionEmployee , class BasePlusCommissionEmployee or

the client code. This provides the program with access to the
implementations of all of the functionality that the program may use.

11.3.4 CommissionEmployee–
BasePlusCommissionEmployee

Inheritance Hierarchy Using
protected Data

Chapter 3 introduced access specifiers public and private . A base
class’s public members are accessible within its body and anywhere
that the program has a handle (i.e., a name, reference or pointer) to
an object of that class or one of its derived classes, including in
derived classes. A base class’s private members are accessible only
within its body and to the friends of that base class. In this section,
we introduce the access specifier protected .

Using protected access offers an intermediate level of protection
between public and private access. To enable class
BasePlusCommissionEmployee to directly access CommissionEmployee data
members firstName , lastName , socialSecurityNumber , grossSales and
commissionRate , we can declare those members as protected in the
base class. A base class’s protected members can be accessed
within the body of that base class, by members and friends of that

base class, and by members and friends of any classes derived from

that base class.

Defining Base-Class CommissionEmployee
with protected Data
Class CommissionEmployee (Fig. 11.12) now declares data members
firstName , lastName , socialSecurityNumber , grossSales and
commissionRate as protected (lines 30–35) rather than private . The
member-function implementations are identical to those in Fig. 11.5,
so CommissionEmployee.cpp is not shown here.

Fig. 11.12 CommissionEmployee class definition that declares
protected data to allow access by derived classes.

Class BasePlusCommissionEmployee
The definition of class BasePlusCommissionEmployee from Figs.
11.10–11.11 remains unchanged, so we do not show it again here.
Now that BasePlusCommissionEmployee inherits from the updated class
CommissionEmployee (Fig. 11.12), BasePlusCommissionEmployee objects
can access inherited data members that are declared protected in
class CommissionEmployee (i.e., data members firstName , lastName ,
socialSecurityNumber , grossSales and commissionRate). As a result, the
compiler does not generate errors when compiling the
BasePlusCommissionEmployee earnings and toString member-function
definitions in Fig. 11.11 (lines 33–36 and 39–50, respectively). This
shows the special privileges that a derived class is granted to access
protected base-class data members. Objects of a derived class also
can access protected members in any of that derived class’s indirect

base classes.

Class BasePlusCommissionEmployee does not inherit class
CommissionEmployee ’s constructor. However, class
BasePlusCommissionEmployee ’s constructor (Fig. 11.11, lines 10–16)
calls class CommissionEmployee ’s constructor explicitly with member-
initializer syntax (line 14). Recall that BasePlusCommissionEmployee ’s
constructor must explicitly call the constructor of class
CommissionEmployee , because CommissionEmployee does not contain a
default constructor that could be invoked implicitly.

Testing the Modified
BasePlusCommissionEmployee Class
To test the updated class hierarchy, we reused the test program from
Fig. 11.9. As shown in Fig. 11.13, the output is identical to that of Fig.
11.9.

Fig. 11.13 protected base-class data can be accessed from
derived class.

We created the first class BasePlusCommissionEmployee without using

inheritance and created this version of BasePlusCommissionEmployee
using inheritance; however, both classes provide the same
functionality. The code for derived-class BasePlusCommissionEmployee
(i.e., the header and implementation files) is considerably shorter than

the code for the noninherited version of the class, because the
inherited version absorbs much of its functionality from
CommissionEmployee , whereas the noninherited version does not absorb

any functionality. Also, there is now only one copy of the
CommissionEmployee functionality declared and defined in class
CommissionEmployee . This makes the source code easier to maintain,

modify and debug, because the source code related to a
CommissionEmployee exists only in the files CommissionEmployee.h and
CommissionEmployee.cpp .

Notes on Using protected Data
In this example, we declared base-class data members as protected ,
so derived classes can modify the data directly. Inheriting protected
data members slightly improves performance, because we can directly
access the members without incurring the overhead of calls to set or
get member functions.

 Software Engineering Observation 11.3

In most cases, it’s better to use private data members to encourage

proper software engineering, and leave code optimization issues to
the compiler. Your code will be easier to maintain, modify and debug.

Using protected data members creates two serious problems. First,
the derived-class object does not have to use a member function to
set the value of the base class’s protected data member. An invalid

value can easily be assigned to the protected data member, thus
leaving the object in an inconsistent state—e.g., with
CommissionEmployee ’s data member grossSales declared as protected ,
a derived-class object can assign a negative value to grossSales . The
second problem with using protected data members is that derived-
class member functions are more likely to be written so that they
depend on the base-class implementation. Derived classes should
depend only on the base-class services (i.e., non- private member

functions) and not on the base-class implementation. With protected
data members in the base class, if the base-class implementation
changes, we may need to modify all derived classes of that base
class. For example, if for some reason we were to change the names
of data members firstName and lastName to first and last , then
we’d have to do so for all occurrences in which a derived class
references these base-class data members directly. Such software is
said to be fragile or brittle, because a small change in the base class
can “break” the derived-class implementation. You should be able to
change the base-class implementation while still providing the same
services to derived classes. Of course, if the base-class services
change, we must reimplement our derived classes—good object-
oriented design attempts to prevent this.

 Software Engineering Observation 11.4

It’s appropriate to use the protected access specifier when a base

class should provide a service (i.e., a non- private member function)

only to its derived classes and friends.

 Software Engineering Observation 11.5

Declaring base-class data members private (as opposed to declaring

them protected) enables you to change the base-class

implementation without having to change derived-class
implementations.

11.3.5 CommissionEmployee–
BasePlusCommissionEmployee

Inheritance Hierarchy Using
private Data

We now reexamine our hierarchy once more, this time using best
software engineering practices. Class CommissionEmployee now
declares data members firstName , lastName , socialSecurityNumber ,
grossSales and commissionRate as private , as shown previously in
lines 31–35 of Fig. 11.4.

Changes to Class CommissionEmployee ’s
Member-Function Definitions
In the CommissionEmployee constructor implementation (Fig. 11.14,
lines 10–15), we use member initializers (line 12) to set the values of
the members firstName , lastName and socialSecurityNumber . Though
we do not do so here, the derived-class BasePlusCommissionEmployee
(Fig. 11.15) can invoke non- private base-class member functions
(setFirstName , getFirstName , setLastName , getLastName ,
setSocialSecurityNumber and getSocialSecurityNumber) to manipulate
these data members, as can any client code of class
BasePlusCommissionEmployee (such as main).

Fig. 11.14 CommissionEmployee class implementation file:
CommissionEmployee class uses member functions to manipulate its
private data.

In the body of the constructor and in the bodies of member functions
earnings (Fig. 11.14, lines 70–72) and toString (lines 75–84), we call
the class’s set and get member functions to access the class’s
private data members. If we decide to change the data member
names, the earnings and toString definitions will not require
modification—only the definitions of the get and set member functions
that directly manipulate the data members will need to change. These
changes occur solely within the base class—no changes to the
derived class are needed. Localizing the effects of changes like this is
a good software engineering practice.

 Performance Tip 11.2

Using a member function to access a data member’s value can be
slightly slower than accessing the data directly. However, today’s
optimizing compilers perform many optimizations implicitly (such as
inlining set and get member-function calls). You should write code that
adheres to proper software engineering principles, and leave
optimization to the compiler. A good rule is, “Do not second-guess the
compiler.”

Changes to Class
BasePlusCommissionEmployee ’s Member-
Function Definitions
Class BasePlusCommissionEmployee inherits CommissionEmployee ’s public
member functions and can access the private base-class members
via the inherited member functions. The class’s header remains
unchanged from Fig. 11.10. The class has several changes to its
member-function implementations (Fig. 11.15) that distinguish it from
the previous version of the class (Figs. 11.10–11.11). Member
functions earnings (Fig. 11.15, lines 32–34) and toString (lines 37–
42) each invoke member function getBaseSalary to obtain the base
salary value, rather than accessing baseSalary directly. This insulates
earnings and toString from potential changes to the implementation
of data member baseSalary . For example, if we decide to rename data
member baseSalary or change its type, only member functions
setBaseSalary and getBaseSalary will need to change.

Fig. 11.15 BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private
data.

BasePlusCommissionEmployee Member
Function earnings
Class BasePlusCommissionEmployee ’s earnings function (Fig. 11.15,
lines 32–34) redefines class CommissionEmployee ’s earnings member
function (Fig. 11.14, lines 70–72) to calculate the earnings of a
BasePlusCommissionEmployee . Class BasePlusCommissionEmployee ’s
version of earnings obtains the portion of the employee’s earnings
based on commission alone by calling base-class
CommissionEmployee ’s earnings function with the expression
CommissionEmployee::earnings() as shown in line 33 of Fig. 11.15.
BasePlusCommissionEmployee ’s earnings function then adds the base
salary to this value to calculate the total earnings of the employee.
Note the syntax used to invoke a redefined base-class member
function from a derived class—place the base-class name and the
scope resolution operator (::) before the base-class member-function
name. This member-function invocation is a good software
engineering practice: Recall from Chapter 9 that, if an object’s
member function performs the actions needed by another object, we
should call that member function rather than duplicating its code body.
By having BasePlusCommissionEmployee ’s earnings function invoke
CommissionEmployee ’s earnings function to calculate part of a
BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems.

 Common Programming Error 11.2

When a base-class member function is redefined in a derived class,
the derived-class version often calls the base-class version to do
additional work. Failure to use the :: operator prefixed with the name

of the base class when referencing the base class’s member function
causes infinite recursion, because the derived-class member function
would then call itself.

BasePlusCommissionEmployee Member
Function toString
Similarly, BasePlusCommissionEmployee ’s toString function (Fig. 11.15,
lines 37–42) redefines class CommissionEmployee ’s toString function
(Fig. 11.14, lines 75–84) to output the appropriate base-salaried
commission employee information. The new version displays "base-
salaried" followed by the part of a BasePlusCommissionEmployee object’s
information returned by calling CommissionEmployee ’s toString member
function with the qualified name CommissionEmployee::toString() (Fig.
11.15, line 39)—this returns a string containing "commission
employee" and the values of class CommissionEmployee ’s private data
members. BasePlusCommissionEmployee ’s toString function then
outputs the remainder of a BasePlusCommissionEmployee object’s
information (i.e., the value of class BasePlusCommissionEmployee ’s base
salary preceded by "base salary:").

Testing the Modified Class Hierarchy
Once again, this example uses the BasePlusCommissionEmployee test
program from Fig. 11.9 and produces the same output. Although each
“base-salaried commission employee” class behaves identically, the
version in this example is the best engineered. By using inheritance
and by calling member functions that hide the data and ensure
consistency, we’ve efficiently and effectively constructed a well-
engineered class.

Summary of the CommissionEmployee–
BasePlusCommissionEmployee Examples
In this section, you saw an evolutionary set of examples that was
designed to teach key capabilities for good software engineering with
inheritance. You learned how to create a derived class using
inheritance, how to use protected base-class members to enable a
derived class to access inherited base-class data members and how
to redefine base-class functions to provide versions that are more
appropriate for derived-class objects. In addition, you learned how to
apply software engineering techniques from Chapter 9 and this
chapter to create classes that are easy to maintain, modify and debug.

11.4 Constructors and Destructors
in Derived Classes
Instantiating a derived-class object begins a chain of constructor calls
in which the derived-class constructor, before performing its own
tasks, invokes its direct base class’s constructor either explicitly (via a
base-class member initializer) or implicitly (calling the base class’s
default constructor). Similarly, if the base class is derived from another
class, the base-class constructor is required to invoke the constructor
of the next class up in the hierarchy, and so on. The last constructor
called in this chain is the one of the class at the base of the hierarchy,
whose body actually finishes executing first. The most-derived-class
constructor’s body finishes executing last. Each base-class
constructor initializes the base-class data members that the derived-
class object inherits. In the
CommissionEmployee / BasePlusCommissionEmployee hierarchy that we’ve
been studying, when a program creates a BasePlusCommissionEmployee
object, the CommissionEmployee constructor is called. Since class
CommissionEmployee is at the base of the hierarchy, its constructor
executes, initializing the private CommissionEmployee data members
that are part of the BasePlusCommissionEmployee object. When
CommissionEmployee ’s constructor completes execution, it returns
control to BasePlusCommissionEmployee ’s constructor, which initializes
the BasePlusCommissionEmployee object’s baseSalary .

 Software Engineering
Observation 11.6

When a program creates a derived-class object, the derived-class
constructor immediately calls the base-class constructor, the base-
class constructor’s body executes, then the derived class’s member
initializers execute and finally the derived-class constructor’s body
executes. This process cascades up the hierarchy if it contains more
than two levels.

When a derived-class object is destroyed, the program calls that
object’s destructor. This begins a chain (or cascade) of destructor
calls in which the derived-class destructor and the destructors of the
direct and indirect base classes and the classes’ members execute in
reverse of the order in which the constructors executed. When a
derived-class object’s destructor is called, the destructor performs its
task, then invokes the destructor of the next base class up the
hierarchy. This process repeats until the destructor of the final base
class at the top of the hierarchy is called. Then the object is removed
from memory.

 Software Engineering

Observation 11.7

Suppose that we create an object of a derived class where both the
base class and the derived class contain (via composition) objects of
other classes. When an object of that derived class is created, first the
constructors for the base class’s member objects execute, then the
base-class constructor body executes, then the constructors for the
derived class’s member objects execute, then the derived class’s
constructor body executes. Destructors for derived-class objects are
called in the reverse of the order in which their corresponding
constructors are called.

By default, base-class constructors, destructors and overloaded
assignment operators (Chapter 10) are not inherited by derived
classes. Derived-class constructors, destructors and overloaded
assignment operators, however, can call base-class versions.

C++11: Inheriting Base-Class
Constructors
Sometimes a derived class’s constructors simply specify the same
parameters as the base class’s constructors and simply pass the
constructor arguments to the base-class’s constructors. For such
cases, C++11 allows you to specify that a derived class should inherit
a base class’s constructors. To do so, explicitly include a using
declaration of the form

11

using BaseClass::BaseClass;

anywhere in the derived-class definition. In the preceding declaration,
BaseClass is the base class’s name. With a few exceptions (listed
below), for each constructor in the base class, the compiler generates
a derived-class constructor that calls the corresponding base-class
constructor. Each generated constructor has the same name as the
derived class. The generated constructors perform only default
initialization for the derived class’s additional data members.

When you inherit constructors:

Each generated constructor has the same access specifier
(public , protected or private) as its corresponding base-class
constructor.
The default, copy and move constructors are not inherited.
If a constructor is deleted in the base class by placing = delete in
its prototype, the corresponding constructor in the derived class is
also deleted.
If the derived class does not explicitly define constructors, the
compiler still generates a default constructor in the derived class.
A given base-class constructor is not inherited if a constructor that
you explicitly define in the derived class has the same parameter

list.
A base-class constructor’s default arguments are not inherited.
Instead, the compiler generates overloaded constructors in the
derived class. For example, if the base class declares the
constructor

BaseClass(int = 0, double = 0.0);

the compiler generates the following two derived-class constructors
without default arguments

DerivedClass();

DerivedClass(int);

DerivedClass(int, double);

These each call the BaseClass constructor that specifies the default
arguments.

11.5 public , protected and
private Inheritance

When deriving a class from a base class, the base class may be
inherited through public , protected or private inheritance. We
normally use public inheritance in this book. Use of protected
inheritance is rare. Chapter 19 demonstrates private inheritance as
an alternative to composition. Figure 11.16 summarizes for each type
of inheritance the accessibility of base-class members in a derived
class. The first column contains the base-class member access
specifiers.

When deriving a class with public inheritance, public members of the
base class become public members of the derived class, and
protected members of the base class become protected members of
the derived class. A base class’s private members are never

accessible directly from a derived class, but can be accessed through
calls to the public and protected member functions of the base class.

When deriving a class with protected inheritance, public and
protected members of the base class become protected members of
the derived class. When deriving a class with private inheritance,
public and protected members of the base class become private

members (e.g., the functions become utility functions) of the derived
class. private and protected inheritance are not is-a relationships,
because the base class’s public members are not accessible to the

derived class’s client code.

Fig. 11.16 Summary of base-class member accessibility in a
derived class.

Base-class
member-
access
specifier

Type of inheritance

public inheritance protected

inheritance

private

inheritance

public public in derived

class.

Can be accessed
directly by member
functions, friend

functions and
nonmember
functions.

protected in

derived class.

Can be accessed
directly by member
functions and
friend functions.

private in derived

class.

Can be accessed
directly by member
functions and
friend functions.

protected protected in

derived class.

Can be accessed
directly by member
functions and
friend functions.

protected in

derived class.

Can be accessed
directly by member
functions and
friend functions.

private in derived

class.

Can be accessed
directly by member
functions and
friend functions.

private Hidden in derived
class.

Can be accessed by
member functions
and friend

functions through
public or

protected member

functions of the base
class.

Hidden in derived
class.

Can be accessed by
member functions
and friend

functions through
public or

protected member

functions of the base
class.

Hidden in derived
class.

Can be accessed by
member functions
and friend

functions through
public or

protected member

functions of the base
class.

11.6 Wrap-Up
This chapter introduced inheritance—the ability to create a class by
absorbing an existing class’s data members and member functions
and embellishing them with new capabilities. Through a series of
examples using an employee inheritance hierarchy, you learned the
notions of base classes and derived classes and used public
inheritance to create a derived class that inherits members from a
base class. The chapter introduced the access specifier protected—
derived-class member functions can access protected base-class
members. You learned how to access redefined base-class members
by qualifying their names with the base-class name and scope
resolution operator (::). You also saw the order in which constructors
and destructors are called for objects of classes that are part of an
inheritance hierarchy. Finally, we explained the three types of
inheritance— public , protected and private—and the accessibility of
base-class members in a derived class when using each type.

In Chapter 12, Object-Oriented Programming: Polymorphism, we
build on our discussion of inheritance by introducing polymorphism—
an object-oriented concept that enables us to write programs that
handle, in a more general manner, objects of a wide variety of classes
related by inheritance. After studying Chapter 12, you’ll be familiar
with classes, objects, encapsulation, inheritance and polymorphism—
the essential concepts of object-oriented programming.

Summary

Section 11.1 Introduction

Inheritance (p. 498) enables you to create a class that absorbs an
existing class’s capabilities, then customizes or enhances them.
The existing class is called the base class (p. 498), and the new
class is referred to as the derived class (p. 498).
Every object of a derived class is also an object of that class’s
base class. However, a base-class object is not an object of that
class’s derived classes.
The is-a relationship (p. 498) represents inheritance. In an is-a
relationship, an object of a derived class also can be treated as an
object of its base class.

Section 11.2 Base Classes and
Derived Classes

A direct base class (p. 499) is the one from which a derived class
explicitly inherits. An indirect base class (p. 499) is inherited from
two or more levels up the class hierarchy (p. 499).
With single inheritance (p. 499), a class is derived from one base
class. With multiple inheritance (p. 499), a class inherits from
multiple (possibly unrelated) base classes.
A derived class represents a more specialized group of objects.
Inheritance relationships form class hierarchies.
It’s possible to treat base-class objects and derived-class objects
similarly; the commonality shared between the object types is
expressed in the base class’s data members and member
functions.

Section 11.4 Constructors and
Destructors in Derived Classes

When an object of a derived class is instantiated, the base class’s
constructor is called immediately to initialize the base-class data
members in the derived-class object, then the derived-class
constructor initializes the additional derived-class data members.
When a derived-class object is destroyed, the destructors are
called in the reverse order of the constructors—first the derived-
class destructor is called, then the base-class destructor is called.
A base class’s public members are accessible anywhere that the
program has a handle to an object of that base class or to an
object of one of that base class’s derived classes.
A base class’s private members are accessible only within the
base class or from its friends.
A base class’s protected members can be accessed by members
and friends of that base class and by members and friends of
any classes derived from that base class.
In C++11, a derived class can inherit constructors from its base
class by including anywhere in the derived-class definition a using
declaration of the form

using BaseClass::BaseClass;

Section 11.5 public , protected
and private Inheritance

Declaring data members private , while providing non- private
member functions to manipulate and perform validity checking on
this data, enforces good software engineering.
When deriving a class, the base class may be declared as either
public , protected or private .
When deriving a class with public inheritance (p. 525), public
members of the base class become public members of the
derived class, and protected members of the base class become
protected members of the derived class.
When deriving a class with protected inheritance (p. 525), public
and protected members of the base class become protected
members of the derived class.
When deriving a class with private inheritance (p. 525), public
and protected members of the base class become private
members of the derived class.

Self-Review Exercises
1. 11.1 Fill in the blanks in each of the following statements:

A. enables new classes to absorb the data and
behaviors of existing classes and embellish these
classes with new capabilities.

B. A base class’s and members can be
accessed in the base-class definition, in derived-class
definitions and in friends of the base class and derived
classes.

C. In a(n) relationship, an object of a derived class
also can be treated as an object of its base class.

D. In a(n) relationship, a class object has one or
more objects of other classes as members.

E. In single inheritance, a class exists in a(n)
relationship with its derived classes.

F. A base class’s members are accessible within
that base class and anywhere that the program has a
handle to an object of that class or one of its derived
classes.

G. A base class’s protected access members have a level
of protection between those of public and
access.

H. C++ provides for , which allows a derived class
to inherit from many base classes, even if the base
classes are unrelated.

I. When an object of a derived class is instantiated, the
base class’s is called implicitly or explicitly to do
any necessary initialization of the base-class data
members in the derived-class object.

J. When deriving a class with public inheritance, public
members of the base class become members
of the derived class, and protected members of the base
class become members of the derived class.

K. When deriving from a class with protected inheritance,
public members of the base class become
members of the derived class, and protected members
of the base class become members of the
derived class.

2. 11.2 State whether each of the following is true or false. If false,
explain why.

A. Base-class constructors are not automatically inherited
by derived classes.

B. A has-a relationship is implemented via inheritance.
C. A Car class has an is-a relationship with the

SteeringWheel and Brakes classes.
D. When a derived-class object is destroyed, the

destructors are called in the reverse order of the
constructors.

Exercises
1. 11.3 (Composition as an Alternative to Inheritance) Many

programs written with inheritance can be written with
composition instead, and vice versa. Rewrite class
BasePlusCommissionEmployee of the
CommissionEmployee– BasePlusCommissionEmployee hierarchy to
use composition rather than inheritance. After you do this,
assess the relative merits of the two approaches for designing
classes CommissionEmployee and BasePlusCommissionEmployee , as
well as for object-oriented programs in general. Which
approach is more natural? Why?

2. 11.4 (Inheritance Advantage) Discuss the ways in which
inheritance saves time during program development and helps
prevent errors.

3. 11.5 (Protected vs. Private Base Classes) Some
programmers prefer not to use protected access because they
believe it breaks the encapsulation of the base class. Discuss
the relative merits of using protected access vs. using private
access in base classes.

4. 11.6 (Student Inheritance Hierarchy) Draw an inheritance
hierarchy for students at a university similar to the hierarchy
shown in Fig. 11.2. Use Student as the base class of the
hierarchy, then include classes UndergraduateStudent and
GraduateStudent that derive from Student . Continue to extend

the hierarchy as deep (i.e., as many levels) as possible. For
example, Freshman , Sophomore , Junior and Senior might derive
from UndergraduateStudent , and DoctoralStudent and Masters-
Student might derive from GraduateStudent . After drawing the

hierarchy, discuss the relationships that exist between the
classes. [Note: You do not need to write any code for this
exercise.]

5. 11.7 (Richer Shape Hierarchy) The world of shapes is much
richer than the shapes included in the inheritance hierarchy of
Fig. 11.3. Write down all the shapes you can think of—both
two-dimensional and three-dimensional—and form them into a
more complete Shape hierarchy with as many levels as
possible. Your hierarchy should have the base-class Shape
from which class TwoDimensionalShape and class
ThreeDimensionalShape are derived. [Note: You do not need to
write any code for this exercise.] We’ll use this hierarchy in the
exercises of Chapter 12 to process a set of distinct shapes as
objects of base-class Shape . (This technique, called
polymorphism, is the subject of Chapter 12.)

6. 11.8 (Quadrilateral Inheritance Hierarchy) Draw an
inheritance hierarchy for classes Quadrilateral , Trapezoid ,
Parallelogram , Rectangle and Square . Use Quadrilateral as the
base class of the hierarchy. Make the hierarchy as deep as
possible.

7. 11.9 (Package Inheritance Hierarchy) Package-delivery
services, such as FedEx , DHL and UPS , offer a number of
different shipping options, each with specific costs associated.

® ® ®

Create an inheritance hierarchy to represent various types of
packages. Use class Package as the base class of the
hierarchy, then include classes TwoDayPackage and
OvernightPackage that derive from Package .
Base-class Package should include data members representing
the name, address, city, state and ZIP code for both the sender
and the recipient of the package, in addition to data members
that store the weight (in ounces) and cost per ounce to ship the
package. Package ’s constructor should initialize these data
members. Ensure that the weight and cost per ounce contain
positive values. Package should provide a public member
function calculateCost that returns a double indicating the cost
associated with shipping the package. Package ’s calculateCost
function should determine the cost by multiplying the weight by
the cost per ounce.
Derived-class TwoDayPackage should inherit the functionality of
base-class Package , but also include a data member that
represents a flat fee that the shipping company charges for
two-day-delivery service. TwoDayPackage ’s constructor should
receive a value to initialize this data member. TwoDayPackage
should redefine member function calculateCost so that it
computes the shipping cost by adding the flat fee to the weight-
based cost calculated by base-class Package ’s calculateCost
function.
Class OvernightPackage should inherit directly from class
Package and contain an additional data member representing

an additional fee per ounce charged for overnight-delivery
service. OvernightPackage should redefine member function
calculateCost so that it adds the additional fee per ounce to the
standard cost per ounce before calculating the shipping cost.
Write a test program that creates objects of each type of
Package and tests member function calculateCost .

8. 11.10 (Account Inheritance Hierarchy) Create an inheritance
hierarchy that a bank might use to represent customers’ bank
accounts. All customers at this bank can deposit (i.e., credit)
money into their accounts and withdraw (i.e., debit) money from
their accounts. More specific types of accounts also exist.
Savings accounts, for instance, earn interest on the money they
hold. Checking accounts, on the other hand, charge a fee per
transaction (i.e., credit or debit).
Create an inheritance hierarchy containing base-class Account
and derived classes SavingsAccount and CheckingAccount that
inherit from class Account . Base-class Account should include
one data member of type double to represent the account
balance. The class should provide a constructor that receives
an initial balance and uses it to initialize the data member. The
constructor should validate the initial balance to ensure that it’s
greater than or equal to 0.0 . If not, the balance should be set to
0.0 and the constructor should display an error message,
indicating that the initial balance was invalid. The class should
provide three member functions. Member function credit
should add an amount to the current balance. Member function
debit should withdraw money from the Account and ensure that

the debit amount does not exceed the Account ’s balance. If it
does, the balance should be left unchanged and the function
should print the message "Debit amount exceeded account
balance." Member function getBalance should return the
current balance.
Derived-class SavingsAccount should inherit the functionality of
an Account , but also include a data member of type double
indicating the interest rate (percentage) assigned to the
Account . SavingsAccount ’s constructor should receive the initial
balance, as well as an initial value for the SavingsAccount ’s
interest rate. SavingsAccount should provide a public member
function calculateInterest that returns a double indicating the
amount of interest earned by an account. Member function
calculateInterest should determine this amount by multiplying
the interest rate by the account balance. [Note: SavingsAccount
should inherit member functions credit and debit as is without
redefining them.]
Derived-class CheckingAccount should inherit from base-class
Account and include an additional data member of type double
that represents the fee charged per transaction.
CheckingAccount ’s constructor should receive the initial balance,
as well as a parameter indicating a fee amount. Class
CheckingAccount should redefine member functions credit and
debit so that they subtract the fee from the account balance
whenever either transaction is performed successfully.
CheckingAccount ’s versions of these functions should invoke the

base-class Account version to perform the updates to an
account balance. CheckingAccount ’s debit function should
charge a fee only if money is actually withdrawn (i.e., the debit
amount does not exceed the account balance). [Hint: Define
Account ’s debit function so that it returns a bool indicating
whether money was withdrawn. Then use the return value to
determine whether a fee should be charged.]
After defining the classes in this hierarchy, write a program that
creates objects of each class and tests their member functions.
Add interest to the SavingsAccount object by first invoking its
calculateInterest function, then passing the returned interest
amount to the object’s credit function.

Answers to Self-Review Exercises
1. 11.1

A. Inheritance.
B. public , protected .
C. is-a or inheritance (for public inheritance).
D. has-a or composition or aggregation.
E. hierarchical.
F. public .
G. private .
H. multiple inheritance.
I. constructor.
J. public , protected .
K. protected , protected .

2. 11.2
A. True.
B. False. A has-a relationship is implemented via

composition. An is-a relationship is implemented via
inheritance.

C. False. This is an example of a has-a relationship. Class
Car has an is-a relationship with class Vehicle .

D. True.

12 Object-Oriented Programming:
Polymorphism

Objectives
In this chapter you’ll:

See how polymorphism makes programming more convenient and
systems more extensible.
Understand the relationships among objects in an inheritance
hierarchy.
Use C++11’s overrides keyword when overriding a base-class
virtual function in a derived class.
Use C++11’s default keyword to autogenerate a virtual
destructor.
Use C++11’s final keyword to indicate that a base-class virtual
function cannot be overridden.
Create an inheritance hierarchy with both abstract and concrete
classes.
Determine an object’s type at runtime using runtime type
information (RTTI), dynamic_cast , typeid and type_info.
Understand how C++ can implement virtual functions and dynamic
binding.
Use virtual destructors to ensure that all appropriate destructors
run on an object.

Outline
1. 12.1 Introduction
2. 12.2 Introduction to Polymorphism: Polymorphic Video

Game
3. 12.3 Relationships Among Objects in an Inheritance

Hierarchy
A. 12.3.1 Invoking Base-Class Functions from Derived-

Class Objects
B. 12.3.2 Aiming Derived-Class Pointers at Base-Class

Objects
C. 12.3.3 Derived-Class Member-Function Calls via

Base-Class Pointers

4. 12.4 Virtual Functions and Virtual Destructors
A. 12.4.1 Why virtual Functions Are Useful
B. 12.4.2 Declaring virtual Functions
C. 12.4.3 Invoking a virtual Function Through a Base-

Class Pointer or Reference
D. 12.4.4 Invoking a virtual Function Through an

Object’s Name
E. 12.4.5 virtual Functions in the CommissionEmployee

Hierarchy
F. 12.4.6 virtual Destructors
G. 12.4.7 C++11: final Member Functions and Classes

5. 12.5 Type Fields and switch Statements
6. 12.6 Abstract Classes and Pure virtual Functions

A. 12.6.1 Pure virtual Functions
B. 12.6.2 Device Drivers: Polymorphism in Operating

Systems

7. 12.7 Case Study: Payroll System Using Polymorphism
A. 12.7.1 Creating Abstract Base Class Employee
B. 12.7.2 Creating Concrete Derived Class

SalariedEmployee

C. 12.7.3 Creating Concrete Derived Class
CommissionEmployee

D. 12.7.4 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee

E. 12.7.5 Demonstrating Polymorphic Processing

8. 12.8 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood”

9. 12.9 Case Study: Payroll System Using Polymorphism and
Runtime Type Information with Downcasting, dynamic_cast ,
typeid and type_info

10. 12.10 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

12.1 Introduction
We now continue our study of OOP by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enables
you to “program in the general” rather than “program in the specific.”
In particular, you can write programs that process objects of classes
that are part of the same class hierarchy as if they were all objects of
the hierarchy’s base class. As we’ll soon see, polymorphism works off
base-class pointer handles and base-class reference handles, but not
off name handles.

Implementing for Extensibility
With polymorphism, you can design and implement systems that are
easily extensible— new classes can be added with little or no
modification to the general portions of the program, as long as the
new classes are part of the inheritance hierarchy that the program
processes generally. The only parts of a program that must be altered
to accommodate new classes are those that require direct knowledge
of the new classes that you add to the hierarchy. For example, if we
create class Tortoise that inherits from class Animal (which might
respond to a move message by crawling one inch), we need to write
only the Tortoise class and the part of the simulation that instantiates
a Tortoise object. The portions of the simulation that process each
Animal generally can remain the same.

Optional Discussion of Polymorphism
“Under the Hood”
A key feature of this chapter is its optional detailed discussion of
polymorphism, virtual functions and dynamic binding “under the
hood,” which uses a detailed diagram to explain how polymorphism is
typically implemented in C++.

12.2 Introduction to Polymorphism:
Polymorphic Video Game
Suppose we have to design a video game that manipulates objects of
many different types, including objects of classes Martian , Venutian ,
Plutonian , SpaceShip and LaserBeam . Imagine that each of these
classes inherits from the common base class SpaceObject , which
contains the member function draw . Each derived class implements
this function in a manner appropriate for that class. A screen-manager
program maintains a container (e.g., a vector) that holds SpaceObject
pointers to objects of the various classes. To refresh the screen, the
screen manager periodically sends each object the same message—
namely, draw . Each type of object responds in a unique way. For
example, a Martian object might draw itself in red with the appropriate
number of antennae, a SpaceShip object might draw itself as a silver
flying saucer, and a LaserBeam object might draw itself as a bright red
beam across the screen. The same message (in this case, draw) sent
to a variety of objects has many forms of results—hence the term
polymorphism.

A polymorphic screen manager facilitates adding new classes to a
system with minimal modifications to its code. Suppose that we want
to add objects of class Mercurian to our video game. To do so, we

must build a class Mercurian that inherits from SpaceObject , and
provides its own definition of member function draw . Then, when
pointers to objects of class Mercurian appear in the container, you do

not need to modify the code for the screen manager. The screen
manager simply invokes member function draw in the same way on

every object in the container, regardless of the object’s type, so the
new Mercurian objects just “plug right in.” Thus, without modifying the

system (other than to include— and create objects of—the new
classes), you can use polymorphism to accommodate additional
classes, including ones that were not even envisioned when the
system was created.

 Software Engineering
Observation 12.1

Polymorphism enables you to deal in generalities and let the
execution-time environment concern itself with the specifics. You can
direct a variety of objects to behave in manners appropriate to those
objects without even knowing their types—as long as those objects
belong to the same inheritance hierarchy and are being accessed off a
common base-class pointer or a common base-class reference.

 Software Engineering
Observation 12.2

Polymorphism promotes extensibility: Software written to invoke
polymorphic behavior is written independently of the specific types of
the objects to which messages are sent. Thus, new types of objects
that can respond to existing messages can be incorporated into such
a system without modifying the base system. Only client code that
instantiates new objects must be modified to accommodate new
types.

12.3 Relationships Among Objects
in an Inheritance Hierarchy
Section 11.3 created an employee class hierarchy, in which class
BasePlusCommissionEmployee inherited from class CommissionEmployee .
The Chapter 11 examples manipulated CommissionEmployee and
BasePlusCommissionEmployee objects by using the objects’ names to
invoke their member functions. We now examine the relationships
among classes in a hierarchy more closely. The next several sections
present a series of examples that demonstrate how base-class and
derived-class pointers can be aimed at base-class and derived-class
objects, and how those pointers can be used to invoke member
functions that manipulate those objects.

In Section 12.3.1, we assign the address of a derived-class object
to a base-class pointer, then show that invoking a function via the
base-class pointer invokes the base-class functionality in the
derived-class object—i.e., the type of the handle determines which
function is called.
In Section 12.3.2, we assign the address of a base-class object to
a derived-class pointer, which results in a compilation error. We
discuss the error message and investigate why the compiler does
not allow such an assignment.
In Section 12.3.3, we assign the address of a derived-class object
to a base-class pointer, then examine how the base-class pointer

can be used to invoke only the base-class functionality—when we
attempt to invoke derived-class-only member functions through the
base-class pointer, compilation errors occur.
Finally, in Section 12.4, we demonstrate how to get polymorphic
behavior from base-class pointers aimed at derived-class objects.
We introduce virtual functions and polymorphism by declaring a
base-class function as virtual . We then assign the address of a
derived-class object to the base-class pointer and use that pointer
to invoke derived-class functionality—precisely the capability we
need to achieve polymorphic behavior.

A key concept in these examples is to demonstrate that with public
inheritance an object of a derived class can be treated as an object of
its base class. This enables various interesting manipulations. For
example, a program can create an array of base-class pointers that
point to objects of many derived-class types. Despite the fact that the
derived-class objects are of different types, the compiler allows this
because each derived-class object is an object of its base class.
However, we cannot treat a base-class object as an object of any of
its derived classes. For example, a CommissionEmployee is not a
BasePlusCommissionEmployee in the hierarchy defined in Chapter 11—a
CommissionEmployee does not have a baseSalary data member and
does not have member functions setBaseSalary and getBaseSalary .
The is-a relationship applies only from a derived class to its direct and
indirect base classes.

12.3.1 Invoking Base-Class
Functions from Derived-Class
Objects

The example in Fig. 12.1 reuses the final versions of classes
CommissionEmployee and BasePlusCommissionEmployee from Section
11.3.5. The example demonstrates three ways to aim base- and
derived-class pointers at base- and derived-class objects. The first two
are natural and straightforward—we aim a base-class pointer at a
base-class object and invoke base-class functionality, and we aim a
derived-class pointer at a derived-class object and invoke derived-
class functionality. Then, we demonstrate the relationship between
derived classes and base classes (i.e., the is-a relationship of
inheritance) by aiming a base-class pointer at a derived-class object
and showing that the base-class functionality is indeed available in the
derived-class object.

Fig. 12.1 Assigning addresses of base-class and derived-class
objects to base-class and derived-class pointers.

Recall that each BasePlusCommissionEmployee object is a

CommissionEmployee that also has a base salary. Class
BasePlusCommissionEmployee ’s earnings member function (lines 32–34
of Fig. 11.15) redefines class CommissionEmployee ’s earnings member
function (lines 70–72 of Fig. 11.14) to include the object’s base salary.
Class BasePlusCommissionEmployee ’s toString member function (lines
37–42 of Fig. 11.15) redefines class CommissionEmployee ’s version
(lines 75–84 of Fig. 11.14) to display the same information plus the
employee’s base salary.

Creating Objects and Displaying Their
Contents
In Fig. 12.1, lines 12–13 create a CommissionEmployee object and lines
16–17 create a BasePlusCommissionEmployee object. Lines 23 and 25
use each object’s name to invoke its toString member function.

Aiming a Base-Class Pointer at a Base-
Class Object
Line 28 creates commissionEmployeePtr—a pointer to a
CommissionEmployee object—and initializes it with the address of base-
class object commissionEmployee . Line 31 uses the pointer to invoke
member function toString on the CommissionEmployee object. This

invokes the version of toString defined in base class

CommissionEmployee .

Aiming a Derived-Class Pointer at a
Derived-Class Object
Similarly, lines 34–35 create basePlusCommissionEmployeePtr—a pointer
to a BasePlusCommissionEmployee object—and initialize it with the
address of derived-class object basePlusCommissionEmployee . Line 39
uses the pointer to invoke member function to-String on the
BasePlusCommissionEmployee object. This invokes the version of to-
String defined in derived class BasePlusCommissionEmployee .

Aiming a Base-Class Pointer at a Derived-
Class Object
Line 42 then assigns the address of derived-class object
basePlusCommissionEmployee to base-class pointer
commissionEmployeePtr , which line 46 uses to invoke member function
toString . This “crossover” is allowed because an object of a derived
class is an object of its base class. Despite the fact that the base-class
CommissionEmployee pointer points to a derived-class

BasePlusCommissionEmployee object, the base-class

CommissionEmployee ’s toString member function is invoked, rather than
BasePlusCommissionEmployee ’s to-String function—notice in this case

that neither "base-salaried" nor the BasePlusCommissionEmployee ’s base
salary is displayed.

The output of each toString member-function invocation in this
program reveals that the invoked functionality depends on the type of
the pointer (or reference, as you’ll soon see) used to invoke the
function, not the type of the object for which the member function is
called. In Section 12.4, when we introduce virtual functions, we
demonstrate that it’s possible to invoke the object type’s functionality,
rather than invoke the pointer type’s (or reference type’s) functionality.
We’ll see that this is crucial to implementing polymorphic behavior—
the key topic of this chapter.

12.3.2 Aiming Derived-Class
Pointers at Base-Class Objects

In Section 12.3.1, we assigned the address of a derived-class object
to a base-class pointer and explained that the C++ compiler allows
this assignment, because a derived-class object is a base-class
object. We take the opposite approach in Fig. 12.2, as we aim a
derived-class pointer at a base-class object. [Note: This program
reuses the final versions of classes CommissionEmployee and
BasePlusCommissionEmployee from Section 11.3.5.] Lines 7–8 of Fig.
12.2 create a CommissionEmployee object. Lines 12–13 attempt to
create and initialize a BasePlusCommissionEmployee pointer with the
address of base-class object commissionEmployee , but the compiler
generates an error, because a CommissionEmployee is not a
BasePlusCommissionEmployee .

Fig. 12.2 Aiming a derived-class pointer at a base-class object.

Consider the consequences if the compiler were to allow this
assignment. Through a BasePlusCommissionEmployee pointer, we can
invoke every BasePlusCommissionEmployee member function, including
setBaseSalary , for the object to which the pointer points (i.e., the base-
class object commissionEmployee). However, the CommissionEmployee
object does not provide a setBaseSalary member function, nor does it
provide a baseSalary data member to set. This could lead to problems,
because member function setBaseSalary would assume that there’s a
baseSalary data member to set at its “usual location” in a
BasePlusCommissionEmployee object. This memory does not belong to
the CommissionEmployee object, so member function setBaseSalary
might overwrite other important data in memory, possibly data that
belongs to a different object.

12.3.3 Derived-Class Member-
Function Calls via Base-Class
Pointers

Off a base-class pointer, the compiler allows us to invoke only base-
class member functions. Thus, if a base-class pointer is aimed at a
derived-class object, and an attempt is made to access a derived-
class-only member function, a compilation error will occur. Figure
12.3 shows the consequences of attempting to invoke a derived-class-
only member function off a base-class pointer. [Note: We’re again
reusing the versions of classes CommissionEmployee and
BasePlusCommissionEmployee from Section 11.3.5.]

Fig. 12.3 Attempting to invoke derived-class-only functions via a
base-class pointer.

Lines 10–11 create a BasePlusCommissionEmployee object. Line 14
creates commissionEmployeePtr—a pointer to a CommissionEmployee
object—and initializes it with the address of the derived-class object

basePlusCommissionEmployee . Again, this is allowed, because a
BasePlusCommissionEmployee is a CommissionEmployee (in the sense that
a BasePlusCommissionEmployee object contains all the functionality of a
CommissionEmployee object).

Lines 18–22 invoke base-class member functions getFirstName ,
getLastName , getSocialSecurityNumber , getGrossSales and
getCommissionRate off the base-class pointer. All of these calls are
allowed, because BasePlusCommissionEmployee inherits these member
functions from CommissionEmployee .

We know that commissionEmployeePtr is aimed at a
BasePlusCommissionEmployee object, so in lines 26–27 we attempt to
invoke BasePlusCommissionEmployee member functions getBaseSalary
and setBaseSalary . The compiler generates errors on both of these
calls, because these functions are not member functions of base-class
CommissionEmployee . The handle can be used to invoke only those
functions that are members of that handle’s associated class type. (In
this case, off a CommissionEmployee* , we can invoke only
CommissionEmployee member functions setFirstName , getFirstName ,
setLastName , getLastName , setSocialSecurityNumber ,
getSocialSecurityNumber , setGrossSales , getGrossSales ,
setCommissionRate , getCommissionRate , earnings and toString .)

Downcasting

The compiler will allow access to derived-class-only members from a
base-class pointer that’s aimed at a derived-class object if we
explicitly cast the base-class pointer to a derived-class pointer—this is
known as downcasting. As you know, it’s possible to aim a base-
class pointer at a derived-class object. However, as we demonstrated
in Fig. 12.3, a base-class pointer can be used to invoke only the
functions declared in the base class. Downcasting allows a derived-
class-specific operation on a derived-class object pointed to by a
base-class pointer. Downcasting is a potentially dangerous operation.
Section 12.9 demonstrates how to safely use downcasting.

12.4 Virtual Functions and Virtual
Destructors
In Section 12.3.1, we aimed a base-class CommissionEmployee pointer
at a derived-class BasePlusCommissionEmployee object, then invoked
member function toString through that pointer. Recall that the type of

the handle determined which class’s functionality to invoke. In that
case, the CommissionEmployee pointer invoked the CommissionEmployee
member function toString on the BasePlusCommissionEmployee object,
even though the pointer was aimed at a BasePlusCommissionEmployee
object that has its own custom toString function.

12.4.1 Why virtual Functions Are
Useful

Suppose that shape classes such as Circle , Triangle , Rectangle and
Square are all derived from base class Shape . Each of these classes
might be endowed with the ability to draw itself via a member function
draw , but the function for each shape is quite different. In a program
that draws a set of shapes, it would be useful to be able to treat all the
shapes generally as objects of the base class Shape . Then, to draw
any shape, we could simply use a base-class Shape pointer to invoke
function draw and let the program determine dynamically (i.e., at
runtime) which derived-class draw function to use, based on the type
of the object to which the base-class Shape pointer points at any given
time. This is polymorphic behavior.

 Software Engineering Observation
12.3
With virtual functions, the type of the object—not the type of the

handle used to invoke the object’s member function—determines
which version of a virtual function to invoke.

12.4.2 Declaring virtual
Functions

To enable this behavior, we declare draw in the base class as a
virtual function, and we override draw in each of the derived
classes to draw the appropriate shape. From an implementation
perspective, overriding a function is no different than redefining one
(which is the approach we’ve been using until now). An overridden
function in a derived class has the same signature and return type
(i.e., prototype) as the function it overrides in its base class. If we do
not declare the base-class function as virtual , we can redefine that
function.

By contrast, if we do declare the base-class function as virtual , we
can override that function to enable polymorphic behavior. We declare
a virtual function by preceding the function’s prototype with the
keyword virtual in the base class. For example,

virtual void draw() const;

would appear in base class Shape . The preceding prototype declares
that function draw is a virtual function that takes no arguments and

returns nothing. This function is declared const because a draw
function typically would not make changes to the Shape object on
which it’s invoked. Virtual functions do not have to be const functions.

 Software Engineering Observation
12.4
Once a function is declared virtual , it remains virtual all the way

down the inheritance hierarchy from that point, even if that function is
not explicitly declared virtual when a derived class overrides it.

 Good Programming Practice 12.1
Even though certain functions are implicitly virtual because of a

declaration made higher in the class hierarchy, for clarity explicitly
declare these functions virtual at every level of the class hierarchy.

 Software Engineering Observation
12.5

When a derived class chooses not to override a virtual function from

its base class, the derived class simply inherits its base class’s
virtual function implementation.

12.4.3 Invoking a virtual
Function Through a Base-Class
Pointer or Reference

If a program invokes a virtual function through a base-class pointer
to a derived-class object (e.g., shapePtr->draw()) or a base-class
reference to a derived-class object (e.g., shapeRef.draw()), the
program will choose the correct derived-class function dynamically
(i.e., at execution time) based on the object type—not the pointer or
reference type. Choosing the appropriate function to call at execution
time (rather than at compile time) is known as dynamic binding.

12.4.4 Invoking a virtual
Function Through an Object’s
Name

When a virtual function is called by referencing a specific object by
name and using the dot member-selection operator (e.g.,
squareObject.draw()), the function invocation is resolved at compile

time (this is called static binding) and the virtual function that’s
called is the one defined for (or inherited by) the class of that particular
object—this is not polymorphic behavior. Dynamic binding with
virtual functions occurs only off pointers and references.

12.4.5 virtual Functions in the
CommissionEmployee Hierarchy

Now let’s see how virtual functions can enable polymorphic behavior
in our employee hierarchy. Figures 12.4–12.5 are the headers for
classes CommissionEmployee and BasePlusCommissionEmployee ,
respectively. We’ve modified these to declare each class’s earnings
and toString member functions as virtual (lines 28–29 of Fig. 12.4
and lines 17–18 of Fig. 12.5). Because functions earnings and
toString are virtual in class CommissionEmployee , class
BasePlusCommissionEmployee ’s earnings and toString functions
override class CommissionEmployee ’s. In addition, class
BasePlusCommissionEmployee ’s earnings and toString functions are
declared with C++11’s override keyword.

 Error-Prevention Tip 12.1
To help prevent errors, apply C++11’s override keyword to the

prototype of every derived-class function that overrides a base-class
virtual function. This enables the compiler to check whether the base

class has a virtual member function with the same signature. If not,

the compiler generates an error. Not only does this ensure that you

override the base-class function with the appropriate signature, it also
prevents you from accidentally hiding a base-class function that has
the same name and a different signature.

11

Now, if we aim a base-class CommissionEmployee pointer at a derived-
class BasePlusCommissionEmployee object, and the program uses that
pointer to call either function earnings or toString , the
BasePlusCommissionEmployee object’s corresponding function will be
invoked polymorphically. There were no changes to the member-
function implementations of classes CommissionEmployee and
BasePlusCommissionEmployee , so we reuse the versions of Figs. 11.14
and 11.15.

Fig. 12.4 CommissionEmployee class header declares earnings and
toString as virtual .

Fig. 12.5 BasePlusCommissionEmployee class header declares earnings
and toString functions as virtual and override .

We modified Fig. 12.1 to create the program of Fig. 12.6. Lines 32–44
of Fig. 12.6 demonstrate again that a CommissionEmployee pointer
aimed at a CommissionEmployee object can be used to invoke
CommissionEmployee functionality, and a BasePlusCommissionEmployee
pointer aimed at a BasePlusCommissionEmployee object can be used to
invoke BasePlusCommissionEmployee functionality. Line 47 aims the
base-class pointer commissionEmployeePtr at derived-class object
basePlusCommissionEmployee . When line 54 invokes member function
toString off the base-class pointer, the derived-class
BasePlusCommissionEmployee ’s toString member function is invoked, so
line 54 outputs different text than line 46 does in Fig. 12.1 (when

member function toString was not declared virtual). We see that
declaring a member function virtual causes the program to
dynamically determine which function to invoke based on the type of
object to which the handle points, rather than on the type of the
handle. When commissionEmployeePtr points to a CommissionEmployee
object, class CommissionEmployee ’s toString function is invoked (Fig.
12.6, line 36), and when commissionEmployeePtr points to a
BasePlusCommissionEmployee object, class BasePlusCommissionEmployee ’s
toString function is invoked (line 54). Thus, the same toString
message—sent off a base-class pointer to a variety of derived-class
objects—takes on many forms. This is polymorphic behavior.

Fig. 12.6 Demonstrating polymorphism by invoking a derived-
class virtual function via a base-class pointer to a derived-class
object.

12.4.6 virtual Destructors

A problem can occur when using polymorphism to process
dynamically allocated objects of a class hierarchy. So far you’ve seen
destructors that are not declared with keyword virtual . If a derived-
class object with a non- virtual destructor is destroyed by applying
the delete operator to a base-class pointer to the object, the C++
standard specifies that the behavior is undefined.

The simple solution to this problem is to create a public virtual
destructor in the base class. If a base-class destructor is declared
virtual , the destructors of any derived classes are also virtual . For
example, in class CommissionEmployee ’s definition (Fig. 12.4), we can
define the virtual destructor as follows:

virtual ~CommissionEmployee() {};

Now, if an object in the hierarchy is destroyed explicitly by applying
the delete operator to a base-class pointer, the destructor for the
appropriate class is called, based on the object to which the base-
class pointer points. Remember, when a derived-class object is
destroyed, the base-class part of the derived-class object is also
destroyed, so it’s important for the destructors of both the derived and

base classes to execute. The base-class destructor automatically
executes after the derived-class destructor. From this point forward,
we’ll include a virtual destructor in every class that contains virtual
functions and requires a destructor.

 Error-Prevention Tip 12.2
If a class has virtual functions, always provide a virtual destructor,

even if one is not required for the class. This ensures that a custom
derived-class destructor (if there is one) will be invoked when a
derived-class object is deleted via a base-class pointer.

 Common Programming Error 12.1
Constructors cannot be virtual . Declaring a constructor virtual is a

compilation error.

The preceding destructor definition also may be written as follows:

virtual ~CommissionEmployee() = default;

In C++11, you can tell the compiler to explicitly generate the default
version of a default constructor, copy constructor, move constructor,

copy assignment operator, move assignment operator or destructor by
following the special member function’s prototype with = default . This

is useful, for example, when you explicitly define a constructor for a
class and still want the compiler to generate a default constructor as
well—in that case, add the following declaration to your class
definition:

11

ClassName() = default;

12.4.7 C++11: final Member
Functions and Classes

Prior to C++11, a derived class could override any of its base class’s
virtual functions. In C++11, a base-class virtual function that’s
declared final in its prototype, as in

11

virtual someFunction(parameters) final;

cannot be overridden in any derived class—this guarantees that the
base class’s final member function definition will be used by all base-
class objects and by all objects of the base class’s direct and indirect
derived classes. Similarly, prior to C++11, any existing class could be
used as a base class in a hierarchy. As of C++11, you can declare a
class as final to prevent it from being used as a base class, as in

class MyClass final { // this class cannot be a base class

 // class body

};

Attempting to override a final member function or inherit from a
final base class results in a compilation error.

12.5 Type Fields and switch
Statements
One way to determine an object’s type is to use a switch statement to
check the value of a field in the object. This allows us to distinguish
among object types, then invoke an appropriate action for a particular
object, similar to what you can do with polymorphism. For example, in
a hierarchy of shapes, if each shape object has a shapeType attribute,
a switch could check the object’s shapeType to determine which
toString function to call.

Using switch logic exposes programs to a variety of potential
problems. For example, you might forget to include a type test when
one is warranted, or might forget to test all possible cases in a switch
statement. When modifying a switch -based system by adding new
types, you might forget to insert the new cases in all relevant switch
statements. Every addition or deletion of a class requires the
modification of every associated switch statement in the system;
tracking these changes can be time consuming and error prone.

 Software Engineering

Observation 12.6

Polymorphic programming can eliminate the need for switch logic. By

using the polymorphism mechanism to perform the equivalent logic,
you can avoid the kinds of errors typically associated with switch
logic.

 Software Engineering
Observation 12.7

An interesting consequence of using polymorphism is that programs
take on a simplified appearance. They contain less branching logic
and simpler sequential code.

12.6 Abstract Classes and Pure
virtual Functions

When we think of a class as a type, we assume that programs will
create objects of that type. However, there are cases in which it’s
useful to define classes from which you never intend to instantiate any
objects. Such classes are called abstract classes. Because these
classes normally are used as base classes in inheritance hierarchies,
we refer to them as abstract base classes. These classes cannot be
used to instantiate objects, because, as we’ll soon see, abstract
classes are incomplete—derived classes must define the “missing
pieces” before objects of these classes can be instantiated. We build
programs with abstract classes in Section 12.7.

An abstract class is a base class from which other classes can inherit.
Classes that can be used to instantiate objects are called concrete
classes. Such classes define or inherit implementations for every
member function they declare. A good example of this is the shape
hierarchy in Fig. 11.3, which begins with abstract base class Shape .
We could have an abstract base class TwoDimensionalShape and derive
such concrete classes as Circle , Square and Triangle . We could also
have an abstract base class ThreeDimensionalShape and derive such
concrete classes as Cube , Sphere and Tetrahedron . Abstract base
classes are too generic to define real objects; we need to be more

specific before we can think of instantiating objects. For example, if
someone tells you to “draw the two-dimensional shape,” what shape
would you draw? Concrete classes provide the specifics that make it
possible to instantiate objects.

12.6.1 Pure virtual Functions

A class is made abstract by declaring one or more of its virtual
functions to be “pure.” A pure virtual function is specified by
placing “ = 0 ” in its declaration, as in

virtual void draw() const = 0; // pure virtual function

The “ =0 ” is a pure specifier. Pure virtual functions do not provide
implementations. Each concrete derived class must override all base-
class pure virtual functions with concrete implementations of those
functions; otherwise, the derived class is also abstract.

The difference between a virtual function and a pure virtual
function is that a virtual function has an implementation and gives
the derived class the option of overriding the function; by contrast, a
pure virtual function does not have an implementation and requires

the derived class to override the function for that derived class to be
concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does not make sense for the
base class to have an implementation of a function, but you want to
force all concrete derived classes to implement the function. Returning
to our earlier example of space objects, it does not make sense for the
base class SpaceObject to have an implementation for function draw
(as there’s no way to draw a generic space object without having
specific information about what type of space object is being drawn).
An example of a function that would be defined as virtual (and not
pure virtual) would be one that returns a name for the object. We
can name a generic SpaceObject (for instance, as "space object"), so
a default implementation for this function can be provided, and the
function does not need to be pure virtual . The function is still
declared virtual , however, because it’s expected that derived classes
will override this function to provide more specific names for the
derived-class objects.

 Software Engineering Observation
12.8
An abstract class defines a common public interface for the various
classes that derive from it in a class hierarchy. An abstract class
contains one or more pure virtual functions that concrete derived

classes must override.

 Common Programming Error 12.2
Failure to override a pure virtual function in a derived class makes

that class abstract. Attempting to instantiate an object of an abstract
class causes a compilation error.

 Software Engineering Observation
12.9
An abstract class has at least one pure virtual function. An abstract

class also can have data members and concrete functions (including
constructors and destructors), which are subject to the normal rules of
inheritance by derived classes.

Although we cannot instantiate objects of an abstract base class, we
can use the abstract base class to declare pointers and references
that can refer to objects of any concrete classes derived from the
abstract class. Programs typically use such pointers and references to
manipulate derived-class objects polymorphically.

12.6.2 Device Drivers:

Polymorphism in Operating
Systems

Polymorphism is particularly effective for implementing layered
software systems. In operating systems, for example, each type of
physical device could operate quite differently from the others. Even
so, commands to read or write data from and to devices, respectively,
may have a certain uniformity. The write message sent to a device-
driver object needs to be interpreted specifically in the context of that
device driver and how that device driver manipulates devices of a
specific type. However, the write call itself really is no different from
the write to any other device in the system—place some number of
bytes from memory onto that device. An object-oriented operating
system could use an abstract base class to provide an interface
appropriate for all device drivers. Then, through inheritance from that
abstract base class, derived classes are formed that all operate
similarly. The capabilities (i.e., the public functions) offered by the
device drivers are provided as pure virtual functions in the abstract
base class. The implementations of these pure virtual functions are
provided in the derived classes that correspond to the specific types of
device drivers. This architecture also allows new devices to be added
to a system easily. The user can just plug in the device and install its
new device driver. The operating system “talks” to this new device
through its device driver, which has the same public member
functions as all other device drivers—those defined in the device
driver abstract base class.

12.7 Case Study: Payroll System
Using Polymorphism
This section reexamines the
CommissionEmployee– BasePlusCommissionEmployee hierarchy that we
explored throughout Section 11.3. In this example, we use an
abstract class and polymorphism to perform payroll calculations based
on the type of employee. We create an enhanced employee hierarchy
to solve the following problem:

A company pays its employees weekly. The employees are of three types: Salaried

employees are paid a fixed weekly salary regardless of the number of hours worked,

commission employees are paid a percentage of their sales and base-salary-plus-

commission employees receive a base salary plus a percentage of their sales. For the

current pay period, the company has decided to reward base-salary-plus-commission

employees by adding 10 percent to their base salaries. The company wants to implement

a C++ program that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an
employee. The classes that derive directly from Employee are
SalariedEmployee and CommissionEmployee . Class
BasePlusCommissionEmployee derives from CommissionEmployee and
represents the last employee type. The UML class diagram in Fig.
12.7 shows the inheritance hierarchy for our polymorphic employee

payroll application. The abstract class name Employee is italicized, per

the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy
—that is, the set of member functions that a program can invoke on all
Employee objects. Each employee, regardless of the way his or her
earnings are calculated, has a first name, a last name and a

Fig. 12.7 Employee hierarchy UML class diagram.

social security number, so private data members firstName , lastName
and socialSecurityNumber appear in abstract base class Employee .

 Software Engineering
Observation 12.10

A derived class can inherit interface and/or implementation from a
base class. Hierarchies designed for implementation inheritance
tend to have their functionality high in the hierarchy—each derived
class inherits one or more member functions from a base class, and
the derived class uses the base-class definitions. Hierarchies
designed for interface inheritance tend to have their functionality
lower in the hierarchy—a base class specifies one or more functions
that should be defined by every derived class, but the individual
derived classes provide their own implementations of the function(s).

The following sections implement the Employee class hierarchy. The
first four sections each implement one of the abstract or concrete
classes. The last section implements a test program that builds
objects of the concrete classes and processes the objects
polymorphically.

12.7.1 Creating Abstract Base
Class Employee

Class Employee (Figs. 12.9–12.10, discussed in further detail shortly)
provides functions earnings and toString , in addition to various get

and set functions that manipulate Employee ’s data members. An
earnings function certainly applies generally to all employees, but
each earnings calculation depends on the employee’s class. So we
declare earnings as pure virtual in base class Employee because a
default implementation does not make sense for that function—there’s
not enough information to determine what amount earnings should
return.

Each derived class overrides earnings with an appropriate
implementation. To calculate an employee’s earnings, the program
assigns the address of an employee’s object to a base-class Employee
pointer, then invokes the earnings function on that object.

The test program maintains a vector of Employee pointers, each of
which points to an Employee object. Of course, there cannot be

Employee objects, because Employee is an abstract class—with

inheritance, however, all objects of all concrete derived classes of
Employee may nevertheless be thought of as Employee objects. The

program iterates through the vector and calls function earnings for
each Employee object. C++ processes these function calls
polymorphically. Including earnings as a pure virtual function in
Employee forces every direct derived class of Employee that wishes to
be a concrete class to override earnings .

Function toString in class Employee returns a string containing the
first name, last name and social security number of the employee. As
we’ll see, each derived class of Employee overrides function toString
to output the employee’s type (e.g., "salaried employee:") followed by
the rest of the employee’s information. Each each derived class’s
toString could also call earnings , even though earnings is a pure-
virtual function in base class Employee , because each concrete class
is guaranteed to have an implementation of earnings . For this reason,
even class Employee ’s toString function can call earnings— at
runtime, when you call toString through an Employee pointer or
reference, you’re always calling it on an object of a concrete derived-
class.

The diagram in Fig. 12.8 shows each of the four classes in the
hierarchy down the left side and functions earnings and toString
across the top. For each class, the diagram shows the desired results
of each function. Italic text represents where the values from a
particular object are used in the earnings and toString functions.
Class Employee specifies “ =0 ” for function earnings to indicate that it’s
a pure virtual function and hence has no implementation. Each

derived class overrides this function to provide an appropriate
implementation. We do not list base class Employee ’s get and set

functions because they’re not overridden in any of the derived classes
—each of these functions is inherited and used “as is” by each of the
derived classes.

Fig. 12.8 Polymorphic interface for the Employee hierarchy
classes.

Employee Class Header
11

Let’s consider class Employee’s header (Fig. 12.9). The public
member functions include a constructor that takes the first name, last

name and social security number as arguments (line 10); a C++11
default virtual destructor (line 11) that the compiler generates; set

functions that set the first name, last name and social security number
(lines 13, 16 and 19, respectively); get functions that return the first
name, last name and social security number (lines 14, 17 and 20,
respectively); pure virtual function earnings (line 23) and virtual
function toString (line 24).

Fig. 12.9 Employee abstract base class.

Recall that we declared earnings as a pure virtual function because
first we must know the specific Employee type to determine the
appropriate earnings calculation. Declaring this function as pure
virtual indicates that each concrete derived class must provide an
earnings implementation and that a program can use base-class
Employee pointers (or references) to invoke function earnings
polymorphically for any type of Employee .

Employee Class Member-Function

Definitions

Figure 12.10 contains the member-function definitions for class
Employee . No implementation is provided for virtual function
earnings . The Employee constructor (lines 9–11) does not validate the
social security number. Normally, such validation should be provided.

Fig. 12.10 Employee class implementation file.

The virtual function toString (lines 36–39) provides an
implementation that will be overridden in each of the derived classes.
Each of these functions will, however, use the Employee class’s version

of toString to get a string containing the information common to all

classes in the Employee hierarchy.

12.7.2 Creating Concrete Derived
Class SalariedEmployee

11

Class SalariedEmployee (Figs. 12.11–12.12) derives from class
Employee (line 9 of Fig. 12.11). The public member functions include
a constructor that takes a first name, a last name, a social security
number and a weekly salary as arguments (lines 11–12); a C++11
default virtual destructor (line 13); a set function to assign a new
nonnegative value to data member weeklySalary (line 15); a get

function to return weeklySalary ’s value (line 16); a virtual function
earnings that calculates a SalariedEmployee ’s earnings (line 19) and a
virtual function toString (line 20) that outputs the employee’s type,
namely, "salaried employee: " followed by employee-specific
information produced by base class Employee ’s toString function and
SalariedEmployee ’s getWeeklySalary function.

Fig. 12.11 SalariedEmployee class header.

SalariedEmployee Class Member-
Function Definitions
Figure 12.12 contains the member-function definitions for
SalariedEmployee . The class’s constructor passes the first name, last
name and social security number to the Employee constructor (line 12)
to initialize the private data members that are inherited from the base
class, but not directly accessible in the derived class. Function
earnings (line 30) overrides pure virtual function earnings in
Employee to provide a concrete implementation that returns the

SalariedEmployee ’s weekly salary. If we did not define earnings , class
SalariedEmployee would be an abstract class, and attempting to
instantiate a SalariedEmployee object would cause a compilation error.
In class SalariedEmployee ’s header, we declared member functions
earnings and toString as virtual (lines 19–20 of Fig. 12.11)—
actually, placing the virtual keyword before these member functions
is redundant. We defined them as virtual in base class Employee , so
they remain virtual functions all the way down the class hierarchy.
Explicitly declaring such functions virtual at every level of the
hierarchy promotes program clarity. Not declaring earnings as pure
virtual signals our intent to provide an implementation in this

concrete class.

Fig. 12.12 SalariedEmployee class implementation file.

Function toString of class SalariedEmployee (lines 33–40 of Fig.
12.12) overrides Employee function toString . If class SalariedEmployee
did not override toString , SalariedEmployee would inherit the Employee

version of toString . In that case, SalariedEmployee ’s toString function
would simply return the employee’s full name and social security
number, which does not adequately represent a SalariedEmployee . To
create a string representation of a SalariedEmployee ’s complete
information, the derived class’s toString function returns "salaried
employee: " followed by the base-class Employee -specific information
(i.e., first name, last name and social security number) returned by
invoking the base class’s toString function using the scope resolution
operator (line 37). Without Employee:: , the toString call would cause
infinite recursion. The string produced by SalariedEmployee ’s
toString function also contains the employee’s weekly salary obtained
by invoking the class’s getWeeklySalary function.

12.7.3 Creating Concrete Derived
Class CommissionEmployee

The CommissionEmployee class (Figs. 12.13–12.14) derives from
Employee (Fig. 12.13, line 9). The member-function implementations in
Fig. 12.14 include a constructor (lines 10–15) that takes a first name,
last name, social security number, sales amount and commission rate;
set functions (lines 18–24 and 30–36) to assign new values to data
members grossSales and commissionRate , respectively; get functions
(lines 27 and 39–41) that retrieve their values; function earnings (lines
44–46) to calculate a CommissionEmployee ’s earnings; and function
toString (lines 49–56) to output the employee’s type, namely,
"commission employee: " and employee-specific information. The
constructor passes the first name, last name and social security
number to the Employee constructor (line 12) to initialize Employee ’s
private data members. Function toString calls base-class function
toString (line 52) to get a string representation of the Employee -
specific information.

Fig. 12.13 CommissionEmployee class header.

Fig. 12.14 CommissionEmployee class implementation file.

12.7.4 Creating Indirect Concrete
Derived Class
BasePlusCommissionEmployee

Class BasePlusCommissionEmployee (Figs. 12.15–12.16) directly inherits
from class CommissionEmployee (line 9 of Fig. 12.15) and therefore is an
indirect derived class of class Employee . Class
BasePlusCommissionEmployee ’s member-function implementations in Fig.
12.16 include a constructor (lines 10–15) that takes as arguments a
first name, a last name, a social security number, a sales amount, a
commission rate and a base salary. It then passes the first name, last
name, social security number, sales amount and commission rate to
the CommissionEmployee constructor (line 13) to initialize the inherited
members. BasePlusCommissionEmployee also contains a set function
(lines 18–24) to assign a new value to data member baseSalary and a
get function (lines 27–29) to return baseSalary ’s value. Function
earnings (lines 33–35) calculates a BasePlusCommissionEmployee ’s
earnings. Line 34 in function earnings calls base class
CommissionEmployee ’s earnings function to calculate the commission-
based portion of the employee’s earnings.
BasePlusCommissionEmployee ’s toString function (lines 38–44) returns
"base-salaried" , followed by the result of base-class

CommissionEmployee ’s toString function, then the base salary. The
resulting string begins with "base-salaried commission employee: "
followed by the rest of the BasePlusCommissionEmployee ’s information.
Recall that CommissionEmployee ’s toString gets a string containing the

employee’s first name, last name and social security number by
invoking the toString function of its base class (i.e., Employee).
BasePlusCommissionEmployee ’s toString initiates a chain of functions
calls that spans all three levels of the Employee hierarchy.

Fig. 12.15 BasePlusCommissionEmployee class header.

Fig. 12.16 BasePlusCommissionEmployee class implementation file.

12.7.5 Demonstrating Polymorphic
Processing

To test our Employee hierarchy, the program in Fig. 12.17 creates an
object of each of the three concrete classes SalariedEmployee ,
CommissionEmployee and BasePlusCommissionEmployee . The program
manipulates these objects, first with static binding, then
polymorphically, using a vector of Employee base-class pointers. Lines
20–25 create objects of each of the three concrete Employee derived
classes. Lines 28–34 output each Employee ’s information and
earnings. Each member-function invocation in lines 29–34 is an
example of static binding—at compile time, because we are using
name handles (not pointers or references that could be set at
execution time), the compiler can identify each object’s type to
determine which toString and earnings functions are called.

Fig. 12.17 Processing Employee derived-class objects with static
binding then polymorphically using dynamic binding.

Lines 37–38 create and initialize the vector employees , which contains
three Employee pointers that are aimed at the objects
salariedEmployee , commissionEmployee and BasePlusCommissionEmployee ,
respectively. The compiler allows the elements to be initialized with

the addresses of these objects, because a SalariedEmployee is an

Employee , a CommissionEmployee is an Employee and a
BasePlusCommissionEmployee is an Employee . So, we can assign the
addresses of SalariedEmployee , CommissionEmployee and
BasePlusCommissionEmployee objects to base-class Employee pointers,
even though Employee is an abstract class.

Lines 46–48 traverse vector employees and invoke function
virtualViaPointer (lines 61–64) for each element in employees .
Function virtualViaPointer receives in parameter baseClassPtr the
address stored in an employees element. Each call to
virtualViaPointer uses baseClassPtr to invoke virtual functions
toString (line 62) and earnings (line 63). Function virtualViaPointer
does not contain any SalariedEmployee , CommissionEmployee or
BasePlusCommissionEmployee type information. The function knows only

about base-class type Employee . Therefore, the compiler cannot know

which concrete class’s functions to call through baseClassPtr . Yet at
execution time, each virtual-function invocation correctly calls the
function on the object to which baseClassPtr currently points. The
output illustrates that the appropriate functions for each class are
indeed invoked and that each object’s proper information is displayed.
For instance, the weekly salary is displayed for the SalariedEmployee ,
and the gross sales are displayed for the CommissionEmployee and
BasePlusCommissionEmployee . Also, obtaining the earnings of each
Employee polymorphically in line 63 produces the same results as
obtaining these employees’ earnings via static binding in lines 30, 32

and 34. All virtual function calls to toString and earnings are
resolved at runtime with dynamic binding.

Lines 54–56 traverse employees and invoke function
virtualViaReference (lines 68–71) for each vector element. Function
virtualViaReference receives in its parameter baseClassRef (of type
const Employee&) a reference to the object obtained by dereferencing

the pointer stored in each employees element (line 55). Each call to
virtualViaReference invokes virtual functions toString (line 69) and
earnings (line 70) via baseClassRef to demonstrate that polymorphic

processing occurs with base-class references as well. Each virtual
function invocation calls the function on the object to which
baseClassRef refers at runtime. This is another example of dynamic

binding. The output produced using base-class references is identical
to the output produced using base-class pointers and via static binding
earlier in the program.

12.8 (Optional) Polymorphism,
Virtual Functions and Dynamic
Binding “Under the Hood”
C++ makes polymorphism easy to program. It’s certainly possible to
program for polymorphism in non-object-oriented languages such as
C, but doing so requires complex and potentially dangerous pointer
manipulations. This section discusses how C++ can implement
polymorphism, virtual functions and dynamic binding internally. This
will give you a solid understanding of how these capabilities really
work. More importantly, it will help you appreciate the overhead of
polymorphism—in terms of additional memory consumption and
processor time. This can help you determine when to use
polymorphism and when to avoid it. C++ Standard Library classes like
array and vector are implemented without polymorphism and virtual
functions to avoid the associated execution-time overhead and
achieve optimal performance.

First, we’ll explain the data structures that the compiler builds at
compile time to support polymorphism at execution time. You’ll see
that polymorphism is accomplished through three levels of pointers,
i.e., triple indirection. Then we’ll show how an executing program uses
these data structures to execute virtual functions and achieve the
dynamic binding associated with polymorphism. Our discussion

explains a possible implementation; this is not a language
requirement.

When C++ compiles a class that has one or more virtual functions, it
builds a virtual function table (vtable) for that class. The vtable
contains pointers to the class’s virtual functions—a pointer to a
function contains the starting address in memory of the code that
performs the function’s task. Just as an array name is implicitly
convertible to the address of the array’s first element, a function name
is implicitly convertible to the starting address of its code. An
executing program uses the vtable to select the proper function
implementation each time a virtual function of that class is called on
any object of that class. The leftmost column of Fig. 12.18 illustrates
the vtables for the classes Employee , SalariedEmployee ,
CommissionEmployee and BasePlusCommissionEmployee .

Employee Class vtable
In the Employee class vtable, the first function pointer is set to 0 (i.e.,
nullptr), because function earnings is a pure virtual function and
therefore lacks an implementation. The second function pointer points
to function toString , which returns a string containing the
employee’s full name and social security number. [Note: We’ve
abbreviated the output of each toString function in this figure to
conserve space.] Any class that has one or more nullptrs
(represented with the value 0) in its vtable is an abstract class.

Classes without any nullptrs in their vtables (such as
SalariedEmployee , CommissionEmployee and BasePlusCommissionEmployee)

are concrete classes.

SalariedEmployee Class vtable
Class SalariedEmployee overrides function earnings to return the
employee’s weekly salary, so the function pointer points to the
earnings function of class SalariedEmployee . SalariedEmployee also
overrides toString , so the corresponding function pointer points to the
SalariedEmployee member function that returns "salaried employee: "
followed by the employee’s name, social security number and weekly
salary.

CommissionEmployee Class vtable
The earnings function pointer in the vtable for class
CommissionEmployee points to the CommissionEmployee ’s earnings
function that returns the employee’s gross sales multiplied by the
commission rate. The toString function pointer points to the
CommissionEmployee version of the function, which returns the
employee’s type, name, social security number, commission rate and
gross sales. As in class SalariedEmployee , both functions override the
functions in class Employee .

BasePlusCommissionEmployee Class
vtable
The earnings function pointer in the vtable for class
BasePlusCommissionEmployee points to the BasePlusCommissionEmployee ’s
earnings function, which returns the employee’s base salary plus
gross sales multiplied by commission rate. The toString function
pointer points to the BasePlusCommissionEmployee version of the
function, which returns the employee’s base salary plus the type,
name, social security number, commission rate and gross sales. Both
functions override the functions in class CommissionEmployee .

Inheriting Concrete virtual Functions
In our Employee case study, each concrete class provides its own
implementation for virtual functions earnings and toString . You’ve
learned that each class that inherits directly from abstract base class
Employee must implement earnings in order to be a concrete class,
because earnings is a pure virtual function. These classes do not

need to implement function toString , however, to be considered
concrete— toString is not a pure virtual function and derived classes
can inherit class Employee ’s implementation of toString .

Fig. 12.18 How virtual function calls work.

Furthermore, class BasePlusCommissionEmployee does not have to
implement either function toString or earnings—both function
implementations can be inherited from concrete class
CommissionEmployee . If a class in our hierarchy were to inherit function
implementations in this manner, the vtable pointers for these functions
would simply point to the function implementation that was being
inherited. For example, if BasePlusCommissionEmployee did not override
earnings , the earnings function pointer in the vtable for class
BasePlusCommissionEmployee would point to the same earnings function
as the vtable for class CommissionEmployee .

Three Levels of Pointers to Implement
Polymorphism
Polymorphism is accomplished through an elegant data structure
involving three levels of pointers. We’ve discussed one level—the
function pointers in the vtable. These point to the actual functions that
execute when a virtual function is invoked.

Now we consider the second level of pointers. Whenever an object of
a class with one or more virtual functions is instantiated, the

compiler attaches to the object a pointer to the vtable for that class.
This pointer is normally at the front of the object, but it isn’t required to
be implemented that way. In Fig. 12.18, these pointers are associated
with the objects created in Fig. 12.17 (one object for each of the types
SalariedEmployee , CommissionEmployee and

BasePlusCommissionEmployee). The diagram shows each of the object’s
data member values. For example, the salariedEmployee object
contains a pointer to the SalariedEmployee vtable; the object also
contains the values John Smith , 111-11-1111 and $800.00 .

The third level of pointers simply contains the handles to the objects
that receive the virtual function calls. The handles in this level may
also be references. Figure 12.18 depicts the vector employees that
contains Employee pointers.

Now let’s see how a typical virtual function call executes. Consider in
the function virtualViaPointer the call baseClassPtr->toString() (line
62 of Fig. 12.17). Assume that baseClassPtr contains employees[1]
(i.e., the address of object commissionEmployee in employees). When the
compiler compiles this statement, it determines that the call is indeed
being made via a base-class pointer and that toString is a virtual
function.

The compiler determines that toString is the second entry in each of
the vtables. To locate this entry, the compiler notes that it will need to
skip the first entry. Thus, the compiler compiles an offset or
displacement into the table of machine-language object-code
pointers to find the code that will execute the virtual function call.
The size in bytes of the offset depends on the number of bytes used to
represent a function pointer on an individual platform. For example, on
a 32-bit platform, a pointer is typically stored in four bytes, whereas on

a 64-bit platform, a pointer is typically stored in eight bytes. We
assume four bytes for this discussion.

The compiler generates code that performs the following operations
[Note: The numbers in the list correspond to the circled numbers in
Fig. 12.18]:

1. Select the ith entry of employees (in this case, the address of
object CommissionEmployee) and pass it as an argument to
function virtualViaPointer . This sets parameter baseClassPtr
to point to commissionEmployee .

2. Dereference that pointer to get to the commissionEmployee object
—which, as you recall, begins with a pointer to the
CommissionEmployee vtable.

3. Dereference commissionEmployee ’s vtable pointer to get to the
CommissionEmployee vtable.

4. Skip the offset of four bytes to select the toString function
pointer.

5. Dereference the toString function pointer to form the “name” of
the actual function to execute, and use the function-call
operator () to execute the appropriate toString function, which
in this case returns the employee’s type, name, social security
number, gross sales and commission rate.

Figure 12.18’s data structures may appear complex, but this
complexity is managed by the compiler and hidden from you, making
polymorphic programming straightforward. The pointer dereferencing

operations and memory accesses that occur on every virtual
function call require some additional execution time. The vtables and
the vtable pointers added to the objects require some additional
memory.

 Performance Tip 12.1

Polymorphism, as typically implemented with virtual functions and

dynamic binding in C++, is efficient. For most applications, you can
use these capabilities with nominal impact on performance.

 Performance Tip 12.2

Virtual functions and dynamic binding enable polymorphic
programming as an alternative to switch logic programming.

Optimizing compilers normally generate polymorphic code that’s
nearly as efficient as hand-coded switch -based logic. Polymorphism’s

overhead is acceptable for most applications. In some situations—
such as real-time applications with stringent performance
requirements—polymorphism’s overhead may be too high.

12.9 Case Study: Payroll System
Using Polymorphism and Runtime
Type Information with
Downcasting, dynamic_cast ,
typeid and type_info
Recall from the problem statement at the beginning of Section 12.7
that, for the current pay period, our fictitious company has decided to
reward BasePlusCommissionEmployees by adding 10 percent to their
base salaries. When processing Employee objects polymorphically in
Section 12.7.5, we did not need to worry about the “specifics.” Now,
however, to adjust the base salaries of BasePlusCommissionEmployees,
we have to determine the specific type of each Employee object at

execution time, then act appropriately. This section demonstrates the
powerful capabilities of runtime type information (RTTI) and
dynamic casting, which enable a program to determine an object’s
type at execution time and act on that object accordingly.1

1. Some compilers require that RTTI be enabled before it can be used
in a program. The compilers we used for testing this book’s examples

—GNU C++ 5.2.1, Visual C++ 2015 and Xcode 7.2 Clang/ LLVM—
each enable RTTI by default.

Figure 12.19 uses the Employee hierarchy from Section 12.7 and
increases by 10 percent each BasePlusCommissionEmployee ’s base
salary. Lines 20–24 create and initialize the three-element vector
named employees that stores pointers to Employee objects. The
elements are initialized with the addresses of dynamically allocated
objects of classes SalariedEmployee (Figs. 12.11–12.12),
CommissionEmployee (Figs. 12.13–12.14) and
BasePlusCommissionEmployee (Figs. 12.15–12.16). Lines 27–44 of Fig.
12.19 iterate through the employees vector and display each
Employee ’s information by invoking member function toString (line
28). Recall that because toString is declared virtual in base class

Employee , the system invokes the appropriate derived-class object’s
toString function.

Fig. 12.19 Demonstrating downcasting and runtime type
information.

Determining an Object’s Type with

dynamic_cast
In this example, as we encounter a BasePlusCommissionEmployee object,
we wish to increase its base salary by 10 percent. Since we process
the Employees polymorphically, we cannot (with the techniques you’ve
learned so far) be certain as to which type of Employee is being
manipulated at any given time. This creates a problem, because
BasePlusCommissionEmployee employees must be identified when we

encounter them so they can receive the 10 percent salary increase.
To accomplish this, we use operator dynamic_cast (lines 31–32) to
determine whether the current Employee ’s type is
BasePlusCommissionEmployee . This is the downcast operation we
referred to in Section 12.3.3. Lines 31–32 dynamically downcast
employeePtr from type Employee* to type BasePlusCommissionEmployee* .
If employeePtr points to an object that is a BasePlusCommissionEmployee
object, then that object’s address is assigned to derived-class pointer
derivedPtr ; otherwise, nullptr is assigned to derivedPtr . We must

use dynamic_cast here, rather than static_cast , to perform type
checking on the underlying object—a static_cast would simply cast
the Employee* to a BasePlusCommissionEmployee* regardless of the
underlying object’s type. With a static_cast , the program would
attempt to increase every Employee ’s base salary, resulting in
undefined behavior for each object that’s not a
BasePlusCommissionEmployee .

If the value returned by the dynamic_cast operator in lines 31–32 is not

nullptr , the object is the correct type, and the if statement (lines 35–
41) performs the special processing required for the
BasePlusCommissionEmployee object. Lines 36, 38 and 40 invoke
BasePlusCommissionEmployee functions getBaseSalary and setBaseSalary
to retrieve and update the employee’s salary.

Calculating the Current Employee ’s
Earnings
Line 43 invokes member function earnings on the object to which
employeePtr points. Recall that earnings is declared virtual in the
base class, so the program invokes the derived-class object’s
earnings function—another example of dynamic binding.

Displaying an Employee ’s Type
Lines 47–53 display each employee’s object type and use the delete
operator to deallocate the dynamic memory to which each vector
element points. Operator typeid (line 50) returns a reference to an
object of class type_info that contains the information about the type
of its operand, including the name of that type. When invoked,
type_info member function name (line 50) returns a pointer-based
string containing the typeid argument’s type name (e.g., "class

BasePlusCommissionEmployee"). To use typeid , the program must
include header <typeinfo> (line 8).

 Portability Tip 12.1

The string returned by type_info member function name may vary by
compiler.

Compilation Errors That We Avoided By
Using dynamic_cast
We avoid several compilation errors in this example by downcasting
an Employee pointer to a BasePlusCommissionEmployee pointer (lines 31–
32). If we remove the dynamic_cast from line 32 and attempt to assign
the current Employee pointer directly to BasePlusCommissionEmployee
pointer derivedPtr , we’ll receive a compilation error. C++ does not

allow a program to assign a base-class pointer to a derived-class
pointer because the is-a relationship does not apply—a
CommissionEmployee is not a BasePlusCommissionEmployee . The is-a

relationship applies only between the derived class and its base
classes, not vice versa.

Similarly, if lines 36, 38 and 40 used the base-class pointer from the
current element of employees , rather than derived-class pointer
derivedPtr , to invoke derived-class-only functions getBaseSalary and

setBaseSalary , we’d receive a compilation error at each of these lines.
As you learned in Section 12.3.3, attempting to invoke derived-class-
only functions through a base-class pointer is not allowed. Although
lines 36, 38 and 40 execute only if derivedPtr is not nullptr (i.e., if
the cast can be performed), we cannot attempt to invoke derived-class
BasePlusCommissionEmployee functions getBaseSalary and setBaseSalary
on the base-class Employee pointer.

12.10 Wrap-Up
In this chapter we discussed polymorphism, which enables us to
“program in the general” rather than “program in the specific,” and we
showed how this makes programs more extensible. We began with an
example of how polymorphism would allow a screen manager to
display several “space” objects. We then demonstrated how base-
class and derived-class pointers can be aimed at base-class and
derived-class objects. We said that aiming base-class pointers at
base-class objects is natural, as is aiming derived-class pointers at
derived-class objects. Aiming base-class pointers at derived-class
objects is also natural because a derived-class object is an object of
its base class. You learned why aiming derived-class pointers at base-
class objects is dangerous and why the compiler disallows such
assignments.

We introduced virtual functions, which enable the proper functions to
be called when objects at various levels of an inheritance hierarchy
are referenced (at execution time) via base-class pointers or
references. This is known as dynamic binding. We discussed virtual
destructors, and how they ensure that all appropriate destructors in an
inheritance hierarchy run on a derived-class object when that object is
deleted via a base-class pointer or reference.

Next, we discussed pure virtual functions and abstract classes
(classes with one or more pure virtual functions). You learned that
abstract classes cannot be used to instantiate objects, while concrete
classes can. We demonstrated using abstract classes in an
inheritance hierarchy. You learned how polymorphism works “under
the hood” with vtables created by the compiler.

We used runtime type information (RTTI) and dynamic casting to
determine the type of an object at execution time and act on that
object accordingly. We used the typeid operator to get a type_info
object containing a given object’s type information.

In the next chapter, we discuss many of C++’s I/O capabilities and
demonstrate several stream manipulators that perform various
formatting tasks.

Summary

Section 12.1 Introduction

Polymorphism (p. 532) enables us to write programs that process
objects of classes that are part of the same class hierarchy as if
they were all objects of the hierarchy’s base class.
With polymorphism, we can design and implement systems that
are easily extensible—new classes can be added with little or no
modification to the general portions of the program. The only parts
of a program that must be altered to accommodate new classes
are those that require direct knowledge of the new classes that you
add to the hierarchy.

Section 12.2 Introduction to
Polymorphism: Polymorphic Video
Game

With polymorphism, one function call can cause different actions to
occur, depending on the type of the object on which the function is
invoked.
This makes it possible to design and implement more extensible
systems. Programs can be written to process objects of types that
may not exist when the program is under development.

Section 12.3 Relationships Among
Objects in an Inheritance
Hierarchy

C++ enables polymorphism—the ability for objects of different
classes related by inheritance to respond differently to the same
member-function call.

Section 12.4.2 Declaring virtual
Functions

Polymorphism is implemented via virtual functions (p. 540) and
dynamic binding (p. 541).

Section 12.4.3 Invoking a virtual
Function Through a Base-Class
Pointer or Reference

When a base-class pointer or reference is used to call a virtual
function, C++ chooses the correct overridden function in the
appropriate derived class associated with the object.

Section 12.4.4 Invoking a virtual
Function Through an Object’s
Name

If a virtual function is called by referencing a specific object by
name and using the dot member-selection operator, the reference
is resolved at compile time (this is called static binding; p. 541);
the virtual function that’s called is the one defined for the class of
that particular object.
Derived classes can override a base-class virtual function if
necessary, but if they do not, the base class’s implementation is
used.

Section 12.4.5 virtual Functions
in the CommissionEmployee
Hierarchy

To help prevent errors, apply C++11’s override keyword (p. 542)
to the prototype of every derived-class function that overrides a
base-class virtual function. This enables the compiler to check
whether the base class has a virtual member function with the
same signature. If not, the compiler generates an error.

Section 12.4.6 virtual
Destructors

Declare a virtual base-class destructor (p. 546) if the class
contains virtual functions. This makes all derived-class
destructors virtual, even though they do not have the same name
as the base-class destructor. If an object in the hierarchy is
destroyed explicitly by applying the delete operator to a base-
class pointer to a derived-class object, the destructor for the
appropriate class is called. After a derived-class destructor runs,
the destructors for all of that class’s base classes run all the way
up the hierarchy.
In C++11, you can tell the compiler to explicitly generate the
default version of a default constructor, copy constructor, move
constructor, copy assignment operator, move assignment operator
or destructor by following the special member function’s prototype
with = default (p. 546).

Section 12.4.7 C++11: final
Member Functions and Classes

In C++11, a base-class virtual function that’s declared final (p.
546) in its prototype cannot be overridden in any derived class.
In C++11, you can declare a class as final (p. 547) to prevent it
from being used as a base class.
Attempting to override a final member function or inherit from a
final base class results in a compilation error.

Section 12.5 Type Fields and
switch Statements

Polymorphic programming with virtual functions can eliminate the
need for switch logic. You can use the virtual function
mechanism to perform the equivalent logic automatically, thus
avoiding the kinds of errors typically associated with switch logic.

Section 12.6 Abstract Classes and
Pure virtual Functions

Abstract classes (p. 547) are typically used as base classes, so
we refer to them as abstract base classes (p. 547). No objects of
an abstract class may be instantiated.
Classes from which objects can be instantiated are concrete
classes (p. 547).

Section 12.6.1 Pure Virtual
Functions

You create an abstract class by declaring one or more pure
virtual functions (p. 548) with pure specifiers (= 0) in their
declarations.
If a class is derived from a class with a pure virtual function and
that derived class does not supply a definition for that pure virtual
function, then that virtual function remains pure in the derived
class. Consequently, the derived class is also an abstract class.
Although we cannot instantiate objects of abstract base classes,
we can declare pointers and references to objects of abstract base
classes. Such pointers and references can be used to enable
polymorphic manipulations of derived-class objects instantiated
from concrete derived classes.

Section 12.8 (Optional)
Polymorphism, Virtual Functions
and Dynamic Binding “Under the
Hood”

Dynamic binding requires that at runtime, the call to a virtual
member function be routed to the virtual function version
appropriate for the class. A virtual function table called the vtable
(p. 563) is implemented as an array containing function pointers.
Each class with virtual functions has a vtable. For each virtual
function in the class, the vtable has an entry containing a function
pointer to the version of the virtual function to use for an object of
that class. The virtual function to use for a particular class could
be the function defined in that class, or it could be a function
inherited either directly or indirectly from a base class higher in the
hierarchy.
When a base class provides a virtual member function, derived
classes can override the virtual function, but they do not have to
override it.
Each object of a class with virtual functions contains a pointer to
the vtable for that class. When a function call is made from a base-
class pointer to a derived-class object, the appropriate function

pointer in the vtable is obtained and dereferenced to complete the
call at execution time.
Any class that has one or more nullptr pointers in its vtable is an
abstract class. Classes without any nullptr vtable pointers are
concrete classes.
New kinds of classes are regularly added to systems and
accommodated by dynamic binding.

Section 12.9 Case Study: Payroll
System Using Polymorphism and
Runtime Type Information with
Downcasting, dynamic_cast ,
typeid and type_info

Operator dynamic_cast (p. 567) checks the type of the object to
which a pointer points, then determines whether the type has an is-
a relationship with the type to which the pointer is being converted.
If so, dynamic_cast returns the object’s address. If not,
dynamic_cast returns nullptr .
Operator typeid (p. 570) returns a reference to a type_info object
(p. 570) that contains information about the operand’s type,
including the type name. To use typeid , the program must include
header <typeinfo> (p. 570).
When invoked, type_info member function name (p. 570) returns a
pointer-based string that contains the name of the type that the
type_info object represents.
Operators dynamic_cast and typeid are part of C++’s runtime type
information (RTTI; p. 567) feature, which allows a program to

determine an object’s type at runtime.

Self-Review Exercises
1. 12.1 Fill in the blanks in each of the following statements:

A. Treating a base-class object as a(n) can cause
errors.

B. Polymorphism helps eliminate logic.
C. If a class contains at least one pure virtual function, it’s

a(n) class.
D. Classes from which objects can be instantiated are

called classes.
E. Operator can be used to downcast base-class

pointers safely.
F. Operator typeid returns a reference to a(n)

object.
G. involves using a base-class pointer or

reference to invoke virtual functions on base-class and
derived-class objects.

H. Overridable functions are declared using keyword
 .

I. Casting a base-class pointer to a derived-class pointer is
called .

2. 12.2 State whether each of the following is true or false. If false,
explain why.

A. All virtual functions in an abstract base class must be
declared as pure virtual functions.

B. Referring to a derived-class object with a base-class
handle is dangerous.

C. A class is made abstract by declaring that class virtual .
D. If a base class declares a pure virtual function, a

derived class must implement that function to become a
concrete class.

E. Polymorphic programming can eliminate the need for
switch logic.

Exercises
1. 12.3 (Programming in the General) How is it that

polymorphism enables you to program “in the general” rather
than “in the specific”? Discuss the key advantages of
programming “in the general.”

2. 12.4 (Polymorphism vs. switch logic) Discuss the problems
of programming with switch logic. Explain why polymorphism
can be an effective alternative to using switch logic.

3. 12.5 (Inheriting Interface vs. Implementation) Distinguish
between inheriting interface and inheriting implementation. How
do inheritance hierarchies designed for inheriting interface differ
from those designed for inheriting implementation?

4. 12.6 (Virtual Functions) What are virtual functions? Describe
a circumstance in which virtual functions would be
appropriate.

5. 12.7 (Dynamic Binding vs. Static Binding) Distinguish
between static binding and dynamic binding. Explain the use of
virtual functions and the vtable in dynamic binding.

6. 12.8 (Virtual Functions vs. Pure Virtual Functions)
Distinguish between virtual functions and pure virtual
functions.

7. 12.9 (Polymorphism and Extensibility) How does
polymorphism promote extensibility?

8. 12.10 (Polymorphic Application) You’ve been asked to
develop a flight simulator that will have elaborate graphical
outputs. Explain why polymorphic programming could be
especially effective for a problem of this nature.

9. 12.11 (Payroll-System Modification) Modify the payroll
system of Figs. 12.9–12.17 to include private data member
birthDate in class Employee . Use class Date from Figs.
10.6–10.7 to represent an employee’s birthday. Assume that
payroll is processed once per month. Create a vector of
Employee pointers to store the various employee objects. In a
loop, calculate the payroll for each Employee (polymorphically),
and add a $100.00 bonus to the person’s payroll amount if the
current month is the month in which the Employee ’s birthday
occurs.

10. 12.12 (Package Inheritance Hierarchy) Use the Package
inheritance hierarchy created in Exercise 11.9 to create a
program that displays the address information and calculates
the shipping costs for several Packages. The program should
contain a vector of Package pointers to objects of classes
TwoDayPackage and OvernightPackage . Loop through the vector
to process the Packages polymorphically. For each Package ,
invoke get functions to obtain the address information of the
sender and the recipient, then print the two addresses as they
would appear on mailing labels. Also, call each Package ’s
calculateCost member function and print the result. Keep track

of the total shipping cost for all Packages in the vector , and
display this total when the loop terminates.

11. 12.13 (Polymorphic Banking Program Using Account
Hierarchy) Develop a polymorphic banking program using the
Account hierarchy created in Exercise 11.10. Create a vector
of Account pointers to SavingsAccount and CheckingAccount
objects. For each Account in the vector , allow the user to
specify an amount of money to withdraw from the Account using
member function debit and an amount of money to deposit into
the Account using member function credit . As you process
each Account , determine its type. If an Account is a
SavingsAccount , calculate the amount of interest owed to the
Account using member function calculateInterest , then add the
interest to the account balance using member function credit .
After processing an Account , print the updated account balance
obtained by invoking base-class member function getBalance .

12. 12.14 (Payroll-System Modification) Modify the payroll
system of Figs. 12.9–12.17 to include additional Employee
subclasses PieceWorker and HourlyWorker . A PieceWorker
represents an employee whose pay is based on the number of
pieces of merchandise produced. An HourlyWorker represents
an employee whose pay is based on an hourly wage and the
number of hours worked. Hourly workers receive overtime pay
(1.5 times the hourly wage) for all hours worked in excess of 40
hours.

Class PieceWorker should contain private data member wage
(to store the employee’s wage per piece) and pieces (to store
the number of pieces produced). Class HourlyWorker should
contain private data members wage (to store the employee’s
wage per hour) and hours (to store the hours worked). In class
PieceWorker , provide a concrete implementation of member
function earnings that calculates the employee’s earnings by
multiplying the number of pieces produced by the wage per
piece. In class HourlyWorker , provide a concrete implementation
of member function earnings that calculates the employee’s
earnings by multiplying the number of hours worked by the
wage per hour. If the number of hours worked is over 40, be
sure to pay the HourlyWorker for the overtime hours. Add a
pointer to an object of each new class into the vector of
Employee pointers in main . For each Employee , display its string
representation and earnings.

Making a Difference
1. 12.15 (CarbonFootprint Abstract Class: Polymorphism) Using

an abstract class with only pure virtual functions, you can
specify similar behaviors for possibly disparate classes.
Governments and companies worldwide are becoming
increasingly concerned with carbon footprints (annual releases
of carbon dioxide into the atmosphere) from buildings burning
various types of fuels for heat, vehicles burning fuels for power,
and the like. Many scientists blame these greenhouse gases for
the phenomenon called global warming. Create three small
classes unrelated by inheritance—classes Building , Car and
Bicycle . Give each class some unique appropriate attributes
and behaviors that it does not have in common with other
classes. Write an abstract class CarbonFootprint with only a
pure virtual getCarbonFootprint member function. Have each of
your classes inherit from that abstract class and implement the
getCarbonFootprint member function to calculate an appropriate
carbon footprint for that class (check out a few websites that
explain how to calculate carbon footprints). Write an application
that creates objects of each of the three classes, places
pointers to those objects in a vector of CarbonFootprint
pointers, then iterates through the vector , polymorphically
invoking each object’s getCarbonFootprint member function.

For each object, print some identifying information and the
object’s carbon footprint.

Answers to Self-Review Exercises
1. 12.1

A. derived-class object.
B. switch .
C. abstract.
D. concrete.
E. dynamic_cast .
F. type_info .
G. Polymorphism.
H. virtual .
I. downcasting.

2. 12.2
A. False. An abstract base class can include virtual

functions with implementations.
B. False. Referring to a base-class object with a derived-

class handle is dangerous.
C. False. Classes are never declared virtual . Rather, a

class is made abstract by including at least one pure
virtual function in the class.

D. True.
E. True.

13 Stream Input/Output: A Deeper
Look

Objectives
In this chapter you’ll:

Use C++ object-oriented stream input/output.
Perform input and output of individual characters.
Use unformatted I/O for high performance.
Use stream manipulators to display integers in octal and
hexadecimal formats.
Specify precision for both input and output.
Display floating-point values in both scientific and fixed-point
notation.
Set and restore the format state.
Control justification and padding.
Determine the success or failure of input/output operations.
Tie output streams to input streams.

Outline
1. 13.1 Introduction
2. 13.2 Streams

A. 13.2.1 Classic Streams vs. Standard Streams
B. 13.2.2 iostream Library Headers
C. 13.2.3 Stream Input/Output Classes and Objects

3. 13.3 Stream Output
A. 13.3.1 Output of char* Variables
B. 13.3.2 Character Output Using Member Function put

4. 13.4 Stream Input
A. 13.4.1 get and getline Member Functions
B. 13.4.2 istream Member Functions peek , putback and

ignore

C. 13.4.3 Type-Safe I/O

5. 13.5 Unformatted I/O Using read , write and gcount
6. 13.6 Stream Manipulators: A Deeper Look

A. 13.6.1 Integral Stream Base: dec , oct , hex and
setbase

B. 13.6.2 Floating-Point Precision (precision ,
setprecision)

C. 13.6.3 Field Width (width , setw)

D. 13.6.4 User-Defined Output Stream Manipulators

7. 13.7 Stream Format States and Stream Manipulators
A. 13.7.1 Trailing Zeros and Decimal Points (showpoint)
B. 13.7.2 Justification (left , right and internal)
C. 13.7.3 Padding (fill , setfill)
D. 13.7.4 Integral Stream Base (dec , oct , hex , showbase)
E. 13.7.5 Floating-Point Numbers; Scientific and Fixed

Notation (scientific , fixed)
F. 13.7.6 Uppercase/Lowercase Control (uppercase)
G. 13.7.7 Specifying Boolean Format (boolalpha)
H. 13.7.8 Setting and Resetting the Format State via

Member Function flags

8. 13.8 Stream Error States
9. 13.9 Tying an Output Stream to an Input Stream

10. 13.10 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

13.1 Introduction
This chapter discusses a range of capabilities sufficient for performing
most common input/output operations and overviews the remaining
capabilities. We’ve already demonstrated I/O with string objects in
earlier chapters and discuss it in more detail in Chapter 21. The string
processing demonstrated in this chapter focuses on char* strings. In
earlier chapters, we introduced various I/O features—here we provide
a more complete treatment.

