
C++ for Mathematicians
An Introduction for Students and Professionals

Edward Scheinerman



Cover photograph: Ira Scheinerman

Cover design concept: Jonah Scheinerman

Published in 2006 by
Chapman & Hall/CRC 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 1-58488-584-X (Softcover) 
International Standard Book Number-13: 978-0978-1-58488-584-9 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com

and the CRC Press Web site at 
http://www.crcpress.com

Taylor & Francis Group 
is the Academic Division of Informa plc.



In loving memory of Pauline and of Arnold





Contents

List of Programs xiii

List of Figures xvii

Preface xix

I Procedures 1

1 The Basics 3
1.1 What is C++? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hello C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Numbers 11
2.1 The integer types . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The real number types . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The bool and char types . . . . . . . . . . . . . . . . . . . . . 14

2.4 Checking the size and capacity of the different types . . . . . . . 15

2.5 Standard operations . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Comparisons and Boolean operations . . . . . . . . . . . . . . . 22

2.7 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Naming variables . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Greatest Common Divisor 31
3.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 A first approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Euclid’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Looping with for, while, and do . . . . . . . . . . . . . . . . 41

3.5 An exhaustive approach to the GCD problem . . . . . . . . . . . 43

3.6 Extended gcd, call by reference, and overloading . . . . . . . . . 45

3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Random Numbers 53
4.1 Pseudo random number generation . . . . . . . . . . . . . . . . . 53

4.2 Uniform random values . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 More on pseudo random number generation . . . . . . . . . . . . 57

4.4 A Monte Carlo program for the GCD problem . . . . . . . . . . . 60

v



vi C++ for Mathematicians

4.5 Normal random values . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Arrays 67
5.1 Euler’s totient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Array fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 A procedure to factor integers . . . . . . . . . . . . . . . . . . . 71

5.4 A procedure to calculate Euler’s totient . . . . . . . . . . . . . . . 76

5.5 The Sieve of Eratosthenes: new and delete[] . . . . . . . . . 78

5.6 A faster totient . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Computing pn for large n . . . . . . . . . . . . . . . . . . . . . . 85

5.8 The answer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

II Objects 91

6 Points in the Plane 93
6.1 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Declaring the Point class . . . . . . . . . . . . . . . . . . . . . 94

6.3 Data hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Assignment and conversion . . . . . . . . . . . . . . . . . . . . . 100

6.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Procedures using arguments of type Point . . . . . . . . . . . . 103

6.8 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Pythagorean Triples 115
7.1 Generating Pythagorean triples . . . . . . . . . . . . . . . . . . . 115

7.2 Designing a primitive Pythagorean triple class . . . . . . . . . . . 116

7.3 Implementation of the PTriple class . . . . . . . . . . . . . . . 117

7.4 Finding and sorting the triples . . . . . . . . . . . . . . . . . . . 121

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Containers 127
8.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Set iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Adjustable arrays via the vector class . . . . . . . . . . . . . . 134

8.5 Ordered pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.6 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.7 Lists, stacks, and assorted queues . . . . . . . . . . . . . . . . . . 144

8.7.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.7.2 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.7.3 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Table of Contents vii

8.7.4 Deques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.7.5 Priority queues . . . . . . . . . . . . . . . . . . . . . . . 150

8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Modular Arithmetic 157
9.1 Designing the Mod type . . . . . . . . . . . . . . . . . . . . . . . 157

9.2 The code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.3 The default modulus: Static class variables and methods . . . . . 163

9.4 Constructors and get/set methods . . . . . . . . . . . . . . . . . . 167

9.5 Comparison operators . . . . . . . . . . . . . . . . . . . . . . . . 167

9.6 Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . 169

9.7 Writing Mod objects to output streams . . . . . . . . . . . . . . . 172

9.8 A main to demonstrate the Mod class . . . . . . . . . . . . . . . 172

9.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10 The Projective Plane 177
10.1 Introduction to the projective plane, RP

2 . . . . . . . . . . . . . . 177

10.2 Designing the classes PPoint and PLine . . . . . . . . . . . . 178

10.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.4 Protected class members . . . . . . . . . . . . . . . . . . . . . . 184

10.5 Class and file organization for PPoint and PLine . . . . . . . . 186

10.6 The parent class PObject . . . . . . . . . . . . . . . . . . . . . 187

10.7 The classes PPoint and PLine . . . . . . . . . . . . . . . . . . 195

10.8 Discovering and repairing a bug . . . . . . . . . . . . . . . . . . 200

10.9 Pappus revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

11 Permutations 215
11.1 Ulam’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.2 Designing the Permutation class . . . . . . . . . . . . . . . . 217

11.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.2.2 Constructors and destructors . . . . . . . . . . . . . . . . 218

11.2.3 Copy and assign . . . . . . . . . . . . . . . . . . . . . . . 220

11.2.4 Basic inspection and modification methods . . . . . . . . . 223

11.2.5 Permutation operations . . . . . . . . . . . . . . . . . . . 224

11.2.6 Comparison operators . . . . . . . . . . . . . . . . . . . . 225

11.2.7 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

11.2.8 The code file Permutation.c . . . . . . . . . . . . . . 225

11.3 Finding monotone subsequences . . . . . . . . . . . . . . . . . . 229

11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



viii C++ for Mathematicians

12 Polynomials 235
12.1 Procedure templates . . . . . . . . . . . . . . . . . . . . . . . . . 235

12.2 Class templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

12.2.1 Using class templates . . . . . . . . . . . . . . . . . . . . 238

12.2.2 Creating class templates . . . . . . . . . . . . . . . . . . . 239

12.3 The Polynomial class template . . . . . . . . . . . . . . . . . 242

12.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

12.3.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . 243

12.3.3 Get and set methods . . . . . . . . . . . . . . . . . . . . . 244

12.3.4 Function methods . . . . . . . . . . . . . . . . . . . . . . 245

12.3.5 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12.3.6 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12.3.7 Output to the screen . . . . . . . . . . . . . . . . . . . . . 247

12.3.8 GCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

12.3.9 The code . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

12.4 The GCD problem revisited . . . . . . . . . . . . . . . . . . . . . 254

12.5 Working in binary . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12.5.1 Signed versus unsigned integers . . . . . . . . . . . . . . 258

12.5.2 Bit operations . . . . . . . . . . . . . . . . . . . . . . . . 259

12.5.3 The bitset class template . . . . . . . . . . . . . . . . 260

12.5.4 Class templates with non-type arguments . . . . . . . . . . 263

12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

III Topics 267

13 Using Other Packages 269
13.1 Arbitrary precision arithmetic: The GMP package . . . . . . . . . 269

13.2 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

13.2.1 Two-dimensional arrays in C++ . . . . . . . . . . . . . . . 273

13.2.2 The TNT and JAMA packages . . . . . . . . . . . . . . . 274

13.2.3 The newmat package . . . . . . . . . . . . . . . . . . . . 282

13.3 Other packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

14 Strings, Input/Output, and Visualization 289
14.1 Character arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

14.2 The string class . . . . . . . . . . . . . . . . . . . . . . . . . 291

14.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 291

14.2.2 Fundamental operations . . . . . . . . . . . . . . . . . . . 292

14.2.3 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . 295

14.2.4 Converting between string and char* types . . . . . . 297

14.3 Command line arguments . . . . . . . . . . . . . . . . . . . . . . 297

14.4 Reading and writing data in files . . . . . . . . . . . . . . . . . . 300

14.4.1 Opening files for input/output . . . . . . . . . . . . . . . . 300

14.4.2 Reading and writing . . . . . . . . . . . . . . . . . . . . . 303



Table of Contents ix

14.4.3 Detecting the end of an input file . . . . . . . . . . . . . . 304

14.4.4 Other methods for input . . . . . . . . . . . . . . . . . . . 305

14.5 String streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

14.6 Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

14.6.1 Setting precision . . . . . . . . . . . . . . . . . . . . . . 309

14.6.2 Showing all digits . . . . . . . . . . . . . . . . . . . . . . 309

14.6.3 Setting the width . . . . . . . . . . . . . . . . . . . . . . 310

14.6.4 Other manipulators . . . . . . . . . . . . . . . . . . . . . 311

14.7 A class to parse files . . . . . . . . . . . . . . . . . . . . . . . . 311

14.8 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

14.8.1 Introducing and installing the plotutils package . . . . 316

14.8.2 Drawing with plotutils—a first example . . . . . . . 317

14.8.3 Pascal’s triangle modulo two . . . . . . . . . . . . . . . . 322

14.8.4 Tracing the motion of a point moving randomly in a triangle 324

14.8.5 Drawing Paley graphs . . . . . . . . . . . . . . . . . . . . 326

14.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

15 Odds and Ends 333
15.1 The switch statement . . . . . . . . . . . . . . . . . . . . . . . 333

15.2 Labels and the goto statement . . . . . . . . . . . . . . . . . . . 336

15.3 Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . 338

15.3.1 The basics of try, throw, and catch . . . . . . . . . . 338

15.3.2 Other features of the exception-handling system . . . . . . 342

15.4 Friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

15.5 Other ways to create types . . . . . . . . . . . . . . . . . . . . . 347

15.5.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 347

15.5.2 Enumerations . . . . . . . . . . . . . . . . . . . . . . . . 348

15.5.3 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

15.5.4 Using typedef . . . . . . . . . . . . . . . . . . . . . . 349

15.6 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

15.6.1 Pointer basics . . . . . . . . . . . . . . . . . . . . . . . . 350

15.6.2 Dereferencing . . . . . . . . . . . . . . . . . . . . . . . . 351

15.6.3 Arrays and pointer arithmetic . . . . . . . . . . . . . . . . 353

15.6.4 new and delete revisited . . . . . . . . . . . . . . . . . 355

15.6.5 Why use pointers? . . . . . . . . . . . . . . . . . . . . . . 356

15.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

IV Appendices 361

A Your C++ Computing Environment 363
A.1 Programming with a command window and a text editor . . . . . 363

A.1.1 What you need and how to get it (for free) . . . . . . . . . 364

A.1.2 Editing program files . . . . . . . . . . . . . . . . . . . . 365

A.1.3 Compiling and running your program . . . . . . . . . . . 366

A.1.4 Compiler options . . . . . . . . . . . . . . . . . . . . . . 368



x C++ for Mathematicians

A.1.5 Introduction to make . . . . . . . . . . . . . . . . . . . . 370

A.2 Programming with an integrated development environment . . . . 372

A.2.1 Visual C++ for Windows . . . . . . . . . . . . . . . . . . 373

A.2.2 Xcode for Macintosh OS X . . . . . . . . . . . . . . . . . 376

A.3 General advice on debugging . . . . . . . . . . . . . . . . . . . . 378

B Documentation with Doxygen 381
B.1 Doxygen comments . . . . . . . . . . . . . . . . . . . . . . . . . 381

B.1.1 Documenting files . . . . . . . . . . . . . . . . . . . . . . 382

B.1.2 Documenting procedures . . . . . . . . . . . . . . . . . . 382

B.1.3 Documenting classes, data, and methods . . . . . . . . . . 383

B.2 Using Doxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

B.2.1 Configuring Doxygen . . . . . . . . . . . . . . . . . . . . 386

B.2.2 Running Doxygen . . . . . . . . . . . . . . . . . . . . . . 389

B.2.3 More features . . . . . . . . . . . . . . . . . . . . . . . . 389

C C++ Reference 391
C.1 Variables and types . . . . . . . . . . . . . . . . . . . . . . . . . 391

C.1.1 Fundamental types . . . . . . . . . . . . . . . . . . . . . 391

C.1.2 Standard classes/templates . . . . . . . . . . . . . . . . . 391

C.1.3 Declaring variables . . . . . . . . . . . . . . . . . . . . . 392

C.1.4 Static variables and scope . . . . . . . . . . . . . . . . . . 392

C.1.5 Constants and the keyword const . . . . . . . . . . . . . 393

C.1.6 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

C.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

C.2.1 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 394

C.2.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 394

C.2.3 Comparison operators . . . . . . . . . . . . . . . . . . . . 394

C.2.4 Logical operators . . . . . . . . . . . . . . . . . . . . . . 394

C.2.5 Bit operators . . . . . . . . . . . . . . . . . . . . . . . . . 395

C.2.6 Potpourri . . . . . . . . . . . . . . . . . . . . . . . . . . 395

C.3 Control statements . . . . . . . . . . . . . . . . . . . . . . . . . 396

C.3.1 if-else . . . . . . . . . . . . . . . . . . . . . . . . . . 396

C.3.2 Looping: for, while, and do . . . . . . . . . . . . . . . 396

C.3.3 switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

C.3.4 goto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

C.3.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 398

C.4 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

C.4.1 File organization . . . . . . . . . . . . . . . . . . . . . . 399

C.4.2 Call by value versus call by reference . . . . . . . . . . . 399

C.4.3 Array (and pointer) arguments . . . . . . . . . . . . . . . 400

C.4.4 Default values for arguments . . . . . . . . . . . . . . . . 400

C.4.5 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . 400

C.4.6 inline procedures . . . . . . . . . . . . . . . . . . . . . 401

C.5 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



Table of Contents xi

C.5.1 Overview and file organization . . . . . . . . . . . . . . . 401

C.5.2 Constructors and destructors . . . . . . . . . . . . . . . . 402

C.5.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 403

C.5.4 Copy and assign . . . . . . . . . . . . . . . . . . . . . . . 404

C.5.5 static data and methods . . . . . . . . . . . . . . . . . 405

C.5.6 this . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

C.5.7 Friends . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

C.5.8 Class templates . . . . . . . . . . . . . . . . . . . . . . . 407

C.5.9 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . 407

C.6 Standard functions . . . . . . . . . . . . . . . . . . . . . . . . . 408

C.6.1 Mathematical functions . . . . . . . . . . . . . . . . . . . 408

C.6.2 Mathematical constants . . . . . . . . . . . . . . . . . . . 411

C.6.3 Character procedures . . . . . . . . . . . . . . . . . . . . 411

C.6.4 Other useful functions . . . . . . . . . . . . . . . . . . . . 413

D Answers 415

Index 487





Programs

1.1 Poem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introducing the int type. . . . . . . . . . . . . . . . . . . . . . 11

2.2 A program to illustrate integer overflow. . . . . . . . . . . . . . . 13

2.3 A program to show the sizes of the fundamental data types. . . . . 15

2.4 Extreme values of various data types. . . . . . . . . . . . . . . . 17

2.5 A program to explore C++’s mod operation. . . . . . . . . . . . . 19

2.6 A program to calculate eπ and πe. . . . . . . . . . . . . . . . . . 21

2.7 Handling complex numbers. . . . . . . . . . . . . . . . . . . . . 23

2.8 A header file, complexx.h. . . . . . . . . . . . . . . . . . . . 24

3.1 The header file gcd.h. . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Revised documentation for gcd in the header file gcd.h. . . . . 34

3.3 Beginning of the file gcd.cc. . . . . . . . . . . . . . . . . . . . 34

3.4 Ensuring a and b are nonnegative in gcd.cc. . . . . . . . . . . 35

3.5 The last part of the gcd.cc program. . . . . . . . . . . . . . . . 35

3.6 A program to test the gcd procedure. . . . . . . . . . . . . . . . 37

3.7 A recursive procedure for gcd. . . . . . . . . . . . . . . . . . . 38

3.8 An iterative procedure for gcd. . . . . . . . . . . . . . . . . . . 40

3.9 A program to calculate pn. . . . . . . . . . . . . . . . . . . . . . 43

3.10 A slightly better program to calculate pn. . . . . . . . . . . . . . 44

3.11 Code for the extended gcd procedure. . . . . . . . . . . . . . . . 48

4.1 Header file uniform.h. . . . . . . . . . . . . . . . . . . . . . 54

4.2 Definitions of the unif procedures in uniform.cc. . . . . . . 56

4.3 The problem with lower-order bits in an LCG. . . . . . . . . . . . 58

4.4 A Monte Carlo approach to calculating pn. . . . . . . . . . . . . 60

4.5 A program to generate Gaussian random values. . . . . . . . . . . 63

5.1 Header file for first version of factor. . . . . . . . . . . . . . . 73

5.2 Source file for first version of factor. . . . . . . . . . . . . . . 74

5.3 A main to test the factor procedure. . . . . . . . . . . . . . . 75

5.4 Header file for the totient procedure. . . . . . . . . . . . . . . 76

5.5 The code for the totient procedure. . . . . . . . . . . . . . . . 77

5.6 The header file sieve.h. . . . . . . . . . . . . . . . . . . . . . 79

5.7 The sieve procedure. . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 A program to test the sieve procedure. . . . . . . . . . . . . . . 82

5.9 A faster totient procedure that employs a table of primes. . . . 84

5.10 A program to calculate pn for n equal to one million. . . . . . . . 85

6.1 Header file Point.h for the Point class (condensed version). . 95

6.2 Code for the Point class methods and procedures. . . . . . . . . 109

xiii



xiv C++ for Mathematicians

6.3 A program to check the Point class. . . . . . . . . . . . . . . . 110

7.1 Header file for the PTriple class. . . . . . . . . . . . . . . . . 117

7.2 Program file for the PTriple class. . . . . . . . . . . . . . . . . 120

7.3 A program to find Pythagorean triples. . . . . . . . . . . . . . . . 122

8.1 A program to find Pythagorean triples using sets. . . . . . . . . . 129

8.2 A program to demonstrate the use of multiset. . . . . . . . . . 133

8.3 The Sieve of Eratosthenes revisiting using vector classes. . . . 137

8.4 A program to illustrate the use of maps. . . . . . . . . . . . . . . 141

8.5 A procedure that remembers values it has already calculated. . . . 143

8.6 A program to demonstrate the use of lists. . . . . . . . . . . . 146

8.7 A program to illustrate the deque container. . . . . . . . . . . . 150

8.8 Demonstrating the use of the priority queue container. . . . 151

9.1 Header file for the Mod class, Mod.h. . . . . . . . . . . . . . . . 159

9.2 Source file for the Mod class, Mod.cc. . . . . . . . . . . . . . . 162

9.3 A program to illustrate the use of the Mod class. . . . . . . . . . . 172

10.1 A program to illustrate inheritance. . . . . . . . . . . . . . . . . 181

10.2 Using protected members of a class. . . . . . . . . . . . . . . 184

10.3 Header file for all projective geometry classes, Projective.h. 186

10.4 Header file for the PObject class (version 1). . . . . . . . . . . 191

10.5 Program file for the PObject class (version 1). . . . . . . . . . 192

10.6 Header file for the PPoint class. . . . . . . . . . . . . . . . . . 197

10.7 Program file for the PPoint class. . . . . . . . . . . . . . . . . 198

10.8 Header file for the PLine class. . . . . . . . . . . . . . . . . . . 198

10.9 Program file for the PLine class. . . . . . . . . . . . . . . . . . 199

10.10 A main to test the RP
2 classes. . . . . . . . . . . . . . . . . . . 200

10.11 Header file for the PObject class (version 2). . . . . . . . . . . 202

10.12 Program file for the PObject class (version 2). . . . . . . . . . 203

10.13 A program to illustrate Pappus’s theorem and its dual. . . . . . . 207

11.1 Header file for Permutation class, Permutation.h. . . . . 217

11.2 Program file for Permutation class. . . . . . . . . . . . . . . 226

11.3 Header file monotone.h. . . . . . . . . . . . . . . . . . . . . . 230

11.4 Finding longest monotone subsequences. . . . . . . . . . . . . . 230

11.5 A program to illustrate Ulam’s problem. . . . . . . . . . . . . . . 231

12.1 Header file for the max of three template. . . . . . . . . . . . 236

12.2 The template for the mycomplex classes. . . . . . . . . . . . . 240

12.3 Revised version of mycomplex. . . . . . . . . . . . . . . . . . 241

12.4 Header file for the Polynomial class template. . . . . . . . . . 247

12.5 Header file long2poly.h. . . . . . . . . . . . . . . . . . . . . 255

12.6 Code file for the long2poly procedure. . . . . . . . . . . . . . 256

12.7 Main program for the GCD revisited problem. . . . . . . . . . . . 256

13.1 A program to illustrate the use of the GMP package. . . . . . . . 271

13.2 Assignment versus copying in the TNT package. . . . . . . . . . 275

13.3 A template to calculate the trace of an Array2D matrix. . . . . . 277

13.4 Using TNT and JAMA on a Hilbert matrix. . . . . . . . . . . . . 280

13.5 Using newmat on a Hilbert matrix. . . . . . . . . . . . . . . . . 285



Programs xv

14.1 A program to illustrate the sorting of string values. . . . . . . 294

14.2 Accessing command line arguments. . . . . . . . . . . . . . . . . 298

14.3 Calculating the gcd of command line arguments. . . . . . . . . . 299

14.4 A program the processes files specified on the command line. . . 302

14.5 A program that illustrates writing data to a file. . . . . . . . . . . 303

14.6 A program that sums the integer values it finds in a file. . . . . . . 304

14.7 A program to illustrate the use of string streams. . . . . . . . . . 308

14.8 Header file for the LineParser class. . . . . . . . . . . . . . . 313

14.9 Program file for the LineParser class. . . . . . . . . . . . . . 313

14.10 A program to demonstrate the use of the LineParser class. . . 314

14.11 A program to draw the symbol ⊗. . . . . . . . . . . . . . . . . . 321

14.12 Visualizing Pascal’s triangle mod 2. . . . . . . . . . . . . . . . . 322

14.13 A program to plot points in a triangle by a random method. . . . . 325

14.14 A program to draw Paley graphs. . . . . . . . . . . . . . . . . . . 328

15.1 A program to illustrate the switch statement. . . . . . . . . . . 334

15.2 Basic exception handling. . . . . . . . . . . . . . . . . . . . . . 339

15.3 Catching exceptions thrown by other procedures. . . . . . . . . . 340

15.4 A new Point.h header with friend procedures. . . . . . . . . 345

15.5 Illustrating pointer dereferencing. . . . . . . . . . . . . . . . . . 351

A.1 A basic Makefile. . . . . . . . . . . . . . . . . . . . . . . . . 370

B.1 Documenting a procedure for Doxygen. . . . . . . . . . . . . . . 382

B.2 Documenting a class and its members for Doxygen. . . . . . . . . 384





Figures

1.1 PDP-8 front panel switches. . . . . . . . . . . . . . . . . . . . . . 3

5.1 A flowchart for the factoring algorithm. . . . . . . . . . . . . . . . 73

5.2 Illustrating the Sieve of Eratosthenes algorithm. . . . . . . . . . . . 79

10.1 An illustration of Pappus’s theorem. . . . . . . . . . . . . . . . . . 179

10.2 An illustration of the dual of Pappus’s theorem. . . . . . . . . . . . 179

10.3 Hierarchy of the PObject classes. . . . . . . . . . . . . . . . . . 186

10.4 An illustration of Desargues’ Theorem. . . . . . . . . . . . . . . . 213

14.1 Illustrating a null-terminated character array. . . . . . . . . . . . . 290

14.2 The symbol ⊗ drawn by Program 14.11. . . . . . . . . . . . . . . 322

14.3 Visualizing Pascal’s triangle modulo 2. . . . . . . . . . . . . . . . 324

14.4 An image based on a random process in a triangle. . . . . . . . . . 327

14.5 The Paley graph on 17 vertices. . . . . . . . . . . . . . . . . . . . 330

B.1 Doxygen GUI window. . . . . . . . . . . . . . . . . . . . . . . . . 387

B.2 Doxygen configuration panel. . . . . . . . . . . . . . . . . . . . . 387

xvii





Preface

To my fellow students of mathematics

This book is written for you. This is the book that I wish someone had written for

me. This is a book that introduces the C++ language for people who are interested

in solving mathematical problems.

There is a dizzying selection of books on C++ written for a wide array of au-

diences. Visit your favorite bookseller and you can find C++ books for finance, nu-

merics, computer security, game programming, embedded controllers, graphical user

interfaces, network protocols, data and file structures, engineering, scientific comput-

ing, digital signal processing, simulation, neural nets, artists, virtual machine design,

graphics, computational physics, cellular automata, cryptography, Web agents, busi-

ness, aerospace and flight simulation, music and MIDI instruments, mobile phones,

language translation, computer-aided design, speech recognition, database develop-

ment, computer architecture, photographic imaging, fuzzy logic, hardware control,

rigid body kinematics, real programmers, and—of course—for dummies.

We assume that none of the above applies to you. We approach C++ from the

point of view of solving mathematical problems. We organize our discussion around

the mathematics and bring in the relevant C++ ideas as we need them.

Why C++?

There is a plethora of computer tools available to the mathematical scientist. Many

of these are suited for specific purposes. For example, if you need to perform exten-

sive calculations in support of a number theory problem, the Pari package is perfect.

There is a variety of commercial software packages that are excellent for mathemat-

ical work including Maple, MATLAB, and Mathematica to name but a few.

For many mathematical problems, these systems work perfectly. However, for

problems that require extensive computation the speed of a compiled language such

as C++ cannot be beat. A C++ program can work through billions of examples faster

than most other computing choices.

The length of time it takes to solve a problem on a computer begins not when you

run your program; it begins when you first start to write your program. The object-

oriented nature of C++ enables you to create correct programs quickly. Furthermore,

there is an extensive collection of C++ programs freely available on the Web that can

be customized and used for your purposes (we discuss a few of these in Chapter 13).

In addition, C++ is available for free on most computer systems. See Appendix A

for more information about different versions of C++ for various computing envi-

xix



xx C++ for Mathematicians

ronments (Windows, UNIX, Macintosh).

What can my computer do for me?

Although the utility of computers in the sciences and engineering is unquestion-

able, it is not as clear that a computer is useful for mathematics. However, there are

several arenas in which a computer can be a mathematician’s best friend.

• Symbolic computation. Mathematical work often requires us to fuss with

formidable formulas and solve elaborate equations. Computer algebra systems

such as Maple and Mathematica are extremely useful for such work.

• Visualization. The computer can draw precise pictures and diagrams; often

these images provide key insights to understanding problems.

• Examples and counterexamples. The computer can run through millions of

examples and try myriad possibilities. It is a laboratory in which to perform

experiments to see if ideas work and for discovering patterns.

• Contribution to proof. Sometimes, parts of proofs can be relegated to the

computer for checking. A celebrated example of this is the 1970s-era proof

of the Four Color Theorem by Appel and Haken. More recently, Tom Hales’s

announced proof of the Kepler Conjecture required extensive computation.

I have used the computer in all these ways in my research. Allow me to share an

amusing anecdote in which the computer contributed to the proof of a theorem. I was

working with two colleagues on a problem in discrete mathematics. We knew that we

could complete one portion of the proof if we could find a graph with certain specific

properties. We carefully wrote down these criteria on a blackboard and set out to

find the elusive graph. Although we tried to create the required graph by hand, each

example we tried took us several minutes to check. We realized that the criteria could

be checked mechanically and so we wrote a program to generate graphs at random

until one with the needed properties was found. The first time we ran the program,

it asked us for the number of vertices. Because we were unsuccessful with small

examples, we typed in 50. Nearly instantly we were rewarded when the computer

printed out a few screenfuls of data specifying the graph.

Heartened by this (but not wanting to tangle with such a large graph), we ran the

program again asking for a graph with only 20 vertices. Again, we were greeted

with near instant success. We started to draw the graph on the blackboard, but it was

a nasty random mess (no surprise—our program was designed to examine random

graphs one after another). One more run. Shall we be optimistic? Certain this would

not work, we ran the program again for graphs on 5 vertices. Success! The graph

was actually quite simple and we had a good laugh over how we found our answer.



Preface xxi

Using this book

This book is ideal either for self-study or as a text for a semester-long course

in computer programming (with an emphasis on mathematics). It is important that

undergraduate mathematics majors know how to use the computer effectively. This

is a skill that will serve them well whether for applied scientific/engineering/financial

work, or as a means for forming and testing conjectures in pure research.

We explain how to use C++ from the ground up, however, some experience in

writing programs in any language will help. The reader does not need extensive

experience in programming. Nor is a deep mathematical background needed to

read this book. Our examples are drawn from standard mathematical topics such

as Pythagorean triples [integers (a,b,c) such that a2 +b2 = c2] and polynomials.

Whether you are reading this book on your own or in conjunction with a course,

the most effective way to learn is to do. Every chapter ends with a collection
of exercises; do them all. This is important for two reasons. First and foremost,

mastery of any skill requires practice, and learning C++ is no exception. Second,

additional ideas and subtle points are explored in the exercises. To assist you, we

include complete solutions to nearly every exercise in Appendix D.

Organization

We organize our discussion around mathematical themes. For example, Chapters 3

to 5 cover many central ideas in C++ (from how to write procedures to dynamic

allocation of arrays), but a single mathematical problem runs throughout, taking us

from Euclid to Riemann.

The main body of the book is divided into three parts: Procedures, Objects, and

Topics.

Procedures focuses on writing C++ procedures (often called functions by our com-

puter science colleagues, but we have a different meaning for that word). Objects in-

troduces the object-oriented method of programming. If you want to solve a problem

that involves permutations, Chapter 11 shows how C++ can handle these structures

nearly as comfortably as it handles integers. Topics discusses how to use freely

available packages that you can use in your programs, more advanced input/output,

visualization, and selected special features of the C++ language.

Four appendices provide (A) an overview of computing systems (including In-

tegrated Development Environments), (B) the use of the Doxygen documentation

system, (C) a quick reference to the C++ language and supporting libraries, and

(D) answers to nearly every exercise.

No pointers! (almost)

The C++ concepts covered in this book are not exhaustive. There are aspects

of the language that are relevant only to computer scientists and software engi-

neers. For example, C++ provides a number of exotic casting operators (such as

reinterpret_cast) that are not of interest to mathematicians; we omit those. Nei-



xxii C++ for Mathematicians

ther multiple inheritance nor pure virtual functions are for us. We do not explain how

to make C++ programs work with other languages such as assembly language. We

don’t create our own namespaces. For these and other C++ topics that are useful to

large software engineering projects, please refer to any of several excellent, compre-

hensive C++ reference books.

One topic that we touch only gently is the use of pointers. Mostly, we do not need

them. We successfully avoid this confusing (and errorprone) concept through the

use of call-by-reference and STL container classes. A mathematician shouldn’t be

worrying about exotic data structures such as red–black trees; we just want to insert

and delete elements in a set and not to worry about how the computer manages the

set.

There are, however, a few instances where a rudimentary understanding of pointers

is necessary.

• The name of a C++ array is a pointer to its first element. We need to understand

this when we pass an array to a procedure and when we dynamically allocate

storage for an array.

• Sometimes an object needs to refer to itself (e.g., when a method such as

operator+= returns the value of the object). In these instances, the this

pointer is useful.

We do not provide an extensive discussion of string processing (but do cover the

basics in Chapter 14). As mathematicians, we are interested in getting data into our

programs and results out of them; we are not going to construct word processors.

We omit the exotic and focus on those aspects that make C++ a formidable weapon

in the mathematician’s arsenal. With your brain and this book, your problem doesn’t

stand a chance. Enjoy!

Additional resources

The CD-ROM that comes with this book includes the code for all the numbered

programs (see the List of Programs on page xiii). The programs are free for you to

use under the terms of the GNU General Purpose License. (See the CD-ROM for

details.) The disk also includes solutions to some of the lengthier exercises.

Please visit the Web site for this book www.ams.jhu.edu/˜ers/cpp4m/ where

we maintain a list of errata and submissions for Exercise 1.1.5.

Acknowledgments

Many thanks to my editor Sunil Nair and his helpful staff at Taylor & Francis/CRC

Press. They helped with everything from LATEX issues to copy editing to securing

permissions.

Promit Roy is an undergraduate computer science major at Johns Hopkins Univer-

sity. He read through the entire manuscript checking for accuracy and compatibility



Preface xxiii

with Microsoft Visual Studio. In addition, he prepared the MS Visual Studio project

files for the accompanying CD-ROM. Thank you, Promit!

At various points in this book I recommend that the reader consult a “friendly com-

puter science colleague.” I am fortunate to have such a colleague. Thank you, Joanne

Houlahan for your help (and patience) with getting me unstuck from computer woes.

I greatly appreciate my department chair, Daniel Naiman, for his support and en-

couragement for this project.

It gives me great joy to acknowledge the contributions of my father, Ira, and my

son Jonah to the front cover. Grandpa took the cover photo and grandson provided

the design concept.

Most important, thank you to my wife, Amy, and our children, Jonah, Naomi,

Danny, and Rachel, for the world of love and happiness I share with them.

Ed Scheinerman

Baltimore

May 24, 2006





Part I

Procedures





Chapter 1

The Basics

1.1 What is C++?

C++ is a computer programming language.

Computers are electronic information-processing machines. Data and programs in

these machines are saved, moved, and transformed in the form of electrical voltages.

These electrical voltages can be interpreted as a zeros and ones. The zeros and

ones can be aggregated and interpreted as words, numbers, images, sounds, and

so on. Long ago, information—be it data or programs—could be entered into the

Figure 1.1: A PDP-8 computer with front panel switches for entering instructions

and data. (Image courtesy of the Computer Museum at the University of Stuttgart.

Photograph by Klemens Krause.)

3



4 C++ for Mathematicians

computer by manipulating switches on the front of the machine. Today, there are

better methods. Computer programming languages convert text into the requisite

binary instructions.

C++ is a compiled language. This means that before the program is run, it is first

translated into a form that the machine can use directly. The C++ files (and a typical

project contains several) are called the source files. You create the source files by

typing them using a program called a text editor.

The translation of the source files into a program proceeds in two phases. First,

the individual source files are translated by a program called the compiler into so-

called object files. Next, a second program, called a linker (or loader) combines

the individual object files into an executable file, that is, a program you can execute

(run).

The precise manner in which is all this is done (source file creation/editing, com-

piling, linking, and execution) varies among different computing platforms. In Ap-

pendix A we discuss how this is done for some common computing platforms (Win-

dows, Macintosh, UNIX).

Ideally, you have already done some programming, say in C, and so you are famil-

iar with the general flow of this process. If not, your best option is to have someone

show you how to perform these basic steps. In theory, your computer contains doc-

umentation that explains all this. However, such documentation is most useful to

someone who already knows what to do, but needs reminders on specifics.

With the help of Appendix A, a friendly neighbor knowledgeable in programming,

and documentation (if any) you will get past this first, often frustrating hurdle. Rest

assured that the process is simple once you know what it is. The hard part is knowing

just which menu to select or what command to type to set the process in motion. For

example, on many computers you translate your C++ files into a working program

with the single command:

g++ *.cc

and then run your program by typing this:

./a.out

If you are using an integrated development environment (also called an IDE) com-

piling your C++ files may be as simple as clicking on a button that says “build” and

then running your program by clicking on a button that says “run”.

1.2 Hello C++
To begin we need to write a program; it’s time to present our first example. It

is traditional to start with a program that does nothing more than type the words

Hello, world onto the computer screen. Instead, we opt for a bit of (bad) poetry.



The Basics 5

Program 1.1: The classic “Hello, world” program updated for the mathematics

world.

1 #include <iostream>
2 using namespace std;
3

4 /**
5 * A simple program for demonstrating the basics of a C++ project.
6 *
7 * It does a good job of demonstrating C++ fundamentals, but a
8 * terrible job with the poetry.
9 */

10

11 int main() {
12 cout << "Don’t you just feel like a louse";
13 cout << endl;
14

15 cout << "To learn that your \"new\" theorem was proved by Gauss?";
16 cout << endl;
17

18 return 0;
19 }

There are naming conventions for C++ program files. The name of the file that

contains this code is poem.cc. The name has two parts: poem is called the base

name and .cc is called the extension. The base name can be more or less anything

you like, but the extension should be .cc. Other extensions that are permissible for

C++ programs are .C, .cpp, and .cxx. The extension is important because this is

what the compiler uses to recognize that your file contains C++ code.

Let’s analyze poem.cc to understand the purpose of its various parts.

The core of this program is in lines 12–16, so we begin our discussion there. Line

12 contains four important components.

• The cout object: This is an object to which we send information that we want

written on the computer screen. The word cout is an abbreviation of “console

output.”

• The << operation: This is an operation that acts on the objects immediately

to its left and right: in this case, the cout object on its left and the character

array (described next) on its right.

• The character array enclosed in quotation marks: These are the words Don’t

you just feel like a louse. The quotation marks mark the beginning

and end of the character array. Note that the single quote (apostrophe) is a

valid character.

• The statement terminator: The semicolon at the end of the line denotes the end

of the statement.



6 C++ for Mathematicians

As mentioned, the << operation takes two arguments: the cout object on its left and

the character array on its right. The effect of this operation is that the character array

is typed onto the computer’s screen.

The semicolon at the end of the line is mandatory; it marks the end of the state-

ment. We could have broken this statement into two (or more lines), like this,

cout
<<

"Don’t you just feel like a louse"
;

Line 13 is similar to line 12, but in place of the character array, we have the endl

object. The endl stands for end of line; it causes the computer’s output to move

to a new line in the output. Without this statement, the next output would begin

immediately after the e in the word louse.

Lines 15 and 16 write the second line of the poem to the computer screen. The

only interesting thing here is that we want quotation marks to be part of the output

(surrounding the word new). Because quotation marks signal the beginning and end

of the character array, we need a way to indicate that the quotes around new are not

delimiters, but part of the text message. This is done by preceding the " mark with a

backslash, \.

Lines 12 through 16 comprise four separate statements. These could be combined

into a single statement without loss of clarity. The various objects to be printed can

be fed to cout by repeated use of the << operation.

cout << "Don’t you just feel like a louse" << endl
<< "To learn that your \"new\" theorem was proved by Gauss?"
<< endl;

Here is the output of the program.
� �
Don’t you just feel like a louse
To learn that your "new" theorem was proved by Gauss?

� �

The other parts of the program are important, too. Let’s examine them one by one.

• The first line of the program is #include <iostream>. This line is neces-

sary to incorporate the definitions of various input/output objects and opera-

tions. The objects cout and endl are not in the main part of C++, and need

to be read into the program.

Ironically, this first line of our first C++ program is not actually C++ code. It

is a request to the C++ compiler to read a file called iostream and include

the contents of that file in this program. The file iostream is called a header
file. This header file is part of the C++ system, and so is called a system header
file. Soon, you will write your own header files, and those are known as user
header files.

The compiler knows where to find iostream and before it does anything else

with your program, it inserts the full contents of the file iostream at the start

of your program.



The Basics 7

Because this line is not a C++ statement, no semicolon is needed at its end. In-

structions that begin with the # sign are preprocessing directives. We examine

a few other such commands later.

Any time you write a C++ program that reads or writes data from the computer

screen, you need to include the iostream header.

• Line 2 is particularly inscrutable. For now, just know that if you use #include

to read in any standard system header files, then you must have the statement

using namespace std; as well.

You may safely skip the rest of this explanation. The objects cout and endl are

not core parts of C++, but standard additions to the language. It is possible that

a software developer—let’s call her Sophie—might want a different version of

cout that is somehow different from the standard version.

Sophie also wants to call her console output object cout; this is possible in

C++. Sophie creates (don’t worry about how, you are not a software developer)

a separate namespace, which she calls, say, sophie. The full name of Sophie’s

cout is sophie::cout. The full name of the standard cout is std::cout,

where std stands for the “standard” namespace.

In the iostream file, cout and endl are defined to have the full names

std::cout and std::endl. It is possible to delete line 2 from the program,

but then it would be necessary to replace cout with std::cout (and likewise

for endl). However, for our purposes, it is much easier to declare: we are

going to be using the standard namespace, so we will use the short forms of

the names. That’s what the statement using namespace std; does.

• Lines 4–9 are a comment. Comments are important features of computer pro-

grams. This comment immediately precedes the main part of the program and

explains what the program does.

Comments in C++ are of two forms: multiple-line comments and single-line

comments.

Multiple-line comments may span one or more lines. The comment begins

with the pair of characters /* and ends with */. Everything between these is

ignored by the compiler; the comments are meant for a human reader. The

comment spanning lines 4 through 9 is of this sort. The single asterisks on

lines 5 through 8 are present only to make it clear that this block of text is a

comment. Clean formatting like this makes the program more readable. The

extra * on line 4 serves a purpose that is revealed later (see Appendix B); for

the present, you can think of it as optional.

Single-line comments begin with a double slash // and continue to the end of

the line. They are useful for short comments. For example, to explain line 12

of the program, I could have written this:

cout << "Don’t you feel like a louse"; // rhymes with Gauss



8 C++ for Mathematicians

• Line 11 and lines 18–19 surround the main part of the program. As we create

more elaborate C++ programs, we separate the program into multiple files,

with each file containing various procedures. In each program, there must be

exactly one procedure whose name is main. We examine procedures in more

detail later, but for now here is what you need to know.

– Procedures take various values as arguments, execute instructions, and

return a value. In this case, the procedure named main returns an integer

value; this is signified by the word int before the name of the procedure.

The value returned is zero, and this is accomplished at the end of the

procedure with the statement return 0; which returns the value 0.

– The main procedure does not take any arguments; this is signified by

the empty pair of parentheses following the word main. There is an

alternative way to create a main procedure that does take arguments; we

explore that later (see Chapter 14).

– Thus the beginning of line 11, int main(), says that this is a procedure

that takes no arguments and returns an integer-valued answer.

After int main(), the statements of the procedure are enclosed in curly

braces. The opening curly brace is on line 11 and its matching closing

brace appears alone on line 19.

Notice that lines 12–18 are indented from the left margin. This indenting

helps enormously with readability.

This completes our analysis of Program 1.1.

1.3 Exercises
1.1 The following comment in a C++ program would cause the compiler to issue

an error message.

/*
* In C++ comments are enclosed between /* and */

*/

What’s wrong?

1.2 The following program is typed into the computer and saved as bad.cc.

#include <iostream>

int main() {
cout << "What is wrong with this program?"
cout << endl;



The Basics 9

return 0;
}

When this program is compiled, the following output is produced.

bad.cc: In function ‘int main()’:
bad.cc:4: error: ‘cout’ undeclared (first use this function)
bad.cc:4: error: (Each undeclared identifier is reported only

once for each function it appears in.)
bad.cc:5: error: parse error before ‘<<’ token

There are two errors in the program. Use the output to figure out what those

errors are.

1.3 A programmer included the following line in a program.

cout << "My favorite web site is http://www.google.com";

Do the slashes // start a comment?

1.4 To include a quotation symbol in output, we use the sequence \". Write a

program to see what the sequences \n, \t, and \\ do when part of a character

sequence.

For example, your program should contain a line such as this:

cout << "What does \n do?";

1.5 Write your own bad math poem. There’s great potential for a terrible rhyme

with Euler including under the broiler and stop or you’re goin’ to spoil her
and how long does an egg boil fer?

Send your worst to the author at ers@jhu.edu and we’ll post the best/worst

on this book’s Web site www.ams.jhu.edu/˜ers/cpp4m. Use math poem

as the subject line of your message.





Chapter 2

Numbers

Numbers are the building blocks of mathematics and, of course, computers are ex-

tremely adept with numbers. There are several ways in which numbers are handled

in C++. In this chapter, we explore the different representations of numbers and how

to convert between representations. We also catalogue the various operations we can

perform with numbers.

Numbers in C++ are divided into two broad categories: integers and reals. Each

of these categories is refined further. Of course, to a mathematician every integer

is a real number, so these categories may seem spurious. The reasons for having

many different ways to represent numbers are efficiency and accuracy; if the quan-

tities with which we are computing are known to be integral, then using an integer

representation is not subject to roundoff error and the computations are faster.

2.1 The integer types
Every variable in a C++ program must be given a type. The type of a variable is a

specification of the kind of data the variable can store. The most basic type is int.

An int represents an integer quantity. Consider the following program.

Program 2.1: Introducing the int type.

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int x;
6 int y;
7

8 x = 3;
9 y = 4;

10

11 cout << x+y << endl;
12

13 return 0;
14 }

11



12 C++ for Mathematicians

In this program, two variables, x and y, are declared to be of type int. These

declarations occur on lines 5 and 6. C++ requires that we specify the type of every

variable, and the declaration statement is the manner by which this is accomplished.

Variables may be declared anywhere in the program so long as they are declared

before they are used.

Subsequently (lines 8 and 9) the variables are assigned values. In this case x is

assigned the value 3 and y the value 4. The equal sign = is an operation (called

assignment) that stores the value of the expression to its right into the variable on its

left.

It is possible to combine declarations on a single line; in place of lines 5 and 6, we

could have this:

int x,y;

It is possible to combine declaration with assignment. Lines 5–9 can be replaced

by these two:

int x = 3;
int y = 4;

It’s easy to see what the rest of Program 2.1 does. In line 11, the contents of x and

y are added, and the result is written on the computer’s screen.

Variables of type int can store a finite range of integer values. The size of that

range depends on your specific computer. On many computers an int is held in 4

bytes of memory (one byte is 8 bits, so this is 32 bits). With 32 bits one can store 232

different values. In this case, the 232 values are from −231 to 231 −1 inclusive.

There is an easy way to learn the size of an int on your computer in C++ with the

sizeof operator. Evaluating sizeof(int) gives the number of bytes used to store

variables of type int. If an int on your computer is b bytes long, then the minimum

and maximum values an int may hold are −2b−1 and 2b−1 − 1, respectively. See

also Program 2.3 later in this chapter (page 15).

There are a few variations of the fundamental int type.

• A short is an integer type that is either the same as int, or else a smaller size

than int. That is, sizeof(short) cannot exceed sizeof(int).

• A long is an integer type that is either the same size as int, or else a larger

size than int. In other words, sizeof(long) is at least sizeof(int).

• Some compilers provide a long long type. This is an integer type that is at

least the size of a long. That is, sizeof(long long) cannot be less than

sizeof(long).

Other compilers may provide an equivalent alternative. For example, in Mi-

crosoft’s Visual Studio, use the type int64 (the name begins with two un-

derscore characters) in place of long long.

In summary,

sizeof(short)≤ sizeof(int)≤ sizeof(long)≤ sizeof(long long).



Numbers 13

Finally, each of the integer types can be modified for holding only nonnegative

integers using the unsigned keyword. For example, a variable can be declared

unsigned int x;

In this case, x may take on only nonnegative values. If sizeof(unsigned int) is

4, then x can be any value from 0 to 232 −1 inclusive.

Because integer variables are of finite capacity, if a calculation exceeds the limits

incorrect results emerge. Consider the following program that we run on a computer

on which sizeof(int) equals 4. Please note the operation * in the code which is

used for multiplication.

Program 2.2: A program to illustrate integer overflow.

1 #include <iostream>
2 using namespace std;
3

4 /**
5 * A program to illustrate what happens when large integers
6 * are multiplied together.
7 */
8

9 int main() {
10 int million = 1000000;
11 int trillion = million * million;
12

13 cout << "According to this computer, " << million << " squared is "
14 << trillion << "." << endl;
15 }

Line 10 defines a variable million equal to 106. Because 231 is roughly 2 billion,

there is no problem assigning x this value. However, when we define (line 11) y to

be x*x, the result of squaring x is greater than 231. What happens? Let’s run the

program and see.

� �
According to this computer, 1000000 squared is -727379968.

� �

The result is obviously wrong! Unfortunately, such errors are rarely so easy to

detect. Here is some advice on how to handle this situation. First, know the sizeof

of the various integer types on your machine (see Program 2.3 later in this chapter).

Second, use long or long long routinely unless for reasons of speed or space you

need to use a smaller size. Finally, if the long or long long type is not big enough

for your calculations (and you need to keep the full precision) you can learn about

arbitrary precision arithmetic packages (see Section 13.1).



14 C++ for Mathematicians

2.2 The real number types
C++ can handle more than integers. Real numbers are represented using floating

point approximations. There are two principal types of floating point types: float

and double. Both hold real values of limited precision. Variables of type float use

less memory and have less precision than those of type double.

Some computers may have a long double type that has even greater precision

than double.

Unless you have special needs (for increased speed or decreased memory), use the

double type for all your real number calculations.

One may be tempted to use double for all numbers. For example, if we replace

int by double in Program 2.2, we have the following output.
� �
According to this computer, 1e+06 squared is 1e+12.

� �

Notice that the value of x is reported as 1e+06; this is simply scientific notation for

1×106. The value of y is 1e+12 and this is correct: 1012.

So why bother with the integer types at all? First, if the problem you are solving

deals with integers, using int or long is more efficient than float or double.

Second, the integer types are not subject to roundoff errors. Finally, there are certain

instances in which an integer type is required by C++ (e.g., when accessing elements

of an array).

2.3 The bool and char types
There are other basic data types available in C++. Two that we encounter fre-

quently in C++ are designed for handling Boolean and character data.

The data type bool is used to represent the logical values TRUE and FALSE. In

C++, these are represented as integers: 1 for TRUE and 0 for FALSE. Indeed, bool is

considered to be an integer type.

Boolean values emerge as the result of comparison operations. In C++, to see

if two variables hold equal values we use the == operator. The result of x == y is

either 1 (TRUE) in the case where x and y hold equal values and 0 (FALSE) otherwise.

If your program contains the statement

cout << (x==y) << endl;

either a 0 or a 1 is typed on the screen.

Individual characters have the type char. One can create variables to hold single

characters by declaring them to be of type char as in this example.



Numbers 15

char x;
x = ’A’;
cout << x << endl;

This code causes the letter A to appear on the computer’s screen.

Notice that a single character is enclosed in single quotes. Arrays of characters

are enclosed in double quotes. It is incorrect to write char x = "A"; because x is

of type char whereas "A" is an array of elements of type char.

C++ has two principal ways of handling textual data: arrays of characters and

objects of type string. We discuss these later (see Chapter 14). However, pro-

grams whose purpose is to solve mathematical problems rarely have much need for

extensive processing of textual data.

2.4 Checking the size and capacity of the different types
Earlier we mentioned the sizeof operator that is used to determine the number

of bytes a given data type occupies in memory. The following program reports on

the sizes of the various basic data types we have discussed.

Program 2.3: A program to show the sizes of the fundamental data types.

1 #include <iostream>
2 using namespace std;
3

4 /**
5 * Report on the size of various C++ data types.
6 *
7 * This program may give different results when run on different
8 * computers depending on how each of the fundamental data types is
9 * defined on those platforms.

10 */
11

12 int main() {
13 // Integer types:
14 cout << "The size of short is " << sizeof(short)
15 << " bytes" << endl;
16 cout << "The size of int is " << sizeof(int)
17 << " bytes" << endl;
18 cout << "The size of long is " << sizeof(long)
19 << " bytes" << endl;
20

21 // long long might not exist on all computers
22 cout << "The size of long long is " << sizeof(long long)
23 << " bytes" << endl;
24

25 // Character and boolean types:
26 cout << "The size of char is " << sizeof(char) << " bytes" << endl;
27 cout << "The size of bool is " << sizeof(bool) << " bytes" << endl;



16 C++ for Mathematicians

28

29 // Floating point types
30 cout << "The size of float is " << sizeof(float)
31 << " bytes" << endl;
32 cout << "The size of double is " << sizeof(double)
33 << " bytes" << endl;
34

35 // long double might not exist on all computers
36 cout << "The size of long double is " << sizeof(long double)
37 << " bytes" << endl;
38

39 return 0;
40 }

The output of this program depends on the computer on which it is run. The

following show the results of running this code on two different machines.
� �
The size of short is 2 bytes
The size of int is 4 bytes
The size of long is 4 bytes
The size of long long is 8 bytes
The size of char is 1 bytes
The size of bool is 4 bytes
The size of float is 4 bytes
The size of double is 8 bytes
The size of long double is 8 bytes

� �

� �
The size of short is 2 bytes
The size of int is 4 bytes
The size of long is 4 bytes
The size of long long is 8 bytes
The size of char is 1 bytes
The size of bool is 1 bytes
The size of float is 4 bytes
The size of double is 8 bytes
The size of long double is 12 bytes

� �

Notice that an int is 4 bytes on both machines and so, in both cases, int variables

can hold values from −231 to 231 −1.

Note also that double variables on both machines are 8 bytes, but this does not

tell us the range of values that double values can take.

For the float and double data types, there are three quantities of interest: the

largest value, the smallest positive value, and the difference between 1 and the small-

est value greater than 1. This latter value is known as the epsilon value of the data

type. Knowing that a double is 8 bytes does not immediately reveal these three

quantities.

C++ provides header files with this information. The header file climits gives

the minimum and maximum value of various integer types. It defines symbols such

as INT_MIN and INT_MAX that are equal to the smallest and largest value an int

may hold. Similarly, the header file cfloat gives the minimum positive, maximum,

and epsilon values for float, double, and long double (if available) data types.



Numbers 17

Running the following program reports all this information for the data types we

have discussed.

Program 2.4: A program to show the maximum and minimum values of various data

types.

1 #include <iostream>
2 #include <climits> // max & min size of integer types
3 #include <cfloat> // max & min size of real types
4 using namespace std;
5

6 /**
7 * Print out the extreme values of various integer types.
8 */
9

10 int main() {
11 cout << "The maximum size of a short is " << SHRT_MAX << endl;
12 cout << "The minimum size of a short is " << SHRT_MIN << endl;
13

14 cout << "The maximum size of an int is " << INT_MAX << endl;
15 cout << "The minimum size of an int is " << INT_MIN << endl;
16

17 cout << "The maximum size of a long is " << LONG_MAX << endl;
18 cout << "The minimum size of a long is " << LONG_MIN << endl;
19

20 // long long values might not exist on some computers
21 cout << "The maximum size of a long long is " << LLONG_MAX << endl;
22 cout << "The minimum size of a long long is " << LLONG_MIN << endl;
23

24

25 cout << "The minimum positive value of a float is "
26 << FLT_MIN << endl;
27 cout << "The minimum epsilon value of a float is "
28 << FLT_EPSILON << endl;
29 cout << "The maximum value of a float is "
30 << FLT_MAX << endl;
31

32 cout << "The minimum positive value of a double is "
33 << DBL_MIN<< endl;
34 cout << "The minimum epsilon value of a double is "
35 << DBL_EPSILON << endl;
36 cout << "The maximum value of a double is "
37 << DBL_MAX << endl;
38

39 // long double might not be defined on some systems
40 cout << "The minimum positive value of a long double is "
41 << LDBL_MIN<< endl;
42 cout << "The minimum epsilon value of a long double is "
43 << LDBL_EPSILON << endl;
44 cout << "The maximum value of a long double is "
45 << LDBL_MAX << endl;
46

47 return 0;
48 }



18 C++ for Mathematicians

Here is the output of this program on a particular computer. The result on other

computers may be different.
� �
The maximum size of a short is 32767
The minimum size of a short is -32768
The maximum size of an int is 2147483647
The minimum size of an int is -2147483648
The maximum size of a long is 2147483647
The minimum size of a long is -2147483648
The maximum size of a long long is 9223372036854775807
The minimum size of a long long is -9223372036854775808
The minimum positive value of a float is 1.17549e-38
The minimum epsilon value of a float is 1.19209e-07
The maximum value of a float is 3.40282e+38
The minimum positive value of a double is 2.22507e-308
The minimum epsilon value of a double is 2.22045e-16
The maximum value of a double is 1.79769e+308
The minimum positive value of a long double is 2.22507e-308
The minimum epsilon value of a long double is 2.22045e-16
The maximum value of a long double is 1.79769e+308

� �

2.5 Standard operations
C++ provides the familiar arithmetic operations. The expressions x+y, x-y, x*y,

and x/y are the usual sum, difference, product, and quotient of x and y.

In these expressions, x and y may be any of the numeric types we discussed.

However, mixing types can sometimes cause problems and confusion. If x and y

are of the same type, then the result of the operation is also that type. For example,

consider the following code.

int numerator = 13;
int denominator = 5;
double quotient;

quotient = numerator/denominator;

cout << quotient << endl;

We might expect this code to print the value 2.6 on the computer’s screen. The

surprise is that the computer prints 2. To understand why, we have to remember that

when two int values are divided, the result is an int. In this case, C++ divides the

integers 13 and 5 to give the result 2 (the fractional part is lost) and then assigns

that value to quotient. Because quotient is of type double there is a silent,

behind-the-scenes conversion of the int quantity into a double quantity.

We can coerce C++ to give us the answer 2.6 by converting 13 or 5 (or both)

into double variables. We replace quotient = numerator/denominator with

this:



Numbers 19

quotient = double(numerator) / double(denominator);

The expression double(numerator) converts the integer value in numerator into

a double quantity. This conversion process is known as casting. Note that the

variables numerator and denominator are unaffected by this; they remain type

int and their type cannot be changed. What double(numerator) does is create a

temporary double number to be used in the division.

We do not have to cast both numerator and denominator to type double. Once

we cast one of them to double, we have an expression involving a double and an

int. In this case, C++ automatically converts the other value as well.

Algebraic expressions may contain explicit numbers in addition to variables, such

as x = 2*x+3;. This expression means that we take the value of x, multiply that by

2, then add 3, and then save the result of the calculation back into x. So if the initial

value of x is 10, after this statement x would hold the value 23.

Numbers written without a decimal point are assumed to be integers, and numbers

with decimal points are assumed to be floating point values. Consider the following

code.

cout << 13/5 << endl;
cout << 13./5 << endl;
cout << 13./5. << endl;
cout << 13/5. << endl;

The first of these prints 2 and the other three print 2.6.

For integer variables, the percent sign denotes the mod operation. The expression

237 % 100 evaluates to 37.

Unfortunately, the % operation is not exactly the same as the mathematician’s mod.

For us, when a and b are integers with b > 0, we have that a mod b is the remainder

r in the division of a by b where r must satisfy 0 ≤ r < b. Even if a is negative, the

result of a mod b is nonnegative. However, in C++, if a is negative and b is positive,

a%b is negative. Furthermore, C++ allows b to be negative, or even zero! Use the

following program to explore the result of a%b various choices of a and b.

Program 2.5: A program to explore C++’s mod operation.

1 #include <iostream>
2 using namespace std;
3

4 /**
5 * A program to investigate the behavior of the mod (%) operation.
6 */
7

8 int main() {
9 int a,b;

10

11 cout << "Enter the first number --> ";
12 cin >> a;
13

14 cout << "Enter the second number --> ";
15 cin >> b;



20 C++ for Mathematicians

16

17 cout << a << " % " << b << " = " << a%b << endl;
18

19 return 0;
20 }

Line 11 types the words Enter the first number --> onto the screen. No-

tice that we did not include an endl, so the computer does not move the cursor to a

new line.

Line 12 introduces the cin object. The statement cin >> a means read a value

from the computer’s keyboard and save the result in the variable a.

C++ provides an interesting combination of arithmetic operations and assignment.

The statement x += 4; is an abbreviation for x = x+4;—increase the value held

in x by 4. All of the usual arithmetic operations can be used in this combined syntax.

Statement Meaning
x += y; x = x+y;
x -= y; x = x-y;
x *= y; x = x*y;
x /= y; x = x/y;
x %= y; x = x%y;

In computer programs, one frequently wishes to increase or decrease an integer

variable by 1; this happens when we want to consider successive elements of an array

or when counting. A special syntax can be used in place of x += 1 and x -= 1.

The expressions x++ and ++x both increase x by one, and x-- and --x both decrease

x by one. We call ++ and -- the increment and decrement operators, respectively.

The expressions x++ and ++x are not exactly the same. We explain the difference

here because you might need to understand someone else’s program that relies on

this difference. You should not take advantage of the difference between ++x and

x++. Doing so makes your code more confusing, and the most likely victim of that

confusion will be you. So read the next portion if you are curious, or you can safely

skip ahead (past the material enclosed between the double lines) to the discussion on

exponentiation.

With that admonishment firmly in place, here is the difference between x++ and

++x. Although both of these expressions increase the value of x by one, the result of

this expression is, in the first case the old value of x and in the latter case, the new

value of x. For example, consider this code.

int x,y;
x = 10;
y = x++;
cout << y << endl;

int a,b;
a = 10;
b = ++a;
cout << b << endl;



Numbers 21

The statement y = x++; assigns the old value of x to y, so cout << y << endl;

types 10 on the console. On the other hand, the statement b = ++a; assigns the new

value of a to b, so the statement cout << b << endl; types 11 on the console.

The two versions of ++ are called preincrement (for ++x) and postincrement (for

x++). Similarly, the two versions of -- are called predecrement and postdecrement.
And, as you might suspect, the name of the language is inspired by the ++ operator

as C++ is an extension of the C language.

Do yourself a big favor. Do not write code that depends on this difference! Instead,

write your program this way.

int x,y;
x = 10;
y = x;
x++;
cout << y << endl;

int a,b;
a = 10;
a++;
b = a;
cout << b << endl;

Missing thus far from our discussion is exponentiation. There is no exponentiation

operator in C++. Rather, one may use the pow procedure. To do so, one needs to

load the cmath header file using the following preprocessor directive.

#include <cmath>

With this in place, you can compute ab with the expression pow(a,b).

The cmath header defines a number of standard mathematical functions and con-

stants. For example, exp is the usual ex function and M_PI gives the value1 of π . A

classic problem (that one ought to solve without a computational aid) is to determine

which is greater: eπ or πe. The following program settles the issue.

Program 2.6: A program to calculate eπ and πe.

1 #include <iostream>
2 #include <cmath>
3 using namespace std;
4

5 /**
6 * Which is larger, pi to the e or e to the pi? We calculate both to
7 * find out.
8 */
9

10 int main() {
11 double e = exp(1.);
12 double pi = M_PI;
13

1The symbol M PI is not completely standardized. If your compiler complains that M PI is undefined,

add the line const double M PI = 3.14159265358979; to the beginning of your program.



22 C++ for Mathematicians

14 cout << "e to the pi is " << exp(pi) << endl;
15 cout << "pi to the e is " << pow(pi,e) << endl;
16 }

Here is the output of the program.
� �
e to the pi is 23.1407
pi to the e is 22.4592

� �

2.6 Comparisons and Boolean operations
C++ provides comparison operators for testing numbers for equality and order.

Each of these operators results in a bool. In this chart, x and y are variables, and x
and y are their respective values.

Expression Result
x == y true iff x = y
x != y true iff x �= y
x < y true iff x < y
x <= y true iff x ≤ y
x > y true iff x > y
x >= y true iff x ≥ y

Boolean values can be combined with the standard logical operations. In the fol-

lowing chart x and y are of type bool, and x and y are their values.

Expression Description
!x ¬x, i.e., not x
x && y x∨ y, i.e., logical and
x || y x∧ y, i.e., logical or
x ˆ y x� y, i.e., exclusive or

These logical connectives are often used in conjunction with comparison operators

in an expression such as

( (x == y) && (y <= z) )

which evaluates to true if and only if x = y ≤ z. Although the following is syntacti-

cally correct,

x == y <= z

it is not equivalent to x = y ≤ z. Here one of x == y or y <= z is evaluated first

and then that results in a bool value. Unfortunately, bool values are convertible

to integers, so the next comparison can take place. The expression x == y <= z is

poor programming because it is not clear to the reader which comparison is evaluated

first. (C++ has specific rules for this, but you should not rely on them.) Furthermore,

the use of a bool as a numeric type is a sneaky trick, and sneaky tricks (regardless

of how clever they may be) make code confusing and hard to understand.



Numbers 23

2.7 Complex numbers
C++ handles complex numbers nearly as easily as real numbers. Although the

real types such as double are part of the C++ core, the complex type requires the

inclusion of a header file and a slightly different syntax for variable declaration.

First, because complex numbers are not part of the C++ core, we need to issue the

preprocessor directive #include <complex>.

Second, we have some choices on what sort of complex numbers we want. For

example, we may want complex numbers in which the real and imaginary parts are

of type float, or for greater accuracy, both of type double. On the other hand, we

may be interested in working with Gaussian integers, in which case we want the real

and imaginary parts to be of type int or long. Fortunately, all these choices are

available to us. Here is how we declare variables:

complex<double> z; // z’s real and imaginary parts are of type double
complex<long> w; // w is a Gaussian integer

Next, we need to be able to assign complex values to these newly declared com-

plex variables. We do that as follows.

z = complex<double> (4., -0.5); // z is set to 4-0.5i
w = complex<long> (6,2); // w is set to 6+2i

Recall that in order to convert (cast) an int into a double, we used an expression of

the form double(x) (where x was a variable of type int). The same idea applies

here. To create a complex<double> we use the type name, but this time with two

arguments, as in complex<double>(4.,-0.5).

Typing complex<double> repeatedly can be annoying. Fortunately, C++ enables

us to create an abbreviation. The statement

typedef complex<double> C;

defines the symbol C as a substitute for complex<double>. Once we have created

this abbreviation, to declare a variable to be of type complex<double> we only

need to type C z; and z has the desired type. To assign z a value, we can simply

write z = C(6,-3); and now z has the value 6−3i.
Complex variables are printed on the screen as ordered pairs. If z has value 6−3i,

then cout << z << endl; prints (6,-3) on the computer’s screen.

The following program illustrates these ideas. Note the unusual way in which we

extract the real and imaginary parts of a complex variable (lines 26–27). It is too

soon for us to explain this unusual syntax, but all is revealed in time.

Program 2.7: A program to demonstrate C++’s ability to handle complex numbers.

1 #include <iostream>
2 #include <complex>
3 using namespace std;
4



24 C++ for Mathematicians

5 /**
6 * A program to illustrate the use of complex numbers.
7 */
8

9 typedef complex<double> C;
10

11 int main() {
12 C x(3,4); // define x = 3+4i
13 C z; // declare z to be complex
14 z = C(2,7); // assign z = 2+7i
15 C i(0,1); // define i = sqrt(-1)
16

17 cout << "z = " << z << endl;
18 cout << "x = " << x << endl;
19 cout << "z+x = " << z+x << endl;
20 cout << "z*x = " << z*x << endl;
21 cout << "z/x = " << z/x << endl;
22

23 z = 5. - 4.*i;
24 cout << "Now z = " << z << endl;
25

26 cout << "The real part of z is " << z.real()
27 << " and the imaginary part is " << z.imag() << endl;
28

29 return 0;
30 }

The output of this program follows.
� �
z = (2,7)
x = (3,4)
z+x = (5,11)
z*x = (-22,29)
z/x = (1.36,0.52)
Now z = (5,-4)
The real part of z is 5 and the imaginary part is -4

� �

If you plan to work with complex numbers, the typedef abbreviation is conve-

nient, as is defining the variable i to be
√−1. A convenient way to do this is to

create your own header file to #include at the start of your program. The name of a

header file that you create is some base name of your choosing plus a .h extension.

For example, you could name the header file my_complex.h, but my preference is

complexx.h with the extra x for extension.

Here is the complexx.h header file.

Program 2.8: A header file, complexx.h, containing convenient definitions for

working with complex numbers.

1 /**
2 * @file complexx.h
3 * @brief A header file that adds convenient extensions for working
4 * with complex numbers.
5 */
6



Numbers 25

7 #ifndef COMPLEXX_H
8 #define COMPLEXX_H
9

10 #include <complex>
11 using namespace std;
12

13 /**
14 * We define C to be an abbreviation for complex<double>.
15 */
16 typedef complex<double> C;
17

18 /**
19 * We define i to be a constant equal to sqrt(-1), i.e., C(0.,1.).
20 */
21 const C i = C(0., 1.);
22

23 #endif

When we want to use this header file, we employ a slightly different version of the

#include directive. We write this at the start of our program:

#include "complexx.h"

We can now use C and i as desired.

There’s a fair amount going on in the complexx.h file, but the heart of the mat-

ter can be found on lines 16 and 21 where we define C to be an abbreviation for

complex<double> and i to be a constant equal to
√−1.

Line 21 contains a new C++ keyword, const. By declaring i to be of type

const C we are saying two things. First, i represents a quantity of type C (which, in

turn, means complex<double>). Second, i cannot be changed later in our program.

Because i is declared outside any procedure (e.g., it is not enclosed between the

curly braces of main()), it is a global constant. The use of global constants is good.

If your work makes extensive use of the golden mean, φ = 1
2 (1 +

√
5), you could

create a header file containing the following line.

const double phi = (1. + sqrt(5.))/2.;

Side comment: It is possible to create global variables, but this is a bad practice

that should be avoided if at all possible. The problem is that one part of your program

might modify a global variable causing unexpected behavior later in another part of

your program. A common source of confusion and bugs in computer programs are

the side effects procedures might have. We try to rein these in as much as possible.

Global variables are antithetical to this effort.

There are a number of other parts of complexx.h that we need to explain. Let’s

work through them one at a time.

• Lines 1–5 are a comment. Without going into detail, these comments give a

description of what this file does. The @file and @brief are instructions

for a program called Doxygen that we describe later. Suffice it to say that

by including these markers here, the Doxygen program can use comments

like this to create beautiful Web pages that you can use to look up what your



26 C++ for Mathematicians

program does. (The extra * on line 1 is a signal to Doxygen that this is a

comment it should read.)

• Lines 7, 8, and 23 are a safeguard against accidental double inclusion. It is

easy to #include header files more than once. How can this happen? Some

day you might create a header file for handling Möbius transformations, that

is, functions of a complex variable of the form f (z) = (az + b)/(cz + d). In

your header file mobius.h you need to define various quantities as complex,

so you start with the directive #include "complexx.h" to be sure that C

and i are defined before you get started.

Now in the main program you might write this:

#include "complexx.h"
#include "mobius.h"

Without the double-inclusion safeguards, this would cause the two statements

typedef complex<double> C; and const C i = C(0.,1.); to be in-

serted twice into your program. The compiler would then complain about this

and refuse to compile your program.

There are two solutions to this problem. A bad solution is to require you to

remember which of your various header files already includes which other and

make the programmer (you) responsible for avoiding double inclusion.

The better solution is to build in a mechanism in the header file that prevents

double inclusion. Here is how this mechanism works.

Line 7 begins with the directive #ifndef. This is not a C++ statement, but

rather an instruction to the preprocessor; it stands for “if not defined.” If what

is not defined? If the symbol COMPLEXX_H is not defined, then we should do

what follows up to the matching #endif on line 24 (at the end of the file).

If the symbol COMPLEXX_H is not yet defined, we include everything in the

file. But if the symbol COMPLEXX_H is already defined, we skip everything

through to the #endif.

Suppose COMPLEXX_H is not defined (and it won’t be when we first set out),

and we next come to line 8 which reads #define COMPLEXX_H. This line

defines the symbol COMPLEXX_H, although it does not specify any particular

value for the symbol. (We don’t care whether COMPLEXX_H has a value; we

just want to know whether it is defined.)

Suppose we try to #include "complexx.h" a second time. On the first

pass through complex.h, we executed the directive #define COMPLEXX_H.

Thus, on this second pass, when we reencounter #ifndef COMPLEXX_H the

preprocessor notes that COMPLEXX_H is defined and then skips everything in

the file until the matching #endif.

• The rest of the file is easier to understand. We need to include the C++ header

file complex in order to use complex<double> later. We need the statement

using namespace std; so the definitions in <complex> are available.



Numbers 27

The comments before lines 16 and 21 document how C and i are defined.

These comments can be processed by Doxygen.

2.8 Naming variables
C++ allows you to name your variables more or less whatever you like. The name

should begin with one of the 26 letters (lower or upper case). After that, it may

contain letters, digits, or the underscore symbol _.

Pick short, easily remembered names for your variables. For example, if your vari-

ables are named center_x, center_y, and radius, it is instantly clear to anyone

(especially yourself) what these variables hold.

There are some obvious restrictions on your choice of names. You cannot use a

C++ keyword as a variable name. So you cannot name your variables if or for

or long; these already have meanings in C++. It’s not worth memorizing all of

C++’s keywords. If you accidentally try to name a variable with one of C++’s more

obscure keywords, the compiler will complain. Unfortunately, it won’t complain in

a way that you like. For example, imagine you tried to declare a long variable to

be named volatile (perhaps you are working with a chemist trying to model some

nasty substance) like this:

long volatile;

It turns out the volatile is a C++ keyword (one that you do not need to know about

for mathematical work). What you would like is an error message from the compiler

that this is an illegal variable name. Here is what the compiler on my computer says

about this line:

warning: declaration does not declare anything

Not particularly helpful, but at least the compiler did complain about the offending

line.

Try to develop a consistent style of variable names. I prefer to name variables

beginning with lowercase letters. (Later, when we create our own types, I name these

beginning with uppercase letters.) Multiword names either can use the underscore as

a space (you cannot have a space or hyphen in a variable name) or use capital letters

to show the start of each word. Some examples:

left_end_point
rightEndPoint
geometric_mean
upperBound

Some people like to use all capitals for constants, for example, GOLDEN_MEAN.

Variables may be declared anywhere you like as long as they are declared before

they are used.



28 C++ for Mathematicians

2.9 Exercises
2.1 Consider the following program.

#include <iostream>
using namespace std;
int main() {

float x;
int y;
double z;
x = 3.5;
y = x;
z = y;
cout << z << endl;
return 0;

}

What is printed to the screen (and why)?

2.2 What is the output of the following program and which (if any) of the lines

gives a result equal to 40
3 ?

#include <iostream>
using namespace std;

int main() {
cout << (4/3)*10 << endl;
cout << 4*(10/3) << endl;
cout << (4*10)/3 << endl;
cout << (4/3)*10. << endl;
cout << (4./3)*10 << endl;
return 0;

}

2.3 What is the output of the following program? How does C++’s % operator

differ from the mathematical mod operation?

#include <iostream>
using namespace std;

int main() {
cout << (-5) % 3 << endl;
cout << 5 % 3 << endl;

cout << (-5) % (-3) << endl;
cout << 5 % (-3) << endl;
return 0;

}

2.4 Explain why the expression ’3’==3 is legal C++ and what it means. What

value does this expression have?



Numbers 29

2.5 Consider this program.

#include <iostream>
using namespace std;
int main() {

int a, b;
a = 5;
b = 10;
cout << (a==b) << endl;
cout << (a=b) << endl;
cout << (a==b) << endl;
return 0;

}

This program gives the following output.
� �
0
10
1

� �

Explain.

2.6 Write a program to explore division by zero. Include the cases 0
0 and 1

0 . Con-

sider the variants in which the numerator and denominator are float or int

(or one of each).

2.7 What is the output of this program?

#include <iostream>
using namespace std;
int main() {

int a = 10;
a += a;
a *= a;
cout << a << endl;
return 0;

}

2.8 All of the following are illegal names for variables in a C++ program. Explain

what is wrong with each.

(a) 2nd_coord

(b) y-val

(c) double

(d) x:y_ratio

(e) purple&orange

(f) 1e-2





Chapter 3

Greatest Common Divisor

3.1 The problem

For integers a and b, the greatest common divisor of a and b is the largest integer

d such that d is a factor of both a and b. The greatest common divisor is denoted

gcd(a,b). We say a and b are relatively prime provided gcd(a,b) = 1. In this chapter

we develop many C++ concepts by studying a particular problem involving the gcd

of integers.

Here is the classic problem: Let n be a positive integer. Two integers, a and b,

are selected independently and uniformly from the set {1,2, . . . ,n}. Let pn be the

probability that a and b are relatively prime. Does limn→∞ pn exist and, if so, what is

its value?

The computer cannot solve this problem for us, but it can help us to formulate

a conjecture. We try a number of approaches including exhaustive enumeration,

generating pairs of numbers at random and recording the results, and the use of

Euler’s totient.

The first order of business, however, is to develop a procedure to compute the

greatest common divisor of two integers.

3.2 A first approach

In this section we develop a correct, but highly inefficient, procedure for calculat-

ing the greatest common divisor of two integers. Our goal is to introduce a number

of C++ concepts as well as to create the gcd procedure. This procedure takes two

integers and returns their greatest common divisor. Later, we replace this inefficient

procedure with a much more efficient method.

Before we begin, however, we need to address a bit of terminology. Mathemati-

cians and computer programmers use the word function differently. A mathemati-

cian’s function assigns to each value x a unique value y = f (x). Suppose we calculate,

say f (8) and the result is 17. Then if we calculate f (8) a few minutes later, we are

guaranteed that the result is still 17.

31



32 C++ for Mathematicians

By contrast, for a C++ programmer, it is natural that a function might return dif-

ferent values (even with the identical arguments) at different times! This is because

C++ functions can access data beyond their arguments; for example, there is a C++

function that reports the current time. Clearly, the value of this function changes

from one minute to the next.

As a mathematician, my bias is, of course, for the mathematical use of the word.

Therefore, in this book, we use a different word for C++ functions; we call them

procedures. This nomenclature ought not upset our computer science colleagues,

but when you read other books or documentation about C++ procedures, be aware

that they are likely to be called functions. (Some books may refer to methods and we

introduce that terminology later.)

With issues of nomenclature behind us, we now develop a procedure to compute

greatest common divisors.

We need to name the procedure. We could name it greatest_common_divisor,

but there is no loss of clarity in simply naming it gcd. We want gcd to accept two

arguments (inputs) of type long and return an answer that is also of type long.

The code for the gcd procedure is written in two files named gcd.h and gcd.cc.

The header file, gcd.h, is used to describe the procedure (both in C++ and in En-

glish comments). The file gcd.cc contains the actual instructions for calculating the

greatest common divisor.

This organization is similar to declaring versus assignment variables. The decla-

ration announces the variable’s type and the assignment gives the variable a value.

Likewise, the header file announces the type of the procedure (two long inputs and

return a long) and the .cc file gives the actual instructions to be carried out.

The file gcd.cc does not have a main() procedure; the main() is found in an-

other file. The latter file includes the directive #include "gcd.h".

The first gcd algorithm we present is terribly inefficient. When we develop a

better algorithm, we replace the file gcd.cc, but the file gcd.h does not change.

The file gcd.h looks like this.

Program 3.1: The header file gcd.h.

1 #ifndef GCD_H
2 #define GCD_H
3

4 /**
5 * Calculate the greatest common divisor of two integers.
6 * @param a the first integer
7 * @param b the second integer
8 * @return the greatest common divisor of a and b
9 */

10

11 long gcd(long a, long b);
12

13 #endif

Line 11 is the most important line of this file. The statement



Greatest Common Divisor 33

long gcd(long a, long b);

declares gcd to be a procedure. This procedure takes two input arguments (named a

and b) that are both of type long. The first long on this line (to the left of gcd) is

the return type of the procedure; this indicates that the procedure returns a value of

type long.

Other features of this file: lines 1, 2, and 13 are the mechanism to prevent double

inclusion (see the discussion on page 26). Lines 4–9 are a description of the gcd

procedure. This description includes a sentence that explains what the procedure

does, an explanation of the parameters passed to the procedure, and an explanation

of the value returned by the procedure. The tags @param and @return are read by

Doxygen to produce a nice Web page for this procedure.

We are ready to get to work on the file gcd.cc. This file has the following struc-

ture.

#include "gcd.h"

long gcd(long a, long b) {
.......
return d;

}

The definition of the gcd procedure looks nearly identical to the declaration in the

header file. The semicolon on line 11 of gcd.h is replaced by an open brace. The

open brace is followed by the instructions to calculate the greatest common divisor

of a and b, and that value eventually ends up in a variable named d. The return d;

statement causes the value in d to be the “answer” returned by this procedure.

Our strategy is to test successive integers to see if they are divisors of a and b, and

keep track of the largest value that divides both.

There are a few things we need to worry about first.

• What happens if the gcd procedure is given negative values for a or b?

There is nothing wrong with allowing a or b to be negative. After all,

gcd(a,b) = gcd(−a,b) = gcd(a,−b) = gcd(−a,−b).

• What happens if one (or both) of a or b is zero? If only one of these is zero,

then there is no mathematical problem because gcd(a,0) = |a| provided a �= 0.

However, gcd(0,0) is undefined. We need to decide what to do in this case.

We could have the program immediately stop (this is done by the statement

exit(1);). A better solution, however, is to print a warning message and

return a value, say zero.

We need to revise the documentation in gcd.h to reflect this.



34 C++ for Mathematicians

Program 3.2: Revised documentation for gcd in the header file gcd.h.

4 /**
5 * Calculate the greatest common divisor of two integers.
6 * Note: gcd(0,0) will return 0 and print an error message.
7 * @param a the first integer
8 * @param b the second integer
9 * @return the greatest common divisor of a and b.

10 */

Now we work on gcd.cc. The file begins as follows.

Program 3.3: Beginning of the file gcd.cc.

1 #include "gcd.h"
2 #include <iostream>
3 using namespace std;
4

5 long gcd(long a, long b) {
6

7 // if a and b are both zero, print an error and return 0
8 if ( (a==0) && (b==0) ) {
9 cerr << "WARNING: gcd called with both arguments equal to zero."

10 << endl;
11 return 0;
12 }

We require #include <iostream> on line 2 because we may need to write an

error message (in case gcd(0,0) is invoked). Line 5 starts the definition of the gcd

procedure.

The first thing we check is if both arguments are equal to zero; this occurs at line 8.

The general structure of an if statement is this:

if ( condition ) {
statements;

}

If the condition (an expression that evaluates to a bool) is true, then the statements

in the enclosing braces are executed. Otherwise (the condition is false), all the state-

ments in the enclosing braces are skipped.

For our program, if both a and b are zero, then the condition is true and the two

enclosing statements are executed. The first writes a warning message to an object

named cerr. The cerr object is similar to the cout object. It would not have been

a mistake to use cout here instead. However, computers provide two output streams,

cout and cerr, and both write to the screen. The cout is usually used for standard

output and cerr for error messages.

The second statement controlled by this if is return 0;. When this statement

is executed, the procedure ends and the value 0 is returned; the rest of the program is

not executed.

Next, we ensure that a and b are nonnegative.



Greatest Common Divisor 35

Program 3.4: Ensuring a and b are nonnegative in gcd.cc.

14 // Make sure a and b are both nonnegative
15 if (a<0) {
16 a = -a;
17 }
18 if (b<0) {
19 b = -b;
20 }

The code is reasonably straightforward. If a is negative, it is replaced by -a; and

likewise for b. However, there is something to worry about. Do these statement have

a side effect? We are changing the arguments to the gcd procedure. Does this change

the values of a and b in the procedure that called gcd?

The answer is that no change is made to any values outside the gcd procedure;

there are no side effects. The reason is that when another procedure (say, main())

calls gcd, the arguments are copied to a and b. We say that C++ procedures call by
value; the arguments are copies of the originals. For example, suppose the main()

contains this code:

long x = -10;
long y = 15;
cout << gcd(x,y) << endl;

When gcd is invoked, the computer sets a equal to −10 and b equal to 15; the values

a and b are private copies of these values. Eventually gcd reaches line 16 where it

replaces a with -a (i.e., sets a to 10). However, the original x in main is unaffected

by this.

Next we get to the heart of the matter. We test all possible divisors from 1 to a

and see which divides both a and b. There’s one slight mistake, though. If a is zero,

then the answer should be b. We treat that as a special case. Here is the last part of

the program.

Program 3.5: The last part of the gcd.cc program.

22 // if a is zero, the answer is b
23 if (a==0) {
24 return b;
25 }
26

27 // otherwise, we check all possibilities from 1 to a
28

29 long d; // d will hold the answer
30

31 for (long t=1; t<=a; t++) {
32 if ( (a%t==0) && (b%t==0) ) {
33 d = t;
34 }
35 }
36



36 C++ for Mathematicians

37 return d;
38 }

Lines 23–25 handle the special case in which a is zero. After that, we declare a

variable d to hold the answer.

Lines 31–35 do the bulk of the work of this program. We begin with a new C++

keyword: for. The general form of the for statement is this:

for( starting statement ; test condition ; advancing statement) {
statements to be done on each iteration;

}

The starting statement is executed the first time the for statement is reached. In

our case, the starting statement is long t=1;. This declares a new long integer

variable named t and assigns it the value 1.

Next the test condition is evaluated; if this condition evaluates to TRUE, the state-

ments enclosed in the curly braces are executed. In our case, the test condition is

t<=a;. As long as t is less than or equal to a, we do the statements enclosed in the

curly braces.

After the enclosed statements are executed, the advancing statement is executed;

in our case, that statement is t++;. This means that t is increased by 1.

Now the entire process repeats. For our example, t now holds the value 2. As

long as this is less than or equal to a, the enclosed statements are executed. Then t

is advanced to 3, then to 4, and so forth, until the test condition is FALSE. At that

point, the for loop is exhausted and we proceed to the next statement after the close

brace; in our example that’s at line 37 and the statement is return d;.

In other words, the code

for (long t=1; t<=a; t++) {
statements;

}

executes the statements between the curly braces a times with t equal to 1, then 2,

then 3, and so on, until t equals a.

This style of for statement is common in programs. Of course, we can use the

for statement to step down through values as in this code:

for (long s=n; s > 0; s--) {
statements;

}

Alternatively, we could step only through odd values of the index:

for (long j=1; j <= n; j += 2) {
statements;

}

For our gcd procedure, letting t take the values, 1, 2, 3, and so on, until a is

precisely what we want. For each value of t, we check if t is a divisor of both a

and b. We do this with the conditional if( (a%t==0) && (b%t==0) ). If this

condition is satisfied, we update d to the current value of t, and this is what happens

on line 33.

After the loop is finished, the value held in d is returned.



Greatest Common Divisor 37

Now that our gcd program is finished, it’s time to try it out. In a separate file, that

we name gcd-tester.cc, we write a simple main() procedure to try out our code.

Program 3.6: A program to test the gcd procedure.

1 #include "gcd.h"
2 #include <iostream>
3 using namespace std;
4

5 /**
6 * A program to test the gcd procedure.
7 */
8 int main() {
9 long a,b;

10

11 cout << "Enter the first number --> ";
12 cin >> a;
13 cout << "Enter the second number --> ";
14 cin >> b;
15

16 cout << "The gcd of " << a << " and " << b << " is "
17 << gcd(a,b) << endl;
18 return 0;
19 }

3.3 Euclid’s method
The program we developed in Section 3.2 works, but it is a slow, inefficient algo-

rithm. Suppose we want to calculate the greatest common divisor of numbers that are

around one billion? This is not too large for a long integer, but in order to find the

answer, the trial-division algorithm runs for billions of iterations. There is a much

better way that was developed by Euclid.

The key idea is the following result.

Proposition 3.1. Let a,b be positive integers and let c = a mod b. Then gcd(a,b) =
gcd(b,c).

Proof. Let a,b be positive integers and let c = a mod b; that is, a = qb + c where

q,c ∈ Z and 0 ≤ c < b.

Note that if d is a common divisor of a and b, then d is also a divisor of c because

c = a−qb. Conversely, if d is a common divisor of b and c, then (because a = qb+c)

d is also divisor of a. Hence the set of common divisors of a and b is the same as the

set of common divisors of b and c. Therefore gcd(a,b) = gcd(b,c).

We use this to develop an algorithm. Suppose we want to find gcd(80,25). By

Proposition 3.1, we calculate 80 mod 25 = 5 and so gcd(80,25) = gcd(25,5). To



38 C++ for Mathematicians

find gcd(25,5), we again apply Proposition 3.1. Because 25 mod 5 = 0, we have

gcd(25,5) = gcd(5,0). At this point Proposition 3.1 does not apply because 0 is not

positive. However, we know that gcd(5,0) = 5 and so we have

gcd(80,25) = gcd(25,5) = gcd(5,0) = 5

and we only needed to do two divisions (not 25 or 80).

In this section we present two programs for computing the greatest common divi-

sor by this method. Here is the first.

Program 3.7: A recursive procedure for gcd.

1 #include "gcd.h"
2 #include <iostream>
3 using namespace std;
4

5 long gcd(long a, long b) {
6 // Make sure a and b are both nonnegative
7 if (a<0) a = -a;
8 if (b<0) b = -b;
9

10 // if a and b are both zero, print an error and return 0
11 if ( (a==0) && (b==0) ) {
12 cerr << "WARNING: gcd called with both arguments equal to zero."
13 << endl;
14 return 0;
15 }
16

17 // If b is zero, the answer is a
18 if (b==0) return a;
19 // If a is zero, the answer is b
20 if (a==0) return b;
21

22 long c = a%b;
23

24 return gcd(b,c);
25 }

Lines 7 and 8 ensure that a and b are nonnegative. We use a slightly different

syntax for these if statements. When an if is followed by exactly one statement,

the curly braces may be omitted. The single-line statement if (a<0) a = -a; is

equivalent to this:

if (a<0) {
a = -a;

}

Line 11 checks to see if the arguments are both zero; if they are, we issue a warning

and return zero.

Lines 18 and 20 check if one of the arguments is zero; if so, the other argument is

the answer we desire.

The real work of this procedure is on lines 22 and 24. If the program reaches

line 22, then we know that both a and b are positive integers and Proposition 3.1



Greatest Common Divisor 39

applies. We calculate c to be a mod b, so the answer to this problem is gcd(b,c)

and we return that.

The question is: How is gcd(b,c) computed? The answer is that the gcd pro-

cedure calls itself. This is known as recursion. If we call gcd(80,25), then when

we reach line 24, c holds the value 5. At this point we issue a call to gcd(25,5).

The previous call to gcd(80,25) goes “on hold” pending the result of gcd(25,5).

When this second invocation of gcd reaches line 24 we have a equal to 25, b equal to

5, and c equal to 0. A third call to gcd is generated at this point requesting gcd(5,0)

and the second call is also placed on hold. During the call to gcd(5,0), we come to

line 18 (because b==0 evaluates to TRUE) and so 5 is returned. This is passed back

to the second and then to the first call to gcd and the final answer, 5, is returned.

Recursion is a powerful idea. When it applies, such as in this case, it can make

for particularly simple code. The primary danger in using this technique is infinite
recursion: if the program does not check adequate boundary conditions, it may run

forever without returning an answer. This is akin to neglecting the basis case in a

proof by induction.

A classic example of recursion is a program to calculate factorials. Here is the

general idea presented in an incorrect program.

long factorial(long n) {
return n*factorial(n-1);

}

To calculate factorial(5) the computer makes a call to factorial(4) which (if

all goes well) returns the value 24. We then multiply this by 5 to get our answer.

The mistake, however, is that factorial(4) calls factorial(3) which calls

factorial(2), and so on forever. We need to catch this process someplace, and

the right place is when n is zero.

Here’s a better version.

long factorial(long n) {
if (n==0) return 1;
return n*factorial(n-1);

}

This gives the correct result for factorial(5), but is not entirely free of the infinite

recursion trap. Figure out for yourself the problem and what you can do to address

it. (See Exercise 3.2.)

Program 3.7 is a perfectly good, efficient gcd procedure. At this point, it would be

proper to move on to the problem at hand (described at the beginning of this chapter).

However, it is possible to make the program slightly more efficient and, in so doing,

we can study another C++ feature: while loops.

There are some minor inefficiencies in Program 3.7. The tests to ensure that a and

b are nonnegative and not both zero are run at every iteration. One can prove, how-

ever, that we do not need to worry about this in the embedded calls to gcd. The extra

tests are performed unnecessarily. Also, the computer needs to do a modest amount

of work every time a new procedure is called. To calculate the greatest common



40 C++ for Mathematicians

divisor of two large numbers may result in dozens of calls to gcd. This overhead is

not a serious problem, but if we plan to call gcd repeatedly, small improvements are

worthwhile.

We now present another version of the gcd procedure that does not use recursion.

Program 3.8: An iterative procedure for gcd.

1 #include "gcd.h"
2 #include <iostream>
3 using namespace std;
4

5 long gcd(long a, long b) {
6 // Make sure a and b are both nonnegative
7 if (a<0) a = -a;
8 if (b<0) b = -b;
9

10 // if a and b are both zero, print an error and return 0
11 if ( (a==0) && (b==0) ) {
12 cerr << "WARNING: gcd called with both arguments equal to zero."
13 << endl;
14 return 0;
15 }
16

17 long new_a, new_b; // place to hold new versions of a and b
18

19 /*
20 * We use the fact that gcd(a,b) = gcd(b,c) where c = a%b.
21 * Note that if b is zero, gcd(a,b) = gcd(a,0) = a. If a is zero,
22 * and b is not, we get a%b equal to zero, so new_b will be zero,
23 * hence b will be zero and the loop will exit with a == 0, which
24 * is what we want.
25 */
26

27 while (b != 0) {
28 new_a = b;
29 new_b = a%b;
30

31 a = new_a;
32 b = new_b;
33 }
34

35 return a;
36 }

The beginning of this program is the same as Program 3.7; we make sure the

arguments are nonnegative and not both zero.

At line 17 we declare two new variables: new_a and new_b. The idea is to let

a′ ← b and b′ ← a mod b

and to continue with a′ and b′ in lieu of a and b. We keep doing this until b reaches

zero, and then a will hold the answer. For example, starting with a = 80 and b = 25,

we have this:



Greatest Common Divisor 41

Iteration 1 2 3
value of a 80 25 5
value of b 25 5 0

These steps take place on lines 27–33. The control statement is while. The

general form of a while statement is this:

while (condition) {
statements to perform;

}

When a program encounters a while statement, it checks to see if condition is TRUE

or FALSE. If condition is FALSE, it skips all the statements enclosed in the curly

braces. However, if condition is TRUE, then the statements inside the braces are

executed and then we start the loop over again, checking to see if condition is TRUE

or FALSE.

In this manner, the loop is executed over and over again until such time as the

condition specified in the while statement is FALSE.

This is precisely what we need here. As long as b is not zero, we replace a and b

with b and a%b, respectively. We enlist the help of the temporary variables new_a

and new_b to do this.

When the while statement terminates, a holds the greatest common divisor of the

original a and b, and so we return that at line 35.

It is interesting to note that we do not need two temporary variables for the while

loop. The following works as well.

while (b != 0) {
new_b = a%b;
a = b;
b = new_b;

}

Although this is correct, it is more difficult to understand than the while loop in

Program 3.8. The slightly more verbose version shows clearly how a and b are

updated from the previous values of a and b. Clarity is often preferred to cleverness

because clarity is more likely to be correct.

3.4 Looping with for, while, and do
We have introduced two of C++’s looping statements: for and while. Here we

introduce you to a third: do.

Recall that a while loop is structured like this:

while (condition) {
statements to execute;

}



42 C++ for Mathematicians

The condition is tested before the enclosed statements are ever executed. If condition
is FALSE, the statements will never be executed. Incidentally, the while structure

can be replaced by a for loop as follows.

for(; condition; ) {
statements to execute;

}

The starting and advancing statements are missing, so they have no effect. We men-

tion this mostly as a curiosity; the while version is preferable because it is clearer.

Sometimes you may find that the condition you want to check doesn’t make sense

until some series of instructions has been performed at least once. For example, a

program might read in data from a file and should stop reading when a negative value

is encountered. We need to read at least one data value before the condition makes

sense.

For such situations, the following structure can be used.

do {
statements to execute;

} while (condition);

The statements to execute are performed at least once. At the end of the loop, the

condition is checked. If it is TRUE, then we return to the start of the loop for another

round; if the condition is FALSE, the loop is finished and control passes to the next

statement after the loop. The do-while loop structure is not used as frequently as

while and for loops.

There are two special statements that can be used to modify the execution of a

loop: break and continue.

The break command causes the loop to exit immediately with control passing to

the next statement after the loop. Consider this code.

for (long a=0; a<100; a++) {
statement1;
statement2;
if (x > 0) break;
statement3;
statement4;

}
statement5;

If after statement2 the variable x holds a positive quantity, we skip statement3

and statement4, and go directly to statement5.

The break command can be used with while and do loops, too.

The continue command directs the computer to go to the end of the loop and

then do what is natural at that point. Consider this code.

for (long a=0; a<100; a++) {
statement1;
statement2;
if (x > 0) continue;



Greatest Common Divisor 43

statement3;
statement4;

}
statement5;

In this case, all 100 iterations of the loop take place. However, if during some iter-

ation, after we execute statement2, we find x to hold a positive quantity, we skip

both statement3 and statement4. At this point we increase a (because the ad-

vancing statement is a++). If a is less than 100, another pass through the loop is

performed.

3.5 An exhaustive approach to the GCD problem
It is now time to tackle the problem from the beginning of this chapter. Let

pn be the probability that two integers, chosen independently and uniformly from

{1,2, . . . ,n}, are relatively prime.

The following program counts the number of pairs (a,b) with 1 ≤ a,b ≤ n that

satisfy gcd(a,b) = 1 and divides by n2.

Program 3.9: A program to calculate pn.

1 #include <iostream>
2 #include "gcd.h"
3 using namespace std;
4

5 /**
6 * Find the probability that two integers in {1,...,n} are relatively
7 * prime.
8 */
9

10 int main() {
11 long n;
12 cout << "Enter n --> ";
13 cin >> n;
14

15 long count = 0;
16

17 for (long a=1; a<=n; a++) {
18 for (long b=1; b<=n; b++) {
19 if (gcd(a,b) == 1) {
20 count++;
21 }
22 }
23 }
24

25 cout << double(count) / (double(n) * double(n)) << endl;
26 return 0;
27 }



44 C++ for Mathematicians

The code is straightforward. We ask the user to enter n and set a counter (named

count) to zero. The main action takes place in lines 17–23. Two nested for loops

run through all possible values of a and b with 1 ≤ a,b ≤ n. On each iteration, if a
and b are found to be relatively prime, the counter is increased by one.

At the end, we divide the counter by n2 to get the probability. Because we want a

floating point answer, we cast the appropriate terms into type double (see line 25).

To run this program, we need to use three files: gcd.h, gcd.cc, and this file (let’s

call it exhaust.cc). We can either load all three into an IDE or (on a UNIX system)

save all three in a directory and compile with a command such as

g++ gcd.cc exhaust.cc -o exhaust

and the program is saved in a file named exhaust. (See Appendix A for more

details.)

Here is a typical run of the program.
� �
Enter n --> 100
0.6087

� �

Thus, p100 = 0.6087.

If we run the program for various values of n, we generate the following results.

n pn
100 0.6087
500 0.608924

1000 0.608383
5000 0.608037

10000 0.60795
50000 0.607939

It appears that limn→∞ pn exists and is converging to a value around 0.6079. It

would be useful to extend this table further. However, the last entry in this table took

a long time for my computer to calculate. Is there a more efficient method? There is

one modest modification we can make to the program. Notice that we are computing

the same values twice in most instances. That is, we compute both gcd(10,15) and

gcd(15,10). We can make our program twice as fast by calculating only one of

these. Also, we do not have to bother calculating gcd(a,a); the only instance in

which gcd(a,a) equals one is when a = 1.

Here is the modified version of the program.

Program 3.10: A slightly better program to calculate pn.

1 #include <iostream>
2 #include "gcd.h"
3 using namespace std;
4

5 /**
6 * Find the probability that two integers in {1,...,n} are relatively
7 * prime.
8 */



Greatest Common Divisor 45

9

10 int main() {
11 long n;
12 cout << "Enter n --> ";
13 cin >> n;
14

15 long count = 0;
16

17 for (long a=1; a<=n; a++) {
18 for (long b=a+1; b<=n; b++) {
19 if (gcd(a,b) == 1) {
20 count++;
21 }
22 }
23 }
24 count = 2*count + 1;
25

26 cout << double(count) / (double(n) * double(n)) << endl;
27 return 0;
28 }

Notice that the second for loop (line 18) begins with b=a+1, so the inner loop

runs from a+1 up to n. Thus the program calculates gcd(5,10), but not gcd(10,5).
We need to double count at the end to correct. Also, we do not calculate gcd(t, t)
for any t, so we add 1 to (the doubled) count at the end to correct for that. These

corrections are on line 24.

In the following chapters, we approach the problem using two other methods: a

Monte Carlo randomized algorithm (giving us an opportunity to learn about random

numbers in C++) and a more intelligent exhaust using Euler’s totient ϕ (giving us

an opportunity to learn about arrays). However, before we move on to those other

approaches, we make our gcd procedure better still and use that opportunity to learn

additional C++ features.

3.6 Extended gcd, call by reference, and overloading
The Euclidean algorithm can be used not only to find the greatest common divisor

of two integers a and b, but also to express the gcd as an integer linear combination

of a and b. That is, if a and b are integers (not both zero) then there exist x,y ∈ Z

such that ax+by = gcd(a,b).
Our goal is a procedure that can be called like this:

d = gcd(a,b,x,y);

where a,b are the numbers whose gcd we desire, d is gcd(a,b), and x,y have the

property that d = ax + by. At first glance this appears impossible for two reasons.

First, we already have a procedure named gcd. Shouldn’t we name this something



46 C++ for Mathematicians

else (such as extended_gcd)? Second, we can pass values to a procedure in its list

of arguments, but the procedure cannot change the value of the arguments. This fact

is known as call by value and was discussed earlier in this chapter (see Section 3.2).

The good news is that neither of these is a significant hurdle.

