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[in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW]

Current UMTS phones can hardly be operated for more
than an hour, if data is being transmitted.

[from a report of the Financial Times, Germany, on an analysis by Credit Suisse First Boston;
http://www.ftd.de/tm/tk/9580232.htmI?nv=se]
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Power and energy are related to each other
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Application Specific Circuits (ASICs) or Fuill Custom Circuits
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ASIC synthesis not covered in this course.

[http://www.molecularimprints.com/Technology/tech_articles/MIl_COO_NIST_2001.PDF9]
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Structure of this course

Not covered in this course

HW-components @re—design hardware
I
' v

o y _ . :

S = specification implementation: hw/sw codesign realization
E - task concurrency management

¢ ’!T‘ - high-level transformations )

< | - design space exploration

5 standard software - hardware/software partitioning —=| software

= (RTOS, ..) - compilation, scheduling

O

E s I oh

2 v (from all phases) I v v

validation; evaluation (performance, energy consumption, safety, ..)
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Processors

At the chip level, embedded chips include micro-controllers
and microprocessors. Micro-conftrollers are the true
workhorses of the embedded family. They are the original
embedded chips’ and include those first employed as
controllers in elevators and thermostats [Ryan, 19993].
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Microcontrollers
- MHS 80C51 as an example -

» 8-bit CPU optimized for control applications «-----------------------
« Extensive Boolean processing capabilities «------------------------
* 64 k Program Memory address space

* 64 k Data Memory address space

* 4 Kk bytes of on chip Program Memory

« 128 bytes of on chip data RAM *777 e
* 32 bi-directional and individually addressable /O lines <«------
* Two 16-bit timers/counters <---------smommmmrm

SWwaysAS pappaquig Joj Sainjea-|

 Full duplex UART e
* 6 sources/5-vector interrupt structure with 2 priority levels <
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Microcontrollers and
the Lego® Mindstorm Lab

More
n-aepth.

www.watch.impress.co.jp/.../20000821/minds.htm
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RCX, the Lego®
control unit

Three input
ports for
connecting

sensors
.

Light sensor

Three output
ports for
connecting
motors and
lamps

Touch sensor

IR window

A | Temperature
8 5 sensor
A &

=

Plug for
transformer
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Salient features of the RCX

» The RCX has a piezoelectric speaker, which produces
6 distinct tones and can even 'carry a tune'.
= Three input ports: Three gray 4-stud bricks above LCD
labeled 1, 2, 3.
Three output ports: Three black 4-stud bricks below
LCD labeled, A, B, C.
* Four control buttons (View, On-Off, Prgm, Run).
LCD display.
» Using infrared communication, the RCX can:
e communicate with a computer
« communicate with other RCX bricks: messages can
be passed from RCX to RCX
* be controlled via the Remote Control

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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RCX implements virtual byte code machine
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The RCX Virtual Machine

Motors m Interpreter executes
Sensors byte code from two
¢ sources
m Up to five programs,
Register P Byte code each consisting of:
File interpreter e up to 10 tasks
A e up to 8 subroutines

m Memory map stores
locations of tasks and
subroutines

Programs

http://graphics.stanford.edu/~kekoa/rcx/talk/talk.018.html

IR Link

EEZ8{ Lacture Copreright £ 1996 Keloa Proudfoot
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1. Graphical user interface RoboLab

L3 ( -\
Pilot Level 1
Turning a motor on or off
1. Connect a mator to port A on your RCX and turn the RCX on by pressing the red
On-Off button. If you connect a wheel to the motor you will be able to see which
direction the motor is programmed to run.
2. Start ROBOLAB, select Programmer and double-click on Pilot 1. A default program \_ Y,

will appear on your screen. The motor icon offers you a left (clockwise) or right (counter
clockwise) option.

3. Place your RCX in front of the IR Tower. Make sure the
RCX is turned on. NOTE that the RCX automatically turns
off after 15 minutes.

4. Select the white arrow button, which is the download
button. A new box appears on your screen indicating that
download is proceeding.

5. Press the green Run button on your RCX.
a. Is the motor running? If not—have you connected the
wire to port A?




2. Textual user interface NQC (Not quite C)

C-like programs translated into CRX-bytecode
Composed of:

1. Global variables

2. Task blocks

3. Inline functions

4. subroutines

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Tasks

task name( )

{
}

name: any legal identifier.