C++ uses type-safe I/O. Each I/O operation is executed in a manner
sensitive to the data type. If an I/O function has been defined to
handle a particular data type, then that function is called to handle that
data type. If there is no match between the type of the actual data and
a function for handling that data type, the compiler generates an error.
Thus, improper data cannot “sneak” through the system (as can occur
in C, allowing for some subtle and bizarre errors).

As you saw in Chapter 10, you can specify how to perform I/O for
objects of user-defined types by overloading the stream insertion
operator (<<) and the stream extraction operator (>>).

 Error-Prevention Tip 13.1

C++ I/O is type safe.

 Software Engineering
Observation 13.1

C++ enables a common treatment of I/O for predefined types and
user-defined types. This commonality facilitates software development
and reuse.

 Software Engineering
Observation 13.2

In C++ programs, prefer C++-style I/O to C-style I/O.

13.2 Streams
C++ I/O occurs in streams, which are sequences of bytes. In input
operations, the bytes flow from a device (e.g., a keyboard, a disk
drive, a network connection) to main memory. In output operations,
bytes flow from main memory to a device (e.g., a display screen, a
printer, a disk drive, a network connection).

An application associates meaning with bytes. The bytes could
represent characters, raw data, graphics images, digital speech,
digital music, digital video or any other information an application may
require. The system I/O mechanisms should transfer bytes from
devices to memory (and vice versa) reliably. The time these transfers
take typically is far greater than the time the processor requires to
manipulate data internally. I/O operations require careful planning and
tuning to ensure optimal performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-
level I/O capabilities (i.e., unformatted I/O) specify that some number
of bytes should be transferred device-to-memory or memory-to-
device. In such transfers, the individual byte is the item of interest.
Such low-level capabilities provide high-speed, high-volume transfers
but are not particularly convenient.

Programmers generally prefer a higher-level view of I/O (i.e.,
formatted I/O), in which bytes are grouped into meaningful units, such

as integers, floating-point numbers, characters, strings and user-
defined types. These type-oriented capabilities are satisfactory for
most I/O other than high-volume file processing.

13.2.1 Classic Streams vs.
Standard Streams

In the past, the C++ classic stream libraries supported only char -
based I/O. Because a char normally occupies one byte, it can
represent only a limited set of characters (such as those in the ASCII
character set used by most readers of this book, or other popular
character sets). Many languages use alphabets that contain more
characters than a single-byte char can represent. The ASCII
character set does not provide these characters, but the Unicode
character set does. Unicode is an extensive international character
set that represents the majority of the world’s languages,
mathematical symbols and much more. C++ provides Unicode support
via the types wchar_t (the original C++ type for processing Unicode)
and C++11 types char16_t and char32_t . In addition, the standard
stream libraries are implemented as class templates—like classes
array and vector that you saw in Chapter 7. These class templates
can be specialized for the various character types—we use the
predefined stream-library specializations for type char in this book.
For more information on Unicode, visit http://www.unicode.org .

®

http://www.unicode.org

11

13.2.2 iostream Library Headers

The C++ stream libraries provide hundreds of I/O capabilities. Most of
our C++ programs include the <iostream> header, which declares
basic services required for all stream-I/O operations. The <iostream>
header defines the cin , cout , cerr and clog objects, which
correspond to the standard input stream, the standard output stream,
the unbuffered standard error stream and the buffered standard error
stream, respectively— cerr , clog and buffering are discussed in the
next section. Both unformatted- and formatted-I/O services are
provided. As you know, the <iomanip> header declares the
parameterized stream manipulators— such as setprecision (Section
4.10.5) and setw (Section 5.6)—for formatted I/O.

13.2.3 Stream Input/Output
Classes and Objects

The iostream library provides many class templates for performing
common I/O operations. This chapter focuses on the following class
templates:

basic_istream for stream input operations
basic_ostream for stream output operations

Though we do not use it in this chapter, class basic_iostream provides
both stream input and stream output operations.

In Chapter 7, you specialized the class templates array and vector
for use with specific types—for example, you used array<int> to
create an array class-template specialization for an array that stores
int values. For each of the class templates basic_istream ,
basic_ostream and basic_iostream , the iostream library defines a
specialization that performs char -based I/O.1 The library also defines
convenient short names (i.e., aliases) for these specializations:

1. This chapter discusses only the iostream library template
specializations for char I/O.

istream is a basic_istream<char> that enables char input—this is
cin ’s type.
ostream is a basic_ostream<char> that enables char output—this is
the type of cout , cerr and clog .
iostream is a basic_iostream<char> that enables both char input
and output.

We used the aliases istream and ostream in Chapter 10 when we
overloaded the stream extraction and stream insertion operators.

iostream Library Aliases Are Defined with
typedef

The iostream library defines each alias with the typedef specifier,
which you’ll sometimes use to create more readable type names. For
example, the following statement defines the alias CardPtr as a
synonym for type Card* :

typedef Card* CardPtr;

Section 22.3 discusses typedef in detail.

Standard Stream Objects cin, cout,
cerr and clog
Predefined object cin is an istream object and is said to be
“connected to” (or attached to) the standard input device, which
usually is the keyboard. The stream extraction operator (>>) as used
in

int grade;

cin >> grade; // data "flows" in the direction of the arrows

causes a value for int variable grade to be input from cin to memory.
The compiler selects the appropriate overloaded stream extraction
operator, based on the type of the variable grade . The >> operator is
overloaded to input data items of fundamental types, strings and
pointer values.

The predefined object cout is an ostream object and is said to be
“connected to” the standard output device, which usually is the display
screen. The stream insertion operator (<<), as used in the following
statement, causes the value of variable grade to be output from
memory to the standard output device:

cout << grade; // data "flows" in the direction of the arrows

The compiler determines the data type of grade (assuming grade has
been declared properly) and selects the appropriate stream insertion
operator. The << operator is overloaded to output data items of
fundamental types, strings and pointer values.

The predefined object cerr is an ostream object and is said to be
“connected to” the standard error device, normally the screen. Outputs
to object cerr are unbuffered, meaning that each stream insertion to
cerr causes its output to appear immediately—this is appropriate for
notifying a user promptly about errors.

The predefined object clog is an object of the ostream class and is
said to be “connected to” the standard error device. Outputs to clog
are buffered. This means that each insertion to clog could cause its
output to be held in a buffer (that is, an area in memory) until the
buffer is filled or until the buffer is flushed. Buffering is an I/O
performance-enhancement technique discussed in operating-systems
courses.

13.3 Stream Output
Formatted and unformatted output capabilities are provided by
ostream . Capabilities include output of standard data types with the
stream insertion operator (<<); output of characters via the put
member function; unformatted output via the write member function;
output of integers in decimal, octal and hexadecimal formats; output of
floating-point values with various precision, with forced decimal points,
in scientific notation (e.g., 1.234567e-03) and in fixed notation (e.g.,
0.00123457); output of data justified in fields of designated widths;
output of data in fields padded with specified characters; and output of
uppercase letters in scientific notation and hexadecimal notation. We’ll
demonstrate all of these capabilities in this chapter.

13.3.1 Output of char* Variables

C++ determines data types automatically—an improvement over C,
but this feature sometimes “gets in the way.” For example, suppose
we want to print the address stored in a char* pointer. The <<
operator has been overloaded to output a char* as a null-terminated

C-style string. To output the address, you can cast the char* to a
void* (this can be done to any pointer variable). Figure 13.1
demonstrates printing a char* variable in both string and address

formats. The address prints here as a hexadecimal (base-16) number
—in general, the way addresses print is implementation dependent.
To learn more about hexadecimal numbers, see Appendix D, Number
Systems. We say more about controlling the bases of numbers in
Section 13.6.1 and Section 13.7.4.

Fig. 13.1 Printing the address stored in a char* variable.

13.3.2 Character Output Using
Member Function put

The basic_ostream member function put outputs one character at a
time. For example, the statement

cout.put('A');

displays a single character A . Calls to put may be cascaded, as in the
statement

cout.put('A').put('\n');

which outputs the letter A followed by a newline character. As with << ,
the preceding statement executes in this manner, because the dot
operator (.) associates from left to right, and the put member function
returns a reference to the ostream object (cout) that received the put
call. The put function also may be called with a numeric expression
that represents an ASCII value, as in the following statement, which
also outputs A :

cout.put(65);

13.4 Stream Input
Formatted and unformatted input capabilities are provided by istream .
The stream extraction operator (>>) normally skips white-space
characters (such as blanks, tabs and newlines) in the input stream;
later we’ll see how to change this behavior.

Using the Result of a Stream Extraction as
a Condition
After each input, the stream extraction operator returns a reference to
the stream object that received the extraction message (e.g., cin in
the expression cin >> grade). If that reference is used as a condition
(e.g., in a while statement’s loop-continuation condition), the stream’s
overloaded bool cast operator function (added in C++11) is implicitly
invoked to convert the reference into true or false value, based on
the success or failure, respectively, of the last input operation. When
an attempt is made to read past the end of a stream, the stream’s
overloaded bool cast operator returns false to indicate end-of-file.
We used this capability in line 24 of Fig. 5.11.

11

13.4.1 get and getline Member
Functions

The get member function with no arguments inputs one character
from the designated stream (including white-space characters and
other nongraphic characters, such as the key sequence that
represents end-of-file) and returns it as the value of the function call.
This version of get returns EOF when end-of-file is encountered on the
stream. EOF normally has the value –1 and is defined in a header
that’s indirectly included in your code via stream library headers like
<iostream> .

Using Member Functions eof, get and
put

Figure 13.2 demonstrates member functions eof and get on input
stream cin and member function put on output stream cout . This
program uses get to read characters into the int variable character ,
so that we can test each character entered to see if it’s EOF We use int
because on many platforms char can represent only nonnegative
values and EOF is typically -1 . The program first prints the value of
cin.eof()—i.e., false (0 on the output)—to show that end-of-file has

not occurred on cin . The user enters a line of text and presses Enter

followed by end-of-file (<Ctrl> z on Microsoft Windows systems, <Ctrl>
d on Linux and Mac systems). Line 14 reads each character, which
line 15 outputs to cout using member function put . When end-of-file
is encountered, the while statement ends, and line 20 displays the
value of cin.eof() , which is now true (1 on the output), to show that
end-of-file has been set on cin . This program uses the version of
istream member function get that takes no arguments and returns the
character being input (line 14). Function eof returns true only after
the program attempts to read past the last character in the stream.

Fig. 13.2 get , put and eof member functions.

The get member function with a character-reference argument inputs
the next character from the input stream (even if this is a white-space
character) and stores it in the character argument. This version of get
returns a reference to the istream object for which the get member
function is being invoked.

A third version of get takes three arguments—a built-in array of
chars, a size limit and a delimiter (with default value '\n'). This
version reads characters from the input stream. It either reads one
fewer than the specified maximum number of characters and
terminates or terminates as soon as the delimiter is read. A null
character is inserted to terminate the input string in the character array
used as a buffer by the program. The delimiter is not placed in the
character array but does remain in the input stream (the delimiter will
be the next character read). Thus, the result of a second consecutive
get is an empty line, unless the delimiter character is removed from
the input stream (possibly with cin.ignore()).

Comparing cin and cin.get
Figure 13.3 compares input using the stream extraction operator with
cin (which reads characters until a white-space character is
encountered) and input using cin.get . The call to cin.get (line 20)
does not specify a delimiter, so the default '\n' character is used.

Fig. 13.3 Contrasting input of a string via cin and cin.get .

Using Member Function getline
Member function getline operates similarly to the third version of the
get member function and inserts a null character after the line in the
built-in array of char s. The getline function removes the delimiter
from the stream (i.e., reads the character and discards it), but does
not store it in the character array. The program of Fig. 13.4

demonstrates the use of the getline member function to input a line of

text (line 12).

Fig. 13.4 Inputting characters using cin member function getline .

13.4.2 istream Member Functions
peek , putback and ignore

The istream member function ignore (which you first used in Section
10.5) reads and discards characters. It receives two arguments:

a designated number of characters—the default argument value is
1—and
a delimiter at which to stop ignoring characters—the default
delimiter is EOF .

The function discards the specified number of characters, or fewer
characters if the delimiter is encountered in the input stream.

The putback member function places the previous character obtained
by a get from an input stream back into that stream. This function is
useful for applications that scan an input stream looking for a field
beginning with a specific character. When that character is input, the
application returns the character to the stream, so the character can
be included in the input data.

The peek member function returns the next character from an input
stream but does not remove the character from the stream.

13.4.3 Type-Safe I/O

C++ offers type-safe I/O. The << and >> operators are overloaded to
accept data items of specific types. If unexpected data is processed,
various error bits are set, which the user may query to determine
whether an I/O operation succeeded or failed. If operators << and >>
have not been overloaded for a user-defined type and you attempt to
use those operators to input into or output the contents of an object of
that user-defined type, the compiler reports an error. This enables the
program to “stay in control.” We discuss this more in Section 13.8.

13.5 Unformatted I/O Using read ,
write and gcount

Unformatted input/output is performed using istream ’s read and
ostream ’s write member functions, respectively— read inputs bytes to
a built-in array of chars in memory; write outputs bytes from a built-in
array of chars. These bytes are not formatted in any way. They’re
input or output simply as raw bytes. For example, the call

char buffer[]{"HAPPY BIRTHDAY"};

cout.write(buffer, 10);

outputs the first 10 bytes of buffer (including null characters, if any,
that would cause output with cout and << to terminate). The call

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

displays the first 10 characters of the alphabet.

The read member function inputs a designated number of characters
into a built-in array of chars. If fewer than the designated number of
characters are read, failbit is set. Section 13.8 shows how to
determine whether failbit has been set. Member function gcount
reports the number of characters read by the last input operation.

Figure 13.5 demonstrates istream member functions read and
gcount , and ostream member function write . The program inputs 20
characters (from a longer input sequence) into the array buffer with
read (line 12), determines the number of characters input with gcount
(line 16) and outputs the characters in buffer with write (line 16).

Fig. 13.5 Unformatted I/O using read , gcount and write .

13.6 Stream Manipulators: A
Deeper Look
As you’ve seen, C++ provides various stream manipulators that
perform formatting tasks. The stream manipulators provide capabilities
such as

setting field widths
setting precision
setting and unsetting format state
setting the fill character in fields
flushing streams
inserting a newline into the output stream (and flushing the stream)
inserting a null character into the output stream
skipping white space in the input stream

These features are described in the sections that follow.

13.6.1 Integral Stream Base: dec,
oct, hex and setbase

Integers are interpreted normally as decimal (base 10) values. To
change the base in which integers are interpreted on a stream, insert
the hex manipulator to set the base to hexadecimal (base 16) or insert
the oct manipulator to set the base to octal (base 8). Insert the dec
manipulator to reset the stream base to decimal. These are all sticky
manipulators.

A stream’s base also may be changed by the setbase parameterized
stream manipulator (header <iomanip>), which takes an int argument
of 10 , 8 , or 16 to set the base to decimal, octal or hexadecimal,
respectively. The stream base value remains the same until changed
explicitly; setbase settings are sticky. Figure 13.6 demonstrates
stream manipulators hex , oct , dec and setbase . For more information
on decimal, octal and hexadecimal numbers, see Appendix D,
Number Systems.

Fig. 13.6 Using stream manipulators hex , oct , dec and setbase .

13.6.2 Floating-Point Precision
(precision , setprecision)

We can control the precision of floating-point numbers (i.e., the
number of digits to the right of the decimal point) with the setprecision
stream manipulator or the precision member function of ostream . A
call to either sets the precision for all subsequent output operations
until the next precision-setting call. A call to member function
precision with no argument returns the current precision setting—you
can use this value to restore the original precision eventually after a
sticky setting is no longer needed. Figure 13.7 uses both member
function precision (line 17) and the setprecision manipulator (line 25)
to print a table that shows the square root of 2 , with precision varying
from 0 to 9 .

Fig. 13.7 Controlling precision of floating-point values.

13.6.3 Field Width (width, setw)

The width member function (of classes istream and ostream) sets the
field width (i.e., the number of character positions in which a value
should be output or the maximum number of characters that should be
input) and returns the previous field width. If values output are
narrower than the field width, fill characters are inserted as padding.
A value wider than the designated width will not be truncated—the full
number will be printed. The width function with no argument returns
the current setting.

 Common Programming Error 13.1
The width setting applies only for the next insertion or extraction (i.e.,
the width setting is not sticky); afterward, the width is set implicitly to 0
(that is, input and output will be performed with default settings).
Assuming that the width setting applies to all subsequent outputs is a
logic error.

 Common Programming Error 13.2

When a field is not sufficiently wide to handle outputs, the outputs print
as wide as necessary, which can yield confusing outputs.

Figure 13.8 demonstrates the width member function for both input
and output. On input into a char array, a maximum of one fewer

characters than the width will be read, because provision is made for
the null character to be placed in the input string. Remember that
stream extraction terminates when nonleading white space is
encountered. The setw stream manipulator also may be used to set
the field width. [Note: When prompted for input in Fig. 13.8, enter a
line of text and press Enter followed by end-of-file (<Ctrl> z on
Microsoft Windows systems and <Ctrl> d on Linux and OS X
systems).]

Fig. 13.8 width member function of class classes istream and
ostream .

13.6.4 User-Defined Output
Stream Manipulators

You can create your own stream manipulators. Figure 13.9 shows
how to create and use new nonparameterized stream manipulators
bell (lines 8–10), carriageReturn (lines 13–15), tab (lines 18–20) and
endLine (lines 24–26). For output stream manipulators, the return type
and parameter must be of type ostream& . When line 30 inserts the
endLine manipulator in the output stream, function endLine is called
and line 25 outputs the escape sequence \n and the flush
manipulator (which flushes the output buffer) to the standard output
stream cout . Similarly, when lines 31–39 insert the manipulators tab ,
bell and carriageReturn in the output stream, their corresponding
functions— tab , bell and carriageReturn—are called, which in turn
output various escape sequences.

Fig. 13.9 Creating and testing user-defined, nonparameterized
stream manipulators.

13.7 Stream Format States and
Stream Manipulators
Various stream manipulators can be used to specify the kinds of
formatting to be performed during stream-I/O operations. Stream
manipulators control the output’s format settings. Figure 13.10 lists
each stream manipulator that controls a given stream’s format state.
We show examples of many of these stream manipulators in the next
several sections, and you’ve already seen examples of several of
these manipulators.

Fig. 13.10 Format state stream manipulators from <iostream> .

Manipulator Description

skipws Skip white-space characters on an input stream. This setting is reset
with stream manipulator noskipws .

left Left justify output in a field. Padding characters appear to the right if
necessary.

right Right justify output in a field. Padding characters appear to the left if
necessary.

internal Indicate that a number’s sign should be left justified in a field and a
number’s magnitude should be right justified in that same field (i.e.,
padding characters appear between the sign and the number).

boolalpha Specify that bool values should be displayed as the word true or

false . The manipulator noboolalpha sets the stream back to

displaying bool values as 1 (true) and 0 (false).

dec Specify that integers should be treated as decimal (base 10) values.

oct Specify that integers should be treated as octal (base 8) values.

hex Specify that integers should be treated as hexadecimal (base 16)
values.

showbase Specify that the base of a number is to be output ahead of the number
(a leading 0 for octals; a leading 0x or 0X for hexadecimals). This

setting is reset with stream manipulator noshowbase .

showpoint Specify that floating-point numbers should be output with a decimal

point. This is used normally with fixed to guarantee a certain number

of digits to the right of the decimal point, even if they’re zeros. This
setting is reset with stream manipulator noshowpoint .

uppercase Specify that uppercase letters (i.e., X and A through F) should be

used in a hexadecimal integer and that uppercase E should be used

when representing a floating-point value in scientific notation. This
setting is reset with stream manipulator nouppercase .

showpos Specify that positive numbers should be preceded by a plus sign (+).

This setting is reset with stream manipulator noshowpos .

scientific Specify output of a floating-point value in scientific notation.

fixed Specify output of a floating-point value in fixed-point notation with a
specific number of digits to the right of the decimal point.

13.7.1 Trailing Zeros and Decimal
Points (showpoint)

Stream manipulator showpoint is a sticky setting that forces a floating-
point number to be output with its decimal point and trailing zeros. For
example, the floating-point value 79.0 prints as 79 without using
showpoint and prints as 79.00000 (or as many trailing zeros as are
specified by the current precision) using showpoint . To reset the
showpoint setting, output the stream manipulator noshowpoint . The
program in Fig. 13.11 shows how to use stream manipulator
showpoint to control the printing of trailing zeros and decimal points for
floating-point values. Recall that the default precision of a floating-
point number is 6. When neither the fixed nor the scientific stream
manipulator is used, the precision represents the number of significant
digits to display (i.e., the total number of digits to display), not the
number of digits to display after decimal point.

Fig. 13.11 Controlling the printing of trailing zeros and decimal
points in floating-point values.

13.7.2 Justification (left, right
and internal)

Stream manipulators left and right enable fields to be left justified

with padding characters to the right or right justified with padding
characters to the left, respectively. The padding character is specified
by the fill member function or the setfill parameterized stream
manipulator (which we discuss in Section 13.7.3). Figure 13.12 uses
the setw , left and right manipulators to left justify and right justify
integer data in a field—we wrap each field in quotes to you can see
the leading and trailing space in the field.

Fig. 13.12 Left and right justification with stream manipulators
left and right .

Stream manipulator internal indicates that a number’s sign (or base

when using stream manipulator showbase) should be left justified within
a field, that the number’s magnitude should be right justified and that
intervening spaces should be padded with the fill character. Figure
13.13 shows the internal stream manipulator specifying internal
spacing (line 9). Note that showpos forces the plus sign to print (line 9).
To reset the showpos setting, output the stream manipulator
noshowpos.

Fig. 13.13 Printing an integer with internal spacing and plus sign.

13.7.3 Padding (fill, setfill)

The fill member function specifies the fill character to be used with
justified fields; spaces are used for padding by default. The function
returns the prior padding character. The setfill manipulator also sets
the padding character. Figure 13.14 demonstrates function fill (line
29) and stream manipulator setfill (lines 33 and 36) to set the fill
character.

Fig. 13.14 Using member function fill and stream manipulator
setfill to change the padding character for fields larger than the
printed values.

13.7.4 Integral Stream Base (dec,
oct, hex, showbase)

C++ provides stream manipulators dec , hex and oct to specify that
integers are to be displayed as decimal, hexadecimal and octal
values, respectively. Stream insertions default to decimal if none of
these manipulators is used. With stream extraction, integers prefixed
with 0 (zero) are treated as octal values, integers prefixed with 0x or
0X are treated as hexadecimal values, and all other integers are
treated as decimal values. Once a particular base is specified for a
stream, all integers on that stream are processed using that base until
a different base is specified or until the program terminates.

Stream manipulator showbase forces the base of an integral value to
be output. Decimal numbers are output by default, octal numbers are
output with a leading 0 , and hexadecimal numbers are output with
either a leading 0x or a leading 0X (as we discuss in Section 13.7.6,
stream manipulator uppercase determines which option is chosen).
Figure 13.15 demonstrates the use of stream manipulator showbase to
force an integer to print in decimal, octal and hexadecimal formats. To
reset the showbase setting, output the stream manipulator noshowbase .

Fig. 13.15 Stream manipulator showbase .

13.7.5 Floating-Point Numbers;
Scientific and Fixed Notation
(scientific, fixed)

When a floating-point number is displayed without specifying its
format, the value determines the output format—some numbers are
displayed in scientific notation and others in fixed-point notation. The
sticky stream manipulators scientific and fixed control the output
format of floating-point numbers. Stream manipulator scientific
forces the output of a floating-point number to display in scientific
format. Stream manipulator fixed forces a floating-point number to
display in fixed-point notation with a specific number of digits to the
right of the decimal point—as specified by member function precision
or stream manipulator setprecision .

Figure 13.16 demonstrates displaying floating-point numbers in fixed
and scientific formats using stream manipulators scientific (line 16)
and fixed (line 20). The exponent format in scientific notation might
vary among compilers.

Fig. 13.16 Floating-point values displayed in system default,
scientific and fixed formats.

13.7.6 Uppercase/Lowercase
Control (uppercase)

Stream manipulator uppercase outputs an uppercase X or E with
hexadecimal-integer values or with scientific notation floating-point
values, respectively (Fig. 13.17). Using stream manipulator uppercase
also causes all letters in a hexadecimal value to be uppercase. By
default, the letters for hexadecimal values and the exponents in
scientific notation floating-point values appear in lowercase. To reset
the uppercase setting, output the stream manipulator nouppercase .

Fig. 13.17 Stream manipulator uppercase .

13.7.7 Specifying Boolean Format
(boolalpha)

C++ provides data type bool , whose values may be false or true , as
a preferred alternative to the old style of using 0 to indicate false and
any nonzero value to indicate true . A bool variable outputs as 0 or 1
by default. However, we can use stream manipulator boolalpha to set
the output stream to display bool values as the strings "true" and
"false" . Use stream manipulator noboolalpha to set the output stream
to display bool values as integers (i.e., the default setting). The
program of Fig. 13.18 demonstrates these stream manipulators. Line
10 displays the bool value, which line 7 set to true , as an integer.
Line 14 uses manipulator boolalpha to display the bool value as a
string. Lines 17–18 then change the bool ’s value and use manipulator
noboolalpha , so line 21 can display the bool value as an integer. Line
25 uses manipulator boolalpha to display the bool value as a string.
Both boolalpha and noboolalpha are sticky settings.

 Good Programming Practice 13.1
Displaying bool values as true or false , rather than nonzero or 0 ,

respectively, makes program outputs clearer.

Fig. 13.18 Stream manipulators boolalpha and noboolalpha .

13.7.8 Setting and Resetting the
Format State via Member Function
flags

Throughout Section 13.7, we’ve been using stream manipulators to
change output format characteristics. We now discuss how to return
an output stream’s format to its default state after having applied
several manipulations. Member function flags without an argument
returns the current format settings as an fmtflags data type, which
represents the format state. Member function flags with an fmtflags
argument sets the format state as specified by the argument and
returns the prior state settings. The initial settings of the value that
flags returns might vary among compilers. The program of Fig. 13.19
uses member function flags to save the stream’s original format state
(line 16), then restore the original format settings (line 24).

Fig. 13.19 flags member function.

13.8 Stream Error States
Each stream object contains a set of state bits that represent a
stream’s state—sticky format settings, error indicators, etc. Earlier in
the book, we indicated that you can test, for example, whether an
input was successful. You can test this through bits of class ios_base
—the base class of the stream classes. Stream extraction sets the
stream’s failbit to true if the wrong type of data is input. Similarly,
stream extraction sets the stream’s badbit to true if the operation fails
in an unrecoverable manner—for example, if a disk fails when a
program is reading a file from that disk. Figure 13.20 shows how to
use bits like failbit and badbit to determine a stream’s state.2 In
industrial-strength code, you’ll want to perform similar tests on every
I/O operation. Chapter 22 discusses bits and bit manipulation in
detail.

2. The actual values output by this program may vary among
compilers.

Fig. 13.20 Testing error states.

Member Function eof
The program begins by displaying the stream’s state before receiving
any input from the user (lines 10–15). Line 12 uses member function
eof to determine whether end-of-file has been encountered on the
stream. In this case, the function returns 0 (false). The function checks
the value of the stream’s eofbit data member, which is set to true for
an input stream after end-of-file is encountered after an attempt to
extract data beyond the end of the stream.

Member Function fail
Line 13 uses the fail member function to determine whether a
stream operation has failed. The function checks the value of the
stream’s failbit data member, which is set to true, for example, on
an a stream when a format error occurs and as a result no characters
are input (e.g., when you attempt to read a number and the user
enters a string). In this case, the function returns 0 (false). When such
an error occurs on input, the characters are not lost. Usually,
recovering from such input errors is possible.

Member Function bad

Line 14 uses the bad member function to determine whether a stream
operation failed. The function checks the value of the stream’s badbit
data member, which is set to true for a stream when an error occurs
that results in the loss of data—such as reading from a file when the
disk on which the file is stored fails. In this case, the function returns 0
(false). Generally, such serious failures are nonrecoverable.

Member Function good
Line 15 uses the good member function, which returns true if the bad ,
fail and eof functions would all return false . The function checks
the stream’s goodbit , which is set to true for a stream if none of the
bits eofbit , failbit or badbit is set to true for the stream. In this
case, the function returns 1 (true). I/O operations should be performed
only on “good” streams.

Member Function rdstate
The rdstate member function (line 11) returns the stream’s overall
error state. The function’s return value could be tested, for example,
by a switch statement that examines eofbit , badbit , failbit and
goodbit . The preferred means of testing the state of a stream is to use
member functions eof , bad , fail and good—using these functions
does not require you to be familiar with particular status bits.

Causing an Error in the Input Stream and

Redisplaying the Stream’s State
Line 18 reads a value into an int variable. You should enter a string
rather than an int to force an error to occur in the input stream. At
this point, the input fails and lines 21–26 once again call the streams’s
state functions. In this case, fail returns 1 (true), because the input
failed. Function rdstate also returns a nonzero value (true), because
at least one of the member functions eof , bad and fail returned true.
Once an error occurs in the stream, function good returns 0 (false).

Clearing the Error State So You May
Continue Using the Stream
After an error occurs, you can no longer use the stream until you reset
its error state. The clear member function (line 28) is used to restore

a stream’s state to “good,” so that I/O may proceed on that stream.
Lines 31–32 then show that fail returns 0 (false) and good returns 1
(true), so the input stream can be used again.

The default argument for clear is goodbit , so the statement

cin.clear();

clears cin and sets goodbit for the stream. The statement

cin.clear(ios::failbit)

sets the failbit . You might want to do this when performing input on
cin with a user-defined type and encountering a problem. The name
clear might seem inappropriate in this context, but it’s correct.

Overloaded Operators ! and bool
Overloaded operators can be used to test a stream’s state in
conditions. The operator! member function—inherited into the stream
classes from class basic_ios—returns true if the badbit , the failbit
or both are true. The operator bool member function (added in
C++11) returns false if the badbit is true, the failbit is true or both
are true. These functions are useful in I/O processing when a
true / false condition is being tested under the control of a selection
statement or iteration statement. For example, you could use an if
statement of the form

11

if (!cin) {

 // process invalid input stream

}

to execute code if cin ’s stream is invalid due to a failed input.
Similarly, you’ve already seen a while condition of the form

while (cin >> variableName) {

 // process valid input

}

which enables the loop to execute as long as each input operation is
successful and terminates the loop if an input fails or the end-of-file
indicator is encountered.

13.9 Tying an Output Stream to an
Input Stream
Interactive applications generally involve an istream for input and an
ostream for output. When a prompting message appears on the
screen, the user responds by entering the appropriate data.
Obviously, the prompt needs to appear before the input operation
proceeds. With output buffering, outputs appear only

when the buffer fills
when outputs are flushed explicitly by the program or
automatically at the end of the program.

C++ provides member function tie to synchronize (i.e., “tie together”)
the operation of an istream and an ostream to ensure that outputs
appear before their subsequent inputs. The call

cin.tie(&cout);

ties cout (an ostream) to cin (an istream). Actually, this particular call
is redundant, because C++ performs this operation automatically to
create a user’s standard input/output environment. However, the user

would tie other istream / ostream pairs explicitly. To untie an input
stream, inputStream , from an output stream, use the call

inputStream.tie(0);

13.10 Wrap-Up
This chapter provided a deeper look at how C++ performs input/output
using streams. You learned about the stream-I/O classes and objects,
as well as the stream I/O template class hierarchy. We discussed
ostream ’s formatted and unformatted output capabilities performed by
the put and write functions. You learned about istream ’s formatted
and unformatted input capabilities performed by the eof , get ,
getline , peek , putback , ignore and read functions. We discussed
stream manipulators and member functions that perform formatting
tasks:

dec , oct , hex and setbase for displaying integers
precision and setprecision for controlling floating-point precision
and width and setw for setting field width.

You also learned additional formatting with iostream manipulators and
member functions:

showpoint for displaying decimal point and trailing zeros
left , right and internal for justification
fill and setfill for padding
scientific and fixed for displaying floating-point numbers in
scientific and fixed notation

uppercase for uppercase/lowercase control
boolalpha for specifying Boolean format
and flags and fmtflags for resetting the format state.

In the next chapter, you’ll learn about file processing, including how
persistent data is stored and how to manipulate it.

Summary

Section 13.1 Introduction

I/O operations are performed in a manner sensitive to the type of
the data.

Section 13.2 Streams

C++ I/O occurs in streams (p. 579). A stream is a sequence of
bytes.
Low-level I/O-capabilities specify that bytes should be transferred
device-to-memory or memory-to-device. High-level I/O is
performed with bytes grouped into meaningful units such as
integers, strings and user-defined types.
C++ provides both unformatted-I/O and formatted-I/O operations.
Unformatted-I/O (p. 579) transfers are fast, but process raw data
that is difficult for people to use. Formatted I/O processes data in
meaningful units, but requires extra processing time that can
degrade the performance.

Section 13.2.2 iostream Library
Headers

The <iostream> header declares all stream-I/O operations.
The <iomanip> header declares the parameterized stream
manipulators.

Section 13.2.3 Stream
Input/Output Classes and Objects

The basic_istream template (p. 580) supports stream input
operations.
The basic_ostream template (p. 580) supports stream output
operations.
The basic_iostream template supports both stream input and
stream output operations.
The istream object cin is tied to the standard input device,
normally the keyboard.
The ostream object cout is tied to the standard output device,
normally the screen.
The ostream object cerr is tied to the standard error device,
normally the screen. Outputs to cerr are unbuffered (p. 581)—
each insertion to cerr appears immediately.
The ostream object clog is tied to the standard error device,
normally the screen. Outputs to clog are buffered (p. 581).
The C++ compiler determines data types automatically for input
and output.

Section 13.3 Stream Output

Addresses are displayed in hexadecimal format by default.
To print the address in a pointer variable, cast the pointer to void
* .
Member function put outputs one character. Calls to put may be
cascaded.

Section 13.4 Stream Input

Stream input is performed with the stream extraction operator >> ,
which automatically skips white-space characters in the input
stream and returns false after end-of-file is encountered.
A series of values can be input using the stream extraction
operation in a while loop header. The extraction returns 0 when
end-of-file is encountered or an error occurs.
The get member function (p. 583) with no arguments inputs one
character and returns the character; EOF is returned if end-of-file is
encountered on the stream.
Member function get with a character-reference argument inputs
the next character from the input stream and stores it in the
character argument. This version of get returns a reference to the
istream object for which the get member function is being
invoked.
Member function get with three arguments—a character array, a
size limit and a delimiter (with default value newline)—reads
characters from the input stream up to a maximum of limit – 1
characters, or until the delimiter is read. The input string is
terminated with a null character. The delimiter is not placed in the
character array but remains in the input stream.
Member function getline (p. 585) operates like the three-argument
get member function. The getline function removes the delimiter

from the input stream but does not store it in the string.
Member function ignore skips the specified number of characters
(the default is 1) in the input stream; it terminates if the specified
delimiter is encountered (the default delimiter is EOF).
The putback member function (p. 586) places the previous
character obtained by a get on a stream back into that stream.
The peek member function (p. 586) returns the next character from
an input stream but does not extract (remove) the character from
the stream.
C++ offers type-safe I/O (p. 586). If unexpected data is processed
by the << and >> operators, various error bits are set, which can
be tested to determine whether an I/O operation succeeded or
failed. If operator << has not been overloaded for a user-defined
type, a compiler error is reported.

Section 13.5 Unformatted I/O
Using read , write and gcount

Unformatted I/O is performed with member functions read and
write (p. 586). These input or output bytes to or from memory,
beginning at a designated memory address.
The gcount member function (p. 587) returns the number of
characters input by the previous read operation on that stream.
Member function read inputs a specified number of characters into
a character array. failbit is set if fewer than the specified number
of characters are read.

Section 13.6 Stream Manipulators:
A Deeper Look

To change the base in which integers output, use the manipulator
hex (p. 588) to set the base to hexadecimal (base 16) or oct (p.
588) to set the base to octal (base 8). Use manipulator dec (p.
588) to reset the base to decimal. The base remains the same until
changed explicitly.
The parameterized stream manipulator setbase (p. 588) also sets
the base for integer output. setbase takes one integer argument of
10 , 8 or 16 to set the base.
Floating-point precision can be controlled with the setprecision
stream manipulator or the precision member function (p. 588).
Both set the precision for all subsequent output operations until the
next precision-setting call. The precision member function with no
argument returns the current precision value.
Parameterized manipulators require the inclusion of the <iomanip>
header.
Member function width (p. 590) sets the field width and returns the
previous width. Values narrower than the field are padded with fill
characters. The field-width setting applies only for the next
insertion or extraction, then input is performed using the default
settings. Values wider than a field are printed in their entirety.

Function width with no argument returns the current width setting.
Manipulator setw also sets the width.

For input, the setw stream manipulator establishes a maximum
string size; if a larger string is entered, the larger line is broken into
pieces no larger than the designated size.
You can create your own stream manipulators.

Section 13.7 Stream Format
States and Stream Manipulators

Stream manipulator showpoint (p. 593) forces a floating-point
number to be output with a decimal point and with the number of
significant digits specified by the precision.
Stream manipulators left and right (p. 594) cause fields to be
left justified with padding characters to the right or right justified
with padding characters to the left.
Stream manipulator internal (p. 595) indicates that a number’s
sign (or base when using stream manipulator showbase ; p. 597)
should be left justified within a field, its magnitude should be right
justified and intervening spaces should be padded with the fill
character.
Member function fill (p. 595) specifies the fill character to be
used with stream manipulators left , right and internal (space is
the default); the prior padding character is returned. Stream
manipulator setfill also sets the fill character.
Stream manipulators oct , hex and dec specify that integers are to
be treated as octal, hexadecimal or decimal values, respectively.
Integer output defaults to decimal if none of these is set; stream
extractions process the data in the form the data is supplied.

Stream manipulator showbase forces the base of an integral value
to be output.
Stream manipulator scientific (p. 597) is used to output a
floating-point number in scientific format. Stream manipulator
fixed is used to output a floating-point number with the precision
specified by the precision member function.
Stream manipulator uppercase (p. 598) outputs an uppercase X or
E for hexadecimal integers and scientific notation floating-point
values, respectively. Hexadecimal values appear in all uppercase.
Member function flags (p. 600) with no argument returns the
current format state (p. 600) as a long value. Function flags with
a long argument sets the format state specified by the argument.

Section 13.8 Stream Error States

Stream extraction causes failbit (p. 601) to be set for improper
input and badbit (p. 601) to be set if the operation fails.
The state of a stream may be tested through bits in class ios_base .
The eofbit (p. 603) is set for an input stream after end-of-file is
encountered during an input operation. The eof member function
reports whether the eofbit has been set.
A stream’s failbit is set when a format error occurs. The fail
member function (p. 603) reports whether a stream operation has
failed; it’s normally possible to recover from such errors.
A stream’s badbit is set when an error occurs that results in data
loss. Member function bad reports whether a stream operation
failed. Such serious failures are normally nonrecoverable.
The good member function (p. 603) returns true if the bad , fail
and eof functions would all return false . I/O operations should be
performed only on “good” streams.
The rdstate member function (p. 603) returns the error state of the
stream.
Member function clear (p. 603) restores a stream’s state to
“good,” so that I/O may proceed.

Section 13.9 Tying an Output
Stream to an Input Stream

C++ provides the tie member function (p. 604) to synchronize
istream and ostream operations to ensure that outputs appear
before subsequent inputs.

Self-Review Exercises
1. 13.1 (Fill in the Blanks) Answer each of the following:

A. Input/output in C++ occurs as of bytes.
B. The stream manipulators for justification are ,

 and .
C. Member function can be used to set and reset

format state.
D. Most C++ programs that do I/O should include the

 header that contains the declarations required
for all stream-I/O operations.

E. When using parameterized manipulators, the header
 must be included.

F. The stream manipulator causes positive
numbers to display with a plus sign.

G. The ostream member function is used to
perform unformatted output.

H. Input operations are supported by class .
I. Standard error stream outputs are directed to the stream

objects or .
J. Output operations are supported by class .
K. The symbol for the stream insertion operator is .
L. The four objects that correspond to the standard devices

on the system include , , and
 .

M. The symbol for the stream extraction operator is
 .

N. The stream manipulators , and
specify that integers should be displayed in octal,
hexadecimal and decimal formats, respectively.

2. 13.2 (True or False) State whether each of the following is true
or false. If the answer is false, explain why.

A. The stream member function flags with a long
argument sets the flags state variable to its argument
and returns its previous value.

B. The stream insertion operator << and the stream
extraction operator >> are overloaded to handle all
standard data types—including strings and memory
addresses (stream insertion only)—and all user-defined
data types.

C. The stream member function flags with no arguments
resets the stream’s format state.

D. Input with the stream extraction operator >> always
skips leading white-space characters in the input stream,
by default.

E. The stream member function rdstate returns the current
state of the stream.

F. The cout stream normally is connected to the display
screen.

G. The stream member function good returns true if the
bad , fail and eof member functions all return false .

H. The cin stream normally is connected to the display
screen.

I. If a nonrecoverable error occurs during a stream
operation, the bad member function will return true .

J. Output to cerr is unbuffered and output to clog is
buffered.

K. Stream manipulator showpoint forces floating-point
values to print with the default six digits of precision
unless the precision value has been changed, in which
case floating-point values print with the specified
precision.

L. The ostream member function put outputs the specified
number of characters.

M. The stream manipulators dec , oct and hex affect only
the next integer output operation.

3. 13.3 (Write a C++ Statement) For each of the following, write a
single statement that performs the indicated task.

A. Output the string "Enter your name: " .
B. Use a stream manipulator that causes the exponent in

scientific notation and the letters in hexadecimal values
to print in capital letters.

C. Output the address of the variable myString of type char
* .

D. Use a stream manipulator to ensure that floating-point
values print in scientific notation.

E. Output the address in variable integerPtr of type int * .

F. Use a stream manipulator such that, when integer
values are output, the integer base for octal and
hexadecimal values is displayed.

G. Output the value pointed to by floatPtr of type float * .
H. Use a stream member function to set the fill character to

'*' for printing in field widths larger than the values
being output. Repeat this statement with a stream
manipulator.

I. Output the characters 'O' and 'K' in one statement with
ostream function put .

J. Get the value of the next character to input without
extracting it from the stream.

K. Input a single character into variable charValue of type
char , using the istream member function get in two
different ways.

L. Input and discard the next six characters in the input
stream.

M. Use istream member function read to input 50
characters into char array line .

N. Read 10 characters into character array name . Stop
reading characters if the '.' delimiter is encountered.
Do not remove the delimiter from the input stream. Write
another statement that performs this task and removes
the delimiter from the input.

O. Use the istream member function gcount to determine
the number of characters input into character array line
by the last call to istream member function read , and

output that number of characters, using ostream member
function write .

P. Output 124 , 18.376 , 'Z' , 1000000 and "String " ,
separated by spaces.

Q. Display cout ’s current precision setting.
R. Input an integer value into int variable months and a

floating-point value into float variable percentageRate .
S. Print 1.92 , 1.925 and 1.9258 separated by tabs and with

3 digits of precision, using a stream manipulator.
T. Print integer 100 in octal, hexadecimal and decimal,

using stream manipulators and separated by tabs.
U. Print integer 100 in decimal, octal and hexadecimal

separated by tabs, using a stream manipulator to
change the base.

V. Print 1234 right justified in a 10 -digit field.
W. Read characters into character array line until the

character 'z' is encountered, up to a limit of 20
characters (including a terminating null character). Do
not extract the delimiter character from the stream.

X. Use integer variables x and y to specify the field width
and precision used to display the double value 87.4573 ,
and display the value.

4. 13.4 (Find and Correct Code Errors) Identify the error in each
of the following statements and explain how to correct it.

A. cout << "Value of x <= y is: " << x <= y;

B. The following statement should print the integer value of
' c' .

cout << 'c' ;

C. cout << ""A string in quotes"";

5. 13.5 (Show Outputs) For each of the following, show the
output.

A.

cout << "12345\n";

cout.width(5);

cout.fill('*');

cout << 123 << "\n" << 123;

B. cout << setw(10) << setfill('$') << 10000;

C. cout << setw(8) << setprecision(3) << 1024.987654;

D. cout << showbase << oct << 99 << "\n" << hex << 99;

E. cout << 100000 << "\n" << showpos << 100000;

F. cout << setw(10) << setprecision(2) << scientific <<

444.93738;

Exercises
1. 13.6 (Write C++ Statements) Write a statement for each of the

following:
A. Print integer 40000 left justified in a 15-digit field.
B. Read a string into character array variable state .
C. Print 200 with and without a sign.
D. Print the decimal value 100 in hexadecimal form

preceded by 0x .
E. Read characters into array charArray until the character

'p' is encountered, up to a limit of 10 characters
(including the terminating null character). Extract the
delimiter from the input stream, and discard it.

F. Print 1.234 in a 9-digit field with preceding zeros.

2. 13.7 (Inputting Decimal, Octal and Hexadecimal Values)
Write a program to test the inputting of integer values in
decimal, octal and hexadecimal formats. Output each integer
read by the program in all three formats. Test the program with
the following input data: 10 , 010 , 0x10 .

3. 13.8 (Printing Pointer Values as Integers) Write a program
that prints pointer values, using casts to all the integer data
types. Which ones print strange values? Which ones cause
errors?

4. 13.9 (Printing with Field Widths) Write a program to test the
results of printing the integer value 12345 and the floating-point
value 1.2345 in various-sized fields. What happens when the
values are printed in fields containing fewer digits than the
values?

5. 13.10 (Rounding) Write a program that prints the value
100.453627 rounded to the nearest digit, tenth, hundredth,
thousandth and ten-thousandth.

6. 13.11 (Length of a String) Write a program that inputs a string
from the keyboard and determines the length of the string. Print
the string in a field width that is twice the length of the string.

7. 13.12 (Converting Fahrenheit to Celsius) Write a program
that converts integer Fahrenheit temperatures from 0 to 212
degrees to floating-point Celsius temperatures with 3 digits of
precision. Use the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);

to perform the calculation. The output should be printed in two
right-justified columns and the Celsius temperatures should be
preceded by a sign for both positive and negative values.

8. 13.13 In some programming languages, strings are entered
surrounded by either single or double quotation marks. Write a
program that reads the three strings suzy , "suzy" and 'suzy' .
Are the single and double quotes ignored or read as part of the
string?

9. 13.14 (Reading Phone Numbers with an Overloaded Stream
Extraction Operator) In Fig. 10.5, the stream extraction and
stream insertion operators were overloaded for input and output
of objects of the PhoneNumber class. Rewrite the stream
extraction operator to perform the following error checking on
input. The operator>> function will need to be reimplemented.

A. Input the entire phone number into an array. Test that
the proper number of characters has been entered.
There should be a total of 14 characters read for a
phone number of the form (800) 555-1212 . Use istream
member-function clear to set failbit for improper input.

B. The area code and exchange do not begin with 0 or 1 .
Test the first digit of the areacode and exchange
portions of the phone number to be sure that neither
begins with 0 or 1 . Use istream member-function clear
to set failbit for improper input.

C. The middle digit of an area code used to be limited to 0
or 1 (though this has changed). Test the middle digit for
a value of 0 or 1 . Use the istream member-function
clear to set failbit for improper input. If none of the
above operations results in failbit being set for
improper input, copy the parts of the telephone number
into the PhoneNumber object’s areaCode , exchange and
line members. If failbit has been set on the input,
have the program print an error message and end,
rather than print the phone number.

10. 13.15 (Point Class) Write a program that accomplishes each
of the following:

A. Create a user-defined class Point that contains the
private integer data members xCoordinate and
yCoordinate and declares stream insertion and stream
extraction overloaded operator functions as friends of
the class.

B. Define the stream insertion and stream extraction
operator functions. The stream extraction operator
function should determine whether the data entered is
valid, and, if not, it should set the failbit to indicate
improper input. The stream insertion operator should not
be able to display the point after an input error occurred.

C. Write a main function that tests input and output of user-
defined class Point , using the overloaded stream
extraction and stream insertion operators.

11. 13.16 (Complex Class) Write a program that accomplishes each
of the following:

A. Create a user-defined class Complex that contains the
private integer data members real and imaginary and
declares stream insertion and stream extraction
overloaded operator functions as friends of the class.

B. Define the stream insertion and stream extraction
operator functions. The stream extraction operator
function should determine whether the data entered is

valid, and, if not, it should set failbit to indicate
improper input. The input should be of the form

3 + 8i

C. The values can be negative or positive, and it’s possible
that one of the two values is not provided, in which case
the appropriate data member should be set to 0. The
stream insertion operator should not be able to display
the point if an input error occurred. For negative
imaginary values, a minus sign should be printed rather
than a plus sign.

D. Write a main function that tests input and output of user-
defined class Complex , using the overloaded stream
extraction and stream insertion operators.

12. 13.17 (Printing a Table of ASCII Values) Write a program that
uses a for statement to print a table of ASCII values for the
characters in the ASCII character set from 33 to 126 . The
program should print the decimal value, octal value,
hexadecimal value and character value for each character. Use
the stream manipulators dec , oct and hex to print the integer
values.

13. 13.18 (String-Terminating Null Character) Write a program to
show that the getline and three-argument get istream
member functions both end the input string with a string-

terminating null character. Also, show that get leaves the
delimiter character on the input stream, whereas getline

extracts the delimiter character and discards it. What happens
to the unread characters in the stream?

Answers to Self-Review Exercises
1. 13.1

A. streams.
B. left , right and internal .
C. flags .
D. <iostream> .
E. <iomanip> .
F. showpos .
G. write .
H. istream .
I. cerr or clog .
J. ostream .
K. << .
L. cin , cout , cerr and clog .

M. >> .
N. oct , hex and dec .

2. 13.2
A. False. The stream member function flags with a

fmtflags argument sets the flags state variable to its
argument and returns the prior state settings.

B. False. The stream insertion and stream extraction
operators are not overloaded for all user-defined types.

You must specifically provide the overloaded operator
functions to overload the stream operators for use with
each user-defined type you create.

C. False. The stream member function flags with no
arguments returns the current format settings as a
fmtflags data type, which represents the format state.

D. True.
E. True.
F. True.
G. True.
H. False. The cin stream is connected to the standard

input of the computer, which normally is the keyboard.
I. True.
J. True.
K. True.
L. False. The ostream member function put outputs its

single-character argument.
M. False. The stream manipulators dec , oct and hex set

the output format state for integers to the specified base
until the base is changed again or the program
terminates.

3. 13.3
A. cout << "Enter your name: ";

B. cout << uppercase;

C. cout << static_cast < void*>(myString);

D. cout << scientific;

E. cout << integerPtr;

F. cout << showbase;

G. cout << *floatPtr;

H. cout.fill('*');

cout << setfill('*');

I. cout.put('O').put('K');

J. cin.peek();

K. charValue = cin.get();

cin.get(charValue);

L. cin.ignore(6);

M. cin.read(line, 50);

N. cin.get(name, 10 , '.');

cin.getline(name, 10, '.');

O. cout.write(line, cin.gcount());

P. cout << 124 << ' ' << 18.376 << " Z " << 1000000 << "

String";

Q. cout << cout.precision();

R. cin >> months >> percentageRate;

S. cout << setprecision(3) << 1.92 << '\t' << 1.925 <<

'\t' << 1.9258 ;

T. cout << oct << 100 << '\t' << hex << 100 << '\t' << dec

<< 100 ;

U. cout << 100 << '\t' << setbase(8) << 100 << '\t' <<

setbase(16) << 100;

V. cout << setw(10) << 1234;

W. cin.get(line, 20, 'z');

X. cout << setw(x) << setprecision(y) << 87.4573;

4. 13.4
A. Error: The precedence of the << operator is higher than

that of <= , which causes the statement to be evaluated
improperly and also causes a compiler error.
Correction: Place parentheses around the expression x
<= y .

B. Error: In C++, characters are not treated as small
integers, as they are in C.
Correction: To print the numerical value for a character
in the computer’s character set, the character must be
cast to an integer value, as in the following:

cout << static_cast<int>('c');

C. Error: Quote characters cannot be printed in a string
unless an escape sequence is used.
Correction: Print the string:

cout << "\"A string in quotes\"";

5. 13.5
A.

12345

**123

123

B. $$$$$10000

C. 1024.988

D.

0143

0x63

E.

100000

+100000

F. 4.45e+002

14 File Processing

Objectives
In this chapter you’ll:

Create, read, write and update files.
Perform sequential file processing.
Perform random-access file processing.
Use high-performance unformatted I/O operations.
Understand the differences between formatted-data and raw-data
file processing.
Build a transaction-processing program using random-access file
processing.
Understand the concept of object serialization.

Outline
1. 14.1 Introduction
2. 14.2 Files and Streams
3. 14.3 Creating a Sequential File

A. 14.3.1 Opening a File
B. 14.3.2 Opening a File via the open Member Function
C. 14.3.3 Testing Whether a File Was Opened

Successfully
D. 14.3.4 Overloaded bool Operator
E. 14.3.5 Processing Data
F. 14.3.6 Closing a File
G. 14.3.7 Sample Execution

4. 14.4 Reading Data from a Sequential File
A. 14.4.1 Opening a File for Input
B. 14.4.2 Reading from the File
C. 14.4.3 File-Position Pointers
D. 14.4.4 Case Study: Credit Inquiry Program

5. 14.5 C++14: Reading and Writing Quoted Text
6. 14.6 Updating Sequential Files
7. 14.7 Random-Access Files
8. 14.8 Creating a Random-Access File

A. 14.8.1 Writing Bytes with ostream Member Function
write

B. 14.8.2 Converting Between Pointer Types with the
reinterpret_cast Operator

C. 14.8.3 Credit-Processing Program
D. 14.8.4 Opening a File for Output in Binary Mode

9. 14.9 Writing Data Randomly to a Random-Access File
A. 14.9.1 Opening a File for Input and Output in Binary

Mode
B. 14.9.2 Positioning the File-Position Pointer

10. 14.10 Reading from a Random-Access File Sequentially
11. 14.11 Case Study: A Transaction-Processing Program
12. 14.12 Object Serialization
13. 14.13 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

14.1 Introduction
Storage of data in memory is temporary. Files are used for data
persistence—permanent retention of data. Computers store files on
secondary storage devices, such as hard disks, CDs, DVDs, flash
drives and tapes. In this chapter, we explain how to build C++
programs that create, update and process data files. We consider both
sequential files and random-access files. We compare formatted-data
file processing and raw-data file processing. We’ve already shown
how to output data to a string in memory using an ostringstream
—Chapter 21 continues that discussion and demonstrates how to
read data from strings in memory using an istringstream .

14.2 Files and Streams
C++ views each file simply as a sequence of bytes (Fig. 14.1). Each
file ends either with an end-of-file marker or at a specific byte
number recorded in an operating-system-maintained administrative
data structure. When a file is opened, an object is created, and a
stream is associated with the object. In Chapter 13, we saw that
objects cin , cout , cerr and clog are created when <iostream> is
included. The streams associated with these objects provide
communication channels between a program and a particular file or
device. For example, the cin object (standard input stream object)
enables a program to input data from the keyboard or from other
devices, the cout object (standard output stream object) enables a
program to output data to the screen or other devices, and the cerr
and clog objects (standard error stream objects) enable a program to
output error messages to the screen or other devices.

Fig. 14.1 C++’s simple view of a file of n bytes.

File-Processing Class Templates

To perform file processing in C++, headers <iostream> and <fstream>
must be included. Header <fstream> includes the definitions for the
stream class templates

basic_ifstream—a subclass of basic_istream for file input
basic_ofstream—a subclass of basic_ostream for file output
basic_fstream—a subclass of basic_iostream for file input and

output.

Each has a predefined specialization for char I/O. In addition, the
<fstream> library provides typedef aliases for these template
specializations:

ifstream is an alias for basic_ifstream<char>
ofstream is an alias for basic_ofstream<char>
fstream is an alias for basic_fstream<char> .

All the I/O capabilities described in Chapter 13 also can be applied to
file streams.

14.3 Creating a Sequential File
C++ imposes no structure on files. Thus, a concept like that of a
record (Section 1.4) does not exist in C++. You must structure files to
meet the application’s requirements. The following example shows
how you can impose a simple record structure on a file.

Figure 14.2 creates a sequential file that might be used in an
accounts-receivable system to help manage the money owed to a
company by its credit clients. For each client, the program obtains the
client’s account number, name and balance (i.e., the amount the client
owes the company for goods and services received in the past). The
data obtained for each client constitutes a record for that client. The
account number serves as the record key; that is, the program creates
and maintains the records of the file in account-number order. This
program assumes the user enters the records in account-number
order. In a comprehensive accounts receivable system, a sorting
capability would be provided for the user to enter records in any order
—the records then would be sorted and written to the file.

Fig. 14.2 Creating a sequential file.

14.3.1 Opening a File

Figure 14.2 writes data to a file, so we open the file for output by
creating an ofstream object. Two arguments are passed to the object’s
constructor (line 11)—the filename and the file-open mode. For an
ofstream object, the file-open mode can be either ios::out (the
default) to output data to a file or ios::app to append data to the end
of a file (without modifying any data already in the file). Line 11
creates an ofstream object named outClientFile associated with the
file clients.txt that’s opened for output—because we did not specify
a path to the file (that is, it’s location), the file will be in the same
directory as the program. The ofstream constructor opens the file—
this establishes a “line of communication” with the file. Prior to C++11,
the filename was specified as a pointer-based string—as of C++11, it
also can be specified as a string object.

11

Since ios::out is the default, the second constructor argument in line
11 is not required, so we could have used the statement

ofstream outClientFile{"clients.txt"};

Existing files opened with mode ios::out are truncated—all data in
the file is discarded. If the specified file does not yet exist, then the
ofstream object creates the file, using that filename. Figure 14.3 lists

the file-open modes. These modes can also be combined, as we
discuss in Section 14.9.

 Error-Prevention Tip 14.1
Use caution when opening an existing file for output (ios::out) ,

especially when you want to preserve the file’s contents, which will be
discarded without warning.

Fig. 14.3 File-open modes.

Mode Description

ios::app Append all output to the end of the file.

ios::ate Open a file for output and move to the end of the file (normally used to
append data to a file). Data can be written anywhere in the file.

ios::in Open a file for input.

ios::out Open a file for output.

ios::trunc Discard the file’s contents (this also is the default action for
ios::out).

ios::binary Open a file for binary, i.e., nontext, input or output.

14.3.2 Opening a File via the open

Member Function

You can create an ofstream object without opening a specific file—in
this case, a file can be attached to the object later. For example, the
statement

ofstream outClientFile;

creates an ofstream object that’s not yet associated with a file. The
ofstream member function open opens a file and attaches it to an
existing ofstream object as follows:

outClientFile.open("clients.txt", ios::out);

Once again, ios::out is the default value for the second argument.

14.3.3 Testing Whether a File Was
Opened Successfully

After creating an ofstream object and attempting to open it, the if
statement in lines 14–17 (Fig. 14.2) uses the overloaded ios member
function operator! (discussed in Chapter 13) to determine whether
the open operation succeeded. Recall that operator! returns true if
either the failbit or the badbit is set for the stream—in this case,
one or both would be set because the open operation failed. Some
possible reasons are:

attempting to open a nonexistent file for reading
attempting to open a file for reading or writing from a directory that
you don’t have permission to access, and
opening a file for writing when no disk space is available.

If the condition indicates an unsuccessful attempt to open the file, line
15 outputs an error message, and line 16 invokes function exit to
terminate the program. The argument to exit is returned to the
environment from which the program was invoked. Passing
EXIT_SUCCESS (defined in <cstdlib>) to exit indicates that the program
terminated normally; passing any other value (in this case
EXIT_FAILURE) indicates that the program terminated due to an error.

14.3.4 Overloaded bool Operator

As we discussed in Chapter 13, a stream’s overloaded operator bool
(added in C++11) converts the stream to a true or false value, so it

can be tested in a condition. If the fail-bit or badbit has been set for
the stream, the overloaded operator returns false . The condition in
the while statement (lines 27–30) implicitly invokes the operator bool
member function on cin . The condition remains true as long as
neither the failbit nor the badbit has been set for cin . Entering the
end-of-file indicator sets the failbit for cin . Recall from Chapter 13
that you also can call member function eof on the input object.

11

14.3.5 Processing Data

If line 11 opens the file successfully, the program begins processing
data. Lines 19–20 prompt the user to enter either the various fields for
each record or the end-of-file indicator when data entry is complete.
Figure 14.4 lists the keyboard combinations for entering end-of-file for
various computer systems.

Fig. 14.4 End-of-file key combinations.

Computer system Keyboard combination

UNIX/Linux/Mac OS X <Ctrl-d> (on a line by itself)

Microsoft Windows <Ctrl-z> (followed by pressing Enter)

Line 27 extracts each set of data and determines whether end-of-file
has been entered. When end-of-file is encountered or bad data is
entered, operator bool returns false and the while statement
terminates. The user enters end-of-file to inform the program to
process no additional data. The end-of-file indicator is set when the
user enters the end-of-file key combination. The while statement
loops until the end-of-file indicator is set (or bad data is entered).

Line 28 writes a set of data to the file clients.txt , using the stream
insertion operator << and the outClientFile object associated with the
file at the beginning of the program. The data may be retrieved by a
program designed to read the file (see Section 14.4). The file created
in Fig. 14.2 is simply a text file, so it can be viewed by any text editor.

14.3.6 Closing a File

Once the user enters the end-of-file indicator, main terminates. This
implicitly invokes outClientFile ’s destructor, which closes the
clients.txt file. You also can close the ofstream object explicitly,
using member function close as follows:

outClientFile.close();

 Error-Prevention Tip 14.2
Always close a file as soon as it’s no longer needed in a program.

14.3.7 Sample Execution

In the sample execution for the program of Fig. 14.2, the user enters
information for five accounts, then signals that data entry is complete
by entering end-of-file (^Z is displayed for Microsoft Windows). This
dialog window does not show how the data records appear in the file.
To verify that the program created the file successfully, the next
section shows how to create a program that reads this file and prints
its contents.

14.4 Reading Data from a
Sequential File
Files store data so it may be retrieved for processing when needed.
The previous section demonstrated how to create a file for sequential
access. We now discuss how to read data sequentially from a file.
Figure 14.5 reads and displays the records from the clients.txt file
that we created using the program of Fig. 14.2. Creating an ifstream
object opens a file for input. The ifstream constructor can receive the
filename and the file-open mode as arguments. Line 14 creates an
ifstream object called inClientFile and associates it with the
clients.txt file. The arguments in parentheses are passed to the
ifstream constructor, which opens the file and establishes a “line of
communication” with the file.

 Good Programming Practice
14.1

If a file’s contents should not be modified, use ios::in to open it only

for input. This prevents unintentional modification of the file’s contents
and is another example of the principle of least privilege.

Fig. 14.5 Reading and printing a sequential file.

14.4.1 Opening a File for Input

Objects of class ifstream are opened for input by default, so the
statement

ifstream inClientFile("clients.txt");

opens clients.txt for input. Just as with an ofstream object, an
ifstream object can be created without opening a specific file,
because a file can be attached to it later. Before attempting to retrieve
data from the file, line 17 uses the condition !inClientFile to
determine whether the file was opened successfully.

14.4.2 Reading from the File

Line 30 reads a set of data (i.e., a record) from the file. After line 30
executes the first time, account has the value 100 , name has the value
"Jones" and balance has the value 24.98 . Each time line 30 executes,
it reads another record into the variables account , name and balance .
Line 31 displays the records, using function outputLine (lines 36–39),
which uses parameterized stream manipulators to format the data for
display. When the end of file is reached, the implicit call to operator
bool in the while condition returns false , the ifstream destructor
closes the file and the program terminates.

14.4.3 File-Position Pointers

Programs normally read sequentially from the beginning of a file and
read all the data consecutively until the desired data is found. It might
be necessary to process the file sequentially several times (from the
beginning) during the execution of a program. istream and ostream
provide member functions— seekg (“seek get”) and seekp (“seek put”),
respectively—to reposition the file-position pointer (the byte number
of the next byte in the file to be read or written). Each istream object
has a get pointer, which indicates the byte number in the file from
which the next input is to occur, and each ostream object has a put

pointer, which indicates the byte number in the file at which the next
output should be placed. The statement

inClientFile.seekg(0);

repositions the file-position pointer to the beginning of the file (location
0) attached to inClientFile . The argument to seekg is an integer. A
second argument can be specified to indicate the seek direction,
which can be ios::beg (the default) for positioning relative to the
beginning of a stream, ios::cur for positioning relative to the current

position in a stream or ios::end for positioning backward relative to

the end of a stream. The file-position pointer is an integer value that
specifies the location in the file as a number of bytes from the file’s
starting location (this is also referred to as the offset from the
beginning of the file). Some examples of positioning the get file-
position pointer are

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);

The same operations can be performed using ostream member
function seekp . Member functions tellg and tellp are provided to
return the current locations of the get and put pointers, respectively.
The following statement assigns the get file-position pointer value to
variable location of type long :

location = fileObject.tellg();

14.4.4 Case Study: Credit Inquiry
Program

Figure 14.6 enables a credit manager to display the account
information for those customers with zero balances (i.e., customers
who do not owe the company any money), credit (negative) balances
(i.e., customers to whom the company owes money), and debit
(positive) balances (i.e., customers who owe the company money for
goods and services received in the past). The program displays a
menu and allows the credit manager to enter one of three options to
obtain credit information. Option 1 produces a list of accounts with
zero balances. Option 2 produces a list of accounts with credit
balances. Option 3 produces a list of accounts with debit balances.
Option 4 terminates program execution. Entering an invalid option
displays the prompt to enter another choice. Lines 61–62 enable the
program to read from the beginning of the file after end-of-file has
been read.

Fig. 14.6 Credit inquiry program.

14.5 C++14: Reading and Writing
Quoted Text
Many text files contain quoted text, such as "C++ How to Program" . For
example, in files representing HTML5 web pages, attribute values are
enclosed in quotes. If you’re building a web browser to display the
contents of such a web page, you must be able to read those quoted
strings and remove the quotes.

Suppose you need to read from a text file, as you did in Fig. 14.5, but
with each account’s data formatted as follows:

100 "Janie Jones" 24.98

Recall that the stream extraction operator >> treats white space as a
delimiter. So, if we read the preceding data using the expression in
line 30 of Fig. 14.5

inClientFile >> account >> name >> balance

the first stream extraction reads 100 into the int variable account and
the second reads only "Janie into the string variable name (the
opening double quote would be part of the string in name). The third
stream extraction fails while attempting to read a value for the double
variable balance , because the next token (i.e., piece of data) in the
input stream— Jones"—is not a double .

Reading Quoted Text
C++14’s new stream manipulator— quoted (header <iomanip>)—
enables a program to read quoted text from a stream, including any
white space characters in the quoted text, and discards the double
quote delimiters. For example, if we read the preceding data using the
expression

14

inClientFile >> account >> quoted(name) >> balance

the first stream extraction reads 100 into account , the second reads
Janie Jones as one string and stores it in name without the double-
quote delimiters, and the third stream extraction reads 24.98 into
balance . If the quoted data contains \" escape sequences, each is
read and stored in the string as the escape sequence \"—not as " .

Writing Quoted Text
Similarly, you can write quoted text to a stream. For example, if name
contains Janie Jones , the statement

outputStream << quoted(name);

writes to the text-based outputStream

"Janie Jones"

14.6 Updating Sequential Files
Data that is formatted and written to a sequential file as shown in
Section 14.3 cannot be modified without the risk of destroying other
data in the file. For example, if the name “ White ” needs to be changed
to “ Worthington ,” the old name cannot be overwritten without
corrupting the file. The record for White was written to the file as

300 White 0.00

If this record were rewritten beginning at the same location in the file
using the longer name, the record would be

300 Worthington 0.00

The new record contains six more characters than the original record.
Therefore, the characters beyond the “ h ” in “ Worthington ” would
overwrite the 0.00 and the beginning of the next sequential record in
the file. The problem is that, in the formatted input/output model using
the stream insertion operator << and the stream extraction operator

>> , fields—and hence records—can vary in size. For example, values
7, 14, –117, 2074, and 27383 are all ints, which store the same

number of “raw data” bytes internally (typically four bytes on 32-bit
machines and potentially eight bytes on some 64-bit machines).
However, these integers become different-sized fields, depending on
their actual values, when output as formatted text (character
sequences). Therefore, the formatted input/output model usually is not
used to update records in place. Sections 14.7–14.11 show how to
perform in-place updates with fixed-length records.

Such updating can be done, but awkwardly. For example, to make the
preceding name change, the records before 300 White 0.00 in a
sequential file could be copied to a new file, the updated record then
written to the new file, and the records after 300 White 0.00 copied to
the new file. Then the old file could be deleted and the new file
renamed. This requires processing every record in the file to update
one record. If many records are being updated in one pass of the file,
though, this technique can be acceptable.

14.7 Random-Access Files
So far, we’ve seen how to create sequential files and search them to
locate information. Sequential files are inappropriate for instant-
access applications, in which a particular record must be located
immediately. Common instant-access applications are airline
reservation systems, banking systems, point-of-sale systems,
automated teller machines and other kinds of transaction-
processing systems that require rapid access to specific data. A
bank might have hundreds of thousands (or even millions) of other
customers, yet, when a customer uses an automated teller machine,
the program checks that customer’s almost instantly for sufficient
funds. This kind of instant access is made possible with random-
access files. Individual records of a random-access file can be
accessed directly (and quickly) without having to search other records.

As we’ve said, C++ does not impose structure on a file. So the
application that wants to use random-access files must create them. A
variety of techniques can be used. Perhaps the easiest method is to
require that all records in a file be of the same fixed length. Using
same-size, fixed-length records makes it easy for a program to quickly
calculate (as a function of the record size and the record key) the
exact location of any record relative to the beginning of the file. We’ll
soon see how this facilitates immediate access to specific records,
even in enormous files.

Figure 14.7 illustrates C++’s view of a random-access file composed
of fixed-length records (each record, in this case, is 100 bytes long). A
random-access file is like a railroad train with many same-size cars—
some empty and some with contents.

Data can be inserted into a random-access file without destroying
other data in the file. Data stored previously also can be updated or
deleted without rewriting the entire file. In the following sections, we
explain how to create a random-access file, enter data into the file,
read the data both sequentially and randomly, update the data and
delete data that is no longer needed.

Fig. 14.7 C++ view of a random-access file.

14.8 Creating a Random-Access
File
The ostream member function write outputs to the specified stream a
fixed number of bytes, beginning at a specific location in memory.
When the stream is associated with a file, function write writes the
data at the location in the file specified by the put file-position pointer.
The istream member function read inputs a fixed number of bytes
from the specified stream to an area in memory beginning at a
specified address. If the stream is associated with a file, function read
inputs bytes at the location in the file specified by the “get” file-position
pointer.

14.8.1 Writing Bytes with ostream
Member Function write

Writing the integer number to a file using the statement

outFile << number;

for a four-byte integer could output 1 to 11 bytes—up to 10 digits for a
number in the range –2,147,483,647 to 2,147,483,647, plus a sign for
a negative number. Instead, we can use the statement

outFile.write(

 reinterpret_cast<const char*>(&number), sizeof(number));

which always writes in binary the four bytes used that represent the
integer number . Function write treats its first argument as a group of
bytes by viewing the object in memory as a const char* , which is a
pointer to a byte (recall that a char is 1 byte). Starting from that
location, function write outputs the number of bytes specified by its

second argument— an integer of type size_t . As we’ll see, istream
function read can subsequently be used to read the four bytes back
into integer variable number .

14.8.2 Converting Between Pointer
Types with the reinterpret_cast
Operator

Unfortunately, most pointers that we pass to function write as the first
argument are not of type const char* . To output objects of other
types, we must convert the pointers to those objects to type const
char* ; otherwise, the compiler will not compile calls to function write .
C++ provides the reinterpret_cast operator for cases like this to make
it clear that you’re treating data as an unrelated type. Without a
reinterpret_cast , the write statement that outputs the integer number
will not compile because the compiler does not allow a pointer of type
int* (the type returned by the expression &number) to be passed to a
function that expects an argument of type const char*—as far as the
compiler is concerned, these types are inconsistent (that is, not
compatible).

A reinterpret_cast is performed at compile time and does not change
the value of the object to which its operand points. Instead, it requests
that the compiler reinterpret the operand as the target type (specified
in the angle brackets following the keyword reinterpret_cast). In Fig.
14.10, we use reinterpret_cast to convert a ClientData pointer to a

const char* , which reinterprets a ClientData object as its bytes that

should be output to a file. Random-access file-processing programs
rarely write a single field to a file. Typically, they write one object of a
class at a time, as we show in the following examples.

 Error-Prevention Tip 14.3
Unfortunately, it’s easy to use reinterpret_cast to perform dangerous

manipulations that could lead to serious execution-time errors.

 Portability Tip 14.1
reinterpret_cast is compiler dependent and can cause programs to

behave differently on different platforms. Use this operator only if it’s
absolutely necessary.

 Portability Tip 14.2
A program that reads unformatted data (written by write) must be

compiled and executed on a system compatible with the program that

wrote the data, because different systems may represent internal data
differently.

14.8.3 Credit-Processing Program

Consider the following problem statement:

Using random-access file-processing techniques, create a credit-processing program

capable of storing at most 100 fixed-length records for a company that can have up to 100

customers. Each record should consist of an account number that acts as the record key,

a last name, a first name and a balance. The program should be able to update an

account, insert a new account, delete an account and insert all the account records into a

formatted text file for printing.

The next few sections create this credit-processing program. Figure
14.10 illustrates opening a random-access file, defining the record
format using an object of class ClientData (Figs. 14.8–14.9) and
writing data to the disk in binary format. This program initializes all 100
records of the file credit.dat with empty objects, using function write .
Each empty object contains the account number 0 , empty last- and
first-name strings and the balance 0.0 .

Fig. 14.8 Class ClientData definition used in Fig. 14.10–Fig. 14.13.

Fig. 14.9 ClientData class stores a customer’s credit information.

Objects of class string do not have uniform size, rather they use
dynamically allocated memory to accommodate strings of various
lengths. We must maintain fixed-length records, so class ClientData
stores the client’s first and last name in fixed-length char arrays
(declared in Fig. 14.8, lines 31–32). Member functions setLastName
(Fig. 14.9, lines 27–33) and setFirstName (Fig. 14.9, lines 39–45)
each copy the characters of a string object into the corresponding
char array. Consider function setLastName . Line 29 invokes the string
member function size to get the length of lastNameString . Line 30
ensures that the length is fewer than 15 characters, then line 31
copies length characters from lastNameString into the char array
lastName using string member function copy . Line 32 inserts a null
character into the char array to terminate the pointer-based string in
lastName . Member function setFirstName performs the same steps for
the first name.

14.8.4 Opening a File for Output in
Binary Mode

In Fig. 14.10, line 10 creates an ofstream object for the file
credit.dat . The second argument to the constructor— ios::out |
ios::binary—indicates that we are opening the file for output in binary

mode, which is required if we are to write fixed-length records. Multiple
file-open modes are combined by separating each open mode from
the next with the | operator, which is known as the bitwise inclusive

OR operator. (Chapter 22 discusses this operator in detail.) Lines 22–
23 cause the blankClient (which was constructed with default
arguments at line 18) to be written to the credit.dat file associated
with ofstream object outCredit . Remember that operator sizeof
returns the size in bytes of the object contained in parentheses (see
Chapter 8). The first argument to function write must be of type const
char *. However, the data type of &blankClient is ClientData* . To
convert &blankClient to const char* , line 23 uses the
reinterpret_cast operator, so the call to write compiles without
issuing a compilation error.

Fig. 14.10 Creating a random-access file with 100 blank records
sequentially.

14.9 Writing Data Randomly to a
Random-Access File
Figure 14.11 writes data to the file credit.dat and uses the
combination of fstream functions seekp and write to store data at
exact locations in the file. Function seekp sets the put file-position
pointer to a specific position in the file, then function write outputs the
data. Line 6 includes the header ClientData.h defined in Fig. 14.8, so
the program can use ClientData objects.

Fig. 14.11 Writing to a random-access file.

14.9.1 Opening a File for Input and
Output in Binary Mode

Line 10 uses the fstream object outCredit to open the existing
credit.dat file. The file is opened for input and output in binary mode

by combining the file-open modes ios::in , ios::out and ios::binary .
Note that because we include ios::in , if the file does not exist, an

error will occur and the file will not be opened. Opening the existing
credit.dat file in this manner ensures that this program can

manipulate the records written to the file by the program of Fig. 14.10,
rather than creating the file from scratch.

14.9.2 Positioning the File-Position
Pointer

Lines 39–40 position the put file-position pointer for object outCredit
to the byte location calculated by

(client.getAccountNumber() - 1) * sizeof(ClientData)

Because the account number is between 1 and 100, we subtract 1
from the account number when calculating the byte location of the
record. Thus, for record 1, the file-position pointer is set to byte 0—the
beginning of the file. For record 2, the the file-position pointer is set to
1 * sizeof(ClientData) , and so on.

14.10 Reading from a Random-
Access File Sequentially
In the previous sections, we created a random-access file and wrote
data to that file. In this section, we develop a program that reads the
file sequentially and prints only those records that contain data. These
programs produce an additional benefit. See if you can determine
what it is; we’ll reveal it at the end of this section.

The istream function read inputs a specified number of bytes from the
current position in the stream into an object. For example, line 28 (Fig.
14.12) reads the number of sizeof(ClientData) bytes from the file
associated with inCredit and stores the data in client . Function read
requires a first argument of type char *. Since &client is of type
ClientData *, &client must be cast to char * using the cast operator
reinterpret_cast .

Fig. 14.12 Reading a random-access file sequentially.

Figure 14.12 reads every record in the credit.dat file sequentially,
checks each record to determine whether it contains data, and
displays formatted outputs for records containing data. The condition
in line 31 implicitly uses the stream’s operator bool to determine
whether the end of file was reached or whether an error occurred
when reading from the file—in both cases the while statement
terminates. The data input from the file is output by function
outputLine (lines 43–49), which takes two arguments—a reference to
an ostream object and a clientData structure to be output. The
ostream parameter type is interesting, because any ostream object

(such as cout) or any object of a derived class of ostream (such as an
object of type ofstream) can be supplied as the argument. This means
that the same function can be used, for example, to perform output to
the standard-output stream and to a file stream without writing
separate functions.

What about that additional benefit we promised at the beginning of this
section? If you examine the output window, you’ll notice that the
records are listed in sorted order (by account number). This is a
consequence of how we stored these records in the file, using direct-
access techniques. Sorting using direct-access techniques is relatively
fast. The speed is achieved by making the file large enough to hold
every possible record that might be created. This, of course, means
that the file could be occupied sparsely most of the time, resulting in a
waste of storage. This is an example of the space-time trade-off: By
using large amounts of space, we can develop a much faster sorting
algorithm. Fortunately, the continuous reduction in price of storage
units has made this less of an issue.

14.11 Case Study: A Transaction-
Processing Program
We now present a substantial transaction-processing program (Fig.
14.13) using a random-access file to achieve instant-access
processing. The program maintains a bank’s account information. It
updates existing accounts, adds new accounts, deletes accounts and
stores a formatted listing of all current accounts in a text file. We
assume that the program of Fig. 14.10 has been executed to create
the file credit.dat and that the program of Fig. 14.11 has been
executed to insert the initial data. Line 25 opens the credit.dat file by
creating an fstream object for both reading and writing in binary
format.

Fig. 14.13 Bank-account program.

The program has five options (Option 5 is for terminating the
program). Option 1 calls function createTextFile to store a formatted
list of all the account information in a text file called print.txt that
may be printed. Function createTextFile (lines 76–109) takes an
fstream object as an argument to be used to input data from the
credit.dat file. Function createTextFile invokes istream member
function read (lines 95–96) and uses the sequential-file-access
techniques of Fig. 14.12 to input data from credit.dat . Function
outputLine , discussed in Section 14.10, outputs the data to file
print.txt . Note that function createTextFile uses istream member
function seekg (line 91) to ensure that the file-position pointer is at the
beginning of the file before reading the file’s contents. After choosing
Option 1, the print.txt file contains

Account Last Name First Name Balance

29 Brown Nancy -24.54

33 Dunn Stacey 314.33

37 Barker Doug 0.00

88 Smith Dave 258.34

96 Stone Sam 34.98

Option 2 calls updateRecord (lines 112–148) to update an account.
This function updates only an existing record, so the function first
determines whether the specified record is empty—we use function

getAccount (lines 235–245) to read from the user the number of the
record to update. Line 121 reads data into object client , using
istream member function read . Then line 124 compares the value
returned by getAccountNumber of the client object to zero to determine

whether the record contains information. If this value is zero, lines
145–146 print an error message indicating that the record is empty. If
the record contains information, line 125 displays the record, using
function outputLine , line 130 inputs the transaction amount and lines

133–142 calculate the new balance and rewrite the record to the file.
A typical execution for Option 2 is

Enter account to update (1 - 100): 37

37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99

37 Barker Doug 87.99

Option 3 calls function newRecord (lines 151–192) to add a new
account to the file. If the user enters an account number for an
existing account, newRecord displays an error message indicating that
the account exists (lines 189–190). This function adds a new account
in the same manner as the program of Fig. 14.11. A typical execution
for Option 3 is

Enter new account number (1 - 100): 22

Enter lastname, firstname, balance

? Johnston Sarah 247.45

Option 4 calls function deleteRecord (lines 195–223) to delete a record
from the file. Line 197 prompts the user to enter the account number.
Only an existing record may be deleted, so, if the specified account is
empty, line 221 displays an error message. If the account exists, lines
209–216 reinitialize that account by writing an empty record (blank-
Client) to the file. Line 218 displays a message to inform the user that
the record has been deleted. A typical execution for Option 4 is

Enter account to delete (1 - 100): 29

Account #29 deleted.

14.12 Object Serialization
This chapter and Chapter 13 introduced the object-oriented style of
input/output. In Chapter 10, we showed how to input and output
objects using operator overloading. We accomplished object input by
overloading the stream extraction operator, >> , for the appropriate
istream . We accomplished object output by overloading the stream
insertion operator, << , for the appropriate ostream . In both cases, only
an object’s data members were input or output, and, in each case,
they were in a format meaningful only for objects of that particular
type. An object’s member functions are not input or output with the
object’s data; rather, one copy of the class’s member functions
remains available internally and is shared by all objects of the class.

When object data members are output to a disk file, we lose the
object’s type information. We store only the values of the object’s
attributes, not type information, on the disk. If the program that reads
this data knows the object type to which the data corresponds, the
program can read the data into an object of that type as we did in our
random-access file examples. However, our random-access files are
not portable, because the size of a ClientData object is platform
dependent.

An interesting problem occurs when we store objects of different types
in the same file. How can we distinguish them (or their collections of

data members) as we read them into a program? The problem is that
objects typically do not have type fields (we discussed this issue in
Chapter 12).

One approach used by several programming languages is called
object serialization. A so-called serialized object is an object
represented in a platform-independent manner as a sequence of bytes
that includes the object’s data as well as information about the object’s
type and the types of data stored in the object. After a serialized object
has been written to a file, it can be read from the file and deserialized
—that is, the type information and bytes that represent the object and
its data can be used to recreate the object in memory. C++ does not
provide a built-in serialization mechanism; however, there are third-
party and open-source C++ libraries that support object serialization.
The open-source Boost C++ Libraries (www.boost.org) provide support
for serializing objects in text, binary and extensible markup language
(XML) formats (www.boost.org/libs/serialization/doc/index.html).

14.13 Wrap-Up
In this chapter, we presented various file-processing techniques to
manipulate persistent data. We discussed both character-based and
byte-based streams, and considered various file-processing class
templates in header <fstream> . You learned how to use sequential file
processing to manipulate records stored in order, by a record-key
field. You also learned how to use random-access files to “instantly”
retrieve and manipulate fixed-length records. We presented a
substantial transaction-processing program using a random-access
file to achieve “instant-access” processing. Finally, we discussed the
basic concepts of object serialization.

We introduced the Standard Library array and vector classes in
Chapter 7. In the next chapter, you’ll learn about the Standard
Library’s other predefined data structures (known as containers) as
well as the basics of iterators, which are used to manipulate container
elements.

Summary

Section 14.1 Introduction

Files are used for data persistence (p. 616)—permanent retention
of data.
Computers store files on secondary storage devices (p. 616),
such as hard disks, CDs, DVDs, flash memory and tapes.

Section 14.2 Files and Streams

C++ views each file simply as a sequence of bytes.
Each file ends either with an end-of-file marker or at a specific byte
number recorded in a system-maintained, administrative data
structure.
When a file is opened, an object is created, and a stream is
associated with the object.
To perform file processing in C++, headers <iostream> and
<fstream> must be included.
Header <fstream> includes the definitions for the stream class
templates basic_ifstream (for file input), basic_ofstream (for file
output) and basic_fstream (for file input and output).
Each class template has a predefined template specialization that
enables char I/O. The <fstream> library provides typedef aliases
for these template specializations. The typedef ifstream
represents a specialization of basic_ifstream that enables char
input from a file. The typedef ofstream represents a specialization
of basic_ofstream that enables char output to files. The typedef
fstream represents a specialization of basic_fstream that enables
char input from, and output to, files.
The file-processing templates derive from class templates
basic_istream , basic_ostream and basic_iostream , respectively.

Thus, all member functions, operators and manipulators that
belong to these templates also can be applied to file streams.

Section 14.3 Creating a Sequential
File

C++ imposes no structure on a file; you must structure files to meet
the application’s requirements.
A file can be opened for output when an ofstream object is created.
Two arguments are passed to the object’s constructor—the
filename (p. 618) and the file-open mode (p. 618).
For an ofstream (p. 618) object, the file-open mode can be either
ios::out (p. 618) to output data to a file or ios::app (p. 618) to
append data to the end of a file. Existing files opened with mode
ios::out are truncated (p. 619). If the specified file does not exist,
the ofstream object creates the file using that filename.
By default, ofstream objects are opened for output.
An ofstream object can be created without opening a specific file—
a file can be attached to the object later with member function open
(p. 619).
The overloaded operator ! for a stream determines whether a
stream was opened correctly. This operator can be used in a
condition that returns true if either the failbit or the badbit is set
for the stream on the open operation.
The overloaded operator bool for a stream converts the stream to
true or false . If the failbit or badbit has been set for a stream,

false is returned.

Entering the end-of-file indicator sets the failbit for cin .
The operator bool function can be used to test an input object for
end-of-file instead of calling the eof member function explicitly on
the input object.
When a stream object’s destructor is called, the corresponding
stream is closed. You also can close the stream object explicitly,
using the stream’s close member function.

Section 14.4 Reading Data from a
Sequential File

Files store data so it may be retrieved for processing when
needed.
Creating an ifstream object opens a file for input. The ifstream
constructor can receive the filename and the file open mode as
arguments.
Open a file for input only if the file’s contents should not be
modified.
Objects of class ifstream are opened for input by default.
An ifstream object can be created without opening a specific file; a
file can be attached to it later.
To retrieve data sequentially from a file, programs normally start
reading from the beginning of the file and read all the data
consecutively until the desired data is found.
The member functions for repositioning the file-position pointer
(p. 623) are seekg (“seek get” ; p. 623) for istream and seekp
(“seek put” ; p. 623) for ostream . Each istream has a “get
pointer,” which indicates the byte number in the file from which the
next input is to occur, and each ostream has a “put pointer,” which
indicates the byte number in the file at which the next output
should be placed.

The argument to seekg is a long integer. A second argument can
be specified to indicate the seek direction (p. 623), which can be
ios::beg (the default; p. 623) for positioning relative to the
beginning of a stream, ios::cur (p. 623) for positioning relative to
the current position in a stream or ios::end (p. 623) for positioning
relative to the end of a stream.
The file-position pointer (p. 623) is an integer value that specifies
the location in the file as a number of bytes from the file’s starting
location (i.e., the offset (p. 623) from the beginning of the file).
Member functions tellg (p. 623) and tellp (p. 623) are provided
to return the current locations of the “get” and “put” pointers,
respectively.

Section 14.5 C++14: Reading and
Writing Quoted Text

C++14’s stream manipulator quoted (p. 627; header <iomanip>)
enables a program to read quoted text from a stream, including
any white space characters in the quoted text, and discards the
double-quote delimiters.
You also can use quoted to write quoted text to a stream.

Section 14.6 Updating Sequential
Files

Data that is formatted and written to a sequential file cannot be
modified without the risk of destroying other data in the file. The
problem is that records can vary in size.

Section 14.7 Random-Access Files
Sequential files are inappropriate for instant-access applications
(p. 628), in which a particular record must be located immediately.
Instant access is made possible with random-access files (p.
628). Individual records of a random-access file can be accessed
directly (and quickly) without having to search other records.
The easiest method to format files for random access is to require
that all records in a file be of the same fixed length. Using same-
size, fixed-length records makes it easy for a program to calculate
(as a function of the record size and the record key) the exact
location of any record relative to the beginning of the file.
Data can be inserted into a random-access file without destroying
other data in the file.
Data stored previously can be updated or deleted without rewriting
the entire file.

Section 14.8 Creating a Random-Access
File

The ostream member function write outputs a fixed number of
bytes, beginning at a specific location in memory, to the specified
stream. Function write writes the data at the location in the file
specified by the “put” file-position pointer.
The istream member function read (p. 629) inputs a fixed number
of bytes from the specified stream to an area in memory beginning
at a specified address. If the stream is associated with a file,
function read inputs bytes at the location in the file specified by the
“get” file-position pointer.
Function write treats its first argument as a group of bytes by
viewing the object in memory as a const char *, which is a pointer
to a byte (remember that a char is one byte). Starting from that
location, function write outputs the number of bytes specified by
its second argument. The istream function read can subsequently
be used to read the bytes back into memory.
The reinterpret_cast operator (p. 629) converts a pointer of one
type to a pointer of an unrelated type.
A reinterpret_cast is performed at compile time and does not
change the value of the object to which its operand points.
A program that reads unformatted data must be compiled and
executed on a system compatible with the program that wrote the
data—different systems may represent internal data differently.

Objects of class string do not have uniform size, rather they use
dynamically allocated memory to accommodate strings of various
lengths.

Section 14.9 Writing Data Randomly to a
Random-Access File

Multiple file-open modes are combined by separating each open
mode from the next with the bitwise inclusive-OR operator (|).
The string member function size (p. 632) gets the length of a
string .
The file-open mode ios::binary (p. 633) indicates that a file should
be opened in binary mode.

Section 14.10 Reading from a Random-
Access File Sequentially

A function that receives an ostream parameter can receive any
ostream object (such as cout) or any object of a derived class of
ostream (such as an object of type ofstream) as an argument. This
means that the same function can be used, for example, to
perform output to the standard-output stream and to a file stream
without writing separate functions.

Section 14.12 Object Serialization
When object data members are output to a disk file, we lose the
object’s type information. We store only the values of the object’s
attributes, not type information, on the disk. If the program that
reads this data knows the object type to which the data
corresponds, the program can read the data into an object of that
type.
A so-called serialized object (p. 644) is an object represented as
a sequence of bytes that includes the object’s data as well as
information about the object’s type and the types of data stored in
the object. A serialized object can be read from the file and
deserialized (p. 644).
The open-source Boost Libraries provide support for serializing
objects (p. 644) in text, binary and extensible markup language
(XML) formats.

Self-Review Exercises

1. 14.1 (Fill in the Blanks) Fill in the blanks in each of the
following:

A. Member function of the file streams fstream ,
ifstream and ofstream closes a file.

B. The ostream member function is normally used
when writing data to a file in random-access
applications.

C. Member function of the file streams fstream ,
ifstream and ofstream opens a file.

D. The istream member function is normally used
when reading data from a file in random-access
applications.

E. Member functions and of istream and
ostream set the file-position pointer to a specific location
in an input or output stream, respectively.

2. 14.2 (True or False) State which of the following are true and
which are false. If false, explain why.

A. Member function read cannot be used to read data from
the input object cin .

B. You must create the cin , cout , cerr and clog objects
explicitly.

C. A program must call function close explicitly to close a
file associated with an ifstream , ofstream or fstream
object.

D. If the file-position pointer points to a location in a
sequential file other than the beginning of the file, the file
must be closed and reopened to read from the beginning
of the file.

E. The ostream member function write can write to
standard-output stream cout .

F. Data in sequential files always is updated without
overwriting nearby data.

G. Searching all records in a random-access file to find a
specific record is unnecessary.

H. Records in random-access files must be of uniform
length.

I. Member functions seekp and seekg must seek relative to
the beginning of a file.

3. 14.3 Assume that each of the following statements applies to
the same program.

A. Write a statement that opens file oldmast.dat for input;
use an ifstream object called inOldMaster .

B. Write a statement that opens file trans.dat for input; use
an ifstream object called inTransaction .

C. Write a statement that opens file newmast.dat for output
(and creation); use ofstream object outNewMaster .

D. Write a statement that reads a record from the file
oldmast.dat . The record consists of integer
accountNumber , string name (containing spaces) and
floating-point currentBalance . Use ifstream object
inOldMaster .

E. Write a statement that reads a record from the file
trans.dat . The record consists of integer accountNum and
floating-point dollarAmount . Use ifstream object
inTransaction .

F. Write a statement that writes a record to the file
newmast.dat . The record consists of integer accountNum ,
string name , and floating-point currentBalance . Use
ofstream object outNewMaster .

4. 14.4 Find the error(s) and show how to correct it (them) in each
of the following.

A. File payables.dat referred to by ofstream object
outPayable has not been opened.

outPayable << account << company << amount << endl;

B. The following statement should read a record from the
file payables.dat . The ifstream object inPayable refers
to this file, and ifstream object inReceivable refers to the
file receivables.dat .

inReceivable >> account >> company >> amount;

C. The file tools.dat should be opened to add data to the
file without discarding the current data.

ofstream outTools("tools.dat", ios::out);

Answers to Self-Review Exercises

1. 14.1
A. close .
B. write .
C. open .
D. read .
E. seekg , seekp .

2. 14.2
A. False. Function read can read from any input stream

object derived from istream .
B. False. These four streams are created automatically for

you. The <iostream> header must be included in a file to

use them. This header includes declarations for each
predefined stream object.

C. False. The files will be closed when destructors for
ifstream , ofstream or fstream objects execute when the
stream objects go out of scope or before program
execution terminates, but it’s a good programming
practice to close all files explicitly with close once
they’re no longer needed.

D. False. Member functions seekp and seekg can be used
to reposition the “put” or “get” file-position pointers,
respectively, to the beginning of the file.

E. True.
F. False. In most cases, sequential file records are not of

uniform length. Therefore, it’s possible that updating a
record will cause other data to be overwritten.

G. True.
H. False. Records in a random-access file normally are of

uniform length.
I. False. It’s possible to seek from the beginning of the file,

from the end of the file and from the current position in
the file.

3. 14.3
A. ifstream inOldMaster{"oldmast.dat", ios::in};

B. ifstream inTransaction{"trans.dat", ios::in};

C. ofstream outNewMaster{"newmast.dat", ios::out};

D. inOldMaster >> accountNumber >> quoted(name) >>

currentBalance;

E. inTransaction >> accountNum >> dollarAmount;

F. outNewMaster << accountNum << " " << name << " " <<

currentBalance;

4. 14.4
A. Error: The file payables.dat has not been opened before

the attempt is made to output data to the stream.
Correction: Use ofstream function open to open
payables.dat for output.

B. Error: The incorrect ifstream object is being used to
read a record from the file named payables.dat .
Correction: Use ifstream object inPayable to refer to
payables.dat .

C. Error: The file’s contents are discarded because the file
is opened for output (ios::out).
Correction: To add data to the file, open the file either for
updating (ios::ate) or for appending (ios::app).

Exercises
1. 14.5 (Fill in the Blanks) Fill in the blanks in each of the

following:
A. Computers store large amounts of data on secondary

storage devices as .
B. The standard stream objects declared by header

<iostream> are , , and .
C. ostream member function repositions the file-

position pointer in a file.
D. is the default file-open mode for an ofstream .
E. istream member function repositions the file-

position pointer in a file.

2. 14.6 (File Matching) Exercise 14.3 asked you to write a series
of single statements. Actually, these statements form the core
of an important type of file-processing program, namely, a file-
matching program. In commercial data processing, it’s common
to have several files in each application system. In an
accounts-receivable system, for example, there is generally a
master file containing detailed information about each
customer, such as the customer’s name, address, telephone
number, outstanding balance, credit limit, discount terms,
contract arrangements and, possibly, a condensed history of
recent purchases and cash payments.

As transactions occur (e.g., sales are made and cash payments
arrive), they’re entered into a file. At the end of each business
period (a month for some companies, a week for others and a
day in some cases), the file of transactions (called trans.dat in
Exercise 14.3) is applied to the master file (called oldmast.dat
in Exercise 14.3), thus updating each account’s record of
purchases and payments. During an updating run, the master
file is rewritten as a new file (newmast.dat), which is then used
at the end of the next business period to begin the updating
process again.
File-matching programs must deal with certain problems that do
not exist in single-file programs. For example, a match does not
always occur. A customer on the master file might not have
made any purchases or cash payments in the current business
period, and therefore no record for this customer will appear on
the transaction file. Similarly, a customer who did make some
purchases or cash payments may have just moved to this
community, and the company may not have had a chance to
create a master record for this customer.
Use the statements from Exercise 14.3 as a basis for writing a
complete file-matching accounts-receivable program. Use the
account number on each file as the record key for matching
purposes. Assume that each file is a sequential file with records
stored in increasing order by account number.
When a match occurs (i.e., records with the same account
number appear on both the master and transaction files), add
the dollar amount on the transaction file to the current balance
on the master file, and write the newmast.dat record. (Assume

purchases are indicated by positive amounts on the transaction
file and payments are indicated by negative amounts.) When
there is a master record for a particular account but no
corresponding transaction record, merely write the master
record to newmast.dat . When there is a transaction record but
no corresponding master record, print the error message
"Unmatched transaction record for account number ..." (fill in
the account number from the transaction record).

3. 14.7 (File Matching Test Data) After writing the program of
Exercise 14.6, write a simple program to create some test data
for checking out the program. Use the sample account data in
Figs. 14.14–14.15

Fig. 14.14 Master file data.

Master file Account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green –14.22

Fig. 14.15 Transaction file data.

Transaction file Account number Transaction amount

100 27.14

300 62.11

400 100.56

900 82.17

4. 14.8 (File-Matching Test) Run the program of Exercise 14.6,
using the files of test data created in Exercise 14.7. Print the
new master file. Check that the accounts have been updated
correctly.

5. 14.9 (File-Matching Enhancement) It’s common to have
several transaction records with the same record key, because
a particular customer might make several purchases and cash
payments during a business period. Rewrite your accounts-
receivable file-matching program of Exercise 14.6 to provide
for the possibility of handling several transaction records with
the same record key. Modify the test data of Exercise 14.7 to
include the additional transaction records in Fig. 14.16.

Fig. 14.16 Transaction records to add.

Account number Dollar amount

300 83.89

700 80.78

700 1.53

6. 14.10 Write a series of statements that accomplish each of the
following. Assume that we’ve defined class Person that contains
the private data members

char lastName[15];

char firstName[10];

int age;

int id;

and public member functions

// accessor functions for id

void setId(int);

int getId() const;

// accessor functions for lastName

void setLastName(const string&);

string getLastName() const;

// accessor functions for firstName

void setFirstName(const string&);

string getFirstName() const;

// accessor functions for age

void setAge(int);

int getAge() const;

Also assume that any random-access files have been opened
properly.

A. Initialize nameage.dat with 100 records that store values
lastName ="unassigned" , firstName = "" and age = 0 .

B. Input 10 last names, first names and ages, and write
them to the file.

C. Update a record that already contains information. If the
record does not contain information, inform the user "No
info" .

D. Delete a record that contains information by reinitializing
that particular record.

7. 14.11 (Hardware Inventory) You own a hardware store and
need to keep an inventory that can tell you what different tools
you have, how many of each you have on hand and the cost of
each one. Write a program that initializes the random-access
file hardware.dat to 100 empty records, lets you input the data
concerning each tool, enables you to list all your tools, lets you
delete a record for a tool that you no longer have and lets you
update any information in the file. The tool identification number
should be the record number. Use the information in Fig. 14.17
to start your file.

Fig. 14.17 Hardware inventory records.

Record # Tool name Quantity Cost

3 Electric sander 7 57.98

17 Hammer 76 11.99

24 Jig saw 21 11.00

39 Lawn mower 3 79.50

56 Power saw 18 99.99

68 Screwdriver 106 6.99

77 Sledge hammer 11 21.50

83 Wrench 34 7.50

8. 14.12 (Telephone-Number Word Generator) Standard
telephone keypads contain the digits 0 through 9. The numbers
2 through 9 each have three letters associated with them, as is
indicated by the following table:

Fig. 14.18 Telephone digit-to-letter mappings.

