Embedded System Design

Validation

s o8 ‘5.15\5
ﬂwls S LBJ" u..u.ndl@..o L;bds.ﬁd‘d
C)“).e..; é‘iﬁx}‘d

kazim@fouladi.ir

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

Validation

- Simulation and test pattern generation (TPG) —

R licl
— 09T 595l 395 9 (5w dguih —

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

U:_:lm)b_&.cl
Validation

HW-components hardware—-design —=| hardware

’ ﬂ‘ !

o V . . .

S = specification implementation: hw/sw codesign realization
B - task concurrency management

0 “"T\ = high-level transformations)

< | — design space exploration

5 standard software - hardware/software partitioning —=! software
= (RTOS, ..) - compilation, scheduling

O

Q

O

®©

(from all phases) \l/ \l/ \l/
evaluation (performance, energy consumption, safety, ..)

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

(1) oo
Introduction (1)

5 LT S gl 50 (W) Ol S A cuwl ks..\.i._»_l)f i) biel sy yo5
S0 el awlio T B Sl ([oLo.'s dow Yoial) oo (alyb
S5

S)ls s (o)) (sw)l9 (0L B3 b s=iw pliicl 1by 23

Definition: Validationis the process of checking whether
or not a certain (possibly partial) design is appropriate for
Its purpose, meets all constraints and will perform as
expected.

Definition: Validation with mathematical rigor is called
(formal) verification.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

(Y) doaiio
Introduction (2)

HW-components hardware—design —=| hardware
T

' | v

(RTOS, ..)) — compilation, scheduling

&, W X -

B [| specification fion: hw/sw codesign realization
= — task concurrenc anagement

] ‘“T\ — high—level transformatieqs T
k= ! — design space exploration

5 standard software — hardware/software partitioning ;_a_aeﬁée
©

L

=3

o

@©

\1/ (from all phases) \lf \l/ \1f

validation; evaluation (performance, energy consumption, safety, ..)

Ideally: Formally verified tools transforming specifications
Into implementations (“correctness by construction’).

In practice: Non-verified tools and manual design steps

< validation of each and every design required
Unfortunately has to be done at intermediate steps and not
just for the final design

| = Major effort required.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Simulations

» Simulations try to imitate the behavior of the real system
on a (typically digital) computer.

» Simulation of the functional behavior requires executable
models.

» Simulations can be performed at various levels.

» Some non-functional properties (e.g. temperatures, EMC)
can also be simulated.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

(1) R2losS sowauin jl SJle
Examples of thermal simulations (1)

Encapsulated cryptographic coprocessor:

T L LT

i m ewE

ET

Pl Locaiion Y = 78,75 mm

Source: http://www.coolingzone.com/Guest/News/NL_JUN_2001/Campi/Jun_Campi_2001.html

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

(V) oS iwasd jI (JUse
Examples of thermal simulations (2)

Microprocessor

A Flumerlmmage showing the thermal solution A Flomericsimage showing the thermal solution
with a metal lid. without a metal lid.

Source: http://www.flotherm.com/applications/app141/hot_chip.pdf

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

b lizog jiSJl (6)U Hlw (s) bwduuub
EMC simulation

Example: car engine controller

F

=
R

& Sierens Awfomotive Toulouse

Red: high emission
Validation of EMC properties often done at the end of the design phase.

Source: http://intrage.insa-tlse.fr/ ~etienne/emccourse/what_for.html

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

L5) bwduuls (sl 393 =x0

[] L] []
IIMIIIALIAIAA | 7 Vo] L

g p S - e~ o~ -
DQMTTUIALIONS LITTHtatlOfnls

* Typically slower than the actual design.
< Violations of timing constraints likely if
simulator is connected to the actual environment

= Simulations in the real environment may be
dangerous

* There may be huge amounts of data and it may
be impossible to simulate enough data in the
available time.

= Most actual systems are too complex to allow
simulating all possible cases (inputs).
Simulations can help finding errors in designs,

but they cannot guarantee the absence of errors.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

Rapid prototyping/Emulation

= Prototype: Embedded system that can be generated
quickly and behaves very similar to the final product.

* May be larger, more power consuming and have other
properties that can be accepted in the validation phase

= Can be built, for example, using FPGAs.

Example: Quickturn Cobalt System
(1997), ~0.5M$ for 500kgate entry level
system (no photo of more recent system)

Source & ©: http://www. eedesign. com/editorial/1997/ toolsandtech9703.html

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design
230 Hlwdiges S)l JUs
Example of a more recent commercial emulator

[N

: ¥
. i " FIATARNNENETIE TR e raa pAasi N ey e e
AR L i R

[www.verisity.com/images/products/xtremep{1|3}.gif]

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

u .~

Toact (>nale
1 CoL. Uudio

1. Production test

2. |Is there any way of using test patterns for production
test already during the design*?