1 task - named "main" - started when program is run.
Maximum number of tasks on RCX: 10

The body of a task consists of a list of statements.

Tasks started and stopped: start and stop statements
StopAllTasks stops all currently running tasks.

// the task 's code is placed here

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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(Inline) Functions

void name( argument list)

{ // body of the function }

Functions cannot return a value; void is related to C
Argument list: empty, or = 1 argument definitions.
Arguments: fype followed by its name.

All values are 16 bit signed integers.

4 different argument classes:

Type Meaning Restriction

int Pass by value None

int& Pass by reference | Only variables may be used
const int Pass by value Only constant may be used

const int& | Pass by reference | Function cannot modify argument

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Subroutines

Subroutines allow a single copy of some code to be shared
between several different callers (space efficient).
Restrictions:
= First of all, subroutines cannot use any arguments.
» A subroutine cannot call another subroutine.
» Maximum number of subroutines: 8 for the RCX
= |f calling from multiple tasks: no local variables or
perform calculations that require temporary variables
(this restriction is lifted for the Scout and RCX2).

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Variables

All variables of the same type: 16 bit signed integers.
Declarations:
int variable[=initial value] [, variable [=initial value]] ;
Examples:
int x ; // declare x
inty, z; // declare y and z
inta =1, b ; // declare a and b, initialize a to 1
» Global variables: declared at the program scope;
Used within tasks, functions, subroutines. Max: 32
» | ocal variables: within tasks, functions, and sometimes
within subroutines. Max: 0 @ RCX, 16 @RCX2
» | ocal variables may be declared in a compound
statement, following a {

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Arrays

Arrays exist only for RCX2
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Assignments

Syntax:

Variable operator expression

Operators:

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

= Multiple variable by expression

= Divide variable by expression

&= Bitwise AND expression into variable

= Bitwise OR expression into variable

||= Set variable to absolute value of expression
+-=  Set variable to sign (-1,+1,0) of expression
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Control structures

= [f-statements
if (condition) consequence
if (condition) consequence else alternative
* While-statements
while (condlition) body
» Repeat-statements
repeat (expression) body
= Switch-statement
switch (expression) body
= Until-macro
# define until (c) while (! (c))

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Built-in API

SetPower(outputs, power) Function
Sets the power level of the specified outputs.

Power should result in a value between 0 and 7.

OUT LOW, OUT_HALF, OUT_FULL may also be used.
Examples:

SetPower( OUT_A, OUT FULL) ; /I A full power
SetPower( OUT_B, x );

OnFwd(outputs) Function

Set outputs to forward direction and turn them on.
Outputs is one or more of OUT_A, OUT B, and OUT_C
added together.

Example: OnFwd (OUT_A);

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Sensor Types

Sensor Type Meaning

SENSOR TYPE NONE OENEric passive sensor
SENSOR TYPE TOUCH a touch sensor
SENSOR TYPE TEMPERATURLE a temperature sensor
SENSOR TYPE LIGHT a light sensor
SENSOR TYPE ROTATION a rotation sensor

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Sensor Modes

Sensor Mode Meaning

SENSOR MODE RAW raw value from 0 to 1023

SENSOR MODE BOOL boolean value (0 or 1)

SENSOR MODE EDGE counts number of boolean transitions
SENSOR MODE PULSE counts number of boolean periods

SENSOR MODE PERCENT value from 0 to 100

SENSOR MODE FAHRENHEIT degrees F - RCX only

SENSOR MODE CELSIUS degrees C - RCX only

SENSOR MODE ROTATION rotation (16 ticks per revolution) - RCX only

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Sensor Type/Mode Combinations

Sensor Configuration Type Mode

SENSOR TOUCH SENSOR TYPE TOUCH SENSOR MODE BOOL
SENSOR LIGHT SENSOR TYPE LIGHT SENSOR MODE PERCENT
SENSOR ROTATION SENSOR TYPE ROTATION SENSOR MODE ROTATION
SENSOR CELSIUS SENSOR TYPE TEMPERATURE | SENSOR MODE CELSIUS