Digit Letter

2 A B C

3 D E F

4 G H I

5 J K L

6 M N O

7 P Q R S

8 T U V

9 W X Y Z

Many people find it difficult to memorize phone numbers, so
they use the correspondence between digits and letters to
develop seven-letter words that correspond to their phone
numbers. For example, a person whose telephone number is
686-2377 might use the correspondence indicated in the above
table to develop the seven-letter word “NUMBERS.”
Businesses frequently attempt to get telephone numbers that
are easy for their clients to remember. If a business can
advertise a simple word for its customers to dial, then no doubt
the business will receive a few more calls. Each seven-letter
word corresponds to exactly one seven-digit telephone number.
The restaurant wishing to increase its take-home business
could surely do so with the number 825-3688 (i.e.,
“TAKEOUT”). Each seven-digit phone number corresponds to
many separate seven-letter words. Unfortunately, most of these
represent unrecognizable juxtapositions of letters. It’s possible,
however, that the owner of a barber shop would be pleased to
know that the shop’s telephone number, 424-7288,
corresponds to “HAIRCUT.” A veterinarian with the phone
number 738-2273 would be happy to know that the number
corresponds to “PETCARE.”
Write a program that, given a seven-digit number, writes to a
file every possible seven-letter word corresponding to that
number. There are 2187 (3 to the seventh power) such words.
Avoid phone numbers with the digits 0 and 1.

9. 14.13 (sizeof Operator) Write a program that uses the sizeof
operator to determine the sizes in bytes of the various data

types on your computer system. Write the results to the file
data-size.dat , so that you may print the results later. The
results should be displayed in two-column format with the type
name in the left column and the size of the type in the right
column, as in Fig. 14.19. [Note: The sizes of the built-in data
types on your computer might differ from those listed here.]

Fig. 14.19 Sample output for Exercise 14.13.

Making a Difference
1. 14.14 (Phishing Scanner) Phishing is a form of identity theft in

which, in an e-mail, a sender posing as a trustworthy source
attempts to acquire private information, such as your user
names, passwords, credit-card numbers and social security
number. Phishing e-mails claiming to be from popular banks,
credit-card companies, auction sites, social networks and
online payment services may look quite legitimate. These
fraudulent messages often provide links to spoofed (fake)
websites where you’re asked to enter sensitive information.
Visit www.snopes.com and other websites to find lists of the top
phishing scams. Also check out the Anti-Phishing Working
Group

www.antiphishing.org/

and the FBI’s Cyber Investigations website

https://www.fbi.gov/about-us/investigate/cyber/cyber

where you’ll find information about the latest scams and how to
protect yourself.

http://www.snopes.com
http://www.antiphishing.org/
http://www.fbi.gov.ezproxy.cul.columbia.edu/about-us/investigate/cyber/cyber

Create a list of 30 words, phrases and company names
commonly found in phishing messages. Assign a point value to
each based on your estimate of its likeliness to be in a phishing
message (e.g., one point if it’s somewhat likely, two points if
moderately likely, or three points if highly likely). Write a
program that scans a file of text for these terms and phrases.
For each occurrence of a keyword or phrase within the text file,
add the assigned point value to the total points for that word or
phrase. For each keyword or phrase found, output one line with
the word or phrase, the number of occurrences and the point
total. Then show the point total for the entire message. Does
your program assign a high point total to some actual phishing
e-mails you’ve received? Does it assign a high point total to
some legitimate e-mails you’ve received?

15 Standard Library Containers
and Iterators

Objectives
In this chapter you’ll:

Be introduced to the Standard Library containers, iterators and
algorithms.
Use the vector , list and deque sequence containers.
Use the set , multiset , map and multimap associative containers.
Use the stack , queue and priority_queue container adapters.
Use iterators to access container elements.
Use the copy algorithm and ostream_iterators to output a
container.
Understand how to use the bitset “near container” to manipulate a
collection of bit flags.

Outline
1. 15.1 Introduction
2. 15.2 Introduction to Containers
3. 15.3 Introduction to Iterators
4. 15.4 Introduction to Algorithms
5. 15.5 Sequence Containers

A. 15.5.1 vector Sequence Container
B. 15.5.2 list Sequence Container
C. 15.5.3 deque Sequence Container

6. 15.6 Associative Containers
A. 15.6.1 multiset Associative Container
B. 15.6.2 set Associative Container
C. 15.6.3 multimap Associative Container
D. 15.6.4 map Associative Container

7. 15.7 Container Adapters
A. 15.7.1 stack Adapter
B. 15.7.2 queue Adapter
C. 15.7.3 priority_queue Adapter

8. 15.8 Class bitset
9. 15.9 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Recommended Reading

15.1 Introduction
The Standard Library defines powerful, template-based, reusable
components that implement many common data structures and
algorithms used to process those data structures. We began
introducing templates in Chapters 6–7 and use them extensively here
and in Chapters 16, 18 and 19. Historically, the features presented in
this chapter were often referred to as the Standard Template Library
or STL.1 We’ll occasionally refer to these features as the STL. In the
C++ standard document, these features are simply referred to as part
of the C++ Standard Library.

1. The STL was developed by Alexander Stepanov and Meng Lee at
Hewlett Packard and is based on their generic programming research,
with significant contributions from David Musser.

Containers, Iterators and Algorithms
This chapter introduces three key components of the Standard Library
—containers (templatized data structures), iterators and algorithms.
Containers are data structures capable of storing objects of almost
any data type (there are some restrictions). We’ll see that there are
three styles of container classes—first-class containers, container
adapters and near containers.

Common Member Functions Among
Containers
Each container has associated member functions—a subset of these
is defined in all containers. We illustrate most of this common
functionality in our examples of array (which was introduced in
Chapter 7), vector (also introduced in Chapter 7 and covered in
more depth here), list (Section 15.5.2) and deque (pronounced
“deck”; Section 15.5.3).

Iterators
Iterators, which have properties similar to those of pointers, are used
to manipulate container elements. Built-in arrays also can be
manipulated by Standard Library algorithms, using pointers as
iterators. We’ll see that manipulating containers with iterators is
convenient and provides tremendous expressive power when
combined with Standard Library algorithms—in some cases, reducing
many lines of code to a single statement.

Algorithms
Standard Library algorithms are function templates that perform such
common data manipulations as searching, sorting and comparing
elements or entire containers. The Standard Library provides many
algorithms. Most of them use iterators to access container elements.
Each algorithm has minimum requirements for the kinds of iterators

that can be used with it. We’ll see that containers support specific
kinds of iterators, some more powerful than others. The iterators a
container supports determine whether the container can be used with
a specific algorithm. Iterators encapsulate the mechanisms used to
traverse containers and access their elements. This encapsulation
enables many of the algorithms to be applied to various containers
independently of the underlying container implementation. This also
enables you to create new algorithms that can process the elements
of multiple container types.

Custom Templatized Data Structures
In Chapter 19, we’ll build our own custom templatized data structures,
including linked lists, queues, stacks and trees:

Linked lists are collections of data items logically “lined up in a
row”—insertions and removals are made anywhere in a linked list.
Stacks are important in compilers and operating systems:
Insertions and removals are made only at one end of a stack—its
top. Section 6.11 discussed the importance of stacks in the
function call and return mechanism.
Queues represent waiting lines; insertions are made at the back
(also referred to as the tail) of a queue and removals are made
from the front (also referred to as the head) of a queue.
Binary trees are nonlinear, hierarchical data structures that
facilitate searching and sorting data, duplicate elimination and
compiling expressions into machine code.

Each of these data structures has many other interesting applications.
We’ll carefully weave linked objects together with pointers. Pointer-
based code is complex and can be error prone—the slightest
omissions or oversights can lead to serious memory-access violations
and memory-leak errors with no forewarning from the compiler. If
many programmers on a large project implement custom containers
and algorithms for different tasks, the code becomes difficult to
modify, maintain and debug.

 Software Engineering Observation 15.1

Avoid reinventing the wheel; when possible, program with the
components of the C++ Standard Library.

 Error-Prevention Tip 15.1

The prepackaged, templatized Standard Library containers are
sufficient for most applications. Using the proven Standard Library
containers, iterators and algorithms helps you reduce testing and
debugging time.

 Performance Tip 15.1

The Standard Library was conceived and designed for performance
and flexibility.

15.2 Introduction to Containers2
2. This section is intended as an introduction to a reference-oriented
chapter. You may want to read it quickly and refer back to it as
necessary when reading the rest of the chapter. Starting in Section
15.3, we present concrete live-code examples.

The Standard Library container types are shown in Fig. 15.1. The
containers are divided into four major categories—sequence
containers, ordered associative containers, unordered
associative containers and container adapters.

Fig. 15.1 Standard Library container classes and container
adapters.

Container class Description

Sequence containers

array Fixed size. Direct access to any element.

deque Rapid insertions and deletions at front or back. Direct access
to any element.

forward_list Singly linked list, rapid insertion and deletion anywhere.
Added in C++11.

11

list Doubly linked list, rapid insertion and deletion anywhere.

vector Rapid insertions and deletions at back. Direct access to any
element.

Ordered associative containers—keys are maintained in sorted order

set Rapid lookup, no duplicates allowed.

multiset Rapid lookup, duplicates allowed.

map One-to-one mapping, no duplicates allowed, rapid key-based
lookup.

multimap One-to-many mapping, duplicates allowed, rapid key-based
lookup.

Unordered associative containers

unordered_set Rapid lookup, no duplicates allowed.

unordered_multiset Rapid lookup, duplicates allowed.

unordered_map One-to-one mapping, no duplicates allowed, rapid key-based
lookup.

unordered_multimap One-to-many mapping, duplicates allowed, rapid key-based
lookup.

Container adapters

stack Last-in, first-out (LIFO).

queue First-in, first-out (FIFO).

priority_queue Highest-priority element is always the first element out.

Containers Overview
The sequence containers represent linear data structures (i.e., all of
their elements are conceptually “lined up in a row”), such as arrays,
vectors and linked lists. We’ll study linked data structures in Chapter
19, Custom Templatized Data Structures. Associative containers are
nonlinear data structures that typically can locate elements stored in
the containers quickly. Such containers can store sets of values or
key–value pairs in which each key has an associated value—for
example, a program might associate employee IDs with Employee
objects. As you’ll see, some associative containers allow multiple
values for each key. The keys in associative containers are immutable
(they cannot be modified) as of C++11. The sequence containers and
associative containers are collectively referred to as the first-class
containers. Stacks and queues are typically constrained versions of
sequence containers. For this reason, the Standard Library
implements class templates stack , queue and priority_queue as
container adapters that enable a program to view a sequence
container in a constrained manner. Class string supports the same
functionality as a sequence container, but stores only character data.

11

Near Containers

There are other container types that are considered near containers
—built-in arrays, bitsets for maintaining sets of flag values and
valarrays for performing high-speed mathematical vector operations
(not to be confused with the vector container). These types are
considered near containers because they exhibit some, but not all,
capabilities of the first-class containers.

Common Container Functions
Most containers provide similar functionality. Many operations apply to
all containers, and other operations apply to subsets of similar
containers. Figure 15.2 describes the many functions that are
commonly available in most Standard Library containers. Overloaded
operators < , <= , > , >= , == and != perform element-by-element
comparisons. Overloaded operators < , <= , > , >= , == and != are not

provided for priority_queue s. Overloaded operators < , <= , > and >=
are not provided for the unordered associative containers. Member
functions rbegin , rend , crbegin and crend are not available in a
forward_list . Before using any container, you should study its
capabilities.

Fig. 15.2 Common member functions for most Standard Library
containers.

Member
function

Description

default A constructor that initializes an empty container. Normally, each

constructor container has several constructors that provide different ways to
initialize the container.

copy
constructor

A constructor that initializes the container to be a copy of an existing
container of the same type.

move
constructor

A move constructor (added in C++11 and discussed in Chapter 24)
moves the contents of an existing container into a new container of the
same type—the old container no longer contains the data. This avoids
the overhead of copying each element of the argument container.

destructor Destructor function for cleanup after a container is no longer needed.

empty Returns true if there are no elements in the container; otherwise,

returns false .

insert Inserts an item in the container.

size Returns the number of elements currently in the container.

copy
operator=

Copies the elements of one container into another.

move
operator=

The move assignment operator (added in C++11 and discussed in
Chapter 24) moves the elements of one container into another container
of the same type—the old container no longer contains the data. This
avoids the overhead of copying each element of the argument
container.

11

operator< Returns true if the contents of the first container are less than the

second otherwise, returns false .

operator<= Returns true if the contents of the first container are less than or

equal to the second; otherwise, returns false .

operator> Returns true if the contents of the first container are greater than the

second; otherwise, returns false .

operator>= Returns true if the contents of the first container are greater than or

equal to the second; otherwise, returns false .

operator== Returns true if the contents of the first container are equal to the

contents of the second; otherwise, returns false .

operator!= Returns true if the contents of the first container are not equal to the

contents of the second; otherwise, returns false .

swap Swaps the elements of two containers. As of C++11, there is a non-
member-function version of swap that swaps the contents of its two
arguments (which must be of the same container type) using move

operations rather than copy operations.

11

max_size Returns the maximum number of elements for a container.

begin Overloaded to return either an iterator or a const_iterator that

refers to the first element of the container.

end Overloaded to return either an iterator or a const_iterator that

refers to the next position after the end of the container.

cbegin

(C++11)
Returns a const_iterator that refers to the container’s first

element.

11

cend

(C++11)
Returns a const_iterator that refers to the next position after the

end of the container.

rbegin The two versions of this function return either a reverse_iterator

or a const_reverse_iterator that refers to the last element of the

container.

rend The two versions of this function return either a reverse_iterator

or a const_reverse_iterator that refers to the position before the

first element of the container.

crbegin

(C++11)
Returns a const_reverse_iterator that refers to the last element

of the container.

11

crend

(C++11)
Returns a const_reverse_iterator that refers to the position

before the first element of the container.

erase Removes one or more elements from the container.

clear Removes all elements from the container.

First-Class Container Common Nested
Types
Figure 15.3 shows the common first-class container nested types
(types defined inside each container class definition). These are used

in template-based declarations of variables, parameters to functions
and return values from functions (as you’ll see in this chapter and
Chapter 16). For example, value_type in each container always
represents the type of elements stored in the container. The types
reverse_iterator and const_reverse_iterator are not provided by
class forward_list .

Fig. 15.3 Nested types found in first-class containers.

typedef Description

allocator_type The type of the object used to allocate the container’s
memory—not included in class template array .

value_type The type of element stored in the container.

reference A reference for the container’s element type.

const_reference A reference for the container’s element type that can be
used only to read elements in the container and to
perform const operations.

pointer A pointer for the container’s element type.

const_pointer A pointer for the container’s element type that can be
used only to read elements and to perform const

operations.

iterator An iterator that points to an element of the container’s
element type.

const_iterator An iterator that points to an element of the container’s
element type. Used only to read elements and to

perform const operations.

reverse_iterator A reverse iterator that points to an element of the
container’s element type. Iterates through a container
back-to-front.

const_reverse_iterator A reverse iterator that points to an element of the
container’s element type and can be used only to read

elements and to perform const operations. Used to

iterate through a container in reverse.

difference_type The type of the result of subtracting two iterators that
refer to the same container (the overloaded - operator

is not defined for iterators of list s and associative

containers).

size_type The type used to count items in a container and index
through a sequence container (cannot index through a
list).

Requirements for Container Elements
Before using a Standard Library container, it’s important to ensure that
the type of objects being stored in the container supports a minimum
set of functionality. When an object is inserted into a container, a copy
of the object is made. For this reason, the object type should provide a
copy constructor and copy assignment operator (custom or default
versions, depending on whether the class uses dynamic memory).
Also, the ordered associative containers and many algorithms require
elements to be compared—for this reason, the object type should
provide less-than (<) and equality (==) operators. As of C++11,

objects can also be moved into container elements, in which case the
object type needs a move constructor and move assignment operator
—Chapter 24 discusses move semantics.

11

15.3 Introduction to Iterators
Iterators have many similarities to pointers and are used to point to
first-class container elements and for other purposes. Iterators hold
state information sensitive to the particular containers on which they
operate; thus, iterators are implemented for each type of container.
Certain iterator operations are uniform across containers. For
example, the dereferencing operator (*) dereferences an iterator so
that you can use the element to which it points. The ++ operation on

an iterator moves it to the container’s next element (much as
incrementing a pointer into a built-in array aims the pointer at the next
array element).

First-class containers provide member functions begin and end .
Function begin returns an iterator pointing to the first element of the
container. Function end returns an iterator pointing to the first element

past the end of the container (one past the end)—a nonexistent
element that’s frequently used to determine when the end of a
container is reached. If iterator i points to a particular element, then
++i points to the “next” element and *i refers to the element pointed
to by i . The iterator resulting from end is typically used in an equality
or inequality comparison to determine whether the “moving iterator” (i
in this case) has reached the end of the container.

An object of a container’s iterator type refers to a container element
that can be modified. An object of a container’s const_iterator type
refers to a container element that cannot be modified.

Using istream_iterator for Input and
ostream_iterator for Output
We use iterators with sequences (also called ranges). These can be
in containers, or they can be input sequences or output sequences.
Figure 15.4 demonstrates input from the standard input (a sequence
of data for input into a program), using an istream_iterator , and
output to the standard output (a sequence of data for output from a
program), using an ostream_iterator . The program inputs two integers
from the user and displays their sum. As you’ll see later in this
chapter, istream_iterators and ostream_iterators can be used with
the Standard Library algorithms to create powerful statements. For
example, starting in Fig. 15.11, you’ll use an ostream_iterator with the
copy algorithm to copy a container’s entire contents to the standard
output stream with a single statement.

Fig. 15.4 Demonstrating input and output with iterators.

istream_iterator

Line 11 creates an istream_iterator that’s capable of extracting

(inputting) int values from the standard input object cin . Line 13
dereferences iterator inputInt to read the first integer from cin and
assigns that integer to number1 . The dereferencing operator * applied
to iterator inputInt gets the value from the stream associated with
inputInt ; this is similar to dereferencing a pointer. Line 14 positions
iterator inputInt to the next value in the input stream. Line 15 inputs
the next integer from inputInt and assigns it to number2 .

ostream_iterator

Line 18 creates an ostream_iterator that’s capable of inserting
(outputting) int values in the standard output object cout . Line 21
outputs an integer to cout by assigning to *outputInt the sum of
number1 and number2 . Notice that we use the dereferenced outputInt
iterator as an lvalue in the assignment statement. If you want to output
another value using outputInt , the iterator must be incremented with
++ first. Either the prefix or postfix increment can be used—we use the
prefix form for performance reasons because it does not create a
temporary object.

 Error-Prevention Tip 15.2

The * (dereferencing) operator when applied to a const iterator

returns a reference to const for the container element, disallowing the

use of non- const member functions.

Iterator Categories and Iterator Category
Hierarchy
Figure 15.5 describes the iterator categories. Each provides a specific
set of functionality.

Fig. 15.5 Iterator categories.

Category Description

input Used to read an element from a container. An input iterator can move only
in the forward direction (i.e., from the beginning of the container to the end)
one element at a time. Input iterators support only one-pass algorithms—
the same input iterator cannot be used to pass through a sequence twice.

output Used to write an element to a container. An output iterator can move only
in the forward direction one element at a time. Output iterators support only

one-pass algorithms—the same output iterator cannot be used to pass
through a sequence twice.

forward Combines the capabilities of input and output iterators and retains their
position in the container (as state information). Such iterators can be used
to pass through a sequence more than once (for so-called multipass
algorithms).

bidirectional Combines the capabilities of a forward iterator with the ability to move in
the backward direction (i.e., from the end of the container toward the
beginning). Bidirectional iterators support multipass algorithms, such as
reversing the elements of a container.

random

access

Combines the capabilities of a bidirectional iterator with the ability to
directly access any element of the container, i.e., to jump forward or
backward by an arbitrary number of elements. These can also be
compared with relational operators.

Figure 15.6 illustrates the hierarchy of iterator categories. As you
follow the hierarchy from bottom to top, each iterator category
supports all the functionality of the categories below it in the figure.
Thus the “weakest” iterator types are at the bottom and the most
powerful one is at the top. Note that this is not an inheritance
hierarchy.

Fig. 15.6 Iterator category hierarchy.

Container Support for Iterators
The iterator category that each container supports determines whether
that container can be used with specific algorithms. Containers that
support random-access iterators can be used with all Standard Library
algorithms—with the exception that if an algorithm requires changes to
a container’s size, the algorithm can’t be used on built-in arrays or
array objects. Pointers into built-in arrays can be used in place of
iterators with most algorithms. Figure 15.7 shows the iterator category
of each container. The first-class containers, strings and built-in
arrays are all traversable with iterators.

Predefined Iterator typedef s
Figure 15.8 shows the predefined iterator typedefs that are found in
the Standard Library container class definitions. Not every typedef is
defined for every container. We use const

Fig. 15.7 Iterator types supported by each container.

Container Iterator type

Sequence containers (first class)

vector random access

array random access

deque random access

list bidirectional

forward_list forward

Ordered associative containers (first class)

set bidirectional

multiset bidirectional

map bidirectional

multimap bidirectional

Unordered associative containers (first class)

unordered_set bidirectional

unordered_multiset bidirectional

unordered_map bidirectional

unordered_multimap bidirectional

Container adapters

stack none

queue none

priority_queue none

versions of the iterators for traversing const containers or non- const
containers that should not be modified. We use reverse iterators to
traverse containers in the reverse direction.

 Error-Prevention Tip 15.3

Operations performed on a const_iterator return references to const
to prevent modification to elements of the container being
manipulated. Using const_iterators where appropriate is another

example of the principle of least privilege.

Fig. 15.8 Iterator typedefs.

Predefined typedef s for iterator types Direction of ++ Capability

iterator forward read/write

const_iterator forward read

reverse_iterator backward read/write

const_reverse_iterator backward read

Iterator Operations
Figure 15.9 shows operations that can be performed on each iterator
type. In addition to the operators shown for all iterators, iterators must
provide default constructors, copy constructors and copy assignment
operators. A forward iterator supports ++ and all of the input and
output iterator capabilities. A bidirectional iterator supports -- and all
the capabilities of forward iterators. A random-access iterator supports
all of the operations shown in the table. For input iterators and output
iterators, it’s not possible to save the iterator, then use the saved
value later.

Fig. 15.9 Iterator operations for each type of iterator.

Iterator
operation

Description

All iterators

++p Preincrement an iterator.

p++ Postincrement an iterator.

p = p1 Assign one iterator to another.

Input iterators

*p Dereference an iterator as an rvalue.

p->m Use the iterator to read the element m .

p == Compare iterators for equality.

p1

p !=

p1

Compare iterators for inequality.

Output iterators

*p Dereference an iterator as an lvalue.

p = p1 Assign one iterator to another.

Forward

iterators

Forward iterators provide all the functionality of both input iterators and
output iterators.

Bidirectional iterators

--p Predecrement an iterator.

p-- Postdecrement an iterator.

Random-access iterators

p += i Increment the iterator p by i positions.

p -= i Decrement the iterator p by i positions.

p + i

or i + p
Expression value is an iterator positioned at p incremented by i positions.

p - i Expression value is an iterator positioned at p decremented by i positions.

p - p1 Expression value is an integer representing the distance between two
elements in the same container.

p[i]

Return a reference to the element offset from p by i positions

p < p1 Return true if iterator p is less than iterator p1 (i.e., iterator p is before

iterator p1 in the container); otherwise, return false .

p <=

p1

Return true if iterator p is less than or equal to iterator p1 (i.e., iterator p

is before iterator p1 or at the same location as iterator p1 in the container);

otherwise, return false .

p > p1 Return true if iterator p is greater than iterator p1 (i.e., iterator p is after

iterator p1 in the container); otherwise, return false .

p >=

p1

Return true if iterator p is greater than or equal to iterator p1 (i.e.,

iterator p is after iterator p1 or at the same location as iterator p1 in the

container); otherwise, return false .

15.4 Introduction to Algorithms
The Standard Library provides scores of algorithms you’ll use
frequently to manipulate a variety of containers. Inserting, deleting,
searching, sorting and others are appropriate for some or all of the
sequence and associative containers. The algorithms operate on
container elements only indirectly through iterators. Many algorithms
operate on sequences of elements defined by iterators pointing to the
first element of the sequence and to one element past the last
element. It’s also possible to create your own new algorithms that
operate in a similar fashion so they can be used with the Standard
Library containers and iterators. In this chapter, we’ll use the copy
algorithm in many examples to copy a container’s contents to the
standard output. We discuss many Standard Library algorithms in
Chapter 16.

15.5 Sequence Containers
The C++ Standard Template Library provides five sequence
containers— array , vector , deque , list and forward_list . Class
templates array , vector and deque are typically based on built-in
arrays. Class templates list and forward_list implement linked-list
data structures, which we discuss in Chapter 19. We’ve already
discussed and used class template array extensively, so we do not
cover it again here. We’ve also already introduced class template
vector—we discuss it in more detail here.

Performance and Choosing the
Appropriate Container
Figure 15.2 presented the operations common to most of the
Standard Library containers. Beyond these operations, each container
typically provides a variety of other capabilities. Many of these are
common to several containers, but they’re not always equally efficient
for each container.

 Software Engineering Observation 15.2

It’s usually preferable to reuse Standard Library containers rather than
developing custom templatized data structures. vector is typically

satisfactory for most applications.

 Performance Tip 15.2

Insertion at the back of a vector is efficient. The vector simply grows,

if necessary, to accommodate the new item. It’s expensive to insert (or
delete) an element in the middle of a vector—the entire portion of the

vector after the insertion (or deletion) point must be moved, because

vector elements occupy contiguous cells in memory.

 Performance Tip 15.3

Applications that require frequent insertions and deletions at both
ends of a container normally use a deque rather than a vector .

Although we can insert and delete elements at the front and back of
both a vector and a deque , class deque is more efficient than vector
for doing insertions and deletions at the front.

 Performance Tip 15.4

Applications with frequent insertions and deletions in the middle
and/or at the extremes of a container normally use a list , due to its

efficient implementation of insertion and deletion anywhere in the data
structure.

15.5.1 vector Sequence
Container

Class template vector , which we introduced in Section 7.10, provides
a dynamic data structure with contiguous memory locations. This
enables efficient, direct access to any element of a vector via the
subscript operator [] , exactly as with a built-in array. Classs template
vector is most commonly used when the data in the container must
be easily accessible via a subscript or will be sorted, and when the
number of elements may need to grow. When a vector ’s memory is
exhausted, the vector allocates a larger built-in array, copies (or
moves; Chapter 24) the original elements into the new built-in array
and deallocates the old built-in array.

 Performance Tip 15.5
Choose the vector container for the best random-access performance

in a container that can grow.

 Performance Tip 15.6

Objects of class template vector provide rapid indexed access with

the overloaded subscript operator [] because they’re stored in

contiguous memory like a built-in array or an array object.

Using vector s and Iterators
Figure 15.10 illustrates several functions of the vector class template.
Many of these functions are available in every first-class container.
You must include header <vector> to use class template vector .

Fig. 15.10 Standard Library vector class template.

Creating a vector
Line 11 defines an object called integers of class template vector that
stores int values. vector ’s default constructor creates an empty
vector with no elements (i.e., its size is 0) and no storage for
elements (i.e., its capacity is 0, so the vector will have to allocate
memory when elements are added to it).

vector Member Functions size and
capacity

Lines 13–14 demonstrate the size and capacity functions; each
initially returns 0 for integers . Function size—available in every

container except forward_List—returns the number of elements
currently stored in the container. Function capacity (specific to vector
and deque) returns the number of elements that can be stored in the
vector before the vector needs to dynamically resize itself to
accommodate more elements.

vector Member Function push_back
Lines 17–19 use function push_back—available in sequence

containers other than array and forward_list—to append an element
to the vector . If the vector ’s capacity is full (that is, its size equals its
capacity), the vector increases its size—some implementations have
the vector double its capacity. Sequence containers other than array
and vector also provide a push_front function.

 Performance Tip 15.7

It can be wasteful to double a vector ’s size when more space is

needed. For example, a full vector of 1,000,000 elements resizes to

accommodate 2,000,000 elements when one new element is added.
This leaves 999,999 unused elements. You can use resize and

reserve to control space usage better.

Updated size and capacity After
Modifying a vector
Lines 21–22 call size and capacity again to show the vector ’s new
size and capacity after the three push_back operations. Function size
returns 3—the number of elements added to the vector . Function
capacity returns 4 (which may vary by compiler), indicating that we
can add one more element before the vector needs to add more
memory:

When we added the first element, the vector allocated space for
one element, and the size became 1 to indicate that the vector
contained only one element.
When we added the second element, the capacity doubled to 2
and the size became 2 as well.
When we added the third element, the capacity doubled again to 4.

When the vector eventually fills its allocated capacity and the program
attempts to add one more element to the vector , the vector will
double its capacity to eight elements. The doubling behavior described
above is implementation dependent.

vector Growth
The manner in which a vector grows to accommodate more elements
—a time-consuming operation—is not specified by the C++ Standard.
C++ library implementers use various schemes to minimize the
overhead of resizing a vector . Hence, the output of this program may
vary, depending on the vector implementation that comes with your
compiler. Some library implementers allocate a large initial capacity. If
a vector stores a small number of elements, such capacity may be a
waste of space. However, it can greatly improve performance if a
program adds many elements to a vector and does not have to
reallocate memory to accommodate those elements. This is a classic
space–time trade-off. Library implementors must balance the amount
of memory used against the amount of time required to perform
various vector operations.

Outputting Built-in Array Contents with
Pointers
Lines 28–30 demonstrate how to output the contents of the built-in
array values (defined at line 25) using pointers and pointer arithmetic.
Pointers into a built-in array can be used as iterators. Recall from
Section 8.5 that C++11 functions begin and end from the header
<iterator> each take a built-in array as an argument. Function begin
returns an iterator pointing to the built-in array’s first element and
function end returns an iterator representing the position one element
after the end of the built-in array.

11

Lines 28–30 use C++14’s global cbegin and cend functions, which
work the same way as functions begin and end , but return const
iterators that cannot be used to modify the data. C++14 also
introduces the global rbegin , rend , crbegin and crend functions for
iterating through a built-in array or a container from back to front.
Functions rbegin and rend return iterators that can be used to modify
data, and crbegin and crend return const iterators that cannot be
used to modify data. Functions begin and end and their C++14 const
and reverse versions may also receive container objects as
arguments—each function calls the corresponding member function in
its container argument.

14

Note that we use the != operator in the loop-continuation condition at
line 28. When iterating using iterators, it’s common for the loop-
continuation condition to test whether the iterator has reached the end
of the built-in array or the container. This technique is used by many
Standard Library algorithms.

Outputting vector Contents with Iterators
Line 33 calls function printVector (defined in lines 46–52) to output
the contents of a vector using iterators. The function receives a
reference to a const vector . The for statement in lines 48–51
initializes control variable constIterator using vector member
function cbegin (added in C++11), which returns a const_iterator to
the vector ’s first element. We infer the control variable’s type
(vector<int>::const_iterator) using the auto keyword.

11

The loop continues as long as constIterator has not reached the end
of the vector . This is determined by comparing constIterator to the
result of calling the vector ’s cend member function (also added in
C++11), which returns a const_iterator indicating the location past

the last element of the vector . If constIterator is equal to this value,
the end of the vector has been reached. Prior to C++11, you would
have used the overloaded end member function to get the
const_iterator . Functions cbegin , begin , cend and end are available
for all first-class containers.

11

The body of the loop dereferences constIterator to get the current
element’s value. Remember that the iterator acts like a pointer to the
element and that operator * is overloaded to return a reference to the
element. The expression ++constIterator (line 49) positions the
iterator to the vector ’s next element. Note that you can replace lines
48–51 with the following range-based for statement, which uses
iterators in the same manner shown in printVector :

for (auto const& item : integers2) {

 cout << item << ' ';

}

 Common Programming Error 15.1

Attempting to dereference an iterator positioned outside its container
is a runtime logic error—the iterator returned by end or cend should

never be dereferenced or incremented.

Displaying the vector ’s Contents in
Reverse with const_reverse_iterators
Lines 37–40 use a for statement (similar to the one in printVector) to
iterate through the vector in reverse. C++11 added vector member
functions crbegin and crend which return const_reverse_iterators that
represent the starting and ending points when iterating through a
container in reverse. Most first-class containers support this type of
iterator. Class vector also provides member functions rbegin and rend
to obtain non- const reverse_iterators.

11

C++11: shrink_to_fit
As of C++11, you can ask a vector or deque to return unneeded
memory to the system by calling member function shrink_to_fit . This
requests that the container reduce its capacity to the number of
elements in the container. According to the C++ standard,
implementations can ignore this request so that they can perform
implementation-specific optimizations.

11

vector Element-Manipulation Functions
Figure 15.11 illustrates functions for retrieving and manipulating
vector elements. Line 13 initializes a vector<int> with the vector
constructor that receives a C++11 list initializer. Line 14 uses an
overloaded vector constructor that takes two iterators as arguments
to initialize integers with a copy of a range of elements from the
vector values—in this case, the range from values.cbegin() (the
beginning of values) up to, but not including, values.cend() (which
points to the element after the end of values).

11

Fig. 15.11 vector class template element-manipulation functions.

ostream_iterator

Line 15 defines an ostream_iterator called output that can be used to
output integers separated by single spaces via cout . An
ostream_iterator<int> outputs only values of type int or a compatible
type. The first argument to the constructor specifies the output stream,
and the second argument is a string specifying the separator for the
values output—in this case, the string contains a space character. We
use the ostream_iterator (defined in header <iterator>) to output the
contents of the vector in this example.

copy Algorithm
Line 18 uses Standard Library algorithm copy (from header
<algorithm>) to output the entire contents of integers to the standard
output. The algorithm copies each element in a range from the
location specified by the iterator in its first argument and up to, but not
including, the location specified by the iterator in its second argument.
These two arguments must satisfy input iterator requirements—they
must be iterators through which values can be read from a container,
such as const_iterator s. They must also represent a range of
elements—applying ++ to the first iterator must eventually cause it to
reach the second iterator argument in the range. The elements are
copied to the location specified by the output iterator (i.e., an iterator
through which a value can be stored or output) specified as the last
argument. In this case, the output iterator is an ostream_iterator
attached to cout , so the elements are copied to the standard output.

vector Member Functions front and
back

Lines 20–21 use functions front and back (available for most
sequence containers) to determine the vector ’s first and last
elements, respectively. Notice the difference between functions front
and begin . Function front returns a reference to the first element in
the vector , while function begin returns a random-access iterator

pointing to the first element in the vector . Also notice the difference
between functions back and end . Function back returns a reference to
the vector ’s last element, whereas function end returns a random

access iterator pointing to the location after the last element.

 Common Programming Error 15.2

The results of front and back are undefined when called on an empty

vector .

Accessing vector Elements
Lines 23–24 illustrate two ways to access vector elements. These can
also be used with deque containers. Line 23 uses the subscript
operator that’s overloaded to return either a reference to the value at
the specified location or a reference to that const value, depending on
whether the container is const . Function at (line 24) performs the
same operation, but with bounds checking. Function at first checks
the value supplied as an argument and determines whether it’s in the
vector ’s bounds. If not, function at throws an out_of_range exception
(as demonstrated in lines 33–38). Figure 15.12 shows some of the
Standard Library exception types—we discuss others in Chapter 17.

Fig. 15.12 Some exception types in header <stdexcept> .

Exception type Description

out_of_range Indicates when a subscript is out of range—e.g., when an
invalid subscript is specified to vector member function at .

invalid_argument Indicates that an invalid argument was passed to a function.

length_error Indicates an attempt to create too long a container, string ,

etc.

bad_alloc Indicates that an attempt to allocate memory with new (or with

an allocator) failed because not enough memory was available.

vector Member Function insert
Line 27 of Fig. 15.11 uses one of the several overloaded insert
functions provided by each sequence container (except array , which
has a fixed size, and forward_list , which has the function
insert_after instead). Line 27 inserts the value 22 before the element
at the location specified by the iterator in the first argument. In this
example, the iterator is pointing to the vector ’s second element, so 22
is inserted as the second element and the original second element
becomes the third element. Other versions of insert allow inserting
multiple copies of the same value starting at a particular position, or
inserting a range of values from another container, starting at a
particular position. As of C++11, the version of member function
insert in line 27 returns an iterator pointing to the item that was
inserted.

11

vector Member Function erase
Lines 40 and 45 use the two erase functions that are available in all
first-class containers (except array , which has a fixed size, and
forward_list , which has the function erase_after instead). Line 40
erases the element at the location specified by the iterator argument
(in this example, the first element). Line 45 specifies that all elements
in the range specified by the two iterator arguments should be erased.
In this example, all the elements are erased. Line 47 uses function
empty (available for all containers and adapters) to confirm that the
vector is empty.

 Common Programming Error 15.3

Normally erase destroys the objects that are erased from a container.

However, erasing an element that is a pointer to a dynamically
allocated object does not delete the dynamically allocated memory—

this can lead to a memory leak. If the element is a unique_ptr
(Section 17.9), the unique_ptr would be destroyed and the

dynamically allocated memory would be deleted. If the element is a
shared_ptr (Chapter 24), the reference count to the dynamically

allocated object would be decremented and the memory would be
deleted only if the reference count reached 0 .

vector Member Function insert with
Three Arguments (Range insert)
Line 50 demonstrates the version of function insert that uses the
second and third arguments to specify the starting location and ending
location in a sequence of values (in this case, from the vector values)
that should be inserted into the vector . Remember that the ending
location specifies the position in the sequence after the last element to
be inserted; copying occurs up to, but not including, this location. As of
C++11, this version of member function insert returns an iterator
pointing to the first item that was inserted— if nothing was inserted,
the function returns its first argument.

11

vector Member Function clear
Finally, line 55 uses function clear (found in all first-class containers

except array) to empty the vector—this does not necessarily return
any of the vector ’s memory to the system. We’ll cover many common
container member functions in the next few sections. We’ll also cover
many functions that are specific to each container.

15.5.2 list Sequence Container

The list sequence container (from header <list>) allows insertion
and deletion operations at any location in the container. If most of the
insertions and deletions occur at the ends of the container, the deque
data structure (Section 15.5.3) provides a more efficient
implementation. Class template list is implemented as a doubly

linked list—every node in the list contains a pointer to the previous
node in the list and to the next node in the list . This enables class
template list to support bidirectional iterators that allow the container
to be traversed both forward and backward. Any algorithm that
requires input, output, forward or bidirectional iterators can operate on
a list . Many list member functions manipulate the elements of the
container as an ordered set of elements.

C++11: forward_list Container
C++11’s forward_list sequence container (header <forward_list>) is
implemented as a singly linked list—every node in the list contains a
pointer to the next node in the list . This enables class template list
to support forward iterators that allow the container to be traversed in
the forward direction. Any algorithm that requires input, output or
forward iterators can operate on a forward_list .

11

list Member Functions
In addition to the member functions in Fig. 15.2 and the common
member functions of all sequence containers discussed in Section
15.5, class template list provides other member functions, including
splice , push_front , pop_front , remove , remove_if , unique , merge ,
reverse and sort . Several of these member functions are list -
optimized implementations of the Standard Library algorithms
presented in Chapter 16. Both push_front and pop_front are also
supported by forward_list and deque . Figure 15.13 demonstrates
several features of class list . Remember that many of the functions
presented in Figs. 15.10–15.11 can be used with class list , so we
focus on the new features in this example’s discussion.

Fig. 15.13 Standard Library list class template.

Creating list Objects
Lines 14–15 create two list objects capable of storing ints. Lines
18–19 use function push_front to insert integers at the beginning of
values . Function push_front is specific to classes forward_list , list
and deque . Lines 20–21 use function push_back to insert integers at
the end of values . Function push_back is common to all sequence

containers, except array and forward_list .

list Member Function sort
Line 26 uses list member function sort to arrange the elements in
the list in ascending order. A second version of function sort allows
you to supply a binary predicate function that takes two arguments
(values in the list), performs a comparison and returns a bool value
indicating whether the first argument should come before the second
in the sorted contents. This function determines the order in which the
elements of the list are sorted. This version could be particularly
useful for a list that stores pointers rather than values. [Note: We
demonstrate a unary predicate function in Fig. 16.4. A unary predicate
function takes a single argument, performs a comparison using that
argument and returns a bool value indicating the result.]

list Member Function splice
Line 37 uses list function splice to remove the elements in
otherValues and insert them into values before the iterator position
specified as the first argument. There are two other versions of this
function. Function splice with three arguments allows one element to
be removed from the container specified as the second argument from
the location specified by the iterator in the third argument. Function
splice with four arguments uses the last two arguments to specify a
range of locations that should be removed from the container in the
second argument and placed at the location specified in the first
argument. Class template forward_list provides a similar member
function named splice_after .

list Member Function merge
After inserting more elements in otherValues and sorting both values
and otherValues , line 52 uses list member function merge to remove
all elements of otherValues and insert them in sorted order into
values . Both lists must be sorted in the same order before this
operation is performed. A second version of merge enables you to
supply a binary predicate function that takes two arguments (values in
the list) and returns a bool value. The predicate function specifies the
sorting order used by merge .

list Member Function pop_front
Line 58 uses list function pop_front to remove the first element in
the list . Line 59 uses function pop_back (available for sequence

containers other than array and forward_list) to remove the last
element in the list .

list Member Function unique
Line 63 uses list function unique to remove duplicate elements in the
list . The list should be in sorted order (so that all duplicates are
side by side) before this operation is performed, to guarantee that all
duplicates are eliminated. A second version of unique enables you to
supply a predicate function that takes two arguments (values in the
list) and returns a bool value specifying whether two elements are
equal.

list Member Function swap
Line 67 uses function swap (available to all first-class containers) to
exchange the contents of values with the contents of otherValues .

list Member Functions assign and
remove

Line 74 uses list function assign (available to all sequence

containers) to replace the contents of values with the contents of
otherValues in the range specified by the two iterator arguments. A
second version of assign replaces the original contents with copies of
the value specified in the second argument. The first argument of the
function specifies the number of copies. Line 83 uses list function
remove to delete all copies of the value 4 from the list .

15.5.3 deque Sequence Container

Class deque provides many of the benefits of a vector and a list in
one container. The term deque is short for “double-ended queue.”
Class deque is implemented to provide efficient indexed access (using
subscripting) for reading and modifying its elements, much like a
vector . Class deque is also implemented for efficient insertion and

deletion operations at its front and back, much like a list (although a
list is also capable of efficient insertions and deletions in the middle

of the list). Class deque provides support for random-access
iterators, so deques can be used with all Standard Library algorithms.
One of the most common uses of a deque is to maintain a first-in, first-

out queue of elements. In fact, a deque is the default underlying
implementation for the queue adaptor (Section 15.7.2).

Additional storage for a deque can be allocated at either end of the
deque in blocks of memory that are typically maintained as a built-in
array of pointers to those blocks.3 Due to the noncontiguous memory
layout of a deque , a deque iterator must be more “intelligent” than the
pointers that are used to iterate through vectors, arrays or built-in
arrays.

3. This is an implementation-specific detail, not a requirement of the
C++ standard.

 Performance Tip 15.8
In general, deque has higher overhead than vector .

 Performance Tip 15.9
Insertions and deletions in the middle of a deque are optimized to

minimize the number of elements copied, so it’s more efficient than a
vector but less efficient than a list for this kind of modification.

Class deque provides the same basic operations as class vector , but
like list adds member functions push_front and pop_front to allow
insertion and deletion at the beginning of the deque , respectively.

Figure 15.14 demonstrates features of class deque . Remember that
many of the functions presented in Fig. 15.10, Fig. 15.11 and Fig.
15.13 also can be used with class deque . Header <deque> must be
included to use class deque .

Fig. 15.14 Standard Library deque class template.

Line 10 instantiates a deque that can store double values. Lines 14–16
use functions push_front and push_back to insert elements at the
beginning and end of the deque .

The for statement in lines 21–23 uses the subscript operator to
retrieve the value in each element of the deque for output. The
condition uses function size to ensure that we do not attempt to
access an element outside the bounds of the deque .

Line 25 uses function pop_front to demonstrate removing the first
element of the deque . Line 30 uses the subscript operator to obtain an
lvalue. This enables values to be assigned directly to any element of
the deque .

15.6 Associative Containers
The associative containers provide direct access to store and retrieve
elements via keys (often called search keys). The four ordered
associative containers are multiset , set , multimap and map . Each of
these maintains its keys in sorted order. There are also four
corresponding unordered associative containers— unordered_multiset ,
unordered_set , unordered_multimap and unordered_map—that offer the
most of the same capabilities as their ordered counterparts. The
primary difference between the ordered and unordered associative
containers is that the unordered ones do not maintain their keys in
sorted order. In this section, we focus on the ordered associative
containers.

 Performance Tip 15.10

The unordered associative containers might offer better performance
for cases in which it’s not necessary to maintain keys in sorted order.

Iterating through an ordered associative container traverses it in the
sort order for that container. Classes multiset and set provide
operations for manipulating sets of values where the values
themselves are the keys. The primary difference between a multiset

and a set is that a multiset allows duplicate keys and a set does not.
Classes multimap and map provide operations for manipulating values

associated with keys (these values are sometimes referred to as
mapped values). The primary difference between a multimap and a
map is that a multimap allows duplicate keys with associated values to
be stored and a map allows only unique keys with associated values.

In addition to the common container member functions, ordered
associative containers also support several member functions that are
specific to associative containers. Examples of each of the ordered
associative containers and their common member functions are
presented in the next several subsections.

15.6.1 multiset Associative
Container

The multiset ordered associative container (from header <set>)
provides fast storage and retrieval of keys and allows duplicate keys.
The elements’ ordering is determined by a so-called comparator
function object. For example, in an integer multiset , elements can
be sorted in ascending order by ordering the keys with comparator
function object less<int> . We discuss function objects in detail in
Section 16.5. For this chapter, we’ll simply show how to use
less<int> when declaring ordered associative containers. The data
type of the keys in all ordered associative containers must support
comparison based on the comparator function object—keys sorted
with less<T> must support comparison with operator< . If the keys
used in the ordered associative containers are of user-defined data
types, those types must supply the appropriate comparison operators.
A multiset supports bidirectional iterators (but not random-access

iterators). If the order of the keys is not important, use
unordered_multiset (header <unordered_set>).

Figure 15.15 demonstrates the multiset ordered associative

container for a multiset of ints with keys that are sorted in ascending

order. Containers multiset and set (Section 15.6.2) provide the

same basic functionality.

Fig. 15.15 Standard Library multiset class template.

Creating a multiset
Line 11 creates a multiset of ints ordered in ascending order, using
the function object less<int> . Ascending order is the default for a
multiset , so less<int> can be omitted and line 11 can be written as

multiset<int> intMultiset; // multiset of ints

C++11 fixed a syntax issue with spacing between the closing > of
less<int> and the closing > of the multiset type. Before C++11, if
you specified this multiset ’s type as we did in line 11, the compiler
would treat the >> in

11

multiset<int, less<int>>

as the >> operator and generate a compilation error. For this reason,
you were required to put a space between the closing > of less<int>
and the closing > of the multiset type (or any other similar template
type, such as vector<vector<int>>). As of C++11, the preceding
declaration compiles correctly.

multiset Member Function count
Line 13 uses function count (available to all associative containers) to
count the number of occurrences of the value 15 currently in the
multiset .

multiset Member Function insert
Lines 16–17 use one of the several overloaded versions of function
insert to add the value 15 to the multiset twice. A second version of
insert takes an iterator and a value as arguments and begins the
search for the insertion point from the iterator position specified. A
third version of insert takes two iterators as arguments that specify a
range of values to add to the multiset from another container.

multiset Member Function find
Line 22 uses function find (available to all associative containers) to
locate the value 15 in the multiset . Function find returns an iterator
or a const_iterator (depending on whether the multiset is const)
pointing to the location at which the value is found. If the value is not
found, find returns an iterator or a const_iterator equal to the value
returned by calling end on the container. Line 31 demonstrates this
case.

Inserting Elements of Another Container
into a multiset
Line 37 uses function insert to insert the elements of the vector
named a into the multiset . In line 40, the copy algorithm copies the
elements of the multiset to the standard output in ascending order.

multiset Member Functions
lower_bound and upper_bound
Lines 44 and 45 use functions lower_bound and upper_bound (available
in all associative containers) to locate the earliest occurrence of the
value 22 in the multiset and the element after the last occurrence of
the value 22 in the multiset . Both functions return iterators or
const_iterators pointing to the appropriate location or the iterator
returned by end if the value is not in the multiset .

pair Objects and multiset Member
Function equal_range
Line 49 creates and intializes a pair object called p . Once again, we
use C++11’s auto keyword to infer the variable’s type from its
initializer—in this case, the return value of multiset member function
equal_range , which is a pair object. Such objects associate pairs of

values. The contents of p will be two const_iterators for our multiset
of ints. The multiset function equal_range returns a pair containing
the results of calling both lower_bound and upper_bound . Type pair
contains two public data members called first and second . Line 49
uses function equal_range to determine the lower_bound and
upper_bound of 22 in the multiset . Line 52 uses p.first and p.second
to access the lower_bound and upper_bound . We dereferenced the
iterators to output the values at the locations returned from
equal_range . Though we did not do so here, you should always ensure
that the iterators returned by lower_bound , upper_bound and
equal_range are not equal to the container’s end iterator before

dereferencing the iterators.

C++11: Variadic Class Template tuple
C++ also includes class template tuple , which is similar to pair , but
can hold any number of items of various types. As of C++11, class
template tuple is implemented using variadic templates—templates
that can receive a variable number of arguments. We discuss tuple
and variadic templates in Chapter 24, C++11 and C++14 Additional
Features.

C++14: Heterogeneous Lookup
Prior to C++14, when searching for a key in an associative container,
the argument provided to a search function like find was required to

have the container’s key type. For example, if the key type were
string , you could pass find a pointer-based string to locate in the
container. In this case, the argument would be converted into a
temporary object of the key type (string), then passed to find . As of
C++14, the argument to find (and other similar functions) can be of
any type, provided that there are overloaded comparison operators
that can compare values of the argument’s type to values of the
container’s key type. If there are, no temporary objects will be created.
This is known as heterogeneous lookup.

14

15.6.2 set Associative Container

The set associative container (from header <set>) is used for fast
storage and retrieval of unique keys. The implementation of a set is
identical to that of a multiset , except that a set must have unique
keys. Therefore, if an attempt is made to insert a duplicate key into a
set , the duplicate is ignored—this is the intended mathematical
behavior of a set, so it’s not considered an error. A set supports
bidirectional iterators (but not random-access iterators). If the order of
the keys is not important, you can use unordered_set (header
<unordered_set>) instead. Figure 15.16 demonstrates a set of
doubles.

Fig. 15.16 Standard Library set class template.

Line 12 creates a set of doubles ordered in ascending order, using
the function object less<double> . The constructor call takes all the

elements in vector a and inserts them into the set . Line 16 uses
algorithm copy to output the contents of the set . Notice that the value
2.1—which appeared twice in the vector a—appears only once in
doubleSet , because container set does not allow duplicates.

Line 21 defines and initializes a pair to store the result of a call to set
function insert . The pair returned consists of a const_iterator
pointing to the item in the set inserted and a bool value indicating
whether the item was inserted— true if the item was not in the set ;
false if it was.

Line 21 uses function insert to place the value 13.8 in the set . The
returned pair , p , contains an iterator p.first pointing to the value
13.8 in the set and a bool value that’s true because the value was
inserted. Line 28 attempts to insert 9.5 , which is already in the set.
The output shows that 9.5 was not inserted again because sets don’t
allow duplicate keys. In this case, p.first in the returned pair points
to the existing 9.5 in the set .

15.6.3 multimap Associative
Container

The multimap associative container is used for fast storage and
retrieval of keys and associated values (often called key–value pairs).
Many of the functions used with multisets and sets are also used
with multimaps and maps. The elements of multimaps and maps are
pairs of keys and values instead of individual values. When inserting
into a multimap or map , a pair object that contains the key and the
value is used. The ordering of the keys is determined by a comparator
function object. For example, in a multimap that uses integers as the
key type, keys can be sorted in ascending order by ordering them with
comparator function object less<int> . Duplicate keys are allowed in a
multimap , so multiple values can be associated with a single key. This
is called a one-to-many relationship. For example, in a credit-card
transaction-processing system, one credit-card account can have
many associated transactions; in a university, one student can take
many courses, and one professor can teach many students; in the
military, one rank (like “private”) has many people. A multimap
supports bidirectional iterators, but not random-access iterators.

Figure 15.17 demonstrates the multimap associative container.
Header <map> must be included to use class multimap . If the order of

the keys is not important, you can use unordered_multimap (header
<unordered_map>) instead.

 Performance Tip 15.11
A multimap is implemented to efficiently locate all values paired with a

given key.

Fig. 15.17 Standard Library multimap class template.

Line 8 creates a multimap in which the key type is int , the type of a
key’s associated value is double and the elements are ordered in
ascending order—the template argument less<int> is the default
ordering it’s not required in the multimap declaration. Line 10 uses
function count to determine the number of key–value pairs with a key
of 15 (none yet, since the container is currently empty).

Line 14 uses function insert to add a new key–value pair to the
multimap . The Standard Library function make_pair creates a key–
value pair object—in this case first represents a key (15) of type
int and second represents a value (99.3) of type double . Function
make_pair automatically uses the types that you specified for the keys
and values in the multimap ’s declaration (line 8). Line 15 inserts
another pair object with the key 15 and the value 2.7 . Then lines 17–
18 output the number of pairs with key 15 . As of C++11, you can use
list initalization for pair objects, so line 15 can be simplified as

11

pairs.insert({15, 2.7};

Similarly, you can use C++11 list initialization to initialize an object
being returned from a function. For example, the following returns a

pair containing an int and a double

11

return {15, 2.7};

Lines 21–25 insert five additional pairs into the multimap . The range-
based for statement in lines 30–32 outputs the contents of the
multimap , including both keys and values. We infer the type of the
loop’s control variable (a pair containing an int key and a double
value) with keyword auto . Line 31 accesses the members of the
current pair in each element of the multimap . Notice in the output that
the keys appear in ascending order.

C++11: List Initializing a Key–Value Pair
Container
In this example, we used separate calls to member function insert to
place key–value pairs in a multimap . If you know the key–value pairs
in advance, you can use list initialization when you create the
multimap . For example, the following statement initializes a multimap
with three key–value pairs that are represented by the sublists in the
main intializer list:

multimap<int, double, less<int>> pairs{

 {10, 22.22}, {20, 9.345}, {5, 77.54}};

15.6.4 map Associative Container

The map associative container (from header <map>) performs fast
storage and retrieval of unique keys and associated values. Duplicate
keys are not allowed—a single value can be associated with each key.
This is called a one-to-one mapping. For example, a company that
uses unique employee numbers, such as 100, 200 and 300, might
have a map that associates employee numbers with their telephone
extensions—4321, 4115 and 5217, respectively. With a map you
specify the key and get back the associated data quickly. Providing
the key in a map ’s subscript operator [] locates the value associated
with that key in the map . Insertions and deletions can be made
anywhere in a map . If the order of the keys is not important, you can
use unordered_map (header <unordered_map>) instead.

Figure 15.18 demonstrates a map (created at line 8) and uses the
same features as Fig. 15.17 to demonstrate the subscript operator.
Lines 27–28 use the subscript operator of class map . When the
subscript is a key that’s already in the map (line 27), the operator
returns a reference to the associated value. When the subscript is a
key that’s not in the map (line 28), the operator inserts the key in the
map and returns a reference that can be used to associate a value with
that key. Line 27 replaces the value for the key 25 (previously 33.333
as specified in line 15) with a new value, 9999.99 . Line 28 inserts a

new key–value pair in the map (called creating an association).
Note this example’s map , could have been initialized with an initializer
list of pairs, as we showed for a multimap in Section 15.6.3.

Fig. 15.18 Standard Library map class template.

15.7 Container Adapters
The three container adapters are stack , queue and priority_queue .
Container adapters are not first-class containers, because they do not
provide the actual data-structure implementation in which elements
can be stored and because adapters do not support iterators. The
benefit of an adapter class is that you can choose an appropriate
underlying data structure. All three adapter classes provide member
functions push and pop that properly insert an element into each
adapter data structure and properly remove an element from each
adapter data structure, respectively. The next several subsections
provide examples of the adapter classes.

15.7.1 stack Adapter

Class stack (from header <stack>) enables insertions into and
deletions from the underlying container at one end called the top, so a
stack is commonly referred to as a last-in, first-out data structure. We
introduced stacks in our discussion of the function-call stack in
Section 6.11. A stack can be implemented with a vector , list or
deque . This example creates three integer stacks, using vector , list
and deque as the underlying data structure to represent the stack . By
default, a stack is implemented with a deque . The stack operations
are push to insert an element at the top of the stack (implemented by
calling function push_back of the underlying container), pop to remove
the top element of the stack (implemented by calling function
pop_back of the underlying container), top to get a reference to the top
element of the stack (implemented by calling function back of the
underlying container), empty to determine whether the stack is empty
(implemented by calling function empty of the underlying container)
and size to get the number of elements in the stack (implemented by
calling function size of the underlying container). In Chapter 19, we’ll
show you how to develop your own custom stack class template.

Figure 15.19 demonstrates the stack adapter class. Lines 17, 20 and
23 instantiate three integer stacks. Line 17 specifies a stack of

integers that uses the default deque container as its underlying data
structure. Line 20 specifies a stack of integers that uses a vector of
integers as its underlying data structure. Line 23 specifies a stack of
integers that uses a list of integers as its underlying data structure.

Fig. 15.19 Standard Library stack adapter class.

Function pushElements (lines 45–50) pushes the elements onto each
stack . Line 47 uses function push (available in each adapter class) to
place an integer on top of the stack . Line 48 uses stack function top
to retrieve the top element of the stack for output. Function top does

not remove the top element.

Function popElements (lines 53–58) pops the elements off each stack .
Line 55 uses stack function top to retrieve the top element of the
stack for output. Line 56 uses function pop (available in each adapter

class) to remove the top element of the stack . Function pop does not

return a value.

15.7.2 queue Adapter

A queue is similar to a waiting line. The item that has been in the
queue the longest is the next one removed—so a queue is referred to
as a first-in, first-out (FIFO) data structure. Class queue (from header
<queue>) enables insertions only at the back of the underlying data
structure and deletions only from the front. A queue can store its
elements in objects of the Standard Library’s list or deque
containers. By default, a queue is implemented with a deque . The
common queue operations are push to insert an element at the back of
the queue (implemented by calling function push_back of the underlying
container), pop to remove the element at the front of the queue
(implemented by calling function pop_front of the underlying
container), front to get a reference to the first element in the queue
(implemented by calling function front of the underlying container),
back to get a reference to the last element in the queue (implemented
by calling function back of the underlying container), empty to
determine whether the queue is empty (this calls empty on underlying
container) and size to get the number of elements in the queue (this
calls size on the underlying container). In Chapter 19, we’ll show you
how to develop your own custom queue class template.

Figure 15.20 demonstrates the queue adapter class. Line 8
instantiates a queue of doubles. Lines 11–13 use function push to add
elements to the queue . The while statement in lines 18–21 uses
function empty (available in all containers) to determine whether the
queue is empty (line 18). While there are more elements in the queue ,
line 19 uses queue function front to read (but not remove) the first
element in the queue for output. Line 20 removes the first element in
the queue with function pop (available in all adapter classes).

Fig. 15.20 Standard Library queue adapter class template.

15.7.3 priority_queue Adapter

Class priority_queue (from header <queue>) provides functionality that
enables insertions in sorted order into the underlying data structure
and deletions from the front of the underlying data structure. By
default, a priority_queue ’s elements are stored in a vector . When
elements are added to a priority_queue , they’re inserted in priority

order, such that the highest-priority element (i.e., the largest value) will
be the first element removed from the priority_queue . This is usually
accomplished by arranging the elements in a data structure called a
heap (not to be confused with the heap for dynamically allocated
memory) that always maintains the largest value (i.e., highest-priority
element) at the front of the data structure. The comparison of
elements is performed with comparator function object less<T> by
default, but you can supply a different comparator.

There are several common priority_queue operations. Function push
inserts an element at the appropriate location based on priority order
of the priority_queue , which then reorders the elements in priority
order. Function pop removes the highest-priority element of the
priority_queue . top gets a reference to the top element of the
priority_queue (implemented by calling function front of the
underlying container). empty determines whether the priority_queue is
empty (implemented by calling function empty of the underlying

container). size gets the number of elements in the priority_queue
(implemented by calling function size of the underlying container).

Figure 15.21 demonstrates the priority_queue adapter class. Line 8
instantiates a priority_queue that stores double values and uses a
vector as the underlying data structure. Lines 11–13 use function
push to add elements to the priority_queue . The while statement in
lines 18–21 uses function empty (available in all containers) to
determine whether the priority_queue is empty (line 18). While there
are more elements, line 19 uses priority_queue function top to
retrieve the highest-priority element (i.e., the largest value) in the
priority_queue for output. Line 20 removes the highest-priority

element in the priority_queue with function pop (available in all
adapter classes).

Fig. 15.21 Standard Library priority_queue adapter class.

15.8 Class bitset
Class bitset makes it easy to create and manipulate bit sets, which
are useful for representing a set of bit flags. bitsets are fixed in size
at compile time. Class bitset is an alternate tool for bit manipulation,
discussed in Chapter 22.

The declaration

bitset<size> b;

creates bitset b , in which every one of the size bits is initially 0
(“off”).

The statement

b.set(bitNumber);

sets bit bitNumber of bitset b “on.” The expression b.set() sets all
bits in b “on.”

The statement

b.reset(bitNumber);

sets bit bitNumber of bitset b “off.” The expression b.reset() sets all
bits in b “off.”

The statement

b.flip(bitNumber);

“flips” bit bitNumber of bitset b (e.g., if the bit is “on”, flip sets it
“off”). The expression b.flip() flips all bits in b .

The statement

b[bitNumber];

returns a reference to the bool at position bitNumber of bitset b .
Similarly,

b.at(bitNumber);

performs range checking on bitNumber first. Then, if bitNumber is in
range (based on the number of bits in the bitset), at returns a
reference to the bit. Otherwise, at throws an out_of_range exception.

The statement

b.test(bitNumber);

performs range checking on bitNumber first. If bitNumber is in range
(based on the number of bits in the bitset), test returns true if the
bit is on, false it’s off. Otherwise, test throws an out_of_range
exception.

The expression

b.size()

returns the number of bits in bitset b .

The expression

b.count()

returns the number of bits that are set (true) in bitset b .

The expression

b.any()

returns true if any bit is set in bitset b .

The expression

b.all()

11

(added in C++11) returns true if all of the bits are set (true) in bitset
b .

The expression

b.none()

returns true if none of the bits is set in bitset b (that is, all the bits
are false).

The expressions

b == b1

b != b1

compare the two bitsets for equality and inequality, respectively.

Each of the bitwise assignment operators &= , |= and ^= (discussed in
detail in Section 22.5) can be used to combine bitsets. For example,

b &= b1;

performs a bit-by-bit logical AND between bitsets b and b1 . The
result is stored in b . Bitwise logical OR and bitwise logical XOR are

performed by

b |= b1;

b ^= b2;

The expression

b >>= n;

shifts the bits in bitset b right by n positions.

The expression

b <<= n;

shifts the bits in bitset b left by n positions.

The expressions

b.to_string()

b.to_ulong()

convert bitset b to a string and an unsigned long , respectively.

15.9 Wrap-Up
In this chapter, we introduced three key components of the Standard
Library—containers, iterators and algorithms. You learned about the
linear sequence containers, array (Chapter 7), vector , deque ,
forward_list and list , which all represent linear data structures. We
discussed the nonlinear associative containers, set , multiset , map
and multimap and their unordered versions. You also saw that the
container adapters stack , queue and priority_queue can be used to
restrict the operations of the sequence containers vector , deque and
list for the purpose of implementing the specialized data structures
represented by the container adapters. You learned the categories of
iterators and that each algorithm can be used with any container that
supports the minimum iterator functionality the algorithm requires. You
also learned the features of class bitset , which makes it easy to
create and manipulate bit sets as a container.

The next chapter continues our discussion of the Standard Library’s
containers, iterators and algorithms with a detailed treatment of
algorithms. You’ll also learn about function pointers, function objects
and C++11’s lambda expressions.

Summary

Section 15.1 Introduction

The C++ Standard Library defines powerful, template-based,
reusable components for common data structures and defines
algorithms used to process those data structures.
There are three container-class categories—first-class containers,
container adapters and near containers.
Iterators, which have properties similar to those of pointers, are
used to manipulate container elements.
Standard Library algorithms are function templates that perform
such common data manipulations as searching, sorting and
comparing elements or entire containers.
Linked lists are collections of data items logically “lined up in a
row”—insertions and removals are made anywhere in a linked list.
Stacks are important in compilers and operating systems:
Insertions and removals are made only at one end of a stack—its
top.
Queues represent waiting lines; insertions are made at the back
(also referred to as the tail) of a queue and removals are made
from the front (also referred to as the head) of a queue.
Binary trees are nonlinear, hierarchical data structures that
facilitate searching and sorting data, duplicate elimination and
compiling expressions into machine code.

Section 15.2 Introduction to
Containers

Containers are divided into sequence containers, ordered
associative containers, unordered associative containers and
container adapters (p. 658).
The sequence containers (p. 658) represent linear data
structures.
Associative containers are nonlinear containers that quickly
locate elements stored in them, such as sets of values or key–
value pairs (p. 658).
Sequence containers and associative containers are collectively
referred to as first-class containers.
Class templates stack , queue and priority_queue are container
adapters that enable a program to view a sequence container in a
constrained manner.
Near containers (p. 659; built-in arrays, bitsets and valarrays)
exhibit capabilities similar to those of the first-class containers, but
do not support all the first-class-container capabilities.
Most containers provide similar functionality. Many operations
apply to all containers, and other operations apply to subsets of
similar containers.
First-class containers define many common nested types that are
used in template-based declarations of variables, parameters to

functions and return values from functions.

Section 15.3 Introduction to
Iterators

Iterators have many similarities to pointers and are used to point to
first-class container elements.
First-class container function begin (p. 662) returns an iterator
pointing to the first element of a container. Function end (p. 662)
returns an iterator pointer after the container’s last element (one
past the end)—typically used in a loop to indicate when to
terminate processing of the container’s elements.
An istream_iterator (p. 662) is capable of extracting values in a
type-safe manner from an input stream. An ostream_iterator (p.
662) is capable of inserting values in an output stream.
Input and output iterators (p. 664) can move only in the forward
direction one element at a time.
A forward iterator (p. 664) combines the capabilities of input and
output iterators.
A bidirectional iterator (p. 664) has the capabilities of a forward
iterator and can move backward.
A random-access iterator (p. 664) has the capabilities of a
bidirectional iterator and the ability to directly access any element
of the container.

Section 15.4 Introduction to
Algorithms

The Standard Library algorithms operate on container elements
only indirectly through iterators.
Many algorithms operate on sequences of elements defined by
iterators pointing to the first element of the sequence and to one
element past the last element.

Section 15.5 Sequence Containers

The Standard Library provides sequence containers array , vector ,
forward_list , list and deque . Class templates array , vector and
deque are based on built-in arrays. Class templates forward_list
and list implement a linked-list data structure.

Section 15.5.1 vector Sequence
Container

Function capacity (p. 669) returns the number of elements that can
be stored in a vector before the vector dynamically resizes itself to
accommodate more elements.
Sequence container function push_back (p. 670) adds an element
to the end of a container.
vector member function cbegin (p. 671; C++11) returns a
const_iterator to the vector ’s first element.
vector member function cend (p. 671; C++11) returns a
const_iterator to the location past the last element of the vector .
C++14’s global cbegin and cend functions work the same way as
functions begin and end , but return const iterators that cannot be
used to modify the data.
C++14’s global rbegin , rend , crbegin and crend functions support
iterating through a built-in array or a container from back to front.
Functions rbegin and rend return iterators that can be used to
modify data, and crbegin and crend return const iterators that
cannot be used to modify data.
Functions begin and end and their C++14 const and reverse
versions may also receive container objects as arguments—each

function calls the corresponding member function in its container
argument.
vector member function crbegin (p. 672; C++11) returns a
const_reverse_iterator to the vector ’s last element.
vector member function crend (p. 672; C++11) returns a
const_reverse_iterator to the location before the first element of
the vector .
As of C++11, you can ask a vector or deque to return unneeded
memory to the system by calling member function shrink_to_fit
(p. 672).
As of C++11, you can use list initializers to initialize the elements
of vectors and other containers.
Algorithm copy (p. 674; from header <algorithm>) copies each
element in a range starting with the location specified by its first
iterator argument up to, but not including, the one specified by its
second iterator argument.
Function front (p. 674) returns a reference to the first element in a
sequence container. Function begin returns an iterator pointing to
the beginning of a sequence container.
Function back (p. 674) returns a reference to the last element in a
sequence container (except forward_list). Function end returns
an iterator pointing to the element one past the end of a sequence
container.
Sequence container function insert (p. 675) inserts value(s)
before the element at a specific location and returns an iterator
pointing to the inserted item or the first of the inserted items.

Function erase (p. 675; in all first-class containers except
forward_list) removes specific element(s) from the container.
Function empty (p. 675; in all containers and adapters) returns
true if the container is empty.
Function clear (p. 675; in all first-class containers) empties the
container.

Section 15.5.2 list Sequence
Container

The list sequence container (p. 675; from header <list>)
implements a doubly linked list that provides an efficient
implementation for inserting and deleting anywhere in the
container.
The forward_list sequence container (p. 676; from header
<forward_list>) implements a singly linked list that supports only
forward iterators.
list member function push_front (p. 678) inserts values at the
beginning of a list.
list member function sort (p. 679) arranges the elements in the
list in ascending order.
list member function splice (p. 679) removes elements in one
list and inserts them into another list at a specific position.
list member function unique (p. 679) removes duplicate elements
in a list .
list member function assign (p. 679) replaces the contents of one
list with those of another.
list member function remove (p. 680) deletes all copies of a
specified value from a list .

Section 15.5.3 deque Sequence
Container

Class template deque (p. 680) provides the same operations as
vector , but adds member functions push_front and pop_front (p.
679) to allow insertion and deletion at the beginning of a deque ,
respectively. Header <deque> must be included to use class
template deque .

Section 15.6 Associative
Containers

The Standard Library’s associative containers provide direct
access to store and retrieve elements via keys (p. 681).
The four ordered associative containers are multiset , set ,
multimap and map . The four unordered associative containers are
unordered_multiset , unordered_set , unordered_multimap and
unordered_map . These are nearly identical to their ordered
counterparts, but do not maintain keys in sorted order.
Class templates multiset and set provide operations for
manipulating sets of values where the values are the keys—there
is not a separate value associated with each key. Header <set>
must be included to use class templates set and multiset .
A multiset allows duplicate keys and a set does not.

Section 15.6.1 multiset
Associative Container

The multiset associative container (p. 682) provides fast storage
and retrieval of keys and allows duplicate keys. The key order is
determined by a comparator function object. If the order of the
keys is not important, you can use unordered_multiset (header
<unordered_set>) instead.
A multiset ’s keys can be sorted in ascending order by ordering the
keys with comparator function object less<T> (p. 682).
The type of the keys in all associative containers must support
comparison properly based on the comparator function object
specified.
A multiset supports bidirectional iterators.
Header <set> (p. 682) must be included to use class multiset .
Function count (p. 684; available to all associative containers)
counts the number of occurrences of the specified value currently
in a container.
Function find (p. 684; available to all associative containers)
locates a specified value in a container.
Associative container functions lower_bound and upper_bound (p.
685) locate the earliest occurrence of the specified value in a

container and the element after the value’s last occurrence,
respectively.
Associative container function equal_range (p. 685) returns a pair
containing the results of both a lower_bound and an upper_bound
operation.
C++ also includes class template tuple , which is similar to pair ,
but can hold any number of items of various types.
As of C++14, the argument to find (and other similar functions)
can be of any type, provided that there are overloaded comparison
operators that can compare values of the argument’s type to
values of the container’s key type.

Section 15.6.2 set Associative
Container

The set associative container is used for fast storage and retrieval
of unique keys. If the order of the keys is not important, you can
use unordered_set (header <unordered_set>) instead.
If an attempt is made to insert a duplicate key into a set , the
duplicate is ignored.
A set supports bidirectional iterators.
Header <set> must be included to use class set.

Section 15.6.3 multimap
Associative Container

Containers multimap and map provide operations for manipulating
key–value pairs. If the order of the keys is not important, you can
use unordered_multimap and unordered_map instead (header
<unordered_map>).
The primary difference between a multimap and a map is that a
multimap allows duplicate keys with associated values to be stored
and a map allows only unique keys with associated values.
The multimap associative container is used for fast storage and
retrieval of key–value pairs.
Duplicate keys are allowed in a multimap , so multiple values can
be associated with a single key. This is called a one-to-many
relationship.
Header <map> (p. 687) must be included to use class templates
map and multimap .
Function make_pair creates a pair using the types specified in the
multimap ’s declaration.
In C++11, if you know the key–value pairs in advance, you can use
list initialization when you create a multimap .

Section 15.6.4 map Associative
Container

Duplicate keys are not allowed in a map , so only a single value can
be associated with each key. This is called a one-to-one mapping
(p. 689). If the order of the keys is not important, you can use
unordered_map (header <unordered_map>) instead.

Section 15.7 Container Adapters

The container adapters are stack , queue and priority_queue .
Adapters are not first-class containers, because they do not
provide the actual data structure implementation in which elements
can be stored and they do not support iterators.
All three adapter class templates provide member functions push
and pop (p. 691) that properly insert an element into and remove
an element from each adapter data structure, respectively.

Section 15.7.1 stack Adapter

Class template stack (p. 691) is a last-in, first-out data structure.
Header <stack> (p. 691) must be included to use class template
stack .
The stack member function top (p. 691) returns a reference to the
top element of the stack (implemented by calling function back of
the underlying container).
The stack member function empty determines whether the stack is
empty (implemented by calling function empty of the underlying
container).
The stack member function size returns the number of elements
in the stack (implemented by calling function size of the
underlying container).

Section 15.7.2 queue Adapter

Class template queue (p. 693) implements a FIFO data structure.
Header <queue> (p. 693) must be included to use a queue or a
priority_queue .
The queue member function front (p. 693) returns a reference to
the first element in the queue .
The queue member function back (p. 693) returns a reference to
the last element in the queue .
The queue member function empty determines whether the queue is
empty.
The queue member function size returns the number of elements
in the queue .

Section 15.7.3 priority_queue
Adapter

Class template priority_queue provides functionality that enables
insertions in sorted order into the underlying data structure and
deletions from the front of the underlying data structure.
The common priority_queue (p. 694) operations are push , pop ,
top , empty and size .

Section 15.8 Class bitset

Class template bitset (p. 695) makes it easy to create and
manipulate bit sets, which are useful for representing a set of bit
flags.

Self-Review Exercises
1. 15.1 State whether each of the following is true or false. If false,

explain why.
A. Pointer-based code is complex and error prone—the

slightest omissions or oversights can lead to serious
memory-access violations and memory-leak errors that
the compiler will warn you about.

B. deques offer rapid insertions and deletions at front or
back and direct access to any element.

C. lists are singly linked lists and offer rapid insertion and
deletion anywhere.

D. multimaps offer one-to-many mapping with duplicates
allowed and rapid key-based lookup.

E. Associative containers are nonlinear data structures that
typically can locate elements stored in the containers
quickly.

F. The container member function cbegin returns an
iterator that refers to the container’s first element.

G. The ++ operation on an iterator moves it to the
container’s next element.

H. The * (dereferencing) operator when applied to a const
iterator returns a const reference to the container
element, allowing the use of non- const member
functions.

I. Using iterators where appropriate is another example
of the principle of least privilege.

J. Many algorithms operate on sequences of elements
defined by iterators pointing to the first element of the
sequence and to the last element.

K. Function capacity returns the number of elements that
can be stored in the vector before the vector needs to
dynamically resize itself to accommodate more
elements.

L. One of the most common uses of a deque is to maintain
a first-in, first-out queue of elements. In fact, a deque is
the default underlying implementation for the queue
adaptor.

M. push_front is available only for class list .
N. Insertions and deletions can be made only at the front

and back of a map .
O. Class queue enables insertions at the front of the

underlying data structure and deletions from the back
(commonly referred to as a first-in, first-out data
structure).

2. 15.2 Fill in the blanks in each of the following statements:
A. The three key components of the “STL” portion of the

Standard Library are , and .
B. Built-in arrays can be manipulated by Standard Library

algorithms, using as iterators.
C. The Standard Library container adapter most closely

associated with the last-in, first-out (LIFO) insertion-and-

removal discipline is the .
D. The sequence containers and containers are

collectively referred to as the first-class containers.
E. A(n) constructor initializes the container to be a

copy of an existing container of the same type.
F. The container member function returns true if

there are no elements in the container; otherwise, it
returns false .

G. The container member function (C++11) moves
the elements of one container into another—this avoids
the overhead of copying each element of the argument
container.

H. The container member function is overloaded to
return either an iterator or a const_iterator that refers
to the first element of the container.

I. Operations performed on a const_iterator return
 to prevent modification to elements of the
container being manipulated.

J. The sequence containers are array , vector , deque ,
 and .

K. Choose the container for the best random-
access performance in a container that can grow.

L. Function push_back , which is available in sequence
containers other than , adds an element to the
end of the container.

M. As with cbegin and cend , C++11 includes vector
member function crbegin and crend which return

 that represent the starting and ending points
when iterating through a container in reverse.

N. A unary function takes a single argument,
performs a comparison using that argument and returns
a bool value indicating the result.

O. The primary difference between the ordered and
unordered associative containers is .

P. The primary difference between a multimap and a map is
 .

Q. C++11 introduces class template tuple , which is similar
to pair , but can .

R. The map associative container performs fast storage and
retrieval of unique keys and associated values. Duplicate
keys are not allowed—a single value can be associated
with each key. This is called a(n) mapping.

S. Class provides functionality that enables
insertions in sorted order into the underlying data
structure and deletions from the front of the underlying
data structure.

3. 15.3 Write a statement or expression that performs each of the
following bitset tasks:

A. Write a declaration that creates bitset flags of size
size , in which every bit is initially 0 .

B. Write a statement that sets bit bitNumber of bitset flags
“off.”

C. Write a statement that returns a reference to the bit
bitNumber of bitset flags .

D. Write an expression that returns the number of bits that
are set in bitset flags .

E. Write an expression that returns true if all of the bits are
set in bitset flags .

F. Write an expression that compares bitsets flags and
otherFlags for inequality.

G. Write an expression that shifts the bits in bitset flags
left by n positions.

Exercises
1. 15.4 State whether each of the following is true or false. If false,

explain why.
A. Many of the Standard Library algorithms can be applied

to various containers independently of the underlying
container implementation.

B. arrays are fixed in size and offer direct access to any
element.

C. forward_lists are singly linked lists, that offer rapid
insertion and deletion only at the front and the back.

D. sets offer rapid lookup and duplicates are allowed.
E. In a priority_queue , the lowest-priority element is always

the first element out.
F. The sequence containers represent non-linear data

structures.
G. As of C++11, there is now a non-member function

version of swap that swaps the contents of its two
arguments (which must be of different container types)
using move operations rather than copy operations.

H. Container member function erase removes all elements
from the container.

I. An object of type iterator refers to a container element
that can be modified.

J. We use const versions of the iterators for traversing
read-only containers.

K. For input iterators and output iterators, it’s common to
save the iterator, then use the saved value later.

L. Class templates array , vector and deque are based on
built-in arrays.

M. Attempting to dereference an iterator positioned outside
its container is a compilation error. In particular, the
iterator returned by end should not be dereferenced or
incremented.

N. Insertions and deletions in the middle of a deque are
optimized to minimize the number of elements copied,
so it’s more efficient than a vector but less efficient than
a list for this kind of modification.

O. Container set does not allow duplicates.
P. Class stack (from header <stack>) enables insertions

into and deletions from the underlying data structure at
one end (commonly referred to as a last-in, first-out data
structure).

Q. Function empty is available in all containers except the
deque .

2. 15.5 Fill in the blanks in each of the following statements:
A. The three styles of container classes are first-class

containers, and near containers.
B. Containers are divided into four major categories—

sequence containers, ordered associative containers,

 and container adapters.
C. The Standard Library container adapter most closely

associated with the first-in, first-out (FIFO) insertion-and-
removal discipline is the .

D. Built-in arrays, bitsets and valarrays are all
containers.

E. A(n) constructor (C++11) moves the contents of
an existing container of the same type into a new
container, without the overhead of copying each element
of the argument container.

F. The container member function returns the
number of elements currently in the container.

G. The container member function returns true if
the contents of the first container are not equal to the
contents of the second; otherwise, returns false .

H. We use iterators with sequences—these can be input
sequences or output sequences, or they can be
 .

I. The Standard Library algorithms operate on container
elements indirectly via .

J. Applications with frequent insertions and deletions in the
middle and/or at the extremes of a container normally
use a(n) .

K. Function is available in every first-class
container (except forward_list) and it returns the
number of elements currently stored in the container.

L. It can be wasteful to double a vector ’s size when more
space is needed. For example, a full vector of 1,000,000

elements resizes to accommodate 2,000,000 elements
when a new element is added, leaving 999,999 unused
elements. You can use and to control
space usage better.

M. As of C++11, you can ask a vector or deque to return
unneeded memory to the system by calling member
function .

N. The associative containers provide direct access to store
and retrieve elements via keys (often called search
keys). The ordered associative containers are multiset ,
set , and .

O. Classes and provide operations for
manipulating sets of values where the values are the
keys—there is not a separate value associated with
each key.

P. We use C++11’s auto keyword to .
Q. A multimap is implemented to efficiently locate all values

paired with a given .
R. The Standard Library container adapters are stack ,

queue and .

Discussion Questions

1. 15.6 Why is it expensive to insert (or delete) an element in the
middle of a vector?

2. 15.7 Containers that support random-access iterators can be
used with most but not all Standard Library algorithms. What is
the exception?

3. 15.8 Why would you use operator * to dereference an iterator?
4. 15.9 Why is insertion at the back of a vector efficient?
5. 15.10 When would you use a deque in preference to a vector?
6. 15.11 Describe what happens when you insert an element in a

vector whose memory is exhausted.
7. 15.12 When would you prefer a list to a deque?
8. 15.13 What happens when the map subscript is a key that’s not

in the map?
9. 15.14 Use C++11 list initializers to initialize the vector names

with the strings "Suzanne" , "James" , "Maria" and "Juan" .
Show both common syntaxes.

10. 15.15 What happens when you erase a container element that
contains a pointer to a dynamically allocated object?

11. 15.16 Describe the multiset ordered associative container.
12. 15.17 How might a multimap ordered associative container be

used in a credit-card transaction processing system?
13. 15.18 Write a statement that creates and initializes a multimap

of strings and ints with three key–value pairs.
14. 15.19 Explain the push , pop and top operations of a stack .
15. 15.20 Explain the push , pop , front and back operations of a

queue .
16. 15.21 How does inserting an item in a priority_queue differ

from inserting an item in virtually any other container?

Programming Exercises

1. 15.22 (Palindromes) Write a function template palindrome that
takes a vector parameter and returns true or false according
to whether the vector does or does not read the same forward
as backward (e.g., a vector containing 1, 2, 3, 2, 1 is a
palindrome, but a vector containing 1, 2, 3, 4 is not).

2. 15.23 (Sieve of Eratosthenes with bitset) This exercise
revisits the Sieve of Eratosthenes for finding prime numbers
that we discussed in Exercise 7.27. Use a bitset to implement
the algorithm. Your program should display all the prime
numbers from 2 to 1023, then allow the user to enter a number
to determine whether that number is prime.

3. 15.24 (Sieve of Eratosthenes) Modify Exercise 15.23, the
Sieve of Eratosthenes, so that, if the number the user inputs
into the program is not prime, the program displays the prime
factors of the number. Remember that a prime number’s factors
are only 1 and the prime number itself. Every nonprime number
has a unique prime factorization. For example, the factors of 54
are 2, 3, 3 and 3. When these values are multiplied together,
the result is 54. For the number 54, the prime factors output
should be 2 and 3.

4. 15.25 (Prime Factors) Modify Exercise 15.24 so that, if the
number the user inputs into the program is not prime, the
program displays the prime factors of the number and the
number of times each prime factor appears in the unique prime

factorization. For example, the output for the number 54 should
be

The unique prime factorization of 54 is: 2 * 3 * 3 * 3

Recommended Reading
Gottschling, P. Discovering Modern C++: An Intensive Course for
Scientists, Engineers, and Programmers (C++ In-Depth). Boston:
Addison-Wesley Professional, 2016.
Horton, I. Using the C++ Standard Template Libraries. New York:
Springer Science + Business Media, 2015.
Josuttis, N. The C++ Standard Library: A Tutorial and Reference
(Second edition). Boston: Addison-Wesley Professional, 2012.
Karlsson, B. Beyond the C++ Standard Library: An Introduction to
Boost. Boston: Addison-Wesley Professional, 2005.
Lippman, S., J. Lajoie, and B. Moo. C++ Primer (Fifth Edition).
Boston: Addison-Wesley Professional, 2012.
Meyers, S. Effective Modern C++: 42 Specific Ways to Improve
Your Use of C++11 and C++14. Sebastopol: O’Reilly, 2015.
Stroustrup, B. “C++11—the New ISO C++ Standard”
<www.stroustrup.com/C++11FAQ.html> . [Note: Stroustrup’s FAQ has
been merged with Marshall Cline’s to form the C++ FAQ at https:/
/isocpp.org/faq .]
Stroustrup, B. The C++ Programming Language, Fourth Edition.
Boston: Addison-Wesley Professional, 2013.
Wilson, M. Extended STL, Volume 1: Collections and Iterators.
Boston: Addison-Wesley, 2007.

http://www.stroustrup.com/C++11FAQ.html
http://isocpp.org/faq

Answers to Self-Review Exercises
1. 15.1

A. False. The compiler does not warn about these kinds of
execution-time errors.

B. True.
C. False. They are doubly linked lists.
D. True.
E. True.
F. False. It returns a const_iterator .
G. True.
H. False. Disallowing the use of non- const member

functions.
I. False. Using const_iterators where appropriate is

another example of the principle of least privilege.
J. False. Many algorithms operate on sequences of

elements defined by iterators pointing to the first element
of the sequence and to one element past the last
element.

K. True.
L. True.

M. False. It’s also available for class deque .
N. False. Insertions and deletions can be made anywhere

in a map .

O. False. Insertions may occur only at the back and
deletions may occur only at the front.

2. 15.2
A. containers, iterators and algorithms.
B. pointers.
C. stack .
D. associative.
E. copy.
F. empty .
G. move version of operator= .
H. begin.

I. const references.
J. list and forward_list .
K. vector .
L. array .

M. const_reverse_iterators.
N. predicate.
O. the unordered ones do not maintain their keys in sorted

order.
P. a multimap allows duplicate keys with associated values

to be stored and a map allows only unique keys with
associated values.

Q. hold any number of items of various types.
R. one-to-one.
S. priority_queue .

3. 15.3
A. bitset<size> flags;

B. flags.reset(bitNumber);

C. flags[bitNumber];

D. flags.count()

E. flags.all()

F. flags != otherFlags

G. flags <<= n;

16 Standard Library Algorithms

Objectives
In this chapter you’ll:

Understand minimum iterator requirements for working with
Standard Library algorithms and containers.
Create anonymous functions using lambda expressions.
Capture local variables for use in lambda expressions.
Use containers and iterators with many of the dozens of Standard
Library algorithms.
Use iterators with algorithms to access and manipulate the
elements of Standard Library containers.
Pass lambda expressions, function pointers and function objects
into Standard Library algorithms to help them perform their tasks.

Outline
1. 16.1 Introduction
2. 16.2 Minimum Iterator Requirements
3. 16.3 Lambda Expressions

A. 16.3.1 Algorithm for_each
B. 16.3.2 Lambda with an Empty Introducer
C. 16.3.3 Lambda with a Nonempty Introducer—

Capturing Local Variables
D. 16.3.4 Lambda Return Types

4. 16.4 Algorithms
A. 16.4.1 fill, fill_n , generate and generate_n
B. 16.4.2 equal, mismatch and lexicographical_compare
C. 16.4.3 remove, remove_if , remove_copy and

remove_copy_if

D. 16.4.4 replace , replace_if , replace_copy and
replace_copy_if

E. 16.4.5 Mathematical Algorithms
F. 16.4.6 Basic Searching and Sorting Algorithms
G. 16.4.7 swap, iter_swap and swap_ranges
H. 16.4.8 copy_backward , merge , unique and reverse
I. 16.4.9 inplace_merge , unique_copy and reverse_copy
J. 16.4.10 Set Operations
K. 16.4.11 lower_bound , upper_bound and equal_range

L. 16.4.12 min , max , minmax and minmax_element

5. 16.5 Function Objects
6. 16.6 Standard Library Algorithm Summary
7. 16.7 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

16.1 Introduction
This chapter discusses the Standard Library’s algorithms, focusing on
common container manipulations such as searching, sorting and
comparing elements or entire containers. The Standard Library
provides over 90 algorithms—many were added in C++11 and some
are new in C++14. For the complete list, see

11

14

http://en.cppreference.com/w/cpp/algorithm

http://en.cppreference.com/w/cpp/numeric

As you’ll see, various algorithms can receive a function pointer as an
argument—recall that a function’s name is implictly convertible to a
pointer to that function’s code. Such algorithms use the pointer to call
the function, typically with one or two container elements as
arguments. For most of the examples in this chapter, rather than
function pointers we’ll use lambda expressions—C++11’s convenient
shorthand notation for creating anonymous functions (that is, functions
that do not have names). Later in the chapter we’ll present the
concept of a function object, which is similar to a lambda or a function

http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/numeric

pointer but is implemented as an object of a class that has an
overloaded function-call operator (operator()). This allows the object’s
name to be used like a function name.

16.2 Minimum Iterator
Requirements
With few exceptions, the Standard Library separates algorithms from
containers. This makes it much easier to add new algorithms and to
use them with multiple containers. An important part of every
container is the type of iterator it supports (Fig. 15.7). This determines
which algorithms can be applied to the container. For example, both
vectors and arrays support random-access iterators that provide all

of the iterator operations shown in Fig. 15.9. All Standard Library
algorithms can operate on vectors and those that do not modify a
container’s size can also operate on arrays. Each Standard Library
algorithm that takes iterator arguments requires those iterators to
provide a minimum level of functionality. If an algorithm requires a
forward iterator, for example, that algorithm can operate on any
container that supports forward iterators, bidirectional iterators or
random-access iterators.

 Software Engineering
Observation 16.1

Standard Library algorithms do not depend on the implementation
details of the containers on which they operate. As long as a
container’s (or built-in array’s) iterators satisfy the requirements of an
algorithm, the algorithm can work on the container.

 Software Engineering
Observation 16.2

The Standard Library containers are implemented concisely. The
algorithms are separated from the containers and operate on
elements of the containers only indirectly through iterators. This
separation makes it easier to write generic algorithms applicable to a
variety of container classes.

 Software Engineering
Observation 16.3

Using the “weakest iterator” that yields acceptable performance helps
produce maximally reusable components. For example, if an algorithm
requires only forward iterators, it can be used with any container that
supports forward iterators, bidirectional iterators or random-access

iterators. However, an algorithm that requires random-access iterators
can be used only with containers that have random-access iterators.

Iterator Invalidation

Iterators simply point to container elements, so it’s possible for
iterators to become invalid when certain container modifications occur.
For example, if you invoke clear on a vector , all of its elements are
destroyed. Any iterators that pointed to that vector ’s elements before
clear was called would now be invalid. Section 23 of the C++
standard discusses all the cases in which iterators (and pointers and
references) are invalidated for each Standard Library container. Here
we summarize when iterators are invalidated during insert and erase
operations.

When inserting into

a vector—If the vector is reallocated, all iterators pointing to it are
invalidated. Otherwise, iterators from the insertion point to the end
of the vector are invalidated.
a deque—All iterators are invalidated.
a list or forward_list—All iterators remain valid.
an ordered associative container—All iterators remain valid.
an unordered associative container—All iterators are invalidated if
the container needs to be reallocated.

When erasing from a container, iterators to the erased elements are
invalidated. In addition:

for a vector—Iterators from the erased element to the end of the
vector are invalidated.
for a deque—If an element in the middle of the deque is erased, all
iterators are invalidated.

16.3 Lambda Expressions
As you’ll see in this chapter, many Standard Library algorithms can
receive function pointers as parameters—recall from Section 12.8
that the name of a function is implicitly convertible into a pointer to that
function’s code. Before you can pass a function pointer to an
algorithm, the corresponding function must be declared.

11

C++11’s lambda expressions (or simply lambdas) enable you to
define anonymous functions where they’re passed to a function.
They’re defined locally inside functions and can use and manipulate
the local variables of the enclosing function. Figure 16.1
demonstrates the Standard Library’s for_each algorithm, which
invokes a function once for each element in a range. The example
calls for_each twice, each with a simple lambda:

the first is used to display each element in an int array multiplied
by 2.
the second is used to sum the elements of the int array .

Fig. 16.1 Lambda expressions.

16.3.1 Algorithm for_each

Lines 19–20 and 24 use the for_each algorithm to call a function that
performs a task once for each element of the array values . Like the
algorithm copy (introduced in Section 15.3), for_each ’s first two
arguments represent the range of elements to process. This program
processes from values.cbegin() (the position of the array ’s first
element) up to, but not including, values.cend() (the position one past

the array ’s last element), so all of the array ’s elements are
processed. The for_each algorithm’s two iterator arguments must be
at least input iterators that point into the same container, so for_each

can get values from that container.

The function specified by for_each ’s third argument specifies the
function to call with each element in the range. The function must
have one parameter of the container’s element type. for_each passes
the current element’s value as the function’s argument, then the
function performs a task using that value. As you’ll see momentarily,
this example’s for_each calls each receive as their third argument a
lambda representing a function that receives one argument and
performs a task with that argument’s value. If the function’s parameter
is a non- const reference and the iterators passed to for_each refer to
non- const data, the function can modify the element.

16.3.2 Lambda with an Empty
Introducer

Line 11 declares and initializes the array of ints named values and
line 15 displays its contents. Lines 19–20 call the for_each algorithm
to multiply each element of values by 2 and display the result. The
third argument (line 20) to for_each

[](auto i) {cout << i * 2 << " ";}

is a lambda expression that performs the multiplication and output.

Lambdas begin with the lambda introducer ([]), followed by a
parameter list and function body. A lambda can use local variables
from the function in which the lambda is defined. The introducer
enables you to specify which, if any, local variables the lambda uses—
this is known as capturing the variables. The empty lambda
introducer ([]) in line 20 indicates that the lambda does not use any
of main ’s local variables.

The lambda in line 20 receives one parameter named i . Specifying
the parameter’s type as auto enables the compiler to infer the
parameter’s type, based on the context in which the lambda appears.
In this case, the for_each algorithm calls line 20’s lambda once for
each element of the array , passing the element’s value as the
lambda’s argument. Since the array contains ints, the compiler
infers parameter i ’s type as int . Using auto to infer the parameter
type is a new C++14 feature of so-called generic lambdas. In C++11
you were required to state each lambda parameter’s explicit type. In
this example, the lambda in line 20 is similar to the standalone
function

14

void timesTwo(int i) {

 cout << i * 2 << " ";

}

Had we defined this function, lines 19–20 could have called the
for_each algorithm with timesTwo ’s function name as the third
argument, as in

for_each(values.cbegin(), values.cend(), timesTwo);

16.3.3 Lambda with a Nonempty
Introducer—Capturing Local
Variables

The second call to the for_each algorithm (line 24) totals array ’s
elements. The lambda introducer [&sum] in

[&sum](auto i) {sum += i;}

indicates that this lambda expression captures the local variable sum
(line 23) by reference. The ampersand (&) indicates that the lambda
captures sum by reference and can modify its value. Without the
ampersand, sum would be captured by value and the lambda would
not modify the local variable outside the lambda expression. The
for_each algorithm passes each element of values to the lambda,
which adds the value to the sum . Line 26 then displays the sum .

16.3.4 Lambda Return Types

The compiler can infer a lambda’s return type if the body contains a
statement of the form

return expression;

Otherwise, the lambda’s return type is void , unless you explicitly
specify a return type using C++11’s trailing return type syntax (->
type), as in

11

[](parameterList) -> type {lambdaBody}

The trailing return type is placed between the parameter list’s closing
right parenthesis and the lambda’s body.

16.4 Algorithms
Sections 16.4.1–16.4.12 demonstrate many of the Standard Library
algorithms.

16.4.1 fill, fill_n , generate
and generate_n

Figure 16.2 demonstrates algorithms fill , fill_n , generate and
generate_n . Algorithms fill and fill_n set every element in a range
of container elements to a specific value. Algorithms generate and
generate_n use a generator function to create values for every
element in a range of container elements. The generator function
takes no arguments and returns a value that can be placed in an
element of the container. In this example, we’ll define a generator
function as a standalone function and as a lambda, so you can see
the similarities. For the remainder of the chapter, we’ll use lambdas.

Fig. 16.2 Algorithms fill, fill_n, generate and generate_n—we
used bold text to highlight the changes made to chars by each
algorithm.

fill Algorithm
Line 16 defines a 10-element array of char values. Line 17 uses the
fill algorithm to place the character '5' in every element of chars

from chars.begin() up to, but not including, chars.end() . The iterators

supplied as the first and second argument must be at least forward
iterators (i.e., they can be used for both input from a container and
output to a container in the forward direction). Forward iterators are
required here (rather than output iterators) because the iterators must
be compared to determine when the end of the sequence has been
reached.

fill_n Algorithm
Line 24 uses the fill_n algorithm to place the character 'A' in the
first five elements of chars . The iterator supplied as the first argument
must be at least an output iterator (i.e., it can be used to write into a
container in the forward direction). The second argument specifies the
number of elements to fill. The third argument specifies the value to
place in each element.

generate Algorithm
Line 30 uses the generate algorithm to place the result of a call to
generator function nextLetter in every element of chars from
chars.begin() up to, but not including, chars.end() . The iterators
supplied as the first and second arguments must be at least forward
iterators. Function nextLetter (lines 10–13) defines a static local
char variable named letter and initializes it to 'A' . The statement in
line 12 returns the current value of letter then postincrements its
value for use in the next call to the function.

generate_n Algorithm
Line 36 uses the generate_n algorithm to place the result of a call to
generator function nextLetter in five elements of chars , starting from
chars.begin() . The iterator supplied as the first argument must be at
least an output iterator.

Using the generate_n Algorithm with a
Lambda
Lines 44–49 once again use the generate_n algorithm to place the
result of a call to a generator function into elements of chars , starting
from chars.begin() . In this case, the generator function is
implemented as a lambda (lines 45–48) with no arguments—as
specified by the empty parentheses—and returns a generated letter.
For lambdas with no arguments, the parameter lists’ paretheses are
not required. The compiler infers from the return statement that the
lambda’s return type is char .

A Note About Reading Standard Library
Algorithm Documentation
When you look at the Standard Library algorithms documentation for
algorithms that can receive function pointers as arguments, you’ll
notice that the corresponding parameters do not show pointer

declarations. Such parameters can actually receive as arguments
function pointers, function objects (Section 16.5) or lambda
expressions (Section 16.3). For this reason, the Standard Library
declares such parameters using names that represent the parameter’s
purpose.

For example, generate ’s prototype is listed in the C++ standard
document as

template<class ForwardIterator, class Generator>

void generate(ForwardIterator first, ForwardIterator last,

 Generator gen);

indicating that generate expects as arguments ForwardIterators

representing the range of elements to process and a Generator
function . The standard explains that the algorithm calls the Generator
function to obtain a value for each element in the range specified by
the ForwardIterators. The standard also specifies that the Generator
must take no arguments and return a value that can be assigned to
the element type.

Similar documentation is provided for each algorithm that can receive
a function pointer, function object or lambda expression. In most of
this chapter’s examples, as we present each algorithm, we specify the
requirements for such parameters.

16.4.2 equal , mismatch and
lexicographical_compare

Figure 16.3 demonstrates comparing sequences of values for equality
using algorithms equal , mismatch and lexicographical_compare . Lines
11–13 create and initialize three arrays. When invoking an array ’s
copy constructor (line 12), you cannot use braces, as in

array<int, SIZE> a2{a1};

The preceding declaration yields a compilation error, because the
compiler treats the contents in braces as a list of values for the
array ’s elements. In this case, the compiler attempts to initialize the
first int element of a2 with the array object a1—there is no implicit
conversion from an array object to a single int value.

Fig. 16.3 Algorithms equal, mismatch and lexicographical_compare.

equal Algorithm
Line 24 uses the C++14 version of the equal algorithm to compare
two sequences of values for equality. The second sequence must
contain at least as many elements as the first— equal returns false if

the sequences are not of the same length. The == operator (whether

built-in or overloaded) performs the element comparisons. In this
example, the elements in a1 from a1.cbegin() up to, but not including,
a1.cend() are compared to the elements in a2 starting from
a2.cbegin() up to, but not including, a2.cend() . In this example, a1
and a2 are equal. The four iterator arguments must be at least input

iterators (i.e., they can be used for input from a sequence in the
forward direction). Line 28 uses function equal to compare a1 and a3 ,

which are not equal.

14

equal Algorithm with Binary Predicate
Function
Each version of equal also has an overloaded version that takes a
binary predicate function as the last parameter. The binary predicate
function receives the two elements being compared and returns a
bool value indicating whether the elements are equal. This can be
useful in sequences that store objects or pointers to values rather than
actual values, because you can define one or more comparisons. For
example, you can compare Employee objects for age, social security
number, or location rather than comparing entire objects. You can
compare what pointers refer to rather than comparing the pointer
values (i.e., the addresses stored in the pointers).

mismatch Algorithm
Lines 32–33 call the C++14 version of the mismatch algorithm to
compare two sequences of values. The algorithm returns a pair of
iterators indicating the location in each sequence of the first
mismatched elements. If all the elements match, the two iterators in
the pair are equal to the end iterator for each sequence. The four
iterator arguments must be at least input iterators. We infer the type of
the pair object location with C++11’s auto keyword (line 32). Line 35
determines the actual location of the mismatch in the arrays with the
expression location.first - a1.begin() , which evaluates to the
number of elements between the iterators in the returned pair (this is
analogous to pointer arithmetic; Chapter 8). This corresponds to the
element number in this example, because the comparison is
performed from the beginning of each array . As with equal , there are
overloaded versions of mismatch take a binary predicate function as
the last parameter.

