طراحی سیستمهای تعبیهشده Embedded System Design

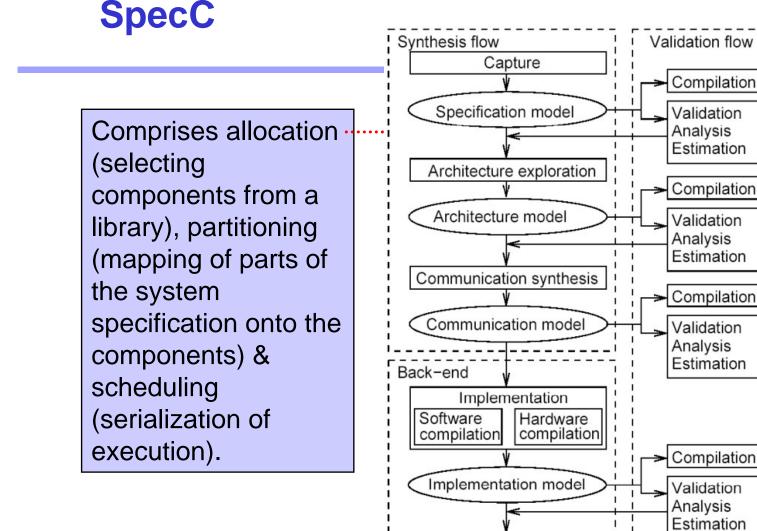
فصل پنجم _قسمت هشتم

<mark>پیادەسازى سیستمھاى تعبیەشدە</mark> Implementing Embedded Systems: Hardware / Software Codesign

کاظم فولادی دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

kazim@fouladi.ir

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006


1

جریانهای طراحی واقعی و ابزارها Actual design flows and tools

Design steps can be used in different combinations. In the following, we will present some examples ...

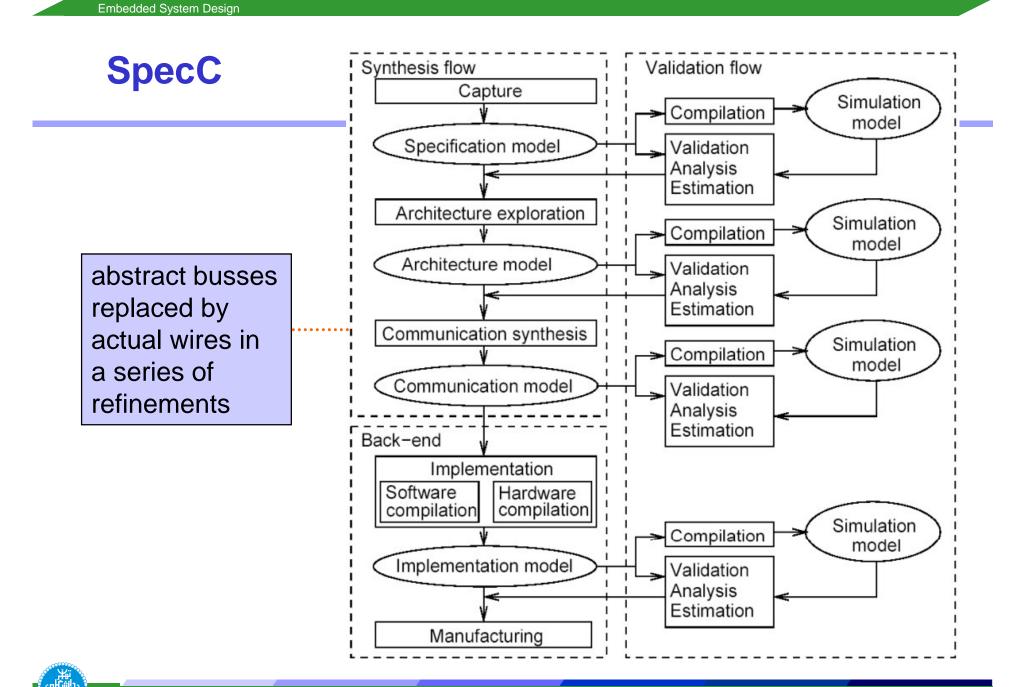
1. SpecC [Gajski, Dömer, Gerstlauer] Focus on intellectual property (IP) components