First, two different procedures may have the same name, but there is a caveat: The

procedures must have different types of arguments. For example, suppose we want

to create procedures for (a) finding the slope of a line segment from the origin to a

given point and (b) finding the slope of a line segment joining two given points. In

some programming languages, you would be required to give these different names;

in C++, we may name them both slope. The declarations for these procedures

(which we put in a header file named, say, slope.h) are these.

double slope(double x, double y);
double slope(double x1, double y1, double x2, double y2);

The first is for the origin-to-slope version of the procedure and the second for the

point-to-point version. Because the first takes two double arguments and the sec-

ond takes four double arguments, the C++ compiler recognizes these as different

procedures.

The definitions of the procedures (which we place in a file named slope.cc) look

like this:

double slope(double x, double y) {
return y/x;

}

double slope(double x1, double y1, double x2, double y2) {
return (y1-y2)/(x1-x2);

}

When we use the same name for different procedures, these procedures ought to

be closely related and serve essentially the same purpose.

We mathematicians often use the same symbol for two closely related (but differ-

ent) objects. For example, if we have a function f : R → R, then f (x) only makes

sense when x is a real number. However, we often extend this notation. If A ⊆ R,

then f (A) (same f ) means { f (x) : x ∈ A}.

In C++, we refer to this ability to name different procedures with the same name

as overloading.

Second, it is true that C++ passes data to procedures using call by value; this

means that the arguments to the procedure are copies of the original, and the invoked

procedure cannot change the original values. For example, consider this procedure.

void swap(long a, long b) {
long tmp;
tmp = a;
a = b;
b = tmp;

}

The procedure’s return type is void. This means that the procedure does not return

any value. The code in swap takes the values held in a and b and exchanges them.



Greatest Common Divisor 47

If, when the procedure is called a holds 5 and b holds 17, then at the end, a holds

17 and b holds 5. However, this procedure has no effect whatsoever on the calling

procedure. Suppose the calling procedure contained this code:

long a = 5;
long b = 17;
swap(a,b);
cout << "a = " << a << endl;
cout << "b = " << b << endl;

The output of this would be as follows.
� �
a = 5
b = 17

� �

There is a way to modify the procedure swap so that it is capable of modifying its

arguments. Instead of passing the value of a to the procedure, we pass a reference to

a. To do this, we add the character & to the end of the type name, like so:

void swap(long& a, long& b) {
long tmp;
tmp = a;
a = b;
b = tmp;

}

The & does this: The argument a is a reference to a variable of type long. Not only

is a of type long, it is more than a copy of the long. This syntax means: instead

of sending a copy of a to this procedure, send the variable itself (and not a clone).

When a procedure receives a reference to a variable, it is working on the original and

not a copy.

With the rewritten swap procedure, the code

long a = 5;
long b = 17;
swap(a,b);
cout << "a = " << a << endl;
cout << "b = " << b << endl;

produces this output:
� �
a = 17
b = 5

� �

Call by reference is the mechanism we need so that the new gcd procedure can

deliver three answers: the gcd returned via a return statement and the values x and

y. The declaration for the procedure (which we add to gcd.h) looks like this:

long gcd(long a, long b, long& x, long& y);

A recursive approach to solving the extended gcd problem works well. Suppose

we want to solve the extended gcd problem for positive integers a and b. We start by



48 C++ for Mathematicians

solving the extended gcd problem for b and c where c = a mod b. Let’s say we have

that solution so

d = gcd(b,c) = bx0 + cy0

for some integers x0,y0. We know that c is the remainder when we divide a by b;

that is,

a = qb+ c

where 0 ≤ c < b. Writing c = a−qb we have

d = bx0 + cy0

= bx0 +(a−qb)y0

= ay0 +b(x0 −qy0)
= ax+by

where x = y0 and y = x0 −qy0.

These ideas form the heart of the recursion. To construct the procedure, we need

to check special cases (a or b might be zero or negative). The code follows.

Program 3.11: Code for the extended gcd procedure.

1 long gcd(long a, long b, long &x, long &y) {
2 long d; // place to hold final gcd
3

4 // in case b = 0, we have d=|a|, x=1 or -1, y arbitrary (say, 0)
5 if (b==0) {
6 if (a<0) {
7 d = -a;
8 x = -1;
9 y = 0;

10 }
11 else {
12 d = a;
13 x = 1;
14 y = 0;
15 }
16 return d;
17 }
18

19 // if b is negative, here is a workaround
20 if (b<0) {
21 d = gcd(a,-b,x,y);
22 y = -y;
23 return d;
24 }
25

26 // if a is negative, here is a workaround
27 if (a<0) {
28 d = gcd(-a,b,x,y);
29 x = -x;
30 return d;
31 }



Greatest Common Divisor 49

32

33 // set up recursion
34 long aa = b;
35 long bb = a%b;
36 long qq = a/b;
37 long xx,yy;
38

39 d = gcd(aa,bb,xx,yy);
40

41 x = yy;
42 y = xx - qq*yy;
43

44 return d;
45 }

3.7 Exercises
3.1 Use the Euclidean algorithm to find d = gcd(51,289) and to find integers x

and y so that d = 51x+289y.

3.2 On page 39 we presented the following mostly correct procedure for comput-

ing factorials.

long factorial(long n) {
if (n==0) return 1;
return n*factorial(n-1);

}

This procedure, however, still has a bug. What is it?

3.3 Write a procedure to calculate the sign of its argument (the signum function).

That is, your procedure should calculate

sgnx =

⎧⎪⎨
⎪⎩

+1 if x > 0,

0 if x = 0, and

−1 if x < 0.

3.4 Write two procedures for producing the nth Fibonacci number when the num-

ber n is given as input. In one procedure, use a for loop and produce the

answer using iteration. In the second version, use recursion. The input argu-

ment and return value should be type long.

Use the following definition of Fibonacci numbers: F0 = F1 = 1, and Fn =
Fn−1 +Fn−2 for all n ≥ 2.

Have your procedure return −1 if the input argument is negative. Don’t worry

about overflow.



50 C++ for Mathematicians

3.5 Write a main to test the Fibonacci procedures you created in Exercise 3.4. Use

it to evaluate F20, F30, and F40.

You should find that one version is much faster than the other. Explain why.

Include in your explanation an analysis of how many times the recursive ver-

sion of your procedure gets called in order to compute Fn.

3.6 Write two procedures to calculate

f (N) =
N

∑
k=1

1

k2
.

Note that for N large, this approaches ζ (2) = π2/6.

The first procedure should calculate the sum in the usual order

1+
1

4
+

1

9
+ · · ·+ 1

N2

and the second should calculate the sum in the reverse order

1

N2
+

1

(N −1)2
+ · · ·+ 1

4
+1.

In both cases, use float variables for all real values.

Evaluate these sums for N = 106 and report which gives the better result.

(π2/6 ≈ 1.6449340668482264365.)

Explain.

3.7 Write procedures for converting between rectangular and polar coordinates

named xy2polar and polar2xy. Invoking xy2polar(x,y,r,t); should

take the rectangular coordinates (x,y) and save the resulting polar coordinates;

(r,θ) are r and t, respectively. The procedure polar2xy(r,t,x,y); should

have the reverse effect. Be sure to handle the origin in a sensible manner.

Of course, you need trigonometry functions to accomplish this task; consult

Appendix C (especially Appendix C.6.1) where you can find useful functions

such as atan2.

3.8 Every positive integer has a multiple that, when expressed in base ten, is com-

prised entirely of zeros and ones. Write a procedure to find the least multiple

of n, the input parameter, of the required form.

Warnings: If the long long type1 is available on your computer, use it. The

least multiple of the required form may be much larger than n. For example,

what is the least multiple of 9 that contains only zeros and ones? What is the

least such multiple of 99?

Design your procedure to detect overflow and return −1 if it is unable to find

the required multiple.

1Or int64.



Greatest Common Divisor 51

3.9 Write a procedure to find the gcd of three integers of the form

long gcd(long a, long b, long c);

and an extended version of the form

long gcd(long a, long b, long c, long& x, long& y, long& z);

that returns d = gcd(a,b,c) and populates the last three arguments with values

x,y,z such that ax+by+ cz = d.

You may use the gcd procedures developed in this chapter as part of your

solution.





Chapter 4

Random Numbers

In this chapter we discuss the generation random numbers in C++. The motivation

is the problem introduced in Section 3.1: let pn be the probability that two numbers,

sampled independently and uniformly from {1,2, . . . ,n} are relatively prime. What

can we say about pn as n → ∞?

In Chapter 3 we used direct enumeration to calculate pn for various values of n.

However, as n approaches 100,000, the time for the computer to complete the cal-

culation becomes excessive. This motivates us to find another attack. The approach

we take is to sample pairs of integers in {1,2, . . . ,n} at random and keep track of

how often we find that they are relatively prime. To do this, however, we require a

mechanism to generate (pseudo) random numbers.

4.1 Pseudo random number generation
We need a procedure that produces uniform random values in the set {1,2, . . . ,n}.

In this section, we develop such a procedure as well as a procedure to produce ran-

dom real values in an interval.

Before we begin, however, we need to understand that the computer does not pro-

duce random values. Instead, it provides a pseudo random number generator. This

is a procedure whose output looks random, but is actually deterministic. The sim-

plest type of random number generator is a linear congruential generator or LCG

for short. An LCG produces a series of integers x0,x1,x2, . . . by the following calcu-

lation,

xn+1 = (axn +b) mod c

where a,b,c are fixed positive integers. The method is specified fully once we choose

a value for x0. This first value is known as the seed.

Pseudo random numbers produced by an LCG behave in some ways as uniform

random values from {0,1, . . . ,c− 1}, but there are problems. For example, by the

pigeonhole principle, the sequence x0,x1,x2, . . . must repeat itself over and over. The

hope is that by taking c sufficiently large, this is not an issue.

A variety of more sophisticated pseudo random number generators have been pro-

posed and implemented each with various advantages and disadvantages. The impor-

tant point we need to keep in mind is that pseudo random numbers are not random,

53



54 C++ for Mathematicians

so we need to be mildly skeptical of the results they suggest and careful in how we

use them.

Standard C++ includes the rand procedure for producing pseudo random num-

bers. To use rand it is necessary to include the cstdlib library. A call to rand()

returns an integer value between 0 and a constant named RAND_MAX (inclusive). The

value of RAND_MAX is defined in the cstdlib header file. A typical value is 231 −1.

4.2 Uniform random values
It is possible to write programs so they call rand directly whenever a random

value is required. However, it is a good idea to create our own procedures that serve

as intermediaries between the program that requires a random value and rand. Why

do we need a middle man? Here are three good reasons.

• First, rand produces random values in a large discrete set. We might want a

random integer in a smaller set (such as {0,1} if we want to simulate a coin

flip) or we might want a uniform continuous value in the interval [0,1]. It is

convenient to have procedures that do each of these.

• Second, there are preferred methods to extract random values from rand. For

example, if we want to simulate a coin flip, it is tempting to write code such

as this: flip = rand()%2;. The problem is that the lowest-order bit of

random values from a pseudo random number generator might not behave

as you would expect. In the worst case, this last bit might simply oscillate

between 0 and 1, and such coin flips do not look random at all. We create a

better alternative one time and use that procedure henceforth.

• Some day you might decide that you prefer a different random number gen-

erator. Rather than editing all your programs to replace rand with the new

procedure, you only need to rewrite the intermediaries.

What do we want these procedures to do for us? We want to produce a random

real value uniformly in the interval [0,1], or more generally in an interval [a,b] where

a,b ∈ R. And we want to produce a random integer chosen uniformly from a finite

set of the form {1,2, . . . ,n}.

Because all of these return a random value that is uniformly distributed over its

domain, we name all three of these unif. This procedure name overloading is per-

missible because the three versions have different type arguments.

Program 4.1: Header file, uniform.h for procedures to generate uniform random

values.

1 #ifndef UNIFORM_H
2 #define UNIFORM_H



Random Numbers 55

3

4 /**
5 * Generate a random number between 0 and 1.
6 * @return a uniform random number in [0,1].
7 */
8 double unif();
9

10 /**
11 * Generate a random number in a real interval.
12 * @param a one end point of the interval.
13 * @param b the other end point of the interval.
14 * @return a uniform random number in [0,1].
15 */
16 double unif(double a, double b);
17

18 /**
19 * Generate a random integer between 1 and a given value.
20 * @param n the largest value this procedure can produce.
21 * @return a uniform random value in {1,2,...,n}.
22 */
23 long unif(long a);
24

25 /**
26 * Reset the random number generator based on the system clock.
27 */
28 void seed();
29

30 #endif

The three flavors of unif are declared on lines 8, 16, and 23. The first produces

a uniform real value in the interval [0,1], the second generalizes this and produces

a real value in an arbitrary interval [a,b], and the third produces an integer value

uniformly in {1,2, . . . ,n}.

In addition, we have declared a procedure named seed on line 28. The purpose of

seed is to initialize the random number generator from the system clock (more on

this later).

Let’s turn to implementing each of these starting with double unif(). A call to

rand() returns an integer between 0 and RAND_MAX. To convert this to a real value

in [0,1] we simply compute rand() / double(RAND_MAX);. (See lines 7–9 of

the file uniform.cc in Program 4.2 below.)

Once we have the double unif() version written, we use it to write the second

version. We simply multiply unif() by (b-a) and add a. See lines 11–13 in

uniform.cc.

For the integer version, we multiply the continuous unif() by a and convert to

an integer. This gives a value in {0, . . . ,a− 1}, so we add 1 to place the value into

the desired set. What if the user gives a negative or zero value for a? We have a

choice as to handling these undefined situations. See lines 15–19 of uniform.cc to

see our decision.

Now we consider the seed procedure. Because rand (and the procedures that

we wrote based on rand) returns an unpredictable stream of values, we might ex-



56 C++ for Mathematicians

pect that the programs we write would behave differently every time we run them.

Interestingly (and with good reason) this is not the case. Every time a program con-

taining rand is run, the rand procedure gives the same sequence of pseudo random

values. The reason is that the first time rand is invoked, it contains a fixed starting

value called the seed of the random number generator. The reason this behavior is

desirable is reproducibility. If you perform a computational experiment and wish to

report it in a journal, it is important that others can run the same program as you and

see the same results.

However, there are times when this reproducible behavior is undesirable. For

example, the motivating purpose of this chapter is to write code to generate many

pairs of integers in a set {1, . . . ,n} to see how frequently they are relatively prime.

We might want to run our program a few times with different streams of random

values so we can compare results.

The standard library (cstdlib) provides the procedure srand that is used to set

the seed used by rand. Calling srand(s), where s is a long integer, resets to the

seed to s. We could ask the user to provide a seed value like this:

long s;
cout << "Enter a seed for the random number generator --> ";
cin >> s;
srand(s);

Another solution, that is easier for the user, is to use the computer’s clock to provide

the seed. As long as we don’t run the program twice in the same second, a different

value is used for the seed.

The header ctime defines the procedure time. Calling time(0) returns the num-

ber of seconds that have elapsed since a specific date and time (on many computers,

that date and time is January 1, 1970 at 12:00 A.M. UTC). Our seed procedure sim-

ply takes the value1 returned by time(0) as input to srand. See lines 21–23 of

uniform.cc.

Program 4.2: Definitions of the unif procedures in uniform.cc.

1 #include "uniform.h"
2 #include <cstdlib>
3 #include <ctime>
4 #include <cmath>
5 using namespace std;
6

7 double unif() {
8 return rand() / double(RAND_MAX);
9 }

10

11 double unif(double a, double b) {
12 return (b-a)*unif() + a;
13 }

1To be precise, the procedure time returns a value of type time t. Your compiler might require you

to convert this to an unsigned integer before using it as an argument to srand. Replace line 22 with

srand(unsigned(time(0))); in this case.



Random Numbers 57

14

15 long unif(long a) {
16 if (a < 0) a = -a;
17 if (a==0) return 0;
18 return long(unif()*a) + 1;
19 }
20

21 void seed() {
22 srand(time(0));
23 }

4.3 More on pseudo random number generation
The integer version of unif used the expression long(unif()*a)+1 to pro-

duce a random value in {1, . . . ,a}. This is mildly convoluted because we have the

additional call to the continuous version of unif that calls rand and divides by

RAND_MAX. It is both simpler and more efficient simply to calculate 1 + rand()%a,

but this latter approach is less reliable.

The problem is that some older versions of the rand pseudo random number gen-

erator are purported to be unreliable, and the lower-order bits of the values produced

by rand do not behave well. One way to rectify this situation is to replace rand by

a better procedure.

To understand why the low-order bits of a random number generator might not

be good approximations of randomness, we develop our own linear congruential

generator (LCG) here. (And this gives us an opportunity to introduce additional C++

concepts.)

Recall that an LCG produces a stream of values x0,x1,x2, . . . where

xn+1 = (axn +b) mod c.

The LCG is fully specified once we select values for a, b, c, and x0. For our example,

we take

a = 17, b = 3, c = 64, and x0 = 0.

Suppose we call our procedure lcg. Each time we call lcg() it should return the

next x j value in the sequence. However, for this the procedure lcg needs to remem-

ber the previous x value. The following code does not work.

int lcg() {
int state = 0;
return (17*state + 3) % 64;

}

Every time this procedure is called, it returns the value 3. We need to indicate that

the variable state should only be initialized to zero the first time lcg is called.



58 C++ for Mathematicians

To do this, we declare the variable state to be static. The declaration looks

like this instead: static int state = 0;. With this declaration, the variable

state retains its value after the procedure lcg ends. (Without the static modifier,

the usual behavior is for variables to cease to exist once the procedure ends.) The

variable state is initialized to zero only the first time lcg is called. Henceforth, it

retains the value it held when lcg last terminated.

The return statement is fine as written (return (17*state + 3) % 64) but

there is a better way. The constants 17, 3, and 64 should be given names and declared

at the beginning of the procedure. For a short simple procedure such as lcg, this is

not an important issue. However, for more complicated procedures, giving constants

specific names makes the program easier to read and easier to modify. Imagine that

we write a program in which we are often reducing numbers modulo 64. Rather than

explicitly typing 64 repeatedly in the code, we can define a variable named theMod

set equal to 64 instead. Although typing theMod is longer than typing 64, if we ever

want to change the program so that theMod is now, say, 128, we only have to change

one line. The declaration of theMod looks like this:

const int theMod = 64;

The const modifier means that the procedure does not modify the value of theMod.

This enables the C++ compiler to generate more efficient object code and prevents

you from mistakenly putting theCode on the left-hand side of an assignment state-

ment.

Returning to the lcg procedure, we declare three variables (named a, b, and c) to

be type const int (see lines 12–14 of Program 4.3). The return statement is then

return (a*state+b) % c; which is easier to read. Later, if we wish to modify

the lcg program, we simply need to change the values we ascribe to a, b, or c at the

top of the procedure.

With the lcg procedure written, we create a short main() to test it out. The

main() calls lcg 20 times, reducing each return value modulo two. It then calls

lcg another 20 times, reducing each of those results mod four. Here is the full

program.

Program 4.3: A program to illustrate the problem with lower-order bits in an LCG.

1 #include <iostream>
2 using namespace std;
3

4 /**
5 * A sample linear congruential pseudo random number generator that
6 * returns values in {0,1,...,63}.
7 */
8 int lcg() {
9 static int state = 0;

10 const long a = 17;
11 const long b = 3;
12 const long c = 64;
13



Random Numbers 59

14 state = (a*state+b) % c;
15 return state;
16 }
17

18 /**
19 * This main calls lcg twenty times and prints out the value modulo
20 * two, and then prints twenty more values taken modulo four.
21 */
22 int main() {
23 cout << "Values mod 2: ";
24 for (int k=0; k<20; k++) {
25 cout << lcg()%2 << " ";
26 }
27 cout << endl;
28

29 cout << "Values mod 4: ";
30 for (int k=0; k<20; k++) {
31 cout << lcg()%4 << " ";
32 }
33 cout << endl;
34

35 return 0;
36 }

When this program is run, the following output is printed on the screen.

� �
Values mod 2: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Values mod 4: 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

� �

Clearly, the sequence of values we produce in this manner is far from random!

However, we can change the way we extract zeros and ones from lcg. Consider the

following alternative main.

int main() {
cout << "Values mod 2: ";
for (int k=0; k<20; k++) {

double x = lcg() / 64.;
cout << int(2*x) << " ";

}
cout << endl;
return 0;

}

Here we first produce a double value x in the range [0,1) by dividing the output of

lcg by 64. We then multiply x by 2 (so we are now somewhere in [0,2)) and then

cast to type int (so the value is now either 0 or 1). Here’s the result.

� �
Values mod 2: 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0

� �

As you can see, the output appears, at least superficially, more random.



60 C++ for Mathematicians

4.4 A Monte Carlo program for the GCD problem
We now present a simple program to estimate pn. The user selects n (thereby

specifying the set {1,2, . . . ,n} from which pairs of integers are to be drawn) and the

number of repetitions. The program generates the pairs, counts the number that are

relatively prime, and reports the frequency.

Program 4.4: A Monte Carlo approach to calculating pn.

1 #include "uniform.h"
2 #include "gcd.h"
3 #include <iostream>
4 using namespace std;
5

6 /**
7 * This main generates many pairs of values from the set {1,2,...,n}
8 * and reports how often the pairs are relatively prime. The value n
9 * and the number of pairs are specified by the user.

10 */
11

12 int main() {
13 long n; // max el’t in the set {1,2,...,n}
14 long reps; // number of times we perform the experiment
15 long a,b; // values chosen from {1,2,...,n}
16 long count; // number of pairs that are relatively prime
17

18 count = 0;
19

20 cout << "Enter n (maximum el’t of the set) --> ";
21 cin >> n;
22

23 cout << "Enter the number of pairs to sample --> ";
24 cin >> reps;
25

26 for (long k=1; k<=reps; k++) {
27 a = unif(n);
28 b = unif(n);
29 if (gcd(a,b) == 1) ++count;
30 }
31

32 cout << count / (double(reps));
33

34 return 0;
35 }

To begin, let’s run the program with n = 1000 for 10,000 repetitions. The session

looks like this:
� �
Enter n (maximum el’t of the set) --> 1000
Enter the number of pairs to sample --> 10000
0.6117

� �



Random Numbers 61

The program estimates p1000 ≈ 0.6117 which is reasonably close to the actual value

0.608383. If, however, we run the code for a million repetitions we get p1000 ≈
0.608932 which is correct to three decimal places.

We can use the program to estimate pn for n = 106. Running the program for 108

repetitions, we find pn ≈ 0.607979. How good is this estimate? When we perform

r independent repetitions of an experiment whose probability of success is p, the

expected number of successes is rp, but the standard deviation is on the order of
√

r.

In this case, r = 108, so
√

r = 104. So it is reasonable to suppose that the value of

pn we found is correct to four decimal places. To obtain greater accuracy, we need

either to increase the number of repetitions or (as we do in the next chapter) find a

better method for calculating pn.

One hundred million repetitions take a modest amount of time. It would be fea-

sible to run for a billion repetitions, but that would only give us another “half” digit

of accuracy. We might consider running for a trillion repetitions, but that would take

too long.

Here’s a reasonable rule of thumb for today’s computers. Programs that do mil-

lions of operations using millions of bytes of memory are quick. Programs that do

billions of operations take some time, but are feasible to run. Holding billions of

bytes in memory, however, is at the limit of today’s personal computers. However,

trillions of operations takes too long and most computers cannot hold trillions of

bytes of data in memory.

4.5 Normal random values
Before we leave the subject of random numbers, we expand our repertoire of the

types of random variables we can simulate. In Section 4.2 we developed code to pro-

duce discrete and continuous uniform random variables. Here, we produce normal

(Gaussian) random values.

The distribution of a normal random variable is based on the classic bell curve,

f (t) = exp(−t2). We need to modify the bell curve slightly so that the total area

under the curve is 1, the mean of the Gaussian is 0, and the standard deviation is 1.

To that end, we use the following for the density.

f (t) =
1√
2π

exp
(−t2/2

)
.

From this it follows (with a bit of work) that
∫

f (t)dt = 1,
∫

t f (t)dt = 0, and∫
t2 f (t)dt = 1 (integration over all of R).

We therefore define the Gaussian random variable X using f as its density, or

equivalently

Φ(x) = P[X ≤ x] =
∫ x

−∞
f (t)dt.



62 C++ for Mathematicians

The integrals at the end of the previous paragraph imply that X has mean zero and

standard deviation one; for this reason, X is also known as N(0,1)—a normal random

variable with mean zero and standard deviation one.

There is an efficient algorithm for producing Gaussian random values known as

the polar or Box–Muller method. One begins by generating a point (x,y) uniformly

at random in the unit disc. We then let

r = x2 + y2, μ =

√
−2logr

r
, Z1 = μx, and Z2 = μy.

Then Z1 and Z2 are independent N(0,1) Gaussian random variables. Here is a C++

program based on this method:

#include <cmath>
#include "uniform.h"
using namespace std;

double randn() {
double x,y,r;
do {

x = unif(-1.,1.);
y = unif(-1.,1.);
r = x*x + y*y;

} while (r >= 1.);

double mu = sqrt(-2.0 * log(r) / r);

return mu*x;
}

The do/while loop generates points (x,y) uniformly in the square [−1,1]2 until

one that is interior to the unit disk is found. Each pass through the loop has a π/4

chance of succeeding, so after just a few iterations we are assured of finding a point

chosen uniformly from the unit disk. Once the point (x,y) has been found, the rest

of the algorithm follows the Box–Muller method.

There is an inefficiency in this implementation. The algorithm is capable of pro-

ducing two independent normal random values. In our implementation we find one

of these values and simply ignore the other. We could make this procedure twice as

fast if there were a way to preserve that second normal value for the next call to this

procedure. To do this, we enlist the help of static variables.

The header file randn.h looks like this:

#ifndef RANDN_H
#define RANDN_H

#include "uniform.h"

double randn();

#endif

Here is the program file (randn.cc).



Random Numbers 63

Program 4.5: A program to generate Gaussian random values.

1 #include "randn.h"
2 #include <cmath>
3 using namespace std;
4

5 double randn() {
6 static bool has_saved = false;
7 static double saved;
8

9 if (has_saved) {
10 has_saved = false;
11 return saved;
12 }
13

14 double x,y,r;
15 do {
16 x = unif(-1.,1.);
17 y = unif(-1.,1.);
18 r = x*x + y*y;
19 } while (r >= 1.);
20

21 double mu = sqrt(-2.0 * log(r) / r);
22

23 saved = mu*y;
24 has_saved = true;
25

26 return mu*x;
27 }

The new version includes two static variables: a Boolean value has_saved and a

real value saved. The has_saved variable is set to false to show that the proce-

dure does not currently hold a saved Gaussian value (in saved). See lines 6–7.

At line 9 we check if there is a saved Gaussian value that we have not used yet. If

so, then we change has_saved to false and return the value in saved.

Otherwise (starting at line 14), we generate the two Gaussian values Z1 and Z2

by the polar method. We save Z2 in saved and set the flag has_saved to true.

Finally, we return Z1.

The statements on lines 14–21 are the time-consuming part of this procedure. By

saving the second Gaussian value generated by the polar method, the slow part is

only executed on every other invocation of the procedure. This makes the procedure

nearly twice as fast.

4.6 Exercises
4.1 Suppose two points are chosen uniformly at random within the unit square

[0,1]2. Write a program to estimate the expected (average) length of the seg-



64 C++ for Mathematicians

ment joining such points.

4.2 Buffon’s Needle. Imagine a needle is dropped at random onto a floor painted

with equally spaced parallel lines. The length of the needle is the same as the

distance between the lines.

Write a program that simulates dropping the needle and that counts the number

of times the needle crosses one of the lines drawn on the floor.

If you wish to use standard trigonometry functions, such as cos, or the floor

function, insert a #include <cmath> directive at the start of your program.

See Appendix C.6.1.

4.3 Sylvester’s Four-Point Problem. Let K be a compact convex subset of the plane

with nonempty interior. Let P(K) denote the probability that when four points

are chosen independently and uniformly in K, then they lie at the vertices of a

convex quadrilateral (as in the left portion of the illustration but not the right).

Write procedures to (a) generate a point uniformly at random inside a circle,

(b) generate a point uniformly at random inside a triangle, and (c) test whether

four points determine the vertices of a convex quadrilateral.

Use your procedures to estimate P(K) for the cases where K is a circle or a

triangle.

4.4 Random point on a circle. Suppose you wish to generate a point uniformly

at random on the unit circle, {(x,y) : x2 + y2 = 1}. Suppose the procedure is

declared like this:

void point_on_circle(double& x, double& y);

Here are two ways you might implement this procedure.

First, you can generate a uniform [0,1] value that you multiply by 2π; call the

result θ . Then set x and y to be cosθ and sinθ .

Alternatively, you can generate a point in the interior of the unit ball by the

rejection method. [That is, pick points (x,y) ∈ [0,1]2 until you find one that

satisfies x2 + y2 ≤ 1.] Then rescale by dividing by
√

x2 + y2.

Which do you think is faster? Create two versions of the procedure and time

how long it takes each to generate 100 million points.



Random Numbers 65

4.5 Random point on a sphere. Continuing Exercise 4.4, we consider the issue of

generating a point at random on the surface of a sphere in R
3 and in higher

dimensions.

One way to generate a point on the unit sphere in R
3 is to generate x,y,z

uniformly in [−1,1]. If x2 + y2 + z2 ≤ 1, then we scale by 1/
√

x2 + y2 + z2 to

generate the point. Otherwise, we generate another triple and try again.

What is the probability of successfully generating a point during a given itera-

tion?

Next, explain why this procedure is woefully inefficient in high-dimensional

space. Try to create an alternative method.

4.6 Create a procedure int random_walk(); that simulates a random walk on

the integers. That is, random_walk() returns the position of a particle whose

initial position is 0. Each time random_walk() is called, the particle moves

one step left or right, each with probability 50%. The return value is the new

position of the particle.

For example, calling random_walk 20 times might produce the following

values.
� �
1 0 1 2 3 4 5 4 5 4 3 4 3 4 3 4 3 2 3 2

� �

4.7 Write a pair of procedures int up() and int down() that behave as fol-

lows. When up() is called, a certain value is increased by 1 and the new value

is returned. Similarly, when down() is invoked, the value is decreased by 1

and that new value is returned. At the start of the program, the value is zero.

For example, suppose we run the following code.

cout << up() << " ";
cout << up() << " ";
cout << up() << " ";
cout << down() << " ";
cout << up() << " ";
cout << down() << endl;

Then the following output is produced.
� �
1 2 3 2 3 2

� �





Chapter 5

Arrays

In Chapter 3 we introduced the following problem. Let pn be the probability that

two integers, chosen uniformly and independently from {1,2, . . . ,n}, are relatively

prime. What can we say about pn as n → ∞? We computed pn for various values of

n by direct enumeration. As n approached 105, the program became slow and so we

sought another approach.

In Chapter 4 we tried a Monte Carlo approach. Although our program enables us

to estimate pn for n equal to one million (or larger), to get decent accuracy we need

to run the program for too many iterations.

In this chapter we take another approach using Euler’s totient.

5.1 Euler’s totient
Euler’s totient is a function ϕ defined on the positive integers. For n ∈ Z

+, we

define ϕ(n) to be the number of elements of {1,2, . . . ,n} that are relatively prime to

n. For example, ϕ(10) = 4 because the only integers between 1 and 10 (inclusive)

that are relatively prime to 10 are 1, 3, 7, and 9.

Euler’s totient has immediate relevance to our problem. We want to count the

number of pairs (a,b) with 1 ≤ a,b ≤ n and gcd(a,b) = 1. Alternatively, we can

count the number of such pairs with a ≤ b. Of course, we miss the pairs with a > b,

so we would just double the result and subtract one (for double-counting the pair

(1,1)). Symbolically, we have

pn =
1

n2

[
−1+2

n

∑
k=1

ϕ(k)

]
.

We can calculate ϕ(k) by considering all the integers from 1 to k and check which

are relatively prime to k. This, however, would lead to an algorithm that is no differ-

ent from the one in Chapter 3.

Fortunately, there are more efficient ways to calculate ϕ .

We begin our analysis of Euler’s totient with a few special cases.

If p is a prime, then all but one member of the set {1,2, . . . , p} are relatively prime

to p. Therefore ϕ(p) = p−1.

67



68 C++ for Mathematicians

Next consider ϕ(p2) for a prime p. In the set {1,2, . . . , p2} the only numbers

that are not relatively prime to p2 are the multiples of p, and there are p of those.

Therefore ϕ(p2) = p2 − p = p(p−1).
More generally, consider ϕ(pn) where p is prime and n ∈ Z

+. In {1,2, . . . , pn}
only the multiples of p are not relatively prime to pn, and there are pn−1 of those.

This gives the following.

Proposition 5.1. Let p be a prime and let n be a positive integer. Then ϕ(pn) =
pn − pn−1 = pn−1(p−1).

Now that we have examined ϕ for powers of primes, let us examine the special

case ϕ(77). Note that for 1 ≤ n ≤ 77, we have

gcd(n,77) = 1 ⇐⇒ gcd(n,7) = 1 and gcd(n,11) = 1.

By Proposition 3.1,

gcd(n,7) = gcd(7,n mod 7) and gcd(n,11) = gcd(11,n mod 11).

Let n1 = n mod 7 and n2 = n mod 11. If n is relatively prime to 77 and

x ≡ n1 (mod 7) and x ≡ n2 (mod 11)

then x is also relatively prime to 77. Furthermore, there is a unique such x in

{1,2, . . . ,77}; this is a consequence of the Chinese Remainder Theorem.

Theorem 5.2 (Chinese Remainder). Let a and b be relatively prime positive integers,
and let c,d ∈ Z. Then the system of congruences

x ≡ c mod a

x ≡ d mod b

has a unique solution in {1,2, . . . ,ab}.

So, every x ∈ {1,2, . . . ,77} that is relatively prime to 77 satisfies a pair of congru-

ences of the form

x ≡ n1 (mod 7) and x ≡ n2 (mod 11)

where n1 is relatively prime to 7 and n2 is relatively prime to 11. Conversely, for

every pair (n1,n2) with (a) 1 ≤ n1 ≤ 7, (b) 1 ≤ n2 ≤ 11, (c) gcd(n1,7) = 1, and

(d) gcd(n2,11) = 1, there is a unique x between 1 and 77 that satisfies the above

congruences and is relatively prime to 77.

Therefore ϕ(77) equals the number of choices for (n1,n2), and that is precisely

ϕ(7)×ϕ(11) = 6×10 = 60.



Arrays 69

A careful reading of the analysis of ϕ(77) reveals that the only facts we used about

7 and 11 is that they are relatively prime. Thus the argument can be rewritten to give

a proof of the following.

Proposition 5.3. If a and b are relatively prime, then ϕ(ab) = ϕ(a)ϕ(b).

From these propositions we derive the following formula for ϕ(n).

Theorem 5.4. Let n be a positive integer and let p1, p2, . . . , pt be the distinct prime
divisors of n. Then

ϕ(n) = n
(

1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pt

)
.

Proof. We factor n into primes as

n = pe1
1 pe2

2 · · · pet
t

where the p j are distinct primes and the e j are positive integers. By Propositions 5.3

and 5.1 we have

ϕ(n) = ϕ(pe1
1 )ϕ(pe2

2 ) · · ·ϕ(pet
t )

=
(

pe1−1
1 (p1 −1)

)(
pe1−1

2 (p2 −1)
)
· · ·

(
pet−1

t (pt −1)
)

= pe1
1

(
1− 1

p1

)
pe2

2

(
1− 1

p2

)
· · · pet

t

(
1− 1

pt

)

= n
(

1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pt

)
.

Thus, if we know the prime factors of n, we can calculate ϕ(n). This results steers

the discussion for the rest of this chapter. We begin by developing algorithms to

factor long integers. We create a factor procedure that produces the full prime

factorization of an integer; we use an array to hold the result.

5.2 Array fundamentals
The first goal of this chapter is to create a procedure that takes an integer and gives

us a list of the prime factors of that integer. For example, if the integer is 120, then

the list of prime factors is (2,2,2,3,5).
There are several ways to hold lists in C++. The most primitive method is to use

an array. An array is simply a list of values of a given type. To declare an array of,

say, long integers, we use a statement such as this:

int vals[10];



70 C++ for Mathematicians

This declares val to be an array of ten1 integers. The elements of the array are

indexed starting from zero. That is, the ten elements of val are these:

val[0] val[1] val[2] val[3] val[4]
val[5] val[6] val[7] val[8] val[9]

Each of these behaves exactly as does a long variable. One can have statements such

as val[3]=2*val[0]+val[5]; or ++val[7];. Elements of an array are accessed

using square brackets, not parentheses. If an array is declared to have n elements,

the first is always indexed by subscript 0 and the last by subscript n−1. Element n
of such an array is not defined.

To print out all the members of an array, one can use a for loop:

for (int k=0; k<10; k++) {
cout << val[k] << endl;

}

However, the following does not work: cout << val << endl;. This does not

print the values of the val array, even though it is legal C++. Furthermore, arithmetic

operations on elements of an array must be specified element by element. If you

wish to increase every element of an array by one, you need a statement such as this:

for(int k=0; k<10; k++) val[k]++;. Unfortunately, the statement val++;

is not illegal, but it does not do what you might want or expect. If alpha and beta

are two arrays, the expression alpha==beta does not determine if corresponding

elements in the arrays are equal, but the compiler might not complain because it is a

legal C++ expression.

Worse yet, if val is an array of ten elements, then only val[0] through val[9]

are legitimate array elements. Surprisingly, using val[10] or val[17] is not pre-

vented, but severe problems may result from accessing elements beyond the normal

bounds of an array.

The C++ array is the most computationally efficient mechanism for storing a list,

but it is not the only manner. We explore several alternatives in Chapter 8.

It is helpful to have a basic understanding the underlying mechanism by which

arrays work. To do that, we need to mention the concept of a pointer. In this book

we scrupulously avoid dealing with pointers; they are confusing and easily lead to

subtle programming errors. However, we do need to be at least vaguely aware that

C++ uses pointers. What is a pointer? A pointer is a variable whose value is a

location in the computer’s memory. Each byte of a computer’s memory is numbered,

and a pointer holds such a number. In the case of arrays, the name of the array is

actually a pointer to the location of the first element of the array (e.g., the memory

location that holds val[0]). So a statement of the form val++; changes the pointer

val so that it now points to a different location in memory. (In fact, it would now

point to the location of val[1] but this is more than we want or need to know right

now.) A statement of the form cout << val << endl; prints out the location

1Of course, we can declare an array to hold hundreds or thousands of elements. However, some compilers

place a limit on the maximum size of an array. There is a simple way to exceed that limit and this is

explained in the footnote accompanying Program 5.8 on page 82.



Arrays 71

number where the first element (with subscript zero) of val is housed. Try it! You

should get a result that looks something like this: 0xbffffa20. The leading 0x is

C++’s way of indicating that the number that follows is in base-16. The remainder is

the number in standard base-16 (where a is a digit equal to ten, b is a digit equal to

eleven, and so on).

When you declare an array with a statement such as int val[10]; the computer

sets aside a block of memory to hold ten ints. When you refer to, say, val[3], the

computer figures out where in memory this quantity sits by adding 3*sizeof(int)

to the base address val.

You may be thinking: Why do I need to know all this stuff?!? Mostly, you do not

need to worry about this. The important things you need to know are these.

• Array elements are indexed starting from 0.

• Operations cannot be performed on arrays as a whole; you need to operate on

the elements of arrays individually.

• The name of the array is a valid C++ entity. Once declared, the only informa-

tion that the name of the array carries is the location in memory of the start of

the array and the type of elements held in the array.

The third point is important when we write procedures that have array arguments.

In the next section we develop a procedure called factor that takes two arguments.

The first is the integer we want to factor. The second is an array to hold the prime

factors.

5.3 A procedure to factor integers
In this section we develop a procedure to factor integers. The input to the pro-

cedure is a long integer, n. The procedure gives us two results: an array holding

the prime factors and an integer telling us how many prime factors (multiplicities

counted) we found. For example, if the number to be factored is 20, the procedure

finds that the factors are (2,2,5) and that there are three prime factors.

We use C++’s return statement to report on the number of factors found. How-

ever, the return mechanism does not work for arrays. Instead, we give the proce-

dure an array in the argument list.

The declaration of the factor procedure is this:

long factor(long n, long* flist);

The first argument, n, is the number we want to factor. The second argument, flist,

is an array to hold the answer (the factors of n). The type of flist is long*. The

star indicates that flist is an array. (Technically, the star signifies that flist is a

pointer.) The long to the left of the word factor signifies that factor returns a

long integer—the number of prime factors found.



72 C++ for Mathematicians

The technicality that flist is a pointer is relevant to us only in this regard. Al-

though C++ uses call by value as its standard way to pass arguments to procedures,

the array flist is not copied to the factor procedure. Instead, the location (i.e.,

pointer) of the array is sent. Therefore the factor procedure is capable of modifying

the elements of flist in the procedure that called flist.

The factor procedure has no mechanism to ensure that the array flist contains

enough elements to hold the primes found. It is the responsibility of the user to be

sure that the array is large enough to hold the answers. If the size of your computer’s

long integers is 4 bytes, then these integers are less than 232. Therefore, no long

can have more than 32 factors. Perhaps you have a computer in which long integers

are 64 bits; in that case, if flist has at least 64 elements, no problem can arise. This

means the procedure that calls factor should look something like this:

long prime_factors[200];
long nfactors;

nfactors = factor(60, prime_factors);

After this code runs nfactors holds 4 and the array prime_factors holds the

values 2, 2, 3, and 5 in positions 0 through 3, respectively. Positions 4 through 199

are unaffected by this call to factor.

It is time to design the factoring algorithm. We begin by handling exceptional

cases. What if the user sends a negative number or zero to be factored? For negative

values, we can simply replace the argument by its absolute value. Asking to factor

zero is asking for trouble. Returning a value of 0 is not quite right, because that is

what we would return when we are asked to factor 1. Returning a positive value is

also misleading. We settle for the unhappy choice of returning the value −1 in case

the user requests a prime factorization of 0.

If we are asked to factor 1, we simply report there are no prime factors (i.e.,

return 0;).

So we suppose that n ≥ 2. The method we use to factor n is this. We check if

n is divisible by 2. If so, we record 2 in the first element (index zero) of flist

and replace n by n/2. We keep track of where we last wrote into the flist array

with a variable we name idx. Initially idx equals zero. Once we record a prime

in flist[idx] we then increase idx by 1. We keep doing this until n is no longer

divisible by 2.

At that point, we check n for divisibility by 3. We continue dividing until no

factors of 3 remain. With each factor of 3 that we find, we record a 3 in flist[idx],

advance idx by one, and replace n by n/3.

It would be logical to next try divisibility by 5, but C++ does not “know” that 5 is

the next prime. Instead, we try divisibility by 4 which, of course, fails because we

have already divided out all of n’s factors of 2.

We continue in this manner, trying a divisor until it is exhausted and then advanc-

ing to the next divisor. When do we stop? Once we have divided out all of n’s prime

factors, it equals 1; that’s when we stop.

The algorithm is depicted in the flowchart in Figure 5.1.



Arrays 73

� � � � � � � � � 	 � � 
 � � � �  � � � � � � � 
 � � � � � �

� � � � � � � � � � � 
 � � � � 
 �  � 	 � � � � � � � � � � � � �

� � � � � � � � � � � � � 
 � � � � � �  � � �

� �


 � � � �

 �  � � � ! � � � � 
 � � 	 � � �

" � � � � 
 � � � � �  � � � �

� 
 � ! # � �  � � � � � �  � � � �

$ % &

'  � � �

� � � � � �


 �

( )

� 
 * � � � � � � # � � �

� � � � � � 
 � � � � � + � � � ,

� 
 � � 
 * � � � � � � � � # � � �

" � � � � * � 
 # � 
 - � �

$ % &

( )

Figure 5.1: A flowchart for the factoring algorithm.

We are now ready to implement this procedure in C++. To begin, we write the

header file, factor.h.

Program 5.1: Header file factor.h for the first version of the factor procedure.

1 #ifndef FACTOR_H
2 #define FACTOR_H
3

4 /**
5 * Factor an integer n. The prime factors are saved in the second
6 * argument, flist. It is the user’s responsibility to be sure that
7 * flist is large enough to hold all the primes. If n is negative, we
8 * factor -n instead. If n is zero, we return -1. The case n equal to
9 * 1 causes this procedure to return 0 and no primes are saved in

10 * flist.



74 C++ for Mathematicians

11 *
12 * @param n the integer we wish to factor
13 * @param flist an array to hold the prime factors
14 * @return the number of prime factors
15 */
16 long factor(long n, long* flist);
17

18 #endif

Next is the C++ source code.

Program 5.2: Source file factor.cc for the first version of the factor procedure.

1 #include "factor.h"
2

3 long factor(long n, long* flist) {
4

5 // If n is zero, we return -1
6 if (n==0) return -1;
7

8 // If n is negative, we change it to |n|
9 if (n<0) n = -n;

10

11 // If n is one, we simply return 0
12 if (n==1) return 0;
13

14 // At this point we know n>1
15

16 int idx = 0; // index into the flist array
17 int d = 2; // current divisor
18

19 while (n>1) {
20 while (n%d == 0) {
21 flist[idx] = d;
22 ++idx;
23 n /= d;
24 }
25 ++d;
26 }
27 return idx;
28 }

Lines 5–12 deal with the exceptional cases.

Line 16 sets up the variable idx. Throughout the procedure idx contains the index

of the next location in the flist array where we record the prime factors. We set

idx equal to zero so the first prime we record goes into the first element of flist.

Line 17 sets up the variable d. This is the current divisor we are testing.

The heart of the procedure lies in lines 19–26. We keep trying to find factors of n

as long as there are factors to be found (i.e., as long as n holds a value greater than

1). On line 20 we test n for divisibility by d. If successful, we record d in the array

flist at location idx, increase idx by one so it refers to the next available cell in

flist, and divide out the factor of d from n. We keep doing this until n is no longer

divisible by d. At that point, we increase d by one and continue.



Arrays 75

At the end, idx has been increased once for every prime factor we found. So we

simply return its value at line 27.

Here is a main to test the factor procedure. This program prints out the prime

factorization of all integers from 1 to 100.

Program 5.3: A main to test the factor procedure.

1 #include "factor.h"
2 #include <iostream>
3 using namespace std;
4

5 /**
6 * A program to test the factor procedure.
7 */
8

9 int main() {
10

11 long flist[100]; // place to hold the factors
12

13 for (long n=1; n<=100; n++) {
14 int nfactors = factor(n,flist);
15 cout << n << "\t";
16 for (int k=0; k<nfactors; k++) cout << flist[k] << " ";
17 cout << endl;
18 }
19 }

On line 11 we declare flist to hold 100 long integers. The for loop on lines

13–18 requests that we factor n for all values from 1 to 100. The call to factor is

on line 14. We save the number of factors found in a variable named nfactors and

the factors themselves populate the elements of the array flist.

Line 15 prints the current value of n and then a tab character. The sequence \t

stands for a tab; this way the list of factors ends up nicely arranged.

Line 16 prints out the factors of n separated by spaces and then line 17 starts a

new line on the screen.

The output looks like this.
� �
1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3
10 2 5
11 11

(many lines deleted)
95 5 19
96 2 2 2 2 2 3
97 97



76 C++ for Mathematicians

98 2 7 7
99 3 3 11
100 2 2 5 5

� �

5.4 A procedure to calculate Euler’s totient
With the factor procedure built, our next step is to build a procedure to calculate

Euler’s totient. The totient procedure takes a long argument (n) and returns a

long result (ϕ(n)). Here is the header file totient.h.

Program 5.4: Header file for the totient procedure.

1 #ifndef TOTIENT_H
2 #define TOTIENT_H
3

4 /**
5 * Euler’s totient function.
6 * @param n the number whose totient we seek
7 * @return the number of elements in {1,2,...,n} that are relatively
8 * prime to n.
9 */

10

11 long totient(long n);
12

13 #endif

We use Theorem 5.4 to design the totient procedure. For example, let n =
36,750. Factoring n gives 36,750 = 2×3×5×5×7×7. Then

ϕ(n) = (2−1)× (3−1)×5×5× (5−1)×7× (7−1) = 8400.

If the prime p appears e times in the factorization of n, then in ϕ(n) it contributes

pe−1 × (p−1).
The procedure to calculate ϕ(n) begins by factoring n and saving the result in an

array, flist. We then step through flist one element at a time. If flist[k]

equals flist[k+1], then we multiply by flist[k]; otherwise, we multiply by

flist[k]-1. To do this, we use an expanded version of the if statement. The

expanded version is called an if-else statement and is structured like this:

if (condition) {
statements1;

}
else {

statements2;
}

When this structure is encountered, the condition is evaluated. If it evaluates to

TRUE then statements1 are executed and statements2 are skipped. However, if



Arrays 77

condition evaluates to FALSE, then statements1 are skipped and statements2

are executed.

We need to be careful when we reach the end of the array; we do not want to

access the element past the end of the array.

Here is the code.

Program 5.5: The code for the totient procedure.

1 #include "totient.h"
2 #include "factor.h"
3

4 long totient(long n) {
5 // handle special cases
6 if (n <= 0) return 0;
7 if (n == 1) return 1;
8

9 // factor n
10 long flist[100];
11 long nfactors = factor(n,flist);
12

13 long ans = 1;
14

15 for (long k=0; k<nfactors; k++) {
16

17 if (k < nfactors-1) {
18 if (flist[k] == flist[k+1]) {
19 ans *= flist[k];
20 }
21 else {
22 ans *= flist[k]-1;
23 }
24 }
25 else {
26 ans *= flist[k]-1;
27 }
28 }
29 return ans;
30 }

After factoring n, we set up a variable named ans that holds the result to be re-

turned (line 13).

Lines 15–28 form the core of the procedure. This is a for loop that steps through

the array flist. If we are not yet at the last element of the array (checked on line 17)

we compare the current element of the array and the next element of the array for

equality. If they are equal, we multiply ans by flist[k] (line 19) but otherwise

(see the else on line 21) we multiply by flist[k]-1 (line 22).

If we are at the last element of the array (the else on line 25), then the proper

factor is flist[k]-1.

We test the totient procedure with this simple main:

#include "totient.h"
#include <iostream>
using namespace std;



78 C++ for Mathematicians

/**
* A program to test the totient procedure.

*/
int main() {

for (int k=1; k<=100; k++) {
cout << k << "\t" << totient(k) << endl;

}
return 0;

}

The resulting output looks like this:
� �
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4
11 10

(many lines omitted)
90 24
91 72
92 44
93 60
94 46
95 72
96 32
97 96
98 42
99 60
100 40

� �

5.5 The Sieve of Eratosthenes: new and delete[]
The totient procedure we developed in the previous section works well, but

relies on an inefficient factoring procedure. Because we expect to be calculating

ϕ(k) for millions of different values of k, it is worth the effort to make the procedure

as efficient as possible.

One of the inefficiencies in the factor procedure arises from the lack of a table

of prime numbers. If we had a table of prime numbers we could avoid wasted steps.

If we only needed to factor one number or only wanted one value of ϕ , it might not

be worth the effort. However, because we plan to compute ϕ millions of times, we

can greatly increase the speed of our program by first building a table of primes.



Arrays 79

An efficient method to build a table of primes is known as the Sieve of Eratos-
thenes. To find all the primes up to some value N, we write down all the integers

from 2 up to N (we skip 1). We circle 2 (it’s prime) and then cross off all other

multiples of 2. The first unmarked number is 3. We circle 3 then cross off all other

multiples of 3. Notice that 4 is crossed off, so the next unmarked number is 5. We

circle 5, and then cross off all other multiples of 5. We continue in this manner until

we reach N. At the end, the circled numbers are exactly the primes; every other entry

in the table has been crossed off. The algorithm is illustrated in Figure 5.2.

2 3 54 6 7 8 9 10 11 12

2 3 54 6 7 8 9 10 11 12

2 3 54 6 7 8 9 10 11 12

2 3 54 6 7 8 9 10 11 12

2 3 54 6 7 8 9 10 11 12

Figure 5.2: Illustrating the Sieve of Eratosthenes algorithm.

We now create the sieve procedure. In a header file, sieve.h we declare the

procedure as follows.

Program 5.6: The header file for a procedure to build a table of primes via the Sieve

of Eratosthenes.

1 #ifndef SIEVE_H
2 #define SIEVE_H
3

4 /**
5 * The Sieve of Eratosthenes: Generate a table of primes.
6 *
7 * @param n upper limit on the primes (i.e., we find all primes
8 * less than or equal to n).
9 * @param primes array to hold the table of primes.

10 * @return the number of primes we found.
11 */
12

13 long sieve(long n, long* primes);
14

15 #endif

The parameter n is an upper bound on the primes we seek. The array primes

is a place to hold the primes found by the procedure. It is the responsibility of the

procedure that calls sieve to make sure that primes is big enough to hold the array.



80 C++ for Mathematicians

For example, if we wish to generate all primes up to ten million (107), how big

does primes need to be? The prime number theorem gives us an estimate. The

number of primes less than or equal to n is approximately n/ logn. In the case n =
107, this gives an estimated 620,421 primes. In fact, the number is a bit higher:

664,579 to be exact. To be safe, the calling procedure should make sure that primes

is (say) 1.5 times the estimate in the prime number theorem.

The code for the sieve procedure introduces a new idea. The procedure requires

an array to hold the sieve. If n is 107, then this table requires 107 entries. For

efficiency’s sake, we want the individual entries in the table to use as few bytes as

possible. We could declare this table to be made up of short integers, but the char

type is only one byte on most systems. Let’s call the table theSieve. We may be

tempted to begin our program as follows.

long sieve(long n, long* primes) {
char theSieve[n]; // array for the sieve

Unfortunately, this is illegal. In declaring an array, the size of the array must be a

constant; it may not be a number that can’t be known until the program is run.

We could declare theSieve to be a huge array (say, of size ten million). However,

if we wish to use this procedure for larger values of n we would need to rewrite the

program.

A better solution is to create an array using C++’s new operator. This operator

allows us to create an array whose size is determined when the program is running.

The beginning of the sieve procedure looks like this:

long sieve(long n, long* primes) {

if (n<2) return 0; // no primes unless n is at least 2.

char* theSieve;
theSieve = new char[n+1]; // hold the marks

The initial if statement handles the case when a user might call sieve with, say, n

negative. The next two lines are the interesting part.

The line char* theSieve; declares theSieve to be a name that can refer to

an array of chars. However, this name may not be used yet because the array is

not created. The star on the type name char is important; without it, the name

theSieve would refer to a single character, not an array.

At this point we have a name to use for the array, but no space in memory to hold

the array. The next line allocates the space. The statement

theSieve = new char[n+1];

does two things. First, it requests a block of n+1 pieces of memory, each big enough

to hold a char. Second, it causes theSieve to refer to the start of that block of

memory. In the program, we want to use the entries up to theSieve[n]; this is why

we requested n+1 array elements.

There is an important difference between an array that is declared with the usual

sort of statement (such as long primes[10];) and an array that is created with new

(such as long* primes = new long[10];). Arrays created with the standard



Arrays 81

declaration automatically disappear when the procedure in which they are defined

exits; at that point, the memory they use is automatically freed to be used by other

parts of the program. However, an array allocated using the new statement remains

reserved until it is explicitly released.

A block of memory allocated by the use of new must later be released with a

delete[] statement like this:

delete[] theSieve;

There must be one and only one delete[] balancing each use of new. If the

delete[] is missing, the array persists until the program exits. If one has repeated

requests to new (without matching delete[]s), then more and more memory is

tied up in arrays until the computer runs out of memory to honor the requests. This

situation is known as a memory leak.

On the other hand, if one tries to perform a delete[] on the same block of

memory more than once, the gates of the underworld will open and demons will rule

the earth. Or your program might crash.

The sieve program follows.

Program 5.7: The sieve procedure.

1 #include "sieve.h"
2

3 long sieve(long n, long* primes) {
4

5 if (n<2) return 0; // no primes unless n is at least 2.
6

7 char* theSieve;
8

9 theSieve = new char[n+1]; // hold the marks
10

11 // Names of marks to put in theSieve
12 const char blank = 0;
13 const char marked = 1;
14

15 // Make sure theSieve is blank to begin
16 for (long k=2; k<=n; k++) theSieve[k] = blank;
17

18 long idx = 0; // index into the primes array
19

20 for (long k=2; k<=n; k++) {
21 if (theSieve[k]==blank) { // we found an unmarked entry
22 theSieve[k] = marked; // mark it as a prime
23 primes[idx] = k; // record k in the primes array
24 idx++;
25

26 // Now mark off all multiples of k
27 for(long d=2*k; d<=n; d+=k) theSieve[d] = marked;
28 }
29 }
30 delete[] theSieve;
31 return idx;
32 }



82 C++ for Mathematicians

Line 9 allocates the array theSieve. The matching delete[] is on line 30.

On lines 12 and 13 we create names for the marks we use in the array theSieve.

We use two types of mark to distinguish the two types of cells: blank cells and

marked cells. We could have simply used the values 0 and 1 in the program, but

unnamed constants are to be shunned. By giving these names we make the code

more understandable. The const qualifier in the declaration tells the compiler that

these values, blank and marked, never change. This does two good things. It

prevents us from accidentally writing code that would change these symbols and it

enables the compiler to produce more efficient object code.

Line 16 ensures that the array theSieve is entirely populated with blank (i.e.,

zero) before we begin. In a perfect world arrays are given to you filled with sensible

default values (such as zero). However, it is folly to rely on this. An initial run

through the array to make sure it is in the state we hope is quick and easy.

The variable idx on line 18 is an index into the array primes. It refers to the

next available cell in primes at all points in the program. At the end, it will have

been incremented once for every prime we record, and so it will hold the number of

primes found. That is why we use idx as the return value on line 31.

The sieving takes place on lines 20–29. When we come to an entry k in theSieve

that is blank it must be a prime. We mark that location, record the number k in

primes (and increment idx). Then (line 27) we place a mark in every cell that is a

multiple of k.

Here is a main to test the sieve procedure.2

Program 5.8: A program to test the sieve procedure.

1 #include "sieve.h"
2 #include <iostream>
3 using namespace std;
4

5 const long N = 10000000; // ten million
6 const long TABLE_SIZE = 800000; // prime number theorem overestimate
7

8 /**
9 * A program to test the sieve procedure.

10 */
11

12 int main() {
13 long primes[TABLE_SIZE];
14 long np = sieve(N,primes);
15

16 cout << "We found " << np << " primes" << endl;
17

18 cout << "The first 10 primes we found are these: " << endl;

2Note: On Windows computers this program might crash because of line 13. Some computers place a

limit on the maximum size array one can declare. The solution is to allocate large arrays dynamically. That

is, replace line 13 with this: long* primes; primes = new long[TABLE SIZE]; Remember

to delete[] primes; before the end of the program.



Arrays 83

19 for (long k=0; k<10; k++) cout << primes[k] << " ";
20 cout << endl;
21

22 cout << "The largest prime we found is " << primes[np-1] << endl;
23

24 return 0;
25 }

Finding all the primes up to ten million is quick. The output from the program

appeared on my screen in under four seconds.
� �
We found 664579 primes
The first 10 primes we found are these:
2 3 5 7 11 13 17 19 23 29
The largest prime we found is 9999991

� �

5.6 A faster totient
With a table of primes at our disposal, we can calculate ϕ(n) without first factoring

n; here’s how. For each prime p in the table, we check if p divides n. If so, we replace

n by (n/p)(p−1). In the end, we have calculated

n
(

p1 −1

p1

)(
p2 −1

p2

)
· · ·

(
pt −1

pt

)

which, by Theorem 5.4, is ϕ(n).
The procedure we create has two arguments. The declaration of this function (in

the file totient.h) looks like this:

long totient(long n, const long* primes);

Ignore the const keyword for a moment.

The first argument is n: the number for which we wish to calculate ϕ .

The second argument is a table of primes. The type of this argument is long*
which indicates that primes holds the starting position of an array of long integers.

The table of primes is not duplicated; what we pass to the totient procedure is the

address of the table.

The procedure returns a long: the totient of n.

Now we consider the extra word const in the declaration. When we pass an

array to a procedure it is possible for the procedure to change the values held in the

array. Indeed, we relied on that fact when we created the sieve procedure. Recall

that sieve is declared as long sieve(long n, long* primes);. The sieve

procedure receives the array address primes and can then populate that array with

the desired values.



84 C++ for Mathematicians

In the case of our new totient procedure, we use the values housed in the array

primes, but we do not alter them. The const qualifier asserts that the procedure

totient does not modify any element in the array primes.

Although the procedure totient would work equally well without the const

qualifier, it is a good habit to declare arguments as const when appropriate. If (by

mistake) the code in your procedure is capable of changing elements in the array, the

compiler will complain and help you spot the error.

The code for the new totient procedure is this:

Program 5.9: A faster totient procedure that employs a table of primes.

1 #include "totient.h"
2

3 long totient(long n, const long* primes) {
4 if (n<=0) return 0;
5

6 long ans = n;
7 for (long k=0; primes[k] <= n; k++) {
8 if (n%primes[k]==0) {
9 ans /= primes[k];

10 ans *= primes[k]-1;
11 }
12 }
13 return ans;
14 }

The program is fairly straightforward. We make a copy of n in a variable named

ans. (This isn’t necessary, but improves clarity.) In lines 7–12 we consider all primes

that are less than or equal to n. If such a prime p is a factor of n, we modify ans

by dividing out p and then multiplying by p−1 (lines 9–10). In the end, ans holds

ϕ(n).
The only caveat is that we must be sure that the array primes contains all the

prime factors of n. One way to do this is to generate all primes up to n using sieve.

For example, the following main tests the faster totient procedure.

#include "totient.h"
#include "sieve.h"
#include <iostream>
using namespace std;

/**
* A main to test the faster version of Euler’s totient on

* the integers from 1 to 100.

*/

int main() {

const int N = 100; // testing up to N

long primes[10*N]; // table of primes
sieve(10*N, primes);



Arrays 85

for (long k=1; k<=N; k++) {
cout << k << "\t" << totient(k,primes) << endl;

}
}

The output is a two-column table. The first column contains the integers from 1 to

100, and the second column contains Euler’s totient of these.

5.7 Computing pn for large n

Recall from the beginning of this chapter that we can calculate pn by the following

formula,

pn =
1

n2

[
−1+2

n

∑
k=1

ϕ(k)

]
.

In this section we write a program to calculate pn for n equal to one million.

The main part of the program adds ϕ(k) as k goes from 1 to one million. Because

we know pn is around 0.6, we expect the final sum to be around 0.6×1012 which is

larger than a long on a system where sizeof(long) is 4 bytes. (A 32-bit integer

can store values up to about two billion, but not in the trillions.) So we need to use

a long long (or int64); fortunately on my computer this is an 8-byte quantity

and can hold values that are nearly 1019. This is more than adequate to the task.

Calculating this sum takes many minutes (but not many hours). We can request

the program to report its progress along the way. In the program we present, we

report pk whenever k is a multiple of 105. Here is the program.

Program 5.10: A program to calculate pn for n equal to one million.

1 #include "totient.h"
2 #include "sieve.h"
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6

7 /**
8 * A program to calculate the probability that two integers chosen in
9 * {1,2,...,n} are relatively prime. This probability is calculated

10 * for values of n up to ten million.
11 */
12

13 int main() {
14

15 const long N = 1000000; // one million
16 const long TABLE_SIZE = 200000; // prime number th’m overestimate
17

18 // set up the table of primes



86 C++ for Mathematicians

19 long* primes;
20 primes = new long[TABLE_SIZE];
21 long np;
22 np = sieve(2*N,primes);
23

24 long long count=0; // sum of phi(d) from 1 to n
25

26 cout << setprecision(20);
27 for (long k=1; k<=N; k++) {
28 count += totient(k, primes);
29 if (k%100000==0) {
30 cout << k/1000 << " thousand \t";
31 cout << double(2*count-1) / (double(k)*double(k)) << endl;
32 }
33 }
34 return 0;
35 }

Notice there is a new header included at line 4. The iomanip header provides

devices to change the output style. In our case, we want to print out more digits

of pn than usual. This occurs on line 26. The cout << setprecision(20);

statement modifies cout so that it prints up to 20 decimal digits for double real

numbers (trailing zeros, if any, are not printed). The iomanip header is needed to

define setprecision. (See Section 14.6 for more information on adjusting output

format.)

Lines 19–22 are used to generate the table of primes.

The variable count, declared on line 24, is used to accumulate the sum of ϕ(k).
As discussed, this needs to be type long long because the final sum exceeds the

maximum value a long can hold.

The core of the program is on lines 27–33. This is a for loop that increments

count by ϕ(k) as k goes from one to one million. On line 29 we check if k is

divisible by 100 thousand; if so, we report pk at that time.

Here is the output of the program (which took about 25 minutes to run on my

computer).

� �
100 thousand 0.6079301507
200 thousand 0.60792994587500004
300 thousand 0.60792774407777783
400 thousand 0.60792759136874996
500 thousand 0.607928317404
600 thousand 0.6079276484527778
700 thousand 0.60792730424285712
800 thousand 0.60792796007343752
900 thousand 0.6079273649074074
1000 thousand 0.60792710478300005

� �



Arrays 87

5.8 The answer
It certainly appears that pn is converging and that the limit, to six decimal places,

is 0.607927. The next step, necessarily, takes us beyond C++; we need to recognize

this number to formulate (and prove!) a conjecture.

Fortunately, there are good tools for this step. Neil Sloane’s On-Line Encyclo-
pedia of Integer Sequences is a remarkable resource that takes us directly to the

answer. Visit http://www.research.att.com/˜njas/sequences/ and enter

the sequence of digits into the sequence search engine: 6 0 7 9 2 7 and press the

SEARCH button. After a brief delay, the answer emerges:

1

ζ (2)
=

6

π2
= 0.6079271018540 . . .

is the number we seek. (The site also gives several references to this well-known

problem.)

We close this chapter with a sketch of the proof.

Sweeping all worries about convergence under the rug, consider two large integers.

What is the probability they are not both even (a necessary condition for the numbers

to be relatively prime)? Each has a 1
2 chance of being even, so the probability neither

has a factor of 2 is
(
1− 1

4

)
. More generally, the probability neither has a prime p as

a common factor is
(
1−1/p2

)
. So the limit of pn is

∏
p

(
1− 1

p2

)

where the product is over all primes.

Recall that ζ (2) is given by

ζ (2) =
∞

∑
n=1

1

n2
.

This can be expressed as a product. The idea is to factor n2 into even powers of its

prime divisors. The product representation is

ζ (2) = ∏
p

(
1+

1

p2
+

1

p4
+

1

p6
+ · · ·

)

where the product is over primes p. To see why this works, consider the term (in the

sum) 1/1202. We factor 120 as 23 × 3× 5. Expanding the product representation,

the term 1/602 appears by taking 1/26 from the first factor, 1/32 from the second,

1/52 from the third, and 1 from all the other factors.



88 C++ for Mathematicians

Notice that the factors in the product representation are geometric series. There-

fore

ζ (2) = ∏
p

(
1

1− 1
p2

)

and so
1

ζ (2)
= ∏

p

(
1− 1

p2

)

as desired.

5.9 Exercises
5.1 Calculate ϕ(100), ϕ(29), and ϕ(5!).

5.2 What is wrong with this program and how can the mistake be repaired?

#include <iostream>
using namespace std;
int main() {

int n;
cout << "Enter n: ";
cin >> n;
int vals[n];
// do stuff with the vals array
return 0;

}

5.3 Solve the pair of congruences x ≡ 3 (mod 20) and x ≡ 5 (mod 9).

5.4 Write a procedure to solve problems such as Exercise 5.3. It may be declared

like this:

long crt(long a1, long n1, long a2, long n2);

(The name crt stands for Chinese Remainder Theorem.)

The procedure should be designed to solve the pair of recurrences

x ≡ a1 (mod n1) x ≡ a2 (mod n2)

where n1 and n2 are relatively prime positive integers. The return value is the

solution mod n1n2.

How should the procedure handle a situation in which n1 and n2 are not of this

form?



Arrays 89

5.5 In Program 5.7 we defined two values named blank and marked and used

them to populate an array named theSieve. For the marks we used char

type values (and the array was declared to be char*). However, it would be

more logical to use bool values because each cell in theSieve takes only one

of two possible values and the Boolean true or false makes perfect sense in

this context.

Why did we use char type values instead of bool?

5.6 Write a program that fills an array with Fibonacci numbers F0 through F20 and

then prints them out in a chart.

5.7 Write a program that fills two arrays a and b with integers according to this

recurrence:

a0 = b0 = 1 an = bn−1 bn = an−1 +2bn−1.

The program should then print out a table in which each row is of the form

k ak bk
ak

bk
.

Conjecture a value for limn→∞ an/bn. And, of course, prove your conjecture.

5.8 Write a procedure to find the maximum value in an array of long integers.

The inputs to the procedure should be the array and the number of elements in

the array. The output should be the maximum value in the array.

5.9 Write a procedure that generates an array of Fibonacci numbers as its return

value. The input to the procedure should be an integer n ≥ 2 that specifies

the desired size of the array. Here is how such a procedure would appear in a

main():

int main() {
long* fibs;
fibs = make_fibs(10);
for (int k=0; k<10; k++) cout << fibs[k] << " ";
cout << endl;
return 0;

}

This code should produce the output:
� �
1 1 2 3 5 8 13 21 34 55

� �

In addition, there is a subtle bug in the main(). What is it?

5.10 Create a procedure long fibs(int n) to return the nth Fibonacci number.

The procedure should work as follows. The first time the procedure is called,

it creates a table of Fibonacci numbers holding Fn through F40. Then it returns

the value held in the table it created. On all subsequent calls, it does not need



90 C++ for Mathematicians

to recompute any Fibonacci numbers, but simply returns the value in the table

it built during its first invocation.

If the input parameter is out of range (either less than 0 or greater than 40) the

procedure should return −1.

5.11 What happens when new asks for more memory than your computer can pro-

vide? Write a program that repeatedly requests new for large blocks of mem-

ory without ever releasing those blocks with delete[]. That is, your program

should have a severe, deliberate memory leak.

5.12 A computational experiment yields the following result: 5.8598744820. Pro-

pose a conjecture.



Part II

Objects





Chapter 6

Points in the Plane

The first part of this book introduces the fundamental data types (long, double,

bool, etc.), arrays of these types, and procedures.

C++ provides the ability to define new types of data that can be used just as the

basic types are. New data types that we create are called classes. In this chapter we

create a class called Point that represents a point in the Euclidean plane. When we

want a variable to represent an integer quantity, we declare it to be type long (or one

of the other integer types). Likewise, once we have the Point class set up, we can

declare a variable to represent a point in the plane like this:

Point X;

We call X an object of type Point.

6.1 Data and methods
A class definition specifies the data that describe an object of the class and the

methods to inspect and manipulate objects.

For the class Point we need to hold data that specify a point’s location in the

plane. There are two natural ways we might do this: rectangular coordinates (x,y) or

polar coordinates (r,θ). Later in this chapter, when we write the C++ files to create

the Point class, we choose the rectangular representation.

A class is more than a way to bundle data together. A class also specifies opera-

tions that may be performed on its objects. Here are some things we might want to

know about points and actions we might want to perform on points.

• Learn a point’s rectangular coordinates (x and y).

• Learn a point’s polar coordinates (r and θ ).

• Change one (or both) of a point’s rectangular coordinates.

• Change one (or both) of a point’s polar coordinates.

• Rotate a point about the origin through a given angle.

• Check if two points are equal.

93



94 C++ for Mathematicians

• Find the distance between two points.

• Find the midpoint between two points.

• Print a point’s coordinates using a statement of the form cout<<P<<endl;.

We perform these various tasks by means of procedures. Many of the procedures

are part of the definition of the class itself and are invoked by a different syntax. For

example, we create a procedure to change a point’s x coordinate called setX. To set

a point P’s x coordinate to −4.5, we use the following special syntax,

P.setX(-4.5);

The setX procedure is part of the definition of the class Point. Computer scientists

call such procedures member functions but as we reserve the word function for its

mathematical meaning, in this book we call such procedures methods. The term

method is also used by many computer scientists.

A C++ class is a bundle that combines data that describe its objects and methods
for inspecting and manipulating the objects.

Once a class is defined, we can use it in procedures just as with any other C++

data type. For example, here is a procedure named dist that computes the distance

between two points.

double dist(Point P, Point Q) {
double dx = P.getX() - Q.getX();
double dy = P.getY() - Q.getY();
return sqrt(dx*dx + dy*dy);

}

Notice that dist is a procedure that works on two arguments (both of type Point)

and returns a real number answer of type double. Inside this procedure we use

Point’s getX and getY methods to access the x and y coordinates of the two

points. (The sqrt procedure is defined in a C++ header file so this code requires

a #include <cmath> directive.)

The dist procedure is not a method (i.e., not a member of the Point class); it

is simply a procedure that uses the Point data type. It is invoked using the usual

syntax; to calculate the distance between two points we call dist(P,Q). However,

getX is a method of the Point class; it is used to reveal the point’s x coordinate.

Because it is a class method, it is invoked using the special syntax P.getX().

Let’s see how this all works.

6.2 Declaring the Point class
When we create a new procedure we break the definition into two files: a header

file (whose name ends with .h) that declares the procedure and a code file (whose

name ends with .cc) that specifies the algorithm.



Points in the Plane 95

Likewise, a class is defined in two files: a .h file that declares the class and a .cc

file that gives the algorithms for its various methods.

The declaration for a class looks like this:

class ClassName {
declarations for data and methods;

};

Notice the required semicolon after the class declaration’s close brace—it is easy to

forget.

We now present the declaration for the Point class. There are several new ideas

present in this declaration and we examine each. As an aid to readability, we omit

all the documentation from the file Point.h. It is extremely important to include

comments in the header file that explain what the class represents and what each of

its various methods does. The time you take to write these comments will be repaid

tenfold when you subsequently write programs that use your classes.

Here is the header file.

Program 6.1: Header file Point.h for the Point class (condensed version).

1 #ifndef POINT_H
2 #define POINT_H
3 #include <iostream>
4 using namespace std;
5

6 class Point {
7

8 private:
9 double x;

10 double y;
11

12 public:
13 Point();
14 Point(double xx, double yy);
15 double getX() const;
16 double getY() const;
17 void setX(double xx);
18 void setY(double yy);
19 double getR() const;
20 void setR(double r);
21 double getA() const;
22 void setA(double theta);
23 void rotate(double theta);
24 bool operator==(const Point& Q) const;
25 bool operator!=(const Point& Q) const;
26

27 };
28

29 double dist(Point P, Point Q);
30 Point midpoint(Point P, Point Q);
31 ostream& operator<<(ostream& os, const Point& P);
32

33 #endif



96 C++ for Mathematicians

Let’s examine this file in detail.

• To begin, lines 1, 2, and 33 are the usual mechanism to prevent double inclu-

sion of the header file.

• The declaration of the Point class spans lines 6 through 27. Line 6 announces

the declaration. The keyword class tells us that we are defining a new class

that we have chosen to name Point. The open brace on line 6 is matched by

the close brace on line 27, and the declaration is between these. The semicolon

on line 27 ends the declaration.

• Ignore for now the keywords private, public, and const. We return to

them subsequently.

• Lines 9–10 specify the data for objects of this class. The data are simply two

real numbers giving the x and y coordinates; these are named (quite sensibly)

x and y.

• Lines 13 and 14 declare the constructors for the class Point. A constructor is

a method that is invoked when an object of type Point is declared.

When a procedure contains a variable of type long, the variable must be de-

clared before it can be used. Likewise, programs that use variables of type

Point must declare those variables as such; a statement such as the following

is required,

Point P;

This statement creates a variable named P and then invokes a method (named

Point) that initializes the data held in P. In our case, this is extremely simple;

the member variables x and y are set equal to zero. This basic constructor is

declared on line 13; the code that sets x and y equal to zero is in another file

(named Point.cc) that we examine in detail later.

Line 14 declares a second constructor. This constructor takes two real argu-

ments (named xx and yy). This constructor enables us to declare a point using

the following syntax,

Point Q(-3.2, 4.7);

This declaration creates a new point at location (−3.2,4.7).

• Lines 17–23 declare the methods for the class Point.

The methods getX and getY are used to learn the values held by x and y, and

the methods setX and setY are used to modify the coordinates.

Similarly, getR and getA are used to learn the point’s polar coordinates and

setR and setA are used to change them.

Methods to inspect and to modify the data held in an object are extremely com-

mon. We need methods such as these because a well-designed class forbids

direct access to its data. This is called data hiding.



Points in the Plane 97

Line 23 declares a procedure named rotate. Invoking rotate causes the

point to be relocated at a new location by rotating the point about the origin

through a specified angle. For example, if the point P is situated at coordinates

(1,2), then after the statement P.rotate(M_PI/2); the point will be located

at (−2,1). (The symbol M_PI is defined1 in the cmath header; it stands for

π .)

• Lines 24–25 are operator declarations. C++ does not know how to compare

two objects of type Point. If we want a statement of the form if(P==Q)...

in our program, we need to specify how points are to be compared. When C++

encounters an expression of the form P==Q or P!=Q, it needs to know exactly

what to do.

In the case of the class Point, the procedures are quite simple. We study these

operators in detail later in this chapter. For now, please observe the ampersand

(&) in the argument list; operators are invoked using call by reference.

• Lines 29–31 are not part of the Point class declaration. These lines declare

three procedures that are relevant to dealing with Points and could have been

declared in a separate header file. However, it is more convenient to have

everything pertinent to the Point class declared in the same file.

The procedures on lines 29–30 are used to find the distance and midpoint be-

tween two points, respectively.

The procedure on line 31 is used in statements of the form cout << P;. This

is explained later.

6.3 Data hiding
We now examine the keywords private and public in the declaration of the

Point class.

The declaration of the Point class is divided into two sections. The first section

is labeled private: and under that label are the two data members of the class: x

and y. There are no methods in Point’s private section.

Data (and methods) in the private section are accessible only to the class’s meth-

ods. For example, the getX and setY methods have access to the data x and y. Any

other procedure (such as midpoint) cannot access anything that is in the private

section.

The reason for putting data in the private section is to protect those data from

tampering. Tampering by whom? You, of course! For a simple class such as Point,

there is not much that you can harm if you were able to manipulate the data directly.

1The symbol M PI might not be defined by all C++ compilers.



98 C++ for Mathematicians

However, later when we build more complicated classes (such as Permutation), if

you access the data directly you could easily put the object into an invalid state.

Another reason for hiding your data (from yourself) is the ability to change the

implementation. For the Point example, you may decide that it was a bad idea to

save data in rectangular coordinates because the vast majority of your work is in

polar. If your other programs were able to access directly the data in the Point

class, you would need to rewrite all your programs were you to decide to change the

internal representation of Point to polar.

However, by hiding the data, your other programs cannot rely on how you repre-

sent points. All they use are the various get and set methods. You can rewrite your

class’s methods and then all programs that use the Point class will work. In a sense,

other procedures that use Point won’t “know” that anything is different.

The second part of the declaration follows the public: label. All of the methods

in the public section are accessible to any procedure that uses objects of the Point

class. It is possible to have a public data member of a class, but this is a bad idea.

Because some classes (not yours!) do use public data, I will tell you how to use

public data, but you must promise me that you will never make use of this ability in

your own classes.

Suppose we had placed x and y in the public section of the class declaration. If P

is an object of type Point, then we could refer to the coordinates of the point using

the notation P.x and P.y. For example, in lieu of

Point P;
P.setX(-4.2);
P.setY(5.5);

we could write

Point P;
P.x = -4.2;
P.y = 5.5;

Here is a mathematical analogy to data hiding. In analysis, all we need to know

about the real number system is that it is a complete ordered field. Two analysts—

let’s call them Annie and Andy—may have different preferences on how to define

the reals. Annie prefers Dedekind cuts because these make the proof of the least

upper bound property easy. Andy, however, prefers equivalence classes of Cauchy

sequences because it is easier to define the field operations. In both cases, the an-

alysts’ first job is to verify that their system satisfies the complete ordered field ax-

ioms. From that point on, they can “forget” how they defined real numbers; the rest

of their work is identical. The “private” data of real numbers is either a Dedekind

cut or a Cauchy sequence; we need not worry about which. The “public” part of the

real numbers are the complete ordered field axioms.



Points in the Plane 99

6.4 Constructors
A constructor is a method that is invoked when an object of a class is declared.

For example, the following code

Point P;

invokes the Point() constructor method for P. Recall (lines 13 and 14 in Pro-

gram 6.1) that we declared two constructors for the Point class in the public sec-

tion. The declarations look like this:

Point();
Point(double xx, double yy);

The first thing to notice is that the name of the method exactly matches the name of

the class; this is required for constructors.

The second thing to notice is that no return type is specified. It is not unusual for

procedures not to return values, but such procedures are declared type void to desig-

nate this fact. However, constructors are not declared type void and it is understood

that they do not return values.

We are ready to write the actual program for the Point constructors. The first ver-

sion of the constructor takes no arguments. In a separate file (that we call Point.h)

we have the following.

#include "Point.h"

Point::Point() {
x = y = 0.;

}

Please see Program 6.2, lines 4–6 on pages 109–110. The #include directive is

necessary so the C++ compiler is aware of the Point class declaration. In a sense,

the header file is an announcement of the class and the .cc file fills in the details.

The name of the constructor is Point::Point(). The first Point means “this is

a member of the Point class” and the second Point means this is a method named

Point. Because there is no return type and the name of the method matches the

name of the class, it must be a constructor.

The method’s action is simple; it sets the member variables x and y equal to zero.

(The single line x = y = 0.; is equivalent to writing x = 0.; and y = 0.; as

two separate statements.)

Notice that x and y are not declared here because they are already declared in the

class Point declaration. These are member variables of the class Point. Even

though they are marked private, any method that is a member of the Point class

may use these variables.

There is a second constructor that accepts two arguments. The purpose of this

constructor is so we may declare a variable this way:

Point Q(-5.1, 0.3);



100 C++ for Mathematicians

This statement declares a Point variable named Q in which x equals −5.1 and y

equals 0.3. The code that accomplishes this is:

Point(double xx, double yy) {
x = xx;
y = yy;

}

Notice that the arguments to this constructor are named xx and yy. Although C++

might allow it, we must not name these arguments x and y. We choose names that

are similar to the names of the member variables x and y. Some people like the

names x_ and y_ for such arguments, but these are more difficult to type.

6.5 Assignment and conversion
Constructors serve a second purpose in C++; they can be used to convert from

one type to another. Recall that cout << 7/2; writes 3 to the screen because 7

and 2 are integers. To convert 3, or an int variable x, to type double, we wrap the

quantity inside a call to double as a procedure like this: double(7) or double(x).

In the case of the Point class, we did not provide a single-argument constructor.

However, we can convert a pair of double values to a Point like this:

Point P;
....
P = Point(-5.2, 4.2);

The last statement causes an unnamed Point object to be created (with x = −5.2
and y = 4.2) and then be copied into P.

Here is another example in which one Point is assigned to another:

Point P;
Point Q(-2., 4.);
P = Q;

When the first line executes, the point P is created and is located at (0,0) (this is

the standard, zero-argument constructor). When the second line executes, the point

Q is created as it is located at (−2,4). Finally, line three executes and the value of

Q is copied to P. By default, C++ simply copies the x and y values held in Q to the

corresponding data in P. Effectively, the assignment P = Q; is equivalent to the pair

of statements P.x = Q.x; P.y = Q.y;. (Such statements cannot appear outside

a method of the class Point because the data are private.)

This is the default assignment behavior. Sometimes more sophisticated action

must be taken in order to process an assignment; we explain when this is necessary

and how it is accomplished in Chapter 11.

There is no natural way to convert a single double to a Point, so we don’t define

one. We could, however, decide that the real value x should be converted to the point



Points in the Plane 101

(x,0). In that case, we would add the line Point(double xx); to the declaration

of the Point class (in Point.h) and add the following code to Point.cc.

Point::Point(double xx) {
x = xx;
y = 0.;

}

Had we done this, a main program could contain the following code.

Point P;
double x;
....
P = Point(x);

6.6 Methods
We now examine the methods getX, setX, and so on. (See lines 15–23 of Pro-

gram 6.1.) The first of these is declared double getX() const;. The word

double means that this method returns a real value of type double. Next, getX()

gives the name of the method. The empty pair of parentheses means that this method

takes no arguments. (We deal with const in a moment.)

We specify the code for this method in the separate file Point.cc. Here are the

relevant lines.

double Point::getX() const {
return x;

}

The beginning exactly matches the corresponding line in Point.h except for the

prefix Point:: in front of getX. This prefix tells the C++ compiler that the code

that follows specifies the getX method of the class Point. (If the Point:: prefix

were forgotten, the compiler would have no way of knowing that this procedure is

part of the Point class and would complain that x is undeclared.)

The code couldn’t be simpler. The value in the member variable x is returned. This

method is able to access x (even though x is private) because getX is a member

of the class Point.

Consider the following code.

Point P;
Point Q(4.5, 6.0);
cout << P.getX() << endl;
cout << Q.getX() << endl;

The first call to getX is for the object P. In P, the variable x holds 0, and so 0

is printed when the third line executes. The second call to getX is for a different

object, Q. When it is invoked, the value 4.5 is returned because that is what is held

in Q’s member variable x.



102 C++ for Mathematicians

Next we consider the code for the setX method. In the header file, this was de-

clared like this: void setX(double xx);. In Point.cc, the code for this method

looks like this:

void Point::setX(double xx) {
x = xx;

}

The return type is void because this method does not return any values. The full

name of the method is Point::setX; the prefix identifies this as a method of the

class Point. The method takes one double argument (named xx). Between the

braces is the code for this method: we simply assign the value in the argument xx to

the member variable x.

There is an important difference between getX and setX. The getX method does

not alter the object for which it was called. The statement cout << P.getX();

cannot affect the object P in any way. We certify this by adding the keyword const

in the declaration and definition of the getX method. When the word const appears

after the argument list of a method, it is a certification that the method does not alter

the object to which it belongs. If, in writing the Point::getX method we had a

statement that could change the object (such as x = M_PI;), the compiler would

complain and refuse to compile the code.

Whenever you create a method that is not intended to modify the state of an object,

include the keyword const after the argument list.

Notice that the setX method does not include const after its argument list. This

is because setX is designed to modify the state of the object on which it is invoked.

The definitions of the other get and set methods are similar; see lines 13–58 in

Program 6.2. One special feature is the use of the atan2 procedure in getA. The

atan2 procedure is defined in the cmath header file. It is an extension of the usual

arctan function. Calling atan2(y,x) returns the angle to the point (x,y) regardless

of which quadrant of the plane contains the point. (See Appendix C.6.1 for a list of

mathematical functions available in C++.)

Finally, we examine the rotate method; it is declared like this:

void rotate(double theta);

In polar coordinates, this method moves a point from (r,α) to (r,α +θ).
To implement this method, we take advantage of the fact that we have already

created the getA and setA procedures. We use the first to determine the current

angle and the second to change that angle.

Here is the C++ code in Point.cc.

void Point::rotate(double theta) {
double A = getA();
A += theta;
setA(A);

}



Points in the Plane 103

The return type is void because this method returns no value. The full name of

the method is Point::rotate which identifies this as a method in the Point class

whose name is rotate. The method takes a single argument of type double named

theta. The word const does not follow the argument list because this method may

alter the object on which it is invoked.

The first step is to figure out the current angle of this point; we do this by calling

the getA() method. In, say, a main program, if we want to know the polar angle of

a point P we would invoke the procedure like this: P.getA(). Here, we see the call

getA() not appended to any object. Why? To what object does getA() apply?

Remember that this code is defining a method for the class Point and is in-

voked with a call such as P.rotate(M_PI);. Once inside the rotate procedure,

a disembodied call to getA means, apply getA to the object for which this method

was called. So, if elsewhere we have the call P.rotate(M_PI);, once we enter

the rotate procedure, unadorned calls to getA refer to P. Likewise, the call to

setA(A) on the penultimate line is applied to the object on which rotate was

called.

In other words, when we invoke P.rotate(t); (where t is a double and P is

a Point), the following steps are taken. First a double variable named A is created

and is assigned to hold the polar angle of P (which was calculated via a call to getA).

Next, A is increased by t. Finally, the polar angle of P is changed via a call to setA.

At the end (the close brace) the variable A disappears because it is local to the rotate

procedure.

6.7 Procedures using arguments of type Point
There is nothing special about writing procedures that involve arguments of type

Point. We declare two such procedures, dist and midpoint, in Point.h (lines

30–31). They are declared outside the class declaration for Point because they are

not members of the Point class. Recall that they are defined as follows.

double dist(Point P, Point Q);
Point midpoint(Point P, Point Q);

The code for these procedures resides in Point.cc. Here we examine the code

for midpoint.

Point midpoint(Point P, Point Q) {
double xx = ( P.getX() + Q.getX() ) / 2;
double yy = ( P.getY() + Q.getY() ) / 2;
return Point(xx,yy);

}

Notice that we do not include the prefix Point:: in the name of this procedure;

midpoint is not a member of the class Point. It is simply a procedure that is no

different from, say, the gcd procedure we created in Chapter 3.



104 C++ for Mathematicians

The procedure takes two arguments and has a return value, all of type Point.

The code in the procedure is easy to understand. We average the two x and the two

y coordinates of the points to find the coordinates of the midpoint. We must use

the getX procedure and we cannot use P.x. The latter is forbidden because this

procedure is not a member of the class Point and so the private protection blocks

direct access to the two data elements, x and y.

The return statement involves a call to the two-argument version of the con-

structor. An unnamed new Point is created by calling Point(xx,yy) and that

value is sent back to the calling procedure. For example, suppose the main contains

the following code.

Point P(5,8);
Point Q(6,2);
Point R;

R = midpoint(P,Q);

When midpoint is invoked, copies of P and Q are passed to midpoint. Then

midpoint performs the relevant computations using these copies and creates a point

at coordinates (5.5,5). This return value is then copied to R.

The repeated copying is a consequence of call by value. Because a Point does

not contain a lot of data, we need not be concerned. (On my computer, call by value

requires the passage of 16 bytes of data for each Point whereas call by reference

only passes 4 bytes. This difference is not significant.)

However, for larger, more complicated objects call by reference is preferable. In

some cases, call by reference is mandatory; such is the case for the procedures we

consider next.

6.8 Operators
C++ gives programmers the ability to extend the definitions of various operations

(such as +, *, ==, etc.) to new data types. This is known as operator overloading.

For the Point class, we overload the following operators: == for equality compar-

ison, != for inequality comparison, and << for output. The first two are implemented

in a different way than the third.

We want to be able to compare two Points for equality and inequality. The mech-

anism for doing this is to define methods for both the == and != operators. (In C++,

these are called operators, although as mathematicians we might prefer to call them

relations. In this book, we use the C++ terminology to stress the fact that when == is

encountered, it triggers the execution of instructions.)

The == operator takes two arguments (the Point variables to its left and right)

and returns an answer (either true or false, i.e., a bool value). The declaration

of == is inside the Point class declaration; see line 24 of Program 6.1. We repeat it

here.



Points in the Plane 105

bool operator==(const Point& Q) const;

Let’s examine this piece by piece.

• The bool means that this method returns a value of type bool (i.e., either

TRUE or FALSE).

• The name of this method is operator==. The keyword operator means

we are ascribing a meaning to one of C++’s standard operations. (You cannot

make up your own operator symbols such as **.)

• The method takes only one argument, named Q. This is surprising because

== seems to require two arguments (on the left and right). Because this is

a member of the Point class, the left argument is the object on which it is

invoked and the right argument is the object Q. That is to say, if the expression

A==B appears in a program, this method will be invoked with Q equal to B.

Later, inside the code for ==, an unadorned use of x stands for A’s x. To use

B’s data (which is the same as Q’s data), we use the syntax Q.x.

• The type of Q is const Point& Q. The Point means that Q is a variable

of type Point. The ampersand signals that this is a call by reference. Call

by reference is required for operators. This means that we do not copy the

argument into a temporary variable named Q. Rather, Q refers to the variable

that was handed to the method.

The const inside the parentheses is a promise that this method does not mod-

ify Q.

• The keyword const appears a second time after the argument list. This const

is a promise that the procedure does not modify the object on which it is in-

voked. For the expression A==B, the trailing const is a promise that this

procedure does not modify A. (The const inside the parentheses is a promise

that B is unaltered.)

(There is an alternative way to declare operators that use two arguments. We

could have chosen to declare operator== as a procedure that is not a member

of the Point class. In that case, we would declare it after the closing brace of

the class declaration. The declaration would look like this.

bool operator==(const Point& P, const Point& Q);

The decision to include == as a member of the class is somewhat arbitrary; it

is mildly easier to write the code when it is a member of the class.)

The declaration of the != operator is analogous.

Now we need to write the code that is invoked when we encounter an expression

of the form A==B. This code resides in the file Point.cc. Here it is:



106 C++ for Mathematicians

bool Point::operator==(const Point& Q) const {
return ( (x==Q.x) && (y==Q.y) );

}

The beginning of this code matches the declaration in Point.h. The only difference

is that we prepend Point:: to the procedure name (operator==) to signal that this

is a member of the Point class. This also implies that the left argument of == must

be a Point.

The program has only one line. It checks if the x and y coordinates of the invoking

object match those of Q. That is, the statement A==B causes this code to compare

A.x to B.x and A.y to B.y. The variable Q is a reference to B and the unadorned x

and y refer to the data in A.

The declaration for the != operator is nearly identical. Within the class declara-

tion we have this:

bool operator!=(const Point& Q) const;

We could write the procedure (in Point.cc) this way:

bool Point::operator!=(const Point &Q) const {
return ( (x != Q.x) || (y != Q.y) );

}

This works just as does the == operator; we compare the x and y coordinates of the

two points to see if they are different.

However, we present a different method for creating the != method. It is conceiv-

able that the steps taken to check if two objects are equal are complicated. It would

be useful if we could use the == method in defining the != method. We would simply

see if the two objects are equal, and then compute the “not” of the result (using the

! operator).

The problem is this: Only one of the two arguments is named. In the declaration

only the right hand argument to != has a name. The left argument is nameless. This

does not create a problem if all we need to do is access the left argument’s data;

we simply refer to the data elements by name. In x != Q.x the first x is the left

argument’s x. How can we refer to the left argument in its entirety? The solution is

this: Use *this. The expression *this is a reference to the object whose method

is being defined. This enables us to build on the == procedure and use it in writing

the != procedure. Here is the code (from Point.cc).

bool Point::operator!=(const Point &Q) const {
return ! ( (*this) == Q );

}

The return statement first invokes the == method on two objects. The left-hand

argument is *this referring to the object on which != is called and the right-hand

argument is Q. For example, if this were invoked by the expression A!=B in some

other procedure, then *this is A and Q is B. By is we mean that *this is not a copy

of A, but A itself. Likewise, Q is not a copy of B, but is B itself.

(Extra for experts: The expression *this consists of two parts: the operator *
and the pointer this. The this pointer always points to the location that holds the



Points in the Plane 107

object whose method is being defined. The * operator dereferences the pointer; this

means that *this is the object housed at location this. In other words, *this is

the object for whom the current method is being applied.)

The final operator we consider in this chapter is the << operator. We want to be

able to write points to the computer screen with a statement of the form cout<<P;.

The name of the procedure that does this is, not surprisingly, operator<<. However,

we cannot declare this within the boundary of the class declaration because the

object on the left is not of type Point. What is the type of cout? This has been

hidden from you because cout is defined in the header file iostream.

The object cout is of type ostream (which stands for output stream) and is de-

clared in the header iostream. Therefore, the expression cout << P contains two

arguments: the left argument is of type ostream and the right is of type Point.

Furthermore, the result of this expression is also of type ostream. A statement of

the form

cout << P << " is in quadrant I" << endl;

contains the operator << three times. The order of operations rules for C++ (which

you do not need to know) insert implicit parentheses into this expression to dictate

the order in which the three different << procedures are called. With the hidden

parentheses revealed, the expression looks like this:

( (cout << P) << " is in quadrant I" ) << endl;

The leftmost << is executed first. The effect of this operation is to print P on the

screen (we see how that is done in a moment) and the result of the operation is to

return cout. (We do not return a copy of cout, but the object itself—we explain

how to do that in a moment.)

After the first << executes and returns cout what remains is this:

( cout << " is in quadrant I" ) << endl;

Now the second << is called. The effect is to send the character array to the screen,

and again cout is returned. Finally we are left with this:

cout << endl;

This causes the a new line to be started on the screen.

With this background we are ready to declare and define the << operator for

Point. In the file Point.h (but outside the class declaration) we have the fol-

lowing (line 31 of Point.h).

ostream& operator<<(ostream& os, const Point& P);

Let’s examine this declaration piece by piece.

• The return type of this procedure is ostream&. When we invoke the << op-

erator via the expression cout << P the result of the procedure is cout, an

object of type ostream. The ampersand indicates that this procedure returns

a reference to (not a copy of) the result. We explain how this is accomplished

when we examine the code.



108 C++ for Mathematicians

• The name of this procedure is operator<<.

• The procedure takes two arguments. The first is the left-hand argument to <<

and the second is taken from the right.

The first (left) argument is of type ostream. We call this argument os which

stands for “output stream”. Recall that << can be used with either cout or

cerr; these are both objects of type ostream. The call is by reference, not

by value. Objects of type ostream are large and complicated; we do not want

to make a copy of them. Furthermore, operators should be invoked using call

by reference. This argument is not declared const because the act of printing

changes the data held in the ostream object.

The second (right) argument is of type Point. Again, we use call by reference

because that is what C++ requires for operators. Printing a Point does not

affect its data; we certify this by flagging this argument as const.

When we execute the statement cout << P, in effect we create a call that could

be thought of like this: operator<<(cout,P).

Next we write the code for the << operator. A nice format for the output is to print

the two coordinates separated by a comma and enclosed in parentheses. Here is the

code that makes this work.

ostream& operator<<(ostream& os, const Point& P) {
os << "(" << P.getX() << "," << P.getY() << ")";
return os;

}

Watch what happens when we encounter the statement cout << A << endl;. The

left << is executed first. We pass cout and A to the procedure. The first argument

os becomes cout and the second argument becomes A. (Remember, in call by ref-

erence, the arguments are not copies of the calling arguments, but the arguments

themselves.)

Effectively, the first line inside the procedure is this:

cout << "(" << A.getX() << "," << A.getY() << ")";

(The argument os becomes cout and the argument P becomes A.) If A is the point

(2,5), this line causes (2,5) to be written on the computer’s screen.

The second line in the procedure returns os. Because the return type of this proce-

dure is ostream& (as opposed to plain ostream), this return does not send a copy of

os back to the invoking procedure; it sends os itself. In this example, os is precisely

cout, so the result of this procedure is cout (and not a copy of cout).

Therefore, after the first << in cout << A << endl; finishes, the statement is

reduced to this: cout << endl;.

To summarize, here is the file Point.cc in its entirety.



Points in the Plane 109

Program 6.2: Code for the Point class methods and procedures.
1 #include "Point.h"
2 #include <cmath>
3

4 Point::Point() {
5 x = y = 0.;
6 }
7

8 Point::Point(double xx, double yy) {
9 x = xx;

10 y = yy;
11 }
12

13 double Point::getX() const {
14 return x;
15 }
16

17 double Point::getY() const {
18 return y;
19 }
20

21 void Point::setX(double xx) {
22 x = xx;
23 }
24

25 void Point::setY(double yy) {
26 y = yy;
27 }
28

29 double Point::getR() const {
30 return sqrt(x*x + y*y);
31 }
32

33 void Point::setR(double r) {
34 // If this point is at the origin, set location to (r,0)
35 if ( (x==0.) && (y==0.) ) {
36 x = r;
37 return;
38 }
39

40 // Otherwise, set position as (r cos A, r sin A)
41 double A = getA();
42 x = r * cos(A);
43 y = r * sin(A);
44 }
45

46 double Point::getA() const {
47 if ( (x==0.) && (y==0.) ) return 0.;
48

49 double A = atan2(y,x);
50 if (A<0) A += 2*M_PI;
51 return A;
52 }
53

54 void Point::setA(double theta) {



110 C++ for Mathematicians

55 double r = getR();
56 x = r * cos(theta);
57 y = r * sin(theta);
58 }
59

60 void Point::rotate(double theta) {
61 double A = getA();
62 A += theta;
63 setA(A);
64 }
65

66 bool Point::operator==(const Point& Q) const {
67 return ( (x==Q.x) && (y==Q.y) );
68 }
69

70 bool Point::operator!=(const Point &Q) const {
71 return ! ( (*this) == Q );
72 }
73

74 double dist(Point P, Point Q) {
75 double dx = P.getX() - Q.getX();
76 double dy = P.getY() - Q.getY();
77 return sqrt(dx*dx + dy*dy);
78 }
79

80 Point midpoint(Point P, Point Q) {
81 double xx = ( P.getX() + Q.getX() ) / 2;
82 double yy = ( P.getY() + Q.getY() ) / 2;
83 return Point(xx,yy);
84 }
85

86 ostream& operator<<(ostream& os, const Point& P) {
87 os << "(" << P.getX() << "," << P.getY() << ")";
88 return os;
89 }

Once a class has been created (or even during its development) it’s important to

test its features. Here is a program to check the various aspects of the Point class.