14

11

 Error-Prevention Tip 16.1

Always use C++14’s versions of equal and mismatch. Prior to C++14,
these algorithms each received only three iterators—the third

indicated the starting point in the second of the two sequences being
compared. The programmer was required to test whether the two
sequences were of the same length before calling these algorithms.
The C++14 versions are preferred because they compare the lengths
of the ranges for you, eliminating a potential source of logic errors.

14

auto Variables and List Initialization
Lines 32–33 use an equal sign (=) rather than braces to initialize the
variable location . This is due to a known limitation with variables that
are declared auto and initialized with braced initializers. There is a
proposal to fix this limitation in C++17.1

1. http://open-
std.org/JTC1/SC22/WG21/docs/papers/2013/n3681.html.

17

 Error-Prevention Tip 16.2

In C++14, use = rather than braces when initializing a variable
declared with auto.

14

lexicographical_compare Algorithm
Lines 43–44 use the lexicographical_compare algorithm to compare
the contents of two char built-in arrays. This algorithm’s four iterator
arguments must be at least input iterators. As you know, pointers into
built-in arrays are random-access iterators. The first two iterator
arguments specify the range of locations in the first sequence. The
last two specify the range of locations in the second sequence. Once
again, we use the C++11 begin and end functions to determine the
range of elements for each built-in array. While iterating through the
sequences, if there is a mismatch between the corresponding
elements in the sequences and the element in the first sequence is
less than the corresponding element in the second sequence, the
algorithm returns true ; otherwise, the algorithm returns false . This
algorithm can be used to arrange sequences lexicographically.
Typically, such sequences contain strings.

11

16.4.3 remove, remove_if ,
remove_copy and remove_copy_if

Figure 16.4 demonstrates removing values from a sequence with
algorithms remove , remove_if , remove_copy and remove_copy_if .

Fig. 16.4 Algorithms remove, remove_if, remove_copy and
remove_copy_if.

remove Algorithm
Line 19 uses the remove algorithm to eliminate from a1 all elements
with the value 10 in the range from a1.begin() up to, but not including,
a1.end() . The first two iterator arguments must be forward iterators.
This algorithm does not modify the number of elements in the
container or destroy the eliminated elements, but it does move all
elements that are not eliminated toward the beginning of the
container. The algorithm returns an iterator positioned after the last
element that was not removed. Elements from the iterator position to
the end of the container have unspecified values and should not be
used other than to assign them new values. Line 21 outputs the
elements of a1 from a1.begin() up to but not including newEnd .

remove_copy Algorithm
Line 29 uses the remove_copy algorithm to copy all elements from
a2 that do not have the value 10 in the range from a2.cbegin() up to,
but not including, a2.cend() . The elements are placed in c , starting at
position c.begin() . The iterators supplied as the first two arguments
must be input iterators. The iterator supplied as the third argument
must be an output iterator so that the element being copied can be
written into into the destination container. This algorithm returns an
iterator positioned after the last element copied into c . Line 31 outputs
all of c ’s elements.

remove_if Algorithm
Lines 38–39 use the remove_if algorithm to delete from a3 all those
elements in the range from a3.begin() up to, but not including,
a3.end() for which a unary predicate function (in this case, the lambda
at line 39) returns true—a unary predicate function must receive one
parameter and return a bool value. The lambda

[](auto x){return x > 9;}

returns true if the value passed to it is greater than 9; otherwise, the
lambda returns false . The compiler uses type inference for both the
lambda’s parameter and return types:

We’re processing an array of ints, so the compiler infers the
lambda’s parameter type as int .
The lambda returns a condition’s result, so the compiler infers the
lambda’s return type as bool .

The iterators supplied as the first two arguments must be forward
iterators. This algorithm does not modify the number of elements in
the container, but it does move to the beginning of the container all
elements that are not removed. This algorithm returns an iterator
positioned after the last element that was not removed. All elements
from the iterator position to the end of the container have undefined

values and should not be used. Line 41 outputs the elements of a3
from a3.begin() up to but not including newEnd .

remove_copy_if Algorithm
Lines 51–52 use the remove_copy_if algorithm to copy the elements
from a4 in the range from a4.cbegin() up to, but not including,
a4.cend() for which a unary predicate function (the lambda at line 52)
returns true . The elements are placed in the array c2 , starting at
c2.begin() . The iterators supplied as the first two arguments must be
input iterators. The iterator supplied as the third argument must be an
output iterator so that the element being copied can be written into to
the destination container. This algorithm returns an iterator positioned
after the last element copied into c2 . Line 55 outputs the entire
contents of c2 .

16.4.4 replace, replace_if,
replace_copy and
replace_copy_if

Figure 16.5 demonstrates replacing values from a sequence using
algorithms replace , replace_if , replace_copy and replace_copy_if .

Fig. 16.5 Algorithms replace, replace_if, replace_copy and
replace_copy_if.

replace Algorithm
Line 19 uses the replace algorithm to replace all elements with the
value 10 in the range a1.begin() up to, but not including, a1.end()
with the new value 100 . The iterators supplied as the first two
arguments must be forward iterators so that the algorithm can modify
the elements in the sequence.

replace_copy Algorithm
Line 29 uses the replace_copy algorithm to copy all elements in the
range a2.cbegin() up to, but not including, a2.cend() , replacing all

elements with the value 10 with the new value 100 . The elements are
copied into c1 , starting at position c1.begin() . The iterators supplied
as the first two arguments must be input iterators. The iterator
supplied as the third argument must be an output iterator so that the
element being copied can be written into to the destination container.
This function returns an iterator positioned after the last element
copied into c1 .

replace_if Algorithm
Line 38 uses the replace_if algorithm to replace all those elements
from a3.begin() up to, but not including, a3.end() for which a unary

predicate function returns true—the lambda specified as the third
argument returns true if the value passed to it is greater than 9;

otherwise, it returns false . The value 100 replaces each value greater
than 9. The iterators supplied as the first two arguments must be
forward iterators.

replace_copy_if Algorithm
Lines 50–51 use the replace_copy_if algorithm to copy all elements
from a4.cbegin() up to, but not including, a4.cend() . Elements for
which a unary predicate function returns true—again for values
greater than 9—are replaced with the value 100 . The elements are
placed in c2 , starting at position c2.begin() . The iterators supplied as
the first two arguments must be input iterators. The iterator supplied
as the third argument must be an output iterator so that the element
being copied can be written into to the destination container. This
algorithm returns an iterator positioned after the last element copied
into c2 .

16.4.5 Mathematical Algorithms

Figure 16.6 demonstrates several common mathematical algorithms,
including shuffle , count , count_if , min_element , max_element ,
minmax_element , accumulate and transform . We already introduced the
for_each mathematical algorithm in Section 16.3.

Fig. 16.6 Mathematical algorithms of the Standard Library.

shuffle Algorithm

Line 21 uses the C++11 shuffle algorithm to reorder randomly the
elements in the range a1.begin() up to, but not including, a1.end() .
This algorithm takes two random-access iterator arguments and a
C++11 random-number-generator engine. Line 20

11

default_random_engine randomEngine{random_device{}()};

creates a default_random_engine using a C++11 random_device object
to seed the random-number generator—typically with a
nondeterministic seed (i.e., a seed that cannot be predicted). In the
expression

11

random_device{}()

the braces initialize the random_device object and the parentheses call
its overloaded parentheses operator to get the seed. Line 23 displays
the shuffled results.

count Algorithm
Line 30 uses the count algorithm to count the elements with the value
8 in the range a2.cbegin() up to, but not including, a2.cend() . This
algorithm requires its two iterator arguments to be at least input
iterators.

count_if Algorithm
Line 34 uses the count_if algorithm to count elements in the range
from a2.cbegin() up to, but not including, a2.cend() for which a unary

predicate function returns true—once again we used a lambda to
define a unary predicate that returns true for a value greater than 9.
Algorithm count_if requires its two iterator arguments to be at least
input iterators.

min_element Algorithm
Line 39 uses the min_element algorithm to locate the smallest element
in the range from a2.cbegin() up to, but not including, a2.cend() . The
algorithm returns a forward iterator located at the first smallest
element, or a2.end() if the range is empty. The algorithm’s two iterator
arguments must be at least forward iterators. An overloaded version of
this algorithm receives as its third argument a binary predicate
function that compares two elements in the sequence and returns the
bool value true if the first argument is less than the second.

max_element Algorithm
Line 43 uses the max_element algorithm to locate the largest element in
the range from a2.cbegin() up to, but not including, a2.cend() . The
algorithm returns a forward iterator located at the first largest element.
The algorithm’s two iterator arguments must be at least forward
iterators. An overloaded version of this algorithm receives as its third
argument a binary predicate function that compares two elements in
the sequence and returns the bool value true if the first argument is
less than the second.

 Error-Prevention Tip 16.3

Check that the range specified in a call to min_element or max_element
is not empty and that the return value is not the “past the end” iterator.

C++11: minmax_element Algorithm
Line 46 uses the C++11 minmax_element algorithm to locate both the
smallest and largest elements in the range from a2.cbegin() up to, but
not including, a2.cend() . The algorithm returns a pair of forward

iterators located at the smallest and largest elements, respectively. If
there are duplicate smallest or largest elements, the iterators are
located at the first smallest and last largest values. The algorithm’s
two iterator arguments must be at least forward iterators. A second
version of this algorithm takes as its third argument a binary predicate

function that compares the elements in the sequence. The binary
function takes two arguments and returns the bool value true if the
first argument is less than the second.

11

accumulate Algorithm
Line 53 uses the accumulate algorithm (the template of which is in
header <numeric>) to sum the values in the range from a1.cbegin() up
to, but not including, a1.cend() . The algorithm’s two iterator arguments
must be at least input iterators and its third argument represents the
initial value of the total. A second version of this algorithm takes as its
fourth argument a general function that determines how elements are
accumulated. The general function must take two arguments and
return a result. The first argument to this function is the current value
of the accumulation. The second argument is the value of the current
element in the sequence being accumulated. The function returns the
result of the accumulation.

transform Algorithm
Lines 58–59 use the transform algorithm to apply a general function to
every element in the range from a1.cbegin() up to, but not including,
a1.cend() . The general function (the fourth argument) should take the
current element as an argument, must not modify the element and

should return the transformed value. Algorithm transform requires its
first two iterator arguments to be at least input iterators and its third
argument to be at least an output iterator. The third argument
specifies where the transformed values should be placed. Note that
the third argument can equal the first.

An overloaded version of transform accepts five arguments—the first
two arguments are input iterators that specify a range of elements
from one source container, the third argument is an input iterator that
specifies the first element in another source container, the fourth
argument is an output iterator that specifies where the transformed
values should be placed and the last argument is a general function
that takes two arguments and returns a result. This version of
transform takes one element from each of the two input sources and
applies the general function to that pair of elements, then places the
transformed value at the location specified by the fourth argument.

16.4.6 Basic Searching and
Sorting Algorithms

Figure 16.7 demonstrates some basic searching and sorting Standard
Library algorithms, including find , find_if , sort , binary_search ,
all_of , any_of , none_of and find_if_not .

Fig. 16.7 Standard Library search and sort algorithms.

find Algorithm
Line 18 uses the find algorithm to locate the value 16 in the range
from a.cbegin() up to, but not including, a.cend() . The algorithm
requires its two iterator arguments to be at least input iterators and
returns an input iterator that’s either positioned at the first element

containing the value or indicates the end of the sequence (as is the
case in line 28).

Storing Lambdas in Variables
Throughout this example, we test multiple times whether elements in
the array a are greater than 10. You can store a lambda in a variable,
as in line 38:

auto isGreaterThan10 = [](auto x){return x > 10;};

This variable can then be used at a later time to pass the lambda to
other functions, as in lines 41, 73, 81, 89 and 97. You can also use the
variable like a function name to invoke the lambda, as in

isGreaterThan10(5)

which returns false .

find_if Algorithm
Line 41 uses the find_if algorithm (a linear search) to locate the first
value in the range from a.cbegin() up to, but not including, a.cend()

for which a unary predicate function returns true—in this case, the
unary predicate function is the lambda

[](auto x){return x > 10;}

that’s stored in the variable isGreaterThan10 . The compiler infers
parameter x ’s type as int (because the array stores ints) and infers
the return type as bool because the lambda returns the value of a
condition. Algorithm find_if requires its two iterator arguments to be
at least input iterators. The algorithm returns an input iterator that
either is positioned at the first element containing a value for which the
predicate function returns true or indicates the end of the sequence.

sort Algorithm
Line 52 uses the sort algorithm to arrange the elements in the range
from a.begin() up to, but not including, a.end() in ascending order.
This algorithm requires its two iterator arguments to be random-
access iterators—so the algorithm can be used with built-in arrays and
the Standard Library containers array , vector and deque . An
overloaded version of this algorithm has a third argument that’s a
binary predicate function taking two arguments and returning a bool
indicating the sorting order. The predicate compares two values from
the sequence being sorted. If the return value is true , the two

elements are already in sorted order; otherwise, the two elements
need to be reordered in the sequence.

binary_search Algorithm
Line 57 uses the binary_search algorithm to determine whether the
value 13 is in the range from a.cbegin() up to, but not including,
a.cend() . The values must be sorted in ascending order. Algorithm
binary_search requires its two iterator arguments to be at least forward

iterators. The algorithm returns a bool indicating whether the value
was found in the sequence. Line 65 demonstrates a call to
binary_search in which the value is not found. An overloaded version
of this algorithm receives as a fourth argument a binary predicate
function with two arguments that are values in the sequence and
returning a bool . The predicate function returns true if the two
elements being compared are in sorted order. If you need to know the
location of the search key in the container, use the lower_bound or
find algorithms rather than binary_search .

C++11: all_of Algorithm
Line 73 uses the all_of algorithm to determine whether the unary

predicate function (the lambda stored in isGreaterThan10) returns true
for all of the elements in the range from a.cbegin() up to, but not

including, a.cend() . Algorithm all_of requires its two iterator
arguments to be at least input iterators.

11

C++11: any_of Algorithm
Line 81 uses the any_of algorithm to determine whether the unary

predicate function (the lambda stored in isGreaterThan10) returns true
for at least one of the elements in the range from a.cbegin() up to, but
not including, a.cend() . Algorithm any_of requires its two iterator
arguments to be at least input iterators.

11

C++11: none_of Algorithm
Line 89 uses the none_of algorithm to determine whether the unary

predicate function (the lambda stored in isGreaterThan10) returns
false for all of the elements in the range from a.cbegin() up to, but
not including, a.cend() . Algorithm none_of requires its two iterator
arguments to be at least input iterators.

11

C++11: find_if_not Algorithm

Line 97 uses the find_if_not algorithm to locate the first value in the
range from a.cbegin() up to, but not including, a.cend() for which the
unary predicate function (the lambda stored in isGreaterThan10)
returns false . Algorithm find_if requires its two iterator arguments to
be at least input iterators. The algorithm returns an input iterator that
either is positioned at the first element containing a value for which the
predicate function returns false or indicates the end of the sequence.

11

16.4.7 swap, iter_swap and
swap_ranges

Figure 16.8 demonstrates algorithms swap , iter_swap and
swap_ranges for swapping elements.

Fig. 16.8 Algorithms swap, iter_swap and swap_ranges.

swap Algorithm
Line 17 uses the swap algorithm to exchange two values. In this
example, the first and second elements of array a are exchanged.
The function takes as arguments references to the two values being
exchanged.

iter_swap Algorithm
Line 23 uses function iter_swap to exchange the two elements. The
function takes two forward iterator arguments (in this case, iterators to
elements of an array) and exchanges the values in the elements to
which the iterators refer.

swap_ranges Algorithm
Line 29 uses function swap_ranges to exchange the elements from
a.begin() up to, but not including, a.begin() + 5 with the elements
beginning at position a.begin() + 5 . The function requires three
forward iterator arguments. The first two arguments specify the range
of elements in the first sequence that will be exchanged with the
elements in the second sequence starting from the iterator in the third
argument. In this example, the two sequences of values are in the
same array , but the sequences can be from different arrays or
containers. The sequences must not overlap. The destination
sequence must be large enough to contain all the elements of the
ranges being swapped.

16.4.8 copy_backward , merge ,
unique and reverse

Figure 16.9 demonstrates algorithms copy_backward , merge , unique
and reverse .

Fig. 16.9 Algorithms copy_backward, merge, unique and reverse.

copy_backward Algorithm
Line 23 uses the copy_backward algorithm to copy elements in the
range from a1.cbegin() up to, but not including, a1.cend() , placing the
elements in results by starting from the element before results.end()
and working toward the beginning of the array . The algorithm returns
an iterator positioned at the last element copied into the results (i.e.,
the beginning of results , because of the backward copy). Though

they’re copied in reverse order, the elements are placed in results in
the same order as a1 . This algorithm requires three bidirectional

iterator arguments (iterators that can be incremented and
decremented to iterate forward and backward through a sequence,
respectively).

One difference between copy_backward and copy is that the iterator
returned from copy is positioned after the last element copied and the
one returned from copy_backward is positioned at the last element
copied (i.e., the first element in the sequence). Also, copy_backward
can manipulate overlapping ranges of elements in a container as long
as the first element to copy is not in the destination range of elements.

In addition to copy and copy_backward , C++11’s move and
move_backward algorithms use move semantics (discussed in Chapter
24, C++11 and C++14 Additional Features) to move, rather than copy,
objects from one container to another.

11

merge Algorithm
Lines 30–31 use the merge algorithm to combine two sorted ascending

sequences of values into a third sorted ascending sequence. The
algorithm requires five iterator arguments. The first four must be at
least input iterators and the last must be at least an output iterator.

The first two arguments specify the range of elements in the first
sorted sequence (a1), the second two arguments specify the range of
elements in the second sorted sequence (a2) and the last argument
specifies the starting location in the third sequence (results2) where

the elements will be merged. A second version of this algorithm takes
as its sixth argument a binary predicate function that specifies the
sorting order by comparing its two arguments and returning true if the

first is less than the second.

back_inserter, front_inserter and
inserter Iterator Adapters
Line 27 created the array results2 with the total number of elements
in both a1 and a2 . Using the merge algorithm requires that the
sequence where the results are stored be at least the sum of the sizes
of the sequences being merged. If you do not want to allocate the
number of elements for the resulting sequence before the merge
operation, you can use a dynamically growable vector and the
following statements:

vector<int> results;

merge(a1.begin(), a1.end(), a2.begin(), a2.end(),

 back_inserter(results));

The argument back_inserter(results) uses the function template
back_inserter (header <iterator>) to call the container’s default
push_back function to insert an element at the end of the container
— results in this case—rather than replacing an existing element’s
value. If an element is inserted into a container that has no more
space available, the container grows to accomodate the new element
(we used a vector here, because arrays are fixed size). Thus, the
number of elements in the container does not have to be known in
advance.

There are two other inserters— front_inserter (uses push_front to
insert an element at the beginning of a container specified as its
argument) and inserter (uses insert to insert an element at the
iterator supplied as its second argument in the container supplied as
its first argument).

unique Algorithm
Line 37 uses the unique algorithm on the sorted sequence of elements
in the range from results2.begin() up to, but not including,
results2.end() . After this algorithm is applied to a sorted sequence
with duplicate values, only a single copy of each value remains in the
sequence. The algorithm takes two arguments that must be at least
forward iterators. The algorithm returns an iterator positioned after the
last element in the sequence of unique values. The values of all
elements in the container after the last unique value are undefined
and should not be used. An overloaded version of this algorithm

receives as a third argument a binary predicate function specifying
how to compare two elements for equality.

reverse Algorithm
Line 43 uses the reverse algorithm to reverse all the elements in the
range from a1.begin() up to, but not including, a1.end() . The
algorithm takes two arguments that must be at least bidirectional
iterators.

C++11: copy_if and copy_n Algorithms
C++11 added the copy algorithms copy_if and copy_n . The copy_if
algorithm copies each element from a range if the unary predicate
function in its fourth argument returns true for that element. The
iterators supplied as the first two arguments must be input iterators.
The iterator supplied as the third argument must be an output iterator
so that the element being copied can be written into to the copy
location. This algorithm returns an iterator positioned after the last
element copied.

11

The copy_n algorithm copies the number of elements specified by its
second argument from the location specified by its first argument (an
input iterator). The elements are output to the location specified by its
third argument (an output iterator).

11

16.4.9 inplace_merge ,
unique_copy and reverse_copy

Figure 16.10 demonstrates algorithms inplace_merge , unique_copy
and reverse_copy .

Fig. 16.10 Algorithms inplace_merge, reverse_copy and unique_copy.

inplace_merge Algorithm
Line 20 uses the inplace_merge algorithm to merge two sorted

sequences of elements in the same container. In this example, the
elements from a1.begin() up to, but not including, a1.begin() + 5 are
merged with the elements from a1.begin() + 5 up to, but not

including, a1.end() . This algorithm requires its three iterator
arguments to be at least bidirectional iterators. A second version of
this algorithm takes as a fourth argument a binary predicate function
for comparing elements in the two sequences.

unique_copy Algorithm

Line 28 uses the unique_copy algorithm to make a copy of all the
unique elements in the sorted sequence of values from a1.cbegin() up
to, but not including, a1.cend() . The copied elements are placed into
vector results1 . The first two arguments must be at least input

iterators and the last must be at least an output iterator. In this
example, we did not preallocate enough elements in results1 to store
all the elements copied from a1 . Instead, we use function
back_inserter (defined in header <iterator>), as discussed in Section
16.4.8, to insert elements at the end of results1 . A second version of
the unique_copy algorithm takes as a fourth argument a binary

predicate function for comparing elements for equality.

reverse_copy Algorithm
Line 35 uses the reverse_copy algorithm to make a reversed copy of
the elements in the range from a1.cbegin() up to, but not including,
a1.cend() . The copied elements are inserted into results2 using a
back_inserter object to ensure that the vector can grow to
accommodate the appropriate number of elements copied. Algorithm
reverse_copy requires its first two iterator arguments to be at least
bidirectional iterators and its third to be at least an output iterator.

16.4.10 Set Operations

Figure 16.11 demonstrates algorithms includes , set_difference ,
set_intersection , set_symmetric_difference and set_union for
manipulating sets of sorted values.

Fig. 16.11 Algorithms includes, set_difference, set_intersection,
set_symmetric_difference and set_union.

includes Algorithm
Lines 25 and 33 call the includes algorithm, which compares two sets
of sorted values to determine whether every element of the second set
is in the first set. If so, includes returns true ; otherwise, it returns
false . The first two iterator arguments must be at least input iterators

and must describe the first set of values. In line 25, the first set

consists of the elements from a1.cbegin() up to, but not including,
a1.cend() . The last two iterator arguments must be at least input

iterators and must describe the second set of values. In line 25, the
second set consists of the elements from a2.cbegin() up to, but not

including, a2.cend() . An overloaded version of includes takes a fifth

argument that’s a binary predicate function indicating whether its first
argument is less than its second. The two sequences must be sorted
using the same comparison function.

set_difference Algorithm
Lines 43–44 use the set_difference algorithm to find the elements
from the first set of sorted values that are not in the second set of
sorted values (both sets of values must be in ascending order). The
elements that are different are copied into the fifth argument (in this
case, the array difference). The first two iterator arguments must be
at least input iterators for the first set of values. The next two iterator
arguments must be at least input iterators for the second set of values.
The fifth argument must be at least an output iterator indicating where
to store a copy of the values that are different. The algorithm returns
an output iterator positioned immediately after the last value copied
into the set to which the fifth argument points. An overloaded version
of set_difference takes a sixth argument that’s a binary predicate

function indicating whether its first argument is less than its second.
The two sequences must be sorted using the same comparison
function.

set_intersection Algorithm
Lines 51–52 use the set_intersection algorithm to determine the
elements from the first set of sorted values that are in the second set
of sorted values (both sets of values must be in ascending order). The
elements common to both sets are copied into the fifth argument (in
this case, array intersection). The first two iterator arguments must
be at least input iterators for the first set of values. The next two
iterator arguments must be at least input iterators for the second set of
values. The fifth argument must be at least an output iterator
indicating where to store a copy of the values that are the same. The
algorithm returns an output iterator positioned immediately after the
last value copied into the set to which the fifth argument points. An
overloaded version of set_intersection takes a sixth argument that’s a
binary predicate function indicating whether its first argument is less
than its second. The two sequences must be sorted using the same
comparison function.

set_symmetric_difference Algorithm
Lines 60–61 use the set_symmetric_difference algorithm to determine
the elements in the first set that are not in the second set and the
elements in the second set that are not in the first set (both sets must
be in ascending order). The elements that are different are copied
from both sets into the fifth argument (the array symmetric_difference).
The first two iterator arguments must be at least input iterators for the

first set of values. The next two iterator arguments must be at least
input iterators for the second set of values. The fifth argument must be
at least an output iterator indicating where to store a copy of the
values that are different. The algorithm returns an output iterator
positioned immediately after the last value copied into the set to which
the fifth argument points. An overloaded version of
set_symmetric_difference takes a sixth argument that’s a binary

predicate function indicating whether its first argument is less than its
second. The two sequences must be sorted using the same
comparison function.

set_union Algorithm
Lines 68–69 use the set_union algorithm to create a set of all the
elements that are in either or both of the two sorted sets (both sets of
values must be in ascending order). The elements are copied from
both sets into the fifth argument (in this case the array unionSet).
Elements that appear in both sets are copied only from the first set.
The first two iterator arguments must be at least input iterators for the
first set of values. The next two iterator arguments must be at least
input iterators for the second set of values. The fifth argument must be
at least an output iterator indicating where to store the copied
elements. The algorithm returns an output iterator positioned
immediately after the last value copied into the set to which the fifth
argument points. An overloaded version of set_union takes a sixth
argument that’s a binary predicate function indicating whether its first
argument is less than its second. The two sequences must be sorted
in ascending order using the same comparison function.

16.4.11 lower_bound ,
upper_bound and equal_range

Figure 16.12 demonstrates algorithms lower_bound , upper_bound and
equal_range .

Fig. 16.12 Algorithms lower_bound, upper_bound and equal_range for
a sorted sequence of values.

lower_bound Algorithm
Line 19 uses the lower_bound algorithm to find the first location in a
sorted sequence of values at which the third argument could be
inserted in the sequence such that the sequence would still be sorted
in ascending order. The first two iterator arguments must be at least
forward iterators. The third argument is the value for which to
determine the lower bound. The algorithm returns a forward iterator
pointing to the position at which the insert can occur. A second version
of lower_bound takes as a fourth argument a binary predicate function

indicating the order in which the elements were originally sorted.

upper_bound Algorithm
Line 24 uses the upper_bound algorithm to find the last location in a
sorted sequence of values at which the third argument could be
inserted in the sequence such that the sequence would still be sorted
in ascending order. The first two iterator arguments must be at least
forward iterators. The third argument is the value for which to
determine the upper bound. The algorithm returns a forward iterator
pointing to the position at which the insert can occur. A second version
of upper_bound takes as a fourth argument a binary predicate function

indicating the order in which the elements were originally sorted.

equal_range Algorithm

Line 30 uses the equal_range algorithm to return a pair of forward

iterators containing the results of performing both a lower_bound and
an upper_bound operation. The first two arguments must be at least
forward iterators. The third is the value for which to locate the equal
range. The algorithm returns a pair of forward iterators for the lower
bound (eq.first) and upper bound (eq.second), respectively.

Locating Insertion Points in Sorted
Sequences
Algorithms lower_bound , upper_bound and equal_range are often used
to locate insertion points in sorted sequences. Line 39 uses
lower_bound to locate the first point at which 5 can be inserted in order
in a . Line 46 uses upper_bound to locate the last point at which 7 can
be inserted in order in a . Line 54 uses equal_range to locate the first
and last points at which 5 can be inserted in order in a .

16.4.12 min , max , minmax and
minmax_element

Figure 16.13 demonstrates algorithms min , max , minmax and
minmax_element .

Fig. 16.13 Algorithms min, max, minmax and minmax_element .

Algorithms min and max with Two
Parameters
Algorithms min and max (demonstrated in lines 9–12) determine the
minimum and the maximum of two elements, respectively.

C++11: min and max Algorithms with
initializer_list Parameters
C++11 added overloaded versions of the algorithms min and max that
each receive an initializer_list parameter and return the smallest
or largest item in the list initializer that’s passed as an argument. For
example, the following statement returns 7 :

11

int minimum = min({ 10, 7, 14, 21, 17 });

Each of these new min and max algorithms is overloaded with a
version that takes as a second argument a binary predicate function
for determining whether the first argument is less than the second.

C++11: minmax Algorithm
C++11 also added the minmax algorithm (line 15) that receives two
items and returns a pair in which the smaller item is stored in first
and the larger item is stored in second . A second version of this
algorithm takes as a third argument a binary predicate function for
determining whether the first argument is less than the second.

11

C++11: minmax_element Algorithm
In addition, C++11 added the minmax_element algorithm (line 25) that
receives two input iterators representing a range of elements and
returns a pair of iterators in which first points to the smallest
element in the range and second points to the largest. A second

version of this algorithm takes as a third argument a binary predicate
function for determining whether the first argument is less than the
second.

11

16.5 Function Objects
As we’ve shown in this chapter, many Standard Library algorithms
allow you to pass a lamda or a function pointer into the algorithm to
help the algorithm perform its task. For example, the binary_search
algorithm that we discussed in Section 16.4.6 is overloaded with a
version that requires as its fourth parameter a function that takes two
arguments and returns a bool value. The algorithm uses this function
to compare the search key to an element in the collection. The
function returns true if the search key and element being compared
are equal; otherwise, the function returns false . This enables
binary_search to search a collection of elements for which the element
type does not provide an overloaded < operator.

Any algorithm that can receive a lambda or function pointer can also
receive an object of a class that overloads the function-call operator
(parentheses) with a function named operator() , provided that the
overloaded operator meets the requirements of the algorithm—in the
case of binary_search , it must receive two arguments and return a
bool . An object of such a class is known as a function object and
can be used syntactically and semantically like a lambda, a function or
a function pointer—the overloaded parentheses operator is invoked by
using a function object’s name followed by parentheses containing the
arguments to the function. Most algorithms can use lambdas, function
pointers and function objects interchangeably.2 In fact, lambdas are

converted by the compiler into function pointers or function objects,
which can be inlined by the compiler for optimization purposes.

2. There are cases—especially in template programming—where
lambdas and function pointers cannot be used interchangeably with
function objects, but these cases are beyond this book’s scope.

Advantages of Function Objects
over Function Pointers

Function objects provide several advantages over function pointers.
The compiler can sometimes inline a function object’s overloaded
operator() to improve performance. Also, since they’re objects of
classes, function objects can have data members that operator() can
use to perform its task.

Predefined Function Objects of the
Standard Template Library

Many predefined function objects can be found in the header
<functional> . Figure 16.14 lists several of the dozens of Standard
Library function objects, which are all implemented as class templates
—you can see the complete list at

http://en.cppreference.com/w/cpp/utility/functional

Section 20.9 of the C++ standard contains the complete list of function
objects. We used the function object less<T> in the set and multiset
examples to specify the sorting order for elements in a container.
Recall that many of the overloaded Standard Library algorithms can
receive as their last argument a binary function that determines
whether its first argument is less than its second—exactly the purpose
of the less<T> function object.

Fig. 16.14 Some function objects in the Standard Library.

Function object Type

divides<T> arithmetic

http://en.cppreference.com/w/cpp/utility/functional

equal_to<T> relational

greater<T> relational

greater_equal<T> relational

less<T> relational

less_equal<T> relational

logical_and<T> logical

logical_not<T> logical

logical_or<T> logical

minus<T> arithmetic

modulus<T> arithmetic

negate<T> arithmetic

not_equal_to<T> relational

plus<T> arithmetic

multiplies<T> arithmetic

Using the accumulate Algorithm

Figure 16.15 uses the accumulate numeric algorithm (introduced in
Fig. 16.6) to calculate the sum of the squares of the elements in an
array . The fourth argument to accumulate is a binary function object
(that is, a function object for which operator() takes two arguments)
or a function pointer to a binary function (that is, a function that takes
two arguments). Function accumulate is demonstrated three times—
once with a function pointer, once with a function object and once with
a lamdba.

Fig. 16.15 Demonstrating function objects.

Function sumSquares
Lines 13–15 define a function sumSquares that squares its second
argument value , adds that square and its first argument total and
returns the sum. Function accumulate will pass each of the elements of
the sequence over which it iterates as the second argument to
sumSquares in the example. On the first call to sumSquares , the first
argument will be the initial value of the total (which is supplied as the
third argument to accumulate ; 0 in this program). All subsequent calls
to sumSquares receive as the first argument the running sum returned
by the previous call to sumSquares . When accumulate completes, it
returns the sum of the squares of all the elements in the sequence.

Class SumSquaresClass
Lines 20–27 define the class template SumSquaresClass with an
overloaded operator() that has two parameters and returns a value—
the requirements for a binary function object. On the first call to the
function object, the first argument will be the initial value of the total
(which is supplied as the third argument to accumulate ; 0 in this
program) and the second argument will be the first element in array
integers . All subsequent calls to operator() receive as the first
argument the result returned by the previous call to the function
object, and the second argument will be the next element in the array .

When accumulate completes, it returns the sum of the squares of all
the elements in the array .

Calling Algorithm accumulate
Lines 39–40 call function accumulate with a pointer to function

sumSquares as its last argument. Similarly, the statement in lines 47–48
call accumulate with an object of class SumSquaresClass as the last
argument. Finally, lines 55–56 call accumulate with an equivalent
lambda.

The expression SumSquaresClass<int>{} in line 48 creates (and calls
the default constructor for) an object of class SumSquaresClass (a
function object) that’s passed to accumulate , which invokes the
function operator() . Lines 47–48 could be written as two separate
statements, as follows:

SumSquaresClass<int> sumSquaresObject;

result = accumulate(integers.cbegin(), integers.cend(),

 0, sumSquaresObject);

The first line defines an object of class SumSquaresClass , which is then
passed to accumulate in the subsequent statement.

16.6 Standard Library Algorithm
Summary
The C++ standard specifies over 90 algorithms—many overloaded
with two or more versions. The standard separates the algorithms into
several categories—mutating sequence algorithms, nonmodifying
sequence algorithms, sorting and related algorithms and generalized
numeric operations. To learn about algorithms we did not present in
this chapter, see your compiler’s documentation or visit sites such as

http://en.cppreference.com/w/cpp/algorithm

https://msdn.microsoft.com/library/yah1y2x8.aspx

Mutating Sequence Algorithms

Figure 16.16 shows many of the mutating-sequence algorithms—
i.e., algorithms that modify the containers they operate on. Algorithms
added in C++11 are marked with an * in Figs. 16.16–16.19.
Algorithms presented in this chapter are shown in bold .

11

http://en.cppreference.com/w/cpp/algorithm
http://msdn.microsoft.com/library/yah1y2x8.aspx

Fig. 16.16 Mutating sequence algorithms from header <algorithm> .

Mutating sequence algorithms from header <algorithm>

copy copy_n* copy_if* copy_backward

move* move_backward* swap swap_ranges

iter_swap transform replace replace_if

replace_copy replace_copy_if fill fill_n

generate generate_n remove remove_if

remove_copy remove_copy_if unique unique_copy

reverse reverse_copy rotate rotate_copy

random_shuffle shuffle* is_partitioned* partition

stable_partition partition_copy* partition_point*

Nonmodifying Sequence
Algorithms

Figure 16.17 shows the nonmodifying sequence algorithms—i.e.,
algorithms that do not modify the containers they operate on.

Fig. 16.17 Nonmodifying sequence algorithms from header

<algorithm>

Nonmodifying sequence algorithms from header <algorithm>

all_of* any_of* none_of* for_each

find find_if find_if_not* find_end

find_first_of adjacent_find count count_if

mismatch equal is_permutation* search

search_n

Sorting and Related Algorithms

Figure 16.18 shows the sorting and related algorithms.

Fig. 16.18 Sorting and related algorithms from header <algorithm>

Sorting and related algorithms from header <algorithm>

sort stable_sort partial_sort partial_sort_copy

is_sorted * is_sorted_until * nth_element lower_bound

upper_bound equal_range binary_search merge

inplace_merge includes set_union set_intersection

set_difference set_symmetric_difference push_heap

pop_heap make_heap sort_heap is_heap*

is_heap_until* min max minmax*

min_element max_element minmax_element* lexicographical_compare

next_permutation prev_permutation

Numerical Algorithms

Figure 16.19 shows the numerical algorithms of the header <numeric> .

Fig. 16.19 Numerical algorithms from header <numeric>.

Numerical algorithms from header <numeric>

accumulate partial_sum iota*

inner_product adjacent_difference

16.7 Wrap-Up
In this chapter, we demonstrated many of the Standard Library
algorithms, including mathematical algorithms, basic searching and
sorting algorithms and set operations. You learned the types of
iterators each algorithm requires and that each algorithm can be used
with any container that supports the minimum iterator functionality the
algorithm requires. You used lambda expressions to create
anonymous functions that were passed to Standard Library
algorithms. Finally, we introduced function objects that work
syntactically and semantically like ordinary functions, but offer
advantages such as performance and the ability to store data.

We introduced exception handling earlier in the book in our discussion
of arrays. In the next chapter, we take a deeper look at C++’s rich set
of exception handling capabilities.

Summary

Section 16.1 Introduction

Standard Library algorithms are functions that perform such
common data manipulations as searching, sorting and comparing
elements or entire containers.

Section 16.3 Lambda Expressions

Lambda expressions (or lambdas; p. 710) provide a simplified
syntax for defining function objects directly where they are used.

Section 16.3.1 Algorithm for_each

The for_each algorithm (p. 711) calls a function that performs a
task once for each element in a sequence. The called function
must have one parameter of the container’s element type.

Section 16.3.2 Lambda with an
Empty Introducer

Lambdas begin with the lambda introducer ([] , p. 711), followed
by a parameter list and function body.
A lambda can use local variables from the function in which the
lambda is defined. The introducer enables you to specify which, if
any, local variables the lambda uses—this is known as capturing
(p. 711) the variables.
Specifying a lambda parameter’s type as auto enables the
compiler to infer the parameter’s type, based on the context in
which the lambda appears.
Using auto to infer the parameter type is a new C++14 feature of
so-called generic lambdas (p. 711). In C++11 you were required
to state each lambda parameter’s explicit type.

Section 16.3.3 Lambda with a
Nonempty Introducer—Capturing
Local Variables

An ampersand (&) in a lambda introducer indicates that the
lambda captures the corresponding local variable by reference and
can modify its value—without an ampersand, local variables are
captured by value.

Section 16.3.4 Lambda Return
Types

The compiler can infer a lambda’s return type if the body contains
a statement of the form

return expression;

Otherwise, the lambda’s return type is void , unless you explicitly
specify a return type using C++11’s trailing return type syntax (->
type), as in

[](parameterList) -> type {lambdaBody}

Section 16.4.1 fill, fill_n,
generate and generate_n

Algorithms fill and fill_n (p. 712) set every element in a range
of container elements to a specific value.
Algorithms generate and generate_n (p. 712) use a generator
function (p. 712) or function object to create values for every
element in a range of container elements.

Section 16.4.2 equal, mismatch
and lexicographical_compare

Algorithm equal (p. 717) compares two sequences of values for
equality.
Algorithm mismatch (p. 717) compares two sequences of values
and returns a pair of iterators indicating the location in each
sequence of the first mismatched elements.
Algorithm lexicographical_compare (p. 718) compares the contents
of two sequences to determine whether the contents of the first
sequence are lexicographically less than the contents of the
second sequence.

Section 16.4.3 remove,
remove_if, remove_copy and
remove_copy_if

Algorithm remove (p. 720) eliminates all elements with a specific
value in a certain range.
Algorithm remove_copy (p. 720) copies all elements that do not have
a specific value in a certain range.
Algorithm remove_if (p. 720) deletes all elements that satisfy the
if condition in a certain range.
Algorithm remove_copy_if (p. 720) copies all elements that do not
satisfy the if condition in a certain range.

Section 16.4.4 replace,
replace_if, replace_copy and
replace_copy_if

Algorithm replace (p. 722) replaces all elements with a specific
value in certain range.
Algorithm replace_copy (p. 722) copies all elements in a range,
replacing all elements of one value with a different value.
Algorithm replace_if (p. 723) replaces all elements that satisfy the
if condition in a certain range.
Algorithm replace_copy_if (p. 723) copies all elements in a range,
replacing all elements that satisfy the if condition in a range.

Section 16.4.5 Mathematical
Algorithms

Algorithm shuffle (p. 725) reorders randomly the elements in a
certain range.
A C++11 random_device object (p. 725) can be used to seed a
C++11 random-number generator with a nondeterministic seed.
Algorithm count (p. 725) counts the elements with a specific value
in a certain range.
Algorithm count_if (p. 725) counts the elements that satisfy the if
condition in a certain range.
Algorithm min_element (p. 725) locates the smallest element in a
certain range.
Algorithm max_element (p. 725) locates the largest element in a
certain range.
Algorithm minmax_element (p. 725) locates the smallest and largest
elements in a certain range.
Algorithm accumulate (p. 726) sums the values in a certain range.
Algorithm transform (p. 726) applies a general function or function
object to every element in a range and replaces each element with
the result of the function.

Section 16.4.6 Basic Searching
and Sorting Algorithms

Algorithm find (p. 729) locates a specific value in a certain range.
Algorithm find_if (p. 729) locates the first value in a certain range
that satisfies the if condition.
Algorithm sort (p. 730) arranges the elements in a certain range in
ascending order or an order specified by a predicate.
Algorithm binary_search (p. 730) determines whether a specific
value is in a sorted range of elements.
Algorithm all_of (p. 730) determines whether a unary predicate
function returns true for all of the elements in the range.
Algorithm any_of (p. 730) determines whether a unary predicate
function returns true for any of the elements in the range.
Algorithm none_of (p. 730) determines whether a unary predicate
function returns false for all of the elements in the range.
Algorithm find_if_not (p. 730) locates the first value in a certain
range that does not satisfy the if condition.

Section 16.4.7 swap, iter_swap
and swap_ranges

Algorithm swap (p. 732) exchanges two values.
Algorithm iter_swap (p. 732) exchanges the two elements to which
the two iterator arguments point.
Algorithm swap_ranges (p. 732) exchanges the elements in a
certain range.

Section 16.4.8 copy_backward,
merge, unique and reverse

Algorithm copy_backward (p. 733) copies elements in a range and
places the elements into a container starting from the end and
working toward the front.
Algorithm move (p. 734) moves elements in a range from one
container to another.
Algorithm move_backward (p. 734) moves elements in a range from
one container to another starting from the end and working toward
the front.
Algorithm merge (p. 734) combines two sorted ascending
sequences of values into a third sorted ascending sequence.
Algorithm unique (p. 734) removes duplicated elements in a certain
range of a sorted sequence.
Algorithm copy_if (p. 735) copies each element from a range if a
unary predicate function returns true for that element.
Algorithm reverse (p. 735) reverses all the elements in a certain
range.
Algorithm copy_n (p. 735) copies a specified number of elements
starting from a specified location and places them into a container
starting at the specified location.

Section 16.4.9 inplace_merge,
unique_copy and reverse_copy

Algorithm inplace_merge (p. 736) merges two sorted sequences of
elements in the same container.
Algorithm unique_copy (p. 736) makes a copy of all the unique
elements in the sorted sequence of values in a certain range.
Algorithm reverse_copy (p. 736) makes a reversed copy of the
elements in a certain range.

Section 16.4.10 Set Operations

The set algorithm includes (p. 738) compares two sets of sorted
values to determine whether every element of the second set is in
the first set .
The set algorithm set_difference (p. 739) finds the elements from
the first set of sorted values that are not in the second set of
sorted values (both sets of values must be in ascending order).
The set algorithm set_intersection (p. 739) determines the
elements from the first set of sorted values that are in the second
set of sorted values (both sets of values must be in ascending
order).
The set algorithm set_symmetric_difference (p. 739) determines
the elements in the first set that are not in the second set and the
elements in the second set that are not in the first set (both sets
of values must be in ascending order).
The set algorithm set_union (p. 739) creates a set of all the
elements that are in either or both of the two sorted sets (both
sets of values must be in ascending order).

Section 16.4.11 lower_bound,
upper_bound and equal_range

Algorithm lower_bound (p. 741) finds the first location in a sorted
sequence of values at which the third argument could be inserted
in the sequence such that the sequence would still be sorted in
ascending order.
Algorithm upper_bound (p. 742) finds the last location in a sorted
sequence of values at which the third argument could be inserted
in the sequence such that the sequence would still be sorted in
ascending order.
Algorithm equal_range (p. 742) returns the lower bound and upper
bound as a pair .

Section 16.4.12 min, max, minmax
and minmax_element

Algorithms min and max (p. 743) determine the minimum of two
elements and the maximum of two elements, respectively.
C++11’s overloaded versions of the algorithms min and max each
receive an initializer_list parameter and return the smallest or
largest item in the list initializer that’s passed as an argument.
Each is overloaded with a version that takes as a second argument
a binary predicate function for comparing values.
C++11’s minmax algorithm (p. 743) receives two items and returns
a pair in which the smaller item is stored in first and the larger
item is stored in second . A second version of this algorithm takes
as a third argument a binary predicate function for comparing
values.
C++11’s minmax_element algorithm (p. 725) receives two input
iterators representing a range of elements and returns a pair of
iterators in which first points to the smallest element in the range
and second points to the largest. A second version of this algorithm
takes as a third argument a binary predicate function for comparing
values.

Section 16.5 Function Objects

A function object (p. 744) is an object of a class that overloads
operator() .
The Standard Library provides many predefined function objects,
which can be found in header <functional> (p. 744).
Binary function objects (p. 745) take two arguments and return a
value.

Self-Review Exercises
1. 16.1 State whether each of the following is true or false. If false,

explain why.
A. Standard Library algorithms can operate on C-like

pointer-based arrays.
B. Standard Library algorithms are encapsulated as

member functions within each container class.
C. When using the remove algorithm on a container, the

algorithm does not decrease the size of the container
from which elements are being removed.

D. One disadvantage of using Standard Library algorithms
is that they depend on the implementation details of the
containers on which they operate.

E. The remove_if algorithm does not modify the number of
elements in the container, but it does move to the
beginning of the container all elements that are not
removed.

F. The find_if_not algorithm locates all the values in the
range for which the specified unary predicate function
returns false .

G. Use the set_union algorithm to create a set of all the
elements that are in either or both of two sorted sets
(both sets of values must be in ascending order).

2. 16.2 Fill in the blanks in each of the following statements:
A. Standard Library algorithms operate on container

elements indirectly, using .
B. The sort algorithm requires a(n) iterator.
C. Algorithms and set every element in a range

of container elements to a specific value.
D. The algorithm compares two sequences of values

for equality.
E. The C++11 algorithm locates both the smallest

and largest elements in a range.
F. A back_inserter calls the container’s default

function to insert an element at the end of the container.
If an element is inserted into a container that has no
more space available, the container grows in size.

G. Any algorithm that can receive a function pointer can
also receive an object of a class that overloads the
parentheses operator with a function named operator() ,
provided that the overloaded operator meets the
requirements of the algorithm. An object of such a class
is known as a(n) and can be used syntactically
and semantically like a function or function pointer.

3. 16.3 Write a statement to peform each of the following tasks:
A. Use the fill algorithm to fill the entire array of strings

named items with "hello" .
B. Function nextInt returns the next int value in sequence

starting with 0 the first time it’s called. Use the generate

algorithm and the nextInt function to fill the array of
ints named integers .

C. Use the equal algorithm to compare two lists (strings1
and strings2) for equality. Store the result in bool
variable result .

D. Use the remove_if algorithm to remove from the vector
of strings named colors all of the strings that start with
"bl" . Function startsWithBL returns true if its argument
string starts with "bl" . Store the iterator that the
algorithm returns in newEnd .

E. Use the replace_if algorithm to replace with 0 all
elements with values greater than 100 in the array of
ints named values . Function greaterThan100 returns
true if its argument is greater than 100 .

F. Use the minmax_element algorithm to find the smallest
and largest values in the array of doubles named
temperatures . Store the pair of iterators that’s returned
in result .

G. Use the sort algorithm to sort the array of strings
named colors .

H. Use the reverse algorithm to reverse order of the
elements in the array of strings named colors .

I. Use the merge algorithm to merge the contents of the
two sorted arrays named values1 and values2 into a
third array named results .

J. Write a lambda expression that returns the square of its
int argument and assign the lambda expression to
variable squareInt .

Exercises
1. 16.4 State whether each of the following is true or false. If false,

explain why.
A. Because Standard Library algorithms process containers

directly, one algorithm can often be used with many
different containers.

B. Use the for_each algorithm to apply a general function to
every element in a range; for_each does not modify the
sequence.

C. By default, the sort algorithm arranges the elements in
a range in ascending order.

D. Use the merge algorithm to form a new sequence by
placing the second sequence after the first.

E. Use the set_intersection algorithm to find the elements
from a first set of sorted values that are not in a second
set of sorted values (both sets of values must be in
ascending order).

F. Algorithms lower_bound, upper_bound and equal_range
are often used to locate insertion points in sorted
sequences.

G. Lambda expressions can also be used where function
pointers and function objects are used in algorithms.

H. C++11’s lambda expressions are defined locally inside
functions and can “capture” (by value or by reference)

the local variables of the enclosing function then
manipulate these variables in the lambda’s body.

2. 16.5 Fill in the blanks in each of the following statements:
A. As long as a container’s (or built-in array’s) satisfy

the requirements of an algorithm, the algorithm can work
on the container.

B. Algorithms generate and generate_n use a(n)
function to create values for every element in a range of
container elements. That type of function takes no
arguments and returns a value that can be placed in an
element of the container.

C. Pointers into built-in arrays are iterators.
D. Use the algorithm (the template of which is in

header <numeric>) to sum the values in a range.
E. Use the algorithm to apply a general function to

every element in a range when you need to modify those
elements.

F. In order to work properly, the binary_search algorithm
requires that the sequence of values must be .

G. Use the function iter_swap to exchange the elements
that are pointed to by two iterators and exchanges
the values in those elements.

H. C++11’s minmax algorithm receives two items and
returns a(n) in which the smaller item is stored in
first and the larger item is stored in second .

I. algorithms modify the containers they operate on.

3. 16.6 List several advantages function objects provide over
function pointers.

4. 16.7 What happens when you apply the unique algorithm to a
sorted sequence of elements in a range?

5. 16.8 (Duplicate Elimination) Read 20 integers into an array .
Next, use the unique algorithm to reduce the array to the
unique values entered by the user. Use the copy algorithm to
display the unique values.

6. 16.9 (Duplicate Elimination) Modify Exercise 16.8 to use the
unique_copy algorithm. The unique values should be inserted
into a vector that’s initially empty. Use a back_inserter to
enable the vector to grow as new items are added. Use the
copy algorithm to display the unique values.

7. 16.10 (Reading Data from a File) Use an
istream_iterator<int> , the copy algorithm and a back_inserter
to read the contents of a text file that contains int values
separated by whitespace. Place the int values into a vector of
ints. The first argument to the copy algorithm should be the
istream_iterator<int> object that’s associated with the text
file’s ifstream object. The second argument should be an
istream_iterator<int> object that’s initialized using the class
template istream_iterator ’s default constructor—the resulting
object can be used as an “end” iterator. After reading the file’s
contents, display the contents of the resulting vector.

8. 16.11 (Merging Ordered Lists) Write a program that uses
Standard Library algorithms to merge two ordered lists of

strings into a single ordered list of strings, then displays the
resulting list .

9. 16.12 (Palindrome Tester) A palindrome is a string that is
spelled the same way forward and backward. Examples of
palindromes include “radar” and “able was i ere i saw elba.”
Write a function palindromeTester that uses the reverse
algorithm on an a copy of a string , then compares the original
string and the reversed string to determine whether the
original string is a palindrome. Like the Standard Library
containers, string objects provide functions like begin and end
to obtain iterators that point to characters in a string . Assume
that the original string contains all lowercase letters and does
not contain any punctuation. Use function palindromeTester in a
program.

10. 16.13 (Enhanced Palindrome Tester) Enhance Exercise
16.12’s palindromeTester function to allow strings containing
uppercase and lowercase letters and punctuation. Before
testing whether the original string is a palindrome, function
palindromeTester should convert the string to lowercase letters
and eliminate any punctuation. For simplicity, assume the only
punctuations characters can be

. , ! ; : ()

You can use the copy_if algorithm and a back_inserter to
make a copy of the original string , eliminate the punctuation
characters and place the characters into a new string object.

11. 16.14 Explain why using the “weakest iterator” that yields
acceptable performance helps produce maximally reusable
components.

Answers to Self-Review Exercises
1. 16.1

A. True.
B. False. Standard Library algorithms are not member

functions. They operate indirectly on containers, through
iterators.

C. True.
D. False. Standard Library algorithms do not depend on the

implementation details of the containers on which they
operate.

E. True.
F. False. It locates only the first value in the range for which

the specified unary predicate function returns false .
G. True.

2. 16.2
A. Iterators.
B. random-access.
C. fill , fill_n .
D. equal .
E. minmax_element .
F. push_back .
G. function object.

3. 16.3
A. fill(items.begin(), items.end(), "hello");

B. generate(integers.begin(), integers.end(), nextInt);

C. bool result{equal(strings1.cbegin(), strings1.cend(),

strings2.cbegin())};

D. auto newEnd remove_if(colors.begin(), colors.end(),

startsWithBL);

E. replace_if(values.begin(), values.end(),

greaterThan100, 0);

F. auto result = minmax_element(temperatures.cbegin(),

temperatures.cend());

G. sort(colors.begin(), colors.end());

H. reverse(colors.begin(), colors.end());

I. merge(values1.cbegin(), values1.cend(),

values2.cbegin(), values2.cend(), results.begin());

J. auto squareInt = [](int i) {return i * i;};

17 Exception Handling: A Deeper
Look

Objectives
In this chapter you’ll:

Understand the exception-handling flow of control with try , catch
and throw .
Define new exception classes.
Understand how stack unwinding enables exceptions not caught in
one scope to be caught in another.
Handle new failures.
Use unique_ptr (a Standard Library “smart pointer” class) to
prevent memory leaks.
Understand the standard exception hierarchy.

Outline
1. 17.1 Introduction
2. 17.2 Exception-Handling Flow of Control; Defining an

Exception Class
A. 17.2.1 Defining an Exception Class to Represent the

Type of Problem That Might Occur
B. 17.2.2 Demonstrating Exception Handling
C. 17.2.3 Enclosing Code in a try Block
D. 17.2.4 Defining a catch Handler to Process a

DivideByZeroException

E. 17.2.5 Termination Model of Exception Handling
F. 17.2.6 Flow of Program Control When the User

Enters a Nonzero Denominator
G. 17.2.7 Flow of Program Control When the User

Enters a Denominator of Zero

3. 17.3 Rethrowing an Exception
4. 17.4 Stack Unwinding
5. 17.5 When to Use Exception Handling
6. 17.6 noexcept : Declaring Functions That Do Not Throw

Exceptions
7. 17.7 Constructors, Destructors and Exception Handling

A. 17.7.1 Destructors Called Due to Exceptions
B. 17.7.2 Initializing Local Objects to Acquire

Resources

8. 17.8 Processing new Failures
A. 17.8.1 new Throwing bad_alloc on Failure
B. 17.8.2 new Returning nullptr on Failure
C. 17.8.3 Handling new Failures Using Function

set_new_handler

9. 17.9 Class unique_ptr and Dynamic Memory Allocation
A. 17.9.1 unique_ptr Ownership
B. 17.9.2 unique_ptr to a Built-In Array

10. 17.10 Standard Library Exception Hierarchy
11. 17.11 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

17.1 Introduction
As you know from Section 7.10, an exception is an indication of a
problem that occurs during a program’s execution. Exception
handling enables you to create applications that can handle (i.e.,
resolve) exceptions and perform appropriate cleanup when an
exception that cannot or should not be handled occurs. In many
cases, this allows a program to continue executing as if no problem
had been encountered. The features presented in this chapter enable
you to write robust, fault-tolerant programs that can deal with
problems and continue executing or terminate gracefully.

Previously, we’ve shown how to handle and how to indicate
exceptions (Chapters 7 and 9, respectively). We begin this chapter
with a review of these exception-handling concepts in an example that
demonstrates the flow of control both when a program executes
successfully and when an exception occurs. We show how to handle
exceptions that occur in a constructor and exceptions that occur if
operator new fails to allocate memory for an object. We also show how
to prevent memory leaks by using the “smart pointer” class unique_ptr
to manage dynamically allocated memory. We introduce several C++
Standard Library exception-handling classes and show you how to
create your own.

 Software Engineering
Observation 17.1

Exception handling provides a standard mechanism for processing
errors. This is especially important when working on a large project.

 Software Engineering
Observation 17.2

Incorporate your exception-handling strategy into your system from its
inception. Including effective exception handling after a system has
been implemented can be difficult.

 Error-Prevention Tip 17.1

Without exception handling, it’s common for a function to calculate
and return a value on success or return an error indicator on failure. A
common problem with this architecture is using the return value in a
subsequent calculation without first checking whether the value is the
error indicator. Exception handling eliminates this problem.

17.2 Exception-Handling Flow of
Control; Defining an Exception
Class
Let’s consider a simple example of exception handling (Figs.
17.1–17.2). For demonstration purposes, we show how to deal with a
common arithmetic problem—division by zero, which with integer
arithmetic typically causes a program to terminate prematurely. In
floating-point arithmetic, many C++ implementations allow division by
zero, in which case a result of positive or negative infinity is typically
displayed as inf or -inf , respectively. Typically, a program would
simply test for division by zero before attempting the calculation—we
use exceptions here to present the flow of control when a program
executes successfully and when an exception occurs.

In this example, we define a function quotient that receives two
integers entered by the user and divides the first by the second.
Before performing the division, the function casts the first int
parameter’s value to type double . Then, the second int parameter’s
value is (implicitly) promoted to type double for the calculation. So
function quotient actually performs the division using two double
values and returns a double result.

For the purpose of this example we treat any attempt to divide by zero
as an error. Thus, function quotient tests its second parameter to
ensure that it isn’t zero before allowing the division to proceed. If the
second parameter is zero, the function throws an exception to indicate
to the caller that a problem occurred. The caller (main in this example)
can then handle the exception and allow the user to type two new
values before calling function quotient again. In this way, the program
can continue executing even after an improper value is entered, thus
making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 17.1)
defines an exception class that represents the type of the problem that
might occur in the example, and fig17_02.cpp (Fig. 17.2) defines the
quotient function and the main function that calls it—we’ll use
quotient and main to explain the exception-handling flow of control.

17.2.1 Defining an Exception Class
to Represent the Type of Problem
That Might Occur

Figure 17.1 defines class DivideByZeroException as a derived class of
Standard Library class runtime_error (from header <stdexcept>).
Class runtime_error—a derived class of exception (from header

<exception>)—is the C++ standard base class for representing runtime
errors. Class exception is the standard C++ base class for exceptions

in the C++ Standard Library. (Section 17.10 discusses class
exception and its derived classes in detail.) A typical exception class
that derives from the runtime_error class defines only a constructor

(e.g., lines 10–11) that passes an error-message string to the base-
class runtime_error constructor. Every exception class that derives
directly or indirectly from exception contains the virtual function
what , which returns an exception object’s error message. You’re not

required to derive a custom exception class, such as
DivideByZeroException , from the standard exception classes provided
by C++. However, doing so allows you to use the virtual function
what to obtain an appropriate error message and also allows you to

polymorphically process the exceptions by catching a reference to the
base-class type. We use an object of this DivideByZeroException class

in Fig. 17.2 to indicate

when an attempt is made to divide by zero.

Fig. 17.1 Class DivideByZeroException definition.

17.2.2 Demonstrating Exception
Handling

Figure 17.2 uses exception handling to wrap code that might throw a
DivideByZeroException and to handle that exception, should one occur.
The user enters two integers, which are passed as arguments to
function quotient (lines 10–18). This function divides its first
parameter (numerator) by its second parameter (denominator).
Assuming that the user does not specify 0 as the denominator for the
division, function quotient returns the division result. If the user inputs
0 for the denominator, quotient throws an exception. In the sample
output, the first two lines show a successful calculation, and the next
two show a failure due to an attempt to divide by zero. When the
exception occurs, the program informs the user of the mistake and
prompts the user to input two new integers. After we discuss the code,
we’ll consider the user inputs and flow of program control that yield
these outputs.

Fig. 17.2 Example that throws exceptions on attempts to divide
by zero.

17.2.3 Enclosing Code in a try
Block

The program begins by prompting the user to enter two integers. The
integers are input in the condition of the while loop (line 27). Line 31
passes the values to function quotient (lines 10–18), which either
divides the integers and returns a result, or throws an exception (i.e.,
indicates that an error occurred) on an attempt to divide by zero.
Exception handling is geared to situations in which the function that
detects an error is unable to handle it.

As you learned in Section 7.10, try blocks enable exception
handling, enclosing statements that might cause exceptions and
statements that should be skipped if an exception occurs. The try
block in lines 30–33 encloses the invocation of function quotient and
the statement that displays the division result. In this example,
because the invocation of function quotient (line 31) can throw an
exception, we enclose this function invocation in a try block.
Enclosing the output statement (line 32) in the try block ensures that
the output will occur only if function quotient returns a result.

 Software Engineering
Observation 17.3

Exceptions may surface through explicitly mentioned code in a try
block, through calls to other functions (including library calls), through
deeply nested function calls initiated by code in a try block and

through operators like new (Section 17.8).

17.2.4 Defining a catch Handler
to Process a
DivideByZeroException

You saw in Section 7.10 that exceptions are processed by catch
handlers. At least one catch handler (lines 34–37) must immediately
follow each try block. An exception parameter should always be
declared as a reference to the type of exception the catch handler can
process (DivideByZeroException in this case)—this prevents copying
the exception object when it’s caught and allows a catch handler to
properly catch derived-class exceptions as well.

When an exception occurs in a try block, the catch handler that
executes is the first one whose type matches the type of the exception
that occurred (i.e., the type in the catch block matches the thrown
exception type exactly or is a direct or indirect base class of it). If an
exception parameter includes an optional parameter name, the catch
handler can use that parameter name to interact with the caught
exception in the body of the catch handler, which is delimited by
braces ({ and }).

A catch handler typically reports the error to the user, logs it to a file,
terminates the program gracefully or tries an alternate strategy to
accomplish the failed task. In this example, the catch handler simply
reports that the user attempted to divide by zero. Then the program
prompts the user to enter two new integer values.

 Common Programming Error
17.1

It’s a syntax error to place code between a try block and its

corresponding catch handlers or between its catch handlers.

 Common Programming Error
17.2

Each catch handler can have one parameter—specifying a comma-

separated list of exception parameters is a syntax error.

 Common Programming Error
17.3

It’s a compilation error to catch the same type in multiple catch
handlers following a single try block.

17.2.5 Termination Model of
Exception Handling

If an exception occurs as the result of a statement in a try block, the
try block expires (i.e., it terminates immediately). Next, the program
searches for the first catch handler that can process the type of
exception that occurred. The program locates the matching catch by
comparing the thrown exception’s type to each catch ’s exception-
parameter type until the program finds a match. A match occurs if the
types are identical or if the thrown exception’s type is a derived class
of the exception-parameter type.

When a match occurs, the code in the matching catch handler
executes. When a catch handler finishes processing by reaching its
closing right brace (}), the exception is considered handled and the
local variables defined within the catch handler (including the catch

parameter) go out of scope. Program control does not return to the
point at which the exception occurred (known as the throw point),
because the try block has expired. Rather, control resumes with the
first statement (line 39 in Fig. 17.2) after the last catch handler
following the try block. This is known as the termination model of
exception handling. Some languages use the resumption model of
exception handling, in which, after an exception is handled, control
resumes just after the throw point. As with any other block of code,
when a try block terminates, local variables defined in the block go

out of scope.

 Common Programming Error 17.4
Logic errors can occur if you assume that after an exception is
handled, control will return to the first statement after the throw point.

 Error-Prevention Tip 17.2
With C++ exception handling, a program can continue executing
(rather than terminating) after dealing with a problem. This helps
ensure the kind of robust applications that contribute to what’s called
mission-critical computing or business-critical computing.

If the try block completes its execution successfully (i.e., no
exceptions occur in the try block), then the program ignores the
catch handlers and program control continues with the first statement
after the last catch following that try block.

If an exception occurs in a function and is not caught in that function,
the function terminates immediately, and the program attempts to
locate an enclosing try block in the calling function. This process is
called stack unwinding and is discussed in Section 17.4.

17.2.6 Flow of Program Control
When the User Enters a Nonzero
Denominator

Consider the flow of control in Fig. 17.2 when the user inputs the
numerator 100 and the denominator 7 . In line 12, function quotient
determines that the denominator is not zero, so line 17 performs the
division and returns the result (14.2857) to line 31 as a double .
Program control then continues sequentially from line 31, so line 32
displays the division result—line 33 ends the try block. Because the
try block completed successfully (no exception was thrown), the
program does not execute the statements contained in the catch
handler (lines 34–37), and control continues to line 39 (the first line of

code after the catch handler), which prompts the user to enter two

more integers.

17.2.7 Flow of Program Control
When the User Enters a
Denominator of Zero

Now consider the case in which the user inputs the numerator 100
and the denominator 0 . In line 12, quotient determines that the
denominator is zero, which indicates an attempt to divide by zero. Line
13 throws an exception, which we represent as an object of class
DivideByZeroException (Fig. 17.1).

To throw an exception, line 13 in Fig. 17.2 uses keyword throw
followed by an operand of the type of exception to throw. Normally, a
throw statement specifies one operand. (In Section 17.3, we discuss
how to use a throw statement with no operand.) The operand of a
throw can be of any copy-constructible type. If the operand is an
object, we call it an exception object—in this example, the exception
object is of type DivideByZeroException . However, a throw operand
also can assume other values, such as the value of an expression that
does not result in an object of a class (e.g., throw x > 5) or the value

of an int (e.g., throw 5). The examples in this chapter throw objects

of exception classes.

 Error-Prevention Tip 17.3
In general, you should throw only objects of exception class types.

As part of throwing an exception, the throw operand is created and
used to initialize the parameter in the catch handler, which we discuss
momentarily. The throw statement in line 13 creates a
DivideByZeroException object. When line 13 throws the exception,
function quotient exits immediately. So, line 13 throws the exception
before function quotient can perform the division in line 17.

 Software Engineering Observation
17.4
A central characteristic of exception handling is: If your program
explicitly throws an exception, it should do so before the error has an
opportunity to occur.

Because we enclosed the call to quotient (line 31) in a try block,
program control enters the catch handler (lines 34–37) that
immediately follows the try block. This catch handler serves as the

exception handler for the divide-by-zero exception. In general, when
an exception is thrown within a try block, the exception is caught by a
catch handler that specifies the type matching the thrown exception.
In this program, the catch handler specifies that it catches
DivideByZeroException objects—this type matches the object type
thrown in function quotient . Actually, the catch handler catches a
reference to the DivideByZeroException object created by function
quotient ’s throw statement (line 13), so that the catch handler does
not make a copy of the exception object.

The catch ’s body (lines 35–36) prints the error message returned by
function what of base-class runtime_error—i.e., the string that the
DivideByZeroException constructor (lines 10–11 in Fig. 17.1) passed to
the runtime_error base-class constructor.

 Good Programming Practice 17.1
Associating each type of runtime error with an appropriately named
exception type improves program clarity.

17.3 Rethrowing an Exception
A function might use a resource—like a file—and might want to
release the resource (i.e., close the file) if an exception occurs. An
exception handler, upon receiving an exception, can release the
resource then notify its caller that an exception occurred by
rethrowing the exception via the statement

throw;

Regardless of whether a handler can process an exception, the
handler can rethrow the exception for further processing outside the
handler. The next enclosing try block detects the rethrown exception,
which a catch handler listed after that enclosing try block attempts to
handle.

 Common Programming Error
17.5

Executing an empty throw statement outside a catch handler

terminates the program immediately.

Figure 17.3 demonstrates rethrowing an exception. In main ’s try
block (lines 25–29), line 27 calls function throwException (lines 8–21).
The throwException function also contains a try block (lines 10–13),
from which the throw statement in line 12 throw s a Standard Library
exception object. Function throwException ’s catch handler (lines 14–
18) catches this exception, prints an error message (lines 15–16) and
rethrows the exception (line 17). This terminates the function and
returns control to line 27 in the try block in main . The try block
terminates (so line 28 does not execute), and the catch handler in
main (lines 30–32) catches this exception and prints an error message
(line 31). Since we do not use the exception parameters in this
example’s catch handlers, we omit the exception parameter names
and specify only the type of exception to catch (lines 14 and 30).

Fig. 17.3 Rethrowing an exception.

17.4 Stack Unwinding
When an exception is thrown but not caught in a particular scope, the
function-call stack is “unwound,” and an attempt is made to catch the
exception in the next outer try… catch block. Unwinding the function
call stack means that the function in which the exception was not
caught terminates, all local variables that have completed initialization
in that function are destroyed and control returns to the statement that
originally invoked that function. If a try block encloses that statement,
an attempt is made to catch the exception. If a try block does not

enclose that statement, stack unwinding occurs again. If no catch
handler ever catches this exception, the program terminates. The
program of Fig. 17.4 demonstrates stack unwinding.

Fig. 17.4 Demonstrating stack unwinding.

In main , the try block (lines 30–33) calls function1 (lines 22–25).
Next, function1 calls function2 (lines 16–19), which in turn calls
function3 (lines 8–13). Line 12 of function3 throws a runtime_error
object. However, because no try block encloses the throw statement
in line 12, stack unwinding occurs— function3 terminates at line 12,
then returns control to the statement in function2 that invoked
function3 (i.e., line 18). Because no try block encloses line 18, stack
unwinding occurs again— function2 terminates at line 18 and returns
control to the statement in function1 that invoked function2 (i.e., line
24). Because no try block encloses line 24, stack unwinding occurs

one more time— function1 terminates at line 24 and returns control to
the statement in main that invoked function1 (i.e., line 32). The try
block of lines 30–33 encloses this statement, so the first matching
catch handler located after this try block (line 34–37) catches and
processes the exception. Line 35 uses function what to display the
exception message.

17.5 When to Use Exception
Handling
Exception handling is designed to process synchronous errors,
which occur when a statement executes, such as invalid function
parameters and unsuccessful memory allocation (due to lack of
memory). Exception handling is not designed to process errors
associated with asynchronous events (e.g., disk I/O completions,
network message arrivals, mouse clicks and keystrokes), which occur
in parallel with, and independent of, the program’s flow of control.

Complex applications normally consist of predefined software
components (such as classes from the Standard Library) and
application-specific components that use the predefined components.
When a predefined component encounters a problem, that component
needs a mechanism to communicate the problem to the application-
specific component—the predefined component cannot know in
advance how each application processes a problem that occurs.

 Software Engineering
Observation 17.5

Exception handling provides a single, uniform technique for
processing problems. This helps programmers on large projects
understand each other’s error-processing code. It also enables
predefined software components (such as Standard Library classes)
to communicate problems to application-specific components, which
can then process the problems in an application-specific manner

 Software Engineering
Observation 17.6

Functions with common error conditions should return nullptr , 0 or

other appropriate values, such as bools, rather than throw exceptions.

A program calling such a function can check the return value to
determine success or failure of the function call.

17.6 noexcept : Declaring
Functions That Do Not Throw
Exceptions
As of C++11, if a function does not throw any exceptions and does not
call any functions that throw exceptions, you can explicitly state that a
function does not throw exceptions. This indicates to client-code
programmers that there’s no need to call the function in a try block.
Simply add noexcept to the right of the function’s parameter list in both
the prototype and the definition. For a const member function, you
must place noexcept after const . If a function that’s declared noexcept
calls another function that throws an exception or executes a throw
statement, the program terminates. We’ll say more about noexcept in
Section 24.4.

11

17.7 Constructors, Destructors and
Exception Handling
First, let’s discuss an issue that we’ve mentioned but not yet resolved
satisfactorily: What happens when an error is detected in a
constructor? For example, how should an object’s constructor respond
when it receives invalid data? Because the constructor cannot return a
value to indicate an error, we must choose an alternative means of
indicating that the object has not been constructed properly. One
scheme is to return the improperly constructed object and hope that
anyone using it would make appropriate tests to determine that it’s in
an inconsistent state. Another scheme is to set some variable outside
the constructor. The preferred alternative is to require the constructor
to throw an exception that contains the error information, thus offering
an opportunity for the program to handle the failure.

17.7.1 Destructors Called Due to
Exceptions

If an exception occurs during object construction, destructors may be
called:

If an exception is thrown before an object is fully constructed,
destructors will be called for any member objects that have been
constructed so far.
If an array of objects has been partially constructed when an
exception occurs, only the destructors for the array’s constructed
objects will be called.

In addition, destructors are called for every automatic object
constructed in a try block before an exception that occurred in that
block is caught. Stack unwinding is guaranteed to have been
completed at the point that an exception handler begins executing. If a
destructor invoked as a result of stack unwinding throws an exception,
the program terminates. This has been linked to various security
attacks.

 Error-Prevention Tip 17.4
Destructors should catch exceptions to prevent program termination.

 Error-Prevention Tip 17.5
Do not throw exceptions from the constructor of a global object or a
static local object. Such exceptions cannot be caught, because

they’re constructed before main executes.

 Error-Prevention Tip 17.6
When an exception is thrown from the constructor for an object that’s
created in a new expression, the dynamically allocated memory for

that object is released.

 Error-Prevention Tip 17.7
A constructor should throw an exception if a problem occurs while
initializing an object. Before doing so, the constructor should release
any memory that it dynamically allocated.

17.7.2 Initializing Local Objects to
Acquire Resources

An exception could preclude the operation of code that would normally
release a resource (such as memory or a file), thus causing a
resource leak that prevents other programs from acquiring the
resource. One technique to resolve this problem is to initialize a local
object to acquire the resource. When an exception occurs, the
destructor for that object will be invoked and can free the resource.
This technique is known as resource allocation is initialization

(RAII) and is one use of C++11’s unique_ptr , which we discuss in

Section 17.9.

11

17.8 Processing new Failures
As we discussed in Section 10.9, the new operator can be used to
dynamically allocate memory. The memory in a computer is finite, so
it’s possible for new to fail to allocate the memory a program requests.
When operator new fails, it throws a bad_alloc exception (defined in
header <new>). In this section, we present two examples of new failing.
The first uses the version of new that throws a bad_alloc exception.
The second uses function set_new_handler to specify a function to call
when new fails. [Note: The examples in Figs. 17.5–17.6 allocate large
amounts of dynamic memory, which could cause your computer to
become sluggish.]

17.8.1 new Throwing bad_alloc
on Failure

Figure 17.5 demonstrates new implicitly throwing bad_alloc when new
fails to allocate memory. The for statement (lines 14–17) inside the
try block should loop 50 times and, on each pass, allocate an array
of 50,000,000 double values. If new fails and throws a bad_alloc
exception, the loop terminates, and the program continues in line 19,
where the catch handler catches and processes the exception. Lines

20–21 print the message "Exception occurred:" followed by the
message returned from the base-class- exception version of function
what (i.e., an implementation-defined exception-specific message,
such as "bad allocation" or simply "std::bad_alloc"). The output

shows that the program performed only three iterations of the loop
before new failed and threw the bad_alloc exception. Your output

might differ based on the physical memory, disk space available for
virtual memory on your system and the compiler you’re using.

Fig. 17.5 new throwing bad_alloc on failure.

17.8.2 new Returning nullptr on
Failure

The C++ standard specifies that programmers can use an older
version of new that returns nullptr upon failure. For this purpose,
header <new> defines object nothrow (of type nothrow_t), which is
used as follows:

double *ptr{new(nothrow) double[50'000'000]};

The preceding statement uses the version of new that does not throw
bad_alloc exceptions (i.e., nothrow) to allocate an array of 50,000,000
doubles.

 Software Engineering Observation
17.7
To make programs more robust, use the version of new that throws

bad_alloc exceptions on failure.

17.8.3 Handling new Failures
Using Function set_new_handler

An additional feature for handling new failures is function
set_new_handler (prototyped in standard header <new>). This function
takes as its argument a pointer to a function that takes no arguments
and returns void—in Fig. 17.6, we use function customNewHandler , but
the argument could be a lambda. This pointer points to the function
that will be called if new fails. This provides you with a uniform
approach to handling all new failures, regardless of where a failure
occurs in the program. Once set_new_handler registers a new handler
in the program, operator new does not throw bad_alloc on failure;
rather, it delegates the error handling to the new -handler function.

If new allocates memory successfully, it returns a pointer to that
memory. If new fails to allocate memory and set_new_handler did not
register a new -handler function, new throws a bad_alloc exception. If
new fails to allocate memory and a new -handler function has been
registered, the new -handler function is called. The new -handler
function should perform one of the following tasks:

1. Make more memory available by deleting other dynamically
allocated memory (or telling the user to close other

applications) and use operator new to attempt to allocate
memory again.

2. Throw an exception of type bad_alloc .
3. Call function abort or exit (both found in header <cstdlib>) to

terminate the program. These were introduced in Section 9.8.
Recall that abort terminates a program immediately, whereas
exit executes destructors for global objects and local static
objects before terminating the program. Non- static local
objects are not destructed when either of these functions is
called.

Figure 17.6 demonstrates set_new_handler . Function customNewHandler
(lines 9–12) prints an error message (line 10), then calls exit (line 11)
to terminate the program. The output shows that the loop iterated
three times before new failed and invoked function customNewHandler .
Your output might differ based on the physical memory and disk space
available for virtual memory on your system, and your compiler.

Fig. 17.6 set_new_handler specifying the function to call when new
fails.

17.9 Class unique_ptr and
Dynamic Memory Allocation
A common programming practice is to allocate dynamic memory,
assign the address of that memory to a pointer, use the pointer to
manipulate the memory and deallocate the memory with delete (or
delete[]) when the memory is no longer needed. If an exception
occurs after successful memory allocation but before the delete
statement executes, a memory leak could occur. C++11 provides
class template unique_ptr in header <memory> to deal with this
situation. A unique_ptr maintains a pointer to dynamically allocated
memory. When a unique_ptr object goes out of scope, its destructor is
called, which performs a delete (or delete[]) operation on the
unique_ptr object’s pointer data member. Class template unique_ptr
provides overloaded operators * and -> so that a unique_ptr object
can be used just like a regular pointer variable.

11

Demonstrating unique_ptr

Figure 17.9 demonstrates a unique_ptr object that points to a
dynamically allocated object of our custom class Integer (Figs.
17.7–17.8).

Fig. 17.7 Integer class definition.

Fig. 17.8 Integer member function definitions.

Line 14 of Fig. 17.9 creates unique_ptr object ptrToInteger and
initializes it with a pointer to a dynamically allocated Integer object
that contains the value 7 . To initialize the unique_ptr , line 14 uses
C++14’s make_unique function template, which allocates dynamic
memory with operator new , then returns a unique_ptr to that memory.
Prior to C++14, you’d pass the result of a new expression directly to
unique_ptr ’s constructor.

14

Fig. 17.9 unique_ptr object manages dynamically allocated
memory.

Line 17 uses the unique_ptr overloaded -> operator to invoke function
setInteger on the Integer object that ptrToInteger manages. Line 20
uses the unique_ptr overloaded * operator to dereference
ptrToInteger , then uses the dot (.) operator to invoke function
getInteger on the Integer object. Like a regular pointer, a

unique_ptr ’s -> and * overloaded operators can be used to access
the object to which the unique_ptr points.

Because ptrToInteger is a non- static local variable in main , it’s
destroyed when main terminates. The unique_ptr destructor deletes
the dynamically allocated Integer object, which calls the Integer
object’s destructor. The memory that Integer occupies is released,
regardless of how control leaves the block (e.g., by a return
statement or by an exception). Most importantly, using this technique
can prevent memory leaks. For example, suppose a function returns a
pointer aimed at some object. Unfortunately, the function caller that
receives this pointer might not delete the object, thus resulting in a
memory leak. However, if the function returns a unique_ptr to the
object, the object will be deleted automatically when the unique_ptr
object’s destructor gets called.

17.9.1 unique_ptr Ownership

The class is called unique_ptr because only one unique_ptr at a time
can own a dynamically allocated object. When you assign one
unique_ptr to another, the unique_ptr on the assignment’s right
transfers ownership of the dynamic memory it manages to the
unique_ptr on the assignment’s left. The same is true when one
unique_ptr is passed as an argument to another unique_ptr ’s
constructor. (These operations use unique_ptr ’s move assignment

operator and move constructor—we discuss move semantics in
Chapter 24.) The last unique_ptr object that maintains the pointer to
the dynamic memory will delete the memory. This makes unique_ptr

an ideal mechanism for returning dynamically allocated memory to
client code. When the unique_ptr goes out of scope in the client code,
the unique_ptr ’s destructor deletes the dynamically allocated object—

if the object has a destructor, it is called before the memory is returned
to the system.

17.9.2 unique_ptr to a Built-In
Array

You can also use a unique_ptr to manage a dynamically allocated
built-in array. For example, consider the statement

unique_ptr<string[]> ptr{make_unique<string[]>(10)};

Because make_unique ’s type is specified as string[] , the function
obtains a dynamically allocated built-in array of the number of
elements specified by its argument (10). By default, the elements of
arrays allocated with make_unique are initialized to 0 for fundamental
types, to false for bools or via the default constructor for objects of a

class—so in this case, the array would contain 10 string objects
initialized with the empty string .

14

A unique_ptr that manages an array provides an overloaded []
operator for accessing the array’s elements. For example, the
statement

ptr[2] = "hello";

assigns "hello" to the string at ptr[2] and the following statement
displays that string

cout << ptr[2] << endl;

17.10 Standard Library Exception
Hierarchy
Exceptions fall nicely into a number of categories. The C++ Standard
Library includes a hierarchy of exception classes, some of which are
shown in Fig. 17.10. As we first discussed in Section 17.2, this
hierarchy is headed by base-class exception (defined in header
<exception>), which contains virtual function what that derived
classes can override to issue an appropriate error message. If a catch
handler catches a reference to an exception of a base-class type, it
also can catch a reference to all objects of classes derived publicly
from that base class—this allows for polymorphic processing of
related errors.

Fig. 17.10 Some of the Standard Library exception classes.

Immediate derived classes of base-class exception include
runtime_error and logic_error (both defined in header <stdexcept>),
each of which has several derived classes. Also derived from
exception are the exceptions thrown by C++ operators—for example,
bad_alloc is thrown by new (Section 17.8), bad_cast is thrown by
dynamic_cast (Chapter 12) and bad_typeid is thrown by typeid
(Chapter 12).

Class logic_error is the base class of several standard exception
classes that indicate errors in program logic. For example, we used
class invalid_argument in set functions (starting in Chapter 9) to
indicate when an attempt was made to set an invalid value. (Proper
coding can, of course, prevent invalid arguments from reaching a
function.) Class length_error indicates that a length larger than the
maximum size allowed for the object being manipulated was used for
that object. Class out_of_range indicates that a value, such as a
subscript into an array, exceeded its allowed range of values.

Class runtime_error , which we used briefly in Section 17.4, is the
base class of several other standard exception classes that indicate
execution-time errors. For example, class overflow_error describes an
arithmetic overflow error (i.e., the result of an arithmetic operation is
larger than the largest number that can be stored in a given numeric
type) and class underflow_error describes an arithmetic underflow

error (i.e., the result of an arithmetic operation is smaller than the
smallest number that can be stored in a given numeric type).

 Error-Prevention Tip 17.8

Using inheritance with exceptions enables an exception handler to
catch related errors with concise notation. One approach is to catch
each type of reference to a derived-class exception object individually,
but a more concise approach is to catch pointers or references to

base-class exception objects instead. Also, catching pointers or
references to derived-class exception objects individually is error
prone, especially if you forget to test explicitly for one or more of the
derived-class reference types.

 Common Programming Error
17.6

Placing a catch handler that catches a base-class object before a

catch that catches an object of a class derived from that base class is

a logic error. The base-class catch catches all objects of classes

derived from that base class, so the derived-class catch will never

execute.

 Common Programming Error
17.7

Exception classes need not be derived from class exception , so

catching type exception is not guaranteed to catch all exceptions a

program could encounter.

 Error-Prevention Tip 17.9

To catch all exceptions potentially thrown in a try block, use

catch(...) . One weakness with catching exceptions in this way is that

the type of the caught exception is unknown. Another weakness is
that, without a named parameter, there’s no way to refer to the
exception object inside the exception handler.

 Software Engineering
Observation 17.8

The standard exception hierarchy is a good starting point for creating

exceptions. You can build programs that can throw standard

exceptions, throw exceptions derived from the standard exceptions or

throw your own exceptions not derived from the standard exceptions.

 Software Engineering
Observation 17.9

Use catch(...) to perform recovery that does not depend on the

exception type (e.g., releasing common resources). The exception can
be rethrown to alert more specific enclosing catch handlers.

17.11 Wrap-Up
In this chapter, you learned how to use exception handling to deal with
program errors. You learned that exception handling enables you to
remove error-handling code from the “main line” of the program’s
execution. We demonstrated exception handling in the context of a
divide-by-zero example. We reviewed how to use try blocks to
enclose code that may throw an exception, and how to use catch
handlers to deal with exceptions that may arise. You learned how to
throw and rethrow exceptions, and how to handle the exceptions that
occur in constructors. The chapter continued with discussions of
processing new failures, dynamic memory allocation with class
unique_ptr and the standard library exception hierarchy.

In the next chapter, you’ll learn how to build your own custom class
templates. In particular, we’ll demonstrate the features that you’ll need
to build your own custom templatized data structures in Chapter 19.

Summary

Section 17.1 Introduction

An exception (p. 758) is an indication of a problem that occurs
during a program’s execution.
Exception handling (p. 758) enables you to create applications
that can handle (i.e., resolve) exceptions and perform appropriate
cleanup when an exception that cannot or should not be handled
occurs. More severe problems may require a program to notify the
user of the problem before terminating in a controlled manner.

Section 17.2.1 Defining an
Exception Class to Represent the
Type of Problem That Might Occur

Class exception (p. 759) is the standard base class for exception
classes. It provides virtual function what (p. 759) that returns an
appropriate error message and can be overridden in derived
classes.
Class runtime_error (p. 759), which is defined in header
<stdexcept> (p. 759), is the C++ standard base class for
representing runtime errors.

Section 17.2.5 Termination Model
of Exception Handling

C++ uses the termination model of exception handling (p. 763)
in which control resumes with the first statement after the last
catch handler following a try block
A try block consists of keyword try followed by braces ({}) that
define a block of code in which exceptions might occur. The try
block encloses statements that might cause exceptions and
statements that should not execute if exceptions occur.
At least one catch handler must immediately follow a try block.
Each catch handler specifies an exception parameter that
represents the type of exception the catch handler can process.
If an exception parameter includes an optional parameter name,
the catch handler can use that parameter name to interact with a
caught exception object.
The point in the program at which an exception occurs is called the
throw point (p. 763).
If an exception occurs in a function and is not caught in that
function, the function terminates immediately, and the program
attempts to locate an enclosing try block in the calling function.

Section 17.2.7 Flow of Program
Control When the User Enters a
Denominator of Zero

If an exception occurs in a try block, the try block expires and
program control transfers to the first catch in which the exception
parameter’s type matches that of the thrown exception.
When a try block terminates, local variables defined in the block
go out of scope.
When a try block terminates due to an exception, the program
searches for the first catch handler that matches the type of
exception that occurred. A match occurs if the types are identical
or if the thrown exception’s type is a derived class of the exception-
parameter type. When a match occurs, the code contained within
the matching catch handler executes.
When a catch handler finishes processing, the catch parameter
and local variables defined within the catch handler go out of
scope. Any remaining catch handlers that correspond to the try
block are ignored, and execution resumes at the first line of code
after the try… catch sequence.
If no exceptions occur in a try block, the program ignores the
catch handler(s) for that block. Program execution resumes with

the next statement after the try… catch sequence.

If an exception that occurs in a try block has no matching catch
handler, or if an exception occurs in a statement that is not in a
try block, the function that contains the statement terminates
immediately, and the program attempts to locate an enclosing try
block in the calling function. This process is called stack
unwinding (p. 763).
To throw an exception, use keyword throw followed by an operand
that represents the type of exception to throw. The operand of a
throw can be of any type. If the operand is an object, we call it an
exception object (p. 764).

Section 17.3 Rethrowing an
Exception

The exception handler can defer the exception handling (or
perhaps a portion of it) to another exception handler. In either
case, the handler achieves this by rethrowing the exception (p.
764) with throw; .
Common examples of exceptions are out-of-range array
subscripts, arithmetic overflow, division by zero, invalid function
parameters and unsuccessful memory allocations.

Section 17.4 Stack Unwinding

Unwinding the function call stack means that the function in which
the exception was not caught terminates, all local variables in that
function are destroyed and control returns to the statement that
originally invoked that function.

Section 17.5 When to Use
Exception Handling

Exception handling is for synchronous errors (p. 767), which
occur when a statement executes.
Exception handling is not designed to process errors associated
with asynchronous events (p. 767), which occur in parallel with,
and independent of, the program’s flow of control.

Section 17.6 noexcept : Declaring
Functions That Do Not Throw
Exceptions

As of C++11, if a function does not throw any exceptions and does
not call any functions that throw exceptions, you can explicitly
declare the function noexcept (p. 768).

Section 17.7.1 Destructors Called
Due to Exceptions

Exceptions thrown by a constructor cause destructors to be called
for any objects built as part of the object being constructed before
the exception is thrown.
Each automatic object constructed in a try block is destructed
before an exception is thrown.
Stack unwinding completes before an exception handler begins
executing.
If a destructor invoked as a result of stack unwinding throws an
exception, the program terminates.
If an array of objects has been partially constructed when an
exception occurs, only the destructors for the constructed array
element objects will be called.
When an exception is thrown from the constructor for an object
that is created in a new expression, the dynamically allocated
memory for that object is released.

Section 17.7.2 Initializing Local
Objects to Acquire Resources

An exception could preclude the execution of code that would
normally release a resource (such as memory or a file), thus
causing a resource leak that prevents other programs from
acquiring the resource. One technique to resolve this problem is to
initialize a local object to acquire the resource. When an exception
occurs, the destructor for that object will be invoked and can free
the resource. This technique is known as resource allocation is
initialization (RAII; p. 769).

Section 17.8 Processing new
Failures

The C++ standard document specifies that, when operator new
fails, it throws a bad_alloc exception (p. 769), which is defined in
header <new> .
Function set_new_handler (p. 769) takes as its argument a pointer
to a function that takes no arguments and returns void . This
pointer points to the function that will be called if new fails.
Once set_new_handler registers a new handler (p. 771) in the
program, operator new does not throw bad_alloc on failure; rather,
it defers the error handling to the new -handler function.
If new allocates memory successfully, it returns a pointer to that
memory.

Section 17.9 Class unique_ptr
and Dynamic Memory Allocation

If an exception occurs after successful memory allocation but
before the delete statement executes, a memory leak could occur.
The C++ Standard Library provides class template unique_ptr (p.
772) to deal with memory leaks.
An object of class unique_ptr maintains a pointer to dynamically
allocated memory. A unique_ptr ’s destructor performs a delete
operation on the unique_ptr ’s pointer data member.
Only one unique_ptr at a time can refer to the managed dynamic
memory.
Class template unique_ptr provides overloaded operators * and -
> so that a unique_ptr object can be used just as a regular pointer
variable is. A unique_ptr also transfers ownership of the dynamic
memory it manages via its copy constructor and overloaded
assignment operator.

Section 17.10 Standard Library
Exception Hierarchy

The C++ Standard Library includes a hierarchy of exception
classes. This hierarchy is headed by base-class exception .
If a catch handler catches a reference to an exception object of a
base-class type, it also can catch a reference to all objects of
classes derived publicly from that base class—this allows for
polymorphic processing of related errors.
Immediate derived classes of base class exception include
runtime_error and logic_error (both defined in header
<stdexcept>), each of which has several derived classes.
Several operators throw standard exceptions—operator new
throws bad_alloc , operator dynamic_cast throws bad_cast (p. 776)
and operator typeid throws bad_typeid (p. 776).

Self-Review Exercises
1. 17.1 List five common examples of exceptions.
2. 17.2 Give several reasons why exception-handling techniques

should not be used for conventional program control.
3. 17.3 Why are exceptions appropriate for dealing with errors

produced by library functions?
4. 17.4 What’s a “resource leak”?
5. 17.5 If no exceptions are thrown in a try block, where does

control proceed to after the try block completes execution?
6. 17.6 What happens if an exception is thrown outside a try

block?
7. 17.7 Give a key advantage and a key disadvantage of using

catch(...) .
8. 17.8 What happens if no catch handler matches the type of a

thrown object?
9. 17.9 What happens if several handlers match the type of the

thrown object?
10. 17.10 Why would you specify a base-class type as the type of a

catch handler, then throw objects of derived-class types?
11. 17.11 Suppose a catch handler with a precise match to an

exception object type is available. Under what circumstances
might a different handler be executed for exception objects of
that type?

12. 17.12 Must throwing an exception cause program termination?

13. 17.13 What happens when a catch handler throws an
exception?

14. 17.14 What does the statement throw; do?

Exercises
1. 17.15 (Exceptional Conditions) List various exceptional

conditions that have occurred throughout this text. List as many
additional exceptional conditions as you can. For each of these
exceptions, describe briefly how a program typically would
handle the exception, using the exception-handling techniques
discussed in this chapter. Some typical exceptions are division
by zero, arithmetic overflow, array subscript out of bounds,
exhaustion of the free store, etc.

2. 17.16 (Catch Parameter) Under what circumstances would
you not provide a parameter name when defining the type of
the object that will be caught by a handler?

3. 17.17 (throw Statement) A program contains the statement

throw;

Where would you normally expect to find such a statement?
What if that statement appeared in a different part of the
program?

4. 17.18 (Exception Handling vs. Other Schemes) Compare
and contrast exception handling with the various other error-
processing schemes discussed in the text.

5. 17.19 (Exception Handling and Program Control) Why
should exceptions not be used as an alternate form of program

control?
6. 17.20 (Handling Related Exceptions) Describe a technique

for handling related exceptions.
7. 17.21 (Throwing Exceptions from a catch) Suppose a

program throws an exception and the appropriate exception
handler begins executing. Now suppose that the exception
handler itself throws the same exception. Does this create
infinite recursion? Write a program to check your observation.

8. 17.22 (Catching Derived-Class Exceptions) Use inheritance
to create various derived classes of runtime_error . Then show
that a catch handler specifying the base class can catch
derived-class exceptions.

9. 17.23 (Throwing the Result of a Conditional Expression)
Throw the result of a conditional expression that returns either
a double or an int . Provide an int catch handler and a double
catch handler. Show that only the double catch handler
executes, regardless of whether the int or the double is
returned.

10. 17.24 (Local-Variable Destructors) Write a program
illustrating that all destructors for objects constructed in a block
are called before an exception is thrown from that block.

11. 17.25 (Member-Object Destructors) Write a program
illustrating that member-object destructors are called for only
those member objects that were constructed before an
exception occurred.

12. 17.26 (Catching All Exceptions) Write a program that
demonstrates several exception types being caught with the

catch(...) exception handler.
13. 17.27 (Order of Exception Handlers) Write a program

illustrating that the order of exception handlers is important.
The first matching handler is the one that executes. Attempt to
compile and run your program two different ways to show that
two different handlers execute with two different effects.

14. 17.28 (Constructors Throwing Exceptions) Write a program
that shows a constructor passing information about constructor
failure to an exception handler after a try block.

15. 17.29 (Rethrowing Exceptions) Write a program that
illustrates rethrowing an exception.

16. 17.30 (Uncaught Exceptions) Write a program that illustrates
that a function with its own try block does not have to catch
every possible error generated within the try . Some
exceptions can slip through to, and be handled in, outer
scopes.

17. 17.31 (Stack Unwinding) Write a program that throws an
exception from a deeply nested function and still has the catch
handler following the try block enclosing the initial call in main
catch the exception.

Answers to Self-Review Exercises
1. 17.1 Insufficient memory to satisfy a new request, array

subscript out of bounds, arithmetic overflow, division by zero,
invalid function parameters.

2. 17.2
A. Exception handling is designed to handle infrequently

occurring situations that often result in program
termination, so compiler writers are not required to
implement exception handling to perform optimally.

B. Flow of control with conventional control structures
generally is clearer and more efficient than with
exceptions.

C. Problems can occur because the stack is unwound when
an exception occurs and resources allocated prior to the
exception might not be freed.

D. The “additional” exceptions make it more difficult for you
to handle the larger number of exception cases.

3. 17.3 It’s unlikely that a library function will perform error
processing that will meet the unique needs of all users.

4. 17.4 A program that terminates abruptly could leave a resource
in a state in which other programs would not be able to acquire
the resource, or the program itself might not be able to
reacquire a “leaked” resource.

5. 17.5 The exception handlers (in the catch handlers) for that
try block are skipped, and the program resumes execution
after the last catch handler.

6. 17.6 An exception thrown outside a try block causes stack
unwinding.

7. 17.7 A catch handler of the form catch(...) catches any type
of exception thrown in a try block. An advantage is that all
possible exceptions will be caught. A disadvantage is that the
catch has no parameter, so it cannot reference information in
the thrown object and cannot know the cause of the exception.

8. 17.8 This causes the search for a match to continue in the next
enclosing try block if there is one. As this process continues, it
might eventually be determined that there is no handler in the
program that matches the type of the thrown object; in this
case, the program terminates.

9. 17.9 The first matching exception handler after the try block is
executed.

10. 17.10 This is a nice way to catch related types of exceptions.
11. 17.11 If a base-class handler is defined before a derived-class

handler, the base-class handler would catch objects of all
derived-class types.

12. 17.12 No, but it does terminate the block in which the exception
is thrown.

13. 17.13 The exception will be processed by a catch handler (if
one exists) associated with the try block (if one exists)
enclosing the catch handler that caused the exception.

14. 17.14 It rethrows the exception if it appears in a catch handler;
otherwise, the program terminates.

18 Introduction to Custom
Templates

Objectives
In this chapter you’ll:

Use class templates to create groups of related classes.
Distinguish between class templates and class-template
specializations.
See how nontype template parameters can be used in place of
constants declared inside a class.
Learn about default template arguments.
Learn about overloading function templates.

Outline
1. 18.1 Introduction
2. 18.2 Class Templates

A. 18.2.1 Creating Class Template Stack <T>
B. 18.2.2 Class Template Stack<T> ’s Data

Representation
C. 18.2.3 Class Template Stack<T> ’s Member Functions
D. 18.2.4 Declaring a Class Template’s Member

Functions Outside the Class Template Definition
E. 18.2.5 Testing Class Template Stack<T>

3. 18.3 Function Template to Manipulate a Class-Template
Specialization Object

4. 18.4 Nontype Parameters
5. 18.5 Default Arguments for Template Type Parameters
6. 18.6 Overloading Function Templates
7. 18.7 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

18.1 Introduction
Templates have become extremely important in writing industrial-
strength code. We’ve used templates in Chapters 6, 7 and 13–17. In
this chapter, we introduce some additional template capabilities and
we continue using templates through the rest of the book. Figure 18.1
summarizes our template coverage.

Fig. 18.1 Summary of recursion examples and exercises in the
text.

Location in
text

Discusses

Chapter 6

Section 6.9 C++11 uniform_int_distribution class template for random-

number generation.

Section
6.17

Defining a function template.

Chapter 7 Class templates array and vector for manipulating collections of

elements.

Chapter 13

Section
13.2

The stream-processing classes, which are class templates.

Chapter 14

Section
14.2

The file-stream-processing classes, which are class templates.

Chapter 15 Standard Library collection class templates.

Chapter 16 Standard Library algorithm function templates.

Chapter 17

Section
17.9

The unique_ptr smart-pointer class template for managing dynamically

allocated memory.

Chapter 18 Creating custom class templates.

Chapter 19 Creating custom templatized data structures.

Chapter 20 Implementing searching and sorting algorithms as function templates.

Chapter 21

Section
21.1

strings , which are class templates.

Section
21.12

string-stream class templates.

Chapter 24

Section
24.2

Smart pointer class templates.

Section Variadic templates.

24.10

Section
24.11

Class template tuple .

Section
24.12

Class template initializer_list.

Function templates enable you to conveniently specify a variety of
overloaded functions—called function-template specializations.
Class templates enable you to conveniently specify a variety of related
classes—called class-template specializations. Programming with
templates is also known as generic programming. Function
templates and class templates are like stencils out of which we trace
shapes; function-template specializations and class-template
specializations are like the separate tracings that all have the same
shape, but could, for example, be drawn in different colors, line
thicknesses and textures.

In this chapter, we demonstrate how to create a custom class
template and a function template that manipulates objects of our
class-template specializations. We focus on the template capabilities
you’ll need to build the custom templatized data structures that we
present in Chapter 19.1

1. Building custom templates is an advanced topic with many features
that are beyond the scope of this book.

18.2 Class Templates
It’s possible to understand the concept of a stack (a data structure into
which we insert items only at the top and retrieve those items only
from the top in last-in, first-out order) independent of the type of the
items being placed in the stack. We discussed stacks in Section 6.11
where we presented the function-call stack. To instantiate a stack, a
data type must be specified. This creates a nice opportunity for
software reusability—as you already saw with the stack container
adapter in Section 15.7.1. Here, we define a stack generically then
use type-specific versions of this generic stack class.