Manufacturing

Simulation

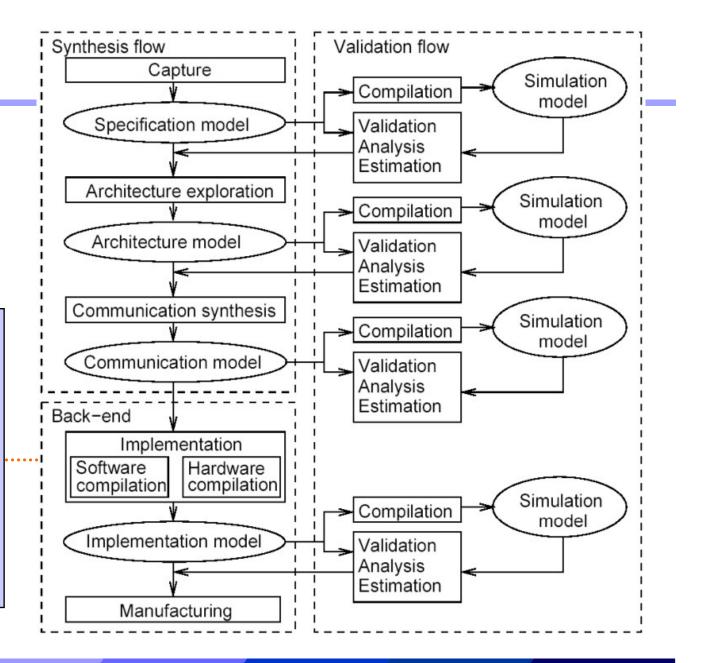
model

Simulation


model

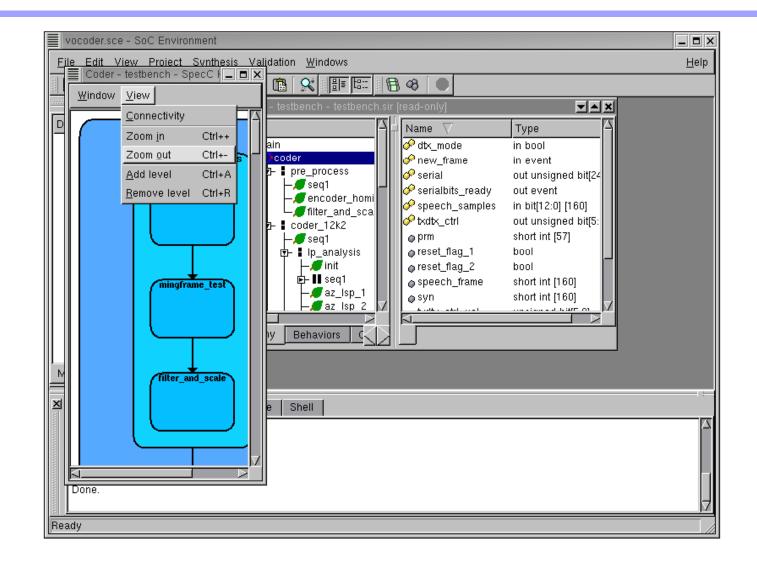
Simulation

model


Simulation

model

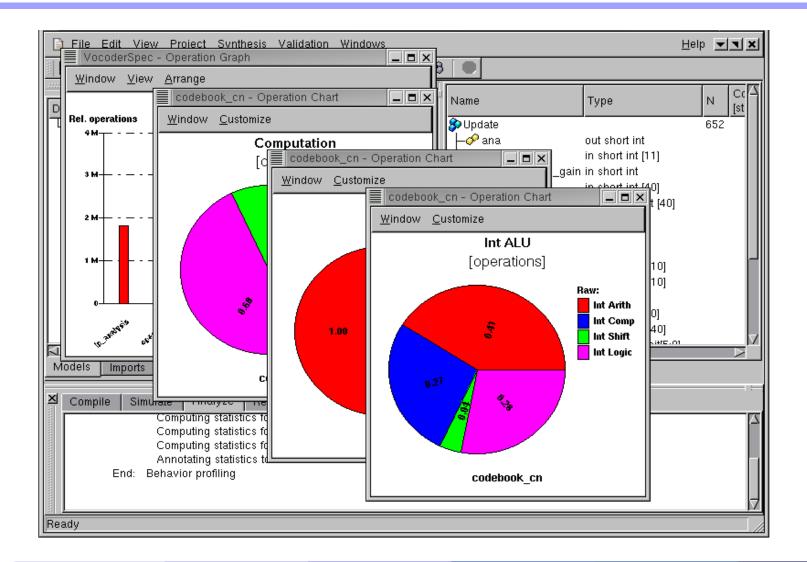
SpecC


An actual example - Getting started with the SCE window -

Elle Edit View Emject Synthesis Validation Windows	SoC Environment	
Design Description	<u>Eile Edit View Project Synthesis Validation Windows</u>	<u>H</u> elp
Design Description	▋ 🗋 😂 🔳 🗶 🖉 🖄 🖄 🛍 🛠 📲 🏙 🛛 🛠 📲 🟙 🖉 🗶 📕 💭	
	Design Description	
	Compile Simulate Analyze Refine Shell	