3. Test for failures after delivery to customer

* Workshop focusing on the integration of production testing and design validation:
HLDVT IEEE International High Level Design Validation and Test Workshop

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Qo0 Lgo)'g; :gg.o)'
T AaAam~t: C A~~~
1 eSt. SCOopP

@D

Testing includes

= the application of test patterns to the inputs of the
device under test (DUT) and

= the observation of the results.

More precisely, testing requires the following steps:
test pattern generation,

test pattern application,

response observation, and

result comparison.

B N e

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

09T o3l 3ulgs
Test pattern generation

Test pattern generation typically
= considers certain fault models and

* generates patterns that enable a distinction between the
faulty and the fault-free case.

= Examples:
= Boolean differences
= D-Algorithm

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

02 sld e
Fault models

Hardware fault models include:

www.cedcc.psu.edu/eed97f/rassp_43/s1d022.htm

= stuck-at fault model

(net permanently o
connected to ground A i
or Vyq) s €
= stuck-open faults: re 4§ —|§
for CMOS, open e
transistors can - Break above resuits in o memary-fect”in the behaviar of the i cuit

- With AB=10, thereis not path from ather VDD or V5SS fo the output

behave I|ke memorles - F retain s the previous value for some un determined discharge ime

= delay faults: circuit is T LT
functionally correct, P: fDﬁD’"@

but the delay is not.

www.synopsys.com/products/test/tetramax_ds.html

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

odlw Jlo
Simple example

no error error

/13 N T
a N
: J £ 0/1

0 . :). h /0PN i1/0
C N

& . J/

d 7
e

Could we check for a stuck at one error at a(s-a-1(a)) ?
Solution (just guessing):
= f="1"if there is an error
< a='0", b="0"in order to have f='0' if there is no error
= g='1'In order to propagate error
= ¢c='1"In order to have g="1' (or set d='1")
= e='1"In order to propagate error
= i='1"if there is no error & I='0" if there is

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

Variable D

Getting rid of O/1 notation:
< Definition:

D

B 7' if there is no error
~ |'0'if there is an error

— {'O' if there is no error
('1'if thereis an error

This Is adequate for modeling a single error.
Multiple errors would require several variables.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Aol S b s §3 5 Jde
Modeling gates with primitive cubes

Definition: Let a function fand its complement be
represented by implicants. Each entry in a table of
Implicants and outputs is called a primitive cube (pc).

Example: 2-input NAND gate

A DC
B

fault-free with fault | s-a-1(A) s-a-0(A) s-a-1(B) s-a-0(B)
A|lB|C AIB|C|A|B|C|A|B|C|A|B|C
G |0 X |1 Qaq X101 [X[X[1]O0([X |1 | X|X]|1
X101
Bo 1L |{0p o X|l1lo|-|-|-]1[x|o]|-1]-]-

02 S D slaaaso L)loyoiis slaaad Y5 Jdw
Modeling faulty gates with D-cubes of a fault

Primitive D-cubes of a fault (pdcf's) are cubes which model a
condition under which a fault does show up.

Input values generate an output of D (resp. D) if they are
contained in cubes S, and ¢, (resp. 4 and «,).

Hence, we define the intersection of cubes as follows:
XN'0=0,XNn"1=1"1"n"'0"=J (empty), with X: don't care

[fault free ~with fault s-a-1(A) s-a-0(A) s-a-1(B) s-a-0(B)

A[B]C A[BJC|A[B[C|A[B|JC|[A[B]JC

PC 3, [0 [X |1 o X |0 |1 [X|X[1]0|X |1 [|X]|X][1
X|lo|1

Gol1 |1]o o X|l1]lof|-|-|-|1r|x]o]|-]-]-

pd cf s-a-1(A) s-a-0(A) s-a-1(B) s-a-0(B) s-a-1(C)+ | s-a-0(C)++

A B C|lAo B C|A B C|/A B C|A B C|A B C

Bo Nay I D 1 D] 1 D D|1 1 D|0 X D

BiNag |0¥ 1 D i) 1 D D 1) X 0 D

Embedded System Design

il LsLQhuS.o L LGl 9o S JIw

Modeling propagation with propagatio

-

cubes (1)

Propagation D-cubes are cubes that model requirements for
propagating errors to the output.

An error D (D) at input rgets propagated to the output as

~=D (D) iff ='0" implies ~'0' and /='1' implies &'1"' (non-inverting)
An error D (D) at input 7 gets propagated to the output as
~D(D)iff =0 implies A1 and /='1" implies ~'0' (inverting).
Hence, consider intersection of £, and /f, while ignoring input r.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

L] (s seSo L HLIGT HS HS JIw
cubes (2)

Modeling propagation with propagatio

-

Hence, consider intersection of 8, and £, while ignoring input r.
Example: 2-input NAND gate

pC
fault free with fault s-a-1(A) s-a-0(A) s-a-1(B) s-a-0(B)
A|lB|C AIB|C|A|B|C|A|[B|C|A|B|C
B |0]1X |1 Qg X101 |1 X|X|1]0 X |1 (X |[X]1
X101
G l1l1]o o X|{1lol|-|-|-|1|x]|ol|-1|-]-
pdcf
A B C A B C A B C A B C
Brja=a 1 0 1 | Bija=e 0 X 1 |Byp= 0 1 1|8 X 0 1
Bos a=0 0 Boja=t 1 1 0| By/p=o 0 Boyp=1r 1 1 0
N, 0 D 1 D] 1 D D
D 1 D 1 D D

Embedded System Design

D-Algorithm (1)

1. Select D-cube for the error under consideration.

2. Implication: Imply signals whose value results
unambiguously from the preceding selection. Based on the
Intersection between the "test cube” (set of known signals)
and primitive cubes of gates reached by the test cube.
Return to last step if intersection is empty (backtracking).

