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Embedded System Design

Let

* p,be the period of task 7,

* c;be the execution time of 7,

* d;be the deadline interval, that is, the time between a
job of 7:becoming available and the time after which the
same job 7;has to finish execution.

 /;be the laxity or slack, defined as /= d, - ¢
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Independent tasks: Rate monotonic (RM) scheduling
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T1 preempts T2 and T3.
T2 and T3 do not preempt each other.
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Case of failing RM scheduling
Task 1: period 5, execution time 2
Task 2: period 7, execution time 4
u=2/5+4/7 =34/35=0.97, 2(212-1) = 0.828
T1
J2,2
~J T I " T " T T T " T " T T "1 "1 "1 " 1=
Nﬁ 18 20 22 24 26 28 30 32 t
: Missing computations
M d
delasjliene scheduled in the next period }
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Proof of RM optimality

Definition: A critical instant of a task is the time at which
the release of a task will produce the largest response time.

Lemma: For any task, the critical instant occurs if that
task is simultaneously released with all higher priority

taclke
LUVI\NV.

Proof: Let 7={T,, ..., T.}: periodic tasks with Vi p,= p; ..

Source: G. Buttazzo, Hard Real-time Computing Systems, Kluwer, 2002
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Critical instances (1)

Response time of 7, is delayed by tasks 7;of higher priority:
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Delay may increase if 7;starts earlier
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Maximum delay achieved if 7,and 7;start simultaneously.
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Critical instances (2)

Repeating the argument forall /=1, ... n-7:

% The worst case response time of a task occurs when it is
released simultaneously with all higher-priority tasks. g.e.d.

< Schedulability is checked at the critical instants.
<= |f all tasks of a task set are schedulable at their critical
Instants, they are schedulable at all release times.
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Proof of the RM theorem

Let 7={7;, 75} with p, < p,.
Assume RM is not used - prio( 7)) is highest:

< p1 P
P I S B
< 01 >
7, — — .
)
Schedule is feasible if citc S p, (1)

Define /= | p,/p,: # of periods of T.fully contained in 7,
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Case 1l: ¢, < p,— Fp;

Assume RM is used - prio( 7,) is highest:

Case 1*: ¢, < p, — Fp,
(¢, small enough to be finished before 2nd instance of 75)

Schedulable if (F+1) ¢, + ¢, < p, (2)

- *Typos in [Buttazzo 2002]: < and < mixed up]
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Proof of the RM theorem (3)

Not RM: schedule is feasible if ci+e, < p; (1)
RM: schedulable if (F1)c + 6 < p, (2)
From (1): Fe+Fe, < Fp,

Since F > 1: Fe,tc, < FetFe, < Fp,

Adding c;: (F+1)ctc, < Fp, +c,
Since ¢, < p, — Fp;: (F+1)c+c, < Fp,+c, < p,

Hence: if (1) holds, (2) holds as well

< For case 1: Given tasks 7, and 7, with p, < p,, then if the
schedule is feasible by an arbitrary (but fixed) priority
assignment, it is also feasible by RM.
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Case 2: ¢, > p, — Fp,

Case 2: ¢, > p, — Fp,

(c, large enough not to finish before 2"d instance of 7))

P S B s M S

7, | [ ] | | /
FP1 ,bz

Schedulable if Fc+o<Fp, (3)

Gt = py (1)

Multiplying (1) by Fyields
Since F > 1:

Fet+ Fo, < Fp
Fet+rco <Fet Fo < Fp,

& Same statement as for case 1.
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Calculation of the least upper utilization bound

Let 7={7,, 7.} with p, < p,.
Proof procedure: compute least upper bound U, as follows
= Assign priorities according to RM

= Compute upper bound U, , by setting computation times
to fully utilize processor

= Minimize upper bound with respect to other task
parameters

As before: /= p,/p, |
¢, adjusted to fully utilize processor.
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Case 1l: ¢, < p,— Fp;

Fp; P>

Largest possible value of ¢, is C= p,— ¢ (FH1)
Corresponding upper bound is

C, =C1+p2—C1 (F+1)=1+C1_ ¢ (F+1)=1+C1{pz_(|:+1)}
Pr P2 P P2 P, P2 P2 | Py

{}is <0 = U, monotonically decreasing in ¢,

Minimum occurs for ¢, = p, — Fp,
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Case 2: ¢, 2 p,— Fp;