Copyright © 2002 by Center of Embedded Computing Systems (CECS), UC Irvine

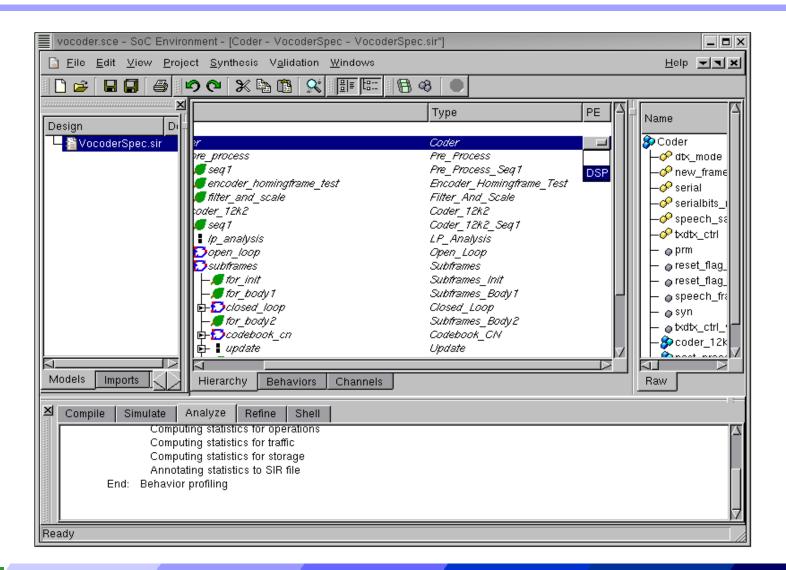
Browsing the specification



An actual example - Validation by simulation -

File Edit View Project Synthesis Validation Windows	Help
VocoderSpec	
frame=147 encoding delay = 0.00 ms frame=148 encoding delay = 0.00 ms frame=149 encoding delay = 0.00 ms frame=150 encoding delay = 0.00 ms frame=151 encoding delay = 0.00 ms frame=152 encoding delay = 0.00 ms frame=153 encoding delay = 0.00 ms frame=154 encoding delay = 0.00 ms frame=155 encoding delay = 0.00 ms frame=154 encoding delay = 0.00 ms frame=155 encoding delay = 0.00 ms frame=156 encoding delay = 0.00 ms frame=157 encoding delay = 0.00 ms frame=158 encoding delay = 0.00 ms frame=159 encoding delay = 0.00 ms frame=160 encoding delay = 0.00 ms frame=161 encoding delay = 0.00 ms frame=162 encoding delay = 0.00 ms frame=163 encoding delay = 0.00 ms frame=163 encoding delay = 0.00 ms frame=164 encoding delay = 0.00 ms frame=165 encoding delay = 0.00 ms frame=163 encoding delay = 0.00 ms done, 163 frames encoded Files speechfiles/nodtx_good,bit and nodtx,	Type in bool in event out unsigned bit[24 out event in bit[12:0] [160] out unsigned bit[5: short int [57] bool bool short int [160] short int [160]
Models Imports Sources	
Compile Simulate Analyze Refine Shell % xterm title VocoderSpec e /bin/sh -c /VocoderSpec speechfiles/spch_unx.inp nodtx.l t nodtx.bit; eche "Simulation exited with status \$?" ;echo "Press return to continue" ;read	