Program 6.3: A program to check the Point class.

1 #include "Point.h"
2 #include <iostream>
3 using namespace std;
4

5 /**
6 * A main to test the Point class.
7 */
8

9 int main() {
10 Point X; // Test constructor version 1
11 Point Y(3,4); // Test constructor version 2
12

13 cout << "The point X is " << X << " and the point Y is "
14 << Y << endl;
15 cout << "Point Y in polar coordinates is ("



Points in the Plane 111

16 << Y.getR() << "," << Y.getA() << ")" << endl;
17

18 cout << "The distance between these points is "
19 << dist(X,Y) << endl;
20 cout << "The midpoint between these points is "
21 << midpoint(X,Y) << endl;
22

23 Y.rotate(M_PI/2);
24 cout << "After 90-degree rotation, Y = " << Y << endl;
25

26 Y.setR(100);
27 cout << "After rescaling, Y = " << Y << endl;
28

29 Y.setA(M_PI/4);
30 cout << "After setting Y’s angle to 45 degrees, Y = " << Y << endl;
31

32 Point Z;
33 Z = Y; // Assign one point to another
34 cout << "After setting Z = Y, we find Z = " << Z << endl;
35

36 X = Point(5,3);
37 Y = Point(5,-3);
38

39 cout << "Now point X is " << X << " and point Y is " << Y << endl;
40 if (X==Y) {
41 cout << "They are equal." << endl;
42 }
43

44 if (X != Y) {
45 cout << "They are not equal." << endl;
46 }
47

48 return 0;
49 }

The output of this main follows.

� �
The point X is (0,0) and the point Y is (3,4)
Point Y in polar coordinates is (5,0.927295)
The distance between these points is 5
The midpoint between these points is (1.5,2)
After 90-degree rotation, Y = (-4,3)
After rescaling, Y = (-80,60)
After setting Y’s angle to 45 degrees, Y = (70.7107,70.7107)
After setting Z = Y, we find Z = (70.7107,70.7107)
Now point X is (5,3) and point Y is (5,-3)
They are not equal.

� �



112 C++ for Mathematicians

6.9 Exercises
6.1 To complement the Point class created in this chapter, create your own Line

class to represent a line in the Euclidean plane. The class should have the

following features.

• Because every line in the Euclidean plane can be represented by an equa-

tion of the form ax + by + c = 0 (where a and b are not both zero), the

Line class should hold three private data elements: a, b, and c.

• The class should include the following constructors.

– A zero-argument default constructor. Choose a sensible behavior for

this constructor (e.g., construct the line y = 0).

– A two-argument constructor whose input arguments are both type

Point. Of course, this should create the line through these points.

Hint: In order for the Line class to use Point objects, you need to

have #include "Point.h" at the top of your Line.h file.

– A three-argument constructor whose double arguments are simply

assigned to a, b, and c.

In the latter two cases, give sensible behaviors in the event that the user

gives bad inputs (either the two points are the same or a = b = 0).

• Include get methods to inspect the values held in a, b, and c.

• Include methods named reflectX() and reflectY() that reflect this

Line through the x- and y-axis, respectively.

• Include a method to check if a given Point is on the Line.

• Include a method that generates a Point on the Line.

• Include an == operator to check if two Line objects are the same.

Note: This is not as simple as checking that a, b, and c are the same for

the two lines.

• Include an operator << for printing a Line to the screen (e.g., cout<<L;

where L is type Line). Pick a sensible format for the output.

• Include a procedure (not a method in the class) that calculates the dis-

tance between a Point and a Line. The procedure should accept the

two arguments in either order: dist(P,L) or dist(L,P).

Hint: The standard C++ procedures sqrt(x) (for
√

x) and fabs(x) (for

|x|) may be of assistance here. Some systems may require the directive

#include <cmath> to use these. See Appendix C.6.1.

6.2 To test the Line class from Exercise 6.1, a programmer wrote the following

code.



Points in the Plane 113

#include "Line.h"
#include <iostream>
using namespace std;

int main() {
Point X(5,3);
Point Y(-2,8);
Line L(X,Y);
cout << "X = " << X << endl;
cout << "Y = " << Y << endl;
cout << "The line L through X and Y is " << L << endl;

Point Q;
Q = L.find_Point();
cout << "Q = " << Q << " is a point on L" << endl;
Line M(X,Q);
cout << "The line M through X and Q is " << M << endl;
cout << "Are lines L and M the same?\t" << (L==M) << endl;
cout << "Is Y incident with M?\t" << M.incident(Y) << endl;
cout << "Distance from Y to M is zero?\t"

<< (dist(Y,M)==0) << endl;
return 0;

}

In this program, we establish two points X = (5,3) and Y = (−2,8), and the

line L through them.

Next we construct a point Q on L and then we construct another line M through

X and Q. Because the points X , Y , and Q are collinear, it must be the case that L
and M are the same line. However, when the code is run, we see the following

output.
� �
X = (5,3)
Y = (-2,8)
The line L through X and Y is [5,7,-46]
Q = (0,6.57143) is a point on L
The line M through X and Q is [3.57143,5,-32.8571]
Are lines L and M the same? 0
Is Y incident with M? 0
Distance from Y to M is zero? 0

� �

The program reports that L �= M, that Y is not on the line M, and that Y is

a nonzero distance away from M. All of these are mathematically incorrect.

What’s wrong? How might these problems be addressed?

6.3 In the Line class developed in these exercises, we represent a line as a triple

(a,b,c) standing for the equation ax + by + c = 0. Alternatively, we could

represent a Line as a pair of Points. How would the header and code files

for the Line class need to be modified were we to decide to switch to this

alternative? How would programs that use the Line class need to be modified?

6.4 Create a procedure to test if two Line objects represent intersecting lines and,

if not, to find their Point of intersection.



114 C++ for Mathematicians

6.5 Create a LineSegment class. The data for the class should be two Point

objects representing the end points of the segment. You may consider making

these data elements public even though this practice is usually discouraged.

Why might this be acceptable in this case?

6.6 Suppose we wish to add a translate method to the Point class developed in

this chapter. The effect of invoking P.translate(dx,dy) would be to move

the point from its current location (x,y) to the new location (x+dx,y+dy). In

addition (and this is the point of this exercise), this method should return the

new value of P. For example, consider this code:

Point P(4,5);
cout << P.translate(1,2) << endl;

This should print (5,7) on the computer’s screen.

This procedure is declared by adding the following line to the public section

of the Point declaration in Point.h.

Point translate(double dx, double dy);

Explain how to code this procedure in the Point.cc file.

6.7 In Exercise 6.6 we considered how to add a translate procedure to the

Point class. With this addition in place, consider the following code in a

main().

Point P(3,5);
(P.translate(1,2)).translate(10,10);
cout << P << endl;

This causes (4,7) to be printed on the screen.

We might have expected (14,17) to have been printed. Explain the behavior

of the code.

How can you modify the code to achieve the desired behavior.

Hint: Normally a return X; statement returns a copy of X. Examine how we

coded operator<< for the Point class to implement a different behavior for

return.



Chapter 7

Pythagorean Triples

A Pythagorean triple is a list of three integers (a,b,c) such that a2 + b2 = c2. Such

a triple is called primitive if the integers are nonnegative and gcd(a,b,c) = 1. For

example, (3,4,5) is a Pythagorean triple because 32 +42 = 52. Although (30,40,50)
and (−3,4,−5) are also Pythagorean triples, they are not primitive.

In this chapter and the next we develop the C++ machinery necessary to find all

primitive Pythagorean triples with a,b,c ≤ 1000 (or any other given value).

7.1 Generating Pythagorean triples

There is a simple method to generate Pythagorean triples. Let z be a Gaussian

integer; that is, z = m+ni where m,n ∈ Z. Consider |z4|. On the one hand,

∣∣z4
∣∣ =

(|z|2)2
=

(
m2 +n2

)2

but

|z4| = ∣∣z2
∣∣2 =

∣∣(m2 −n2)+(2mn)i
∣∣2 = (m2 −n2)2 +(2mn)2.

Therefore

(m2 −n2)2 +(2mn)2 = (m2 +n2)2. (∗)

Because m,n ∈ Z, it follows that
(
m2 −n2,2mn,m2 +n2

)
is a Pythagorean triple.

This can also be checked directly by expanding both sides (∗).
Although every triple of the form

(
m2 −n2,2mn,m2 +n2

)
is a Pythagorean triple,

not all Pythagorean triples arise in this manner. For example, (9,12,15) cannot be so

expressed. [Proof. If (9,12,15) were of this form, then 2mn = 12, so mn = 6. This

implies that {m,n} = {±2,±3} or {±1,±6} none of which yields (9,12,15).]
However, it can be shown that every primitive Pythagorean triple is of the form(

m2 −n2,2mn,m2 +n2
)
. We use this as fact to create a class that represents primitive

Pythagorean triples.

115



116 C++ for Mathematicians

7.2 Designing a primitive Pythagorean triple class
We want to design a C++ class to represent primitive Pythagorean triples. The

first question is: What shall we call this class? The most descriptive name is the

verbose PrimitivePythagoreanTriple but it would be painful to have to type

that repeatedly. On the other extreme, we could call the class PPT, but that would be

too cryptic. We settle on a compromise solution: PTriple.

How shall a PTriple store its data? The easiest solution is to save the triple

(a,b,c). Although we could omit c because it can be calculated from a and b, the

small bit of extra memory used by keeping c also is not a problem. We don’t want

to consider (3,4,5) different from any permutation of (3,4,5), so let us agree that a

PTriple should hold the three integers in nondecreasing order. The three integers

are held in long variables named a, b, and c.

Every class needs a constructor. Based on our discussion, the constructor should

process a pair of integers (m,n) to produce the triple (m2 − n2,2mn,m2 + n2). Un-

fortunately, life is not as simple as assigning

a ← m2 −n2, b ← 2mn, and c ← m2 +n2.

To begin, this may result in a or b negative. Even if both are positive, they may be in

the wrong order (we want 0 ≤ a ≤ b). Finally, the three values might not be relatively

prime. The only thing of which we can be confident is that m2 + n2 is nonnegative

and the largest of the three.

To handle these issues the constructor needs to correct the signs of a and b, put

them in their proper order, and divide through by gcd(a,b).
One last worry. In case m = n = 0, the triple constructed would be (0,0,0). Tech-

nically, this is not primitive because the entries are not relatively prime. We have two

choices: we can allow (0,0,0) to be a valid PTriple or we can forbid it. In either

case, the constructor needs to treat this possibility as a special case. In this book, we

decide to allow (0,0,0) as a valid PTriple.

We also need to provide a constructor with no arguments. This is what is invoked

by a declaration of the form PTriple P;. What Pythagorean triple should this

create? In other words, what should be the default primitive Pythagorean triple?

There are three natural choices: (0,0,0), (0,1,1), or (3,4,5). The last is the smallest

triple in which none of the elements is zero. For better or worse, we decide that

(0,0,0) is the default. If you are unhappy with any of these decisions, you can

certainly choose to proceed differently.

What methods do we need? We need to know the values held in a, b, and c, so

we plan for methods getA(), getB(), and getC() to report those values. We do

not want methods that can alter these values because we do not want to allow a user

to put a PTriple into an invalid state. If we had a setA method, then P.setA(2);

would result in a PTriple that cannot possibly be a Pythagorean triple.

We also want operators to compare PTriples. In addition to the == and != oper-

ators, we define a < operator. We need a less-than operator so we can sort PTriples



Pythagorean Triples 117

in an array and remove duplicates. (Remember, our goal is to find all primitive

Pythagorean triples with 0 ≤ a ≤ b ≤ c ≤ 1000.) We have some choice as to how

to define < for PTriples; we just need to ensure that our definition of < results in

a total order. One simple solution is to order the triples lexicographically. We put

(a,b,c) < (a′,b′,c′) provided c < c′, or else c = c′ and b < b′. Of course, if c = c′
and b = b′, then a = a′ and the triples are identical.

Finally, it is useful to define the << operator so we can print PTriples to the

computer’s screen.

We are now ready to implement the PTriple class.

7.3 Implementation of the PTriple class
As planned, the PTriple class has three private data elements of type long

named a, b, and c. The constructors ensure that the following conditions are always

met.

0 ≤ a ≤ b ≤ c, gcd(a,b) = 1, a2 +b2 = c2. (∗)
The only exception is that we allow (a,b,c) = (0,0,0).

We create the class with two constructors: one that takes no arguments and one

that takes two long arguments. The first constructs (0,0,0) and the latter uses the

method described at the beginning of the chapter. It is the constructor’s responsibility

to make sure that the conditions in (∗) are met. We relegate that to a private helper

method named reduce. (Strictly speaking, we do not need a separate procedure for

these steps, but we want to illustrate an instance of a private method for a class.)

The public methods for PTriple are getA, getB, getC, and the operators ==,

!=, and <. Finally, we have an operator<< procedure that is not a member of the

PTriple class.

We now present the header file PTriple.h. In this case, we have not removed

the comments. This header file introduces some new ideas that we discuss after we

present the file.

Program 7.1: Header file for the PTriple class.

1 #ifndef PTRIPLE_H
2 #define PTRIPLE_H
3 #include <iostream>
4 using namespace std;
5

6 /**
7 * A PTriple represents a reduced Pythagorean triple. That is, a
8 * sequence of three nonnegative integers (a,b,c) in nondecreasing
9 * order for which aˆ2+bˆ2=cˆ2 and (a,b,c) are relatively prime. The

10 * relatively prime requirement means that we only deal with primitive
11 * Pythagorean triples. We allow (0,0,0).
12 */



118 C++ for Mathematicians

13 class PTriple {
14 private:
15 /// Shorter leg of the triple
16 long a;
17 /// Longer leg of the triple
18 long b;
19 /// Hypotenuse
20 long c;
21

22 /**
23 * This private method makes sure the triple elements are
24 * nonnegative, in nondecreasing order, and relatively prime.
25 */
26 void reduce();
27

28 public:
29 /**
30 * Default constructor. Makes the triple (0,0,0).
31 */
32 PTriple() {
33 a = b = c = 0;
34 }
35

36 /**
37 * Construct from a pair of integers. Given integers m and n, we
38 * make a Pythagorean triple by taking the legs to be 2mn and
39 * mˆ2-nˆ2 and the hypotenuse to be mˆ2+nˆ2. We then make sure the
40 * three numbers are nonnegative, in nondecreasing order, and then
41 * divide out by their gcd. For example PTriple(2,1) creates the
42 * famous (3,4,5) triple.
43 */
44 PTriple(long m, long n);
45

46 /// What is the shorter leg of this triple?
47 long getA() const {
48 return a;
49 }
50

51 /// What is the longer leg of this triple?
52 long getB() const {
53 return b;
54 }
55

56 /// What is the hypotenuse of this triple?
57 long getC() const {
58 return c;
59 }
60

61 /**
62 * Check if this PTriple is less than another. The ordering is
63 * lexicographic starting with c, then b. That is, we first compare
64 * hypotenuses. If these are equal, then we compare the longer leg.
65 * @param that Another PTriple
66 * @return true if this PTriple is lexicographically less than that.
67 */
68 bool operator<(const PTriple& that) const;



Pythagorean Triples 119

69

70 /**
71 * Check if this PTriple is equal to another.
72 */
73 bool operator==(const PTriple& that) const {
74 return ( (a==that.a) && (b==that.b) && (c==that.c) );
75 }
76

77 /**
78 * Check if this PTriple is not equal to another.
79 */
80 bool operator!=(const PTriple& that) const {
81 return !( (*this) == that );
82 }
83 };
84

85 /// Send a PTriple to an output stream
86 ostream& operator<<(ostream& os, const PTriple& PT);
87

88 #endif

The class declaration begins on line 13. Within the private section we see the

three long variables that hold the triple’s data. Thinking of a right triangle with side

lengths a,b,c, we call a the shorter leg, b the longer leg, and c the hypotenuse.

Also within the private section is the reduce() method. This is a method

invoked by the two-argument constructor PTriple(m,n); we discuss this in more

detail below.

The public section begins on line 28 beginning with the two constructors. The

zero-argument constructor PTriple() is not declared in the way we expect. Nor-

mally, a procedure declaration does not include the procedure’s code. All we expect

is this:

PTriple();

Instead, we see what we would normally expect to find in the .cc file.

PTriple() {
a = b = c = 0;

}

This is a special feature of C++. Procedures may be defined in header files and

are known as inline procedures. An inline procedure combines the declaration and

definition of a procedure at a single location in the header file.

It is possible to make any procedure into an inline procedure. The keyword

inline is used to announce this fact. However, for procedures that are members

of classes (i.e., methods), the keyword is optional. For all other procedures (i.e., or-

dinary procedures that are not class members), the inline keyword is mandatory.

When should you use inline procedures as opposed to the usual technique of a

declaration in the .h file and definition in the .cc file? If the method’s code is only

a line or two, then it is a good idea to write it as an inline procedure. Several of

PTriple’s methods are extremely short and we write those as inline procedures as



120 C++ for Mathematicians

well. Others (such as the two-argument constructor or the operator<) are more

involved, so we use the usual technique for those.

There are advantages and disadvantages to writing inline code. It is convenient to

write the code for a method in the same file where it is defined. The C++ compiler

produces more efficient code from procedures that are written inline. (However,

smart C++ compilers can figure out when it is worthwhile to convert an ordinary

procedure into an inline procedure.) However, the object code for programs that use

inline procedures takes up a bit more disk space. Also, it takes a bit more time to

compile programs with inline procedures.

Sometimes it is mandatory to write methods as inline procedures. We explain that

when the time comes (Chapter 12).

The procedures that are not specified by inline code in the header file are defined

in the file PTriple.cc that we present next.

Program 7.2: Program file for the PTriple class.

1 #include "PTriple.h"
2 #include "gcd.h"
3

4 PTriple::PTriple(long m, long n) {
5 a = 2*m*n;
6 b = m*m - n*n;
7 c = m*m + n*n;
8

9 reduce();
10 }
11

12 void PTriple::reduce() {
13 // Nothing to do if a=b=c=0
14 if ((a==0) && (b==0) && (c==0)) return;
15

16 // Make sure a,b are nonnegative (c must be)
17 if (a<0) a = -a;
18 if (b<0) b = -b;
19

20 // Make sure a <= b
21 if (a>b) {
22 long tmp = a;
23 a = b;
24 b = tmp;
25 }
26

27 // Make sure a,b,c are relatively prime
28 long d = gcd(a,b);
29 a /= d;
30 b /= d;
31 c /= d;
32 }
33

34 bool PTriple::operator<(const PTriple& that) const {
35 if (c < that.c) return true;
36 if (c > that.c) return false;



Pythagorean Triples 121

37

38 if (b < that.b) return true;
39 return false;
40 }
41

42 ostream& operator<<(ostream& os, const PTriple& PT) {
43 os << "(" << PT.getA() << "," << PT.getB() << ","
44 << PT.getC() << ")";
45 return os;
46 }

The code for the constructor PTriple(m,n) is broken into two parts. Given the

input integers m,n we set

a ← 2mn, b ← m2 −n2, and c ← m2 +n2.

Then we need to fix a few things up. We need to make sure that a and b are non-

negative, that a ≤ b, and that gcd(a,b,c) = 1. We relegate these chores to the private

reduce method (which is invoked by the PTriple constructor on line 9).

The code for the < operator follows. This operator is used to compare a given

PTriple with another. If R and P are variables of type PTriple, the expression

R<P causes the operator< procedure belonging to R to execute.

We first compare the c values of R and P; this happens on lines 35–36. The first

comparison is c < that.c. The first c is the hypotenuse of the left-hand argument

of < (i.e., R). The unadorned c refers to the c for the object on which the method was

invoked. The c of the right-hand argument needs to be specified, so we must refer to

it as that.c because the right-hand argument is named that. Because P is passed

by reference (required for operators) to <, that.c is exactly the same variable as

P.c.

In short: When R<P is encountered, the unadorned c on line 35 is the c data

member of R and the that.c on line 35 is the c data member of P.

7.4 Finding and sorting the triples
Our goal is to find all primitive Pythagorean triples (a,b,c) with 0 ≤ a ≤ b ≤ c ≤

1000. Our strategy is this.

• First, we create an array of PTriples by calling PTriple(m,n) over a suit-

ably large range of m and n. Because every primitive Pythagorean triple can be

obtained from (m2 −n2,2mn,m2 +n2) we do not need to consider values of m
or n greater than

√
1000.

The upper bound of 1000 is, of course, arbitrary. Our design permits an arbi-

trary upper bound of N.



122 C++ for Mathematicians

• As the Pythagorean triples are created, we save them in an array. Because the

upper bound on a,b,c is arbitrary (N is specified by user input), the array we

create needs to be dynamically allocated.

How big should this array be? In the worst-case scenario, all of the Pythagorean

triples we create might be primitive and different from one another. (This is

actually a gross overestimate, but serves our purposes.) Because we iterate

over all m and n with 1 ≤ m,n ≤√
N, an array that can accommodate N values

is large enough.

• Once the array is populated, we sort it. It was in anticipation of the need to

sort the array that we defined the < operator.

• Finally, we read through the array printing out unique elements.

Here is the program that does all those steps; we explain the key features after we

present the code.

Program 7.3: A program to find Pythagorean triples.

1 #include "PTriple.h"
2 #include <iostream>
3 #include <cmath>
4 using namespace std;
5 /**
6 * Find all primitive Pythagorean triples (a,b,c) with 0 <= a <= b <=
7 * c <= N where N is specified by the user.
8 */
9

10 int main() {
11 PTriple* table; // table to hold the triples
12 long N; // upper bound on triples.
13

14 // Ask the user for N
15 cout << "Please enter N (upper bound on triples) --> ";
16 cin >> N;
17 if (N <= 0) return 0; // nothing to do when N isn’t positive
18

19 // Allocate space for the table
20 table = new PTriple[N];
21

22 // Populate the table with all possible PTriples
23 long idx = 0; // index into the table
24 long rootN = long( sqrt(double(N)) );
25

26 for (long m=1; m<=rootN; m++) {
27 for (long n=1; n<=rootN; n++) {
28 PTriple P = PTriple(m,n);
29 if (P.getC() <= N) {
30 table[idx] = P;
31 idx++;
32 }
33 }
34 }



Pythagorean Triples 123

35

36 // Sort the table
37 sort(table, table+idx);
38

39 // Print out nonduplicate elements of the table
40 cout << table[0] << endl;
41 for (int k=1; k<idx; k++) {
42 if (table[k] != table[k-1]) {
43 cout << table[k] << endl;
44 }
45 }
46

47 // Release memory held by the table
48 delete[] table;
49 return 0;
50 }

Note: Some compilers may require #include <algorithm> in order to use the

sort procedure (line 37).

Now for the analysis of the code.

• We need a table to hold the PTriples and so we declare a variable table of

type PTriple* (pointer to a PTriple, i.e., the head of an array). Because

we do not know how large this array needs to be, we cannot declare it with a

statement of the form PTriple table[1000];.

• Lines 15–17 ask the user to give us an integer N. If the user gives us an integer

that is less than 1, we end the program.

• Line 20 allocates space for table.

• The variable idx, declared on line 23, is used to access elements in the array

table.

• The variable rootN is set to
⌊√

N
⌋
. The syntax, unfortunately, is awkward.

The C++ sqrt procedure (which may require #include <cmath>) takes and

returns values of type double. So we first need to cast the value of N into a

double, calculate its square root, and then cast back to type long. When a

double is converted into a long, the digits to the right of the decimal place

are discarded. Therefore, line 24 computes the desired
⌊√

N
⌋
.

• Lines 26–34 run through all possible values of m,n with 1 ≤ m,n ≤ √
N. For

each pair, we generate a primitive Pythagorean triple. If its c-value is no larger

than N (line 29) we insert its value in the table and increment idx. Therefore,

once we finish this double for-loop, the variable idx holds the number of

entries we made into the array table.

• Sorting of the table takes place on line 37. The C++ sort procedure can

be used on any array of elements provided the type of those elements can be



124 C++ for Mathematicians

compared with a < operator. Thus, sort can be used to sort an array of longs

or doubles. In order to sort an array of PTriples, we just need to provide a

< operator.

The sort procedure may require the algorithm header.

The sorting is invoked with an unusual syntax: sort(table, table+idx);.

The first argument, table, makes sense. The sort procedure needs to know

what array to sort. It’s the second argument that is difficult to understand.

The second argument to sort needs to be a pointer to the location of the first

element beyond the end of the array. In other words, if the array holds five

elements (indexed 0 through 4), then the second argument to sort needs to be

a pointer to the nonexistent sixth element of the array (index 5).

More generally, sort can be used to sort a contiguous block of elements of an

array. The first argument to sort should be a pointer to the start of the block

and the second argument should be a pointer to the first element after the end

of the block.

We know that table is a pointer to the first element of the array table. That

is, table holds the memory address of table[0]. In C++, table+1 eval-

uates to the address in memory that holds table[1]. So table+idx is the

memory location holding table[idx]. However, at this point in our pro-

gram, idx holds a number one greater than the location where we last placed

a PTriple. This is what sort wants and so this is what we do.

Bottom line: To sort an array named, say, table that contains, say, 25 ele-

ments, the statement we use is this: sort(table, table+25);. It’s OK to

forget all this discussion about pointers and just remember this:

sort( table_name, table_name + number_of_elements);

• Lines 40–45 step through the elements of table. If the current element is

different from the previous one, we print it.

• Finally, we release the memory allocated to table on line 48. Strictly speak-

ing, this isn’t necessary because we are at the end of the program; the memory

would be reclaimed automatically. Nevertheless, it is a good habit to be sure

every new is matched with a delete[].

Here is what we see when the program is run (for N = 100).
� �
Please enter N (upper bound on triples) --> 100
(0,1,1)
(3,4,5)
(5,12,13)
(8,15,17)
(7,24,25)
(20,21,29)
(12,35,37)
(9,40,41)



Pythagorean Triples 125

(28,45,53)
(11,60,61)
(33,56,65)
(16,63,65)
(48,55,73)
(36,77,85)
(13,84,85)
(39,80,89)
(65,72,97)

� �

We see that there are 17 primitive Pythagorean triples with 0 ≤ a ≤ b ≤ c ≤ 100.

This implies that the array we created, table, used more memory than we really

needed.

Let’s complain about this program.

• It wastes memory. This is not a terrible problem because holding hundreds, or

even hundreds of thousands of Pythagorean triples is well within the capacity

of even the most modest computers. Still, we may encounter other situations

in which we need to be careful about the amount of memory we use.

• It was annoying that we needed to figure out how much memory to set aside

in table. It would be much easier if the table could adjust its size to suit our

needs, rather than requiring us to figure out how big to make it.

• The call to sort is still bugging me. Adding an object of type PTriple* and

an object of type long just seems wrong. (It isn’t wrong, but it is confusing.)

We deal with all these complaints in the next chapter.

7.5 Exercises
7.1 Create an Interval class to represent closed intervals on the real line: [a,b] =

{x ∈ R : a ≤ x ≤ b}. Implement this class entirely within an Interval.h file

and without any code file. To do this, you will need to make all methods and

procedures inline.

The class should include the following features.

(a) Two constructors: a zero-argument constructor that creates a default in-

terval (say, [0,1]) and a two-argument interval that creates the interval

with the specified end points. In response to either Interval(3,4) or

Interval(4,3), the interval [3,4] should be constructed.

(b) Get methods to reveal the end points of the interval.

(c) Comparison operators for equality (==) and inequality (!=).



126 C++ for Mathematicians

(d) An operator< for lexicographic sorting of the intervals. That is, [a,b] <
[c,d] provided a < c or (a = c and b < d).

(e) An operator<< for output to the screen.

7.2 In Exercise 7.1 you created an Interval class. Use that class to investigate

the following problem. Let I1, I2, . . . , In be a collection of random intervals.

What is the probability that one of these intervals intersects all of the others?

By random interval we mean an interval whose end points are chosen indepen-

dently and uniformly from [0,1] (with the understanding that [a,b] = [b,a]).

Write a program that generates n random intervals and then checks to see if

one of those intervals meets all of the others. It should repeat this experiment

many times and report the frequency with which it meets success.

7.3 Write a procedure that finds the median in a list of real numbers. Declare the

procedure as

double median(const double* array, long nels);

where array is the list of values and nels is the number of elements in the

array.

Warning: Your procedure should not modify the list (hence the use of the

keyword const), but should use its values to find the median. Still, a good

way to find the middle element(s) is to work with a sorted array. If you wish

to use the C++ sort procedure, include these lines in your code:

#include <algorithm>
using namespace std;

Note: If the length of the list is even, there is no single middle value, but rather

two “middle” values. In this case, take the median to be the average of those

two middle values.

7.4 Write a program to count the number of primitive Pythagorean triples in which

(a) one of the legs has length k and (b) in which the hypotenuse has length k,

for all k with 1 ≤ k ≤ 100.



Chapter 8

Containers

In this chapter we explore a variety of container classes available in C++. The C++
arrays provide little functionality and can be dif cult to use. It is easy to make
mistakes using arrays: the arrays might not be big enough to hold the data, we might
access elements beyond the end of the array, there is no convenient way to enlarge
an array after it has been created, and it is easy to forget a delete[] statement for
an array that has been dynamically allocated.

In lieu of holding values in arrays, C++ provides the means to create arraylike
structures that can change size on demand, unordered collections (sets and multisets),
and other useful containers (stacks, queues, double-ended queues, and simple lists).
These containers are easy to use.

8.1 Sets

In Chapter 7 we generated primitive Pythagorean triples and collected our results
in an array. We then needed to process the array to remove duplicates. Alternatively,
with each new triple generated, we could have scanned the array to see if the new
triple was already recorded. This, however, increases the processing time and does
not solve the problem that we do not know in advance how large to make the array.

The C++ set class behaves much as a nite mathematical set. In a C++ set, all
the elements of the set must be the same type. That is, the elements of the set may
be all longs or all PTriples; the set cannot contain a mixture of types.

To use sets in your program, you need to include the set header le with the
directive #include <set>.

To declare a set one needs to specify the type of element stored in the set. This
is done using the syntax set<type> set_name;. For example, to declare a set of
integers, use the following statement,

set<long> S;

The variable S is now a set that can hold long integer elements. Any C++ type
(either innate or a class you de ne) can be held in a set with only one proviso: The
type must have < and == operators de ned.

There are fundamental operations we need to be able to perform on sets such as
adding an element to a set, deleting an element from the set, and so on. Here are the

127



128 C++ for Mathematicians

important methods you need to know to use C++ sets. In each case, S and T stand for
sets of elements of some type, and e stands for variable of that type. (For example,
S and T are sets of longs and e is a long.)

Add an element Use the statement S.insert(e);. This causes a copy of e to be
inserted into the set unless, of course, the set already contains this value.

Delete an element Use the statement S.erase(e);. If the set contains the value
held by e, that value is removed from the set. If the value is not in the set,
nothing changes.

Delete all elements in a set Use the statement S.clear();.

Is an element in the set? Use the method S.count(e). This returns the number
of times that e’s value appears in the set. This is either 0 or 1.

How many elements are in this set? The method S.size() returns the cardinal-
ity1 of S.

Is a set empty? The method S.empty() returns a bool value: true when S is
empty and false otherwise.

Check if two sets are the same The operators == and != work as expected. The
expression S==T returns true if S and T contain the same elements.

Copy one set to another The statement S = T; overwrites S with a copy of T.

There are other fundamental operations that one would like to perform on sets
including nding the smallest (or largest) element in a set, printing all the elements
in a set, and so on. The C++ set type can handle these tasks, but they are more
complicated. Before we explain how to do these, we return to Pythagorean triples.
We employ a strategy that is similar to the one we used in Program 7.2. We ask the
user to input N. We then generate all pairs of integers (m,n) with 1 ≤ m,n ≤ √

N.
We use these to generate primitive Pythagorean triples. We examine each triple to
see if c ≤ N; if so, we add it to a set S. In the end, we print all the elements of the set.
The dif cult part of the program is printing the set! Here is the code; the explanation
follows.

1The container classes in the Standard Template Library have size() methods that report the number of
elements held in the container. The value returned by size() method has type size t which is often
an unsigned value. Consequently, if you compare the return value from size() to, say, a long integer
value, the compiler may issue a warning or an error. To x this problem, you may need to convert the
result of the size() method to a long value. Fortunately, this is simple. Replace X.size() with
long(X.size()) and all should be well.



Containers 129

Program 8.1: A program to nd Pythagorean triples using sets.

1 #include "PTriple.h"
2 #include <set>
3
4 int main() {
5 set<PTriple> S; // Set to hold the PTriples we find
6
7 // Ask the user for N
8 cout << "Please enter N (upper bound on triples) --> ";
9 long N;

10 cin >> N;
11 if (N <= 0) return 0; // Nothing to do when N isn’t positive
12
13 // We only need to run the constructor arguments up to the square
14 // root of N.
15 long rootN = long (sqrt(double(N)) );
16
17 // Run through possibilities and if appropriate, add to the set S.
18 for (int k=1; k<=rootN; k++) {
19 for (int j=1; j<=rootN; j++) {
20 PTriple P(j,k);
21 if (P.getC() <= N)
22 S.insert(P);
23 }
24 }
25
26 // Print out the elements of the set
27 set<PTriple>::iterator si; // Iterator for S
28 for (si = S.begin(); si != S.end() ; si++) {
29 cout << *si << endl;
30 }
31
32 return 0;
33 }

We begin by declaring a set S (line 5) whose job is to hold the triples we nd.
Lines 8–11 ask the user for N and line 15 calculates �√N�.

Lines 18–24 step through all values of m,n and use these to generate primitive
Pythagorean triples. If the triple’s hypotenuse is no greater than N (line 21) then we
add it to the set (line 22).

The last part of the program (lines 27–30) prints the set S to the computer’s screen.
To do this, we need an object called an iterator (explained next).

At the end of the program, we do not need to delete the set S. The set is designed
to release the memory it consumes when the procedure in which it was declared
terminates.



130 C++ for Mathematicians

8.2 Set iterators

To access the 8th element of an array a is easy; we just type a[7]. (Remember
that the rst element of the array is a[0].) However, there is no method to access
the 8th element of a set. When programmers built the C++ set class, they chose
a design that would make the insertion, deletion, and element-query operations as
ef cient as possible. These requirements are incompatible with rapid access to the
nth element for arbitrary n.

Nonetheless, it is necessary for users to be able to access the elements held in a set.
To do so, they can fetch the elements sequentially using an object called an iterator.

A set iterator is an object that refers to elements of a set. The iterator speci es a
“current” element of the set. There are three important operations set iterators can
perform:

(a) They can report the value at the “current” location,

(b) They can advance to the next element in the set, and

(c) They can step back to the previous element of the set.

An iterator for a set is declared with a statement like this:

set<long>::iterator si;

This declares si to be an iterator for sets that contain long integers. The declaration
does not give si any particular value; it is not ready to report on elements of a set.

C++ set objects include a method named begin(). This method returns an
iterator to the rst (i.e., smallest) element of the set. So, if S is a set of long integers,
we can initialize si with a statement like this:

si = S.begin();

Note that si is not a long integer; it is an iterator. Hence a statement of the form
cout << si does not print the smallest element of the set. To access the value that
the iterator considers to be current, we use this syntax: *si. (The * operator is de-
signed speci cally to mimic the dereferencing notation used by pointers.) Therefore,
the following code does what it says.

set<long> S;
set<long>::iterator si;
....
if (!S.empty()) {

si = S.begin();
cout << "The smallest element in S is " << *si << endl;

}
else {

cout << "The set S is empty" << endl;
}



Containers 131

We push an iterator forward and backward using the increment ++ and decrement
-- operators, respectively. That is, the statement si++ (or ++si) advances the iter-
ator to the next element of a set and si-- (or --si) moves the operator back one
step.

We need to take care that we don’t run past the end of the set or rewind before
its beginning. The set class provides the methods begin() and end() for this
purpose.

As we mentioned, S.begin() returns an iterator for the rst element of a set,
S. Unfortunately, S.end() does not return an iterator to the last element of the set!
Instead, it returns an iterator one step past the end. (This design is consistent with
the idea that if an array a contains n elements, then a[n] is one step past the end of
the array.) If the set S is empty, S.begin() and S.end() give identical results.

(In addition to begin and end, there is a pair of reverse iterators named rbegin

and rend. Invoking S.rbegin() returns an iterator to the last element of the set and
S.rend() returns an iterator to a position one step before the rst element. These
are useful if we want to step through the elements of a set from largest to smallest.)

It is possible to compare iterators with the operators == and !=.
With these ideas in place, here is how to print all the elements of a set to the

computer’s screen.

set<long> S;
set<long>::iterator si;
....
for (si = S.begin(); si != S.end(); si++) {

cout << *si << " ";
}
cout << endl;

This code prints the elements of S on a single line with spaces separating the ele-
ments.

Suppose we wish to sum the elements of S. Here is how we can do it.

long sum = 0;
for (si = S.begin(); si != S.end(); si++) {

sum += *si;
}

You may not use set iterators to change a value in a set. The expression *si may
not appear to the left of an = sign (assignment operator).

Please refer to lines 27–30 of Program 8.1. There we declare an iterator si for
sets of Pythagorean triples. We then use it to print (one per line) all the elements of
the set S.

Here is how to use iterators to create procedures to check if one set is a subset of
another and to compute the union and intersection of sets.2

2The code given here compiles and runs as expected when using the g++ compiler, but not with Microsoft
Visual Studio. Here’s why and how to x the problem.
Explanation: Some iterators are capable of modifying the containers to which they refer (not set, but



132 C++ for Mathematicians

bool subset(const set<long>& A, const set<long>& B) {
if (A.empty()) return true;
set<long>::iterator si;
for (si=A.begin(); si!=A.end(); si++) {

if (B.count(*si) == 0) return false;
}
return true;

}

void Union(const set<long>& A, const set<long>& B, set<long>& C) {
C = A;
set<long>::iterator si;
for (si = B.begin(); si != B.end(); si++) {

C.insert(*si);
}

}

void Intersection(const set<long>& A, const set<long>&B, set<long>& C){
C.clear();
set<long>::iterator si;
for (si = A.begin(); si != A.end(); si++) {

if (B.count(*si)>0) {
C.insert(*si);

}
}

}

The rst procedure checks if A ⊆ B. The next two procedures set C equal to A∪B
and A∩B, respectively.

In all three procedures arguments A and B are declared const set<long>&. This
means that A and B are sets of long integers and are passed by reference. Call by
reference is important in this instance. The sets might contain tens of thousands of
elements. If we used call by value (i.e., if we omitted the &), then the set would be
copied and this takes time. By passing a reference, the procedure receives its data
instantaneously. The const keyword is an assurance that the code that follows does
not alter the sets A or B.

Argument C in the second and third procedures holds the result of the computation.
In order for the procedures to modify argument C it must be a reference variable
(hence the & is required).

The union and intersection procedures do not return a result; they are both type
void. It might be tempting to declare the union procedure like this:

others such as vector and list discussed later in this chapter). If an argument to a procedure is a
container and declared to be a const reference, then using an iterator referring to that container could
violate the const guarantee (because the iterator might modify the object). The g++ compiler allows
us to use set iterators for const objects as there is no danger that the set can be modi ed through
the use of the iterator. Visual Studio, however, takes a stricter approach. It does not allow us to use an
iterator that refers to a const container. The solution is use a restricted form of an iterator called a
const iterator; we discuss these on pages 145–147.
Solution: To make this code usable in the stricter context of Visual Studio, change all instances of
iterator to const iterator.



Containers 133

set<long> Union(const set<long>& A, const set<long>& B);

Inside the procedure, we could build the union in a set named C and conclude with
return C;.

Such a procedure would work, but it would be inef cient. The problem is that the
return variable would be copied to the calling procedure.

We named the union procedure with a capital letter: Union. Why not name this
simply union? The problem we are avoiding is that union is a C++ keyword (not
one that is of interest to mathematicians). We cannot name a procedure union, just
as we cannot name a procedure if or for. (See Section 15.5.3 if you are curious.)

These procedures work perfectly for sets of long integers, but cannot be used
for sets of double numbers. In C++ there is a mechanism to create a procedure
schema (called a template) so that one procedure can be used with arguments of
many different types. This is explained later (in Chapter 12).

It is possible to initialize an iterator with methods other than begin and end. An-
other useful method is find. If A is a set and e is an element, then A.find(e) re-
turns an iterator for A that is focused on e. However, if e is not in A, then A.find(e)

signals its inability to nd e in the set by returning A.end(), that is, an iterator that
is one step beyond the end of the set.

8.3 Multisets

The directive #include <set> also provides the multiset type. A multiset

may contain an element repeatedly. For a set, the count method returns only 0
or 1; for multisets, it returns the multiplicity of the element, and this may be any
nonnegative integer.

A multiset iterator is declared in the expected way:

multiset<type>::iterator mi;

If an element appears several times in a set, *mi gives that value repeatedly as mi is
increased. Here is an example.

Program 8.2: A program to demonstrate the use of multiset.
1 #include <iostream>
2 #include <set>
3 using namespace std;
4
5 int main() {
6 multiset<long> A;
7
8 for (int k=1; k<=5; k++) A.insert(k); // A <- {1,2,3,4,5}
9 A.insert(3); // we put an extra 3 into A

10



134 C++ for Mathematicians

11 cout << "The size of A is " << A.size() << endl;
12
13 // print the set
14 multiset<long>::iterator ai;
15 cout << "The elements of A are: ";
16 for (ai = A.begin(); ai != A.end(); ai++) {
17 cout << *ai << " ";
18 }
19 cout << endl;
20 return 0;
21 }

The output from this program is this:
� �
The size of A is 6
The elements of A are: 1 2 3 3 4 5

� �

8.4 Adjustable arrays via the vector class

Arrays in C++ can be created in two ways. First, we can specify in our program
how large the array should be:

long primes[100];

Every time the program is run, the array primes has the same size. Alternatively,
the array can be created while the program is running with a size that is determined
at that time:

long *primes;
long n;
...
primes = new long[n];
...
delete[] primes;

Although this allows the size of an array to be set by the program while it is running,
it does not provide all the functionality we might like. For example, if while the
program is running we discover that the array is too small, there is no simple way
to increase its size. Alternatively, once the array is populated with values, we may
discover that we have overestimated its size. There is no simple way to shrink the
array down to just the size we need (and thereby release the extra memory). Finally,
dynamically allocated arrays should be released with a delete[] statement when
they are no longer needed. However, it is easy to forget to do this. For example, a
procedure might look like this:

void procedure() {
long *list;
...
list = new long[n];



Containers 135

...
if (something_bad) {

cout << "Trouble happens" << endl;
return;

}
...
cout << "All’s well that ends well" << endl;
delete[] list;

}

If something_bad evaluates to true the procedure ends early. In that case, the
procedure never reaches the delete[] statement and the memory allocated to list

is never released. We have a memory leak. When an array is passed to another
procedure, the procedure that receives the array cannot determine the number of
elements the array contains; that information would need to be passed as a separate
argument.

C++ provides a remedy to the many woes that plague ordinary arrays: “smart”
arrays are called vectors. A vector holds elements of a given type in a list. The
elements of the vector are accessed exactly as elements in an array. Before declaring
any vector variables, the directive #include <vector> is required. Then, to
create a vector of, say, long integers, we can use one of the following,

vector<long> alpha;
vector<long> beta(100); // round parentheses, not square brackets!

The rst creates a vector of longs of size zero and the latter creates a vector of
longs that (initially) can hold 100 values.

To learn the size of an array, use the size method: for example, beta.size()

returns 100 (based on the declaration above).
Because beta has size 100, its 100 elements can be accessed just as an array is:

from beta[0] to beta[99]. It is an error to access beta[100] because that would
be beyond the capacity of the vector. Unfortunately, this error may happen silently
because vectors do not check if the index they are given is in the proper range.3

If the array we declared is not large enough, we can ask it to grow using the
resize method.

vector<long> beta(100);
beta[99] = 23;
beta.resize(110);
beta[100] = -4; // OK; we have space up to beta[109]

The amount of memory a vector uses is not always its size. Often, when a
vector is resized, it grabs more memory than you requested. The resizing operation
is time consuming if the vector does not have spare capacity. For example, suppose

3The vector class provides a method named at() that may be used in place of the square brackets
notation; that is, we can write vec.at(k) in place of vec[k]. The at() procedure checks that its
argument is within range. If the index is illegal, then at() signals the error by throwing an exception;
this is a concept discussed in Section 15.3.



136 C++ for Mathematicians

the vector beta initially has size 100, and then (as in the example) you resize it to
110 (i.e., with the statement beta.resize(110);). Here is what happens behind
the scenes.

• The vector can only hold 100 elements and is out of space. So it requests a
new block of memory of size 200 (even though you only asked for a resize to
110).

• The elements held in the old block of memory are copied to the new block of
memory.

• The old block of memory is released.

At this point, the size of the vector is 110, but behind the scenes extra space has
been grabbed for future expansion. If at this point you request beta.resize(120),
no recopying of data is necessary. The vector simply grows into the memory it has
already set aside. However, if you request beta.resize(250), the reallocation
procedure happens again.

You can inspect and control the amount of extra space a vector holds if you wish.
The method capacity() returns the maximum size to which the vector can grow
without going through the time-consuming reallocation process. A statement such
as beta.reserve(1000); causes the vector to set aside room for 1000 elements.
This statement does not affect the size of beta; it simply sets aside room for future
expansion of the size.

It is not necessary to use capacity and reserve. You may use the default be-
havior and that should serve you well nearly all of the time.

Invoking the clear() method on a vector erases all its elements and sets it size
to zero. The method empty() returns true in case the size of the vector is zero.

One more method: invoking beta.max_size() returns the maximum possible
capacity a vector may have on your computer. (On my computer, the result is just
over one billion.)

A special type of vector is one that holds bool values. If we declare a Boolean
array, such as bool flags[1024]; the array holds each true/false value in at least
one byte (or worse). This is an inef cient use of the computer’s memory. Instead,
we can declare flags like this:

vector<bool> flags(1024);

With this, we can access individual elements exactly as if flags were an array (type
bool*) but the memory use is much more ef cient. Each byte of memory can hold
eight bits. This is not signi cant when dealing with only an array whose size is in the
thousands, but it becomes an issue when the array has millions or billions of entries.
On the other hand, accessing individual entries in a vector<bool> is slower than
accessing elements of an array. The vector<bool> needs to do extra work to access
individual bits held in its memory.



Containers 137

To illustrate the use of vector objects, let us revisit the Sieve of Eratosthenes. We
use a vector<long> to hold the table of primes. The sieving part of the procedure
uses a vector<bool>.

The header le vector-sieve.h declares the new version like this:

long sieve(long n, vector<long>& primes);

The rst argument gives an upper bound on the primes to be generated. The second
is a place to hold the primes. In this instance, we do not need to worry if the object
primes is large enough to hold the values. It is resized as needed as the algorithm
runs. The return value is the number of primes found. Here is the code.

Program 8.3: The Sieve of Eratosthenes revisiting using vector classes.
1 #include "vector-sieve.h"
2
3 long sieve(long n, vector<long>& primes) {
4 primes.clear(); // erase the sieve
5
6 if (n < 2) return 0; // no primes < 2
7
8 // Make a table of boolean values. true = prime and false =
9 // composite. We initialize the table to all true.

10 vector<bool> theSieve;
11 theSieve.resize(n+1);
12 for (long k=2; k<=n; k++) theSieve[k] = true;
13
14 long idx = 0;
15 for (long k=2; k<=n; k++) {
16 if (theSieve[k]) {
17 primes.resize(idx+1);
18 primes[idx] = k;
19 idx++;
20 for (long d = 2*k ; d<=n; d+=k) theSieve[d] = false;
21 }
22 }
23 return primes.size();
24 }

We know that the sieve table, theSieve, needs to run up to theSieve[n] so
we immediately resize it to hold n+1 values (line 11). The rest of the program does
the usual sieving procedure. Each time we add an element to the table (when the
condition on line 16 is satis ed), we increase the size of primes by one and insert
the newly found prime into the last position.4 Occasionally, the computer needs
to reserve larger and larger chunks of memory to hold the growing vector. In
this program, we trust the default behavior. However, we could have monitored
the capacity of the vector and increased it (say, by 100,000 cells) each time it was
exhausted.

4There is an alternative way to add one element to the end of a vector: use the push back method.
That is, if vec is a vector, then vec.push back(x) increases the size of vec by one and puts a
copy of x into the newly created last position.



138 C++ for Mathematicians

Here is a main to illustrate the use of the new sieve procedure.

#include "vector-sieve.h"
#include <iostream>
using namespace std;
/// Test the vector version of sieve.
int main() {

vector<long> primes;
long N;

cout << "Find primes up to what value? ";
cin >> N;

// Generate the primes
sieve(N, primes);

cout << "We generated " << primes.size() << " primes" << endl;
cout << "The largest of which is " << primes[primes.size()-1]

<< endl;
return 0;

}

Running this program with N equal to one billion gives the following in a matter
of minutes.

� �
Find primes up to what value? 1000000000
We generated 50847534 primes
The largest of which is 999999937

� �

This would not have been possible on my computer using the old version of sieve

because the sieve table would have exhausted all available memory; the space ef -
ciency of vector<bool> made this possible.

8.5 Ordered pairs

Ordered pairs occur frequently in mathematics and C++ has a convenient mech-
anism for handling them. The two entries in an ordered pair need not be the same
type. To use the C++ type pair, you rst need the directive #include <utility>.
Then, the following declaration creates an ordered pair named couple whose rst
entry is a long integer and whose second entry is a double real number:

pair<long, double> couple;

The C++ pair does not hide its data in a private section, so it is easy to extract
and modify the entries. The two data members are named first and second. To
set the pair couple we de ned above to (6, ), we use these statements:

couple.first = 6;
couple.second = M_PI;



Containers 139

Ordered pairs are convenient for procedures that return two values. Rather than
modify call-by-reference arguments (as we did in the extended gcd procedure), a
procedure can return a pair containing the two quantities of interest.

For example, here is a procedure to simulate the roll of a pair of dice. It returns an
ordered pair of random integers (x,y) with 1 ≤ x,y ≤ 6.

#include <utility>
#include "uniform.h"
using namespace std;

pair<long, long> dice() {
long a = unif(6);
long b = unif(6);
return make_pair(a,b);

}

The return statement uses the make_pair procedure; make_pair is a convenient
mechanism for the creation of ordered pairs. The two arguments to make_pair can
be any C++ type; the compiler knows the types of the arguments and creates a pair
in which first and second have the correct type.

Ordered pairs can be compared for equality using the == and != operators. If < is
de ned for the two types held in the pair, then < can be used to compare the pairs;
the comparison is lexicographic comparing first rst and then second.

8.6 Maps

A C++ vector can be thought of as a function de ned on the nite domain
{0,1,2, . . . ,n−1}. The values this function takes may be any C++ type.

C++ provides a generalization of vector called map. A map behaves much as
does a (mathematical) function f : A → B where A is a nite set. Recall that a
mathematical function is a set f of ordered pairs (a,b) with the property that if
(a,b),(a,c) ∈ f , then b = c. Similarly, a C++ map is a container that holds key/value
pairs (k,v) with the property that for each key k there can be at most one pair (k,v)
held in the map.

A map object is declared like this:

#include <map>
...
map<key_type, value_type> m;

The #include <map> directive is necessary to de ne the map type. The types
key_type and value_type can be any C++ types as long as key_type can be
ordered using <. For example, we can declare a map as map<long,double> f;

and then f acts as a function from a nite subset of Z to R.



140 C++ for Mathematicians

Once declared, there are natural operations we can perform with maps. In the
examples that follow, f is a map declared as map<long,double>. The variable k is
a key (hence of type long) and the variable v is a value (hence of type double).

Set f (k) = v for a given key k and value v To insert the key-value pair (k,v) into a
map f , the simplest thing to do is to use the following statement,

f[k] = v;

Alternatively, one can use the insert method to add the pair (k,v) to f . The
statement looks like this: f.insert(make_pair(k,v));. Clearly, the syn-
tax f[k]=v; is simpler and clearer.

Note that if a function value is already de ned for f (k), then the statement
f[k]=v; overwrites the old value for f (k).

Determine if f (k) is de ned for a given k For this we use the count method. The
expression f.count(k) returns the number of key/value pairs in f that con-
tain the key k; this is either 0 (f[k] is unde ned) or 1 (f[k] is de ned).

Determine the value v associated with a key k In other words, given k, nd f (k).
The easy way to do this is to use f[k]. Provided f[k] is de ned, this returns
the value associated with the key k. Thus f[k] may appear on either the left
or right side of an assignment statement, or in any expression we like.

This leads to the question, what happens when we have a statement such as
cout << f[5] << endl; but we have not yet de ned f[5]? First, you
should be careful in writing your programs so that this situation does not arise.
What happens is that seeing that a value for f[5] is needed, the computer
assigns a value to f[5]. This value is some sort of default value provided by
the value’s type. In this example, because the values are of type double, a
tacit f[5] = 0.; takes place.

It is risky to rely on default behaviors and much better to be careful in your
programming so that you check if f[5] is de ned (with a statement such as
if(f.count(5)>0){...}).

Unde ne f (k) Given a key k, we might wish to reset f[k] to unde ned by erasing
the key-value pair with key k. The erase method does this: f.erase(5);

deletes (5,v) is there is such a pair in f.

Determine the number of key-value pairs in a map The size method does just
this task. The expression f.size() returns the number of key-value pairs
held in f.

Reset a map to its empty state The statement f.clear(); clears the map. This
results in f.size() evaluating to zero.

Check if a map is empty The statement f.empty() yields true if f.size() is
zero, and false otherwise.



Containers 141

If we wish to examine, one by one, all the pairs held in a map we need to use a
map iterator. The method for doing this is similar to the one we examine for sets.
The declaration for a map iterator looks like this:

map<key_type,value_type>::iterator mi;

At this point, the map iterator mi is declared, but does not refer to any part of any
map. The map class provides the methods begin and end that are analogous to the
same-named methods for set. The expression f.begin() returns an iterator that
refers to the rst ordered pair held in f (assuming f is not empty). The expression
f.end() gives an iterator that is positioned one place past the end of the map.

The variable mi is not an element of the map f, but rather is a device for extracting
the members of the map. Because a map is a collection of ordered pairs, the expres-
sion *mi returns an object of type pair<key_type,value_type>. Let’s see how
this works with an example.

Program 8.4: A program to illustrate the use of maps.
1 #include <iostream>
2 #include <map>
3 using namespace std;
4
5 /**
6 * A program to illustrate the use of maps.
7 */
8
9 int main() {

10 map<long, double> f; // f is a function from integers to reals
11
12 f[-3] = 0.5;
13 f[2] = M_PI;
14 f[6] = 11;
15 f[0] = -1.2;
16 f[6] = exp(1.); // notice we are overwriting f[6]
17
18 for (long k=0; k<10; k++) {
19 cout << "The value of f[" << k << "] is ";
20 if (f.count(k) > 0) {
21 cout << f[k] << endl;
22 }
23 else {
24 cout << "undefined" << endl;
25 }
26 }
27
28 cout << "There are " << f.size() << " ordered pairs held in f"
29 << endl << "They are: ";
30
31 map<long,double>::iterator mi;
32 for (mi = f.begin(); mi != f.end(); mi++) {
33 long k = (*mi).first;
34 double v = (*mi).second;
35 cout << "(" << k << "," << v << ") ";
36 }



142 C++ for Mathematicians

37 cout << endl;
38
39 return 0;
40 }

The map f is declared on line 10. Lines 12–16 set various values for f[k]. Note
that we de ne f[6] on line 14, but then it is overwritten (with value e) on line 16.

Line 18 steps through key values from 0 to 9. If the function is de ned for that key,
we print out the corresponding value; otherwise, we announce that it is unde ned.

Line 31 declares a map iterator mi that we use in lines 32–37 to print out all
the ordered pairs held in the map. As mi steps through the map, we extract the
data to which it refers. Remember that *mi is a pair, and so to access its two
entries, we use first and second. The expression (*mi).first gives the key
and (*mi).second gives the corresponding value.5

The output of this program follows.
� �
The value of f[0] is -1.2
The value of f[1] is undefined
The value of f[2] is 3.14159
The value of f[3] is undefined
The value of f[4] is undefined
The value of f[5] is undefined
The value of f[6] is 2.71828
The value of f[7] is undefined
The value of f[8] is undefined
The value of f[9] is undefined
There are 4 ordered pairs held in f
They are: (-3,0.5) (0,-1.2) (2,3.14159) (6,2.71828)

� �

An interesting use for maps is the implementation of look-up tables. Suppose we
want to create a procedure for a function f and calculating f (x) is time consuming.
It would be useful if the procedure could remember past values that it calculated.
That way, we would never have to calculate f (x) twice for the same value of x.

For example, consider the following recursively de ned sequence of numbers an

for n ∈ Z+. Let a1 = 1. For n > 1, let

an =
d|n,d<n

ad.

For example,

a12 = a1 +a2 +a3 +a4 +a6 = 1+1+1+2+3= 8.

If we program a procedure to calculate an recursively, then the computation of a12

requests the values a1, a2, a3, a4, and a6. Except for a1 (the base case) each of these
spawns additional calls to the procedure. To prevent this inef ciency, we program
the procedure to remember the values it already calculated.

5There is an alternative to the notation (*mi).first. Instead, we can write mi->first. The C++
expression a->b is de ned to mean (*a).b.



Containers 143

To do this, we include a map as a static variable in the procedure. A static variable
retains its state even after the procedure exits. Here is the code for the procedure that
we call recur.

Program 8.5: A procedure that remembers values it has already calculated.
1 #include "recur.h"
2 #include <map>
3 using namespace std;
4
5 long recur(long n) {
6
7 static map<long, long> lookup;
8
9 if (n <= 0) return 0;

10 if (n == 1) return 1;
11
12 if (lookup.count(n) > 0) return lookup[n];
13
14 long ans = 0;
15 for (long k=1; k<=n/2; k++) {
16 if (n%k == 0) ans += recur(k);
17 }
18
19 lookup[n] = ans;
20
21 return ans;
22 }

The look-up table is declared on line 7. It is a map in which keys and values
are both of type long. It is declared static so that its state is preserved between
procedure calls.

Lines 8 and 9 handle the base cases. If the user gives an illegal (i.e., nonpositive)
value for n, we return 0. For the case n = 1, we return a1 = 1.

Next (line 12) we check if we have already calculated an for this value of n; if so,
we simply return the value we previously computed.

Otherwise (we have not previously computed an) we calculate an by summing ad

over proper divisors of n (lines 15–17). (Please note that this is done in a rather
inef cient manner; we sacri ced ef ciency here for the sake of pedagogic clarity.)

Finally, before returning the answer (held in ans) we record the value for an in the
look-up table (line 19).

This procedure is more than twice as fast as a conventional recursive procedure.
There is, however, a price to be paid. As more and more an values are calculated,
they occupy memory. This is a classic time/memory tradeoff. One aw with this
code is that there is no way to clear the memory consumed by the look-up table.
We could design the code so that if the user sends a negative value to the procedure,
then the memory is released. That is, we could add the following statements to the
program.

if (n<0) {
lookup.clear();



144 C++ for Mathematicians

return 0;
}

Just as the set type can be extended to the multiset type, there is also a class
named multimap that allows multiple values to be associated with a given key.

8.7 Lists, stacks, and assorted queues

There are additional object container classes available in C++ and we discuss some
of them here. Each has its strengths and weaknesses. We give a brief overview of
each and then delve into a few details. All of these containers support the following
operations.

Erase all elements The statement C.clear(); erases all the elements in the con-
tainer C.

Determine the size of the container Use C.size().

Check if the container is empty Use C.empty().

Make a copy of the container Use new_C = C;.

8.7.1 Lists

A list is a container that holds values in a linear structure. One can rapidly insert
new elements at the beginning, end, or anywhere in the middle of a list. Deletion of
elements at any point in the list is also ef cient. However, to access, say, the 17th
element of a list, one has to go to the beginning of the list and step forward repeatedly
until we arrive at the desired element. There is no way to check if a given element is
in the list except by stepping through the list element by element.

To use a list in your program, start with the directive #include <list>. To
declare a variable to be a list of elements of type, say, long, use a statement such
as list<long> L;.

Elements of a list can be accessed through iterators. To declare an iterator for a
list, use a statement such as this:

list<long>::iterator Li;

If L is a list, L.begin() is an iterator for the rst element of the list (assuming the
list is not empty) and L.end() is an iterator that is one step past the end of the list.

Here are some common tasks that one can perform on a list.

Insertion To insert an element e at the start of a list L, use L.push_front(e).
Now e is the rst value on the list and all the previously held values follow. To



Containers 145

insert at the end of the list, use L.push_back(e); and now e is the last value
held.

More generally, if Li is an iterator into a list L, then L.insert(Li,e) in-
serts e into the list in front of the element pointed to by Li. For example,
if the list is (1,3,5,6,5,−7,2) and Li points at the −7, then the statement
L.insert(Li,17); modi es the list so it now holds (1,3,5,6,5,17,−7,2).

The statements L.push_front(e); and L.insert(L.begin(),e); are
equivalent. Similarly, L.push_back(e); and L.insert(L.end(),e); are
equivalent.

Deletion To delete the rst element of a list, use L.pop_front(); and to delete
the last element of the list use L.pop_back();.

To delete an element referred to by an iterator Li, use L.erase(Li);.

To delete all elements equal to e, use L.remove(e);.

It is also possible to remove all elements that satisfy a given condition. To
do this, create a procedure that returns a bool value. For example, here is a
procedure that checks if an integer is even.

bool is_even(long n) {
return (n%2 == 0);

}

Now, to remove all even elements from a list of long integers, use the state-
ment L.remove_if(is_even);.

Sorting If the list holds elements for which < is de ned, the statement L.sort();

sorts the list into ascending order.

Once a list is sorted, the statement L.unique(); removes duplicate values.

Modi cation of a value To change a value held in a list, you need an iterator Li

focused on its spot in the list. Then you simply assign to *Li. For example,
here is some code that changes the value held at the second position in a list
(assuming the list has at least two elements).

list<long> L;
...
list<long>::iterator Li;
Li = L.begin();
Li++; // now refers to 2nd element of list

*Li = -51;

Here is a sample program to illustrate these ideas. There are two new ideas in this
program. First, we included all the procedures in one le. Each procedure is de ned
fully before it is used; therefore the main() procedure comes last. In general it is
better to put procedures into separate les and their declarations into a header (.h)
le; it is just easier to present these all as one le for pedagogic purposes.
Second, we introduce a variation on the iterator concept: a const_iterator.

We explain that after we present the program.



146 C++ for Mathematicians

Program 8.6: A program to demonstrate the use of lists.
1 #include <iostream>
2 #include <list>
3 using namespace std;
4
5 /// A procedure to print a list to cout
6 void print_list(const list<long>& L) {
7 list<long>::const_iterator Li;
8 for (Li = L.begin(); Li != L.end(); Li++) {
9 cout << *Li << " ";

10 }
11 cout << endl;
12 }
13
14 /// Check if an integer is even (to illustrate remove_if)
15 bool is_even(long n) {
16 return (n%2 == 0);
17 }
18
19 /// A main to illustrate various list operations
20 int main() {
21 list<long> L;
22 L.insert(L.begin(),4);
23 L.insert(L.end(),15);
24 L.insert(L.begin(),7);
25 L.push_front(24);
26 L.push_back(5);
27 L.push_front(99);
28
29 list<long>::iterator Li;
30 Li = L.begin();
31 Li++; // Focus on 2nd element in the list
32 L.insert(Li,0); // Inserts in front of 2nd element
33
34 cout << "Here is the list: ";
35 print_list(L);
36 cout << "The first element of the list is: " << L.front() << endl;
37 cout << "The last element of the list is: " << L.back() << endl;
38 cout << "The list contains " << L.size() << " elements" << endl;
39
40 L.sort();
41 cout << "And now sorted: ";
42 print_list(L);
43
44 L.pop_back();
45 L.pop_front();
46 cout << "First and last deleted: ";
47 print_list(L);
48
49 L.remove_if(is_even);
50 cout << "Even values deleted: ";
51 print_list(L);
52 return 0;
53 }



Containers 147

The rst procedure in this program is used to print a list to the computer’s screen.
We pass the list as a reference variable because this is more ef cient (hence the & on
line 6). Had we passed the list by value, a new copy of the list would have been
created and that’s a waste of time and memory.

Because this procedure does not modify the list, we certify that with the keyword
const on line 6.

The next step is to declare an iterator for the list and use that to report each value
held in the list. Here’s the problem. An iterator can be used to modify list values.
If the C++ compiler sees you working with an iterator for the argument L it worries
that you might change the elements held in the list. Suppose we had declared Li in
the usual way:

list<long>::iterator Li;

If we then focus Li on an element of L (e.g., with Li = L.begin();) then the
compiler gets upset because we now have the ability to modify L.

So, instead of using a “full power” iterator, we instead declare Li to be a “read
only” iterator—an iterator that can learn the values held in the list, but cannot modify
them. Such an iterator is known as a const_iterator and it is declared like this
(see also line 7):

list<long>::const_iterator Li;

Now the compiler can stop worrying that we might modify L in this procedure. The
rest of the print_list procedure is straightforward.

(Aside: We could have de ned an operator<< to send lists to the computer’s
screen. Then we could write statements like this: cout << L;.)

The is_even procedure on lines 15–17 is used to illustrate remove_if later in
the program (line 50).

The main procedure appears on line 20 and begins by declaring L to be a list of
integers. We rst insert 4 at the beginning of the list, then 15 at the end, and then 7
at the beginning. The list now stands at (7,4,15).

Next we insert 24 at the beginning, 5 at the end, and 99 at the beginning. Now the
list is (99,24,7,4,15,5).

On lines 30–31 we focus Li on the second element of the list (which holds the
value 24). The statement L.insert(Li,0); inserts the value 0 in front of 24; now
the list holds (99,0,24,7,4,15,5).

Lines 34–38 are self-explanatory.
Line 40 sorts the list; it now holds (0,4,5,7,15,24,99).
On lines 44–45 we delete the rst and last elements of the list. Now the list holds

(4,5,7,15,24).
On line 49 we delete all elements that evaluate to true when processed by the

is_even procedure. This reduces the list to (5,7,15).
Here is the output from the program.



148 C++ for Mathematicians

� �
Here is the list: 99 0 24 7 4 15 5
The first element of the list is: 99
The last element of the list is: 5
The list contains 7 elements
And now sorted: 0 4 5 7 15 24 99
First and last deleted: 4 5 7 15 24
Even values deleted: 5 7 15

� �

8.7.2 Stacks

A stack is a container that holds elements in a linear structure. New elements
can be added only at one end of the stack (called the top of the stack). The only
element that can be deleted is the one at the top of the stack, and it is also the only
one that is visible.

Before declaring a stack variable, use the directive #include <stack>. Now to
declare a stack of, say, double values, use a declaration like this:

stack<double> S;

There are four methods you need to know to work with stacks.

Check if the stack is empty The empty() method returns true if the stack con-
tains no elements.

Add an element to the top of a stack Use the push method: S.push(x);.

Learn the value held at the top of the stack Use S.top(). You may also use the
top method to modify the topmost value, as in S.top()=M_PI;.

Remove the top value held in the stack The statement S.pop(); removes the top
element from the stack.

8.7.3 Queues

A queue is a container that holds elements in a linear structure. New elements are
added only at one end of the queue (called the back). The only element that can be
removed from the queue (and the only one whose value is visible) is at the opposite
end of the queue (called the front).

To use queues in your program, use the directive #include <queue>. Declare
your queue like this:

queue<long> Q;

Here is what you need to know to use queues.

To check if the queue is empty Q.empty() returns true if the queue is empty and
false otherwise.

To add an element to the back of the queue Q.push(e) inserts the value in e to
the end of the queue.



Containers 149

To see the value at the front of the queue Q.front() gives the value held at the
head of the queue.

To delete the value at the front of the queue Use the statement Q.pop();.

It is also possible to look (and modify) the last element in the queue with the
back() method, but this is not in the spirit of queues. The usual mode of operation
with queues is to insert values at the back of the queue and not deal with them again
until they emerge at the front.

8.7.4 Deques

A deque is a double-ended queue (hence its name). It is a container that holds
elements in a linear structure. New elements can be inserted or deleted at either end.
It is possible to access (and modify) any element of a deque quickly using array
notation (e.g., D[4]). These containers incorporate features of stacks, queues, and
vectors.

To use a deque in your program, use the directive #include <deque> and de-
clare your variables like this:

deque<long> D;

Here are the most important things you can do with a deque.

Add elements To add a value to the back use D.push_back(e); and to add a value
to the front use D.push_front(e);. The “front” of the deque is considered
its beginning and the “back” is its end.

Delete elements The methods pop_front() and pop_back() delete the rst and
last elements of the deque, respectively.

Inspecting and modifying elements The methods front() and back() can be
used to get the rst/last values in the deque, and to modify those values. A
statement such as D.front()=34; changes the rst element’s value to 34. Of
course, these methods require that the deque be nonempty.

Alternatively, one can use square brackets to get or to modify any value held in
a deque. Index 0 always refers to the rst (front) element of the deque. Index
D.size()-1 is used for the last. To change the second entry in a deque, one
would use a statement like this: D[1]=86;. As with arrays and vectors, it is
important not to give an out-of-range index.

Deques support iterators (declared like this: deque<long>::iterator Di;),
but it is easier to use square brackets to work with individual entries.

Here is a short program to illustrate the use of deques; its output follows.



150 C++ for Mathematicians

Program 8.7: A program to illustrate the deque container.
1 #include <iostream>
2 #include <deque>
3 using namespace std;
4
5 int main() {
6 deque<long> D;
7
8 D.push_back(17);
9 D.push_back(23);

10 D.push_front(-9);
11 D.push_front(5);
12
13 D[1] = 0;
14
15 cout << "The first element of the deque is " << D.front() << endl;
16 cout << "The last element of the deque is " << D.back() << endl;
17 cout << "Here is the entire structure: " ;
18 for (long k=0; k<D.size(); k++) {
19 cout << D[k] << " " ;
20 }
21 cout << endl;
22
23 return 0;
24 }

� �
The first element of the deque is 5
The last element of the deque is 23
Here is the entire structure: 5 0 17 23

� �

8.7.5 Priority queues

A priority_queue is a container that holds its elements in a treelike structure.
The elements must be comparable via the < operation. Elements can be inserted at
any time but only the largest is visible and deletable.

To use a priority_queue include the <queue> header and declare your variable
like this:

priority_queue<long> PQ;

The relevant operations for a priority_queue are these.

Adding a value Use PQ.push(e);.

Getting the largest value held Use PQ.top().

Deleting the largest value held Use PQ.pop();.

A short program to illustrate these concepts, and its output, follow.



Containers 151

Program 8.8: Demonstrating the use of the priority queue container.
1 #include <iostream>
2 #include <queue>
3 using namespace std;
4
5 int main() {
6 priority_queue<long> PQ;
7
8 PQ.push(5);
9 PQ.push(12);

10 PQ.push(0);
11 PQ.push(-7);
12
13 cout << "The elements we pushed into the priority_queue are ";
14 while (!PQ.empty()) {
15 cout << PQ.top() << " ";
16 PQ.pop();
17 }
18 cout << endl;
19 return 0;
20 }

� �
The elements we pushed into the priority_queue are 12 5 0 -7

� �

8.8 Exercises

8.1 In mathematics, the elements of a set can themselves be sets. Show how to
declare a set of sets of integers in C++ and write a short program that creates

the set
{
{1,2,3},{4,5},{6}

}
.

8.2 Write a procedure to print a set of long integers to the screen. The elements
of the set should be enclosed between curly braces and separated by commas.
(Be sure that the last element of the set is not followed by a comma.) The
output should resemble these examples:

{1,2,3} {-1} {0,1} {}

8.3 Suppose we wish to use sets of complex numbers in a program. As a test, we
create this simple program:

#include <complex>
#include <set>
using namespace std;

int main() {



152 C++ for Mathematicians

complex<double> z(2.,3.);
set< complex<double> > A;
A.insert(z);
return 0;

}

This program creates a complex number z = 2+3i and a set of complex num-
bers A into which we insert z. Unfortunately, the computer fails to compile
this code and, instead, prints out a long stream of error messages that includes
a complaint that there is

no match for const std::complex<double>& <
const std::complex<double>&’ operator

What is wrong and how can we x this?

8.4 Let a1,a2,a3, . . . be the sequence of numbers de ned recursively by

a1 = 1 and an =
d|n,d<n

ad .

These are the values calculated by Program 8.5 (page 143).

Prove that an is the number of ordered factorizations of n. That is, the number
of ways to write n = f1 f2 · · · ft where the fi are integers with fi > 1. For
example, a6 = 3 because the ordered factorizations of 6 are

6 2×3 3×2.

We have a1 = 1 because the empty product evaluates to 1.

Find another combinatorial description of this sequence.

8.5 Create a class to represent integer partitions. Given a nonnegative integer n, a
partition of n is a multiset of positive integers whose sum is n; the elements of
the multiset are called the parts of the partition.

Name your class Partition and give it the following capabilities:

• A constructor that creates the empty partition of 0.

• An add_part method for adding a part.

• A get_sum method for learning the sum of the parts in the partition (i.e.,
the number partitioned by this Partition).

• An nparts method that reports the number of parts in the partition.

• A get_parts that returns the parts of the partition in a vector<int>

container.

• An operator< to give a total order on the set of integer partitions.

• An operator<< for writing Partition objects to the screen. Choose
an attractive output format. For example, the partition {1,1,3,4} of 9
can be written to the screen as 9 = 4+3+1+1.



Containers 153

8.6 Use the Partition class that you developed in Exercise 8.5 to create a pro-
gram that prints out all the partitions of a positive integer n, where n is speci ed
by the user.

8.7 Create a procedure to calculate binomial coef cients
(n

k

)
by the following algo-

rithm. When k = 0 or k = n, set
(n

k

)
= 1. Otherwise, use the Pascal’s triangle

identity:
(n

k

)
=

(n−1
k−1

)
+

(n−1
k

)
. This can be done recursively, but if the re-

cursion is done naively, the same binomial coef cients are recalculated many
times. Instead, devise a procedure that never calculates any binomial coef -
cient more than once.

8.8 Write a procedure to convert an array of long integers into a vector<long>.

8.9 Sorting vectors. Suppose values is a vector<long> of size 10 and we wish
to sort the elements held in values into ascending order. We might consider
the statement sort(values, values+10); but that is incorrect (and the
compiler generates an error message).

Next we guess that (like a list) vector de nes a sort method. So we try
values.sort(); but this is also incorrect.

The dif culty with the rst approach is that values is an object of type
vector<long> and, unlike a C++ array, is not a pointer to the rst element.
So the expression values+10 is illegal. The dif culty with the second ap-
proach is that vector objects do not de ne a sort method.

How do we sort elements held in a vector?

Hint: In place of pointers to the rst and one-past-the-last elements usually
required by sort, we can use iterators.

8.10 Suppose we have an iterator that refers to an element of a set, and then we
delete that element from the set. What can you say about the iterator now?

8.11 In light of Exercise 8.10, write a procedure that deletes all odd elements from
a set of integers. Such a procedure would be declared such as this:

void delete_odds(set<long>& A);

8.12 In many instances we want to perform an action on all the elements of a con-
tainer. To do this, we typically use an iterator like this:

set<long> A;
...
set<long>::iterator sp;
for (sp = A.begin(); sp != A.end(); ++sp) {

// do something with the value *sp
}

Because this structure is so frequent, the Standard Template Library provides
a procedure named for_each that acts just as the code above does. The
for_each procedure is de ned in the algorithm header.



154 C++ for Mathematicians

A call to for_each looks like this:

for_each(cont.begin(), cont.end(), proc);

Here cont is a container (such as a set or vector) and proc is a proce-
dure that takes a single argument of the same type as cont houses. Fur-
thermore, proc does not have a return value. For example, if cont is a
vector<double>, then proc would be declared void proc(double x);.

The statement for_each(cont.begin(),cont.end(),proc); is equiva-
lent to this code:

vector<double>::iterator vi;
for (vi=cont.begin(); vi!=cont.end(); ++vi) {

proc(*vi);
}

Use the for_each procedure to create a print_set procedure that prints out
a set of long integers to cout. The format of the output should look like this:
{ 1 3 9 }.

8.13 A simplicial complex can be de ned combinatorially as a nite set S of nite
nonempty sets with the property that if A ∈ S and /0 �= B ⊆ A, then B ∈ S .
The sets in S are called the simplices of the simplicial complex.

For example, this topological simplicial complex

1

2

3

4

5

can be written combinatorially as{
{1},{2},{3},{4},{5},{1,2},{1,3},{2,3},{2,4},{3,4},{3,5},{2,3,4}

}
.

Create a class called SimplicialComplex that holds such structures. For the
sake of ef ciency, store only the maximal simplices in the complex. For the
example given above, the maximal simplices are {1,2}, {1,3}, {2,3,4}, and
{3,5}.

The class should contain a basic constructor (that creates an empty simplicial
complex) and a method to add new simplices. The add method should be
careful to deal with the following two situations.

• If the new simplex X is already in the simplicial complex do not add it
again; we need to check that X is not a subset of one of the maximal
simplices in S .



Containers 155

• If the new simplex X is not in S , but contains some of the simplices
already in S , then we need to update the set of maximal simplices to
include X and to delete those that are proper subsets of X .

The class should also contain a method to check if a given simplex X is a
member of the complex.

If you are feeling adventurous, create an erase method to remove simplices
from the complex. Of course, when a simplex X is deleted from S , we must
also delete all simplices that contain X . We then need to be careful to update
our collection of maximal simplices. If we delete the simplex {3,4} from the
example in the gure, then we must also delete {2,3,4}. After the deletion,
the simplex {2,3} is maximal.





Chapter 9

Modular Arithmetic

Let n be a positive integer. The set Zn is {0,1, . . . ,n−1}. The set Zn is a ring with

the following operations.

x+ y = (x+ y) mod n and x · y = (xy) mod n

The goal for this chapter is to develop a C++ class for working in Zn. Most of

the C++ techniques used in this chapter have already been developed in previous

chapters, but a few new ideas are presented here as well. The creation of a C++ class

for representing elements of Zn is necessary for our later work in general finite fields.

9.1 Designing the Mod type
In order to design a C++ class to emulate Zn we need to decide what sort of data is

stored in each object as well as the methods and operations to be performed on these

objects. We also need a name for the new class and we choose the name Mod.

Each object of type Mod represents an element of Zn for some positive integer n.

The element 8 in Z10 is different from the element 8 in Z11. (Consider the result of

the operation 8+8.) Thus, each Mod object needs to hold two integers: the value in

Zn and the modulus, n. We call these val and mod and we declare these as private

members of the Mod class. To represent 8 in Z11, we set val equal to 8 and mod

equal to 11.

We need a constructor to create Mod objects, and the natural choice is to have a

constructor with two arguments: one that specifies the value and one that specifies

the modulus. However, all classes should provide a default constructor that takes no

arguments. What sort of object should Mod() construct? A natural choice is to set

val to zero, but what of the modulus? One idea is to choose a default modulus that

is used when a user does not specify a modulus. We are then faced with a decision:

What should that default modulus be? Rather than impose a solution, we let the user

decide. So we need a mechanism to set the default modulus. The implementation of

this leads us to some new C++ concepts (static class variables and methods) and we

explain these later in this chapter.

Now that we have the concept of a default modulus we may also create a single-

argument constructor. A call to Mod(x) should create a new Mod object with value

x in the default modulus.

157



158 C++ for Mathematicians

So far, the Mod class looks like this:

class Mod {
private:

long val;
long mod;

public:
Mod();
Mod(long x);
Mod(long x, long m);

};

The operations and methods we want to perform with Mod objects are these.

• Given a Mod object, we need to inspect and to modify both its value and its

modulus. Changing either the value or the modulus may require us to change

the other because a value x ∈ Zn must satisfy 0 ≤ x ≤ n−1.

• Given two Mod objects, we should be able to check whether they are equal.

In addition, we define a < operator to compare Mod objects; this enables us to

store Mod objects in containers such as a set that require a < operator.

• We want to be able to perform the usual arithmetic operations:

x+y; x-y; x*y; x/y;
x += y; x -= y; x *= y; x /= y;
-x;

For these operations, we need to be concerned about two situations that may

arise: combining objects of different moduli and division by a noninvertible

element of Zn. We handle these by returning an invalid Mod object. This

invalid value is represented internally with value and modulus equal to zero.

(Valid Mod objects have a positive modulus.)

Furthermore, it is convenient to be able to combine Mod and long objects

with a single operation. For example, suppose x and y are Mod objects, then

a statement such as y = x+1; should assign to y a value one greater than x’s

and the same modulus as x.

• In addition to the operations listed above, we want to perform exponentiation

ak where a ∈ Zn and k ∈ Z. Negative exponentiation gives a valid result pro-

vided a is invertible.

9.2 The code
We now present the Mod.h and Mod.cc files. The header file is long; to make it

more manageable for you to read we have removed most of the comments.

In the sections that follow, we work our way through the various features of the

Mod class that these files implement.



Modular Arithmetic 159

Program 9.1: Header file for the Mod class, Mod.h.
1 #ifndef MOD_H
2 #define MOD_H
3 #include <iostream>
4 using namespace std;
5

6 const long INITIAL_DEFAULT_MODULUS = 2;
7

8 class Mod {
9 private:

10 long mod;
11 long val;
12 static long default_modulus;
13 void adjust_val() {
14 val = val%mod;
15 if (val<0) val += mod;
16 }
17

18 public:
19 Mod() {
20 mod = get_default_modulus();
21 val = 0;
22 }
23

24 Mod(long x) {
25 mod = get_default_modulus();
26 val = x;
27 adjust_val();
28 }
29

30 Mod(long x, long m) {
31 if (m <= 0) {
32 val = 0;
33 mod = 0;
34 }
35 else {
36 mod = m;
37 val = x;
38 adjust_val();
39 }
40 }
41

42 long get_val() const { return val; }
43

44 void set_val(long x) {
45 if (mod == 0) return; // no change for an invalid object
46 val = x;
47 adjust_val();
48 }
49

50 long get_mod() const { return mod; }
51

52 void set_mod(long m) {
53 if (m <= 0) {
54 mod = 0;



160 C++ for Mathematicians

55 val = 0;
56 }
57 else {
58 mod = m;
59 adjust_val();
60 }
61 }
62

63 static void set_default_modulus(long m) {
64 if (m <= 0) {
65 default_modulus = INITIAL_DEFAULT_MODULUS;
66 }
67 else {
68 default_modulus = m;
69 }
70 }
71

72 static long get_default_modulus() {
73 if (default_modulus <= 0)
74 set_default_modulus(INITIAL_DEFAULT_MODULUS);
75 return default_modulus;
76 }
77 bool is_invalid() const { return mod==0; }
78

79 bool operator==(const Mod& that) const {
80 return ( (val==that.val) && (mod==that.mod) );
81 }
82

83 bool operator==(long that) const {
84 return (*this) == Mod(that,mod);
85 }
86

87 bool operator!=(const Mod& that) const {
88 return ( (val != that.val) || (mod != that.mod) );
89 }
90

91 bool operator !=(long that) const {
92 return (*this) != Mod(that,mod);
93 }
94

95 bool operator<(const Mod& that) const {
96 if (mod < that.mod) return true;
97 if (mod > that.mod) return false;
98 if (val < that.val) return true;
99 return false;

100 }
101

102 Mod add(Mod that) const;
103

104 Mod operator+(const Mod& x) const { return add(x); }
105

106 Mod operator+(long x) const { return add(Mod(x,mod)); }
107

108 Mod operator+=(const Mod& x) {
109 *this = add(x);
110 return *this;



Modular Arithmetic 161

111 }
112

113 Mod operator+=(long x) {
114 *this = add(Mod(x,mod));
115 return *this;
116 }
117

118 Mod operator-() const { return Mod(-val,mod); }
119

120 Mod operator-(const Mod& x) const {
121 return (*this) + (-x);
122 }
123

124 Mod operator-(long x) const {
125 return (*this) + (-x);
126 }
127

128 Mod operator-=(const Mod& x) {
129 *this = add(-x);
130 return *this;
131 }
132

133 Mod operator-=(long x) {
134 *this = *this + (-x);
135 return *this;
136 }
137

138 Mod multiply(Mod that) const;
139

140 Mod operator*(const Mod& x) const { return multiply(x); }
141

142 Mod operator*(long x) const { return multiply(Mod(x,mod)); }
143

144 Mod operator*=(const Mod& x) {
145 *this = multiply(x);
146 return *this;
147 }
148

149 Mod operator*=(long x) {
150 *this = multiply(Mod(x,val));
151 return *this;
152 }
153

154 Mod inverse() const;
155

156 Mod operator/(const Mod& x) const { return multiply(x.inverse()); }
157

158 Mod operator/(long x) const {
159 return multiply(Mod(x,mod).inverse());
160 }
161

162 Mod operator/=(const Mod& x) {
163 *this = multiply(x.inverse());
164 return *this;
165 }
166



162 C++ for Mathematicians

167 Mod operator/=(long x) {
168 *this = multiply(Mod(x,mod).inverse());
169 return *this;
170 }
171

172 Mod pow(long k) const;
173

174 };
175

176 ostream& operator<<(ostream& os, const Mod& M);
177

178 inline bool operator==(long x, const Mod& y) {
179 return (y==x);
180 }
181

182 inline bool operator!=(long x, const Mod& y) {
183 return (y!=x);
184 }
185

186 inline Mod operator+(long x, Mod y) {
187 return y+x;
188 }
189

190 inline Mod operator-(long x, Mod y) {
191 return (-y) + x;
192 }
193

194 inline Mod operator*(long x, Mod y) {
195 return y*x;
196 }
197

198 inline Mod operator/(long x, Mod y) {
199 return y.inverse() * x;
200 }
201

202 #endif

Program 9.2: Source file for the Mod class, Mod.cc.

1 #include "Mod.h"
2 #include "gcdx.h"
3

4 long Mod::default_modulus = INITIAL_DEFAULT_MODULUS;
5

6 ostream& operator<<(ostream& os, const Mod& M) {
7 if (!M.is_invalid()) {
8 os << "Mod(" << M.get_val() << "," << M.get_mod() << ")";
9 }

10 else {
11 os << "INVALID";
12 }
13 return os;
14 }
15

16 Mod Mod::add(Mod that) const {



Modular Arithmetic 163

17 if (is_invalid() || that.is_invalid()) return Mod(0,0);
18 if (mod != that.mod) return Mod(0,0);
19 return Mod(val + that.val, mod);
20 }
21

22 Mod Mod::multiply(Mod that) const {
23 if (is_invalid() || that.is_invalid()) return Mod(0,0);
24 if (mod != that.mod) return Mod(0,0);
25 return Mod(val * that.val, mod);
26 }
27

28 Mod Mod::inverse() const {
29 long d,a,b;
30 if (is_invalid()) return Mod(0,0);
31

32 d = gcd(val, mod, a, b);
33

34 if (d>1) return Mod(0,0); // no reciprocal if gcd(v,x)!= 1
35 return Mod(a,mod);
36 }
37

38 Mod Mod::pow(long k) const {
39 if (is_invalid()) return Mod(0,0); // invalid is forever
40

41 // negative exponent: reciprocal and try again
42 if (k<0) {
43 return (inverse()).pow(-k);
44 }
45

46 // zero exponent: return 1
47 if (k==0) return Mod(1,mod);
48

49 // exponent equal to 1: return self
50 if (k==1) return *this;
51

52 // even exponent: return ( mˆ(k/2) )ˆ2
53 if (k%2 == 0) {
54 Mod tmp = pow(k/2);
55 return tmp*tmp;
56 }
57

58 // odd exponent: return ( mˆ((k-1)/2) )ˆ2 * m
59 Mod tmp = pow((k-1)/2);
60 return tmp*tmp*(*this);
61 }

9.3 The default modulus: Static class variables and methods
The design of the Mod type calls for the notion of a default modulus. The default

modulus is employed when the user does not specify a modulus. This occurs with the



164 C++ for Mathematicians

single-argument constructor Mod(long) (described in detail in Section 9.4). Con-

sider the following code.

Mod x(6);
Mod y;
y = 5;
Mod z;
z = Mod(1);

For x, we explicitly invoke the single-argument constructor to set x equal to the

element 6 in Zn where n is the current default modulus. The variable y is first built

using the default (no-argument) constructor with value 0 in Zn where, as before,

n is the default modulus. Then the assignment y = 5; implicitly calls the single-

argument constructor to give y the value 5 in Zn. Finally, the variable z is assigned

the value 1 ∈ Zn; in this case, we explicitly invoke the single-argument constructor.

To create and to use a default modulus value, we need to accomplish the following

tasks.

• We need a variable to hold the current value of the default modulus.

• We need an initial value for the default modulus.

• We need the ability to inspect and to change the value of the default modulus.

Let’s tackle these one at a time.

Where should the value of the default modulus be held? The simplistic answer is

to save it in a variable named default_modulus of type long. However, this does

not completely answer the question; we need to know where this variable is declared.

We might make default_modulus a variable in the main procedure, but there

are many drawbacks to this: we need to remember to include the declaration and

then we would need to pass it to every Mod method that might need it. This makes

life too difficult for the programmer.

Could we make default_modulus an ordinary member variable for the class

Mod? No. The problem is that each Mod object would hold its own “personal”

default_modulus. We want one and only one value for default_modulus that

is common to all Mod objects.

Could we make default_modulus a global variable? A global variable is one

that is accessible to all procedures of a program. This is possible, but undesir-

able. If default_modulus were global, any procedure would be able to modify

default_modulus and set it to a nonsensical value (such as 0 or −1). We want

to hide the variable default_modulus and limit access by get and set procedures.

The set method would ensure that default_modulus always holds a sensible value.

Furthermore, global variables are a dangerous programming trick; different parts of

the program can access and modify these values in unpredictable ways.

What we need is a private variable that “belongs” to the entire class Mod and not to

any one particular object of type Mod. Such a variable is called a static class variable.

Inside the private section of the Mod class declaration, we have this (line 12 of

Program 9.1, Mod.h):



Modular Arithmetic 165

static long default_modulus;

This line announces that the class Mod contains a variable named default_modulus

(of type long) and this value is common to all Mod objects. (By contrast, the private

class values mod and val vary from one Mod object to another.)

Unfortunately, this one line does not quite finish the job of setting up this vari-

able. Somewhere in our program, but outside the class definition, we need to declare

this variable. (The long class { ... }; just describes the class Mod. The actual

declaration of a variable takes place in a .cc file.)

The declaration of default_modulus takes place on line 4 of the file Mod.cc

(Program 9.2) and looks like this:

long Mod::default_modulus = INITIAL_DEFAULT_MODULUS;

Let’s examine this line one step at a time. First, we are declaring a variable of

type long, so the keyword long begins this line. The name of the variable is

default_modulus, but it is a member of the Mod class; hence, the full name of

this variable is Mod::default_modulus. Finally, we give this variable a value

(rather than letting C++ give it one). We could have typed a specific number, such as

10. Thus long Mod::default_modulus= 10; would be acceptable. However,

we should avoid nameless constants in our programs. So, the header file (see line 6

of Mod.h, Program 9.1) declares a global constant equal to 2 like this:

const long INITIAL_DEFAULT_MODULUS = 2;

(Global constants are good; global variables are bad.) Thus, whenever the program

starts up, the variable default_modulus has a known value.

The variable default_modulus is hidden from view because it is sequestered

in the private section of the class declaration. It is not possible to change this value

directly in, say, a main() procedure. Only methods belonging to the class Mod

can access and modify this value. To do this, we create two procedures named

get_default_modulus and set_default_modulus.

If we so chose, we could define such methods inside (i.e., inline) the class decla-

ration like this:

class Mod {
...

public:
...
void set_default_modulus(long m) { default_modulus = m; }
long get_default_modulus() { return default_modulus; }
...

};

(Because these are class methods, the keyword inline is not required.)

The problem with this approach is that to change the default modulus, we would

need to have a variable of type Mod (let’s call it x) and use a statement of the form

x.get_default_modulus(17);. Although this would work, the necessity to con-

nect these methods to a particular Mod object doesn’t make sense. There’s nothing

about x that is relevant here. (Note: The proposed code for set_default_modulus



166 C++ for Mathematicians

is too simplistic; it fails to handle improper values for m such as zero or negative in-

tegers.)

The better solution is to declare these methods as static methods; see lines 63–75

of Mod.h, Program 9.1.

static void set_default_modulus(long m) {
if (m <= 0) {

default_modulus = INITIAL_DEFAULT_MODULUS;
}
else {

default_modulus = m;
}

}

static long get_default_modulus() {
if (default_modulus <= 0)

set_default_modulus(INITIAL_DEFAULT_MODULUS);
return default_modulus;

The modifier static for a method means that this method is not associated with an

object of the given class, but with the class as a whole. So, for example, it would

not make sense for either of these procedures to access the member variables val or

mod because they are object specific.

Use of these methods requires a special syntax. Remember that these methods

are members of the Mod class, but are not tied to any particular object. If we want

to use these methods inside another Mod method, we can just use their name (either

get_default_modulus or set_default_modulus). However, in a procedure

such as main() another syntax is required. To use a static method from the class

Mod in a procedure, we need to prepend Mod:: to the name of the procedure. Here

is an example:

Mod::set_default_modulus(10);
cout << "The default modulus is now "

<< Mod::get_default_modulus() << endl;

We have seen three usages of the keyword static. Its meaning depends on the

context in which it is used.

• A procedure’s variable may be declared static. This means that the value

held in the variable is preserved between invocations of the procedure.

• A variable in a class declaration may be declared static. This means that

this variable is common to all objects of that type.

• A class method may be declared static. This means that this method is not

to be associated with any particular object of the class, but with the class as a

whole. Consequently, it cannot access any nonstatic member variables of the

class.



Modular Arithmetic 167

9.4 Constructors and get/set methods
The Mod class has three constructors. A default constructor that takes no ar-

guments, a one-argument constructor that uses the default modulus, and a two-

argument constructor that specifies both value and modulus. The code for three

constructors is written inline on lines 19–40 of Mod.h (Program 9.1).

The constructors must ensure that the modulus is positive (or else the resulting

object is invalid). When the modulus is provided by the default modulus, we can

be assured that the modulus is nonnegative. However, in the two-argument case, we

need to check that the modulus specified is positive. If not, we create an invalid Mod

object.

The constructors also need to ensure that the value is in the proper range. For

example, the user may call Mod(-1,10). In this case, we should create 9 ∈ Z10.

This need to adjust the value so that it lies in the proper range is a recurring issue, so

we create a private method to adjust val so that it lies between 0 and mod-1. The

adjust_val() method is given inline on lines 13–15 of Mod.h (Program 9.1).

Because the val and mod member variables are private, we need methods to in-

spect and to modify these. To that end, we specify the inline methods get_val,

set_val, get_mod, and set_mod on lines 42–61 of Mod.h (Program 9.1). The

get methods are flagged as const because they do not modify the Mod object. The

set methods are designed to modify objects. These are designed so that the modulus

is nonnegative and the value lies in the proper range.

We allow mod to equal zero to signal an invalid Mod object. We provide a handy

is_invalid method (line 77) to check if this is the case.

9.5 Comparison operators
Given Mod objects x and y, we want to be able to check whether they are equal,

and to sort them with <. We define the following relational operators:

x == y x != y x < y

The == operator is defined inline on lines 79–80 and the != operator on lines 91–93

of Mod.h (Program 9.1).

The < operator sorts Mod objects first on the basis of the modulus, and then on the

basis of the value. See lines 95–100 of Mod.h.

In addition to comparing Mod objects to other Mod objects, it is convenient to be

able to compare a Mod object to a long integer. For example, consider this code:



168 C++ for Mathematicians

Mod x(9,10);
if (x == -1) cout << "It worked!" << endl;

In this case, we want the −1 interpreted as an element of Z10 and then the comparison

ought to evaluate to true.

In C++, we need to define the operators Mod == long and long == Mod sepa-

rately. The first of these is given on lines 83–85; we repeat that code here.

bool operator==(long that) const {
return (*this) == Mod(that,mod);

}

The method is type bool because it returns a true/false result. The single argument

is of type long because it is the right-hand argument; the left-hand argument is the

Mod object. That is, in the statement x == -1 (where x is a Mod), the left argument

is (implicitly) x and the right argument (that) equals −1.

The procedure works by converting that into a Mod object with the same modulus

as the invoking object: Mod(that,mod). Then it uses the already defined Mod==Mod

operator to compare. In order for an object to use itself we use *this. Therefore,

when we encounter x == -1, the expression

(*this) == Mod(that,mod)

compares x (embodied by *this) with Mod(that,mod) where mod is the modulus

of x.

Now we need to write a procedure for expressions of the form long == Mod.

This cannot be written as a method inside the Mod class because the left-hand argu-

ment is not of type Mod. We therefore need to define this as a procedure outside the

curly braces enclosing the Mod class declaration.

The code for long == Mod is on lines 178–180 of Mod.h (Program 9.1) and we

repeat that code here.

inline bool operator==(long x, const Mod& y) {
return (y==x);

}

The keyword inline is mandatory here (it is optional for inline methods inside

the class declaration). Again, the procedure is of type bool as it returns a true/false

value. This version of operator== has two arguments; because this is not a method

belonging to a class, but rather a free-standing procedure, we need to specify the left

and right arguments of == explicitly. The left argument is of type long and the right

is of type Mod. The easiest way to see if x==y is true (where x is a long and y is a

Mod) is to take advantage of the fact that we already have Mod==long defined; we

just invoke y==x.

All three manifestations of != (Mod!=Mod, Mod!=long, and long!=Mod) are de-

fined in the same manner.



Modular Arithmetic 169

9.6 Arithmetic operators
Now we implement the various arithmetic operations for Zn: addition, subtraction,

multiplication, division, and exponentiation.

We begin with addition. Of course, we want to define the + operator when both

arguments are type Mod. To do that, we create an operator+ method in the Mod

class. In addition, it is useful to define Mod+long and long+Mod operations. We

also want the add/assign operation x += y where x is a Mod and y is either Mod or

long.

All of these various forms of addition require the same basic underlying opera-

tions, we define an add method first and all the various + operations can use that

to do the work. The add method of the Mod class is declared on line 102 of Mod.h

(Program 9.1) as follows: Mod add(Mod that) const;. The actual code is found

on lines 16–20 of Mod.cc (Program 9.2):

Mod Mod::add(Mod that) const {
if (is_invalid() || that.is_invalid()) return Mod(0,0);
if (mod != that.mod) return Mod(0,0);
return Mod(val + that.val, mod);

}

Notice that we first check if either the invoking Mod object or the argument that is

invalid; if so, we return an invalid Mod object. Also, if the moduli of the two addends

are different, we return an invalid Mod object. Finally, we add the values of the two

objects and return a new Mod object containing the sum.

With the add method in place, we define the various + operators. The Mod+Mod

method is on line 104 of Mod.cc and the Mod+long is on line 106. The long+Mod

procedure cannot be a member of the Mod class (because the Mod is not on the left),

so it is defined as a procedure on lines 186–188 of Mod.h. In each case, the Mod

object passed is declared const Mod& because addition does not modify the addends

(hence const) and call by reference is required for operators.