3. D-drive: D-frontier = all gates whose outputs are
unspecified and whose inputs carry a value of D or D.
Select gate e [O-frontier. Propagate signal to output by
Intersecting test cube with pdcf of that gate.

Return to last step if no non-empty intersection exists.

4. Iterate steps 2 and 3 until some signal has reached output

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

D-Algorithm (2)

5. Line justification: Unspecified inputs will be adjusted
by intersecting the test cube and primitive cubes of the
gates. Backtracking if required.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

ED#Dl— Exam p I e Typ. Runtime: O((# of gates)?)

1 pattern per error

Lo =T o} o ®

o a b c de f g h i
Primitive cubes for NAND X 1 1
feblerfrei || fehlerhaft | s-a-1(A) | sa-0(A) | sal(B) | sa0(B) I X 1
A[B]C A[B[C|A[BJC|A[BJC|A[B]C 0 0 0
BlO[X[1I & [X|O|L[X|X[L|O|X|L[X[X]|L
X|o0|1 X 1 L
Bol1i{r|o]l e |[X|1|O|-|-|-|1|x]0 | X |
0 0 0
Pdcfs for NAND 00X 1
sa-1{(A) | sa-0(A) | sa1B) [sa0B) [sa-1(C)+ [s-a-0(C)++
| A BC|ABC C|ABTCI|ABC C|ABT C|ABC X 01
By Ney] D 1D [1 DD|1 1 D0 X D 1 1 0
Binep |0 1 D| 0 1 DD j X 0 D 0 X 0
_ X 0 0
Propagation D-cubes for NAND 1 L1
LB C T B C T B 0 T B C 0 1 D pdcf s-a-1(f)
ety e D ey R T] 00 0 1 D | Implikation
. ¢ g } % 0 } % g 0 0 1 0 1 D D|D-drive
0 01 X 1 0 1 D D|line justificat

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

um g o o %
Fault coverage

A certain set of test patterns will not always detect all faults
that are possible within a fault model

=

Number of detectable faults for a given test pattern set

coverage = :
Number of faults possible due to the fault model

For actual designs, the coverage should be at least in the
order of 98 to 99%

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

090)T 393 (a0l p3 Sulgs

Generation of Self-Test Program Generation - Key concept -

MEM

RF

<

i

, stuck-at-0?

¥
2>

=<

b

O | <=—

-——

muxX

.| PC

RFO) :="11...1";

MEM(0) :="11...1";

IF MEM(O) - R(0) <>"00...0"
THEN Error;

Embedded System Design

STYSIRTLVIESURNUY
Test Program Generation (2)

e Programs running on the processors to be tested

« Well-known concept (diagnostics @ mainframes)

« Very poor tool support

 Mostly ad-hoc process:
Initial ad-hoc program;
Extended until sufficient coverage achieved,;
Extended if undetected errors are reported by field
service

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

Self-Test Programs generated by Retargetable Test Compiler

RT- stimuli
Netlist
, ~_
Retargetable Test
program Program Compiler
TP@In- O
ternal binary
_nodes, code

[Bieker, 1995] —

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

(1) yodis (5 bwagis
Fault simulation (1)

Coverage can be computed with fault simulation:
« V faults e fault model: check if distinction between faulty and

the fault-free case can be made:
Simulate fault-free system;

V faults € fault model DO
V test patterns DO
Simulate faulty system;
Can the fault be observed for 21 pattern?
Faults are called redundant if they do not affect the
observable behavior of the system,

« Fault simulation checks whether mechanisms for improving
fault tolerance actually help.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

Embedded System Design

(¥) pois G)bwagub
Fault simulation (2)

High computational requirements.

Parallel fault-simulation at the gate level:
Each bit in a word represents a different input pattern.
E.g.: 32 input patterns simulated at the same time.

Each bit corresponds to one test pattern

Operators correspond @ /

to gate-level structure

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

oMo
Summary

Validation is the process of checking whether or not a

certain (possibly partial) design is appropriate for its purpose,
meets all constraints and will perform as expected.

Techniques
= Simulation (used at various steps)
= Test
 TPG (D-Algorithm, generation of assembly prog., ..)

« Application of test patterns
e Checking the results

« Fault simulation for computing coverage
= Emulation

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006