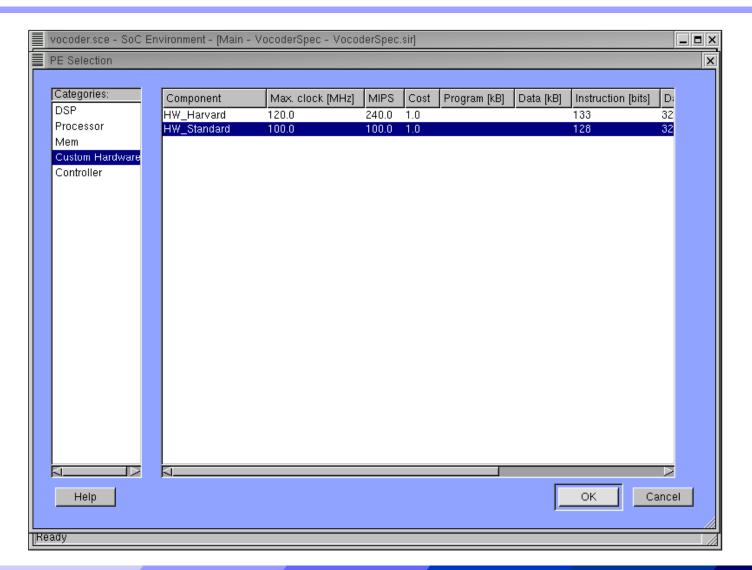
Analyze profiling results



PE selection

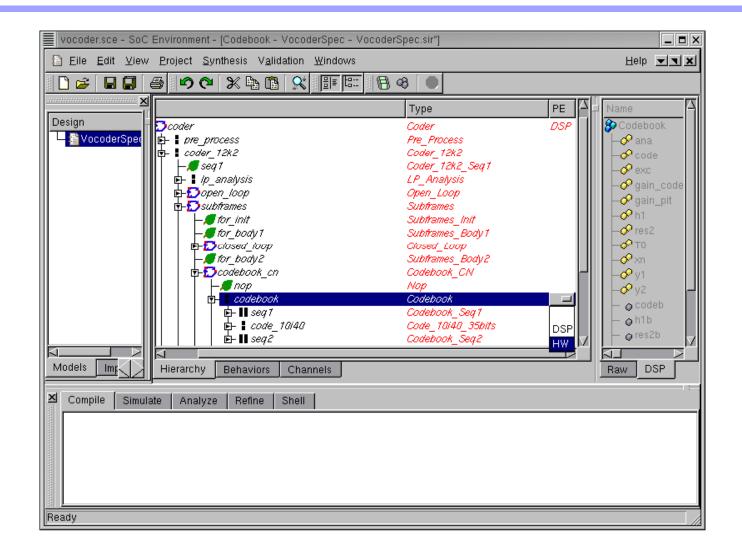
'E Selection								
Catawariaa		-					1	
Categories:	Component	Max. clock [MHz]	MIPS	Cost	Program [kB]	Data [kB]	Instruction [bits]	Di
DSP	AMD_K6	400.0	200.0	100.0	64.0	64.0	32	32
Processor	AMD_K7	700.0	350.0	120.0	64.0	64.0	32	32
Mem	ARM1020	325.0	150.0	23.0	64.0	64.0	32	32
Custom Hardware	ARM720	100.0	50.0	23.0	64.0	64.0	32	32
Controller	ARM920	250.0	125.0	23.0	64.0	64.0	32	32
	IDT_32300	100.0	50.0	5.0	64.0	64.0	32	32
	Intel_P1	200.0	100.0	4.5	64.0	64.0	32	32
	Intel_P2	550.0	200.0	23.0	64.0	64.0	32	32
	Intel_P3	900.0	450.0	90.0	64.0	64.0	32	32
	MIPS32	100.0	50.0	10.0	64.0	64.0	32	32
	MIPS64	350.0	200.0	20.0	64.0	64.0	64	64
	Motorola_68000	20.0	20.0	3.5	64.0	64.0	32	32
	Motorola_68010	120.0	100.0	23.0	64.0	64.0	32	32
	Motorola_Coldfire	120.0	100.0	23.0	64.0	128.0	32	32
	UltraSparcII	480.0	250.0	100.0	64.0	64.0	64	64
	4							
Help							OK Ca	ancel

The top level behavior is mapped to the DSP

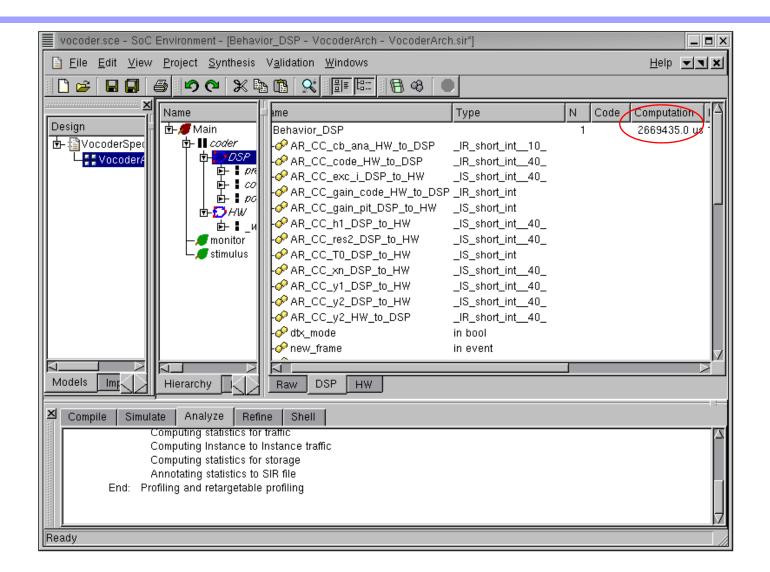


Estimate the performance (too slow)