Next we define the += operators. The Mod+=Mod operator’s definition (lines 108–

111 of Mod.h) is repeated here:

Mod operator+=(const Mod& x) {

*this = add(x);
return *this;

}

Recall that the effect of the statement a+=x; is tantamount to a=a+x;. C++ allows

us to program the += operator to do anything we want, but it makes most sense to

adhere to the intended meaning.

The statement a=a+x; has the effect of replacing the value held in a with the

result of the computation a+x. The result of a+=x; is the new value of a. Thus,

a compound statement of the form z=a+=x; is interpreted as z = (a+=x) and is

equivalent to a=a+x; z=a;. The procedure we write for Mod+=Mod should adhere

to this behavior.



170 C++ for Mathematicians

Thus, the operator+= method returns a Mod value. The argument, x, is declared

as const Mod& x because (a) the code does not modify x’s value and (b) pass by

reference is required for operator+=.

To add x to the invoking object we appeal to the add method already defined.

The statement *this = add(x); does the required work. The invoking object

calculates the sum of its own value and that of x, and then assigns that value to itself.

Finally, we need to return the value in the invoking object as the result of this

method. This is accomplished with the statement return *this;.

Next we examine the subtraction methods. Because a−b is equivalent to a+(−b),
we begin by defining the unary minus (i.e., negate) operator. The unary operator -a is

a zero-argument method in the class Mod. The reason we do not need any arguments

is because the operator applies to the invoking object. The full definition of unary

minus is given inline in Mod.h on line 118 (Program 9.1) and repeated here:

Mod operator-() const { return Mod(-val,mod); }

Now the binary minus can be built using unary minus and addition. The Mod-Mod

and Mod-long operations are implemented as methods within the class Mod (see

lines 120–126). The long-Mod operator cannot be a member of the Mod class (be-

cause the left-hand argument is not a Mod), and so it needs to be a stand-alone proce-

dure outside the class definition. See lines 190–192 of Mod.h. Finally, the Mod-=Mod

and Mod-=long methods are given on lines 128–136.

The multiplication operators are created in a manner similar to that of addition. We

declare a multiply method on line 138 of Mod.h and then give the code in Mod.cc

on lines 22–26. The Mod*Mod, Mod*long, Mod*=Mod, and Mod*=long operators

are inline members of the Mod class (lines 140–152 of Mod.h, and long*Mod is an

ordinary inline procedure outside the class definition (lines 194–196).

We reduce division a÷b to multiplication by a reciprocal; that is, a×b−1. There-

fore, we begin by building an inverse method for the Mod class. This method

is declared on line 154 of Mod.h as follows: Mod inverse() const;. Invoking

b.inverse() should return the multiplicative inverse of b (in the appropriate Zn)

if possible; otherwise (i.e., b is not invertible) we return an invalid result. This is

implemented in Mod.cc on lines 28–36; we repeat the code here:

Mod Mod::inverse() const {
long d,a,b;
if (is_invalid()) return Mod(0,0);

d = gcd(val, mod, a, b);

if (d>1) return Mod(0,0); // no reciprocal if gcd(v,x)!= 1
return Mod(a,mod);

}

The code first checks if the invoking Mod object is valid; if not, no inverse is possible

and we return an invalid result. We then invoke the extended gcd procedure to find



Modular Arithmetic 171

integers a and b so that a*val+b*mod equals d=gcd(val,mod). If d equals 1, then

a holds the value of the inverse.

With the inverse method established, we use it to define Mod/Mod, Mod/long,

long/Mod, Mod/=Mod, and Mod/=long.

There are a large number of arithmetic operators, but they all trace their actions

back to four methods: add, multiply, unary minus, and inverse. There is an

interesting benefit to this approach. Suppose we think of a better way to perform

these operations; rather than needing to rewrite myriad operator methods, we just

need to update these few to implement the new methods. For example, on a computer

for which a long is four bytes, the largest integer value is around two billion. If

we are working in a modulus near that limit and we multiply two Mod objects, the

intermediate result may overflow the long data type. See line 25 of Mod.cc in which

we calculate val * that.val. If val and that.val are both greater than, say,

105, then the multiply procedure gives an incorrect result. To fix this problem, we

could rewrite the procedure to save val and that.val in long long variables, and

then perform the multiplication. We would then reduce modulo mod which brings

the values back to within the proper range.

The final operation we implement is exponentiation. Given a ∈ Zn and k ∈ Z, we

want to calculate ak. If k is negative, we raise a−1 to a positive power. Rather than

multiply a by itself repeatedly, it is more efficient to use repeated squaring. Note that

ak =

⎧⎨
⎩
(
ak/2

)2
if k is even, and(

a(k−1)/2
)2 ·a if k is odd.

So, calculating ak by this strategy uses O(log2 k) multiplications and not the far

greater k−1 required by the naive method.

We call the method pow and it is declared on line 172 of Mod.h and the code is on

lines 38–61 of Mod.cc.

We elected not to define any operator symbol to represent exponentiation. Two

natural operator symbols would make sense: ** and ˆ. Unfortunately, there are

problems with both. The first is simply illegal. Because C++ does not have a **
operator for its fundamental types, we are not permitted to use ** as an operator

symbol for any other types.

The latter, ˆ, is permissible because ˆ is a valid C++ operator (exclusive or).

Within the Mod class we may define this operator such as this:

Mod operatorˆ(long k) { return pow(k); }

Then, in a procedure (such as main) we could have statements such as a = bˆ5; in

lieu of a = b.pow(5);.

The problem is C++’s order of operation rules. C++ knows that multiplication

takes priority over addition. An expression such as a*b+c*d is parsed as expected:

(a*b)+(c*d). However, in the C++ hierarchy of operations, ˆ has lower priority



172 C++ for Mathematicians

than addition. Thus a statement of the form a+bˆ2 would be parsed as (a+b)ˆ2.

If we defined ˆ for the Mod class, we would need to be careful to add unnatural

parentheses in our expressions. Fortunately, the . in a.pow(k) has priority over

addition and multiplication. So the expressions a+b*c.pow(k) and a+c.pow(k)

have the desired behavior. There is no way to change C++’s order of operation rules,

so we elect not to use operatorˆ for exponentiation.

9.7 Writing Mod objects to output streams
One last task awaits us: writing Mod objects to an output stream such as cout. The

technique for doing this is the same as for Point and PTriple objects. In Mod.h

(line 176) we declare operator<< as a two-argument procedure:

ostream& operator<<(ostream& os, const Mod& M);

Then, in Mod.cc (lines 6–14) we give the code. If the Mod object is invalid, we write

the characters INVALID. Otherwise, we write a Mod object in a form such as this:

Mod(31,100).

9.8 A main to demonstrate the Mod class
We end this chapter with a simple main to demonstrate the use of the Mod class.

Program 9.3: A program to illustrate the use of the Mod class.

1 #include "Mod.h"
2

3 /// A main to test the Mod class
4

5 int main() {
6 Mod x,y,z;
7

8 x.set_default_modulus(11);
9

10 x = Mod(17,10);
11 y = Mod(24);
12 z = -3;
13

14 cout << "x = " << x << endl;
15 cout << "y = " << y << endl;
16 cout << "z = " << z << endl << endl;
17

18 cout << "y+z = " << y+z << endl;
19 cout << "y-z = " << y-z << endl;



Modular Arithmetic 173

20 cout << "y*z = " << y*z << endl;
21 cout << "y/z = " << y/z << endl << endl;
22

23 cout << "x+3 = " << x+3 << endl;
24 cout << "x-3 = " << x-3 << endl;
25 cout << "x*3 = " << x*3 << endl;
26 cout << "x/3 = " << x/3 << endl << endl;
27

28 cout << "4+x = " << 4+x << endl;
29 cout << "4-x = " << 4-x << endl;
30 cout << "4*x = " << 4*x << endl;
31 cout << "4/x = " << 4/x << endl << endl;
32

33 cout << "-x = " << -x << endl << endl;
34

35 cout << "xˆ9 = " << x.pow(9) << endl;
36 cout << "xˆ(-9) = " << x.pow(-9) << endl;
37

38 cout << "-1+yˆ10 = " << -1+y.pow(10) << endl;
39 cout << "yˆ2 = " << y.pow(2) << endl;
40 cout << "yˆ(-2)+1 = " << y.pow(-2)+1 << endl << endl;
41

42 cout << "x == 17\t" << (x == 17) << endl;
43 cout << "x != 17\t" << (x != 17) << endl;
44

45 cout << "17 == x\t" << (17 == x) << endl;
46 cout << "17 != x\t" << (17 != x) << endl << endl;
47

48 return 0;
49 }

Here is the output of this program.
� �
x = Mod(7,10)
y = Mod(2,11)
z = Mod(8,11)

y+z = Mod(10,11)
y-z = Mod(5,11)
y*z = Mod(5,11)
y/z = Mod(3,11)

x+3 = Mod(0,10)
x-3 = Mod(4,10)
x*3 = Mod(1,10)
x/3 = Mod(9,10)

4+x = Mod(1,10)
4-x = Mod(7,10)
4*x = Mod(8,10)
4/x = Mod(2,10)

-x = Mod(3,10)

xˆ9 = Mod(7,10)
xˆ(-9) = Mod(3,10)



174 C++ for Mathematicians

-1+yˆ10 = Mod(0,11)
yˆ2 = Mod(4,11)
yˆ(-2)+1 = Mod(4,11)

x == 17 1
x != 17 0
17 == x 1
17 != x 0

� �

9.9 Exercises
9.1 Write a procedure to solve a pair of congruences of the form

x ≡ a (mod m)
x ≡ b (mod n)

where m and n are relatively prime. The existence and uniqueness (in Zmn)

of the solution to such a problem is guaranteed by the Chinese Remainder

Theorem. Therefore, call your procedure crt. It should take two Mod objects

as arguments and produce a Mod value in return. Your procedure should be

declared like this:

Mod crt(const Mod a, const Mod b);

Of course, you may use the procedure you developed in Exercise 5.4.

9.2 Create a class to represent the time of day. Call your class Time and give it the

following attributes.

• The data should be held in three private variables representing the

hour, minute, and second.

• The default (no-argument) constructor should create a value equal to

midnight and a three-argument constructor should create the time speci-

fied (using hours from 0 to 23).

• Define addition of a Time object and a (long) integer. If T is type Time

and n is type long, then T+n and n+T should be the time n seconds after

T. (Of course, n might be negative.)

• Define subtraction, but only in the form T-n but not n-T.

• Define ++ and --; these should increase (decrease) T by one second,

respectively.

• Define get_hour(), get_minute(), and get_second() methods.



Modular Arithmetic 175

• Define ampm() and military() methods to control how the time is

printed (see the next bullet). These methods should affect how all Time

objects are printed.

Also provide a is_ampm() method that returns true if the current out-

put style is to use AM/PM and false if the current style is military (24

hour).

• Define << for printing Time objects to the screen. The style of the output

should either be 5:03:24 pm or 17:03:24 as specified by the user with

the methods ampm() and military(), respectively.

Note the zero in front of the 3 but not in front of the 5. Midnight

should be reported either as 12:00:00 am or 0:00:00 and noon as

12:00:00 pm or 12:00:00, as appropriate.

If you are feeling especially brave, you can create a procedure called now that

returns the current time of day. You can use time(0); this returns the number

of seconds since midnight on a specific date but not necessarily in your time

zone (unless your local clock is GMT).

9.3 Create a class named EuclideanVector to represent vectors in a Euclidean

space R
n, and give it the following attributes.

• There should be a default dimension (as a static class variable). Give

static methods for inspecting and adjusting this default dimension.

• There should be a zero-argument constructor that gives the zero vector in

the default dimension. There should also be a single-argument construc-

tor EuclideanVector(int n) that creates the zero vector in R
n.

• There should be methods to get and set the individual coordinates of the

vector.

• There should be a method to learn the dimension of the vector.

• There should be an operator+ for adding vectors. Decide what the

behavior should be in case the two vectors are of different dimension.

• There should be an operator* method for scalar multiplication. Be

sure to allow both scalar–vector and vector–scalar multiplication.

• There should be an operator== and an operator!= for comparing

vectors for equality.

• There should be an operator<< for writing vectors to the computer

screen.

9.4 Let S denote the set {√n : n ∈ Z,n ≥ 0} . Define an operation ∗ on S by x∗y =√
x2 + y2. Create a C++ class to represent elements of the set S that includes

an operator* that implements S’s operation.

Include methods to get the value n, to convert an element of S into a decimal

approximation, and an operator<< to write elements of S to the screen.



176 C++ for Mathematicians

9.5 Create a class to represent Hamilton’s quaternions.

The quaternions are an extension to the complex numbers. Each quaternion

can be written as a + bi + c j + dk where a,b,c,d ∈ R and i, j,k are special

symbols with the following algebraic properties:

i2 = j2 = k2 = −1

i j = k ji = −k

jk = i k j = −i

ki = j ik = − j

Addition is defined as expected:

(a+bi+ c j +dk)+(a′ +b′i+ c′ j +d′k)
= (a+a′)+(b+b′)i+(c+ c′) j +(d +d′)k.

Multiplication is not commutative (as evidenced by the fact that i j �= ji), but

otherwise follows the usual rules of algebra. For example,

(1+2i+3 j−4k)(−2+ i+2 j +5k) = 10+20i−18 j +14k.

The set of quaternions is denoted by H.

Include the standard operators +, - (unary and binary forms), *, and /, and the

combined assignment forms +=, -=, *=, and /=.

Also include the standard comparison operators == and !=, plus an << operator

for writing quaternions to the screen.



Chapter 10

The Projective Plane

In this chapter we develop C++ classes to represent points and lines in the projective
plane. Because such points and lines share many properties the classes and methods
for their classes are extremely similar. Rather than write two nearly identical classes,
we rst build a base “projective object” class that implements the common function-
ality. We then use the idea of inheritance to establish classes representing points and
lines.

10.1 Introduction to the projective plane, RP
2

The points of the Euclidean plane R
2 are ordered pairs of real numbers (x,y).

Lines are point sets of the form {(x,y) : ax+by = c} where a,b,c ∈ R and ab �= 0.
The projective plane RP2 is an extension of the Euclidean plane. To the points in

R2 we add additional points “at in nity.” These points are in one-to-one correspon-
dence with the slopes of lines in the Euclidean plane. More formally, we say that two
lines in the Euclidean plane are equivalent if they are parallel. The points at in nity
of the projective plane are in one-to-one correspondence with the equivalence classes
of parallel lines. In RP

2, each line from the Euclidean plane is given one additional
point corresponding to its slope. Finally, all the points at in nity are deemed a line
as well, and this line is called the line at in nity.

Alternatively, the points in RP2 are in one-to-one correspondence with (ordinary)
lines through the origin in R

3. The lines of RP
2 correspond to (ordinary) planes

through the origin in R3.
This leads to a natural way to assign coordinates to the points of RP

2. Every point
in RP2 is assigned a triple of real numbers (x,y,z). Two triples name the same point
provided they are nonzero scalar multiples of each other. For example, (2,4,−10)
and (−1,−2,5) name the same point. The triple (0,0,0) is disallowed.

The original points of the Euclidean plane correspond to triples in which z is
nonzero. The point (x,y,1) ∈ RP2 is identi ed with the point (x,y) in the Euclidean
plane. Points at in nity are identi ed with triples in which z = 0.

Lines in the projective plane are sets of the form {(x,y,z)∈RP2 : ax+by+cz = 0}
where a,b,c ∈ R and are not all zero. For example, (1,2,3), (1,1,3), and (1,−2,0)
are collinear points as they all lie on the line {(x,y,z) : 2x+y−z = 0}. It is convenient

177



178 C++ for Mathematicians

to name lines as a triple [a,b,c]:

[a,b,c] = {(x,y,z) : ax+by+ cz = 0}.

We use square brackets to name lines so we don’t confuse points and lines. Note
that if [a′,b′,c′] is a nonzero scalar multiple of [a,b,c], then the two triples name the
same line. The line at in nity is [0,0,1]. Only the triple [0,0,0] is disallowed.

To determine if a point (x,y,z) is on a line [a,b,c], we simply need to check if the
dot product ax+by+ cz equals zero.

From our discussion, we see that there is a duality between points and lines in the
projective plane. Given any true statement about points and lines in RP

2, when we
exchange the words “point” and “line” (plus some minor grammar correction) we
get another true statement. For example, the following dual statements are both true:

• Given two distinct points of the projective plane, there is exactly one line that
contains both of those points.

• Given two distinct lines of the projective plane, there is exactly one point that
is contained in both of those lines.

One of the celebrated results in projective geometry is the following.

Theorem 10.1 (Pappus). Let P1,P2,P3 be three distinct collinear points and let
Q1,Q2,Q3 be three other distinct collinear points. Let Xi be the intersection of the
lines PjQk and PkQj where i, j,k are distinct and 1 ≤ i, j,k ≤ 3. Then the three points
X1,X2,X3 are collinear.

Pappus’s theorem is illustrated in Figure 10.1.
The dual statement to Pappus’s theorem is this.

Theorem 10.2 (Dual to Pappus). Let L1,L2,L3 be three distinct concurrent lines
and let M1,M2,M3 be three other distinct concurrent lines. Let Xi be the line through
the points of intersection Lj ∩Mk and Lk ∩Mj where i, j,k are distinct and satisfy
1 ≤ i, j,k ≤ 3. Then the three lines X1,X2,X3 are concurrent.

The dual to Pappus’s theorem is illustrated in Figure 10.2.

10.2 Designing the classes PPoint and PLine

Our goal is to create C++ classes to represent points and lines in the projective
plane. We call these PPoint and PLine. We need to decide how to represent these
objects (i.e., what data are needed to specify the objects) as well as the methods,
operators, and procedures that act on these objects.

Here are our decisions.



The Projective Plane 179

P1 P2 P3

Q3

Q2

Q1

X1

X2

X3

Figure 10.1: An illustration of Pappus’s theorem.

X1

X2

X3

L1 L2

L3

M 3

M 2

M1

Figure 10.2: An illustration of the dual of Pappus’s theorem.



180 C++ for Mathematicians

• Points are to be stored as triples (x,y,z) giving the homogeneous coordinates
of the point.

Likewise, lines are to be stored as triples, [x,y,z].

• We want to be able to test points for equality (and inequality) and sort by < so
they can be held in C++ containers such as sets.

Likewise, we need to be able to test lines for the same relations.

• Given two points, we want to be able to nd the unique line that contains them.
However, if the two points are the same, we return an invalid point; we signal
this with coordinates (0,0,0). For points X and Y, the notation X+Y is a good
way to express the line through X and Y.

Likewise, given two lines, we want to be able to nd the unique point of inter-
section of these lines. However, if the two lines are the same, then we return
an invalid line; we signal this with the triple [0,0,0]. For lines L and M, the
notation L*M is a good way to express the point of intersection.

• Given a point and line, we want to be able to determine if the point lies on the
line.

• We want to be able to determine if three points are collinear.

Likewise, we want to be able to determine if three lines are concurrent.

• We want to be able to generate a random point or line in the projective plane.

In addition, given a line, we want to be able to choose a random point on the
line. Likewise, given a point, we want to choose a random line through the
point.

• We want to be able to send points and lines to output streams, writing points
in the form (x,y,z) and lines in the form [x,y,z].

Notice that nearly every requirement for points has a matching requirement for
lines. Thus, the code we need to write in the two instances would be nearly identical.
To cut our work load in half, we exploit C++’s inheritance mechanism. We create a
parent class named PObject that has two children: PPoint and PLine. As much
as possible, we embed the functionality we need in the parent class, and then the
children access this functionality for their own purposes.

In addition to reducing the workload in creating the classes, putting the common
functionality of the classes into the parent reduces our workload in maintaining the
classes. If there is an error in an algorithm, or if we create a more ef cient version of
the algorithm, we only need to replace the code in the parent class; we do not need
to edit two separate versions.



The Projective Plane 181

10.3 Inheritance

Before we create the classes PPoint and PLine, we illustrate how one class is
derived from another. That is, a class (let’s call it Parent) is created rst with certain
properties. Then we create a new class (call it Child) that has all the properties of
Parent plus additional properties.

For the toy example we are about to present, the Parent class houses two double

real values, x and y. We provide a simple constructor to set x and y and two methods:
sum() that calculates the sum x+y and print() that writes the object to the screen
in the format (x,y).

The Child retains all the data and functionality of Parent but adds the follow-
ing additional features. The new class has an additional data element: an integer
k. It provides a new method value() that returns (x+y)*k and a new version of
print() that writes the Child object to the screen in the format (x,y)*k.

Here is the code that accomplishes all these tasks.

Program 10.1: A program to illustrate inheritance.
1 #include <iostream>
2 using namespace std;
3
4 class Parent {
5 private:
6 double x, y;
7 public:
8 Parent(double a, double b) { x = a; y = b; }
9 double sum() const { return x+y; }

10 void print() const { cout << "(" << x << "," << y << ")"; }
11 };
12
13 class Child : public Parent {
14 private:
15 int k;
16 public:
17 Child(double a, double b, int n) : Parent(a,b) {
18 k = n;
19 }
20 double value() const { return sum()*k; }
21 void print() const { Parent::print(); cout << "*" << k; }
22 };
23
24 int main() {
25 Parent P(3., -2.);
26 P.print();
27 cout << " --> " << P.sum() << endl;
28
29 Child C(-1., 3., 5);
30 C.print();
31 cout << " --> " << C.sum() << " --> " << C.value() << endl;
32



182 C++ for Mathematicians

33 return 0;
34 }

The Parent class is de ned on lines 4–11. There is nothing new in this code; we
have kept it short and simple to make it easy for you to read. Please look through it
carefully before moving on.

The Child class is de ned on lines 13–22 and there are several important features
we need to address.

• To begin, the class Child is declared to be a public subclass of the class
Parent on line 13:

class Child : public Parent {

The words class Child announce that we are beginning a class de nition.
The colon signals that this class is to be derived from another class. (Ignore
the word public for a moment.) And the word Parent gives the name of the
class from which this class is to be derived.

The keyword public means that all the public parts of Parent are inherited
as public parts of the derived class Child. The Child class has full access to
all the public parts of Parent but does not have any access to the private parts
of Parent.

(Aside: Had we written class Child : private Parent then the public
parts of Parent would become private parts of Child. As in the case of public
inheritance, the private parts of Public are not accessible to Child.)

• On lines 14–15 we declare a private data element for Child: an integer k. The
class Child therefore holds three data elements: x, y, and k.

A method in Child can access k but not x or y. The latter are private to
Parent and children have no right to examine their parents’ private parts.

• Next comes the constructor for the Child class (lines 17–19). The constructor
takes three arguments: real values a and b (just as Parent does) and additional
integer value n (to be saved in k).

What we want to do is save a, b, and n in the class variables x, y, and k,
respectively. However, the following code is illegal.

Child(double a, double b, int n) {
x = a; y = b; k = n;

}

The problem is that Child cannot access x or y.

Logically, what we want to do is this: rst, we want to invoke the constructor
for Parent with the arguments a and b. Second, we do the additional work
special for the Child class, namely, assign n to k.



The Projective Plane 183

Look closely at line 17. Before the open brace for the method we see a colon
and a call to Parent(a,b). By this syntax, a constructor for a derived class
(Child) can pass its arguments to the constructor for the base class (Parent).

The general form for a constructor of a derived class is this:

derived_class(argument list) : base_class(argument_sublist) {
more stuff to do for the derived class;

}

When the derived class’s constructor is invoked, it rst calls its parent’s con-
structor (passing none, some, or all of the arguments up to its parent’s construc-
tor). Once the base class’s constructor completes its work, the code inside the
curly braces executes to do anything extra that is required by the derived class.

• Next we implement the value() method (line 20). This procedure returns the
quantity (x+y)*k. Although we have no access to x and y, the sum() method
of Parent is public and so we can use that to calculate x+y. Because sum()

is a public method of Parent, it is automatically a public method of Child.
The expression sum()*k invokes the sum() method (to calculate x+y) and
we multiply that by k (which is accessible to Child).

• Finally, we implement a print() method for the Child class (line 21). Recall
that Parent already has a print() method, so this new print() method
overrides the former. If P is an object of type Parent and C is an object of
type Child then P.print() invokes the print() method de ned on line 10
and C.print() invokes the one on line 21.

The new print() method writes the object to the computer screen in the
format (x,y)*k. This print() cannot access x or y. Of course, we could add
public getX() and getY() methods to Parent. However, there is another
solution.

The print() method in Parent does most of the work already. Instead of
rewriting the part of the code that prints (x,y), we just need to use Parent’s
print() method. The following code, however, does not work.

void print() const { print(); cout << "*" << k; }

The problem is that this code is recursive—it invokes itself. We want the
second appearance of print to refer to Parent’s version. We accomplish
that by prepending Parent:: to the name of the method. The correct code
for Child’s print() is this:

void print() const { Parent::print(); cout << "*" << k; }

When Child’s print() executes, it rst calls Parent’s version of print()

(which sends (x,y) to the screen). The remaining step (sending *k) occurs
when the second statement executes.

A simple main follows (lines 24–34); here is the output of the program.



184 C++ for Mathematicians

� �
(3,-2) --> 1
(-1,3)*5 --> 2 --> 10

� �

10.4 Protected class members

When we derive a new class from a base class, the public members of the base
class are inherited as public members of the derived class, but the private members of
the base class are inaccessible to the derived class. C++ provides a third alternative to
this all-or-nothing access inheritance. In addition to public and private sections,
a class may have a protected section. Both data and methods may be declared
protected.

A protected member of a class becomes a private member of a derived class. A
child class can access the public and protected parts of its parent, but not the private
parts. A grandchild of the base class cannot access the protected parts of the base
class. Let’s look at an example.

Program 10.2: A program to illustrate the use of protected members of a class.
1 #include <iostream>
2 using namespace std;
3
4 class Base {
5 private:
6 int a;
7 protected:
8 int b;
9 int sum() const { return a+b; }

10 public:
11 Base(int x, int y) { a=x; b=y; }
12 void print() const { cout << "(" << a << "," << b << ")"; }
13 };
14
15 class Child : public Base {
16 public:
17 Child(int x, int y) : Base(x,y) { }
18 void increase_b() { b++; }
19 void print() const { Base::print(); cout << "=" << sum(); }
20 };
21
22 class GrandChild : public Child {
23 private:
24 int c;
25 public:
26 GrandChild(int x, int y, int z) : Child(x,y) { c = z; }
27 void print() const { Base::print(); cout << "/" << c; }
28 };
29



The Projective Plane 185

30 int main() {
31 Base B(1,2);
32 Child C(3,4);
33 GrandChild D(5,6,7);
34
35 B.print(); cout << endl;
36 // cout << B.sum() << endl; // Illegal, sum is protected
37
38 C.print(); cout << " --> ";
39 C.increase_b();
40 C.print(); cout << endl;
41
42 D.print(); cout << " --> ";
43 D.increase_b();
44 D.print(); cout << endl;
45
46 return 0;
47 }

In this program we de ne three classes: Base, Child, and GrandChild; each is
used to derive the next.

The Base class has two data members: a private integer a and a protected integer
b. The class also includes a protected method named sum, a public constructor, and
a public method named print.

Class Child has no additional data members. It has a public method increase_b

that increases the data member b by one. Note that it would not be possible for
Child to have a similar method for increasing a. The constructor for Child passes
its arguments on to its parent, Base, but then takes no further action (hence the curly
braces on line 17 do not enclose any statements).

The print method for Child uses Base’s print method and sum method.

Class GrandChild adds an extra private data element, c. The constructor for
GrandChild passes its rst two arguments to its parent’s constructor and then uses
the third argument to set the value of c.

The print method for GrandChild uses its grandparent’s print method. Al-
though Base::print() invokes the sum method, the GrandChild methods cannot
directly call sum because it is protected in Base, hence implicitly private in Child,
and hence inaccessible in GrandChild.

A main to illustrate all these ideas begins on line 30. The output of the program
follows.

� �
(1,2)
(3,4)=7 --> (3,5)=8
(5,6)/7 --> (5,7)/7

� �



186 C++ for Mathematicians

10.5 Class and le organization for PPoint and PLine

Because of the duality between points and lines in the projective plane, most of
the data and code we use to represent these concepts in C++ are the same. If at all
possible, we should avoid writing the same code twice for two reasons. First, the
initial work in creating the programs is doubled. More important, maintaining the
code is also made more dif cult; if a change is required to the code, we need to
remember to make that change twice. When we are fussing with our programs and
making a number of minor modi cations, it is easy to forget to update both versions.
To illustrate this, we deliberately include a subtle aw in the rst version of the
program; we then repair the problem once (not twice).

To this end, we de ne three classes: a parent class named PObject that contains
as much of the code as possible and two derived classes, PPoint and PLine, that
include code particular to each. These classes are de ned in two les each: a header
.h le and a code .cc le. Figure 10.3 illustrates the organization.

PObject
PObject.h
PObject.cc

PPoint
PPoint.h
PPoint.cc

PLine
PLine.h
PLine.cc

Figure 10.3: Hierarchy of the PObject classes.

The header le PObject.h is used to declare the PObject class. Both PPoint.h

and PLine.h require the directive #include "PObject.h". Programs that use
projective geometry need all three. Rather than expecting the user to type multiple
#include directives, we create a convenient header le that includes everything we
need. We call this header le Projective.h; here it is.

Program 10.3: Header le for all projective geometry classes, Projective.h.
1 #ifndef PROJECTIVE_H
2 #define PROJECTIVE_H
3 #include "PPoint.h"
4 #include "PLine.h"
5 #endif



The Projective Plane 187

Notice that we do not require #include "PObject.h" because that le is al-
ready #included by PPoint.h and PLine.h. All these les have the usual struc-
ture to prevent multiple inclusion.

All told, we have seven les that implement points and lines in the projective
plane.

PObject.h The header le for the PObject class.

PObject.cc The C++ code for the PObject class.

PPoint.h The header le for the PPoint class.

PPoint.cc The C++ code for the PPoint class.

PLine.h The header le for the PLine class.

PLine.cc The C++ code for the PLine class.

Projective.h The only header le subsequent programs need to include to use
projective points and lines.

The decision to write the program in seven different les is based on the principle
of breaking a problem down to manageable sizes and working on each piece sep-
arately. We could have packed all this work into two larger les (one .h and one
.cc).

10.6 The parent class PObject

Data and functionality common to PPoint and PLine are implemented in the
class PObject. Using the ideas presented in Section 10.2, we map out the class
PObject.

Data A point or line in RP2 is represented by homogeneous coordinates: (x,y,z) or
[x,y,z]. To hold these coordinates, we declare three private double variables,
x, y, and z. Let us write 〈x,y,z〉 for the homogeneous coordinates of a generic
projective object (either a point of a line). (See Program 10.4, line 9.)

Because 〈2,1,−5〉 and 〈−4,−2,10〉 name the same object, it is useful to
choose a canonical triple. One idea is to make sure that 〈x,y,z〉 is a unit vector
(but then we have a sign ambiguity). The representation we use is to make the
last nonzero coordinate of the triple equal to 1. The motivation for this choice
is that a point in the Euclidean plane at coordinates (x,y) corresponds to the
point (x,y,1) in the projective plane.

If later we are unhappy with this decision, we can choose another manner
to store the homogeneous coordinates. Because the coordinates are private
members of PObject, we would only need to update the code for PObject.



188 C++ for Mathematicians

We provide public methods getX(), getY(), and getZ() to inspect (but
not modify) the values held in x, y, and z, respectively. (See Program 10.4
lines 33–35.)

We reserve 〈0,0,0〉 to stand for an invalid projective object. We provide a pub-
lic method is_invalid() to check if an object is invalid. (See Program 10.4
lines 37–39.)

Constructors It is natural to de ne a constructor for a PObject with three parame-
ters that set the homogeneous coordinates of the object. The user might invoke
the constructor like this:

PObject P(2., 3., 5.);

Rather than holding this point as 〈2,3,5〉, we use the canonical representation
〈0.4,0.6,1〉. (See Program 10.4 lines 25–30.)

To facilitate the conversion of user-supplied coordinates to canonical coordi-
nates, we create a private helper procedure scale. (See Program 10.4 line 10
and Program 10.5 lines 4–19.)

All C++ classes ought to de ne a zero-argument constructor that creates a
default object of that class. In this case, a sensible choice is the object 〈0,0,1〉.
This corresponds to the origin (as a point) or the line at in nity (as a line). (See
Program 10.4 lines 21–24.)

Relations We want to be able to compare projective points (and lines) for equality,
inequality, and < (for sorting). To this end, we might be tempted to de ne
operator== in the public portion of PObject like this:

public:
bool operator==(const PObject& that) const {

return ( (x==that.x) && (y==that.y) && (z==that.z) );
}

Although this would give the desired result when comparing points to points
or lines to lines, it would also provide the unfortunate ability to compare points
to lines. Were we to use the above method for testing equality, then we might
run into the following situation.

PPoint P(2., 3., 5.);
PLine L(2., 3., 5.);
if (P == L) {

cout << "They are equal." << endl;
}

When this code runs, the message They are equal would be written on the
computer’s screen.

There are at least two problems with this approach. First, the point (2,3,5) and
the line [2,3,5] are not equal even though they have the same homogeneous



The Projective Plane 189

coordinates. Second, lines and points should not even be comparable by ==.
Code that compares a point to a line is almost certainly a bug; the best thing in
this situation is for the compiler to ag such an expression as an error.

We therefore take a different approach to equality testing. We want the fun-
damental code that checks for equality to reside inside the PObject class be-
cause that code is common to both PPoint and PLine. We do this by declar-
ing a protected method called equals inside PObject (see Program 10.4
line 14):

protected:
bool equals(const PObject& that) const;

In the le PObject.cc we give the code for this method (see Program 10.5
lines 34–36):

bool PObject::equals (const PObject& that) const {
return ( (x==that.x) && (y==that.y) && (z==that.z) );

}

Then, in the class de nitions for PPoint and PLine we give the necessary
operator de nitions. For example, in PLine we have this:

public:
bool operator==(const PLine& that) const {

return equals(that);
}
bool operator!=(const PLine& that) const {

return !equals(that);
}

In this way, if (indeed, when) we decide to change the manner in which we test
for equality, we only need to update PObject’s protected equals method.

Similarly, rather than de ning a < operator for PObject, we de ne a protected
less method. The children can access less to de ne their individual, public
operator< methods. (See Program 10.4 line 15 and Program 10.5 lines 38–
45.)

Meet/Join Operation Given two PPoints P and Q, we want P+Q to return the line
through those points. Dually, given PLines L and M, we want L*M to return
the point of intersection of these lines.

In both cases, the calculations are the same: given the triples 〈x1,y1,z1〉 and
〈x2,y2,z2〉 we need to nd a new triple 〈x3,y3,z3〉 that is orthogonal to the rst
two. To do this, we calculate the cross product:

〈x3,y3,z3〉 = 〈x1,y1,z1〉× 〈x2,y2,z2〉.

Therefore, in PObject we declare a protected method called op that is invoked
by operator+ in PPoint and operator* in PLine. (See Program 10.4
line 18 and Program 10.5 lines 138–148.)



190 C++ for Mathematicians

Incidence Given a point and a line, we want to be able to determine if the point lies
on the line. If the coordinates for these are (x,y,z) and [a,b,c], respectively,
then we simply need to test if ax+by+ cz = 0.

It does not make sense to ask if one line is incident with another, so we do not
make an “is incident with” method publicly available in PObject. Rather, we
make a protected incident method (that calls, in turn, a private dot method
for calculating dot product). (See Program 10.4 lines 11,16 and Program 10.5
lines 21–23,47–49.)

Then, PPoint and PLine can declare their own public methods that access
incident. Details on this later.

Collinearity/Concurrence Are three given points collinear? Are three given lines
concurrent? If the three objects have coordinates 〈x1,y1,z1〉, 〈x2,y2,z2〉, and
〈x3,y3,z3〉, then the answer is yes if and only if the vectors are linearly depen-
dent. We check this by calculating

det

⎡
⎣x1 y1 z1

x2 y2 z2

x3 y3 z3

⎤
⎦

and seeing if we get zero. In PObject.h we declare a procedure dependent

that takes three PObject arguments and returns true or false. We then use
dependent to implement procedures collinear and concurrent for the
classes PPoint and PLine (respectively). (See Program 10.4 line 44 and
Program 10.5 lines 60–77.)

Random points/lines There is no way to generate a point uniformly at random in
the Euclidean plane, but there is a sensible way in which we can do this for
the projective plane. Recall that points in RP2 correspond to lines through the
origin in R3. Thus, to select a point at random in RP2 we generate a point
uniformly at random on the unit ball centered at the origin. An ef cient way to
perform this latter task is to select a vector v uniformly in [−1,1]3. If ‖v‖ > 1,
then we reject v and try again.

The method for generating a random line is precisely the same.

We therefore include a public method randomize that resets the coordinates
of the PObject by the algorithm we just described. (See Program 10.4 line 31
and Program 10.5 lines 25–32.)

To choose a random line through a point is similar. Suppose the point is
(x,y,z). The line [a,b,c] should be chosen so that [a,b,c] is orthogonal to
(x,y,z). To do this, we nd an orthonormal basis for (x,y,z)⊥ that we denote
{(a1,b1,c1),(a2,b2,c2)}. We then choose t uniformly at random in [0,2 ].
The random line [a,b,c] is given by

a = a1 cost +a2 sin t b = b1 cost +b2 sin t c = c1 cost + c2 sin t.



The Projective Plane 191

Rather than generate t and then compute two trigonometric functions, we can
obtain the pair (cost,sin t) by choosing a point uniformly at random in the unit
disk (in R2) and then scaling.

The technique for selecting a random point on a given line is exactly the same.

Thus, we de ne a protected rand_perp method in PObject (Program 10.4
line 17 and Program 10.5 lines 79–136).

The rand_perp method is used by rand_point in PLine and rand_line

in PPoint.

Output Finally, PObject.h declares a procedure for writing to an output stream.
The format is <x,y,z>. The ostream operator<< de ned in PObject

is overridden by like-named procedures in PPoint and PLine. (See Pro-
gram 10.4 line 42 and Program 10.5 lines 51–58.)

With these explanations in place, we now give the header and code les for the
class PObject.

Program 10.4: Header le for the PObject class (version 1).
1 #ifndef POBJECT_H
2 #define POBJECT_H
3
4 #include <iostream>
5 using namespace std;
6
7 class PObject {
8 private:
9 double x,y,z;

10 void scale();
11 double dot(const PObject& that) const;
12
13 protected:
14 bool equals(const PObject& that) const;
15 bool less(const PObject& that) const;
16 bool incident(const PObject& that) const;
17 PObject rand_perp() const;
18 PObject op(const PObject& that) const;
19
20 public:
21 PObject() {
22 x = y = 0.;
23 z = 1.;
24 }
25 PObject(double a, double b, double c) {
26 x = a;
27 y = b;
28 z = c;
29 scale();
30 }
31 void randomize();
32
33 double getX() const { return x; }



192 C++ for Mathematicians

34 double getY() const { return y; }
35 double getZ() const { return z; }
36
37 bool is_invalid() const {
38 return (x==0.) && (y==0.) && (z==0.);
39 }
40 };
41
42 ostream& operator<<(ostream& os, const PObject& A);
43
44 bool dependent(const PObject& A, const PObject& B, const PObject& C);
45
46 #endif

Program 10.5: Program le for the PObject class (version 1).
1 #include "PObject.h"
2 #include "uniform.h"
3
4 void PObject::scale() {
5 if (z != 0.) {
6 x /= z;
7 y /= z;
8 z = 1.;
9 return;

10 }
11 if (y != 0.) {
12 x /= y;
13 y = 1.;
14 return;
15 }
16 if (x != 0) {
17 x = 1.;
18 }
19 }
20
21 double PObject::dot(const PObject& that) const {
22 return x*that.x + y*that.y + z*that.z;
23 }
24
25 void PObject::randomize() {
26 do {
27 x = unif(-1.,1.);
28 y = unif(-1.,1.);
29 z = unif(-1.,1.);
30 } while (x*x + y*y + z*z > 1.);
31 scale();
32 }
33
34 bool PObject::equals(const PObject& that) const {
35 return ( (x==that.x) && (y==that.y) && (z==that.z) );
36 }
37
38 bool PObject::less(const PObject& that) const {
39 if (x < that.x) return true;



The Projective Plane 193

40 if (x > that.x) return false;
41 if (y < that.y) return true;
42 if (y > that.y) return false;
43 if (z < that.z) return true;
44 return false;
45 }
46
47 bool PObject::incident(const PObject& that) const {
48 return dot(that)==0.;
49 }
50
51 ostream& operator<<(ostream& os, const PObject& A) {
52 os << "<"
53 << A.getX() << ","
54 << A.getY() << ","
55 << A.getZ()
56 << ">";
57 return os;
58 }
59
60 bool dependent(const PObject& A, const PObject& B, const PObject& C){
61 double a1 = A.getX();
62 double a2 = A.getY();
63 double a3 = A.getZ();
64
65 double b1 = B.getX();
66 double b2 = B.getY();
67 double b3 = B.getZ();
68
69 double c1 = C.getX();
70 double c2 = C.getY();
71 double c3 = C.getZ();
72
73 double det = a1*b2*c3 + a2*b3*c1 + a3*b1*c2
74 - a3*b2*c1 - a1*b3*c2 - a2*b1*c3;
75
76 return det == 0.;
77 }
78
79 PObject PObject::rand_perp() const {
80 if (is_invalid()) return PObject(0,0,0);
81
82 double x1,y1,z1; // One vector orthogonal to (x,y,z)
83 double x2,y2,z2; // Another orthogonal to (x,y,z) and (x1,y1,z1)
84
85 if (z == 0.) { // If z==0, take (0,0,1) for (x1,y1,y2)
86 x1 = 0;
87 y1 = 0;
88 z1 = 1;
89 }
90 else {
91 if (y == 0.) { // z != 0 and y == 0, use (0,1,0)
92 x1 = 0;
93 y1 = 1;
94 z1 = 1;
95 }



194 C++ for Mathematicians

96 else { // y and z both nonzero, use (0,-z,y)
97 x1 = 0;
98 y1 = -z;
99 z1 = y;

100 }
101 }
102
103 // normalize (x1,y1,z1)
104 double r1 = sqrt(x1*x1 + y1*y1 + z1*z1);
105 x1 /= r1;
106 y1 /= r1;
107 z1 /= r1;
108
109 // (get x2,y2,z2) by cross product with (x,y,z) and (x1,y1,z1)
110 x2 = -(y1*z) + y*z1;
111 y2 = x1*z - x*z1;
112 z2 = -(x1*y) + x*y1;
113
114 // normalize (x2,y2,z2)
115 double r2 = sqrt(x2*x2 + y2*y2 + z2*z2);
116 x2 /= r2;
117 y2 /= r2;
118 z2 /= r2;
119
120 // get a point uniformly on the unit circle
121 double a,b,r;
122 do {
123 a = unif(-1.,1.);
124 b = unif(-1.,1.);
125 r = a*a + b*b;
126 } while (r > 1.);
127 r = sqrt(r);
128 a /= r;
129 b /= r;
130
131 double xx = x1 * a + x2 * b;
132 double yy = y1 * a + y2 * b;
133 double zz = z1 * a + z2 * b;
134
135 return PObject(xx,yy,zz);
136 }
137
138
139 PObject PObject::op(const PObject& that) const {
140
141 if (equals(that)) return PObject(0,0,0);
142
143 double c1 = y*that.z - z*that.y;
144 double c2 = z*that.x - x*that.z;
145 double c3 = x*that.y - y*that.x;
146
147 return PObject(c1,c2,c3);
148 }



The Projective Plane 195

10.7 The classes PPoint and PLine

With the code for PObject in place, we are ready to nish our work by writing the
les for the classes PPoint and PLine. We do this work in four les: PPoint.h,

PPoint.cc, PLine.h, and PLine.cc (Programs 10.6 through 10.9).
As we start to write these les, we meet a chicken-and-egg problem. Which do

we de ne rst: the class PPoint or the class PLine? For us, this is more than
a philosophical conundrum. Some PLine methods need to refer to PPoints. For
example, operator* acts on lines to produce points and PLine’s rand_point

method returns a PPoint. Dually, some of the PPoint methods require the PLine

class.
Here is how we solve this dilemma. In the PPoint.h le, before we give the

de nition of PPoint we have the following statement (see line 6 of Program 10.6),

class PLine;

This lets the C++ compiler know that a class named PLine is de ned somewhere
else. Therefore, when the compiler sees PLine, it knows that this identi er refers
to some class. However, it does not know anything else about PLine other than the
fact it is a class. This means that we may not give an inline de nition for any method
that refers to objects of type PLine. Later, in the le PPoint.cc, we include all
the headers (conveniently with the single directive #include "Projective.h").
Therefore, the code in PPoint.cc can make full use of the PLine class.

Dually, we include the statement class PPoint; in the le PLine.h.

We focus our attention on the class PPoint. The analysis of PLine is similar.
For the class PPoint we have ve constructors. At rst, this may seem to be too

many, but we show how to do this easily.
Of course, we want a three-argument constructor PPoint(a,b,c) that creates

the point (a,b,c). We also want a zero-argument constructor PPoint() that creates
the point (0,0,1) corresponding to the origin.

It makes sense to de ne a two-argument constructor PPoint(a,b) to create the
point (a,b,1). In a sense, this maps the Euclidean point (a,b) to its natural corre-
spondent in the RP2.

What should be the action of a single-argument constructor? The real number a
can be identi ed with the point (a,0) on the x-axis, and this in turn corresponds to
(a,0,1) in RP2. In summary, we have the following constructors and their effects.

Constructor form Point created
PPoint P(); (0,0,1)
PPoint P(a); (a,0,1)
PPoint P(a,b); (a,b,1)
PPoint P(a,b,c); (a,b,c)

The great news is that we can implement these four constructors with a single
de nition using default parameters.



196 C++ for Mathematicians

For any C++ procedure (class method or free-standing procedure), default values
can be speci ed. In the .h le, where procedures are declared, we use a syntax such
as this:

return_type procedure_name(type arg1 = val1, type arg2 = val2, ...);

Then, when the procedure is used, any missing parameters are replaced by their de-
fault values. Let’s look at a concrete example. We declare a procedure named next

that produces the next integer after a given integer. (This is a contrived example, but
we want to keep things simple.) In the header le we put the following,

int next(int num, int step=1);

And in the .cc le, we have the code,

int next(int num, int step) {
return num+step;

}

Notice that the argument step is given a default value, 1. However, the argument
num is not given a default. It is permissible to specify only a subset of the arguments
that receive default values, but if an argument has a default value, all arguments to
its right must also have default values.

Notice that the optional arguments are not reiterated in the .cc le.
Consider the following code.

int a,b,c;
a = next(5);
b = next(5,1);
c = next(5,2);

This will set a and b equal to 6 and c equal to 7.
Alternatively, we could have given an inline de nition of next in the header le

like this:

inline int next(int num, int step=1) { return num+step; }

Returning to PPoint, the four constructors (with zero to three double arguments)
can all be declared at once like this:

PPoint(double a=0., double b=0., double c=1.) ......

See line 10 of Program 10.6. The action of this constructor is simply to pass the
three arguments up to its parent (line 11) and then there is nothing else to do. To
show there is nothing else, we give a pair of open/close braces that enclose empty
space (line 12).

The class PPoint needs one more constructor. Recall that PObject provides
methods such as rand_perp and op that return PObjects. However, when these are
used by PPoint or PLine, the PObject values need to be converted to type PPoint

or PLine as appropriate. To do this PPoint provides a constructor that accepts a
single argument of type PObject. Here is the simple code (see also lines 14–15 of
Program 10.6).



The Projective Plane 197

PPoint(const PObject& that) :
PObject(that.getX(), that.getY(), that.getZ()) { }

This code sends the x, y, and z values held in that up to the parent constructor and
then does nothing else. Now, if we want to assign a PObject value to a PPoint

object, we can do it in the following ways.

PObject X(2.,3.,5.);

PPoint P(X); // invoke the constructor at declaration of P

PPoint Q;
Q = PPoint(X); // invoke the constructor as a converter procedure

PPoint R;
R = X; // implicit conversion (compiler figures out what to do)

Here is the PPoint.h header le.

Program 10.6: Header le for the PPoint class.
1 #ifndef PPOINT_H
2 #define PPOINT_H
3
4 #include "PObject.h"
5
6 class PLine;
7
8 class PPoint : public PObject {
9 public:

10 PPoint(double a = 0., double b = 0., double c = 1.) :
11 PObject(a,b,c)
12 { }
13
14 PPoint(const PObject& that) :
15 PObject(that.getX(), that.getY(), that.getZ()) { }
16
17 bool operator==(const PPoint& that) const {
18 return equals(that);
19 }
20
21 bool operator!=(const PPoint& that) const {
22 return !equals(that);
23 }
24
25 bool operator<(const PPoint& that) const {
26 return less(that);
27 }
28
29 PLine operator+(const PPoint& that) const;
30
31 bool is_on(const PLine& that) const;
32
33 PLine rand_line() const;
34
35 };



198 C++ for Mathematicians

36
37 ostream& operator<<(ostream& os, const PPoint& P);
38
39 inline bool
40 collinear(const PPoint& A, const PPoint& B, const PPoint& C) {
41 return dependent(A,B,C);
42 }
43
44 #endif

On lines 17–26 we give inline de nitions of operator==, operator!=, and
operator<. However, operator+, is_on, and rand_line may not be given in-
line because these refer to the (as yet) unknown class PLine. (See lines 29–33.)

The collinear procedure simply invokes the dependent procedure de ned in
PObject.h, so we give it inline here. The inline keyword in mandatory here
because collinear is not a member of any class.

The parts of PPoint not given in PPoint.h are de ned in PPoint.cc which we
present next.

Program 10.7: Program le for the PPoint class.
1 #include "Projective.h"
2
3 ostream& operator<<(ostream& os, const PPoint& P) {
4 os << "(" << P.getX() << "," << P.getY() << "," << P.getZ() << ")";
5 return os;
6 }
7
8 PLine PPoint::operator+(const PPoint& that) const {
9 return PLine(op(that));

10 }
11
12 PLine PPoint::rand_line() const {
13 return PLine(rand_perp());
14 }
15
16 bool PPoint::is_on(const PLine& that) const {
17 return incident(that);
18 }

The code for the class PLine is extremely similar to that of PPoint. Here are the
les PLine.h and PLine.cc for your perusal.

Program 10.8: Header le for the PLine class.
1 #ifndef PLINE_H
2 #define PLINE_H
3
4 #include "PObject.h"
5
6 class PPoint;
7
8 class PLine : public PObject {



The Projective Plane 199

9 public:
10 PLine(double a = 0., double b = 0., double c = 1.) :
11 PObject(a,b,c)
12 { }
13
14 PLine(const PObject& that) :
15 PObject(that.getX(), that.getY(), that.getZ()) { }
16
17 bool operator==(const PLine& that) const {
18 return equals(that);
19 }
20
21 bool operator!=(const PLine& that) const {
22 return !equals(that);
23 }
24
25 bool operator<(const PLine& that) const {
26 return less(that);
27 }
28
29 PPoint operator*(const PLine& that) const;
30
31 bool has(const PPoint& X) const;
32
33 PPoint rand_point() const;
34
35 };
36
37 ostream& operator<<(ostream& os, const PLine& P);
38
39 inline bool
40 concurrent(const PLine& A, const PLine& B, const PLine& C) {
41 return dependent(A,B,C);
42 }
43
44 #endif

Program 10.9: Program le for the PLine class.
1 #include "Projective.h"
2
3 ostream& operator<<(ostream& os, const PLine& P) {
4 os << "[" << P.getX() << "," << P.getY() << "," << P.getZ() << "]";
5 return os;
6 }
7
8 PPoint PLine::rand_point() const {
9 return PPoint(rand_perp());

10 }
11
12 PPoint PLine::operator*(const PLine& that) const {
13 return PLine(op(that));
14 }
15
16 bool PLine::has(const PPoint& that) const {



200 C++ for Mathematicians

17 return incident(that);
18 }

10.8 Discovering and repairing a bug

With the projective point and line classes built, it is time to test our code. Here is
a simple main to perform some checks.

Program 10.10: A main to test the RP2 classes.
1 #include <iostream>
2 #include "Projective.h"
3 #include "uniform.h"
4
5 int main() {
6 seed();
7 PPoint P;
8
9 P.randomize();

10 cout << "The random point P is " << P << endl;
11
12 PLine L,M;
13
14 L = P.rand_line();
15 M = P.rand_line();
16
17 cout << "Two lines through P are L = " << L << endl
18 << "and M = " << M << endl;
19
20 cout << "Is P on L? " << P.is_on(L) << endl;
21 cout << "Does M have P? " << M.has(P) << endl;
22
23 PPoint Q;
24 Q = L*M;
25
26 cout << "The point of intersection of L and M is Q = " << Q << endl;
27
28 cout << "Is Q on L? " << Q.is_on(L) << endl;
29 cout << "Does M have Q? " << M.has(Q) << endl;
30
31 if (P==Q) {
32 cout << "P and Q are equal" << endl;
33 }
34 else {
35 cout << "P and Q are NOT equal" << endl;
36 }
37
38 return 0;
39 }



The Projective Plane 201

When this program is run, we have the following output:
� �
The random point P is (-1.32445,0.591751,1)
Two lines through P are L = [6.51303,12.8875,1]
and M = [0.871229,0.260071,1]
Is P on L? 0
Does M have P? 0
The point of intersection of L and M is Q = (-1.32445,0.591751,1)
Is Q on L? 0
Does M have Q? 0
P and Q are NOT equal

� �

Much of what we see here doesn’t make sense. First, the lines L and M are random
lines through P. Yet the output indicates that P is on neither of these lines. Then,
we generate the point Q at the intersection of L and M. The good news is that the
coordinates of P and Q are the same: (−5.64488,2.562,1). However, the computer
still tells us that Q is on neither L nor M. Worse, it thinks that P �= Q. What is going
on here!?

All these problems stem from the same underlying cause: roundoff. Remember
that a double variable is a rational approximation to a real number. Two real quanti-
ties that are computed differently may result in double values that are different. For
example, consider this code:

#include <iostream>
using namespace std;
int main() {

double x = 193./191.;
double y = 1./191.;
y *= 193;
if (x == y) {

cout << "They are equal" << endl;
}
else {

cout << "They are different" << endl;
cout << "Difference = " << x-y << endl;

}
return 0;

}

Here is the output from this program.
� �
They are different
Difference = -2.22045e-16

� �

The computer reports that 193
191 �= 193× 1

191 .
The equality test we created for PObjects checks if the three coordinates are

exactly the same. We need to relax this.
The bad news is we need to rewrite some of our code to correct this problem. The

great news is that we only need to repair PObject. The children PPoint and PLine

inherit the improvements.



202 C++ for Mathematicians

To begin, let us identify the places in the code for PObject where exact equality
is sought.

• The equals method requires exact equality of the three coordinates.

• The incident method requires zero to be the exact result of the dot product
method.

• The dependent procedure requires zero to be the exact value of the determi-
nant.

In lieu of exact equality, we can require that the values be within a small tolerance.
What tolerance should we use? We make that quantity user selectable initialized with
some default value (say 10−12).

To implement this idea we add a private static double variable named tolerance

and de ne a constant named default_tolerance set to 10−12.
Inside PObject we de ne two inline public static methods: set_tolerance and

get_tolerance. Here is the revised header le.

Program 10.11: Header le for the PObject class (version 2).
1 #ifndef POBJECT_H
2 #define POBJECT_H
3 #include <cmath>
4 #include <iostream>
5 using namespace std;
6
7 const double default_tolerance = 1e-12;
8
9 class PObject {

10 private:
11 double x,y,z;
12 void scale();
13 double dot(const PObject& that) const;
14 static double tolerance;
15
16 protected:
17 bool equals(const PObject& that) const;
18 bool less(const PObject& that) const;
19 bool incident(const PObject& that) const;
20 PObject rand_perp() const;
21 PObject op(const PObject& that) const;
22
23 public:
24 PObject() {
25 x = y = 0.;
26 z = 1.;
27 }
28 PObject(double a, double b, double c) {
29 x = a;
30 y = b;
31 z = c;
32 scale();



The Projective Plane 203

33 }
34 void randomize();
35
36 static void set_tolerance(double t) {
37 tolerance = abs(t);
38 }
39
40 static double get_tolerance() {
41 return tolerance;
42 }
43
44 double getX() const { return x; }
45 double getY() const { return y; }
46 double getZ() const { return z; }
47
48 bool is_invalid() const {
49 return (x==0.) && (y==0.) && (z==0.);
50 }
51
52 };
53
54 ostream& operator<<(ostream& os, const PObject& A);
55
56 bool dependent(const PObject& A, const PObject& B, const PObject& C);
57
58 #endif

Inside PObject.cc we need to declare PObject::tolerance and we give it an
initial value. (See Program 10.12, line 4.)

We also need to modify the equals, incident, and dependent procedures to
test for near equality instead of exact equality. You can nd these modi cations on
lines 37–39, 52, and 80 of the new PObject.cc le which we present here.

Program 10.12: Program le for the PObject class (version 2).
1 #include "PObject.h"
2 #include "uniform.h"
3
4 double PObject::tolerance = default_tolerance;
5
6 void PObject::scale() {
7 if (z != 0.) {
8 x /= z;
9 y /= z;

10 z = 1.;
11 return;
12 }
13 if (y != 0.) {
14 x /= y;
15 y = 1.;
16 return;
17 }
18 if (x != 0) {
19 x = 1.;
20 }



204 C++ for Mathematicians

21 }
22
23 double PObject::dot(const PObject& that) const {
24 return x*that.x + y*that.y + z*that.z;
25 }
26
27 void PObject::randomize() {
28 do {
29 x = unif(-1.,1.);
30 y = unif(-1.,1.);
31 z = unif(-1.,1.);
32 } while (x*x + y*y + z*z > 1.);
33 scale();
34 }
35
36 bool PObject::equals(const PObject& that) const {
37 double d = abs(x-that.x) + abs(y-that.y) + abs(z-that.z);
38
39 return d <= tolerance;
40 }
41
42 bool PObject::less(const PObject& that) const {
43 if (x < that.x) return true;
44 if (x > that.x) return false;
45 if (y < that.y) return true;
46 if (y > that.y) return false;
47 if (z < that.z) return true;
48 return false;
49 }
50
51 bool PObject::incident(const PObject& that) const {
52 return abs(dot(that)) <= tolerance;
53 }
54
55 ostream& operator<<(ostream& os, const PObject& A) {
56 os << "<"
57 << A.getX() << ","
58 << A.getY() << ","
59 << A.getZ()
60 << ">";
61 return os;
62 }
63
64 bool dependent(const PObject& A, const PObject& B, const PObject& C){
65 double a1 = A.getX();
66 double a2 = A.getY();
67 double a3 = A.getZ();
68
69 double b1 = B.getX();
70 double b2 = B.getY();
71 double b3 = B.getZ();
72
73 double c1 = C.getX();
74 double c2 = C.getY();
75 double c3 = C.getZ();
76



The Projective Plane 205

77 double det = a1*b2*c3 + a2*b3*c1 + a3*b1*c2
78 - a3*b2*c1 - a1*b3*c2 - a2*b1*c3;
79
80 return abs(det) <= PObject::get_tolerance();
81 }
82
83 PObject PObject::rand_perp() const {
84 if (is_invalid()) return PObject(0,0,0);
85
86 double x1,y1,z1; // One vector orthogonal to (x,y,z)
87 double x2,y2,z2; // Another orthogonal to (x,y,z) and (x1,y1,z1)
88
89 if (z == 0.) { // If z==0, take (0,0,1) for (x1,y1,y2)
90 x1 = 0;
91 y1 = 0;
92 z1 = 1;
93 }
94 else {
95 if (y == 0.) { // z != 0 and y == 0, use (0,1,0)
96 x1 = 0;
97 y1 = 1;
98 z1 = 1;
99 }

100 else { // y and z both nonzero, use (0,-z,y)
101 x1 = 0;
102 y1 = -z;
103 z1 = y;
104 }
105 }
106
107 // normalize (x1,y1,z1)
108 double r1 = sqrt(x1*x1 + y1*y1 + z1*z1);
109 x1 /= r1;
110 y1 /= r1;
111 z1 /= r1;
112
113 // (get x2,y2,z2) by cross-product with (x,y,z) and (x1,y1,z1)
114 x2 = -(y1*z) + y*z1;
115 y2 = x1*z - x*z1;
116 z2 = -(x1*y) + x*y1;
117
118 // normalize (x2,y2,z2)
119 double r2 = sqrt(x2*x2 + y2*y2 + z2*z2);
120 x2 /= r2;
121 y2 /= r2;
122 z2 /= r2;
123
124 // get a point uniformly on the unit circle
125 double a,b,r;
126 do {
127 a = unif(-1.,1.);
128 b = unif(-1.,1.);
129 r = a*a + b*b;
130 } while (r > 1.);
131 r = sqrt(r);
132 a /= r;



206 C++ for Mathematicians

133 b /= r;
134
135 double xx = x1 * a + x2 * b;
136 double yy = y1 * a + y2 * b;
137 double zz = z1 * a + z2 * b;
138
139 return PObject(xx,yy,zz);
140 }
141
142
143 PObject PObject::op(const PObject& that) const {
144
145 if (equals(that)) return PObject(0,0,0);
146
147 double c1 = y*that.z - z*that.y;
148 double c2 = z*that.x - x*that.z;
149 double c3 = x*that.y - y*that.x;
150
151 return PObject(c1,c2,c3);
152 }

When the test program (Program 10.10) is run with the new PObject class, we
achieve the desired results.

� �
The random point P is (-0.479902,-0.616199,1)
Two lines through P are L = [0.384191,1.32364,1]
and M = [1.66531,0.32589,1]
Is P on L? 1
Does M have P? 1
The point of intersection of L and M is Q = (-0.479902,-0.616199,1)
Is Q on L? 1
Does M have Q? 1
P and Q are equal

� �

The user may invoke PObject::set_tolerance(0.0); to revert to the previ-
ous behavior (exact checking).

Finally, the method we use for testing near equality can be improved. For example,
we check if two projective objects are equal by computing their L1 distance and
comparing against tolerance. Alternatively, to check 〈x1,y1,z1〉 and 〈x2,y2,z2〉
for equality, we might consider a test such as this:

|x1 − x2|+ |y1− y2|+ |z1 − z2|
|x1|+ |x2|+ |y1|+ |y2|+ |z1|+ |z2| ≤ .

Whatever equality test you feel is most appropriate, it is only necessary to edit one
method (equals in PObject) to implement your choice.



The Projective Plane 207

10.9 Pappus revisited

We close this section with a program to illustrate Pappus’s Theorems and the use
of the near-equality testing.

Program 10.13: A program to illustrate Pappus’s theorem and its dual.
1 #include "Projective.h"
2 #include "uniform.h"
3
4 /**
5 * An illustration of Pappus’s theorem and its dual
6 */
7
8 void pappus() {
9 seed();

10
11 // two random lines
12 PLine L1,L2;
13 L1.randomize();
14 L2.randomize();
15 cout << "The two lines are " << endl << L1 << " and " << L2 << endl;
16
17 // get three points on the first
18 PPoint P1 = L1.rand_point();
19 PPoint P2 = L1.rand_point();
20 PPoint P3 = L1.rand_point();
21
22 cout << "Three points on the first line are " << endl
23 << P1 << endl << P2 << endl << P3 << endl;
24
25 // get three points on the second
26 PPoint Q1 = L2.rand_point();
27 PPoint Q2 = L2.rand_point();
28 PPoint Q3 = L2.rand_point();
29
30 cout << "Three points on the second line are " << endl
31 << Q1 << endl << Q2 << endl << Q3 << endl;
32
33 // find the three pairwise intersections
34 PPoint X1 = (P2+Q3)*(P3+Q2);
35 PPoint X2 = (P1+Q3)*(P3+Q1);
36 PPoint X3 = (P1+Q2)*(P2+Q1);
37
38 cout << "The three points constructed are " << endl;
39 cout << X1 << endl << X2 << endl << X3 << endl;
40
41 if (collinear(X1,X2,X3)) {
42 cout << "They are collinear, as guaranteed by Pappus’s theorem"
43 << endl;
44 }
45 else {
46 cout << "TROUBLE! The three points are not collinear!!"



208 C++ for Mathematicians

47 << endl;
48 }
49 }
50
51 void dual_pappus() {
52 // Two random points
53 PPoint A,B;
54 A.randomize();
55 B.randomize();
56 cout << "The two points are " << endl << A << " and " << B << endl;
57
58 // Three lines through the first
59 PLine L1 = A.rand_line();
60 PLine L2 = A.rand_line();
61 PLine L3 = A.rand_line();
62
63 cout << "The three lines through the first point are " << endl
64 << L1 << endl << L2 << endl << L3 << endl;
65
66 // Three lines through the second
67 PLine M1 = B.rand_line();
68 PLine M2 = B.rand_line();
69 PLine M3 = B.rand_line();
70
71 cout << "The three lines through the second point are " << endl
72 << M1 << endl << M2 << endl << M3 << endl;
73
74 // Get the three dual Pappus lines
75 PLine X1 = L2*M3 + L3*M2;
76 PLine X2 = L1*M3 + L3*M1;
77 PLine X3 = L1*M2 + L2*M1;
78
79 cout << "The three lines constructed are " << endl;
80 cout << X1 << endl << X2 << endl << X3 << endl;
81
82 if (concurrent(X1,X2,X3)) {
83 cout << "They are concurrent, as guaranteed by Pappus’s theorem"
84 << endl;
85 }
86 else {
87 cout << "TROUBLE! The three lines are not concurrent!!"
88 << endl;
89 }
90 }
91
92
93 int main() {
94 double t;
95 cout << "Enter desired tolerance --> ";
96 cin >> t;
97 PObject::set_tolerance(t);
98 cout << "You set the tolerance to " << PObject::get_tolerance()
99 << endl << endl;

100
101 pappus();
102 cout << endl;



The Projective Plane 209

103 dual_pappus();
104
105 return 0;
106 }

Here are three runs of the program with the tolerance set to different values.
� �
Enter desired tolerance --> 0
You set the tolerance to 0

The two lines are
[2.23943,2.19462,1] and [-0.685646,2.15228,1]
Three points on the first line are
(14.3273,-15.0755,1)
(-0.434872,-0.0119093,1)
(-0.56911,0.12507,1)
Three points on the second line are
(-2.29319,-1.19516,1)
(0.43878,-0.324843,1)
(7.8271,2.02884,1)
The three points constructed are
(-0.323743,0.01554,1)
(6.49488,5.53439,1)
(-0.0728833,0.218581,1)
TROUBLE! The three points are not collinear!!

The two points are
(0.576837,0.361625,1) and (-0.407185,0.0903103,1)
The three lines through the first point are
[-1.45089,-0.450946,1]
[0.398283,-3.4006,1]
[18.9351,-32.9691,1]
The three lines through the second point are
[2.2305,-1.01622,1]
[2.46456,0.0391258,1]
[2.51677,0.274485,1]
The three lines constructed are
[2.42584,0.116742,1]
[1.63958,0.114103,1]
[3.10284,0.119014,1]
TROUBLE! The three lines are not concurrent!!

� �
� �
Enter desired tolerance --> 1e-16
You set the tolerance to 1e-16

The two lines are
[0.55364,0.547428,1] and [1.05044,-0.347064,1]
Three points on the first line are
(-0.0325509,-1.79381,1)
(-0.440495,-1.38123,1)
(1.76843,-3.61523,1)
Three points on the second line are
(-2.34784,-4.22478,1)
(-0.911666,0.122021,1)
(-0.367147,1.77009,1)
The three points constructed are



210 C++ for Mathematicians

(-0.421418,-0.561603,1)
(0.160804,-3.85329,1)
(-0.310677,-1.18769,1)
They are collinear, as guaranteed by Pappus’s theorem

The two points are
(-15.284,42.4406,1) and (-2.5346,1.29455,1)
The three lines through the first point are
[-1.32801,-0.501814,1]
[-0.903241,-0.348843,1]
[0.00499314,-0.0217642,1]
The three lines through the second point are
[2.56928,4.25793,1]
[0.38109,-0.0263314,1]
[31.5203,60.9412,1]
The three lines constructed are
[-0.725517,-0.0128931,1]
[-9.98448,-16.6938,1]
[-0.936431,-0.392874,1]
TROUBLE! The three lines are not concurrent!!

� �
� �
Enter desired tolerance --> 1e-12
You set the tolerance to 1e-12

The two lines are
[0.52502,-0.458764,1] and [-0.330266,1.96863,1]
Three points on the first line are
(-2.99912,-1.25249,1)
(-1.44265,0.528772,1)
(-2.39671,-0.563076,1)
Three points on the second line are
(1.18674,-0.308875,1)
(1.38413,-0.27576,1)
(-6.11116,-1.53321,1)
The three points constructed are
(-4.23015,-0.702403,1)
(30.568,1.77536,1)
(1.20682,-0.315271,1)
They are collinear, as guaranteed by Pappus’s theorem

The two points are
(15.562,5.35536,1) and (-0.432665,0.837712,1)
The three lines through the first point are
[-0.171104,0.310479,1]
[-2.21649,6.25412,1]
[-0.915338,2.47313,1]
The three lines through the second point are
[-3.3276,-2.91238,1]
[0.807493,-0.776671,1]
[-9.38979,-6.0434,1]
The three lines constructed are
[-2.58492,5.62249,1]
[-2.64901,-1.39739,1]
[-2.6087,3.01846,1]
They are concurrent, as guaranteed by Pappus’s theorem

� �



The Projective Plane 211

10.10 Exercises

10.1 Create a pair of classes named Rectangle and Square, which should be a
derived subclass of Rectangle.

Rectangle should have two data members (representing the height and width)
and the following methods.

• A two-argument constructor.

• Methods to get the height and width.

• Methods to change the height and width.

• Methods to report the area and perimeter.

Square should have a single-argument constructor (which should rely on
Rectangle’s constructor). It should have the same methods as Rectangle,
except that the methods to change height and width should modify both the
height and width.

10.2 Create a class called Parallelogram that represents a parallelogram seated
in the plane as shown in the gure.

(a,0)

(b,c)

The values a and c must be nonnegative; b may be any real value.

The Parallelogram should de ne a zero- and three-argument constructor
and methods for computing the area and perimeter of the gure.

Next, create two subclasses named Rectangle and Rhombus from the par-
ent class Parallelogram. De ne appropriate two-argument constructors for
these subclasses.

There is no need to make a new area() method for the subclasses; the par-
ent’s area() method is ef cient and serves the subclasses well. However, the
perimeter() method in the Parallelogram needs to invoke the sqrt pro-
cedure to nd the side length from (0,0) to (b,c). However, the subclasses can
nd the perimeter in a more ef cient manner. So, although it isn’t necessary to

rede ne perimeter() for Rhombus and Rectangle, do so anyway so these
procedures are more ef cient in the special cases.



212 C++ for Mathematicians

10.3 In Exercise 8.3 we explored C++’s inability to hold complex<double> values
in a set container because the complex<double> type does not de ne a <

operator. We resolved that issue by making a set of pair<double,double>

objects that held the values (x,y) in lieu of x+ yi.

Create an alternative solution by creating a class named mycomplex that is de-
rived from the complex<double> type. Add to mycomplex an operator<.
You also need zero-, one-, and two-argument constructors (with double argu-
ments); these should invoke complex<double>’s constructors.

Finally, write a short main() procedure to check that mycomplex objects can
be housed in a set<mycomplex> container.

10.4 De ne a pair of classes named Point and Segment to represent points and
line segments in the plane. The Point class should include an operator+

method; the result of P+Q is the line segment joining the points. The Segment

class should include a midpoint() method that returns the Point that is
midway between the end points of the line segment.

For both classes, de ne operator<< for writing to the screen.

10.5 In C++ it is possible to have two classes, Alpha and Beta, such that arguments
and return values for methods in one class may be the type of the other class.
That is, an Alpha method might return a Beta value and vice versa. (This is
the case for the Point and Segment classes in Exercise 10.4.)

Can we create classes Alpha and Beta so that each contains data members
that are of the other type?

10.6 Extend the complex<double> class to include the value (complex in nity)
by creating a derived class named Complexx. This new value should interact
with nite complex values in a sensible way. For example,

+ z = for nite z

× =
z÷0 = for z �= 0

z÷ = 0 for nite z

Some calculations with Complexx values should yield a special unde ned
value; for example, 0÷0, ± , 0× , / , and so on.

Your class should include the operators +, - (unary and binary), *, /, ==, !=,
and << (for writing to the screen).

10.7 Use the PPoint and PLine classes to write a program to illustrate Desargues’
Theorem: suppose that triangles ABC and DEF are in perspective from a point
O. (That is, the triples OAD, OBE , and OCF are each collinear.) Then the three
points of intersection of the lines AC and DF , lines AB and DE , and lines BC
and EF are collinear (see the points X , Y , and Z in Figure 10.4).



The Projective Plane 213

O

A

B

C

D

E
F

X

Y
Z

Figure 10.4: An illustration of Desargues’ Theorem.





Chapter 11

Permutations

Let n be a positive integer. A permutation is a one-to-one and onto function (i.e., a

bijection) from the set {1,2, . . . ,n} to itself. The set of all permutations of this set is

denoted Sn.

One way to represent a permutation π is as a list of values [π(1),π(2), . . . ,π(n)].
For example, π = [1,4,7,2,5,3,6] means π ∈ S7 and π(1) = 1, π(2) = 4, π(3) = 7,

and so on, and π(7) = 6.

The disjoint cycle notation is an alternative way to write permutations. The permu-

tation π = [1,4,7,2,5,3,6] is written (1)(2,4)(3,7,6,5). The (1) means π(1) = 1.

The (2,4) means π(2) = 4 and π(4) = 2. The (3,7,6,5) means π(3) = 7, π(7) = 6,

π(6) = 5, and π(5) = 3. In other words, (1)(2,4)(3,7,6,5) means this:

1 �→ 1 2 �→ 4 �→ 2 3 �→ 7 �→ 6 �→ 5 �→ 3.

In this chapter we develop a C++ class to represent permutations. We have two

goals. One is to introduce additional C++ concepts (copy constructors, destructors,

and assignment operators). The other is to write a program to explore Ulam’s prob-

lem.

11.1 Ulam’s problem
Given a permutation π ∈ Sn, we may regard π as a sequence [π(1),π(2), . . . ,π(n)].

An increasing subsequence of π is a sequence [π(i1),π(i2), . . . ,π(it)] where 1 ≤
i1 < i2 < · · · < it ≤ n and π(i1) < π(i2) < · · · < π(it). A decreasing subsequence

is defined analogously. A subsequence of a permutation is called monotone if it is

either increasing or decreasing.

For example, the sequence [1,4,7,2,5,3,6] contains the increasing subsequence

[1,2,3,6] and the decreasing subsequence [7,5,3]. Every permutation must have

a “reasonably” long monotone subsequence. This is a consequence of the Erdős–

Szekeres Theorem.

Theorem 11.1 (Erdős–Szekeres). Let k be a positive integer and let n = k2 +1. Then
every permutation π ∈ Sn contains a monotone subsequence of length k +1.

Informally, the result states that every permutation in Sn contains a monotone sub-

sequence of length about
√

n. The proof of this result is interesting both because it

215



216 C++ for Mathematicians

is a good example of the use of the pigeonhole principle and because it leads to an

algorithm for finding longest monotone subsequences of permutations.

Proof. Let π ∈ Sn where n = k2 + 1. For each i with 1 ≤ i ≤ n let (ui,di) denote

the lengths of the longest increasing and decreasing subsequences of π that start at

position i. For example, the sequence [1,4,7,2,5,3,6] gives the following values for

ui and di.

Index i 1 2 3 4 5 6 7
π(i) 1 4 7 2 5 3 6

ui 4 3 1 3 2 2 1
di 1 2 3 1 2 1 1

The easiest way to verify this chart is to check the ui and di entries starting from

the right.

The key observation is that for i �= j we have (ui,di) �= (u j,d j). To see why, let

i < j. Then either π(i) < π( j), in which case ui > u j; or else π(i) > π( j), in which

case di > d j.

Suppose, for the sake of contradiction, there is a permutation π in Sn without a

monotone subsequence of length k +1 (where k2 +1 = n). Therefore, 1 ≤ ui,di ≤ k
for all i. Hence there are at most k2 distinct values of (ui,di) and so for some pair

of indices i �= j we have (ui,di) = (u j,d j). ⇒⇐ Therefore, π must have a monotone

subsequence of length k +1.

Ulam’s problem concerns the longest increasing subsequence of a random permu-

tation. Suppose a permutation π is chosen uniformly at random from Sn. That is,

all permutations in Sn are equally likely, each with probability 1/n!. What is the

expected length of π’s longest increasing subsequence?

If we let Ln be the random variable giving the length of a longest increasing sub-

sequence in π , then Ulam’s problem asks us to find E(Ln). The Erdős–Szekeres

Theorem suggests that this value should be on the order of
√

n. Indeed, in a cele-

brated paper, Hammersley1 showed that

lim
n→∞

E(Ln)√
n

exists (and is not zero). Subsequent work in papers by Logan and Shepp2 and by

Vershik and Kerov3 establish the value of this limit. (We give the answer at the end

of this chapter.)

1J.M. Hammersley, A few seedlings of research, Proceedings of the Sixth Berkeley Symposium on Math-
ematical Statistics and Probability, 1 (1972), 345–394.
2B.F. Logan and L.A. Shepp, A variational problem for random Young tableaux, Advances in Math. 26
(1977), 206–222.
3A.M. Vershik and S.V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the

limiting form of Young tables, Soviet Math. Dokl., 18 (1977), 527–531.



Permutations 217

11.2 Designing the Permutation class
Here is the header file, Permutation.h for the Permutation class. The overall

design of the class as well as the new C++ concepts are explained after.

Program 11.1: Header file for Permutation class, Permutation.h.

1 #ifndef PERMUTATION_H
2 #define PERMUTATION_H
3 #include <iostream>
4 using namespace std;
5

6 class Permutation {
7 private:
8 long n;
9 long* data;

10

11 public:
12 Permutation();
13 Permutation(long nels);
14 Permutation(long nels, long* array);
15 Permutation(const Permutation& that);
16 ˜Permutation();
17

18 void swap(long i, long j);
19 void randomize();
20 void reset();
21

22 bool check() const;
23

24 long getN() const { return n; }
25 long of(long k) const;
26 long operator()(long k) const { return of(k); }
27

28 Permutation operator=(const Permutation& that);
29

30 Permutation operator*(const Permutation& that) const;
31 Permutation operator*=(const Permutation& that);
32

33 Permutation inverse() const;
34

35 bool operator==(const Permutation& that) const;
36 bool operator!=(const Permutation& that) const;
37 bool operator< (const Permutation& that) const;
38 bool isIdentity() const;
39 };
40

41 ostream& operator<<(ostream& os, const Permutation& P);
42

43 #endif



218 C++ for Mathematicians

11.2.1 Data

To represent an element of Sn we hold the integer n in a long variable. We also

need a way to store the values π(1) through π(n). For that task we have two natural

choices: an array of long values or a container such as vector<long> (see Sec-

tion 8.4). Although using a vector container would simplify some issues, we opt

for an array for the following reasons. First, once we create a permutation object,

we do not expect the length (n) of the permutation to change. Therefore, we do not

need a vector’s ability to resize itself. Second, using an array compels us to learn

additional features of C++.

The class Permutation contains two data elements in its private section such as

this:

class Permutation {
private:

long n;
long* data;

public:
...

};

The integer n holds the size of the permutation; that is, the permutation is on the

integers 1 through n.

The array data holds the values π(i) for 1 ≤ i ≤ n. To make our lives easier, we

let data[1] hold the value π(1), data[2] hold π(2), and so on. This means that

we need to be sure that data has capacity n+1. The entry data[0] is wasted.4

To be sure that a Permutation object is always valid, we do not give users un-

fettered access to data. All of the methods that act on Permutation objects must

ensure that n and data represent a valid permutation.

11.2.2 Constructors and destructors

The Permutation class contains four constructors.

• The first is a basic, zero-argument constructor Permutation(). This con-

structor creates the identity permutation (1) in S1. (See line 12 of Program

11.1.)

• The second is a single-argument constructor Permutation(nels). When

nels is a positive integer n, this creates the identity permutation (1)(2) · · ·(n)
in Sn. (See line 13.)

• The third is a two-argument constructor Permutation(nels,array). Here,

nels contains a positive integer n, and array contains an array of n+1 long

4Note that we could use data[0] to store n obviating the need for the variable n. This would be efficient

for the computer’s memory, but inefficient for human memory as this would require us to remember this

trick. It would also make the code harder to understand. Avoid sneaky tricks.



Permutations 219

integers. The value of array[k] is π(k) for 1 ≤ k ≤ n. Thus array should

be of size nels+1. (See line 14.)

The action of this constructor is to assign n from nels and to copy entries 1

through nels of array into data. This, however, is dangerous. We do not

know if the data held in array are a valid representation of a permutation.

Therefore, we include a check method (line 22). The check method returns

true if the data held in the Permutation are valid. If the check method

returns false, the constructor calls reset to reset the permutation to the

identity of Sn.

See lines 20 and 22 of Permutation.h (Program 11.1) and lines 21–32, 44-

46, and 65–85 of Permutation.cc (Program 11.2.)

• The fourth is a single-argument constructor Permutation(that) where the

argument that is also a Permutation object. This is called a copy construc-
tor. The new permutation created is a copy of that. (See line 15.)

Until this point, we have not needed a copy constructor. Its necessity is ex-

plained shortly (Subsection 11.2.3).

In all four cases, the private data elements, n and data, need to be initialized by

the constructor. For example, here is the portion of the file Permutation.cc that

spells out the action of the Permutation(nels) constructor (copied from lines 10–

19 of Program 11.2).

Permutation::Permutation(long nels) {
if (nels <= 0) {

nels = 1;
}
data = new long[nels+1];
n = nels;
for (long k=1; k<=n; k++) {

data[k] = k;
}

}

Remember that data is of type long* (an array of long values). Until memory has

been allocated for data, we cannot store values in data[1], data[2], and so on.

The allocation of storage takes place with data = new long[nels+1];. Once

the storage has been allocated, the data array can be populated (see the for loop).

This code appears to violate our admonition that every new must be balanced with

a corresponding delete[]. Where is the delete[] statement?

We cannot add the statement delete[] data; to the constructor. If we do, no

sooner do we set up data then we would destroy it, defeating the purpose of the

constructor.

What we need is for the delete[] instruction to execute when we are done with

the object. For example, consider this bit of code.

void example(long n) {
Permutation P(n); // make a new permutation
... // do a bunch of stuff



220 C++ for Mathematicians

cout << P << endl; // print P
}

When the procedure example is invoked, a Permutation object P is created. When

the procedure reaches its end, the variable P goes out of scope and is no longer

available. If example were called repeatedly (say, by main), then we would have

repeated new statements without any balancing deletes. This is a memory leak. On

each invocation, a new block of memory is allocated but never released for reuse.

The solution to this problem is to create a destructor. A destructor is a method

that the computer automatically invokes when a variable goes out of scope, typically

at the end of a procedure in which it was declared.

Destructors are named as follows. The first character is a tilde and the remainder

of the name is the name of the class: ˜Permutation in the current case. When

declaring a destructor, no return type is specified and the argument list is empty.

Here is line 16 of Permutation.h (Program 11.1).

˜Permutation();

The code for ˜Permutation() is on lines 40–42 of Permutation.cc (see Pro-

gram 11.2); we repeat that code here.

Permutation::˜Permutation() {
delete[] data;

}

Alternatively, we could have defined ˜Permutation inline in the header file in the

public section of the Permutation class like this:

˜Permutation() { delete[] data; }

With this destructor in place, the memory leak in the example procedure has been

repaired. Every time the computer reaches the end of example, the variable P goes

out of scope. At that point, the destructor is executed. If you wish, you may add a

statement such as cerr << "Destructor ran" << endl; to ˜Permutation’s

code; this enables you to observe the destructor when it runs.

Classes that do not dynamically allocate memory do not require destructors. The

container classes (discussed in Chapter 8) have destructors; any memory they con-

sume is freed when their variables go out of scope.

11.2.3 Copy and assign

If a and b are long integers, the statement a=b; puts a copy of the value held in

b into a. Later, if we modify b there is no effect on a. Furthermore, the expression

a=b returns a value: the common value held in b and now a. The statement a=b=c;

is tantamount to a=(b=c);. The expression b=c is evaluated first. The value of the

expression b=c is the value held in c (and now b). That value is then assigned to a.

In this way, the single statement a=b=c; is equivalent to the pair of statements b=c;

and a=b;. In summary, the statement a=b; has an action (giving a a copy of the

value held in b) and a value (the now common value held in a and b).



Permutations 221

If a and b are objects of a class, then the assignment operator a=b; has a prede-

fined, default meaning in C++. The action is to copy each data element in b to the

corresponding data element in a. The value of a=b; is a copy of the common value

held in a and b.

For example, recall the Point class from Chapter 6. Objects of type Point con-

tain two data elements: double variables x and y. (See Point.h, Program 6.1.)

Therefore, the statement a=b; has the same effect as the two statements a.x=b.x;

and a.y=b.y;. (Note: This pair of statements is illegal outside a Point method

because the data elements x and y are private. However, the single statement a=b;

is permissible anywhere.) The value of the statement a=b; is a copy of the value in

b (and now a). Therefore, if a, b, and c are objects of type Point, the statement

a=b=c; works just as do the pair of statements b=c; a=b;.

When a variable is passed to a procedure, a copy of that variable is created. For

example, when we invoke a procedure such as d=gcd(a,b), copies of a and b are

created and sent to the gcd procedure. (However, if a procedure’s argument is set up

for call by reference, then no copy is made and the function parameter is tied directly

to the variable named in the corresponding position.)

Similarly, if an argument to a procedure is of an object of a certain class, then a

copy of that object is created and sent to the procedure. For example, the procedure

midpoint(P,Q) works on copies of P and Q. These duplicates are tacitly created

by copying the x and y fields of P and Q.

These copies are made by a copy constructor. The default copy constructor simply

replicates the data elements in the objects. It is possible to see these actions explicitly

in the following program.

#include "Point.h"
#include <iostream>
using namespace std;

int main() {
Point X(2,3);
Point Y(X);
Point Z;
Z = Y;
cout << X << endl;
cout << Y << endl;
cout << Z << endl;
return 0;

}

First, the object X is created with X.x equal to 2 and X.y equal to 3. This uses the

standard two-argument constructor.

Second, a copy of X is created in Y using the statement Point Y(X);. Notice that

in Point.h there is no constructor with a single Point argument. C++ provides a

default copy constructor. If we were to write code for the default copy constructor, it

would look like this:

Point(const Point& that) {
x = that.x;
y = that.y;



222 C++ for Mathematicians

}

Third, we create a Point object Z using the zero-argument constructor. The state-

ment Point Z; initializes Z to the point (0,0). The next statement is Z = Y;. This

invokes the default assignment operator. The action of the assignment operator is to

copy the data elements of Y to Z, and then return the (new) value of Z as the result.

If we were to write a program for the default assignment operator, it would look like

this:

Point operator=(const Point& that) {
x = that.x;
y = that.y;
return *this;

}

The last statement, return *this;, returns a copy of the left-hand side of the

assignment statement.

For all of the classes previously considered in this book, the default copy con-

structor and assignment operator work fine. Indeed, we did not even mention their

existence because their actions were “obvious.” However, for the Permutation

class, the default behaviors are not acceptable.

Here is the problem. Suppose that P and Q are objects of type Permutation. The

default action of P=Q; is equivalent to P.n=Q.n; P.data=Q.data;. The first part,

P.n=Q.n; is fine, but the second part, P.data=Q.data; is problematic. Recall that

the data field of the class Permutation is of type long*. Therefore, the statement

P.data=Q.data; does not copy Q’s data to P. Instead, the effect is for P.data

to refer to exactly the same block of memory as Q.data. That would cause any

subsequent changes to one of P or Q to affect the other. This is not the behavior we

want. The statement P=Q; ought to place an independent copy of the permutation Q

into P. Because the default behavior does not suit us, we need to override the default

by explicitly defining an assignment operator.

In addition, the default copy constructor does not suit our purposes. Like the

default assignment operator, the default copy constructor simply copies the data ele-

ments.

The default methods need to be replaced. In their stead, we declare the following

methods in the public section of the Permutation class (see lines 15 and 28 of

Permutation.h, Program 11.1),

Permutation(const Permutation& that);
Permutation operator=(const Permutation& that);

The code for these is given in Permutation.cc (Program 11.2). Let’s look at the

code for each.

The copy constructor code looks like this:

Permutation::Permutation(const Permutation& that) {
n = that.n;
data = new long[n+1];
for (long k=1; k<=n; k++) data[k] = that.data[k];

}



Permutations 223

Note that there is no return type because this is a constructor. The argument is a

reference to a constant Permutation named that. The first action is simply to copy

that’s n value to the new n value; this is exactly what the default copy constructor

would do. Now, instead of data=that.data;, we allocate a new block of memory

for data and then perform an element-by-element copy of the entries in the array

that.data to our data.

The assignment operator acts in a similar manner. Here is the code.

Permutation Permutation::operator=(const Permutation& that) {
delete[] data;
n = that.n;
data = new long[n+1];
for (long k=1; k<=n; k++) data[k] = that.data[k];
return *this;

}

The return type is Permutation because the expression P=Q returns a value. The

argument (corresponding to the right-hand side of an assignment expression) is a

reference to a Permutation object named that.

The first statement is delete[] data;. In the assignment statement P=Q;, the

information held in P is replaced with a copy of that in Q. So we first discard the

old data and then make a new one. (Alternatively, we could have checked if this

permutation and that have the same value for n. If so, there would be no need to

delete and then reallocate data.)

The rest of the code is straightforward. We copy that.n, allocate space for data,

and then copy the entries in that.data.

Finally, we return a copy of the new value held in the left-hand side of the expres-

sion with the statement return *this;. Alternatively, we could have ended with

return that; because that holds the same information as *this.

11.2.4 Basic inspection and modification methods

We provide methods for inspecting and modifying Permutation objects.

• getN() returns the value held in n. See line 24 of Permutation.h (Pro-

gram 11.1).

• swap(i,j) exchanges the values π(i) and π( j). In conventional notation, π
is replaced by π ◦ (i, j) where 1 ≤ i, j ≤ n. See line 18 of Permutation.h

and lines 48–54 of Permutation.cc (Program 11.2).

• reset() leaves n unchanged but resets the permutation to the identity permu-

tation. See line 20 of Permutation.h and lines 44–46 of Permutation.cc.

• randomize() leaves n unchanged but replaces π with a permutation chosen

uniformly at random from Sn. There is an efficient algorithm for doing this.

For k = 1,2, . . . ,n, we swap the value held in π(k) with the value held in π( j)
where j is chosen uniform at random from {k,k +1,k +2, . . . ,n}. See line 19

of Permutation.h and lines 56–63 of Permutation.cc.



224 C++ for Mathematicians

We do not provide a way to modify directly the value held in data[i]; to do

so may result in an invalid permutation. However, we do provide a mechanism for

learning the value held in data[i] and this is explained next.

11.2.5 Permutation operations

There are three fundamental operations we want to be able to perform with per-

mutations. First, given a permutation π , we need to be able to obtain the value π(k).
Second, given two permutations π and σ , we want to calculate the composition π ◦τ .

And third, given a permutation π , we want to calculate π−1. We consider each of

these in turn.

• If P represents the permutation π , we define P.of(k) to return the value π(k).
A way to do this is simply to return data[k]. However, we need to guard

against a user that submits a value k that is less than 1 or greater than n. For

such improper values of k, the easiest thing to do is to return k itself.

The declaration of of is on line 25 of Permutation.h (Program 11.1) and

the code is on lines 87–90 of Permutation.cc (Program 11.2).

Permutations are functions, so it would be pleasant to be able to write P(k) to

extract the value π(k). Fortunately, this is possible. The key to doing this is to

define operator(). On line 26 of Permutation.h we see the entire inline

code for this operator:

long operator()(long k) const { return of(k); }

The first pair of parentheses (after the keyword operator) shows that we are

defining P(k) where P is a Permutation and k is a long integer. The second

pair of parentheses encloses the argument k.

Consequently, the expressions P.of(k) and P(k) are equivalent to each other.

• We define operator* so that P*Q stands for the composition of two permu-

tations. If P and Q have the same value of n, the meaning of the composition is

clear. In case they have different values of n, the resulting Permutation

is based on the larger of the two ns. See the code for details (line 30 of

Permutation.h and lines 100–111 of Permutation.cc).

The first statement in the operator* method (line 101) finds the larger of

n and that.n using an interesting C++ operator called the trigraph. The

statement is this:

long nmax = (n > that.n) ? n : that.n;

The syntax for the trigraph operator ?: is this:

test ? val_1 : val_2

where test is a Boolean expression and val_1 and val_2 are two expres-

sions. The result of the trigraph depends on the value of test. If test is

true, then the value is val_1; otherwise, the value is val_2. The statement



Permutations 225

x = test ? val_1 : val_2;

is equivalent to the following code.

if (test) {
x = val_1;

}
else {

x = val_2;
}

The trigraph expression is handy if the subexpressions (test, val_1, and

val_2) are not too complicated.

In addition to defining operator*, we also provide operator*= so we may

avail ourselves of statements such as P*=Q;. See line 31 of Permutation.h

and lines 113–116 of Permutation.cc.

• To calculate the inverse of a permutation, we provide an inverse method.

See line 33 of Permutation.h and lines 118–122 of Permutation.cc. The

statement Q = P.inverse(); assigns the inverse of P to Q, but leaves P un-

changed.

11.2.6 Comparison operators

We provide four different methods for comparing permutations. The == operator

checks that the values of n are the same in both permutations, and then if the data

held in both match. We do not consider the identity permutation in two different Sns

to be the same. The != operator is equivalent to !(P==Q).

We also provide an operator< to compare Permutations; this is convenient if

we wish to create a set (or other sorted container) of Permutations.

Finally, we provide an isIdentity method that returns true if the object is the

identity permutation.

See lines 35–38 of Permutation.h and lines 124–152 of Permutation.cc

(Programs 11.1 and 11.2, respectively).

11.2.7 Output

We define operator<< for writing permutations to the computer’s screen. We

choose to write permutations in the disjoint cycle format. The operator is declared on

line 41 of Permutation.h and the code is on lines 155–175 of Permutation.cc.

The code uses a temporary array named done to keep track of which values have

already been represented in cycles. See the code for details.

11.2.8 The code file Permutation.c

We close this section with the code file for the Permutation class.



226 C++ for Mathematicians

Program 11.2: Program file for Permutation class.
1 #include "Permutation.h"
2 #include "uniform.h"
3

4 Permutation::Permutation() {
5 data = new long[2];
6 n = 1;
7 data[1] = 1;
8 }
9

10 Permutation::Permutation(long nels) {
11 if (nels <= 0) {
12 nels = 1;
13 }
14 data = new long[nels+1];
15 n = nels;
16 for (long k=1; k<=n; k++) {
17 data[k] = k;
18 }
19 }
20

21 Permutation::Permutation(long nels, long* array) {
22 if (nels <= 0) {
23 nels = 1;
24 data = new long[2];
25 data[1] = 1;
26 return;
27 }
28 n = nels;
29 data = new long[n+1];
30 for (long k=1; k<=n; k++) data[k] = array[k];
31 if (!check()) reset();
32 }
33

34 Permutation::Permutation(const Permutation& that) {
35 n = that.n;
36 data = new long[n+1];
37 for (long k=1; k<=n; k++) data[k] = that.data[k];
38 }
39

40 Permutation::˜Permutation() {
41 delete[] data;
42 }
43

44 void Permutation::reset() {
45 for (long k=1; k<=n; k++) data[k] = k;
46 }
47

48 void Permutation::swap(long i, long j) {
49 if ( (i<1) || (i>n) || (j<1) || (j>n) || (i==j) ) return;
50 long a = data[i];
51 long b = data[j];
52 data[i] = b;
53 data[j] = a;
54 }



Permutations 227

55

56 void Permutation::randomize() {
57 for (long k=1; k<n; k++) {
58 long j = unif(n-k+1)-1+k;
59 long tmp = data[j];
60 data[j] = data[k];
61 data[k] = tmp;
62 }
63 }
64

65 bool Permutation::check() const {
66 long* temp;
67

68 temp = new long[n+1];
69 for (long k=1; k<=n; k++) {
70 if ( (data[k] < 1) || (data[k] > n)) {
71 delete[] temp;
72 return false;
73 }
74 temp[k] = data[k];
75 }
76 sort(temp+1, temp+n+1);
77 for (long k=1; k<=n; k++) {
78 if (temp[k] != k) {
79 delete[] temp;
80 return false;
81 }
82 }
83 delete[] temp;
84 return true;
85 }
86

87 long Permutation::of(long k) const {
88 if ( (k<1) || (k>n) ) return k;
89 return data[k];
90 }
91

92 Permutation Permutation::operator=(const Permutation& that) {
93 delete[] data;
94 n = that.n;
95 data = new long[n+1];
96 for (long k=1; k<=n; k++) data[k] = that.data[k];
97 return *this;
98 }
99

100 Permutation Permutation::operator*(const Permutation& that) const {
101 long nmax = (n > that.n) ? n : that.n;
102 long* tmp = new long[nmax+1];
103

104 for (long k=1; k<=n; k++) {
105 tmp[k] = of(that(k));
106 }
107

108 Permutation ans(nmax,tmp);
109 delete[] tmp;
110 return ans;



228 C++ for Mathematicians

111 }
112

113 Permutation Permutation::operator*=(const Permutation& that) {
114 (*this) = (*this) * that;
115 return *this;
116 }
117

118 Permutation Permutation::inverse() const {
119 Permutation ans(n);
120 for (long k=1; k<=n; k++) ans.data[data[k]] = k;
121 return ans;
122 }
123

124 bool Permutation::operator==(const Permutation& that) const {
125 if (n != that.n) return false;
126

127 for (long k=1; k<=n; k++) {
128 if (data[k] != that.data[k]) return false;
129 }
130 return true;
131 }
132

133 bool Permutation::operator!=(const Permutation& that) const {
134 return !( (*this)==that );
135 }
136

137 bool Permutation::operator<(const Permutation& that) const {
138 if (n < that.n) return true;
139 if (n > that.n) return false;
140

141 for (long k=1; k<=n; k++) {
142 if (data[k] < that.data[k]) return true;
143 if (data[k] > that.data[k]) return false;
144 }
145 return false;
146 }
147

148 bool Permutation::isIdentity() const {
149 for (int k=1; k<=n; k++) {
150 if (data[k] != k) return false;
151 }
152 return true;
153 }
154

155 ostream& operator<<(ostream& os, const Permutation& P) {
156 long n = P.getN();
157 bool* done = new bool[n+1];
158 for (long k=1; k<=n; k++) done[k] = false;
159

160 for (long k=1; k<=n; k++) {
161 if (!done[k]) {
162 os << "(" << k;
163 done[k] = true;
164 long j = P(k);
165 while (j!=k) {
166 os << "," << j;



Permutations 229

167 done[j] = true;
168 j = P(j);
169 }
170 os << ")";
171 }
172 }
173 delete[] done;
174 return os;
175 }

11.3 Finding monotone subsequences
We now return to Ulam’s problem: what is the expected length of a longest in-

creasing subsequence of a random permutation? The Permutation class includes

a randomize method, so we are able to generate permutations uniformly at random

in Sn. Given a permutation, how do we find the length of a longest increasing (or

decreasing) subsequence?

The idea for the algorithm comes from the proof of the Erdős–Szekeres Theorem

(Theorem 11.1). Given a permutation π ∈ Sn, we define the values ui (respectively,

di) to be the length of a longest increasing (respectively, decreasing) subsequence of

π starting at position i. To find the values ui and di we work from right to left; that

is, we start with i = n and work our way down.

Clearly un = dn = 1 because the longest increasing (decreasing) sequence that

starts from the last position has length exactly one.

Now consider un−1 and dn−1. If π(n − 1) < π(n), then the longest increasing

subsequence starting at position n−1 has length 2 and the longest decreasing subse-

quence has length 1. On the other hand, if π(n−1) > π(n), then the longest increas-

ing subsequence starting at position n− 1 has length 1 and the longest decreasing

subsequence has length 2. In other words,

(un−1,dn−1) =

{
(2,1) if π(n−1) < π(n), and

(1,2) if π(n−1) > π(n).