SENSOR FAHRENHEIT | SENSOR TYPE TEMPERATURE | SENSOR MODE FAHRENHEIT

SENSOR PULSE SENSOR TYPE TOUCH SENSOR MODE PULSE
SENSOR EDGE SENSOR TYPE TOUCH SENSEO MODE EDGE

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Setting Sensor Type and Mode

SetSensor(sensor, configuration)
Set the type and mode to the specified configuration
(constant containing both type and mode info).
Example:

SetSensor (SENSOR_1, SENSOR_TOUCH) ;

SetSensorType(sensor, type)
Set type (one of the predefined sensor type constants).
Example:

SetSensorType(SENSOR 1, SENSOR_TYPE TOUCH );

SetSensorMode(sensor, mode)
Set mode (one of the predefined sensor mode constants)
Optional slope parameter for Boolean conversion.

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Reading out sensors, Wait

SensorValue(n)

Returns the processed sensor reading for sensor n, where
nis 0, 1, or 2. This is the same value that is returned by the
sensor names (e.g. SENSOR_1).

Example:

x = SensorValue(0); // readsensor 1

Wait(time)

Make a task sleep for specified amount of time (in 1/100 s).
Argument may be an expression or a constant.

Wait(100); // wait 1 second

Wait(Random (100)); // wait random time up to 1 second

- For more information refer to the NQC programmers manual

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Example

// speed.ngc -- sets motor power, goes forward, waits,

// goes backwards

task main()

{
SetPower(OUT_A+OUT_C,2);
OnFwd(OUT_A+QOUT_C);
Wait(400);
OnRev(OUT_A+OUT_C);
Wait(400);
Off(OUT_A+OUT _C);

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Spiral

// spiral.nqc -- Uses repeat & variables to make robot
// move in a spiral
#define TURN_TIME 100

int move_time; // define a variable
task main()
{ move time = 20; // set the initial value
repeat(50)
{ OnFwd(OUT_A+OUT_C);
Wait(move time); // use the variable for sleeping

OnRev(OUT_C);

Wait(TURN_TIME);

move_time += 5; // increase the variable
} Off(OUT_A+OUT_C); }

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Use of touch sensors

/l Use of touch sensors
task main()
{ SetSensor(SENSOR_1,SENSOR_TOUCH);
OnFwd(OUT_A+QOUT_C);
while (true)
{if (SENSOR_1==1)
{ OnRev(OUT_A+OUT _C); Wait(30);

NnEw AN IT I\\ \I\In -I-lQn\
UNrwaG(uui_A), vvait(ov),

OnFwd(OUT_A+OUT C);

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Use of light sensor

// Use of a light sensor to make robot go forward until
/it "sees" black, then turn until it's over white
#define THRESHOLD 37
task main()
{ SetSensor(SENSOR_2,SENSOR_LIGHT);
OnFwd(OUT_A+QUT_C);
while (true)
{if (SENSOR 2 < THRESHOLD)
{ OnRev(OUT_C);
Wait(10);
until (SENSOR_2 >= THRESHOLD);
OnFwd(OUT_A+QOUT_C);

33

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006



Embedded System Design

Tasking

task main()
{ SetSensor(SENSOR_1,SENSOR_TOUCH);
start check sensors;
start move_square; }
task move square()
{ while (true)
{ OnFwd(OUT_A+OUT_C); Wait(100);
OnRev(OUT _C); Wait(85); }}
task check sensors()
{ while (true)
{if (SENSOR _1==1)

{ stop move_square;
OnRev(OUT_A+OUT _C); Wait(50);
OnFwd(OUT_A); Wait(85);
start move _square; } } }

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Subroutines

sub turn_around()

{ OnRev(OUT_C); Wait(400);
OnFwd(OUT_A+QOUT_C);

}

task main()
{ OnFwd(OUT_A+OUT_C);
Wait(100);
turn_around();
Wait(200);
turn_around();
Wait(100);
turn_around();
Off(OUT_A+OUT_C);}