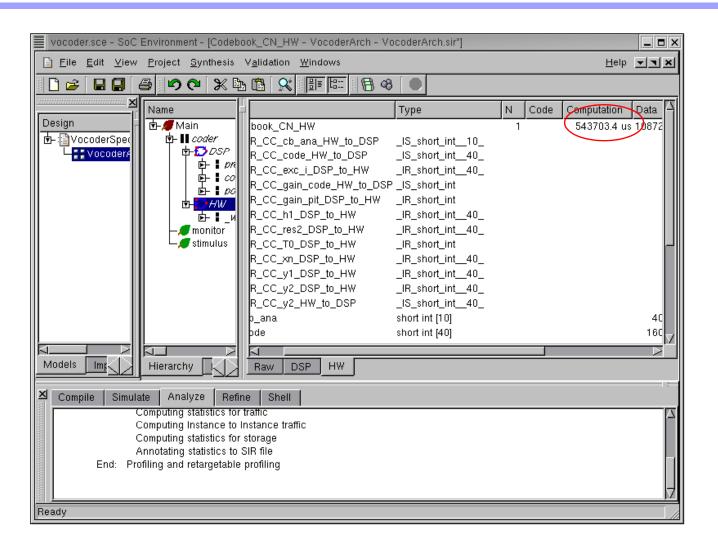
vocoder.sce - SoC Environment - [Coder -		
□ ☞	Name Type N Cool B Coder 1	de Computation Data Heal
VocoderSpec	- Image: Coder in bool - Image: Coder in event - Image: Coder in bit[12:0] - Image: Coder in bit[12:0]	400334.7 US 17036 B
	 prm short int [57] oreset_flag_1 bool oreset_flag_2 bool ospeech_frame short int [160] osyn short int [160] otxdtx_ctrl_val unsigned bit[5:0] 	114 B 2 B 2 B 320 B 320 B 0 B
	→ Sp coder_12k2 Coder_12k2 163 → Sp post_process Post_Process 163	24280.4 us 16268 B 0.0 us 322 B
Models Imp Hierarchy	Raw DSP	
Start: retargetable profiling Generating internal data Deriving raw statistics fro Computing weighted stati Annotating weighted stati End: retargetable profiling	structure for profiling Im SIR file stics	
Ready		VI



Selecting additional custom HW including datapath and controller

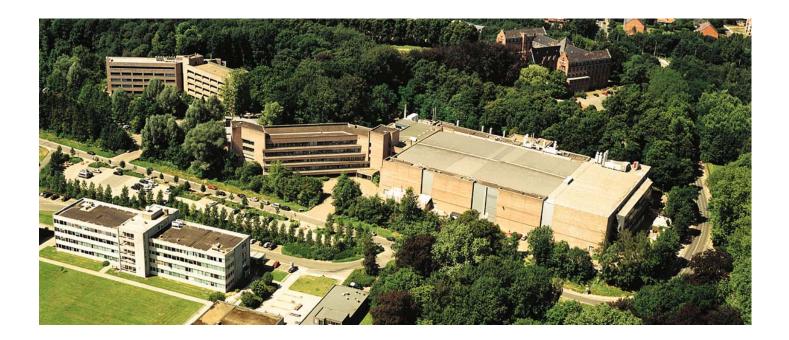


Binding "codebook" to the custom datapath



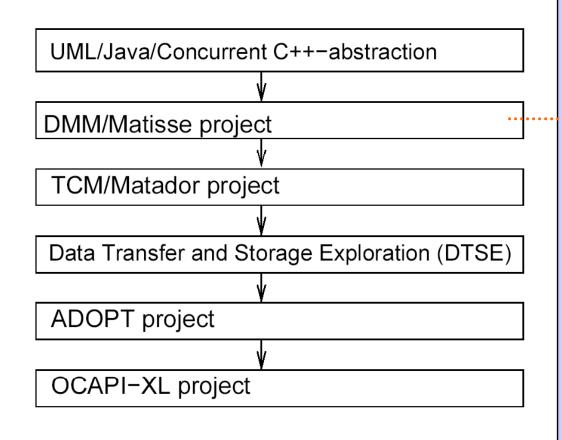
Execution time of the DSP

Execution time for hardware

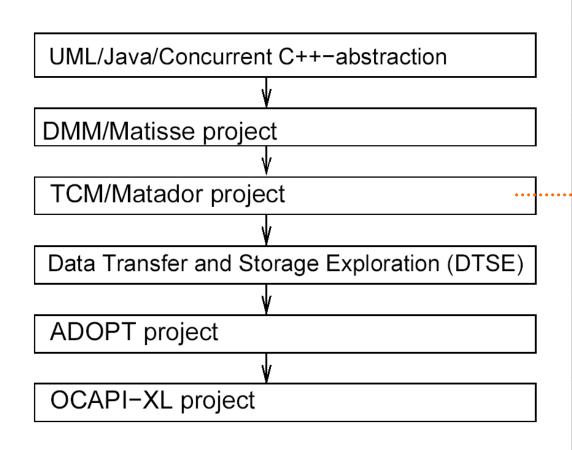


Assuming that 0.54+2.66 sec is acceptable

2. IMEC tool flow


IMEC = Interuniversitair Micro-Electronica Centrum, Leuven, Belgium (Large research facility)

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006


Imec tool flow - Global view -

Considers the system at the concurrent process level as a set of concurrent and dynamic processes, whose specification consists of algorithms, abstract data types, communication primitives, and real-time requirements. Tools can perform source code transformations on the dynamic data types & provide also a memory pool organization in the virtual memory space.