7, | — - | .
Fp; 12

Largest possible value of ¢, is ¢,= (p-¢))F

Corresponding upper bound is:

Uub=C1+C2=C1+(p1_c1)F=p1F+&— Cip_ p1F+p {pz F}
2

Py P Py P P O P P4

{}is=>0 -> U, monotonically increasing in ¢, (independent of ¢, if {}=0)

Minimum occurs for ¢, = p, — Fp; as before.
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Utilization as a function of G=p,/p,-F

For minimum value of ¢;:

Ui = Pipis [pz Fj:&F+(p2_p1F)[p2—FJ=& F+(pz—FJ(pz—Fj}
P, P2\ Py P, P, P P2 P P

letG=P2_p.

P
U, ~Pieig)-F8Y)_ [F+6?) _[F+G?)_(F+0)-G-G?)
Wb = +G) _ _
P, p,/p.  (p,/p,—F)+F F+G F+G
_1_6(1_6)
- F+G

> U, increasing in F >

Since 0 <G< 1: G(1-G) 2 U
: 1>

Minimum of U, for mi

F

_1+G?
146G
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Proving the RM theorem for n=2

1+ G?

1+G
Using derivative to find minimum of U

du, 2G(1+G)-(1+G?) G*+2G-1

dG (1+G)?  (1+G)

Uub —
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EDF
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Comparison EDF/RMS
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T2 not preempted, due to its earlier deadline.
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Dependent tasks
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Duration of priority inversion with >2 tasks can exceed the length of any critical section

Priority of T1 > priority of T2 > priority of T3.
T2 preempts T3:
T2 can prevent T3 from releasing the resource.

P(S) Laﬁempt] P(S) [successful]
2 i 5

T1

T2
- — — — — - - === =

T2 blocks T1
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The MARS Pathfinder problem (1)

“But a few days into the mission,
not long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencing total
system resets, each resulting in
losses of data. The press reported
these failures in terms such as
"software glitches" and "the
computer was trying to do too

many things at once".” ...
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The MARS Pathfinder problem (2)

“VxWorks provides preemptive priority scheduling of threads.
Tasks on the Pathfinder spacecraft were executed as
threads with priorities that were assigned in the usual
manner reflecting the relative urgency of these tasks.”

“Pathfinder contained an "information bus", which you can
think of as a shared memory area used for passing
information between different components of the spacecraft.”

= A bus management task ran frequently with high
priority to move certain kinds of data in and out of the
information bus. Access to the bus was synchronized
with mutual exclusion locks (mutexes).”
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The MARS Pathfinder problem (3)

* The meteorological data gathering task ran as an
infrequent, low priority thread, ... When publishing its
data, it would acquire a mutex, do writes to the bus,
and release the mutex. ..

* The spacecraft also contained a communications task
that ran with medium priority.”

&

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data
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The MARS Pathfinder problem (4)

“Most of the time this combination worked fine. However, very
infrequently it was possible for an interrupt to occur that caused
the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus
thread was blocked waiting for the (low priority) meteorological
data thread. In this case, the long-running communications
task, having higher priority than the meteorological task, would
prevent it from running, consequently preventing the blocked
information bus task from running. After some time had
passed, a watchdog timer would go off, notice that the data bus
task had not been executed for some time, conclude that
something had gone drastically wrong, and initiate a total
system reset. This scenario is a classic case of priority
inversion.”
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Coping with priority inversion: the priority inheritance protocol
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Example

How would priority inheritance affect our example with 3 tasks?

T3 inherits the
priority of T1 and
T3 resumes.

-
&P(S) [attempt]  __.-~-P(S) [successiul]
T1 5 5 )
12
I e T .
12 |b|uC|r§8 11
13 1

PS) V(S) V(S
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Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to
“‘on”. When the software was shipped, it was set to “off".

The problem on Mars was
corrected by using the
debugging facilities of VxWorks
to change the flag to “on”, while
the Pathfinder was already on
the Mars [Jones, 1997].
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Remarks on priority inheritance protocol
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Victor Yodaiken: Against Priority Inheritance,
http://www.fsmlabs.com/articles/inherit/inherit.html
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LEVAVEN

Periodic scheduling
= Rate monotonic scheduling
* Proof of the utilization bound for 7=2.
= EDF
» Dependent and sporadic tasks (briefly)
Resource access protocols
* Priority inversion
* The Mars pathfinder example
= Priority inheritance
* The Mars pathfinder example
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