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Inline function, call by reference

void turn_around(int turntime) task main()
{ OnRev(OUT _C); Wait(turntime); | | { int count=0;
OnFwd(OUT_A+OUT_C); } while (count<=5)
task main() { PlaySound(SOUND CLICK);
{ OnFwd(OUT_A+OUT_C); Wait(count*20);
Wait(100); increment(count);
turn_around(200); }
Wait(200); }
turn_around(50); void increment(int& n)
Wait(100); {n++; }
turn_around(300);
Off(OUT_A+OUT_C); }

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Playing preprogrammed sounds & tones

task main() task music()
{ PlaySound(0); Wait(100); { while (true)
PlaySound(1); Wait(100); { PlayTone(262,40); Wait(50);

PlaySound(2); Wait(100); PlayTone(294,40); Wait(50);
PlaySound(3); Wait(100); PlayTone(330,40); Wait(50);
PlaySound(4); Wait(100); PlayTone(294,40); Wait(50);
PlaySound(5); Wait(100); }}
} task main()
{ start music;
while(true)

{ OnFwd(OUT_A+OUT_C); Wait(300);
OnRev(OUT_A+OUT_C); Wait(300);

1}

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Macros ,
enad

\4

#define turn_right(s,t)
SetPower(OUT_A+OUT_C,s);OnFwd(OUT _A);OnRev(OUT _C);Wait(t);
#define turn_left(s,t)
SetPower(OUT_A+OUT_C,s);0OnRev(OUT_A);OnFwd(OUT _C);Wait(t);
#define forwards(s,t)
SetPower(OUT_A+OUT_C,s);OnFwd(OUT_A+OUT_C);Wait(t);
#define backwards(s,t)
SetPower(OUT_A+OUT_C,s);0OnRev(OUT_A+QOUT _C);Wait(t);

task main()

{ forwards(1,200); turn_left(7,85);

forwards(4,100); backwards(1,200);

forwards(7,100); turn_right(4,85);

forwards(1,200); Off(OUT_A+OUT_C);}

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Power density continues to get worse

Nuclear reactor —
@ =

L 4

Hot plate Pentium lll ® processor
Pentium Il ® processor

Prescott: 90 W/cm?,
90 nm [c‘t 4/2004]

Watts/cm?

-
=

Pentium Pro ® processor
Pentium ® processor

1486

L.5p 1p O.Fp 0.5p 0.35p 0.25p 0.18p 0.13p O.1p 0.07p

Surpassed hot-plate power density in 0.5

Not too long to reach nuclear reactor

Micro32
e Fred Pollack
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Ambient Intelligence Global System

T:transducer
Ad-Hoc Network of C:baseband

Picocell Ambient Transducers RF: radio link

1/person

SoC-SiP
10m (Wearable) Assistant
WH « biometric input
100uW, 1Gops peak + global connectivity
(k)bps /‘ « multimedia, games
* QoS
*gps

See - ambient control speak
WLAN hear « health... show
Basestations 1 feel 10.100Gops  0.1-2W stimulate

BAN
C ody Transducers
100uW - (k)bps

<1W,10Gops
> 100 Mbps T
>100/person aura C

7 ©H.De Man/IMEC DATEO02 — ,
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Nano-systems with Giga-complexity

Need global system optimisation
GHz RF and mixed signal everywhere

el

Transducer nodes Assistant nodes/basestations
» Ultra low energy (100Mops/mW)|| = Low energy (10-50Mops/mW)
» Ultra low cost (1€) =« Low cost (100 €)

« Low flexibility « High Flexibility
w 1..10 Mtr (small size) = 10..100 Gops, >100 Mtr
« DSP&RF dominated = Data-Intensive, dynamic tasks
< Chip-package co-design < Task and data concurrency
= Ultra fast hw design @ [ncremental sw design
“ASIC in a week” “PLATFORM”
@100..1000 times Power efficiency of today’s uP...
— © H.De Man/IMEC DATEOD2 11
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Need to consider CPU & System Power

Mobile PC Mobile PC

Thermal Design (TDP) System Power Average System Power

Other
13%

600/500 MHz uP Other 600/500 MHz uP
37% 13% 13%

Power Supply

10% Power Supply
0

10%

Memory+Graph
12%

LCD 10"
Memory+Graph 30%

15%

HDD
19%

Note: Based on Actual Measuremenfs

CPU Dominates Thermal
Design Power

Multiple Platform
Components Comprise

Average Power
[@Gfitesy: N. Dutt; Source: V. Tiwari]
E ; Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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DS HUAL 1) (573l B puon Jilgs 50 LeSlg Su3a sldo sl
New ideas can actually reduce energy consumption

Cruzos -'_meﬂ,_ 1 M54
M au Temlgy '

Running the same multimedia application.