Imec tool flow - Matador/TCM -

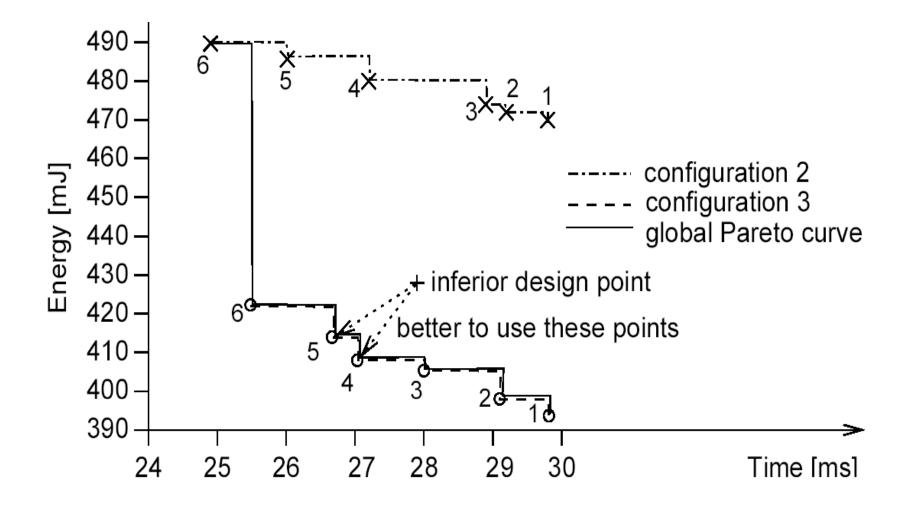
Again considering a system of concurrent processes. For these tools, the emphasis is on mapping tasks to processors. Different configurations of multiprocessor systems are evaluated and curves of designs that are noninferior to others are generated. These curves provide a view of the design space, and are the basis for final design decisions.

Matador/Task Concurrency Management (TCM)

Wong et al. [Wong et al., 2001]: configurations for a personal MPEG-4 player: combination of StrongArm processors and custom accelerators. Found 4 configurations satisfying timing constraint of 30 ms.				
Processor combination	1	2	3	4
Number of high speed processors	6	5	4	3
Number of low speed processors	0	3	5	7
Total number of processors	6	8	9	10
For combinations 1 and 4, only one allocation of tasks to processors meets the timing constraints. For combinations 2 and 3, different time budgets lead to different task to processor mappings and different energy consumptions.				

Pareto points

Multiobjective optimization:


- several conflicting criteria
 - eg. performance vs. cost vs. power consumption

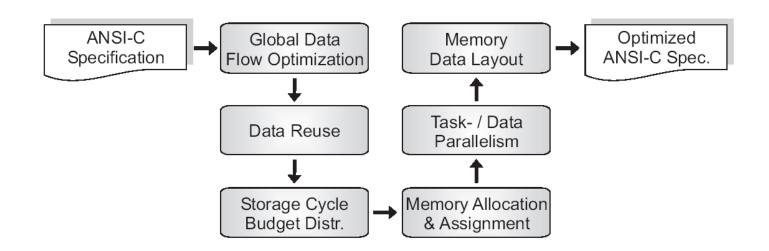
Definition: A (design) point J_i is **dominated** by point J_k , if J_k is equal or better than J_i in each criterion $(J_i \le J_k)$.

Definition: A (design) point is **Pareto-optimal** or a **Pareto point**, if it is not dominated by any other point.

Pareto curves

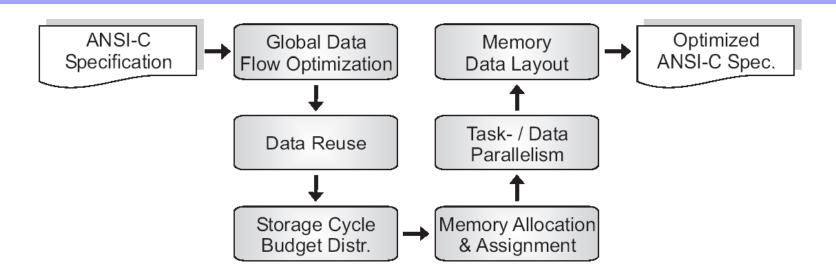
Data Transfer and Storage Exploration (DTSE)

Reduction of the data transfers between processing components and at a reduction of the storage requirements.


DTSE has proven to be highly effective in minimizing the energy cost related to data memory hierarchies.

For several typical embedded applications, reductions of main memory accesses, cache accesses and energy consumption between 50% and 80% have been reported.

© Falk, 2004


Data Transfer and Exploration (DTSE)

- A memory oriented data flow analysis is performed,
- followed by global data flow and loop transformations to reduce the amount of background memories;
- data reuse transformations exploit a distributed memories;
- storage cycle budget distribution determines the bandwidth requirements and the balancing of the available cycle budget over the different memory accesses.

Data Transfer and Exploration (DTSE)

- The memory hierarchy layer assignment produces a netlist of memory units & an assignment of variables to memories.
- For multi-processor systems, task- / data-parallelism exploitation minimizes communication & storage overhead caused by the parallel execution of subsystems;
- Data layout transformations map variables with non-overlapping lifetimes in the same physical memory location.