 Software Engineering
Observation 18.1

Class templates encourage software reusability by enabling a variety
of type-specific class-template specializations to be instantiated from a
single class template.

Class templates are called parameterized types, because they
require one or more type parameters to specify how to customize a
generic class template to form a class-template specialization. To
produce many specializations you write only one class-template

definition (as we’ll do shortly). When a particular specialization is
needed, you use a concise, simple notation, and the compiler writes
the specialization source code. One Stack class template, for
example, could thus become the basis for creating many Stack class-
template specializations (such as “ Stack of doubles,” “ Stack of ints,”
“ Stack of Employees,” “ Stack of Bills,” “ Stack of ActivationRecords,”

etc.) used in a program.

 Common Programming Error
18.1

To create a template specialization with a user-defined type, the user-
defined type must meet the template’s requirements. For example, the
template might compare objects of the user-defined type with < to
determine sorting order, or the template might call a specific member
function on an object of the user-defined type. If the user-defined type
does not overload the required operator or provide the required
functions, compilation errors occur.

18.2.1 Creating Class Template
Stack<T>

The Stack class-template definition in Fig. 18.2 looks like a
conventional class definition, with a few key differences. First, it’s
preceded by line 7

template<typename T>

All class templates begin with keyword template followed by a list of
template parameters enclosed in angle brackets (< and >); each
template parameter that represents a type must be preceded by either
of the interchangeable keywords typename or class (though type-name
is preferred). The type parameter T acts as a placeholder for the
Stack ’s element type. The names of type parameters must be unique

inside a template definition. You need not specifically use identifier T
—any valid identifier can be used. The element type is mentioned
generically throughout the Stack class-template definition as T (lines
11, 16 and 36). The type parameter becomes associated with a
specific type when you create an object using the class template—at
that point, the compiler generates a copy of the class template in

which all occurrences of the type parameter are replaced with the
specified type. Another key difference is that we did not separate the
class template’s interface from its implementation.

 Software Engineering Observation
18.2
Templates are typically defined in headers, which are then #include d
in the appropriate client source-code files. For class templates, this
means that the member functions are also defined in the header—
typically inside the class definition’s body, as we do in Fig. 18.2.

Fig. 18.2 Stack class template.

18.2.2 Class Template Stack<T> ’s
Data Representation

Section 15.7.1 showed that the Standard Library’s stack adapter
class can use various containers to store its elements. Of course, a
stack requires insertions and deletions only at its top. So, for
example, a vector or a deque could be used to store the stack ’s
elements. A vector supports fast insertions and deletions at its back.
A deque supports fast insertions and deletions at its front and its back.
A deque is the default representation for the Standard Library’s stack
adapter because a deque grows more efficiently than a vector . A
vector is maintained as a contiguous block of memory—when that
block is full and a new element is added, the vector allocates a larger
contiguous block of memory and copies the old elements into that new
block. A deque , on the other hand, is typically implemented as a list of
fixed-size, built-in arrays—new fixed-size built-in arrays are added as
necessary and none of the existing elements are copied when new
items are added to the front or back. For these reasons, we use a
deque (line 36) as the underlying container for our Stack class.

18.2.3 Class Template Stack<T> ’s
Member Functions

The member-function definitions of a class template are function
templates, but are not preceded with the template keyword and
template parameters in angle brackets (< and >) when they’re defined
within the class template’s body. As you can see, however, they do
use the class template’s template parameter T to represent the
element type. Our Stack class template does not define it’s own
constructors—the default constructor provided by the compiler will
invoke the deque ’s default constructor. We also provide the following
member functions in Fig. 18.2:

top (lines 11–13) returns a const reference to the Stack ’s top
element.
push (lines 16–18) places a new element on the top of the Stack .
pop (lines 21–23) removes the Stack ’s top element.
isEmpty (lines 26–28) returns a bool value— true if the Stack is
empty and false otherwise.
size (lines 31–33) returns the number if elements in the Stack .

Each of these member functions calls the appropriate member
function of class template deque—this is known as delegating.

18.2.4 Declaring a Class
Template’s Member Functions
Outside the Class Template
Definition

Though we did not do so in our Stack class template, member-
function definitions can appear outside a class template definition. If
you do this, each must begin with the template keyword followed by
the same set of template parameters as the class template. In
addition, the member functions must be qualified with the class name
and scope resolution operator. For example, you can define the pop
function outside the class-template definition as follows:

template<typename T>

inline void Stack<T>::pop() {

 stack.pop_front();

}

Stack<T>:: indicates that pop is in the scope of class Stack<T> . The
Standard Library’s container classes tend to define all their member

functions inside their class definitions.

18.2.5 Testing Class Template
Stack<T>

Now, let’s consider the driver (Fig. 18.3) that exercises the Stack
class template. The driver begins by instantiating object doubleStack
(line 8). This object is declared as a Stack<double> (pronounced
“ Stack of double ”). The compiler associates type double with type
parameter T in the class template to produce the source code for a
Stack class with elements of type double that actually stores its
elements in a deque<double> .

Fig. 18.3 Stack class template test program.

Lines 15–19 invoke push (line 16) to place the double values 1.1, 2.2,
3.3, 4.4 and 5.5 onto doubleStack . Next, lines 24–27 invoke top and
pop in a while loop to remove the five values from the stack. Notice in
the output of Fig. 18.3 that the values pop off in last-in, first-out order.
When doubleStack is empty, the pop loop terminates.

Line 31 instantiates int stack intStack with the declaration

Stack<int> intStack;

(pronounced “ intStack is a Stack of int ”). Lines 38–41 repeatedly
invoke push (line 39) to place values onto intStack , then lines 46–49
repeatedly invoke top and pop to remove values from intStack until
it’s empty. Once again, notice in the output that the values pop off in
last-in, first-out order.

18.3 Function Template to
Manipulate a Class-Template
Specialization Object
The code in function main of Fig. 18.3 is almost identical for both the
doubleStack manipulations in lines 8–29 and the intStack
manipulations in lines 31–51. This presents another opportunity to use
a function template. Figure 18.4 defines function template testStack
(lines 10–36) to perform the same tasks as main in Fig. 18.3— push a
series of values onto a Stack<T> and pop the values off a Stack<T> .

Fig. 18.4 Passing a Stack template object to a function template.

Function template testStack uses T (specified at line 10) to represent
the data type stored in the Stack<T> . The function template takes five
arguments (lines 12–16):

the Stack<T> to manipulate
a value of type T that will be the first value pushed onto the
Stack<T>

a value of type T used to increment the values pushed onto the
Stack<T>

the number of elements to push onto the Stack<T>

a string that represents the name of the Stack<T> object for output
purposes

Function main (lines 38–46) instantiates an object of type
Stack<double> called doubleStack (line 39) and an object of type
Stack<int> called intStack (line 43) and passes these objects in lines
41 and 45 to testStack . The compiler infers the type of T for
testStack from the type of the elements in the function’s first argument
(i.e., the type used to instantiate doubleStack or intStack)—so the first
call to testStack infers T as type double and the second infers T as
type int .

18.4 Nontype Parameters
Class template Stack of Section 18.2 used only a type parameter
(Fig. 18.2, line 7) in its template declaration. It’s also possible to use
nontype template parameters, which can have default arguments
and are treated as constants. For example, the C++ standard’s array
class template begins with the template declaration:

template <typename T, size_t N>

(Recall that keywords class and typename are interchangeable in
template declarations.) So, a declaration such as

array<double, 100> salesFigures;

creates a 100-element array of doubles class-template specialization,
then uses it to instantiate the object salesFigures . The array class
template encapsulates a built-in array. When you create an array
class-template specialization, the array ’s built-in array data member
has the type and size specified in the declaration—in the preceding

example, it would be a built-in array of double values with 100

elements.

We could have used this technique in our GradeBook class of Section
7.9. Rather than defining static constants in the class definition’s
body to represent the number of students and the number of tests, we
could have defined class GradeBook as a class template with two
nontype template parameters, as in

template <size_t students, size_t tests>

class GradeBook {

 // class definition's body

};

then used the nontype template parameters’ values throughout the
class definition. We ask you to implement this version of class
GradeBook in Exercise 18.14.

18.5 Default Arguments for
Template Type Parameters
In addition, a type parameter can specify a default type argument.
For example, the C++ standard’s stack container adapter class
template begins with:

template <class T, class Container = deque<T>>

which specifies that a stack uses a deque by default to store the
stack ’s elements of type T . The declaration

stack<int> values;

creates a stack of ints class-template specialization (behind the
scenes) and uses it to instantiate the object named values . The
stack ’s elements are stored in a deque<int> .

Default type parameters must be the rightmost (trailing) parameters in
a template’s type-parameter list. When you instantiate a template with

two or more default arguments, if an omitted argument is not the
rightmost, then all type parameters to the right of it also must be
omitted. As of C++11, you can use default type arguments for
template type parameters in function templates.

11

18.6 Overloading Function
Templates
Function templates and overloading are intimately related. In Section
6.17, you learned that when overloaded functions perform identical
operations on different types of data, they can be expressed more
compactly and conveniently using function templates. You can then
write function calls with different types of arguments and let the
compiler generate separate function-template specializations to
handle each function call appropriately. The function-template
specializations generated from a given function template all have the
same name, so the compiler uses overload resolution to invoke the
proper function.

You may also overload function templates. For example, you can
provide other function templates that specify the same function name
but different function parameters. A function template also can be
overloaded by providing nontemplate functions with the same function
name but different function parameters.

Matching Process for Overloaded
Functions

The compiler performs a matching process to determine what function
to call when a function is invoked. It looks at both existing functions
and function templates to locate a function or generate a function-
template specialization whose function name and argument types are
consistent with those of the function call. If there are no matches, the
compiler issues an error message. If there are multiple matches for
the function call, the compiler attempts to determine the best match. If
there’s more than one best match, the call is ambiguous and the
compiler issues an error message.2

2. The compiler’s process for resolving function calls is complex. The
complete details are discussed in Section 13.3.3 of the C++ standard.

18.7 Wrap-Up
This chapter discussed class templates and class-template
specializations. We used a class template to create a group of related
class-template specializations that each perform identical processing
on different data types. We discussed nontype template parameters.
We showed how to overload a function template to create a
customized version that handles a particular data type’s processing in
a manner that differs from the other function-template specializations.
In the next chapter, we demonstrate how to create your own custom
templatized dynamic data structures, including linked lists, stacks,
queues and binary trees.

Summary

Section 18.1 Introduction

Templates enable us to specify a range of related (overloaded)
functions—called function-template specializations (p. 785)—or
a range of related classes—called class-template specializations
(p. 785).

Section 18.2 Class Templates

Class templates provide the means for describing a class
generically and for instantiating classes that are type-specific
versions of this generic class.
Class templates are called parameterized types (p. 785); they
require type parameters to specify how to customize a generic
class template to form a specific class-template specialization.
To use class-template specializations you write one class
template. When you need a new type-specific class, the compiler
writes the source code for the class-template specialization.
A class-template definition (p. 785) looks like a conventional
class definition, but it’s preceded by template<typename T> (or
template<class T>) to indicate this is a class-template definition. T
is a type parameter that acts as a placeholder for the type of the
class to create. The type T is mentioned throughout the class
definition and member-function definitions as a generic type name.
The names of template parameters must be unique inside a
template definition.
Member-function definitions outside a class template each begin
with the same template declaration as their class. Then, each
function definition resembles a conventional function definition,
except that the generic data in the class always is listed generically
as type parameter T . The binary scope-resolution operator is used

with the class-template name to tie each member-function
definition to the class template’s scope.

Section 18.4 Nontype Parameters

It’s possible to use nontype parameters (p. 792) in a class or
function template declaration.

Section 18.5 Default Arguments for
Template Type Parameters

You can specify a default type argument (p. 792) for a type
parameter in the type-parameter list.

Section 18.6 Overloading Function
Templates

A function template may be overloaded in several ways. We can
provide other function templates that specify the same function
name but different function parameters. A function template can
also be overloaded by providing other nontemplate functions with
the same function name, but different function parameters. If both
the template and non-template versions match a call, the non-
template version will be used.

Self-Review Exercises
1. 18.1 State which of the following are true and which are false. If

false, explain why.
A. Keywords typename and class as used with a template

type parameter specifically mean “any user-defined
class type.”

B. A function template can be overloaded by another
function template with the same function name.

C. Template parameter names among template definitions
must be unique.

D. Each member-function definition outside its
corresponding class template definition must begin with
template and the same template parameters as its class
template.

2. 18.2 Fill in the blanks in each of the following:
A. Templates enable us to specify, with a single code

segment, an entire range of related functions called
 , or an entire range of related classes called .

B. All template definitions begin with the keyword ,
followed by a list of template parameters enclosed in
 .

C. The related functions generated from a function template
all have the same name, so the compiler uses
resolution to invoke the proper function.

D. Class templates also are called types.
E. The operator is used with a class-template name

to tie each member-function definition to the class
template’s scope.

Exercises
1. 18.3 (Operator Overloads in Templates) Write a simple

function template for predicate function isEqualTo that
compares its two arguments of the same type with the equality
operator (==) and returns true if they are equal and false
otherwise. Use this function template in a program that calls
isEqualTo only with a variety of fundamental types. Now write a
separate version of the program that calls isEqualTo with a
user-defined class type, but does not overload the equality
operator. What happens when you attempt to run this program?
Now overload the equality operator (with the operator function)
operator== . Now what happens when you attempt to run this
program?

2. 18.4 (Array Class Template) Reimplement class Array from
Figs. 10.10–10.11 as a class template. Exercise each of the
new Array class template’s capabilities in a program.

3. 18.5 Distinguish between the terms “function template” and
“function-template specialization.”

4. 18.6 Explain which is more like a stencil—a class template or a
class-template specialization?

5. 18.7 What’s the relationship between function templates and
overloading?

6. 18.8 The compiler performs a matching process to determine
which function-template specialization to call when a function is

invoked. Under what circumstances does an attempt to make a
match result in a compile error?

7. 18.9 Why is it appropriate to refer to a class template as a
parameterized type?

8. 18.10 Explain why a C++ program would use the statement

Array<Employee> workerList{100};

9. 18.11 Review your answer to Exercise 18.10. Explain why a
C++ program might use the statement

Array<Employee> workerList;

10. 18.12 Explain the use of the following notation in a C++
program:

template <typename T> Array<T>::Array(int s)

11. 18.13 Why might you use a nontype parameter with a class
template for a container such as an array or stack?

12. 18.14 (GradeBook Class Template) Reimplement class
GradeBook from Section 7.9 as a class template with two
nontype template parameters that represent the number of
students and the number of tests (as described in Section
18.4). Test multiple instances of the GradeBook class template
with different numbers of students and exams.

Answers to Self-Review Exercises
1. 18.1

A. False. Keywords typename and class in this context also
allow for a type parameter of a fundamental type.

B. True.
C. False. Template parameter names among function

templates need not be unique.
D. True.

2. 18.2
A. function-template specializations, class-template

specializations.
B. template , angle brackets (< and >).
C. overload.
D. parameterized.
E. scope resolution.

19 Custom Templatized Data
Structures

Objectives
In this chapter you’ll:

Form linked data structures using pointers, self-referential classes
and recursion.
Create and manipulate dynamic data structures such as linked
lists, queues, stacks and binary trees.
Use binary search trees for high-speed searching and sorting.
Learn important applications of linked data structures.
Create reusable data structures with class templates, inheritance
and composition.
Have the opportunity to try many challenging data-structures
exercises, including the Building Your Own Compiler project.

Outline
1. 19.1 Introduction

A. 19.1.1 Always Prefer the Standard Library’s
Containers, Iterators and Algorithms, if Possible

B. 19.1.2 Special Section: Building Your Own Compiler

2. 19.2 Self-Referential Classes
3. 19.3 Linked Lists

A. 19.3.1 Testing Our Linked List Implementation
B. 19.3.2 Class Template ListNode
C. 19.3.3 Class Template List
D. 19.3.4 Member Function insertAtFront
E. 19.3.5 Member Function insertAtBack
F. 19.3.6 Member Function removeFromFront
G. 19.3.7 Member Function removeFromBack
H. 19.3.8 Member Function print
I. 19.3.9 Circular Linked Lists and Double Linked Lists

4. 19.4 Stacks
A. 19.4.1 Taking Advantage of the Relationship

Between Stack and List
B. 19.4.2 Implementing a Class Template Stack Class

Based By Inheriting from List
C. 19.4.3 Dependent Names in Class Templates

D. 19.4.4 Testing the Stack Class Template
E. 19.4.5 Implementing a Class Template Stack Class

With Composition of a List Object

5. 19.5 Queues
A. 19.5.1 Applications of Queues
B. 19.5.2 Implementing a Class Template Queue Class

Based By Inheriting from List
C. 19.5.3 Testing the Queue Class Template

6. 19.6 Trees
A. 19.6.1 Basic Terminology
B. 19.6.2 Binary Search Trees
C. 19.6.3 Testing the Tree Class Template
D. 19.6.4 Class Template TreeNode
E. 19.6.5 Class Template Tree
F. 19.6.6 Tree Member Function insertNodeHelper
G. 19.6.7 Tree Traversal Functions
H. 19.6.8 Duplicate Elimination
I. 19.6.9 Overview of the Binary Tree Exercises

7. 19.7 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

5. Special Section: Building Your Own Compiler

19.1 Introduction
We’ve studied fixed-size data structures—such as one- and two-
dimensional template-based arrays (Chapter 7) and built-in arrays
(Chapter 8)—and various C++ Standard Library dynamic data
structures (arrays and vectors in Chapter 7 and other template-
based containers in Chapter 15) that can grow and shrink during
execution.

In this chapter, we demonstrate how you can create your own custom
templatized dynamic data structures. We discuss several popular and
important data structures and implement programs that create and
manipulate them:

Linked lists are collections of data items logically “lined up in a
row”—insertions and removals are made anywhere in a linked list.
Stacks (which we introduced in Section 6.11 and discussed again
in Section 15.7.1) are important in compilers and operating
systems: Insertions and removals are made only at one end of a
stack—its top.
Queues represent waiting lines; insertions are made at the back
(also referred to as the tail) of a queue and removals are made
from the front (also referred to as the head) of a queue.
Binary trees facilitate searching and sorting data, duplicate
elimination and compiling expressions into machine code.

Each of these data structures has many other interesting applications.
We use class templates, inheritance and composition to create and
package these data structures for reusability and maintainability. The
programs employ extensive pointer manipulation. The exercises
include a rich collection of useful applications.

19.1.1 Always Prefer the Standard
Library’s Containers, Iterators and
Algorithms, if Possible

The C++ Standard Library’s containers, iterators for traversing those
containers and algorithms for processing the containers’ elements
meet the needs of most C++ programmers. The Standard Library
code is carefully written to be correct, portable, efficient and
extensible. Understanding how to build custom templatized data
structures will also help you use the Standard Library containers,
iterators and algorithms, more effectively.

19.1.2 Special Section: Building
Your Own Compiler

We encourage you to attempt the optional project described in the
Special Section: Building Your Own Compiler (http://www.deitel.com/
books/cpphtp10). You’ve been using a C++ compiler to translate your
programs to machine code so that you can execute these programs
on your computer. In this project, you’ll actually build your own
compiler. It will read a file of statements written in a simple, yet
powerful, high-level language similar to early versions of BASIC. Your
compiler will translate these statements into a file of Simpletron
Machine Language (SML) instructions—SML is the artificial language
you learned in the Chapter 8 Special Section: Building Your Own
Computer. Your Simpletron Simulator program will then execute the
SML program produced by your compiler! The special section
discusses the high-level language and the algorithms you’ll need to
convert each type of high-level language statement into machine
code. We provide compiler-theory exercises and suggest
enhancements to both the compiler and the Simpletron Simulator.

http://www.deitel.com/books/cpphtp10

19.2 Self-Referential Classes
A self-referential class contains a member that points to a class
object of the same class type. For example, the definition

class Node {

public:

 explicit Node(int); // constructor

 void setData(int); // set data member

 int getData() const; // get data member

 void setNextPtr(Node*); // set pointer to next Node

 Node* getNextPtr() const; // get pointer to next Node

private:

 int data; // data stored in this Node

 Node* nextPtr; // pointer to another object of same type

};

defines a type, Node . Type Node has two private data members—
integer member data and pointer member nextPtr . Member nextPtr
points to an object of type Node—an object of the same type as the
one being declared here, hence the term self-referential class.
Member nextPtr is referred to as a link—i.e., nextPtr can “tie” an
object of type Node to another object of the same type. Type Node also

has five member functions—a constructor that receives an integer to
initialize member data , a setData function to set the value of member
data , a getData function to return the value of member data , a
setNextPtr function to set the value of member nextPtr and a
getNextPtr function to return the value of member nextPtr .

Self-referential class objects can be linked together to form useful data
structures such as lists, queues, stacks and trees. Figure 19.1
illustrates two self-referential class objects linked together to form a
list. Note that a slash—representing a null pointer (nullptr)—is placed
in the link member of the second self-referential class object to
indicate that the link does not point to another object. The slash is for
illustration purposes only; it does not correspond to the backslash
character in C++. A null pointer normally indicates the end of a data
structure.

 Common Programming Error
19.1

Not setting the link in the last node of a linked data structure to
nullptr is a (possibly fatal) logic error.

Fig. 19.1 Two self-referential class objects linked together.

The following sections discuss lists, stacks, queues and trees. The
data structures presented in this chapter are created and maintained
with dynamic memory allocation (Section 10.9), self-referential
classes, class templates (Chapters 7, 15 and 18) and function
templates (Section 6.17).

19.3 Linked Lists
A linked list is a linear collection of self-referential class objects, called
nodes, connected by pointer links—hence, the term “linked” list. A
linked list is accessed via a pointer to the list’s first node. Each
subsequent node is accessed via the link-pointer member stored in
the previous node. By convention, the link pointer in the last node of a
list is set to nullptr to mark the end of the list. Data is stored in a
linked list dynamically—each node is created and destroyed as
necessary. A node can contain data of any type, including objects of
other classes. If nodes contain base-class pointers to base-class and
derived-class objects related by inheritance, we can have a linked list
of such nodes and process them polymorphically using virtual
function calls. Stacks and queues are also linear data structures
and, as we’ll see, can be viewed as constrained versions of linked
lists. Trees are nonlinear data structures.

Linked lists provide several advantages over array objects and built-in
arrays. A linked list is appropriate when the number of data elements
to be represented at one time is unpredictable. Linked lists are
dynamic, so the length of a list can increase or decrease as
necessary. The size of an array object or built-in array, however,
cannot be altered, because the array size is fixed at compile time. An
array object or built-in array can become full. Linked lists become full

only when the system has insufficient memory to satisfy additional
dynamic storage allocation requests.

 Performance Tip 19.1

An array object or built-in array can be declared to contain more

elements than the number of items expected, but this can waste
memory. Linked lists can provide better memory utilization in these
situations. Linked lists can grow and shrink as necessary at runtime.
Class template vector (Section 7.10) implements a dynamically

resizable array-based data structure.

Linked lists can be maintained in sorted order by inserting each new
element at the proper point in the list. Existing list elements do not
need to be moved. Pointers merely need to be updated to point to the
correct node.

 Performance Tip 19.2

Insertion and deletion in a sorted array object or built-in array can be

time consuming—all the elements following the inserted or deleted
element must be shifted appropriately. A linked list allows efficient
insertion operations anywhere in the list.

 Performance Tip 19.3

The elements of an array object or built-in array are stored

contiguously in memory. This allows immediate access to any
element, because an element’s address can be calculated directly
based on its position relative to the beginning of the array object or

built-in array. Linked lists do not afford such immediate direct access
to their elements, so accessing individual elements can be
considerably more expensive. The selection of a data structure is
typically based on the performance of specific operations used by a
program and the order in which the data items are maintained in the
data structure. For example, if you have a pointer to the insertion
location, it’s typically more efficient to insert an item in a sorted linked
list than a sorted array object or built-in array.

Linked-list nodes typically are not stored contiguously in memory, but
logically they appear to be contiguous. Figure 19.2 illustrates a linked
list with several nodes.

Fig. 19.2 A graphical representation of a list.

 Performance Tip 19.4

Using dynamic memory allocation for data structures that grow and
shrink at execution time can save memory.

19.3.1 Testing Our Linked List
Implementation

The program of Figs. 19.3–19.5 uses a List class template to
manipulate a list of integer values and a list of floating-point values.
The driver program (Fig. 19.3) has five options:

insert a value at the beginning of the List
insert a value at the end of the List
delete a value from the beginning of the List
delete a value from the end of the List
end the List processing

The linked list implementation we present here does not allow
insertions and deletions anywhere in the linked list. We ask you to
implement these operations in Exercise 19.25. Exercise 19.20 asks
you to implement a recursive function that prints a linked list
backwards, and Exercise 19.21 asks you to implement a recursive
function that searches a linked list for a particular data item.

In Fig. 19.3, Lines 66 and 70 create List objects for types int and
double , respectively. Lines 67 and 71 invoke the testList function
template to manipulate objects.

Fig. 19.3 Manipulating a linked list.

19.3.2 Class Template ListNode

Figure 19.3 uses class templates ListNode (Fig. 19.4) and List (Fig.
19.5). Encapsulated in each List object is a linked list of ListNode
objects. Class template ListNode (Fig. 19.4) contains private
members data and nextPtr (lines 20–21), a constructor (lines 15–16)
to initialize these members and function getData (line 18) to return the
data in a node. Member data stores a value of type NODETYPE , the type
parameter passed to the class template. Member nextPtr stores a
pointer to the next ListNode object in the linked list. Line 12 of the
ListNode class template definition declares class List<NODETYPE> as a
friend . This makes all member functions of a given specialization of
class template List friends of the corresponding specialization of
class template ListNode , so they can access the private members of
ListNode objects of that type. We do this for performance and because
these two classes are tightly coupled—only class template List
manipulates objects of class template ListNode . Because the ListNode
template parameter NODETYPE is used as the template argument for
List in the friend declaration, ListNodes specialized with a particular
type can be processed only by a List specialized with the same type
(e.g., a List of int values manages ListNode objects that store int
values). To use the type name List<NODETYPE> in line 12, the compiler
needs to know that class template List exists. Line 8 is a so-called

forward declaration of class template List . A forward declaration
tells the compiler that a type exists, even if it has not yet been defined.

 Error-Prevention Tip 19.1
Assign nullptr to the link member of a new node. Pointers must be

initialized before they’re used.

Fig. 19.4 ListNode class-template definition.

19.3.3 Class Template List

Lines 132–133 of the List class template (Fig. 19.5) declare and
initialize to nullptr the private data members firstPtr and lastPtr
—pointers to the List ’s first and last ListNodes. The destructor (lines
13–29) destroys all of the List ’s ListNode objects when the List is
destroyed. The primary List functions are insertAtFront (lines 32–
42), insertAtBack (lines 45–55), removeFromFront (lines 58–76) and
removeFromBack (lines 79–105). We discuss each of these after Fig.
19.5.

Function isEmpty (lines 108–110) is a predicate function that
determines whether the List is empty. Function print (lines 113–
129) displays the List ’s contents. Utility function getNewNode (lines
136–138) returns a dynamically allocated ListNode object. This
function is called from functions insertAtFront and insertAtBack .

Fig. 19.5 List class-template definition.

19.3.4 Member Function
insertAtFront

Over the next several pages, we discuss each of the member
functions of class List in detail. Function insertAtFront (Fig. 19.5,
lines 32–42) places a new node at the front of the list. The function
consists of several steps:

1. Call function getNewNode (line 33), passing it value , which is a
constant reference to the node value to be inserted.

2. Function getNewNode (lines 136–138) uses operator new to
create a new list node and return a pointer to this newly
allocated node, which is used to initialize newPtr in
insertAtFront (line 33).

3. If the list is empty (line 35), firstPtr and lastPtr are set to
newPtr (line 36)—i.e., the first and last node are the same
node.

4. If the list is not empty, then the node pointed to by newPtr is
threaded into the list by copying firstPtr to newPtr->nextPtr
(line 39), so that the new node points to what used to be the
first node of the list, and copying newPtr to firstPtr (line 40),
so that firstPtr now points to the new first node of the list.

Figure 19.6 illustrates the function insertAtFront ’s operation. Part (a)
shows the list and the new node before calling insertAtFront . The
dashed arrows in part (b) illustrate Step 4 of the insertAtFront
operation that enables the node containing 12 to become the new list
front.

Fig. 19.6 Operation insertAtFront represented graphically.

19.3.5 Member Function
insertAtBack

Function insertAtBack (Fig. 19.5, lines 45–55) places a new node at
the back of the list. The function consists of several steps:

1. Call function getNewNode (line 46), passing it value , which is a
constant reference to the node value to be inserted.

2. Function getNewNode (lines 136–138) uses operator new to
create a new list node and return a pointer to this newly
allocated node, which is used to initialize newPtr in
insertAtBack (line 46).

3. If the list is empty (line 48), then both firstPtr and lastPtr are
set to newPtr (line 49).

4. If the list is not empty, then the node pointed to by newPtr is
threaded into the list by copying newPtr into lastPtr->nextPtr
(line 52), so that the new node is pointed to by what used to be
the last node of the list, and copying newPtr to lastPtr (line
53), so that lastPtr now points to the new last node of the list.

Figure 19.7 illustrates an insertAtBack operation. Part (a) of the figure
shows the list and the new node before the operation. The dashed

arrows in part (b) illustrate Step 4 of function insertAtBack that

enables a new node to be added to the end of a list that’s not empty.

19.3.6 Member Function
removeFromFront

Function removeFromFront (Fig. 19.5, lines 58–76) removes the front
node of the list and copies the node value to the reference parameter.
The function returns false if an attempt is made to remove a node
from an empty list (lines 59–61) and returns true if the removal is
successful. The function consists of several steps:

1. Initialize tempPtr with the address to which firstPtr points (line
63). Eventually, tempPtr will be used to delete the node being
removed.

Fig. 19.7 Operation insertAtBack represented graphically.

2. If firstPtr is equal to lastPtr (line 65), i.e., if the list has only
one element prior to the removal attempt, then set firstPtr
and lastPtr to nullptr (line 66) to dethread that node from the
list (leaving the list empty).

3. If the list has more than one node prior to removal, then leave
lastPtr as is and set firstPtr to firstPtr->nextPtr (line 69;
i.e., modify firstPtr to point to what was the second node prior
to removal (and is now the new first node).

4. After all these pointer manipulations are complete, copy to
reference parameter value the data member of the node being
removed (line 72).

5. Now delete the node pointed to by tempPtr (line 73).
6. Return true , indicating successful removal (line 74).

Figure 19.8 illustrates function removeFromFront . Part (a) illustrates the
list before the removal operation. Part (b) shows the actual pointer
manipulations for removing the front node from a nonempty list.

19.3.7 Member Function
removeFromBack

Function removeFromBack (Fig. 19.5, lines 79–105) removes the back
node of the list and copies the node value to the reference parameter.
The function returns false if an attempt is made to remove a node
from an empty list (lines 80–82) and returns true if the removal is
successful. The function consists of several steps:

1. Initialize tempPtr with the address to which lastPtr points (line
84). Eventually, tempPtr will be used to delete the node being
removed.

2. If firstPtr is equal to lastPtr (line 86), i.e., if the list has only
one element prior to the removal attempt, then set firstPtr
and lastPtr to nullptr (line 87) to dethread that node from the
list (leaving the list empty).

Fig. 19.8 Operation removeFromFront represented graphically.

3. If the list has more than one node prior to removal, then
initialize currentPtr with the address to which firstPtr points
(line 90) to prepare to “walk the list.”

4. Now “walk the list” with currentPtr until it points to the node
before the last node. This node will become the last node after
the remove operation completes. This is done with a while loop
(lines 93–95) that keeps replacing currentPtr by currentPtr-
>nextPtr , while currentPtr->nextPtr is not lastPtr .

5. Assign lastPtr to the address to which currentPtr points (line
97) to dethread the back node from the list.

6. Set currentPtr->nextPtr to nullptr (line 98) in the new last
node of the list.

7. After all the pointer manipulations are complete, copy to
reference parameter value the data member of the node being
removed (line 101).

8. Now delete the node pointed to by tempPtr (line 102).
9. Return true (line 103), indicating successful removal.

Figure 19.9 illustrates removeFromBack . Part (a) of the figure illustrates
the list before the removal operation. Part (b) of the figure shows the
actual pointer manipulations.

19.3.8 Member Function print

Function print (Fig. 19.5, lines 113–129) first determines whether the
list is empty (line 114). If so, it prints "The list is empty" and returns
(lines 115–116). Otherwise, it outputs the value in each node. The
function initializes currentPtr with firstPtr (line 119), then prints the
string "The list is: " (line 121). While currentPtr is not nullptr (line
123), currentPtr->data is printed (line 124) and currentPtr is assigned
the value of currentPtr->nextPtr

Fig. 19.9 Operation removeFromBack represented graphically.

(line 125). Note that if the link in the last node of the list does not have
the value nullptr , the printing algorithm will erroneously attempt to
print past the end of the list. Our printing algorithm here is identical for
linked lists, stacks and queues (because we base each of these data
structures on the same linked list infrastructure).

19.3.9 Circular Linked Lists and
Double Linked Lists

The kind of linked list we’ve been discussing is a singly linked list—
the list begins with a pointer to the first node, and each node contains
a pointer to the next node “in sequence.” This list terminates with a
node whose pointer member has the value nullptr . A singly linked list
may be traversed in only one direction.

A circular, singly linked list (Fig. 19.10) begins with a pointer to the
first node, and each node contains a pointer to the next node. The
“last node” does not contain nullptr ; rather, the pointer in the last
node points back to the first node, thus closing the “circle.”

Fig. 19.10 Circular, singly linked list.

A doubly linked list (Fig. 19.11)—such as the Standard Library list
class template—allows traversals both forward and backward. Such a

list is often implemented with two “start pointers”—one that points to
the first element of the list to allow front-to-back traversal of the list
and one that points to the last element to allow back-to-front traversal.
Each node has both a forward pointer to the next node in the list in the
forward direction and a backward pointer to the next node in the list in
the backward direction. If your list contains an alphabetized telephone
directory, for example, a search for someone whose name begins with
a letter near the front of the alphabet might best begin from the front of
the list. Searching for someone whose name begins with a letter near
the end of the alphabet might best begin from the back of the list.

Fig. 19.11 Doubly linked list.

In a circular, doubly linked list (Fig. 19.12), the forward pointer of
the last node points to the first node, and the backward pointer of the
first node points to the last node, thus closing the “circle.”

Fig. 19.12 Circular, doubly linked list.

19.4 Stacks
You learned the concept of a stack in Section 6.11, Section 15.7.1
(stack adapter) and Section 18.2. Recall that a node can be added to
a stack and removed from a stack only at its top, so a stack is referred
to as a last-in, first-out (LIFO) data structure. One way to implement a
stack is as a constrained version of a linked list. In such an
implementation, the link member in the last node of the stack is set to
nullptr to indicate the bottom of the stack.

The primary member functions used to manipulate a stack are push
and pop . Function push inserts a new node at the top of the stack.
Function pop removes a node from the top of the stack, stores the
popped value in a reference variable that’s passed to the calling
function and returns true if the pop operation was successful (false
otherwise).

Applications of Stacks
Stacks have many interesting applications:

In Section 6.11, you learned that when a function call is made, the
called function must know how to return to its caller, so the return
address is pushed onto a stack. If a series of function calls occurs,
the successive return values are pushed onto the stack in last-in,

first-out order, so that each function can return to its caller. Stacks
support recursive function calls in the same manner as
conventional nonrecursive calls.
Stacks provide the memory for, and store the values of, automatic
variables on each invocation of a function. When the function
returns to its caller or throws an exception, the destructor (if any)
for each local object is called, the space for that function’s
automatic variables is popped off the stack and those variables are
no longer known to the program.
Stacks are used by compilers in the process of evaluating
expressions and generating machine-language code. The
exercises explore several applications of stacks, including using
them to develop your own complete working compiler.

19.4.1 Taking Advantage of the
Relationship Between Stack and
List

We’ll take advantage of the close relationship between lists and stacks
to implement a stack class primarily by reusing our List class
template. First, we’ll implement the Stack class template via private
inheritance from our List class template. Then we’ll implement an
identically performing Stack class template through composition by
including a List object as a private member of a Stack class
template.

19.4.2 Implementing a Class
Template Stack Class Based By
Inheriting from List

The program of Figs. 19.13–19.14 creates a Stack class template
(Fig. 19.13) primarily through private inheritance (line 9) of the List
class template of Fig. 19.5. We want the Stack to have member
functions push (Fig. 19.13, lines 12–14), pop (lines 17–19),
isStackEmpty (lines 22–24) and printStack (lines 27–29). Note that
these are essentially the insertAtFront , removeFromFront , isEmpty and
print functions of the List class template. Of course, the List class
template contains other member functions (i.e., insertAtBack and
removeFromBack) that we would not want to make accessible through
the public interface to the Stack class. So when we indicate that the
Stack class template is to inherit from the List class template, we
specify private inheritance. This makes all the List class template’s
member functions private in the Stack class template. When we
implement the Stack ’s member functions, we then have each of these
call the appropriate member function of the List class— push calls
insertAtFront (line 13), pop calls removeFromFront (line 18),

isStackEmpty calls isEmpty (line 23) and printStack calls print (line

28)—this is referred to as delegation.

Fig. 19.13 Stack class-template definition.

19.4.3 Dependent Names in Class
Templates

The explicit use of this on lines 23 and 28 is required so the compiler
can properly resolve identifiers in template definitions. A dependent
name is an identifier that depends on a template parameter. For
example, the call to removeFromFront (line 18) depends on the
argument data which has a type that’s dependent on the template
parameter STACKTYPE . Resolution of dependent names occurs when
the template is instantiated.

In contrast, the identifier for a function that takes no arguments like
isEmpty or print in the List superclass is a non-dependent name.
Such identifiers are normally resolved at the point where the template
is defined. If the template has not yet been instantiated, then the code
for the function with the non-dependent name does not yet exist and
some compilers will generate compilation errors. Adding the explicit
use of this-> in lines 23 and 28 makes the calls to the base class’s
member functions dependent on the template parameter and ensures
that the code will compile properly.

19.4.4 Testing the Stack Class
Template

The stack class template is used in main (Fig. 19.14) to instantiate
integer stack intStack of type Stack<int> (line 8). Integers 0 through 2
are pushed onto intStack (lines 13–16), then popped off intStack
(lines 21–25). The program uses the Stack class template to create
doubleStack of type Stack<double> (line 27). Values 1.1, 2.2 and 3.3
are pushed onto doubleStack (lines 33–37), then popped off
doubleStack (lines 42–46).

Fig. 19.14 A simple stack program.

19.4.5 Implementing a Class
Template Stack Class With
Composition of a List Object

Another way to implement a Stack class template is by reusing the
List class template through composition. Figure 19.15 is a new
implementation of the Stack class template that contains a
List<STACKTYPE> object called stackList (line 33). This version of the
Stack class template uses class List from Fig. 19.5. To test this
class, use the driver program in Fig. 19.14, but include the new
header— Stackcomposition.h—in line 4. The output of the program is
identical for both versions of class Stack .

Fig. 19.15 Stack class template with a composed List object.

19.5 Queues
Recall that queue nodes are removed only from the head of the queue
and are inserted only at the tail of the queue. For this reason, a queue
is referred to as a first-in, first-out (FIFO) data structure. The insert and
remove operations are known as enqueue and dequeue .

19.5.1 Applications of Queues

Queues have many applications in computer systems.

Computers that have a single processor can service only one user
at a time. Entries for the other users are placed in a queue. Each
entry gradually advances to the front of the queue as users receive
service. The entry at the front of the queue is the next to receive
service.
Queues are also used to support print spooling. For example, a
single printer might be shared by all users of a network. Many
users can send print jobs to the printer, even when the printer is
already busy. These print jobs are placed in a queue until the
printer becomes available. A program called a spooler manages
the queue to ensure that, as each print job completes, the next
print job is sent to the printer.

Information packets also wait in queues in computer networks.
Each time a packet arrives at a network node, it must be routed to
the next node on the network along the path to the packet’s final
destination. The routing node routes one packet at a time, so
additional packets are enqueued until the router can route them.
A file server in a computer network handles file access requests
from many clients throughout the network. Servers have a limited
capacity to service requests from clients. When that capacity is
exceeded, client requests wait in queues.

19.5.2 Implementing a Class
Template Queue Class Based By
Inheriting from List

The program of Figs. 19.16–19.17 creates a Queue class template
(Fig. 19.16) through private inheritance (line 9) of the List class
template from Fig. 19.5. The Queue has member functions enqueue
(Fig. 19.16, lines 12–14), dequeue (lines 17–19), isQueueEmpty (lines
22–24) and printQueue (lines 27–29). These are essentially the
insertAt-Back , removeFromFront , isEmpty and print functions of the
List class template. Of course, the List class template contains
other member functions that we do not want to make accessible
through the public interface to the Queue class. So when we indicate

that the Queue class template is to inherit the List class template, we
specify private inheritance. This makes all the List class template’s
member functions private in the Queue class template. When we
implement the Queue ’s member functions, we have each of these call
the appropriate member function of the list class— enqueue calls
insertAtBack (line 13), dequeue calls removeFromFront (line 18),
isQueueEmpty calls isEmpty (line 23) and printQueue calls print (line
28). As with the Stack example in Fig. 19.13, this delegation requires
explicit use of the this pointer in isQueueEmpty and printQueue to

avoid compilation errors.

Fig. 19.16 Queue class-template definition.

19.5.3 Testing the Queue Class

Template

Figure 19.17 uses the Queue class template to instantiate integer
queue intQueue of type Queue<int> (line 8). Integers 0 through 2 are
enqueued to intQueue (lines 13–16), then dequeued from intQueue in
first-in, first-out order (lines 21–25). Next, the program instantiates
queue doubleQueue of type Queue<double> (line 27). Values 1.1, 2.2 and
3.3 are enqueued to doubleQueue (lines 33–37), then dequeued from
doubleQueue in first-in, first-out order (lines 42–46).

Fig. 19.17 Queue-processing program.

19.6 Trees
Linked lists, stacks and queues are linear data structures. A tree is a
nonlinear, two-dimensional data structure. Tree nodes contain two or
more links. This section discusses binary trees (Fig. 19.18)—trees
whose nodes all contain two links (none, one or both of which may
have the value nullptr).

19.6.1 Basic Terminology

For this discussion, refer to nodes A , B , C and D in Fig. 19.18. The
root node (node B) is the first node in a tree. Each link in the root
node refers to a child (nodes A and D). The left child (node A) is the
root node of the left subtree (which contains only node A), and the
right child (node D) is the root node of the right subtree (which
contains nodes D and C). The children of a given node are called
siblings (e.g., nodes A and D are siblings). A node with no children is
a leaf node (e.g., nodes A and C are leaf nodes). Computer scientists
normally draw trees from the root node down—the opposite of how
trees grow in nature.

Fig. 19.18 A graphical representation of a binary tree.

19.6.2 Binary Search Trees

A binary search tree (with no duplicate node values) has the
characteristic that the values in any left subtree are less than the value
in its parent node, and the values in any right subtree are greater
than the value in its parent node. Figure 19.19 illustrates a binary
search tree with 9 values. Note that the shape of the binary search
tree that corresponds to a set of data can vary, depending on the
order in which the values are inserted into the tree.

Fig. 19.19 A binary search tree.

Implementing the Binary Search Tree
Program
The program of Figs. 19.20–19.22 creates a binary search tree and
traverses it (i.e., walks through all its nodes) three ways—using
recursive inorder, preorder and postorder traversals. We explain
these traversal algorithms shortly.

19.6.3 Testing the Tree Class
Template

We begin our discussion with the driver program (Fig. 19.20), then
continue with the implementations of classes TreeNode (Fig. 19.21)
and Tree (Fig. 19.22). Function main (Fig. 19.20) begins by
instantiating integer tree intTree of type Tree<int> (line 9). The
program prompts for 10 integers, each of which is inserted in the
binary tree by calling insertNode (line 17). The program then performs
preorder, inorder and postorder traversals (these are explained
shortly) of intTree (lines 21, 24 and 27, respectively). Next, we
instantiate floating-point tree doubleTree of type Tree<double> (line 29),
then prompt for 10 double values, each of which is inserted in the
binary tree by calling insertNode (line 38). Finally, we perform
preorder, inorder and postorder traversals of doubleTree (lines 42, 45
and 48, respectively).

Fig. 19.20 Creating and traversing a binary tree.

19.6.4 Class Template TreeNode

The TreeNode class template (Fig. 19.21) definition declares
Tree<NODETYPE> as its friend (line 12). This makes all member
functions of a given specialization of class template Tree (Fig. 19.22)
friends of the corresponding specialization of class template
TreeNode , so they can access the private members of TreeNode
objects of that type. Because the TreeNode template parameter
NODETYPE is used as the template argument for Tree in the friend
declaration, TreeNodes specialized with a particular type can be
processed only by a Tree specialized with the same type (e.g., a Tree
of int values manages TreeNode objects that store int values).

Lines 20–22 declare a TreeNode ’s private data—the node’s data
value, and pointers leftPtr (to the node’s left subtree) and rightPtr
(to the node’s right subtree). Both pointers are initialized to nullptr—
thus initializing this node to be a leaf node. The constructor (line 15)
sets data to the value supplied as a constructor argument. Member
function getData (line 18) returns the data value.

Fig. 19.21 TreeNode class-template definition.

19.6.5 Class Template Tree

Class template Tree (Fig. 19.22) has as private data rootPtr (line
33), a pointer to the tree’s root node that’s initialized to nullptr to
indicate an empty tree. The class’s public member functions are
insertNode (lines 13–15) that inserts a new node in the tree and
preOrderTraversal (lines 18–20), inOrderTraversal (lines 23–25) and
postOrderTraversal (lines 28–30), each of which walks the tree in the
designated manner. Each of these member functions calls its own
recursive utility function to perform the appropriate operations on the
internal representation of the tree, so the program is not required to
access the underlying private data to perform these functions.
Remember that the recursion requires us to pass in a pointer that
represents the next subtree to process.

Fig. 19.22 Tree class-template definition.

19.6.6 Tree Member Function
insertNodeHelper

The Tree class’s utility function insertNodeHelper (lines 37–58) is
called by insertNode (lines 13–15) to recursively insert a node into the
tree. A node can only be inserted as a leaf node in a binary search
tree. If the tree is empty, a new TreeNode is created, initialized and
inserted in the tree (lines 40–42).

If the tree is not empty, the program compares the value to be inserted
with the data value in the root node. If the insert value is smaller (line
45), the program recursively calls insertNodeHelper (line 46) to insert
the value in the left subtree. If the insert value is larger (line 50), the
program recursively calls insertNodeHelper (line 51) to insert the value
in the right subtree. If the value to be inserted is identical to the data
value in the root node, the program prints the message " dup" (line
54) and returns without inserting the duplicate value into the tree. Note
that insertNode passes the address of rootPtr to insertNodeHelper
(line 14) so it can modify the value stored in rootPtr (i.e., the address
of the root node). To receive a pointer to rootPtr (which is also a
pointer), insertNodeHelper ’s first argument is declared as a pointer to a

pointer to a TreeNode .

19.6.7 Tree Traversal Functions

Member functions preOrderTraversal (lines 18–20), inOrderTraversal
(lines 23–25) and postOrderTraversal (lines 28–30) traverse the tree
and print the node values. For the purpose of the following discussion,
we use the binary search tree in Fig. 19.23.

Fig. 19.23 A binary search tree.

Inorder Traversal Algorithm
Function inOrderTraversal invokes utility function inOrderHelper (lines
70–76) to perform the inorder traversal of the binary tree. The steps
for an inorder traversal are:

1. Traverse the left subtree with an inorder traversal. (This is
performed by the call to inOrderHelper at line 72.)

2. Process the value in the node—i.e., print the node value (line
73).

3. Traverse the right subtree with an inorder traversal. (This is
performed by the call to inOrderHelper at line 74.)

The value in a node is not processed until the values in its left subtree
are processed, because each call to inOrderHelper immediately calls
inOrderHelper again with the pointer to the left subtree. The inorder
traversal of the tree in Fig. 19.23 is

6 13 17 27 33 42 48

The inorder traversal of a binary search tree prints the node values in
ascending order. The process of creating a binary search tree actually
sorts the data—thus, this process is called the binary tree sort.

Preorder Traversal Algorithm
Function preOrderTraversal invokes utility function preOrderHelper
(lines 61–67) to perform the preorder traversal of the binary tree. The
steps for a preorder traversal are:

1. Process the value in the node (line 63).
2. Traverse the left subtree with a preorder traversal. (This is

performed by the call to preOrderHelper at line 64.)
3. Traverse the right subtree with a preorder traversal. (This is

performed by the call to preOrderHelper at line 65.)

The value in each node is processed as the node is visited. After the
value in a given node is processed, the values in the left subtree are

processed. Then the values in the right subtree are processed. The
preorder traversal of the tree in Fig. 19.23 is

27 13 6 17 42 33 48

Postorder Traversal Algorithm
Function postOrderTraversal invokes utility function postOrderHelper
(lines 79–85) to perform the postorder traversal of the binary tree. The
steps for a postorder traversal are:

1. Traverse the left subtree with a postorder traversal. (This is
performed by the call to postOrderHelper at line 81.)

2. Traverse the right subtree with a postorder traversal. (This is
performed by the call to postOrderHelper at line 82.)

3. Process the value in the node (line 83).

The value in each node is not printed until the values of its children
are printed. The postOrderTraversal of the tree in Fig. 19.23 is

6 17 13 33 48 42 27

19.6.8 Duplicate Elimination

The binary search tree facilitates duplicate elimination. As the tree is
being created, an attempt to insert a duplicate value will be
recognized, because a duplicate will follow the same “go left” or “go
right” decisions on each comparison as the original value did when it
was inserted in the tree. Thus, the duplicate will eventually be
compared with a node containing the same value. The duplicate value
may be discarded at this point.

Searching a binary tree for a value that matches a key is also fast. If
the tree is balanced, then each branch contains about half the nodes
in the tree. Each comparison of a node to the search key eliminates
half the nodes. This is called an O(log n) algorithm (Big O notation is
discussed in Chapter 20). So a binary search tree with n elements
would require a maximum of comparisons either to find a
match or to determine that no match exists. For example, searching a
(balanced) 1000-element binary search tree requires no more than 10
comparisons, because . Searching a (balanced)
1,000,000-element binary search tree requires no more than 20
comparisons, because .

19.6.9 Overview of the Binary Tree
Exercises

In the exercises, algorithms are presented for several other binary tree
operations such as deleting an item from a binary tree, printing a
binary tree in a two-dimensional tree format and performing a level-
order traversal of a binary tree. The level-order traversal of a binary
tree visits the nodes of the tree row by row, starting at the root node
level. On each level of the tree, the nodes are visited from left to right.
Other binary tree exercises include allowing a binary search tree to
contain duplicate values, inserting string values in a binary tree and
determining how many levels are contained in a binary tree.

19.7 Wrap-Up
In this chapter, you learned that linked lists are collections of data
items that are “linked up in a chain.” You also learned that a program
can perform insertions and deletions anywhere in a linked list (though
our implementation performed insertions and deletions only at the
ends of the list). We demonstrated that the stack and queue data
structures are constrained versions of lists. For stacks, you saw that
insertions and deletions are made only at the top. For queues, you
saw that insertions are made at the tail and deletions are made from
the head. We also presented the binary tree data structure. You saw a
binary search tree that facilitated high-speed searching and sorting of
data and efficient duplicate elimination. You learned how to create
these data structures for reusability (as templates) and maintainability.
In the next chapter, we study various searching and sorting
techniques and implement them as function templates.

Summary

Section 19.1 Introduction
Dynamic data structures (p. 798) grow and shrink during
execution.
Linked lists (p. 798) are collections of data items “lined up in a
row”—insertions and removals are made anywhere in a linked list.
Stacks (p. 798) are important in compilers and operating systems:
Insertions and removals are made only at one end of a stack—its
top (p. 798).
Queues (p. 798) represent waiting lines; insertions are made at the
back (also referred to as the tail; p. 798) of a queue and removals
are made from the front (also referred to as the head; p. 798).
Binary trees (p. 798) facilitate high-speed searching and sorting of
data, efficient duplicate elimination, representation of file-system
directories and compilation of expressions into machine code.

Section 19.2 Self-Referential Classes
A self-referential class (p. 799) contains a pointer that points to
an object of the same class type.
 Self-referential class objects can be linked together to form useful
data structures such as lists, queues, stacks and trees.

Section 19.3 Linked Lists
A linked list is a linear collection of self-referential class objects,
called nodes, connected by pointer links (p. 800)—hence, the
term “linked” list.
 A linked list is accessed via a pointer to the first node of the list.
Each subsequent node is accessed via the link-pointer member
stored in the previous node and the last node contains a null
pointer.
Linked lists, stacks and queues are linear data structures (p.
800). Trees are nonlinear data structures (p. 800).
 A linked list is appropriate when the number of data elements to
be represented is unpredictable.
Linked lists are dynamic, so the length of a list can increase or
decrease as necessary.
 A singly linked list begins with a pointer to the first node, and each
node contains a pointer to the next node “in sequence.”
A circular, singly linked list (p. 813) begins with a pointer to the
first node, and each node contains a pointer to the next node. The
“last node” does not contain a null pointer; rather, the pointer in the
last node points back to the first node, thus closing the “circle.”
A doubly linked list (p. 814) allows traversals both forward and
backward.
 A doubly linked list is often implemented with two “start pointers”—
one that points to the first element to allow front-to-back traversal
of the list and one that points to the last element to allow back-to-

front traversal. Each node has a pointer to both the next and
previous nodes.
In a circular, doubly linked list (p. 814), the forward pointer of the
last node points to the first node, and the backward pointer of the
first node points to the last node, thus closing the “circle.”

Section 19.4 Stacks
A stack data structure allows nodes to be added to and removed
from the stack only at the top.
 A stack is referred to as a last-in, first-out (LIFO) data structure.
Function push inserts a new node at the top of the stack. Function
pop removes a node from the top of the stack.
A dependent name (p. 816) is an identifier that depends on the
value of a template parameter. Resolution of dependent names
occurs when the template is instantiated.
Non-dependent names (p. 816) are resolved at the point where the
template is defined.

Section 19.5 Queues
A queue is similar to a supermarket checkout line—the first person
in line is serviced first, and other customers enter the line at the
end and wait to be serviced.
 Queue nodes are removed only from a queue’s head and are
inserted only at its tail.
 A queue is referred to as a first-in, first-out (FIFO) data structure.
The insert and remove operations are known as enqueue and
dequeue (p. 819).

Section 19.6 Trees
Binary trees (p. 823) are trees whose nodes all contain two links
(none, one or both of which may have the value nullptr).
The root node (p. 823) is the first node in a tree.
 Each link in the root node refers to a child. The left child is the root
node of the left subtree (p. 823), and the right child is the root
node of the right subtree (p. 823).
 The children of a single node are called siblings (p. 823). A node
with no children is called a leaf node (p. 823).
A binary search tree (p. 824) (with no duplicate node values) has
the characteristic that the values in any left subtree are less than
the value in its parent node (p. 824), and the values in any right
subtree are greater than the value in its parent node.
 A node can only be inserted as a leaf node in a binary search tree.
An inorder traversal (p. 824) of a binary tree traverses the left
subtree, processes the value in the root node then traverses the
right subtree. The value in a node is not processed until the values
in its left subtree are processed. An inorder traversal of a binary
search tree processes the nodes in sorted order.
A preorder traversal (p. 824) processes the value in the root
node, traverses the left subtree, then traverses the right subtree.
The value in each node is processed as the node is encountered.
A postorder traversal (p. 824) traverses the left subtree,
traverses the right subtree, then processes the root node’s value.
The value in each node is not processed until the values in both
subtrees are processed.

The binary search tree helps eliminate duplicate data (p. 830).
As the tree is being created, an attempt to insert a duplicate value
will be recognized and the duplicate value may be discarded.
The level-order traversal (p. 831) of a binary tree visits the nodes
of the tree row by row, starting at the root node level. On each
level of the tree, the nodes are visited from left to right.

Self-Review Exercises
1. 19.1 Fill in the blanks in each of the following:

A. A self- class is used to form dynamic data
structures that can grow and shrink at execution time

B. The operator is used to dynamically allocate
memory and construct an object; this operator returns a
pointer to the object.

C. A(n) is a constrained version of a linked list in
which nodes can be inserted and deleted only from the
start of the list and node values are returned in last-in,
first-out order.

D. A function that does not alter a linked list, but looks at
the list to determine whether it’s empty, is an example of
a(n) function.

E. A queue is referred to as a(n) data structure,
because the first nodes inserted are the first nodes
removed.

F. The pointer to the next node in a linked list is referred to
as a(n) .

G. The operator is used to destroy an object and
release dynamically allocated memory.

H. A(n) is a constrained version of a linked list in
which nodes can be inserted only at the end of the list
and deleted only from the start of the list.

I. A(n) is a nonlinear, two-dimensional data
structure that contains nodes with two or more links.

J. A stack is referred to as a(n) data structure,
because the last node inserted is the first node removed.

K. The nodes of a(n) tree contain two link
members.

L. The first node of a tree is the node.
M. Each link in a tree node points to a(n) or

 of that node.
N. A tree node that has no children is called a(n)

node.
O. The four traversal algorithms we mentioned in the text

for binary search trees are , ,
and .

2. 19.2 What are the differences between a linked list and a
stack?

3. 19.3 What are the differences between a stack and a queue?
4. 19.4 Perhaps a more appropriate title for this chapter would

have been “Reusable Data Structures.” Comment on how each
of the following entities or concepts contributes to the
reusability of data structures:

A. classes
B. class templates
C. inheritance
D. private inheritance
E. composition

5. 19.5 Provide the inorder, preorder and postorder traversals of
the binary search tree of Fig. 19.24.

Fig. 19.24 A 15-node binary search tree.

Exercises
1. 19.6 (Concatenating Lists) Write a program that concatenates

two linked list objects of characters. The program should
include function concatenate , which takes references to both list
objects as arguments and concatenates the second list to the
first list.

2. 19.7 (Merging Ordered Lists) Write a program that merges
two ordered list objects of integers into a single ordered list
object of integers. Function merge should receive references to
each of the list objects to be merged and a reference to a list
object into which the merged elements will be placed.

3. 19.8 (Summing and Averaging Elements in a List) Write a
program that inserts 25 random integers from 0 to 100 in order
in a linked list object. The program should calculate the sum of
the elements and the floating-point average of the elements.

4. 19.9 (Copying a List in Reverse Order) Write a program that
creates a linked list object of 10 characters and creates a
second list object containing a copy of the first list, but in
reverse order.

5. 19.10 (Printing a Sentence in Reverse Order with a Stack)
Write a program that inputs a line of text and uses a stack
object to print the line reversed.

6. 19.11 (Palindrome Testing with Stacks) Write a program that
uses a stack object to determine if a string is a palindrome (i.e.,

the string is spelled identically backward and forward). The
program should ignore spaces and punctuation.

7. 19.12 (Infix-to-Postfix Conversion) Stacks are used by
compilers to help in the process of evaluating expressions and
generating machine language code. In this and the next
exercise, we investigate how compilers evaluate arithmetic
expressions consisting only of constants, operators and
parentheses.
Humans generally write expressions like 3 + 4 and 7 / 9 in
which the operator (+ or / here) is written between its
operands—this is called infix notation. Computers “prefer”
postfix notation in which the operator is written to the right of
its two operands. The preceding infix expressions would appear
in postfix notation as 3 4 + and 7 9 / , respectively.
To evaluate a complex infix expression, a compiler would first
convert the expression to postfix notation and evaluate the
postfix version of the expression. Each of these algorithms
requires only a single left-to-right pass of the expression. Each
algorithm uses a stack object in support of its operation, and in
each algorithm the stack is used for a different purpose.
In this exercise, you’ll write a C++ version of the infix-to-postfix
conversion algorithm. In the next exercise, you’ll write a C++
version of the postfix expression evaluation algorithm. Later in
the chapter, you’ll discover that code you write in this exercise
can help you implement a complete working compiler.
Write a program that converts an ordinary infix arithmetic
expression (assume a valid expression is entered) with single-
digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding
infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into string infix and
use modified versions of the stack functions implemented in
this chapter to help create the postfix expression in string
postfix . The algorithm for creating a postfix expression is as
follows:

A. Push a left parenthesis '(' onto the stack.
B. Append a right parenthesis ')' to the end of infix .
C. While the stack is not empty, read infix from left to right

and do the following:
If the current character in infix is a digit, copy it to
the next element of postfix .
If the current character in infix is a left parenthesis,
push it onto the stack.
If the current character in infix is an operator,

Pop operators (if there are any) at the top of the
stack while they have equal or higher precedence

than the current operator, and insert the popped
operators in postfix .
Push the current character in infix onto the
stack.

If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert
them in postfix until a left parenthesis is at the
top of the stack.
Pop (and discard) the left parenthesis from the
stack.

The following arithmetic operations are allowed in an
expression:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder

[Note: We assume left-to-right associativity for all operators in
this exercise.] The stack should be maintained with stack
nodes, each containing a data member and a pointer to the
next stack node.
Some of the functional capabilities you may want to provide
are:

A. function convertToPostfix that converts the infix
expression to postfix notation

B. function isOperator that determines whether c is an
operator

C. function precedence that determines whether the
precedence of operator1 is greater than or equal to the
precedence of operator2 , and, if so, returns true

D. function push that pushes a value onto the stack
E. function pop that pops a value off the stack
F. function stackTop that returns the top value of the stack

without popping the stack
G. function isEmpty that determines if the stack is empty
H. function printStack that prints the stack

8. 19.13 (Postfix Evaluation) Write a program that evaluates a
valid postfix expression such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of
digits and operators into a string . Using modified versions of
the stack functions implemented earlier in this chapter, the
program should scan the expression and evaluate it. The
algorithm is as follows:

A. While you have not reached the end of the string , read
the expression from left to right.

If the current character is a digit,
Push its integer value onto the stack (the integer
value of a digit character is its value in the
computer’s character set minus the value of '0'
in the computer’s character set).

Otherwise, if the current character is an operator,
Pop the two top elements of the stack into
variables x and y .
Calculate y operator x .
Push the result of the calculation onto the stack.

B. When you reach the end of the string , pop the top value
of the stack. This is the result of the postfix expression.

[Note: In Step 2 above, if the operator is '/' , the top of the
stack is 2 and the next element in the stack is 8 , then pop 2
into x , pop 8 into y , evaluate 8 / 2 and push the result, 4 ,
back onto the stack. This note also applies to operator '–' .]
The arithmetic operations allowed in an expression are

+ addition
– subtraction
* multiplication
/ division
^ exponentiation

% remainder

[Note: We assume left-to-right associativity for all operators for
the purpose of this exercise.] The stack should be maintained
with stack nodes that contain an int data member and a
pointer to the next stack node. You may want to provide the
following functional capabilities:

A. function evaluatePostfixExpression that evaluates the
postfix expression

B. function calculate that evaluates the expression op1
operator op2

C. function push that pushes a value onto the stack
D. function pop that pops a value off the stack
E. function isEmpty that determines if the stack is empty
F. function printStack that prints the stack

9. 19.14 (Postfix Evaluation Enhanced) Modify the postfix
evaluator program of Exercise 19.13 so that it can process
integer operands larger than 9.

10. 19.15 (Supermarket Simulation) Write a program that
simulates a checkout line at a supermarket. The line is a queue
object. Customers (i.e., customer objects) arrive in random
integer intervals of 1–4 minutes. Also, each customer is served
in random integer intervals of 1–4 minutes. Obviously, the rates
need to be balanced. If the average arrival rate is larger than
the average service rate, the queue will grow infinitely. Even
with “balanced” rates, randomness can still cause long lines.

Run the supermarket simulation for a 12-hour day (720
minutes) using the following algorithm:

A. Choose a random integer from 1 to 4 to determine the
minute at which the first customer arrives.

B. At the first customer’s arrival time:
Determine customer’s service time (random integer
from 1 to 4);
Begin servicing the customer;
Schedule arrival time of next customer (random
integer 1 to 4 added to the current time).

C. For each minute of the day:
If the next customer arrives,

Say so, enqueue the customer, and schedule the
arrival time of the next customer;

If service was completed for the last customer;
Say so, dequeue next customer to be serviced
and determine customer’s service completion
time (random integer from 1 to 4 added to the
current time).

Now run your simulation for 720 minutes, and answer each of
the following:

A. What’s the maximum number of customers in the queue
at any time?

B. What’s the longest wait any one customer experiences?
C. What happens if the arrival interval is changed from 1–4

minutes to 1–3 minutes?

11. 19.16 (Allowing Duplicates in Binary Trees) Modify the
program of Figs. 19.20–19.22 to allow the binary tree object to
contain duplicates.

12. 19.17 (Binary Tree of Strings) Write a program based on
Figs. 19.20–19.22 that inputs a line of text, tokenizes the
sentence into separate words (you may want to use the
istringstream library class), inserts the words in a binary
search tree and prints the inorder, preorder and postorder
traversals of the tree. Use an OOP approach.

13. 19.18 (Duplicate Elimination) In this chapter, we saw that
duplicate elimination is straightforward when creating a binary
search tree. Describe how you’d perform duplicate elimination
using only a one-dimensional array. Compare the performance
of array-based duplicate elimination with the performance of
binary-search-tree-based duplicate elimination.

14. 19.19 (Depth of a Binary Tree) Write a function depth that
receives a binary tree and determines how many levels it has.

15. 19.20 (Recursively Print a List Backward) Write a member
function printListBackward that recursively outputs the items in
a linked list object in reverse order. Write a test program that
creates a sorted list of integers and prints the list in reverse
order.

16. 19.21 (Recursively Search a List) Write a member function
searchList that recursively searches a linked list object for a
specified value. The function should return a pointer to the
value if it’s found; otherwise, nullptr should be returned. Use
your function in a test program that creates a list of integers.

The program should prompt the user for a value to locate in the
list.

17. 19.22 (Binary Tree Search) Write member function
binaryTreeSearch , which attempts to locate a specified value in
a binary search tree object. The function should take as
arguments a pointer to the binary tree’s root node and a search
key to locate. If the node containing the search key is found,
the function should return a pointer to that node; otherwise, the
function should return a nullptr pointer.

18. 19.23 (Level-Order Binary Tree Traversal) The program of
Figs. 19.20–19.22 illustrated three recursive methods of
traversing a binary tree—inorder, preorder and postorder
traversals. This exercise presents the level-order traversal of a
binary tree, in which the node values are printed level by level,
starting at the root node level. The nodes on each level are
printed from left to right. The level-order traversal is not a
recursive algorithm. It uses a queue object to control the output
of the nodes. The algorithm is as follows:

A. Insert the root node in the queue
B. While there are nodes left in the queue,

Get the next node in the queue
Print the node’s value
If the pointer to the left child of the node is not
nullptr

Insert the left child node in the queue
If the pointer to the right child of the node is not
nullptr

Insert the right child node in the queue.

Write member function levelOrder to perform a level-order
traversal of a binary tree object. Modify the program of Figs.
19.20–19.22 to use this function. [Note: You’ll also need to
modify and incorporate the queue-processing functions of Fig.
19.16 in this program.]

19. 19.24 (Printing Trees) Write a recursive member function
outputTree to display a binary tree object on the screen. The
function should output the tree row by row, with the top of the
tree at the left of the screen and the bottom of the tree toward
the right of the screen. Each row is output vertically. For
example, the binary tree illustrated in Fig. 19.24 is output as
shown in Fig. 19.25. Note that the rightmost leaf node appears
at the top of the output in the rightmost column and the root
node appears at the left of the output. Each column of output
starts five spaces to the right of the previous column. Function
outputTree should receive an argument totalSpaces
representing the number of spaces preceding the value to be
output (this variable should start at zero, so the root node is
output at the left of the screen). The function uses a modified
inorder traversal to output the tree— it starts at the rightmost
node in the tree and works back to the left. The algorithm is as
follows:

While the pointer to the current node is not nullptr
Recursively call outputTree with the current node’s right
subtree and totalSpaces + 5
Use a for structure to count from 1 to totalSpaces and
output spaces

Output the value in the current node
Set the pointer to the current node to point to the left
subtree of the current node Increment totalSpaces by 5.

Fig. 19.25 Sample output for Exercise 19.24.

20. 19.25 (Insert/Delete Anywhere in a Linked List) Our linked
list class template allowed insertions and deletions at only the
front and the back of the linked list. These capabilities were
convenient for us when we used private inheritance and
composition to produce a stack class template and a queue
class template with a minimal amount of code by reusing the
list class template. Actually, linked lists are more general than
those we provided. Modify the linked list class template we
developed in this chapter to handle insertions and deletions
anywhere in the list.

21. 19.26 (List and Queues without Tail Pointers) Our
implementation of a linked list (Figs. 19.4–19.5) used both a
firstPtr and a lastPtr . The lastPtr was useful for the
insertAtBack and removeFromBack member functions of the List

class. The insertAtBack function corresponds to the enqueue
member function of the Queue class. Rewrite the List class so
that it does not use a lastPtr . Thus, any operations on the tail
of a list must begin searching the list from the front. Does this
affect our implementation of the Queue class (Fig. 19.16)?

22. 19.27 (Performance of Binary Tree Sorting and Searching)
One problem with the binary tree sort is that the order in which
the data is inserted affects the shape of the tree—for the same
collection of data, different orderings can yield binary trees of
dramatically different shapes. The performance of the binary
tree sorting and searching algorithms is sensitive to the shape
of the binary tree. What shape would a binary tree have if its
data were inserted in increasing order? in decreasing order?
What shape should the tree have to achieve maximal searching
performance?

23. 19.28 (Indexed Lists) As presented in the text, linked lists
must be searched sequentially. For large lists, this can result in
poor performance. A common technique for improving list
searching performance is to create and maintain an index to
the list. An index is a set of pointers to various key places in the
list. For example, an application that searches a large list of
names could improve performance by creating an index with 26
entries—one for each letter of the alphabet. A search operation
for a last name beginning with "Y" would first search the index
to determine where the "Y" entries begin and “jump into” the
list at that point and search linearly until the desired name was
found. This would be much faster than searching the linked list

from the beginning. Use the List class of Figs. 19.4–19.5 as
the basis of an IndexedList class. Write a program that
demonstrates the operation of indexed lists. Be sure to include
member functions insertInIndexedList , searchIndexedList and
deleteFromIndexedList .

Special Section: Building Your
Own Compiler
In Exercises 8.15–8.17, we introduced Simpletron Machine Language
(SML), and you implemented a Simpletron computer simulator to
execute SML programs. In Exercises 19.29–19.33, we build a
compiler that converts programs written in a high-level programming
language to SML. This section “ties” together the entire programming
process. You’ll write programs in this new high-level language,
compile them on the compiler you build and run them on the simulator
you built in Exercise 8.16. You should make every effort to implement
your compiler in an object-oriented manner. [Note: Due to the size of
the descriptions for Exercises 19.29–19.33, we’ve posted them in a
PDF document located at http://www.deitel.com/books/cpphtp10/ .]

http://www.deitel.com/books/cpphtp10/

Answers to Self-Review Exercises
1. 19.1

A. referential.
B. new .
C. stack.
D. predicate.
E. first-in, first-out (FIFO).
F. link.
G. delete .
H. queue.
I. tree.
J. last-in, first-out (LIFO).
K. binary.
L. root.

M. child or subtree.
N. leaf.
O. inorder, preorder, postorder and level order.

2. 19.2 It’s possible to insert a node anywhere in a linked list and
remove a node from anywhere in a linked list. Nodes in a stack
may only be inserted at the top of the stack and removed from
the top of a stack.

3. 19.3 A queue data structure allows nodes to be removed only
from the head of the queue and inserted only at the tail of the
queue. A queue is referred to as a first-in, first-out (FIFO) data

structure. A stack data structure allows nodes to be added to
the stack and removed from the stack only at the top. A stack is
referred to as a last-in, first-out (LIFO) data structure.

4. 19.4
A. Classes allow us to instantiate as many data structure

objects of a certain type (i.e., class) as we wish.
B. Class templates enable us to instantiate related classes,

each based on different type parameters—we can then
generate as many objects of each template class as we
like.

C. Inheritance enables us to reuse code from a base class
in a derived class, so that the derived-class data
structure is also a base-class data structure (with public
inheritance, that is).

D. Private inheritance enables us to reuse portions of the
code from a base class to form a derived-class data
structure; because the inheritance is private , all public
base-class member functions become private in the
derived class. This enables us to prevent clients of the
derived-class data structure from accessing base-class
member functions that do not apply to the derived class.

E. Composition enables us to reuse code by making a
class object data structure a member of a composed
class; if we make the class object a private member of
the composed class, then the class object’s public
member functions are not available through the
composed object’s interface.

5. 19.5 The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

20 Searching and Sorting

Objectives
In this chapter you’ll:

Search for a given value in an array using linear search and binary
search.
Sort an array using insertion sort, selection sort and the recursive
merge sort algorithms.
Use Big O notation to express the efficiency of searching and
sorting algorithms and to compare their performance.
Understand the nature of algorithms of constant, linear and
quadratic runtime.

Outline
1. 20.1 Introduction
2. 20.2 Searching Algorithms

A. 20.2.1 Linear Search
B. 20.2.2 Binary Search

3. 20.3 Sorting Algorithms
A. 20.3.1 Insertion Sort
B. 20.3.2 Selection Sort
C. 20.3.3 Merge Sort (A Recursive Implementation)

4. 20.4 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

20.1 Introduction
Searching data involves determining whether a value (referred to as
the search key) is present in the data and, if so, finding the value’s
location. Two popular search algorithms are the simple linear search
(Section 20.2.1) and the faster but more complex binary search
(Section 20.2.2).

Sorting places data in ascending or descending order, based on one
or more sort keys. A list of names could be sorted alphabetically,
bank accounts could be sorted by account number, employee payroll
records could be sorted by social security number, and so on. You’ll
learn about insertion sort (Section 20.3.1), selection sort (Section
20.3.2) and the more efficient, but more complex merge sort (Section
20.3.3). Figure 20.1 summarizes the searching and sorting algorithms
discussed in the book’s examples and exercises. This chapter also
introduces Big O notation, which is used to characterize an
algorithm’s worst-case runtime—that is, how hard an algorithm may
have to work to solve a problem.

Fig. 20.1 Searching and sorting algorithms in this text.

Algorithm Location Algorithm Location

Searching Algorithms Sorting Algorithms

Linear search Section
20.2.1

Insertion sort Section 20.3.1

Binary search Section
20.2.2

Selection sort Section 20.3.2

Recursive linear search Exercise
20.8

Recursive merge sort Section 20.3.3

Recursive binary search Exercise
20.9

Bubble sort Exercises
20.5–20.6

Binary tree search Section
19.6

Bucket sort Exercise 20.7

Linear search (linked list) Exercise
19.21

Recursive quicksort Exercise
20.10

binary_search standard

library function

Section
16.4.6

Binary tree sort Section 19.6

 sort standard

library function

Section 16.4.6

A Note About This Chapter’s Examples
The searching and sorting algorithms in this chapter are implemented
as function templates that manipulate objects of the array class
template. To help you visualize how certain algorithms work, some of
the examples display array -element values throughout the searching
or sorting process. These output statements slow an algorithm’s
performance and would not be included in industrial-strength code.

20.2 Searching Algorithms
Looking up a phone number, accessing a website and checking a
word’s definition in a dictionary all involve searching through large
amounts of data. A searching algorithm finds an element that matches
a given search key, if such an element does, in fact, exist. There are,
however, a number of things that differentiate search algorithms from
one another. The major difference is the amount of effort they require
to complete the search. One way to describe this effort is with Big O
notation. For searching and sorting algorithms, this is particularly
dependent on the number of data elements.

In Section 20.2.1, we present the linear search algorithm then discuss
the algorithm’s efficiency as measured by Big O notation. In Section
20.2.2, we introduce the binary search algorithm, which is much more
efficient but more complex to implement.

20.2.1 Linear Search

In this section, we discuss the simple linear search for determining
whether an unsorted array (i.e., an array with element values that are
in no particular order) contains a specified search key. Exercise 20.8
at the end of this chapter asks you to implement a recursive version of
the linear search.

Function Template linearSearch
Function template linearSearch (Fig. 20.2, lines 10–19) compares
each element of an array with a search key (line 13). Because the
array is not in any particular order, it’s just as likely that the search key
will be found in the first element as the last. On average, therefore, the
program must compare the search key with half of the array ’s
elements. To determine that a value is not in the array , the program
must compare the search key to every array element. Linear search
works well for small or unsorted arrays. However, for large arrays,
linear searching is inefficient. If the array is sorted (e.g., its elements
are in ascending order), you can use the high-speed binary search
technique (Section 20.2.2).

Fig. 20.2 Linear search of an array.

Big O: Constant Runtime
Suppose an algorithm simply tests whether the first element of an
array is equal to the second element. If the array has 10 elements,
this algorithm requires only one comparison. If the array has 1000
elements, the algorithm still requires only one comparison. In fact, the
algorithm is independent of the number of array elements. This
algorithm is said to have a constant runtime, which is represented in
Big O notation as O(1). An algorithm that’s O(1) does not necessarily
require only one comparison. O(1) just means that the number of
comparisons is constant—it does not grow as the size of the array
increases. An algorithm that tests whether the first element of an
array is equal to any of the next three elements will always require
three comparisons, but in Big O notation it’s still considered O(1). O(1)
is often pronounced “on the order of 1” or more simply “order 1.”

Big O: Linear Runtime
An algorithm that tests whether the first element of an array is equal
to any of the other elements of the array requires at most
comparisons, where n is the number of elements in the array . If the
array has 10 elements, the algorithm requires up to nine
comparisons. If the array has 1000 elements, the algorithm requires
up to 999 comparisons. As n grows larger, the n part of the expression

 “dominates,” and subtracting one becomes inconsequential.
Big O is designed to highlight these dominant terms and ignore terms
that become unimportant as n grows. For this reason, an algorithm
that requires a total of comparisons (such as the one we
described in this paragraph) is said to be O(n) and is referred to as
having a linear runtime. O(n) is often pronounced “on the order of n”
or more simply “order n.”

Big O: Quadratic Runtime
Now suppose you have an algorithm that tests whether any element of
an array is duplicated elsewhere in the array . The first element must
be compared with all the other elements. The second element must be
compared with all the other elements except the first (it was already
compared to the first). The third element then must be compared with
all the other elements except the first two. In the end, this algorithm
will end up making or

 comparisons. As n increases, the term dominates
and the n term becomes inconsequential. Again, Big O notation
highlights the term, leaving . As we’ll soon see, even
constant factors, such as the 1/2 here, are omitted in Big O notation.

Big O is concerned with how an algorithm’s runtime grows in relation
to the number of items processed. Suppose an algorithm requires
comparisons. With four elements, the algorithm will require 16
comparisons; with eight elements, 64 comparisons. With this
algorithm, doubling the number of elements quadruples the number of
comparisons. Consider a similar algorithm requiring
comparisons. With four elements, the algorithm will require eight
comparisons; with eight elements, 32 comparisons. Again, doubling
the number of elements quadruples the number of comparisons. Both
of these algorithms grow as the square of n, so Big O ignores the
constant, and both algorithms are considered to be , which is
referred to as quadratic runtime and pronounced “on the order of n-
squared” or more simply “order n-squared.”

 Performance
When n is small, algorithms (running on today’s billions-of-
operations-per-second personal computers) will not noticeably affect
performance. But as n grows, you’ll start to notice the performance
degradation. An algorithm running on a million-element array
would require a trillion “operations” (where each could actually require
several machine instructions to execute). This could require hours to
execute. A billion-element array would require a quintillion operations,
a number so large that the algorithm could take decades!
Unfortunately, algorithms tend to be easy to write. In this
chapter, you’ll see algorithms with more favorable Big O measures.
Such efficient algorithms often take a bit more cleverness and effort to
create, but their superior performance can be worth the extra effort,
especially as n gets large.

Linear Search’s Runtime
The linear search algorithm runs in O(n) time. The worst case in this
algorithm is that every element must be checked to determine whether
the search key is in the array . If the array ’s size doubles, the number
of comparisons that the algorithm must perform also doubles. Linear
search can provide outstanding performance if the element matching
the search key happens to be at or near the front of the array . But we
seek algorithms that perform well, on average, across all searches,
including those where the element matching the search key is near
the end of the array . If a program needs to perform many searches on
large array s, it may be better to implement a different, more efficient
algorithm, such as the binary search which we consider in the next
section.

 Performance Tip 20.1

Sometimes the simplest algorithms perform poorly. Their virtue is that
they’re easy to program, test and debug. Sometimes more complex
algorithms are required to maximize performance.

20.2.2 Binary Search

The binary search algorithm is more efficient than the linear search
algorithm, but it requires that the array first be sorted. This is only
worthwhile when the array , once sorted, will be searched a great
many times—or when the searching application has stringent
performance requirements. The first iteration of this algorithm tests the
middle array element. If this matches the search key, the algorithm
ends. Assuming the array is sorted in ascending order, then if the
search key is less than the middle element, the search key cannot
match any element in the array ’s second half so the algorithm
continues with only the first half (i.e., the first element up to, but not
including, the middle element). If the search key is greater than the
middle element, the search key cannot match any element in the
array ’s first half so the algorithm continues with only the second half

(i.e., the element after the middle element through the last element).
Each iteration tests the middle value of the array ’s remaining
elements. If the element does not match the search key, the algorithm
eliminates half of the remaining elements. The algorithm ends either
by finding an element that matches the search key or by reducing the
sub- array to zero size.

Binary Search of 15 Integer Values
As an example, consider the sorted 15-element array

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

and the search key 65. A binary search first checks whether the
middle element (51) is the search key. The search key (65) is larger
than 51, so 51 is eliminated from consideration along with the first half
of the array (all elements smaller than 51.) Next, the algorithm checks
whether 81 (the middle element of the remaining elements) matches
the search key. The search key (65) is smaller than 81, so 81 is
eliminated from consideration along with the elements larger than 81.
After just two tests, the algorithm has narrowed the number of
elements to check to three (56, 65 and 77). The algorithm then checks
65 (which matches the search key), and returns the element’s index
(9). In this case, the algorithm required just three comparisons to
determine whether the array contained the search key. Using a linear

search algorithm would have required 10 comparisons. [Note: In this
example, we’ve chosen to use an array with 15 elements, so that
there will always be an obvious middle element in the array . With an
even number of elements, the middle of the array lies between two
elements. We implement the algorithm to choose the element with the
higher index number.]

Binary Search Example
Figure 20.3 implements and demonstrates the binary-search
algorithm. Throughout the program’s execution, we use function
template displayElements (lines 11–23) to display the portion of the
array that’s currently being searched.

Fig. 20.3 Binary search of an array.

Function Template binarySearch
Lines 26–59 define function template binarySearch , which has two
parameters—a reference to the array to search and a reference to the
search key. Lines 28–30 calculate the low end index, high end index
and middle index of the portion of the array that the algorithm is
currently searching. When binarySearch is first called, low is 0 , high
is the array ’s size minus 1 and middle is the average of these two
values. Line 31 initializes location to -1—the value that binarySearch
returns if the search key is not found. Lines 33–56 loop until low is
greater than high (indicating that the element was not found) or
location does not equal -1 (indicating that the search key was
found). Line 45 tests whether the value in the middle element is equal
to key . If so, line 46 assigns the middle index to location . Then the
loop terminates and location is returned to the caller. Each iteration of
the loop that does not find the search key tests a single value (line 48)
and eliminates half of the remaining values in the array (line 49 or
51).

Function main
Lines 64–66 set up a random-number generator for int values from
10– 99 . Lines 68–74 create an array and fill it with random ints.
Recall that the binary search algorithm requires a sorted array , so line
76 calls the Standard Library function sort to sort arrayToSearch ’s
elements into ascending order. Line 78 displays arrayToSearch ’s
sorted contents.

Lines 88–105 loop until the user enters the value -1 . For each search
key the user enters, the program performs a binary search of
arrayToSearch to determine whether it contains the search key. The
first line of output from this program shows arrayToSearch ’s contents in
ascending order. When the user instructs the program to search for
48 , the program first tests the middle element, which is 60 (as
indicated by *). The search key is less than 60 , so the program
eliminates the second half of the array and tests the middle element
from the first half of the array . The search key equals 48 , so the
program returns the index 3 after performing just two comparisons.
The output also shows the results of searching for the values 92 and
22 .

Efficiency of Binary Search
In the worst-case scenario, searching a sorted array of 1023
elements will take only 10 comparisons when using a binary search.
Repeatedly dividing 1023 by 2 (because, after each comparison, we
can eliminate from consideration half of the remaining elements) and
rounding down (because we also remove the middle element) yields
the values 511, 255, 127, 63, 31, 15, 7, 3, 1 and 0. The number 1023
is divided by 2 only 10 times to get the value 0, which indicates that
there are no more elements to test. Dividing by 2 is equivalent to one
comparison in the binary search algorithm. Thus, an array of

1,048,575 elements takes a maximum of 20 comparisons
to find the key, and an array of approximately one billion elements
takes a maximum of 30 comparisons to find the key. This is a
tremendous performance improvement over the linear search. For a
one-billion-element array , this is a difference between an average of
500 million comparisons for the linear search and a maximum of only
30 comparisons for the binary search! The maximum number of
comparisons needed for the binary search of any sorted array is the
exponent of the first power of 2 greater than the number of elements
in the array , which is represented as . All logarithms grow at

roughly the same rate, so in Big O notation the base can be omitted.
This results in a Big O of O(log n) for a binary search, which is also
known as logarithmic runtime and pronounced “on the order of log
n” or more simply “order log n.”

20.3 Sorting Algorithms
Sorting data (i.e., placing the data into some particular order, such as
ascending or descending) is one of the most important computing
applications. A bank sorts all of its checks by account number so that
it can prepare individual bank statements at the end of each month.
Telephone companies sort their lists of accounts by last name and,
further, by first name to make it easy to find phone numbers. Virtually
every organization must sort some data, and often, massive amounts
of it. Sorting data is an intriguing, computer-intensive problem that has
attracted intense research efforts.

An important point to understand about sorting is that the end result—
the sorted array—will be the same no matter which algorithm you use

to sort the array . Your algorithm choice affects only the algorithm’s

runtime and memory use. The next two sections introduce the
selection sort and insertion sort—simple algorithms to implement, but
inefficient. In each case, we examine the efficiency of the algorithms
using Big O notation. We then present the merge sort algorithm, which
is much faster but is more difficult to implement.

20.3.1 Insertion Sort

Figure 20.4 uses insertion sort—a simple, but inefficient, sorting
algorithm—to sort a 10-element array ’s values into ascending order.
Function template insertionSort (lines 9–25) implements the
algorithm.

Fig. 20.4 Sorting an array into ascending order with insertion
sort.

Insertion Sort Algorithm
The algorithm’s first iteration takes the array ’s second element and, if
it’s less than the first element, swaps it with the first element (i.e., the
algorithm inserts the second element in front of the first element). The
second iteration looks at the third element and inserts it into the
correct position with respect to the first two elements, so all three
elements are in order. At the ith iteration of this algorithm, the first i
elements in the original array will be sorted.

First Iteration
Line 29 declares and initializes the array named data with the
following values:

34 56 4 10 77 51 93 30 5 52

Line 38 passes the array to the insertionSort function, which
receives the array in parameter items . The function first looks at
items[0] and items[1] , whose values are 34 and 56 , respectively.
These two elements are already in order, so the algorithm continues—
if they were out of order, the algorithm would swap them.

Second Iteration
In the second iteration, the algorithm looks at the value of items[2]
(that is, 4). This value is less than 56 , so the algorithm stores 4 in a
temporary variable and moves 56 one element to the right. The
algorithm then determines that 4 is less than 34 , so it moves 34 one
element to the right. At this point, the algorithm has reached the
beginning of the array , so it places 4 in items[0] . The array now is

4 34 56 10 77 51 93 30 5 52

Third Iteration and Beyond
In the third iteration, the algorithm places the value of items[3] (that
is, 10) in the correct location with respect to the first four array
elements. The algorithm compares 10 to 56 and moves 56 one
element to the right because it’s larger than 10 . Next, the algorithm
compares 10 to 34 , moving 34 right one element. When the algorithm
compares 10 to 4 , it observes that 10 is larger than 4 and places 10
in items[1] . The array now is

4 10 34 56 77 51 93 30 5 52

Using this algorithm, after the ith iteration, the first i + 1 array
elements are sorted. They may not be in their final locations, however,
because the algorithm might encounter smaller values later in the
array .

Function Template insertionSort
Function template insertionSort performs the sorting in lines 12–24,
which iterates over the array ’s elements. In each iteration, line 13
temporarily stores in variable insert the value of the element that will

be inserted into the array ’s sorted portion. Line 14 declares and
initializes the variable moveIndex , which keeps track of where to insert

the element. Lines 17–21 loop to locate the correct position where the
element should be inserted. The loop terminates either when the
program reaches the array ’s first element or when it reaches an

element that’s less than the value to insert. Line 19 moves an element
to the right, and line 20 decrements the position at which to insert the
next element. After the while loop ends, line 23 inserts the element
into place. When the for statement in lines 12–24 terminates, the
array ’s elements are sorted.

Big O: Efficiency of Insertion Sort
Insertion sort is simple, but inefficient, sorting algorithm. This becomes
apparent when sorting large arrays. Insertion sort iterates
times, inserting an element into the appropriate position in the
elements sorted so far. For each iteration, determining where to insert
the element can require comparing the element to each of the
preceding elements—n – 1 comparisons in the worst case. Each
individual iteration statement runs in O(n) time. To determine Big O
notation, nested statements mean that you must multiply the number
of comparisons. For each iteration of an outer loop, there will be a
certain number of iterations of the inner loop. In this algorithm, for
each O(n) iteration of the outer loop, there will be O(n) iterations of the
inner loop, resulting in a Big O of O(n * n) or .

20.3.2 Selection Sort

Figure 20.5 uses the selection sort algorithm—another easy-to-
implement, but inefficient, sorting algorithm—to sort a 10-element
array ’s values into ascending order. Function template selectionSort
(lines 9–27) implements the algorithm.

Fig. 20.5 Sorting an array into ascending order with selection
sort.

Selection Sort Algorithm
The algorithm’s first iteration selects the smallest element value and
swaps it with the first element’s value. The second iteration selects the
second-smallest element value (which is the smallest of the remaining
elements) and swaps it with the second element’s value. The
algorithm continues until the last iteration selects the second-largest
element and swaps it with the second-to-last element’s value, leaving
the largest value in the last element. After the ith iteration, the smallest
i values will be sorted into increasing order in the first i array
elements.

First Iteration
Line 31 declares and initializes the array named data with the
following values:

34 56 4 10 77 51 93 30 5 52

The selection sort first determines the smallest value (4) in the array,
which is in element 2. The algorithm swaps 4 with the value in element
0 (34), resulting in

4 56 34 10 77 51 93 30 5 52

Second Iteration
The algorithm then determines the smallest value of the remaining
elements (all elements except 4), which is 5, contained in element 8.
The program swaps the 5 with the 56 in element 1, resulting in

4 5 34 10 77 51 93 30 56 52

Third Iteration
On the third iteration, the program determines the next smallest value,
10, and swaps it with the value in element 2 (34).

4 5 10 34 77 51 93 30 56 52

The process continues until the array is fully sorted.

4 5 10 30 34 51 52 56 77 93

After the first iteration, the smallest element is in the first position; after
the second iteration, the two smallest elements are in order in the first
two positions and so on.

Function Template selectionSort
Function template selectionSort performs the sorting in lines 12–26.
The loop iterates size - 1 times. Line 13 declares and initializes the
variable indexOfSmallest , which stores the index of the smallest
element in the unsorted portion of the array . Lines 16–20 iterate over
the remaining array elements. For each element, line 17 compares the
current element’s value to the value at indexOfSmallest . If the current

element is smaller, line 18 assigns the current element’s index to
indexOfSmallest . When this loop finishes, indexOfSmallest contains the
index of the smallest element remaining in the array . Lines 23–25
then swap the elements at positions i and indexOfSmallest , using the
temporary variable hold to store items[i] ’s value while that element is
assigned items[indexOfSmallest] .

Efficiency of Selection Sort
The selection sort algorithm iterates times, each time swapping
the smallest remaining element into its sorted position. Locating the
smallest remaining element requires comparisons during the
first iteration, during the second iteration, then ,
2, 1. This results in a total of or
comparisons. In Big O notation, smaller terms drop out and constants
are ignored, leaving a Big O of . Can we develop sorting
algorithms that perform better than ?

20.3.3 Merge Sort (A Recursive
Implementation)

Merge sort is an efficient sorting algorithm but is conceptually more
complex than insertion sort and selection sort. The merge sort
algorithm sorts an array by splitting it into two equal-sized sub-
arrays, sorting each sub- array then merging them into one larger
array . With an odd number of elements, the algorithm creates the two
sub- arrays such that one has one more element than the other.

Merge sort performs the merge by looking at each sub- array ’s first
element, which is also the smallest element in that sub- array . Merge
sort takes the smallest of these and places it in the first element of
merged sorted array . If there are still elements in the sub- array ,
merge sort looks at the second element in that sub- array (which is
now the smallest element remaining) and compares it to the first
element in the other sub- array . Merge sort continues this process
until the merged array is filled. Once a sub- array has no more
elements, the merge copies the other array ’s remaining elements into
the merged array.

Sample Merge
Suppose the algorithm has already merged smaller arrays to create
sorted arrays A:

4 10 34 56 77

and B:

5 30 51 52 93

Merge sort merges these arrays into a sorted array . The smallest
value in A is 4 (located in the zeroth element of A). The smallest value
in B is 5 (located in the zeroth element of B). In order to determine the
smallest element in the larger array , the algorithm compares 4 and 5.
The value from A is smaller, so 4 becomes the value of the first
element in the merged array . The algorithm continues by comparing
10 (the value of the second element in A) to 5 (the value of the first
element in B). The value from B is smaller, so 5 becomes the value of
the second element in the larger array . The algorithm continues by
comparing 10 to 30, with 10 becoming the value of the third element in
the array , and so on.

Recursive Implementation
Our merge sort implementation is recursive. The base case is an
array with one element. Such an array is, of course, sorted, so merge
sort immediately returns when it’s called with a one-element array .
The recursion step splits an array of two or more elements into two
equal-sized sub- arrays, recursively sorts each sub- array , then
merges them into one larger, sorted array . [Again, if there is an odd
number of elements, one sub- array is one element larger than the
other.]

Demonstrating Merge Sort
Figure 20.6 implements and demonstrates the merge sort algorithm.
Throughout the program’s execution, we use function template
displayElements (lines 10–22) to display the portions of the array that
are currently being split and merged. Function templates mergeSort
(lines 25–48) and merge (lines 51–98) implement the merge sort
algorithm. Function main (lines 100–125) creates an array , populates
it with random integers, executes the algorithm (line 120) and displays
the sorted array. The output from this program displays the splits and
merges performed by merge sort, showing the progress of the sort at
each step of the algorithm.

Fig. 20.6 Sorting an array into ascending order with merge sort.

Function mergeSort
Recursive function mergeSort (lines 25–48) receives as parameters
the array to sort and the low and high indices of the range of
elements to sort. Line 28 tests the base case. If the high index minus
the low index is 0 (i.e., a one-element sub- array), the function simply
returns. If the difference between the indices is greater than or equal
to 1 , the function splits the array in two—lines 29–30 determine the
split point. Next, line 42 recursively calls function mergeSort on the
array ’s first half, and line 43 recursively calls function mergeSort on
the array ’s second half. When these two function calls return, each
half is sorted. Line 46 calls function merge (lines 51–98) on the two
halves to combine the two sorted arrays into one larger sorted array .

Function merge
Lines 67–76 in function merge loop until the program reaches the end
of either sub- array . Line 70 tests which element at the beginning of
the two sub- arrays is smaller. If the element in the left sub- array is
smaller or both are equal, line 71 places it in position in the combined
array . If the element in the right sub- array is smaller, line 74 places it
in position in the combined array . When the while loop completes,
one entire sub- array is in the combined array , but the other sub-
array still contains data. Line 78 tests whether the left sub- array has
reached the end. If so, lines 79–81 fill the combined array with the
elements of the right sub- array . If the left sub- array has not reached
the end, then the right sub- array must have reached the end, and
lines 84–86 fill the combined array with the elements of the left sub-
array . Finally, lines 90–92 copy the combined array into the original
array .

Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or
selection sort— although that may be difficult to believe when looking
at the busy output in Fig. 20.6. Consider the first (nonrecursive) call to
function mergeSort (line 120). This results in two recursive calls to
function mergeSort with sub- arrays that are each approximately half
the original array ’s size, and a single call to function merge . The call to
merge requires, at worst, comparisons to fill the original array ,
which is O(n). (Recall that each array element is chosen by
comparing one element from each of the sub- arrays.) The two calls to
function mergeSort result in four more recursive calls to function
mergeSort—each with a sub- array approximately one-quarter the size
of the original array—and two calls to function merge . These two calls
to function merge each require, at worst, n/2 – 1 comparisons, for a
total number of comparisons of O(n). This process continues, each
call to mergeSort generating two additional calls to mergeSort and a
call to merge , until the algorithm has split the array into one-element
sub- arrays. At each level, O(n) comparisons are required to merge
the sub- arrays. Each level splits the size of the arrays in half, so
doubling the size of the array requires one more level. Quadrupling
the size of the array requires two more levels. This pattern is
logarithmic and results in n levels. This results in a total
efficiency of O(n log n).

Summary of Searching and Sorting
Algorithm Efficiencies
Figure 20.7 summarizes the searching and sorting algorithms we
cover in this chapter and lists the Big O for each. Figure 20.8 lists the
Big O categories we’ve covered in this chapter along with a number of
values for n to highlight the differences in the growth rates.

Fig. 20.7 Searching and sorting algorithms with Big O values.

Algorithm Location Big O

Searching Algorithms

Linear search Section 20.2.1 O(n)

Binary search Section 20.2.2 O(log n)

Recursive linear search Exercise 20.8 O(n)

Recursive binary search Exercise 20.9 O(log n)

Sorting Algorithms

Insertion sort Section 20.3.1

Selection sort Section 20.3.2

Merge sort Section 20.3.3 O(n log n)

Bubble sort Exercises 20.5–20.6

Quicksort Exercise 20.10 Worst case:

Average case: O(n log n)

Fig. 20.8 Approximate number of comparisons for common Big O
notations.

n Approximate decimal value O(log n) O(n) O(n log n)

1000 10

1,000,000 20

1,000,000,000 30

20.4 Wrap-Up
This chapter discussed searching and sorting data. We began by
discussing searching. We first presented the simple, but inefficient
linear search algorithm. Then, we presented the binary search
algorithm, which is faster but more complex than linear search. Next,
we discussed sorting data. You learned two simple, but inefficient
sorting techniques—insertion sort and selection sort. Then, we
presented the merge sort algorithm, which is more efficient than either
the insertion sort or the selection sort. Throughout the chapter we also
introduced Big O notation, which helps you express the efficiency of
an algorithm by measuring the worst-case runtime of an algorithm. Big
O is useful for comparing algorithms so that you can choose the most
efficient one. In the next chapter, we discuss typical string-
manipulation operations provided by class template basic_string . We
also introduce string stream-processing capabilities that allow strings
to be input from and output to memory.

Summary

Section 20.1 Introduction
Searching data involves determining whether a search key (p.
842) is present in the data and, if so, returning its location.
 Sorting (p. 842) involves arranging data into order.
One way to describe the efficiency of an algorithm is with Big O
notation (p. 842), which indicates how much work an algorithm
must do to solve a problem.

Section 20.2 Searching Algorithms
A key difference among searching algorithms is the amount of
effort they require to return a result.

Section 20.2.1 Linear Search
The linear search (p. 843) compares each array element with a
search key. Because the array is not in any particular order, it’s
just as likely that the value will be found in the first element as the
last. On average, the algorithm must compare the search key with
half the array elements. To determine that a value is not in the
array , the algorithm must compare the search key to every
element in the array .
Big O describes how an algorithm’s effort varies depending on the
number of elements in the data.
An algorithm that’s O(1) has a constant runtime (p. 844)—the
number of comparisons does not grow as the size of the array
increases.
An O(n) algorithm is referred to as having a linear runtime (p.
845).
Big O highlights dominant factors and ignores terms that are
unimportant with high values of n.
Big O notation represents the growth rate of algorithm runtimes, so
constants are ignored.
The linear search algorithm runs in O(n) time.
In the worst case for linear search every element must be checked
to determine whether the search element exists. This occurs if the
search key is the last element in the array or is not present.

Section 20.2.2 Binary Search
Binary search (p. 846) is more efficient than linear search, but it
requires that the array first be sorted. This is worthwhile only when
the array , once sorted, will be searched many times.
The first iteration of binary search tests the middle element. If this
is the search key, the algorithm returns its location. If the search
key is less than the middle element, binary search continues with
the first half of the array . If the search key is greater than the
middle element, binary search continues with the second half.
Each iteration tests the middle value of the remaining array and, if
the element is not found, eliminates from consideration half of the
remaining elements.
Binary search is more efficient than linear search, because with
each comparison it eliminates from consideration half of the
elements in the array .
Binary search runs in O(log n) (p. 850) time.
If the size of the array is doubled, binary search requires only one
extra comparison to complete.

Section 20.3.1 Insertion Sort
The first iteration of an insertion sort (p. 851) takes the second
element and, if it’s less than the first element, swaps it with the first
element (i.e., the algorithm inserts the second element in front of
the first element). The second iteration looks at the third element
and inserts it into the correct position with respect to the first two
elements, so all three elements are in order. At the ith iteration of
this algorithm, the first i elements in the original array will be
sorted. For small arrays, the insertion sort is acceptable, but for
larger arrays it’s inefficient compared to other more sophisticated
sorting algorithms.
The insertion sort algorithm runs in time.