~ As published by Transmeta [www.transmeta.com]
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Los Vlgs 23w

4 = A\

Dynamic power management (DPM)
Example: STRONGARM SA1100
RUN: operational 400mW
IDLE: a sw routine may RUN
stop the CPU when not N
in use, while monitoring 10us Qo*i\ .
interrupts 160ms\_ \C.s°
SLEEP: Shutdown of on- 10“3()“3
chip activity { IDLE }Power —> SLEEP

signal
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Fundamentals of dynamic voltage scaling (DVS)

Power consumption of CMOS
circuits (ignoring leakage):

P=aC, Vi f with
« : switching activity
C'; : load capacitance
V44 : supply voltage
f . clock frequency

Delay for CMOS circuits:

Vaa
(Vaa =V, )’
V. :threshhold voltage

T=k(C} with

(V, substancially < than V)

% Decreasing V/,reduces P quadratically,
while the run-time of algorithms is only linearly increased

E=P x t decreases linearly

(ignoring the effects of the memory system and /)

Kazim Fouladi. School of Electrical and Computer Engineering, University of Tehran. Fall 2006
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Voltage scaling: Example

e 50 | | | 50MH 120 o
U% Maximum Clock Frequency gw
~ 40r » 140 =
ps | | 2
301 130 2
) |
= | —
201t 5 Energy Consumption 20 £
10} ¢ , , , , 110
2.5 3.0 3.5 4.0 4.5 5.0 Exploitation
% discussed in
ad codesign
[Courtesy, Yasuura, 2000] chapter
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Variable-voltage/frequency example: INTEL Xscale

POWER-PERFORMANCE COMPARISON OS should
- Intel® ¥Scale™ eeiiie
nel® StrongARM" Mirl:triarch'rtt::c?ure . SChedUIe
1700 — distribution
1000 = of the
energy

budget.

Power Consumption (Watts)

o

o]

()]

=

233 MHz 175 Mz 150 MHz 400 MHz 600 MHz BOO MHz 1GHz w

2.0V =15V 0. 75V 1.0 1.3V 1.6V 1.8V °©

c

Wvres  Jwans =
o

L
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AS 013351 (63U Y (s I3uS (s 3do LS

» CISC machines: RISC machines designed for run-time-,
not for code-size-efficiency

= Compression techniques: key idea

WP WP

Addr | | Addr |
decompressor

q l

ROM
ROM
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Code-size efficiency

= Compression techniques (continued):
« 2nd instruction set, e.g. ARM Thumb instruction set:

001 |10 |Rd |Constant

16-bit Thumb instr.
ADD Rd #constant

rce=
iation zero extended

1110 001 |01001 |0 Rd

0 Rd

0000 Constant

» Reduction to 65-70 % of original code size
* 130% of ARM performance with 8/16 bit memory
* 85% of ARM performance with 32-bit memory

Dynamically
decoded at run-time

[ARM, R. Gupta]

Same approach for LSI TinyRisc, ...
Requires support by compiler, assembler etc.
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“Dictionary-based coding schemes cover a wide range of

various coders and compressors.
Their common feature is that the methods use some kind

of a dictionary that contains parts of the input sequence

which frequently appear.
The encoded sequence in turn contains references fo the

dictionary elements rather than conitaining these over and

1 If\r'”

UvcCelr.

[A. Beszédes et al.: Survey of Code size Reduction Methods, Survey of Code-
Size Reduction Methods, ACM Computing Surveys, Vol. 35, Sept. 2003, pp
223-267]
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Key idea (for d bit instructions)

b For each Uncompressed storage of
instruction instruction a d-bit-wide instructions
address addre.ss, S requires axd bits.

J g |a contains table
address of
instruction. In compressed code, each

__b « d bit Instruction pattern is stored

only once.

table of used instructions

g, = -A-A--.‘.

(“dictionary”) small

{d bit —

Hopefully, axt+cocxd < axd.