Address optimization (ADOPT)

- Addressing is simplified in address optimization (ADOPT) tools. DTSE steps increase the addressing complexity of transformed applications, by introducing more complex index expressions, conditions ..
- This overhead is neglected by the DTSE methodology.
- The optimized memory system, will be power efficient but slow.
- Parts of the additional complexity can be removed by source code optimizations for *address optimization* (ADOPT):
- algebraic cost minimization first minimizes operation instances. The goal is to find factorizations of addressing expressions in order to be able to reuse computations as much as possible. The reuse of expressions is based on common subexpression elimination techniques.

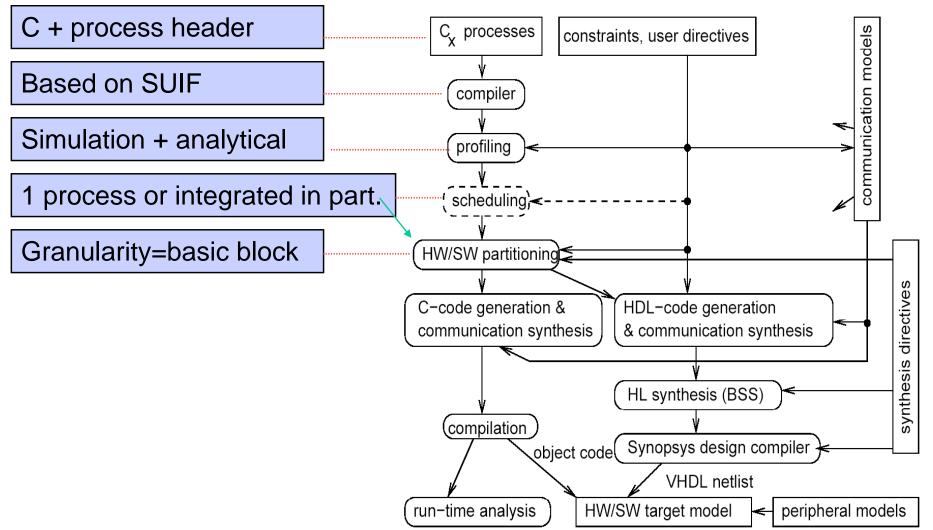
Address optimization (ADOPT)

a[jdiv6] [jmod6] = ...; }

addressing only consists of ++ and -- operators.
In many examples, ADOPT reduces runtimes by about 3.

Backend

- Compilers
- Mapping to configurable hardware using OCAPI-XL



Cosynthesis for embedded micro-architectures (COSYMA)

Ernst et al., Univ. Braunschweig

Cosynthesis for embedded micro-architectures (COSYMA)