Suppose we have established the values ui and di for i = k + 1 through i = n. To

find uk, we compare π(k) sequentially with π(k+1), π(k+2), and so on, up to π(n).
Among all indices j > k for which π(k) < π( j), find the one for which u j is largest.

We then set uk = u j + 1. If there are no indices j with π(k) < π( j), then we set

uk = 1.

The procedure for finding dk is analogous. Among all indices j > k for which

π(k) > π( j), we select the j for which d j is largest and set dk = d j + 1. If no such

index j exists, we set dk = 1.



230 C++ for Mathematicians

Let’s consider an example. For the permutation π = [1,4,7,2,5,3,6], suppose we

have calculated ui and di for all i ≥ 3. We now want to find u2 and d2. This is what

we know so far.

Index i 1 2 3 4 5 6 7
π(i) 1 4 7 2 5 3 6

ui ? ? 1 3 2 2 1
di ? ? 3 1 2 1 1

To find u2, note that for indices j = 3, 5, and 7 we have π(2) < π( j). Note that

u3 = 1, u5 = 2, and u7 = 1, so u5 is largest. We therefore set u2 = u5 +1 = 3. Indeed,

the longest increasing subsequence starting at position 2 is [4,5,6].
Finding d2 is analogous. For indices j = 4 and 6 we have π(2) > π( j). Note that

d4 = 1 and d6 = 1, so we set d2 = 2.

We create a procedure named monotone that takes a Permutation as its argu-

ment and returns a pair of long integers giving the lengths of the longest increasing

and decreasing subsequences in the Permutation. Here is the header file, which

we call monotone.h.

Program 11.3: Header file monotone.h.

1 #ifndef MONOTONE_H
2 #define MONOTONE_H
3

4 #include "Permutation.h"
5 #include <utility>
6

7 pair<long,long> monotone(const Permutation& P);
8

9 #endif

Note that we have #include <utility> because the monotone procedure re-

turns a pair. The utility header file is needed to define the pair class.

The code for this procedure is housed in a file named monotone.cc that we

present next.

Program 11.4: A program to find the length of the longest monotone subsequences

of a permutation.

1 #include "monotone.h"
2

3 pair<long,long> monotone(const Permutation& P) {
4 long* up;
5 long* dn;
6 long n = P.getN();
7

8 up = new long[n+1];
9 dn = new long[n+1];

10

11 for (long k=1; k<=n; k++) {
12 up[k] = dn[k] = 1;



Permutations 231

13 }
14

15 for (long k=n-1; k>=1; k--) {
16 for (long j=k+1; j<=n; j++) {
17 if (P(k) > P(j)) {
18 if (dn[k] <= dn[j]) {
19 dn[k] = dn[j]+1;
20 }
21 }
22 else {
23 if (up[k] <= up[j]) {
24 up[k] = up[j]+1;
25 }
26 }
27 }
28 }
29

30 long up_max = 1;
31 long dn_max = 1;
32 for (long k=1; k<=n; k++) {
33 if (up_max < up[k]) up_max = up[k];
34 if (dn_max < dn[k]) dn_max = dn[k];
35 }
36

37 delete[] up;
38 delete[] dn;
39

40 return make_pair(up_max,dn_max);
41 }

The arrays up and dn are used to hold the sequences ui and di.

Finally, we need a main to generate random permutations repeatedly and calculate

the average lengths of longest increasing and decreasing subsequences. Here is such

a program.

Program 11.5: A program to illustrate Ulam’s problem.

1 #include "Permutation.h"
2 #include "uniform.h"
3 #include "monotone.h"
4 #include <iostream>
5 using namespace std;
6

7 int main() {
8 long n;
9 long reps;

10 seed();
11

12 cout << "Enter n (size of permutation) --> ";
13 cin >> n;
14 cout << "Enter number of repetitions --> ";
15 cin >> reps;
16

17 Permutation P(n);
18



232 C++ for Mathematicians

19 long sum_up = 0;
20 long sum_dn = 0;
21

22 for (long k=0; k<reps; k++) {
23 P.randomize();
24 pair<long,long> ans;
25 ans = monotone(P);
26 sum_up += ans.first;
27 sum_dn += ans.second;
28 }
29

30 cout << "Average length of longest increasing subsequence is "
31 << double(sum_up)/double(reps) << endl;
32

33 cout << "Average length of longest decreasing subsequence is "
34 << double(sum_dn)/double(reps) << endl;
35

36 return 0;
37 }

Here is the result of running this program for permutations in Sn for n equal to

10,000 for one hundred iterations.
� �
Enter n (size of permutation) --> 10000
Enter number of repetitions --> 100
Average length of longest increasing subsequence is 192.31
Average length of longest decreasing subsequence is 192.94

� �

For this case, we observe E(Ln)/
√

n ≈ 1.9. In fact,

lim
n→∞

E(Ln)√
n

= 2.

11.4 Exercises
11.1 Devise a procedure or method to find the order of a permutation. (For a permu-

tation π , the order of π is the least positive integer k so that πk is the identity.)

11.2 Create a class name Counted that can keep track of the number of objects of

type Counted which exist at any point in the program. That is, the Counted

class should include a static method named count that returns the number

of Counted objects currently in memory.

For example, consider the following main().

#include "Counted.h"
#include <iostream>
using namespace std;

int main() {



Permutations 233

Counted X, Y;
Counted* array;
array = new Counted[20];

cout << "There are " << Counted::count()
<< " Counted objects in memory" << endl;

delete[] array;

cout << "And now there are " << Counted::count()
<< " Counted objects in memory" << endl;

return 0;
}

This should produce the following output.
� �
There are 22 Counted objects in memory
And now there are 2 Counted objects in memory

� �

(It’s hard to imagine a mathematical reason we might want to keep track of

how many objects of a given sort are being held in memory, but this is a useful

debugging trick to see if there is a memory leak.)

11.3 Redo Exercise 8.5 (page 152) without using the container classes of the Stan-

dard Template Library. That is, the parts of the partition should be held in a

conventional C++ array and maintained in sorted order. This change requires

you to create a copy constructor, an assignment operator, and a destructor.

Replace the get_parts method by an operator[]; if P is a Partition,

then the expression P[k] should give the kth part of the partition.

11.4 Let n be a positive integer. Suppose that n points are placed in the unit cube

[0,1]3. Write a procedure to find the size s of a largest subset of these n points

such that their coordinates satisfy

x1 ≤ x2 ≤ x3 ≤ ·· · ≤ xs

y1 ≤ y2 ≤ y3 ≤ ·· · ≤ ys

z1 ≤ z2 ≤ z3 ≤ ·· · ≤ zs

Suppose the points are placed in the unit cube independently and uniformly

at random. Use your procedure to conjecture the expected size of the largest

such set.

11.5 Create a class SmartArray that behaves as a C++ array on long values, but

that allows any integer subscript. That is, a SmartArray is declared like this:

SmartArray X(100);

This creates an object X that has the same behavior as if it were declared

long X[100]; but allows indexing beyond the range 0 to 99. An index of



234 C++ for Mathematicians

k outside this range is replaced by k mod 100. In this way, X[-1] refers to the

last element of the array (in this case X[99]).

Hint: The hard part for this problem is enabling the expression X[k] to appear

on the left side of an assignment. Suppose you declare the indexing operator

like this:

long operator[](long k);

Then you cannot have an expression such as X[2]=4;. The trick is to declare

the operator like this:

long& operator[](long k);

11.6 Create a class to represent linear fractional transformations. These are func-

tions of the form

f (z) =
az+b
cz+d

where z,a,b,c,d ∈ C.

Be sure to include an operator() for evaluating a linear fractional transfor-

mation at a given complex number and an operator* for the composition of

two transformations.

11.7 Create a Path class that represents a polygonal path in the plane (i.e., an or-

dered sequence of Points in R
2). Include the following methods:

• A default constructor that creates an empty path.

• A one-argument constructor that creates a path containing a single point.

• An operator+ that concatenates two paths, or concatenates a path and

a point. (Be sure to take care of both Path+Point and Point+Path.)

• An operator[] to get the kth point on the path.



Chapter 12

Polynomials

In this chapter we create a C++ class to represent polynomials. The coefficients of

these polynomials can be from any field K such as the real numbers, the complex

numbers, or Zp. One way to do this is to create several different polynomial classes

depending on the coefficient field. A better solution is to learn how to use C++

templates.

12.1 Procedure templates
Imagine that we often need to find the largest of three quantities in our program-

ming. We create a procedure named max_of_three like this:

long max_of_three(long a, long b, long c) {
if (a<b) {

if (b<c) return c;
return b;

}
if (b<c) return c;
return b;

}

Then, the expression max_of_three(3,6,-2) evaluates to 6.

If we also want to find the maximum of three real values, we create another version

of max_of_three:

double max_of_three(double a, double b, double c) {
if (a<b) {

if (b<c) return c;
return b;

}
if (b<c) return c;
return b;

}

Pythagorean triples (see Chapter 7) can also be compared by <, so if we want to

compare PTriple objects, we create yet another version of max_of_three:

PTriple max_of_three(PTriple a, PTriple b, PTriple c) {
if (a<b) {

if (b<c) return c;

235



236 C++ for Mathematicians

return b;
}
if (b<c) return c;
return b;

}

At some point, we may want to apply max_of_three to another class. We could

write more and more versions of this procedure, each with a different first line to

accommodate the additional types.

The result is many different incarnations of the max_of_three procedure. This

is legal in C++; one can have multiple procedures with the same name provided

the types or number of arguments are different for each version. The procedure

max_of_three(double,double,double) happily coexists with the version of

max_of_three that acts on arguments of type PTriple. It is annoying that we

need to create the exact same procedure over and over again for different types of

arguments. Furthermore, if we want to change the algorithm for max_of_three,

we need to edit all the different versions.

Fortunately, there is a better way. It is possible to write a single version of

max_of_three that automatically adapts to the required situation using templates.

Here is the template for the max_of_three procedure.

Program 12.1: The header file containing the template for the max of three pro-

cedure.
1 #ifndef MAX_OF_THREE_H
2 #define MAX_OF_THREE_H
3

4 template <class T>
5 T max_of_three(T a, T b, T c) {
6 if (a<b) {
7 if (b<c) return c;
8 return b;
9 }

10 if (b<c) return c;
11 return b;
12 }
13

14 #endif

There are two points to notice.

• The procedure is given, in full, in the header file, max_of_three.h. This is

standard for templates. One does not separate the declaration in the header file

from the code in the .cc file.

In addition, the keyword inline is not needed.

• The procedure begins with template <class T>. This sets up the letter T

to stand for a type.

The remainder of the code is exactly what we had before with T standing

for long, double, PTriple, or any other type. The letter T acts as a “type

variable.”



Polynomials 237

One may think of a template as a procedure schema. When the C++ compiler en-

counters max_of_three in a program, it uses the template to create the appropriate

version.

For example, here is a main that utilizes the adaptable nature of max_of_three.

#include "max_of_three.h"
#include <iostream>
using namespace std;

int main() {
double x = 3.4;
double y = -4.1;
double z = 11.2;

long a = 14;
long b = 17;
long c = 0;

cout << "The max of " << x << ", " << y << ", " << z << " is "
<< max_of_three(x,y,z) << endl;

cout << "The max of " << a << ", " << b << ", " << c << " is "
<< max_of_three(a,b,c) << endl;

return 0;
}

The first invocation of max_of_three has three double arguments; the compiler

uses the max_of_three template with T equal to double to create the appropriate

code. The second invocation has three long arguments, and as before, the compiler

uses the template to create the appropriate version of the procedure.

The output of this main is as we expect.
� �
The max of 3.4, -4.1, 11.2 is 11.2
The max of 14, 17, 0 is 17

� �

The max_of_three template works for any type T for which < is defined. If <

is not defined for the type, the compiler generates an error message. For example,

consider the following main.

#include <iostream>
#include <complex>
#include "max_of_three.h"
using namespace std;

int main() {
complex<double> x(3,0);
complex<double> y(-2,3);
complex<double> z(1,1);

cout << "The max of " << x << ", " << y << ", " << z << " is "
<< max_of_three(x,y,z) << endl;

return 0;
}



238 C++ for Mathematicians

When we attempt to compile this program, we get the following error messages (your

computer might produce different error messages).
� �
max_of_three.h: In function ‘T max_of_three(T, T, T) [with T =

std::complex<double>]’:
main.cc:12: instantiated from here
max_of_three.h:6: error: no match for ‘std::complex<double>& <

std::complex<double>&’ operator
max_of_three.h:7: error: no match for ‘std::complex<double>& <

std::complex<double>&’ operator
max_of_three.h:10: error: no match for ‘std::complex<double>& <

std::complex<double>&’ operator
� �

The compiler is complaining that it cannot find an operator< that takes two argu-

ments of type complex<double> at lines 6, 7, and 10 in the file max_of_three.h;

this is precisely where the < expressions occur.

It is possible to create templates with multiple type parameters. Such templates

look like this:

template <class A, class B>
void do_something(A arg1, B arg2) { ... }

When the compiler encounters code such as

long alpha = 4;
double beta = 4.5;
do_something(alpha, beta);

it creates and uses a version of do_something in which A stands for long and B

stands for double.

12.2 Class templates
12.2.1 Using class templates

In Section 2.7 we showed how to declare C++ variables to hold complex numbers.

After the directive #include <complex>, we have statements such as these:

complex<double> w(-3.4, 5.1);
complex<long> z(4, -7);

The first declares a complex variable w in which the real and imaginary parts are

double real numbers and the second declares z to be a Gaussian integer (long

integer real and imaginary parts).

The class complex is, in fact, a class template. By specifying different types

between the < and > delimiters, we create different classes. For example, we could

use the Mod type (see Chapter 9):



Polynomials 239

#include <complex>
#include "Mod.h"
using namespace std;

int main() {
Mod::set_default_modulus(11);
complex<Mod> z(4,7);

cout << "z = " << z << endl;
cout << "z squared = " << z*z << endl;

return 0;
}

This program calculates (4+7i)2 where 4 and 7 are elements of Z11 where we have

(4+7i)2 = −33+56i = i. This is confirmed when the program is run.
� �
z = (Mod(4,11),Mod(7,11))
z squared = (Mod(0,11),Mod(1,11))

� �

Likewise, vector is a class template. To create a vector that contains integers,

we use vector<long>. To create a vector containing complex numbers with real

coefficients, the following mildly baroque construction is required,

vector<complex<double> > zlist;

Note the space between the two closing > delimiters; the space is mandatory here.

If it were omitted, the >> would look like the operator we use in expressions such

as cin >> x causing angst for the compiler. For better readability, you may prefer

this:

vector< complex<double> > zlist;

The pair class template takes two type arguments. To create an ordered pair

where the first entry is a real number and the second is a Boolean, we write this:

pair<double,bool> P;

Using class templates is straightforward. The template is transformed into a spe-

cific class by adding the needed type argument(s) between the < and > delimiters.

The main pitfall to avoid is supplying a type that is incompatible with the tem-

plate. For example, it would not make sense to declare a variable to be of type

complex<PTriple>.

By the way: The use of < and > delimiters in #include <iostream> is unrelated

to their use in templates.

12.2.2 Creating class templates

Now that we have examined how to use class templates we are led to the issue:

How do we create class templates? The technique is similar to that of creating pro-

cedure templates. To demonstrate the process, we create our own, extremely limited

version of the complex template that we call mycomplex. The template resides in

a file named mycomplex.h; there is no mycomplex.cc file. Here is the header file

containing the template.



240 C++ for Mathematicians

Program 12.2: The template for the mycomplex classes.

1 #ifndef MY_COMPLEX_H
2 #define MY_COMPLEX_H
3

4 #include <iostream>
5 using namespace std;
6

7 template <class T>
8 class mycomplex {
9

10 private:
11 T real_part;
12 T imag_part;
13

14 public:
15 mycomplex<T>() {
16 real_part = T(0);
17 imag_part = T(0);
18 }
19

20 mycomplex<T>(T a) {
21 real_part = a;
22 imag_part = T(0);
23 }
24

25 mycomplex<T>(T a, T b) {
26 real_part = a;
27 imag_part = b;
28 }
29

30 T re() const { return real_part; }
31 T im() const { return imag_part; }
32

33 };
34

35 template<class T>
36 ostream& operator<<(ostream& os, const mycomplex<T>& z) {
37 os << "(" << z.re() << ") + (" << z.im() << ")i";
38 return os;
39 }
40

41 #endif

The overall structure of the class template is this:

template <class T>
class mycomplex {

// private and public data and methods
};

Let’s examine this code.

• The initial template <class T> serves the same purpose as in the case

of template procedures. This establishes T as a parameter specifying a type.

When we declare a variable with a statement like this



Polynomials 241

mycomplex<double> w;

the T stands for the type double. See lines 7–8.

• The class template has two private data fields: real_part and imag_part.

These are declared as type T. Thus if w is declared type mycomplex<double>

then w.real_part and w.imag_part are both type double. See lines 10–

12.

• Three constructors are given. The same name is used for these constructors:

mycomplex<T>. (The <T> is optional here; the constructors could be named

simply mycomplex with the <T> implicitly added.)

The zero-argument constructor creates the complex number 0 + 0i. Note that

the value 0 is explicitly converted to type T. This requires that type T be

able to convert a zero into type T. If some_type is a class that does not

have a single-argument numerical constructor, then declaring a variable to be

a mycomplex<some_type> causes a compiler error. See lines 15–18.

The single- and double-argument constructors follow (lines 20–28). They are

self-explanatory.

• We provide the methods re() and im() to retrieve a mycomplex variable’s

real and imaginary parts. Note that the return type of these methods is T. See

lines 30–31.

• The last part of the file mycomplex.h is the operator<< procedure for writ-

ing mycomplex variables to the computer’s screen. This procedure is not a

member of the mycomplex class template, so it needs a separate introductory

template <class T> in front of the procedure’s definition. See line 35.

The next line looks like the usual declaration of the << operator. The second

argument’s type is a reference to a variable of type mycomplex<T>.

After this comes the inline code for the procedure. The keyword inline is

optional because all templates must be defined inline. (If we want to include

the keyword inline, it would follow template <class T> and precede

ostream&.)

Of course, to make this a useful template, we would need to add methods/procedures

for arithmetic, comparison, exponentiation, and so forth.

We could create a different version of mycomplex in which the real and imaginary

parts are allowed to be different types. The code would look like this.

Program 12.3: A revised version of mycomplex that allows real and imaginary

parts of different types.

1 template <class T1, class T2>
2 class mycomplex {
3



242 C++ for Mathematicians

4 private:
5 T1 real_part;
6 T2 imag_part;
7

8 public:
9 mycomplex() {

10 real_part = T1(0);
11 imag_part = T2(0);
12 }
13

14 mycomplex(T1 a) {
15 real_part = a;
16 imag_part = T2(0);
17 }
18

19 mycomplex(T1 a, T2 b) {
20 real_part = a;
21 imag_part = b;
22 }
23

24 T1 re() const { return real_part; }
25 T2 im() const { return imag_part; }
26

27 };
28

29 template<class T1, class T2>
30 ostream& operator<<(ostream& os, const mycomplex<T1,T2>& z) {
31 os << "(" << z.re() << ") + (" << z.im() << ")i";
32 return os;
33 }

If we use this alternative mycomplex template, variable declarations require the

specification of two types, such as this:

mycomplex<long, double> mixed_up_z;

12.3 The Polynomial class template

Our goal is to create a C++ class template to represent polynomials over any field

K and we call this class template Polynomial. Consider the following declarations,

Polynomial<double> P;
Polynomial< complex<double> > Q;
Polynomial<Mod> R;

These are to create polynomials in R[x], C[x], and Zp[x], respectively. (Of course,

we need #include <complex> and #include "Mod.h".)



Polynomials 243

12.3.1 Data

We need to store the coefficients of the polynomial. For this, we use a vector

variable (see Section 8.4) named coef. The coefficient of xk is held in coef[k]. We

therefore require the directive #include <vector> in the file Polynomial.h.

We hold the degree of the polynomial in a long variable named dg. The degree is

the largest index k such that coef[k] is nonzero. In the case where the polynomial

is equal to zero, we set dg equal to −1.

See lines 11–12 in Program 12.4.

12.3.2 Constructors

A basic, zero-argument constructor produces the zero polynomial. This is accom-

plished by a call to a clear() method that resizes coef to hold only one value,

sets that value to zero, and sets dg equal to −1. See lines 23–25 and 78–81 of Pro-

gram 12.4.

A single-argument constructor is used to produce a constant polynomial; that is, a

polynomial in which ck = 0 for all k ≥ 1. This constructor may be used explicitly or

implicitly to convert scalar values to polynomials. For example, consider this code:

Polynomial<double> P(5.);
Polynomial<double> Q;
Polynomial< complex<double> > R;
Q = 6;
R = -M_PI;

The first line creates the polynomial p(x) = 5 using the constructor explicitly. The

polynomials q(x) = 6 and r(x) = (−π +0i) both use the constructor implicitly. No-

tice that for both Q and R there is also a conversion of the right-hand side of the as-

signment into another numeric type. The 6 is an integer type and is cast into double

for storage in Q. Similarly, -M_PI is a real number and this needs to be converted to

a complex type for storage in R.

To do this, we allow the argument to be of any type and then cast that argument to

type K. Let’s look at the full code for this constructor (lines 27–33):

template <class J>
Polynomial<K>(J a) {

coef.clear();
coef.resize(1);
coef[0] = K(a);
deg_check();

}

This constructor is a template within a template! (The outer template has the struc-

ture template <class K> Polynomial { ... };.) Thus, in code such as

Polynomial< complex<double> > P(val);
Polynomial< complex<double> > Q;
Q = val;

the variable val may be of any type.



244 C++ for Mathematicians

There is, of course, a catch. We assign coef[0] with the value K(a). This is an

explicit request to convert the value a to type K. This is fine if we are converting

a long to a double or a double to a complex<double>, but fails when a is not

convertible to type K, for example, if K were type double and a were type PTriple.

Notice the call to the private method deg_check(). This method scans the data

held in coef to find the last nonzero value and resets dg accordingly. Various opera-

tions on polynomials might alter their degree (e.g., addition of polynomials, changing

coefficients, etc.) and this method makes sure dg holds the correct value.

Next we have a three-argument constructor (lines 35–43). To create the polyno-

mial ax2 + bx + c one simply invokes Polynomial<K>(a,b,c). As before, the

three arguments need not be type K; it is enough that they be convertible to type K.

For example, consider this code.

long a = 7;
complex<double> b(4.,-3.);
double c = M_PI;

Polynomial< complex<double> > P(a,b,c);

This creates a polynomial P equal to 7x2 +(4−3i)x+π .

Finally, it is useful to be able to create a polynomial given an array of coefficients.

The constructor on lines 45–60 takes two arguments: the size of an array and an

array of coefficients. The array is declared as type J*; that is, an array of elements

of type J. The only requirement on J is that values of that type must be convertible

to type K.

12.3.3 Get and set methods

We include an assortment of methods to inspect and modify the coefficients held

in a Polynomial.

• The deg() method returns the degree of the polynomial. (See line 62.)

• The get(k) method returns the coefficient of xk. In the case where k is invalid

(negative or greater than the degree), we return zero. (See lines 64–67.)

As an alternative to get(k) we provide operator[] (line 69). For a polyno-

mial P, both P[k] and P.get(k) have the same effect. However, we have not

set up operator[] to work on the left-hand side of an assignment; we cannot

change the kth coefficient by a statement such as P[k]=c;.

• The isZero() method returns true if the polynomial is identically zero. See

line 89.

• The set(idx,a) method sets the coefficient coef[idx] equal to the value

a. See lines 71–76.



Polynomials 245

Some care must be taken here. First, if idx is negative, no action is taken. If

idx is greater than the degree, we need to expand coef accordingly. Also, this

method might set the highest coefficient to zero, so we invoke deg_check().

• The clear() method sets all coefficients to zero. See lines 78–82.

• The minimize() method frees up any wasted memory held in coef. It is

conceivable that a polynomial may at one point have large degree (causing

coef to expand) and then later have small degree. Although the size of coef

grows and shrinks with the degree, the capacity of coef would remain large.

This method causes the vector method reserve to be invoked for coef. See

lines 84–87.

• Finally, we have the shift(n) method. See lines 91–105.

If n is positive, this has the effect of multiplying the polynomial by xn. Each

coefficient is shifted upwards; the coefficient of xk before the shift becomes

the coefficient of xk+n after.

Shifting with a negative index has the opposite effect. Coefficients are moved

to lower powers of x. Coefficients shifted to negative positions are discarded.

The polynomial P 4x2 +6x−2

After P.shift(2) 4x4 +6x3 −2x2

After P.shift(-1) 4x+6.

Notice that we give the argument n a default value of 1 (see line 91). Thus

P.shift() is the same as P.shift(1).

12.3.4 Function methods

Polynomials are functions and to use them as such we provide a method named

of. Invoking P.of(a) evaluates the polynomial p(x) at x = a. See lines 109–118.

An efficient way to evaluate a polynomial such as 3x4 +5x3 −6x2 +2x+7 at x = a
is this: (((

(3×a)+5
)×a+(−6)

)
×a+2

)
×a+7.

In addition to the of method, we provide an operator() method (line 120).

This way we can express function application in the natural way P(a) in addition to

P.of(a).

Because polynomials are functions, they may be composed and the result is again

a polynomial. We use the same method names, of and operator(), for polynomial

composition. For polynomials P and Q, the result of P.of(Q) (and also P(Q)) is the

polynomial p(q(x)). See lines 122–135.

These methods depend on the ability to do polynomial arithmetic, and we describe

those methods below (Subsection 12.3.6).



246 C++ for Mathematicians

12.3.5 Equality

To check if two polynomials are equal, we make sure they have the same degree

and that corresponding coefficients are equal. The operators == and != are given on

lines 139–149.

12.3.6 Arithmetic

We provide methods for the usual arithmetic operators: addition, subtraction, mul-

tiplication, and division (quotient and remainder). See lines 153ff.

Each of the basic operators is defined like this:

Polynomial<K> operator+(const Polynomial<K>& that) const { ... }

If P and Q are of type Polynomial<double>, then the expression P+Q invokes this

method with that referring to Q. However, the expression P+5 also engages this

method; implicitly the 5 is cast to a polynomial via Polynomial<double>(5).

However, the expression 5+P cannot be handled by this method (because 5 is not a

polynomial). Therefore, we also provide procedure templates such as this:

template <class J, class K>
Polynomial<K> operator+(J x, const Polynomial<K>& P) {

return P + K(x);
}

See lines 291–298.

In addition to the usual operators + - * / % we provide their operate/assign

cousins: += -= *= /= %=. We also give methods for unary minus and exponenti-

ation (to a nonnegative integer power).

With the exception of division, the code for these various operators is reasonably

straightforward. Division requires a bit more attention.

As in the case of integers, division of polynomials produces two results: the quo-

tient and the remainder. Let a(x) and b(x) be polynomials with b �= 0. Then there

exist polynomials q(x) and r(x) for which

a(x) = q(x)b(x)+ r(x) and degr(x) < degb(x).

Furthermore, q and r are unique. For example, if a(x) = 3x2 +x−2 and b(x) = 2x+1,

then q(x) = 3
2 x− 1

4 and r(x) = − 7
4 .

We define A/B and A%B to be the quotient and remainder, respectively, when we

divide a(x) by b(x).
To this end, we define the procedure quot_rem(A,B,Q,R) (see lines 300–321)

to find the quotient and remainder. The operator/ and operator% make use of

quot_rem to do their work.

Please note that the division methods require that K be a field. If K is only a

commutative ring (e.g., long integers), then most of the class template works fine,

but the division methods do not.



Polynomials 247

12.3.7 Output to the screen

The operator << for writing to the computer’s screen appears on lines 269–289.

This operator writes the polynomial 5x3 − x+ 1
2 like this:

(5)Xˆ3 + (-1)X + (0.5)

The procedure is smart enough to omit terms whose coefficient is zero, to omit the

superscript 1 on the linear term, and to omit the variable altogether on the constant

term. However, it does not convert (-1)X into the more legible - X, or even - (1)X.

We might think that it is possible for the code to check if a coefficient is negative and

modify behavior accordingly. However, for some fields K (such as C and Zp) this

does not make sense.

12.3.8 GCD

Let a(x) and b(x) be polynomials. A common divisor of a(x) and b(x) is a poly-

nomial c(x) with the property that there exist polynomials s(x) and t(x) so that

a(x) = c(x)s(x) and b(x) = c(x)t(x). A greatest common divisor of a(x) and b(x)
is a common divisor of highest possible degree.

Two polynomials may have several different greatest common divisors because

any nonzero scalar multiple of a greatest common divisor is again a greatest common

divisor.

To settle on a specific meaning for gcd[a(x),b(x)] we choose the greatest common

divisor d(x) whose leading coefficient is 1. (A polynomial whose leading coefficient

is 1 is called monic.) Any two nonzero polynomials have a unique monic greatest

common divisor.

The gcd procedure for two polynomials is given on lines 323–336. This proce-

dure uses the helper methods is_monic() and make_monic(); the former checks

if the polynomial is monic and the latter transforms the polynomial into a monic

polynomial by dividing by the leading coefficient. See lines 256–265.

We use the Euclidean algorithm (described in Section 3.3) to calculate the gcd of

two polynomials.

In addition to the usual gcd procedure, we provide an extended version. Given

polynomials a(x) and b(x), the extended gcd procedure finds d(x) = gcd[a(x),b(x)]
as well as polynomials s(x) and t(x) so that d(x) = a(x)s(x) + b(x)t(x). See lines

337–376.

12.3.9 The code

Here is the listing of Polynomial.h. This includes the Polynomial<K> class

template as well as associated procedure templates (operator<<, gcd, etc.).

Program 12.4: Header file for the Polynomial class template.

1 #ifndef POLYNOMIAL_H
2 #define POLYNOMIAL_H



248 C++ for Mathematicians

3

4 #include <vector>
5 #include <iostream>
6 using namespace std;
7

8 template <class K>
9 class Polynomial {

10 private:
11 vector<K> coef;
12 long dg;
13

14 void deg_check() {
15 dg = -1;
16 for (long k=0; k< long(coef.size()); k++) {
17 if (coef[k] != K(0)) dg = k;
18 }
19 coef.resize(dg+1);
20 }
21

22 public:
23 Polynomial<K>() {
24 clear();
25 }
26

27 template <class J>
28 Polynomial<K>(J a) {
29 coef.clear();
30 coef.resize(1);
31 coef[0] = K(a);
32 deg_check();
33 }
34

35 template <class J, class JJ, class JJJ>
36 Polynomial<K>(J a, JJ b, JJJ c) {
37 coef.clear();
38 coef.resize(3);
39 coef[2] = K(a);
40 coef[1] = K(b);
41 coef[0] = K(c);
42 deg_check();
43 }
44

45 template <class J>
46 Polynomial<K>(long array_size, const J* array) {
47 if (array_size < 0) {
48 coef.clear();
49 coef.resize(1);
50 coef[0] = K(0);
51 dg = -1;
52 return;
53 }
54 coef.clear();
55 coef.resize(array_size);
56 for (long k=0; k<array_size; k++) {
57 coef[k] = K(array[k]);
58 }



Polynomials 249

59 deg_check();
60 }
61

62 long deg() const { return dg; }
63

64 K get(long k) const {
65 if ( (k<0) || (k>dg) ) return K(0);
66 return coef[k];
67 }
68

69 K operator[](long k) const { return get(k); }
70

71 void set(long idx, K a) {
72 if (idx < 0) return;
73 if (idx+1 >long(coef.size())) coef.resize(idx+1);
74 coef[idx] = a;
75 deg_check();
76 }
77

78 void clear() {
79 coef.resize(1);
80 dg = -1;
81 coef[0] = K(0);
82 }
83

84 void minimize() {
85 deg_check();
86 coef.reserve(dg+1);
87 }
88

89 bool isZero() const { return (dg < 0); }
90

91 void shift(long n = 1) {
92 if (n==0) return;
93

94 if (n<0) {
95 for (long k=0; k<=dg+n; k++) coef[k] = coef[k-n];
96 for (long k=dg+n+1; k<=dg; k++) coef[k] = K(0);
97 deg_check();
98 return;
99 }

100

101 coef.resize(n+dg+1);
102 for (long k=dg; k>=0; k--) coef[k+n] = coef[k];
103 for (long k=0; k<n; k++) coef[k] = K(0);
104 dg += n;
105 }
106

107 // FUNCTION APPLICATION //
108

109 K of(K a) const {
110 if (dg <= 0) return coef[0];
111 K ans;
112 ans = K(0);
113 for (long k=dg; k>=0; k--) {
114 ans *= a;



250 C++ for Mathematicians

115 ans += coef[k];
116 }
117 return ans;
118 }
119

120 K operator()(K a) const { return of(a); }
121

122 Polynomial<K> of(const Polynomial<K>& that) const {
123 if (dg <= 0) return Polynomial<K>(coef[0]);
124

125 Polynomial<K> ans(K(0));
126 for (long k=dg; k>=0; k--) {
127 ans *= that;
128 ans += Polynomial<K>(coef[k]);
129 }
130 return ans;
131 }
132

133 Polynomial<K> operator()(const Polynomial<K>& that) const {
134 return of(that);
135 }
136

137 // COMPARISON //
138

139 bool operator==(const Polynomial<K>& that) const {
140 if (dg != that.dg) return false;
141 for (long k=0; k<=dg; k++) {
142 if (coef[k] != that.coef[k]) return false;
143 }
144 return true;
145 }
146

147 bool operator!=(const Polynomial<K>& that) const {
148 return !(*this == that);
149 }
150

151 // ARITHMETIC //
152

153 Polynomial<K> operator+(const Polynomial<K>& that) const {
154 Polynomial<K> ans;
155 long dmax = (dg > that.dg) ? dg : that.dg;
156 ans.coef.resize(dmax+1);
157 for (long k=0; k<=dmax; k++) {
158 ans.coef[k] = get(k) + that.get(k);
159 }
160 ans.deg_check();
161 return ans;
162 }
163

164 Polynomial<K> operator+=(const Polynomial<K>& that) {
165 (*this) = (*this) + that;
166 return *this;
167 }
168

169 Polynomial<K> operator-() const {
170 Polynomial<K> ans;



Polynomials 251

171 ans.coef.resize(dg+1);
172 for (long k=0; k<=dg; k++) ans.coef[k] = -coef[k];
173 ans.deg_check();
174 return ans;
175 }
176

177 Polynomial<K> operator-(const Polynomial<K>& that) const {
178 Polynomial<K> ans;
179 long dmax = (dg > that.dg) ? dg : that.dg;
180 ans.coef.resize(dmax+1);
181 for (long k=0; k<=dmax; k++) {
182 ans.coef[k] = get(k) - that.get(k);
183 }
184 ans.deg_check();
185 return ans;
186 }
187

188 Polynomial<K> operator-=(const Polynomial<K>& that) {
189 (*this) = (*this) - that;
190 return *this;
191 }
192

193 Polynomial<K> operator*(const Polynomial<K>& that) const {
194 Polynomial<K> ans;
195 if (isZero() || that.isZero()) return ans;
196 long dans = dg + that.dg;
197 ans.coef.resize(dans+1);
198 for (long k=0; k<=dans; k++) {
199 K c(0);
200 for (long j=0; j<=k; j++) {
201 if ((j<=dg) && (k-j<=that.dg)) c += coef[j]*that.coef[k-j];
202 }
203 ans.coef[k] = c;
204 }
205 ans.deg_check();
206 return ans;
207 }
208

209 Polynomial<K> operator*=(const Polynomial<K>& that) {
210 *this = (*this) * that;
211 return *this;
212 }
213

214 Polynomial<K> pow(long k) const {
215 if (k==0) return Polynomial<K>(1);
216 if (k==1) return *this;
217

218 if (k%2 == 0) {
219 long half_k = k/2;
220 Polynomial<K> ans;
221 ans = (*this).pow(half_k);
222 ans *= ans;
223 return ans;
224 }
225

226 long half_k = (k-1)/2;



252 C++ for Mathematicians

227 Polynomial<K> ans;
228 ans = (*this).pow(half_k);
229 ans *= ans;
230 ans *= *this;
231 return ans;
232 }
233

234 Polynomial<K> operator/(const Polynomial<K>& that) const {
235 Polynomial<K> Q,R;
236 quot_rem(*this, that, Q, R);
237 return Q;
238 }
239

240 Polynomial<K> operator/=(const Polynomial<K>& that) {
241 *this = (*this)/that;
242 return *this;
243 }
244

245 Polynomial<K> operator%(const Polynomial<K>& that) const {
246 Polynomial<K> Q,R;
247 quot_rem(*this, that, Q, R);
248 return R;
249 }
250

251 Polynomial<K> operator%=(const Polynomial<K>& that) {
252 (*this) = (*this) % that;
253 return *this;
254 }
255

256 void make_monic() {
257 if (dg < 0) return;
258 K lead = coef[dg];
259 for (long j=0; j<=dg; j++) coef[j] /= lead;
260 }
261

262 bool is_monic() const {
263 if (dg < 0) return false;
264 return coef[dg] == K(1);
265 }
266

267 }; // end of Polynomial<K> class template
268

269 template <class K>
270 ostream& operator<<(ostream& os, const Polynomial<K>& P) {
271 if (P.deg() <= 0) {
272 os << "(" << P[0] << ")";
273 return os;
274 }
275 for (long k=P.deg(); k>=0; k--) {
276 if (P[k] != K(0)) {
277 if (k < P.deg()) os << " + ";
278 os << "(" << P[k] << ")";
279 if (k>1) {
280 os << "Xˆ" << k;
281 continue;
282 }



Polynomials 253

283 if (k==1) {
284 os << "X";
285 }
286 }
287 }
288 return os;
289 }
290

291 template <class J, class K>
292 Polynomial<K> operator+(J x, const Polynomial<K>& P)
293 { return P + K(x); }
294

295 template <class J, class K>
296 Polynomial<K> operator-(J x, const Polynomial<K>& P)
297 { return (-P) + K(x); }
298

299 template <class J, class K>
300 Polynomial<K> operator*(J x, const Polynomial<K>& P)
301 { return P * K(x); }
302

303 template <class K>
304 void quot_rem(const Polynomial<K>& A,
305 const Polynomial<K>& B,
306 Polynomial<K>& Q,
307 Polynomial<K>& R) {
308 Q.clear();
309 R.clear();
310

311 Polynomial<K> AA (A); // copy of A
312

313 while (AA.deg() >= B.deg()) {
314 long k = AA.deg()-B.deg();
315 Polynomial<K> BB = B;
316 BB.shift(k);
317 K a_lead = AA[AA.deg()];
318 K b_lead = BB[BB.deg()];
319 for (long j=0; j <= BB.deg(); j++) BB.set(j, BB[j]*a_lead/b_lead);
320 AA -= BB;
321 Q.set(k,a_lead/b_lead);
322 }
323 R = A - Q*B;
324 }
325

326 template <class K>
327 Polynomial<K> gcd(const Polynomial<K>& A, const Polynomial<K>& B) {
328 if (B.isZero()) {
329 if (A.is_monic()) return A;
330 Polynomial<K> AA(A);
331 AA.make_monic();
332 return AA;
333 }
334

335 Polynomial<K> C;
336 C = A%B;
337 return gcd(B,C);
338 }



254 C++ for Mathematicians

339

340 template <class K>
341 Polynomial<K> gcd(const Polynomial<K>& A,
342 const Polynomial<K>& B,
343 Polynomial<K>& S,
344 Polynomial<K>& T) {
345 Polynomial<K> D; // holds the answer
346

347 // If A and B are both 0, set S=T=0 and return 0.
348 if (A.isZero() && B.isZero()) {
349 S.clear();
350 T.clear();
351 return D;
352 }
353

354 // If A is not 0 but B is, D = A/a_lead, S = a_lead, T = 0
355 if (B.isZero()) {
356 D = A;
357 K a_lead = A[A.deg()];
358 D.make_monic();
359 S = Polynomial<K>(K(1)/a_lead);
360 T.clear();
361 return D;
362 }
363

364 // Neither A nor B is zero, so we recurse
365

366 Polynomial<K> Q;
367 Polynomial<K> R;
368 quot_rem(A,B,Q,R);
369

370 Polynomial<K> SS;
371 Polynomial<K> TT;
372

373 D = gcd(B,R,SS,TT);
374

375 S = TT;
376 T = SS - Q*TT;
377

378 return D;
379 }
380

381 #endif

12.4 The GCD problem revisited

In Chapter 3 we considered the question (phrased imprecisely here): What is the

probability that two positive integers are relatively prime? We found that the answer

is 1/ζ (2). Here we consider a similar problem: What is the probability that two



Polynomials 255

randomly chosen polynomials are relatively prime?

To be more precise, let Bd denote the set of all polynomials in Z2[x] of degree

less than d; there are 2d such polynomials ad−1xd−1 + ad−2xd−2 + · · ·+ a1x + a0

where the a js are 0 or 1. Let pd denote the probability the two polynomials, chosen

uniformly and independently from Bd are relatively prime. What can we say about

pd as d → ∞?

To formulate a conjecture, we write a program to evaluate pd by direct enumera-

tion. This is the approach we used in Section 3.5. With luck, modest values of d will

lead us to the answer. The overall structure of the program is this:

1. Ask the user to input d.

2. Build an array containing all the polynomials in Bd .

3. For all i < j, count the number of times the ith and jth polynomials are rela-

tively prime.

4. From this count, we learn the numerator of pd . Divide by 22d to find the

answer.

Of these, the most difficult part is the construction of the list in step 2. To generate

this table efficiently, we observe that there is a natural one-to-one correspondence

between d-digit binary numbers and polynomials in Bd , illustrated here with d = 6.

000000 ↔ 0

000001 ↔ 1

000010 ↔ x

000011 ↔ x+1

000100 ↔ x2

000101 ↔ x2 +1

...

111111 ↔ x5 + x4 + x3 + x2 + x+1

Integer values are stored in computers in binary, so our first step is to write a proce-

dure to convert integers into polynomials:

bd−1bd−2 . . .b1b0 �→ bd−1xd−1 +bd−2xd−2 + · · ·+b1x+b0 ∈ Bd

We call this procedure long2poly. Here is its header file.

Program 12.5: Header file long2poly.h.

1 #ifndef LONG_TO_POLY_H
2 #define LONG_TO_POLY_H
3

4 #include "Polynomial.h"



256 C++ for Mathematicians

5 #include "Mod.h"
6

7 const long max_bits = 31;
8

9 Polynomial<Mod> long2poly(long m);
10

11 #endif

This header defines a constant max_bits that sets an upper bound on d; this value

is based on the size of a long integer on the computer on which this program is to

be run.

The procedure takes a long integer argument and returns a Polynomial<Mod>.

To write this program, we want to access the individual bits of the integer argument,

m. The way we do this is to check if m is even or odd, and then set b0 accordingly. We

then divide m by 2, check if the result is even or odd, and then set d1. We continue in

this fashion until m is zero. Here is the code.

Program 12.6: Code file for the long2poly procedure.

1 #include "long2poly.h"
2

3 Polynomial<Mod> long2poly(long m) {
4 Polynomial<Mod> ans;
5

6 long j = 0;
7 while (m != 0) {
8 ans.set(j, Mod(m,2));
9 m /= 2;

10 j++;
11 }
12

13 return ans;
14 }

Next, we need a main to implement the exhaustive algorithm.

Program 12.7: Main program for the GCD revisited problem.

1 #include "Polynomial.h"
2 #include "Mod.h"
3 #include "long2poly.h"
4

5 using namespace std;
6

7 int main() {
8 long d;
9 cout << "Enter degree bound --> ";

10 cin >> d;
11

12 if ( (d<1) || (d>max_bits) ) {
13 cerr << "Please choose d between 1 and " << max_bits << endl;
14 return 0;
15 }
16



Polynomials 257

17 long bound = 1<<d;
18

19 Polynomial<Mod> *list;
20

21 list = new Polynomial<Mod>[bound];
22

23 cerr << "Generating polynomials ... ";
24 for (long k=0; k<bound; k++) {
25 list[k] = long2poly(k);
26 }
27 cerr << "done! " << endl << bound
28 << " polynomials of degree less than "
29 << d <<" generated" << endl;
30

31 long count = 0;
32 const Polynomial<Mod> one(Mod(1,2));
33

34 for (long i=0; i<bound-1; i++) {
35 for (long j=i+1; j<bound; j++) {
36 if( gcd(list[i],list[j]) == one ) count++;
37 }
38 }
39

40 count = 2*count + 1;
41

42 cout << count << " out of " << bound*bound
43 << " pairs are relatively prime" << endl;
44

45 cout << count / (double(bound) * double(bound)) << endl;
46

47 return 0;
48 }

Finally, when the program is run, we see the following.

� �
Enter degree bound --> 10
Generating polynomials ... done!
1024 polynomials of degree less than 10 generated
524289 out of 1048576 pairs are relatively prime
0.500001

� �

The formulation of a conjecture, and its proof,1 are left as an exercise for the

reader.

1For a proof via generating functions, see S. Corteel, C. Savage, H. Wilf, D. Zeilberger, A pentagonal

number sieve, Journal of Combinatorial Theory, Series A 82 (1998) 186–192. Recently, Art Benjamin

and Curtis Bennett have found a bijective proof (submitted for publication).



258 C++ for Mathematicians

12.5 Working in binary
The long2poly procedure used a trick to convert a long integer m into polyno-

mials p(x) in Z2[x]. We set the constant coefficient of p(x) based on the parity of m,

and then we divided m by 2 (keeping only the integer part). We then repeated this

technique to set higher and higher coefficients until m vanished. In short, we used

division arithmetic to read off the base-2 digits of m.

In other words, we used a mathematical trick to find the binary representation of

m. However, the binary is already present inside the computer; it is more efficient to

work directly with that. C++ provides a family of operators for working directly on

the bits in the binary form of integers.

12.5.1 Signed versus unsigned integers

Integers are stored inside the computer in binary. The number 20 is represented

internally as 0000000000010100.

In this, and subsequent examples, we assume the integers are held as short types;

on my computer these are two bytes (16 bits) long. Other integer types may have 32

or 64 bits.

The storage of negative integers is mildly counterintuitive. The leftmost bit is

known as the sign bit. If this bit is 1, the number represented is negative. However,

−20 is not represented as 1000000000010100. Look closely at the correct internal

representation of −20 and 19:

Value Binary representation
−20 1111111111101100
19 0000000000010011

For a positive integer n, the binary representation of n is just the usual base-2 rep-

resentation. However, the binary representation of −n is formed by complementing

the bits of n−1. Of course, zero is represented by an all-zero binary number.

This manner of storing negative values is known as the twos complement repre-

sentation. This representation is used for the sake of computational efficiency.

The integer types (char, short, int, and long) all have variants that restrict

their range to nonnegative values. These variant types prepend the word unsigned

to the type name. For example:

unsigned short x;

To illustrate the difference, suppose we have two variables x and y declared thus:

unsigned short x;
short y;

Suppose both of these hold the bits 1111111111111111. In this case, the value of

x is 65,535 (216 −1) whereas the value of y is −1.



Polynomials 259

12.5.2 Bit operations

C++ provides six operators for working with the binary representation of integers.

Bitwise and For integer variables x and y, the expression x&y is the bitwise and of

x and y. That is, the kth bit of x&y is 1 if and only if the kth bits of both x and

y are 1. Here is an example.

x 0100001101100000
y 0001000111101101

x&y 0000000101100000

The bitwise and operation & should not be confused with the Boolean and

operation &&. You should use && only with bool values.

Bitwise or Similar to bitwise and, the operation x|y gives the bitwise or of x and y.

That is, the kth bit of x|y is 0 if and only if the kth bits of both x and y are 0.

Here is an example.

x 0100001101100000
y 0001000111101101

x|y 0101001111101101

The bitwise or operation | should not be confused with the Boolean or opera-

tion ||. You should use || only with bool values.

Exclusive or The expression xˆy gives the bitwise exclusive or of x and y. That is,

the kth bit of x|y is 0 if and only if exactly one of the kth bits of both x and y

is 1. Here is an example.

x 0100001101100000
y 0001000111101101

xˆy 0101001010001101

Bitwise not The expression ˜x interchanges 1s and 0s in x. That is, the kth bit of

˜x is 1 if and only if the kth bit of x is 0. Here is an example.

x 0100001101100000
˜x 1011110010011111

The bitwise not operation ˜ should not be confused with the Boolean not op-

eration !. You should use ! only with bool values.

Left shift The expression x<<n (where n is a nonnegative integer) shifts the bits of

x to the left n steps. The right-hand side of the result is filled with 0s. Any bits

in the highest n positions are lost. Here is an example.

x 0100001101100000
x<<5 0110110000000000



260 C++ for Mathematicians

The symbol << is the same one we use for writing to the console, as in the

statement cout << x << endl;. C++ is able to distinguish between these

cases by inspecting the types of objects on either side of the << symbol.

The expression x<<n is equivalent to multiplying x by 2n (unless bits are lost

at the left).

Right shift The expression x>>n (where n is a nonnegative integer) shifts the bits

of x to the right n places. Bits in the lower n places are lost. The vacated

positions on the left are filled in with 0s or with 1s depending on the situation:

• If x is an unsigned integer type, 0s are inserted at the left.

• If x is a signed integer type and x is nonnegative, 0s are inserted at the

left.

• If x is a negative integer, then 1s are inserted at the left. Here are some

examples.

short x 0010010010001010
x>>5 0000000100100100
unsigned short y 1000110010110111
y>>5 0000010001100101
short z 1000110010110111
z>>5 1111110001100101

The right shift operator >> uses the same symbol we use for keyboard input,

for example, cin >> x;. As with left shift, C++ distinguishes these cases by

inspecting the types of the objects on either side of the >> symbol.

All six of these operators can be combined with the assignment operator, =. The

expression x &= y is equivalent to x = (x&y), and so on.

Bit operations can be combined to perform operations that would be difficult with

standard mathematical operators. For example, suppose we want to set the kth bit of

x to 1; the following code does the trick: x |= (1<<k);. If we want to set that bit

to zero, we do this: x &= ˜(1<<k);.

12.5.3 The bitset class template

Using integer types to represent a list of binary values is efficient, but presents two

drawbacks. First, this technique is limited to the size of an integer on your computer;

if you want a list of, say, 200 bits, there is no integer type with that capacity. Second,

using bit manipulation can result in obfuscated code. Human beings find statements

such as x&=˜(1<<k); difficult to understand. (The statement sets the kth bit of x to

zero.) If your problem requires high speed for short lists of bits, then bit manipulation

of integer types may be your best option. However, there are two other choices of

which you should be aware.

The first option, also discussed in Section 8.4, is to use vector<bool> vari-

ables; these are adjustable arrays of true/false values. To set the kth bit of such an



Polynomials 261

array equal to zero (false), we use the considerably clearer statement x[k]=0;

or x[k]=false;. Variables of type vector<bool> use memory efficiently, can

be easily resized, and provide convenient access to their elements. However, the

bitwise operations (such as &, ˜, >>, etc.) cannot be used with variables of type

vector<bool>. If one wished to interchange all the 0s and 1s held in x, the state-

ment x=˜x; does not work. Instead, one would need to write a for loop to change

the bits one by one:

for (int k=0; k<x.size(); k++) {
x[k] = !x[k];

}

The second option is to use a bitset. A bitset object is a fixed size reposi-

tory of bits. To use variables of type bitset, start with #include <bitset> and

declare variables like this:

bitset<100> x;

This sets up x as a list of 100 bits. Notice that bitset is a template but its argument

is a number, not a type; we explain how to do this later in this section. The important

point is that this number is a constant, not a variable. The following code is illegal.

int n;
cout << "Enter number of bits --> ";
cin >> n;
bitset<n> x; // illegal constructor, n is not a constant

The size of the bitset must be declared when you write your program, not while

the program is running.

Here is a list of the various methods and operators available for bitsets.

• Constructors. The standard constructor has the form

bitset<number> var;

where number is a specific positive integer. This may be a const int defined

earlier in the code, or an explicitly typed value, such as 100. The variable var

holds number bits, and at this point these are all 0s.

One may construct from an unsigned long integer value. For example,

bitset<20> x(39);

sets x to 00000000000000100111 (the binary representation of 39).

One may also construct from a C++ string object (these are discussed later

in Section 14.2). The constructor

bitset<20> x(string("10110001"));

sets x to 00000000000010110001. The type string is required; don’t use

bitset<20> x("10110001"));.

Finally, a copy constructor is available:



262 C++ for Mathematicians

bitset<20> y(x);

makes y a copy of x. Note that x must also be a bitset<20> and may not be

a bitset of any other size.

• Inspection methods. These are methods one can use to learn information

about the bits held in a bitset. Suppose x is a bitset<100>:

– x.size() returns the number of bits that x holds (in this example, 100).

– x.any() returns true if at least one bit in x is a 1.

– x.none() returns true if all of the bits are 0.

– x.count() returns the number of 1s in x.

– x.test(k) returns true if the kth bit of x is a 1. Of course, k must be

at least 0 and less than x.size().

• Bit manipulation methods. The following methods may be used to alter the

value held in the bits of a bitset. Suppose x is a bitset<100>:

– x.set() sets all of x’s bits to 1.

– x.set(k) sets the kth bit to 1.

– x.set(k,b) sets the kth bit base on the value held in the integer variable

b. If b is zero, the kth bit of x is set to 0; otherwise it is set to 1.

– x.reset() sets all of x’s bits to 0.

– x.reset(k) sets bit k to 0.

– x.flip() swaps 0 and 1 values in every position of x. For example,

suppose x holds 1110001110; after the statement x.flip();, it now

holds 0001110001.

– x.flip(k) flips the kth bit of x.

• Comparison operators. If x and y are both bitsets of the same size, then

we may compare them with the usual expressions x==y and x!=y.

• Bit operators. The standard bitwise operators (&, |, ˆ, ˜, <<, >>) and their

assignment variants (&=, |=, ˆ=, ˜=, <<=, >>=) may be used on a pair of

bitsets of the same size.

• Array style access. In addition to the methods described above, individual

elements of a bitset may be accessed using square brackets. The expression

x[k] is the kth element of x. The expression x[k] may appear on the right or

the left of an assignment statement such as x[4]=˜x[10];.

In addition, the expression x[5].flip() is equivalent to x.flip(5); both

of these toggle the fifth bit of x.



Polynomials 263

• Input/output. Objects of type bitset can be written to the computer’s screen

and read from the keyboard.

The statement cin >> x; reads a sequence of 0s and 1s from the keyboard.

At most x.size() bits are read. If fewer bits are read (before reaching a

character other than 0 or 1), the left bits are filled with zeros.

The statement cout << x; prints x to the screen. The highest bit (in position

x.size()-1) is printed first and the lowest bit, x[0], is printed last.

Here is a short program that illustrates these ideas.

#include <bitset>
#include <iostream>
using namespace std;

int main() {
bitset<10> x;
cout << "Enter bits -> ";
cin >> x;
cout << "x = " << x << endl;
for (int k=0; k<10; k++) {

cout << "x[" << k << "] = " << x[k] << endl;
}
return 0;

}

Here is a sample run of this program.
� �
Enter bits -> 1101
x = 0000001101
x[0] = 1
x[1] = 0
x[2] = 1
x[3] = 1
x[4] = 0
x[5] = 0
x[6] = 0
x[7] = 0
x[8] = 0
x[9] = 0

� �

12.5.4 Class templates with non-type arguments

We have seen a variety of templates, and in nearly all cases the arguments to

the template, given between the < and > delimiters, are C++ types. For example, the

complex class template is completed with a numeric type (e.g., complex<double>)

and our max_of_three procedure template may use any type arguments that can be

compared with < (e.g., three PTriple values).

The exception is the bitset class template. Here, the template is completed by

specifying an unsigned integer value. How is this done?

A typical class template is defined in a header file like this:



264 C++ for Mathematicians

template <class T>
MyTemplateClass {

.....
};

where the data and methods in MyTemplateClass may refer to variables of type T.

Variables are declared with statements such as this.

MyTemplateClass<double> x;

However, the template parameters (the arguments between < and > delimiters)

need not be classes. For example, we could create a class template such as this:

template <long N>
AnotherClass {

.....
};

The parameter N may appear in the data and methods of AnotherClass wherever a

constant long integer might rightly go. For example, AnotherClass might include

a data member that is an array declared like this:

private:
double coordinates[N];

Note that AnotherClass<10> and AnotherClass<11> are different classes (al-

though based on the same template).

Template classes may have multiple parameters that may be classes or specific

values as in this example:

template <class T, double X, int N, class S>
ComplicatedClass {

.....
};

A declaration based on this template would look like this:

ComplicatedClass<int, -3.5, 17, double> x;

12.6 Exercises
12.1 Exercise 7.3 (page 126) asks you to create a procedure to find the median of a

list of real (double) numbers. Make a new version that can handle numbers

of any type by using a template. The procedure should not modify the array.

12.2 Exercise 11.5 (page 233) asks you to create the class SmartArray that allows

arbitrary indexing (e.g., a −1 index returns the last element of the array). In

that problem, a SmartArray contains long integers. Create a new version of

SmartArray that can hold values of any given type. For example, to declare

a SmartArray to hold 20 double values, you would type this:



Polynomials 265

SmartArray<double> X(20);

12.3 Create a derivative procedure that finds the derivative of a Polynomial.

12.4 Create a root-finding procedure for polynomials based on Newton’s method.

Given a polynomial p and initial guess x0, the procedure should solve p(x) = 0

using the iteration

xk+1 = xk − p(xk)
p′(xk)

.

How many iterations should be performed? You may either let the user set the

number of iterations or a desired tolerance ε so that |p(x)| < ε .

Be sure to address the following issues.

• The polynomial may be either real or complex.

• The initial x0 may be either real or complex.

• The roots might not be simple (i.e., the roots might have multiplicity

greater than 1).

12.5 The pair class template (defined in the utility header) is a handy mecha-

nism for creating ordered pairs; see Section 8.5. Using pair as an inspiration,

create a triple class template that represents an ordered three-tuple (x,y,z)
where the three elements may be of any type (including different types from

each other). Make the data fields public and name them first, second,

and third.

Remember to define an operator< that orders the triples lexicographically.

In addition, provide a make_triple procedure procedure that is analogous to

make_pair.

12.6 Create a RationalFunction class template to represent rational functions.

[A rational function is a quotient of two polynomials, p(x)/q(x).] The coeffi-

cients may be real, complex, or from Zp for some prime p. Include the basic

operations +, −, ×, ÷.

12.7 Write a program to print out all subsets of the set {1,2, . . . ,n}. Do this with an

integer variable that steps from 0 to 2n −1 and convert that value into a set.





Part III

Topics





Chapter 13

Using Other Packages

Good news!

The first good news is that we have covered nearly all of the C++ concepts you

need to know for mathematical work. All that remains is a more extensive discussion

on getting information in and out of your programs (covered next in Chapter 14).

The second good news is we are ready to stand on the shoulders of giants. If

you are reading this book, chances are you are not an expert in computer program-

ming. So, the next best thing is to have an expert assistant to create C++ classes

for you. And you do! Thanks to the ubiquity of C++, there are classes available

for many types of work including number theory, algebraic geometry, optimization,

quaternions, combinatorics, cup products for finite groups, and more. Many of these

packages are available for free (for noncommercial use) over the Web.

In this chapter we introduce a few of these packages.

13.1 Arbitrary precision arithmetic: The GMP package
The C++ long type can accommodate integer values in a finite range (see Sec-

tion 2.1). For work in number theory or cryptography, one needs to handle integers

with hundreds or thousands of digits. Or perhaps we want to work with rational val-

ues, but double variables are unacceptable because they do not hold exact values.

The solution to this problem is to create C++ classes for handling arbitrarily large

integers and exact rational numbers.

The creation of such classes takes a lot of work, and making the algorithms effi-

cient takes a great deal of skill. Fortunately, programmers with a great deal of skill

have done the hard work of creating the GNU Multiple Precision Library (called

GMP for short). (We describe version 4.1.4.)

The GMP library is available on the Web at http://www.swox.com/gmp/, but

it may already be available on your computer (it is often included on Linux sys-

tems). The underlying GMP library is created for programming in C, but it includes

good support for C++ programming. If GMP has not already been installed on your

computer, you can download it from the Web and follow the installation instructions

(see the file install or the manual in PDF format). If you run into trouble, find a

friendly computer scientist for some assistance.

269



270 C++ for Mathematicians

The GMP package provides four important C++ classes:

• mpz_class for arbitrary precision integers,

• mpq_class for exact rational numbers,

• mpf_class for floating point numbers, and

• gmp_randclass for generating large random numbers.

To use these classes, your program needs to include a header file:

#include <gmpxx.h>

Variables are declared in the usual manner. For example, to declare x to be an

arbitrary precision integer, use this:

mpz_class x;

This initializes x with the value 0. To give it a large value, the following does not
work.

x = 3098472938750987439857234543534232626245985; // this fails

The problem is that C++ is not able to deal with that large value as one of its basic

types. Instead, you can type this:

x = "3098472938750987439857234543534232626245985"; // this works

The mpz_class type can convert character arrays (containing digits).

The mpz_class can be initialized using other bases. For example,

mpz_class x("12321423112312321312314001200001213", 5);

initializes x with a base-5 value.

The usual arithmetic and comparison operators work just as expected. Multipli-

cation of extremely large integers is accomplished using sophisticated efficient algo-

rithms.

The rational type, mpq_class, is constructed either from two integer arguments

mpq_class a(n_1,n_2);

or else a character array, such as this:

mpq_class b("53490875234097/1134381");

Rationals can also be constructed from double values. Indeed, the GMP types can

be converted to and constructed from nearly any numeric type.

Rational mpq_class objects have a canonicalize() method. The purpose of

this method is to clear any common factors between numerator and denominator. It’s

a good idea to invoke this method after creating an mpq_class value.



Using Other Packages 271

The C++ features of the GMP package are a supplement to the C base that forms

the bulk of GMP. Some GMP procedures require some fancy footwork to be used

in C++. For example, to find the greatest common divisor of two mpz_class inte-

gers one uses the procedure mpz_gcd. This procedure takes three arguments of type

mpz_t—not mpz_class. The mpz_class objects contain an mpz_t type value in-

ternally and to access that internal value one uses the get_mpz_t() method. Here’s

how this all works.

First, we set up our variables:

mpz_class a = "47825100";
mpz_class b = "55431225";
mpz_class d; // place to hold the answer

Then we call the mpz_gcd method like this:

mpz_gcd(d.get_mpz_t(), a.get_mpz_t(), b.get_mpz_t());

Now d holds the gcd of a and b.

An object of type gmp_randclass is a random number generator. This object

offers a choice of pseudo random number generator algorithms and allows the user

to set the seed. For example, to create a new random number generator with a default

algorithm and seeded from the system clock, we write this:

gmp_randclass X(gmp_randinit_default);
X.seed(time(0));

To extract a random value from the generator, we use the get_z_bits method and

specify the size (in bits) of the result. For example, X.get_z_bits(100) returns a

100-bit random integer.

Here is a program that illustrates these ideas.

Program 13.1: A program to illustrate the use of the GMP package.

1 #include <gmpxx.h>
2 #include <iostream>
3

4 using namespace std;
5

6 int main() {
7 mpz_class a, b;
8

9 a = "54098745908347598037452";
10 b = "44523409864";
11

12 cout << "a = " << a << endl;
13 cout << "b = " << b << endl;
14 cout << "a*b = " << a*b << endl;
15 cout << "a/b = " << a/b << endl;
16 cout << "a%b = " << a%b << endl;
17 cout << "a+b = " << a+b << endl;
18 cout << "a-b = " << a-b << endl;
19 cout << "b-a = " << b-a << endl;



272 C++ for Mathematicians

20

21 mpz_class d;
22 mpz_gcd(d.get_mpz_t(), a.get_mpz_t(), b.get_mpz_t());
23 cout << "gcd(a,b) = " << d << endl;
24

25

26 cout << "Is a < b? " << ((a<b) ? "Yes" : "No");
27 cout << endl;
28

29 mpq_class r(a,b);
30 r.canonicalize();
31

32 cout << "As a rational number, a/b is " << r << endl;
33

34 mpq_class q(-1.125);
35 cout << "q = " << q << endl;
36

37 gmp_randclass X(gmp_randinit_default);
38 X.seed(time(0));
39 cout << "Here’s a random number: " << X.get_z_bits(100) << endl;
40

41 return 0;
42 }

Compiling this program can be tricky. The computer needs to find the following

items,

• The header file gmpxx.h, and

• The libraries1 gmp and gmpxx.

If the GMP header files are installed in a standard location, no special steps are

required for the compiler to locate the header file gmpxx.h. No special steps are

needed if the file gmpxx.h resides in the same directory (folder) as the program that

#includes it. Otherwise, the compiler needs to be informed of the header file’s

location. The precise manner in which this is done can vary between compilers. For

example, with the g++ compiler (a popular choice), one specifies the directory in

which gmpxx.h resides with the -I command line option. (See the full example

below as well as Appendix A.)

It is also necessary to tell the compiler to use the libraries gmp and gmpxx (these

are distinct from the header file gmp.h). For example, with the g++ compiler, this is

accomplished with a pair of -l command line options (see below). In the case where

these libraries are installed in a nonstandard location, it may be necessary to tell the

computer where to find these libraries. This is accomplished with the -L command

line option in g++.

For example, to compile the gmp-tester.cc program (Program 13.1) above, I

use the following command,

g++ gmp-tester.cc -I/sw/include -L/sw/lib -lgmp -lgmpxx

1A library contains compiled code needed by the GMP package.



Using Other Packages 273

On my computer, the gmpxx.h header file is in the directory /sw/include (spec-

ified by the -I option), the libraries are located in /sw/lib (specified by the -L

option), and the gmp and gmpxx libraries are named explicitly (by the pair of -l

options).

Here is the output of the program.
� �
a = 54098745908347598037452
b = 44523409864
a*b = 2408660637205753086401397418226528
a/b = 1215062953929
a%b = 4181881796
a+b = 54098745908392121447316
a-b = 54098745908303074627588
b-a = -54098745908303074627588
gcd(a,b) = 4
Is a < b? No
As a rational number, a/b is 13524686477086899509363/11130852466
q = -9/8
Here’s a random number: 521322704085186435455013754888

� �

13.2 Linear algebra
13.2.1 Two-dimensional arrays in C++

One-dimensional arrays in C++ are mildly difficult to use. One needs either to give

the explicit size of the array in advance (e.g., long vals[10];) or else to declare

the array via a pointer (long *vals;), allocate space (vals = new long[n];),

and then release the memory when finished (delete[] vals;). We need to re-

member that the first element of an array is indexed as vals[0] and there is no

protection against accessing data beyond the bounds of the array. There is no conve-

nient way to extend the size of the array. The vector class template solves many of

these problems.

It is possible to use multidimensional arrays in C++, but the difficulties are com-

pounded. We describe such arrays here briefly in order to convince you that you do

not want to use these tricky structures and, instead, will avail yourself of some of the

options we discuss below.

To declare a two-dimensional array of a given size, we use a statement such as

this:

long vals[4][10];

This establishes a variable named vals as a 4 × 10-array of long integer values.

Please note that the following statement is incorrect: long vals[4,10];. Unfor-

tunately, it is valid C++ (don’t bother trying to figure out what it does) so the compiler

won’t catch this error.



274 C++ for Mathematicians

To access an element of this array, we use the syntax vals[i][j] where i is

between 0 and 3, and j is between 0 and 9. The expression vals[i,j] is incorrect.

It is possible to declare three- (or higher-) dimensional arrays. For example,

long vals[4][10][19];

declares vals to be a 4×10×19-array of long values. The i, j,k-entry of this array

is given by vals[i][j][k] where i, j,k have the expected constraints.

Passing multidimensional arrays to procedures is possible, but the syntax is tricky.

Procedures that receive such arrays need to specify the size of the array they expect

to receive.

Fortunately, there are better alternatives. The two that we present have the added

advantage of providing linear algebraic capabilities (matrix multiplication, eigen-

value calculation, etc.).

13.2.2 The TNT and JAMA packages

The U.S. government’s National Institute of Standards and Technology (NIST)

has created a pair of packages for working with one-, two-, and three-dimensional

arrays and to perform standard linear algebra functions thereon. The packages are

the Template Numerical Toolkit (TNT) and the C++ Java Matrix Library (JAMA).2

These are available for free download from the following Web site,

http://math.nist.gov/tnt/index.html

You need to download the TNT and JAMA packages separately. Be sure to download

the documentation as well; this consists of a collection of Web pages that describe

the various classes and procedures. (We describe TNT version 1.2.4 and JAMA

version 1.2.2.)

Installation is easy because these packages are simply collections of .h header

files. They can be copied to any convenient location on your computer (including,

e.g., the directory containing your program that uses these files).

The most important classes in the TNT package are Array1D (for vectors) and

Array2D (for matrices3). To use these, we need the directive #include "tnt.h"

and the statement using namespace TNT; at the beginning of our program. The

classes and procedures in the TNT class are in their own namespace. If we did not

use this statement, then we would need to prepend TNT:: to the names of TNT

classes and procedures (e.g., TNT::Array2D in lieu of Array2D).

To declare an array of elements of type, say, double, we use statements like

these:

Array2D<double> M(5,10);
Array1D<double> v(9);
Array2D<double> X;

2This library was developed first for the Java programming language and subsequently ported to C++.
3You may discover that the TNT package includes classes called Matrix and Vector. Do not use these.

They are deprecated classes; this means they are obsolete and their inclusion in the package is only to

support people who used older versions of TNT.



Using Other Packages 275

Here, M is a 5× 10-array (matrix) of double values, v is a length-9 array (vector),

and X is an as-yet unsized matrix.

To access elements of an array we use the usual C++ conventions. For the variables

M and v above, the syntax is as follows,

• M[i][j] where 0 ≤ i < 5 and 0 ≤ j < 10, and

• v[k] where 0 ≤ k < 9.

To learn the size of an array, the methods dim1() and dim2() give the number of

rows and columns (if more than one-dimensional) in the array.

Read this carefully: The assignment operator for TNT array classes (e.g., B=A;)

works in a manner that is different from other classes we have encountered thus

far. After this assignment not only are A and B arrays of the same size and not

only do they hold the same values, they now refer to the exact same data. In other

words, modifications to one of A or B results in change in the other. (We say that A

and B provide different views to the same underlying data.) If we wish to make an

independent copy of A in B, we need to use the copy method like this:

B = A.copy();

Here is a program that illustrates the difference between the statements B=A; and

B=A.copy();.

Program 13.2: Assignment versus copying in the TNT package.

1 #include <iostream>
2 #include "tnt.h"
3

4 using namespace std;
5 using namespace TNT;
6

7 int main() {
8 Array2D<double> A(3,3), B, C;
9

10 for (int i=0; i<3; i++)
11 for (int j=0; j<3; j++)
12 A[i][j] = (i+1) + 0.1*(j+1);
13

14 cout << "Original matrix A:" << endl << A << endl;
15

16 B = A; // Now B and A share data
17 C = A.copy(); // C is an independent copy of a
18

19 B[1][1] = 888;
20 A[0][2] = 999;
21

22 cout << "Now A is this " << endl << A << endl;
23 cout << "and B is this " << endl << B << endl;
24 cout << "and C is this " << endl << C << endl;
25

26 return 0;
27 }



276 C++ for Mathematicians

Here is the output of the program.
� �
Original matrix A:
3 3
1.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3

Now A is this
3 3
1.1 1.2 999
2.1 888 2.3
3.1 3.2 3.3

and B is this
3 3
1.1 1.2 999
2.1 888 2.3
3.1 3.2 3.3

and C is this
3 3
1.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3

� �

(Notice that Array2D objects can be written to the computer’s screen using the usual

<< operator. The first line of output is a pair of integers giving the number of rows

and columns; the array follows one row at a time.)

One implication of this unusual assignment operator behavior is that when TNT

arrays are passed to procedures, the procedure does not receive an independent copy.

Suppose we have a procedure that looks like this:

void proc(Array2D<double> X) { ... }

It appears that this procedure is ready to receive its argument using call by value.

From this we might infer (incorrectly) that if proc modifies X, there would be no

effect on the matrix sent to this procedure. However, because assignment does not

make a true copy (but only an alternative view of the same data), modifications do

cause changes in the array on which this procedure was invoked.

The solution to this issue is simple: Do not use call by value for TNT arrays.

This is a good practice in general because sending large objects as parameters of

procedures is inefficient. Instead, use call by reference, and include the keyword

const when you need to certify that the procedure does not modify its argument.

Thus, the procedure should look like this:

void proc(const Array2D<double>& X) { ... }

Alternatively, if your procedure is not limited to arrays of double values but may be

used on a broader assortment of types, use a template:

template <class T>
void proc(const Array2D<T>& X { ... }



Using Other Packages 277

For example, here is a header file named trace.h that provides a template proce-

dure to calculate the trace of an Array2D matrix:

Program 13.3: A template to calculate the trace of an Array2D matrix.

1 #ifndef TRACE_H
2 #define TRACE_H
3

4 #include "tnt.h"
5

6 template <class T>
7 T trace(const TNT::Array2D<T>& X) {
8 T sum = T(0);
9 for (int k=0; k<X.dim1() && k<X.dim2(); k++) {

10 sum += X[k][k];
11 }
12 return sum;
13 }
14

15 #endif

The TNT package provides rudimentary array arithmetic. If A and B are arrays of

the same type and same size (e.g., both Array2D<long> and both m× n) then the

following operations are available.

A+B A+=B A-B A-=B A*B A*=B A/B A/=B

In each case, the arithmetic is performed element by element. If A, B, and C are

Array2D<double> objects, and if A and B are the same size (both m × n), then

C=A*B; sets C to be an m×n-array in which C[i][j] is A[i][j]*B[i][j]. It is

not matrix multiplication.

Matrix multiplication is available via the matmult procedure. Matrix multipli-

cation can only be performed on Array2D arrays of the appropriate shapes. The

statement C = matmult(A,B); sets C to the appropriate size (if A is m×n and B is

n× p, then C is m× p) and sets the elements of C appropriately:

C[i][j] =
n−1

∑
k=0

A[i][k]*B[k][j]

The TNT package does not provide scalar multiplication of arrays, nor does it

provide matrix–vector (Array2D times Array1D) multiplication. However, it is not

difficult to create template procedures to perform these tasks. For example, here is a

template for scalar–vector multiplication.

#include "tnt.h"
using namespace TNT;
template <class T>
void scalar_vector_multiply(T s,

const Array1D<T>& vec,
Array1D<T>& ans) {

ans = Array1D<T>(vec.dim1()); // resize ans
for (int i=0; i<vec.dim1(); ++i) {



278 C++ for Mathematicians

ans[i] = s*vec[i];
}

}

More advanced linear algebra functions for real matrices are provided by the

JAMA package. This package provides the following classes:

• JAMA::Cholesky — Given a real, symmetric, positive definite matrix A, find

a lower triangular matrix L so that A = LLT . Header file: jama_cholesky.h.

• JAMA::Eigenvalue — Given a real, square matrix A find the eigenvalues

and eigenvectors of A. If these are complex, the real and imaginary parts of the

eigenvalues are accessed separately. (This class does not use the complex<>

types.) Header file: jama_eig.h.

• JAMA::LU — Given a real, m×n-matrix (with m ≥ n) A, find a lower triangu-

lar matrix L and an upper triangular matrix U so that LU is a (row permutation

of) A. Header file: jama_lu.h.

• JAMA::QR — Given a real, m×n-matrix (with m ≥ n) A, find an m×n orthog-

onal matrix Q and an n×n upper triangular matrix R so that A = QR. Header

file: jama_qr.h.

• JAMA::SVD — Given a real, m × n matrix A (with m ≥ n), find an m × n
orthogonal matrix U , an n × n diagonal matrix Σ, and an n × n orthogonal

matrix V so that A = UΣV T . Header file: jama_svd.h.

The design philosophy for all these classes is the same. To find, say, the eigenval-

ues of a matrix A, we do not use a procedure to which A is passed. Instead, we create

a JAMA::Eigenvalue object like this:

#include "tnt.h"
#include "jama_eig.h"
using namespace TNT;
using namespace JAMA;

int main() {
Array2D<double> A(10,10);
// assign values to the elements of A
....
Eigenvalue<double> eigs(A);
....

}

This code loads the necessary headers and sets up a matrix A. We then create an

Eigenvalue object named eigs. The matrix A is passed to the constructor.

The eigenvalues and eigenvectors are now embedded inside the Eigenvalue ob-

ject named eigs. To extract the information we use one of the access methods

provided by the Eigenvalue class:



Using Other Packages 279

• eigs.getRealEigenvalues() returns an Array1D object containing the

real parts of the matrix’s eigenvalues.

• eigs.getImagEigenvalues() returns an Array1D object containing the

imaginary parts of the eigenvalues.

• eigs.getV() returns an Array2D (matrix) whose columns contain the eigen-

vectors of the matrix. (Refer to the documentation to see how Eigenvalue

handles complex eigenvectors.)

There are other linear algebraic entities one might like to compute including the

rank or determinant of a matrix, or the solution to the linear system Ax = b. The

JAMA package provides tools for doing this. To find them, one needs to browse the

documentation for the various classes (Cholesky, Eigenvalue, etc.), but it’s not

too hard to guess where these might lie. Some examples:

• To find the determinant of a matrix: It’s easy to find the determinant of a

matrix from its LU-factorization. Naturally enough, the LU class includes a

det() method. For example, if A is a square, Array2D<double> matrix, the

following code finds its determinant,

LU alu(A);
cout << "The determinant of A is " << alu.det() << endl;

• To solve a linear system Ax = b: Again, this is often found through the LU-

factorization, and the LU class contains two solve() methods: one that solves

Ax = b and another that solves AX = B (where x and b are vectors, and X and

B are matrices).

The QR class also provides solve() methods; if the system is overdetermined,

this solve gives a least-squares solution.

In the special case that A is symmetric and positive definite, a solution to the

linear system can also be found through the Cholesky factorization. The class

Cholesky has a method named is_spd() to check if a matrix is symmet-

ric and positive definite, and a pair of solve() methods for solving linear

systems.

Generally, it is numerically unwise to solve Ax = b by inverting A and calcu-

lating A−1b. However, if we wish to find the inverse of a square matrix A, we

can create an identity matrix I and solve AX = I.

See the documentation for details.

• To find the rank of a matrix: The rank of A is the number of nonzero singular

values. So, to find the rank of a matrix, use the SVD class’s rank() method:

Array2D<double> A;
...
SVD sing_vals(A);
cout << "The rank of A is " << sing_vals.rank() << endl;



280 C++ for Mathematicians

The calculation of the rank of a matrix is difficult if the matrix is ill condi-

tioned. To check a matrix’s condition number, use the cond() method, also

found in the SVD class.

We illustrate the use of the TNT and JAMA packages with the following program.

Recall that a Hilbert matrix is an n× n-matrix whose i, j-entry is 1/(i + j − 1) (in

the usual notation in which the upper left corner contains the 1,1-entry). Hilbert

matrices are invertible, but notoriously ill conditioned. Hence, finding their inverses

is numerically unstable. The following program creates a Hilbert matrix (whose size

is specified by the user), finds its inverse from its LU-factorization, calculates its

eigenvalues, and (because Hilbert matrices are symmetric and positive definite) finds

its Cholesky factorization.

Program 13.4: A program to illustrate the TNT and JAMA packages with calcula-

tions on a Hilbert matrix.

1 #include "tnt.h"
2 #include "jama_lu.h"
3 #include "jama_eig.h"
4 #include "jama_cholesky.h"
5 #include <iostream>
6 using namespace std;
7 using namespace TNT;
8 using namespace JAMA;
9

10 // A program to demonstrate the use of TNT and JAMA packages for
11 // linear algebra work.
12

13 int main() {
14 // Get the size of the matrix from the user
15 cout << "Enter Hilbert matrix size --> ";
16 int n;
17 cin >> n;
18

19 if (n < 2) {
20 cerr << "Please enter a value greater than 1" << endl;
21 return 1;
22 }
23

24 // H holds the n-by-n Hilbert matrix and eye holds the n-by-n
25 // identity matrix.
26 Array2D<double> H(n,n);
27 Array2D<double> eye(n,n);
28

29 // Fill in the entries in H
30 for (int i=0; i<n; i++) {
31 for (int j=0; j<n; j++) {
32 H[i][j] =1./(i+j+1);
33 }
34 }
35

36 // Set up identity matrix
37 for (int i=0; i<n; i++) eye[i][i] = 1;



Using Other Packages 281

38

39 // Print out H
40 cout << "H = " << endl;
41 cout << H << endl;
42

43 // Use the LU decomposition’s solve method to find the inverse of H.
44 LU<double> HLU(H);
45 Array2D<double> Hinv = HLU.solve(eye);
46 cout << "H inverse = " << endl;
47 cout << Hinv<< endl;
48

49 // Use the LU decomposition of H to calculate its determinant
50 cout << "The determinant of H is " << HLU.det() << endl;
51

52 // Use the Eigenvalue class to find the eigenvalues of H
53 Eigenvalue<double> Heig(H);
54 cout << "The eigenvalues of H are " << endl;
55 Array1D<double> eig_vals;
56 Heig.getRealEigenvalues(eig_vals);
57 for (int i=0; i<n; i++) cout << eig_vals[i] << " ";
58 cout << endl << endl;
59

60 // Use the Cholesky class to find a matrix C so that C*C’ = H
61 Cholesky<double> Hchol(H);
62 Array2D<double> C = Hchol.getL();
63 cout << "The Cholesky matrix for H is " << endl;
64 cout << C << endl;
65

66 // Construct C’s transpose
67 Array2D<double> Ctrans(n,n);
68 for (int i=0; i<n; i++) {
69 for (int j=0; j<n; j++) {
70 Ctrans[i][j] = C[j][i];
71 }
72 }
73

74 // Check that C*C’ gives H
75 cout << "C * C’ = " << endl;
76 cout << matmult(C,Ctrans) << endl;
77

78 return 0;
79 }

Here is the output of a typical run.
� �
Enter Hilbert matrix size --> 5
H =
5 5
1 0.5 0.333333 0.25 0.2
0.5 0.333333 0.25 0.2 0.166667
0.333333 0.25 0.2 0.166667 0.142857
0.25 0.2 0.166667 0.142857 0.125
0.2 0.166667 0.142857 0.125 0.111111

H inverse =
5 5



282 C++ for Mathematicians

25 -300 1050 -1400 630
-300 4800 -18900 26880 -12600
1050 -18900 79380 -117600 56700
-1400 26880 -117600 179200 -88200
630 -12600 56700 -88200 44100

The determinant of H is 3.7493e-12
The eigenvalues of H are
3.28793e-06 0.000305898 0.0114075 0.208534 1.56705

The Cholesky matrix for H is
5 5
1 0 0 0 0
0.5 0.288675 0 0 0
0.333333 0.288675 0.0745356 0 0
0.25 0.259808 0.111803 0.0188982 0
0.2 0.23094 0.127775 0.0377964 0.0047619

C * C’ =
5 5
1 0.5 0.333333 0.25 0.2
0.5 0.333333 0.25 0.2 0.166667
0.333333 0.25 0.2 0.166667 0.142857
0.25 0.2 0.166667 0.142857 0.125
0.2 0.166667 0.142857 0.125 0.111111

� �

13.2.3 The newmat package

Another package designed specifically for linear algebra is the newmat package.

This package was developed by Robert Davies and is available for free from his Web

site, http://www.robertnz.net/. (We describe version 11, beta.)

This package needs to be compiled on your computer; the instructions on how to

do this are included in the download. Once compiled, you will find a library (named

libnewmat.a, or something similar) and several .h header files. You may copy

these to another location if you desire.

All programs that use the newmat package need a #include "newmat.h" di-

rective. If the program requires more than the basic features of the package, other

headers may need to be included. For example, to use << to print matrices to cout,

be sure to include the newmatio.h header.

When you compile your own program, you need to tell the compiler where to

find the header files (e.g., with the -I option), where to find the library (e.g., with

the -L option), and to link with the newmat library (e.g., with -lnewmat). See

Appendix A.1.4 for more information about the -L and -l options.

The newmat package provides several different classes for holding matrices; in

all cases, the matrices hold double real values.4 The fundamental matrix type is

4It is possible to switch this to float values if you prefer.



Using Other Packages 283

called Matrix and its constructor takes two arguments giving the number of rows

and columns. Here is an example,

Matrix A(2,3);

Now A is a 2×3-matrix. It is also possible to declare a matrix without specifying its

size, for example, Matrix A;.

Elements of a matrix are specified using the standard mathematical convention:

the element in row i and column j of a matrix A is A(i,j). Here, i (respectively,

j) is at least 1 and at most the number of rows (respectively, columns) of A. The

expression A(i,j) may appear on either side of an assignment. (It is also possible

to have newmat use the C++ multidimensional array notation A[i][j] in which

case the subscripts begin at zero, but this is not recommended.)

The Matrix constructor does not specify values for its elements; it is the pro-

grammer’s responsibility to handle that. So, for example, to create a 10× 5-matrix

of zeros, do this:

Matrix Z(10,5);
Z = 0.;

In addition to Matrix, the newmat package provides several other classes for

holding matrices including the following,

SquareMatrix,
UpperTriangularMatrix,
LowerTriangularMatrix,
SymmetricMatrix,
DiagonalMatrix,
IdentityMatrix,

and various banded matrices. For vectors, the package provides ColumnVector and

RowVector. These alternatives use the computer’s memory efficiently. In addition,

some procedures require specific types of matrices. For example, the EigenValues

procedure may only be used on symmetric matrices and the eigenvalues are returned

in a diagonal matrix:

SymmetricMatrix A(n); // n-by-n symmetric matrix
... // load values into A
DiagonalMatrix D; // place to hold the eigenvalues
EigenValues(A,D); // find the eigenvalues of A

The SymmetricMatrix class is clever about assigning values to elements. Con-

sider this code.

#include <iostream>
#include "newmat.h"
#include "newmatio.h"
using namespace std;

int main() {
SymmetricMatrix A(3);
A(1,2) = 3;
A(3,2) = 2;
cout << A << endl;



284 C++ for Mathematicians

return 0;
}

(Note: The inclusion of the iostream header must precede the newmatio.h header.)

The output of this program is this.
� �
0.000000 3.000000 0.000000
3.000000 0.000000 2.000000
0.000000 2.000000 0.000000

� �

Because A is symmetric, setting A(i,j) to some value automatically sets A(j,i) to

the same value as well.

The newmat packages provide a rich assortment of matrix operations. Here is a

brief description of some of them.

B=A; Make a copy of A in B.
A.t() Return the transpose of A.
A.i() Return the inverse of A.
A+B, A+=B; Matrix addition.
A-B, A-=B; Matrix subtraction.
A*B, A*=B; Matrix multiplication.
A|B, A|=B; Horizontal concatenation.
A&B, A&=B; Vertical concatenation.
A==B, A!=B Equality/inequality testing.

Considerable care was taken in designing these operations. For example, to solve

the linear system Ax = b, the statement x = A.i() * b; does not invert the matrix,

but finds the solution by a better method. However, if A and B are n×n-matrices and x

is an n-vector, the expression A*(B*x) evaluates much more quickly than (A*B)*x.

If you type the ambiguous A*B*x it is not clear in what order the computer does the

calculation.

Scalar–matrix calculations (including scalar–vector) behave as you might expect.

If s is type double and A is type Matrix, then A+s (or s+A) gives a new matrix

whose i, j entry is A(i,j)+s. The statement A+=s; adds the value in s to all the

elements in A. The operations -, *, and / behave analogously.

The nrows() and ncols() methods give the number of rows and columns, re-

spectively, of a matrix. There is a variety of methods for modifying the shape (and

type) of a matrix including ReSize(), AsColumn(), AsRow(), AsDiagonal(),

and so on. These are spelled out in the documentation.

The newmat package provides a rich assortment of procedures for important linear

algebraic problems including: Cholesky factorization of symmetric matrices, QR-

factorization, singular value decomposition, symmetric matrix eigenvalue decompo-

sition, fast Fourier (and other trigonometric) transforms, determinant, trace, various

matrix norms, dot product of vectors, and so on.

To illustrate some of these, here is a program that finds the determinant, trace,

eigenvalues, and inverse of a Hilbert matrix (compare with Program 13.4).



Using Other Packages 285

Program 13.5: A program to illustrate the newmat package with calculations on a

Hilbert matrix.

1 #include <iostream>
2 #include "newmat.h"
3 #include "newmatio.h"
4 #include "newmatap.h"
5

6 using namespace std;
7

8 int main() {
9 cout << "Enter size of Hilbert matrix --> ";

10 int n;
11 cin >> n;
12

13 SymmetricMatrix H(n);
14 for (int i=1; i<=n; i++) {
15 for (int j=i; j<=n; j++) {
16 H(i,j) = 1. / double(i+j-1);
17 }
18 }
19

20 cout << "The Hilbert matrix is " << endl << H << endl;
21

22 cout << "Its det is " << H.Determinant() << endl;
23

24 cout << "Its inverse is " << endl << H.i() << endl;
25

26 DiagonalMatrix D;
27 EigenValues(H,D);
28

29 cout << "The eigenvalues of the Hilbert matrix are" << endl;
30 cout << D << endl;
31

32 cout << "Trace calculated two ways: " << H.Trace() << " and "
33 << D.Trace() << endl;
34

35 return 0;
36 }

Here is an output of the program in which the user specifies a Hilbert matrix of

size 5.
� �
Enter size of Hilbert matrix --> 5
The Hilbert matrix is
1.000000 0.500000 0.333333 0.250000 0.200000
0.500000 0.333333 0.250000 0.200000 0.166667
0.333333 0.250000 0.200000 0.166667 0.142857
0.250000 0.200000 0.166667 0.142857 0.125000
0.200000 0.166667 0.142857 0.125000 0.111111

Its det is 3.7493e-12
Its inverse is
25.000000 -300.000000 1050.000000 -1400.000000 630.000000
-300.000000 4800.000000 -18900.000000 26880.000000 -12600.000000



286 C++ for Mathematicians

1050.000000 -18900.000000 79380.000000 -117600.000000 56700.000000
-1400.000000 26880.000000 -117600.000000 179200.000000 -88200.000000
630.000000 -12600.000000 56700.000000 -88200.000000 44100.000000

The eigenvalues of the Hilbert matrix are
0.000003
0.000306
0.011407
0.208534
1.567051

Trace calculated two ways: 1.7873 and 1.7873
� �

13.3 Other packages
There are many more packages available on the Web than we can possibly describe

in detail. We conclude this chapter by listing a few additional packages that might

be of interest. A well-chosen selection of keywords typed in a search engine is likely

to turn up additional options.

• Seldon is a full-feature linear algebra package, available for free online here:

http://www.osl.iu.edu/research/mtl/

• The Matrix Template Library is another package for working with matrices.

Visit the Web site for more information and a free download:

http://www.osl.iu.edu/research/mtl/

• The Computational Geometry Algorithms Library or CGAL for short is a large

library of C++ classes and procedures for geometry work. Use it to find every-

thing from convex hulls to Voronoi diagrams to minimum enclosing ellipses.

CGAL is available for free from www.cgal.org.

• For graph theory work, try Boost, available for free from www.boost.org.

Read the installation instructions carefully. The first step is to build a helper

program called bjam that is used to direct the building of boost itself.

• For computational number theory, consider LiDIA. Based on the GMP package

(see Section 13.1), it gives programmers the ability to do calculations in finite

fields and on elliptic curves, use lattice reduction algorithms, perform linear

algebra calculations, and more. It is available for free:

http://www.informatik.tu-darmstadt.de/TI/LiDIA/



Using Other Packages 287

• The Library of Efficient Data Structures and Algorithms, also known as LEDA,

is a commercial package for work in graph theory, geometry, cryptography,

and more. More information, including pricing, is available here:

http://www.algorithmic-solutions.com/enleda.htm

• Interested in computing the homology group (over Z or Zp) of a chain com-

plex? Consider the C++ software available from CHomP—the Computational

Homology Program. See their Web site for more information and a free down-

load:

http://www.math.gatech.edu/˜chom/

13.4 Exercises
13.1 The base ten representation of 100! ends with a long string of zeros; it is a

classic problem to find how many. Solve this problem with C++ using the

GMP package.

13.2 Write a program that fills a two-dimensional array with Pascal’s triangle. That

is, the n,k-entry is
(n

k

)
. [If n < k, set

(n
k

)
= 0.] Build the table to include

rows/columns 0 through 20. Generate each row from the previous row using

the identity
(n

k

)
=

(n−1
k−1

)
+

(n−1
k

)
.

What modification to your program would be necessary were you to increase

the size of the table to 100×100?





Chapter 14

Strings, Input/Output, and Visualization

For the most part, mathematical work does not involve manipulation of character

data. Nonetheless, it is useful to have a general understanding of how C++ handles

character data, how to convert text to numbers, how to use command line arguments,

and how to read and write data in files. We also show how to modify the formatting

of output (e.g., how to increase the number of digits printed after the decimal point).

We illustrate many of these ideas by creating a class to parse files one line at a time,

and break those lines into individual words.

C++ has two ways to handle character data: arrays of char values and in objects

of type string. The char arrays are a legacy of C++’s roots in the C programming

language. It is necessary to understand their basics, but their use should be avoided

where possible. The newer string variables are easier to use. We begin with a brief

introduction to char arrays.

Textual and numerical output are important, but there are times when graphical

output is especially insightful. We close this chapter with a discussion of how to

draw pictures in C++.

14.1 Character arrays
Character (or text) data consist either of individual characters (letters, numerals,

punctuation) or of lists of characters. The C++ data type char holds a single char-

acter from the Latin character set (26 lower- and uppercase letters, numerals, white

space, punctuation). These are known as the ASCII characters and are the only char-

acters with which this book deals. Computers can also deal with a richer set of

glyphs (from accented Latin letters to Chinese characters) using a system called uni-
code; this system is beyond our scope.

An ordered list of characters is generally called a character string. For example,

the words Hello Gauss are such a list comprising 11 characters. As mentioned,

C++ has two principal ways to work with character strings: as null-terminated char

arrays and as objects of the class string. The character array representation is a

primitive scheme inherited from the language C. It is useful for writing messages to

the screen and other simple chores. The moment one wishes to do any manipulation

of characters (e.g., concatenate two strings), the C++ string class makes program-

289



290 C++ for Mathematicians

ming much easier. We begin by discussing the basics of character arrays and then

introduce the string class in the next section.

In a statement such as cout<<"The answer is "<<x<<endl;, the characters

enclosed in quotation marks form a character array. That is, the sequence of letters

is a C++ object of type char*: an array whose elements are type char.

In this book we have used character arrays exclusively for writing messages to the

computer’s screen, but it is possible to hold such arrays in variables. For example:

const char* word = "Hello";

This creates an array of characters named word. The individual characters can be

accessed using the usual array notation. For example, word[0] is the first character

of the array, that is, H.

It is surprising to learn that the length1 of the array word (as declared above)

is six (even though Hello is a five-letter word). Character arrays in C++ are null
terminated; this means that after the last character of the string, the numerical value

0 is appended to mark the end of the string. Figure 14.1 illustrates how the contents of

the variable word are stored inside the computer’s memory. The array is held at some

 72 101 108108 111   0

word

H olle

20320 20321 20322 20323 20324 20325

Figure 14.1: Illustrating a null-terminated character array.

location in memory (arbitrarily set at 20320 in the figure); the variable word holds

that memory location. The elements of the array, word[0] through word[5], are

stored as ASCII values. The letter H has ASCII value 72, hence that’s what is stored

in word[0]. The subsequent values are 101, 108, 108, and 111 corresponding to the

letters e, l, l, and o. Finally, word[5] contains the numerical value 0 (which does not

correspond to any printable character) and this marks the end of the character array.

There are procedures for processing character array data; here are a few examples.

• strlen gives the length of the character string (not including the terminating

0).

1The length of the character string is 5, but the length of the array that supports that string is 6. The C/C++

procedure strlen applied to the character array "Hello" returns the value 5.



Strings, Input/Output, and Visualization 291

• strcpy and strncpy are used for copying one character array to another.

• strcat and strncat are used to concatenate two character arrays; that is, if

s1 is "Good" and s2 is "Morning", their concatenation is "GoodMorning".

• strcmp and strncmp give a total ordering on the set of character arrays; this

is useful for sorting a list of character strings or determining if two strings are

equal.

On some compilers, you may need the directive #include <cstring> in order to

use these procedures.

Using character arrays and their associated procedures is awkward and error prone.

In nearly all cases, it is much simpler to use the C++ string class instead. So, rather

than delve into the details of these procedures, we turn to the friendlier and more

powerful string class.

14.2 The string class
For any character processing tasks beyond the most basic, use C++’s string

class. To use string objects, you might need the directive #include <string>

(the header is optional with some compilers).

The string class contains a large number of features; in this section we discuss

those with the greatest utility in mathematical work.

14.2.1 Initialization

Variables of type string can be declared in several ways; here are the most basic

versions:

• string s; declares s to be an empty character string.

• string s("Hello"); declares s to be a character string containing the let-

ters Hello. In lieu of "Hello" we can use any null-terminated character

array, such as this:

const char* word = "Gauss";
string s(word);

Please note: It is not permissible to use a single char value as an argument

to a string constructor. Thus, string s(’j’); is illegal. Instead, use

string s("j");. Alternatively, the following is permissible.

string s;
s = ’j’; // this is OK



292 C++ for Mathematicians

• string s(s2); initializes s with a copy of the string s2.

• string s(s2,idx); initializes s with a copy of the portion of string s2 that

starts at position idx.

• string s(s2,idx,len); initializes s with a copy of the portion of string

s2 that starts at position idx and runs for len characters. For example,

string s("Mathematics");
string t(s,2,3);
cout << t << endl;

writes the word the on the computer’s screen. Note that the 0th character of

s is M.

• string s(reps, ch); where ch is a character and reps is a nonnegative

integer. This initializes s with reps copies of the character ch. For example,

string snore(10,’z’);
cout << z << endl;

writes zzzzzzzzzz on the screen.

In addition to setting a string’s value when it is declared, we may modify its

value using an assignment statement such as any of these:

s = "Gauss";
s = ’g’;
s = other; // other is another string object

14.2.2 Fundamental operations

The most basic operation one can perform on string objects is concatenation; the

result of concatenating strings s1 and s2 is a new string comprising the characters

of s1 immediately followed by the characters in s2. Concatenation of strings in

C++ is denoted by the addition operator, +. For example, consider this code:

string s1("Hello ");
string s2("Gauss");
cout << s1+s2 << endl;

This prints Hello Gauss on the computer’s screen. The + operation can be used

to combine strings with single characters or with character arrays. Here are some

examples.

string s("Hello");
cout << s + " Gauss" << endl; // writes "Hello Gauss"

string s1 = "good";
string s2 = "luck";
cout << s1 + ’ ’ + s2 << endl; // writes "good luck"

One string can be appended to the end of another using the += operation:



Strings, Input/Output, and Visualization 293

string s("Carl Friedrich");
s += ’ ’; // append a space
s += "Gauss"; // append the last name
cout << s << endl;

writes Carl Friedrich Gauss on the screen.

Characters may be inserted into the middle of a string using the insert method.

The statement s.insert(pos,t); inserts the string t into s just before character

s[pos]. The statement s.insert(0,t); inserts the characters at the beginning of

s. Here is an example.

string s("CarlGauss");
s.insert(4," Friedrich ");
cout << s << endl;

writes Carl Friedrich Gauss on the screen.

In the statement s.insert(pos,t); the variable t may be either a string or a

character array. It may not be type char.

s.insert(3,"x"); // allowed
s.insert(3,’x’); // forbidden

The erase method is used for deleting characters from a string. The statement

s.erase(pos); deletes all characters from position pos to the end of the string.

For example,

string s = "abcdefghijklmnopqrstuvwxyz";
s.erase(5);
cout << s << endl;

writes abcde to the screen. (Remember, for the original string, s[5] is f.)

The statement s.erase(pos,nchars); deletes nchars of s starting at s[pos].

For example,

string s = "abcdefghijklmnopqrstuvwxyz";
s.erase(5,3);
cout << s << endl;

writes abcdeijklmnopqrstuvwxyz to the screen.