Section 20.3.2 Selection Sort
The first iteration of selection sort (p. 853) selects the smallest
element and swaps it with the first element. The second iteration
selects the second-smallest element (which is the smallest
remaining element) and swaps it with the second element. This
continues until the last iteration selects the second-largest element
and swaps it with the second-to-last index, leaving the largest
element in the last index. At the ith iteration, the smallest i
elements are sorted into the first i elements.
The selection sort algorithm runs in time.

Section 20.3.3 Merge Sort (A Recursive
Implementation)

Merge sort (p. 855) is faster, but more complex to implement, than
insertion sort and selection sort.
The merge sort algorithm sorts an array by splitting the array into
two equal-sized sub- arrays, sorting each sub- array and merging
the sub- arrays into one larger array .
Merge sort’s base case is an array with one element, which is
already sorted. The merge part of merge sort takes two sorted
arrays (these could be one-element arrays) and combines them
into one larger sorted array .
Merge sort performs the merge by looking at the first element in
each array , which is also the smallest element in each. Merge sort
takes the smallest of these and places it in the first element of the
larger, sorted array . If there are still elements in the sub- array ,
merge sort looks at the second element in that sub- array (which is
now the smallest element remaining) and compares it to the first
element in the other sub- array . Merge sort continues this process
until the larger array is filled.
In the worst case, the first call to merge sort has to make O(n)
comparisons to fill the n slots in the final array .
The merging portion of the merge sort algorithm is performed on
two sub- arrays, each of approximately size n/2. Creating each of
these sub- arrays requires n/2 – 1 comparisons for each sub-

array , or O(n) comparisons total. This pattern continues, as each
level works on twice as many arrays, but each is half the size of
the previous array .

Similar to binary search, this halving results in log n levels, each
level requiring O(n) comparisons, for a total efficiency of O(n logn)
(p. 861).

Self-Review Exercises
1. 20.1 Fill in the blanks in each of the following statements:

A. A selection sort application would take approximately
 times as long to run on a 128-element array as
on a 32-element array .

B. The efficiency of merge sort is .

2. 20.2 What key aspect of both the binary search and the merge
sort accounts for the logarithmic portion of their respective Big
Os?

3. 20.3 In what sense is the insertion sort superior to the merge
sort? In what sense is the merge sort superior to the insertion
sort?

4. 20.4 In the text, we say that after the merge sort splits the
array into two sub- arrays, it then sorts these two sub- arrays
and merges them. Why might someone be puzzled by our
statement that “it then sorts these two sub- arrays”?

Exercises
1. 20.5 (Bubble Sort) Implement the bubble sort algorithm—

another simple yet inefficient sorting technique. It’s called
bubble sort or sinking sort because smaller values gradually
“bubble” their way to the top of the array (i.e., toward the first
element) like air bubbles rising in water, while the larger values
sink to the bottom (end) of the array . The technique uses
nested loops to make several passes through the array . Each
pass compares successive pairs of elements. If a pair is in
increasing order (or the values are equal), the bubble sort
leaves the values as they are. If a pair is in decreasing order,
the bubble sort swaps their values in the array .
The first pass compares the first two element values of the
array and swaps them if necessary. It then compares the
second and third element values in the array . The end of this
pass compares the last two element values in the array and
swaps them if necessary. After one pass, the largest value will
be in the last element. After two passes, the largest two values
will be in the last two elements. Explain why bubble sort is an

 algorithm.
2. 20.6 (Enhanced Bubble Sort) Make the following simple

modifications to improve the performance of the bubble sort
you developed in Exercise 20.5:

A. After the first pass, the largest value is guaranteed to be
in the highest-numbered element of the array ; after the
second pass, the two highest values are “in place”; and
so on. Instead of making nine comparisons (for a 10-
element array) on every pass, modify the bubble sort to
make only the eight necessary comparisons on the
second pass, seven on the third pass, and so on.

B. The data in the array may already be in the proper order
or near-proper order, so why make nine passes (of a 10-
element array) if fewer will suffice? Modify the sort to
check at the end of each pass whether any swaps have
been made. If none have been made, the data must
already be in the proper order, so the program should
terminate. If swaps have been made, at least one more
pass is needed.

3. 20.7 (Bucket Sort) A bucket sort begins with a one-
dimensional array of positive integers to be sorted and a two-
dimensional array of integers with rows indexed from 0 to 9
and columns indexed from 0 to n – 1, where n is the number of
values to be sorted. Each row of the two-dimensional array is
referred to as a bucket. Write a class named BucketSort
containing a function called sort that operates as follows:

A. Place each value of the one-dimensional array into a
row of the bucket array , based on the value’s “ones”
(rightmost) digit. For example, 97 is placed in row 7, 3 is

placed in row 3 and 100 is placed in row 0. This
procedure is called a distribution pass.

B. Loop through the bucket array row by row, and copy the
values back to the original array . This procedure is
called a gathering pass. The new order of the preceding
values in the one-dimensional array is 100, 3 and 97.

C. Repeat this process for each subsequent digit position
(tens, hundreds, thousands, etc.).

On the second (tens digit) pass, 100 is placed in row 0, 3 is
placed in row 0 (because 3 has no tens digit) and 97 is placed
in row 9. After the gathering pass, the order of the values in the
one-dimensional array is 100, 3 and 97. On the third (hundreds
digit) pass, 100 is placed in row 1, 3 is placed in row 0 and 97
is placed in row 0 (after the 3). After this last gathering pass,
the original array is in sorted order.
Note that the two-dimensional array of buckets is 10 times the
length of the integer array being sorted. This sorting technique
provides better performance than a bubble sort, but requires
much more memory—the bubble sort requires space for only
one additional element of data. This comparison is an example
of the space–time trade-off: The bucket sort uses more memory
than the bubble sort, but performs better. This version of the
bucket sort requires copying all the data back to the original
array on each pass. Another possibility is to create a second
two-dimensional bucket array and repeatedly swap the data
between the two bucket arrays.

4. 20.8 (Recursive Linear Search) Modify Fig. 20.2 to use
recursive function recursiveLinearSearch to perform a linear
search of the array . The function should receive the array , the
search key and starting index as arguments. If the search key
is found, return its index in the array ; otherwise, return –1 .
Each call to the recursive function should check one element
value in the array .

5. 20.9 (Recursive Binary Search) Modify Fig. 20.3 to use
recursive function recursiveBinarySearch to perform a binary
search of the array . The function should receive the array , the
search key, starting index and ending index as arguments. If
the search key is found, return its index in the array . If the
search key is not found, return –1 .

6. 20.10 (Quicksort) The recursive sorting technique called
quicksort uses the following basic algorithm for a one-
dimensional array of values:

A. Partitioning Step: Take the first element of the unsorted
array and determine its final location in the sorted array
(i.e., all values to the left of the element in the array are
less than the element’s value, and all values to the right
of the element in the array are greater than the
element’s value—we show how to do this below). We
now have one value in its proper location and two
unsorted sub- arrays.

B. Recursion Step: Perform the Partitioning Step on each
unsorted sub- array .

Each time Step 1 is performed on a sub- array , another
element is placed in its final location of the sorted array, and
two unsorted sub- arrays are created. When a sub- array
consists of one element, that sub- array must be sorted;
therefore, that element is in its final location.
The basic algorithm seems simple enough, but how do we
determine the final position of the first element of each sub-
array? As an example, consider the following set of values (the
element in bold is the partitioning element—it will be placed in
its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

Starting from the rightmost element of the array, compare each
element with 37 until an element less than 37 is found. Then
swap 37 and that element. The first element less than 37 is 12,
so 37 and 12 are swapped. The values now reside in the array
as follows:

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with
37.
Starting from the left of the array, but beginning with the
element after 12, compare each element with 37 until an

element greater than 37 is found. Then swap 37 and that
element. The first element greater than 37 is 89, so 37 and 89
are swapped. The values now reside in the array as follows:

12 2 6 4 37 8 10 89 68 45

Starting from the right, but beginning with the element before
89, compare each element with 37 until an element less than
37 is found. Then swap 37 and that element. The first element
less than 37 is 10, so 37 and 10 are swapped. The values now
reside in the array as follows:

12 2 6 4 10 8 37 89 68 45

Starting from the left, but beginning with the element after 10,
compare each element with 37 until an element greater than 37
is found. Then swap 37 and that element. There are no more
elements greater than 37, so when we compare 37 with itself,
we know that 37 has been placed in its final location of the
sorted array.
Once the partition has been applied to the array, there are two
unsorted sub- arrays. The sub- array with values less than 37
contains 12, 2, 6, 4, 10 and 8. The sub- array with values
greater than 37 contains 89, 68 and 45. The sort continues with

both sub- arrays being partitioned in the same manner as the
original array.
Based on the preceding discussion, write recursive function
quickSort to sort a single-subscripted integer array. The
function should receive as arguments an integer array, a
starting subscript and an ending subscript. Function partition
should be called by quickSort to perform the partitioning step.

Answers to Self-Review Exercises
1. 20.1

A. 16, because an algorithm takes 16 times as
long to sort four times as much information.

B. O(n log n).

2. 20.2 Both of these algorithms incorporate “halving”—somehow
reducing something by half. The binary search eliminates from
consideration half of the array after each comparison. The
merge sort splits the array in half each time it’s called.

3. 20.3 The insertion sort is easier to understand and to
implement than the merge sort. The merge sort is far more
efficient (O(n log n)) than the insertion sort ().

4. 20.4 In a sense, it does not really sort these two sub- arrays. It
simply keeps splitting the original array in half until it provides a
one-element sub- array , which is, of course, sorted. It then
builds up the original two sub- arrays by merging these one-
element arrays to form larger sub- arrays, which are then
merged, and so on.

21 Class string and String
Stream Processing: A Deeper

Objectives
In this chapter you’ll:

Manipulate string objects.
Determine string characteristics.
Find, replace and insert characters in strings.
Convert string objects to pointer-based strings and vice versa.
Use string iterators.
Perform input from and output to strings in memory.
Use C++11 numeric conversion functions.

Outline
1. 21.1 Introduction
2. 21.2 string Assignment and Concatenation
3. 21.3 Comparing strings
4. 21.4 Substrings
5. 21.5 Swapping strings
6. 21.6 string Characteristics
7. 21.7 Finding Substrings and Characters in a string
8. 21.8 Replacing Characters in a string
9. 21.9 Inserting Characters into a string

10. 21.10 Conversion to Pointer-Based char * Strings
11. 21.11 Iterators
12. 21.12 String Stream Processing
13. 21.13 C++11 Numeric Conversion Functions
14. 21.14 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Making a Difference

21.1 Introduction1
1. Various string features we discuss in this chapter were also
presented in Chapter 21. We kept all the features in this chapter for
completeness and for people who may read the chapters out of order.

The class template basic_string provides typical string-manipulation
operations such as copying, searching, etc. The template definition
and all support facilities are defined in namespace std ; these include
the typedef statement

typedef basic_string<char> string;

that creates the alias type string for basic_string<char> . A typedef is
also provided for the wchar_t type (wstring). Type wchar_t2 stores
characters (e.g., two-byte characters, four-byte characters, etc.) for
supporting other character sets. We use string exclusively throughout
this chapter. To use strings, include header <string> .

2. Type wchar_t commonly is used to represent Unicode , but
wchar_t ’s size is not specified by the standard. C++11 also has types
char16_t and char32_t for Unicode support. The Unicode Standard

®

outlines a specification to produce consistent encoding of the world’s
characters and symbols. To learn more about the Unicode Standard,
visit www.unicode.org .

Initializing a string Object
A string object can be initialized with a constructor argument as in

string text{"Hello"}; // creates a string from a const char*

which creates a string containing the characters in "Hello" , or with
two constructor arguments as in

string name{8, 'x'}; // string of 8 'x' characters

which creates a string containing eight 'x' characters. Class string
also provides a default constructor (which creates an empty string)
and a copy constructor. A string also can be initialized in its definition
as in

string month = "March"; // same as: string month{"March"};

http://www.unicode.org

Remember that = in the preceding declaration is not an assignment;
rather it’s an implicit call to the string class constructor, which does
the conversion.

11

string s Are Not Necessarily Null
Terminated
Unlike pointer-based char* strings, string objects are not necessarily
null terminated. The C++ standard document provides only a
description of the capabilities of class string—implementation is
platform dependent.

Length of a string
The length of a string can be retrieved with member function size
and with member function length . The subscript operator, [] (which
does not perform bounds checking), can be used with strings to
access and modify individual characters. A string object has a first
subscript of 0 and a last subscript of size() – 1 .

Processing string s

Most string member functions take as arguments a starting subscript

location and the number of characters on which to operate.

string I/O
The stream extraction operator (>>) is overloaded to support strings.
The statements

string stringObject;

cin >> stringObject;

declare a string object and read a string from cin . Input is delimited
by whitespace characters. When a delimiter is encountered, the input
operation is terminated. Function getline also is overloaded for
strings. Assuming string1 is a string , the statement

getline(cin, string1);

reads a string from the keyboard into string1 . Input is delimited by a
newline ('\n'), so getLine can read a line of text into a string object.
You can specify an alternate delimiter as the optional third argument
to getline .

Validating Input
In earlier chapters, we mentioned the importance of validating user
input in industrial-strength code. The capabilities presented in this
chapter—and the regular-expression capabilities shown in Section
24.14—are frequently used to perform validation.

21.2 string Assignment and
Concatenation
Figure 21.1 demonstrates string assignment and concatenation. Line
4 includes header <string> for class string . The strings string1 ,
string2 and string3 are created in lines 8–10. Line 12 assigns the
value of string1 to string2 . After the assignment takes place, string2
is a copy of string1 . Line 13 uses member function assign to copy
string1 into string3 . A separate copy is made (i.e., string1 and
string3 are independent objects). Class string also provides an
overloaded version of member function assign that copies a specified
number of characters, as in

targetString.assign(sourceString, start, numberOfCharacters);

where sourceString is the string to be copied, start is the starting
subscript and numberOfCharacters is the number of characters to copy.

Fig. 21.1 Demonstrating string assignment and concatenation.

Line 18 uses the subscript operator to assign 'r' to string3[2]
(forming "car") and to assign 'r' to string2[0] (forming "rat"). The
strings are then output.

Lines 24–26 output the contents of string3 one character at a time
using member function at . Member function at provides checked
access (or range checking); i.e., going past the end of the string
throws an out_of_range exception. The subscript operator, [], does
not provide checked access. This is consistent with its use on arrays.
Note that you can also iterate through the characters in a string using
C++11’s range-based for as in

11

for (char c : string3) {

 cout << c;

}

which ensures that you do not access any elements outside the
string ’s bounds.

 Common Programming Error
21.1

Accessing an element outside a string ’s bounds using the subscript

operator is an unreported logic error.

String string4 is declared (line 29) and initialized to the result of
concatenating string1 and "apult" using the overloaded + operator,
which for class string denotes concatenation. Line 33 uses the
overloaded addition assignment operator, += , to concatenate string3
and "pet" . Line 34 uses member function append to concatenate
string1 and "acomb" .

Line 38 appends the string "comb" to empty string string5 . This
member function is passed the string (string1) to retrieve characters
from, the starting subscript in the string (4) and the number of
characters to append (the value returned by string1.size() - 4).

21.3 Comparing string s
Class string provides member functions for comparing strings.
Figure 21.2 demonstrates class string ’s comparison capabilities.

Fig. 21.2 Comparing strings.

The program declares four strings (lines 8–11) and outputs each
(lines 13–14). Line 17 tests string1 against string4 for equality using
the overloaded equality operator. If the condition is true , "string1 ==
string4" is output. If the condition is false , the condition in line 20 is
tested. All the string class overloaded relational and equality operator
functions return bool values.

Line 28 uses string member function compare to compare string1 to
string2 . Variable result is assigned 0 if the strings are equivalent, a
positive number if string1 is lexicographically greater than string2
or a negative number if string1 is lexicographically less than string2 .
When we say that a string is lexicographically less than another, we
mean that the compare member function uses the numerical values of
the characters (see Appendix B, ASCII Character Set) in each string
to determine that the first string is less than the second. A lexicon is
a dictionary. Because a string starting with 'T' is considered
lexicographically greater than a string starting with 'H' , result is
assigned a value greater than 0 , as confirmed by the output.

Line 41 compares portions of string1 and string3 using an
overloaded version of member function compare . The first two
arguments (2 and 5) specify the starting subscript and length of the
portion of string1 ("sting") to compare with string3 . The third
argument is the comparison string . The last two arguments (0 and
5) are the starting subscript and length of the portion of the

comparison string being compared (also "sting"). The value
assigned to result is 0 for equality, a positive number if string1 is
lexicographically greater than string3 or a negative number if string1
is lexicographically less than string3 . The two pieces being compared
here are identical, so result is assigned 0 .

Line 54 uses another overloaded version of function compare to
compare string4 and string2 . The first two arguments are the same
—the starting subscript and length. The last argument is the
comparison string . The value returned is also the same— 0 for
equality, a positive number if string4 is lexicographically greater than
string2 or a negative number if string4 is lexicographically less than
string2 . Because the two pieces of strings being compared here are
identical, result is assigned 0 .

Line 67 calls member function compare to compare the first 3
characters in string2 to string4 . Because "Hel" is less than "Hello" ,
a value less than zero is returned.

21.4 Substrings
Class string provides member function substr for retrieving a
substring from a string . The result is a new string object that’s
copied from the source string . Figure 21.3 demonstrates substr . The
program declares and initializes a string at line 8. Line 12 uses
member function substr to retrieve a substring from string1 . The first
argument specifies the beginning subscript of the desired substring;
the second argument specifies the substring’s length.

Fig. 21.3 Demonstrating string member function substr .

21.5 Swapping string s
Class string provides member function swap for swapping strings.
Figure 21.4 swaps two strings. Lines 8–9 declare and initialize
strings first and second . Each string is then output. Line 14 uses
string member function swap to swap the values of first and second .
The two string s are printed again to confirm that they were indeed
swapped. The string member function swap is useful for
implementing programs that sort strings.

Fig. 21.4 Using the swap function to swap two strings.

21.6 string Characteristics
Class string provides member functions for gathering information
about a string ’s size, length, capacity, maximum length and other
characteristics. A string ’s size or length is the number of characters
currently stored in the string . A string ’s capacity is the number of
characters that can be stored in the string without allocating more
memory. The capacity of a string must be at least equal to the
current size of the string , though it can be greater. The exact
capacity of a string depends on the implementation. The maximum
size is the largest possible size a string can have. If this value is
exceeded, a length_error exception is thrown. Figure 21.5
demonstrates string class member functions for determining various
characteristics of strings.

Fig. 21.5 Printing string characteristics.

The program declares empty string string1 (line 10) and passes it to
function printStatistics (line 13). Function printStatistics (lines 41–
46) takes a reference to a const string as an argument and outputs
the capacity (using member function capacity), maximum size (using
member function max_size), size (using member function size), length
(using member function size) and whether the string is empty (using
member function empty). The initial call to printStatistics indicates
that the initial values for the size and length of string1 are 0 .

The size and length of 0 indicate that there are no characters stored
in string . Recall that the size and length are always identical. In this
implementation, the maximum size is 4,294,967,294. Object string1
is an empty string , so function empty returns true .

Line 17 inputs a string. In this example, "tomato soup" is input.
Because a space character is a delimiter, only "tomato" is stored in
string1 ; however, "soup" remains in the input buffer. Line 21 calls
function printStatistics to output statistics for string1 . Notice in the
output that the length is 6 and the capacity is 15 .

Line 24 reads "soup" from the input buffer and stores it in string1 ,
thereby replacing "tomato" . Line 27 passes string1 to
printStatistics .

Line 29 uses the overloaded += operator to concatenate a 46-
character-long string to string1 . Line 31 passes string1 to
printStatistics . The capacity has increased to 63 elements and the
length is now 50 .

Line 34 uses member function resize to increase the length of
string1 by 10 characters. The additional elements are set to null
characters. The output shows that the capacity has not changed and
the length is now 60 .

21.7 Finding Substrings and
Characters in a string
Class string provides const member functions for finding substrings
and characters in a string . Figure 21.6 demonstrates the find
functions.

Fig. 21.6 Demonstrating the string find member functions.

String string1 is declared and initialized in line 8. Line 13 attempts to
find "is" in string1 using function find . If "is" is found, the subscript
of the starting location of that string is returned. If the string is not
found, the value string::npos (a public static constant defined in
class string) is returned. This value is returned by the string find-
related functions to indicate that a substring or character was not
found in the string .

Line 14 uses member function rfind to search string1 backward (i.e.,
right-to-left). If "is" is found, the subscript location is returned. If the
string is not found, string::npos is returned. [Note: The rest of the find
functions presented in this section return the same type unless
otherwise noted.]

Line 17 uses member function find_first_of to locate the first

occurrence in string1 of any character in "misop" . The searching is
done from the beginning of string1 . The character 'o' is found in
element 1.

Line 22 uses member function find_last_of to find the last occurrence
in string1 of any character in "misop" . The searching is done from the
end of string1 . The character 'o' is found in element 28.

Line 27 uses member function find_first_not_of to find the first

character in string1 not contained in "noi spm" . The character '1' is
found in element 8. Searching is done from the beginning of string1 .

Line 33 uses member function find_first_not_of to find the first

character not contained in "12noi spm" . The character '.' is found in
element 13. Searching is done from the beginning of string1 .

Lines 39–40 use member function find_first_not_of to find the first

character not contained in "noon is 12 pm; midnight is not." . In this
case, the string being searched contains every character specified in
the string argument. Because a character was not found, string::npos
(which has the value –1 in this case) is returned.

21.8 Replacing Characters in a
string

Figure 21.7 demonstrates string member functions for replacing and
erasing characters. Lines 9–13 declare and initialize string string1 .
Line 19 uses string member function erase to erase everything from
(and including) the character in position 62 to the end of string1 .
[Note: Each newline character occupies one character in the string .]

Fig. 21.7 Demonstrating string member functions erase and
replace .

Lines 25–31 use find to locate each occurrence of the space
character. Each space is then replaced with a period by a call to
string member function replace . Function replace takes three
arguments: the subscript of the character in the string at which
replacement should begin, the number of characters to replace and
the replacement string. Member function find returns string::npos
when the search character is not found. In line 30, 1 is added to
position to continue searching at the location of the next character.

Lines 35–42 use function find to find every period and another
overloaded function replace to replace every period and its following
character with two semicolons. The arguments passed to this version
of replace are the subscript of the element where the replace

operation begins, the number of characters to replace, a replacement
character string from which a substring is selected to use as
replacement characters, the element in the character string where the
replacement substring begins and the number of characters in the
replacement character string to use.

21.9 Inserting Characters into a
string

Class string provides member functions for inserting characters into
a string . Figure 21.8 demonstrates the string insert capabilities.

Fig. 21.8 Demonstrating class string insert member functions.

The program declares, initializes then outputs strings string1 ,
string2 , string3 and string4 . Line 18 uses string member function
insert to insert string2 ’s content before element 10 of string1 .

Line 21 uses insert to insert string4 before string3 ’s element 3. The
last two arguments specify the starting and last element of string4
that should be inserted. Using string::npos causes the entire string
to be inserted.

21.10 Conversion to Pointer-Based
char * Strings

You can convert string class objects to pointer-based strings. As
mentioned earlier, unlike pointer-based strings, strings are not

necessarily null terminated. These conversion functions are useful
when a given function takes a pointer-based string as an argument.
Figure 21.9 demonstrates conversion of strings to pointer-based
strings.

Fig. 21.9 Converting strings to pointer-based strings and
character arrays.

The program declares a string , a size_t and two char pointers (lines
8–11). The string string1 is initialized to "STRINGS" , ptr1 is initialized
to nullptr and length is initialized to the length of string1 . Memory of

sufficient size to hold a pointer-based string equivalent of string
string1 is allocated dynamically and attached to char pointer ptr2 .

Line 14 uses string member function copy to copy object string1 into
the char array pointed to by ptr2 . Line 15 places a terminating null
character in the array pointed to by ptr2 .

Line 19 uses function c_str to obtain a const char * that points to a
null terminated pointer-based string with the same content as string1 .
The pointer is passed to the stream insertion operator for output.

Line 25 assigns the const char * ptr1 a pointer returned by class
string member function data . This member function returns a non-

null-terminated built-in character array. We do not modify string
string1 in this example. If string1 were to be modified (e.g., the
string ’s dynamic memory changes its address due to a member
function call such as string1.insert(0, "abcd") ;), ptr1 could become
invalid—which could lead to unpredictable results.

Lines 28–30 use pointer arithmetic to output the character array
pointed to by ptr1 . In lines 32–33, the pointer-based string ptr2 is
output and the memory allocated for ptr2 is deleted to avoid a
memory leak.

 Common Programming Error
21.2

Not terminating the character array returned by data with a null

character can lead to execution-time errors.

21.11 Iterators
Class string provides iterators (introduced in Chapter 15) for forward
and backward traversal of strings. Iterators provide access to
individual characters with a syntax that’s similar to pointer operations.
Iterators are not range checked. Figure 21.10 demonstrates iterators.

Fig. 21.10 Using an iterator to output a string .

Lines 8–9 declare string string1 and string::const_iterator
iterator1 . Recall that a const_iterator cannot be used to modify the

data that you’re iterating through— in this case the string . Iterator
iterator1 is initialized to the beginning of string1 with the string
class member function begin . Two versions of begin exist—one that
returns an iterator for iterating through a non- const string and a
const version that returns a const_iterator for iterating through a
const string . Line 11 outputs string1 .

Lines 15–18 use iterator iterator1 to “walk through” string1 . Class
string member function end returns an iterator (or a
const_iterator) for the position past the last element of string1 . Each
element is printed by dereferencing the iterator much as you’d
dereference a pointer, and the iterator is advanced one position using
operator ++ . In C++11, lines 9 and 15–18 can be replaced with a
range-based for , as in

for (char c : string1) {

 cout << c;

 }

11

Class string provides member functions rend and rbegin for
accessing individual string characters in reverse from the end of a
string toward the beginning. Member functions rend and rbegin

return reverse_iterators or const_reverse_iterators (based on
whether the string is non- const or const). Exercise 21.8 asks you to

write a program that demonstrates these capabilities.

 Good Programming Practice
21.1

When the operations involving the iterator should not modify the data
being processed, use a const_iterator . This is another example of

employing the principle of least privilege.

21.12 String Stream Processing
In addition to standard stream I/O and file stream I/O, C++ stream I/O
includes capabilities for inputting from, and outputting to, strings in
memory. These capabilities often are referred to as in-memory I/O or
string stream processing.

Input from a string is supported by class istringstream . Output to a
string is supported by class ostringstream . The class names
istringstream and ostringstream are actually aliases defined by the
typedefs

typedef basic_istringstream< char > istringstream;

typedef basic_ostringstream< char > ostringstream;

Class templates basic_istringstream and basic_ostringstream provide
the same functionality as classes istream and ostream plus other
member functions specific to in-memory formatting. Programs that use
in-memory formatting must include the <sstream> and <iostream>
headers.

 Error-Prevention Tip 21.1

One application of these techniques is data validation. A program can
read an entire line at a time from the input stream into a string . Next,

a validation routine can scrutinize the contents of the string and
correct (or repair) the data, if necessary. Then the program can
proceed to input from the string , knowing that the input data is in the

proper format.

 Error-Prevention Tip 21.2

To assist with data validation, C++11 provides powerful regular-
expression capabilities. For example, if a program requires a user to
enter a U.S. format telephone number (e.g., (800) 555-1212), you can

use a regular-expression pattern to confirm that the user’s input
matches the expected format. Many websites provide regular
expressions for validating email addresses, URLs, phone numbers,
addresses and other popular kinds of data. We introduce regular
expressions and provide several examples in Chapter 24.

11

 Software Engineering
Observation 21.1

Outputting to a string is a nice way to take advantage of the powerful

output formatting capabilities of C++ streams. Data can be prepared in
a string to mimic the edited screen format. That string could be

written to a disk file to preserve the screen image.

An ostringstream object uses a string object to store the output data.
The str member function of class ostringstream returns a copy of that
string .3

3. ostringstream was introduced in Chapter 9. We cover it again here
for those who might read this chapter before Chapter 9.

Demonstrating ostringstream
Figure 21.11 demonstrates an ostringstream object. The program
creates ostringstream object outputString (line 9) and uses the
stream insertion operator to output a series of strings and numerical
values to the object.

Fig. 21.11 Using an ostringstream object.

Lines 21–22 output string string1 , string string2 , string string3 ,
double double1 , string string4 , int integer , string string5 and the
address of int integer—all to outputString in memory. Line 25 uses
the stream insertion operator and the call outputString.str() to
display a copy of the string created in lines 21–22. Line 28
demonstrates that more data can be appended to the string in
memory by simply issuing another stream insertion operation to
outputString . Lines 29–30 display string outputString after
appending additional characters.

An istringstream object inputs data from a string in memory to
program variables. Data is stored in an istringstream object as
characters. Input from the istringstream object works identically to
input from any file. The end of the string is interpreted by the
istringstream object as end-of-file.

Demonstrating istringstream
Figure 21.12 demonstrates input from an istringstream object. Lines
9–10 create string input containing the data and istringstream
object inputString constructed to contain the data in string input .
The string input contains the data

Input test 123 4.7 A

which, when read as input to the program, consist of two strings
("Input" and "test"), an int (123), a double (4.7) and a char ('A').
These characters are extracted to variables string1 , string2 ,
integer , double1 and character in line 17.

Fig. 21.12 Demonstrating input from an istringstream object.

The data is then output in lines 19–22. The program attempts to read
from inputString again in line 26. The if condition in line 29 uses

function good (Section 13.8) to test if any data remains. Because no
data remains, the function returns false and the else part of the
if… else statement executes.

21.13 C++11 Numeric Conversion
Functions
11

C++11 added functions for converting from numeric values to strings
and from strings to numeric values. Though you could previously
perform such conversions using other techniques, the functions
presented in this section were added for convenience.

Converting Numeric Values to string
Objects
C++11’s to_string function (from the <string> header) returns the
string representation of its numeric argument. The function is
overloaded for types int , unsigned int , long , unsigned long , long
long , unsigned long long , float , double and long double .

Converting string Objects to Numeric
Values

C++11 provides eight functions (Fig. 21.13; from the <string> header)
for converting string objects to numeric values. Each function
attempts to convert the beginning of its string argument to a numeric
value. If no conversion can be performed, each function throws an
invalid_argument exception. If the result of the conversion is out of
range for the function’s return type, each function throws an
out_of_range exception.

Fig. 21.13 C++11 functions that convert from strings to numeric
types.

Function Return type

Functions that convert to integral types

 stoi int

stol long

stoul unsigned long

stoll long long

stoull unsigned long long

Functions that convert to floating-point types

stof float

stod double

stold long double

Functions That Convert string s to
Integral Types
Consider an example of converting a string to an integral value.
Assuming the string :

string s("100hello");

the following statement converts the beginning of the string to the int
value 100 and stores that value in convertedInt :

int convertedInt = stoi(s);

Each function that converts a string to an integral type actually
receives three parameters—the last two have default arguments. The
parameters are:

A string containing the characters to convert.
A pointer to a size_t variable. The function uses this pointer to
store the index of the first character that was not converted. The
default argument is a null pointer, in which case the function does
not store the index.

An int from 2 to 36 representing the number’s base—the default
is base 10.

So, the preceding statement is equivalent to

int convertedInt = stoi(s, nullptr, 10);

Given a size_t variable named index , the statement:

int convertedInt = stoi(s, &index, 2);

converts the binary number "100" (base 2) to an int (100 in binary is
the int value 4) and stores in index the location of the string’s letter
"h" (the first character that was not converted).

Functions That Convert string s to
Floating-Point Types
The functions that convert strings to floating-point types each receive
two parameters:

A string containing the characters to convert.

A pointer to a size_t variable where the function stores the index
of the first character that was not converted. The default argument
is a null pointer, in which case the function does not store the
index.

Consider an example of converting a string to an floating-point value.
Assuming the string :

string s("123.45hello");

the following statement converts the beginning of the string to the
double value 123.45 and stores that value in convertedDouble :

double convertedDouble = stod(s);

Again, the second argument is a null pointer by default.

21.14 Wrap-Up
This chapter discussed the details of C++ Standard Library class
string . We discussed assigning, concatenating, comparing, searching
and swapping strings. We also introduced a number of member
functions to determine string characteristics, to find, replace and insert
characters in a string, and to convert strings to pointer-based strings
and vice versa. You learned about string iterators and performing
input from and output to strings in memory. Finally, we introduced
functions for converting numeric values to strings and for converting
strings to numeric values. In the next chapter, we introduce structs,
which are similar to classes, and discuss the manipulation of bits,
characters and C strings.

Summary

Section 21.1 Introduction
Class template basic_string provides typical string-manipulation
operations.
The typedef statement

typedef basic_string< char > string;

creates the alias type string for basic_string<char> (p. 870). A
typedef also is provided for the wchar_t type (wstring).
To use strings, include C++ Standard Library header <string> .
Assigning a single character to a string object is permitted in an
assignment statement.
strings are not necessarily null terminated.
Most string member functions take as arguments a starting
subscript location and the number of characters on which to
operate.
string member functions size and length (p. 871) return the
number of characters currently stored in a string .

Section 21.2 string Assignment and
Concatenation

Class string provides overloaded operator= and function assign
(p. 871) for assignments.
The subscript operator, [] , provides read/write access to any
element of a string .
string member function at (p. 873) provides checked access (p.
873)—going past either end of the string throws an out_of_range
exception. The subscript operator, [] , does not provide checked
access.
The overloaded + and += operators and member function append
(p. 873) perform string concatenation.

Section 21.3 Comparing string s
Class string provides overloaded == , != , < , > , <= and >=
operators for string comparisons.
string member function compare (p. 875) compares two strings
(or substrings) and returns 0 if the strings are equal, a positive
number if the first string is lexicographically (p. 875) greater
than the second or a negative number if the first string is
lexicographically less than the second.

Section 21.4 Substrings
string member function substr (p. 876) retrieves a substring from
a string .

Section 21.5 Swapping string s
string member function swap (p. 876) swaps the contents of two
strings.

Section 21.6 string Characteristics
string member function capacity (p. 879) returns the total
number of characters that can be stored in a string without
increasing the amount of memory allocated to the string .
string member function max_size (p. 879) returns the maximum
size a string can have.
string member function resize (p. 879) changes the length of a
string .
string member function empty returns true if a string is empty.

Section 21.7 Finding Substrings and
Characters in a string

Class string find functions (p. 881) find , rfind , find_first_of ,
find_last_of and find_first_not_of locate substrings or
characters in a string .

Section 21.8 Replacing Characters in a
string

string member function erase (p. 881) deletes elements of a
string .
string member function replace (p. 883) replaces characters in a
string .

Section 21.9 Inserting Characters into a
string

string member function insert (p. 884) inserts characters in a
string .

Section 21.10 Conversion to Pointer-
Based char * Strings

string member function c_str (p. 885) returns a const char*
pointing to a null-terminated pointer-based string that contains all
the characters in a string .
string member function data (p. 885) returns a const char*
pointing to a non-null-terminated built-in character array that
contains all the characters in a string .

Section 21.11 Iterators
Class string provides member functions begin and end (p. 886)
to iterate through individual elements.
Class string provides member functions rend and rbegin (p. 887)
for accessing individual string characters in reverse from the end
of a string toward the beginning.

Section 21.12 String Stream Processing
Input from a string is supported by type istringstream (p. 887).
Output to a string is supported by type ostringstream (p. 887).
ostringstream member function str (p. 888) returns the string
from the stream.

Section 21.13 C++11 Numeric Conversion
Functions

C++11’s <string> header now contains functions for converting
from numeric values to string objects and from string objects to
numeric values.
The to_string function (p. 890) returns the string representation of
its numeric argument and is overloaded for types int , unsigned
int , long , unsigned long , long long , unsigned long long , float ,
double and long double .
C++11 provides eight functions for converting string objects to
numeric values. Each function attempts to convert the beginning of
its string argument to a numeric value. If no conversion can be
performed, an invalid_argument exception occurs. If the result of
the convertion is out of range for the function’s return type, an
out_of_range exception occurs.
Each function that converts a string to an integral type receives
three parameters—a string containing the characters to convert, a
pointer to a size_t variable where the function stores the index of
the first character that was not converted (a null pointer, by default)
and an int from 2 to 36 representing the number’s base (base 10,
by default).
The functions that convert strings to floating-point types each
receive two parameters—a string containing the characters to
convert and a pointer to a size_t variable where the function

stores the index of the first character that was not converted (a null
pointer, by default).

Self-Review Exercises
1. 21.1 Fill in the blanks in each of the following:

A. Header must be included for class string .
B. Class string belongs to the namespace .
C. Function deletes characters from a string .
D. Function finds the first occurrence of one of several

characters from a string .

2. 21.2 State which of the following statements are true and which
are false. If a statement is false, explain why.

A. Concatenation of string objects can be performed with
the addition assignment operator, += .

B. Characters within a string begin at index 0 .
C. The assignment operator, = , copies a string .
D. A pointer-based string is a string object.

3. 21.3 Find the error(s) in each of the following, and explain how
to correct it (them):

A. string string1{28}; // construct string1

string string2{'z'}; // construct string2

B. // assume std namespace is known

const char* ptr{name.data()}; // name is "joe bob"

ptr[3] = '-';

cout << ptr << endl;

Exercises
1. 21.4 (Fill in the Blanks) Fill in the blanks in each of the

following:
A. Class string member function converts a string to

a pointer-based string.
B. Class string member function is used for

assignment.
C. is the return type of function rbegin .
D. Class string member function is used to retrieve a

substring.

2. 21.5 (True or False) State which of the following statements
are true and which are false. If a statement is false, explain
why.

A. strings are always null terminated.
B. Class string member function max_size returns the

maximum size for a string .
C. Class string member function at can throw an

out_of_range exception.
D. Class string member function begin returns an

iterator .

3. 21.6 (Find Code Errors) Find any errors in the following and
explain how to correct them:

A. std::cout << s.data() << std::endl; // s is "hello"

B. erase(s.rfind("x"), 1); // s is "xenon"

C.

string& foo() {

 string s("Hello");

 ... // other statements

 return;

}

4. 21.7 (Simple Encryption) Some information on the Internet
may be encrypted with a simple algorithm known as “rot13,”
which rotates each character by 13 positions in the alphabet.
Thus, 'a' corresponds to 'n' , and 'x' corresponds to 'k' .
rot13 is an example of symmetric key encryption. With
symmetric key encryption, both the encrypter and decrypter use
the same key.

A. Write a program that encrypts a message using rot13.
B. Write a program that decrypts the scrambled message

using 13 as the key.
C. After writing the programs of part (a) and part (b), briefly

answer the following question: If you did not know the
key for part (b), how difficult do you think it would be to
break the code? What if you had access to substantial

computing power (e.g., supercomputers)? In Exercise
21.24 we ask you to write a program to accomplish this.

5. 21.8 (Using string Iterators) Write a program using iterators
that demonstrates the use of functions rbegin and rend .

6. 21.9 (Words Ending in “r” or “ay”) Write a program that
reads in several strings and prints only those ending in “ r ” or
“ ay ”. Only lowercase letters should be considered.

7. 21.10 (string Concatenation) Write a program that separately
inputs a first name and a last name and concatenates the two
into a new string . Show two techniques for accomplishing this
task.

8. 21.11 (Hangman Game) Write a program that plays the game
of Hangman. The program should pick a word (which is either
coded directly into the program or read from a text file) and
display the following:

Guess the word: XXXXXX

Each X represents a letter. The user tries to guess the letters in
the word. The appropriate response yes or no should be
displayed after each guess. After each incorrect guess, display
the diagram with another body part filled. After seven incorrect
guesses, the user should be hanged. The display should look
as follows:

 O

 /|\

 |

 / \

After each guess, display all user guesses. If the user guesses
the word correctly, display

Congratulations!!! You guessed my word. Play again? yes/no

9. 21.12 (Printing a string Backward) Write a program that
inputs a string and prints the string backward. Convert all
uppercase characters to lowercase and all lowercase
characters to uppercase.

10. 21.13 (Alphabetizing Animal Names) Write a program that
uses the comparison capabilities introduced in this chapter to
alphabetize a series of animal names. Only uppercase letters
should be used for the comparisons.

11. 21.14 (Cryptograms) Write a program that creates a
cryptogram out of a string . A cryptogram is a message or word
in which each letter is replaced with another letter. For example
the string

The bird was named squawk

might be scrambled to form

cin vrjs otz ethns zxqtop

Spaces are not scrambled. In this particular case, 'T' was
replaced with 'x' , each 'a' was replaced with 'h' , etc.
Uppercase letters become lowercase letters in the cryptogram.
Use techniques similar to those in Exercise 21.7.

12. 21.15 (Solving Cryptograms) Modify Exercise 21.14 to allow
the user to solve the cryptogram. The user should input two
characters at a time: The first character specifies a letter in the
cryptogram, and the second letter specifies the replacement
letter. If the replacement letter is correct, replace the letter in
the cryptogram with the replacement letter in uppercase.

13. 21.16 (Counting Palindromes) Write a program that inputs a
sentence and counts the number of palindromes in it. A
palindrome is a word that reads the same backward and
forward. For example, "tree" is not a palindrome, but "noon"
is.

14. 21.17 (Counting Vowels) Write a program that counts the total
number of vowels in a sentence. Output the frequency of each
vowel.

15. 21.18 (String Insertion) Write a program that inserts the
characters "******" in the exact middle of a string .

16. 21.19 (Erasing Characters from a string) Write a program
that erases the sequences "by" and "BY" from a string .

17. 21.20 (Reversing a string with Iterators) Write a program
that inputs a line of text and prints the text backward. Use
iterators in your solution.

18. 21.21 (Recurively Reversing a string with Iterators) Write a
recursive version of Exercise 21.20.

19. 21.22 (Using the erase Functions with Iterator Arguments)
Write a program that demonstrates the use of the erase
functions that take iterator arguments.

20. 21.23 (Letter Pyramid) Write a program that generates the
following from the string "abcdefghijklmnopqrstuvwxyz" :

 a

 bcb

 cdedc

 defgfed

 efghihgfe

 fghijkjihgf

 ghijklmlkjihg

 hijklmnonmlkjih

 ijklmnopqponmlkji

 jklmnopqrsrqponmlkj

 klmnopqrstutsrqponmlk

 lmnopqrstuvwvutsrqponml

 mnopqrstuvwxyxwvutsrqponm

nopqrstuvwxyz{zyxwvutsrqpon

21. 21.24 (Simple Decryption) In Exercise 21.7, we asked you to
write a simple encryption algorithm. Write a program that will
attempt to decrypt a “rot13” message using simple frequency
substitution. (Assume that you do not know the key.) The most
frequent letters in the encrypted phrase should be replaced with
the most commonly used English letters (a, e, i, o, u, s, t, r,
etc.). Write the possibilities to a file. What made the code
breaking easy? How can the encryption mechanism be
improved?

22. 21.25 (Enhanced Employee Class) Modify class Employee in
Figs. 12.9–12.10 by adding a private utility function called
isValidSocialSecurityNumber . This member function should
validate the format of a social security number (e.g., ###-##-
, where # is a digit). If the format is valid, return true ;
otherwise return false .

Making a Difference
1. 21.26 (Cooking with Healthier Ingredients) Obesity in the

United States is increasing at an alarming rate. Check the map
from the Centers for Disease Control and Prevention (CDC) at
http://stateofobesity.org/adult-obesity/ , which shows
obesity trends in the United States over the last 20 years. As
obesity increases, so do occurrences of related problems (e.g.,
heart disease, high blood pressure, high cholesterol, type 2
diabetes). Write a program that helps users choose healthier
ingredients when cooking, and helps those allergic to certain
foods (e.g., nuts, gluten) find substitutes. The program should
read a recipe from the user and suggest healthier replacements
for some of the ingredients. For simplicity, your program should
assume the recipe has no abbreviations for measures such as
teaspoons, cups, and tablespoons, and uses numerical digits
for quantities (e.g., 1 egg, 2 cups) rather than spelling them out
(one egg, two cups). Some common substitutions are shown in
Fig. 21.14. Your program should display a warning such as,
“Always consult your physician before making significant
changes to your diet.”
Your program should take into consideration that replacements
are not always one-for-one. For example, if a cake recipe calls
for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be
obtained at websites such as:

http://stateofobesity.org/adult-obesity/

http://chinesefood.about.com/od/recipeconversionfaqs/f/

usmetricrecipes.htm

http://www.pioneerthinking.com/eggsub.html

http://www.gourmetsleuth.com/conversions.htm

Fig. 21.14 Sample ingredient substitutions.

Ingredient Substitution

1 cup sour
cream

1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon
lemon juice

1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses or 1/4 cup agave nectar

1 cup butter 1 cup yogurt

1 cup flour 1 cup rye or rice flour

1 cup
mayonnaise

1 cup cottage cheese or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour or potato starch or 2
egg whites or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

http://chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
http://www.pioneerthinking.com/eggsub.html
http://www.gourmetsleuth.com/conversions.htm

white bread whole-grain bread

Your program should consider the user’s health concerns, such
as high cholesterol, high blood pressure, weight loss, gluten
allergy, and so on. For high cholesterol, the program should
suggest substitutes for eggs and dairy products; if the user
wishes to lose weight, low-calorie substitutes for ingredients
such as sugar should be suggested.

2. 21.27 (Spam Scanner) Spam (or junk e-mail) costs U.S.
organizations billions of dollars a year in spam-prevention
software, equipment, network resources, bandwidth, and lost
productivity. Research online some of the most common spam
e-mail messages and words, and check your own junk e-mail
folder. Create a list of 30 words and phrases commonly found
in spam messages. Write an application in which the user
enters an e-mail message. Then, scan the message for each of
the 30 keywords or phrases. For each occurrence of one of
these within the message, add a point to the message’s “spam
score.” Next, rate the likelihood that the message is spam,
based on the number of points it received.

3. 21.28 (SMS Language) Short Message Service (SMS) is a
communications service that allows sending text messages of
160 or fewer characters between mobile phones. With the
proliferation of mobile phone use worldwide, SMS is being used
in many developing nations for political purposes (e.g., voicing
opinions and opposition), reporting news about natural
disasters, and so on. For example, check out

http://omunica.org/radio2.0/archives/87 . Since the length of
SMS messages is limited, SMS Language—abbreviations of
common words and phrases in mobile text messages, e-mails,
instant messages, etc.—is often used. For example, “in my
opinion” is “IMO” in SMS Language. Research SMS Language
online. Write a program in which the user can enter a message
using SMS Language; the program should translate it into
English (or your own language). Also provide a mechanism to
translate text written in English (or your own language) into
SMS Language. One potential problem is that one SMS
abbreviation could expand into a variety of phrases. For
example, IMO (as used above) could also stand for
“International Maritime Organization,” “in memory of,” etc.

Answers to Self-Review Exercises
1. 21.1

A. <string> .
B. std .
C. erase .
D. find_first_of .

2. 21.2
A. True.
B. True.
C. True.
D. False. A string is an object that provides many different

services. A pointer-based string does not provide any
services. Pointer-based strings are null terminated;
strings are not necessarily null terminated. Pointer-
based strings are pointers and strings are objects.

3. 21.3
A. Constructors for class string do not exist for integer and

character arguments. Other valid constructors should be
used—converting the arguments to strings if need be.

B. Function data does not add a null terminator. Also, the
code attempts to modify a const char . Replace all of the

lines with the code:

cout << name.substr(0, 3) + "-" + name.substr(4) <<

endl;

22 Bits, Characters, C Strings and
struct s

Objectives
In this chapter you’ll learn:

To create and use structs and to understand their near
equivalence with classes.
To use typedef to create aliases for data types.
To manipulate data with the bitwise operators and to create bit
fields for storing data compactly.
To use the functions of the character-handling library <cctype> .
To use the string-conversion functions of the general-utilities library
<cstdlib> .
To use the string-processing functions of the string-handling library
<cstring> .

Outline
1. 22.1 Introduction
2. 22.2 Structure Definitions
3. 22.3 typedef and using
4. 22.4 Example: Card Shuffling and Dealing Simulation
5. 22.5 Bitwise Operators
6. 22.6 Bit Fields
7. 22.7 Character-Handling Library
8. 22.8 C String-Manipulation Functions
9. 22.9 C String-Conversion Functions

10. 22.10 Search Functions of the C String-Handling Library
11. 22.11 Memory Functions of the C String-Handling Library
12. 22.12 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises
5. Special Section: Advanced String-Manipulation Exercises
6. Challenging String-Manipulation Projects

22.1 Introduction
We now discuss structures, their near equivalence with classes, and
the manipulation of bits, characters and C strings. Many of the
techniques we present here are included for the benefit of those who
will work with legacy C and C++ code.

Like classes, C++ structures may contain access specifiers, member
functions, constructors and destructors. In fact, the only differences
between structures and classes in C++ is that structure members
default to public access and class members default to private

access when no access specifiers are used, and that structures
default to public inheritance, whereas classes default to private

inheritance. Our presentation of structures here is typical of the legacy
C code and early C++ code you’ll see in industry.

We present a high-performance card shuffling and dealing simulation
in which we use structure objects containing C++ string objects to
represent the cards. We discuss the bitwise operators that allow you
to access and manipulate the individual bits in bytes of data. We also
present bitfields—special structures that can be used to specify the
exact number of bits a variable occupies in memory. These bit-
manipulation techniques are common in programs that interact directly
with hardware devices that have limited memory. The chapter finishes
with examples of many character and C string-manipulation functions
— some of which are designed to process blocks of memory as arrays

of bytes. The detailed C string treatment in this chapter is mostly for
reasons of legacy code support and because there are still remnants
of C string use in C++, such as command-line arguments (Appendix
F). New development should use C++ string objects rather than C

strings.

22.2 Structure Definitions
Consider the following structure definition:

struct Card {

 string face;

 string suit;

};

Keyword struct introduces the definition for structure Card . The
identifier Card is the structure name and is used in C++ to declare
variables of the structure type (in C, the type name of the preceding
structure is struct Card). Card ’s definition contains two string
members— face and suit .

The following declarations

Card oneCard;

Card deck[52];

Card* cardPtr;

declare oneCard to be a structure variable of type Card, deck to be an
array with 52 elements of type Card and cardPtr to be a pointer to a
Card structure. Variables of a given structure type can also be
declared by placing a comma-separated list of the variable names
between the closing brace of the structure definition and the
semicolon that ends the structure definition. For example, the
preceding declarations could have been incorporated into the Card
structure definition as follows:

struct Card {

 string face;

 string suit;

} oneCard, deck[52], * cardPtr;

As with classes, structure members are not necessarily stored in
consecutive bytes of memory. Sometimes there are “holes” in a
structure, because some computers store specific data types only on
certain memory boundaries for performance reasons, such as half-
word, word or double-word boundaries. A word is a standard memory
unit used to store data in a computer—usually two, four or eight bytes
and typically eight bytes on today’s popular 64-bit systems. Consider
the following structure definition in which structure objects sample1 and
sample2 of type Example are declared:

struct Example {

 char c;

 int i;

} sample1, sample2;

A computer with two-byte words might require that each of the
members of Example be aligned on a word boundary (i.e., at the
beginning of a word—this is machine dependent). Figure 22.1 shows
a sample storage alignment for an object of type Example that’s been
assigned the character 'a' and the integer 97 (the bit representations
of the values are shown). If the members are stored beginning at word
boundaries, there is a one-byte hole (byte 1 in the figure) in the
storage for objects of type Example . The value in the one-byte hole is
undefined. If the values in sample1 and sample2 are in fact equal, the
structure objects might not be equal, because the undefined one-byte
holes are not likely to contain identical values.

 Portability Tip 22.1

Because the size of data items of a particular type is machine
dependent, and because storage alignment considerations are
machine dependent, so too is the representation of a structure.

 Common Programming Error
22.1

Comparing variables of structure types is a compilation error.

Fig. 22.1 Possible storage alignment for an Example object,
showing an undefined byte.

22.3 typedef and using
Keyword typedef provides a mechanism for creating synonyms (or
aliases) for previously defined data types. Names for structure types
are often defined with typedef to more readable type names. For
example, the statement

typedef Card* CardPtr;

defines the new type name CardPtr as a synonym for type Card* .
Creating a new name with typedef does not create a new type;
typedef simply creates a new type name that can then be used in the
program as an alias for an existing type name.

C++11 added the keyword using as another mechanism for creating
type aliases.The following declaration is equivalent to the typedef
above:

11

using CardPtr = Card*;

This feature was added to fix problems with typedef in template
programming.

22.4 Example: Card Shuffling and
Dealing Simulation
The card shuffling and dealing program in Figs. 22.2–22.4 is similar to
the one described in Exercise 9.23. This program represents the deck
of cards as an array of structures.

Fig. 22.2 Definition of class DeckOfCards that represents a deck of
playing cards.

The constructor (lines 12–27 of Fig. 22.3) initializes the array in order
with character strings representing Ace through King of each suit.
Function shuffle implements the shuffling algorithm. The function
loops through all 52 cards (subscripts 0 to 51). For each card, a
number between 0 and 51 is picked randomly. Next, the current Card
and the randomly selected Card are swapped in the array . A total of
52 swaps are made in a single pass of the entire array , and the array
is shuffled. Because the Card structures were swapped in place in the
array , the dealing algorithm implemented in function deal requires
only one pass of the array to deal the shuffled cards.

Fig. 22.3 Member-function definitions for class DeckOfCards .

Fig. 22.4 Card shuffling and dealing program.

22.5 Bitwise Operators
C++ provides extensive bit-manipulation capabilities for getting down
to the so-called “bits-and-bytes” level. Operating systems, test-
equipment software, networking software and many other kinds of
software require that you communicate “directly with the hardware.”
We introduce each of the bitwise operators, and we discuss how to
save memory by using bit fields.

All data is represented internally by computers as sequences of bits.
Each bit can assume the value 0 or the value 1 . On most systems, a
sequence of eight bits, each of which forms a byte—the standard
storage unit for a variable of type char . Other data types are stored in
larger numbers of bytes. Bitwise operators are used to manipulate the
bits of integral operands (char, short, int and long ; both signed and
unsigned). Normally the bitwise operators are used with unsigned
integers.

 Portability Tip 22.2

Bitwise data manipulations are machine dependent.

The bitwise operator discussions in this section show the binary
representations of the integer operands. For a detailed explanation of
the binary (also called base-2) number system, see Appendix D.
Because of the machine-dependent nature of bitwise manipulations,
some of these programs might not work on your system without
modification.

The bitwise operators are: bitwise AND (&) , bitwise inclusive OR (|) ,
bitwise exclusive OR (^) , left shift (<<) , right shift (>>) and
bitwise complement (~)—also known as the one’s complement . We’ve
been using &, << and >> for other purposes—this is a classic
example of operator overloading. The bitwise AND, bitwise inclusive
OR and bitwise exclusive OR operators compare their two operands
bit by bit. The bitwise AND operator sets each bit in the result to 1 if
the corresponding bit in both operands is 1. The bitwise inclusive OR
operator sets each bit in the result to 1 if the corresponding bit in
either (or both) operand(s) is 1. The bitwise exclusive OR operator
sets each bit in the result to 1 if the corresponding bit in either operand
—but not both—is 1. The left-shift operator shifts the bits of its left
operand to the left by the number of bits specified in its right operand.
The right-shift operator shifts the bits in its left operand to the right by
the number of bits specified in its right operand. The bitwise
complement operator sets all 0 bits in its operand to 1 in the result
and sets all 1 bits in its operand to 0 in the result. Detailed
discussions of each bitwise operator appear in the following examples.
The bitwise operators are summarized in Fig. 22.5.

Fig. 22.5 Bitwise operators.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits in

the two operands are both 1 .

| bitwise
inclusive
OR

The bits in the result are set to 1 if one or both of the

corresponding bits in the two operands is 1 .

^ bitwise
exclusive
OR

The bits in the result are set to 1 if exactly one of the

corresponding bits in the two operands is 1 .

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand; fill from right with 0 bits.

>> right shift
with sign
extension

Shifts the bits of the first operand right by the number of bits
specified by the second operand; the method of filling from
the left is machine dependent.

~ bitwise
complement

All 0 bits are set to 1 and all 1 bits are set to 0 .

Printing a Binary Representation of an
Integral Value
When using the bitwise operators, it’s useful to illustrate their precise
effects by printing values in their binary representation. The program
of Fig. 22.6 prints an unsigned integer in its binary representation in
groups of eight bits each.

Fig. 22.6 Printing an unsigned integer in bits.

Function displayBits (lines 18–35) uses the bitwise AND operator to
combine variable value with constant MASK . Often, the bitwise AND

operator is used with an operand called a mask—an integer value with
specific bits set to 1 . Masks are used to hide some bits in a value
while selecting other bits. In displayBits , line 20 initializes constant
MASK with 1 << SHIFT . The value of constant SHIFT was calculated in
line 19 with the expression

8 * sizeof(unsigned) - 1

which multiplies the number of bytes an unsigned object requires in
memory by 8 (the number of bits in a byte) to get the total number of
bits required to store an unsigned object, then subtracts 1. The bit
representation of 1 << SHIFT on a computer that represents unsigned
objects in four bytes of memory is

10000000 00000000 00000000 00000000

The left-shift operator shifts the value 1 from the low-order (rightmost)
bit to the high-order (leftmost) bit in MASK , and fills in 0 bits from the
right. Line 26 prints a 1 or a 0 for the current leftmost bit of variable
value . Assume that variable value contains 65000 (00000000 00000000
11111101 11101000). When value and MASK are combined using & , all
the bits except the high-order bit in variable value are “masked off”

(hidden), because any bit “ANDed” with 0 yields 0 . If the leftmost bit
is 1, value & MASK evaluates to

00000000 00000000 11111101 11101000 (value)

10000000 00000000 00000000 00000000 (MASK)

00000000 00000000 00000000 00000000 (value & MASK)

which is interpreted as false , and 0 is printed. Then line 27 shifts
variable value left by one bit with the expression value <<= 1 (i.e.,
value = value << 1). These steps are repeated for each bit variable
value . Eventually, a bit with a value of 1 is shifted into the leftmost bit
position, and the bit manipulation is as follows:

11111101 11101000 00000000 00000000 (value)

10000000 00000000 00000000 00000000 (MASK)

10000000 00000000 00000000 00000000 (value & MASK)

Because both left bits are 1s, the expression’s result is nonzero (true)
and 1 is printed. Figure 22.7 summarizes the results of combining two
bits with the bitwise AND operator.

Fig. 22.7 Results of combining two bits with the bitwise AND
operator (&).

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

 Common Programming Error 22.2

Using the logical AND operator (&&) for the bitwise AND operator (&)

and vice versa is a logic error.

The program of Fig. 22.8 demonstrates the bitwise AND operator, the
bitwise inclusive OR operator, the bitwise exclusive OR operator and
the bitwise complement operator. Function displayBits (lines 47–64)
prints the unsigned integer values.

Fig. 22.8 Bitwise AND, inclusive OR, exclusive OR and
complement operators.

Bitwise AND Operator (&)

In Fig. 22.8, line 12 uses 2179876355 (10000001 11101110 01000110
00000011) to initialize variable number1 , and line 14 uses 1 (00000000
00000000 00000000 00000001) to initialize variable mask . When mask and
number1 are combined using the bitwise AND operator (&) in the
expression number1 & mask (line 18), the result is 00000000 00000000
00000000 00000001 . All the bits except the low-order bit in variable
number1 are “masked off” (hidden) by “ANDing” with constant MASK .

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator is used to set specific bits to 1 in an
operand. In Fig. 22.8, line 21 assigns 15 (00000000 00000000 00000000
00001111) to variable number1 , and line 22 uses 241 (00000000 00000000
00000000 11110001) to initialize variable setBits . When number1 and
setBits are combined using the bitwise inclusive OR operator in the
expression number1 | setBits (line 27), the result is 255 (00000000
00000000 00000000 11111111). Figure 22.9 summarizes the results of
combining two bits with the bitwise inclusive-OR operator.

 Common Programming Error 22.3

Using the logical OR operator (||) for the bitwise OR operator (|) and

vice versa is a logic error.

Fig. 22.9 Combining two bits with the bitwise inclusive-OR

operator (|).

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Bitwise Exclusive OR (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if
exactly one of the corresponding bits in its two operands is 1. In Fig.
22.8, lines 30–31 give variables number1 and number2 the values 139
(00000000 00000000 00000000 10001011) and 199 (00000000 00000000
00000000 11000111), respectively. When these variables are combined
with the bitwise exclusive OR operator in the expression number1 ^
number2 (line 36), the result is 00000000 00000000 00000000 01001100 .
Figure 22.10 summarizes the results of combining two bits with the
bitwise exclusive OR operator.

Fig. 22.10 Combining two bits with the bitwise exclusive OR
operator (^).

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Bitwise Complement (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0
in the result and sets all 0 bits to 1 in the result—otherwise referred to
as “taking the one’s complement of the value.” In Fig. 22.8, line 39
assigns variable number1 the value 21845 (00000000 00000000 01010101
01010101). When the expression ~number1 evaluates, the result is
(11111111 11111111 10101010 10101010).

Bitwise Shift Operators
Figure 22.11 demonstrates the left-shift operator (<<) and the right-

shift operator (>>). Function displayBits (lines 26–43) prints the
unsigned integer values.

Fig. 22.11 Bitwise shift operators.

Left-Shift Operator
The left-shift operator (<<) shifts the bits of its left operand to the left
by the number of bits specified in its right operand. Bits vacated to the
right are replaced with 0s; bits shifted off the left are lost. In Fig.
22.11, line 10 initializes variable number1 with the value 960 (00000000
00000000 00000011 11000000). The result of left-shifting variable number1
eight bits in the expression number1 << 8 (line 16) is 245760 (00000000
00000011 11000000 00000000).

Right-Shift Operator

The right-shift operator (>>) shifts the bits of its left operand to the
right by the number of bits specified in its right operand. Performing a
right shift on an unsigned integer causes the vacated bits at the left to
be replaced by 0s; bits shifted off the right are lost. In the program of
Fig. 22.11, the result of right-shifting number1 in the expression
number1 >> 8 (line 22) is 3 (00000000 00000000 00000000 00000011).

 Common Programming Error 22.4

The result of shifting a value is undefined if the right operand is
negative or if the right operand is greater than or equal to the number
of bits in which the left operand is stored.

 Portability Tip 22.3

The result of right-shifting a signed value is machine dependent.
Some machines fill with zeros and others use the sign bit.

Bitwise Assignment Operators
Each bitwise operator (except the bitwise complement operator) has a
corresponding assignment operator. These bitwise assignment

operators are shown in Fig. 22.12; they’re used in a similar manner to

the arithmetic assignment operators introduced in Chapter 4.

Fig. 22.12 Bitwise assignment operators.

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift with sign extension assignment operator.

Operator Precedence
Figure 22.13 shows the precedence and associativity of the operators
introduced up to this point in the text. They’re shown top to bottom in
decreasing order of precedence.

Fig. 22.13 Operator precedence and associativity.

Operators Associativity Type

:: (unary; right to left) left to right primary

:: (binary; left to right)

() (grouping parentheses)

[See caution in Fig. 2.10 regarding

grouping parentheses.]

() [] . -> ++ --

static_cast< type >()

left to right postfix

++ -- + - ! delete

sizeof

 * ~ & new

right to left prefix

* / % left to right multiplicative

+ - left to right additive

<< >> left to right shifting

< <= > >= left to right relational

== != left to right equality

& left to right bitwise AND

^ left to right bitwise XOR

| left to right bitwise OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= &= |=

^= <<= >>=

right to left assignment

, left to right comma

C++14 Binary Literals
As of C++14, you may now include binary literals in your source
code. To do so, precede a sequence of 1s and 0s with 0b or 0B . For
example, you can define a 32-bit mask like the one we used in the
displayBits functions of this section’s examples as

14

0b10000000'00000000'00000000'00000000

14

The preceding literal also uses C++14’s single-quote character to
separate groups of digits for readability.

22.6 Bit Fields
C++ provides the ability to specify the number of bits in which an
integral type or enum type member of a class or a structure is stored.
Such a member is referred to as a bit field . Bit fields enable better

memory utilization by storing data in the minimum number of bits
required. Bit field members must be declared as an integral or enum
type.

 Performance Tip 22.1

Bit fields help conserve storage.

Consider the following structure definition:

struct BitCard {

 unsigned face : 4;

 unsigned suit : 2;

 unsigned color : 1;

};

The definition contains three unsigned bit fields— face, suit and
color—used to represent a card from a deck of 52 cards. A bit field is
declared by following an integral type or enum type member with a
colon (:) and an integer constant representing the width of the bit
field (i.e., the number of bits in which the member is stored). The
width must be an integer constant.

The preceding structure definition indicates that member face is
stored in four bits, member suit in 2 bits and member color in one
bit. The number of bits is based on the desired range of values for
each structure member. Member face stores values between 0 (Ace)
and 12 (King)—four bits can store a value between 0 and 15. Member
suit stores values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 =
Clubs, 3 = Spades)—two bits can store a value between 0 and 3 .
Finally, member color stores either 0 (Red) or 1 (Black)— one bit
can store either 0 or 1 .

The program in Figs. 22.14–22.16 creates array deck containing
BitCard structures (line 23 of Fig. 22.14). The constructor inserts the
52 cards in the deck array , and function deal prints the 52 cards.
Notice that bit fields are accessed exactly as any other structure
member is (lines 12–14 and 22–27 of Fig. 22.15). The member color
is included as a means of indicating the card color.

Fig. 22.14 Definition of class DeckOfCards that represents a deck of
playing cards.

Fig. 22.15 Member-function definitions for class DeckOfCards .

Fig. 22.16 Bit fields used to store a deck of cards.

It’s possible to specify an unnamed bit field , in which case the field is
used as padding in the structure. For example, the structure definition
uses an unnamed three-bit field as padding—nothing can be stored in
those three bits. Member b is stored in another storage unit.

struct Example {

 unsigned a : 13;

 unsigned : 3; // align to next storage-unit boundary

 unsigned b : 4;

};

An unnamed bit field with a zero width is used to align the next bit
field on a new storage-unit boundary. For example, the structure
definition

struct Example {

 unsigned a : 13;

 unsigned : 0; // align to next storage-unit boundary

 unsigned b : 4;

};

uses an unnamed 0 -bit field to skip the remaining bits (as many as
there are) of the storage unit in which a is stored and align b on the
next storage-unit boundary.

 Portability Tip 22.4

Bit-field manipulations are machine dependent. For example, some
computers allow bit fields to cross word boundaries, whereas others
do not.

 Common Programming Error
22.5

Attempting to access individual bits of a bit field with subscripting as if
they were elements of an array is a compilation error. Bit fields are not
“arrays of bits.”

 Common Programming Error
22.6

Attempting to take the address of a bit field (the & operator may not be

used with bit fields because a pointer can designate only a particular
byte in memory and bit fields can start in the middle of a byte) is a
compilation error.

 Performance Tip 22.2

Although bit fields save space, using them can cause the compiler to
generate slower-executing machine-language code. This occurs
because it takes extra machine-language operations to access only
portions of an addressable storage unit. This is one of many examples
of the space–time trade-offs that occur in computer science.

22.7 Character-Handling Library
Most data is entered into computers as characters—including letters,
digits and various special symbols. In this section, we discuss C++’s
capabilities for examining and manipulating individual characters. In
the remainder of the chapter, we continue the discussion of character-
string manipulation that we began in Chapter 8.

The character-handling library includes several functions that perform
useful tests and manipulations of character data. Each function
receives a character—represented as an int—or EOF as an
argument. Characters are often manipulated as integers. Remember
that EOF normally has the value –1 and that some hardware
architectures do not allow negative values to be stored in char
variables. Therefore, the character-handling functions manipulate
characters as integers. Figure 22.17 summarizes the functions of the
character-handling library. When using functions from the character-
handling library, include the <cctype> header.

Fig. 22.17 Character-handling library functions.

Prototype Description

int

isdigit(int

c)

Returns 1 if c is a digit and 0 otherwise.

int

isalpha(int

c)

Returns 1 if c is a letter and 0 otherwise.

int

isalnum(int

c)

Returns 1 if c is a digit or a letter and 0 otherwise.

int

isxdigit(int

c)

Returns 1 if c is a hexadecimal digit character and 0 otherwise.

(See Appendix D for a detailed explanation of binary, octal, decimal
and hexadecimal numbers.)

int

islower(int

c)

Returns 1 if c is a lowercase letter and 0 otherwise.

int

isupper(int

c)

Returns 1 if c is an uppercase letter; 0 otherwise.

int

tolower(int

c)

If c is an uppercase letter, tolower returns c as a lowercase letter.

Otherwise, tolower returns the argument unchanged.

int

toupper(int

c)

If c is a lowercase letter, toupper returns c as an uppercase letter.

Otherwise, toupper returns the argument unchanged.

int

isspace(int

c)

Returns 1 if c is a whitespace character—newline ('\n'), space

(''), form feed ('\f'), carriage return ('\r'), horizontal tab

('\t'), or vertical tab ('\v')—and 0 otherwise.

int

iscntrl(int

Returns 1 if c is a control character, such as newline ('\n'), form

feed ('\f'), carriage return ('\r'), horizontal tab ('\t'), vertical

c) tab ('\v'), alert ('\a'), or backspace ('\b')—and 0 otherwise.

int

ispunct(int

c)

Returns 1 if c is a printing character other than a space, a digit, or a

letter and 0 otherwise.

int

isprint(int

c)

Returns 1 if c is a printing character including space ('') and 0

otherwise.

int

isgraph(int

c)

Returns 1 if c is a printing character other than space ('') and 0

otherwise.

Figure 22.18 demonstrates functions isdigit , isalpha , isalnum and
isxdigit . Function isdigit determines whether its argument is a digit

(0– 9). Function isalpha determines whether its argument is an
uppercase letter (A-Z) or a lowercase letter (a– z). Function isalnum
determines whether its argument is an uppercase letter, a lowercase
letter or a digit. Function isxdigit determines whether its argument is
a hexadecimal digit (A– F, a– f, 0– 9).

Fig. 22.18 Character-handling functions isdigit, isalpha, isalnum
and isxdigit .

Figure 22.18 uses the conditional operator (?:) with each function to
determine whether the string " is a " or the string " is not a "
should be printed in the output for each character tested. For example,
line 9 indicates that if '8' is a digit—i.e., if isdigit returns a true
(nonzero) value—the string "8 is a " is printed. If '8' is not a digit
(i.e., if isdigit returns 0), the string "8 is not a " is printed.

Figure 22.19 demonstrates functions islower , isupper , tolower and
toupper . Function islower determines whether its argument is a
lowercase letter (a–z). Function isupper determines whether its
argument is an uppercase letter (A–Z). Function tolower converts an
uppercase letter to lowercase and returns the lowercase letter—if the

argument is not an uppercase letter, tolower returns the argument
value unchanged. Function toupper converts a lowercase letter to
uppercase and returns the uppercase letter—if the argument is not a
lowercase letter, toupper returns the argument value unchanged.

Fig. 22.19 Character-handling functions islower, isupper, tolower
and toupper .

Figure 22.20 demonstrates functions isspace , iscntrl , ispunct ,
isprint and isgraph . Function isspace determines whether its
argument is a whitespace character, such as space (' '), form feed
('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t') or
vertical tab ('\v'). Function iscntrl determines whether its argument
is a control character such as horizontal tab ('\t'), vertical tab ('\v'),
form feed ('\f'), alert ('\a'), backspace ('\b'), carriage return
('\r') or newline ('\n'). Function ispunct determines whether its
argument is a printing character other than a space, digit or letter,

such as $, #, (,), [,], {, }, ;, : or % . Function isprint determines
whether its argument is a character that can be displayed on the
screen (including the space character). Function isgraph tests for the
same characters as isprint , but the space character is not included.

Fig. 22.20 Character-handling functions isspace , iscntrl , ispunct ,
isprint and isgraph

22.8 C String-Manipulation
Functions
The string-handling library provides any useful functions for
manipulating string data, comparing strings, searching strings for
characters and other strings, tokenizing strings (separating strings into
logical pieces such as the separate words in a sentence) and
determining the length of strings. This section presents some common
string-manipulation functions of the string-handling library (from the
C++ standard library). The functions are summarized in Fig. 22.21;
then each is used in a live-code example. The prototypes for these
functions are located in header <cstring> .

Fig. 22.21 String-manipulation functions of the string-handling
library.

Function
prototype

Function description

char* strcpy(char* s1, const char* s2);

 Copies the string s2 into the character array s1 . The value of s1 is

returned.

char* strncpy(char* s1, const char* s2, size_t n);

 Copies at most n characters of the string s2 into the character array s1 .

The value of s1 is returned.

char* strcat(char* s1, const char* s2);

 Appends the string s2 to s1 . The first character of s2 overwrites the

terminating null character of s1 . The value of s1 is returned.

char* strncat(char * s1, const char * s2, size_t n);

 Appends at most n characters of string s2 to string s1 . The first character

of s2 overwrites the terminating null character of s1 . The value of s1 is

returned.

int strcmp(const char* s1, const char* s2);

 Compares the string s1 with the string s2 . The function returns a value of

zero, less than zero or greater than zero if s1 is equal to, less than or

greater than s2 , respectively.

int strncmp(const char* s1, const char* s2, size_t n);

 Compares up to n characters of the string s1 with the string s2 . The

function returns zero, less than zero or greater than zero if the n -character

portion of s1 is equal to, less than or greater than the corresponding n -

character portion of s2 , respectively.

char* strtok(char* s1, const char* s2);

 A sequence of calls to strtok breaks string s1 into tokens—logical pieces

such as words in a line of text. The string is broken up based on the
characters contained in string s2 . For instance, if we were to break the

string "this:is:a:string" into tokens based on the character ':' , the

resulting tokens would be "this", "is", "a" and "string" . Function

strtok returns only one token at a time—the first call contains s1 as the

first argument, and subsequent calls to continue tokenizing the same string
contain NULL as the first argument. A pointer to the current token is

returned by each call. If there are no more tokens when the function is
called, NULL is returned.

size_t strlen(const char* s);

 Determines the length of string s . The number of characters preceding the

terminating null character is returned.

Several functions in Fig. 22.21 contain parameters with data type
size_t . This type is defined in the header <cstring> to be an unsigned
integral type such as unsigned int or unsigned long .

 Common Programming Error
22.7

Forgetting to include the <cstring> header when using functions from

the string-handling library causes compilation errors.

Copying Strings with strcpy and strncpy
Function strcpy copies its second argument—a string—into its first
argument—a character array that must be large enough to store the
string and its terminating null character, (which is also copied).

Function strncpy is much like strcpy , except that strncpy specifies
the number of characters to be copied from the string into the array.
Function strncpy does not necessarily copy the terminating null
character of its second argument—a terminating null character is
written only if the number of characters to be copied is at least one
more than the length of the string. For example, if "test" is the
second argument, a terminating null character is written only if the
third argument to strncpy is at least 5 (four characters in "test" plus
one terminating null character). If the third argument is larger than 5 ,
null characters are appended to the array until the total number of
characters specified by the third argument is written.

 Common Programming Error 22.8

When using strncpy , the terminating null character of the second

argument (a char* string) will not be copied if the number of

characters specified by strncpy ’s third argument is not greater than

the second argument’s length. In that case, a fatal error may occur if
you do not manually terminate the resulting char* string with a null

character.

Figure 22.22 uses strcpy (line 12) to copy the entire string in array x
into array y and uses strncpy (line 18) to copy the first 14 characters
of array x into array z . Line 19 appends a null character ('\0') to
array z , because the call to strncpy in the program does not write a

terminating null character. (The third argument is less than the string
length of the second argument plus one.)

Fig. 22.22 strcpy and strncpy .

Concatenating Strings with strcat and
strncat

Function strcat appends its second argument (a string) to its first
argument (a character array containing a string). The first character of
the second argument replaces the null character ('\0') that
terminates the string in the first argument. You must ensure that the

array used to store the first string is large enough to store the
combination of the first string, the second string and the terminating
null character (copied from the second string). Function strncat

appends a specified number of characters from the second string to
the first string and appends a terminating null character to the result.
The program of Fig. 22.23 demonstrates function strcat (lines 14 and
24) and function strncat (line 19).

Fig. 22.23 strcat and strncat .

Comparing Strings with strcmp and
strncmp

Figure 22.24 compares three strings using strcmp (lines 14–16) and
strncmp (lines 19–21). Function strcmp compares its first string
argument with its second string argument character by character. The
function returns zero if the strings are equal, a negative value if the
first string is less than the second string and a positive value if the first
string is greater than the second string. Function strncmp is equivalent
to strcmp , except that strncmp compares up to a specified number of
characters. Function strncmp stops comparing characters if it reaches
the null character in one of its string arguments. The program prints
the integer value returned by each function call.

 Common Programming Error 22.9

Assuming that strcmp and strncmp return one (a true value) when their

arguments are equal is a logic error. Both functions return zero (C++'s
false value) for equality. Therefore, when testing two strings for
equality, the result of the strcmp or strncmp function should be

compared with zero to determine whether the strings are equal.

Fig. 22.24 strcmp and strncmp .

To understand what it means for one string to be “greater than” or
“less than” another, consider the process of alphabetizing last names.
You’d, no doubt, place “Jones” before “Smith,” because the first letter
of “Jones” comes before the first letter of “Smith” in the alphabet. But
the alphabet is more than just a list of 26 letters—it’s an ordered list of
characters. Each letter occurs in a specific position within the list. “Z”

is more than just a letter of the alphabet; “Z” is specifically the 26th
letter of the alphabet.

How does the computer know that one letter “comes before” another?
All characters are represented inside the computer as numeric codes;
when the computer compares two strings, it actually compares the
numeric codes of the characters in the strings.

[Note: With some compilers, functions strcmp and strncmp always
return -1, 0 or 1 , as in the sample output of Fig. 22.24. With other
compilers, these functions return 0 or the difference between the
numeric codes of the first characters that differ in the strings being
compared. For example, when s1 and s3 are compared, the first
characters that differ between them are the first character of the
second word in each string— N (numeric code 78) in s1 and H
(numeric code 72) in s3 , respectively. In this case, the return value will
be 6 (or -6 if s3 is compared to s1).]

Tokenizing a String with strtok
Function strtok breaks a string into a series of tokens . A token is a
sequence of characters separated by delimiting characters (usually
spaces or punctuation marks). For example, in a line of text, each
word can be considered a token, and the spaces separating the words
can be considered delimiters. Multiple calls to strtok are required to
break a string into tokens (assuming that the string contains more than
one token). The first call to strtok contains two arguments, a string to

be tokenized and a string containing characters that separate the
tokens (i.e., delimiters). Line 14 in Fig. 22.25 initializes tokenPtr with a
pointer to the first token in sentence . The second argument, " " ,
indicates that tokens in sentence are separated by spaces. Function
strtok searches for the first character in sentence that’s not a

delimiting character (space). This begins the first token. The function
then finds the next delimiting character in the string and replaces it
with a null ('\0') character. This terminates the current token.
Function strtok saves (in a static variable) a pointer to the next
character following the token in sentence and returns a pointer to the

current token.

Fig. 22.25 Using strtok to tokenize a string.

Subsequent calls to strtok to continue tokenizing sentence contain
NULL as the first argument (line 19). The NULL argument indicates that
the call to strtok should continue tokenizing from the location in
sentence saved by the last call to strtok . Function strtok maintains

this saved information in a manner that’s not visible to you. If no
tokens remain when strtok is called, strtok returns NULL . The
program of Fig. 22.25 uses strtok to tokenize the string "This is a
sentence with 7 tokens" . The program prints each token on a separate
line. Line 22 outputs sentence after tokenization. Note that strtok
modifies the input string; therefore, a copy of the string should be
made if the program requires the original after the calls to strtok .
When sentence is output after tokenization, only the word “ This ”
prints, because strtok replaced each blank in sentence with a null
character ('\0') during the tokenization process.

 Common Programming Error 22.10

Not realizing that strtok modifies the string being tokenized, then

attempting to use that string as if it were the original unmodified string
is a logic error.

Determining String Lengths
Function strlen takes a string as an argument and returns the
number of characters in the string—the terminating null character is
not included in the length. The length is also the index of the null
character. The program of Fig. 22.26 demonstrates function strlen .

Fig. 22.26 strlen returns the length of a char* string.

22.9 C String-Conversion
Functions
In Section 22.8, we discussed several of C++’s most popular C string-
manipulation functions. In the next several sections, we cover the
remaining functions, including functions for converting strings to
numeric values, functions for searching strings and functions for
manipulating, comparing and searching blocks of memory.

This section presents the C string-conversion functions from the
general-utilities library <cstdlib> . These functions convert C
strings to integer and floating-point values. In new code, C++
programmers typically use the string stream processing capabilities
(Chapter 21) to perform such conversions. Figure 22.27 summarizes
the C string-conversion functions. When using functions from the
general-utilities library, include the <cstdlib> header.

Fig. 22.27 C string-conversion functions of the general-utilities
library.

Prototype Description

double

atof(const

char*

nPtr)

Converts the string nPtr to double . If the string cannot be converted,

0 is returned.

int

atoi(const

char*

nPtr)

Converts the string nPtr to int . If the string cannot be converted, 0

is returned.

long

atol(const

char*

nPtr)

Converts the string nPtr to long int . If the string cannot be

converted, 0 is returned.

double strtod(const char* nPtr, char** endPtr)

 Converts the string nPtr to double . endPtr is the address of a

pointer to the rest of the string after the double . If the string cannot be

converted, 0 is returned.

long strtol(const char* nPtr, char** endPtr, int base)

 Converts the string nPtr to long . endPtr is the address of a pointer

to the rest of the string after the long . If the string cannot be converted,

0 is returned. The base parameter indicates the base of the number to

convert (e.g., 8 for octal, 10 for decimal or 16 for hexadecimal). The
default is decimal.

unsigned long strtoul(const char* nPtr, char** endPtr, int base)

 Converts the string nPtr to unsigned long . endPtr is the address

of a pointer to the rest of the string after the unsigned long . If the

string cannot be converted, 0 is returned. The base parameter

indicates the base of the number to convert (e.g., 8 for octal, 10 for
decimal or 16 for hexadecimal). The default is decimal.

Function atof (Fig. 22.28, line 8) converts its argument—a string that
represents a floating-point number—to a double value. The function
returns the double value. If the string cannot be converted—for
example, if the first character of the string is not a digit— function atof
returns zero.

Fig. 22.28 String-conversion function atof .

Function atoi (Fig. 22.29, line 8) converts its argument—a string of
digits that represents an integer—to an int value. The function
returns the int value. If the string cannot be converted, function atoi
returns zero.

Fig. 22.29 String-conversion function atoi .

Function atol (Fig. 22.30, line 8) converts its argument—a string of
digits representing a long integer—to a long value. The function
returns the long value. If the string cannot be converted, function atol
returns zero. If int and long are both stored in four bytes, function
atoi and function atol work identically.

Fig. 22.30 String-conversion function atol .

Function strtod (Fig. 22.31) converts a sequence of characters
representing a floating-point value to double . Function strtod receives
two arguments—a string (char*) and the address of a char* pointer
(i.e., a char**). The string contains the character sequence to be
converted to double . The second argument enables strtod to modify
a char* pointer in the calling function, such that the pointer points to
the location of the first character after the converted portion of the
string. Line 11 indicates that d is assigned the double value converted
from string and that stringPtr is assigned the location of the first
character after the converted value (51.2) in string .

Fig. 22.31 String-conversion function strtod .

Function strtol (Fig. 22.32) converts to long a sequence of
characters representing an integer. The function receives a string

(char*), the address of a char* pointer and an integer. The string
contains the character sequence to convert. The second argument is
assigned the location of the first character after the converted portion
of the string. The integer specifies the base of the value being
converted. Line 11 indicates that x is assigned the long value
converted from string and that remainderPtr is assigned the location
of the first character after the converted value (-1234567) in string1 .
Using a null pointer for the second argument causes the remainder of
the string to be ignored. The third argument, 0 , indicates that the
value to be converted can be in octal (base 8), decimal (base 10) or
hexadecimal (base 16). This is determined by the initial characters in
the string— 0 indicates an octal number, 0x indicates hexadecimal
and a number from 1 to 9 indicates decimal.

Fig. 22.32 String-conversion function strtol .

In a call to function strtol , the base can be specified as zero or as
any value between 2 and 36. (See Appendix D for a detailed
explanation of the octal, decimal, hexadecimal and binary number
systems.) Numeric representations of integers from base 11 to base
36 use the characters A–Z to represent the values 10 to 35. For
example, hexadecimal values can consist of the digits 0–9 and the
characters A–F. A base-11 integer can consist of the digits 0–9 and
the character A. A base-24 integer can consist of the digits 0–9 and
the characters A–N. A base-36 integer can consist of the digits 0–9
and the characters A–Z. [Note: The case of the letter used is ignored.]

Function strtoul (Fig. 22.33) converts to unsigned long a sequence
of characters representing an unsigned long integer. The function
works identically to strtol . Line 12 indicates that x is assigned the
unsigned long value converted from string and that remainderPtr is
assigned the location of the first character after the converted value
(1234567) in string1 . The third argument, 0 , indicates that the value to
be converted can be in octal, decimal or hexadecimal format,
depending on the initial characters.

Fig. 22.33 String-conversion function strtoul .

22.10 Search Functions of the C
String-Handling Library
This section presents the functions of the string-handling library used
to search strings for characters and other strings. The functions are
summarized in Fig. 22.34. Functions strcspn and strspn specify
return type size_t . Type size_t is a type defined by the standard as
the integral type of the value returned by operator sizeof .

Fig. 22.34 Search functions of the C string-handling library.

Prototype Description

char* strchr(const char* s, int c)

 Locates the first occurrence of character c in string s . If c is found, a

pointer to c in s is returned. Otherwise, a null pointer is returned.

char* strrchr(const char* s, int c)

 Searches from the end of string s and locates the last occurrence of

character c in string s . If c is found, a pointer to c in string s is returned.

Otherwise, a null pointer is returned.

size_t strspn(const char* s1, const char* s2)

 Determines and returns the length of the initial segment of string s1

consisting only of characters contained in string s2 .

char* strpbrk(const char* s1, const char* s2)

 Locates the first occurrence in string s1 of any character in string s2 . If a

character from string s2 is found, a pointer to the character in string s1 is

returned. Otherwise, a null pointer is returned.

size_t strcspn(const char* s1, const char* s2)

 Determines and returns the length of the initial segment of string s1

consisting of characters not contained in string s2 .

char* strstr(const char* s1, const char* s2)

 Locates the first occurrence in string s1 of string s2 . If the string is found,

a pointer to the string in s1 is returned. Otherwise, a null pointer is returned.

Function strchr searches for the first occurrence of a character in a
string. If the character is found, strchr returns a pointer to the
character in the string; otherwise, strchr returns a null pointer. The
program of Fig. 22.35 uses strchr (lines 13 and 23) to search for the
first occurrences of 'a' and 'z' in the string "This is a test" .

Fig. 22.35 String-search function strchr .

Function strcspn (Fig. 22.36, line 14) determines the length of the
initial part of the string in its first argument that does not contain any
characters from the string in its second argument. The function returns
the length of the segment.

Fig. 22.36 String-search function strcspn .

Function strpbrk searches for the first occurrence in its first string
argument of any character in its second string argument. If a character
from the second argument is found, strpbrk returns a pointer to the
character in the first argument; otherwise, strpbrk returns a null
pointer. Line 12 of Fig. 22.37 locates the first occurrence in string1 of
any character from string2 .

Fig. 22.37 String-search function strpbrk .

Function strrchr searches for the last occurrence of the specified
character in a string. If the character is found, strrchr returns a
pointer to the character in the string; otherwise, strrchr returns 0 .
Line 14 of Fig. 22.38 searches for the last occurrence of the character
'z' in the string "A zoo has many animals including zebras" .

Fig. 22.38 String-search function strrchr .

Function strspn (Fig. 22.39, line 14) determines the length of the
initial part of the string in its first argument that contains only
characters from the string in its second argument. The function returns
the length of the segment.

Fig. 22.39 String-search function strspn .

Function strstr searches for the first occurrence of its second string
argument in its first string argument. If the second string is found in the
first string, a pointer to the location of the string in the first argument is
returned; otherwise, it returns 0 . Line 14 of Fig. 22.40 uses strstr to
find the string "def" in the string "abcdefabcdef" .

Fig. 22.40 String-search function strstr .

22.11 Memory Functions of the C
String-Handling Library
The string-handling library functions presented in this section facilitate
manipulating, comparing and searching blocks of memory. The
functions treat blocks of memory as arrays of bytes. These functions
can manipulate any block of data. Figure 22.41 summarizes the
memory functions of the string-handling library. In the function
discussions, “object” refers to a block of data. [Note: The string-
processing functions in prior sections operate on null-terminated
strings. The functions in this section operate on arrays of bytes. The
null-character value (i.e., a byte containing 0) has no significance with
the functions in this section.]

Fig. 22.41 Memory functions of the string-handling library.

Prototype Description

void* memcpy(void* s1, const void* s2, size_t n)

 Copies n characters from the object pointed to by s2 into the object

pointed to by s1 . A pointer to the resulting object is returned. The area from

which characters are copied is not allowed to overlap the area to which
characters are copied.

void* memmove(void* s1, const void* s2, size_t n)

 Copies n characters from the object pointed to by s2 into the object

pointed to by s1 . The copy is performed as if the characters were first

copied from the object pointed to by s2 into a temporary array, then copied

from the temporary array into the object pointed to by s1 . A pointer to the

resulting object is returned. The area from which characters are copied is
allowed to overlap the area to which characters are copied.

int memcmp(const void* s1, const void* s2, size_t n)

 Compares the first n characters of the objects pointed to by s1 and s2 .

The function returns 0 , less than 0 , or greater than 0 if s1 is equal to,

less than or greater than s2 , respectively.

void* memchr(const void* s, int c, size_t n)

 Locates the first occurrence of c (converted to unsigned char) in the

first n characters of the object pointed to by s . If c is found, a pointer to c

in the object is returned. Otherwise, 0 is returned.

void* memset(void* s, int c, size_t n)

 Copies c (converted to unsigned char) into the first n characters of the

object pointed to by s . A pointer to the result is returned.

The pointer parameters to these functions are declared void* . In
Chapter 8, we saw that a pointer to any data type can be assigned
directly to a pointer of type void* . For this reason, these functions can
receive pointers to any data type. Remember that a pointer of type
void* cannot be assigned directly to a pointer of any other data type.
Because a void* pointer cannot be dereferenced, each function
receives a size argument that specifies the number of characters

(bytes) the function will process. For simplicity, the examples in this
section manipulate character arrays (blocks of characters).

Function memcpy copies a specified number of characters (bytes) from
the object pointed to by its second argument into the object pointed to
by its first argument. The function can receive a pointer to any type of
object. The result of this function is undefined if the two objects
overlap in memory (i.e., are parts of the same object). The program of
Fig. 22.42 uses memcpy (line 13) to copy the string in array s2 to array
s1 .

Fig. 22.42 Memory-handling function memcpy .

Function memmove , like memcpy , copies a specified number of bytes from
the object pointed to by its second argument into the object pointed to
by its first argument. Copying is performed as if the bytes were copied

from the second argument to a temporary array of characters, then
copied from the temporary array to the first argument. This allows
characters from one part of a string to be copied into another part of
the same string.

 Common Programming Error
22.11

String-manipulation functions other than memmove that copy characters

have undefined results when copying takes place between parts of the
same string.

The program in Fig. 22.43 uses memmove (line 12) to copy the last 10
bytes of array x into the first 10 bytes of array x .

Fig. 22.43 Memory-handling function memmove .

Function memcmp (Fig. 22.44, lines 13–15) compares the specified
number of characters of its first argument with the corresponding
characters of its second argument. The function returns a value
greater than zero if the first argument is greater than the second
argument, zero if the arguments are equal, and a value less than zero
if the first argument is less than the second argument. [Note: With
some compilers, function memcmp returns -1 , 0 or 1 , as in the sample
output of Fig. 22.44. With other compilers, this function returns 0 or
the difference between the numeric codes of the first characters that
differ in the strings being compared. For example, when s1 and s2
are compared, the first character that differs between them is the fifth
character of each string— E (numeric code 69) for s1 and X (numeric
code 72) for s2 . In this case, the return value will be 19 (or -19 when
s2 is compared to s1).]

Fig. 22.44 Memory-handling function memcmp .

Function memchr searches for the first occurrence of a byte,
represented as unsigned char , in the specified number of bytes of an
object. If the byte is found in the object, a pointer to it is returned;
otherwise, the function returns a null pointer. Line 12 of Fig. 22.45
searches for the character (byte) 'r' in the string "This is a string" .

Fig. 22.45 Memory-handling function memchr .

Function memset copies the value of the byte in its second argument
into a specified number of bytes of the object pointed to by its first
argument. Line 12 in Fig. 22.46 uses memset to copy 'b' into the first
7 bytes of string1 .

Fig. 22.46 Memory-handling function memset .

22.12 Wrap-Up
This chapter introduced struct definitions, initializing structs and
using them with functions. We discussed typedef , using it to create
aliases to help promote portability. We also introduced bitwise
operators to manipulate data and bit fields for storing data compactly.
You learned about the string-conversion functions in <cstlib> and the
string-processing functions in <cstring> .

Summary

Section 22.2 Structure Definitions
Keyword struct (p. 900) begins every structure definition.
Between the braces of the structure definition are the structure
member declarations.
A structure definition creates a new data type that can be used to
declare variables.

Section 22.3 typedef and using
Creating a new type name with typedef (p. 902) does not create a
new type; it creates a name that’s synonymous with a type defined
previously.
C++11 added the keyword using as another mechanism for
creating type aliases.

Section 22.5 Bitwise Operators
The bitwise AND operator (& ; p. 905) takes two integral operands.
A bit in the result is set to one if the corresponding bits in each of
the operands are one.
Masks (p. 907) are used with bitwise AND to hide some bits while
preserving others.
The bitwise inclusive OR operator (| ; p. 905) takes two operands.
A bit in the result is set to one if the corresponding bit in either
operand is set to one.
Each of the bitwise operators (except complement) has a
corresponding assignment operator.
The bitwise exclusive OR operator (^ ; p. 905) takes two operands.
A bit in the result is set to one if exactly one of the corresponding
bits in the two operands is set to one.
The left-shift operator (<< ; p. 905) shifts the bits of its left
operand left by the number of bits specified by its right operand.
Bits vacated to the right are replaced with zeros.
The right-shift operator (>> ; p. 905) shifts the bits of its left
operand right by the number of bits specified in its right operand.
Right shifting an unsigned integer causes bits vacated at the left to
be replaced by zeros. Vacated bits in signed integers can be
replaced with zeros or ones.
The bitwise complement operator (~ ; p. 905) takes one operand
and inverts its bits—this produces the one’s complement of the
operand.

As of C++14, you may now include binary literals in your source
code. To do so, precede a sequence of 1s and 0s with 0b or 0B.

Section 22.6 Bit Fields
Bit fields (p. 914) reduce storage use by storing data in the
minimum number of bits required. Bit-field members must be
declared as int or unsigned .
A bit field is declared by following an unsigned or int member
name with a colon and the width of the bit field.
The bit-field width must be an integer constant.
If a bit field is specified without a name, the field is used as padding
(p. 917) in the structure.
An unnamed bit field with width 0 (p. 917) aligns the next bit field
on a new machine-word boundary.

Section 22.7 Character-Handling Library
Function islower (p. 920) determines if its argument is a lowercase
letter (a–z). Function isupper (p. 920) determines whether its
argument is an uppercase letter (A–Z).
Function isdigit (p. 918) determines if its argument is a digit (0–
9).
Function isalpha (p. 918) determines if its argument is an
uppercase (A–Z) or lowercase letter (a–z).
Function isalnum (p. 918) determines if its argument is an
uppercase letter (A–Z), a lowercase letter (a–z), or a digit (0–9).
Function isxdigit (p. 918) determines if its argument is a
hexadecimal digit (A–F, a–f, 0–9).
Function toupper (p. 920) converts a lowercase letter to an
uppercase letter. Function tolower (p. 920) converts an uppercase
letter to a lowercase letter.
Function isspace (p. 921) determines if its argument is one of the
following whitespace characters: ' ' (space), '\f', '\n', '\r',
'\t' or '\v' .
Function iscntrl (p. 921) determines if its argument is a control
character, such as '\t', '\v' , '\f', '\a', '\b', '\r' or '\n' .
Function ispunct (p. 921) determines if its argument is a printing
character other than a space, a digit or a letter.

Function isprint (p. 921) determines if its argument is any printing
character, including space.
Function isgraph (p. 921) determines if its argument is a printing
character other than space.

Section 22.8 C String-Manipulation
Functions

Function strcpy (p. 924) copies its second argument into its first
argument. You must ensure that the target array is large enough to
store the string and its terminating null character.
Function strncpy (p. 924) is equivalent to strcpy , but it specifies
the number of characters to be copied from the string into the
array. The terminating null character will be copied only if the
number of characters to be copied is at least one more than the
length of the string.
Function strcat (p. 925) appends its second string argument—
including the terminating null character—to its first string argument.
The first character of the second string replaces the null ('\0')
character of the first string. You must ensure that the target array
used to store the first string is large enough to store both the first
string and the second string.
Function strncat (p. 925) is equivalent to strcat , but it appends a
specified number of characters from the second string to the first
string. A terminating null character is appended to the result.
Function strcmp compares its first string argument with its second
string argument character by character. The function returns zero if
the strings are equal, a negative value if the first string is less than
the second string and a positive value if the first string is greater
than the second string.

Function strncmp is equivalent to strcmp , but it compares a
specified number of characters. If the number of characters in one
of the strings is less than the number of characters specified,
strncmp compares characters until the null character in the shorter
string is encountered.
A sequence of calls to strtok (p. 928) breaks a string into tokens
that are separated by characters contained in a second string
argument. The first call specifies the string to be tokenized as the
first argument, and subsequent calls to continue tokenizing the
same string specify NULL as the first argument. The function
returns a pointer to the current token from each call. If there are no
more tokens when strtok is called, NULL is returned.
Function strlen (p. 929) takes a string as an argument and returns
the number of characters in the string—the terminating null
character is not included in the length of the string.

Section 22.9 C String-Conversion
Functions

Function atof (p. 931) converts its argument—a string beginning
with a series of digits that represents a floating-point number—to a
double value.
Function atoi (p. 931) converts its argument—a string beginning
with a series of digits that represents an integer—to an int value.
Function atol (p. 932) converts its argument—a string beginning
with a series of digits that represents a long integer—to a long
value.
Function strtod (p. 932) converts a sequence of characters
representing a floating-point value to double . The function receives
two arguments—a string (char*) and the address of a char*
pointer. The string contains the character sequence to be
converted, and the pointer to char* is assigned the remainder of
the string after the conversion.
Function strtol (p. 933) converts a sequence of characters
representing an integer to long . It receives a string (char*), the
address of a char* pointer and an integer. The string contains the
character sequence to be converted, the pointer to char* is
assigned the location of the first character after the converted
value and the integer specifies the base of the value being
converted.

Function strtoul (p. 934) converts a sequence of characters
representing an integer to unsigned long . It receives a string
(char*), the address of a char* pointer and an integer. The string
contains the character sequence to be converted, the pointer to
char* is assigned the location of the first character after the
converted value and the integer specifies the base of the value
being converted.

Section 22.10 Search Functions of the C
String-Handling Library

Function strchr (p. 935) searches for the first occurrence of a
character in a string. If found, strchr returns a pointer to the
character in the string; otherwise, strchr returns a null pointer.
Function strcspn (p. 936) determines the length of the initial part of
the string in its first argument that does not contain any characters
from the string in its second argument. The function returns the
length of the segment.
Function strpbrk (p. 937) searches for the first occurrence in its
first argument of any character that appears in its second
argument. If a character from the second argument is found,
strpbrk returns a pointer to the character; otherwise, strpbrk
returns a null pointer.
Function strrchr (p. 937) searches for the last occurrence of a
character in a string. If the character is found, strrchr returns a
pointer to the character in the string; otherwise, it returns a null
pointer.
Function strspn (p. 938) determines the length of the initial part of
its first argument that contains only characters from the string in its
second argument and returns the length of the segment.
Function strstr (p. 939) searches for the first occurrence of its
second string argument in its first string argument. If the second

string is found in the first string, a pointer to the location of the
string in the first argument is returned; otherwise it returns 0.

Section 22.11 Memory Functions of the C
String-Handling Library

Function memcpy (p. 940) copies a specified number of characters
from the object to which its second argument points into the object
to which its first argument points. The function can receive a
pointer to any object. The pointers are received as void pointers
and converted to char pointers for use in the function. Function
memcpy manipulates the bytes of its argument as characters.
Function memmove (p. 941) copies a specified number of bytes from
the object pointed to by its second argument to the object pointed
to by its first argument. Copying is accomplished as if the bytes
were copied from the second argument to a temporary character
array, then copied from the temporary array to the first argument.
Function memcmp (p. 941) compares the specified number of
characters of its first and second arguments.
Function memchr (p. 942) searches for the first occurrence of a
byte, represented as unsigned char , in the specified number of
bytes of an object. If the byte is found, a pointer to it is returned;
otherwise, a null pointer is returned.
Function memset (p. 943) copies its second argument, treated as an
unsigned char , to a specified number of bytes of the object pointed
to by the first argument.

Self-Review Exercises
1. 22.1 Fill in the blanks in each of the following:

A. The bits in the result of an expression using the
operator are set to one if the corresponding bits in each
operand are set to one. Otherwise, the bits are set to
zero.