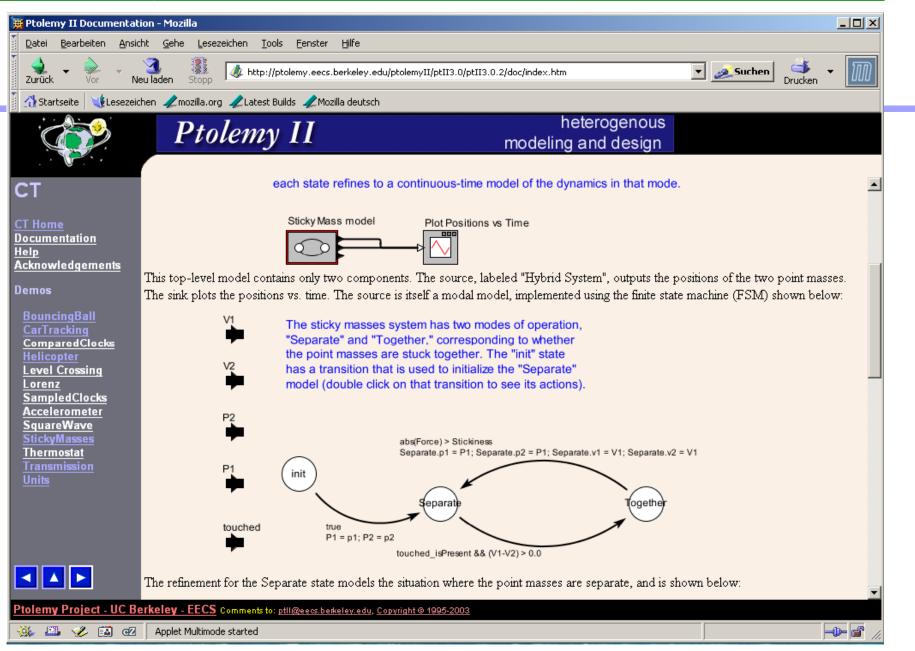
Ptolemy II

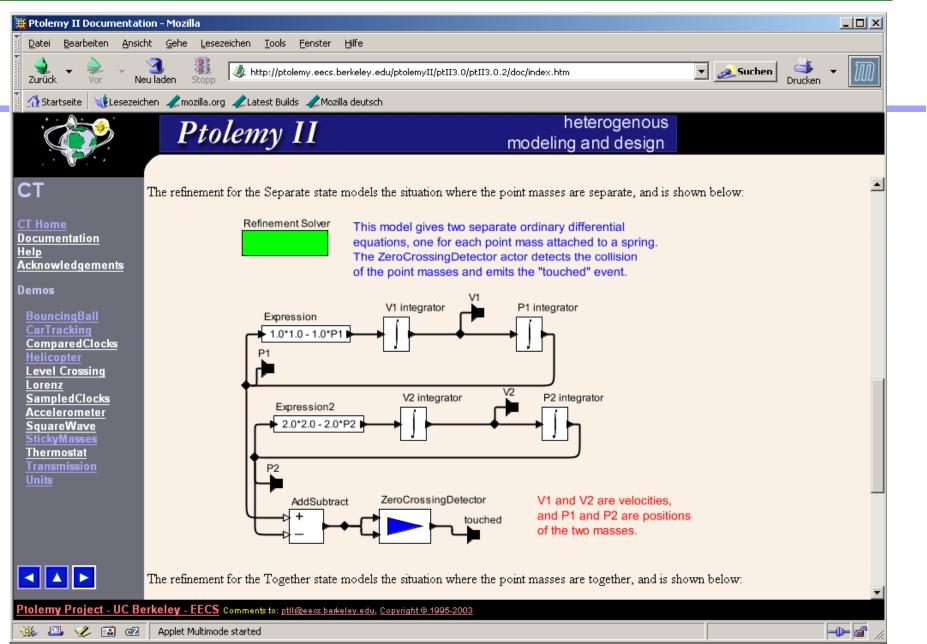
Ptolemy II supports specifications using different models of computation. In particular, it supports:

- 1. Communicating sequential processes (CSP).
- 2. Continuous time (CT): appropriate for ME, analog circuits. Supported by extensible differential equation solvers.
- 3. Discrete event model (DE): model used by many (e.g. VHDL) simulators.
- 4. Distributed discrete events (DDE).
- 5. Finite state machines (FSM).
- 6. Process networks (PN), using Kahn process networks
- 7. Synchronous dataflow (SDF)
- 8. Synchronous/reactive (SR) MoC. Discrete time, signals do not need to have a value at every clock tick. Esterel used.

Ptolemy II

Source ...


http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII3.0/ptII3.0.2/doc/index.htm


32

🙀 Ptolemy II Documentatio		
Datei Bearbeiten Ansich	t <u>G</u> ehe Lesezeichen <u>T</u> ools Eenster <u>F</u>	Hilfe
Zurück Vor Ne	3 Stopp / http://ptolemy.eecs.be	erkeley.edu/ptolemyII/ptII3.0/ptII3.0.2/doc/index.htm
📲 🧴 Startseite 🛛 🍓 Lesezeich	en 🥒 mozilla.org 🥠 Latest Builds 🥠 Mozilla	la deutsch
	Ptolemy II	heterogenous modeling and design
СТ	Go Pause	Resume Stop
CT Home	Model parameters:	
Documentation	stickiness:	-1,0
<u>Help</u> Acknowledgements		
Demos		Sticky Masses
BouncingBall CarTracking ComparedClocks Helicopter Level Crossing Lorenz SampledClocks Accelerometer SquareWave StickyMasses Thermostat Transmission Units	with distinct spring constant. If the balls	es on a flat frictionless table, as shown in the figure below. Each of the masses is attached to a spring ls are not stuck together, they will independently swing back and forth. If they collide, they stick and on their momentum when they collided. The stickiness is assumed to exponentially decay with rate
Ptolemy Project - UC Be	rkeley - EECS Comments to: <u>ptil@eecs.berkel</u>	eley.edu, Copyright @ 1995-2003
🐝 🕮 🎸 🖾 🗷	execution finished.	

Embedded System Design

Octopus

Addressing the poor match between the focus of objectoriented design techniques on the software object structure and the need to allocate operations to tasks.

This poor match was the main concern that was addressed in the design of OCTOPUS.

Totally software-oriented flow used at Nokia

Octopus

- 1. In the **systems requirement phase**, behavior is described by use case diagrams and use cases. The structure of the environment is described by a so-called context diagram.
- 2 In the **system architecture phase**, the structure is broken down into subsystems. Major interfaces between the subsystems are identified, but their behavior is not.
- 3 The subsystem analysis phase is done ∀ subsystems. Class diagrams for the subsystems are generated.
 Behaviors of subsystems can be defined in various ways, including StateCharts, so-called event lists and event sheets.
- 4 The **subsystem design phase** generates outlines for processes/threads, classes and interprocess messages.
- 5 The **subsystem implementation phase** generates actual code of the selected programming language.