A portion of a string can be modified using the replace method. The statement

s.replace(pos,nchars,new_chars); deletes nchars starting at position pos,

and then inserts new_chars in place of the missing portion. The new_chars may

be either a string or a char* character array, and may be of any length. Here is an

example:

string s = "abcdefghijklmnopqrstuvwxyz";
s.replace(5,16,"...");
cout << s << endl;

This writes abcde...vwxyz to the screen.



294 C++ for Mathematicians

The substr method is used to extract a substring of a string; it does not mod-

ify the string. The expression s.substr(pos) returns the substring of s starting

with character s[pos] through to the end of s. More generally, the expression

s.substr(pos,nchars) returns the substring of s starting with s[pos] up to, but

not including, s[pos+nchars]. Here is an example.

string s = "abcdefghijklmnopqrstuvwxyz";
cout << s.substr(5,3) << endl;

This writes fgh to the screen.

The length of a string can be ascertained using either s.size() or s.length().

One can test if the string is an empty string with s.empty() which returns true if

the length of s is zero.

Square brackets can be used to access a given character in a string (either for

reading or for modification). In consonance with C++ principles, s[0] is the first

character of s. This code

string s = "good luck";
s[2] = ’l’;
cout << s << endl;

writes gold luck on the screen. The value between the square brackets must be

nonnegative and less than the length of the string. Alternatively, the at method may

be used: s.at(k) gives character number k of the string s (i.e., s[k]).

Two string objects may be compared using the standard C++ comparison oper-

ations: ==, !=, <, <=, >, and >=. The ordering is mostly lexicographic. However,

all uppercase letters precede lowercase letters. The following program illustrates the

ordering of string values; note that sort implicitly relies on the < operator.

Program 14.1: A program to illustrate the sorting of string values.

1 #include <iostream>
2 using namespace std;
3

4 const int NWORDS = 7;
5

6 int main() {
7 string words[NWORDS];
8 words[0] = " zebra";
9 words[1] = "ant eater";

10 words[2] = "Aaron";
11 words[3] = "aardvark";
12 words[4] = "Baltimore";
13 words[5] = "anteater";
14 words[6] = "BREAKFAST";
15

16 sort(words, words+NWORDS);
17

18 for (int k=0; k<NWORDS; k++) {
19 cout << words[k] << endl;
20 }



Strings, Input/Output, and Visualization 295

21

22 return 0;
23 }

Here is the output of this program.
� �
zebra
Aaron
BREAKFAST
Baltimore
aardvark
ant eater
anteater

� �

In a dictionary, aardvark precedes Aaron, but C++ sorts these the other way around

because uppercase A comes before all lowercase letters. The space character pre-

cedes all letters, hence zebra is first in the sorted output.

14.2.3 Searching

The string class provides methods for searching for substrings. The most basic

of these is find. The method is invoked with an expression such as s.find(pat)

where s is a string and pat is a string or a char*. It returns the location of the

first occurrence of pat in s. The following code prints the number 8 on the screen.

string s = "abcdefghijklmnopqrstuvwxyz";
cout << s.find("ijk") << endl;

What happens if find cannot find pat? The answer is complicated. To begin, we

need to explain that find returns a value of type std::string::size_type. (If

you include the statement using namespace std; then you may drop the prefix

std::.) In most cases, we save the value returned by find in a variable for further

processing. To do this, we use code such as this:

string s = "I feel like a louse";
string pat = "eel";
string::size_type idx; // or std::string::size_type idx;
idx = s.find(pat);

In this case, idx is set equal to 3.

If, however, pat is set to "house", then find returns a special value named

std::string::npos. (The prefix std:: may be omitted if we have the state-

ment using namespace std;.) Here is a short program that illustrates how to use

find.

#include <iostream>
using namespace std;

int main() {
string s = "Mississippi";
string pat;
cout << "Enter substring --> ";
cin >> pat;



296 C++ for Mathematicians

string::size_type idx; // or std::string::size_type idx;
idx = s.find(pat);

if (idx != string::npos) {
cout << "The substring \"" << pat

<< "\" was found at position " << idx << endl;
}
else {

cout << "The substring \"" << pat << "\" was not found"
<< endl;

}
return 0;

}

Here are two runs of the program.
� �
Enter substring --> ssi
The substring "ssi" was found at position 2

� �
� �
Enter substring --> sse
The substring "sse" was not found

� �

Closely related to find is the rfind method. The statement s.rfind(pat)

returns the index of the last occurrence of pat in s, or string::npos if pat cannot

be found.

Two additional string searching methods are provided: find_first_of and

find_last_of. The expression s.find_first_of(pat) searches the string s

for a character that is found in pat and returns its index. If none of the characters in

pat is present in s, then string::npos is returned. Here is a program to illustrate

how this works.

#include <iostream>
using namespace std;

int main() {
string s = "Mississippi";
string pat;
cout << "Enter substring --> ";
cin >> pat;

string::size_type idx; // or std::string::size_type idx;
idx = s.find_first_of(pat);

if (idx != string::npos) {
cout << "One of the characters \"" << pat

<< "\" was found at position " << idx << endl;
}
else {

cout << "None of the characters\"" << pat << "\" was found"
<< endl;

}
return 0;

}



Strings, Input/Output, and Visualization 297

Here are two executions of this code.
� �
Enter substring --> aeiouy
One of the characters "aeiouy" was found at position 1

� �
� �
Enter substring --> wxyz
None of the characters"wxyz" was found

� �

The expression s.find_last_of(pat) method gives the index of the last char-

acter in s that is also in pat, or string::npos if no such character exists.

14.2.4 Converting between string and char* types

Conversion from a null-terminated character array (type char*) to a string

is easy. If word is a char* (character array) and s is a string, the assignment

s = word; does the job. Alternatively, we can convert word to a string when

s is declared:

string s(word);

Finally, we can write string(word) to convert word into a string.

The conversion from a string to a char* is more complicated. The string

class includes a method called c_str for this purpose. The expression s.c_str()

returns a pointer to an unmodifiable, null-terminated character array with the same

contents as s.

string s = "Leonhard Euler";
const char* word = s.c_str();
cout << word << endl;

Notice that word is declared const; omitting this keyword results in an error. If you

need to do further processing on the character array returned by c_str, you need to

copy the characters into another char* array and work on that copy.

Fortunately, one rarely needs to convert a string to a char*. The exception

is when we wish to use a procedure that takes a char* argument, but no string

alternative is available. (For an example, see Exercise 14.1.)

14.3 Command line arguments
In all the programs we have presented thus far, data are entered into the program

using a prompt/response paradigm:

cout << "Enter n --> ";
cin >> n;

An alternative mechanism for sending a few values to a program is to use com-
mand line arguments. For example, a greatest common divisor program, named gcd,



298 C++ for Mathematicians

would be invoked from the terminal by typing gcd 289 51. The arguments are sent

to main as character arrays, "289" and "51". The main procedure then needs to

convert these to integers, send those values to a gcd procedure, and print the result.

Here is how all of this is accomplished.

The first step is to declare main in a different manner. Thus far in this book, main

has been always declared as int main(). In this version, no arguments are sent

to main and an integer value is to be returned. The alternative declaration for main

specifies arguments:

int main(int argc, char** argv) { ... }

The first argument is an int value that specifies the number of arguments typed on

the command line. The name of the program itself is considered an argument, so this

number is always at least one. The name of this argument is not required to be argc

(for “argument count”) but this convention is nearly universal, so you are encouraged

to follow suit.

The second argument, named argv, is an array of character arrays (hence the

double star). This need not be named argv, but this name is also nearly universally

used for this purpose.

When main is invoked, this array is populated as follows: the character array in

argv[0] is the name of the program. The arrays argv[1] through argv[argc-1]

are the other arguments on the command line. An example makes this clear.

Program 14.2: A program that illustrates how to access command line arguments in

a main.

1 #include <iostream>
2 using namespace std;
3

4 int main(int argc, char** argv) {
5 for (int k=0; k<argc; k++) {
6 cout << "argv[" << k << "] is " << argv[k] << endl;
7 }
8 return 0;
9 }

Suppose this program is compiled and the executable is called test-main. If the

program is run with the command line

./test-main one two 3 negative-four

the following output results.
� �
argv[0] is ./test-main
argv[1] is one
argv[2] is two
argv[3] is 3
argv[4] is negative-four

� �

Note that in this case, argc equals 5 accounting for the name of the program and the

four additional arguments passed to the program.



Strings, Input/Output, and Visualization 299

The command line arguments are sent to main as character arrays. Often, we want

to convert these values to integer or double values. Unfortunately, the following does

not work.

int main(int argc, char** argv) {
int n1;
n1 = argv[1]; // INCORRECT
cout << "n1 = " << n1 << endl;
return 0;

}

There are two problems—one minor and one serious—with the line flagged with the

comment INCORRECT. The minor issue is that we did not check if argc is at least 2;

if argc is only 1, then argv[1] is not a valid element of the argv array. The serious

error is that the statement n1 = argv[1]; does not convert the character array into

an integer. Even if argv[1] holds a valid representation of a decimal integer, say

"89", the statement does not convert the character array into the expected integer

value, 89. Unfortunately, on some compilers, this might not be an error.2

To convert a character array to the numerical value it represents, use one of the

following procedures (these are built in to C++).

• atoi(word) converts the character array in word to an int value. Thus, if

word holds "-51", then atoi(word) returns the value −51.

• atol(word) converts the character array in word to a long integer value.

• atof(word) converts the character array in word to a float value.

• atod(word) converts the character array in word to a double value.

Here is a sample program to illustrate their use.

Program 14.3: A program to calculate the gcd of two values specified on the com-

mand line.

1 #include <iostream>
2 #include "gcd.h"
3

4 using namespace std;
5

6 int main(int argc, char** argv) {
7 if (argc != 3) {
8 cerr << "Usage: " << argv[0] << " n1 n2" << endl;
9 cerr << "to find the gcd of n1 and n2" << endl;

10 return 1;
11 }
12

13 long n1 = atol(argv[1]);

2This program only generates a warning on my compiler. On my computer, the output of this pro-

gram is n1 = -1073743042 because the address of argv[1], when converted to a signed integer, is

−1073743042.



300 C++ for Mathematicians

14 long n2 = atol(argv[2]);
15 cout << gcd(n1,n2) << endl;
16

17 return 0;
18 }

Notice that lines 7–11 check that the appropriate number of arguments are given

to the program; if not, the program prints an error message and a reminder of how it

should be used. Here is a sample session using this program.
� �
$ ./gcd 51 289
17

$ ./gcd 5
Usage: ./gcd n1 n2
to find the gcd of n1 and n2

$ ./gcd hello Gauss
0

$
� �

Notes: The dollar sign is the computer’s shell prompt (not something the user types

and not considered a command line argument). The first invocation of the program is

properly formatted and the result is typed on the screen. The second invocation has

an incorrect number of command line arguments; the program detects this and prints

the error message. In the final invocation of the program the arguments ought to be

numbers, but instead we send nonsense (hello and Gauss). We request that these

be converted to long values (lines 13–14). However, atol, unable to recognize

these character arrays as representations of numbers, returns the value 0. A more

sophisticated program could examine the contents of argv[1] and argv[2] to see

if they held properly formatted numbers; if not, an error message would be generated.

14.4 Reading and writing data in files
14.4.1 Opening files for input/output

The input/output objects cin, cout, and cerr are designed for transferring data

from the computer’s keyboard or to the computer’s screen.3 Often, however, we want

to read data from a file (i.e., a document) or to write the results of our computation

into a file (for later processing, or inclusion in a report or email message).

3On most computers it is possible to redirect these input/output streams so that data, that would normally

be written to the screen, are sent to a file (or another program) instead.



Strings, Input/Output, and Visualization 301

Fortunately, it is not difficult to declare input and output streams. These are objects

like cin and cout, but rather than being associated with the keyboard or the screen,

they are associated with a file on the computer’s hard drive.

Computer files are of two sorts: plain text (or ASCII) and binary. Plain text files

contain only the ordinary characters (of the sort that can be held in a char variable);

that is, lower- and uppercase Latin letters, numerals, punctuation, and blank space.

They do not contain letters from other character sets (e.g., Chinese) or other types

of data. Examples of plain text files are .cc and .h files for programming, TEX

and LATEX files, PostScript documents, and .html Web pages. Binary files, on the

other hand, contain characters beyond the ASCII set or other types of data (including

images, sounds, etc.). Examples of binary files include Microsoft Word documents,

multimedia files (from .jpg photographs to .wmv video), PDF documents, and exe-

cutable programs (built from your C++ code).

We focus our attention solely on reading and writing plain text files. Although C++

is capable of dealing with binary files, it is more complicated to handle such data.

For special situations, you may be able to find publicly available C++ procedures for

reading and writing specific types of data (e.g., .jpg files).

To read and write from files, include the directive #include <fstream> at the

beginning of your program. The fstream header defines two important classes:

ifstream for input file stream and ofstream for output file stream.

The first step is to declare an object of type ifstream or ofstream. In both

cases, we provide a single argument giving the name of the file to be read/written;

the argument is a character array (type char*). The constructors look like this:

ifstream my_in("input_file");
ofstream my_out("output_file");

The first sets up my_in to read data from a file named input_file and the second

writes data to a file named output_file. Before we do either of these, there are a

few important cautionary notes.

• The file input_file might not exist or might not be readable by your pro-

gram (e.g., if you do not have sufficient privileges to read that file). So, before

attempting to read data from that file, we perform the following simple test.

if (my_in.fail()) {
cerr << "Unable to read the file input_file" << endl;
return 1;

}

Input streams contain methods named fail and good. If (and only if) the

stream is in a good state, then good() returns true and fail() returns false.

Thus, if the file cannot be opened, my_in.fail() returns true.

It is important to do a test such as this or else the rest of your program may run

into trouble.

A program also uses the good and fail methods to detect when an input file

has been exhausted; see Section 14.4.3.



302 C++ for Mathematicians

• Likewise, it might not be possible for the program to write to output_file

(the disk might be locked, another program might be using the file, or your pro-

gram may lack sufficient privileges to write a file in the particular directory).

To test if the output file was opened successfully, use code such as this:

if (my_out.fail()) {
cerr << "Unable to write to the file output_file" << endl;
return 1;

}

• For output, please be aware that opening an existing file for output com-
pletely erases the file. There’s no second chance. The file is not moved to the

“trash” or recoverable in any way.

These is an alternative way to open an output file that does not overwrite the

existing file. We may open an output file so that data written to that file are

appended to the end of the file. If this is what is desired, use the following

constructor.

ofstream my_out("output_file", ios::app);

A file stream may be associated with a file after it is declared using the open

method. Here is an example.

ifstream my_in;
ofstream my_out;
// intervening code
my_in.open("input_file");
my_out.open("output_file");

Alternatively, to append data to an output file, use this statement:

my_out.open("output_file", ios::app);

Generally, it is not necessary to close a file—the file associated with a stream is

automatically closed when the stream goes out of scope. However, there are times

when we need to close a file explicitly. In that case, we use the close() method.

One instance when we would use the explicit open and close methods is when

the command line arguments name files that we want to process. Consider the fol-

lowing example.

Program 14.4: A program the processes files specified on the command line.

1 #include <iostream>
2 #include <fstream>
3 using namespace std;
4

5 int main(int argc, char** argv) {
6 ifstream in;
7

8 for(int k=1; k<argc; k++) {
9 in.open(argv[k]);



Strings, Input/Output, and Visualization 303

10 if (in.fail()) {
11 cerr << "*** Unable to process file " << argv[k] << endl;
12 }
13 else {
14 cerr << "Working on file " << argv[k] << endl;
15 // do whatever we need to do with the file named in argv[k]
16 // in >> variables; etc; etc;
17 }
18 in.close();
19 in.clear();
20 }
21 return 0;
22 }

The main for loop is bracketed by calls to in.open and in.close (see lines 9

and 18). Each command line argument is supposed to name a file. We try to open

the file for input; if this is not successful (line 10) we print an error message and

move on. Otherwise, we process the file in whatever way would be appropriate,

presumably until we reach the end of that file.4 We then close the file (line 18).

Before we step to the next file we invoke the ifstream’s clear() method. This

resets any error conditions triggered by the ifstream, and there are two likely error

conditions that would arise in this program: inability to open the file and reaching the

end of the file. After one of these events occurs, the expression in.good() yields

the value false (and in.fail() yields true) until we cancel the error condition

with in.clear().

14.4.2 Reading and writing

Once the stream object is declared and we have tested that the file has been suc-

cessfully opened, we can use the usual << (for ofstream) and >> (for ifstream)

operators for writing/reading the file. Here is an example.

Program 14.5: A program that illustrates writing data to a file.

1 #include <iostream>
2 #include <fstream>
3 using namespace std;
4

5 int main() {
6 const char* output_file_name = "example.out";
7

8 ofstream my_out(output_file_name);
9 if (my_out.fail()) {

10 cerr << "Unable to open the file " << output_file_name
11 << " for writing." << endl;
12 return 1;
13 }
14

4End of file detection is explained in Subsection 14.4.3.



304 C++ for Mathematicians

15 for (int k=1; k<=10; k++) {
16 my_out << k << " ";
17 }
18 my_out << endl;
19

20 return 0;
21 }

After this program is compiled and run, a file named example.out is created and

its contents look like this:

1 2 3 4 5 6 7 8 9 10

14.4.3 Detecting the end of an input file

When reading data from a file, a program might not know a priori how many data

are in the file. For example, the file may contain many integers and it’s the program’s

job to sum those integers. To do this, the program repeatedly requests input (using

the >> operator) until it reaches the end of the file.

The question is, how does a program tell when it has reached the end of an input

file? The solution is to use the ifstream’s good and fail methods.

When a file has been exhausted, the expression ifstream.fail() yields the

value true. The following program illustrates how to use this idea; it sums the

numbers it finds in the file example.out generated by Program 14.5.

Program 14.6: A program that sums the integer values it finds in a file.

1 #include <iostream>
2 #include <fstream>
3 using namespace std;
4

5 int main() {
6 const char* input_file_name = "example.out";
7

8 ifstream my_in(input_file_name);
9 if (my_in.fail()) {

10 cerr << "Unable to open the file " << input_file_name
11 << " for input." << endl;
12 return 1;
13 }
14 int n;
15 int sum = 0;
16 while (true) {
17 my_in >> n;
18 if (my_in.fail()) break;
19 sum += n;
20 }
21 cout << "The sum of the numbers is " << sum << endl;
22

23 return 0;
24 }



Strings, Input/Output, and Visualization 305

Focus your attention on lines 16–20. The loop is controlled by the construction

while (true) {...}. The loop runs forever until the break on line 18 is reached.

When my_in.fail() is evaluated one of two things happens: either (a) the pro-

gram has successfully read an integer into n or else (b) there are no more values left

in the file to be found (because we have reached the end of the file). In case (a),

my_in.fail() evaluates to false. However, in case (b), it evaluates to true.

Therefore, the loop continues as long as the input is successful. Once the end of

the input file is reached, the loop terminates and the sum of the values in the file is

written to the computer screen. The output of this program looks like this:
� �
The sum of the numbers is 55

� �

14.4.4 Other methods for input

The >> operator handles most input needs. When handling character data, how-

ever, it is sometimes useful to be able to deal with single characters and with full

lines of text.

The get method is used to read a single character from an input stream. Here’s an

example.

char ch;
cin.get(ch);
if (cin.good()) {

cout << "We read the character " << ch << endl;
}
else {

cout << "No more input available" << endl;
}

The statement cin.get(ch) reads a single character from the stream cin and stores

the result in the variable ch.

The expression cin.get(ch) is not equivalent to cin >> ch. The former reads

the next character available no matter what, but the >> statement skips any white

space before reading a character. Consider this program.

#include <iostream>
using namespace std;

int main() {

char ch;
cout << "Type something -->";
cin >> ch;
cout << "We read the character ’" << ch << "’" << endl;
cin.get(ch);
cout << "We read the character ’" << ch << "’" << endl;

return 0;
}

Here are some sample executions of the code.



306 C++ for Mathematicians

� �
Type something -->123
We read the character ’1’
We read the character ’2’

� �
� �
Type something --> 123
We read the character ’1’
We read the character ’2’

� �
� �
Type something --> 1 2 3
We read the character ’1’
We read the character ’ ’

� �

In the first execution, the cin >> ch; statement reads the character 1 and then

the cin.get(ch); reads the character 2. The same thing happens in the second

execution because cin >> ch; skips the white spaces before the 1. However, in

the third run, the statement cin.get(ch); reads the space character immediately

following the 1.

There is also a put method for output streams; it is used to write a single char-

acter. If ch is a char variable, the statement cout.put(ch); is tantamount to

cout << ch;.

Suppose word is a string variable. The statement cin >> word; skips white

space before reading data into the variable word, and then stops as soon as additional

white space is encountered. For example, the user types

Suppose $f$ is continuous.

then the statement cin >> word; puts Suppose into the variable word. If the

statement is executed repeatedly, it would subsequently save the string $f$, then is,

and then continuous. into word.

Sometimes it is useful to read a full line of text into a string variable. There are

two ways to do this. In both cases the procedure invoked is named getline.

We may write cin.getline(buffer, nchars); where buffer is a character

array (type char*) and nchars is a positive integer. This statement reads at most

nchars characters from cin and loads them into the character array buffer. The

reading stops either when the end of the line is encountered or nchars have been

read. Here is how this method might be used in a program.

const int MAX_LINE = 10000;
char buffer[MAX_LINE];
cout << "Type a line: ";
cin.getline(buffer,MAX_LINE);
cout << "You typed: " << buffer << endl;

The drawbacks to this form of getline are (a) one needs to know a priori an upper

bound on the number of characters in a line and (b) the characters are saved in a

character array.

The following alternative version of getline is more convenient. The statement

getline(cin,theLine); (where theLine is a string variable) reads characters

from cin until reaching the end of the line; the characters are saved in theLine.



Strings, Input/Output, and Visualization 307

Both forms of getline take an optional additional argument: a char value

specifying a delimiter character. Then, instead of reading to the end of the line,

getline reads until the delimiter character is encountered. For example, the state-

ment getline(cin,theLine,’/’); reads characters into theLine until a / char-

acter is encountered.

14.5 String streams
C++ provide a means to treat character strings in a manner akin to file streams. Ob-

jects of the classes istringstream and ostringstream may be used in the same

manner as input and output file streams, but their data come from (or go to) a string

embedded in the object. The use of these classes requires a #include <sstream>

directive.

An istringstream is initialized with a string or a char* array. For example,

string line("angle 70.3 degrees");
istringstream is(line);

We can now use is just as we would any other input stream object. The subsequent

code

string s1;
is >> s1;
double x;
is >> x;
string s2;
is >> s2;

places the string angle into s1, the value 70.3 into x, and the string degrees into

s2.

It’s important that the variable receiving data from an istringstream via the

>> operator be of the appropriate type. No error is reported in this situation, but the

contents of the variable are unpredictable.

An ostringstream behaves in the same manner as an output stream, but the

data it is sent are saved into a string, not a file. We declare an ostringstream

variable without any arguments like this:

ostringstream os;

and then we send data using the usual << operator: os << k;. After we have fin-

ished putting data into os we extract the string we built using the str() method.

The following code illustrates these ideas.



308 C++ for Mathematicians

Program 14.7: A program to illustrate the use of string streams.

1 #include <iostream>
2 #include <sstream>
3 using namespace std;
4

5 int main() {
6 ostringstream os;
7

8 os << "The base-ten digits are";
9 for (int k=0; k<=9; k++) os << " " << k;

10 os << endl;
11 cout << os.str();
12

13 string words(" 3.9 10 hello good bye");
14 istringstream is(words);
15 double x;
16 is >> x; // 3.9
17 int n;
18 is >> n; // 10
19 string s;
20 is >> s; // hello
21 long k;
22 is >> k; // good
23 cout << "x = " << x << ", n = " << n << ", s = " << s
24 << ", and k = " << k << endl;
25

26 return 0;
27 }

Here is the output from the program.
� �
The base-ten digits are 0 1 2 3 4 5 6 7 8 9
x = 3.9, n = 10, s = hello, and k = 0

� �

14.6 Formatting
The statement cout << x; prints the value held in x on the computer’s screen.

If x is a double variable, the output may look like one of these.

Value Comment
0.142857 decimal value of 1/7
1.42857 10/7
0.00142857 1/700
-0.142857 −1/7

2.5e+11 2.5×1011

1 one



Strings, Input/Output, and Visualization 309

Notice that the number of decimal places displayed varies, but in each case at

most six significant digits are given (not counting leading zeros). Also observe that

positive numbers do not have a leading + sign, and that the decimal point is dropped

when x holds an integer value.

In most cases, the default behavior of cout << x; is adequate for mathematical

purposes. However, we may wish to print more than six significant figures or print

out a table with figures nicely arranged in columns. To accomplish these, we need to

modify the default behavior of the output stream.

A convenient way to do this is through the use of manipulators that we send to

output streams using the << operator. Before we may use manipulators, we need the

directive #include <iomanip> at the beginning of the program.

14.6.1 Setting precision

By default, real numbers sent to an output stream (such as cout) are printed with

six decimal digits of precision. If we want more (or fewer) we use the setprecision

manipulator. Its use looks like this:

#include <iomanip>
...
cout << exp(1.) << endl;
cout << setprecision(10);
cout << exp(1.) << endl;

The output of this code looks like this:
� �
2.71828
2.718281828

� �

14.6.2 Showing all digits

Increasing the precision of the output stream does not necessarily result in addi-

tional digits being printed. For example, the statement

cout << setprecision(10) << 1.0 << endl;

just prints 1 on the screen. The manipulator showpoint coerces the printing of the

decimal point and the extra digits. The code

cout << setprecision(10) << 1.0 << endl;
cout << showpoint << 1.0 << endl;

results in the following output.
� �
1
1.000000000

� �

To restore the default behavior, send the noshowpoint object to the output stream.



310 C++ for Mathematicians

14.6.3 Setting the width

Setting the precision of the output does not directly determine the number of char-

acters typed to the screen. A leading minus sign, the position of the first nonzero

digit, whether the number is to appear in scientific notation, and whether showpoint

is in effect all influence the number of characters that cout << x prints. This vari-

ability can wreak havoc with any attempt to line up the output in neat columns.

By default, cout << x; prints x in exactly as much space as required; no extra

space is padded.

The setw manipulator provides a mechanism that guarantees the number of char-

acters cout << x; prints. The statement

cout << setw(20) << x;

prints the value stored in x in a field that is 20 characters wide. If cout << x would

normally produce fewer than 20 characters, then, by default, the value is printed right

justified in the 20-character region. The code

cout << ’|’ << setw(20) << exp(1.) << ’|’ << endl;

results in this output.
� �
| 2.71828|

� �

It is possible for the printed value to appear left or right justified within the amount

of space specified by setw. The manipulators controlling this are named left and

right.

cout << ’|’ << setw(20) << left << exp(1.) << ’|’ << endl;
cout << ’|’ << setw(20) << right << exp(1.) << ’|’ << endl;

� �
|2.71828 |
| 2.71828|

� �

Unlike the setprecision and showpoint manipulators, the effect of setw does

not persist between outputs. Once output has been sent, the effect of setw is imme-

diately canceled and the default behavior is restored. The code

cout << ’|’ << setw(20) << exp(1.) << ’|’ << M_PI << ’|’ << endl;

gives the following result.
� �
| 2.71828|3.14159|

� �

When using setw, the extra characters typed are spaces. However, this can be

changed with the setfill manipulator. Here is an example.

string hi("Hello Gauss");
cout << setfill(’-’);
cout << setw(20) << hi << endl;
cout << setw(20) << left << hi << endl;

� �
---------Hello Gauss
Hello Gauss---------

� �



Strings, Input/Output, and Visualization 311

14.6.4 Other manipulators

There are several additional manipulators available in C++; here we mention some

of them that you might find useful.

• cout << showpos: This causes nonnegative numbers to be prepended with

a + sign. To restore the default behavior, use noshowpos.

• cout << scientific: This forces real numbers (types float and double)

to appear in scientific notation. To restore default behavior (real values are

either printed in decimal or scientific notation depending on their value) use

the statement cout << setiosflags(ios::floatfield);.

The mantissa of the real value is separated from the power of 10 by the letter

e. The case of the letter e can be modified using the manipulators uppercase

and nouppercase.

• cout << fixed: This forces real numbers to be printed in decimal notation

(and not scientific). For example:

cout << exp(20.0) << endl;
cout << fixed;
cout << exp(20.0) << endl;

� �
4.85165e+08
485165195.409790

� �

Restore default behavior with cout<<setiosflags(ios::floatfield);.

• cout << boolalpha: By default, bool values are printed as 0 or 1. After

applying the boolalpha manipulator, these are printed as false and true.

Restore the default behavior with cout << noboolalpha;.

• cout << dec, cout << oct, and cout << hex: Integer values are nor-

mally printed in base ten, but may also be printed in base eight (octal) or

sixteen (hexadecimal). Use these manipulators to select the desired base.

14.7 A class to parse files
We close this chapter by presenting a class for parsing files. In applied work,

mathematicians often are given files containing data. It can be an annoying chore

simply to read the file into a program. For example, a file might contain geometric

information about a large molecule. The input file specifies the molecule with various

kinds of lines:



312 C++ for Mathematicians

• Type and location of atoms: These lines have the following format:

ATOM atom number symbol x-coord y-coord z-coord

• Chemical bonds: These lines have the format:

BOND atom number atom number

• Comments: These lines begin with a # and are followed by arbitrary text.

• Blank lines.

Such an input file might look like this:

# Data acquired from the ACME Molecule Machine and
# saved in directory /shared/molecules/specimen-4.
ATOM 1 C 0 0 0
ATOM 2 H 1 0 0
ATOM 3 Br 0 -1 0
ATOM 4 C 0 0 1.2

#Here are the bonds

BOND 1 2
BOND 1 4
BOND 1 4

# Note double bond between the carbons
BOND 1 3

The LineParser class we present in this section is a device that reads a file (such

as the molecule description file above) one line at a time, and then breaks the line

into individual words. The class provides the following methods.

• The constructor LineParser(file_name): This creates a new LineParser

object that reads data from the file named in the char* array file_name.

• A method read() that reads a line from the input file and breaks it into indi-

vidual words. This method returns true if it is able to read a line. Let’s call

the last line processed by read() the current line.

• A method show_line() that returns the current line.

• A method show_line_number() that gives the line number of the current

line.

• A method num_words() that reports the number of separate words found on

the current line.

• A square brackets operator to get the words on the line. If LP is a LineParser

object, LP[k] returns the kth word of the current line.

Here are the header and program files for the LineParser class followed by a

main program that illustrates the use of this class.



Strings, Input/Output, and Visualization 313

Program 14.8: Header file for the LineParser class.

1 #ifndef LINE_PARSER_H
2 #define LINE_PARSER_H
3 #include <fstream>
4 #include <vector>
5 #include <string>
6 using namespace std;
7

8 class LineParser {
9 private:

10 ifstream in;
11 string theLine;
12 long lineNumber;
13 int nWords;
14 vector<string> words;
15 void parse();
16

17 public:
18 LineParser(const char* file_name);
19 bool read();
20 string show_line() const { return theLine; }
21 long show_line_number() const { return lineNumber; }
22 int num_words() const { return nWords; }
23 string operator[](int k) const { return words[k]; }
24 };
25

26 #endif

Program 14.9: Program file for the LineParser class.

1 #include "LineParser.h"
2 #include <sstream>
3 #include <iostream>
4 using namespace std;
5

6 LineParser::LineParser(const char* file_name) {
7 in.open(file_name);
8 if (!in) {
9 cerr << "WARNING: Unable to open " << file_name << endl;

10 }
11 lineNumber = 0;
12 theLine = "";
13 }
14

15 bool LineParser::read() {
16 getline(in,theLine);
17 bool result = in.good(); // check if getline succeeded
18 if (result) {
19 lineNumber++;
20 parse();
21 }
22 return result;
23 }



314 C++ for Mathematicians

24

25 void LineParser::parse() {
26 words.clear();
27 words.resize(100);
28 istringstream s(theLine);
29 nWords = 0;
30 string tmp;
31 while (s>>tmp) {
32 if (words.size() < unsigned(nWords)) words.resize(nWords+10);
33 words[nWords] = tmp;
34 nWords++;
35 }
36 }

Program 14.10: A program to demonstrate the use of the LineParser class.

1 #include "LineParser.h"
2 #include <iostream>
3 using namespace std;
4

5 int main(int argc, char** argv) {
6

7 if (argc != 2) {
8 cerr << "Usage: " << argv[0] << " filename" << endl;
9 return 1;

10 }
11

12 LineParser LP(argv[1]);
13

14 while (LP.read()) {
15 cout << "Line " << LP.show_line_number() << "\t\t\""
16 << LP.show_line() << "\"" << endl << endl;
17 for (int k=0; k<LP.num_words(); k++) {
18 cout << "Word " << k << " is \t\"" << LP[k] << "\"" << endl;
19 }
20 cout << "-------------------------------------------------"
21 << endl;
22 }
23

24 return 0;
25 }

When the main program is run on the following four-line file
� �
What’s it all about, Alfie?
Catch 22

Nothing on the previous line!
� �

we obtain the following output:
� �
Line 1 "What’s it all about, Alfie?"

Word 0 is "What’s"
Word 1 is "it"



Strings, Input/Output, and Visualization 315

Word 2 is "all"
Word 3 is "about,"
Word 4 is "Alfie?"
-------------------------------------------------
Line 2 "Catch 22 "

Word 0 is "Catch"
Word 1 is "22"
-------------------------------------------------
Line 3 ""

-------------------------------------------------
Line 4 "Nothing on the previous line!"

Word 0 is "Nothing"
Word 1 is "on"
Word 2 is "the"
Word 3 is "previous"
Word 4 is "line!"
-------------------------------------------------

� �

14.8 Visualization

The visualization of mathematical objects often provides important insights. Com-

puters are particularly adept at producing precise beautiful images.

Unfortunately, drawing pictures on the computer’s screen is often closely tied to

the computer’s operating system; such a program created for the Windows operating

system is unlikely to work on an X-windows (UNIX) or Macintosh computer. In

addition, it can be frustrating and time consuming to understand the intricacies of

opening windows, drawing graphic objects, translating between mathematical coor-

dinates and screen coordinates, printing, and so forth.

Still, visualization is too important to dismiss and so we offer guidance on how to

use C++ to draw pictures in a platform-independent manner.

One strategy, which we consider only briefly, is to write a C++ program whose

textual output is used as input to another system with built-in graphics capabilities.

For example, the C++ program could write a file in which each line contains a pair

of real values. This file would then be loaded into a system such as MATLAB or

Mathematica and plotted.

Alternatively—and this is the technique we explore—we can write a C++ program

whose output is a well-established graphics file such as GIF, JPEG, or EPS. This file

can then either be displayed on the computer’s screen (using an appropriate viewing

program) or incorporated into a word-processing document (such as MS Word or

LATEX).



316 C++ for Mathematicians

14.8.1 Introducing and installing the plotutils package

Let’s start with an assumption. We do not want to learn how graphics files (such as

GIF, JPG, or EPS) work; we just want to think about drawing in mathematical terms.

Line segments should be specified by their end points and circles by their centers and

radii. Someone else should work out how these various graphics formats work and

provide us with an easy way to draw. Fortunately, someone else has done exactly

that.

The GNU plotutils package is free software that provides device-independent

drawing tools with output to a variety of popular graphics file formats. The package

can be downloaded from the following Web site,

http://www.gnu.org/software/plotutils/

The package arrives as a single compressed “tar” file5 in which all the plotutils

files are held. Installation is mildly complicated. Installation instructions can be

found in the files INSTALL and INSTALL.pkg, but these can scare the uninitiated.

Follow this outline.

• Unpack. It is necessary to extract the various source files for the plotutils

files from the downloaded file. On some computers, this may be as simple

as double-clicking the downloaded file. On a UNIX system (or in Cygwin on

Windows), you can unpack with the following command,

tar xfz plotutils-2.4.1.tar.gz

(The precise file name may depend on the version you downloaded; be sure to

fetch the latest.)

You should now have a folder on your hard drive named plotutils-2.4.1

(or something similar).

• Configure. The next step is to run the configure program found in the folder

you have just unpacked. This is done from a command line such as this:

./configure --enable-libplotter --prefix=directory

Here, directory is a directory where you want the package to be installed.

This may be your home directory, a subdirectory of your home directory, or a

public directory such as /usr/local or /usr/public. Please note that the

installation procedure (described below) adds files to various subdirectories of

these directories; if those subdirectories do not already exist, the install process

creates them for you. These subdirectories are named bin, lib, include, and

so on.

The option --enable-libpotter enables the C++ version of plotutils.

(Without this option, only the C version is built.)

5The word tar is an acronym for tape archive; this file format provides a mechanism for packaging many

files together and need not be associated with storing data on a tape.



Strings, Input/Output, and Visualization 317

• Build. The package is built using a single command: make. Even on a fast

computer, this process takes a while.

• Create the documentation. The plotutils package comes with a reference

manual (and other documentation). To build this, type make dvi. This creates

the file plotutils.pdf in the info subdirectory. This can be read (and

printed) using Adobe Acrobat Reader or another PDF viewer.

• Install. Thus far, all the work of configuring and building the package takes

place in the directory (folder) where you unpacked plotutils. The final step

is to transfer the pieces to the directory you specified in the configuration step.

This is quick and easy; type the command make install.

This copies header files (such as libplotter.h) to the include subdirec-

tory of the directory you specified in the configuration process, library files to

lib, executable programs to bin, and so on.

If you have a Linux computer, it is possible that plotutils is already installed.

If not, a precompiled version can be found by visiting this Web site,

http://rpmfind.net/linux/RPM/index.html

and searching for plotutils. The package is then installed using Linux’s rpm

command (for which you must have superuser privileges).

Installing plotutils is nontrivial, but not insurmountable. If possible, seek a

friendly computer expert to assist you through this process. Rest assured that in-

stalling plotutils is the most difficult step in using it to draw pictures.

14.8.2 Drawing with plotutils—a first example

We begin by creating a program (see Program 14.11) to draw the symbol ⊗. It is

easy to describe this symbol mathematically. It consists of two line segments and a

circle. To be specific, the first line segment joins the points (−1,−1) to (1,1) and the

second line segment joins (−1,1) with (1,−1). The circle is centered at the origin

with radius
√

2. Once we set up plotutils, drawing the picture is just that easy.

In broad strokes, the steps to produce the image are these.

• Select the appropriate subclass of Plotter,

• Declare the Plotter object with the appropriate arguments,

• “Open” the Plotter and perform other initialization including establishing a

coordinate system and pen attributes,

• Draw the image, and

• Close the Plotter.

Finally, we need to compile and run the program.



318 C++ for Mathematicians

Choosing the appropriate plotter type

The plotutils package is capable of producing various types of graphics files

including gif, eps, and several others. Fortunately, the methods for creating images

for these various formats are all identical. If we write code to produce one type of

file and subsequently decide we prefer another type, it is easy to change the code to

implement the new choice.

Each drawing is produced by an object that is a subclass of the type Plotter.

To create a gif image, we declare an object of type GIFPlotter; for an eps

image, we declare a PSPlotter object. For other graphics formats, see the file

plotutils.pdf included in the info subdirectory.

At this point you may be wondering, which type of file should I choose? Here’s

some guidance. Graphic image files can be divided into two broad categories: bit

images and vector graphics. Bit image files are (essentially) a matrix of pixels; they

are useful for representing photographs and are manipulated using “paint” style pro-

grams. On the other hand, vector graphic files represent their drawings using mathe-

matical primitives such as line segments, ellipses, Bezier curves, and so forth. They

are edited using “draw” style programs. For our first project, drawing ⊗, we use

PSPlotter to produce an eps file. If were interested in drawing a picture of a Julia

set (by plotting individual points), then we would use a GIFPlotter.

These various constructors are defined in the header file plotter.h, so the direc-

tive #include "plotter.h" is needed.

Arguments to the constructor

Regardless of which subtype of the class Plotter we choose, the declaration of

the Plotter object is the same. The constructor requires four arguments like this:

PlotterType(input, output, error, parameters) where

• input is an object of type ifstream such as cin. At present, this input

stream is not used, so the simplest choice is to set this equal to cin.

• output is an object of type ofstream such as cout. When the Plotter

object writes its results, it sends it to this argument. Therefore, it is usually not

a good idea to set this equal to cout. Rather, it is better to create a separate

object of type ofstream to write to a file on disk. Thus, we need the directive

#include <fstream> and to declare an output object like this:

ofstream pout("filename");

and use pout for the second argument to the constructor.

• error is also an object of type fstream to which error messages are written.

If something goes awry during the drawing process, the Plotter object re-

ports the problem through this output stream. The simplest choice is to set this

to cerr, the standard error output stream.



Strings, Input/Output, and Visualization 319

• params is an object of type PlotterParams. The plotutils documen-

tation explains various options that can be embedded in this object and then

passed to the Plotter. However, the simplest thing to do is to specify no

special options. Just declare an object of type PlotParams and pass that as

the fourth argument to the constructor.

Thus, a Plotter object is created with code that looks like this:

ofstream pout("picture.eps");
PlotterParams params;
PSPlotter P(cin, pout, cerr, params);

With this in place, the plotter object P is created. See Program 14.11 lines 11–13.

Other initialization

After a Plotter object is constructed, there are a few additional steps to take

before we can begin drawing. The first of these is mandatory: the Plotter needs

to be “opened.” This is analogous to opening a file for writing. To open a Plotter

we use its openpl() method. This method returns a negative value if anything goes

amiss. See lines 16–19 of Program 14.11.

The next step is to establish a coordinate system. This is done by specifying the

coordinates of the lower left and upper right corners of a square6 in the plane in

which you wish to draw. For our project, the region extending from (− 3
2 ,− 3

2 ) to

( 3
2 , 3

2 ) is sufficient because it encompasses both line segments and the circle centered

at the origin of radius
√

2.

The coordinate system is established with the space or fspace methods. Both

of these take four arguments corresponding to the x and y coordinates of the lower

left corner followed by the coordinates of the upper right corner. The only difference

between these two methods is that space takes integer arguments whereas fspace

takes real (the f is for float) arguments. Thus, on line 22 of Program 14.11 we

have

P.fspace(-1.5, -1.5, 1.5, 1.5);

but we could have used

P.space(-2, -2, 2, 2);

instead.

We are nearly ready to draw; all we need to do now is select our pen (this hap-

pens on lines 25 and 26 of Program 14.11). First we select the line width of the pen

with the flinewidth method. The argument produces a line thickness relative to

the overall size of your drawing area (established with the space/fspace method).

The color is chosen with either the pencolorname or pencolor method. The

pencolorname method takes a char* string argument giving the English name7

6It is possible to specify a nonsquare rectangular region, but this results in a distorted image. The drawing

region you specified is mapped to a square “viewport”. If your region is not square, then it is rescaled

horizontally or vertically to make it square. This causes circles to become ellipses, and so on.
7Of course, not all color names are recognized by this method, but the basic ones are.



320 C++ for Mathematicians

of the color you want whereas the pencolor takes three int arguments that spec-

ify the red, blue, and green components of the color. These arguments run from

0 to 65,535 (216 − 1). Invoking P.pencolor(0,0,0) loads the pen with black

ink and P.pencolor(0xffff,0xffff,0xffff) gives white (this is an instance

where base 16 is more convenient than decimal).

There are other pen attributes we could set to produce dotted lines. The docu-

mentation included with plotutils explains these. Later (Program 14.14) we use

filltype and fillcolorname to draw circles with an opaque interior; the circle

we draw in Program 14.11 has a transparent interior so we do not deal with this issue

here.

Draw the picture and finalize

The ⊗ picture is drawn with three simple statements. The two line segments

(lines 29–30) are drawn with the line method:

P.line(-1,-1,1,1);
P.line(-1,1,1,-1);

(There is an analogous fline method that takes real-valued arguments.)

The circle is drawn with the fcircle method (line 33):

P.fircle(0.,0.,sqrt(2.));

(There is an analogous circle method that takes integer-valued arguments.)

There are many other drawing methods in the plotutils package for creating

rectangles, ellipses, circular and elliptical arcs, and Bezier curves. These can be

combined into compound paths (e.g., polygons) which, if closed, can contain a fill

color. One can also write text (in a variety of fonts) and plot individual points (or

place marker symbols at specified coordinates). See the plotutils documentation

for more information.

After all drawing is complete, we close the Plotter with the closepl() method

(see line 36). This method returns a negative value if anything goes awry with this

step.

Compiling and running the program

The plotutils package contains two important pieces: a header file plotter.h

and a library file libplotter.a (or something similar).

We know that a #include "plotter.h" directive is needed but if the file is not

in a standard location, then we need to tell the compiler where to find this file. We

also need to tell the compiler to use the plotter library and (if necessary) where

this file is located.

Suppose the program is named xo.cc. If plotter.h and the plotter library

are in standard locations, the compiler command is as simple as this:

g++ xo.cc -lplotter



Strings, Input/Output, and Visualization 321

However, if the compiler cannot find these files, it will complain. For the g++ com-

piler (and many others), these are specified using the -I (for headers) and -L (for

libraries) options. For example, suppose these files are located on your computer as

follows.

Header file /home/zelda/include/plotter.h
Library file /home/zelda/lib/libplotter.a

To compile, use the following command.

g++ xo.cc -I/home/zelda/include -L/home/zelda/lib -lplotter

(See Appendix A.1.4 for more detail about the -I, -L, and -l options.)

When you run the program (named a.out or something similar) it produces the

file xo.eps. You can now use this file in a LATEX document or for whatever purpose

you wish. The output of the program is shown in Figure 14.2.

The full code for the program xo.cc follows.

Program 14.11: A program to draw the symbol ⊗.

1 #include <iostream>
2 #include <fstream>
3 #include "plotter.h"
4 using namespace std;
5

6 const char* IMAGE_FILE = "xo.eps";
7

8 int main(int argc, char** argv) {
9

10 // Construct the plotter
11 ofstream pout(IMAGE_FILE);
12 PlotterParams params;
13 PSPlotter P(cin, pout, cerr, params);
14

15 // Open the plotter
16 if (P.openpl() < 0) {
17 cerr << "Unable to open plotter" << endl;
18 return 1;
19 }
20

21 // Set up my coordinate system
22 P.fspace(-1.5, -1.5, 1.5, 1.5);
23

24 // Set drawing parameters
25 P.flinewidth(0.05);
26 P.pencolorname("black");
27

28 // Draw the X
29 P.line(-1,-1,1,1);
30 P.line(-1,1,1,-1);
31

32 // Draw the circle
33 P.fcircle(0.,0.,sqrt(2.));
34

35 // Close the image



322 C++ for Mathematicians

36 if (P.closepl() < 0) {
37 cerr << "Unable to close plotter" << endl;
38 return 1;
39 }
40

41 return 0;
42 }

Figure 14.2: The symbol ⊗ drawn by Program 14.11.

Although we can use C++ to draw pictures such as ⊗, mouse-driven drawing

programs are more convenient for producing such simple diagrams. The advantage

in using C++ to draw accrues when we want to visualize a mathematical object that

requires nontrivial computation to produce.

We demonstrate this now with three examples.

14.8.3 Pascal’s triangle modulo two

Pascal’s triangle is a table of the binomial coefficients; the nth row (beginning with

n = 0) contains the values
(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
. There are myriad interesting properties

of binomial coefficients and Pascal’s triangle. One of the more striking is to look at

Pascal’s triangle with entries taken modulo 2. That is, we plot a black point for each

odd entry of Pascal’s triangle (and leave even entries blank).

Because the image is an array of dots (pixels), we use a GIFPlotter object to

do the drawing. Although we could create an array to hold all the entries in Pascal’s

triangle, we opt instead to create two arrays to hold individual rows (the current row

built from the previous row).

Here is the code which should be self explanatory.

Program 14.12: A program to visualize Pascal’s triangle modulo 2.

1 #include <iostream>
2 #include <fstream>
3 #include "plotter.h"
4 using namespace std;
5



Strings, Input/Output, and Visualization 323

6 const char* IMAGE_FILE = "pascal.gif";
7 const int NROWS = 2048;
8

9 int main() {
10

11 // Place to hold row of Pascal’s triangle and a copy to generate the
12 // next row.
13 int row[NROWS+1];
14 int prev_row[NROWS+1];
15 for (int i=0; i<=NROWS; i++) {
16 row[i] = 0;
17 prev_row[i] = 0;
18 }
19

20 // Construct the plotter
21 PlotterParams params;
22 ofstream pout(IMAGE_FILE);
23 GIFPlotter P(cin, pout, cerr, params);
24

25 // Open the plotter
26 if (P.openpl() < 0) {
27 cerr << "Unable to open plotter" << endl;
28 return 1;
29 }
30

31 // Set up my coordinate system
32 P.space(-1,-1,NROWS+1,NROWS+1);
33

34 // Set drawing parameters
35 P.pencolorname("black");
36

37 // Generate rows of Pascal’s triangle (mod 2)
38 for (int r=0; r<NROWS; r++) {
39 row[0] = 1;
40 for (int j=1; j<r; j++) {
41 row[j] = (prev_row[j-1]+prev_row[j])%2;
42 }
43 row[r] = 1;
44

45 // Plot points for this row
46 for (int j=0; j<=r; j++) {
47 if (row[j] == 1) {
48 P.point(NROWS-r,j);
49 }
50 }
51

52 // copy row to prev_row
53 for (int j=0; j<=r; j++) prev_row[j] = row[j];
54 }
55

56 // Close the image
57 if (P.closepl() < 0) {
58 cerr << "Unable to close plotter" << endl;
59 return 1;
60 }
61



324 C++ for Mathematicians

62 return 0;
63 }

The output of this program (Figure 14.3) is the beautiful fractal known as Sierpin-

ski’s triangle.

Figure 14.3: Visualizing Pascal’s triangle modulo 2.

14.8.4 Tracing the motion of a point moving randomly in a triangle

The next example visualizes the following process. Three fixed points (named A,

B, and C) are located at the vertices of an equilateral triangle. A moving point X
begins at one of these locations and then moves to a new location at random. At each

step, the new location is the midpoint of one of the segments AX , BX , CX—each

with probability 1
3 . Imagine that each time we find a new location for X , we plot a

point in the plane. After many iterations, what do we see?

Program 14.13 draws a picture by precisely this mechanism. Because the image is

a collection of pixels, it makes sense to use a GIFPlotter to produce a gif image



Strings, Input/Output, and Visualization 325

file.

The code is reasonably straightforward. One feature we want to emphasize is

the procedure draw_point on lines 11–13. This procedure takes two arguments: a

Plotter and a Point (see Chapter 6). This procedure is invoked inside main on

line 78 where it is passed a GIFPlotter named P (and a Point named X). At first

glance this may appear to be a programming error: the procedure requires a Plotter

but is invoked with a GIFPlotter. This mismatch of types is not a problem because

a GIFPlotter is a subclass of Plotter.

Program 14.13: A program to plot points in a triangle by a random method.

1 #include <iostream>
2 #include <fstream>
3 #include "plotter.h"
4 #include "Point.h"
5 #include "uniform.h"
6 using namespace std;
7

8 const char* IMAGE_FILE = "dance.gif";
9

10 // Draw a point on a plotter.
11 void draw_point(Plotter& P, const Point& X) {
12 P.fpoint(X.getX(), X.getY());
13 }
14

15 int main(int argc, char** argv) {
16 // check that user specified number of points
17 if (argc < 2) {
18 cerr << "Usage: " << argv[0] << " npoints" << endl;
19 return 1;
20 }
21

22 int NPOINTS;
23

24 // convert 2nd arg to an integer; make sure its positive
25 NPOINTS = atoi(argv[1]);
26 if (NPOINTS < 1) {
27 cerr << "Usage: " << argv[0] << " npoints" << endl;
28 cerr << "where npoints is a positive integer" << endl;
29 return 1;
30 }
31

32 // Set the corners of the triangle
33 Point A(0.,0.);
34 Point B(1.,0.);
35 Point C(0.5, sqrt(3.)/2.);
36

37 Point X; // the dancing point
38

39 // Construct the plotter
40 PlotterParams params;
41 ofstream pout(IMAGE_FILE);
42 GIFPlotter P(cin, pout, cerr, params);
43



326 C++ for Mathematicians

44 // Open the plotter
45 if (P.openpl() < 0) {
46 cerr << "Unable to open plotter" << endl;
47 return 1;
48 }
49

50 // Set up my coordinate system
51 P.fspace(0.,0.,1.,1.);
52

53 // Set drawing parameters
54 P.pencolorname("black");
55

56 // Draw the corners
57 draw_point(P,A);
58 draw_point(P,B);
59 draw_point(P,C);
60

61 // Start X at A
62 X = A;
63

64 for (int k=0; k<NPOINTS; k++) {
65 switch(unif(3)) {
66 case 1:
67 X = midpoint(A,X);
68 break;
69 case 2:
70 X = midpoint(B,X);
71 break;
72 case 3:
73 X = midpoint(C,X);
74 break;
75 default:
76 cerr << "This can’t happen" << endl;
77 }
78 draw_point(P,X);
79 }
80

81 // Close the image
82 if (P.closepl() < 0) {
83 cerr << "Unable to close plotter" << endl;
84 return 1;
85 }
86

87 return 0;
88 }

When the program is run we again see Sierpinski’s triangle! See Figure 14.4.

14.8.5 Drawing Paley graphs

Our final drawing example is a program to draw Paley graphs. In this context, a

graph is a pair (V,E) where V is a finite set of vertices and E is a set of unordered

pairs of distinct vertices; elements of E are called edges. The edge {u,v} is said to

join its end points, u and v; we call such vertices adjacent. Note that is adjacent



Strings, Input/Output, and Visualization 327

Figure 14.4: An image based on a random process in a triangle.

to is a symmetric relation because the pairs in E are unordered. Furthermore, self-

loops are not allowed (edges that join a vertex to itself). Such graphs are often called

simple graphs.

It is useful to visualize graphs by drawings. The vertices are drawn as dots and

edges as line segments (or curves) joining their end point’s dots. In our program, we

draw the vertices as small circles.

The Paley graphs form an interesting class of graphs. Let n ≥ 3 be an integer.

The vertices of Gn are the integers {0,1,2, . . . ,n}. Two vertices, u and v, of Gn
are adjacent (joined by an edge) if and only if u− v is a perfect square (quadratic

residue) in Zn. Because the is adjacent to relation is symmetric, we require that −1

be a perfect square in Zn; otherwise Gn is undefined.

For example, let n = 5. The vertices of G5 are {0,1,2,3,4}. The (nonzero)

quadratic residues in Z5 are 1 and 4. Therefore, the edges of G5 are {0,1}, {1,2},

{2,3}, {3,4}, and {0,5}. In other words, G5 is a 5-cycle. However, G7 is undefined

because −1 ≡ 6 is not a perfect square in Z7.

Our program to draw Paley graphs reads the parameter n from the command line

(see lines 11–25 of Program 14.14) and then stores all squares in Zn in a set ob-

ject named squares (lines 31–35). After checking that −1 is a quadratic residue

(lines 40–43), we create a table of x and y values for the vertex locations. We evenly

place the vertices on a circle of radius n centered at the origin.

Next we declare and initialize a PSPlotter object (lines 57–71) that sends its



328 C++ for Mathematicians

output to a file named paley.eps (lines 8, 58, and 59). We choose a vector graphic

format (eps) because our drawing consists of mathematically defined curves and not

a field of points. We are ready to begin drawing.

We first draw the edges (lines 74–83) as line segments. Then we modify the pen so

that enclosed regions (such as circles) are filled with white ink. This is accomplished

in two steps: a call to the fillcolorname method (line 86) to set the fill color to

white and then P.filltype(1); (line 87) to activate region filling. The vertices

are now drawn as circles of radius 1
2 (lines 88–90).

Note that if we had not activated region filling, then the circles would have been

transparent and we would see the full lengths of the line segments meeting at the cen-

ters of the circles; it is more esthetically pleasing to cover that region. Furthermore,

it is important that we draw the edges before the vertices. If we were to reverse the

order, then the edges would be drawn on top of the circles, and we would see the

portion of the line segment that ought to be hidden.

The rest of the program releases the memory allocated for the arrays holding the

coordinates of the vertices and closes the PSPlotter (line 93 to the end).

Here is the program.

Program 14.14: A program to draw Paley graphs.

1 #include <iostream>
2 #include <fstream>
3 #include <set>
4 #include "plotter.h"
5 #include "Mod.h"
6 using namespace std;
7

8 const char* IMAGE_FILE = "paley.eps";
9

10 int main(int argc, char** argv) {
11 // check that user specified number of points
12 if (argc < 2) {
13 cerr << "Usage: " << argv[0] << " n" << endl;
14 return 1;
15 }
16

17 int n; // number of vertices in the graph and the modulus
18

19 // convert 2nd arg to an integer; make sure it’s positive
20 n = atoi(argv[1]);
21 if (n < 3) {
22 cerr << "Usage: " << argv[0] << " n" << endl;
23 cerr << "where n is an integer greater than 2" << endl;
24 return 1;
25 }
26

27 // We’ll only be working in Z_n
28 Mod::set_default_modulus(n) ;
29

30 // Find all perfect squares in Z_n
31 set<Mod> squares;
32 for(int k=0; k<n; k++) {



Strings, Input/Output, and Visualization 329

33 Mod S(k*k);
34 squares.insert(S);
35 }
36

37 // Check if -1 is a perfect square
38 Mod neg1(-1);
39

40 if (squares.find(neg1) == squares.end()) {
41 cerr << "-1 is not a perfect square in Z_" << n << endl;
42 return 1;
43 }
44

45 // Create tables of the x and y coordinates of the vertex centers
46 float* x = new float[n];
47 float* y = new float[n];
48

49 double theta = 2*M_PI/n;
50

51 for (int i=0; i<n; i++) {
52 x[i] = n * sin(i*theta);
53 y[i] = n * cos(i*theta);
54 }
55

56 // Construct the plotter
57 PlotterParams params;
58 ofstream pout(IMAGE_FILE);
59 PSPlotter P(cin, pout, cerr, params);
60

61 // Open the plotter
62 if (P.openpl() < 0) {
63 cerr << "Unable to open plotter" << endl;
64 return 1;
65 }
66 // Set drawing parameters
67 P.flinewidth(0.05);
68 P.pencolorname("black");
69

70 // Set up my coordinate system
71 P.space(-n-1, -n-1, n+1, n+1);
72

73 // Draw the edges
74 for (int i=0; i<n-1; i++) {
75 for (int j=i+1; j<n; j++) {
76 // if i-j is a perfect square ...
77 Mod diff(i-j);
78 if (squares.find(diff) != squares.end()) {
79 // ... then we draw the edge
80 P.fline(x[i],y[i],x[j],y[j]);
81 }
82 }
83 }
84

85 // Draw the vertices
86 P.fillcolorname("white");
87 P.filltype(1);
88 for (int i=0; i<n; i++) {



330 C++ for Mathematicians

89 P.fcircle(x[i], y[i], 0.5);
90 }
91

92 // Release allocated arrays for x and y
93 delete[] x;
94 delete[] y;
95

96 // Close the image
97 if (P.closepl() < 0) {
98 cerr << "Unable to close plotter" << endl;
99 return 1;

100 }
101

102 return 0;
103 }

When the program is run with n = 17, the picture in Figure 14.5 is produced.

The Paley graph G17 is interesting because it does not contain four vertices that are

pairwise adjacent (a clique of size 4) and it does not contain four vertices that are

pairwise nonadjacent (an independent set of size 4). All graphs on 18 vertices (or

more) must contain either a clique or an independent set of size 4.

Figure 14.5: The Paley graph on 17 vertices.

14.9 Exercises
14.1 Suppose a string variable contains the decimal representation of an integer.

For example, string s = "7152";. Explain how to convert the string to

an int.



Strings, Input/Output, and Visualization 331

14.2 A string variable named file_name contains the name of a file. We want

to read data from that file using an ifstream object named fin. Show how

fin should be declared.

14.3 A programmer wants to write the 26 lowercase letters a to z on the computer’s

screen. The following code does not work.

for (int k=0; k<26; k++) {
cout << ’a’ + k;

}

What is wrong and how can this code be repaired?

14.4 A free group is the set of all formal products one can create using a set of

generators {a,b,c, . . .} and their inverses. If a generator and its inverse are

adjacent in the product, then they can be removed. The empty product serves

as the identity element. For example,(
abc−1b

) · (b−1cba
)

simplifies to abba or ab2a.

Create a class named Free that represents elements in a free group. Use a

string variable to hold the group element using lowercase letters for the

generators and the corresponding uppercase letters for their inverses (i.e., A
for a−1).

Include an operator* for the group product and an inverse() method.

Also provide a << operator for printing Free objects to the screen.

There are several procedures declared in the cctype header that you can use

for this exercise. These can be used to examine and modify the cases of single

letter characters. See Appendix C.6.3 (starting on page 411) for a description

of isupper, toupper, and so on. Read the introductory material carefully as

toupper does not behave precisely as you might expect.

14.5 Write a program that reads a text file and reports the frequency of each of the

26 letters. Run the program on various texts and see if you can distinguish

languages.

You can find books in plain text format at http://www.gutenberg.org.

14.6 Polygrams. In Exercise 14.5 we analyzed writing by looking at the frequency

of single letters. In this exercise we consider a more sensitive analysis. For a

positive integer n, an n-gram is a sequence of n letters. For example, the word

banana contains the 2-grams ba, an, and na.

Create a program to count the n-grams found in a text and report the ten most

frequent n-grams found for each of n = 2, 3, and 4.



332 C++ for Mathematicians

14.7 Koch curve. The Koch curve is a fractal formed by the following iterative

process. Begin with a horizontal line segment, say from (0,0) to (1,0). Draw

an equilateral triangle using the middle third of this segment as one side, and

then erase the side that was part of the original segment. The new path consists

of four segments:

(0,0) →
(

1

3
,0

)
→

(
1

2
,

√
3

6

)
→

(
2

3
,0

)
→ (1,0)

Now repeat this basic step again on each of the four segments to create a

polygonal path with 16 segments. The first two steps of this process are shown

in the figure.

The Koch curve is the result of carrying out this process ad infinitum.

Write a program to draw (an approximate version of) the Koch curve to a user-

specified number of iterations of the basic step.

14.8 Mandelbrot set. Let c ∈ C and define fc(z) = z2 +c. Consider the sequence of

iterates

z0 = 0, zk+1 = fc(zk).

For some values of c this sequence tends to infinity, |zk| → ∞ as k → ∞, but for

other values of c this sequence stays bounded.

The Mandelbrot set M is the set of all complex c such that the iterates of

fc (starting at 0) stay bounded. Create a program to draw a picture of the

Mandelbrot set.

One can show that if for some k we have |zk| > 2, then the iterates zn tend

to infinity. So, to test if c ∈ M, one can compute (say) the first 500 iterates

zk testing if any have magnitude greater than 2. If so, we know that c /∈ M.

However, if for all k ≤ 500 we have |z500|< 2, one might guess that c∈M. This

guess might be incorrect, but this approach yields a reasonable approximation.

Furthermore, based on this criterion, any complex number c with |c| > 2 can-

not be an element of M, so one need not check a complex number a+bi with

|a| > 2 or |b| > 2.



Chapter 15

Odds and Ends

It is not the purpose of this book to give an exhaustive coverage of every feature of

C++. We have, by design, omitted those parts of the language that (in our judgment)

are not useful for mathematical work. In this final chapter we present an assortment

of additional topics that may also be of interest and utility in your work.

15.1 The switch statement
C++ provides a variety of control structures such as if, for, while, and do. Here

we discuss an additional control structure: the switch statement.

The switch statement is used to control execution depending on the value held in

an integer variable. Suppose that x holds an integer value. If x equals 1, we perform

operation I, if it equals 2 we perform operation II, if it equals 3 or 4 we perform

operation III, and if it holds any other value, we do operation IV. Here is how we

would structure this situation using if statements.

if (x == 1) {
// Do operation I

}
else {

if (x == 2) {
// Do operation II

}
else {

if ((x == 3) || (x == 4)) {
// Do operation III

}
else {

// Do operation IV
}

}
}

As you can see, this is difficult to read (and awkward to type). With switch, the

code is much clearer:

switch(x) {
case 1:

// Do operation I

333



334 C++ for Mathematicians

break;
case 2:

// Do operation II
break;

case 3:
case 4:

// Do operation III
break;

default:
// Do operation IV

}

The outer structure of the statement is switch(x) {...}where x is an integer type.

Within the curly braces is a sequence of case statements. Each case is followed by

a specific integer value. When a switch statement is executed, the computer looks

for a case that matches the value in x. If it finds one, it executes whatever code it

finds following the case statement until it finds a break; statement. If no case

statement matches the value of x, the computer looks for a default statement and

executes the code that follows. (If there is no default statement, then execution

skips to the statements following the closing curly brace of the switch.)

Notice that two case statements can precede a section of code (for the values 3

and 4).

C++ does not require a break; statement between two sections of a switch

statement. For example, if we were to delete the break; at the end of case 2,

then (when x equals 2), first operation II would execute and then operation III would

execute. This is known as falling through cases. In general, it is much better to

balance every case with a matching break unless (as in the example) two cases

execute the exact same code. The default case (because it appears at the end of the

switch) does not require a break.

There is no way to specify a range of values in a case statement. So, for example,

if you want different behaviors depending on whether x is negative, zero, or positive,

you should use if statements.

The switch statement is useful for creating a menu of options for the user. A

prompt is typed on the screen listing various options; the user specifies the desired

option by typing a number or letter. The following program illustrates how this is

done; in it, the switch statement plays a central role. The user specifies the desired

option by typing a letter. We allow uppercase and lowercase letters and so two case

statements are given for each option.

Program 15.1: A program to illustrate the switch statement.

1 #include <iostream>
2 #include <string>
3 using namespace std;
4 int main() {
5

6 bool again = true;
7 while(again) {
8 cout << endl;



Odds and Ends 335

9 cout << "What would you like to do?" << endl;
10 cout << " (a) Prove Fermat’s little theorem" << endl;
11 cout << " (b) Prove Fermat’s last theorem" << endl;
12 cout << " (c) List some Fermat primes" << endl;
13 cout << " (d) End this program" << endl;
14 cout << "Type the character and hit return: ";
15

16 string response;
17 cin >> response;
18

19 if (response.empty()) continue;
20

21 char option = response[0];
22

23 switch(option) {
24 case ’a’:
25 case ’A’:
26 cout << endl
27 << "Apply Lagrange’s theorem to the group Z_p." << endl;
28 break;
29

30 case ’b’:
31 case ’B’:
32 cout << endl
33 << "I have a great proof for this but, alas, it will"
34 << endl << "not fit on this computer screen." << endl;
35 break;
36

37 case ’c’:
38 case ’C’:
39 cout << endl << "Here are the only ones I know:" << endl
40 << "3 5 17 257 25537." << endl;
41 break;
42

43 case ’d’:
44 case ’D’:
45 cout << endl << "Goodbye." << endl;
46 again = false;
47 break;
48

49 default:
50 cout << endl << "Sorry. Your response was not recognized."
51 << endl << "Please try again." << endl;
52 }
53 }
54 return 0;
55 }

Here is a sample run of the program.
� �
What would you like to do?
(a) Prove Fermat’s little theorem
(b) Prove Fermat’s last theorem
(c) List some Fermat primes
(d) End this program

Type the character and hit return: a



336 C++ for Mathematicians

Apply Lagrange’s theorem to the group Z_p.

What would you like to do?
(a) Prove Fermat’s little theorem
(b) Prove Fermat’s last theorem
(c) List some Fermat primes
(d) End this program

Type the character and hit return: b

I have a great proof for this but, alas, it will
not fit on this computer screen.

What would you like to do?
(a) Prove Fermat’s little theorem
(b) Prove Fermat’s last theorem
(c) List some Fermat primes
(d) End this program

Type the character and hit return: C

Here are the only ones I know:
3 5 17 257 25537.

What would you like to do?
(a) Prove Fermat’s little theorem
(b) Prove Fermat’s last theorem
(c) List some Fermat primes
(d) End this program

Type the character and hit return: x

Sorry. Your response was not recognized.
Please try again.

What would you like to do?
(a) Prove Fermat’s little theorem
(b) Prove Fermat’s last theorem
(c) List some Fermat primes
(d) End this program

Type the character and hit return: D

Goodbye.
� �

15.2 Labels and the goto statement
In addition to switch and all the various other control structures, C++ also pro-

vides the simple goto statement. For good reasons, use of the goto statement is

highly discouraged. It can lead to programs that are impossibly difficult to under-

stand. There is, however, one situation where a goto is handy: breaking out of

nested loops. Here is how goto works.



Odds and Ends 337

Any statement in C++ may be prefixed by a label. A statement is labeled by a

name; a label name is formed according to the same rules as variables are named. To

label a statement, use the label name followed by a colon, like this:

increment: x += 10;

This names the statement x += 10; as increment. Now, anywhere in the same

procedure as this labeled statement, we may have the statement goto increment;.

Whenever the goto statement is invoked, the program immediately jumps to the

statement labeled increment and proceeds from there.

If possible, use one of C++’s other control structures rather than resorting to the

use of goto. However, if you need to break from a nested loop, a goto is a clean

solution. Here’s the issue: if you want to exit a for loop before the end condition

has been reached, you can execute a break statement. For example,

int k;
for (k=0; k<100; k++) {

if (x[k] < 0) break;
// otherwise do something

}

This loop stops running if any element of the array x is negative. The break state-

ment forces the for loop in which it is contained to stop looping. Therefore, if the

break is enclosed in, say, a double for loop, only the inner loop is interrupted. How

can we stop the execution of the outer loop? Unfortunately, break won’t help us.

A solution is to label the first statement after the double for loop and use a goto.

Here is an example.

#include <iostream>
using namespace std;

int main() {
int i,j;

for (i=0; i<10; i++) {
for (j=0; j<10; j++) {

if (i+j == 15) goto alpha;
}

}

alpha:
cout << "i = " << i << " and j = " << j << endl;
return 0;

}

The two for loops execute until i+j reaches the value 15. At that point, the loops

are interrupted and execution proceeds at the statement labeled alpha. The output

is as follows.
� �
i = 6 and j = 9

� �

In practice, this situation rarely occurs. You are unlikely to ever need a goto

statement in your programs.



338 C++ for Mathematicians

15.3 Exception handling
In the course of a computation unexpected situations can arise. For example, the

computer might attempt to find the inverse of a noninvertible object. If the computer

is asked to divide by zero, it signals the invalid result in one of two ways: the di-

vision 1./0. results in the special value inf (which stands for ∞) and the division

0./0. results in the special value nan (which stands for not a number). Similarly,

in Chapter 9 we designed the Mod class so that if the inverse method is invoked on

a noninvertible Mod object, the return value is an invalid Mod.

To check that a Mod computation took place without error, the is_invalidmethod

can be applied to the results. To check if a floating point calculation resulted in inf

or nan, use the C++ procedures isinf() or isnan().1

In some cases, it is difficult to communicate an abnormal event through a return

value. In this case, C++’s exception system is useful.

Although you might elect not to use the exception system, it is worth knowing its

basics because packages that you download from the Web might use this feature.

15.3.1 The basics of try, throw, and catch

C++ provides an alternative method for detecting and handling such situations.

When a procedure detects an erroneous situation, it can throw an exception. When

the exception is thrown, the normal flow of the program is interrupted and control is

passed to code that catches the exception. The code that might throw an exception is

contained inside a try block. The exception-handling mechanism involves the three

keywords try, throw, and catch and is structured like this:

// start of the procedure
try {

// some calculations
if (something_bad_happens) throw object;
// more calculations

}
catch (object_type var) {

// deal with bad situation
}
// rest of the procedure

To illustrate how this works, we present the following short program that asks the

user for two numbers and returns their quotient.

1In order to use these procedures, you need the directive #include <cmath> at the beginning of your

program. Also, at the time of this writing, there is a bug in the Mac OS X version of C++ of cmath.

Examine the file /usr/include/gcc/darwin/default/c++/cmath. Comment out the lines

that read #undef isinf and #undef isnan.



Odds and Ends 339

Program 15.2: A program to divide two numbers and illustrate basic exception han-

dling.

1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 double x,y;
7 try {
8 cout << "Enter numerator: ";
9 cin >> x;

10 cout << "Enter denominator: ";
11 cin >> y;
12

13 if (y==0.) throw x;
14

15 cout << x << " divided by " << y << " is " << x/y << endl;
16 }
17 catch (double top) {
18 cerr << "Unable to divide " << top << " by zero" << endl;
19 }
20

21 cout << "Thank you for dividing." << endl;
22

23 return 0;
24 }

After some initialization, we encounter the try block (lines 7–16). Within this

block, we prompt the user for two real numbers. Then, just before we divide, we test

if the denominator is zero. At this point there are two possible ways the program

might proceed.

• If the denominator is zero, the exception is thrown (line 13). In this case, we

throw the value of the numerator. The remaining statements inside the try

block are skipped; line 15 is not executed.

At this point, the computer skips to the end of the try block and searches

for a catch statement whose type agrees with the type of the object that was

thrown. Because throw x; throws a double value, execution proceeds to the

catch statement on line 17. The variable top named in the catch statement

is set equal to the value thrown (the value held in x).

Now the statements embedded inside the catch block execute. In this exam-

ple, there is only one statement (line 18) that prints an error message on the

screen.

Once the catch block is finished, execution continues at line 21.

• Alternatively, if the denominator is not zero, then the throw statement on

line 13 does not execute. Instead, the program continues with the remaining

statements inside the try block. In this example, there is only one more state-

ment (line 15).



340 C++ for Mathematicians

Because no exception was thrown, the catch block is skipped, and execution

proceeds to the statements following the try block—that is, to line 21.

Here are two runs of the program to illustrate how this works.
� �
Enter numerator: 17
Enter denominator: 4
17 divided by 4 is 4.25
Thank you for dividing.

� �
� �
Enter numerator: -9.8
Enter denominator: 0
Unable to divide -9.8 by zero
Thank you for dividing.

� �

For this example, it would be simpler to use an if/then/else construction. The

exception-throwing mechanism is particularly useful when the exception is thrown

by one procedure and caught by another. We illustrate this idea in the following

program.

Program 15.3: A program to illustrate catching exceptions thrown by other proce-

dures.

1 #include <iostream>
2

3 using namespace std;
4

5 double quotient(double p, double q) {
6 if (q==0.) throw p;
7 return p/q;
8 }
9

10 int main() {
11 double x,y;
12 try {
13 cout << "Enter numerator: ";
14 cin >> x;
15 cout << "Enter denominator: ";
16 cin >> y;
17

18 double q = quotient(x,y);
19

20 cout << x << " divided by " << y << " is " << q << endl;
21 }
22 catch (double top) {
23 cerr << "Unable to divide " << top << " by zero" << endl;
24 exit(1);
25 }
26

27 cout << "Thank you for dividing." << endl;
28

29 return 0;
30 }



Odds and Ends 341

This program defines a procedure named quotient (see lines 5–8) that takes two

double arguments and returns their quotient. If this procedure is invoked with q

equal to zero, then the quotient is undefined. In this case, the procedure throws an

exception. Notice that there is no try/catch block in the quotient procedure; it is

the responsibility of the procedure that invokes quotient (in this example, main)

to handle the exception.

Inside main, the call to quotient is embedded in a try block (lines 12–21). If

quotient runs normally (i.e., its second argument is not zero), then line 18 executes

normally. Execution then proceeds to line 20, then the catch block (lines 22–25) is

skipped, and the program continues at line 27.

However, if (at line 18), the second argument sent to quotient is zero, then

quotient throws an exception. The value of the numerator is thrown. The rest of

the try block is skipped; that is, line 20 is not executed. At this point the computer

searches for a catch statement whose type matches the type of the thrown value.

Because a double value is thrown by quotient, it is caught at line 22. Now the

catch block executes with top set equal to the thrown value. An error message is

printed (line 23) followed by a call to a system procedure named exit. This causes

the program to stop executing immediately. Consequently, the statements following

the catch block—statements that would typically execute were it not for the call to

exit—are not executed.

If possible, the catch block should repair any damage caused by the exceptional

situation so the program can continue running. However, some errors are sufficiently

serious that continued execution does not make sense. In that case, a call to exit

causes the program to stop running. Note that exit can be called inside any proce-

dure (not just in main).

The exit procedure takes an integer valued argument; this value is passed back

to the operating system. If your C++ program is invoked by a script, the script can

use that value to detect that something unusual occurred during the execution of the

C++ program. By convention, a return value of 0 signals normal execution. That

is why we end our main programs with the statement return 0;. However, if the

program is forced to stop executing inside a procedure other than main, then exit

can be used to return a value to the operating system.

Here are two runs of Program 15.3.

� �
Enter numerator: 10
Enter denominator: 4
10 divided by 4 is 2.5
Thank you for dividing.

� �

� �
Enter numerator: -10
Enter denominator: 0
Unable to divide -10 by zero

� �



342 C++ for Mathematicians

15.3.2 Other features of the exception-handling system

Multiple catches

A try block must be followed by a catch block. However, there may be more

than one catch block, provided each catches a different type. The general structure

looks like this:

try {
// code that might generate exceptions

}
catch (type_1 x1) {

// handle this exception
}
catch (type_2 x2) {

// handle this exception
}
...
catch (type_n xn) {

// handle this exception
}
// rest of the code

If an exception is thrown in the try block, it is caught by the catch block that

matches the type of the object that was thrown. That, and only that, catch block is

executed; the other catch blocks are skipped. Of course, if no exception is thrown,

none of the catch blocks executes.

Uncaught exceptions and a catch-all block

It is important that there be a catch block for every type of exception that might

be thrown by a try block. Otherwise, the uncaught exception causes the program to

terminate by calling the system procedure abort. The abort procedure is a more

drastic version of exit. abort takes no arguments and prints a message such as

Abort trap on the screen.

It is conceivable that you might not know every type of exception your program

might produce. For example, you may be using a package you downloaded and

you might not be familiar with the various exceptions that package’s procedures can

produce. In such a case, you can create a catch-all block that catches any exception.

Here’s how: after the various known exceptions, create a block that looks like this,

catch(...) {
// code to handle an exception of an unknown type

}

It is difficult for a catch-all block to handle errors because any information contained

in the thrown object is lost; unlike a typical catch block, there is no value sent to a

catch-all block.

Objects to throw

Any C++ object may be thrown by a throw statement. If you were to create your

own arc sine function, it would be natural to throw an exception if the argument to



Odds and Ends 343

the function were outside the interval [−1,1]. In this case, it would be sensible to

throw the argument of the function so the calling procedure knows that it sent an

illegal value.

Alternatively, we can throw an object specifically designed to convey detailed in-

formation on the error. For example, we can create a class named TrigException

like this:

class TrigException {
public:

double value;
string message;

};

Then our arc sine function would have the following form.

double arc_sin(double x) {
if ((x<-1.) || (x>1.)) {

TrigException err;
err.value = x;
err.message = "Argument to arc_sin not in [-1,1]";
throw err;

}
// calculate the arc sine of x, etc.

}

A procedure that calls arc_sin, or other trigonometric functions of our own cre-

ation, can be structured like this:

try {
// various trig calculations

}
catch (TrigException E) {

cerr << "Trouble occurred during the calculation" << endl;
cerr << E.message << endl;
cerr << "The faulty argument was " << E.value << endl;
exit(1);

}

Packages you download from the Web might contain their own exception types.

For example, a geometry package might include a procedure to find the point of

intersection of two lines. What should such a procedure do when presented with a

pair of parallel lines? A sensible answer is to throw an exception.

Rethrowing exceptions

It is possible for a procedure to throw an exception, catch it, partially handle the

exception, and then rethrow the exception to be handled by another procedure. It

is unlikely that you will need this feature for mathematical work. Nevertheless, we

describe how this is done.

A catch block that both handles an exception and also passes that exception on

is structured like this:

catch(type x) {
// handle the exception



344 C++ for Mathematicians

throw;
}

When this catch is invoked, the various statements in the catch block are executed.

Finally, the statement throw; is reached; this causes the original exception that was

caught to be thrown again.

The keyword throw in a procedure declaration

When you write a procedure that throws exceptions, it is advisable to announce

explicitly the types of exceptions that might be thrown. This is done immediately

after the argument list as in the following example.

double quotient(double p, double q) throw(double) {
if (q==0.) throw p;
return p/q;

}

If a procedure throws more than one type of exception, we list the various types

within the parentheses like this:

return_type proc_name(type1 p1, type2 p2, ..., typeN pN)
throw(xtype1, xtype2, ..., xtypeM) {

// the procedure
}

The addition of a throw list to the introduction of a procedure makes it clear to

the user of the procedure what kinds of exceptions the procedure might throw. Users

of the procedure need only inspect the first line to deduce this information and do

not need to hunt through the code for the various places an exception is generated.

Exceptions that are not listed on the list of throw types cannot escape from the

procedure. Either they must be caught inside the procedure or they trigger a runtime

error.

15.4 Friends
Private data members of a class are accessible to the class’s methods; other proce-

dures cannot inspect or modify these values. This is the essence of data hiding and

it protects objects from being corrupted. When you use a class, you do not interact

directly with its data, but only use its public methods.

However, when you create a class, it may be useful to create some procedures that

are permitted to access the class’s private elements. For example, recall the Point

class of Chapter 6. In addition to the various methods (member procedures of the

class), we also defined the procedures dist and midpoint. Neither of these is a

member of the class Point, and so they need to use getX and getY to learn their

arguments’ coordinates. C++ provides a mechanism by which midpoint and dist



Odds and Ends 345

can bypass data hiding; we do this by declaring these procedures friends of the class

Point.

The original header file for the Point class, Point.h, is given in Program 6.1.

Here we present an alternative version in which dist and midpoint are declared to

be friends of the Point class.

Program 15.4: A new Point.h header with friend procedures.

1 #ifndef POINT_H
2 #define POINT_H
3 #include <iostream>
4 using namespace std;
5

6 class Point {
7

8 private:
9 double x;

10 double y;
11

12 public:
13 Point();
14 Point(double xx, double yy);
15 double getX() const;
16 double getY() const;
17 void setX(double xx);
18 void setY(double yy);
19 double getR() const;
20 void setR(double r);
21 double getA() const;
22 void setA(double theta);
23 void rotate(double theta);
24 bool operator==(const Point& Q) const;
25 bool operator!=(const Point& Q) const;
26

27 friend double dist(Point P, Point Q);
28 friend Point midpoint(Point P, Point Q);
29

30 };
31

32 ostream& operator<<(ostream& os, const Point& P);
33

34 #endif

Notice that dist and double are now declared inside the Point class declara-

tion, and their declarations begin with the keyword friend. The friend keyword

signals that they are not Point class members (i.e., methods), but rather privileged

procedures that are permitted to access the private elements of Point.

With this header in place, the definitions of dist and midpoint (in the file

Point.cc) look like this:

double dist(Point P, Point Q) {
double dx = P.x - Q.x;
double dy = P.y - Q.y;
return sqrt(dx*dx + dy*dy);



346 C++ for Mathematicians

}

Point midpoint(Point P, Point Q) {
double xx = ( P.x + Q.x ) / 2;
double yy = ( P.y + Q.y ) / 2;
return Point(xx,yy);

}

Efficiency

By coding the midpoint and dist procedures as friends of the Point class, we

can bypass the calls to getX and getY. Consequently, these procedures should be

faster than the standard (nonfriend) versions.

Another way to improve performance is to code these procedures to use call by

reference (instead of call by value). In that case, the midpoint procedure would

begin like this:

Point midpoint(const Point& P, const Point& Q)

To send a Point object by value requires the transmission of two double values; this

comprises more bytes than call by reference where only a reference to the parameters

needs to be sent to the procedure.

Let us experiment with the effects of these differences. Let us write a program

that generates a long list of points and then finds the midpoints for all pairs of points

on the list. In this experiment, we use four different versions of midpoint:

• A standard (nonfriend) version with call by value,

• A standard version with call by reference,

• A friend version with call by value, and

• A friend version with call by reference.

The results2 of this experiment are summarized in the following chart:

Time in seconds (no optimization)

Standard version Friend version

Call by value 214 166
Call by reference 191 144

From these results, we observe that the friend version outperforms the corre-

sponding standard version; this is thanks to the friend’s ability to access data ele-

ments directly. We also observe that the call-by-reference versions outperform the

corresponding call-by-value versions; this is thanks to the reduced number of bytes

that need to be sent to the midpoint procedure.

2This experiment was performed on an 800 MHz G4 Mac OS X system using version 3.3 of the Gnu com-

piler. The list of points contained 20,000 entries and so 400 million calls to midpoint were generated.



Odds and Ends 347

However, these results were obtained when none of the optimization options for

the compiler was engaged. Modern compilers can deduce when a call to getX may

be streamlined away and the private value can be safely sent directly into the proce-

dure. Hence, when the experiment is repeated with all optimization options engaged,

we get the following results.

Time in seconds (full optimization)

Standard version Friend version

Call by value 66 72
Call by reference 45 44

From this second experiment we observe that there is no advantage (in this in-

stance) to setting up the procedures as friends, but we still achieve better performance

using call by reference.

15.5 Other ways to create types
15.5.1 Structures

C++ is an extension to the C language. The centerpiece of this extension is the

concept of a class. An ancestor to the class concept is known as a structure. Like

classes, structures are assemblies of data, and can be used as data types. However,

structures consist only of data (no associated methods) and one cannot extend struc-

tures using inheritance.

Structures are declared in a manner that is similar to how we declare classes. This

is how we declare a structure type that represents an ordered pair of real numbers:

struct RealPair {
double x;
double y;

};

With this in place, we may define variables of type RealPair, like this:

RealPair p;

Now, to access the data held in p, we use the familiar dot notation: P.x and P.y.

You never need to use structures in your programming. The exact same behavior

can be achieved using classes. Here is how RealPair would be declared.

class RealPair {
public:

double x;
double y;

};



348 C++ for Mathematicians

15.5.2 Enumerations

An enumeration is a variation on the integer data types. Suppose our program

deals with different sorts of infinity. In the context of real numbers, we might have

separate +∞ and −∞, but in the context of complex numbers we have a single “com-

plex infinity.”

In C++ we can create a type to represent these three options. The syntax looks

like this:

enum infinity { minusInfinity, plusInfinity, complexInfinity };

With this in place, infinity becomes a type and variables may be declared to be of

type infinity:

infinity X;

Now X may be assigned one of the three values declared in the enumeration; for

example, X = plusInfinity;.

Behind the scenes, the enumeration values (listed between the curly braces) are

given integer values. Therefore, enumeration types may be used in switch state-

ments:

switch(X) {
case minusInfinity:

// action
break;

case plusInfinity:
// action
break;

case complexInfinity:
// action
break;

}

It is not necessary to use enumeration types. The same effect can be achieved with

constant integer values:

const int minusInfinity = 0;
const int plusInfinity = 1;
const int complexInfinity = 2;

Using enumerations does have some advantages. If you decide to add an addition

kind of infinity, then you just add that new value to the enumeration list. If a variable

is declared to be an enumeration type, then the compiler will complain if you attempt

to assign a value to that variable that isn’t one of the allowed enumeration values.

This can help prevent errors.

15.5.3 Unions

A union is a data structure that allows different types of data to be held in the same

location in the computer’s memory. It is a trick that is designed to save memory. You

should not use these things. We mention how they work just for your amusement.



Odds and Ends 349

A union is a type (like classes, structures, and enumerations). To declare a union

that may hold an integer or a double value, you write this:

union number {
double x;
long i;

};

Now we can declare a variable to be of type number:

number Z;

The variable Z can hold only one data value, but that value may be either a double or

a long. For example, to assign a real value to Z we write, for example, Z.x=0.12;.

Or we can assign an integer value like this: Z.i=-11;.

What happens if we assign a value to a union using one of its types and then access

its value using another? This is just begging for trouble. The value extracted is bound

to be garbage. Consider this program.

#include <iostream>
using namespace std;

union number {
double x;
long i;

};

main() {
number Z;
Z.x = sqrt(2.);
cout << "Z.x = " << Z.x << endl;
cout << "Z.i = " << Z.i << endl;
return 0;

}

When run, it produces the following output.
� �
Z.x = 1.41421
Z.i = 1073127582

� �

15.5.4 Using typedef

The keyword typedef is used to define synonyms for existing types. For ex-

ample, rather than using double and long to declare variables, we mathematicians

might prefer to use the single letters R and Z instead. To do this we use the following

statements,

typedef double R;
typedef long Z;

The newly defined names may save you a lot of typing. For example, instead of

writing complex<double> to declare complex variables, we can use a typedef:

typedef complex<double> C;



350 C++ for Mathematicians

Choosing different names for types can improve the readability of your code and

save you a bit of typing. In addition, using your own type names may prove invalu-

able when revising your code. Suppose, for example, you initially used typedef to

make R a new name for double. Subsequently, you find that you don’t really need

the accuracy of double variables and that your arrays are too large for your com-

puter. So you decide to use float variables instead. All you need to do is to edit the

single line typedef double R; to read typedef float R; and recompile your

code.

15.6 Pointers
Our approach to C++ has scrupulously avoided pointers. We have been able to do

this for two reasons. First, call by reference obviates much of the need to use point-

ers. Second, pointers are often used to create intricate data structures. Fortunately,

the Standard Template Library provides a sufficiently rich assortment of ready-made

structures, that it is not necessary for us to make new ones. In short, we simply don’t

need pointers for our work.3

However, pointers are used by many C++ programmers, and a package that you

might download from the Web may require you to use pointers. We therefore close

our exploration of C++ with an overview of pointers.

15.6.1 Pointer basics

An ordinary variable holds a value that represents an integer, a real number, a

character, or an object of some class. A pointer is a variable whose value is a location

in the computer’s memory. Given an ordinary variable, one can learn the address of

that variable using the address-of operator, &. For example, if x is an int variable,

then &x is the location in memory where the value is actually held. This is illustrated

by the following program.

#include <iostream>
using namespace std;

int main() {
int x = 12;
cout << "x = " << x << endl;
cout << "&x = " << &x << endl;
return 0;

}

3The primary exception to this rule is the this pointer by which an object refers to itself.



Odds and Ends 351

The output of this program looks like this.4
� �
x = 12
&x = 0xbffff980

� �

By convention, memory addresses are expressed in base 16; the 0x prefix signals

that the value is in hexadecimal.

Pointer values can be saved in variables. In C++, every variable must have a type

and we declare pointer variables using an asterisk *. If the pointer variable points to

a location in memory holding a value of type base_type, then the pointer variable

is declared to be of type base_type*. For example, if z is type double, then &z is

type double*. This is illustrated in the following program.

#include <iostream>
using namespace std;

int main() {
double z = 1.2;
double* zp;

zp = &z;

cout << "z = " << z << endl;
cout << "zp = " << zp << endl;
return 0;

}

� �
z = 1.2
zp = 0xbffff980

� �

15.6.2 Dereferencing

Suppose the pointer variable zp is type double* (i.e., a pointer to a double

value). We can use zp to inspect and to modify the value held in the memory location

zp. The expression *zp stands for the value stored in the location to which zp points.

So, if we have the statement cout << *zp;, the value held at location zp is printed.

Similarly, the statement *zp = 3.2; changes the value held at location zp to 3.2,

but does not change the pointer zp itself. These ideas are illustrated in the following

example.

Program 15.5: Illustrating pointer dereferencing.

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 double z = 1.2;

4If you run this program on your computer, the output might be different because the variable x might be

stored at a different memory location.



352 C++ for Mathematicians

6 double* zp;
7 zp = &z;
8

9 cout << "zp = " << zp << endl;
10 cout << "*zp = " << *zp << endl << endl;
11

12 *zp = M_PI;
13

14 cout << "zp = " << zp << endl;
15 cout << "z = " << z << endl;
16

17 return 0;
18 }

On lines 9 and 10 we print the pointer itself and the value to which it refers. Then,

on line 12, we use the pointer to modify the value pointed to by zp. Because zp

points to the location that holds z, the value of z changes. Here is the output of the

program.
� �
zp = 0xbffff980

*zp = 1.2

zp = 0xbffff980
z = 3.14159

� �

The unary5 operations & (address of) and * (pointer dereference) are inverses of

each other. The first converts a variable into a pointer to that variable, and the second

converts a pointer to a memory location to the value held at that location.

Program 15.5 contains two hints about the perils of pointers. First, the variable

z is modified by an expression that does not use the letter z (line 12). This makes

the code more difficult to understand, more likely to contain bugs, and harder to

debug. Second, if we neglected to initialize zp (line 7), then we don’t know where

the pointer zp points. Consider this code.

#include <iostream>
using namespace std;

int main() {
double z = -1.1;
double* zp;

*zp = 9.7;

cout << "z = " << z << endl;
cout << "&z = " << &z << endl;
cout << "zp = " << zp << endl;
cout << "*zp = " << *zp << endl;

return 0;
}

5The operations & and * have different meanings when used as binary operations: bitwise-and and multi-

plication.



Odds and Ends 353

When run on one computer we have the following result.
� �
z = -1.1
&z = 0xbffff980
zp = 0xbffffa60

*zp = 9.7
� �

Note that zp points to some unknown location (it does not point to z) and so the state-

ment *zp = 9.7; changed some unpredictable location in the computer’s memory.

When this program is run on another system, the following message is produced:

Segmentation fault. This message was spawned by the statement *zp = 9.7;

because, on this second computer, zp pointed to a memory location that was “off

limits” to the program. (It is also possible to see the message Bus error; this also

arises from using bad pointers.) This latter behavior is actually much better than the

former because we see right away that something is wrong. In the first instance, no

error messages were generated; this type of bug is insidious and difficult to find.

15.6.3 Arrays and pointer arithmetic

As we mentioned in Section 5.2, there is a connection between pointers and arrays.

Recall that arrays can be declared in two ways. If, when we are writing our program,

we know the size of the array, we declare it like this:

int A[10];

However, if the size of the array cannot be determined until the program is run, we

use new and delete[]:

// determine the value of n
int* A;
A = new int[n];
// use the array
delete[] A;

In this second case, the declaration of the variable A is indistinguishable from the

declaration of a pointer-to-int variable. Indeed, in both cases, the variable A is a

pointer. By convention, the name of an array is a pointer to the first element (index 0)

of the array. This is illustrated by the following example.

#include <iostream>
using namespace std;

int main() {
int A[10];
for (int j=0; j<10; j++) A[j] = 10*j+5;

cout << "The array is: ";
for (int j=0; j<10; j++) cout << A[j] << " ";
cout << endl;

cout << "A[0] = " << A[0] << endl;
cout << "A = " << A << endl;
cout << "*A = " << *A << endl;



354 C++ for Mathematicians

return 0;
}

� �
The array is: 5 15 25 35 45 55 65 75 85 95
A[0] = 5
A = 0xbffff950

*A = 5
� �

The expressions A[0] and *A have exactly the same meaning. Both stand for the first

element of the array and may be used interchangeably. Thus, if we want to change

the first element of A to, say, 28, we may use either of the statements *A = 28; or

A[0] = 28;. The second, however, is easier to understand and therefore preferable.

Conversely, it is possible to use the subscript notation [] for pointers that were

not created to be arrays.

#include <iostream>
using namespace std;

int main() {
int z = 23;
int* A = &z;

cout << A[0] << endl;
cout << A[1] << endl;

return 0;
}

� �
23
-1073743488

� �

We see that A[0] yields the value 23. This follows from the fact that A[0] is identical

to *A. However, for this example, the notation *A is preferable because A does not

refer to an array.

Which leads to the question: In this context, what is A[1]? To answer, we need to

understand pointer arithmetic.

Consider this program.

#include <iostream>
using namespace std;

int main() {

int z = 23;
int* A = &z;

cout << A << endl;
cout << A+1 << endl;

return 0;
}



Odds and Ends 355

The first line of output shows that A equals 0xbffff980. It would therefore make

sense that the second output statement would produce 0xbffff981; that, however,

is incorrect. Here is the output.
� �
0xbffff980
0xbffff984

� �

We see that A+1 is 4 bigger than A. The reason adding one increases an int* pointer

by 4 is that (at least on my computer) the size of an int is 4 bytes. That is, if A points

to an int variable in the computer’s memory, then A+1 points to the next (possible)

int.

In general, one may add an integer to (or subtract an integer from) any pointer. If

p is a pointer to an object of type T, then adding n to p causes the pointer to change

by n×sizeof(T) bytes. Likewise, p++ increases p by sizeof(T) bytes.

It does not make sense to add, to multiply, or to divide a pair of pointers. However,

it does make sense to subtract a pair of pointers of the same type. The result is an

integer value defined as the difference in bytes divided by the size of the kind of

object to which the pointers point. The following code

int a = 34;
int b = 49;
int* A = &a;
int* B = &b;

cout << B-A << endl;

prints 1 on the screen.

We now return to our discussion of arrays. An array A of objects of type T places

the objects contiguously in memory. The location of A[1] is sizeof(T) bytes after

the location of A[0]. Therefore, because A points to the first element of the array

(i.e., to A[0]), A+1 points to the next element of the array (i.e., to A[1]). In general

A+k points to A[k]. Ergo,

A[k] is exactly the same as *(A+k).

15.6.4 new and delete revisited

In Section 5.5 we introduced the new and delete[] operators. These were used

to allocate and to release space for arrays. Here we discuss a slightly different use of

new and delete.

Let T be a class. The usual way to declare a variable of type T is with a statement

like this:

T x;

We find such declarations inside the body of a procedure. Such variables are local to

the procedure. Once the procedure terminates, the variable is lost. Variables declared

in this usual manner are stored in a portion of the computer’s memory called the
stack.



356 C++ for Mathematicians

An alternative method for setting up a variable is to use new. If T is a type, we

have the following statements,

T* xp;
xp = new T;

The new statement allocates sizeof(T) bytes of memory for a new object of type T.

The zero-argument constructor (if any) is invoked when initializing the new object.

Then, a pointer to that new object is assigned to xp. We may supply arguments to

the type T constructor using this syntax:

xp = new T(arg1, arg2, ..., argN);

When we use new (as opposed to the ordinary method of declaring variables) the

memory for the object does not reside on the stack. Instead, it resides in a different

portion of the computer’s memory called the heap. The practical difference is that

the object defined using new persists even after the procedure in which it was created

ends.

Once the program is finished using an object created with new, the memory al-

located to that object should be released. This is done with a delete statement:

delete xp;

Notice that the syntax here is slightly different from the situation in which we are

freeing an array; in the latter case we use delete[]. The square brackets indicate

that an entire of array of objects is being freed.

Once an object is created using new, it can be used just as any other object. How-

ever, we must remember that the variable xp is not of type T, but rather is a pointer

to an object of type T. Therefore, if T has a method named, say, reset, it is an error

to invoke this method with the expression xp.reset(). Instead, we should write

(*xp).reset(). Likewise, to access a data member of this object (say, it has a data

element named a), we do not use the expression xp.a; rather, we write (*xp).a.

There is an alternative way to write (*xp).reset() and (*xp).a. The C++

operator -> is defined as follows.

• xp->reset() means (*xp).reset(), and

• xp->a means (*xp).a.

The combination of a hyphen and a greater-than symbol is meant to look like an

arrow pointing to the part of *xp we want.

15.6.5 Why use pointers?

There are a few situations in which pointers are useful, but in nearly all cases,

one can do fine without them. Before call by reference was introduced into C++,

procedures written in C that needed to modify their arguments used pointers instead

of the values of the variables. For example, a procedure to swap the values of two

double variables would be written like this:



Odds and Ends 357

void swap(double* a, double* b) {
double tmp = *a;

*a = *b;

*b = tmp;
}

To use this swap procedure on variables x and y of type double, we would write

swap(&x,&y);. The ampersands are necessary because this version of swap re-

quires pointer-to-double arguments.

Similarly, suppose T is a class and that objects of type T are large (say, hundreds

of bytes). Then each time we pass an object of type T to a procedure, the object

is duplicated. Where possible, we can improve efficiency by passing a reference

to the object instead of using call by value. Alternatively, we can declare the pro-

cedure’s argument to be of type pointer-to-T. Passing a pointer is efficient, but we

need to remember to pass the address of the object, and not the object itself. This is

summarized in the following chart:

Declaration Invocation Efficiency

void proc(T x) {...} proc(x); slow
void proc(const T& x) { ... } proc(x); fast
void proc(T* x) { ... } proc(&x); fast

There is a natural way to avoid using new to create new instances of objects in

the heap. Recall that primary purpose for doing this is to avoid passing large objects

to and from a procedure. For example, a graph theory package would naturally

include a procedure for partitioning the vertex set into connected components. This

hypothetical procedure, named components, would take a single argument (of type

Graph) and return a partition. The standard way to define such a procedure is like

this:

Partition components(Graph g) {
Partition p;
// ...
return p;

}

Then, when we have the statement P = components(G); the computer would first

make a copy of G (to be held in g inside the procedure). Then the Partition

computed by the procedure (p) is copied back to the calling procedure to be saved in

P. If the graph is large, this is highly inefficient.

Some programmers would solve this problem by using pointers. In that paradigm,

the procedure would look like this:

Partition* components(Graph* gp) {
Partition* pp;
pp = new Partition;
// ...
return pp;

}



358 C++ for Mathematicians

To invoke this procedure, we use a statement like this: P_ptr=components(&G);.