B. The bits in the result of an expression using the
operator are set to one if at least one of the
corresponding bits in either operand is set to one.
Otherwise, the bits are set to zero.

C. Keyword introduces a structure declaration.
D. Keyword is used to create a synonym for a

previously defined data type.
E. Each bit in the result of an expression using the

operator is set to one if exactly one of the corresponding
bits in either operand is set to one.

F. The bitwise AND operator & is often used to bits
(i.e., to select certain bits from a bit string while zeroing
others).

G. The and operators are used to shift the bits
of a value to the left or to the right, respectively.

2. 22.2 Write a single statement or a set of statements to
accomplish each of the following:

A. Define a structure called Part containing int variable
partNumber and char array partName , whose values may
be as long as 25 characters.

B. Define PartPtr to be a synonym for the type Part* .
C. Use separate statements to declare variable a to be of

type Part , array b[10] to be of type Part and variable
ptr to be of type pointer to Part .

D. Read a part number and a part name from the keyboard
into the members of variable a .

E. Assign the member values of variable a to element three
of array b .

F. Assign the address of array b to the pointer variable
ptr .

G. Print the member values of element three of array b ,
using the variable ptr and the structure pointer operator
to refer to the members.

3. 22.3 Write a single statement to accomplish each of the
following. Assume that variables c (which stores a character),
x, y and z are of type int ; variables d, e and f are of type
double ; variable ptr is of type char* and arrays s1[100] and
s2[100] are of type char .

A. Convert the character stored in c to an uppercase letter.
Assign the result to variable c .

B. Determine if the value of variable c is a digit. Use the
conditional operator as shown in Figs. 22.18–22.20 to

print " is a " or " is not a " when the result is
displayed.

C. Convert the string "1234567" to long , and print the value.
D. Determine whether the value of variable c is a control

character. Use the conditional operator to print " is a "
or " is not a " when the result is displayed.

E. Assign to ptr the location of the last occurrence of c in
s1 .

F. Convert the string "8.63582" to double , and print the
value.

G. Determine whether the value of c is a letter. Use the
conditional operator to print " is a " or " is not a "
when the result is displayed.

H. Assign to ptr the location of the first occurrence of s2 in
s1 .

I. Determine whether the value of variable c is a printing
character. Use the conditional operator to print " is a "
or " is not a " when the result is displayed.

J. Assign to ptr the location of the first occurrence in s1 of
any character from s2 .

K. Assign to ptr the location of the first occurrence of c in
s1 .

L. Convert the string "-21" to int , and print the value.

Answers to Self-Review Exercises

1. 22.1
A. bitwise AND (&).
B. bitwise inclusive OR (|).
C. struct .
D. typedef .
E. bitwise exclusive OR (^).
F. mask.
G. left-shift operator (<<), right-shift operator (>>).

2. 22.2
A.

struct Part {

 int partNumber;

 char partName[26];

};

B. typedef Part* PartPtr;

C.

Part a;

Part b[10];

Part* ptr;

D. cin >> a.partNumber >> a.partName;

E. b[3] = a;

F. ptr = b;

G.

cout << (ptr + 3)->partNumber << ' '

 << (ptr + 3)->partName << endl;

3. 22.3
A. c = toupper(c);

B.

cout << '\'' << c << "\' "

 << (isdigit(c) ? "is a" : "is not a")

 << " digit" << endl;

C. cout << atol("1234567") << endl;

D.

cout << '\'' << c << "\' "

 << (iscntrl(c) ? "is a" : "is not a")

 << " control character" << endl;

E. ptr = strrchr(s1, c);

F. out << atof("8.63582") << endl;

G.

cout << '\'' << c << "\' "

 << (isalpha(c) ? "is a" : "is not a")

 << " letter" << endl;

H. ptr = strstr(s1, s2);

I.

cout << '\'' << c << "\' "

 << (isprint(c) ? "is a" : "is not a")

 << " printing character" << endl;

J. ptr = strpbrk(s1, s2);

K. ptr = strchr(s1, c);

L. cout << atoi("-21") << endl;

Exercises
1. 22.4 (Defining Structures) Provide the definition for each of

the following structures:
A. Structure Inventory , containing character array

partName[30] , integer partNumber , floating-point price ,
integer stock and integer reorder .

B. A structure called Address that contains character arrays
streetAddress[25], city[20] ,
state[3] and zipCode[6] .

C. Structure Student , containing arrays firstName[15] and
lastName[15] and variable
homeAddress of type struct Address from part (b).

D. Structure Test , containing 16 bit fields with widths of 1
bit. The names of the bit fields are the letters a to p .

2. 22.5 (Card Shufflling and Dealing) Modify Fig. 22.16 to
shuffle the cards using the shuffle algorithm in Fig. 22.3. Print
the resulting deck in two-column format. Precede each card
with its color.

3. 22.6 (Shifting and Printing an Integer) Write a program that
right-shifts an integer variable four bits. The program should
print the integer in bits before and after the shift operation.
Does your system place zeros or ones in the vacated bits?

4. 22.7 (Multiplication Via Bit Shifting) Left-shifting an unsigned
integer by one bit is equivalent to multiplying the value by 2.
Write function power2 that takes two integer arguments, number
and pow , and calculates

number * 2

Use a shift operator to calculate the result. The program should
print the values as integers and as bits.

5. 22.8 (Packing Characters into Unsigned Integers) The left-
shift operator can be used to pack four character values into a
four-byte unsigned integer variable. Write a program that inputs
four characters from the keyboard and passes them to function
packCharacters . To pack four characters into an unsigned
integer variable, assign the first character to the unsigned
variable, shift the unsigned variable left by eight bit positions
and combine the unsigned variable with the second character
using the bitwise inclusive-OR operator, etc. The program
should output the characters in their bit format before and after
they’re packed into the unsigned integer to prove that they’re in
fact packed correctly in the unsigned variable.

6. 22.9 (Unpacking Characters from Unsigned Integers) Using
the right-shift operator, the bitwise AND operator and a mask,
write function unpackCharacters that takes the unsigned integer
from Exercise 22.8 and unpacks it into four characters. To
unpack characters from an unsigned four-byte integer, combine

pow

the unsigned integer with a mask and right-shift the result. To
create the masks you’ll need to unpack the four characters, left-
shift the value 255 in the mask variable by eight bits 0, 1, 2 or 3
times (depending on the byte you are unpacking). Then take
the combined result each time and right shift it by eight bits the
same number of times. Assign each resulting value to a char
variable. The program should print the unsigned integer in bits

before it’s unpacked, then print the characters in bits to confirm
that they were unpacked correctly.

7. 22.10 (Reversing Bits) Write a program that reverses the
order of the bits in an unsigned integer value. The program
should input the value from the user and call function
reverseBits to print the bits in reverse order. Print the value in
bits both before and after the bits are reversed to confirm that
the bits are reversed properly.

8. 22.11 (Testing Characters with the <cctype> Functions)
Write a program that inputs a character from the keyboard and
tests the character with each function in the character-handling
library. Print the value returned by each function.

9. 22.12 (Determine the Value) The following program uses
function multiple to determine whether the integer entered
from the keyboard is a multiple of some integer X . Examine
function multiple , then determine the value of X .

 1 // Exercise 22.12: Ex22_12.cpp

 2 // This program determines if a value is a multiple of

X.

 3 #include <iostream>

 4 using namespace std;

 5

 6 bool multiple(int);

 7

 8 int main() {

 9 int y{0};

10

11 cout << "Enter an integer between 1 and 32000: ";

12 cin >> y;

13

14 if (multiple(y)) {

15 cout << y << " is a multiple of X" << endl;

16 }

17 else {

18 cout << y << " is not a multiple of X" << endl;

19 }

20 }

21

22 // determine if num is a multiple of X

23 bool multiple(int num) {

24 bool mult{true};

25

26 for (int i{0}, mask{1}; i < 10; ++i, mask <<= 1) {

27 if ((num & mask) != 0) {

28 mult = false;

29 break;

30 }

31 }

32

33 return mult;

34 }

10. 22.13 What does the following program do?

 1 // Exercise 22.13: Ex22_13.cpp

 2 #include <iostream>

 3 using namespace std;

 4

 5 bool mystery(unsigned);

 6

 7 int main() {

 8 {

 9 unsigned x;

10 cout << "Enter an integer: ";

11 cin >> x;

12 cout << boolalpha

13 << "The result is " << mystery(x) << endl;

14 }

15

16 // What does this function do?

17 bool mystery(unsigned bits)

18 {

19 const int SHIFT{8 * sizeof(unsigned) - 1};

20 const unsigned MASK{1 << SHIFT};

21 unsigned total{0};

22

23 for (int i{0}; i < SHIFT + 1; ++i, bits <<= 1) {

24 if ((bits & MASK) == MASK) {

25 ++total;

26 }

27 }

28

29 return !(total % 2);

30 }

11. 22.14 Write a program that inputs a line of text with istream
member function getline (as in Chapter 13) into character
array s[100] . Output the line in uppercase letters and
lowercase letters.

12. 22.15 (Converting Strings to Integers) Write a program that
inputs four strings that represent integers, converts the strings
to integers, sums the values and prints the total of the four
values. Use only the C string-processing techniques discussed
in this chapter.

13. 22.16 (Converting Strings to Floating-Point Numbers) Write
a program that inputs four strings that represent floating-point
values, converts the strings to double values, sums the values
and prints the total of the four values. Use only the C string-
processing techniques shown in this chapter.

14. 22.17 (Searching for Substrings) Write a program that inputs
a line of text and a search string from the keyboard. Using
function strstr , locate the first occurrence of the search string
in the line of text, and assign the location to variable searchPtr
of type char* . If the search string is found, print the remainder
of the line of text beginning with the search string. Then use
strstr again to locate the next occurrence of the search string
in the line of text. If a second occurrence is found, print the
remainder of the line of text beginning with the second
occurrence. [Hint: The second call to strstr should contain the
expression searchPtr + 1 as its first argument.]

15. 22.18 (Searching for Substrings) Write a program based on
the program of Exercise 22.17 that inputs several lines of text
and a search string, then uses function strstr to determine the
total number of occurrences of the string in the lines of text.
Print the result.

16. 22.19 (Searching for Characters) Write a program that inputs
several lines of text and a search character and uses function
strchr to determine the total number of occurrences of the
character in the lines of text.

17. 22.20 (Searching for Characters) Write a program based on
the program of Exercise 22.19 that inputs several lines of text
and uses function strchr to determine the total number of
occurrences of each letter of the alphabet in the text.
Uppercase and lowercase letters should be counted together.
Store the totals for each letter in an array, and print the values
in tabular format after the totals have been determined.

18. 22.21 (ASCII Character Set) The chart in Appendix B shows
the numeric code representations for the characters in the
ASCII character set. Study this chart, then state whether each
of the following is true or false:

A. The letter “ A ” comes before the letter “ B .”
B. The digit “ 9 ” comes before the digit “ 0 .”
C. The commonly used symbols for addition, subtraction,

multiplication and division all come before any of the
digits.

D. The digits come before the letters.
E. If a sort program sorts strings into ascending sequence,

then the program will place the symbol for a right
parenthesis before the symbol for a left parenthesis.

19. 22.22 (Strings Beginning with b) Write a program that reads
a series of strings and prints only those strings beginning with
the letter “ b .”

20. 22.23 (Strings Ending with ED) Write a program that reads a
series of strings and prints only those strings that end with the
letters “ ED .”

21. 22.24 (Displaying Characters for Given ASCII Codes) Write
a program that inputs an ASCII code and prints the
corresponding character. Modify this program so that it
generates all possible three-digit codes in the range 000–255
and attempts to print the corresponding characters. What
happens when this program is run?

22. 22.25 (Write Your Own Character Handling Functions)
Using the ASCII character chart in Appendix B as a guide,

write your own versions of the character-handling functions in
Fig. 22.17.

23. 22.26 (Write Your Own String Conversion Functions) Write
your own versions of the functions in Fig. 22.27 for converting
strings to numbers.

24. 22.27 (Write Your Own String Searching Functions) Write
your own versions of the functions in Fig. 22.34 for searching
strings.

25. 22.28 (Write Your Own Memory Handling Functions) Write
your own versions of the functions in Fig. 22.41 for
manipulating blocks of memory.

26. 22.29 (What Does the Program Do?) What does this program
do?

 1 // Ex. 22.29: Ex22_29.cpp

 2 // What does this program do?

 3 #include <iostream>

 4 using namespace std;

 5

 6 bool mystery3(const char*, const char*); // prototype

 7

 8 int main() {

 9 char string1[80], string2[80];

10

11 cout << "Enter two strings: ";

12 cin >> string1 >> string2;

13 cout << "The result is " << mystery3(string1,

string2) << endl;

14 }

15

16 // What does this function do?

17 bool mystery3(const char* s1, const char* s2) {

18 for (; *s1 != '\0' && *s2 != '\0'; ++s1, ++s2) [

19 if (*s1 != *s2) {

20 return false;

21 }

22 }

23

24 return true;

25 }

27. 22.30 (Comparing Strings) Write a program that uses function
strcmp to compare two strings input by the user. The program
should state whether the first string is less than, equal to or
greater than the second string.

28. 22.31 (Comparing Strings) Write a program that uses function
strncmp to compare two strings input by the user. The program
should input the number of characters to compare. The
program should state whether the first string is less than, equal
to or greater than the second string.

29. 22.32 (Randomly Creating Sentences) Write a program that
uses random number generation to create sentences. The
program should use four arrays of pointers to char called
article, noun, verb and preposition . The program should
create a sentence by selecting a word at random from each

array in the following order: article, noun, verb, preposition,
article and noun . As each word is picked, it should be
concatenated to the previous words in a character array that’s
large enough to hold the entire sentence. The words should be
separated by spaces. When the final sentence is output, it
should start with a capital letter and end with a period. The
program should generate 20 such sentences.
The arrays should be filled as follows: The article array should
contain the articles "the" , "a", "one", "some" and "any" ; the
noun array should contain the nouns "boy", "girl", "dog" ,
"town" and "car" ; the verb array should contain the verbs
"drove", "jumped", "ran", "walked" and "skipped" ; the
preposition array should contain the prepositions "to", "from",
"over" , "under" and "on" .
After completing the program, modify it to produce a short story
consisting of several of these sentences. (How about a random
term-paper writer!)

30. 22.33 (Limericks) A limerick is a humorous five-line verse in
which the first and second lines rhyme with the fifth, and the
third line rhymes with the fourth. Using techniques similar to
those developed in Exercise 22.32, write a C++ program that
produces random limericks. Polishing this program to produce
good limericks is a challenging problem, but the result will be
worth the effort!

31. 22.34 (Pig Latin) Write a program that encodes English
language phrases into pig Latin. Pig Latin is a form of coded
language often used for amusement. Many variations exist in

the methods used to form pig Latin phrases. For simplicity, use
the following algorithm: To form a pig-Latin phrase from an
English-language phrase, tokenize the phrase into words with
function strtok . To translate each English word into a pig-Latin
word, place the first letter of the English word at the end of the
English word and add the letters “ ay .” Thus, the word “ jump ”
becomes “ umpjay ,” the word “ the ” becomes “ hetay ” and the
word “ computer ” becomes “ omputercay .” Blanks between words
remain as blanks. Assume that the English phrase consists of
words separated by blanks, there are no punctuation marks
and all words have two or more letters. Function printLatinWord
should display each word. [Hint: Each time a token is found in a
call to strtok , pass the token pointer to function printLatinWord
and print the pig-Latin word.]

32. 22.35 (Tokenizing Phone Numbers) Write a program that
inputs a telephone number as a string in the form (555) 555-
5555 . The program should use function strtok to extract the
area code as a token, the first three digits of the phone number
as a token, and the last four digits of the phone number as a
token. The seven digits of the phone number should be
concatenated into one string. Both the area code and the
phone number should be printed.

33. 22.36 (Tokenizing and Reversing a Sentence) Write a
program that inputs a line of text, tokenizes the line with
function strtok and outputs the tokens in reverse order.

34. 22.37 (Alphabetizing Strings) Use the string-comparison
functions discussed in Section 22.8 and the techniques for

sorting arrays developed in Chapter 7 to write a program that
alphabetizes a list of strings. Use the names of 10 towns in
your area as data for your program.

35. 22.38 (Write Your Own String Copy and Concatenation
Functions) Write two versions of each string-copy and string-
concatenation function in Fig. 22.21. The first version should
use array subscripting, and the second should use pointers and
pointer arithmetic.

36. 22.39 (Write Your Own String Comparison Functions) Write
two versions of each string-comparison function in Fig. 22.21.
The first version should use array subscripting, and the second
should use pointers and pointer arithmetic.

37. 22.40 (Write Your Own String Length Function) Write two
versions of function strlen in Fig. 22.21. The first version
should use array subscripting, and the second should use
pointers and pointer arithmetic.

Special Section: Advanced String-
Manipulation Exercises
The preceding exercises are keyed to the text and designed to test
your understanding of fundamental string-manipulation concepts. This
section includes a collection of intermediate and advanced string-
manipulation exercises. You should find these problems challenging,
yet enjoyable. The problems vary considerably in difficulty. Some
require an hour or two of program writing and implementation. Others
are useful for lab assignments that might require two or three weeks of
study and implementation. Some are challenging term projects.

1. 22.41 (Text Analysis) The availability of computers with string-
manipulation capabilities has resulted in some rather interesting
approaches to analyzing the writings of great authors. Much
attention has been focused on whether William Shakespeare
ever lived. Some scholars believe there is substantial evidence
that Francis Bacon, Christopher Marlowe or other authors
actually penned the masterpieces attributed to Shakespeare.
Researchers have used computers to find similarities in the
writings of these authors. This exercise examines three
methods for analyzing texts with a computer. Thousands of
texts, including Shakespeare, are available online at
www.gutenberg.org .

A. Write a program that reads several lines of text from the
keyboard and prints a table indicating the number of
occurrences of each letter of the alphabet in the text. For
example, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
B. Write a program that reads several lines of text and

prints a table indicating the number of one-letter words,
two-letter words, three-letter words, etc., appearing in
the text. For example, the phrase

Whether 'tis nobler in the mind to suffer

contains the following word lengths and occurrences:

Word length Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

C. Write a program that reads several lines of text and
prints a table indicating the number of occurrences of
each different word in the text. The first version of your
program should include the words in the table in the
same order in which they appear in the text. For
example, the lines

To be, or not to be: that is the question:

Whether 'tis nobler in the mind to suffer

contain the word “to” three times, the word “be” two
times, the word “or” once, etc. A more interesting (and
useful) printout should then be attempted in which the
words are sorted alphabetically.

2. 22.42 (Word Processing) One important function in word-
processing systems is type justification—the alignment of
words to both the left and right margins of a page. This
generates a professional-looking document that gives the
appearance of being set in type rather than prepared on a
typewriter. Type justification can be accomplished on computer
systems by inserting blank characters between the words in a
line so that the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this
text in type-justified format. Assume that the text is to be printed
on paper 8-1/2 inches wide and that one-inch margins are to be
allowed on both the left and right sides. Assume that the
computer prints 10 characters to the horizontal inch. Therefore,
your program should print 6-1/2 inches of text, or 65 characters
per line.

3. 22.43 (Printing Dates in Various Formats) Dates are
commonly printed in several different formats in business
correspondence. Two of the more common formats are

07/21/1955

July 21, 1955

Write a program that reads a date in the first format and prints
that date in the second format.

4. 22.44 (Check Protection) Computers are frequently employed
in check-writing systems such as payroll and accounts-payable
applications. Many strange stories circulate regarding weekly
paychecks being printed (by mistake) for amounts in excess of
$1 million. Weird amounts are printed by computerized check-
writing systems, because of human error or machine failure.
Systems designers build controls into their systems to prevent
such erroneous checks from being issued.
Another serious problem is the intentional alteration of a check
amount by someone who intends to cash a check fraudulently.
To prevent a dollar amount from being altered, most

computerized check-writing systems employ a technique called
check protection.
Checks designed for imprinting by computer contain a fixed
number of spaces in which the computer may print an amount.
Suppose that a paycheck contains eight blank spaces in which
the computer is supposed to print the amount of a weekly
paycheck. If the amount is large, then all eight of those spaces
will be filled, for example,

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then
several of the spaces would ordinarily be left blank. For
example,

 99.87

12345678

contains three blank spaces. If a check is printed with blank
spaces, it’s easier for someone to alter the amount of the
check. To prevent a check from being altered, many check-
writing systems insert leading asterisks to protect the amount
as follows:

***99.87

12345678

Write a program that inputs a dollar amount to be printed on a
check then prints the amount in check-protected format with
leading asterisks if necessary. Assume that nine spaces are
available for printing an amount.

5. 22.45 (Writing the Word Equivalent of a Check Amount)
Continuing the discussion of the previous example, we reiterate
the importance of designing check-writing systems to prevent
alteration of check amounts. One common security method
requires that the check amount be both written in numbers and
“spelled out” in words. Even if someone is able to alter the
numerical amount of the check, it’s extremely difficult to change
the amount in words.
Write a program that inputs a numeric check amount and writes
the word equivalent of the amount. Your program should be
able to handle check amounts as large as $99.99. For example,
the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

6. 22.46 (Morse Code) Perhaps the most famous of all coding
schemes is the Morse code, developed by Samuel Morse in
1832 for use with the telegraph system. The Morse code
assigns a series of dots and dashes to each letter of the

alphabet, each digit and a few special characters (such as
period, comma, colon and semicolon). In sound-oriented
systems, the dot represents a short sound, and the dash
represents a long sound. Other representations of dots and
dashes are used with light-oriented systems and signal-flag
systems.
Separation between words is indicated by a space, or, quite
simply, the absence of a dot or dash. In a sound-oriented
system, a space is indicated by a short period of time during
which no sound is transmitted. The international version of the
Morse code appears in Fig. 22.47.

Fig. 22.47 Letters and digits as expressed in international
Morse code.

Character Code

A .-

B -...

C -.-.

D -..

E .

F ..-.

G --.

H

I ..

J .---

K -.-

L .-..

M --

N -.

O ---

P .--.

Q --.-

R .-.

S ...

T -

U ..-

V ...-

W .--

X -..-

Y -.--

Z --..

Digits

1 .----

2 ..---

3 ...--

4-

5

6 -....

7 --...

8 ---..

9 ----.

0 -----

Write a program that reads an English-language phrase and
encodes it in Morse code. Also write a program that reads a
phrase in Morse code and converts it into the English-language
equivalent. Use one blank between each Morse-coded letter
and three blanks between each Morse-coded word.

7. 22.47 (Metric Conversion Program) Write a program that will
assist the user with metric conversions. Your program should
allow the user to specify the names of the units as strings (i.e.,
centimeters, liters, grams, etc., for the metric system and

inches, quarts, pounds, etc., for the English system) and should
respond to simple questions such as

"How many inches are in 2 meters?"

"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For
example, the question

"How many feet are in 5 kilograms?"

is not meaningful, because "feet" are units of length, while
"kilograms" are units of weight.

Challenging String-Manipulation
Projects

1. 22.48 (Crossword Puzzle Generator) Most people have
worked a crossword puzzle, but few have ever attempted to
generate one. Generating a crossword puzzle is a difficult
problem. It’s suggested here as a string-manipulation project
requiring substantial sophistication and effort. There are many
issues that you must resolve to get even the simplest
crossword puzzle generator program working. For example,
how does one represent the grid of a crossword puzzle inside
the computer? Should one use a series of strings, or should
two-dimensional arrays be used? You need a source of words
(i.e., a computerized dictionary) that can be directly referenced
by the program. In what form should these words be stored to
facilitate the complex manipulations required by the program?
The really ambitious reader will want to generate the “clues”
portion of the puzzle, in which the brief hints for each “across”
word and each “down” word are printed for the puzzle worker.
Merely printing a version of the blank puzzle itself is not a
simple problem.

2. 22.49 (Spelling Checker) Many popular word-processing
software packages have built-in spell checkers. We used spell-
checking capabilities in preparing this book and discovered
that, no matter how careful we thought we were in writing a

chapter, the software was always able to find a few more
spelling errors than we were able to catch manually.
In this project, you are asked to develop your own spell-checker
utility. We make suggestions to help get you started. You
should then consider adding more capabilities. You might find it
helpful to use a computerized dictionary as a source of words.
Why do we type so many words with incorrect spellings? In
some cases, it’s because we simply do not know the correct
spelling, so we make a “best guess.” In some cases, it’s
because we transpose two letters (e.g., “defualt” instead of
“default”). Sometimes we double-type a letter accidentally (e.g.,
“hanndy” instead of “handy”). Sometimes we type a nearby key
instead of the one we intended (e.g., “biryhday” instead of
“birthday”). And so on.
Design and implement a spell-checker program. Your program
maintains an array wordList of character strings. You can either
enter these strings or obtain them from a computerized
dictionary.
Your program asks a user to enter a word. The program then
looks up that word in the wordList array. If the word is present
in the array, your program should print “ Word is spelled
correctly .”
If the word is not present in the array, your program should print
“ Word is not spelled correctly .” Then your program should try
to locate other words in wordList that might be the word the
user intended to type. For example, you can try all possible
single transpositions of adjacent letters to discover that the

word “default” is a direct match to a word in wordList . Of
course, this implies that your program will check all other single
transpositions, such as “edfault,” “dfeault,” “deafult,” “defalut”
and “defautl.” When you find a new word that matches one in
wordList , print that word in a message such as “ Did you mean
"default?" .”
Implement other tests, such as the replacing of each double
letter with a single letter and any other tests you can develop to
improve the value of your spell checker.

Chapters on the Web
The following chapters are available as PDF documents from this
book’s Companion Website, which is accessible from
http://www.pearsonhighered.com/deitel/ :

Chapter 23, Other Topics
Chapter 24, C++11 and C++14 Additional Features
Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with
the UML
Chapter 26, ATM Case Study, Part 2: Implementing an Object-
Oriented Design

These files can be viewed in Adobe Reader (https://get.adobe.com/
reader/).

New copies of this book come with a Companion Website access
code that is located on the inside of the front cover. If the access code
is already visible, you purchased a used book. If there is no access
code inside the front cover, you purchased an edition that does not
come with an access code. In either case, you can purchase access
directly from the Companion Website.

® ®

http://get.adobe.com/reader/

A Operator Precedence and
Associativity
Operators are shown in decreasing order of precedence from top to
bottom (Fig. A.1).

Fig. A.1 Operator precedence and associativity chart.

Operator Type Associativity

:: binary scope resolution left to right

:: unary scope resolution

() grouping parentheses [See caution in

Fig. 2.10 regarding grouping

parentheses.]

() function call left to right

[] array subscript

. member selection via object

-> member selection via pointer

++ unary postfix increment

-- unary postfix decrement

typeid runtime type information

dynamic_cast <type> runtime type-checked cast

static_cast <type> compile-time type-checked cast

reinterpret_cast <type> cast for nonstandard conversions

const_cast <type> cast away const -ness

++ unary prefix increment right to left

-- unary prefix decrement

+ unary plus

- unary minus

! unary logical negation

~ unary bitwise complement

sizeof determine size in bytes

& address

* dereference

new dynamic memory allocation

new[] dynamic array allocation

delete dynamic memory deallocation

delete[] dynamic array deallocation

(type) C-style unary cast right to left

.* pointer to member via object left to right

->* pointer to member via pointer

* multiplication left to right

/ division

% remainder

+ addition left to right

- subtraction

<< bitwise left shift left to right

>> bitwise right shift

< relational less than left to right

<= relational less than or equal to

> relational greater than

>= relational greater than or equal to

== relational is equal to left to right

!= relational is not equal to

& bitwise AND left to right

^ bitwise exclusive OR left to right

| bitwise inclusive OR left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional right to left

= assignment right to left

+= addition assignment

-= subtraction assignment

*= multiplication assignment

/= division assignment

%= remainder assignment

&= bitwise AND assignment

^= bitwise exclusive OR assignment

|= bitwise inclusive OR assignment

<<= bitwise left-shift assignment

>>= bitwise right-shift assignment

, comma left to right

B ASCII Character Set

Fig. B.1 ASCII character Set

The digits at the left of the table are the left digits of the decimal
equivalents (0–127) of the character codes, and the digits at the top of
the table are the right digits of the character codes. For example, the
character code for “F” is 70, and the character code for “&” is 38.

C Fundamental Types
Figure C.1 lists C++’s fundamental types. The C++ Standard
Document does not provide the exact number of bytes required to
store variables of these types in memory. However, the C++ Standard
Document does indicate how the memory requirements for
fundamental types relate to one another. By order of increasing
memory requirements, the signed integer types are signed char , short
int , int , long int and long long int . This means that a short int
must provide at least as much storage as a signed char ; an int must
provide at least as much storage as a short int ; a long int must
provide at least as much storage as an int ; and a long long int must
provide at least as much storage as a long int . Each signed integer
type has a corresponding unsigned integer type that has the same
memory requirements. Unsigned types cannot represent negative
values, but can represent approximately twice as many positive values
as their associated signed types. By order of increasing memory
requirements, the floating-point types are float , double and long
double . Like integer types, a double must provide at least as much
storage as a float and a long double must provide at least as much
storage as a double .

Fig. C.1 C++ fundamental types.

Integral types Floating-point types

bool float

char double

signed char long double

unsigned char

short int

unsigned short int

int

unsigned int

long int

unsigned long int

long long int

unsigned long long int

char16_t

char32_t

wchar_t

The exact sizes and ranges of values for the fundamental types are
implementation dependent. The header files <climits> (for the integral

types) and <cfloat> (for the floating-point types) specify the ranges of

values supported on your system.

The range of values a type supports depends on the number of bytes
that are used to represent that type. For example, consider a system
with 4 byte (32 bit) ints. For the signed int type, the nonnegative

values are in the range 0 to 2,147,483,647 . The negative
values are in the range –1 to –2,147,483,647 . This is a
total of possible values. An unsigned int on the same system
would use the same number of bits to represent data, but would not
represent any negative values. This results in values in the range 0 to
4,294,967,295 . On the same system, a short int could
not use more than 32 bits to represent its data and a long int must
use at least 32 bits.

C++ provides the data type bool for variables that can hold only the
values true and false . C++11 introduced the types long long int
and unsigned long long int—typically for 64-bit integer values (though
this is not required by the standard). C++11 also introduced the new
character types char16_t and char32_t for representing Unicode
characters.

11

D Number Systems

Objectives
In this appendix you’ll learn:

To understand basic number systems concepts, such as base,
positional value and symbol value.
To understand how to work with numbers in the binary, octal and
hexadecimal number systems.
To abbreviate binary numbers as octal numbers or hexadecimal
numbers.
To convert octal numbers and hexadecimal numbers to binary
numbers.
To convert back and forth between decimal numbers and their
binary, octal and hexadecimal equivalents.
To understand binary arithmetic and how negative binary numbers
are represented using two’s complement notation.

Outline
1. D.1 Introduction
2. D.2 Abbreviating Binary Numbers as Octal and

Hexadecimal Numbers
3. D.3 Converting Octal and Hexadecimal Numbers to Binary

Numbers
4. D.4 Converting from Binary, Octal or Hexadecimal to

Decimal
5. D.5 Converting from Decimal to Binary, Octal or

Hexadecimal
6. D.6 Negative Binary Numbers: Two’s Complement Notation

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

D.1 Introduction
In this appendix, we introduce the key number systems that C++
programmers use, especially when they are working on software
projects that require close interaction with machine-level hardware.
Projects like this include operating systems, computer networking
software, compilers, database systems and applications requiring high
performance.

When we write an integer such as 227 or –63 in a C++ program, the
number is assumed to be in the decimal (base 10) number system.
The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8
and 9. The lowest digit is 0 and the highest is 9—one less than the
base of 10. Internally, computers use the binary (base 2) number
system. The binary number system has only two digits, namely 0 and
1. Its lowest digit is 0 and its highest is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their
decimal equivalents. Programmers who work in assembly languages,
and in high-level languages like C++ that enable them to reach down
to the machine level, find it cumbersome to work with binary numbers.
So two other number systems—the octal number system (base 8)
and the hexadecimal number system (base 16)—are popular,
primarily because they make it convenient to abbreviate binary
numbers.

In the octal number system, the digits range from 0 to 7. Because both
the binary and the octal number systems have fewer digits than the
decimal number system, their digits are the same as the
corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires
16 digits—a lowest digit of 0 and a highest digit with a value
equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the
hexadecimal digits corresponding to decimal values 10 through 15.
Thus in hexadecimal we can have numbers like 876 consisting solely
of decimal-like digits, numbers like 8A55F consisting of digits and
letters and numbers like FFE consisting solely of letters. Occasionally,
a hexadecimal number spells a common word such as FACE or FEED
—this can appear strange to programmers accustomed to working
with numbers. The digits of the binary, octal, decimal and hexadecimal
number systems are summarized in Figs. D.1–D.2.

Each of these number systems uses positional notation—each
position in which a digit is written has a different positional value. For
example, in the decimal number 937 (the 9, the 3 and the 7 are
referred to as symbol values), we say that the 7 is written in the ones
position, the 3 is written in the tens position and the 9 is written in the
hundreds position. Note that each of these positions is a power of the
base (base 10) and that these powers begin at 0 and increase by 1 as
we move left in the number (Fig. D.3).

Fig. D.1 Digits of the binary, octal, decimal and hexadecimal

number systems.

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

 2 2 2

 3 3 3

 4 4 4

 5 5 5

 6 6 6

 7 7 7

 8 8

 9 9

 A (decimal value of 10)

 B (decimal value of 11)

 C (decimal value of 12)

 D (decimal value of 13)

E (decimal value of 14)

 F (decimal value of 15)

Fig. D.2 Comparing the binary, octal, decimal and hexadecimal
number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. D.3 Positional values in the decimal number system.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a power of the base (10)

For longer decimal numbers, the next positions to the left would be the
thousands position (10 to the 3rd power), the ten-thousands position
(10 to the 4th power), the hundred-thousands position (10 to the 5th
power), the millions position (10 to the 6th power), the ten-millions
position (10 to the 7th power) and so on.

In the binary number 101, the rightmost 1 is written in the ones
position, the 0 is written in the twos position and the leftmost 1 is
written in the fours position. Note that each position is a power of the
base (base 2) and that these powers begin at 0 and increase by 1 as
we move left in the number (Fig. D.4). So,

.

Fig. D.4 Positional values in the binary number system.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a power of the base (2)

For longer binary numbers, the next positions to the left would be the
eights position (2 to the 3rd power), the sixteens position (2 to the 4th
power), the thirty-twos position (2 to the 5th power), the sixty-fours
position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones
position, the 2 is written in the eights position and the 4 is written in
the sixty-fours position. Note that each of these positions is a power of
the base (base 8) and that these powers begin at 0 and increase by 1
as we move left in the number (Fig. D.5).

Fig. D.5 Positional values in the octal number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a power of the base (8)

For longer octal numbers, the next positions to the left would be the
five-hundred-and-twelves position (8 to the 3rd power), the four-
thousand-and-ninety-sixes position (8 to the 4th power), the thirty-two-
thousand-seven-hundred-and-sixty-eights position (8 to the 5th power)
and so on.

In the hexadecimal number 3DA, we say that the A is written in the
ones position, the D is written in the sixteens position and the 3 is
written in the two-hundred-and-fifty-sixes position. Note that each of
these positions is a power of the base (base 16) and that these
powers begin at 0 and increase by 1 as we move left in the number
(Fig. D.6).

For longer hexadecimal numbers, the next positions to the left would
be the four-thousand-and-ninety-sixes position (16 to the 3rd power),
the sixty-five-thousand-five-hundred-and-thirty-sixes position (16 to
the 4th power) and so on.

Fig. D.6 Positional values in the hexadecimal number system.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-fifty-
sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a power of the base
(16)

D.2 Abbreviating Binary Numbers
as Octal and Hexadecimal
Numbers
The main use for octal and hexadecimal numbers in computing is for
abbreviating lengthy binary representations. Figure D.7 highlights the
fact that lengthy binary numbers can be expressed concisely in
number systems with higher bases than the binary number system.

Fig. D.7 Decimal, binary, octal and hexadecimal equivalents.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

A particularly important relationship that both the octal number system
and the hexadecimal number system have to the binary system is that
the bases of octal and hexadecimal (8 and 16 respectively) are
powers of the base of the binary number system (base 2). Consider
the following 12-digit binary number and its octal and hexadecimal
equivalents. See if you can determine how this relationship makes it
convenient to abbreviate binary numbers in octal or hexadecimal. The
answers follow the numbers.

Binary number Octal equivalent Hexadecimal equivalent

100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break
the 12-digit binary number into groups of three consecutive bits each,
starting from the right, and write those groups over the corresponding
digits of the octal number as follows:

100 011 010 001

4 3 2 1

Note that the octal digit you’ve written under each group of three bits
corresponds precisely to the octal equivalent of that 3-digit binary
number, as shown in Fig. D.7.

The same kind of relationship can be observed in converting from
binary to hexadecimal. Break the 12-digit binary number into groups of
four consecutive bits each, starting from the right, and write those
groups over the corresponding digits of the hexadecimal number as
follows:

1000 1101 0001

8 D 1

Notice that the hexadecimal digit you wrote under each group of four
bits corresponds precisely to the hexadecimal equivalent of that 4-digit
binary number as shown in Fig. D.7.

D.3 Converting Octal and
Hexadecimal Numbers to Binary
Numbers
In the previous section, we saw how to convert binary numbers to their
octal and hexadecimal equivalents by forming groups of binary digits
and simply rewriting them as their equivalent octal digit values or
hexadecimal digit values. This process may be used in reverse to
produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by
writing the 6 as its 3-digit binary equivalent 110, the 5 as its 3-digit
binary equivalent 101 and the 3 as its 3-digit binary equivalent 011 to
form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by
writing the F as its 4-digit binary equivalent 1111, the A as its 4-digit
binary equivalent 1010, the D as its 4-digit binary equivalent 1101 and
the 5 as its 4-digit binary equivalent 0101 to form the 16-digit
1111101011010101.

D.4 Converting from Binary, Octal
or Hexadecimal to Decimal
We are accustomed to working in decimal, and therefore it is often
convenient to convert a binary, octal, or hexadecimal number to
decimal to get a sense of what the number is “really” worth. Our
diagrams in Section D.1 express the positional values in decimal. To
convert a number to decimal from another base, multiply the decimal
equivalent of each digit by its positional value and sum these
products. For example, the binary number 110101 is converted to
decimal 53 as shown in Fig. D.8.

Fig. D.8 Converting a binary number to decimal.

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products:

Sum:

To convert octal 7614 to decimal 3980, we use the same technique,
this time using appropriate octal positional values, as shown in Fig.

D.9.

Fig. D.9 Converting an octal number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products

Sum:

To convert hexadecimal AD3B to decimal 44347, we use the same
technique, this time using appropriate hexadecimal positional values,
as shown in Fig. D.10.

Fig. D.10 Converting a hexadecimal number to decimal.

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products

Sum:

D.5 Converting from Decimal to
Binary, Octal or Hexadecimal
The conversions in Section D.4 follow naturally from the positional
notation conventions. Converting from decimal to binary, octal, or
hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing
the positional values of the columns right to left until we reach a
column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64, leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into
57 and observe that there is one 32 in 57 with a remainder of 25, so
we write 1 in the 32 column. We divide 16 into 25 and observe that
there is one 16 in 25 with a remainder of 9 and write 1 in the 16
column. We divide 8 into 9 and observe that there is one 8 in 9 with a
remainder of 1. The next two columns each produce quotients of 0
when their positional values are divided into 1, so we write 0s in the 4

and 2 columns. Finally, 1 into 1 is 1, so we write 1 in the 1 column.
This yields:

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.

To convert decimal 103 to octal, we begin by writing the positional
values of the columns until we reach a column whose positional value
is greater than the decimal number. We do not need that column, so
we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Next we work from the leftmost column to the right. We divide 64 into
103 and observe that there is one 64 in 103 with a remainder of 39, so
we write 1 in the 64 column. We divide 8 into 39 and observe that
there are four 8s in 39 with a remainder of 7 and write 4 in the 8
column. Finally, we divide 1 into 7 and observe that there are seven
1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

Positional values: 64 8 1

Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.

To convert decimal 375 to hexadecimal, we begin by writing the
positional values of the columns until we reach a column whose
positional value is greater than the decimal number. We do not need
that column, so we discard it. Thus, we first write:

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into
375 and observe that there is one 256 in 375 with a remainder of 119,
so we write 1 in the 256 column. We divide 16 into 119 and observe
that there are seven 16s in 119 with a remainder of 7 and write 7 in
the 16 column. Finally, we divide 1 into 7 and observe that there are
seven 1s in 7 with no remainder, so we write 7 in the 1 column. This
yields:

Positional values: 256 16 1

Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

D.6 Negative Binary Numbers:
Two’s Complement Notation
The discussion so far in this appendix has focused on positive
numbers. In this section, we explain how computers represent
negative numbers using two’s complement notation. First we
explain how the two’s complement of a binary number is formed, then
we show why it represents the negative value of the given binary
number.

Consider a machine with 32-bit integers. Suppose

int value = 13;

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one’s complement by
applying C++’s bitwise complement operator (~):

onesComplementOfValue = ~value;

Internally, ~value is now value with each of its bits reversed—ones
become zeros and zeros become ones, as follows:

value:

00000000 00000000 00000000 00001101

~value (i.e., value ’s one’s complement):
11111111 11111111 11111111 11110010

To form the two’s complement of value , we simply add 1 to value ’s
one’s complement. Thus

Two’s complement of value :
11111111 11111111 11111111 11110011

Now if this is in fact equal to –13, we should be able to add it to binary
13 and obtain a result of 0. Let’s try this:

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we
indeed get 0 as a result. If we add the one’s complement of a number
to the number, the result will be all 1s. The key to getting a result of all
zeros is that the two’s complement is one more than the one’s
complement. The addition of 1 causes each column to add to 0 with a
carry of 1. The carry keeps moving leftward until it is discarded from
the leftmost bit, and thus the resulting number is all zeros.

Computers actually perform a subtraction, such as

x = a - value;

by adding the two’s complement of value to a , as follows:

x = a + (~value + 1);

Suppose a is 27 and value is 13 as before. If the two’s complement of
value is actually the negative of value , then adding the two’s
complement of value to a should produce the result 14. Let’s try this:

a (i.e., 27)
+(~value + 1)

 00000000 00000000 00000000 00011011
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

which is indeed equal to 14.

Summary
An integer such as 19 or 227 or –63 in a C++ program is assumed
to be in the decimal (base 10) number system. The digits in the
decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
lowest digit is 0 and the highest is 9—one less than the base of 10.
Computers use the binary (base 2) number system. The binary
number system has only two digits, namely 0 and 1. Its lowest digit
is 0 and its highest is 1—one less than the base of 2.
The octal number system (base 8) and the hexadecimal number
system (base 16) are popular primarily because they make it
convenient to abbreviate binary numbers.
The digits of the octal number system range from 0 to 7.
The hexadecimal number system poses a problem because it
requires 16 digits—a lowest digit of 0 and a highest digit with a
value equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the
hexadecimal digits corresponding to decimal values 10 through 15.
Each number system uses positional notation—each position in
which a digit is written has a different positional value.
A particularly important relationship of both the octal and the
hexadecimal number systems to the binary system is that their
bases (8 and 16 respectively) are powers of the base of the binary
number system (base 2).
To convert from octal to binary, replace each octal digit with its
three-digit binary equivalent.

To convert a hexadecimal to a binary number, simply replace each
hexadecimal digit with its four-digit binary equivalent.
Because we are accustomed to working in decimal, it is convenient
to convert a binary, octal or hexadecimal number to decimal to get
a sense of the number’s “real” worth.
To convert a number to decimal from another base, multiply the
decimal equivalent of each digit by its positional value and sum the
products.
Computers represent negative numbers using two’s complement
notation.
To form the negative of a value in binary, first form its one’s
complement by applying C++’s bitwise complement operator (~).
This reverses the bits of the value. To form the two’s complement
of a value, simply add one to the value’s one’s complement.

Self-Review Exercises
1. D.1 The bases of the decimal, binary, octal and hexadecimal

number systems are , , and
respectively.

2. D.2 In general, the decimal, octal and hexadecimal
representations of a given binary number contain (more/fewer)
digits than the binary number contains.

3. D.3 (True/False) A popular reason for using the decimal
number system is that it forms a convenient notation for
abbreviating binary numbers simply by substituting one decimal
digit per group of four binary bits.

4. D.4 The [octal/hexadecimal/decimal] representation of a large
binary value is the most concise (of the given alternatives).

5. D.5 (True/False) The highest digit in any base is one more than
the base.

6. D.6 (True/False) The lowest digit in any base is one less than
the base.

7. D.7 The positional value of the rightmost digit of any number in
either binary, octal, decimal or hexadecimal is always .

8. D.8 The positional value of the digit to the left of the rightmost
digit of any number in binary, octal, decimal or hexadecimal is
always equal to .

9. D.9 Fill in the missing values in this chart of positional values
for the rightmost four positions in each of the indicated number
systems:

decimal 1000 100 10 1

hexadecimal ... 256

binary

octal 512 ... 8 ...

10. D.10 Convert binary 110101011000 to octal and to
hexadecimal.

11. D.11 Convert hexadecimal FACE to binary.
12. D.12 Convert octal 7316 to binary.
13. D.13 Convert hexadecimal 4FEC to octal. [Hint: First convert

4FEC to binary, then convert that binary number to octal.]
14. D.14 Convert binary 1101110 to decimal.
15. D.15 Convert octal 317 to decimal.
16. D.16 Convert hexadecimal EFD4 to decimal.
17. D.17 Convert decimal 177 to binary, to octal and to

hexadecimal.
18. D.18 Show the binary representation of decimal 417. Then

show the one’s complement of 417 and the two’s complement
of 417.

19. D.19 What’s the result when a number and its two’s
complement are added to each other?

Answers to Self-Review Exercises
1. D.1 10, 2, 8, 16.
2. D.2 Fewer.
3. D.3 False. Hexadecimal does this.
4. D.4 Hexadecimal.
5. D.5 False. The highest digit in any base is one less than the

base.
6. D.6 False. The lowest digit in any base is zero.
7. D.7 1 (the base raised to the zero power).
8. D.8 The base of the number system.
9. D.9 Filled in chart shown below:

decimal 1000 100 10 1

hexadecimal 4096 256 16 1

binary 8 4 2 1

octal 512 64 8 1

10. D.10 Octal 6530; Hexadecimal D58.
11. D.11 Binary 1111 1010 1100 1110.
12. D.12 Binary 111 011 001 110.
13. D.13 Binary 0 100 111 111 101 100; Octal 47754.
14. D.14 Decimal .
15. D.15 Decimal .

16. D.16 Decimal
.

17. D.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)

10110001

to octal:

512 64 8 1

64 8 1

(2*64)+(6*8)+(1*1)

261

to hexadecimal:

256 16 1

16 1

(11*16)+(1*1)

(B*16)+(1*1)

B1

18. D.18 Binary:

512 256 128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+

(1*1)

110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001

001011111

000000000

19. D.19 Zero.

Exercises
1. D.20 Some people argue that many of our calculations would

be easier in the base 12 than in the base 10 (decimal) number
system because 12 is divisible by so many more numbers than
10. What’s the lowest digit in base 12? What would be the
highest symbol for the digit in base 12? What are the positional
values of the rightmost four positions of any number in the base
12 number system?

2. D.21 Complete the following chart of positional values for the
rightmost four positions in each of the indicated number
systems:

decimal 1000 100 10 1

base 6 6 ...

base 13 ... 169

base 3 27

3. D.22 Convert binary 100101111010 to octal and to
hexadecimal.

4. D.23 Convert hexadecimal 3A7D to binary.
5. D.24 Convert hexadecimal 765F to octal. [Hint: First convert

765F to binary, then convert that binary number to octal.]
6. D.25 Convert binary 1011110 to decimal.
7. D.26 Convert octal 426 to decimal.

8. D.27 Convert hexadecimal FFFF to decimal.
9. D.28 Convert decimal 299 to binary, to octal and to

hexadecimal.
10. D.29 Show the binary representation of decimal 779. Then

show the one’s complement of 779 and the two’s complement
of 779.

11. D.30 Show the two’s complement of integer value –1 on a
machine with 32-bit integers.

E Preprocessor

Objectives
In this appendix you’ll learn:

To use #include for developing large programs.
To use #define to create macros and macros with arguments.
To understand conditional compilation.
To display error messages during conditional compilation.
To use assertions to test if the values of expressions are correct.

Outline
1. E.1 Introduction
2. E.2 #include Preprocessing Directive
3. E.3 #define Preprocessing Directive: Symbolic Constants
4. E.4 #define Preprocessing Directive: Macros
5. E.5 Conditional Compilation
6. E.6 #error and #pragma Preprocessing Directives
7. E.7 Operators # and ##
8. E.8 Predefined Symbolic Constants
9. E.9 Assertions

10. E.10 Wrap-Up

1. Summary
2. Self-Review Exercises
3. Answers to Self-Review Exercises
4. Exercises

E.1 Introduction
This chapter introduces the preprocessor. Preprocessing occurs
before a program is compiled. Some possible actions are inclusion of
other files in the file being compiled, definition of symbolic constants
and macros, conditional compilation of program code and
conditional execution of preprocessing directives. All
preprocessing directives begin with # , and only whitespace characters
may appear before a preprocessing directive on a line. Preprocessing
directives are not C++ statements, so they do not end in a semicolon
(;). Preprocessing directives are processed fully before compilation
begins.

 Common Programming Error
E.1

Placing a semicolon at the end of a preprocessing directive can lead
to a variety of errors, depending on the type of preprocessing
directive.

 Software Engineering
Observation E.1

Many preprocessor features (especially macros) are more appropriate
for C programmers than for C++ programmers. C++ programmers
should familiarize themselves with the preprocessor, because they
might need to work with C legacy code.

E.2 #include Preprocessing
Directive
The #include preprocessing directive has been used throughout this
text. The #include directive causes a copy of a specified file to be
included in place of the directive. The two forms of the #include
directive are

#include <filename>

#include "filename"

The difference between these is the location the preprocessor
searches for the file to be included. If the filename is enclosed in angle
brackets (< and >)—used for standard library header files—the
preprocessor searches for the specified file in an implementation-
dependent manner, normally through predesignated directories. If the
file name is enclosed in quotes, the preprocessor searches first in the
same directory as the file being compiled, then in the same
implementation-dependent manner as for a file name enclosed in
angle brackets. This method is normally used to include programmer-
defined header files.

The #include directive is used to include standard header files such
as <iostream> and <iomanip> . The #include directive is also used with
programs consisting of several source files that are to be compiled
together. A header file containing declarations and definitions common
to the separate program files is often created and included in the file.
Examples of such declarations and definitions are classes, structures,
unions, enumerations, function prototypes, constants and stream
objects (e.g., cin).

E.3 #define Preprocessing
Directive: Symbolic Constants
The #define preprocessing directive creates symbolic constants—
constants represented as symbols—and macros—operations defined
as symbols. The #define preprocessing directive format is

#define identifier replacement-text

When this line appears in a file, all subsequent occurrences (except
those inside a string) of identifier in that file will be replaced by
replacement-text before the program is compiled. For example,

#define PI 3.14159

replaces all subsequent occurrences of the symbolic constant PI with
the numeric constant 3.14159 . Symbolic constants enable you to
create a name for a constant and use the name throughout the
program. Later, if the constant needs to be modified throughout the
program, it can be modified once in the #define preprocessing
directive—and when the program is recompiled, all occurrences of the
constant in the program will be modified. [Note: Everything to the right

of the symbolic constant name replaces the symbolic constant. For
example, #define PI = 3.14159 causes the preprocessor to replace
every occurrence of PI with = 3.14159 . Such replacement is the cause
of many subtle logic and syntax errors.] Redefining a symbolic
constant with a new value without first undefining it is also an error.
Note that const variables in C++ are preferred over symbolic
constants. Constant variables have a specific data type and are visible
by name to a debugger. Once a symbolic constant is replaced with its
replacement text, only the replacement text is visible to a debugger. A
disadvantage of const variables is that they might require a memory
location of their data type size—symbolic constants do not require any
additional memory.

 Common Programming Error
E.2

Using symbolic constants in a file other than the file in which the
symbolic constants are defined is a compilation error (unless they are
#included from a header file).

 Good Programming Practice

E.1

Using meaningful names for symbolic constants makes programs
more self-documenting.

E.4 #define Preprocessing
Directive: Macros
[Note: This section is included for the benefit of C++ programmers
who will need to work with C legacy code. In C++, macros can often
be replaced by templates and inline functions.] A macro is an
operation defined in a #define preprocessing directive. As with
symbolic constants, the macro-identifier is replaced with the
replacement-text before the program is compiled. Macros may be
defined with or without arguments. A macro without arguments is
processed like a symbolic constant. In a macro with arguments, the
arguments are substituted in the replacement-text, then the macro is
expanded—i.e., the replacement-text replaces the macro-identifier
and argument list in the program. There is no data type checking for
macro arguments. A macro is used simply for text substitution.

Consider the following macro definition with one argument for the area
of a circle:

#define CIRCLE_AREA(x) (PI * (x) * (x))

Wherever CIRCLE_AREA(y) appears in the file, the value of y is
substituted for x in the replacement text, the symbolic constant PI is
replaced by its value (defined previously) and the macro is expanded
in the program. For example, the statement

area = CIRCLE_AREA(4);

is expanded to

area = (3.14159 * (4) * (4));

Because the expression consists only of constants, at compile time
the value of the expression can be evaluated, and the result is
assigned to area at runtime. The parentheses around each x in the
replacement text and around the entire expression force the proper
order of evaluation when the macro argument is an expression. For
example, the statement

area = CIRCLE_AREA (c + 2);

is expanded to

area = (3.14159 * (c + 2) * (c + 2));

which evaluates correctly, because the parentheses force the proper
order of evaluation. If the parentheses are omitted, the macro
expansion is

area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly as

area = (3.14159 * c) + (2 * c) + 2;

because of the rules of operator precedence.

 Common Programming Error
E.3

Forgetting to enclose macro arguments in parentheses in the
replacement text is an error.

Macro CIRCLE_AREA could be defined as a function. Function
circleArea , as in

double circleArea(double x) { return 3.14159 * x * x; }

performs the same calculation as CIRCLE_AREA , but the overhead of a
function call is associated with function circleArea . The advantages of
CIRCLE_AREA are that macros insert code directly in the program—
avoiding function overhead—and the program remains readable
because CIRCLE_AREA is defined separately and named meaningfully. A
disadvantage is that its argument is evaluated twice. Also, every time
a macro appears in a program, the macro is expanded. If the macro is
large, this produces an increase in program size. Thus, there is a
trade-off between execution speed and program size (if disk space is
low). Note that inline functions (see Chapter 6) are preferred to
obtain the performance of macros and the software engineering
benefits of functions.

 Performance Tip E.1

Macros can sometimes be used to replace a function call with inline
code prior to execution time. This eliminates the overhead of a
function call. Inline functions are preferable to macros because they
offer the type-checking services of functions.

The following is a macro definition with two arguments for the area of
a rectangle:

#define RECTANGLE_AREA(x, y) ((x) * (y))

Wherever RECTANGLE_AREA(a, b) appears in the program, the values
of a and b are substituted in the macro replacement text, and the
macro is expanded in place of the macro name. For example, the
statement

rectArea = RECTANGLE_AREA(a + 4, b + 7);

is expanded to

rectArea = ((a + 4) * (b + 7));

The value of the expression is evaluated and assigned to variable
rectArea .

The replacement text for a macro or symbolic constant is normally any
text on the line after the identifier in the #define directive. If the
replacement text for a macro or symbolic constant is longer than the
remainder of the line, a backslash (\) must be placed at the end of
each line of the macro (except the last line), indicating that the
replacement text continues on the next line.

Symbolic constants and macros can be discarded using the #undef
preprocessing directive. Directive #undef “undefines” a symbolic
constant or macro name. The scope of a symbolic constant or macro
is from its definition until it is either undefined with #undef or the end of
the file is reached. Once undefined, a name can be redefined with
#define .

Note that expressions with side effects (e.g., variable values are
modified) should not be passed to a macro, because macro
arguments may be evaluated more than once.

 Common Programming Error
E.4

Macros often replace a name that wasn’t intended to be a use of the
macro but just happened to be spelled the same. This can lead to
exceptionally mysterious compilation and syntax errors.

E.5 Conditional Compilation
Conditional compilation enables you to control the execution of
preprocessing directives and the compilation of program code. Each
of the conditional preprocessing directives evaluates a constant
integer expression that will determine whether the code will be
compiled. Cast expressions, sizeof expressions and enumeration
constants cannot be evaluated in preprocessing directives because
these are all determined by the compiler and preprocessing happens
before compilation.

The conditional preprocessor construct is much like the if selection
structure. Consider the following preprocessor code:

#ifndef NULL

 #define NULL 0

#endif

which determines whether the symbolic constant NULL is already
defined. The expression #ifndef NULL includes the code up to #endif
if NULL is not defined, and skips the code if NULL is defined. Every #if
construct ends with #endif . Directives #ifdef and #ifndef are
shorthand for #if defined(name) and #if !defined(name) . A

multiple-part conditional preprocessor construct may be tested using
the #elif (the equivalent of else if in an if structure) and the #else
(the equivalent of else in an if structure) directives.

During program development, programmers often find it helpful to
“comment out” large portions of code to prevent it from being
compiled. If the code contains C-style comments, /* and */ cannot
be used to accomplish this task, because the first */ encountered
would terminate the comment. Instead, you can use the following
preprocessor construct:

#if 0

 code prevented from compiling
#endif

To enable the code to be compiled, simply replace the value 0 in the
preceding construct with the value 1 .

Conditional compilation is commonly used as a debugging aid. Output
statements are often used to print variable values and to confirm the
flow of control. These output statements can be enclosed in
conditional preprocessing directives so that the statements are
compiled only until the debugging process is completed. For example,

#ifdef DEBUG

 cerr << "Variable x = " << x << endl;

#endif

causes the cerr statement to be compiled in the program if the
symbolic constant DEBUG has been defined before directive #ifdef
DEBUG . This symbolic constant is normally set by a command-line
compiler or by settings in the IDE (e.g., Visual Studio) and not by an
explicit #define definition. When debugging is completed, the #define
directive is removed from the source file, and the output statements
inserted for debugging purposes are ignored during compilation. In
larger programs, it might be desirable to define several different
symbolic constants that control the conditional compilation in separate
sections of the source file.

 Common Programming Error
E.5

Inserting conditionally compiled output statements for debugging
purposes in locations where C++ currently expects a single statement
can lead to syntax errors and logic errors. In this case, the
conditionally compiled statement should be enclosed in a compound
statement. Thus, when the program is compiled with debugging
statements, the flow of control of the program is not altered.

E.6 #error and #pragma
Preprocessing Directives
The #error directive

error tokens

prints an implementation-dependent message including the tokens
specified in the directive. The tokens are sequences of characters
separated by spaces. For example,

#error 1 - Out of range error

contains six tokens. In one popular C++ compiler, for example, when a
#error directive is processed, the tokens in the directive are displayed
as an error message, preprocessing stops and the program does not
compile.

The #pragma directive

#pragma tokens

causes an implementation-defined action. A pragma not recognized by
the implementation is ignored. A particular C++ compiler, for example,
might recognize pragmas that enable you to take advantage of that
compiler’s specific capabilities. For more information on #error and
#pragma , see the documentation for your C++ implementation.

E.7 Operators # and ##
The # and ## preprocessor operators are available in C++ and
ANSI/ISO C. The # operator causes a replacement-text token to be
converted to a string surrounded by quotes. Consider the following
macro definition:

#define HELLO(x) cout << "Hello, " #x << endl;

When HELLO(John) appears in a program file, it is expanded to

cout << "Hello, " "John" << endl;

The string "John" replaces #x in the replacement text. Strings
separated by white space are concatenated during preprocessing, so
the above statement is equivalent to

cout << "Hello, John" << endl;

Note that the # operator must be used in a macro with arguments,
because the operand of # refers to an argument of the macro.

The ## operator concatenates two tokens. Consider the following
macro definition:

cout << "Hello, John" << endl;

#define TOKENCONCAT(x, y) x ## y

When TOKENCONCAT appears in the program, its arguments are
concatenated and used to replace the macro. For example,
TOKENCONCAT(O, K) is replaced by OK in the program. The ## operator
must have two operands.

E.8 Predefined Symbolic
Constants
There are six predefined symbolic constants (Fig. E.1). The
identifiers for each of these begin and (except for __cplusplus) end
with two underscores. These identifiers and preprocessor operator
defined (Section E.5) cannot be used in #define or #undef directives.

Fig. E.1 The predefined symbolic constants.

Symbolic
constant

Description

__LINE__ The line number of the current source-code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd

yyyy" such as "Aug 19 2002").

__STDC__ Indicates whether the program conforms to the ANSI/ISO C standard.
Contains value 1 if there is full conformance and is undefined
otherwise.

__TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

__cplusplus Contains the value 199711L (the date the ISO C++ standard was

approved) if the file is being compiled by a C++ compiler, undefined

otherwise. Allows a file to be set up to be compiled as either C or C++.

E.9 Assertions
The assert macro—defined in the <cassert> header file—tests the
value of an expression. If the value of the expression is 0 (false), then
assert prints an error message and calls function abort (of the
general utilities library— <cstdlib>) to terminate program execution.
This is a useful debugging tool for testing whether a variable has a
correct value. For example, suppose variable x should never be larger
than 10 in a program. An assertion may be used to test the value of x
and print an error message if the value of x is incorrect. The
statement would be

assert(x <= 10);

If x is greater than 10 when the preceding statement is encountered
in a program, an error message containing the line number and file
name is printed, and the program terminates. You may then
concentrate on this area of the code to find the error. If the symbolic
constant NDEBUG is defined, subsequent assertions will be ignored.
Thus, when assertions are no longer needed (i.e., when debugging is
complete), we insert the line

#define NDEBUG

in the program file rather than deleting each assertion manually. As
with the DEBUG symbolic constant, NDEBUG is often set by compiler
command-line options or through a setting in the IDE.

Most C++ compilers now include exception handling. C++
programmers prefer using exceptions rather than assertions. But
assertions are still valuable for C++ programmers who work with C
legacy code.

E.10 Wrap-Up
This appendix Discussed the #include directive, which is used to
develop larger programs. You also learned about the #define
directive, which is used to create macros. We introduced conditional
compilation, displaying error messages and using assertions.

Summary

Section E.2 #include Preprocessing
Directive

All preprocessing directives begin with # and are processed before
the program is compiled.
Only whitespace characters may appear before a preprocessing
directive on a line.
The #include directive includes a copy of the specified file. If the
filename is enclosed in quotes, the preprocessor begins searching
in the same directory as the file being compiled for the file to be
included. If the filename is enclosed in angle brackets (< and >),
the search is performed in an implementation-defined manner.

Section E.3 #define Preprocessing
Directive: Symbolic Constants

The #define preprocessing directive is used to create symbolic
constants and macros.
A symbolic constant is a name for a constant.

Section E.4 #define Preprocessing
Directive: Macros

A macro is an operation defined in a #define preprocessing
directive. Macros may be defined with or without arguments.
The replacement text for a macro or symbolic constant is any text
remaining on the line after the identifier (and, if any, the macro
argument list) in the #define directive. If the replacement text for a
macro or symbolic constant is too long to fit on one line, a
backslash (\) is placed at the end of the line, indicating that the
replacement text continues on the next line.
Symbolic constants and macros can be discarded using the #undef
preprocessing directive. Directive #undef “undefines” the symbolic
constant or macro name.
The scope of a symbolic constant or macro is from its definition
until it is either undefined with

#undef or the end of the file is reached.

Section E.5 Conditional Compilation
Conditional compilation enables you to control the execution of
preprocessing directives and the compilation of program code.
The conditional preprocessing directives evaluate constant integer
expressions. Cast expressions, sizeof expressions and
enumeration constants cannot be evaluated in preprocessing
directives.
Every #if construct ends with #endif .
Directives #ifdef and #ifndef are provided as shorthand for #if
defined(name) and #if !defined(name) .
A multiple-part conditional preprocessor construct is tested with
directives #elif and #else .

Section E.6 #error and #pragma
Preprocessing Directives

The #error directive prints an implementation-dependent message
that includes the tokens specified in the directive and terminates
preprocessing and compiling.
The #pragma directive causes an implementation-defined action. If
the pragma is not recognized by the implementation, the pragma is
ignored.

Section E.7 Operators # and ##
The # operator causes the following replacement text token to be
converted to a string surrounded by quotes. The # operator must
be used in a macro with arguments, because the operand of #
must be an argument of the macro.
The ## operator concatenates two tokens. The ## operator must
have two operands.

Section E.8 Predefined Symbolic
Constants

There are six predefined symbolic constants. Constant __LINE__ is
the line number of the current source-code line (an integer).
Constant __FILE__ is the presumed name of the file (a string).
Constant __DATE__ is the date the source file is compiled (a string).
Constant __TIME__ is the time the source file is compiled (a string).
Note that each of the predefined symbolic constants begins (and,
with the exception of __cplusplus , ends) with two underscores.

Section E.9 Assertions
The assert macro—defined in the <cassert> header file—tests the
value of an expression. If the value of the expression is 0 (false),
then assert prints an error message and calls function abort to
terminate program execution.

Self-Review Exercises
1. E.1 Fill in the blanks in each of the following:

A. Every preprocessing directive must begin with .
B. The conditional compilation construct may be extended

to test for multiple cases by using the and the
 directives.

C. The directive creates macros and symbolic
constants.

D. Only characters may appear before a
preprocessing directive on a line.

E. The directive discards symbolic constant and
macro names.

F. The and directives are provided as
shorthand notation for #if defined(name) and #if
!defined(name) .

G. enables you to control the execution of
preprocessing directives and the compilation of program
code.

H. The macro prints a message and terminates
program execution if the value of the expression the
macro evaluates is 0 .

I. The directive inserts a file in another file.
J. The operator concatenates its two arguments.
K. The operator converts its operand to a string.

L. The character indicates that the replacement text
for a symbolic constant or macro continues on the next
line.

2. E.2 Write a program to print the values of the predefined
symbolic constants __LINE__ , __FILE__ , __DATE__ and __TIME__
listed in Fig. E.1.

3. E.3 Write a preprocessing directive to accomplish each of the
following:

A. Define symbolic constant YES to have the value 1 .
B. Define symbolic constant NO to have the value 0 .
C. Include the header file common.h. The header is found in

the same directory as the file being compiled.
D. If symbolic constant TRUE is defined, undefine it, and

redefine it as 1 . Do not use #ifdef .
E. If symbolic constant TRUE is defined, undefine it, and

redefine it as 1 . Use the #ifdef preprocessing directive.
F. If symbolic constant ACTIVE is not equal to 0 , define

symbolic constant INACTIVE as 0 . Otherwise, define
INACTIVE as 1 .

G. Define macro CUBE_VOLUME that computes the volume of a
cube (takes one argument).

Answers to Self-Review Exercises
1. E.1

A. # .
B. #elif , #else .
C. #define .
D. whitespace.
E. #undef .
F. #ifdef , #ifndef.
G. Conditional compilation.
H. assert .
I. #include .
J. ## .
K. # .
L. \ .

2. E.2 (See below.)

 1 // exE_02.cpp

 2 // Self-Review Exercise E.2 solution.

 3 #include <iostream>

 4 using namespace std;

 5

 6 int main() {

 7 cout << "__LINE__ = " << __LINE__ << endl

 8 << "__FILE__ = " << __FILE__ << endl

 9 << "__DATE__ = " << __DATE__ << endl

10 << "__TIME__ = " << __TIME__ << endl

11 << "__cplusplus = " << __cplusplus << endl;

12 } // end main

__LINE__ = 9

__FILE__ = c:\cpp4e\ch19\ex19_02.CPP

__DATE__ = Jul 17 2002

__TIME__ = 09:55:58

__cplusplus = 199711L

3. E.3
A. #define YES 1

B. #define NO 0

C. #include "common.h"

D.

#if defined(TRUE)

 #undef TRUE

 #define TRUE 1

#endif

E.

#ifdef TRUE

 #undef TRUE

 #define TRUE 1

#endif

F.

#if ACTIVE

 #define INACTIVE 0

#else

 #define INACTIVE 1

 #endif

G. #define CUBE_VOLUME(x) ((x) * (x) * (x))

Exercises
1. E.4 Write a program that defines a macro with one argument to

compute the volume of a sphere. The program should compute
the volume for spheres of radii from 1 to 10 and print the results
in tabular format. The formula for the volume of a sphere is

(4.0 / 3) * π * r

where π is 3.14159 .
2. E.5 Write a program that produces the following output:

The sum of x and y is 13

The program should define macro SUM with two arguments, x
and y , and use SUM to produce the output.

3. E.6 Write a program that uses macro MINIMUM2 to determine the
smaller of two numeric values. Input the values from the
keyboard.

4. E.7 Write a program that uses macro MINIMUM3 to determine the
smallest of three numeric values. Macro MINIMUM3 should use

3

macro MINIMUM2 defined in Exercise E.6 to determine the

smallest number. Input the values from the keyboard.
5. E.8 Write a program that uses macro PRINT to print a string

value.
6. E.9 Write a program that uses macro PRINTARRAY to print an

array of integers. The macro should receive the array and the
number of elements in the array as arguments.

7. E.10 Write a program that uses macro SUMARRAY to sum the
values in a numeric array. The macro should receive the array
and the number of elements in the array as arguments.

8. E.11 Rewrite the solutions to Exercises E.4–E.10 as inline
functions.

9. E.12 For each of the following macros, identify the possible
problems (if any) when the preprocessor expands the macros:

A. #define SQR (x) x * x
B. #define SQR (x) (x * x)
C. #define SQR (x) (x) * (x)
D. #define SQR (x) ((x) * (x))

Appendices on the Web
The following appendices are available as PDF documents from this
book’s Companion Website, which is accessible from
http://www.pearsonhighered.com/deitel/ :

Appendix F, C Legacy Code Topics
Appendix G, UML: Additional Diagram Types
Appendix H, Using the Visual Studio Debugger
Appendix I, Using the GNU C++ Debugger
Appendix J, Using the Xcode Debugger

These files can be viewed in Adobe Reader (https://get.adobe.com/
reader).

New copies of this book come with a Companion Website access
code that is located on the inside of the front cover. If the access code
is already visible, you purchased a used book. If there is no access
code inside the front cover, you purchased an edition that does not
come with an access code. In either case, you can purchase access
directly from the Companion Website.

® ®

http://get.adobe.com/reader

Index

Symbols
^ , bitwise exclusive OR operator 905

^= , bitwise exclusive OR assignment operator 696, 913

, (comma operator) 167

-- , predecrement/postdecrement 137

:: , scope resolution operator 391, 430

:: , unary scope resolution operator 247

! , logical negation 188

! , logical NOT 190
truth table 191

!= , inequality operator 59

?: , ternary conditional operator 114, 259

. member selection operator 398, 399, 425

' digit separator (C++14) 225

'\0' , null character 365

'\n' , newline character 364

[] , operator for map 689

* , multiplication operator 55

* , pointer dereference or indirection operator 343, 344

*= , multiplication assignment operator 137

/ , division operator 55

/* */ , multiline comment 46

// , single-line comment 46

/= , division assignment operator 137

\' , single-quote-character escape sequence 48

\" , double-quote-character escape sequence 48

\\ , backslash-character escape sequence 48

\a , alert escape sequence 48

\n , newline escape sequence 48

\r , carriage-return escape sequence 48

\t , tab escape sequence 48

& to declare reference 243
in a parameter list 243

& , address operator 342, 344

& , bitwise AND 905

&& , logical AND 188, 189, 259
truth table 189

&= , bitwise AND assignment operator 696, 913

preprocessor operator 982, 987

preprocessor operator 987

#pragma preprocessing directive 987

#undef preprocessing directive 985

% , remainder operator 55

%= , remainder assignment operator 137

+ , addition operator 53, 55

++ , preincrement/postincrement 137
on an iterator 662

+= , addition assignment operator 136
string concatenation 873

< , less-than operator 59

<< , left-shift operator 905

<< , stream insertion operator 47, 54

<<= , left-shift assignment operator 913

<= , less-than-or-equal-to operator 59

= , assignment operator 53, 55, 411, 453, 661

-= , subtraction assignment operator 137

== , equality operator 59

-> , arrow member selection 398

> , greater-than operator 59

>= , greater-than-or-equal-to operator 59

>> (right shift operator 905

>> , stream extraction operator 54

>>= , right shift with sign extension assignment operator 913

| , bitwise inclusive OR operator 905

|= , bitwise inclusive OR assignment operator 696, 913

|| logical OR operator 259

|| , logical OR 188, 189
truth table 190

~ , bitwise complement operator 905

Numerics
0X 593

0x 593

100 Destinations 35

2-D array 308

A
abbreviating assignment expressions 136

abort function 406, 771, 988

abs function 178

absolute value 215

abstract base class 547, 549

abstract class 547, 548, 549, 564

accelerometer 6

access a global variable 247

access function 399

access modifier in the UML
- (private) 84
+ (public) 84

access non- static class data members and member functions
433

access private member of a class 83

access privileges 353, 355

access specifier 82, 423
private 82
public 82

access the caller’s data 242

access violation 657

Account Inheritance Hierarchy (exercise) 529

accounts-receivable program 650

accounts-receivable system 617

accumulate algorithm 723, 726, 745, 746, 749

accumulated outputs 54

accumulator 377

action 110, 114, 118

action expression in the UML 107

action state in the UML 107, 196

action state symbol 107

action to execute 105

activation record 237

activity diagram 106, 107, 111, 165, 196
do ... while statement 180
for statement 165
if statement 110
if ... else statement 111
in the UML 118
sequence statement 107
switch statement 185
while statement 118

activity in the UML 107

Ada Lovelace 13

Ada programming language 13

adapter 690

add a new account to a file 643

add an integer to a pointer 359

adding strings 178

addition 7, 55, 56

addition compound assignment operator, += 136

addition program that displays the sum of two numbers 50

address of a bit field 917

address operator (&) 342, 344, 345, 454

addressable storage unit 917

adjacent_difference algorithm 749

adjacent_find algorithm 748

“administrative” section of the computer 7

aggregation 415

Agile Alliance (www.agilealliance.org) 36

Agile Manifesto (www.agilemanifesto.org) 36

agile software development 36

aiming a derived-class pointer at a base-class object 538

airline reservation system 628

Ajax (Asynchronous JavaScript and XML) 35

alert escape sequence ('\a') 48, 921

algebraic expression 56

algorithm 105, 119, 126

<algorithm> header 222, 674, 747, 748

algorithms 657, 667, 799
binary search 846
bubble sort 865
bucket sort 865
insertion sort 851, 853
linear search 843
merge sort 855
quicksort 866
recursive binary search 866
recursive linear search 866
selection sort 853

algorithms (Standard Library)
accumulate 723, 726, 745
all_of 726, 730
any_of 726, 730
binary_search 306, 726, 730
copy_backward 733
copy_n 735
count 723, 725
count_if 723, 725
equal 717
equal_range 740, 742
fill 712, 714
fill_n 712, 714
find 726, 729
find_if 726, 729
find_if_not 726, 730
for_each 711, 723
generate 712, 714
generate_n 712, 714, 715
includes 738
inplace_merge 735, 736
iter_swap 731, 732
lexicographical_compare 715, 718
lower_bound 741
max 743

max_element 723, 725
merge 732, 734
min 743
min_element 723, 725
minmax 743
minmax_element 723, 725, 743
mismatch 715, 717
move 734
move_backward 734
none_of 726, 730
remove 718, 720
remove_copy 720
remove_copy_if 718, 720, 735
remove_if 718, 720
replace 722
replace_copy 721, 722
replace_copy_if 721, 723
replace_if 721, 723
reverse 732, 735
reverse_copy 735, 736
separated from container 709
set_difference 737, 739
set_intersection 737, 739
set_symmetric_difference 737, 739
set_union 737, 739

shuffle 723, 725
sort 306, 726, 730
swap 731, 732
swap_ranges 731, 732
transform 723, 726
unique 732, 734
unique_copy 735, 736
upper_bound 742

alias 244, 887

alias for the name of an object 409

alignment 901

all 696

all_of algorithm 726, 730, 748

allocate 466

allocate dynamic memory 772

allocate memory 222, 466

allocator 674

allocator_type 661

Allowing Duplicates in Binary Trees 837

alpha software 38

alphabetizing
animal names 896

alphabetizing strings 927, 953

ALU (arithmetic and logic unit) 7

Amazon 3

AMBER Alert 3

American National Standards Institute (ANSI) 11

Analytical Engine 13

“ANDed” 907

Android 34
operating system 33
smartphone 33

Android TV 4

angle brackets (< and >) 251, 982

angle brackets (< and >) in templates 786

anonymous function 710

anonymous function objects 708

ANSI (American National Standards Institute) 11

any member function of class bitset 696

any_of algorithm 726, 730, 748

Apache Software Foundation 33

append data to a file 618, 619

append member function of class string 873

Apple 3, 33

Apple Macintosh 33

Apple TV 4

argument coercion 219

argument for a macro 984

argument to a function 78

arguments in correct order 217

arguments passed to member-object constructors 415

arithmetic and logic unit (ALU) 7

arithmetic calculations 55

arithmetic compound assignment operators 136

arithmetic mean 57

arithmetic operator 55

arithmetic overflow 122, 776

arithmetic underflow 776

“arity” of an operator 454

ARPANET 34

array
built-in 340, 349

name 362
notation for accessing elements 362
subscripting 363

array 285
bounds checking 295

Array class 469

Array class definition with overloaded operators 473

Array class member-function and friend function definitions 474

array class template 284
copy constructor called with parentheses 715
multidimensional array 308

<array> header 221, 287

array subscript operator ([]) 472

arrays
using instead of switch 293

arrow 70, 107

arrow member selection operator (->) 398, 399

arrow operator (->) 425

ASCII (American Standard Code for Information Interchange) 8
Character Set 71, 364, 582

ASCII (American Standard Code for Information Interchange)
character set 186

assembler 10

assembly language 10

assert function 988

assign member function of class string 871

assign member function of list 679

assign one iterator to another 666

assigning addresses of base-class and derived-class objects to
base-class and derived-class pointers 535

assigning class objects 412

assignment operator = 53, 63

assignment operator functions 478

assignment operators 136, 411, 453, 661

assignment statement 53

associate from left to right 63, 139

associate from right to left 63, 139

association 689

associative container 661, 665, 681, 684
map 681
multimap 681
multiset 681
ordered 658, 681, 682
set 681
unordered 658, 681
unordered_map 681
unordered_multimap 681
unordered_multiset 681
unordered_set 681

associative container functions
count 684
equal_range 685
find 684
insert 684, 688

lower_bound 685
upper_bound 685

associativity 192

associativity chart 63, 140

associativity not changed by overloading 454

associativity of operators 56, 63

asterisk (*) 55

asynchronous event 767

at member function 674, 696
class string 453, 873
class vector 322

atof function 931

atoi function 931

atol function 932

attribute
in the UML 16, 83

of a class 14
of an object 16

auto keyword 309, 671

automated teller machine 628

automatic array 287

automatic array initialization 296

automatic local array 296

automatic object 768

automatic variable 815

automatic variables 296

automatically destroyed 235

average 57, 119, 122, 126

avoid naming conflicts 423

avoid repeating code 404

B
Babbage, Charles 13

back member function of queue 693

back member function of sequence containers 674

back_inserter function template 734, 736

backslash (\) 48, 985

backslash escape sequence (\\) 48

backward pointer 814

backward traversal 886

bad member function 603

bad_alloc exception 674, 769, 770, 776

bad_cast exception 776

bad_typeid exception 776

badbit of a stream 601, 603, 619

balanced tree 830

bandwidth 35

Bank account program 637

banker’s rounding 179, 209

banking system 628

bar chart 206, 291

bar chart printing program 291

bar of asterisks 291

base 2 905

base case(s) 254, 259, 261

base class 498, 501
pointer (or reference type) 800

base-class catch 776

base-class constructor 524

base-class exception 775

base-class member accessibility in derived class 526

base-class pointer to a derived-class object 546

base-class private member 515

base e 215

base specified for a stream 597

base-10 number system 215, 593

base-16 number system 593

base-8 number system 593

base-class initializer syntax 511

base-class member function redefined in a derived class 523

BasePlusCommissionEmployee class header 558

BasePlusCommissionEmployee class implementation file 559

BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission 507

BasePlusCommissionEmployee class test program 509

BasePlusCommissionEmployee class that inherits from class
CommissionEmployee , which does not provide protected data 521

BASIC (Beginner’s All-Purpose Symbolic Instruction Code) 13, 799

basic searching and sorting algorithms of the Standard Library 726

basic_fstream class template 617

basic_ifstream class template 617

basic_iostream class template 580, 617

basic_istream class template 580, 617

basic_istringstream class 887

basic_ofstream class template 617

basic_ostream class template 617

basic_ostringstream class 887

basic_string template class 870

begin function 351

begin iterator 886

begin library function 670, 671

begin member function of class string 886

begin member function of containers 660

begin member function of first-class containers 662

beginning of a file 622

beginning of a stream 623

behavior
of a class 14

bell escape sequence 48

Bell Laboratories 11

beta software 38

bidirectional iterator 664, 665, 676, 682, 685, 687, 709, 733, 735,
736

operations 666

big data 9

Big O 855, 861
binary search O(logn) 861
bubble sort, 862
insertion sort, 862
linear search, O(n) 861
merge sort, O(n log n) 862
notation 306, 842, 844, 845, 850, 853, 855, 861
quicksort, best case O(n log n) 862
quicksort, worst case 862
recursive binary search O(log n) 862
recursive linear search, O(n) 862
selection sort, 862

binary (base 2) number system 968

binary digit (bit) 8

binary function 745

binary function object 745

binary integer 155

binary literals 914

binary number 918

binary number system 934

binary operator 53, 55, 190

binary predicate function 679, 717, 726, 730, 734, 739

binary search 842, 846, 850, 861

binary search efficiency 850

binary search tree 824, 829, 837

binary search tree implementation 824

binary tree 657, 798, 823, 824
level-order traversal 831, 838
of strings 837
search 263, 838
sort 829, 839
with duplicates 837

binary_search algorithm 306, 726, 730, 748

bit (binary digit) 8, 900

bit field 905, 914, 917

bit-field manipulation 917

bit-field member of structure 915

bit fields save space 917

bit manipulation 905

“bits-and-bytes” level 905

bitset 659, 695, 696

<bitset> header 221

bitwise AND assignment operator (&=) 913

bitwise AND operator (&) 905, 905, 908, 910, 949

bitwise AND, bitwise inclusive-OR, bitwise exclusive-OR and
bitwise complement operators 908

bitwise assignment operators 696, 913

bitwise complement 906

bitwise complement operator (~) 905, 908, 911, 913, 975

bitwise exclusive OR assignment operator (^=) 913

bitwise exclusive OR operator (^) 905, 908, 911

bitwise inclusive OR assignment operator (|=) 913

bitwise inclusive OR operator (|) 633, 905, 908, 910

bitwise left-shift operator (<<) 448, 911

bitwise logical OR 696

bitwise operators 905, 906, 913

bitwise right-shift operator (>>) 448

bitwise shift operator 911

blank line 126

block 62, 113, 128, 233, 235

block of data 939

block of memory 680, 939

block scope 233, 234

body mass index (BMI) 42

calculator 42

body of a function 47

body of a loop 118

body of an if statement 60

Bohm, C. 106

bool cast operator of a stream 583

bool data type 110

bool value false 110

bool value true 110

boolalpha stream manipulator 191, 452, 592, 599

Boolean 110

Boost 172

Boost C++ Libraries 39

bottom of a stack 814

boundary of a storage unit 917

bounds checking 295

box 70

braces ({ and }) 113, 128
not required 184

braces ({}) 47, 62

bracket ([]) 286

break statement 184, 186, 208

brittle software 518

bubble sort 862, 865, 866
improving performance 865

bucket 865

bucket sort 865

buffer is filled 581

buffer is flushed 581

buffer overflow 295

buffered output 581

buffered standard error stream 580

buffering 604

building block appearance 196

building blocks 104

Building Your Own Compiler exercise 799

Building Your Own Computer exercise 376

building-block approach 12

built-in array 340, 349

business-critical computing 763

business publications 39

byte 7, 905

C
.C extension 17

C legacy code 982, 983, 988

C-like pointer-based array 659

C programming language 11

C string 364

c_str member function of class string 885

C# programming language 13

C++ 11

C++ compiler 18

C++ development environment 18, 19

C++ How to Program, 10/e instructor resources xxxv

C++ preprocessor 17, 46

C++ Standard Library 11, 213
<string> header 77
array class template 284
class template vector 317
headers 220, 221
string class 77, 80

C++11 38, 257
all_of algorithm 730
anonymous function objects 708
any_of algorithm 730
associative container keys are immutable 659
auto keyword 309, 685
begin function 351, 670, 671
cbegin container member function 671
cend container member function 671
cend function 671
compiler fix for types ending in >> 684
copy_n algorithm 735
crbegin container member function 671
crend container member function 671
crend function 671
default special member function 546
default type arguments for function template type parameters
793
delegating constructor 405

end function 351, 670, 671
find_if_not algorithm 730
forward_list class template 658, 676
in-class initializer 389
insert container member function (now returns an iterator) 675
iota algorithm 749
list initialization 51, 135, 688
list initialization of a return type 688
list initialization of associative container 689
minmax algorithm 743
minmax_element algorithm 725, 743
move algorithm 734
move assignment operator 660
move constructor 659
move_backward algorithm 734
noexcept 768
none_of algorithm 730
non-member container swap function 660
nullptr constant 342
override 542
random_device random-number source 725
random-number generation 292
rend function 671
scoped enumeration (enum class) 230
shrink_to_fit container member function for vector and deque
672

shuffle algorithm 725
specifying an enum ’s integral type 232
stod function 891
stof function 891
stoi function 891
stol function 891
stold function 891
stoll function 891
stoul function 891
stoull function 891
to_string function 890
tuple container 685
unique_ptr class template 772
unordered_multimap class template 658
unordered_multiset class template 658
unordered_set class template 658

C++14 2, 38
binary literals 914
cbegin function 671
crbegin function 671
digit separator ' 225
generic lambdas 711
heterogeneous lookup (associative containers) 685
make_unique function template 773, 775
quoted stream manipulator 627

rbegin function 671
string -object literal 452

C++17 39

calculate a salesperson’s earnings 151

Calculating Number of Seconds exercise 275

calculations 7, 55, 107

call stack 354

calling function (caller) 80

calling functions by reference 345

calling method (caller) 213

camel case 79

capacity member function
of string 879
of vector 669

capacity of a string 877

capturing variables in a lambda 711, 712

carbon footprint calculator 42

CarbonFootprint Abstract Class: Polymorphism exercise 575

Card Shuffling and Dealing
exercise 444, 445, 948
simulation 900, 902, 904

carriage return ('\r') escape sequence 48, 918, 921

carry bit 975

cascading member function calls 425, 426, 428

cascading stream insertion operations 54

case keyword 184

case sensitive 52

casino 228

<cassert> header 222, 988

cast 361
downcast 540

cast expression 985

cast operator 128, 220, 481

cast operator function 481

cast variable visible in debugger 983

catch a base class object 776

catch all exceptions 776

catch block 322

catch clause (or handler) 764, 767

catch handler 762

catch related errors 776

catch(...) 776, 777

Catching All Exceptions 782

Catching Derived-Class Exceptions 781

cbegin library function 671

cbegin member function of containers 660

cbegin member function of vector 671

<cctype> header 221, 918

CD 616

ceil function 214

Celsius and Fahrenheit Temperatures exercise 275

cend library function 671

cend member function of containers 660

cend member function of vector 671

central processing unit (CPU) 7

cerr (standard error stream) 19, 580, 616

<cfloat> header 222

chaining stream insertion operations 54

char ** 932

char data type 51, 220, 884, 905

char* strings 871

char16_t 579

char32_t 579

character 8, 900
constant 186

character array 365, 884

character constant 364

character-handling functions 918
isdigit , isalpha , isalnum and isxdigit 919
islower , isupper , tolower and toupper 920
isspace , iscntrl , ispunct , isprint and isgraph 922

character manipulation 213

character presentation 222

character sequences 628

character set 8, 70

character string 47, 286

characters represented as numeric codes 928

character-string manipulation 918

checked access 873

checkerboard pattern 70, 155

Checkerboard Pattern of Asterisks exercise 155

checkout line in a supermarket 837

child 823

chrono library 443

cin (standard input stream) 19, 53, 580, 616, 620
function getline 366
cin.clear 604
cin.eof 583
cin.get function 584
cin.tie function 604
Circle Area exercise 280
circular, doubly linked list 814
circular, singly linked list 813
Cisco 3
Clang/LLVM 20, 38

class 15, 983
class keyword 79
client-code programmer 396
constructor 84
data member 16
default constructor 87
implementation programmer 396
interface 388
interface described by function prototypes 217
public services 388

class-average problem 119, 120, 125, 127
class definition 79
class development 469
class hierarchy 499, 546, 548
class-implementation programmer 396
class keyword 79, 251, 786
class members default to private access 900
class scope 233, 391, 398
class template 284, 286, 785, 802, 870

definition 785
scope 788
specialization 785, 785
Stack 786, 788

class variable 304
classes 11

Array 469
array class template 284

bitset 659, 695, 696
Complex 490
deque 667, 680
exception 759
forward_list 667, 676
HugeInt 492
invalid_argument 776
list 667, 675
multimap 687
out_of_range 322
Polynomial 495
priority_queue 694
queue 693
RationalNumber 495
runtime_error 759, 767
set 685
stack 691
string 77, 80
unique_ptr 772, 772
vector 317

classic stream libraries 579
clear function of ios_base 603
clear member function of containers 660
clear member function of first-class containers 675
client

of a class 88
client code 533
client-code programmer 396
<climits> header 222
Clion 17
clog (standard error buffered) 580, 616
close member function of ofstream 620
cloud computing 4, 37
<cmath> header 221
COBOL (COmmon Business Oriented Language) 12
code 16
code maintenance 94
CodeLite 17
coefficient 495
coin tossing 223, 276
Coin Tossing exercise 276
colon (:) 419
column 307
column headings 287
column subscript 307
Combining Class Time and Class Date exercise 442
combining control statements in two ways 193
comma (,) 167
comma operator (,) 167, 259
comma-separated list of parameters 218 51, 62, 167, 341
command-line argument 352
Command Prompt window 23

comment 46, 52
commercial data processing 649
CommissionEmployee class header 556
CommissionEmployee class implementation file 557
CommissionEmployee class represents an employee paid a
percentage of gross sales 502
CommissionEmployee class test program 505
CommissionEmployee class uses member functions to manipulate
its private data 519
Common Programming Errors overview xxxiii
commutative 481
commutative operation 481
comparator function object 682, 687
comparator function object less 682, 694
compare iterators 666
compare member function of class string 875
comparing strings 923, 926
comparing blocks of memory 939
comparing strings 873, 952
compartment in a UML class diagram 83
compilation error 47, 136
compilation phase 47
compile 17
compile-time error 47
compiler 10, 46, 47, 129, 815

GNU C++ 20, 38
Visual Studio 2015 Community Edition for Windows 20, 38

Xcode on Mac OS X 20, 38
compiler error 47
compiling 657, 798, 831

multiple-source-file program 398
complement operator (~) 905
Complex Class 613
Complex class 441, 490, 491

exercise 441
Complex class member-function definitions 491
complex numbers 441, 490
component 14, 212
composition 415, 420, 498, 501, 818

as an alternative to inheritance 528
compound assignment operators 136, 139
compound interest 167, 206, 209
compound statement 62
computer-assisted instruction (CAI) 281

Difficulty Levels 281
Monitoring Student Performance 281
Reducing Student Fatigue 281
Varying the Types of Problems 282

computer network 820
computer program 5
Computer Simulator exercise 379
Computerization of Health Records exercise 102
computers in education 281
computing the sum of the elements of an array 290
concatenate 873

lists 835
stream insertion operations 54
strings 925
two linked list objects 835

concrete class 547
concrete derived class 552
condition 59, 114, 180
conditional compilation 982, 985
conditional execution of preprocessing directives 982
conditional expression 114
conditional operator, ?: 114
conditional preprocessing directives 985
conditionally compiled output statement 986
confusing equality (==) and assignment (=) operators 59, 193
const 414, 459, 983

member function 413
member function on a const object 414
member function on a non- const object 414
object 414
objects and member functions 414

const keyword 186, 241
const member function 82
const qualifier 289, 352
const qualifier before type specifier in parameter declaration
244
const reference parameter 245
const version of operator[] 479

const with function parameters 352
const_iterator 660, 661, 662, 665, 684, 686, 886
const_pointer 661
const_reference 661
const_reverse_iterator 660, 661, 665, 671, 887
constant integral expression 186
constant pointer

to an integer constant 355
to constant data 353, 355
to nonconstant data 353, 354

constant reference 478
constant runtime 844
constant variable 186, 289, 290
constructed inside out 420
constructor 84

called automatically 405
cannot be virtual 546
conversion 481, 484
copy 477
default arguments 402
deleted 525
explicit 484
function prototype 388
inherit 525
inherit from base class 524
multiple parameters 89
single argument 483, 484

throwing exceptions from 782
container 221, 399, 472, 656, 658, 799

begin function 660
cbegin function 660
cend function 660
clear function 660
crbegin function 660
crend function 660
empty function 659
end function 660
erase function 660
insert function 659
map associative container 681
max_size function 660
multimap associative container 681
multiset associative container 681
rbegin function 660
rend function 660
set associative container 681
size function 659
swap function 660
unordered_map associative container 681
unordered_multimap associative container 681
unordered_multiset associative container 681
unordered_set associative container 681

container adapter 658, 659, 665, 690
function pop 691
function push 691
priority_queue 694
queue 693
stack 691

continue statement 186, 187, 208
continuous beta 38
control characters 921
control statement 105, 106, 109, 110

nesting 109, 197
stacking 109, 194
switch 180

control statements
if 59, 62

control variable 119, 160, 161
controlling expression of a switch 184
converge on the base case 261
conversion constructor 481, 483, 484
conversion operator 481

explicit 484
convert

among fundamental types by cast 482
among user-defined types and built-in types 481
between types 481
binary number to decimal 973
hexadecimal number to decimal 973

lowercase letters 221
octal number to decimal 973
strings to C-style strings and character arrays 884
Strings to Floating-Point Numbers exercise 951
strings to floating-point types 891
Strings to Integers exercise 950
strings to integral types 891

converting
Fahrenheit to Celsius exercise 612

Cooking with Healthier Ingredients exercise 897
copy algorithm 674, 747
copy assignment 411
copy constructor 413, 419, 452, 472, 477, 478, 525, 659, 661
copy member function of class string 632, 885
copy of the argument 352
copy_backward algorithm 733, 747
copy_if algorithm 747
copy_n algorithm 735, 747
copy-and-paste approach 511
Copying a List in Reverse Order 835
copying strings 924
correct number of arguments 217
correct order of arguments 217
cos function 214
cosine 214
count algorithm 723, 725, 748
count function of associative container 684

count_if algorithm 723, 725, 748
counter 119, 125, 132, 152
counter-controlled iteration 119, 120, 128, 131, 132, 160, 161,
261
counting loop 161
Counting Vowels exercise 896
cout (<<) (the standard output stream) 580, 616
cout (standard output stream) 19
cout (the standard output stream) 47, 50
cout.put 582
cout.write 586
__cplusplus predefined symbolic constant 988
.cpp extension 17
.cpp filename extension 76
CPU (central processing unit) 7, 18
Craps Game Modification exercise 279, 331
craps simulation 228, 231, 279
crbegin library function 671
crbegin member function of containers 660
crbegin member function of vector 671
create a random access file 629
create a random-access file with 100 blank records sequentially
633
create a sequential file 617
create an association 689
create an object (instance) 75
create and traverse a binary tree 824

create your own data types 54
CreateAndDestroy class

definition 406
member-function definitions 407

Credit inquiry program 623
credit limit on a charge account 150
Credit Limits exercise 150
credit processing program 630
crend

library function 671
member function of containers 660
member function of vector 671

crossword puzzle generator 956

cryptogram 896
exercise 896

<cstdint> header 177

<cstdio> header 222

<csdtlib> header 771

<cstdlib> header 221, 223, 930

<cstring> header 221, 924

<ctime> header 221, 227

<Ctrl>-d 183, 590, 620

<Ctrl> key 183

<Ctrl>-z 183, 590, 620

<cstdlib> header 223

current position in a stream 623

cursor 48

.cxx extension 17

D
dangerous pointer manipulation 563

dangling- else problem 153, 154

dangling pointer 477

dangling reference 245

data 5

data hiding 82

data hierarchy 7, 8

data member 16

data member function of class string 885

data persistence 616

data structure 798

data structures 284, 656

data types
bool 110
char 220
double 126
float 126, 220
int 51
long double 126, 220
long int 220
long long 220
long long int 220
unsigned char 220
unsigned int 220
unsigned long 220
unsigned long int 220
unsigned long long 220
unsigned long long int 220
unsigned short 220
unsigned short int 220

database 9

Date class 416, 441, 461, 462, 464
exercise 101

__DATE__ predefined symbolic constant 988

date source file is compiled 988

De Morgan’s Laws 207

deallocate 467

deallocate memory 466, 772

Debug area (Xcode) 29

debugger 983

debugging aid 986

debugging tool 988

dec stream manipulator 588, 593, 597

decimal (base 10) number system 933, 934, 968

decimal (base-10) number system 593

decimal digit 8

decimal numbers 597, 918

decimal point 126, 130, 581, 593

decision 110
symbol in the UML 110

declaration 51

declaration of a function 217

declaring a static member function const 433

decrement a pointer 359

decrement a control variable 165

decrement operator -- 137, 460

decrypt 156, 895

deeply nested statement 197

default argument 245, 399

default arguments with constructors 399

default case in a switch 184, 186, 225

default constructor 87, 400, 421, 462, 471, 476, 525, 659

default copy constructor 419

default delimiter 586

default memberwise assignment 412

default memberwise copy 477

default special member function 546

default to decimal 597

default to public access 900

default type argument for a type parameter 792

default type arguments for function template type parameters 793

default_random_engine 232

#define preprocessor directive 390, 983, 985, 987

#define NDEBUG 988

definite repetition 119

definition 161

Deitel Resource Centers 39

delegating constructor 405

delegating to other functions 788

delegation 815

delete 772, 774

delete a record from a file 643

delete operator 466, 546

delete[] (dynamic array deallocation) 468, 477, 478

deleted constructor 525

deleting an item from a binary tree 830

deleting dynamically allocated memory 477

delimiter 366, 928

delimiter (with default value '\n') 584

delimiting characters 928

Dell 3

Department of Defense (DOD) 13

dependent condition 190

dependent name 816

Depth of a Binary Tree exercise 838

<deque> header 221

deque class template 667, 680
push_front function 680
shrink_to_fit member function 672

dequeue 819

<deque> header 680

dereference
a const iterator 663
a null pointer 343
a pointer 343, 346, 353
an iterator 662, 663, 666
an iterator positioned outside its container 671

dereferencing operator (*) 343

derive one class from another 415

derived class 498, 501
indirect 558

derived-class catch 776

deserialized object 644

design pattern 36

design process 16

destructive write 54

destructor 387, 405, 511, 659
called automatically 405
called in reverse order of constructors 405

destructor in a derived class 524

destructors called in reverse order 524

dethread a node from a list 811

diagnostics that aid program debugging 222

diamond 70

diamond in the UML 107, 208

dice game 228

die rolling 330
exercise 330
using an array instead of switch 293

difference_type 661

digit 51, 365, 968

digit separator ' (C++14) 225

direct access 801

direct base class 499

directly reference a value 341

disk 6, 18, 19, 579
I/O completion 767
space 619, 770, 771

displacement 566

display screen 579, 581

Displaying Characters for Given ASCII Codes exercise 951

Distance Between Points exercise 278

distribution pass in bucket sort 865

divide-and-conquer approach 212

divide by zero 19, 125

DivideByZeroException 764

divides function object 745

division 7, 55, 56

division compound assignment operator, /= 137

do ... while iteration statement 179, 180, 198

do ... while repetition statement 108

dot (.) operator 76

dot operator (.) 398, 399, 425, 541, 774

dotted line in the UML 107

double 51

double-array subscripting 490

double data type 126, 219

double-ended queue (deque) 680

double-precision floating-point number 169

double quote 48

double selection 198

double-selection statement 108, 132

double-word boundary 901

“doubly initializing” member objects 421

doubly linked list 676, 658, 814

downcasting 540

driver program 75

dual-core processor 7

dummy value 123

duplicate elimination 830, 837
exercise 330, 755

duplicate keys 682, 687

duplicate node values 824

DVD 616

dynamic binding 541, 563, 567

dynamic casting 567

dynamic data structure 340, 798

dynamic memory 772

dynamic memory management 466

dynamic_cast 569, 776

dynamically allocate array of integers 473

dynamically allocated memory 412, 413, 477, 546, 772
allocate and deallocate storage 405

dynamically allocated storage 477

dynamically determine function to execute 540

E
eBay 3

Eclipse 17

Eclipse Foundation 32

edit a program 17

editor 17

Editor area (Xcode) 29

efficiency of
binary search 850
bubble sort 865
insertion sort 853
linear search 845
merge sort 861
selection sort 855