Now G does not have to be copied; a pointer to G is all that needs to be sent to the

procedure and a pointer to the newly calculated partition is all that needs to be sent

back. It is then incumbent on the programmer to remember to delete pp; or else

suffer a memory leak.

There is a better, third alternative. We can use call-by-reference parameters to

prevent repeated copying, and avoid pointers altogether. In this case, we define the

procedure like this:

void components(const Graph& g, Partition& p) {
// calculate p from g

}

In this case, we call the procedure with a statement of the form components(G,P);.

The procedure would begin by erasing any data that happen to be in P and then

overwriting with the new partition.

Thankfully, there are hardly any situations in C++ that require the use of a pointer.

You may be required to use pointers when using other people’s packages. An in-

stance of this is the Standard Template Library’s sort procedure (see Section 7.4).

Every method in a class may use a pointer named this. The this pointer refers

to the object that invoked the method; that is, if we call X.method(), then method

may use a pointer named this that points to X. This is handy if method modifies

X and then wants to return a copy of X. This behavior is desirable when defining

operators such as += for a class. See Section 6.8.

15.7 Exercises
15.1 Create a Card class to represent cards from a standard 52-card deck. The class

should have the following features.

• A zero-argument constructor that creates a default card (say, the ace of

spades) and a two-argument constructor that sets the the value and suit

of the card. The user should be able to create cards such as this:

Card boss(ACE,SPADES);
Card weak(2, CLUBS);

• Comparison operators <, ==, and !=.

• An operator<< for writing cards to the screen in English words, such as

ace of spades or four of diamonds.

15.2 What is the difference between the following two statements?

T* xp = new T(10);
T* xp = new T[10];



Odds and Ends 359

15.3 In Exercise 5.11 you were asked to create a program that repeatedly asked for

large blocks of memory by using new without balancing calls to delete[].

When new is unable to allocate space (because memory has been exhausted),

it throws an exception of type std::bad_alloc. Revise your program so

that it exits gracefully (instead of crashing) when memory is exhausted.

15.4 C++ uses punctuation symbols for a variety of purposes. Many of these sym-

bols serve multiple purposes in the language. For example, * is used for mul-

tiplication and for declaring arrays (and for a few other purposes). In addition,

these symbols can be doubled (e.g., & versus &&) or combined with others (e.g.,

!=) to form additional meanings.

Find as many meanings for these symbols (either singly or in combination) as

you can:

+ - * / = < > ! & | ˜ :

Don’t bother listing all of the combined arithmetic/assign operators such as +=.

Classes may overload many of these symbols; list only the standard overloads.

15.5 Create a class named Constructible to represent numbers that can be de-

termined using the classical construction tools: straight edge and compass.

Specifically, define constructible numbers recursively by declaring that all in-

tegers are constructible; the sum, difference, product, and quotient6 of con-

structible numbers are constructible; and the square root of a constructible

number is constructible. The complex numbers that can be built this way cor-

respond to points in the plane that can be constructed using a straight edge, a

compass, and a given unit length.

The objects in this class should represent their numbers exactly. That is, the

number 2 +
√

5−√
2 should be held as such, and not as a decimal (double)

approximation.

This class should include the following methods.

• A zero-argument constructor to create the constructible number zero.

• A one-argument constructor that takes a long integer argument.

• A copy constructor.

• A destructor.

• An assignment operator.

• The binary operators + - * / (either two Constructible arguments

or a Constructible and a long integer) and unary -.

• A sqrt() method that returns the square root of the constructible num-

ber on which it was invoked.

6Of course, division by zero is forbidden.



360 C++ for Mathematicians

• A value() method that returns a complex<double> value giving the

approximate decimal value of the constructible number.

• An operator<< procedure that writes the number to an output stream

in a suitable format such as TEX

2 + \sqrt{5 - \sqrt{2}}

or Mathematica

2 + Sqrt[5 - Sqrt[2]]

or some sensible method of your choosing.

15.6 Tautology Checker. Create a program to check if Boolean expressions are tau-

tologies. A Boolean expression is an algebraic expression involving variables

(a, b, c, . . . ) and logical operations (and, or, not, implies, iff, etc.). A tautology
is a Boolean expression that evaluates to TRUE for all possible truth values of

its variables. For example, ((x → y)∧ x) → y is a tautology.

The program should be invoked either (a) with a command-line argument spec-

ifying a file that contains the Boolean expression to be tested, or (b) with no

command-line argument, in which case the user is prompted to type in the

Boolean expression.

The variable names may be any single lowercase letter (a to z). Use the fol-

lowing for operation symbols.

Symbol Meaning
+ or ∨
* and ∧
- not ∼
> implies →
< implied by ←
= equivalent ↔
0 TRUE

1 FALSE

Use reverse Polish notation (RPN) for the expressions (these are easier to

process than ordinary algebraic expressions). For example, the expression

((x → y)∧x) → y would be entered as x y > x * y >. Spaces are optional,

so this may also be entered as xy>x*y>.

It may be convenient for the user to enter an expression over several lines. The

user should indicate that the expression is finished by typing a period.



Part IV

Appendices





Appendix A

Your C++ Computing Environment

The methods by which you type, compile, and run programs varies between different

computers with different operating systems.

There are two broad approaches to this edit/compile/run process.

• You use separate tools in terminal windows. That is, you type commands

in a window to invoke an editor for creating and modifying your C++ files,

type another command to compile your code, and another command to run the

program.

The code in this book was developed using the emacs editor and compiled

using the g++ compiler. These tools are available for many computer systems

(Windows, Macintosh, UNIX) and available for free from the Free Software

Foundation (www.gnu.org).

• You use an integrated development environment (IDE). This is a software ap-

plication that provides a built-in text editor (for creating and modifying your

code), a compiler, a debugger, and a means to run your program. Such envi-

ronments include Microsoft’s Visual Studio on Windows computers, Apple’s

Xcode on Macintosh OS X, KDevelop on Linux, and Metrowerk’s Code War-

rior which runs on several platforms.

Which approach you prefer is a matter of taste. The installation of these tools

ranges from simple to complex. You may need some assistance from a friendly com-

puter science colleague in getting started. If you can type in the code in Program 1.1,

compile it, and run, then you are well under way!

In this Appendix we provide specific advice to help you get started programming.

A.1 Programming with a command window and a text editor
In this approach your work is performed using two windows: a text editor and

command shell. The specific tools we discuss come from the Gnu/UNIX world, but

are available for Windows, Macintosh, Linux, and many other systems. It is possible

that these tools are already present on your computer (especially if you are using

Linux or some variation of UNIX).

363



364 C++ for Mathematicians

A.1.1 What you need and how to get it (for free)

To program in this manner you require the following.

• A shell command window (running sh or one of its variants such as bash or

csh).

• A text editor (the emacs or Xemacs editor, or some other editor designed for

programming).

• A C++ compiler (such as g++ from Gnu).

• The make program to automate the compiling process (optional).

• The Doxygen program for creating Web-based documentation for your own

program (optional). See Appendix B.

If you are using a UNIX computer, these tools are likely to be already installed.

For Windows and Macintosh users, you have the following options.

Cygwin on Windows

For Windows, we recommend that you install Cygwin (available for free from

www.cygwin.com). This is a system that provides UNIX-like tools including the

pieces you need: a bash terminal window, the g++ compiler, emacs and Xemacs

text editors, and the make program.

Follow the download and installation directions at the Cygwin Web site (see “Set-

ting Up Cygwin”).

Next, run the setup.exe program which presents you with a long list (separated

into categories) of packages to install. Select the packages you want to install. We

recommend the following.

bash
doxygen
emacs
emacs-X11
gcc
gcc-g++
make
xemacs
xorg-x11-xwin
xterm

The Cygwin setup program may install other packages that you did not select be-

cause it understands how the packages you want depend on other packages. For ex-

ample, selecting the xemacs package triggers the inclusion of other packages needed

to provide the X-window environment.

If all has gone well, new entries will be present in your Start menu, including an

entry to start a bash shell:

Start > Programs > Cygwin > Cygwin Bash Shell



Your C++ Computing Environment 365

Macintosh tools

Macintosh OS X comes with many of the tools you need. For example, the Ter-

minal application launches a bash shell.

If X11 has not been installed (see the Utilities folder inside the Applications

folder), then install it using the disks (CD/DVD-ROM) that came with your com-

puter.

You need the Developer Tools. Check if there is a folder named Developer at the

top level of your hard drive (and be sure that inside that folder there is a subfolder

named Applications containing the Xcode application). Alternatively, open a Termi-

nal window and type the command: g++ --version. If the computer complains

g++: command not found then you need to install the Developer Tools, but if it

responds with the version of g++ installed, then you know that the compiler is al-

ready installed on your computer. The make program should also be installed (try

make --version).

If the Developer Tools are not on your computer, they are either available on the

disks that came with your computer or you can download them (for free) from Ap-

ple’s Web site (developer.apple.com). Get a free membership to their Developer

Connection, navigate to Developer Tools, and download Xcode.

Next you need a text editor such as emacs. You can find Macintosh-style versions

of emacs for free on the Web; see:

http://home.att.ne.jp/alpha/z123/emacs-mac-e.html

Finally, install the Doxygen application, available for free from doxygen.org.

This is a standard Macintosh application that you install simply by dragging its icon

to your Applications folder. (See Appendix B.)

A.1.2 Editing program files

To create the files for your C++ project you need a text editor such as emacs. Do

not use a word processor, such as Microsoft Word, for this purpose.

A good programming editor makes your life easier. As you type your program,

the editor automatically indents lines of code the proper amount so you can see the

structure. It also highlights keywords in color. If, for some reason, the editor does

not indent your typing the distance you expect or a keyword does not appear in

color, then you have a quick visual clue that you mistyped something. Smart text

editors (such as emacs) detect what sort of file you are editing and place you into an

appropriate mode1 for that sort of file.

Begin by creating a folder (directory) where you want to save your program. If

you wish to use code you have already created for another project (or code from this

book on the accompanying CD), you can copy the files you want into this directory.

1In emacs, editing a .h file places you in an editing mode meant for C, and not for C++. To switch to

C++ mode, type: M-x c++-mode where M-x means “meta-x”.



366 C++ for Mathematicians

A typical C++ program has several files: .h header files and .cc code files. Save

them all in the working directory you created.

The emacs editor takes some practice because its conventions are different from

other (non-UNIX) programs. The mouse-driven menus in emacs (or Xemacs) make

getting started easier, but it is worth learning the keyboard shortcuts for common

tasks including creating, opening, and saving files. I recommend you work through

the tutorial that comes built in to emacs (available from the Help menu).

A.1.3 Compiling and running your program

By now you have created and saved your program in its own directory (folder) on

your computer and you are ready to see if it works. Open a shell window2 and nav-

igate to your working directory. The shell command you need to change directories

is cd (for change directory). Typing cd (and then pressing return) places you in your

“home” directory. To move to a subdirectory type cd subdir where “subdir” is

the name of the subdirectory. To move up a level in the hierarchy, type cd .. or to

move to a directory directly, type the full path, like this:

cd /home/barney/programming/twin-primes

If you lose track of where you are in your computer’s file structure, the command

pwd (for print working directory) reports your current location.

One more useful shell command is ls. The ls command lists all the files in the

current directory.

Single file programs

If your program consists of just a single file (e.g., poem.cc) then compile your

program with this command:

g++ poem.cc

After a brief pause, one of two things happens.

• With luck, the computer responds by typing the shell prompt (typically a sin-

gle dollar sign $). This means that the program compiled without errors and

created a ready-to-run program. Depending on your system, the program is

named a.out (most UNIX systems) or a.exe (on Windows/Cygwin).

• Or, more likely, the compiler types warnings and error messages. Unfortu-

nately, these can be difficult to understand. The error messages usually report

line numbers where the compiler got into trouble. However, that is not neces-

sarily the line number where the programming error resides. You will quickly

learn that an error reported for line n is often caused by a missing semicolon on

line n− 1. Another common error is to forget the using namespace std;

statement.

2Use a bash or similar shell window. If you are using Windows, do not open a DOS command window;

instead, use the bash command terminal supplied by Cygwin.



Your C++ Computing Environment 367

When you get error messages, go back to your editor and figure out what’s

wrong. Make some changes and try compiling again.

When compiling is successful, the program is ready to run. In the shell window

type

./a.out

(or ./a.exe for Windows/Cygwin). The program runs and the output appears on

the screen.

If nothing appears to be happening and the shell prompt has not returned, your

program may be stuck in an infinite loop. To force the program to stop, type a

Control-C (while holding down the Control key on your keyboard, press the C key).

You might not want to name your program a.out (or a.exe). You may either

compile as described above and change the name of the executable, or you can com-

pile with the following command,

g++ poem.cc -o poem

The -o poem option causes the compiler to write the executable program to a file

named poem. (Use poem.exe for Windows.)

Multiple file programs

In most cases, your program spans multiple files. Typically, each class has a .h file

and a .cc file. The main() procedure is in yet another file. For example, suppose

your project consists of the following files: gcd.h, gcd.cc, Mod.h, Mod.cc, and

main.cc.

The simplest way to compile your program is with this shell command:

g++ gcd.cc Mod.cc main.cc

This compiles the program in these three source files and writes the executable to

a.out (or a.exe). Alternatively, the shell command g++ *.cc compiles all files

that end with .cc in the current directory.

The .h files do not need to be mentioned in the compile command; they are auto-

matically absorbed into the appropriate .cc files by the #include directives.

If your project has just a few .cc files, then compiling them all with a single

command works well. Imagine, however, that your project has ten different .cc files.

You compile with the convenient g++ *.cc command, and the compiler complains

about an error in one of the files. You fix the offending .cc file and compile again.

The annoyance with this approach is that C++ compiling can be time consuming.

So, rather than compiling all the .cc files at once, it is possible to compile them one

at a time (fixing errors in each as you go), and then combine the pieces into a single

executable program. Here is how you do this.

Suppose the .cc files are named one.cc, two.cc, . . . , nine.cc, and finally

main.cc (which is the only source file that contains a main() procedure). To com-

pile just the file one.cc type this:

g++ -c one.cc



368 C++ for Mathematicians

The -c option tells the compiler that this is just a piece of the whole program, so

don’t try to build a full executable a.out. Instead, the compiler creates a file named

one.o. If there is a problem while compiling one.cc, we fix the error and compile

this part again. This is much faster than recompiling all the files every time you

modify just one of them.

Of course, you also need to compile two.cc with the command g++ -c two.cc,

and so on for all of the .cc files.

Finally, you have collected several .o files that the computer needs to stitch to-

gether to make the executable a.out (or a.exe). This phase is known as linking the

object (.o) files. To link the .o files together, type this:

g++ *.o

Alternatively, you may name all of the .o files on the command line instead of using

the wildcard *.o. You may also use the -o option to write the executable file to a

different file name.

If your project has just a few .cc files, then this technique is quite manageable.

If you have many .cc files, then it is easy to lose track of which .o files are up

to date with their corresponding .cc files. Fortunately, there is a good way to au-

tomate this procedure using the make program. We describe this tool in a moment

(see Appendix A.1.5) but first we introduce additional options you can give to the

compiler.

A.1.4 Compiler options

In the previous section we introduced two options that can be used with the g++

compiler. The -o option is used to specify the name of the final executable program

and the -c option is used to compile a .cc file just to a .o file and not to try to link

the object files into an executable program.

Here are some other options you can give to the g++ compiler.

• -Wall: This tells the compiler to issue all warnings. There are C++ statements

that are not exactly errors, but are not fully legitimate C++. The compiler

can proceed, but something is not quite right. With this option specified, all

possible warnings are issued.

It’s a good idea to use this option and fix your code so that all warnings disap-

pear.

• -ansi and -pedantic: These options disable nonstandard C++ features.

Compiler manufacturers often include extensions to the standard C++ lan-

guage. If you plan to use your program only on your own computer, then there

is no serious problem in taking advantage of these nonstandard options. How-

ever, if you try to compile your program on another computer with a different

C++ compiler, these special features might not be available. By including

these options you ensure the portability of your code.



Your C++ Computing Environment 369

• -O, -O2, and -O3: These options engage the compiler’s optimizer. (Note: The

O is the uppercase letter oh, and not the numeral zero.) Without these options,

the computer compiles your code as quickly as possible, but does not produce

the best possible (i.e., fastest) executable code. There are several “tricks” the

compiler can apply during the compilation process and these options request

greater and greater levels of optimization. The basic optimization is -O (which

is equivalent to -O1). Each of -O2 and -O3 employ additional optimization

techniques.

• -g: This causes the compiler to produce a program that can be run using a

debugging tool (gdb). The gdb debugger is complicated to use and beyond

the scope of this book. Some advice on debugging your code is presented in

Appendix A.3.

• -p and -pg: This causes the compiler to insert extra code in your program so

that it can be analyzed with a profiling tool (prof and gprof, respectively).

These tools measure how much time your program spends in each of its pro-

cedures and how many times each procedure is called. If you need to make

your program run faster, then this information tells you where to concentrate

your efforts.

• -I directory: This option tells the compiler where to look for nonstandard

header files. If you have downloaded and installed some special C++ package,

you may need a #include directive for its header files. These header files

might not be installed in a location that the C++ compiler knows to check.

One solution to this problem is to copy the header files into your project’s

directory. A better alternative is to tell the compiler where to find the special

header files and for that you use the -I option. (See the next bullet for more

details.)

• -L and -l options: Packages that you download from the Internet may contain

libraries—these are similar to .o files in that they contain compiled programs

that can be linked into your final program. For example, the Gnu Multipreci-

sion Package (GMP) is distributed with .h header files and libraries. One uses

the -I option (described above) to specify the location of the .h files and the

-L and -l options to specify the location and name of the library.

For example, on my computer the GMP header files are located in the directory

/sw/include so if I have #include <gmpxx.h> in my program, I need the

-I /sw/include option when I compile my programs.

Furthermore, because the GMP procedures are embedded in a library, I need

to tell the computer where the library is located (because on my computer, it’s

in a nonstandard location) and the name of the library I need. The -L option

specifies the location of the library. For my situation, I would type -L/sw/lib

to specify the location. The names of the GMP libraries are gmp and gmpxx

(we need both when working in C++). To tell g++ to use these libraries, we

use the options -lgmp -lgmpxx.



370 C++ for Mathematicians

More details: The -I option is information for the compiler whereas the -L

and -l options are used by the linker. So if I were to compile the various

source files of my program separately, the commands I use would look like

this:

g++ -c alpha.cc -I /sw/include
g++ -c beta.cc -I /sw/include
g++ -c gamma.cc -I /sw/include
g++ -c main.cc -I /sw/include
g++ *.o -L/sw/lib -lgmp -lgmpxx -o my_program

While writing and debugging your program, I recommend you use the -Wall,

-ansi, and -pedantic options. Once the program is working properly, do a final

compilation with -O3.

A.1.5 Introduction to make

A program with just a few .cc files is easy to compile with a single command,

either g++ *.cc or

g++ alpha.cc beta.cc gamma.cc main.cc -o myprog

Alternatively, each piece can be individually compiled and the .o files linked with

these commands:

g++ -c alpha.cc
g++ -c beta.cc
g++ -c gamma.cc
g++ -c main.cc
g++ alpha.o beta.o gamma.o main.o -o myprog

However, if the project involves more .cc files, it is annoying to need to compile

each .cc file separately, and difficult to remember which .cc files have been suc-

cessfully compiled into the corresponding .o files. One is tempted to type g++ *.cc

and endure the slow compilation process.

Happily there is an alternative: The program make automates the entire process.

To use make you create a file in your project directory named Makefile and then

type make at the shell command prompt.

A basic Makefile for compiling a program based on four .cc files (alpha.cc,

beta.cc, gamma.cc, and main.cc) is presented in Program A.1.

Program A.1: A basic Makefile.

1 OBJS = alpha.o beta.o gamma.o main.o
2 CXXFLAGS = -Wall -pedantic -ansi
3

4 myprog: $(OBJS)
5 g++ $(OBJS) -o myprog
6

7 clean:
8 rm -f *.o



Your C++ Computing Environment 371

Line 1 defines the object (.o) files that need to be created. Line 2 sets the options

that g++ is to use when compiling the .cc files.

Line 4 indicates that the program myprog depends on the files listed in OBJS. The

syntax $(OBJS) tells make that the variable OBJS is to be replaced by its value (i.e.,

the list of .o files on line 1). The program myprog is called a target and line 4 means

that before myprog can be made, each of the files after the colon (i.e., the four .o

files) must be made.

Line 4 tells make on which files myprog depends, whereas line 5 tells make how

to create the program myprog from the list of .o files. Notice that line 5 is indented;

what you can’t see is that this indentation is caused by entering a TAB character

into the file (and not by typing several spaces). The TAB is mandatory. Line 5 is

equivalent to this:

g++ alpha.o beta.o gamma.o main.o -o myprog

In other words, line 5 tells make how to link the object files into the executable

program named myprog.

(Ignore lines 7 and 8 for now.)

Interestingly, there is no indication in the Makefile of how to create the .o files

from the .cc files. That’s because make is smart enough to figure that out. It knows

that if there is a file named alpha.cc in the working directory, then it is compiled

into alpha.o using the command g++ -c alpha.cc.

However, by setting the special make variable CXXFLAGS on line 2, make adds

-Wall, -pedantic, and -ansi.

With this Makefile in the same directory as alpha.cc, beta.cc, gamma.cc,

and main.cc, we type make at the shell prompt. Here is what we see.
� �
$ make
g++ -Wall -pedantic -ansi -c -o alpha.o alpha.cc
g++ -Wall -pedantic -ansi -c -o beta.o beta.cc
g++ -Wall -pedantic -ansi -c -o gamma.o gamma.cc
g++ -Wall -pedantic -ansi -c -o main.o main.cc
g++ alpha.o beta.o gamma.o main.o -o myprog

� �

Now suppose we want to make a change to, say, beta.cc. If we type make again,

this is what happens:
� �
g++ -Wall -pedantic -ansi -c -o beta.o beta.cc
g++ alpha.o beta.o gamma.o main.o -o myprog

� �

Notice that only beta.cc is recompiled and then myprog is relinked. The other .o

files do not need to be rebuilt, and they weren’t.

If your project has many .cc files, they might not fit conveniently on a single line

in the Makefile. You can use a backslash character \ to show that the definition of

OBJS continues onto the next line, like this:

OBJS = one.o two.o three.o four.o five.o six.o \
seven.o eight.o nine.o main.o

Now let’s return to lines 7 and 8. Line 7 defines a target named clean with no

dependencies and line 8 tells make what to do when we want to make clean. Line 8



372 C++ for Mathematicians

causes the shell command rm (for remove) to delete all files that end with .o, that is,

the object files. Once the program is functioning properly, we do not need the .o files

and they can be removed. To cause this to happen, we simply type make clean.

(Note: The standard way to run the make program is to type make target-name at

the command prompt. However, if target-name is omitted, the first target found in

the Makefile is built. Hence typing make or typing make myprog are the same for

this Makefile. However, to cause make to run the commands for clean, we need

to type make clean.)

There are two other reasons why we might want to remove all the .o files.

• Once the program is working properly, we may wish to recompile with -O3

added to line 2 of the Makefile. To force make to compile everything again,

we type make clean and then make.

• This simple Makefile cannot determine that .cc files may depend on .h

files. A change to a .h file should be followed by a recompilation of all .cc

files that #include it. It is possible to construct a more elaborate Makefile

that deals with this issue, but a simpler solution is this: if you change header

files, do a make clean followed by a make.

A.2 Programming with an integrated development environment
An integrated development environment (IDE for short) is a computer application

that provides all the tools you need to write programs. It includes a text editor (for

creating and modifying your .h and .cc files), a compiler, a debugger, and many

other tools. They are extremely powerful and can be used to work on massive soft-

ware engineering projects involving teams of programmers. These tools provide a

dizzying array of menus and control buttons that can intimidate a novice program-

mer.

Fortunately, you can begin by using only a small fraction of the IDE’s capabilities.

As your familiarity with the tool grows, you can gradually add more of its features

to your repertoire.

In this section we give a brief introduction to Microsoft Visual Studio (for Win-

dows) and Xcode (for Macintosh OS X, available for free from Apple).

Please note that software manufacturers regularly release new versions of their

products. The new versions may have different features and the locations of menus

and other controls may vary from version to version.

Common features

Visual Studio and Xcode share some basic organizing principles. In both you

create projects. A project houses all the pieces you need for your program such as



Your C++ Computing Environment 373

.cc and .h files.3 You either create these component files using the IDE’s built-in

editor or you add files that have already been created elsewhere (via an Add menu

item). Once the files are written and incorporated into the project, one builds the

project; this means compiling the various source files and creating an executable

program. Next, we run the program (within the IDE environment) and observe the

action in a terminal window. If any errors crop up during the build phase, the IDE

provides a convenient way to jump to the problematic portion of the source file.

Both IDEs provide a debugger. You set break points in the program; the break

points cause the program to pause at the statement where they are set. While the

program is suspended, you can inspect the values held in variables. You can then start

the program running again. If a subsequent break point is reached (or the same break

point is met again), you have another chance to inspect the contents of variables.

Both IDEs have a concept of a build configuration. The different configurations set

different options for how the project is to be built. By default, both provide configu-

rations named Debug and Release. Typically, one works in the Debug configuration

until the program is working as expected. Then one switches to Release for a final

build.

A.2.1 Visual C++ for Windows

Visual Studio is a integrated development environment sold by Microsoft. Install

this on your computer using the disks provided.

Starting a new project

Launching Visual Studio4 brings you to a start page with a button labeled New
Project that you should click.

A “New Project” window opens with a list of project types (on the left) and tem-

plates (on the right). Follow these steps.

1. Select Visual C++ Projects from the left and then Win32 Console Project
from the right. Type in a name and a location for your project in the lower

portion of the box: the location is the full path name of a folder on your hard

drive (e.g., C:\research\math-programs\). The name is the name you

want to give to your project (e.g., twin-primes). Fill these in and click OK.

2. A dialogue box appears; in the left of this box click on Application Settings.

On the right, check Empty Project under Additional Options. Click Finish.

3More complicated projects can include images, sounds, video, and the like.
4You can launch Visual Studio from your Start menu.



374 C++ for Mathematicians

Adding files to the project

You are now ready to create your program files. From the File menu5 select Add
New Item. A dialogue box opens from which you select either C++ File or Header
File (and you can safely ignore all the other options). Choose the type of file and

type in its name in the text box at the bottom of the window. Note that Visual Studio

expects the name of your C++ source file to end with .cpp (and not .cc as we have

been using in this book). Feel free to use whichever naming convention you prefer.

Click OK.

You can now start typing your program. Create additional source files by using

Add New Item until you have created all the files you need.

If there is a file already on your computer that you want to add to this project

(perhaps a file you created in a different project), use the Add Existing Item menu6

option.

If you want to edit a file that is already in your project, double-click on its icon in

the Solution Explorer on the right side of your screen.

Compiling

Once your source files are collected in your project, it’s time to compile. Under

the Build menu, select Build Solution. This engages the compiler. As the compiler

runs, it reports its progress in a window at the bottom of your screen.

When the compiler finishes you see, with luck, a message that the build succeeded.

More likely, however, there are errors in your program in which case a “Build Error

Task List” appears in the bottom of your screen. Read the first error carefully and

then double-click on it. Visual Studio opens the source file containing the error and

takes you directly to the line at which it ran into trouble (which might not be the

faulty line in your program).

After you fix the first error on the Task List, you have two choices. You can

proceed to fixing the second error or you can try to compile again. Sometimes fixing

the first error also fixes several subsequent errors (e.g., if you forgot to declare a

variable). In this case, rebuilding removes several errors from the Task List and

helps you move efficiently to the next trouble spot.

Iterate this process of building the project and fixing errors until no errors or warn-

ings remain.

Running and debugging your program

Once the program compiles without errors, it’s time to start it running. To do this,

go to the Debug menu and choose Start Without Debugging. When the program

starts running, a terminal window opens showing the program’s output and provides a

place for you to type any input the program requires. When the program finishes, the

5Or from the Project menu.
6Available either in the File or Project menu.



Your C++ Computing Environment 375

message Press any key to continue is typed in the terminal window—press a

key and the window closes.7

If your program is not behaving as you expected, then you need to find the error

in your program. This is more difficult than fixing problems that arose during the

compilation process. Fortunately, the debugger in Visual C++ is extremely helpful

(also see the advice in Section A.3 later in this appendix). Open any of your C++

code files. To the immediate left of your program is a gray strip; click next to a

statement in your program and a large red dot appears in this strip. You have just

set a break point in your program. Place these break points wherever you want your

program to pause. Now select Start from the Debug menu. The program runs until

it reaches the first break point and then pauses. In the lower portion of the screen you

can find a list of variables and their values. You can check these to be sure they are

what you expect. When you are ready to continue, select Continue from the Debug
menu. The program resumes, pausing again at the next break point.

When running under the debugger, the terminal window closes immediately after

the program ends (so you can’t see what was written to that window). To prevent

this from happening either set a break point at the return 0; statement in main()

or add these lines to the end of your main():

cout << "Program finished" << endl;
cin.get();

Now when you run the terminal window does not disappear until you type a return

after seeing your Program finished message.

Final version

Once your program compiles and runs without errors it is time to perform one

final build. When Visual Studio starts a new project, the project is in a Debug config-

uration. Now that our program is working, we switch to a Release configuration by

pulling down the Build menu and selecting Configuration Manager. This opens a

dialogue box whose topmost control is a pull-down menu of configurations. Switch

this from “Debug” to “Release” and click the Close button.

Having switched the configuration to Release, build the project again. Visual Stu-

dio uses different compiler options for different configurations and, by default, the

Release configuration has compiler optimizations enabled so the executable program

runs faster.

(Note: You can modify the compiler options for the Release configuration. Pull

down the Project menu and select the Properties item for your project (the last

item in this menu). Select the C/C++ tab on the left and then the Optimization
subtab. Now, on the right, you find the various options that can be set to adjust the

optimization. In general, choose optimizations that favor higher speed as opposed to

smaller size.)

7Note: If you choose Start from the Debug menu, then the terminal window closes immediately after the

program finishes running.



376 C++ for Mathematicians

With the final version built, you do not have to use Visual Studio to run your

program. Using the Windows, navigate to the directory that houses your project

(e.g., C:\research\math-programs\twin-primes). Within this folder, open

a folder named Release where you should find an executable file named (based

on our illustration) twin-primes.exe. This file can be copied to any convenient

location on your hard drive. You can run this program either by double-clicking it, or

by opening a DOS command window, going to the appropriate director, and typing

its name.

A.2.2 Xcode for Macintosh OS X

Starting a new project

Launch Xcode8 and select New Project from the File menu. Scroll until you reach

the heading Command Line Utility under which you select C++ Tool; click Next.
Type in a name for your project and select a directory (folder) in which this project

is to reside. Click Finish.

A project window opens. Notice that a main.cpp file is already present in the

project. You may either edit this file (double-click its name to get started) or you can

delete it: select the file (single-click on its name) and press the Delete key on your

keyboard. Choose Delete References & Files and main.cpp is deleted from the

project and from your hard drive.

Adding files to the project

You are now ready to create your program files. From the File menu select New
Empty File. This opens a new window in which you can type your program (either

a header .h file or a code .cc file).

Start typing and be sure to save your work. The first time you save you are

prompted for a name and location for your file. Save your work inside the project

folder. Next, the computer asks if you wish to add this file to your project; click Add
to Project and then Add.

If there is a file already on your computer that you want to add to this project

(perhaps a file you created in a different project), select9 Add to Project from the

Project menu. Navigate until you find the file you want and then click Add. A

second panel opens at the top of which is an option to Copy items into destination
group’s folder (if needed). Click the check box next to this to indicate that you want

a copy of the file made inside your project; then click Add.

To edit a file that is already in your project, simply double-click on its name in the

project window.

8Launch Xcode by double-clicking on its icon. The Xcode application is not in the main Applications

folder. Rather, use the Finder to navigate to the top level of your hard disk, open the Developer folder and

then the Applications folder inside there.
9If the Add to Project option is dimmed, click once on the name of your project just below the heading

“Groups & Files” in the left portion of your main project window.



Your C++ Computing Environment 377

Compiling

Once your source files are collected in your project, it’s time to compile. Click on

the Build icon in the project window (or select Build from the Build menu) and the

compiler gets to work.

When the compiler finishes you see, with luck, the message “Build succeeded” at

the bottom left of the project window. More likely, however, is that there are errors to

fix. The number of errors found in each file is reported in the main project window.

You should also see a small red stop sign (octagon) with a white X at the lower right

corner of the project window; click on this to bring up a list of errors. As you click on

each error, the lower portion of the window jumps to the trouble spot in the relevant

file.

After you repair the first error, you have two choices. You may proceed to fixing

the second error or you can try to compile again. Sometimes fixing one mistake

resolves subsequent errors; in this case, rebuilding removes several items at once

and allows you to move efficiently to the next trouble spot.

Iterate this process of building and fixing errors until no errors or warnings remain.

Running and debugging your program

Once the program compiles without errors, it’s time to run it. Simply click on

the Build and Go button on the project window (or select Build and Run from the

Build menu) and the program starts executing. A window opens to show you the

output of the program and provide a place for you to type any input the program

requires.

If your program is not behaving as you expected, then you need to find the error(s)

in your program. This is more difficult than fixing problems that arose during the

compilation process. Fortunately, the debugger in Xcode is extremely helpful (also

see the advice in Section A.3 later in this appendix). Open any of your C++ code

files (by double-clicking its name in the project window). If you click in the left

margin next to any of the statements in the code a small black arrow appears. This

indicates that you have set a break point into the program. Place these break points

wherever you want the program to pause. To remove a break point, simply click on

it.

Once the break points are set, choose Build and Debug from the Build menu. The

program starts running and then stops at the first break point it encounters. A list of

variables with their current values is displayed. If some of the variables are classes,

you can inspect the data members (including private members) for those objects.

Continue executing the program by pressing the Continue button on the debugger

window. The program now resumes execution until it reaches another break point or

the end of main().

Final version

Once your program is functioning properly it is time to perform one final build.

In the Project menu, find the Set Active Build Configuration submenu, and select



378 C++ for Mathematicians

Release.

Next select Edit Project Settings from the Project menu. A window appears with

four panel selectors at the top; choose Build from these. Reading from the top of

the page, there is a drop-down menu for “Configuration”—choose “Release.” Next

there is a drop-down menu labeled “Collection”—choose “Code Generation.”

You should see a list of setting/value pairs. Find the “Optimization Level” setting

and, using the up/down arrows to the right, set the optimization level to “Fastest

[–O3].”

Now close the Info window and click the Build button on the main project window.

This creates a “release” version of your program.

Once this final version is built, you do not have to run it in Xcode. Instead, you can

find the executable program inside the project directory. (Open the project directory

in the Finder, double-click the folder named “Build” and then the folder named “Re-

lease.”) You may now either double-click the executable file you find there, or copy

it to another location on your hard drive. Alternatively, you can open a Terminal win-

dow and change to the directory containing the executable program. For example,

if the project (and the program) is named say, poetry, you launch the program by

typing ./poetry once you are inside the appropriate directory.

A.3 General advice on debugging
Finding mistakes in computer programs can be a frustrating painful experience.

Here we present some advice for how to find errors in programs and some common

pitfalls.

• Keep procedures short. It can be difficult to understand what’s happening in

a long procedure. Break long procedures into a few shorter ones. Then you

can test each individual piece to make sure it behaves as expected.

• Name and document your procedures with care. Suppose you have a pro-

cedure declared like this:

double my_proc(double x, double y, long j);

This may make perfect sense to you today, but when you return to your work

after the weekend, you may be confused by what my_proc does and what its

arguments represent.

Liberally comment your code and use names that reflect the meaning of the

symbols.

• Print, print, print! Sprinkle your code with output statements to show the

contents of variables at each point of the program. Here’s a handy way to do

this. In each procedure, define a bool variable named DEBUG and wrap your

debugging code in an if statement, like this:



Your C++ Computing Environment 379

int count_instances(const Group& G) {
const bool DEBUG = true;
...
if (DEBUG) {

cerr << "i = " << i << " and j = " << j << endl;
}
...

}

Once this procedure is working, you can edit the first line of the procedure to

read

const DEBUG = false;

thereby switching off all the debugging code you entered.

Alternatively, if you are working with an IDE, you can set break points and

inspect variables as the program runs.

• Be meticulous in your use of const. Suppose we have a procedure declared

like this:

int count_generators(const Group& G);

If this procedure invokes a Group method on G that has not been flagged

const, then—even if that method does not modify G—the compiler reports

an error.

• Make sure all variables are declared. It is easy to forget to declare a variable

or to misspell its name.

• Watch for memory leaks. If your class uses a destructor to free memory, you

can insert debugging code into the class’s destructor so you can observe when

(if) the destructor is doing its job.

• Turn on all warnings. There are legal C++ statements that, almost surely, are

not what you intend. The C++ compiler may help you find such errors. Here

is a classic example.

#include <iostream>
using namespace std;

int main() {
long a = 10;
long b = 23;
if (a=b) {

cout << "They are equal" << endl;
}
return 0;

}

This program compiles without error and the output is the mystifying
� �
They are equal

� �



380 C++ for Mathematicians

where clearly a and b do not hold equal values.

However, by turning on warnings (e.g., with -Wall in g++) we get the follow-

ing warning message from the compiler concerning line 7 of the program:

suggest parentheses around assignment used as truth value

This is not an especially helpful message, but at least it does point us to line 7

where, in fact, the problem lies. The a=b ought to be a==b.

• Remember the using namespace std; statement. If the compiler com-

plains that it doesn’t know what cout is, then you probably forgot the using

statement.

• Do not name your program test. This is a subtle problem that can be truly

maddening. Suppose you name the following program test.cc and compile

it as an executable named test:

#include <iostream>
using namespace std;
int main() {

cout << "Does it work?" << endl;
return 0;

}

The program compiles witout error and now you attempt to run it by typing

test at the command prompt. What happens? Apparently nothing. The

message Does it work? never appears on your screen.

There is nothing wrong with the program. The problem is that UNIX comput-

ers already contain a standard program named test. When you type test at

the command prompt, that version of test is run (not yours). To make sure

the test in the current directory is the one that is executed, type ./test at

the command prompt.

A way to avoid this problem is to name your program try or attempt.



Appendix B

Documentation with Doxygen

Document your code

Write a description for every class, method, and procedure you create. Explain

what the input parameters represent (and what the valid ranges for these variables

are) and what the output means. Include descriptions of what the variables inside the

procedure mean.

This vital step in programming takes a bit of effort, but ultimately saves you hours.

Over time, you will develop a personal library of classes and procedures. At some

point you will want to reuse a class or procedure you have already created. If you

don’t document, you will spend nearly as much time trying to figure out what the

procedure is for as it would take to rewrite it!

The most likely reader of your comments is you. However, a colleague might

learn that you have created a C++ class that he or she would like to use in another

project. Your comments will make your colleague’s work much simpler (and your

colleague won’t be repeatedly visiting your office asking you what the procedures

do and what the parameters represent).

The simplest way to document your code is to include C++ comments in the .h

and .cc files. However, there is a variety of tools that—with scant extra effort—

make your documentation much easier to use (and beautiful to behold as well). These

tools scan your C++ files for specially structured comments that are used to create

Web pages (or LATEX documents) that are easy to use.

In this appendix we describe one such tool: Doxygen (available for free down-

load from www.doxygen.org). There you can find the source code and, more con-

veniently, already compiled, ready-to-use versions for Windows, Mac OS X, and

Linux.

Doxygen is rich in features. The description we present here is just a primer, but

is sufficient to get you started.

B.1 Doxygen comments
Doxygen reads your C++ source files (.cc and .h) and looks for specially struc-

tured comments. A C++ single-line comment begins with a double slash // and a

381



382 C++ for Mathematicians

multiline C++ comment is enclosed between /* and */. Doxygen reads what you

write in those comments. To tell Doxygen to read a particular comment begin either

with a triple slash /// (for single-line comment) or with the sequence /** (for a

multiple-line comment).

B.1.1 Documenting files

Each file (either .cc or .h) should begin with a brief comment explaining the

file’s general purpose. Structure the comment like this:

/**
* @file Polygon.h

* @brief Declaration of the Polygon class

*/

The tag @file gives the name of the file and the @brief tag gives a short description

of what the file is for. Notice the double asterisk on the first line; Doxygen looks for

this to process this comment.

Note: The initial asterisks on lines 2 and 3 are optional and do not affect Doxy-

gen’s output. These stars are useful to the human reader making this portion of the

file stand out clearly as a comment.

B.1.2 Documenting procedures

Procedures are declared in a .h file and the full code is given in a .cc file. To

document a procedure for processing by Doxygen, we place special comments before
the procedure declaration in the .h file.

We generally write two comments. The first is a short, single-line overview of

what the procedure does. The second is a long, multiple-line description of the pro-

cedure, its input arguments, and its return value.

The brief comment begins with a triple slash ///. We follow this with a few words

that describe the procedure.

The long comment begins with /** giving a more elaborate description of the

procedure. This includes special tags to document the input parameters and the return

value. Here is an example.

Program B.1: Documenting a procedure for Doxygen.

1 /// Number of real roots of a quadratic.
2 /**
3 * This procedure determines the number of real roots of a quadratic
4 * polynomial by examining its discriminant.
5 *
6 * @param a coefficient of x-squared
7 * @param b coefficient of x
8 * @param c constant term
9 * @return the number of real roots of axˆ2 + bx + c

10 */
11 int nroots(double a, double b, double c);



Documentation with Doxygen 383

Program B.1 is an excerpt from a header file (say, nroots.h). The brief descrip-

tion (line 1) tells us the procedure’s purpose.

The expanded comment (starting at line 2) provides more detail including a de-

scription of the technique used. Following the description are tags that describe the

input parameters (lines 6–8) and the return value (line 9). The input parameters are

documented like this:

@param param_name role of this input parameter

The return value is documented with an @return tag that describes the value re-

turned by this procedure.

Note that the initial asterisks on lines 3–9 are optional and are ignored by Doxy-

gen. They serve the human reader by showing that this stretch of the file is a com-

ment.

Finally, the declaration of the nroots procedure is given on line 11.

The code for this procedure is in a separate .cc file. For the sake of completeness,

we give it here.

#include "nroots.h"

int nroots(double a, double b, double c) {
double d; // The discriminant of the quadratic

d = b*b - 4.*a*c;

// Check sign of the discriminant and return number of roots

if (d > 0.) {
return 2;

}
if (d < 0.) {

return 0;
}
return 1;

}

Note that there are no Doxygen comments here, however, there are ordinary com-

ments to help the human reader understand the code.

B.1.3 Documenting classes, data, and methods

Classes and their members are documented for Doxygen in a manner similar to

ordinary procedures. The class and its members receive a brief description and then

a detailed description. Methods for the class have their parameters and return values

(if any) documented as well. In addition, the data members should be documented.

To illustrate these, we present a class named Polygon. The full .h file is presented

in Program B.2. Notice that the file, the class, the class’s constructors and methods,

and the class’s data elements all receive comments to be processed by Doxygen. For

the data members, a brief description is sufficient, so we omit the detailed elabora-

tion.



384 C++ for Mathematicians

Notice that constructors and void methods (such as move_vertex) do not have

an @return tag because these do not return a value. The method perimeter takes

no arguments, so no @param tag is given.

Program B.2: Documenting a class and its members for Doxygen.

1 /**
2 * @file Polygon.h
3 * @brief Declaration of the Polygon class
4 */
5

6 #ifndef _POLYGON_
7 #define _POLYGON_
8

9 #include <vector>
10 #include "Point.h"
11

12 /// Planar polygons
13 /**
14 * The Polygon class represents a closed n-gon in the plane. The
15 * vertices of the Polygon are held as a vector of Point objects.
16 */
17 class Polygon {
18 private:
19 /// Hold the vertices of the Polygon
20 vector<Point> vertices;
21

22 /// The number of points in the Polygon
23 int np;
24

25 public:
26 /// Default constructor
27 /**
28 * This default constructor creates an empty Polygon, i.e., a
29 * Polygon without any points.
30 */
31 Polygon();
32

33 /// Create a basic n-gon
34 /**
35 * This creates a polygon with a specified number of points. The
36 * points are placed evenly around the unit circle.
37 * @param n the number of points.
38 */
39 Polygon(int n);
40

41 /// Copy constructor
42 /**
43 * Creates an exact copy of another Polygon.
44 * @param P the Polygon we’re copying
45 */
46 Polygon(const Polygon& P) {
47 np = P.np;
48 vertices = P.vertices;
49 }
50



Documentation with Doxygen 385

51 /// Move a vertex to a new location
52 /**
53 * Note: If an invalid vertex index is given, no change is made to
54 * this Polygon.
55 *
56 * @param j index of the vertex we want to relocate
57 * @param P new location for vertex j
58 */
59 void move_vertex(int j, Point P);
60

61 /// Perimeter of this Polygon
62 /**
63 * If the Polygon has fewer than two vertices, its perimeter is 0.
64 * If it consists of exactly two vertices, the perimeter is twice
65 * the distance between those points.
66 *
67 * @return the perimeter of this polygon
68 */
69 double perimeter() const;
70 };
71

72 #endif

For the sake of completeness, here is the .cc file that accompanies Polygon.h.

/**
* @file Polygon.cc

* @brief Code for the Polygon class methods

*/

#include "Polygon.h"

Polygon::Polygon() {
np = 0;
vertices.clear();

}

Polygon::Polygon(int n) {
// If n is negative, set n to be zero.
if (n < 0) n = 0;

// If is zero, just clear the vertices data structure
if (n==0) {

np = 0;
vertices.clear();
return;

}

// At this point, n is positive

np = n; // set number of points to n
vertices.resize(n); // allocate enough room

for (int k=0; k<n; k++) {
double theta = (2*M_PI*k)/n;
vertices[k] = Point(cos(theta),sin(theta));

}



386 C++ for Mathematicians

}

void Polygon::move_vertex(int j, Point P) {
// If the index is invalid, no action is taken
if ( (j<0) || (j >= np) ) return;
vertices[j] = P;

}

double Polygon::perimeter() const {
// The perimeter is zero unless we have at least two points
if (np <= 1) return 0.;

double ans = 0.; // place to accumulate the distances

// add up the distances between successive vertices
for (int k=0; k<np-1; k++) {

ans += dist(vertices[k],vertices[k+1]);
}

// Add in the distance between the first and last points
ans += dist(vertices[0], vertices[np-1]);

return ans;
}

The only Doxygen comments in Polygon.cc are to document the file. Other, ordi-

nary comments are included to clarify the code to a human reader.

B.2 Using Doxygen
If Doxygen is not already installed on your computer, download it from its Web

site (www.doxygen.org) and install it according the instructions found there.

You should also collect all the files for your project into a single folder (directory)

on your computer. You probably have done this already.

Now launch the Doxygen tool. You are presented with a graphical user interface

(“GUI”) window that specifies the easy steps for you to follow. See Figure B.1.

B.2.1 Configuring Doxygen

The first step is to configure Doxygen. In the configuration process you set various

options (and I’ll give you recommendations on what to select) and then save the

configuration as a file named Doxyfile.

To begin the configuration process, click the Wizard. . . button. A new window

opens with four tabs. See Figure B.2. The four tabs are named Project, Mode,

Output, and Diagrams. Here’s how to complete each of these pages.



Documentation with Doxygen 387

Figure B.1: Doxygen GUI window.

Figure B.2: Doxygen configuration panel.



388 C++ for Mathematicians

• On the Project page, type in a name for your project in the first field. If you

desire, you can specify a project version in the second field.

Next you specify the location of the source code (i.e., the full path name of the

folder containing your .cc and .h files). Either type in the full path to your

source folder in the text field, or use the first Select. . . button to navigate to

the directory (and the Wizard fills in the field for you).

If your source code is organized into various subfolders, check the Scan re-
cursively box. Otherwise, you can leave this unchecked.

Finally, specify the destination directory. This is the directory in which the

beautifully formatted documentation is to reside. If you wish, this can be the

same directory as the source code. As needed, Doxygen creates subdirecto-

ries in which it places the documentation. For example, it creates an html

subfolder for the Web pages.

• Now click to the Mode page. In the top portion, select the All entities but-

ton. This tells Doxygen to create documentation for all parts of your program

including private data members, and so on.

Check the Include cross-referenced source code in the output box. This

causes Doxygen to create Web pages that show your source code. (You can

click on the documentation to look at the source code and click inside the

source code to go back to the documentation. This is a handy feature.)

Finally, click the Optimize for C++ output button.

• Now click to the Output page. Check the HTML box. Under that box ei-

ther select plain HTML or with frames and navigation tree. If you are

only building documentation for one procedure or a small class, then the plain
HTML option is sufficient. However, if the project has more than one source

file, select the with frames option.

For now, leave the other options (LaTeX, Man pages, Rich Text Format, and

XML) unchecked. Later, if you wish to explore these other output formats,

you can change your selection.

• Finally, click to the Diagrams page. For now, select the No diagrams option.

Later, you can explore the different kinds of diagrams that Doxygen can create

for you.

You are now finished using the Wizard, so click OK to return to the main Doxygen

GUI window.

You now proceed to Step 2 on the GUI: save the configuration file. When you

click Save. . . you will be prompted to save the configuration in a directory. Choose

the same directory as your code and use the file name Doxyfile.

Doxygen is now configured for your project. All of Doxygen’s settings are saved

in the file named Doxyfile in the same directory as your source code.



Documentation with Doxygen 389

If, after you have saved the Doxyfile, you wish to modify your settings, select

Load. . . in the Doxygen GUI to select the Doxyfile you wish to modify, and then

use Wizard. . . to choose the new options. If you want finer control, you may modify

the settings using the Expert. . . button.

You are now ready to run Doxygen to generate the Web pages.

B.2.2 Running Doxygen

Continuing in the Doxygen GUI, Step 3 asks for a directory in which Doxygen is

to run. Use the Select. . . button to navigate to the same directory that holds the code

and holds the Doxyfile configuration file.

Finally, press the Start button in Step 4. If all is well, a subfolder is created named

html into which the Web pages for your documentation are deposited. Open this

folder and double-click on index.html. You are greeted by a main page from which

you can explore all the documented files, classes, procedures (functions), methods,

and so forth.

If there are mistakes in the formatting of your Doxygen comments, error messages

appear in the box labeled Output produced by doxygen in the main GUI window.

B.2.3 More features

In this brief introduction to Doxygen we presented just a few of the documentation

tags available. Reviewing tersely, we have seen:

• @file and @brief document the overall purpose of a file, and

• @param and @return to document the inputs and outputs of procedures and

methods.

Doxygen provides many other tags and we mention just a few of them here.

• Cross references. Doxygen provides a tag named @see that you can use to

insert a cross-reference to another procedure or method.

• Sample code. It is useful to include a snippet of C++ code to illustrate how a

procedure is used. To do this, enclose the code fragment between @code and

@endcode, like this:

/// Find the median
/**
* This procedure finds the median value in an array of numbers.

* @code

* double* values;

* // allocate and populate the values array

* m = median(values, n);

* @endcode

* @param vals array of real numbers

* @param nels number of elements in the array

* @return the median value in the array



390 C++ for Mathematicians

*/
double median(double* vals, int nels);

• Mathematical notation. It is possible to include mathematical formulas into

the documentation using TEX. This requires that TEX be installed on your

system. In TEX, mathematical notation is enclosed between single dollar signs.

For Doxygen, enclose your notation between @f$ tags, like this:

/// Approximate the Riemann zeta function
/**
* This procedure calculates an approximation to the Riemann

* zeta function by expanding @f$\zeta(s)=\sum_{k=1}ˆn 1/kˆs@f$.

* @param s argument to the zeta function

* @param n number of terms in the series

* @return an approximation to @f$\zeta(s)@f$

*/
double zeta(double s, int n);

It is also possible to typeset displayed formulas enclosed in the tags @f[ and

@f].

• Bugs. Sometimes programs don’t work properly and give incorrect results.

Until you have your code working properly, you can flag what is wrong with a

@bug tag.

/// Group element powers
/**
* Given a Group element g and an integer n, calculate gˆn.

* @bug This isn’t working for negative exponents.

*
* @param g an element of the group

* @param n the power to which we wish to raise g

* @return g multiplied by itself n times

*/

• Author, date, and version. With the tags @author, @date, and @version you

can flag who did what and when on a large-scale project.

Many more Doxygen tags can be found in the Doxygen documentation (available

online).

In addition to Doxygen tags, it is possible to insert HTML code in your comments.

For example, suppose you implemented an algorithm you found on a Web page in

your code and you wish to give proper attribution to the source you consulted. You

can include a link to that Web page like this:

/**
* Description of this procedure...

* <p>

* The algorithm we use was invented by Ann Expert and is described

* <a href="http://www.math.major-univ.edu/˜expert/algo.html">on

* this Web page</a>.

*/



Appendix C

C++ Reference

This appendix gives a brief review of the C++ language as developed in this book.

After you have read this book, you can use this appendix as a refresher course.

C.1 Variables and types
All variables in C++ must be declared before they are used. The declaration spec-

ified the type of data the variable holds. The type of a variable may be one of the

fundamental types or a class.

C.1.1 Fundamental types

• Boolean: bool

• Character: char

• Integer: short, int, long, long long1

• Real: float, double, long double

The integer types may be preceded with the keyword unsigned to shift their range

to nonnegative values. The long long and long double types might not exist on

all systems.

C.1.2 Standard classes/templates

C++ provides a large collection of standard classes. Many of these require a

#include directive to load the appropriate header file.

For example, to work with complex numbers, we include the <complex> header.

A typical complex number is declared complex<double> z; and a Gaussian inte-

ger is declared complex<long> w;.

1Use int64 in Visual Studio.

391



392 C++ for Mathematicians

Character strings are handled most conveniently using the standard string class

(see Chapter 14); use the header #include <string>.

There is a variety of standard classes for input/output (see Chapter 14) and to serve

as containers (see Chapter 8).

C.1.3 Declaring variables

The simplest declaration statement specifies the type of a variable: int j;.

Two or more variables of the same type may be declared in a single statement:

long a,b;.

A variable may be given an initial value when it is declared: double x = 3.5;.

A variable declared using a template class should include the type parameters

between < and > symbols, like this: complex<double> z;.

Class variables often take arguments (sent to the constructor methods) when de-

clared: Mod a(3,10);.

There are three natural locations for a variable declaration.

• Inside the body of a procedure (such as main or a class method). For example,

int main() {
double x;
...

}

• Inside the declaration of a procedure or method. For example,

long gcd(long a, long b) {
...

}

• Inside a looping control structure. For example,

for (int k=0; k<10; k++) {
cout << k << endl;

}

C.1.4 Static variables and scope

Variables are created when they are declared and are lost when the section of the

program in which they are declared finishes. Two different procedures (say, alpha

and beta) may both declare a variable named x, but alpha’s x and beta’s x have

nothing to do with each other. All variables are local to the procedure in which they

are declared. (It is possible, but ill advised, to create global variables in C++. We

don’t discuss how.)

When a procedure finishes, the values held in its variables are lost unless the vari-

ables are declared static. In this case, the value held in the variable is retained

between calls to the procedure.



C++ Reference 393

C.1.5 Constants and the keyword const

If a variable is declared with a given value and the program never changes that

value, then the variable should be declared const. For example, in a program that

uses the Golden Mean, we would have this: const phi = (1.+sqrt(5.))/2.;.

Arguments to procedures that are not modified by the procedure should be de-

clared const. For example, suppose we create a procedure to calculate the sum of

the elements in a set of integers. Because such a procedure does not modify the set,

we declare it such as this:

long sum(const set<long>& S) {
...

}

A third use of the keyword const is to certify that a method does not change the

object on which it is invoked. For example, if we are creating a LineSegment class,

a method that reports the length of the segment would not modify the segment. In

the header file, say LineSegment.h, we would find this:

class LineSegment{
private:

// variables to specify the segment
public:

// constructors, etc.

double length() const;
};

and in the program file, say LineSegment.cc, we find this:

double LineSegment::length() const {
// calculate and return the length

}

C.1.6 Arrays

If the size of an array can be determined before the program is run, it may be

declared like this: int alpha[20];.

However, if the size of an array is unknown until the program is running, use a

dynamically sized array like this:

int n;
cout << "Enter array size: ";
cin >> n;
int* alpha;
alpha = new int[n];
...
delete[] alpha;

Remember that every array allocated with new should be released with a delete[].



394 C++ for Mathematicians

C.2 Operations
Here we describe the behavior of C++’s fundamental operations. Remember, how-

ever, that classes can override these meanings (e.g., the << operator does input when

used with cin but its fundamental use is to shift bits).

C.2.1 Assignment

The statement a=b; takes the value held in the variable b and places that value in

the variable a. Assignment statements can be combined. The statement a=b=c; is

equivalent to a=(b=c); and the effect is to take the value in c and store that value

in both b and a.

C.2.2 Arithmetic

The basic arithmetic operators are +, -, *, and /. For integer types, the mod

operator is %. There is no exponentiation operator, but the pow and exp procedures

fill this gap.

The - operator can be used as a unary operator; this negates its argument. For

example, if a holds the value 3, then b=-a; assigns to b the value −3 (leaving a

unchanged).

The arithmetic operators can be combined with assignment. For example, a+=b;

is equivalent to a=a+b;.

For integer types, the operators ++ and -- cause the variable to which they are

applied to increase (respectively, decrease) by one. There is a difference between

++a and a++. Do not write code that exploits this subtlety.

C.2.3 Comparison operators

Numerical types can be compared for equality, inequality, and order using these

operators:

== != < <= > >=

The result of these operators is a value of type bool.

C.2.4 Logical operators

C++ provides the following operators for bool values,

&& || !

These are logical and, or, and not.



C++ Reference 395

C.2.5 Bit operators

The individual bits in an integer variable can be manipulated using the following

operators,

& | ˜ ˆ << >>

These are (bitwise) and, or, not, exclusive or, left shift, and right shift.

C.2.6 Potpourri

Square brackets are the subscript operator, used to access elements of an array.

The first element of an array has index 0.

Parentheses are used for grouping, but also indicate the invocation of a procedure

or method: y = alpha(x,n);.

Dot (.) is the member-of operator used to specify a data member of method of a

class: x.size() or thing.first.

The question mark/colon trigraph is an abbreviated if/then statement. The state-

ment a=q?b:c; assigns the value of b to a if q is true; otherwise (q is false) it assigns

the value of c to a.

The keyword sizeof is an operator that returns the number of bytes required to

hold a type; for example, sizeof(double).

The comma is used for separating procedure arguments and when declaring more

than one variable of a given type (e.g., double x,y;). It also has the obscure pur-

pose of combining two (or more) expressions into a single statement. For example,

in a for loop, if we want to initialize two counters, we may have a code such as this:

int a, b;
for (a=N,b=0; a-b>0; a--,b++) {

// stuff to do
}

This initializes a with the value held in N and b with 0.

The following operators are for working with pointers.

Ampersand is the address-of operator. If x is an int variable, then &x returns a

pointer to x of type int*. The ampersand is also used to specify call-by-reference

semantics in procedures.

Asterisk is the pointer dereferencing operator. If p is a pointer to an integer value,

then *p is the value held in the location pointed to by p.

The arrow operator, ->, combines the action of . and *. For example, if p is a

pointer to an object, then p->x is equivalent to (*p).x (the data element x of the

object p points to) and p->alpha() is equivalent to (*p).alpha() (invoke method

alpha on the object pointed to by p).



396 C++ for Mathematicians

C.3 Control statements
Statements in C++ must be terminated by a semicolon. Collections of statements

can be grouped together to form a compound statement by enclosing those statements

in curly braces. All statements enclosed in the curly braces must end in a semicolon,

but the compound does not require a semicolon after the closing brace. (Exception:

When defining a class, the closing semicolon must be followed by a semicolon.)

Normally, statements are executed in the order encountered. However, various

control structures may be used to modify this behavior.

C.3.1 if-else

The simplest form of this structure is this:

if (expression) {
statements;

}

Here, expression is evaluated. If its value is true, then the statements are

executed; if false, then the statements are skipped.

We also have the following richer form,

if (expression) {
statements1;

}
else {

statements2;
}

Again, expression is evaluated. If it yields true, then statements1 are executed

and statements2 are skipped. Otherwise (expression evaluates to false) the

opposite occurs: statements1 are skipped and statements2 are executed.

The ?: operator is a compact version of the if-else structure.

C.3.2 Looping: for, while, and do

The for statement has the following format,

for (start_statement; test_expression; advance_statement) {
work_statements;

}

This statement results in the following actions. First, the start_statement is exe-

cuted. Then test_expression is evaluated; if false then the loop exits and con-

trol passes to the statement following the close brace. Otherwise (test_expression

is true), the work_statements are executed, then the advance_statement is

executed, and finally the test_expression is evaluated. If false, the loop exits

and if true, the entire process repeats.



C++ Reference 397

The while statement is structured as follows,

while (test_expression) {
work_statements;

}

The test_expression is evaluated first and, if false, the work_statements

are skipped and execution passes to the next statement after the close brace. Oth-

erwise (test_expression is true), the work_statements are executed, then

test_expression is re-evaluated and the process repeats.

The do statement is structured as follows,

do {
work_statements;

} while (test_expression);

Here, the work_statements are executed first, and then the test_expression is

evaluated. If true, the process repeats; if false, the loop terminates.

All three looping constructs (for, while, and do) support the use of the state-

ments break; and continue;. A break; statement causes the loop to exit im-

mediately. A continue; statement causes the loop to skip the remaining work

statements and attempt the next loop (starting with test_expression).

C.3.3 switch

A switch statement controls execution depending on the value of an expression.

The format is this:

switch (expression) {
case val1:

statements1;
break;

case val2:
statements2;
break;

...

default:
default_statements;

}

Here, expression is evaluated to yield an integer result. If there is a case statement

whose label matches the value of expression, control passes to that point and the

statements following the case label are executed until a break statement is reached.

If no matching label can be found, then statements following the default label are

executed. Groups of statements may be preceded with more than one label.

The labels val1, val2, and so on, must be specific numbers (not variables).



398 C++ for Mathematicians

C.3.4 goto

C++ contains a goto statement whose syntax is goto label;. The causes exe-

cution to pass to a statement that has been flagged with the name label. In general,

the use of goto is discouraged as it can lead to unintelligible programs. However,

one use is for breaking out of a double loop:

for (int a=0; a<N; a++) {
for (int b=0; b<N; b++) {

if (beta(a,b) < 0) goto aftermath;
// other stuff

}
}
aftermath: cout << "All finished" << endl;

C.3.5 Exceptions

The keywords try, throw, and catch are used to implement C++’s exception-

handling mechanism. Typical code looks like this:

try {
statements;
if (something_bad) throw x;
more_statements;

}
catch(type z) {

recovery_statements;
}

If something_bad is false, execution continues with more_statements and the

recovery_statements are skipped. However, if something_bad evaluates to

true, then more_statements are skipped and the value x is “thrown”. Assum-

ing that x is of type type, the exception is “caught” by the catch statement and

recovery_statements are executed.

The statements inside the try block need not have an explicit throw statement;

the procedures invoked inside this block may throw exceptions. See Section 15.3.

C.4 Procedures
Procedures (often called functions in the programming community) are subpro-

grams designed to do a particular job.

Procedures are declared by specifying a return type (if none, write void), followed

by the procedure’s name, followed by a list of arguments (with their types). The value

returned by the procedure is given by a return statement.

Two procedures may have the same name provided they have different number

and/or types of arguments.



C++ Reference 399

C.4.1 File organization

In general, it is best to separate the declaration of a procedure from its definition.

The declaration is placed in a header file (suffix .h) and the full definition is placed

in a code file (suffix .cc).

For example, suppose we wish to declare a procedure named nroots that returns

the number of real roots of a quadratic polynomial ax2 + bx + c. The header file

would contain the following single line,

int nroots(double a, double b, double c);

The .cc file would contain the full specification:

int nroots(double a, double b, double c) {
double d = b*b - 4.*a*c;
if (d < 0.) return 0;
if (d > 0.) return 2;
return 1;

}

C.4.2 Call by value versus call by reference

By default, C++ procedures use call-by-value semantics. That is, when a proce-

dure (such as nroots) is invoked, the values of the arguments in the calling proce-

dure are copied to the local variables in the procedure. Although procedures may

modify the copies of the arguments, the original values (in the parent procedure) are

unaffected.

However, variables can be designated to use call-by-reference semantics. This is

indicated by inserting an ampersand between the type and the argument. In this case,

a procedure can change a value from its calling procedure.

Here is an example:

void alpha(int x) { x++; }
void beta(int &x) { x++; }
int main() {

int a = 5;
int b = 5;
alpha(a);
beta(b);
cout << a << endl;
cout << b << endl;
return 0;

}

The procedure alpha increases a copy of a, so main’s a is unaffected. However, the

procedure beta increases the variable b itself, so its value becomes 6. The output of

this program is this:
� �
5
6

� �

Call by reference is useful if the objects passed to a procedure are large. Passing a

reference is faster than making a copy of the object.



400 C++ for Mathematicians

C.4.3 Array (and pointer) arguments

When an array is passed to a procedure, C++ does not make a copy of the array;

instead it sends a pointer to the first element of the array.

For example, suppose we write a procedure to sum the elements in an array of

double values. Here is the code.

double sum(const double* array, long nels) {
double ans = 0.;
for (long j=0; j<nels; j++) ans += array[j];
return ans;

}

Here, nels specifies the number of elements in the array. No duplication of the

array is made. Instead, a pointer to the first element is passed. One implication of

this is that a procedure can modify the entries in an array argument. Because the sum

example we presented here does not, in fact, modify the elements of the array, we

certify that with the keyword const.

More generally, a pointer can be passed to a procedure. In this case, the value

pointed to by the pointer can be modified by the procedure. However, it is simpler to

use reference arguments.

C.4.4 Default values for arguments

Arguments to procedures may be given default values. If an argument is given a

default value, then all arguments to its right must also be given default values. For

example:

void example(int a, double x = 3.5, int n = 0) {
...

}

Calling example(4) is tantamount to example(4,3.5,0).

C.4.5 Templates

Earlier we considered a procedure to sum the elements in an array. This procedure

works only for floating point (double) arrays. The identical code (but with different

types) would be used for a procedure to sum an integer array. Rather than write

different versions for each type of array, we can write a procedure template such as

this:

template <class T>
T sum(const T* array, long nels) {

T ans = T(0);
for (long j=0; j<nels; j++) ans += array[j];
return ans;

}

In this example, the symbol T acts as a “type variable”—it may stand for any type.



C++ Reference 401

C.4.6 inline procedures

A procedure may be declared as inline; this causes the compiler to generate a

different style of object code that uses more memory but runs faster. In general, it

is not necessary to use this keyword because modern compilers automatically inline

procedures when they determine it is advantageous to do so.

C.5 Classes
New data types are created in C++ through the use of classes and class templates.

Various ready-to-use classes are provided with C++ such as string, vector, and

complex. Other classes are available for download from the Web and from commer-

cial software vendors. Finally, programmers can create their own classes.

C.5.1 Overview and file organization

Suppose we wish to create a class named MyClass. The specification for the

class is broken across two files: MyClass.h contains a declaration of the class and

MyClass.cc contains code for the class’s methods.

The code in MyClass.h typically looks like this:

class MyClass {
private:

// private data (and methods)
public:

MyClass(); // basic constructor
// other constructors

int method1(double x, double y);
// other methods

};

In the file MyClass.cc we give the code for the constructors and other methods

for the class, like this:

#include "MyClass.h"

MyClass::MyClass() {
// code for the constructor

}

int MyClass::method1(double x, double y) {
// code for this method

}

Alternatively, code for constructors and methods may be given inline in the .h

file. This is advisable when the code is only a few lines long.



402 C++ for Mathematicians

Data and methods listed in the private section are accessible only to the methods

inside the class (but see Appendix C.5.7). Data and methods listed in the public

section are accessible to all parts of the program.

It is wise to designate all data in a class private and to provide get/set methods to

inspect/manipulate the data.

C.5.2 Constructors and destructors

A constructor is a class method that is invoked when an object of the class is

created (e.g., when declared). Constructors do not have a return type, but may have

arguments.

Be sure to have a zero-argument constructor for your class. This constructor is

invoked when a variable is declared in the simple form: MyClass X;. The object X

is then initialized using the zero-argument constructor.

Classes may have constructors with arguments. For example, if MyClass has a

constructor with a single integer argument, then the declaration MyClass X(17);

invokes that constructor. Such a constructor is also invoked in all the following

situations.

MyClass X;
X = MyClass(17);

MyClass Y = 17;

MyClass Z;
Z = 17;

Some constructors allocate storage (with new). When such an object goes out of

scope, the allocated memory needs to be recovered (or the program suffers a memory

leak). To accomplish this, a destructor needs to be specified. In the .h file, a public

method is declared like this:

class MyClass {
private:

int* BigTable; // table of numbers
...
public:
...

˜MyClass(); // destructor declaration
...
};

and in the .cc file:

MyClass::˜MyClass() {
delete[] BigTable; // or other clean-up code

}

Alternatively, with a short destructor, the code may be written inline in the .h file.



C++ Reference 403

C.5.3 Operators

The usual C++ operators (such as + and *) apply to the built-in data types (int,

double, and so on). These operators may also be used for classes by creating oper-

ator methods and procedures.

Suppose we wish to define + for objects of type MyClass; that is, if A and B are

type MyClass, then we want to ascribe a meaning to A+B. Typically, we would

declare a method within the body of the MyClass declaration (in the .h file) like

this:

class MyClass {
private:

...
public:

...

MyClass operator+(const MyClass& Z) const;
};

and in the .cc file give the code:

#include "MyClass.h"

MyClass MyClass::operator+(const MyClass& Z) const {
...

}

Then, when the compiler encounters the expression A+B, it applies the operator+

method for object A with object B passed (by reference) to Z.

(Note the double appearance of the keyword const. The first const certifies that

this method does not modify the argument Z and the second certifies that this method

does not modify the object on which it is invoked.)

Alternatively, we could implement A+B with a procedure that is not a class method.

In a .h file we declare the procedure like this:

MyClass operator+(const MyClass& U, const MyClass& V);

and in the corresponding .cc file we give the code:

MyClass operator+(const MyClass& U, const MyClass& V) {
...

}

Unary operators (e.g., for negation) are declared as class methods like this:

class MyClass {
...
MyClass operator-() const;

};

or as procedures like this:

MyClass operator-(const MyClass& U);

Binary operators may be used to combine objects of different types. If the left

operand of the operator is of type MyClass, then the operator may be defined as a

method of MyClass. For example, for the operator MyClass+int, use this:



404 C++ for Mathematicians

class MyClass {
...
MyClass operator+(int j) const;

};

However, for int+MyClass, a procedure needs to be declared like this:

MyClass operator+(int j, const MyClass& Z);

The increment ++ and decrement -- operators have two forms: ++A and A++. We

recommend defining only the prefix form. This is done with an class method like

this:

class MyClass {
...
MyClass operator++();

};

(Note: Typically ++A is used to increase the value of A by one, so this method modi-

fies A. That is why we do not include const after the parentheses.)

It is possible to declare a postfix form of these operators. To do this, we give a

“dummy” argument of type int like this:

class MyClass {
...
MyClass operator--(int x);

};

C.5.4 Copy and assign

If objects A and B are of type MyClass, then the expression A=B has a default

meaning that can (and sometimes should) be overridden.

The default meaning of A=B is to copy the data fields of B into the corresponding

data fields of A. That is, if class MyClass has data fields x, y, and z, then A=B; has

the effect of performing the three assignments

A.x = B.x; A.y = B.y; A.z = B.z;

Finally, the new value of A is returned.

This behavior is appropriate in many cases, especially if the data fields are the

basic types. However, if one of these fields, say x, is an array, then the action

A.x = B.x; does not copy the array B.x into A.x (as, presumably, we would want).

Rather, it causes A.x to point to the same location in memory as B.x, so subsequent

modifications to array elements in B.x are also applied to the array A.x because

these arrays are now housed in the same memory.

To achieve the desired behavior, we need to write a new assignment operator. The

effect of this operator is to copy the data from B to A. In addition, an assignment

operator should return the value of A (after it is updated).

To do this, we declare an operator= method inside the class definition like this:

class MyClass {
...



C++ Reference 405

MyClass operator=(const MyClass& Z);
};

In the .cc file, the code looks like this:

MyClass MyClass::operator(const MyClass& Z) {
// set the fields x, y, and z
// so they are duplicates of Z.x, Z.y, Z.z
return *this;

}

The final return *this; statement causes a copy of the object to be the return

value of this method; see Appendix C.5.6.

Just as C++ provides a default assignment operator, it also provides a default copy

constructor. The default behavior of the declaration MyClass A(B); (where B is

a previously declared object of MyClass) is to do a field-by-field copy of B’s data

into A. As in the case of assignment, this default behavior may be unacceptable. In

such cases (e.g., when MyClass data includes an array), we must write our own copy

constructor.

To declare a copy constructor, we have the following in the .h file,

class MyClass {
...
MyClass(MyClass& Z);

};

and in the .cc file:

MyClass::MyClass(MyClass& Z) {
// set the fields x, y, and z
// so they are duplicates of Z.x, Z.y,, Z.z

}

C.5.5 static data and methods

In a typical class, each object of the class has its own values for each data field.

Sometimes it is desirable to have a value that is shared among all objects in the

class. For example, if we wish to keep track of how many objects of type MyClass

are currently in existence, we can define a variable object_count that is shared

among all objects of type MyClass. Constructors would increment this variable and

destructors would decrement it. To distinguish variables that are shared among all

objects from ordinary data members that are particular to each instance of the class,

we use the keyword static. For example, in the .h file we have

class MyClass {
private:

...
static int object_count;

public:
MyClass() { ...; object_count++; }
˜MyClass() { ...; object_count--; }
...

};



406 C++ for Mathematicians

and in the .cc file we have

MyClass::object_count = 0;

One may also have static methods. These are class methods that do not apply

to any particular object, but to the class as a whole. They can only access static

data in the class because the other data are particular to each object of the class.

In the example above, we would want a method that reports how many objects of

type MyClass currently exist. To that end, we add to the public section of MyClass

the following method,

static int get_object_count() { return object_count; }

Because this method applies to the class MyClass and not to any particular object of

that type, it is inappropriate to invoke it as A.get_object_count() (where A is of

type MyClass). Rather, we write MyClass::get_object_count().

C.5.6 this

Class methods may access all data fields of the object on which they are invoked.

On occasion, it is useful for a method to refer to the entire object on which it was

invoked. For example, when we define ++A (by declaring an operator++), the

conventional return value of this operator is the new value assigned to the object.

To do this, C++ provides a pointer named this. The this pointer refers to the

object on which it is invoked. Suppose MyClass has a method named work. If we

use the pointer this inside of work, then this is a pointer to the object A and *this

is the object A itself.

So, when we define operator++() for MyClass, the final statement of that

method would be return *this;.

Likewise, when we define an assignment operator, the return value of that operator

should be the new value of the left-hand argument. Ending with return *this;

accomplishes this task.

C.5.7 Friends

Private data elements of a class can be accessed by class methods, but not by other

procedures. However, it is possible to grant a procedure special access to private data

elements by declaring that procedure to be a friend of the class.

To do this, we need to declare the friend procedure inside the class declaration

like this:

class MyClass {
private:

...
public:

...
friend int buddy(MyClass Z);

};

In the .cc file we would see this:



C++ Reference 407

int buddy() {
// calculations using Z’s fields
return answer;

}

Note that buddy is not a method of MyClass, so in the .cc file we do not use the

prefix MyClass::.

It is generally safer not to allow any functions to have access to the data elements

of a class. The use of friend procedures subverts the goal of data hiding. In other

words: Don’t use this feature of C++.

Furthermore, it is possible to have a procedure that is a friend of two different

classes, or for one class to be a friend of another. These advanced topics are beyond

the scope of this text.

C.5.8 Class templates

C++ implements complex numbers using a class template. For complex numbers

with double real and imaginary parts, we use the declaration complex<double>

whereas for Gaussian integers we use complex<int>.

We create our own class templates like this:

template <class T>
class MyClass {
private:

T x; // data element of type T
...

public:
...

};

Here, the T acts as a “type variable.” Now we can declare objects to be of type

MyClass<int> or even MyClass< complex<double> >. (Note the extra space;

we need to avoid typing << or >>.)

Templates must be placed in their entirety in the .h file and all their methods

defined inline.

It is possible to define a template with more than one argument, like this:

template <class U, class V>
class MyClass {
private:

U x;
V y;
...

};

C.5.9 Inheritance

A key feature of object-oriented programming is the ability to add features to

an existing class to make a new class. For example, we may have a class Graph

to represent simple graphs (no loops or multiple edges). In some cases, we may



408 C++ for Mathematicians

wish to consider graphs embedded in the plane (with adjacent vertices joined by line

segments), which would be an object of type EmbeddedGraph.

Because there are many instances in which we work with abstract graphs (without

embedding) we first create the Graph class. Once this is in place, we build the

EmbeddedGraph class. Rather than start from scratch, we extend the Graph class

like this:

class EmbeddedGraph : public Graph {
private:

// additional data members to hold the x,y coordinates
// of the vertices

public:
...

};

It is useful for the constructors for EmbeddedGraph to use the constructors of

Graph as first step. For example, suppose we have a constructor Graph(int n)

that creates a graph with n vertices. We would want EmbeddedGraph(int n) to

create the graph, but also set up a default embedding. To do this, we declare the new

constructor like this:

class EmbeddedGraph: public Graph {
...

public:
EmbeddedGraph(int n) : Graph(n) {

// set up the embedding
}

};

Data in Graph that are declared in the private section are not available to the

added methods of EmbeddedGraph. If we want to grant access to EmbeddedGraph

to these data elements, we move them from private to protected.

class Graph {
private:

// data and methods that EmbeddedGraph never needs to access
protected:

// data and methods that EmbeddedGraph may access
public:

// public methods, accessible to all parts of the program
};

C.6 Standard functions
C.6.1 Mathematical functions

The following mathematical functions are available in C++. Many of these are

declared in the header cmath and you may need a #include <cmath> declaration

to use them.



C++ Reference 409

• abs: absolute value of an int. The absolute value function comes in the

following flavors.

– int abs(int x)

– long labs(long x)

– long long llabs(long long x)

– double fabs(double x)

– float fabsf(float x)

– long double fabsl(long double x)

Of these, abs and fabs are the forms most commonly used.

• acos: arc cosine. Usage: double acos(double x). Of course, this re-

quires −1 ≤ x ≤ 1.

• asin: arc sine. Usage: double asin(double x). Of course, this requires

−1 ≤ x ≤ 1.

• atan and atan2: arc tangent.

The first is double atan(double x) and gives the arc tangent of x in the

interval (−π/2,π/2).

The second is double atan(double x, double y) and gives the angle

of the vector from the origin to the point (x,y); the result is between −π and

π .

• Bessel functions. The following are available.

– double j0(double x): first kind, order 0.

– double j1(double x): first kind, order 1.

– double jn(int n, double x): first kind, order n.

– double y0(double x): second kind, order 0.

– double y1(double x): second kind, order 1.

– double yn(int n, double x): second kind, order n.

There are also the variants j0f through ynf that replace double with float

as well as j0l through ynl that use long doubles.

• cbrt: cube root. Usage: double cbrt(double x). Returns 3
√

x. Might not

be available on all systems.

• ceil: ceiling function. Usage: double ceil(double x). This returns �x .

There are also the following variants.

– float ceilf(float x)



410 C++ for Mathematicians

– long double ceill(long double x)

• cos: cosine. Usage: double cos(double x). Gives cosx.

• cosh: hyperbolic cosine. Usage: double cosh(double x). Gives coshx.

• erf: error function. Usage: double erf(double x). Gives

erfx =
2√
π

∫ x

0
e−t2

dt.

There is the related function double erfc(double x) that gives 1− erfx.

• exp: ex. Usage: double exp(double x).

There is a related function double expm1(double x) that returns ex −1.

See also pow.

• floor: floor function. Usage: double floor(double x). This returns

�x�.

There are also the following variants.

– float floorf(float x)

– long double floorl(long double x)

• fmod: mod for reals. Usage: double fmod(double x, double y). This

returns x−ny where n = �x/y�.

• Gamma function. The function gamma is implemented differently on different

computers. In some cases it gives Γ(x) but in others it gives logΓ(x).

The related gammaf and gammal work with float and long double values,

respectively.

Free of ambiguity, lgamma gives logΓ(x) and tgamma gives Γ(x).

Some systems have additional variations of lgamma. On a UNIX system, type

man gamma or man lgamma for more information.

• hypot: hypotenuse. Usage: double hypot(double x, double y). Re-

turns
√

x2 + y2.

• log: natural logarithm. Usage: double log(double x). Returns loge x.

The related double log1p(double x) that returns log(x+1).

Also double log10(double x) returns log10 x.

• pow: exponentiation. Usage: double pow(double x, double y). Re-

turns xy. See also exp.

• sin: sine. Usage: double sin(double x). Returns sinx.



C++ Reference 411

• sinh: hyperbolic sine. Usage: double sinh(double x). Returns sinhx.

• sqrt: square root. Usage: double sqrt(double x). Returns
√

x.

• tan: tangent. Usage: double tan(double x). Returns tanx.

• tanh: hyperbolic tangent. Usage: double tanh(double x). Returns tanhx.

C.6.2 Mathematical constants

Various constants are defined2 via the <cmath> header. Here is a list. M PI

C++ name Value
M_E e
M_LOG2E log2 e
M_LOG10E log10 e
M_LN2 ln2
M_LN10 ln10
M_PI π
M_PI_2 π/2
M_PI_4 π/4
M_1_PI 1/π
M_2_PI 2/π
M_2_SQRTPI 2/

√
π

M_SQRT2
√

2

M_SQRT1_2 1/
√

2

C.6.3 Character procedures

The following procedures require #include <cctype> and provide convenient

tools for manipulating characters. Many of these are defined in terms of the int type

and not the char type. This is not an issue with a function such as islower. This

procedure checks if its argument represents a lowercase letter (from a to z). It would

be logical to expect that the argument to islower is a char and its return value is a

bool. However, both values are type int. This is inconsequential for this particular

function because code such as this works as expected:

char ch;
...
if (islower(ch)) {

...
}

2Not all compilers define these constants. If your compiler does not, you can define them yourself in

a header file named, say, myconstants.h. Use statements such as this: const double M PI =
3.14159...;.



412 C++ for Mathematicians

Problems arise when using a procedure such as tolower that converts uppercase

characters A to Z to their lowercase form. It would be logical to expect this proce-

dure’s argument and return types to be char, but this is not the case. Instead, both

are type int. The consequence is that the statement cout<<tolower(’G’); does

not print the character g on the screen. Instead, it prints the value 103. Why?

When the procedure tolower(’G’) is encountered the char value ’G’ is auto-

matically converted into an int value (because that’s what tolower expects). Ef-

fectively, this becomes tolower(71) (because G is represented inside the computer

as the number 71). Now tolower does its work and converts the code 71 for G to

the code for g and returns that value: 103. That is the value that is sent (via the <<

operator) to cout.

The issue becomes: how do we convert the value 103 to the desired character g?

Simply wrap char around the return value from tolower. The successful way to

convert G to g is to use this: char(tolower(’G’)).

One additional warning: Do not use tolower("G"). The "G" is a character array

(type char*) and not a single character (type char). The C++ compiler is able to

convert a char* to an int, so such a statement might generate only a warning from

the compiler. When run, this code would act on the memory address of the character

array, and not on the character G as you intended.

Here are the procedures. All of them require #include <cctype>.

• isalnum(ch): checks if ch is either a letter (upper- or lowercase) or a digit

(0 through 9).

• isalpha(ch): checks if ch is a letter (upper- or lowercase).

• isdigit(ch): checks if ch is a digit (0 through 9).

• isgraph(ch): checks if ch is a printable character (such as letters, digits,

or punctuation) but not white space (such as a space character, a tab, or a

newline).

• islower(ch): checks if ch is a lowercase letter (a to z).

• isprint(ch): checks if ch is a printable character (including letters, dig-

its, punctuation, and space). A nonprintable character is known as a control
character. Those can be detected with iscntrl.

• ispunct(ch): checks if ch is a punctuation character.

• isspace(ch): checks if ch is a white space character (such as a space, tab,

or newline).

• isupper(ch): checks if ch is an uppercase letter (A to Z).

• isxdigit(ch): checks if ch is a digit from a hexadecimal number (i.e., one

of 0 through 9, a through f, or A through F).



C++ Reference 413

• tolower(ch): converts ch to a lowercase letter (if ch is an uppercase letter).

Otherwise, this returns the value ch unchanged.

In most cases, use char(lower(ch)).

• toupper(ch): converts ch to an uppercase letter (if ch is a lowercase letter).

Otherwise, this returns the value ch unchanged.

In most cases, use char(toupper(ch)).

C.6.4 Other useful functions

The header <cstdlib> contains other functions useful for C++ programming.

Here we list the ones most useful for mathematical work. (The inclusion of the

header <cstdlib> might not be required on your system.)

• abort: quickly halt the execution of the program. The syntax is abort().

This is an “emergency stop” procedure that brings a program to a screeching

halt. A message, such as Abort trap is written to the screen.

There are better ways to stop your program. If possible, arrange your code

so the program always manages to find its way to the end of the main()

procedure (or to a return statement in the main). Alternatively, use exit

(described below).

• atof, atoi, atol: convert character arrays to numbers. The syntax for these

are:

– float atof(char* str)

– int atoi(char* str)

– long atol(char* str)

In all cases, str is a character array (not a C++ string) and the procedure

converts the character array into a number. For example, atoi("23") returns

an int value equal to 23.

Some platforms support an atoll procedure that converts its character array

to a long long.

• exit: terminate the program. Usage: exit(int x). The preferred method

for ending a program is for the execution to reach a return statement in the

main. Sometimes, this is not practical. In such cases, it is convenient to call

exit to end the program.

The argument to exit is sent as a “return code” back to the operating system.

(The return value in main serves the same purpose.) By convention, use a

return value of 0 if all is well and a nonzero value if something amiss occurred

(e.g., your program was unable to open a file it needed).



414 C++ for Mathematicians

• rand: return pseudo random values. Usage: int rand(). This returns a

“random” integer value between 0 and RAND_MAX (inclusive). See Chapter 4.

• srand: initialize the random number generator. Usage: void seed(int x).

This resets the pseudo random number generator to a given starting position.

A good choice for a seed value is the system time. To do this, use the statement

srand(time(0)); (you may need to include the ctime header).



Appendix D

Answers

This appendix provides answers and useful comments for nearly all of the exercises
in this book.

1.1 The rst */ after the word and ends the comment. The additional */ on the
last line causes the error.

1.2 The rst message complains that the cout object is deemed undeclared despite
the fact that the programmer did not forget #include <iostream>. What
the programmer did forget is the statement using namespace std; without
which cout is not understood.

The second error caused a parse error on line 5. However, there is noth-
ing wrong with line 5. The error is on line 4 where we forgot to include the
semicolon. However, the compiler did not get confused by this omission until
it reached line 5.

1.3 No. If // or /* appear inside quotation marks, they are part of the character
sequence and are not interpreted as the start of a comment.

1.4 The sequence \n starts a new line. The statements cout << "\n"; and
cout << endl; have the same effect.

The sequence \t causes the output to skip to the next tab stop in the output. It
is useful for lining up data in columns.

The sequence \\ causes a single backslash \ to be written.

1.5 Don’t make such a fuss fuss
This is more fun than learning C++!

2.1 The number 3 is printed to the screen. When the float 3.5 is assigned to an
int variable, there is a loss of precision; the int variable holds just the value
3. Then, when the int value e is assigned to the double variable, the double

is given the value 3.

A good compiler should warn that assigning a float from an int can result
in loss of precision.

2.2 The output from the program looks like this:

415



416 C++ for Mathematicians

� �
10
12
13
10
13.3333

� �

Only cout << (4./3)*10 gives the proper output.

2.3 The output of the program looks like this:
� �
-2
2
-2
2

� �

The mathematician’s mod operation a mod n is usually only de ned for n > 0
and a mod n is an element of {0,1,2, . . . ,n− 1}. Thus, −5 mod 3 = 1, but
C++ returns −2 for (-5)%3. In addition, C++ allows the modulus, n, to be
negative.

2.4 Both ’3’ and 3 are integer types (the rst is a char which is considered to be
an integer type). The result of this expression is false because the character
’3’ does not have the same value as the integer 3. Indeed, on many comput-
ers ’3’ has the value 51 because the character ’3’ is the 51st in the ASCII

character set.

2.5 The rst occurrence of the expression a==b evaluates to false because, when
this expression is reached, a and b hold different values. When a bool value
of false is written to the screen, the number 0 is used.

Next, the expression a=b has the effect of copying b’s value into a and returns
the value now held in common in a and b. Hence, 10 is printed.

Finally, when the second occurrence of a==b is evaluated, both a and b hold
the value 10 and so the expression evaluates to true which is printed as 1 on
the screen.

2.6 The result of your experiment might depend on the computer on which it is
run. The following is the typical result.

If the numerator and denominator are both int types, both 0
0 and 1

0 evaluate
to zero.

However, if the numerator or the denominator (or both) are float then the
special values nan and inf are returned for 0

0 and 1
0 , respectively. Clearly

inf stands for in nity whereas nan stands for not a number.

2.7 400.

2.8 (a) A variable name may not begin with a digit.

(b) The minus sign is an operator and may not be part of a variable’s name.



Answers 417

(c) The word double is a C++ keyword and may not be used as a variable
name.

(d) A variable name may not include a colon.

(e) The ampersand is an operator and may not be part of a variable’s name.

(f) This begins with a digit, contains a minus sign, and is a number (equal
to 0.01).

3.1 d = 17, x = 6, and y = −1. Other answers for x and y are possible.

3.2 If this procedure is invoked with n equal to −1 we fall into an in nite recur-
sion.

There is also the issue that if a large value of n is passed to this procedure,
the result would be too large to t in a long, over ow would result, and the
answer returned would be incorrect.

3.3 In this implementation, we take the input argument to be a real number (type
double) and the return value to be an int. Your choice may vary.

int signum(double x) {
if (x < 0.) return -1;
if (x > 0.) return 1;
return 0;

}

3.4 Here is an iterative version.

long fibonacci(long n) {
if (n < 0) return -1;
if (n==0) return 1;
if (n==1) return 1;
long a = 1;
long b = 1;
long c;

for(int k=2; k<=n; k++) {
c = a+b;
a = b;
b = c;

}
return c;

}

This is a recursive version.

long fibonacci(long n) {
if (n < 0) return -1;
if (n==0) return 1;
if (n==1) return 1;
return fibonacci(n-1)+fibonacci(n-2);

}



418 C++ for Mathematicians

3.5 The iterative version is signi cantly faster than the recursive version. When
the iterative version computes Fn, it does n−1 additions. However, when the
recursive version computes Fn, it requests the calculation of Fn−1 and Fn−2.
The calculation of Fn−1 also requests the computation of Fn−2, and this is
wasted effort. The amount of work needed to calculate Fn grows exponentially
with n.

When asked to calculate Fn, the recursive procedure presented here is called
2Fn − 1 times (your program may have different behavior). This is easy to
show by induction. Let c(n) denote the number of times fibonacci is called
when asked to calculate Fn. For n = 0,1 we have c(n) = 1 and for n > 1 we
note that c(n) = 1+c(n−1)+c(n−2). Now one checks that 2Fn−1 satis es
this recurrence with the given initial conditions.

The values you were requested to nd are

F20 = 10,946 F30 = 1,346,269 F40 = 165,580,141.

3.6 Here is a complete program.

#include <iostream>
#include <cmath>
using namespace std;

const float zeta2 = M_PI*M_PI/6.;

float zeta2up(long n) {
float ans = 0.;
for (long k=1; k<=n; k++) {

ans += 1./float(k)/float(k);
}
return ans;

}

float zeta2down(long n) {
float ans = 0.;
for (long k=n; k>=1; k--) {

ans += 1./float(k)/float(k);
}
return ans;

}

int main() {
long n = 1000000; // 10ˆ6
cout << "zeta2up = " << zeta2up(n) << endl;
cout << "zeta2down = " << zeta2down(n) << endl;
cout << "truth = " << zeta2 << endl;
return 0;

}

The output looks like this.
� �
zeta2up = 1.64473
zeta2down = 1.64493
truth = 1.64493

� �



Answers 419

Observe that zeta2down, which begins the sum with 1/N2, gives the more
accurate result. The discrepancy is due to roundoff issues. A float holds only
so many digits and (on my computer) the epsilon value for a float is around
10−7. This means that by the time the sum reaches k = 106, the value held in
ans is too large for the addition of 10−12 to have any effect. Many terms at the
end of the series have little or no effect on the sum; their contribution is lost.
However, those tail terms do have a cumulative contribution on the actual sum
and are needed to give an accurate result. By summing in the reverse order
these small terms do not have their contributions lost.

3.7 The important issue here is to use call by reference for the third and fourth
arguments. Here is a complete program and its output.

#include <iostream>
#include <cmath>
using namespace std;

void xy2polar(double x, double y, double& r, double& t) {
r = hypot(x,y);
t = atan2(x,y);

}

void polar2xy(double r, double t, double& x, double &y) {
x = r*cos(t);
y = r*sin(t);

}

int main() {
double x,y,r,t;

x = -4.; y = -1.;
xy2polar(x,y,r,t);
cout << "The point (" << x << "," << y

<< ") in polar coordinates is ("
<< r << "," << t << ")" << endl;

r = 2.; t = 2.5;
polar2xy(r,t,x,y);
cout << "The point in polar coordinates (" << r

<< "," << t << ") is (" << x << "," << y << ")" << endl;

return 0;
}

� �
The point (-4,-1) in polar coordinates is (4.12311,-1.81577)
The point in polar coordinates (2,2.5) is (-1.60229,1.19694)

� �

3.8 Here is a program. Change long to long long (or int64) if that type is
available to you.

#include <iostream>
using namespace std;



420 C++ for Mathematicians

bool is_zero_one(long n) {
long ones_digit = n % 10;
if (ones_digit > 1) return false;
if (n == 0) return true;
return is_zero_one(n/10);

}

long find_zero_one_mult(long n) {
for (long k=1; ; k++) {

long m = k*n;
if (m < 0) return -1; // overflow without success
if (is_zero_one(m)) return m;

}
return 0;

}

int main() {
for(long k=1; k<=100; k++) {

cout << k << "\t" << find_zero_one_mult(k) << endl;
}
return 0;

}

The rst procedure, is_zero_one, checks if its input argument consists en-
tirely of 0s and 1s (in base ten) by a recursive algorithm. The second proce-
dure, find_zero_one_mult, does its work by trying all positive multiples
of the input argument until it succeeds. However, if the multiplies over ow
(detected by testing if(m<0)) then we return −1 to signal failure.

Changing long to long long avoids the over ow problem, but then it takes
much longer to nd the proper multiple.

This program is not ef cient. You may notice the computer pausing while it
works to nd the least multiple of 9 of the required form: 111111111. The
program is not likely to nd the least such multiple of 99, because it is

111111111111111111︸ ︷︷ ︸
18 digits

.

Instead of testing successive multiples of n until we nd the result we want, we
can step through decimal numbers composed entirely of 0s and 1s and check
if n is a divisor. However, this is trickier to program.

To step through the decimal values 1, 10, 11, 100, 101, 110, and so on, we re-
alize that if we interpret these numbers as binary, then we are simply counting
1, 2, 3, 4, 5, and so on. If we had a procedure to convert binary numbers to the
corresponding decimal number with the same digits, the task would be easy.

To this end, we create a procedure named bin2dec that performs the mapping

n =
j≥0

b j2 j �→ f (n) =
j≥0

b j10 j



Answers 421

where the b j are in {0,1}. There’s a nice recursive way to de ne this transfor-
mation:

f (n) =

{
10 f

(
n
2

)
if n is even, and

10 f
(

n−1
2

)
+1 if n is odd

with base cases f (0) = 0 and f (1) = 1. [Note: The recursion can be written
with a single algebraic expression like this: f (n) = 10 f (�n/2�)+(n mod 2).]

With this idea in place, we present a second solution to this problem. This
program runs much faster than the rst.

#include <iostream>
using namespace std;

long long bin2dec(long n) {
if (n==0) return 0;
if (n==1) return 1;
return 10*bin2dec(n/2) + (n%2);

}

long long find_zero_one_mult(long long n) {
for (long long k=1; ; k++) {

long long m = bin2dec(k);
if (m < 0) return -1; // overflow without success
if (m%n == 0) return m;

}
return 0;

}

int main() {
for(long long k=1; k<=100; k++) {

cout << k << "\t" << find_zero_one_mult(k) << endl;
}
return 0;

}

4.1 Here is a program that does the job.

#include "uniform.h"
#include <iostream>
#include <cmath>
using namespace std;

int main() {
double x,y,u,v;
const long nreps = 100000000;
double sum;
seed();
sum = 0;
for (long k=0; k<nreps; k++) {

x = unif();
y = unif();
u = unif();
v = unif();
sum += sqrt( (x-u)*(x-u) + (y-v)*(y-v) );



422 C++ for Mathematicians

}

cout << "The average length of the segment is " << sum/nreps
<< endl;

return 0;
}

This gives the following output.
� �
The average length of the segment is 0.521435

� �

This naturally leads to the question: What is the analytic answer? My col-

league James Fill informs me that it is 1
15

(
2+

√
2+ sinh−1 1

)
which is ap-

proximately 0.521405.

4.2 Here is a program. Note the inclusion of the uniform.h header; to compile
this program we need this le (call it buffon.cc) and the les uniform.h

and uniform.cc.

#include <iostream>
#include <cmath>
#include "uniform.h"
using namespace std;

/**
* This procedure simulates one drop of Buffon’s needle.

* It returns true if the needle crosses a line and false if not.

*/

bool drop() {
double x1; // x-coord of one end point of the needle
double x2; // x-coord of the other end point
double theta; // orientation of the needle

x1 = unif();
theta = 2*M_PI*unif();
x2 = x1 + cos(theta);

if (floor(x1) == floor(x2)) return false;

return true;
}

int main() {
long nreps; // number of times to drop the needle
cout << "Enter number of needle drops -> ";
cin >> nreps;

seed();
long count = 0; // number of successful drops
for (int k=0; k<nreps; k++) {

if (drop()) ++count;
}



Answers 423

cout << count << " successes out of " << nreps
<< " drops" << endl;

cout << "frequency = " << double(count)/double(nreps) << endl;
}

Here is a sample run of this program.
� �
Enter number of needle drops -> 100000000
63653758 successes out of 100000000 drops
frequency = 0.636538

� �

This is reasonably close to the theoretical value, 2 ≈ 0.63662.

4.3 Here is some advice on how to approach this exercise. The procedures to gen-
erate points are random in a circle and in a triangle should be of the following
form,

void point_in_circle(double& x, double& y);
void point_in_triangle(double& x, double& y);

Using reference arguments enables these procedures effectively to return two
values.

For point_in_circle, use a rejection algorithm. That is, generate a point
(x,y) uniformly at random in the square [−1,1]× [−1,1]. If x2 + y2 ≤ 1, then
return (x,y); if not, try again. This is a good opportunity to use the do-while

control structure.

For point_in_triangle, it does not matter in which triangle the points are
generated. (Reason: Whether four points lie at the vertices of a convex quadri-
lateral is invariant under invertible af ne transformations.) For simplicity, use
the triangle with vertices located at (0,0), (1,0), and (0,1). A rejection al-
gorithm may be used (generate points in a square until nding one in the tri-
angle). However, it is more ef cient to nd a point uniformly at random in
[0,1]× [0,1] and if it lies in the wrong half of the square, re ect it across the
line through (0,1) and (1,0).

To test if four points determine the corners of a convex quadrilateral, rst write
a procedure to see if the points (x1,y1) and (x2,y2) lie on opposite sides of
the line through (x3,y3) and (x4,y4). They are if and only if the two triples
of points (x1,y1),(x2,y2),(x3,y3) and (x1,y1),(x2,y2),(x4,y4) have opposite
orientation (see the gure).

(x1, y1)

(x2 , y2 )

(x3, y3 )

(x4 , y4 )



424 C++ for Mathematicians

Thus, the points (x1,y1) and (x2,y2) lie on opposite sides of the line through
(x3,y3) and (x4,y4) if and only if

det

⎛
⎝
⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ ·

⎡
⎣1 x1 y1

1 x2 y2

1 x4 y4

⎤
⎦
⎞
⎠ < 0.

Call this procedure something like opposite_sides and use it to build a
procedure that tests if four points determine a convex quadrilateral.

Your experiments should yield the following results. For a triangle, P(K) = 2
3 .

For a circle, P(K) = 1− 35
12 2 ≈ 0.70448.

4.4 Despite the presence of trig functions, the rst version is somewhat faster than
the rejection method on my computer.

4.5 The probability that a point (x,y,z) chosen uniformly at random in [−1,1]3

lies within distance one of the origin equals the volume of the ball of radius 1
divided by the volume of the cube: 4

3 ÷8 = /6 ≈ 0.5236.

In high-dimensional space, the unit ball occupies only a tiny fraction of the
cube [−1,1]n. Therefore, the probability that a given iteration of the rejection
algorithm succeeds is small and many iterations are required to generate a
point within the unit ball.

An ef cient way to generate a point x = (x1,x2, . . . ,xn) uniformly at random
on the unit sphere in R

n is to assign to each xi a Gaussian N(0,1) random value
and then to scale by 1/‖x‖.

4.6 In order for the procedure to remember the position of the particle from one
invocation to the next, use a static variable. Here is the code.

#include "uniform.h"

int random_walk() {
static int position = 0;
if (unif() > 0.5) {

++position;
}
else {

--position;
}
return position;

}

4.7 Naturally, we need to use a static variable to remember the value between
calls. However, a static variable declared in up is not available for use by
down, or vice versa. (It is possible to use a global variable, de ned outside the
scope of any procedure, but this practice is frowned upon.) The solution is to
put the static variable in another procedure! Here’s a solution.



Answers 425

int updown(int change) {
static int value = 0;
value += change;
return value;

}

int up() {
return updown(1);

}

int down() {
return updown(-1);

}

5.1 (100) = 4, (29) = 256, and (6!) = 192.

5.2 The problem is with the declaration int vals[n];. Because the value of n

cannot be determined when the program is compiled, this statement is illegal.
Instead, declare vals with the statement int* vals; and then allocate space
with vals = new int[n];. When vals is no longer needed, release the
allocated memory with delete[] vals;.

5.3 x ≡ 23 (mod 180).

5.5 First, there is nothing wrong with using bool types for the array theSieve.
The decision to use char is based on an oddity. Most compilers use one byte
to house a char, but some use four bytes to house a bool. Use the expressions
sizeof(char) and sizeof(bool) to learn the behavior on your computer.

If we are using an array that has only a million entries, then the difference
between one and four bytes per cell is not important. But if the array has
hundreds of millions (or a billion) entries, then the difference is important as
the program may exhaust available memory.

In Chapter 8 we introduce the vector<bool> type that provides greater mem-
ory ef ciency; this uses only one bit for each entry.

5.6 Did you remember to declare your array to hold 21 values?

#include <iostream>
using namespace std;

int main() {
long fib[21];
fib[0] = 1;
fib[1] = 1;
for(int k=2; k<=20; k++) {

fib[k] = fib[k-1] + fib[k-2];
}
for (int k=0; k<=20; k++) {

cout << k << "\t" << fib[k] << endl;
}
return 0;

}



426 C++ for Mathematicians

5.7 Here is a program.

#include <iostream>
using namespace std;

int main() {
const int STEPS = 15;
long a[STEPS];
long b[STEPS];

a[0] = b[0] = 1;

for (int k=1; k<STEPS; k++) {
a[k] = b[k-1];
b[k] = a[k-1] + 2*b[k-1];

}

for (int k=0; k<STEPS; k++) {
cout << k << "\t" << a[k] << "\t" << b[k] << "\t"

<< double(a[k])/double(b[k]) << endl;
}
return 0;

}

Notice the use of a const int to declare the array sizes. If we decide to
recompile this program to generate arrays of a different size, then we only
need to edit this one value.

Here is the output of the program.
� �
0 1 1 1
1 1 3 0.333333
2 3 7 0.428571
3 7 17 0.411765
4 17 41 0.414634
5 41 99 0.414141
6 99 239 0.414226
7 239 577 0.414211
8 577 1393 0.414214
9 1393 3363 0.414213
10 3363 8119 0.414214
11 8119 19601 0.414214
12 19601 47321 0.414214
13 47321 114243 0.414214
14 114243 275807 0.414214

� �

Based on this chart, it is safe to conjecture that an/bn →√
2−1.

Here’s one approach to proving this. The recurrence can be written in matrix
form as [

a0

b0

]
=

[
1
1

]
and

[
an

bn

]
=

[
0 1
1 2

][
an−1

bn−1

]
.

The eigenvalues of
[

0 1
1 2

]
are 1±√

2 with corresponding eigenvectors
[
−1±√

2
1

]
,

respectively. The iterates of this linear system diverge in the direction of the



Answers 427

eigenvector corresponding to the eigenvalue of largest magnitude, 1+
√

2; that

is, they tend to in nity in the direction
[
−1+

√
2

1

]
, and so an/bn →−1+

√
2.

5.8 Here is such a procedure.

long max_value(const long* array, long nels) {
long ans;

ans = array[0];

for (long k=1; k<nels; k++) {
if (ans < array[k]) {

ans = array[k];
}

}
return ans;

}

Notice that the rst argument is type const long*. The long* means that
the argument is an array of long values. The const certi es that this proce-
dure does not modify the values held in the array.

5.9 Here is a procedure to generate an array of Fibonacci numbers as a return
value.

long* make_fibs(long n) {
long* ans;
ans = new long[n];
ans[0] = 1;
ans[1] = 1;
for (int k=2; k<n; k++) ans[k] = ans[k-1] + ans[k-2];
return ans;

}

Notice that the return type is long* because this procedure returns an array.

The problem with the main() given in the problem is that it suffers a memory
leak. The array created by make_fibs is never released with a delete[]

statement.

The use of new in this design is unavoidable. A better strategy is to design
a procedure with type void make_fibs(long n, long* array);. It is
then the responsibility of the programmer to allocate an array of the appropri-
ate size before invoking this procedure:

long* fibs;
fibs = new long[20];
make_fibs(20,fibs);
// ...
delete[] fibs;

alternatively:

long fibs[20];
make_fibs(20,fibs);
//...



428 C++ for Mathematicians

No delete[] is necessary in this second instance because fibs was not allo-
cated with new.

5.10 Here is such a procedure.

long fibs(int n) {
const int MAX_ARG = 40;
static bool first_time = true;
static long values[MAX_ARG+1];

if (first_time) {
values[0] = 1;
values[1] = 1;
for (int k=2; k<=MAX_ARG; k++) {

values[k] = values[k-1] + values[k-2];
}
first_time = false;

}

if ((n<0) || (n>MAX_ARG)) return -1;
return values[n];

}

The key idea is the use of static variables. The Boolean first_time is
initialized to true so the code can detect when it is rst run. The array values

is then populated with Fibonacci numbers and first_time is set to false

so the initialization is not repeated on subsequent calls. The array values is
also declared to be static so that its contents persist between invocations.

5.11 Here is such a program.

#include <iostream>
using namespace std;

int main() {
long size = 10000000; // ten million
long* array;
long count = 0;
while (true) {

array = new long[size];
++count;
cout << "Success with array #" << count << endl;

}
}

When this program is run on my computer, we see the following output.
� �
Success with array #1
Success with array #2
Success with array #3
Success with array #4
...
Success with array #90
Success with array #91

*** malloc: vm_allocate(size=40001536) failed (error code=3)



Answers 429

*** malloc[4998]: error: Can’t allocate region
Abort trap

� �

5.12 Enter the digits (separated by spaces) into the On-Line Encyclopedia of Integer
Sequences. It responds that this is sequence A059742 giving the decimal digits
of + e.

6.1 Here is a header le for the Line class.

#ifndef LINE_H
#define LINE_H

#include "Point.h"

class Line {
private:

double a,b,c; // to specify the line ax+by+c=0

public:
// constructors
Line();
Line(Point P, Point Q);
Line(double aa, double bb, double cc);

// get methods
double getA() const;
double getB() const;
double getC() const;

// reflection methods
void reflectX();
void reflectY();

// check if a Point is on this Line
bool incident(Point P) const;

// generate a Point on this Line
Point find_Point() const;

// check if this Line equals another
bool operator==(const Line& that) const;

};

// write a Line to an output stream
ostream& operator<<(ostream& os, const Line& L);

// find the distance between a Point and a Line
double dist(Line L, Point P);
double dist(Point P, Line L);

#endif

And here is the code le Line.cc.

#include "Line.h"



430 C++ for Mathematicians

Line::Line() {
a = b = c = 0.;

}

Line::Line(Point P, Point Q) {
// get the coordinates of the points
double x1 = P.getX();
double y1 = P.getY();
double x2 = Q.getX();
double y2 = Q.getY();

// If the points are the same, make the Line horizontal
// through the one point.
if (P==Q) {

cerr << "Warning: Constructing Line from two equal Points"
<< endl;

a = 0.;
b = 1.;
c = -y1;
return;

}

// If the points are distinct, we continue starting
// with the special case of a vertical line
if (x1 == x2) {

a = 1.;
b = 0.;
c = -x1;
return;

}

// The points are distinct and not vertical
a = y2 - y1;
b = x1 - x2;
c = x2*y1 - x1*y2;

}

Line::Line(double aa, double bb, double cc) {
// Check if the data are valid
if ((aa==0.) && (bb==0.)) {

cerr << "Warning: Invalid call to Line(aa,bb,cc)" << endl;
a = 0.;
b = 1.;
c = cc;
return;

}
a = aa;
b = bb;
c = cc;

}

// get methods

double Line::getA() const { return a; }
double Line::getB() const { return b; }



Answers 431

double Line::getC() const { return c; }

// reflection methods
void Line::reflectX() { b = -b; }
void Line::reflectY() { a = -a; }

// check if a Point is on this Line
bool Line::incident(Point P) const {

return a*P.getX() + b*P.getY() + c == 0. ;
}

// generate a Point on a Line
Point Line::find_Point() const {

// if it’s a vertical line, return x-intercept
if (b==0.) {

return Point(-c/a, 0);
}
// otherwise, return the x-intercept
return Point(0,-c/b);

}

bool Line::operator==(const Line& that) const {
// Special case when a == 0
if (a==0) {

if (that.a != 0) return false;
return c/b == that.c/that.b;

}
// When a is not 0
if (that.a == 0) return false;
return (b/a == that.b/that.a) && (c/a == that.c/that.a);

}

// for writing to an output stream
ostream& operator<<(ostream& os, const Line& L) {

os << "[" << L.getA() << "," << L.getB() << ","
<< L.getC() << "]";

return os;
}

// determine the distance from a Point to a Line
double dist(Line L, Point P) {

// fetch a,b,c for the line
double a = L.getA();
double b = L.getB();
double c = L.getC();

// fetch the coordinates of the point
double x = P.getX();
double y = P.getY();

// normalize by dividing by sqrt(a*a+b*b)
double d = sqrt(a*a + b*b);
a /= d;
b /= d;
c /= d;



432 C++ for Mathematicians

// project P onto the unit vector (a,b) and add c
double ans = x*a + y*b + c;

return fabs(ans);
}

double dist(Point P, Line L) { return dist(L,P); }

6.2 It is natural to suspect that something is wrong with the logic and algebra used
to create the procedures, but that is not the case. If we examine the [a,b,c]
triples for the two lines, we see that the triple for L is a scalar multiple of the
triple for M (the factor is 1.4), so these represent the same line.

The problem is roundoff. Indeed, if we print the distance from Y to M the
computer responds 8.88178e-16. Minute errors in the divisions cause the
problems; note that the slope of the line is −5/7 and the quotient cannot be
held exactly in a double variable.

There is no perfect solution to this problem. A good strategy is to replace exact
equality tests with |x− y| < where is either built into the code or is set by
the user.

6.3 The modi cation to Line.h is modest. The old private section would be
replaced by this:

private:
Point A;
Point B;

Nothing else in Line.h would need to be modi ed.

Extensive repairs to Line.cc are now needed. For example, the get methods
would need to be completely reworked.

However, code that uses the Line class would not require any modi cation at
all!

6.4 A good way to do this is with a procedure declared like this:

bool intersect(Line L, Line M, Point& P);

The input Line objects are L and M. If they are parallel, then the procedure
should return false (to mean do not intersect) and leave P unaffected. Other-
wise, we set P to be the Point of intersection and return true.

6.5 It is not unreasonable to make the end points of a LineSegment object be
public data elements because if a program modi es these data directly (and
not through a set method), there is no possibility of creating an invalid object
(we allow the two end points to be the same). By contrast, were we to allow
open access to a Line object’s data, an unwary user might set both a and b to
0 creating an invalid Line object.



Answers 433

In general, it is better to keep the data hidden and write simple get and set

methods to manipulate those data.

Here is a header le LineSegment.h. Writing the LineSegment.cc le is
left to you.

#ifndef LINE_SEGMENT_H
#define LINE_SEGMENT_H

#include <iostream>
#include "Point.h"
using namespace std;

class LineSegment {
private:

// the end points of the segment
Point A;
Point B;

public:
// constructors
LineSegment();
LineSegment(Point P, Point Q);
LineSegment(double x1, double y1, double x2, double y2);

// get & set methods
Point getA() const;
Point getB() const;
void setA(Point P);
void setB(Point Q);

// Length and midpoint methods
double length() const;
Point midpoint() const;

// Check for equality
bool operator==(const Point& that);

};

// for output
ostream& operator<<(ostream& os, const LineSegment& LS);

#endif

6.6 Here are two solutions. In both cases, updating the elds x and y is straight-
forward. The key issue is: how do we write the return statement at the end
of the procedure.

In this rst solution, we make a copy of the Point and return that:

Point Point::translate(double dx, double dy) {
x += dx;
y += dy;
return Point(x,y);

}



434 C++ for Mathematicians

This code is clear but suffers a minor inef ciency because it makes a copy of
the Point and then that copy gets sent back as a return value. We can make
this more ef cient by returning the Point object itself. Here is how that is
done.

Point Point::translate(double dx, double dy) {
x += dx;
y += dy;
return *this;

}

The object *this is the Point object itself, so no extra copy is needed.

In this simple example, the inef ciency is minimal. However, if this method
were to be used extensively then the change from return Point(x,y); to
return *this; can make a noticeable difference.

6.7 This is a subtle problem. Suppose we de ne a procedure proc with one argu-
ment. There are two ways we can declare this procedure:

Point proc(Point Q);
Point proc(Point &Q);

If we use the rst syntax, then a copy of the argument is sent to the procedure,
but if we use the second syntax, then the argument itself is sent. That is, when
we call proc(W) the rst version cannot modify W, but the second version can.

Similarly, the normal behavior of return X is to send back a copy of X. How-
ever, if we want to return the object X itself, we need to add an & to the return
type in the procedure declaration.

For the problem at hand, we need to change the return type of the translate

method from Point to Point&. In the public section in Point.h we declare
the procedure like this.

Point& translate(double dx, double dy);

In Point.cc we have the following code.

Point& Point::translate(double dx,double dy) {
x += dx;
y += dy;
return *this;

}

Let’s examine how the old versions (from the previous problem) and this new
version behave for the code (P.translate(1,2)).translate(10,10);.

In either old version P.translate(1,2) returns a copy of P. (The rst old
version returns a copy of a copy of P!) So the second invocation of translate

acts on a copy of P and not the object P itself. Therefore, P is not modi ed by
translate(10,10).



Answers 435

However, in the new version, the statement return *this; returns the object
itself and not a copy. Therefore the second translate(10,10) acts on P and
not on some unnamed copy of P.

One last point: In the solution to Exercise 6.6, both return Point(x,y);

and return *this; have the intended effect of returning a copy of the Point.
In this exercise, the code return Point(x,y); is inappropriate. We do not
want to return a copy of the Point; we want to return the Point itself. So we
must use return *this;.

7.1 Here is the le Interval.h. Note that the keyword inline is optional for the
class methods but mandatory for the operator<< procedure. We require both
#include <iostream> and using namespace std; to use ostream ob-
jects.

#ifndef INTERVAL_H
#define INTERVAL_H
#include <iostream>
using namespace std;

class Interval {
private:

double a,b; // end points of [a,b]

public:
Interval() {

a = 0.;
b = 1.;

}

Interval(double x, double y) {
if (x<y) {

a = x;
b = y;

}
else {

a = y;
b = x;

}
}

double getA() const { return a; }
double getB() const { return b; }

bool operator==(const Interval& that) const {
return (a==that.a) && (b==that.b);

}

bool operator!=(const Interval& that) const {
return !(*this == that);

}

bool operator<(const Interval& that) const {
if (a < that.a) return true;
if (a > that.a) return false;



436 C++ for Mathematicians

return b < that.b;
}

};

inline ostream& operator<<(ostream& os, const Interval& I) {
os << "[" << I.getA() << "," << I.getB() << "]";
return os;

}

#endif

7.2 The following program accomplishes the required task. It does its work by the
following observation. Suppose the intervals are I1, I2, . . . , In where I j = [a j,b j]
with a j < b j. Let = max j a j and = min j b j. Interval Ik meets all intervals
if and only if ak ≤ and bk ≥ .

#include "Interval.h"
#include "uniform.h"
using namespace std;

double find_max_A(const Interval* list, long ni) {
double ans = list[0].getA();
for (long k=1; k<ni; k++) {

if (ans < list[k].getA()) ans = list[k].getA();
}
return ans;

}

double find_min_B(const Interval* list, long ni) {
double ans = list[0].getB();
for (long k=1; k<ni; k++) {

if (ans > list[k].getB()) ans = list[k].getB();
}
return ans;

}

bool one_meets_all(const Interval* list, long ni) {
double alpha = find_max_A(list,ni);
double beta = find_min_B(list,ni);

for (long k=0; k<ni; k++) {
if ((list[k].getA() <= beta) && (list[k].getB() >= alpha)) {

return true;
}

}
return false;

}

int main() {
seed();
long ni;
cout << "Enter number of intervals --> ";
cin >> ni;



Answers 437

long nreps;
cout << "Enter number of repetitions --> ";
cin >> nreps;

Interval* list;
list = new Interval[ni];

long count = 0;

for (long j=0; j<nreps; j++) {

for (long k=0; k<ni; k++) {
list[k] = Interval(unif(), unif());

}
if (one_meets_all(list,ni)) count++;

}

cout << "Success rate: " << 100*double(count)/double(nreps)
<< "%" << endl;

delete[] list;
return 0;

}

Here is a sample run of the program.
� �
Enter number of intervals --> 100
Enter number of repetitions --> 100000
Success rate: 66.659%

� �

It appears that about 2
3 of the time there is an interval that meets all the others.

One might conjecture that as n → , the probability there is such an interval
approaches 2

3 (and this is true). On the other hand, it is not hard to show
that for n = 2, the probability that the two intervals intersect is exactly 2

3 .
The surprise is that for any value of n ≥ 2, the probability there is an interval
that intersects all the others is 2

3 . [Reference: J. Justicz, E. Scheinerman, and
P. Winkler, Random intervals, American Mathematical Monthly 97 (December
1990) 881–889.]

7.3 How can we sort the array and not modify it? Work with a copy. Here’s the
code.

#include <iostream>
#include <algorithm>
using namespace std;

double median(const double* array, long nels) {
if (nels < 0) return 0.;
if (nels == 0) return array[0];

// make a copy of the array
double* copy_array;
copy_array = new double[nels];



438 C++ for Mathematicians

for (int k=0; k<nels; k++) copy_array[k] = array[k];

// sort the copy
sort(copy_array, copy_array+nels);

// extract the single middle element or the averages
// of two most central elements in the sorted list
double ans;
if (nels%2 == 1) {

ans = copy_array[nels/2];
}
else {

ans = (copy_array[nels/2] + copy_array[(nels/2)+1]) / 2.;
}

// free the copy and return the result
delete[] copy_array;
return ans;

}

7.4 We can modify Program 7.3 to do the work. We need to generate all primitive
Pythagorean triples containing a leg or a hypotenuse whose length is at most
100. To do this, we run the constructor PTriple(m,n) for all m,n ≤ 100.
Note that if either m or n is greater than 100, then all three of 2mn, m2 − n2,
and m2 +n2 exceed 100 and may be ignored. Here’s a program.

#include "PTriple.h"
#include <iostream>
#include <algorithm>
using namespace std;

/**
* Count the number of triples with a given leg and

* a given hypotenuse

*/

int main() {
PTriple* table; // table to hold the triples
const int N = 100; // maximum length we’re counting

int leg_count[N+1]; // tally leg lengths
int hyp_count[N+1]; // tally hypotenuse lengths

// Make sure counters are all zero
for (int k=0; k<=N; k++) {

leg_count[k] = 0;
hyp_count[k] = 0;

}

// Allocate space for the table
table = new PTriple[2*N*N];

// Populate the table with all possible PTriples
long idx = 0; // index into the table
for (long m=1; m<=N; m++) {



Answers 439

for (long n=1; n<=N; n++) {
PTriple P = PTriple(m,n);
if (P.getA() <= N) {

table[idx] = P;
idx++;

}
}

}

// Sort the table
sort(table, table+idx);

// Process unique elements in the tables
leg_count[table[0].getA()]++;
leg_count[table[0].getB()]++;
hyp_count[table[0].getC()]++;

for (int k=1; k<idx; k++) {
if (table[k] != table[k-1]) {

long a,b,c;
a = table[k].getA();
b = table[k].getB();
c = table[k].getC();

if (a<=N) leg_count[a]++;
if (b<=N) leg_count[b]++;
if (c<=N) hyp_count[c]++;

}
}
cout << "Length\tLeg\tHypotenuse" << endl;
for (int k=0; k<=N; k++) {

cout << k << "\t" << leg_count[k] << "\t"
<< hyp_count[k] << endl;

}

// Release memory held by the table
delete[] table;
return 0;

}

When the program is run, we see the following output.
� �
Length Leg Hypotenuse
0 1 0
1 1 1
2 0 0
3 1 0
4 1 0
5 1 1
6 0 0
7 1 0
8 1 0
9 1 0
..................
90 0 0
91 2 0



440 C++ for Mathematicians

92 2 0
93 2 0
94 0 0
95 2 0
96 2 0
97 1 1
98 0 0
99 2 0
100 2 0

� �

For an explanation of these results, see: Eric W. Weisstein. “Pythagorean
Triple.” From MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/PythagoreanTriple.html

8.1 Declare a set of sets of integers as set< set<long> > X; Incidentally, the
following does not work: set<set<long>> X; because the >> can be con-
fused with the right-shift operator.

Here’s code to build the set
{
{1,2,3},{4,5},{6}

}
.

#include <set>
using namespace std;

int main() {
set<long> tmp;
set< set<long> > bigset;

tmp.insert(1);
tmp.insert(2);
tmp.insert(3);
bigset.insert(tmp);

tmp.clear();
tmp.insert(4);
tmp.insert(5);
bigset.insert(tmp);

tmp.clear();
tmp.insert(6);
bigset.insert(tmp);

return 0;
}

8.2 The procedure should be declared as

void print_set(const set<int>& A);

Here is the program.

#include <set>
#include <iostream>
using namespace std;



Answers 441

void print_set(const set<int>& A) {
long n = A.size(); // number of el’ts in the set
long k; // for counting the set
set<int>::iterator Ai; // iterator into the set

cout << "{";
k = 0;
for (Ai = A.begin(); Ai != A.end(); ++Ai) {

cout << *Ai;
++k;
if (k < n) cout << ","; // comma if not the last element

}
cout << "}";

}

8.3 C++ set containers may only be used to house data types for which < and
== are de ned. The complex<double> type does not de ne <, so we cannot
house these objects in a set.

However, C++ ordered pairs (pair<type1,type2>) can be held in a set

provided < is de ned for both type1 and type2.

Although we cannot put the value 2 + 3i into a set, we can put the ordered
pair (2,3) into a set. We use code that looks like this.

#include <complex>
#include <set>
using namespace std;

int main() {
complex<double> z(2.,3.);
set< pair<double,double> > A;
A.insert( make_pair(z.real(),z.imag()) );
return 0;

}

A more satisfactory solution is developed in Exercise 10.3.

8.4 We must show that an equals the number of ordered factorizations of n.

Proof. The proof is by induction with the basis case a1 = 1 given. Suppose
the result is true for all values less than n and we ask for the number of ordered
factorizations of n. We condition on the rst term in the factorization; say
it’s d. The number of ordered factorizations of an whose rst factor is d >
1 is exactly the number of ordered factorizations of n/d (the balance of the
factorization), and that equals an/d by induction. Summing over all d > 1
gives

an =
d|n,d>1

an/d.

However, this is just a rearranged version of the sum

d|n,d<n

ad



442 C++ for Mathematicians

and the result follows.

This sequence also arises in counting the number of perfect partitions of an in-
teger. See the On-Line Encyclopedia of Integer Sequences, sequence A002033
and Eric W. Weisstein, “Perfect Partitions,” from Mathworld—A Wolfram
Web Resource.

http://mathworld.wolfram.com/PerfectPartition.html

8.5 Here is a le Partition.h that creates the class (with all methods and pro-
cedures written inline).

#ifndef PARTITION_H
#define PARTITION_H

#include <set>
#include <iostream>
#include <vector>
using namespace std;

class Partition {
private:

/// A multiset to hold the parts
multiset<int> parts;
/// An integer to hold the sum
int sum;

public:
/// Default constructor: create null partition of 0
Partition() {

sum = 0;
parts.clear();

}

/// Add a new part to this partition
void add_part(int n) {

if (n <= 0) {
cerr << "Cannot add nonpositive part to a partition"

<< endl;
return;

}
parts.insert(n);
sum += n;

}

/// What is the sum of the parts?
int get_sum() const { return sum; }

/// How many parts in this partition?
int nparts() const { return parts.size(); }

/// Get a vector containing the parts
vector<int> get_parts() const {

vector<int> ans;
ans.resize(nparts());



Answers 443

multiset<int>::iterator pi;
int idx = 0;
for (pi=parts.begin(); pi!=parts.end(); pi++) {

ans[idx] = *pi;
++idx;

}
return ans;

}

/// Compare two parts
bool operator<(const Partition& that) const {

// first compare the number partitioned
if (sum < that.sum) return true;
if (sum > that.sum) return true;

// same sum, so compare number of parts
if (nparts() < that.nparts()) return true;
if (nparts() > that.nparts()) return false;

// last resort, compare element by element
vector<int> my_parts = get_parts();
vector<int> that_parts = that.get_parts();

for (int k=0; k<nparts(); k++) {
if (my_parts[k] < that_parts[k]) return true;
if (my_parts[k] > that_parts[k]) return false;

}

// Only way to reach here is if the partitions are equal
return false;

}
};

inline ostream& operator<<(ostream& os, const Partition& P) {
if (P.get_sum() == 0) {

os << 0;
return os;

}

vector<int> list = P.get_parts();
int np = P.nparts();
os << P.get_sum() << " = ";
for (int i=np-1; i>=0; i--) {

os << list[i];
if (i > 0) os << "+" ;

}
return os;

}

#endif

8.6 Here is a program that uses a recursive approach conditioning on the largest
part in the partition. The procedure make_partitions(n,mp) generates the
set of all partitions of n whose largest part is at most mp.

#include "Partition.h"



444 C++ for Mathematicians

set<Partition> make_partitions(int n, int mp) {
set<Partition> ans;
set<Partition> tmp;

if (mp>n) mp = n;

if (n==0) {
ans.insert(Partition());
return ans;

}

for (int k=1; k<=n; k++) {
tmp.clear();
tmp = make_partitions(n-k,k);
set<Partition>::iterator sp;
for (sp = tmp.begin(); sp != tmp.end(); sp++) {

Partition P = *sp;
P.add_part(k);
ans.insert(P);

}
}
return ans;

}

set<Partition> make_partitions(int n) {
return make_partitions(n,n);

}

int main() {
cout << "Enter n: ";
int n;
cin >> n;

set<Partition> PS = make_partitions(n);
set<Partition>::iterator pp;
for (pp = PS.begin(); pp != PS.end(); pp++) {

cout << *pp << endl;
}
cout << PS.size() << " partitions of " << n << endl;
return 0;

}

Here is a sample run of the program.
� �
Enter n: 6
6 = 6
6 = 5+1
6 = 4+2
6 = 3+3
6 = 4+1+1
6 = 3+2+1
6 = 2+2+2
6 = 3+1+1+1
6 = 2+2+1+1
6 = 2+1+1+1+1



Answers 445

6 = 1+1+1+1+1+1
11 partitions of 6

� �

8.7 The solution is to use a static look-up table that takes pairs of long values
as keys. To create such a table, be sure to #include <map> and give the
following declaration.

static map< pair<long,long> , long > table;

Here is a program with a binomial procedure and a main to check that it
works.

#include <map>
#include <iostream>
using namespace std;

long binomial(long n, long k) {

static map< pair<long,long> , long > table;

if (k>n) return 0;
if (k==0) return 1;
if (k==n) return 1;

pair<long, long> args = make_pair(n,k);

if (table.count(args) > 0) {
return table[args];

}

table[args] = binomial(n-1,k-1) + binomial(n-1,k);

return table[args];
}

int main() {
for (int n=0; n<10; n++) {

for (int k=0; k<10; k++) {
cout << binomial(n,k) << "\t";

}
cout << endl;

}
return 0;

}

The code gives Pascal’s triangle as output.
� �

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0
1 6 15 20 15 6 1 0 0 0
1 7 21 35 35 21 7 1 0 0
1 8 28 56 70 56 28 8 1 0
1 9 36 84 126 126 84 36 9 1

� �



446 C++ for Mathematicians

8.8 The inputs to the procedure are the array and an integer specifying the length
of the array. The vector can either be the return value of the procedure or a
reference argument:

vector<long> array2vector(const long* list, long nels);

void array2vector(const long* list, long nels,
vector<long>& vlist);

The rst is, perhaps, more natural, however, the second is more ef cient. The
problem with the rst approach is that when the return statement executes,
the vector<long> built in the procedure is copied to the receiving variable
in the calling procedure.

Here is code for the procedure using the second approach.

#include <vector>
using namespace std;

void array2vector(const long* list, long nels,
vector<long>& vlist) {

vlist.resize(nels);
for (int k=0; k<nels; k++) vlist[k] = list[k];

}

8.9 The solution is to use iterators that point to the rst and one-past-the-last ele-
ments of the vector like this,

sort(values.begin(), values.end());

The following code illustrates this approach.

#include <vector>
#include <iostream>
using namespace std;

const int N = 10;

int main() {
vector<long> values;
values.resize(N);
for (int k=0; k<N; k++) {

values[k] = rand()%1000;
cout << values[k] << " ";

}
cout << endl << endl;

sort(values.begin(), values.end());

for (int k=0; k<N; k++) cout << values[k] << " ";
cout << endl;
return 0;

}

Here is the output of this program.



Answers 447

� �
807 249 73 658 930 272 544 878 923 709

73 249 272 544 658 709 807 878 923 930
� �

8.10 This is dangerous. The iterator is now focused on a part of a set that no longer
exists. Such an action renders the iterator invalid. Even worse, all iterators
referring to the modi ed set are now invalid.

8.11 It is tempting (but wrong) to write code like this:

set<long>::iterator sp;
for (sp = A.begin(); sp != A.end(); ++sp) {

if (*sp%2 == 1) A.erase(*sp);
}

The problem, as we discussed in the solution to Exercise 8.10, is that once we
erase the element referred to by an iterator, the iterator becomes invalid. We
need a different approach.

The technique we illustrate here is to step through the set and place a copy of
the odd elements we nd in a container (in the following code we use a stack,
but other choices would work as well). Once we have accumulated copies
of all the odd elements in the set, we run through the stack and delete the
corresponding elements from the set. Here’s the code.

#include <set>
#include <stack>
using namespace std;

void delete_odds(set<long>& A) {
stack<long> eliminate;
set<long>::const_iterator sp;
for (sp=A.begin(); sp!=A.end(); ++sp) {

if (*sp % 2 == 1) eliminate.push(*sp);
}
while (!eliminate.empty()) {

A.erase(eliminate.top());
eliminate.pop();

}
}

8.12 Here is the code.

#include <set>
#include <algorithm>
#include <iostream>
using namespace std;

void print_element(long x) { cout << x << " "; }

void print_set(set<long>& A) {
cout << "{ ";
for_each(A.begin(), A.end(), print_element);



448 C++ for Mathematicians

cout << "}" << endl;
}

Note that we rst de ne the procedure print_element. This procedure is
used as an argument to for_each in the print_set procedure.

9.2 Here is a complete solution. First we present the header le Time.h in which
the short methods are de ned inline. The private method adjust() is used
to correct the variables so they fall in the proper ranges. For example, if
the hour/minute/second variables have values (5,59,65), then adjust would
change these to (6,0,5).

Notice the use of a static variable ampm_style that is modi ed via the
static methods ampm() and military().

#ifndef TIME_H
#define TIME_H

#include <iostream>
using namespace std;

class Time {
private:

long hour, min, sec;
static bool ampm_style;
void adjust();

public:
Time() { hour = min = sec = 0; }
Time(int H, int M, int S);
Time operator+(long n) const;
Time operator-(long n) const;
Time operator++();
Time operator--();
int get_hour() const { return hour; }
int get_minute() const { return min; }
int get_second() const { return sec; }
static void ampm() { ampm_style = true; }
static void military() { ampm_style = false; }
static bool is_ampm() { return ampm_style; }

};

Time operator+(long n, const Time& T);
ostream& operator<<(ostream& os, const Time& T);

#endif

Next we give the code le Time.cc.

#include "Time.h"

bool Time::ampm_style = true;

void Time::adjust() {
// adjust the seconds field first



Answers 449

if (sec < 0) {
long change = (-sec)/60 + 1;
sec += change * 60;
min -= change;

}
if (sec > 59) {

long change = sec/60;
sec -= change*60;
min += change;

}
// adjust the min field next
if (min < 0) {

long change = (-min)/60 + 1;
min += change*60;
hour -= change;

}
if (min > 59) {

long change = min/60;
min -= change*60;
hour += change;

}
// finally, adjust the hour
if (hour < 0) {

long change = (-hour/24) + 1;
hour += change*24;

}
if (hour > 23) {

hour %= 24;
}

}

Time::Time(int H, int M, int S) {
hour = H;
min = M;
sec = S;
adjust();

}

Time Time::operator+(long n) const {
Time T = *this;
T.sec += n;
T.adjust();
return T;

}

Time operator+(long n, const Time& T) {
return T+n;

}

Time Time::operator-(long n) const {
Time T = *this;
T.sec -= n;
T.adjust();
return T;

}



450 C++ for Mathematicians

Time Time::operator++() {
++sec;
adjust();
return *this;

}

Time Time::operator--() {
--sec;
adjust();
return *this;

}

ostream& operator<<(ostream& os, const Time& T) {
long h = T.get_hour();
long m = T.get_minute();
long s = T.get_second();

if (Time::is_ampm()) { // am-pm style
if (h==0) {

os << 12;
}
else if (h>12) {

os << h-12;
}
else {

os << h;
}
os << ":";
if (m < 10) os << 0;
os << m;
os << ":";
if (s < 10) os << 0;
os << s;

if (h < 12) {
os << " am";

}
else {

os << " pm";
}

}

else { // military time
os << h << ":";
if (m < 10) os << 0;
os << m << ":";
if (s < 10) os << 0;
os << s ;

}
return os;

}

Finally, the following code shows how to extract the current local time on a
UNIX computer. Unfortunately, it is dif cult to understand. Fortunately, it is
unusual for a program that solves a mathematics problem to need to deal with



Answers 451

the current time of day.

#include <ctime>
#include <iostream>
#include "Time.h"
using namespace std;

Time now() {
time_t clock = time(0);
long h = localtime(&clock)->tm_hour;
long m = localtime(&clock)->tm_min;
long s = localtime(&clock)->tm_sec;

return Time(h,m,s);
}

int main() {
cout << "At the tone, the time will be " << now() << endl;
return 0;

}

If you need to deal extensively with date and time matters, it is worth your
while to download, build, and install a package created by someone else. For
example, the Boost C++ package provides classes for working with date and
time. (See Chapter 13 about working with packages you nd on the Web
including a brief description of Boost on page 286.)

9.3 Here is the header le EuclideanVector.h.

#ifndef EUCLIDEAN_VECTOR_H
#define EUCLIDEAN_VECTOR_H

#include <vector>
#include <iostream>
using namespace std;

class EuclideanVector {
private:

static int DEFAULT_DIM;
int dim;
vector<double> coords;

public:
EuclideanVector();
EuclideanVector(int n);
static int get_default_dim() { return DEFAULT_DIM; }
static void set_default_dim(int n);
double get(int n) const;
void set(int n, double x);
int get_dim() const { return dim; }
EuclideanVector operator+(const EuclideanVector& that) const;
EuclideanVector operator*(double s) const;
bool operator==(const EuclideanVector& that) const;
bool operator!=(const EuclideanVector& that) const;

};



452 C++ for Mathematicians

EuclideanVector operator*(double s, const EuclideanVector& v);
ostream& operator<<(ostream& os, const EuclideanVector& v);

#endif

Here is the code le EuclideanVector.cc.

#include "EuclideanVector.h"

int EuclideanVector::DEFAULT_DIM = 2;

EuclideanVector::EuclideanVector() {
dim = DEFAULT_DIM;
coords.resize(dim);
for (int k=0; k<dim; k++) coords[k] = 0.;

}

EuclideanVector::EuclideanVector(int n) {
if (n < 0) {

cerr << "Cannot construct vector with negative dimension"
<< endl << "using zero instead" << endl;

n = 0;
}
dim = n;
coords.resize(n);
for (int k=0; k<dim; k++) coords[k] = 0.;

}

void EuclideanVector::set_default_dim(int n) {
if (n < 0) {

cerr << "Cannot set default dimension to be negative"
<< endl << "using zero instead" << endl;

n = 0;
}
DEFAULT_DIM = n;

}

double EuclideanVector::get(int n) const {
n %= dim;
if (n < 0) n += dim;
return coords[n];

}

void EuclideanVector::set(int n, double x) {
n %= dim;

if (n < 0) n += dim;
coords[n] = x;

}

EuclideanVector
EuclideanVector::operator+(const EuclideanVector& that) const {

if (dim != that.dim) {
cerr << "Attempt to add vectors of different dimensions"

<< endl;
return EuclideanVector(0);

}
EuclideanVector ans(dim);



Answers 453

for (int k=0; k<dim; k++) {
ans.coords[k] = coords[k] + that.coords[k];

}
return ans;

}

EuclideanVector
EuclideanVector::operator*(double s) const {

EuclideanVector ans(dim);
for (int k=0; k<dim; k++) ans.coords[k] = s*coords[k];
return ans;

}

bool
EuclideanVector::operator==(const EuclideanVector& that) const {

if (dim != that.dim) return false;
for (int k=0; k<dim; k++) {

if (coords[k] != that.coords[k]) return false;
}
return true;

}

bool
EuclideanVector::operator!=(const EuclideanVector& that) const {

return !( (*this) == that );
}

EuclideanVector operator*(double s, const EuclideanVector& v) {
return v*s;

}

ostream& operator<<(ostream& os, const EuclideanVector& v) {
os << "[ ";
for (int k=0; k<v.get_dim(); k++) os << v.get(k) << " ";
os << "]";
return os;

}

9.4 Here are the les S.h and S.cc that implement the set S and its operation ∗.

#ifndef S_H
#define S_H
#include <iostream>
#include <cmath>
using namespace std;

class S {
private:

long n;
public:

S() { n = 0; }
S(long a) {

if (a<0) a = -a;
n = a;

}
long getN() const { return n; }



454 C++ for Mathematicians

double value() const { return sqrt(n); }
S operator*(const S& that) const { return S(n + that.n); }

};

ostream& operator<<(ostream& os, const S& s);

#endif

#include "S.h"

ostream& operator<<(ostream& os, const S& s) {
os << "sqrt(" << s.getN() << ")";
return os;

}

9.5 See the le quaternions.h on the CD-ROM that accompanies this book.
This le includes embedded Doxygen comments and the CD-ROM includes
the Web pages they generate.

10.1 The two classes are de ned in the following .h le. There is no need for a
.cc le.

#ifndef _RECTANGLE_
#define _RECTANGLE_

class Rectangle {
protected:

double h,w; // hold the height and width
public:

Rectangle(double x=1.0, double y=1.0) {
h = x;
w = y;

}

double get_width() const { return w; }
double get_height() const { return h; }

void set_width(double x) { w = x; }
void set_height(double y) { h = y; }

double area() const { return h*w; }
double perimeter() const { return 2.*(h+w); }

};

class Square : public Rectangle {
public:

Square(double s = 1.) : Rectangle(s,s) { }
void set_width(double x) { w = x; h = x; }
void set_height(double y) { w = y; h = y; }

};



Answers 455

#endif

10.2 Here is a le parallelogram.h that de nes all three classes.

#ifndef PARALLELOGRAM_H
#define PARALLELOGRAM_H
#include <cmath>

class Parallelogram {
protected:

double a,b,c;
public:

Parallelogram() { a = b = c = 0.; }
Parallelogram(double x1, double x2, double y2) {

if (x1 < 0) x1 = -x1;
if (y2 < 0) y2 = -y2;
a = x1;
b = x2;
c = y2;

}
double area() const { return c*a; }
double perimeter() const {

return 2*sqrt(b*b + c*c) + 2*a;
}

};

class Rectangle : public Parallelogram {
public:

Rectangle(double height, double width) :
Parallelogram(width, 0., height) {}

double perimeter() const { return 2*a + 2*c; }
};

class Rhombus : public Parallelogram {
public:

Rhombus(double x, double y) :
Parallelogram(sqrt(x*x)+sqrt(y*y), x, y) {}

double perimeter() const { return 4*a; }
};

#endif

10.3 The class mycomplex can be de ned in a header le, mycomplex.h, like this.

#ifndef MY_COMPLEX_H
#define MY_COMPLEX_H

#include <complex>
using namespace std;

class mycomplex : public complex<double> {
public:

mycomplex() : complex<double> (0.,0.) {}
mycomplex(double r) : complex<double> (r,0.) {}
mycomplex(double r, double i) : complex<double> (r,i) {}



456 C++ for Mathematicians

bool operator<(const mycomplex& that) const {
if (real() < that.real()) return true;
if (real() > that.real()) return false;
if (imag() < that.imag()) return true;
return false;

}
};

#endif

We de ne the three constructors by passing arguments up to the constructor
for complex<double>. No further action is required by these constructors
and so the bodies of these three constructors are empty: {}.

Next the operator < is de ned. Note that we use the complex<double> meth-
ods real() and imag() to access the data, and then use lexicographic order-
ing.

Here is a short main to test the mycomplex class.

#include "mycomplex.h"
#include <iostream>
#include <set>
using namespace std;

int main() {
mycomplex z;
mycomplex w(2);
mycomplex v(-5,2);

set<mycomplex> S;
S.insert(z);
S.insert(w);
S.insert(v);

set<mycomplex>::iterator si;
for (si = S.begin(); si != S.end(); ++si) {

cout << *si << " ";
}
cout << endl;

return 0;
}

This produces the following output.
� �
(-5,2) (0,0) (2,0)

� �

10.4 The dif culty here is that each class depends on the other, leaving us in a
quandary as to which to de ne rst. In C++ one must declare classes and
variables before they can be used. So, the solution is to give a preliminary
declaration of the Segment class before giving a full declaration of Point.
This is done with the statement class Segment; in the header le.



Answers 457

The operator+ in Point uses the Segment(Point,Point) constructor
to convert a pair of points into a line segment. We cannot put the code for
operator+ inline in the declaration of the Point class because the required
Segment(double,double) constructor has not yet been declared. So we
are compelled to write the code for operator+ in a separate .cc le.

Here are the les pointseg.h and pointseg.cc.

#ifndef POINTSEG_H
#define POINTSEG_H

#include <iostream>
using namespace std;

class Segment;

class Point {
private:

double x,y;
public:

Point() { x = y = 0; }
Point(double xx, double yy) {

x = xx;
y = yy;

}
double getX() const { return x; }
double getY() const { return y; }
Segment operator+(const Point& that) const;

};

class Segment {
private:

Point A,B;
public:

Segment() { A = Point(0,0); B = Point(1,0); }
Segment(Point X, Point Y) { A = X; B = Y; }
Point getA() const { return A; }
Point getB() const { return B; }
Point midpoint() const;

};

ostream& operator<<(ostream& os, const Point& P);
ostream& operator<<(ostream& os, const Segment& S);

#endif

#include "pointseg.h"

Segment Point::operator+(const Point& that) const {
return Segment(*this, that);

}

Point Segment::midpoint() const {
double x = (A.getX() + B.getX()) / 2;
double y = (A.getY() + B.getY()) / 2;
return Point(x,y);



458 C++ for Mathematicians

}

ostream& operator<<(ostream& os, const Point& P) {
os << "(" << P.getX() << "," << P.getY() << ")";
return os;

}

ostream& operator<<(ostream& os, const Segment& S) {
os << "[" << S.getA() << "," << S.getB() << "]";
return os;

}

10.5 No. Suppose that class Alpha declares a data member of type Beta and vice
versa. If this were allowed, we could create an in nite nesting: Alpha objects
contain Beta objects which in turn contain Alpha objects, ad in nitum.

Examine this header le and the problem should become clear.

class Beta;

class Alpha {
private:

Beta b;
};

class Beta {
private:

Alpha a;
};

Trying to #include this header le into a program generates a compiler error
message like this.

� �
In file included from alphabeta.cc:1:
alphabeta.h:5: error: field ‘b’ has incomplete type

� �

10.6 The key idea is to derive Complexx as a subclass of complex<double> and
add two Boolean data elds to signal whether the object is in nite and whether
the object is invalid. To save some typing, we typedef the symbol C to be
shorthand for complex<double>.

To de ne the arithmetic operators, we rely on the corresponding operators
from complex. To convert an object z of type Complexx to its parent class C,
we use the expression C(z). So, to multiple Complexx objects w and z, we
rst check for special cases where either is in nite or invalid, and then to get

the required product we may use the expression C(w)*C(z).

Here are the les Complexx.h and Complexx.cc. To make this class more
useful, we should add the operators +=, -=, *=, and /=. We should also extend
all the arithmetic operators so that one of the arguments can be a double.

#include <complex>
using namespace std;



Answers 459

typedef double R;
typedef complex<R> C;

class Complexx : public C {
private:

bool infinite;
bool invalid;

public:
Complexx(C z) : C(z) {

infinite = false;
invalid = false;

}
Complexx(R a, R b) : C(a,b) {

infinite = false;
invalid = false;

}

bool isZero() const {
return !invalid && !infinite && C(*this) == C(0);

}
bool isInfinite() const {

return !invalid && infinite;
}
bool isInvalid() const { return invalid; }

bool operator==(const Complexx& that) const {
if (invalid || that.invalid) return false;
if (infinite && that.infinite) return true;
return C(*this) == C(that);

}

bool operator!=(const Complexx& that) const {
if (invalid || that.invalid) return false;
return !(*this == that);

}

Complexx operator+(const Complexx& that) const;
Complexx operator-() const;
Complexx operator-(const Complexx& that) const;
Complexx operator*(const Complexx& that) const;
Complexx operator/(const Complexx& that) const;

};

ostream& operator<<(ostream& os, const Complexx& z);

#include "Complexx.h"

Complexx Complexx::operator+(const Complexx& that) const {
Complexx ans(C(*this) + C(that));
if (invalid || that.invalid) {

ans.invalid = true;
return ans;

}
if (infinite && that.infinite) {

ans.invalid = true;



460 C++ for Mathematicians

return ans;
}
if (infinite || that.infinite) {

ans.infinite = true;
return ans;

}
return ans;

}

Complexx Complexx::operator-() const {
Complexx ans(-C(*this));
if (invalid) {

ans.invalid = true;
return ans;

}
if (infinite) {

ans.infinite = true;
return ans;

}
return ans;

}

Complexx Complexx::operator-(const Complexx& that) const {
return (*this) + (-that);

}

Complexx Complexx::operator*(const Complexx& that) const {
Complexx ans(C(*this) * C(that));
if (invalid || that.invalid) {

ans.invalid = true;
return ans;

}
if (infinite && that.isZero()) {

ans.invalid = true;
return ans;

}
if (isZero() && that.infinite) {

ans.invalid = true;
return ans;

}
if (infinite || that.infinite) {

ans.infinite = true;
return ans;

}
return ans;

}

Complexx Complexx::operator/(const Complexx& that) const {
Complexx ans(C(*this) / C(that));
if (invalid || that.invalid) {

ans.invalid = true;
return ans;

}
if (isZero() && that.isZero()) {

ans.invalid = true;
return ans;



Answers 461

}
if (infinite && that.infinite) {

ans.invalid = true;
return ans;

}
if (infinite) {

ans.infinite = true;
return ans;

}
if (that.infinite) {

ans = Complexx(0.,0.);
return ans;

}
if (that.isZero()) {

ans.infinite = true;
return ans;

}
return ans;

}

ostream& operator<<(ostream& os, const Complexx& z) {
if (z.isInvalid()) {

os << "INVALID";
return os;

}
if (z.isInfinite()) {

os << "Infinity";
return os;

}
os << C(z);
return os;

}

11.1 Here is a hint. Suppose that is written in disjoint cycle notation. The order
of is the least common multiple of lengths of the cycles. Also for positive
integers a and b, the least common multiple of a and b is ab/gcd(a,b).

11.2 Here is the le Counted.h. Notice how we use the constructor just to incre-
ment the variable n_objects and the destructor to decrement it.

#ifndef COUNTED_H
#define COUNTED_H

class Counted {
private:

static long n_objects;

public:
Counted() { n_objects++; }
˜Counted() { n_objects--; }
long static count() { return n_objects; }

};

#endif



462 C++ for Mathematicians

This header le contains nearly everything except the code to initialize the
static class variable n_objects. This is done in a separate source le,
Counted.cc:

#include "Counted.h"
long Counted::n_objects = 0;

11.3 Here are the les Partition.h and Partition.cc.

#ifndef PARTITION_H
#define PARTITION_H
#include <iostream>
using namespace std;

class Partition {
private:

int sum;
int n_parts;
int *parts;

public:
Partition() {

sum = n_parts = 0;
parts = new int[1];

}
Partition(const Partition& that) {

sum = that.sum;
n_parts = that.n_parts;
parts = new int[n_parts+1];
for (int k=0; k<n_parts; k++) parts[k] = that.parts[k];

}
˜Partition() {

delete[] parts;
}
Partition operator=(const Partition& that) {

sum = that.sum;
n_parts = that.n_parts;
delete[] parts;
parts = new int[n_parts+1];
for (int k=0; k<n_parts; k++) parts[k] = that.parts[k];
return *this;

}
void add_part(int n);
int get_sum() const { return sum; }
int nparts() const { return n_parts; }
int operator[](int k) const;
bool operator<(const Partition& that) const;

};

ostream& operator<<(ostream& os, const Partition& P);

#endif

#include "Partition.h"

void Partition::add_part(int n) {



Answers 463

if (n <= 0) {
cerr << "Cannot add a negative part" << endl;
return;

}
sum += n;
int* new_parts = new int[n_parts+1];
for (int k=0; k<n_parts; k++) {

new_parts[k] = parts[k];
}
new_parts[n_parts] = n;
n_parts++;
sort(new_parts, new_parts+n_parts);
delete[] parts;
parts = new_parts;

}

int Partition::operator[](int k) const {
if ((k<0) || (k>=n_parts)) {

cerr << "Index out of range" << endl;
return -1;

}
return parts[k];

}

bool Partition::operator<(const Partition& that) const {
if (sum < that.sum) return true;
if (sum > that.sum) return false;
if (n_parts < that.n_parts) return true;
if (n_parts > that.n_parts) return false;
for (int k=0; k<n_parts; k++) {

if (parts[k] < that.parts[k]) return true;
if (parts[k] > that.parts[k]) return false;

}
return false;

}

ostream& operator<<(ostream& os, const Partition& P) {
if (P.nparts() < 2) {

os << P.get_sum();
return os;

}
for (int k=0; k<P.nparts(); k++) {

os << P[k];
if (k < P.nparts()-1) os << "+";

}
return os;

}

11.5 Here is the le SmartArray.h that implements the class.

#ifndef SMART_ARRAY_H
#define SMART_ARRAY_H

class SmartArray {
private:

long N;



464 C++ for Mathematicians

long* data;
long adjust_index(long k) {

k %= N;
if (k<0) k += N;
return k;

}

public:
SmartArray(long nels = 1) {

N = (nels > 1) ? nels : 1;
data = new long[N];

}
˜SmartArray() { delete[] data; }
long get_N() const { return N; }
long& operator[](long k) {

long kk = adjust_index(k);
return data[kk];

}
};

#endif

Note that we de ne two private data elements: N (the size of the array) and
data (a place to hold the data elements).

We also de ne a private method adjust_index that maps an array index to
fall between 0 and N-1 (inclusive).

The constructor, after ensuring that its argument is at least 1, allocates storage
for the data array. The destructor’s only job is to release the memory held by
data. The get_N method is a convenient way to learn the size of the array.
(Note: In this implementation we do not provide any way to resize an array.)

And now we come to the main point of this exercise: the operator[] method.
Notice that we declared the return type of this method to be long&. If we had,
instead, declared the return type to be long, then return data[kk]; would
simply return a copy of the value held in slot kk of the data. This is just like
call by value, but in this case, it’s return by value.

By declaring the return type to be long&, we switch from returning a copy of
a value to returning the actual item itself; that is, we have implemented return
by reference.

Suppose the following statements appear in a main(),

SmartArray X(10);
X[-1] = 4;

The rst declares X to be a SmartArray housing 10 values. When the second
statement is encountered, here’s what happens. First adjust_index(-1)

runs and returns the value 9 (and that’s held in the temporary variable kk).
Next the code executes return data[-1];. So the statement X[-1] = 4;

is, effectively, transformed into X.data[9] = 4;.



Answers 465

11.6 The following code is a le named LFT.h that de nes the class LFT. No-
tice that we de ned C to be an abbreviation for complex<double>. We
include get methods to extract the coef cients of the transformation and an
operator<< to print the transformations to the screen.

#ifndef LFT_H
#define LFT_H
#include <complex>
#include <iostream>
using namespace std;
typedef complex<double> C;

class LFT {
private:

C a,b,c,d;
public:

LFT(C aa, C bb, C cc, C dd) {
a = aa; b = bb; c = cc; d = dd;

}
LFT() {

a = 1; b = 0; c = 0; d = 1;
}
C getA() const { return a; }
C getB() const { return b; }
C getC() const { return c; }
C getD() const { return d; }
C operator()(C z) const {

return (a*z+b)/(c*z+d);
}
LFT operator*(const LFT& T) const {

C aa,bb,cc,dd;
aa = a*T.a + b*T.c;
bb = a*T.b + b*T.d;
cc = c*T.a + d*T.c;
dd = c*T.b + d*T.d;
return LFT(aa,bb,cc,dd);

}
};

inline ostream& operator<<(ostream& os, const LFT& T) {
os << "z |--> (" << T.getA() << "*z + " << T.getB()

<< ")/(" << T.getC() << "*z + " << T.getD()
<< ")";

return os;
}

#endif

11.7 The les Path.h and Path.cc follow. Note that we used a vector container
to house the points. This is easier than managing a Path* array. As a bonus,
because we do not need to delete[] any arrays we allocated, we do not need
a ˜Path() destructor.

Also note that we did not de ne an operator+ for the case Path+Point.
The C++ compiler knows how to convert a Point to a Path (thanks to the



466 C++ for Mathematicians

single-argument constructor). However, a separate Point+Path procedure is
necessary.

#ifndef PATH_H
#define PATH_H
#include "Point.h"
#include <vector>

class Path {
private:

vector<Point> pts;
long npts;

public:
Path() { npts = 0; }
Path(const Point& P) {

npts = 1;
pts.resize(1);
pts[0] = P;

}
long size() const { return npts; }
Path operator+(const Path& that) const;
Point operator[](int k) const;

};

Path operator+(const Point& X, const Path& P);
ostream& operator<<(ostream& os, const Path& P);

#endif

#include "Path.h"

Path Path::operator+(const Path& that) const {
Path ans;
ans.npts = npts + that.npts;
ans.pts.resize(ans.npts);

for (int k=0; k<npts; k++) ans.pts[k] = pts[k];
for (int k=0; k<that.npts; k++) ans.pts[k+npts] = that.pts[k];

return ans;
}

Point Path::operator[](int k) const {
if (npts==0) return Point(0,0);
k %= npts;
if (k<0) k = -k;
return pts[k];

}

Path operator+(const Point& X, const Path& P) {
return Path(X) + P;

}

ostream& operator<<(ostream& os, const Path& P) {
os << "[ ";
for (int k=0; k<P.size(); k++) os << P[k] << " ";



Answers 467

os << "]";
return os;

}

12.1 The code is a mildly edited version of the answer to Exercise 7.3; it works for
any type for which the < is de ned. Here is the le median.h.

#ifndef MEDIAN_H
#define MEDIAN_H
#include <algorithm>
using namespace std;

template <class T>
T median(const T* array, long nels) {

if (nels < 0) return 0.;
if (nels == 0) return array[0];

T* copy_array;
copy_array = new T[nels];
for (int k=0; k<nels; k++) copy_array[k] = array[k];

sort(copy_array, copy_array+nels);

T ans;
ans = copy_array[nels/2];
delete[] copy_array;
return ans;

}
#endif

There is an interesting difference between the algorithm we use here and the
algorithm used in our solution to Exercise 7.3. In the rst version, if the array
contains an even number of elements, we return the average to the two central
values. However, this new version might be applied to a type for which addi-
tion and division by 2 is not de ned. Our solution is to return element number
�n/2� of (the sorted copy of) an array with n elements.

12.2 Here is the new version of SmartArray.h.

#ifndef SMART_ARRAY_H
#define SMART_ARRAY_H

template <class T>
class SmartArray {
private:

long N;
T* data;
long adjust_index(long k) {

k %= N;
if (k<0) k += N;
return k;

}

public:
SmartArray(long nels = 1) {



468 C++ for Mathematicians

N = (nels > 1) ? nels : 1;
data = new T[N];

}
˜SmartArray() { delete[] data; }
long get_N() const { return N; }
T& operator[](long k) {

long kk = adjust_index(k);
return data[kk];

}
};

#endif

12.3 Here is a le derivative.h that creates a template procedure derivative.

#ifndef DERIVATIVE_H
#define DERIVATIVE_H
#include "Polynomial.h"

template <class T>
Polynomial<T> derivative(const Polynomial<T>& P) {

Polynomial<T> ans;

for (long k=1; k<=P.deg(); k++) {
ans.set(k-1,k*P[k]);

}
return ans;

}
#endif

Alternatively, we could add a derivative() method to the Polynomial

class template.

12.4 Here is some advice on handling multiple roots. If p(x) has multiple roots,
then

q(x) =
p(x)

gcd(p(x), p′(x))

has the same roots as p(x), but all the roots are simple.

12.5 Here is a le triple.h that de nes the triple class and the make_triple

procedure templates.

#ifndef TRIPLE_H
#define TRIPLE_H

template <class A, class B, class C>
class triple {
public:

A first;
B second;
C third;

triple() {};
triple(const A& x, const B& y, const C& z) {



Answers 469

first = x; second = y; third = z;
}

bool operator<(const triple& that) const {
if (first < that.first) return true;
if (first > that.first) return false;
if (second < that.second) return true;
if (second > that.second) return false;
if (third < that. third) return true;
return false;

}
};

template <class A, class B, class C>
triple<A,B,C> make_triple(const A& x, const B& y, const C& z) {

return triple<A,B,C>(x,y,z);
}

#endif

12.6 Use the Polynomial template created in this chapter as a basic building block.
Your template should start like this:

template <class T>
class RationalFunction {
private:

Polynomial<T> numerator;
Polynomial<T> denominator;

public:
....

};

12.7 Notice that in the following program we do not use C++’s set containers. The
print_set procedure takes an integer, examines each of its bits, and prints
out a set element when it nds a nonzero bit.

#include <iostream>
using namespace std;

int LIMIT = 8*sizeof(unsigned long);

void print_set(unsigned long x) {
cout << "{ ";
for (int k=0; k<LIMIT; k++) {

unsigned long mask = 1<<k;
if ((x&mask) != 0) cout << k+1 << " ";

}
cout << "}" << endl;

}

int main() {
cout << "Enter n (up to " << LIMIT-1 << ") --> ";
int n;
cin >> n;



470 C++ for Mathematicians

if ((n<0) || (n>=LIMIT)) {
cerr << "Please use a positive value that is less than "

<< LIMIT << endl;
return -1;

}

unsigned long top = (1<<n) - 1;

for (unsigned long x = 0 ; x <= top; x++) {
print_set(x);

}
return 0;

}

Here is a sample run.
� �

Enter n (up to 31) --> 3
{ }
{ 1 }
{ 2 }
{ 1 2 }
{ 3 }
{ 1 3 }
{ 2 3 }
{ 1 2 3 }

� �

13.1 Of course, the “right” way to solve this problem is to see that there are 24
factors of 5 in 100!. Here is a solution that uses the GMP package.

#include <iostream>
#include "gmpxx.h"
using namespace std;

mpz_class factorial(long n) {
mpz_class ans(1);
for (int k=2; k<=n; k++) ans *= k;
return ans;

}

int main() {
mpz_class value = factorial(100);
int count = 0;
while (value % 10 == 0) {

value /= 10;
count++;

}
cout << count << endl;
return 0;

}

13.2 Here is the program.

#include <iostream>
using namespace std;

const int NROWS = 21;



Answers 471

int main() {
int table[NROWS][NROWS];

table[0][0] = 1;
for (int k=1; k<NROWS; k++) table[0][k] = 0;

for (int n=1; n<NROWS; n++) {
table[n][0] = 1;
table[n][n] = 1;
for (int k=1; k<n; k++)

table[n][k] = table[n-1][k-1]+table[n-1][k];
for (int k=n+1; k<NROWS; k++) table[n][k] = 0;

}

for (int n=0; n<NROWS; n++) {
for (int k=0; k<NROWS; k++) {

cout << table[n][k] << "\t";
}
cout << endl;

}

return 0;
}

To extend this to a 100× 100 table, it is not enough to change the value of
NROWS. The binomial coef cients grow too large to t in long variables.
Even long long variables are not big enough (assuming that these are 64
bits). Instead, we need to use arbitrary precision integers (e.g., from the GMP
package) or settle for decimal approximations (i.e., use a double table).

14.1 Here are two solutions. First, we can convert the string into a char* array,
and then use atoi:

int n;
n = atoi(s.c_str());

Alternatively, we can wrap the string inside an istringstream and then
extract the integer value using the >> operator:

istringstream is(s);
int n;
is >> n;

14.2 ifstream fin(file_name.cstr());

14.3 The addition of a char and an int results in an int, and so instead of writing
the letters a through z, instead we see the ASCII values for these letters.

The solution is to replace ’a’+k with char(’a’+k).

14.4 Here are the header and code les, Free.h and Free.cc, that implement the
Free class. Note that we include constructors for building Free objects from
a single character, a string, and a char* array. The helper methods named



472 C++ for Mathematicians

reduce are used to cancel adjacent inverse elements. The clear_check

method is used by the constructor to prevent the inclusion of improper charac-
ters.

#ifndef FREE_H
#define FREE_H
#include <iostream>
#include <cctype>
using namespace std;

class Free {
private:

string word;
bool reduce(int k);
void reduce();
void check_clear();

public:
Free() { word.clear(); }
Free(char ch) {

word = string(" ");
word[0]=ch;
check_clear();

}
Free(const string& S) {

word = S;
check_clear();

}
Free(const char* str) {

word = string(str);
check_clear();

}
string toString() const { return word; }
Free operator*(const Free& that) const {

Free ans;
ans.word = word + that.word;
ans.reduce();
return ans;

}
Free inverse() const;

};

inline
ostream& operator<<(ostream &os, const Free& f) {

os << ’(’ << f.toString() << ’)’;
return os;

}

#endif

#include "Free.h"

void Free::check_clear() {
for (unsigned k=0; k<word.size(); k++) {

while (!isalpha(word[k])) {
word.erase(k,1);

}



Answers 473

}
reduce();

}

bool Free::reduce(int k) {
char c1 = word[k];
char c2 = word[k+1];
if ((islower(c1)&&isupper(c2))||(isupper(c1)&&islower(c2))){

if (toupper(c1) == toupper(c2)) {
word.erase(k,2);
return true;

}
}
return false;

}

void Free::reduce() {
if (word.size() < 2) return;
for (int k=0; k<int(word.size())-1; k++) {

while (reduce(k)) {
if (k>0) --k;

}
}

}

Free Free::inverse() const {
Free ans;
ans.word = word;
int n = int(word.size());
for (int k=0; k<n; k++) {

char ch = word[k];
ch = isupper(ch) ? tolower(ch) : toupper(ch);
ans.word[n-1-k] = ch;

}
return ans;

}

14.5 The following program reads a text le (given as a command-line argument)
and reports letter frequencies.

#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char** argv) {
ifstream fin;
if (argc < 2) {

cerr << "Usage: " << argv[0] << " filename" << endl;
return 1;

}
fin.open(argv[1]);
if (fin.fail()) {

cerr << "Unable to open " << argv[1] << " for reading"
<< endl;

return 2;
}



474 C++ for Mathematicians

string word;
long count[26];
long total = 0;
for (int k=0; k<26; k++) count[k] = 0;

while (true) {
fin >> word;
if (fin.fail()) break;
for (int k=0; k<word.size(); k++) {

char ch = tolower(word[k]);
if (isalpha(ch)) {

count[ch-’a’]++;
total++;

}
}

}

for (char ch=’a’; ch <= ’z’; ch++) {
int idx = ch - ’a’;
cout << ch << "\t" << 100*double(count[idx])/double(total)

<< endl;
}

return 0;
}

We ran this code on four 19th-century texts; three of these were in English
and one in French. The results are in the accompanying table. It’s not hard to
distinguish one from the other three.

14.6 A complete program to count polygrams in a text le is included on the ac-
companying CD-ROM.

14.7 The following program uses the Point class from Chapter 6 ( les Point.h

and Point.cc) plus the les Koch.h, Koch.cc, and main.cc that we present
here.

#ifndef KOCH_H
#define KOCH_H

#include <vector>
#include <cmath>
#include "Point.h"

using namespace std;

class Koch {

private:
vector<Point> pts;

public:
Koch(int n=0);
int size() const { return pts.size(); }



Answers 475

Letter frequency chart to accompany solution to Exercise 14.5.

Letter Frequency (percent)
a 8.4 8.7 8.1 8.3
b 1.5 1.2 1.4 1.5
c 2.6 3.1 2.6 2.4
d 4.4 3.8 4.4 4.8
e 12.4 14.9 12.6 12.5
f 2.4 1.1 2.4 2.3
g 2.4 1.0 2.2 2.4
h 6.2 1.2 5.6 6.0
i 6.6 7.6 7.2 6.8
j 0.1 0.4 0.1 0.1
k 0.6 0.0 0.8 0.8
l 3.7 6.6 4.3 3.8
m 2.4 3.0 2.8 2.6
n 6.7 6.8 7.0 7.2
o 7.5 5.5 7.1 7.1
p 2.2 2.7 1.8 1.8
q 0.1 1.1 0.1 0.1
r 5.9 6.7 5.7 6.0
s 6.5 8.3 5.9 6.0
t 9.2 7.6 9.6 9.7
u 2.9 6.3 2.8 2.7
v 1.0 1.6 0.9 0.9
w 2.2 0.1 2.2 2.3
x 0.3 0.4 0.2 0.1
y 1.7 0.4 1.9 1.8
z 0.0 0.1 0.1 0.0

Point get(int k) const { return pts[k]; }

};

void koch_step(const Point& P, const Point& Q,
Point& X, Point& Y, Point& Z);

#endif

#include "Koch.h"

Koch::Koch(int n) {
if (n<0) n=0;
pts.push_back(Point(0,0));
pts.push_back(Point(1,0));

for (int k=0; k<n; k++) {
vector<Point> tmp;
for (unsigned j=0; j<pts.size()-1; j++) {

Point P = pts[j];
Point Q = pts[j+1];



476 C++ for Mathematicians

Point X,Y,Z;
koch_step(P,Q,X,Y,Z);
tmp.push_back(P);
tmp.push_back(X);
tmp.push_back(Y);
tmp.push_back(Z);

}
tmp.push_back(Point(1,0));
pts = tmp;

}
}

const double theta = M_PI/3;

void koch_step(const Point& P, const Point& Q,
Point& X, Point& Y, Point& Z) {

double a = P.getX();
double b = P.getY();
double c = Q.getX();
double d = Q.getY();

X = Point( (2*a+c)/3, (2*b+d)/3 );
Z = Point( (a+2*c)/3, (b+2*d)/3 );

double x = (c-a)/3;
double y = (d-b)/3;

double xx = cos(theta)*x - sin(theta)*y;
double yy = sin(theta)*x + cos(theta)*y;

Y = Point( X.getX() + xx, X.getY() + yy);
}

#include "Koch.h"
#include "plotter.h"
#include <fstream>
using namespace std;

const char* OUTPUT_FILE = "koch.eps";

int main() {
int n;
cout << "Enter depth: ";
cin >> n;
Koch K(n);
PlotterParams params;
ofstream pout(OUTPUT_FILE);
PSPlotter P(cin,pout,cerr,params);

if (P.openpl() < 0) {
cerr << "Unable to open plotter for file "

<< OUTPUT_FILE << endl;
return 1;

}

P.fspace(0.,0.,1.,1.);



Answers 477

for (int k=0; k<K.size()-1; k++) {
double x1 = K.get(k).getX();
double y1 = K.get(k).getY();
double x2 = K.get(k+1).getX();
double y2 = K.get(k+1).getY();
P.fline(x1,y1,x2,y2);

}

P.closepl();
return 0;

}

When run at depth 5, the following image is produced.

14.8 Here is a program to draw the Mandelbrot set.

#include <iostream>
#include <fstream>
#include <complex>
#include "plotter.h"
using namespace std;

const int MAX_ITS = 500;
const int PIXELS = 1000;
const char* FILE_NAME = "mandelbrot.gif";

double norm(complex<double> z) {
double a = z.real();
double b = z.imag();
return a*a + b*b;

}

bool in_set(complex<double> c) {
complex<double> z = 0.;
for (int k=0; k<MAX_ITS; k++) {

z = z*z + c;
if (norm(z) > 4.) return false;

}
return true;

}

complex<double> pix_to_complex(int i, int j) {
double a = (4.2*i)/PIXELS - 2.1;
double b = (4.2*j)/PIXELS - 2.1;
return complex<double>(a,b);

}



478 C++ for Mathematicians

int main() {
PlotterParams params;
ofstream pout(FILE_NAME);
GIFPlotter P(cin, pout, cerr, params);
if (P.openpl() < 0) {

cerr << "Unable to open plotter for file " << FILE_NAME
<< endl;

return 1;
}

P.space(0,0,PIXELS,PIXELS);
P.pencolorname("black");
for (int i=0; i<PIXELS; i++) {

for (int j=0; j<PIXELS; j++) {
complex<double> z = pix_to_complex(i,j);
if (in_set(z)) {

P.point(i,j);
}

}
}
P.closepl();
return 0;

}

It produces the following image.

15.1 Here is Card.h with all methods and procedures inline.

#ifndef CARD_H
#define CARD_H

#include <vector>
#include <string>
#include <iostream>
using namespace std;

const int ACE = 1;
const int JACK = 11;
const int QUEEN = 12;



Answers 479

const int KING = 13;

const string value_names[] = { "nil", "ace", "two", "three",
"four", "five", "six", "seven",
"eight", "nine", "ten",
"jack", "queen", "king" };

const string suit_names[] = { "clubs", "diamonds",
"hearts", "spades" };

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES };

class Card {
private:

int value;
Suit suit;
int card2int() const {

return 13*suit + value;
}

public:
Card() { value = ACE; suit = SPADES; }
Card(int spots, Suit family) {

spots %= 13;
if (spots <= 0) spots += 13;
value = spots;
suit = family;

}
bool operator<(const Card& that) const {

return card2int() < that.card2int();
}
bool operator==(const Card& that) const {

return card2int() == that.card2int();
}
bool operator!=(const Card& that) const {

return card2int() != that.card2int();
}
friend ostream& operator<<(ostream& os, const Card& C);

};

inline ostream& operator<<(ostream& os, const Card& C) {
os << value_names[C.value] << " of "

<< suit_names[C.suit];
return os;

}

#endif

15.2 The statement T* xp = new T(10); creates a single new object of type T

in which the value 10 is supplied to the class T constructor.

The statement T* xp = new T[10]; creates a new array to hold 10 objects
of type T.

15.3 Notice that in the following program we catch a bad_alloc that is thrown by



480 C++ for Mathematicians

new when there is not enough memory to allocate. (The pre x std:: is not
necessary because we declared using namespace std;.)

#include <iostream>
using namespace std;

int main() {
long size = 10000000; // ten million
long* array;
long count = 0;
while (true) {

try {
array = new long[size];

}
catch (bad_alloc X) {

cerr << "Unable to allocate memory" << endl;
exit(1);

}
++count;
cout << "Success with array #" << count << endl;

}
}

15.4 +. x+y addition or string concatenation, x++ and ++x increment, and unary
+x is the identity function (not mentioned elsewhere in this book).

-. a-b subtraction, -x unary minus, x-- and --x decrement, and combined
with > to give -> arrow operator.

*. a*b multiplication, *x pointer/iterator dereferencing, type* var point-
er/array declaration, and combined with / to delimit comments: /* and */.

/. a/b division and// single line comment. See also *.

=. a=b assignment, a==b equality testing, combined with < and > for ≤ and
≥, and combined with ! for inequality testing.

<. a<b for less than, a<<b for bit shift and stream output, and used with > for
declaring templates and for #include of standard headers. See also =.

>. a>b for greater than, a>>b for bit shift and stream input. See also =, -, and
>.

!. !a Boolean not. See also =.

&. a&b bitwise and, &a address of, type& var reference declaration, a&&b

Boolean and.

|. a|b bitwise or and a||b Boolean or.

˜. ˜a bitwise not and ˜Class destructor.

:. class : public subclass inheritance, label: statement; label-
ing, case 1: label in a switch statement,

Child(argument_list) : Parent(argument_sublist) { ... }



Answers 481

parent class constructor invocation, Class::name/namespace::name scope
resolution, and a?b:c in the trigraph operator.

15.5 This is a tricky problem combining many of the concepts we have encountered
in this book.

Each constructible number can be represented as an expression tree. For ex-
ample, the golden mean (1+

√
5)/2 can be parsed like this.

1 25

÷

+

There are three types of nodes in this tree:

– Atomic nodes that contain integers.

– Unary operations nodes (
√

and unary −) that have one child.

– Binary operation nodes (+, binary −, ×, and ÷) that have a left and a
right child.

Each child node is, itself, a constructible number.

Our solution begins by de ning the data elements of the Constructible

class. They are:

– An operation code op. This eld indicates the type of node: an atomic
node (i.e., an integer), a unary operation, or a binary operation. To this
end we de ne an enum type called Operation that is one of NOP (for an
atomic node), PLUS, MINUS, TIMES, DIVIDE, NEG, or SQRT.

– An integer val eld. This is only used in the case where this is an atomic
node.

– An integer nargs eld. This is 0 for an atomic node, 1 for a unary
operation, or 2 for a binary operation. It tell us how many direct children
this node has.

– An array args containing the children. This array is dynamically allo-
cated and its size is given in nargs.

The constructor creates an atomic node with a given integer value. The var-
ious operator methods create Constructible objects with one or two ar-
guments (saved in the args array). An assignment operator is needed when
copying a Constructible object so that a true independent copy is created.
Because various operations allocate storage (via new), we need to be mindful
to release that storage (e.g., in the destructor).



482 C++ for Mathematicians

The code for the binary operator methods are remarkably similar, so we write a
private helper method named binary_op. A similar unary_op is provided
for the negation and square root.

The procedure to produce a decimal (complex) value for a Constructible

object works recursively on the structure of the object. Note that the Standard
Template Library does not de ne a square root method for complex<double>

values, so we write our own.

The header Constructible.h and code les Constructible.cc follow.

#ifndef CONSTRUCTIBLE_H
#define CONSTRUCTIBLE_H
#include <iostream>
#include <complex>
using namespace std;

enum Operation { NOP, PLUS, MINUS, TIMES, DIVIDE, NEG, SQRT };

class Constructible {
private:

Operation op;
long val;
int nargs;
Constructible *args;
Constructible binary_op(Operation verb,

const Constructible& that) const;
Constructible unary_op(Operation verb) const;

public:
Constructible(long x = 0) { op = NOP; val = x; nargs = 0; }
˜Constructible() {

if (nargs > 0) {
delete[] args;

}
}
Constructible(const Constructible& X);
Constructible& operator=(const Constructible& that);
Constructible operator+(const Constructible& that) const {

return binary_op(PLUS,that);
}
Constructible operator-() const { return unary_op(NEG); }
Constructible operator-(const Constructible& that) const {

return binary_op(MINUS,that);
}
Constructible operator*(const Constructible& that) const {

return binary_op(TIMES,that);
}
Constructible operator/(const Constructible& that) const {

return binary_op(DIVIDE, that);
}
Constructible sqrt() const { return unary_op(SQRT); }
complex<double> value() const;
friend ostream& operator<<(ostream& os,

const Constructible& X);
};



Answers 483

inline Constructible operator+(long a, Constructible X) {
return Constructible(a) + X;

}
inline Constructible operator*(long a, Constructible X) {

return Constructible(a) * X;
}
inline Constructible operator-(long a, Constructible X) {

return Constructible(a) - X;
}
inline Constructible operator/(long a, Constructible X) {

return Constructible(a) / X;
}

complex<double> complex_sqrt(const complex<double>& z);

inline Constructible sqrt(const Constructible& X) {
return X.sqrt();

}
#endif

#include "Constructible.h"
#include <cmath>

Constructible::Constructible(const Constructible& X) {
op = X.op;
val = X.val;
nargs = X.nargs;
if (nargs > 0) {

args = new Constructible[nargs];
for (int k=0; k<nargs; k++) {

args[k] = X.args[k];
}

}
}

Constructible&
Constructible::operator=(const Constructible& that) {

op = that.op;
val = that.val;
if (nargs > 0) {

delete[] args;
}
nargs = that.nargs;
if (nargs > 0) {

args = new Constructible[nargs];
for (int k=0; k<nargs; k++) {

args[k] = that.args[k];
}

}
return *this;

}

Constructible
Constructible::binary_op(Operation verb,

const Constructible& that) const {



484 C++ for Mathematicians

Constructible ans;
ans.op = verb;
ans.nargs = 2;
ans.args = new Constructible[2];
ans.args[0] = *this;
ans.args[1] = that;
return ans;

}

Constructible
Constructible::unary_op(Operation verb) const {

Constructible ans;
ans.op = verb;
ans.nargs = 1;
ans.args = new Constructible[1];
ans.args[0] = *this;
return ans;

}

complex<double> Constructible::value() const {
switch(op) {
case NOP:

return complex<double>(double(val),0);
break;

case PLUS:
return args[0].value() + args[1].value();
break;

case MINUS:
return args[0].value() - args[1].value();
break;

case NEG:
return -args[0].value();
break;

case TIMES:
return args[0].value() * args[1].value();
break;

case DIVIDE:
return args[0].value() / args[1].value();
break;

case SQRT:
return complex_sqrt(args[0].value());
break;

default:
cerr << "This shouldn’t happen!" << endl;

}
return complex<double>(0);

}

const char* OPEN = "\\left(";
const char* CLOSE = "\\right)";

ostream& operator<<(ostream& os, const Constructible& X) {
switch(X.op) {
case NOP:

os << X.val;
break;



Answers 485

case PLUS:
os << OPEN << X.args[0] << " + " << X.args[1] << CLOSE;
break;

case MINUS:
os << OPEN << X.args[0] << " - " << X.args[1] << CLOSE;
break;

case TIMES:
os << OPEN << X.args[0] << " \\times " << X.args[1]

<< CLOSE;
break;

case DIVIDE:
os << "\\frac{" << X.args[0] << "}{" << X.args[1] << "}";
break;

case NEG:
os << "-" << OPEN << X.args[0] << CLOSE;
break;

case SQRT:
os << "\\sqrt{" << X.args[0] << "}";
break;

default:
os << "INVALID CONSTRUCTIBLE OBJECT";

}
return os;

}

complex<double> complex_sqrt(const complex<double>& z) {
double x = z.real();
double y = z.imag();
if ((x==0.) && (y==0.)) return complex<double>(0.);
if (y==0.) {

if (x >= 0.) {
return complex<double>(sqrt(x),0);

}
else {

return complex<double>(0., sqrt(-x));
}

}
double r = sqrt(hypot(x,y));
double t = atan2(y,x)/2.;
return complex<double> (r*cos(t), r*sin(t));

}

The following brief main() illustrates the use of the Constructible class.

#include "Constructible.h"
int main() {

Constructible five(5);
Constructible PHI = (1+sqrt(five))/2;
cout << "PHI = " << PHI.value().real() << endl;
cout << "TeX form: " << PHI << endl;
return 0;

}

This gives the following output.



486 C++ for Mathematicians

� �
PHI = 1.61803
TeX form: \frac{\left(1 + \sqrt{5}\right)}{2}

� �

The TEX code produces this:
(1+

√
5)

2 .

Showing that two Constructible objects represent the same complex num-
ber is tricky so we did not de ne an == operator. See E.R. Scheinerman,
“When close enough is close enough,” American Mathematical Monthly 107
no. 6 (June–July 2000) 489–499 for one approach.

15.6 A full solution is available on the accompanying CD-ROM. In this solution we
use several classes.

– Token: Objects of this type are “atoms” of a Boolean expression. This
may be a variable, a constant, a unary operation, or a binary operation.

– Expression: Objects of this type represent Boolean expressions.

– LookupTable: These are devices that associate Boolean values with
variables.

– ExpressionLoader: This is a device to read input streams and produce
Expression objects.

– TautologyChecker: This is a device that runs through all possible sub-
stitutions for the variables in an Expression to see if any yield FALSE.
If not, then the expression is a tautology.



Index

!, 22, 394

!=, 22, 104, 394

ϕ , 67

*, 13, 18, 71, 130, 351–353, 394, 395

*/, 7

*=, 20

+, 18, 292, 394

++, 20, 131, 394, 404

+=, 20, 394

,, 395

-, 18, 394

--, 20, 131, 394, 404

-=, 20

->, 142, 356, 395

., 395

..., 342

/, 18, 394

/*, 7

/**, 382

//, 7

///, 382

/=, 20

:, 182, 337

::, 7, 99, 101

;, 5, 95, 396

<, 22, 236, 238, 394

<<, 5, 104, 107, 259, 303, 395

<=, 22, 394

=, 12, 394, 404

==, 14, 22, 104, 394

>, 22, 236, 238, 394

>=, 22, 394

>>, 260, 303, 395

?:, 224, 395, 396

$, 366

%, 19, 394

%=, 20

&, 47, 97, 105, 259, 350, 352, 395

&&, 22, 394

ˆ, 22, 259, 395

{, 396

}, 396

˜, 220, 395, 402

|, 259, 395

||, 22, 394

a.exe, 366, 367

a.out, 4, 366, 367

abort, 342, 413

abs, 409

acos, 409

adjacent, 326

advancing statement, 36

algorithm, 124

-ansi, 368, 371

any, 262

arbitrary precision arithmetic, 269

argc, 298

argv, 298

arithmetic operator, 18–20

array, 69–71, 393

character, 5, 289–291, 306, 471

smart, 233, 264

two-dimensional, 273–274

ASCII, 289

asin, 409

assignment, 12, 100, 394

operator, 131, 221–223, 404

with arithmetic operation, 20, 394

at, 135, 294

atan, 409

atan2, 102, 409

atod, 299

487



488 C++ for Mathematicians

atof, 299, 413

atoi, 299, 413, 471

atol, 299, 413

@author, 390

back, 149

bad alloc, 359, 480

base name, 5

bash, 364–366

begin, 130, 131, 141, 144

bell curve, 61

Bessel functions, 409

binomial coefficient, 153, 287, 322

bitset, 260, 261

bool, 14, 391

boolalpha, 311

Boolean expression, 360

Boost, 286, 451

Box–Muller method, 62

break, 42, 334, 337

break point, 375, 377

@brief, 25, 382, 389

Buffon’s needle, 64

@bug, 390

bus error, 353

.C, 5

C++ Java Matrix Library, 274

C++, as an extension of C, 21

c str, 297, 471

call by reference, 47, 97, 104, 105,

108, 132, 139, 169, 221, 276,

346, 356, 395, 399, 419

call by value, 35, 46, 72, 104, 276,

346, 399

capacity, 136

case, 334, 397

cast, 19, 44, 100

catch, 338, 339, 398

catch all, 342

Cauchy sequence, 98

cbrt, 409

.cc, 5, 399

cctype, 331

cd, 366

ceil, 409

cerr, 34, 108, 300

cfloat, 16

CGAL, 286

char, 14, 289, 391

character

array, 5, 289–291, 306, 471

control, 412

string, 289

Chinese Remainder Theorem, 68, 88,

174

Cholesky factorization, 278–280, 284

CHomP, 287

cin, 20, 300

circle, 320

class, 93, 401–408

container, 127

template, 238–242, 407

class, 96

clear, 128, 136, 140, 144, 303

climits, 16

clique, 330

close, 302

closepl, 320

cmath, 21, 64, 94, 97, 102, 112, 123,

408

@code, 389

code file, 94, 399

colon, 182, 337

comma, 395

command line argument, 297–300

comment, 7

comparison operator, 22

compiled language, 4

compiler, 4

complex, 23, 238

complex number, 23–27

complexx, 24

Computational Geometry Algorithms

Library, 286

Computational Homology Program, 287

concatenation, 292

condition number, 280

const, 25, 58, 82, 83, 102, 105,

108, 132, 147, 167, 276, 297,



Index 489

393, 400

const iterator, 132, 145, 147

constant, global, 25, 165

constructible number, 359

constructor, 96, 99, 116, 402

as type converter, 100

copy, 219, 221, 261, 405

container class, 127

continue, 42

control character, 412

copy, 275

copy constructor, 219, 221, 261, 405

cos, 64, 410

cosh, 410

count, 128, 140, 262

cout, 5, 34, 107, 108, 300

csh, 364

cstdlib, 54, 56, 413

cstring, 291

ctime, 56, 414

ctype, 411, 412

cube root, 409

.cxx, 5

CXXFLAGS, 371

Cygwin, 364

data hiding, 96, 97

@date, 390

dec, 311

declaration, 12

decreasing subsequence, 215

decrement operator, 20, 404

Dedekind cut, 98

default, 334, 397

default parameters, 195, 400

#define, 26

delete, 355–356

delete[], 81, 124, 127, 134, 135,

219, 223, 273, 353, 355, 393

deprecated, 274

deque, 149

dereference, 107, 130, 351, 352

derivative, 265

Desargues’ Theorem, 212

destructor, 220, 402

determinant, 279, 284

disjoint cycle notation, 215, 225

do, 41, 42, 397

double, 14, 391

double inclusion, 26, 33, 96

Doxyfile, 388

Doxygen, xxi, 25, 33, 364, 381–390

duality, in RP2, 178

edge, 326

eigenvalue, 278, 283, 284

else, 76, 396

emacs, 363–365

c++-mode, 365

empty, 128, 136, 140, 144, 148, 294

end, 131, 133, 141, 144

end of file, 304

@endcode, 389

#endif, 26

endl, 6

enum, 348, 481

enumeration, 348

epsilon, 16

equality operator, 14

erase, 128, 140, 145, 293

Erdős–Szekeres Theorem, 215, 229

erf, 410

Euclid’s method, 37, 247

Euler

rhymes with, 9

totient, see totient

exception, 135, 338, 398

executable file, 4

exit, 33, 341, 413

exp, 21, 394, 410

exponentiation, 21

extension, 5

@f[, 390

@f$, 390

@f], 390

fabs, 112

factorial, 39

factoring, 71

fail, 301–304



490 C++ for Mathematicians

falling through cases, 334

false, 261

fast Fourier transform, 284

fcircle, 320

Fibonacci, 49

file

ASCII, 301

binary, 301

code, 94, 399

executable, 4

extension, 5

header, 6, 24, 32, 94, 399

object, 4

plain text, 301

source, 4

stream, 301

tar, 316

@file, 25, 382, 389

fillcolorname, 320, 328

filltype, 320, 328

find, 133, 295

find first of, 296

find last of, 296

first, 139, 142

fixed, 311

fline, 320

flinewidth, 319

flip, 262

float, 14, 391

floor, 64, 410

flowchart, 73

fmod, 410

for, 36, 42, 396

for each, 153

free group, 331

Free Software Foundation, 363

friend, 344–347, 406

front, 149

fspace, 319

fstream, 301

function, 31

identity, 480

member, 94

rational, 265

signum, 49

-g, 369

g++, 4, 363, 364

gamma function, 410

Gaussian

integer, 23, 115, 238, 391

poetry, 6

random variable, 61

gcd, 31

extended, 45–49

polynomial, 247

get, 305

get method, 98

getline, 306

GIFPlotter, 322, 325

global

constant, 25, 165

variable, 25, 164, 165

GMP, 269, 286

gmp randclass, 270

GNU Multiple Precision Library, 269,

286

Gnu software, 363

good, 301–304

goto, 336–337, 398

gprof, 369

graph, 326

simple, 327

graphics, 315

greatest common divisor, see gcd

group, free, 331

H, 176

.h, 399

header file, 6, 24, 32, 94, 399

heap, 356

Hello world, 4

hex, 311

Hilbert matrix, 280, 284

hypot, 410

-I, 272, 282, 369

IDE, 4, 363, 372

identity function, 480

if, 34, 76, 396

#ifndef, 26



Index 491

ifstream, 301

imaginary part, 23

#include, 6, 99, 369

increasing subsequence, 215

increment operator, 20, 404

independent set, 330

inf, 338, 416

infinity, 212, 338, 348, 416

line at, 177, 178, 188

point at, 177

inheritance, 177, 181

inline, 119, 165, 168, 196, 236, 241,

401, 435

inline procedure, 119

insert, 128, 140, 145, 293

int, 11, 391

int64, 12, 391

INT MAX, 16

INT MIN, 16

integer

factoring, 71

Gaussian, 23, 115, 238, 391

integrated development environment,

4, 363, 372

interval, 125

random, 126

iomanip, 86, 309

ios::app, 302

ios::floatfield, 311

iostream, 6, 7, 34, 107

isalnum, 412

isalpha, 412

iscntrl, 412

isdigit, 412

isgraph, 412

isinf, 338

islower, 412

isnan, 338

isprint, 412

ispunct, 412

isspace, 412

istringstream, 307, 471

isupper, 331, 412

isxdigit, 412

iterator, 129

deque, 149

list, 144

map, 141

read only, 147

set, 130–133, 153, 447

vector, 446

JAMA, 274

join, 326

key/value pair, 139

Koch curve, 332

-L, 272, 282, 369

-l, 272, 282, 369

label, 337

LCG, 53, 57–59

least squares, 279

LEDA, 287

left, 310

left shift operator, 5

length, 294

lexicographic ordering, 117, 126, 139,

294

library, 272, 282, 320, 369

Library of Efficient Data Structures and

Algorithms, 287

LiDIA, 286

line, 320

linear congruential generator, 53, 57–

59

linear fractional transformation, 234

linear system of equations, 279

LineParser, 312

linker, 4

linking, 368

list, 144–148

loader, 4

log, 410

log10, 410

logical operator, 22, 394

long, 12, 391

long double, 14, 391

long long, 12, 391

look-up table, 142, 445



492 C++ for Mathematicians

loop statements, 41

ls, 366

LU-factorization, 278–280

M constants, 411

M PI, 21, 97

main, 8, 32

make, 317, 364, 368, 370–372

make pair, 139, 140

Makefile, 370

Mandelbrot set, 332

manipulator, 309

map, 139–144

matrix inverse, 279

matrix multiplication, 277

Matrix Template Library, 286

max size, 136

median, 126, 264

member functions, 94

memory leak, 81, 90, 135, 220, 358,

402, 427

method, 32, 93, 94

get, 98

private, 117, 167

set, 98

static, 157, 163, 166, 232

million/billion/trillion rule of thumb,

61

mod operator, 19–20

monic, 247

monotone subsequence, 215

Monte Carlo, 60

mpf class, 270

mpq class, 270

mpz class, 270

multiline comment, 7

multimap, 144

multiple inclusion, 187

multiset, 133–134

mycomplex, 239

N(0,1), 62

namespace, 274

standard, 7

nan, 338, 416

National Institute of Standards and Tech-

nology, 274

new, 80, 81, 124, 273, 353, 355–356,

393

newmat, 282–286

Newton’s method, 265

noboolalpha, 311

none, 262

normal random variable, 61, 62

noshowpoint, 309

not a number, 338, 416

nouppercase, 311

npos, 295

null terminated, 289–290

number

complex, 23–27

constructible, 359

random, 53

uniform, 54

-O, 369

object, 93

object file, 4

oct, 311

ofstream, 301

On-Line Encyclopedia of Integer Se-

quences, 87, 442

open, 302

openpl, 319

operator, 97

address-of, 350

arithmetic, 18–20

assignment, 131, 221–223, 404

bitwise, 259–260

comparison, 22

decrement, 20, 404

equality, 14

increment, 20, 404

left shift, 5

logical, 22, 394

mod, 19–20

overloading, 104

relational, 167

right shift, 20

operator, 105, 224, 403–404



Index 493

order, of a permutation, 232

ordered pair, 138–139, 441

ostream, 107, 108

ostringstream, 307

overflow, 13, 50, 171, 417

overloading

operator, 104

procedure, 46, 54

override, 183

-p, 369

pair, 138, 230, 239, 441

Paley graph, 326–330

Pappus’s Theorem, 178, 207

@param, 33, 383, 389

partition, 152

perfect, 442

Pascal’s triangle, 287, 322, 445

identity, 153

PDP-8, 3

-pedantic, 368, 371

pencolor, 319

pencolorname, 319

permutation, 215

order, 232

-pg, 369

pigeonhole principle, 216

Plotter, 317

plotutils, 316–330

poetry, bad, 4

pointer, xxii, 70, 124, 350–358

dereferencing, 107, 130

polar method, 62

polygram, 331

polynomial, 235

derivative, 265

monic, 247

pop, 148–150

pop back, 145, 149

pop front, 145, 149

positive definite, 279

postdecrement, 21

postincrement, 21

pow, 21, 394, 410

predecrement, 21

preincrement, 21

preprocessor, 7

prime number theorem, 80

primitive Pythagorean triple, 115

priority queue, 150

private, 402

private, 97, 104, 182

procedure, 8, 32

friend, 344–347

inline, 119

overloading, 46

schema, 237

template, 235–238, 277, 400

prof, 369

profiling tool, 369

project, 372

projective plane, 177–178

protected, 184, 408

pseudo random number generator, 53,

271

PSPlotter, 318

public, 402

public, 97, 98, 182

push, 148, 150

push back, 137, 145, 149

push front, 144, 149

put, 306

pwd, 366

Pythagorean triple, 115

primitive, 115

QR-factorization, 278, 279, 284

quadratic residue, 327

quaternion, 176

queue, 148

quotation mark, 6

rand, 54, 55, 414

RAND MAX, 54, 55, 414

random

interval, 126

variable

Gaussian, 61

normal, 61, 62

walk, 65



494 C++ for Mathematicians

randomized algorithm, 45

rank, 279

rational function, 265

rbegin, 131

real part, 23

recursion, 39

infinite, 39

reference, 47, 107, 147

remove, 145

remove if, 145, 147

rend, 131

replace, 293

reserve, 136, 245

reset, 262

resize, 135

rethrow, 343

return

by reference, 464

by value, 464

type, 33

@return, 33, 383, 389

return, 33, 34, 47, 398

reverse Polish notation, 360

rfind, 296

right, 310

right shift operator, 20

roundoff, 11, 14, 201, 419

RP2, 177–178

RPN, 360

schema, 237

scientific, 311

scientific notation, 14

second, 139, 142

@see, 389

seed, 53, 55, 56, 271

segmentation fault, 353

Seldon, 286

semicolon, 5, 95, 396

set

independent, 330

Mandelbrot, 332

set, 127–133, 262

set method, 98

setfill, 310

setiosflags, 311

setprecision, 86, 309

setw, 310

sh, 364

short, 12, 391

showpoint, 309

showpos, 311

Sierpinski’s triangle, 324, 326

Sieve of Eratosthenes, 78, 79, 137

signum, 49

simple graph, 327

simplicial complex, 154

sin, 410

single-line comment, 7

singular value decomposition, 278, 284

sinh, 411

size, 128, 135, 140, 144, 149, 262,

294

size t, 128

sizeof, 12, 15, 355, 395

Sloane, Neil, 87

sneaky trick, 22, 218

sort, 123, 126, 145, 153

sort requires algorithm, 124

source file, 4

space, 319

sqrt, 94, 112, 123, 411

srand, 56, 414

sstream, 307

stack, 355, 447

stack, 148

standard namespace, 7

starting statement, 36

statement

advancing, 36

catch, 339

declaration, 12

label, 337

starting, 36

terminator, 5

throw, 339

static, 58, 63, 143, 164, 166, 392,

405, 424, 428

three usages, 166

std::cout, 7



Index 495

str, 307

strcat, 291

strcmp, 291

strcpy, 291

string, 15, 261, 289, 291–297, 471

string stream, 307

strlen, 290

strncat, 291

strncmp, 291

strncpy, 291

struct, 347

structure, 347

subclass

private, 182

public, 182

subscript, 70

subsequence, 215

substr, 294

SVD, 278, 284

switch, 333–336, 397

Sylvester’s four-point problem, 64

symmetric matrix, 279, 283

system header file, 6

tan, 411

tanh, 411

target, 371

tautology, 360

template, 133

class, 238–242, 407

procedure, 235–238, 277, 400

Template Numerical Toolkit, 274

test, 262

do not name your program, 380

test condition, 36

text editor, 4

this, xxii, 106, 107, 168, 170, 222,

223, 350, 358, 406, 434, 435

throw, 338, 339, 344, 398

tilde, 220

time, 56, 271, 414

time/memory tradeoff, 143

time t, 56

TNT, 274

tolower, 413

top, 148, 150

totient, 31, 45, 67–69, 76, 83, 85

toupper, 331, 413

trace, 277, 284

trigraph, 224, 395

try, 338, 339, 398

twos complement, 258

type, 11

return, 33

typedef, 23, 349, 458

Ulam’s problem, 215, 229, 231

unary minus, 170

unicode, 289

unif, 54, 55

uniform random number, 54

union, 133, 348

unique, 145

unsigned, 13, 391

uppercase, 311

user header file, 6

using namespace std, 7, 380

utility, 138, 230

variable

assignment, 12

class

static, 166

declaration, 12

global, 25, 164, 165

reference, 47, 147

static, 143, 166

class, 157, 163, 164

vector, 134–138, 218, 239, 243, 245,

273

vector<bool>, 136

@version, 390

vertex, 326

view, 275

Visual Studio, 372–376

visualization, 315

void, 46, 99, 102, 103, 132, 398

volatile, 27

-Wall, 368, 371



496 C++ for Mathematicians

while, 39, 41, 397

X11, 365

Xcode, 365, 372, 376–378

Xemacs, 364

Zn, 157