Eight Queens
Brute force approaches exercise 335
exercise 334
with recursion exercise 336

electronic mail (e-mail) 34

element of an array 284

#elif 986

else keyword 111

emacs 17

e-mail 4

e-mail (electronic mail) 34

embedded parentheses 56

embedded system 33

Employee class 416
definition showing composition 417
definition with a static data member to track the number of
Employee objects in memory 430
enhanced 897
exercise 100
header 552
implementation file 553
member-function definitions 418, 431

employee identification number 9

empty member function of containers 659
of priority_queue 694
of queue 693
of sequence container 675
of stack 691
of string 879

empty member function of string 452

empty statement (a semicolon, ;) 114

empty string 80

empty string 879

encapsulate 82

encapsulation 16, 393, 411, 421

encrypt 156

encrypter 895

encryption 895, 897

end library function 351, 670, 671

end line 54

end member function
of class string 886
of containers 660
of first-class container 662

end of a sequence 729

end of a stream 623

“end of data entry” 123

end-of-file (EOF)
indicator 183, 366, 603, 616, 620
key combination 620

#endif preprocessor directive 389, 986

endl stream manipulator 54, 130

Enforcing Privacy with Cryptography exercise 156

English-like abbreviations 10

Enhancing Class Date exercise 441

Enhancing Class Rectangle exercise 442

Enhancing Class Time exercise 440, 441

enqueue function 819

Enter key 53

entry point 194

enum

keyword 231
specifying underlying integral type 232

enum class (scoped enum) 230

enumeration 230, 983
constant 230, 985

EOF (end of file) 583, 586, 918

eof member function 583

eofbit of stream 603

equal algorithm 717, 748

equal to 59

equal_range algorithm 740, 742, 748

equal_range function of associative container 685

equal_to function object 745

equality and relational operators 60

equality operator 59, 60
!= 110
== 110, 469, 661

equation of straight line 57

eraise algorithm
with terator arguments 897

erase member function
of class string 881, 882
of containers 660
of first-class containers 675

Erasing Characters from a string exercise 896

e-reader device 34

#error preprocessing directive 987

error bits 586

error checking 213

error detected in a constructor 768

Error-Prevention Tips overview xxxiii

error state of a stream 601, 602

escape character 48

escape sequences 48, 49
\' (single-quote character) 48
\" (double-quote character) 48
\\ (backslash character) 48
\a (alert) 48
\n (newline) 48
\r (carriage return) 48
\t (tab) 48

evaluating a postfix expression 836

evaluating expressions 815, 835

even integer 205

Even Numbers exercise 274

examination-results problem 133

<exception> header 221

exception 321, 322, 758
bad_alloc 769
bad_cast 776
bad_typeid 776
handler 321
handling 317
length_error 776
logic_error 776
out_of_range 322, 776
overflow_error 776
parameter 322
underflow_error 776
what virtual function 322

exception class 759, 775
what virtual function 759

exception handling 221, 758

<exception> header 759, 775

exception object 764

exception parameter 762

executable image 18

executable program 18

execute a program 17, 18

execution-time error 20

execution-time overhead 563

exit a function 49

exit function 406, 619, 771

exit point 194
of a control statement 109

EXIT_FAILURE 620

EXIT_SUCCESS 620

exiting a for statement 187

exp function 214

expand a macro 984

explicit constructor 484

explicit conversion 129

explicit keyword 86, 484
conversion operators 484

exponent 495

exponential “explosion” of calls 260

exponential complexity 260

exponential function 214

exponentiation 58, 169
exercise 274

expression 110, 129

extensibility 459, 533

extensible markup language (XML) 644

extensible programming language 74

F
fabs function 215

Facebook 3, 33

factorial 156, 206, 255, 256, 257

Factorial exercise 156

fail member function 603

failbit of stream 586, 601, 603, 619

FairTax exercise 210

false 60, 110, 261, 599

fatal error 114, 382

fatal logic error 59, 114

fatal runtime error 20

fault-tolerant programs 321, 758

feature-complete 38

Fibonacci series 257, 260

Fibonacci Series exercise 277

field 8

field of a class 9

field width 169, 287, 587, 590

fields larger than values being printed 596

FIFO (first-in, first-out) 658, 680, 693, 819

file 9, 616, 622

File Matching 649, 650

file of n bytes 617

file open mode 618, 621
ios::app 618
ios::ate 619
ios::binary 619, 633, 635
ios::in 619, 621
ios::out 618

ios::trunc 619

file-position pointer 623, 635, 642

__FILE__ predefined symbolic constant 988

file processing 579, 649

file scope 233, 398

File Transfer Protocol (FTP) 4

filename 618, 621

filename extensions 17
.cpp 76
.h 76

fill algorithm 712, 714, 748

fill character 392, 587, 590, 595

fill member function 594, 595, 603

fill_n algorithm 712, 714, 748

final

class 547
member function 546

final release 38

final state in the UML 107, 194

final value 161

find algorithm 726, 729, 748

find function of associative container 684

find member function of class string 880, 881

Find the Error exercise 279, 280

Find the Largest exercise 152

Find the Minimum exercise 275

Find the Minimum Value in an array exercise 336

Find the Two Largest Numbers exercise 152

find_end algorithm 748

find_first_not_of member function of class string 881

find_first_of algorithm 748

find_first_of member function of class string 881

find_if algorithm 726, 729, 748

find_if_not algorithm 726, 730, 748

find_last_of member function of class string 881

finding strings and characters in a string 880

first data member of pair 685

first-in, first-out (FIFO) data structure 693

first refinement in top-down, stepwise refinement 124, 132

first-class container 659, 661, 662, 664, 671, 675
begin member function 662
clear function 675
end member function 662
erase function 675

first-in, first-out (FIFO) 658, 680, 819

fixed notation 581, 593, 598

fixed-point format 130

fixed-point value 169

fixed stream manipulator 130, 593, 598

fixed-size data structure 349

flag value 123

flags member function of ios_base 600

flash drive 616

flight simulator 574

float data type 126, 220

floating point 593, 598
arithmetic 448
division 129
double data type 126
double precision 169
float data type 126
literal 168, 170
literals are double by default 170

number 122, 126, 128, 130
scientific format 597
single precision 169
size limits 222

floor function 215, 273

flow of control 118, 128

flow of control in the if ... else statement 111

flow of control of a virtual function call 565

flush buffer 604

flush output buffer 54

flushing stream 587

fmod function 215

fmtflags data type 600

for iteration statement 108, 161, 165, 167, 169, 198
activity diagram 165
example 165
header 163

for_each algorithm 711, 723, 748

force a decimal point 581

force a plus sign 595

form feed ('\f') 918, 921

format error 603

format of floating-point numbers in scientific format 598

format state 587, 600

format-state stream manipulators 592

formatted data file processing 616

formatted I/O 579

formatted input/output 628

formatted text 628

formulating algorithms 119

Fortran (FORmula TRANslator) 12

forward declaration 805

forward iterator 664, 676, 709, 714, 723, 730, 732, 734
operations 666

forward pointer 814

<forward_list> header 221

forward_list class template 658, 667, 676
splice_after member function 679

<forward_list> header 676

fractions 495

fragile software 518

free store 466

friend function 421
can access private members of class 422
friendship granted, not taken 421
not member functions 423

front member function of queue 693

front member function of sequence containers 674

front_inserter function template 734

fstream 617, 633, 637, 642

<fstream> header 222, 617

FTP (file transfer protocol) 4

function 11, 12, 15, 19, 47
argument 78
call 213, 217
call overhead 241
call stack 237
definition 234
local variable 81
overloading 248
parameter 80
parameter list 81
prototype 217, 217, 218, 234, 243, 347
signature 219, 249
that calls itself 254

function call operator () 485, 566

function call stack 354

function header 80

function object 682, 687, 708, 744
binary 745
divides 745
equal_to 745
greater 745
greater_equal 745
less 745
less_equal 745
less<T> 682, 687, 694
logical_end 745
logical_not 745
logical_or 745
minus 745
modulus 745
multiplies 745
negate 745
not_equal_to 745
plus 745
spredefined in the STL 744

function overhead 984

function pointer 564, 566, 708, 745

function prototype 217, 421, 983

function prototype scope 233

function scope 233

function template 251, 785, 793
maximum 280
maximum exercise 280
minimum 280
minimum exercise 280
using 252

function template specialization 251, 253

<functional> header 222, 744

functional structure of a program 47

functions for manipulating data in the standard library containers
222

function-template specialization 785

fundamental type 51

G
game of “guess the number” 276

game of chance 228

game of craps 228, 231

game playing 222

game programming 5

Gas Mileage exercise 150

Gates, Bill 43

gathering pass in bucket sort 865

gcd 278

gcount function of istream 587

general class average problem 123

general utilities library <cstdlib> 988

generalities 533

generalized numeric operations 747

general-utilities library <cstdlib> 930

generate algorithm 712, 714, 748

generate_n algorithm 712, 714, 715, 748

generating mazes randomly 263

generating values to be placed into elements of an array 289

generator function 712

generic algorithms 709

generic lambdas 711

generic programming 785

get member function 583, 584

get pointer 623

getline function for use with class string 871

getline function of cin 585

getline function of the string header 77

gets the value of 59

gigabyte 7

GitHub 33

global 391

global function 77, 214

global namespace scope 233, 234, 406, 430

global object constructors 406

Global Positioning System (GPS) 4

global scope 406, 407

global variable 234, 235, 237, 247

Global Warming Facts Quiz exercise 209

GNU C++ 20, 38

golden mean 257

golden ratio 257

good function of ios_base 603

Good Programming Practices overview xxxiii

Google 3

Google Maps 35

Gosling, James 13

goto elimination 106

goto statement 106

GPS (Global Positioning System) 4

GPS device 6

graph 206

graph information 291

graphical representation of a binary tree 823

Graphical User Interface (GUI) 33

greater function object 745

greater_equal function object 745

greater-than operator 59

greater-than-or-equal-to operator 59

greatest common divisor (GCD) 276, 278

Greatest Common Divisor exercise 276

gross pay 151

guard condition in the UML 110

Guess the Number Game exercise 276

Guess the Number Game Modification exercise 276

GUI (Grahical User Interface) 33

guillemets (« and ») 88

H
.h filename extension (header) 76

half-up rounding 177

half-word 901

handle on an object 398

Hangman Game exercise 896

hard disk 616

hard drive 5, 7

hardcopy printer 19

hardware 5, 10

Hardware Inventory exercise 651

hardware platform 11

has-a relationship 498, 415

head of a queue 657, 798, 819

header 220, 389, 396, 982
.h 76, 76
<algorithm> 674, 747, 748
<array> 287
<cstdint> 177
<deque> 680
<exception> 759
<forward_list> 676
<fstream> 617
<functional> 744
<iomanip> 130
<iostream> 46
<list> 675
<map> 687, 689
<memory> 772
<numeric> 749
<queue> 693, 694
<set> 682
<stack> 691
<stdexcept> 759, 776
<string> 77
<typeinfo> 570
<unordered_map> 687, 689

<unordered_set> 682, 685
<vector> 317

heap 466, 694

helper function 399

heterogeneous lookup (associative containers; C++14) 685

heuristic 333

Hewlett Packard 3

hex stream manipulator 588, 593, 597

hexadecimal (base 16) 344, 581, 588, 593, 597, 918, 933, 934,
968

hide implementation details 214, 421

hide names in outer scopes 234

hierarchical boss function/worker function relationship 213

hierarchy of exception classes 775

hierarchy of shapes 547

high-level language 10

highest level of precedence 56

“highest” type 219

high-level I/O 579

Hopper, Grace 12

horizontal tab ('\t') 48, 918, 921

HTML (HyperText Markup Language) 35

HTTP (HyperText Transfer Protocol) 35

Huge integers 495

HugeInt class 492

HugeInteger Class exercise 442

Human Genome Project 3

HyperText Markup Language (HTML) 35

HyperText Transfer Protocol (HTTP) 35

hypotenuse 269, 274

Hypotenuse Calculations exercise 274

I
IBM Corporation 3, 12

IDE (integrated development environment) 17

identifier 51, 108, 234

IEC (International Electrotechnical Commission) 2

#if 986

#if preprocessing directive 986

if single-selection statement 59, 62, 108, 110, 198, 199
activity diagram 110

if ... else double-selection statement 108, 110, 111, 128, 198
activity diagram 111

#ifdef preprocessor directive 986

#ifndef preprocessor directive 389, 986

ifstream 617, 621, 622

constructor 621

ignore function of istream 458, 586

implementation inheritance 550

implementation of a member function changes 404

implementation of merge sort 856

implementing the binary search tree 824

implicit conversion 129, 482, 484
via conversion constructors 484

implicit first argument 423

implicit handle 398

implicit, user-defined conversions 482

implicitly virtual 541

improper implicit conversion 483

improve performance of bubble sort 865

in-class initializers 389

in-memory formatting 887

in-memory I/O 887

in-class initializer 90

include guard 386, 389

#include <iostream> 46

#include preprocessing directive 982

includes algorithm 737, 738, 748

including a header multiple times 390

increment 167
a control variable 160, 161
a pointer 359
expression 187
of a for statement 165
operator, ++ 137

increment an iterator 666

increment and decrement operators 137

increment operator 460

indefinite repetition 124

indentation 62, 111, 113

independent software vendor (ISV) 12

index 284

indexed access 680

indexed list 839

indirect base class 499

indirect derived class 558

indirection 341, 563

indirection operator (*) 343, 345

indirectly reference a value 341

inefficient sorting algorithm 853

inequality operator (!=) 469

-inf (negative infinity) 759

inf (positive infinity) 759

infer a lambda parameter’s type 711

infinite loop 118, 129, 155, 164, 166, 254

infinite series 207

infix arithmetic expression 835

infix-to-postfix conversion algorithm 835

Infix-to-Postfix Conversion 835

information hiding 16

inheritance 16, 415, 498, 500
examples 499
hierarchy 541
hierarchy for university CommunityMembers 500
implementation vs. interface inheritance 550
inherit constructors from base class 524, 525
inherit implementation 574
inherit interface 547, 574
inherit members of an existing class 498
inheriting interface versus implementation 574

initial state in the UML 107, 194

initial value of control variable 160

initialize a pointer 342

initializer 288

initializer list 288, 365

initializer_list 743

initializer_list class template 480

initializing
an array ’s elements to zeros and printing the array 287
multidimensional arrays 308
the elements of an array with a declaration 288

inline function 241, 479, 983, 985
to calculate the volume of a cube 241

inline keyword 241

inner block 234

inner_product algorithm 749

innermost pair of parentheses 56

inorder traversal 824, 829, 838

inplace_merge algorithm 736, 748

input a line of text 585
into an array 366

Input and output stream iterators 662

input device 6

input from string in memory 222

input iterator 663, 665, 666, 711, 717, 720, 723, 725, 726, 734,
738, 739

input/output (I/O) 213

input/output library functions 222

input/output of objects 643

input/output stream header <iostream> 46

input sequence 662

input stream 582, 584

input stream iterator 662

input stream object (cin) 53

input unit 6

Inputting Decimal, Octal and Hexadecimal Values 612

inputting from strings in memory 887

insert function of associative container 684, 688

insert member function of class string 884

insert member function of containers 659

insert member function of sequence container 675

Insert/Delete Anywhere in a Linked List exercise 839

inserter function template 734

insertion 657, 798

insertion at back of vector 667

insertion sort 851, 853, 855, 861, 862

efficiency 851

instance 15

instance variable 79, 80, 90

instant access processing 637

instant message 4

instant-access application 628

instruction 18

instruction execution cycle 380

instructor resources for C++ How to Program, 9/e xxxv

int 47, 52, 219

int & 243

int operands promoted to double 129

int primitive type 137

int64_t type 177

integer 47, 51, 155
division 122

integer arithmetic 448

Integer class definition 772

integer division 56

integer promotion 129

integerPower 274

integers prefixed with 0 (octal) 597

integers prefixed with 0x or 0X (hexadecimal) 597

IntegerSet class 443

integral constant expression 181, 468

integral expression 186

integral size limits 222

integrated development environment (IDE) 17

Intel 3

interest on deposit 208

interest rate 167

interface 388

interface inheritance 550

interface of a class 388

internal spacing 595

internal stream manipulator 381, 592, 595

International Electrotechnical Commission (IEC) 2

International Standards Organization (ISO) 2, 11

Internet 34

Internet of Things (IoT) 36

Internet TV 4

interpreter 10

intToFloat 269

invalid_argument exception 392, 674, 776

Invoice class (exercise) 100

invoke a method 213

invoking a non- const member function on a const object 414

<iomanip> header 221, 982, 130, 580, 588

iOS 32

ios_base class 601
precision function 588
width member function 590

ios::app file open mode 618

ios::ate file open mode 619

ios::beg seek direction 623

ios::binary file open mode 619, 633, 635

ios::cur seek direction 623

ios::end seek direction 623

ios::in file open mode 619, 621

ios::out file open mode 618

ios::trunc file open mode 619

<iostream> header 46, 221, 580, 982, 617

iota algorithm 749

iPod Touch 33

is-a relationship (inheritance) 498

is_heap algorithm 748

is_heap_until algorithm 748

is_partitioned algorithm 748

is_permutation algorithm 748

is_sorted algorithm 748

is_sorted_until algorithm 748

isalnum function 918

isalpha function 918

iscntrl function 918, 921

isdigit function 918, 920

isgraph function 918, 921

islower function 918, 920

ISO (International Standards Organization) 2

isprint function 918, 921

ispunct function 918, 921

isspace function 918, 921

Issue navigator 29

istream class 622, 629, 635, 642, 643, 887
peek function 586
seekg function 623
tellg function 623

istream member function ignore 458

istream_iterator 662

istringstream class 887, 889

isupper function 918, 920

isxdigit function 918

iter_swap algorithm 731, 732, 748

iteration 109, 121, 198, 260, 262
of a loop 187

iteration statement 106, 108, 117
do ... while 179, 180, 198, 180, 198
for 165, 198
while 118, 161, 198, 199

iteration terminates 118

Iterative factorial solution 261

iterative solution 255, 262

<iterator> 734, 736

<iterator> header 222

iterator 656, 886
input 711
using to output a string 886

iterator 660, 661, 662, 665, 685, 886

iterator invalidation 709

iterator operations 666

iterator pointing to first element past the end of container 662

iterator pointing to the first element of the container 662

iterator typedef 664

iterator-category hierarchy 664

J
Jacopini, G. 106

Java programming language 13, 33

JavaScript 10

Jobs, Steve 33

justified field 595

K
kernel 32

key 681

keyboard 5, 19, 53, 377, 579, 580, 616

key–value pair 658, 687, 688, 689

keyword 47, 108
auto 309
break 184
case 184
class 79, 251, 786
const 186, 241
continue 186
default 184
do 108, 179
else 108
enum 231
enum class 230
explicit 86, 484
for 108, 161

if 108
inline 241
private 82
public 82
return 82, 214
static 234
switch 108
table of keywords 108
template 786
throw 763
typedef 580
typename 251, 786
void 80
while 108, 179

Knight’s Tour
Brute Force Approaches exercise 334
Closed Tour Test exercise 335
exercise 332

L
label in a switch 184

Lady Ada Lovelace 13

lambda 708, 710
capture variables 711, 712
generic 711
infer a parameter’s type 711
introducer 711
store in a variable 729

LAMP 36

large object 245

last-in, first-out (LIFO) 237
data structure 658, 691, 814
order 785, 790

leading 0 597

leading 0x and leading 0X 593, 597

leaf node 823

left brace ({) 47, 50

left child 823

left justification 169, 595

left justified 111

left node 829

left-shift assignment operator (<<=) 913

left-shift operator (<<) 448, 905, 911, 912, 949

left side of an assignment 193, 285, 409, 472

left stream manipulator 169, 592, 594

left subtree 823, 826, 829, 830

left-to-right pass of an expression 835

left-to-right associativity 139

left-to-right associativity 63

left-to-right evaluation 56, 58

left value 193

legacy C code 983

legacy code 988

length member function of class string 871

length of a string 366

length of a substring 485

length_error exception 674, 776, 877

less function object 745

less_equal function object 745

less< double > 686

less< int > 682, 687

less-than operator 59, 661

less-than-or-equal-to operator 59

letter 8

Letter Pyramid 897

level of indentation 111

level-order traversal of a binary tree 831, 838

Level-Order Binary Tree Traversal 838

lexicographical 875

lexicographical_compare algorithm 715, 718, 748

LIFO (last-in, first-out) 237, 658, 691
order 785, 790, 814

limerick 952

<limits> header 222

line number 988

line of communication with a file 618, 621

line of text 585

__LINE__ predefined symbolic constant 988

linear data structure 800, 823

linear runtime 845

linear search 842, 843, 846, 850, 861
of an array 843

link 17, 799, 823

linked list 657, 798, 800, 801, 802, 805, 813

linked list class template 839

linked list Implementation 802

linker 18

Linux 32
shell prompt 20

Linux operating system 33

<list> header 221

list 800

List and Queues without Tail Pointers exercise 839

list class 667, 675

List class template 806, 815, 818, 820

List class-template definition 806

list functions
assign 679
merge 679
pop_back 679
pop_front 679
push_front 678
remove 680
sort 679
splice 679
swap 679
unique 679

<list> header 675

list initialization 51

list initializer 135, 323
narrowing conversion 219
vector 705

list searching performance 839

List< STACKTYPE > 818

ListNode class-template definition 805

literal
binary 914
floating point 170

live-code approach xxxi

load 17

loader 18

local automatic object 409

local variable 81, 121, 235, 423
destructors 782
static 234

<locale> header 222

location in memory 54

log function 215

log10 function 215

 levels in a binary search tree with n elements 830

logarithm 215

logarithmic runtime 850

logic error 17, 59, 114, 162

logic_error exception 776

logical AND, && 188, 190
truth table 189

logical complement operator, ! 190

logical decision 5

logical negation, ! 190
truth table 191

logical operators 188, 190

logical OR (||) 910

logical OR, || 188, 189
truth table 190

logical unit 6

logical_and function object 745

logical_not function object 745

logical_or function object 745

long double data type 126, 220

long int 256

long int data type 220

long long data type 220

long long int data type 220

long long type 176

loop 119, 121
body 179
continuation condition 108
counter 160
infinite 118, 129
nested within a loop 132
statement 108

loop-continuation condition 160, 161, 162, 164, 166, 179, 180, 187

loop-continuation condition fails 260

looping 121

Lord Byron 13

loss of data 603

Lovelace, Ada 13

lower_bound

algorithm 741, 748
function of associative container 685

lowercase letter 8, 52, 70, 221, 918, 920

“lowest type” 220

low-level I/O capabilities 579

lvalue ("left value") 193, 244, 285, 343, 372, 409, 472, 479, 681

lvalues as rvalues 193

M
m-by-n array 308

Mac OS X 32, 33

machine code 10

machine dependent 359

machine language 10
code 815
programming 377

Macintosh 33

macro 221, 982
argument 984
definition 987
expansion 985
identifier 984

magic numbers 290

magnitude 592, 595

main 47, 50

“make your point” 228

make_heap algorithm 748

make_pair 688

make_unique function template 773, 775

Making a Difference exercises 101

mangled function name 249

Manhattan 208

manipulating a linked list 802

manipulating individual characters 918

manipulator 169

“manufacturing” section of the computer 7

<map> header 221

map associative container 681

<map> header 687, 689

mapped values 682

mashup 35

mask 907

“masked off” 907

matching catch block 762

math library functions 214, 221, 269
ceil 214
cos 214
exp 214
fabs 215
floor 215
fmod 215
log 215
log10 215
pow 215
sin 215
sqrt 215
tan 215

Math Library Functions exercise 279

mathematical algorithms of the Standard Library 723

mathematical calculation 12, 213

Matsumoto, Yukihiro 14

max algorithm 743, 748

max_element algorithm 723, 725, 748

max_size member function of a string 879

max_size member function of containers 660

maximum function 215

maximum size of a string 877, 879

mean 57

medical imaging 4

member function 15
argument 78
automatically inlined 393
calls for const objects 414

calls often concise 393
defined in a class definition 393
parameter 80
that takes no arguments 393

member function call 15

member function definitions of class Integer 773

member-initializer list 86, 416, 419

member object
default constructor 421
destructors 782
initializer 420

member selection operator (.) 398, 399, 425, 541, 774

memberwise assignment 411, 453

memberwise copy 477

memchr function 940, 942

memcmp function 940, 941

memcpy function 939, 940

memmove function 940, 941

<memory> header 222

memory 6, 7, 51, 54

memory address 341

memory consumption 563

memory functions of the string-handling library 939

memory handling
function memchr 942
function memcmp 942
function memcpy 940
function memmove 941
function memset 943

<memory> header 772

memory leak 467, 657, 772, 774, 886
prevent 774

memory location 54

memory unit 7

memory-access violation 657

memset function 940, 943

merge algorithm 732, 734, 748

merge member function of list 679

merge sort 851, 862

merge sort (a recursive implementation) 855

merge sort algorithm 855, 861

merge sort efficiency 861

merge sort implementation 856

merge sort recursive implementation 856

merge symbol in the UML 118

merge two arrays 856

merge two ordered list objects 755, 835

Merging Ordered Lists 755, 835

metric conversion program 956

Microsoft 3
Imagine Cup 43

Microsoft Windows 183

mileage obtained by automobiles 150

min algorithm 743, 748

min_element algorithm 723, 725, 748

minmax algorithm 743, 748

minmax_element algorithm 723, 725, 743, 748

minus function object 745

mismatch algorithm 715, 717, 748

mission-critical computing 763

mixed-type expression 219

mobile application 3

modifiable lvalue 453, 472, 479

modify a constant pointer 355

modify address stored in pointer variable 355

modularizing a program with functions 213

modulus function object 745

modulus operator (%) 223

monetary calculations 170

monetary formats 222

Moore’s Law 6

Morse Code 955

motion information 6

Motorola 3

mouse 5

move
assignment operator 478, 661
constructor 478, 525, 659, 661

semantics 478, 661

move algorithm 734, 747

move_backward algorithm 734, 747

Mozilla Foundation 32

multi-core processor 7

multidimensional array 308

multimap associative container 681, 687

multiple 56

multiple inheritance 499

multiple-selection statement 108

multiple-source-file program
compilation and linking process 396

Multiples exercise 274

Multiples of 2 with an Infinite Loop exercise 155

multiplication 55, 56

multiplication compound assignment operator, *= 137

Multiplication Via Bit Shifting exercise 949

multiplies function object 745

multiset associative container 681

mutating sequence algorithms 747

MySQL 36

mystery recursive exercise 263

N
name decoration 249

name function of class type_info 570

name handle 398
on an object 398

name mangling 249
to enable type-safe linkage 250

name of a source file 988

name of a variable 54

name of an array 285

named constant 289

namespace 48
scope 233

naming conflict 423

narrowing conversion 136, 219, 220

list initializer 219

natural logarithm 215

Navigator area (Xcode) 29

Navigators
Issue 29
Project 29

NDEBUG 988

near container 659

negate function object 745

negative infinity (-inf) 759

nested blocks 233

nested building block 199

nested control statements 131, 197, 199
Examination-results problem 134

nested for statement 291, 310, 315

nested if selection statement 115

nested if ... else selection statement 111, 115, 117, 153

nested parentheses 56

nesting rule 197

NetBeans 17

network connection 579

network message arrival 767

network node 820

<new> header 769

new operator 466, 477
calls the constructor 467
failure handler 771
returning nullptr on failure 770
throwing bad_alloc on failure 769, 770

newline ('\n') escape sequence 48, 54, 62, 364, 582, 921

next_permutation algorithm 748

NeXTSTEP operating system 33

noboolalpha stream manipulator 599

node 800

noexcept keyword (C++11) 768

non- const member function 415

non- const member function called on a const object 414

non- const member function on a non- const object 414

nonconstant pointer to constant data 353

nonconstant pointer to nonconstant data 353

noncontiguous memory layout of a deque 680

nondependent name 816

nondestructive read 55

nondeterministic random numbers 232

nondeterministic seed 725

none_of algorithm 726, 730, 748

nonfatal logic error 59, 114

nonfatal runtime error 20

nonlinear data structures 800, 823

non-member, friend function 459

non-member function to overload an operator 481

nonmodifiable lvalue 322, 453

nonmodifying sequence algorithms 747, 748

nonparameterized stream manipulator 130

nonrecoverable failures 603

non- static member function 423, 433, 481

nontype template parameter 792

nonzero treated as true 193, 202

noshowbase stream manipulator 593, 597

noshowpoint stream manipulator 593

noshowpos stream manipulator 381, 593, 595

noskipws stream manipulator 592

not equal 59

not_equal_to function object 745

note in the UML 107

nothrow object 770

nothrow_t type 770

nouppercase stream manipulator 593, 598

nth_element algorithm 748

NULL 342

null character ('\0') 365, 366, 587, 924, 929

null pointer 342, 343, 923
nullptr 800

null-terminated string 367, 581, 884

nullptr constant 342, 800

number of arguments 217

number of elements in an array 357

numbers with decimal points 89

numeric algorithms 745, 749

<numeric> header 726, 749

numerical data type limits 222

O
O(1) algorithms 844

O(log n) algorithms 850

O(n logn) algorithms 861

O(n) algorithms 845, 845, 853, 861

 algorithms 845, 845, 855

object code 18, 396

object leaves scope 405

object of a class 2, 14, 16

object of a derived class 534, 537

object of a derived class is instantiated 523

object-oriented analysis and design (OOAD) 16

object-oriented language 16

object-oriented programming (OOP) 2, 5, 16, 33, 498, 11

object serialization 644

object’s vtable pointer 566

Objective-C 33

objects contain only data 396

oct stream manipulator 588, 593, 597

octa-core processor 7

octal (base-8) number system 588, 593, 933

octal number 581, 597, 918, 934

octal number system (base 8) 968

odd integer 205

off-by-one error 285, 162

offset 566
from beginning of a file 623
to a pointer 362

ofstream class 617, 618, 619, 620, 622, 633, 635, 637
constructor 618
open function 619

one’s complement 911, 975
operator (~) 905

one-pass algorithm 663

ones position 968

one-to-many mapping 658, 687

one-to-one mapping 658, 689

OOAD (object-oriented analysis and design) 16

OOP (object-oriented programming) 11, 16, 498

open a file for input 619

open a file for output 619

open a nonexistent file 619

open function of ofstream 619

Open Handset Alliance 34

open source 32, 34

opened file 616

operand 48, 53, 55, 378

operating system 32, 33, 34

operation code 377

operation in the UML 84

operation parameter in the UML 84, 98

operator
-- , predecrement/postdecrement 137
-- , prefix decrement/postfix decrement 137, 138
! , logical negation 188
! , logical NOT 190
!= , inequality 59
?: , ternary conditional 114
() , parentheses 56
* , multiplication 55
* , pointer dereference or indirection 343, 344
*= , multiplication assignment 137
/ , division 55
/= , division assignment 137

&& , logical AND 188, 189
% , remainder 55
%= , remainder assignment 137
+ , addition 53, 55
++ , prefix increment/postfix increment 137, 138
++ , preincrement/postincrement 137
+= 873
+= , addition assignment 136
< ,less than 59
<< , stream insertion 47, 54
<= , less-than-or-equal-to 59
= , assignment 53, 55
-= , subtraction assignment 137
== , equality 59
> , greater than 59
>= , greater-than-or-equal-to 59
>> , stream extraction 54
|| , logical OR 188, 189
address (&) 344
arrow member selection (- >) 399
associativity 192
compound assignment 136, 139
conditional, ?: 114
decrement, -- 137, 138
delete 466

dot (.) 76
increment and decrement 137
increment, ++ 137
logical 188, 190, 191
logical AND, && 188, 190
logical complement, ! 190
logical negation, ! 190
logical OR, || 188, 189
member selection (.) 398, 399
new 466
overloading 54, 251, 448, 905
postfix decrement 137
postfix increment 137
precedence 56, 140, 913
precedence and associativity chart 63, 140
prefix decrement 137
prefix increment 137
remainder, % 55, 56, 155, 223, 227, 274, 278, 382, 836, 837,
962
scope resolution (::) 391
sizeof 356, 357
static_cast 129
typeid 570
unary minus (-) 129
unary plus (+) 129
unary scope resolution (::) 247

operator bool member function 604

operator bool stream member function 620, 622

operator keywords 453

operator overloading
decrement operators 460
in templates 795
increment operators 460

operator! member function 460, 604

operator! stream member function 619

operator!= 479

operator() 490

operator() overloaded operator 744

operator[]

const version 479
non- const version 479

operator+ 453

operator++ 460, 461, 466

operator++(int) 461

operator<< 458, 476

operator= 478, 660

operator== 479, 717

operator>> 457, 458, 476

optimizations on constants 414

optimizing compiler 169

order 106

order 1 844

order in which actions should execute 105

order in which constructors and destructors are called 407

order in which destructors are called 405

order in which operators are applied to their operands 259

order log n 850

order n 845

order n-squared 845

order of evaluation 259

order of evaluation of operators 69

Order of Exception Handlers exercise 782

ordered associative containers 658, 681, 682

orientation information 6

original format settings 600

OS X 33

ostream class 580, 623, 629, 637, 643
seekp function 623
tellp function 623

ostream_iterator 662

ostringstream class 392, 887, 888

other character sets 870

out-of-range element 472

out of scope 237

out_of_bounds exception 674

out_of_range exception 322, 479, 674, 696, 776, 873

outer block 234

outer for structure 310

out-of-bounds array elements 295

output
buffering 604
char * variables 581
characters 581
data items of built-in type 581
floating-point value 581, 593
format of floating-point numbers 597
integers 581
standard data types 581
uppercase letters 581

output device 6

output iterator 664, 665, 666, 714, 723, 736, 739

output sequence 662

output stream 673

output to string in memory 222

output unit 6

outputting to strings in memory 887

overflow_error exception 776

overhead of a function call 984

overload 54, 248
[] operator 472
+ 454
<< and >> 251
addition assignment operator (+=) 462
addition operator (+) 453
assignment (=) operator 472, 478
binary operator < 455
binary operators 454, 455
cast operator function 481
constructor 404

constructors 525
equality operator (==) 472, 479
function 249, 793
function call operator () 485, 490
function definitions 249
increment operator 462
inequality operator 472, 479
operator += 465
operator[] member function 479
operators 251
parentheses, () 744
postfix increment operator 461, 462, 466
prefix and postfix decrement operators 460
prefix and postfix increment operators 460
prefix increment operator 462, 466
resolution 793
stream insertion and stream extraction operators 455, 457, 461,
465, 471, 472, 476
subscript operator 472, 479
template functions 793
the stream insertion operator 643
unary operator ! 460

overloaded << operator 459

override a function 540

override keyword 542

P
PaaS (Platform as a Service) 37

Package inheritance hierarchy 529, 574

packet 820

Packing Characters into Unsigned Integers exercise 949

padding characters 581, 590, 592, 594, 595, 596, 917

padding in a structure 917

pair class template 685

pair of braces {} 62

palindrome 835
counting 896
exercise 155, 335, 755
testing with stacks 835

palindrome function 706

parameter 80, 81

parameter in the UML 84, 98

parameter list 81

parameter name 81

parameter type 81

parameterized stream manipulator 130, 169, 580, 622
quoted 627

parameterized type 785, 795

parent node 824

parentheses operator (()) 56

parentheses to force order of evaluation 63, 140

Parking Charges exercise 273

partial_sort algorithm 748

partial_sort_copy algorithm 748

partial_sum algorithm 749

partition algorithm 748

partition step in quicksort 866

partition_copy algorithm 748

partition_point algorithm 748

Pascal programming language 13

pass-by-reference 242, 340, 346, 348
with a pointer parameter used to cube a variable’s value 346
with pointer parameters 345
with reference parameters 243, 345

pass-by-reference with pointers 243

pass-by-value 242, 243, 345, 346, 347, 354
used to cube a variable’s value 346

Pass-by-Value vs. Pass-by-Reference exercise 280

passing arguments by value and by reference 243

passing large objects 245

passing options to a program 352

“past the end” iterator 725

pattern of 1s and 0s 8

Payroll System Modification exercise 574, 575

peek function of istream 586

percent sign (%) (remainder operator) 55

perfect number 275

Perfect Numbers exercise 275

perform a task 81

perform an action 47

performance 12

Performance of Binary Tree Sorting and Searching exercise 839

Performance Tips overview xxxiii

persistent 7

Peter Minuit problem 208

Phishing Scanner 653

PHP 10, 14, 36

PI 983, 984

Pi (π) 70

Pig Latin 953

Platform as a Service (PaaS) 37

Plauger, P.J. 11

plus function object 745

plus sign 595

Point Class 613

pointer 358
as an iterator 670

pointer 661

pointer arithmetic 358, 360, 362, 670
machine dependent 359

pointer assignment 361

pointer-based strings 364

pointer comparison 361

pointer dereference (*) operator 343, 344

pointer expression 358, 362

pointer handle 398

pointer link 800

pointer manipulation 563, 799

pointer notation 362

pointer operators & and * 344

pointer to a function 563

pointer to a pointer 829

pointer to an object 354

pointer to void (void *) 361

pointer variable 772

pointer/offset notation 362

pointer/subscript notation 362

pointer-based string 884

pointers and array subscripting 361, 362

pointers and arrays 361

pointers declared const 354

pointers to dynamically allocated storage 425, 478

point-of-sale system 628

poker playing program 445

poll analysis program 294

Polling exercise 337

Polymorphic Banking Program Exercise Using Account hierarchy
574

polymorphism 186, 526, 532, 547, 566

and references 563
as an alternative to switch logic 574
polymorphic screen manager 533

polynomial 58

Polynomial class 495

pop a stack 790

pop function of container adapters 691

pop member function of priority_queue 694

pop member function of queue 693

pop member function of stack 691

pop off a stack 237

pop_back member function of list 679

pop_front 676, 681, 693

pop_heap algorithm 748

portable 11

position number 284

positional notation 968

positional value 155, 968, 969

positional values in the decimal number system 969

positive infinity (inf) 759

postdecrement 137

postfix decrement operator 137

Postfix Evaluation exercise 836
Enhanced 837

postfix expression 836

postfix expression evaluation algorithm 835

postfix increment operator 137, 164

postfix notation 835

postincrement 137, 138, 139, 466

postincrement an iterator 666

postorder traversal 824, 830, 837, 838

pow function 58, 169, 215

power (raise to) 147, 215

power of 2 larger than 100 118

#pragma once 389

precedence 56, 58, 63, 139, 167, 259

precedence chart 63, 140

precedence not changed by overloading 454

precision 130, 581, 587
floating-point numbers 588
setting 588

precision function of ios_base 588

precision of a floating-point value 126

predecrement 137

predefined function objects 744

predefined symbolic constants 987, 988

predicate function 387, 399, 679, 717, 720, 723, 726, 729, 730,
734, 739, 806

prefix decrement operator 137

prefix increment operator 137

preincrement 137, 138, 139, 466

preorder traversal 824

prepackaged functions 213

preprocessing directives 17, 46

preprocessor 17, 982

preprocessor directives
#ifndef 389
#define 390
#endif 389

prev_permutation algorithm 748

prevent memory leak 774

preventing headers from being included more than once 390

primary memory 7, 18

prime 276

prime factorization 706

prime number 706

Prime Numbers exercise 276

primitive data type promotion 129

primitive type 140
int 137

principal 208

principal in an interest calculation 167

principle of least privilege 350, 352, 354, 413, 621, 665

print a line of text 45

print a list backwards 802, 838

print a string backwards recursion exercise 336

print an array recursion exercise 336

print spooling 820

printer 19, 579

printing
binary tree in a two-dimensional tree format 830
dates 954
Decimal Equivalent of a Binary Number exercise 155
line of text with multiple statements 49
multiple lines of text with a single statement 50
Sentence in Reverse Order with a Stack 835
string Backward 896
tree 838
unsigned integer in bits 906

priority_queue adapter class 694
empty function 694
pop function 694
push function 694, 706
size function 694
top function 694

private

access specifier 82
base-class data cannot be accessed from derived class 512

inheritance 525, 815
inheritance as an alternative to composition 525
members of a base class 501
static data member 430

private inheritance 501

private libraries 18

probability 223

procedure for solving a problem 105

processing unit 5

product of odd integer 206

program 5

program construction principles 199

program control 105

program development environment 17

program development tool 110, 126

program execution stack 237

program in the general 532, 574

program in the specific 532

program termination 409

programmer 5

project 21, 28

Project navigator 29

promotion 129

promotion hierarchy for builtin data types 220

promotion rules 219

prompt 52

prompting message 604

protected 515

protected base-class data can be accessed from derived class
517

protected inheritance 501, 525

Protected vs. Private Base Classes exercise 529

pseudocode 105, 111, 119, 131, 133
algorithm 125
first refinement 124, 132
second refinement 124, 133

pseudorandom numbers 226

public

method 392

public access specifier 83

public base class 525

public inheritance 498, 501, 525

public keyword 82

public member of a derived class 501

public services of a class 388

public static
class member 430
member function 430

punctuation mark 928

pure specifier 548

pure virtual function 548, 563

purpose of the program 46

push 790, 815

push member function of container adapters 691

push member function of priority_queue 694, 706

push member function of queue 693

push member function of stack 691

push onto a stack 237

push_back member function of class template vector 323

push_back member function of vector 670

push_front member function of deque 680

push_front member function of list 678

push_heap algorithm 748

put file-position pointer 629, 633

put member function 581, 582, 583

put pointer 623

putback function of istream 586

Pythagorean Triples 207

Python 14

Q
quad-core processor 7

quadratic runtime 845

Quadrilateral Inheritance Hierarchy exercise 529

qualified name 523

Quality Points for Numeric Grades exercise 276

qualityPoints 276

<queue> header 221

queue 657, 798, 800, 813

queue adapter class 693
back function 693
empty function 693
front function 693
pop function 693
push function 693
size function 693

Queue class-template definition 820

queue grows infinitely 837

<queue> header 693, 694

queue in a computer network 820

queue object 837

Queue-processing program 821

quicksort algorithm 862, 866

quotation marks 47

quoted stream manipulator 627

R
radians 214

radius of a circle 155

RAII (resource allocation is initialization) 769

raise to a power 203, 215

RAM (Random Access Memory) 7

rand function 222, 223

RAND_MAX symbolic constant 223

random-access file 616, 628, 629, 630, 635, 636, 637

random-access iterator 664, 680, 682, 709, 718, 725, 730
operations 666

random integers in range 1 to 6 223

random intervals 837

random number 225

random_device random-number source 725

random_shuffle algorithm 748

randomizing 226
die-rolling program 226

Randomly Creating Sentences exercise 952

range 662, 726

range checking 123, 469, 873

range variable 299, 310

range-based for 873, 887

range-based for statement 298

Rational Class exercise 441

RationalNumber class 495

raw data 628

raw data processing 616

rbegin library function 671

rbegin member function
of class string 887
of containers 660
of vector 672

rdstate function of ios_base 603

read 629, 635

read a line of text 77

read characters with getline 77

read data sequentially from a file 621

read member function of istream 586, 629, 642

read-only variable 289

readability 133

Reading a random-access file sequentially 636

Reading and printing a sequential file 621

real number 126

“receiving” section of the computer 6

record 9, 617, 637, 650

record format 630

record key 650

recover from errors 603

Rectangle Class exercise 442

recursion 254, 260, 262, 277
determine whether a string is a palindrome exercise 335
Eight Queens exercise 336
find the minimum value in an array exercise 336
print a string backward exercise 336
print an array exercise 336

recursion examples and exercises 262

recursion exercises
binary search 866
linear search 866

recursion step 254, 259, 866

recursive binary search 263, 862, 866

recursive binary tree insert 263

recursive binary tree printing 263

recursive binary tree search 263

recursive call 254, 259

Recursive Eight Queens exercise 263

Recursive Exponentiation exercise 277

recursive factorial function 262

recursive Fibonacci function 262

recursive function 254, 802

recursive function call 815

recursive function factorial 256

recursive greatest common divisor 263, 278

recursive implementation of merge sort 856

recursive inorder traversal of a binary tree 263

recursive linear search 263, 843, 862, 866

recursive maze traversal 263

recursive mergesort 263

recursive postorder traversal of a binary tree 263

recursive preorder traversal of a binary tree 263

recursive quicksort 263

recursive solution 262

recursive Towers of Hanoi 263

recursive utility function 827

recursively calculate minimum value in an array 263

recursively check if a string is a palindrome 263

recursively determine whether a string is a palindrome exercise
755

recursively print a linked list backward 263

recursively print a list backwards 838

recursively print a string backward 263

recursively print an array 263

recursively raising an integer to an integer power 263

recursively search a linked list 263

recursively search a list 838

redundant parentheses 59

refactoring 36

reference 340, 661
argument 345
const parameter 245
parameter 242, 243, 243
to a constant 244
to a local variable 245
to a private data member 409
to an int 243

referencing array elements 363
with the array name and with pointers 363

refinement process 124

regular expression 39, 887

reinterpret_cast operator 342, 361, 629, 633, 636

reinventing the wheel 12

relational operator 59, 60

release candidate 38

release dynamically allocated memory 477

remainder after integer division 56

remainder compound assignment operator, %= 137

remainder operator (%) 56, 70, 71

remainder operator, % 55, 56, 155, 223, 227, 274, 278, 382, 836,
837, 962

remove algorithm 720, 748

remove member function of list 680

remove_copy algorithm 718, 720, 748

remove_copy_if algorithm 718, 720, 735, 748

remove_if algorithm 718, 720, 748

rend library function 671

rend member function of class string 887

rend member function of containers 660

rend member function of vector 672

repetition
counter controlled 119, 128, 131, 132
definite 119
sentinel controlled 123, 125, 127, 128

repetition statement 108, 125
do ... while 108
for 108
while 108, 118, 121, 122, 128

replace == operator with = 192

replace algorithm 721, 722, 748

replace member function of class string 882, 883

replace_copy algorithm 721, 722, 748

replace_copy_if algorithm 721, 723, 748

replace_if algorithm 721, 723, 748

replacement text 984, 987
for a macro or symbolic constant 984, 985

representational error in floating point 170

requirements 16

reserved word 108
false 110
true 110

reset 695

resize member function of class string 879

resource allocation is initialization (RAII) 769

resource leak 769

restore a stream’s state to “good” 603

resumption model of exception handling 763

rethrow an exception 764

Rethrowing Exceptions exercise 782

return a value 47

Return key 53

return keyword 82, 214

return statement 48, 214, 218, 254

return type
of a function 80

returning a reference from a function 245

returning a reference to a private data member 409

Returning Error Indicators from Class Time ’s set Functions
exercise 442

reusability 785

reusable software components 14

reuse 15, 76

reverse algorithm 732, 735, 748

Reverse Digits exercise 276

reverse order of bits in unsigned integer 949

reverse_copy algorithm 735, 736, 748

reverse_iterator 660, 661, 665, 672, 887

Reversing a string with Iterators exercise 897
using Recursion 897

Reversing Bits 949

rfind member function of class string 881

Richer Shape Hierarchy 529

right brace (}) 47, 49, 121, 128

right child 823

right justification 169, 592, 594

right operand 48

right shift (>>) 448, 905

right shift with sign extension assignment operator (>>=) 913

right stream manipulator 169, 592, 594

right subtree 823, 826, 829, 830

right-to-left associativity 139

right triangle 156

right value 193

rightmost (trailing) arguments 247

right-shift operator (>>) 905, 906, 912, 949

right-shifting a signed value is machine dependent 913

right-to-left associativity 63

rise-and-shine algorithm 105

Ritchie, Dennis 11

robot 4

robust application 758, 763

Roku (Internet TV) 4

rolling dice 224, 228

rolling two dice 330

root node 823, 829

root node of the left subtree 823

root node of the right subtree 823

rotate algorithm 748

rotate_copy algorithm 748

round a floating-point number for display purposes 130

rounding a number 170

rounding numbers 122, 130, 215, 612

Rounding Numbers exercise 273

row subscript 308

rows 307

RTTI (runtime type information) 567, 571

Ruby on Rails 14

Ruby programming language 14

rule of thumb (heuristic) 188

rules for forming structured programs 194

rules of operator precedence 56

running total 124

runtime error 20

runtime type information (RTTI) 567, 571

runtime_error class 759, 767, 776
what function 764

rvalue ("right value") 193, 244, 472

S
SaaS (Software as a Service) 37

SalariedEmployee class header 554

SalariedEmployee class implementation file 555

Salary Calculator exercise 151

Sales Commission Calculator exercise 151

Sales Summary exercise 332

Salesperson Salary Ranges exercise 329

savings account 167

SavingsAccount class 443

Scala 14

scaling factor 223, 227

scanning images 6

scientific notation 130, 581, 598

scientific stream manipulator 593, 597

scope 233
class 233
file 233
function 233
function prototype 233
namespace 233
of a symbolic constant or macro 985
of a variable 164
of an identifier 86

scope resolution operator (::) 230

scope resolution operator (::) 391, 430, 788

scoped enumeration (enum class) 230

scoping example 235

screen 5, 6, 19, 46

screen-manager program 533

scripting language 10

scrutinize data 392

SDK (Software Development Kit) 37

search a linked list 802, 839

search algorithm 748

search algorithms 842
binary search 846
linear search 843
recursive binary search 866
recursive linear search 866

search functions of the string-handling library 935

search key 681, 842, 843, 846

search_n algorithm 748

searching 657, 726, 798

searching arrays 306

searching blocks of memory 939

searching data 842

Searching for Characters exercise 951

Searching for Substrings exercise 951

searching performance 839

searching strings 923, 930

second data member of pair 685

second-degree polynomial 58

second refinement in top-down, stepwise refinement 133

secondary storage 6

secondary storage devices 616
CD 616
DVD 616
flash drive 616
hard disk 616
tape 616

secondary storage unit 7

second-degree polynomial 58

security flaws 295

seed 227
nondeterministic 725

seed function rand 226

seed the random-number generator 725

seek direction 623

seek get 623

seek put 623

seekg function of istream 623, 642

seekp function of ostream 623, 633

select a substring 485

selection 109, 124, 197, 198

selection sort 851, 855, 861, 862

selection sort algorithm 853

selection sort efficiency 853

selection sort with call-by-reference 853

selection statement 106, 108
if 108, 110, 198, 199
if ... else 108, 110, 111, 128, 198
switch 108, 185, 198

self assignment 425, 478

self documenting 52

self-referential class 799, 800

semicolon (;) 47, 62, 982

semicolon that terminates a structure definition 901

send a message to an object 15

sentinel-controlled iteration 207

sentinel-controlled repetition 124, 125, 127, 128

sentinel value 123, 125, 128

separate interface from implementation 388

Separating Digits exercise 275

sequence 106, 109, 196, 198, 307, 662, 732, 734

sequence container 658, 665, 667, 675, 678
back function 674
empty function 675
front function 674
insert function 675

sequence of random numbers 226

sequence-structure activity diagram 107

sequential execution 106

sequential file 616, 617, 621, 627, 628

serialized object 644

<set> header 221

set associative container 681, 685 set function 421

<set> header 682, 685

set_intersection 739

set_new_handler function 769, 771

set of recursive calls to method Fibonacci 259

set operations of the Standard Library 737

set_difference algorithm 737, 739, 748

set_intersection algorithm 737, 739, 748

set_new_handler specifying the function to call when new fails 771

set_symmetric_difference algorithm 737, 739, 748

set_union algorithm 737, 739, 748

setbase stream manipulator 588

setfill stream manipulator 381, 392, 594, 595

setprecision stream manipulator 130, 588

setw parameterized stream manipulator 169, 287, 366, 458, 590,
594

shadow 423

Shakespeare, William 953

Shape class hierarchy 500, 529

shape of a tree 839

shell prompt on Linux 20

shift a range of numbers 223

shifted, scaled integers 224

shifted, scaled integers produced by 1 + rand() % 6 223

Shifting and Printing an Integer exercise 948

shiftingValue 227

“shipping” section of the computer 6

shopping list 117

short-circuit evaluation 190

showbase stream manipulator 593, 597

showpoint stream manipulator 130, 593

showpos stream manipulator 381, 593, 595

shrink_to_fit member function of classes vector and deque 672

shuffle algorithm 723, 725, 748

shuffle cards 948

shuffling algorithm 903

sibling 823

side effect 242
of an expression 234, 242, 259

sides of a right triangle 156

sides of a triangle 155

Sieve of Eratosthenes exercise 335, 706

sign extension 906

sign left justified 592

signal value 123

signature 219, 249, 460

signatures of overloaded prefix and postfix increment operators
461

significant digits 593

simple condition 188

Simple Decryption 897

simplest activity diagram 194, 196

Simpletron Machine Language (SML) 382, 799

Simpletron Simulator exercise 382, 799

simulation 379

Simulation: Tortoise and the Hare exercise 374

sin function 215

sine 215

single-argument constructor 483, 484

single entry point 194

single-entry/single-exit control statements 109, 194

single exit point 194

single inheritance 499

single-line comment 46

single-precision floating-point number 169

single quote 48

single quote (') 364

single-selection statement 108, 110, 198
if 110

singly linked list 658, 676, 813

six-sided die 223

size function of string 632

size member function of array 285

size member function of class string 178, 871

size member function of containers 659

size member function of priority_queue 694

size member function of queue 693

size member function of stack 691

size member function of vector 320

size of a string 877

size of a variable 54

size of an array 356

size_t 287, 629

size_t type 356

size_type 661

sizeof 935, 985

sizeof operator 356, 357, 423, 635, 652
used to determine standard data type sizes 357

sizeof operator when applied to an array name returns the
number of bytes in the array 356

sizes of the built-in data types 652

skipping whitespace 587, 592

skipws stream manipulator 592

small circles in the UML 107

smallest 269

smallest of several integers 206

smart pointer xxvi, 39
make_unique function template 773, 775

smartphone 3, 34

SML 377

SML operation code 377

SMS Language exercise 898

software 2, 5

Software as a Service (SaaS) 37

Software Development Kit (SDK) 37

software engineering

data hiding 82
reuse 76, 387
separate interface from implementation 388

software reuse 12, 213, 785

solid circle in the UML 107

solid circle surrounded by a hollow circle in the UML 107

solution 21

Solution Explorer 23

sort algorithm 306, 726, 730, 748, 850

sort algorithms
bubble sort 865
bucket sort 865
insertion sort 851, 853
merge sort 855
quicksort 866
selection sort 853

sort key 842

sort member function of list 679

sort_heap algorithm 748

sorting 617, 657, 726, 798
algorithms 747, 850
arrays 306
arrays 850
data 842
sort order 730, 734
strings 222

source code 17

source-code file 76

space–time trade-off 670

spaces for padding 595

space-time trade-off 637

Spam Scanner 898

speaking to a computer 6

special character 365

special characters 51

Special Section: Building Your Own Computer 376

special symbol 8

specialization of a class template 580

spelling checker 957

spiral 257

splice member function of list 679

splice_after member function of class template forward_list 679

split the array in merge sort 855

spooler 820

sqrt function of <cmath> header 215

square 154

square function 220

Square of Any Character exercise 275

Square of Asterisks exercise 154, 275

square root 215, 588

srand function 226, 227

<sstream> header 222, 392, 887, 392, 887

stable_partition algorithm 748

stable_sort algorithm 748

<stack> header 221

stack 237, 657, 785, 798, 800, 813, 817

stack adapter class 691
empty function 691
pop function 691
push function 691
size function 691
top function 691

Stack class template 786, 792, 818, 839
definition 816
definition with a composed List object 819

stack frame 237

<stack> header 691

stack overflow 238, 254

stack unwinding 763, 766, 768, 782

Stack< double > 788, 792, 817

stack<int> 792

Stack<T> 790

stacking building blocks 198

stacking control statements 199

stacking rule 196

stacks used by compilers 835

standard data type sizes 357

standard error stream (cerr) 19

standard exception classes 776

standard input stream (cin) 19, 53, 580, 616

Standard Library 213
class string 449
container classes 658
deque class template 680
exception classes 775
exception hierarchy 775
function sort 850
headers 222, 982
list class template 676
map class template 689
multimap class template 687
multiset class template 682
priority_queue adapter class 694
queue adapter class templates 693
set class template 686
stack adapter class 691
vector class template 668

standard output stream (cout) 19, 47, 580, 616

standard stream libraries 579

Standard Template Library 656

“warehouse” section of the computer 7

Start Page 21

state bits 601, 603

statement 47, 81

statement spread over several lines 62

statement terminator (;) 47

Statements 125

statements
break 184, 186, 187, 208
continue 186, 208
control statement 105, 106, 109, 110
control-statement nesting 109
control-statement stacking 109
do ... while 108, 179, 180, 198
double selection 108, 132
empty 114
for 108, 161, 165, 167, 169, 198
if 59, 62, 108, 110, 198, 199
if ... else 108, 110, 111, 128, 198
iteration 106, 117
looping 108
multiple selection 108
nested control statements 131
nested if ... else 111, 153

repetition 108
return 48, 214
selection 106, 108
single selection 108
switch 108, 180, 185, 198
throw 392
try 322
while 108, 117, 118, 121, 122, 128, 161, 198, 199

static array initialization 296

static array initialization and automatic array initialization 296

static binding 541

static data member 304, 429, 430
save storage 429
tracking the number of objects of a class 432

static data member to maintain a count of the number of objects
of a class 430

static keyword 234

static local object 406, 408, 409

static local variable 234, 235, 237, 296, 714

static member 430

static member function 430

static_cast 192

static_cast (compile-time type-checked cast) 286

static_cast operator 129, 140

std namespace 870

std::cin 53

std::cout 47

std::endl stream manipulator 54

__STDC__ predefined symbolic constant 988

<stdexcept> header 221, 759, 776

StepStone 33

sticky settings for streams 169, 191, 392

STL 656

STL exception types 674

stod function 891

stof function 891

stoi function 891

stol function 891

stold function 891

stoll function 891

storage alignment 901

storage unit 917

storage-unit boundary 917

store a lambda in a variable 729

stoul function 891

stoull function 891

str member function of class ostringstream 392, 888, 889

straight-line form 56, 57

straight-time 151

strcat function of header <cstring> 923, 925

strchr function of header <cstring> 935

strcmp function of header <cstring> 923, 926

strcpy function of header <cstring> 923, 924

strcspn function of header <cstring> 935, 936

stream
sticky settings 169, 191, 392

stream base 588

stream extraction operator >> ("get from") 53, 62, 251, 448, 455,
476, 580, 582, 643

stream input/output 46

stream insertion operator << ("put to") 48, 49, 54, 251, 448, 455,
476, 581, 620

stream manipulator 54, 130, 169, 587, 595, 622
boolalpha 191, 452, 599
dec 588
endl 54
fixed 130, 598
hex 588
internal 381, 595
left 169, 594
noboolalpha 599
noshowbase 597
noshowpoint 593
noshowpos 381, 593, 595
noskipws 592
nouppercase 593, 598
oct 588
quoted 627
right 169, 594
scientific 597
setbase 588
setfill 381, 392, 595
setprecision 130, 588
setw 169, 366, 590
showbase 597
showpoint 130, 593
showpos 595

skipws 592

stream of bytes 579

stream of characters 47

stream operation failed 603

<string> header 222

string 659
size function 632

string being tokenized 929

string class 77, 80, 448, 451, 871
assignment 871, 872
assignment and concatenation 872
at member function 453
comparison 873
concatenation 871, 896
copy constructor 870
empty member function 452
find functions 880
find member function 880
insert functions 883
insert member function 883

Iterators 895
size member function 178
subscript operator [] 873
substr member function 452

string class from the Standard Library 222

string concatenation 178

string constant 365

string-conversion function 930
atof 931
atoi 932
atol 932
strtod 933
strtol 933
strtoul 934

<string> header 77, 870

string length 929

string literal 47, 365
string -object literal 452

string manipulation 213

string of characters 47

string-search function
strchr 936
strcspn 936
strpbrk 937
strrchr 938
strspn 938
strstr 939

string stream processing 887

string::npos 881

string -object literal 452

strings as full-fledged objects 364

Strings Beginning with b exercise 951

Strings Ending with ED exercise 951

strlen function of header <cstring> 924, 929

strncat function of header <cstring> 923, 925

strncmp function of header <cstring> 924, 926

strncpy function of header <cstring> 923, 924

Stroustrup, B. 11

strpbrk function of header <cstring> 935, 937

strrchr function of header <cstring> 935, 937

strspn function of header <cstring> 935, 938

strstr function of header <cstring> 935, 939

strtod function of header <cstring> 930, 932

strtok function of header <cstring> 924, 928

strtol function of header <cstring> 931, 933

strtoul function of header <cstring> 931, 934

struct 900

structure 900, 983

structure definition 900, 914

structure members default to private access 900

structure name 900

structure type 900

structured programming 5, 106, 160, 188, 194
summary 194

Student Inheritance Hierarchy exercise 529

student-poll-analysis program 294

subclass 498

subproblem 254

subscript 284

subscript 0 (zero) 285

subscript operator 681
for map 689
for string 871
for vector 674

subscript out of range 674

subscripted name used as an rvalue 472

subscripting 680

subscripting with a pointer and an offset 363

substr member function of class string 452, 876, 876

substring 485

substring length 485

substring of a string 876

subtract one pointer from another 359

subtraction 7, 55, 56

subtraction compound assignment operator, -= 137

sum of the elements of an array 290

Summing and Averaging Elements in a List exercise 835

superclass 498

supermarket simulation 837

survey 293, 295

swap algorithm 732, 747

swap member function of class string 876

swap member function of containers 660

swap member function of list 679

swap_ranges algorithm 731, 732, 747

swapping strings 876

swapping values 852, 854

Swift programming language 33

switch multiple-selection statement 108, 180, 185, 198
activity diagram with break statements 185
case label 184
controlling expression 184
default case 184, 186
logic 186, 547

symbol 870

symbol values 968

symbolic constant 982, 983, 985, 987, 988

symbolic constant NDEBUG 988

symbolic constant PI 984

symmetric key encryption 895

synchronize operation of an istream and an ostream 604

synchronous error 767

syntax 47

syntax error 47

T
tab 62

Tab key 48

tab stop 48

table of values 307

tablet computer 34

tabular format 287

Tabular Output exercise 152

tail of a list 839

tail of a queue 657, 798, 819

tail pointer 839

tails 223

tan function 215

tangent 215

tape 616

Target-Heart-Rate Calculator exercise 101

Tax Plan Alternatives exercise 210

TCP (Transmission Control Protocol) 34

TCP/IP 35

technical publications 39

Telephone Number Word Generator exercise 652

tellg function of istream 623

tellp function of ostream 623

template 799, 802, 983
default type argument for a type parameter 792
dependent name 816

template definition 252

template function 252

template keyword 251, 786

template parameter 786

template parameter list 251

temporary object 482

temporary value 129, 220

terabyte 7

terminate a loop 125

terminate a program 771

terminate normally 620

terminate successfully 49

terminating condition 256

terminating null character 365, 366, 885, 924, 929

terminating right brace (}) of a block 234

termination condition 296

termination housekeeping 405

termination model of exception handling 763

termination test 260

ternary conditional operator (?:) 259

ternary operator 114

test 696

test characters 221

Testing Characters with the <cctype> Functions exercise 949

text analysis 953

text editor 620

text file 637

text-printing program 45

text substitution 984

this pointer 423, 425, 433, 478

this pointer used explicitly 423

this pointer used implicitly and explicitly to access members of an
object 424

throw an exception 322, 392, 761

throw exceptions derived from standard exceptions 776

throw exceptions not derived from standard exceptions 776

throw keyword 763

throw point 763

throw standard exceptions 776

Throwing Exceptions from a catch exercise 781

Throwing the Result of a Conditional Expression 781

TicTacToe Class exercise 442

tie an input stream to an output stream 604

tilde character (~) 405

time-and-a-half 151

Time class 389, 390, 399, 400, 425, 441
Modification exercise 444

time function 227

__TIME__ predefined symbolic constant 988

time source file is compiled 988

to_string function 178, 890

token 627, 924, 928

tokenize a sentence into separate words 837

Tokenizing and Reversing a Sentence exercise 953

Tokenizing Phone Numbers exercise 953

tokenizing strings 923, 928

tolower 918, 920

top 124

top-down, stepwise refinement 124, 125, 126, 132, 133

top member function of priority_queue 694

top member function of stack 691

top of a stack 657, 798, 815

Tortoise and the Hare exercise 374

total 120, 124

toupper 918, 920, 920

Towers of Hanoi exercise 277
Iterative Version 278

trailing return types 712

trailing zeros 593

transaction 649

transaction file 650

transaction processing 687

transaction record 650

transaction-processing program 628, 637

transfer of control 106

transform algorithm 723, 726, 748

transition arrow in the UML 107, 111, 118, 119

translation 10, 18

translator program 10

Transmission Control Protocol (TCP) 34

traversal 886

traversals forwards and backwards 814

traverse a binary tree 824, 831

traverse the left subtree 829

traverse the right subtree 829

traversing a container 799

tree 800, 823, 830

Tree class template 826, 827

Tree<int> 824

TreeNode class template 826

trigonometric cosine 214

trigonometric sine 215

trigonometric tangent 215

tripleByReference 280

tripleByValue 280

true 60

true 110

truncate 56, 619

truncate fractional part of a calculation 122

truncate fractional part of a double 219

truth tables 189
for operator ! 191
for operator && 189

for operator || 189

try block 322, 761, 764, 767, 768
expires 762

try statement 322

tuple container (C++11) 685

Twitter 3, 35

two-dimensional array 308,, 312
manipulations 312

two largest values 152

two’s complement 975
notation 975

twos position 970

type checking 984, 985

type field 644

type information 644

type of a variable 54

type of the this pointer 424

type parameter 251, 252, 786, 792

type-safe linkage 249

type_info class 570

typedef 580, 870, 887, 902
in first-class containers 661
iostream 580
istream 580
ostream 580

typeid 570, 776

<typeinfo> header 221, 570

typename keyword 251, 786

type-safe I/O 586

U
UML (Unified Modeling Language) 16

activity diagram 106, 107, 111, 118, 165, 180
arrow 107
class diagram 83
compartment in a class diagram 83
diamond 110
dotted line 107
final state 107
guard condition 110
merge symbol 118
note 107
solid circle 107
solid circle surrounded by a hollow circle 107

UML (www.uml.org) 107

unary minus (-) operator 129

unary operator 129, 190, 342

unary operator overload 454, 459

unary plus (+) operator 129

unary predicate function 679, 720, 723

unary scope resolution operator (::) 247

unbuffered output 581

unbuffered standard error stream 580

uncaught exceptions 782

#undef preprocessing directive 985, 987

undefined ("garbage") value 87, 98

undefined area in memory 902

underflow_error exception 776

underlying container 691

underlying data structure 694

underscore (_) 51

unformatted I/O 579, 580, 586

unformatted output 581, 582

Unicode 870

Unicode character set 8, 186, 579

Unified Modeling Language (UML) 16

uniform initialization 51

uniform_int_distribution 232

unincremented copy of an object 466

unique algorithm 732, 734, 748

unique keys 682, 685, 689

unique member function of list 679

unique_copy algorithm 735, 736, 748

unique_ptr class (C++11) 772
built-in array 775
manages dynamically allocated memory 773

universal-time format 392

UNIX 183, 620

unnamed bit field 917

unnamed bit field with a zero width 917

unordered associative containers 658, 681

unordered_map associative container class template 658, 681, 689

<unordered_map> header 221, 687, 689

unordered_multimap associative container class template 658, 681,
687

unordered_multiset associative container 681

unordered_multiset class template 658, 682

<unordered_set> header 221

unordered_set associative container 681

unordered_set class template 658, 685

<unordered_set> header 682, 685

Unpacking Characters from Unsigned Integers exercises 949

unsigned char data type 220

unsigned data type 220

unsigned int data type 130, 220

unsigned integer in bits 906

unsigned long data type 220, 257, 934

unsigned long int data type 220, 257

unsigned long long data type 220

unsigned long long int data type 220, 257

unsigned short data type 220

unsigned short int data type 220

untie an input stream from an output stream 605

unwinding the function call stack 766

update a record 651

update records in place 628

upper_bound

algorithm 742, 748
function of associative container 685

uppercase letter 51, 70, 221, 918, 920

uppercase stream manipulator 593, 597, 598

user-defined function 215

user-defined type 76, 230, 481

using declaration 61
in headers 80

using directive 61
in headers 80

using function swap to swap two strings 877

Utilities area (Xcode) 29

<utility> header 222

utility function 387, 399

V
validate data 123

Validating User Input exercise 152

validation 91

validity checking 91

value 53

value initialize 350

value of a variable 54

value of an array element 285

value_type 661

van Rossum, Guido 14

variable 51

variable name 54

variable scope 163

variable size 54

variable type 54

variadic template 685

<vector> header 221

vector class 317

vector class template 284, 668
capacity function 669, 670
crbegin function 671
crend function 671
push_back function 670
push_back member function 323
push_front function 670
rbegin function 672
rend function 672
shrink_to_fit member function 672

vector class template element-manipulation functions 672

<vector> header 317

vertical tab (‘v’) 918, 921

vim 17

virtual destructor 546

virtual function 533, 540, 563, 566
call 566
call illustrated 565
table (vtable) 563

virtual memory 770, 771

Visual Basic programming language 13

Visual C++ programming language 13

Visual Studio
Command Prompt window 23
Solution Explorer 23
Start Page 21
Win32 Console Application 21

Visual Studio 2015 Community Edition 17, 20, 38

visualizing recursion 263, 278

void * 361, 939

void keyword 80

void return type 219

volatile information 7

volume of a cube 241

vtable 563, 564, 567

vtable pointer 567

W
W3C (World Wide Web Consortium) 35

walk a list 812

“walk off” either end of an array 468

wchar_t 870

wchar_t character type 579

“weakest” iterator type 664, 709

web services 35

Welcome to Xcode window 28

what member function of an exception object 322

what virtual function of class exception 759, 764, 769

while iteration statement 118, 161, 198, 199

while repetition statement 108, 118, 121, 122, 128

activity diagram in the UML 118

whitespace characters 46, 47, 62, 582, 584, 587, 918, 921, 982,
987

whole number 51

width member function of class ios_base 590

width of a bit field 914

width of random number range 227

width setting 590
implicitly set to 0 590

Win32 Console Application 21

Windows 32, 183

Windows 10 Mobile 32

Windows operating system 32

Wirth, Niklaus 13

word 377, 901

word boundary 901

word equivalent of a check amount 955

word processing 954

Words Ending in “r” or “ay” exercise 896

workflow 107

workspace window 28

World Community Grid 3

World Population Growth exercise 156

World Wide Web 35

worst-case runtime for an algorithm 842

Wozniak, Steve 33

wraparound 466

Write 952

write 629, 633

write function of ostream 581, 586

Write Your Own Character Handling Functions exercise 951

Write Your Own Memory Handling Functions exercise 952

Write Your Own String Comparison Functions exercise 953

Write Your Own String Conversion Functions exercise 951

Write Your Own String Copy and Concatenation Functions
exercise 953

Write Your Own String Length Function exercise 953

Write Your Own String Searching Functions exercise 951

writing data randomly to a random-access file 633

X
Xcode 17

Debug area 29
Editor area 29
Navigator area 29
Utilities area 29

Xcode navigators
Issue 29
Project 29

Xcode on Mac OS X 20, 38

Xcode Windows
Welcome to Xcode 28

Xerox PARC (Palo Alto Research Center) 33

XML (extensible markup language) 644

Y
Yukihiro Matsumoto 14

Z
zero-based counting 162

zeroth element 285

zero-width bit field 917

	C++ HOW TO PROGRAM Introducing the New C++14 Standard
	How To Program Series
	Deitel® Developer Series
	Simply Series
	VitalSource Web Books
	LiveLessons Video Learning Products
	C++ How to Program Introducing the New C++14 Standard
	Trademarks
	Contents
	Preface
	Contacting the Authors
	Join the Deitel & Associates, Inc. Social Media Communities
	The C++11 and C++14 Standards
	Key Features of C++ How to Program, 10/e
	New in This Edition
	Object-Oriented Programming
	Hundreds of Code Examples
	Exercises
	Illustrations and Figures
	Dependency Chart
	Teaching Approach
	Secure C++ Programming
	Online Chapters, Appendices and Other Content
	Obtaining the Software Used in C++ How to Program, 10/e
	Instructor Supplements
	Online Practice and Assessment with MyProgrammingLab™
	Reviewers
	About the Authors

	Before You Begin
	1 Introduction to Computers and C++
	Objectives
	Outline
	1.1 Introduction
	1.2 Computers and the Internet in Industry and Research
	1.3 Hardware and Software
	1.4 Data Hierarchy
	1.5 Machine Languages, Assembly Languages and High-Level Languages
	1.6 C and C++
	1.7 Programming Languages
	1.8 Introduction to Object Technology
	1.9 Typical C++ Development Environment
	1.10 Test-Driving a C++ Application
	1.10.1 Compiling and Running an Application in Visual Studio 2015 for Windows
	1.10.2 Compiling and Running Using GNU C++ on Linux
	1.10.3 Compiling and Running with Xcode on Mac OS X

	1.11 Operating Systems
	1.12 The Internet and the World Wide Web
	1.13 Some Key Software Development Terminology
	1.14 C++11 and C++14: The Latest C++ Versions
	1.15 Boost C++ Libraries
	1.16 Keeping Up to Date with Information Technologies
	Self-Review Exercises
	Exercises
	Making a Difference
	Making a Difference Resources

	2 Introduction to C++ Programming, Input/Output and Operators
	Objectives
	Outline
	2.1 Introduction
	2.2 First Program in C++: Printing a Line of Text
	2.3 Modifying Our First C++ Program
	2.4 Another C++ Program: Adding Integers
	2.5 Memory Concepts
	2.6 Arithmetic
	2.7 Decision Making: Equality and Relational Operators
	2.8 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	3 Introduction to Classes, Objects, Member Functions and Strings
	Objectives
	Outline
	3.1 Introduction 1
	3.2 Test-Driving an Account Object
	3.2.1 Instantiating an Object
	3.2.2 Headers and Source-Code Files
	3.2.3 Calling Class Account’s getName Member Function
	3.2.4 Inputting a string with getline
	3.2.5 Calling Class Account’s setName Member Function

	3.3 Account Class with a Data Member and Set and Get Member Functions
	3.3.1 Account Class Definition
	3.3.2 Keyword class and the Class Body
	3.3.3 Data Member name of Type string
	3.3.4 setName Member Function
	3.3.5 getName Member Function
	3.3.6 Access Specifiers private and public
	3.3.7 Account UML Class Diagram

	3.4 Account Class: Initializing Objects with Constructors
	3.4.1 Defining an Account Constructor for Custom Object Initialization
	3.4.2 Initializing Account Objects When They’re Created
	3.4.3 Account UML Class Diagram with a Constructor

	3.5 Software Engineering with Set and Get Member Functions
	3.6 Account Class with a Balance; Data Validation
	3.6.1 Data Member balance
	3.6.2 Two-Parameter Constructor with Validation
	3.6.3 deposit Member Function with Validation
	3.6.4 getBalance Member Function
	3.6.5 Manipulating Account Objects with Balances
	3.6.6 Account UML Class Diagram with a Balance and Member Functions deposit and getBalance

	3.7 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	4 Algorithm Development and Control Statements: Part 1
	Objectives
	Outline
	4.1 Introduction
	4.2 Algorithms
	4.3 Pseudocode
	4.4 Control Structures
	4.5 if Single-Selection Statement
	4.6 if…else Double-Selection Statement
	4.7 Student Class: Nested if…else Statements
	4.8 while Iteration Statement
	4.9 Formulating Algorithms: Counter-Controlled Iteration
	4.9.1 Pseudocode Algorithm with Counter-Controlled Iteration
	4.9.2 Implementing Counter-Controlled Iteration
	4.9.3 Notes on Integer Division and Truncation
	4.9.4 Arithmetic Overflow
	4.9.5 Input Validation

	4.10 Formulating Algorithms: Sentinel-Controlled Iteration
	4.10.1 Top-Down, Stepwise Refinement: The Top and First Refinement
	4.10.2 Proceeding to the Second Refinement
	4.10.3 Implementing Sentinel-Controlled Iteration
	4.10.4 Converting Between Fundamental Types Explicitly and Implicitly
	4.10.5 Formatting Floating-Point Numbers
	4.10.6 Unsigned Integers and User Input

	4.11 Formulating Algorithms: Nested Control Statements
	4.11.1 Problem Statement
	4.11.2 Top-Down, Stepwise Refinement: Pseudocode Representation of the Top
	4.11.3 Top-Down, Stepwise Refinement: First Refinement
	4.11.4 Top-Down, Stepwise Refinement: Second Refinement
	4.11.5 Complete Second Refinement of the Pseudocode
	4.11.6 Program That Implements the Pseudocode Algorithm
	4.11.7 Preventing Narrowing Conversions with List Initialization

	4.12 Compound Assignment Operators
	4.13 Increment and Decrement Operators
	4.14 Fundamental Types Are Not Portable
	4.15 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	5 Control Statements: Part 2; Logical Operators
	Objectives
	Outline
	5.1 Introduction
	5.2 Essentials of Counter-Controlled Iteration
	5.3 for Iteration Statement
	5.4 Examples Using the for Statement
	5.5 Application: Summing Even Integers
	5.6 Application: Compound-Interest Calculations
	5.7 Case Study: Integer-Based Monetary Calculations with Class DollarAmount
	5.7.1 Demonstrating Class DollarAmount
	5.7.2 Class DollarAmount
	C++11 Type int64_t
	DollarAmount Constructor
	DollarAmount Member Functions add and subtract
	DollarAmount Member Function addInterest
	Member Function toString
	Banker’s Rounding
	Even int64_t Is Limited
	A Note About Arithmetic Operators and Modifying Operands

	5.8 do…while Iteration Statement
	5.9 switch Multiple-Selection Statement
	5.10 break and continue Statements
	5.11 Logical Operators
	5.11.1 Logical AND (&&) Operator
	5.11.2 Logical OR (||) Operator
	5.11.3 Short-Circuit Evaluation
	5.11.4 Logical Negation (!) Operator
	5.11.5 Logical Operators Example

	5.12 Confusing the Equality (==) and Assignment (=) Operators
	5.13 Structured-Programming Summary
	5.14 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	6 Functions and an Introduction to Recursion
	Objectives
	Outline
	6.1 Introduction
	6.2 Program Components in C++
	6.3 Math Library Functions
	6.4 Function Prototypes
	6.5 Function-Prototype and Argument-Coercion Notes
	6.6 C++ Standard Library Headers
	6.7 Case Study: Random-Number Generation2
	6.7.1 Rolling a Six-Sided Die
	6.7.2 Rolling a Six-Sided Die 60,000,000 Times
	6.7.3 Randomizing the Random-Number Generator with srand
	6.7.4 Seeding the Random-Number Generator with the Current Time
	6.7.5 Scaling and Shifting Random Numbers

	6.8 Case Study: Game of Chance; Introducing Scoped enums
	6.9 C++11 Random Numbers
	6.10 Scope Rules
	6.11 Function-Call Stack and Activation Records
	6.12 Inline Functions
	6.13 References and Reference Parameters
	6.14 Default Arguments
	6.15 Unary Scope Resolution Operator
	6.16 Function Overloading
	6.17 Function Templates
	6.18 Recursion
	6.19 Example Using Recursion: Fibonacci Series
	6.20 Recursion vs. Iteration
	6.21 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	7 Class Templates array and vector; Catching Exceptions
	Objectives
	Outline
	7.1 Introduction
	7.2 arrays
	7.3 Declaring arrays
	7.4 Examples Using arrays The following examples demonstrate how to declare, initialize and manipulate arrays.
	7.4.1 Declaring an array and Using a Loop to Initialize the array’s Elements
	7.4.2 Initializing an array in a Declaration with an Initializer List
	7.4.3 Specifying an array’s Size with a Constant Variable and Setting array Elements with Calculations
	7.4.4 Summing the Elements of an array
	7.4.5 Using a Bar Chart to Display array Data Graphically
	7.4.6 Using the Elements of an array as Counters
	7.4.7 Using arrays to Summarize Survey Results
	7.4.8 Static Local arrays and Automatic Local arrays

	7.5 Range-Based for Statement
	7.6 Case Study: Class GradeBook Using an array to Store Grades
	7.7 Sorting and Searching arrays
	7.8 Multidimensional arrays
	7.9 Case Study: Class GradeBook Using a Two-Dimensional array
	7.10 Introduction to C++ Standard Library Class Template vector
	7.11 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Recursion Exercises
	Making a Difference

	8 Pointers
	Objectives
	Outline
	8.1 Introduction
	8.2 Pointer Variable Declarations and Initialization
	8.3 Pointer Operators
	8.4 Pass-by-Reference with Pointers
	8.5 Built-In Arrays
	8.6 Using const with Pointers
	8.7 sizeof Operator
	8.8 Pointer Expressions and Pointer Arithmetic
	8.9 Relationship Between Pointers and Built-In Arrays
	8.10 Pointer-Based Strings (Optional)
	8.11 Note About Smart Pointers
	8.12 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Special Section: Building Your Own Computer

	9 Classes: A Deeper Look
	Objectives
	Outline
	9.1 Introduction
	9.2 Time Class Case Study: Separating Interface from Implementation
	9.2.1 Interface of a Class
	9.2.2 Separating the Interface from the Implementation
	9.2.3 Time Class Definition
	9.2.4 Time Class Member Functions
	9.2.5 Scope Resolution Operator (::)
	9.2.6 Including the Class Header in the Source-Code File
	9.2.7 Time Class Member Function setTime and Throwing Exceptions
	9.2.8 Time Class Member Function toUniversalString and String Stream Processing
	9.2.9 Time Class Member Function toStandardString
	9.2.10 Implicitly Inlining Member Functions
	9.2.11 Member Functions vs. Global Functions
	9.2.12 Using Class Time
	9.2.13 Object Size

	9.3 Compilation and Linking Process
	9.4 Class Scope and Accessing Class Members
	9.5 Access Functions and Utility Functions
	9.6 Time Class Case Study: Constructors with Default Arguments The program of Figs. 9.5–9.7 enhances class Time to demonstrate how arguments can be passed to a constructor implicitly.
	9.6.1 Constructors with Default Arguments
	9.6.2 Overloaded Constructors and C++11 Delegating Constructors

	9.7 Destructors
	9.8 When Constructors and Destructors Are Called
	9.8.1 Constructors and Destructors for Objects in Global Scope
	9.8.2 Constructors and Destructors for Non-static Local Objects
	9.8.3 Constructors and Destructors for static Local Objects
	9.8.4 Demonstrating When Constructors and Destructors Are Called

	9.9 Time Class Case Study: A Subtle Trap — Returning a Reference or a Pointer to a private Data Member
	9.10 Default Memberwise Assignment
	9.11 const Objects and const Member Functions
	9.12 Composition: Objects as Members of Classes
	9.13 friend Functions and friend Classes
	9.14 Using the this Pointer
	9.14.1 Implicitly and Explicitly Using the this Pointer to Access an Object’s Data Members
	9.14.2 Using the this Pointer to Enable Cascaded Function Calls

	9.15 static Class Members
	9.15.1 Motivating Classwide Data
	9.15.2 Scope and Initialization of static Data Members
	9.15.3 Accessing static Data Members
	9.15.4 Demonstrating static Data Members

	9.16 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	10 Operator Overloading; Class string
	Objectives
	Outline
	10.1 Introduction
	10.2 Using the Overloaded Operators of Standard Library Class string
	10.3 Fundamentals of Operator Overloading
	10.4 Overloading Binary Operators
	10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators
	10.6 Overloading Unary Operators
	10.7 Overloading the Increment and Decrement Operators
	10.8 Case Study: A Date Class
	10.9 Dynamic Memory Management
	10.10 Case Study: Array Class
	10.10.1 Using the Array Class
	10.10.2 Array Class Definition
	Overloading the Stream Insertion and Stream Extraction Operators as friends
	Range-Based for Does Not Work with Dynamically Allocated Built-In Arrays
	Array Default Constructor
	Array Copy Constructor
	Array Destructor
	getSize Member Function
	Overloaded Assignment Operator
	C++11: Move Constructor and Move Assignment Operator
	C++11: Deleting Unwanted Member Functions from Your Class
	Overloaded Equality and Inequality Operators
	Overloaded Subscript Operators
	C++11: Managing Dynamically Allocated Memory with unique_ptr
	C++11: Passing a List Initializer to a Constructor

	10.11 Operators as Member vs. Non-Member Functions
	10.12 Converting Between Types
	10.13 explicit Constructors and Conversion Operators
	10.14 Overloading the Function Call Operator ()
	10.15 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises

	11 Object-Oriented Programming: Inheritance
	Objectives
	Outline
	11.1 Introduction
	11.2 Base Classes and Derived Classes
	11.3 Relationship between Base and Derived Classes
	11.3.1 Creating and Using a CommissionEmployee Class
	11.3.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance
	11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data
	Defining Base-Class CommissionEmployee with protected Data
	Class BasePlusCommissionEmployee
	Testing the Modified BasePlusCommissionEmployee Class
	Notes on Using protected Data

	11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data
	Changes to Class CommissionEmployee’s Member-Function Definitions
	Changes to Class BasePlusCommissionEmployee’s Member-Function Definitions
	BasePlusCommissionEmployee Member Function earnings
	BasePlusCommissionEmployee Member Function toString
	Testing the Modified Class Hierarchy
	Summary of the CommissionEmployee–BasePlusCommissionEmployee Examples

	11.4 Constructors and Destructors in Derived Classes
	11.5 public, protected and private Inheritance
	11.6 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises

	12 Object-Oriented Programming: Polymorphism
	Objectives
	Outline
	12.1 Introduction
	12.2 Introduction to Polymorphism: Polymorphic Video Game
	12.3 Relationships Among Objects in an Inheritance Hierarchy
	12.3.1 Invoking Base-Class Functions from Derived-Class Objects
	12.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers

	12.4 Virtual Functions and Virtual Destructors
	12.4.1 Why virtual Functions Are Useful
	12.4.2 Declaring virtual Functions
	12.4.3 Invoking a virtual Function Through a Base-Class Pointer or Reference
	12.4.4 Invoking a virtual Function Through an Object’s Name
	12.4.5 virtual Functions in the CommissionEmployee Hierarchy
	12.4.6 virtual Destructors
	12.4.7 C++11: final Member Functions and Classes

	12.5 Type Fields and switch Statements
	12.6 Abstract Classes and Pure virtual Functions
	12.7 Case Study: Payroll System Using Polymorphism
	12.7.1 Creating Abstract Base Class Employee
	12.7.2 Creating Concrete Derived Class SalariedEmployee
	12.7.3 Creating Concrete Derived Class CommissionEmployee
	12.7.4 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	12.7.5 Demonstrating Polymorphic Processing

	12.8 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”
	12.9 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info
	12.10 Wrap-Up
	Summary
	Section 12.1 Introduction
	Section 12.2 Introduction to Polymorphism: Polymorphic Video Game
	Section 12.3 Relationships Among Objects in an Inheritance Hierarchy
	Section 12.4.2 Declaring virtual Functions Polymorphism is implemented via virtual functions (p. 540) and dynamic binding (p. 541).
	Section 12.4.3 Invoking a virtual Function Through a Base-Class Pointer or Reference
	Section 12.4.4 Invoking a virtual Function Through an Object’s Name
	Section 12.4.5 virtual Functions in the CommissionEmployee Hierarchy
	Section 12.4.6 virtual Destructors
	Section 12.4.7 C++11: final Member Functions and Classes
	Section 12.5 Type Fields and switch Statements
	Section 12.6 Abstract Classes and Pure virtual Functions
	Section 12.6.1 Pure Virtual Functions
	Section 12.8 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”
	Section 12.9 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info

	Self-Review Exercises
	Exercises
	Making a Difference

	13 Stream Input/Output: A Deeper Look
	Objectives
	Outline
	13.1 Introduction
	13.2 Streams
	13.3 Stream Output
	13.4 Stream Input
	13.4.1 get and getline Member Functions
	13.4.2 istream Member Functions peek, putback and ignore
	13.4.3 Type-Safe I/O

	13.5 Unformatted I/O Using read, write and gcount
	13.6 Stream Manipulators: A Deeper Look
	13.6.1 Integral Stream Base: dec, oct, hex and setbase
	13.6.2 Floating-Point Precision (precision, setprecision)
	13.6.3 Field Width (width, setw)
	13.6.4 User-Defined Output Stream Manipulators

	13.7 Stream Format States and Stream Manipulators
	13.7.1 Trailing Zeros and Decimal Points (showpoint)
	13.7.2 Justification (left, right and internal)
	13.7.3 Padding (fill, setfill)
	13.7.4 Integral Stream Base (dec, oct, hex, showbase)
	13.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed)
	13.7.6 Uppercase/Lowercase Control (uppercase)
	13.7.7 Specifying Boolean Format (boolalpha)
	13.7.8 Setting and Resetting the Format State via Member Function flags

	13.8 Stream Error States
	13.9 Tying an Output Stream to an Input Stream
	13.10 Wrap-Up
	Summary
	Section 13.1 Introduction
	Section 13.2 Streams
	Section 13.2.2 iostream Library Headers
	Section 13.2.3 Stream Input/Output Classes and Objects
	Section 13.3 Stream Output
	Section 13.4 Stream Input
	Section 13.5 Unformatted I/O Using read, write and gcount
	Section 13.6 Stream Manipulators: A Deeper Look
	Section 13.7 Stream Format States and Stream Manipulators
	Section 13.8 Stream Error States
	Section 13.9 Tying an Output Stream to an Input Stream

	Self-Review Exercises
	Exercises

	14 File Processing
	Objectives
	Outline
	14.1 Introduction
	14.2 Files and Streams
	14.3 Creating a Sequential File
	14.4 Reading Data from a Sequential File
	14.4.1 Opening a File for Input
	14.4.2 Reading from the File
	14.4.3 File-Position Pointers
	14.4.4 Case Study: Credit Inquiry Program

	14.5 C++14: Reading and Writing Quoted Text
	14.6 Updating Sequential Files
	14.7 Random-Access Files
	14.8 Creating a Random-Access File
	14.8.1 Writing Bytes with ostream Member Function write
	14.8.2 Converting Between Pointer Types with the reinterpret_cast Operator
	14.8.3 Credit-Processing Program
	14.8.4 Opening a File for Output in Binary Mode

	14.9 Writing Data Randomly to a Random-Access File
	14.10 Reading from a Random-Access File Sequentially
	14.11 Case Study: A Transaction-Processing Program
	14.12 Object Serialization
	14.13 Wrap-Up
	Summary
	Section 14.1 Introduction
	Section 14.2 Files and Streams
	Section 14.3 Creating a Sequential File
	Section 14.4 Reading Data from a Sequential File
	Section 14.5 C++14: Reading and Writing Quoted Text
	Section 14.6 Updating Sequential Files

	Self-Review Exercises
	Exercises
	Making a Difference

	15 Standard Library Containers and Iterators
	Objectives
	Outline
	15.1 Introduction
	15.2 Introduction to Containers2
	15.3 Introduction to Iterators
	15.4 Introduction to Algorithms
	15.5 Sequence Containers
	15.5.1 vector Sequence Container
	Using vectors and Iterators
	Creating a vector
	vector Member Functions size and capacity
	vector Member Function push_back
	Updated size and capacity After Modifying a vector
	vector Growth
	Outputting Built-in Array Contents with Pointers
	Outputting vector Contents with Iterators
	Displaying the vector’s Contents in Reverse with const_reverse_iterators
	C++11: shrink_to_fit
	vector Element-Manipulation Functions
	ostream_iterator
	copy Algorithm
	vector Member Functions front and back
	Accessing vector Elements
	vector Member Function insert
	vector Member Function erase
	vector Member Function insert with Three Arguments (Range insert)
	vector Member Function clear

	15.5.2 list Sequence Container
	C++11: forward_list Container
	list Member Functions
	Creating list Objects
	list Member Function sort
	list Member Function splice
	list Member Function merge
	list Member Function pop_front
	list Member Function unique
	list Member Function swap
	list Member Functions assign and remove

	15.5.3 deque Sequence Container

	15.6 Associative Containers
	15.6.1 multiset Associative Container
	15.6.2 set Associative Container
	15.6.3 multimap Associative Container
	15.6.4 map Associative Container

	15.7 Container Adapters
	15.7.1 stack Adapter
	15.7.2 queue Adapter
	15.7.3 priority_queue Adapter

	15.8 Class bitset
	15.9 Wrap-Up
	Summary
	Section 15.1 Introduction
	Section 15.2 Introduction to Containers
	Section 15.3 Introduction to Iterators
	Section 15.4 Introduction to Algorithms
	Section 15.5 Sequence Containers
	Section 15.5.1 vector Sequence Container
	Section 15.5.2 list Sequence Container
	Section 15.5.3 deque Sequence Container
	Section 15.6 Associative Containers
	Section 15.6.1 multiset Associative Container
	Section 15.6.2 set Associative Container
	Section 15.6.3 multimap Associative Container
	Section 15.6.4 map Associative Container
	Section 15.7 Container Adapters
	Section 15.7.1 stack Adapter
	Section 15.7.2 queue Adapter
	Section 15.7.3 priority_queue Adapter
	Section 15.8 Class bitset

	Self-Review Exercises
	Exercises
	Recommended Reading

	16 Standard Library Algorithms
	Objectives
	Outline
	16.1 Introduction
	16.2 Minimum Iterator Requirements
	16.3 Lambda Expressions
	16.4 Algorithms Sections 16.4.1–16.4.12 demonstrate many of the Standard Library algorithms.
	16.4.1 fill, fill_n, generate and generate_n
	16.4.2 equal, mismatch and lexicographical_compare
	16.4.3 remove, remove_if, remove_copy and remove_copy_if
	16.4.4 replace, replace_if, replace_copy and replace_copy_if
	16.4.5 Mathematical Algorithms
	16.4.6 Basic Searching and Sorting Algorithms
	16.4.7 swap, iter_swap and swap_ranges
	16.4.8 copy_backward, merge, unique and reverse
	16.4.9 inplace_merge, unique_copy and reverse_copy
	16.4.10 Set Operations
	16.4.11 lower_bound, upper_bound and equal_range
	16.4.12 min, max, minmax and minmax_element

	16.5 Function Objects
	Advantages of Function Objects over Function Pointers
	Predefined Function Objects of the Standard Template Library
	Using the accumulate Algorithm

	16.6 Standard Library Algorithm Summary
	16.7 Wrap-Up
	Summary
	Section 16.1 Introduction
	Section 16.3 Lambda Expressions
	Section 16.3.1 Algorithm for_each
	Section 16.3.2 Lambda with an Empty Introducer
	Section 16.3.3 Lambda with a Nonempty Introducer—Capturing Local Variables
	Section 16.3.4 Lambda Return Types
	Section 16.4.1 fill, fill_n, generate and generate_n
	Section 16.4.2 equal, mismatch and lexicographical_compare
	Section 16.4.3 remove, remove_if, remove_copy and remove_copy_if
	Section 16.4.4 replace, replace_if, replace_copy and replace_copy_if
	Section 16.4.5 Mathematical Algorithms
	Section 16.4.6 Basic Searching and Sorting Algorithms
	Section 16.4.7 swap, iter_swap and swap_ranges
	Section 16.4.8 copy_backward, merge, unique and reverse
	Section 16.4.9 inplace_merge, unique_copy and reverse_copy
	Section 16.4.10 Set Operations
	Section 16.4.11 lower_bound, upper_bound and equal_range
	Section 16.4.12 min, max, minmax and minmax_element
	Section 16.5 Function Objects

	Self-Review Exercises
	Exercises

	17 Exception Handling: A Deeper Look
	Objectives
	Outline
	17.1 Introduction
	17.2 Exception-Handling Flow of Control; Defining an Exception Class
	17.2.4 Defining a catch Handler to Process a DivideByZeroException
	17.3 Rethrowing an Exception
	17.4 Stack Unwinding
	17.5 When to Use Exception Handling
	17.6 noexcept: Declaring Functions That Do Not Throw Exceptions
	17.7 Constructors, Destructors and Exception Handling
	17.8 Processing new Failures
	17.9 Class unique_ptr and Dynamic Memory Allocation
	17.10 Standard Library Exception Hierarchy
	17.11 Wrap-Up
	Summary
	Section 17.1 Introduction
	Section 17.2.1 Defining an Exception Class to Represent the Type of Problem That Might Occur
	Section 17.2.5 Termination Model of Exception Handling
	Section 17.2.7 Flow of Program Control When the User Enters a Denominator of Zero
	Section 17.3 Rethrowing an Exception
	Section 17.4 Stack Unwinding
	Section 17.5 When to Use Exception Handling
	Section 17.6 noexcept: Declaring Functions That Do Not Throw Exceptions
	Section 17.7.1 Destructors Called Due to Exceptions
	Section 17.7.2 Initializing Local Objects to Acquire Resources
	Section 17.8 Processing new Failures
	Section 17.9 Class unique_ptr and Dynamic Memory Allocation
	Section 17.10 Standard Library Exception Hierarchy

	Self-Review Exercises
	Exercises

	18 Introduction to Custom Templates
	Objectives
	Outline
	18.1 Introduction
	18.2 Class Templates
	18.2.1 Creating Class Template Stack<T>
	18.2.2 Class Template Stack<T>’s Data Representation
	18.2.3 Class Template Stack<T>’s Member Functions
	18.2.4 Declaring a Class Template’s Member Functions Outside the Class Template Definition
	18.2.5 Testing Class Template Stack<T>

	18.3 Function Template to Manipulate a Class-Template Specialization Object
	18.4 Nontype Parameters
	18.5 Default Arguments for Template Type Parameters
	18.6 Overloading Function Templates
	18.7 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises

	19 Custom Templatized Data Structures
	Objectives
	Outline
	19.1 Introduction
	19.2 Self-Referential Classes
	19.3 Linked Lists
	19.3.1 Testing Our Linked List Implementation
	19.3.2 Class Template ListNode
	19.3.3 Class Template List
	19.3.4 Member Function insertAtFront
	19.3.5 Member Function insertAtBack
	19.3.6 Member Function removeFromFront
	19.3.7 Member Function removeFromBack
	19.3.8 Member Function print
	19.3.9 Circular Linked Lists and Double Linked Lists

	19.4 Stacks
	19.4.1 Taking Advantage of the Relationship Between Stack and List
	19.4.2 Implementing a Class Template Stack Class Based By Inheriting from List
	19.4.3 Dependent Names in Class Templates
	19.4.4 Testing the Stack Class Template
	19.4.5 Implementing a Class Template Stack Class With Composition of a List Object

	19.5 Queues
	19.6 Trees
	19.6.1 Basic Terminology
	19.6.2 Binary Search Trees
	19.6.3 Testing the Tree Class Template
	19.6.4 Class Template TreeNode
	19.6.5 Class Template Tree
	19.6.6 Tree Member Function insertNodeHelper
	19.6.7 Tree Traversal Functions
	19.6.8 Duplicate Elimination
	19.6.9 Overview of the Binary Tree Exercises

	19.7 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Special Section: Building Your Own Compiler

	20 Searching and Sorting
	Objectives
	Outline
	20.1 Introduction
	20.2 Searching Algorithms
	20.2.1 Linear Search
	Function Template linearSearch
	Big O: Constant Runtime
	Big O: Linear Runtime
	Big O: Quadratic Runtime
	O(n2) Performance
	Linear Search’s Runtime

	20.2.2 Binary Search
	Binary Search of 15 Integer Values
	Binary Search Example
	Function Template binarySearch
	Function main
	Efficiency of Binary Search

	20.3 Sorting Algorithms
	20.3.1 Insertion Sort
	20.3.2 Selection Sort
	20.3.3 Merge Sort (A Recursive Implementation)
	Sample Merge
	Recursive Implementation
	Demonstrating Merge Sort
	Function mergeSort
	Function merge
	Efficiency of Merge Sort
	Summary of Searching and Sorting Algorithm Efficiencies

	20.4 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises

	21 Class string and String Stream Processing: A Deeper
	Objectives
	Outline
	21.1 Introduction1
	21.2 string Assignment and Concatenation
	21.3 Comparing strings
	21.4 Substrings
	21.5 Swapping strings
	21.6 string Characteristics
	21.7 Finding Substrings and Characters in a string
	21.8 Replacing Characters in a string
	21.9 Inserting Characters into a string
	21.10 Conversion to Pointer-Based char* Strings
	21.11 Iterators
	21.12 String Stream Processing
	21.13 C++11 Numeric Conversion Functions
	21.14 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Making a Difference

	22 Bits, Characters, C Strings and structs
	Objectives
	Outline
	22.1 Introduction
	22.2 Structure Definitions
	22.3 typedef and using
	22.4 Example: Card Shuffling and Dealing Simulation
	22.5 Bitwise Operators
	22.6 Bit Fields
	22.7 Character-Handling Library
	22.8 C String-Manipulation Functions
	22.9 C String-Conversion Functions
	22.10 Search Functions of the C String-Handling Library
	22.11 Memory Functions of the C String-Handling Library
	22.12 Wrap-Up
	Summary
	Self-Review Exercises
	Exercises
	Special Section: Advanced String-Manipulation Exercises
	Challenging String-Manipulation Projects

	Chapters on the Web
	A Operator Precedence and Associativity
	B ASCII Character Set
	C Fundamental Types
	D Number Systems
	Objectives
	Outline
	D.1 Introduction
	D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers
	D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers
	D.4 Converting from Binary, Octal or Hexadecimal to Decimal
	D.5 Converting from Decimal to Binary, Octal or Hexadecimal
	D.6 Negative Binary Numbers: Two’s Complement Notation
	Summary
	Self-Review Exercises
	Answers to Self-Review Exercises
	Exercises

	E Preprocessor
	Objectives
	Outline
	E.1 Introduction
	E.2 #include Preprocessing Directive
	E.3 #define Preprocessing Directive: Symbolic Constants
	E.4 #define Preprocessing Directive: Macros
	E.5 Conditional Compilation
	E.6 #error and #pragma Preprocessing Directives
	E.7 Operators # and ##
	E.8 Predefined Symbolic Constants
	E.9 Assertions
	E.10 Wrap-Up
	Summary
	Self-Review Exercises
	Answers to Self-Review Exercises
	Exercises

	Appendices on the Web
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