@]

lIA

N
o

Called nanoprogramming
CPU in the Motorola 68000.
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Instances

» Ziv-Lempel coding (= ZIP, GZIP)

7 11

» “procedural abstraction”, “procedure exlining”
(automatic generation of parameter-less procedures)

» Markov-based dictionary generation
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Cache-based decompression

* Main idea: decompression whenever cache-lines are
fetched from memory.

» Cache lines < variable-sized blocks in memory
< |line address tables (LATs) for translation of
Instruction addresses into memory addresses.

» Tables may become large and have to be bypassed by
a line address translation buffer.

[A. Wolfe, A. Chanin, MICRO-92]
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More information on code compaction

= Popular code compaction library by Rik van de Wiel
[http://www.extra.research.philips.com/ccb]
unfortunately has been moved ®

» http://www-perso.iro.umontreal.ca/~latendre/
codeCompression/codeCompression/node1.html
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Architecture: Exampl

Y

al ole) $3ehHU Y (s3ulS (s3do s
- Domain-oriented architectures -
Application: y[j] = z::gx[i-i]*a[i]
Vi: 0<i < n-1: y[j] = v..[i] + x[j-i]*a[i]

e: Data path ADSP210x
P

Application
maps nicely

onto

Address-
registers
A0, A1, A2

41, j-i+1

[ AF J«

Address
generation
unit (AGU)

x[j-i]*afi]

E Yi.1l]

architecture

MR:=0; A1:=1; A2:=n-2;
MX:=x[n-1]; MY:=a[0];
for (j:=1ton)
{MR:=MR+MX*MY;
MY:=a[A1]; MX:=x[AZ2];
Al++; A2--}
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DSP-Processors: multiply/accumulate (MAC)
and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j:=1to n)

{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Fl

/

Multiply/accumulate (MAC) instruction

\

Zero-overhead loop (ZOL)
instruction preceding MAC
instruction.

Loop testing done in parallel to
MAC operations.
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o2l slals
Heterogeneous registers

Example (ADSP 210x):

P
D
| T
}\x AY Mx] [MY

Address- [AF j« [MF]
registers ! ‘
AOQ, A1, A2
Address v + -
generation 28] v
unit (AGU) —MR]

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR
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GB13a wpoT augs slasalg
Separate address generation units (AGUs)

Example (ADSP 210x):

instruction
VY

[ \

address

register +/—

file A

—

data
memory

« Data memory can only be fetched
with address contained in A,

* but this can be done in parallel
modify with operation in main data path
register  (takes effectively O time).
fleM < A:=Az*1also takes 0 time,

e same forA:=Ax+ M;

* A ;= <immediate in instruction>
requires extra instruction
#Minimize load immediates

< Qptimization in codesign chapter
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Moduio addressing

A

Modulo addressing: X ol o =i
Am++ =Am:=(Am+1) mod n

sliding window

[
»

t

(implements ring or circular
buffer in memory)

(
n most | Xt1-1] X[t1-1)
I N , |
ecent | X[t1-n+1] X[t1+1]
values | yt1-n+2] X[t1-n+2] |
\
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Saturating arithmetic

» Returns largest/smallest number in case of over/underflows

» Example:
a 0111
b + 1001
standard wrap around arithmetic 0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted 0111 “almost correct”

= Appropriate for DSP/multimedia applications:
* No timeliness of results if interrupts are generated for overflows
* Precise values less important
* Wrap around arithmetic would be worse.
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Fiom el ool morille smn m ke
Fixed-point arithmeti

sign binary point

y y

S

@
iwl fwl
- — =
wi
- =

Shifting required after multiplications and divisions in
order to maintain binary point.
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Properties of fixed-point arithmetic

= Automatic scaling a key advantage for multiplications.

= Example:
x=0.5x0.125+0.25x 0.125 = 0.0625 + 0.03125 = 0.09375

For /w~1 and wE3 decimal digits, the less significant digits are
automatically chopped off: x = 0.093

Like a floating point system with numbers € [0..1),

with no stored exponent (bits used to increase precision).

= Appropriate for DSP/multimedia applications
(well-known value ranges).
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Reai-time capabiiity

= Timing behavior has to be predictable
Features that cause problems:

» Unpredictable access to shared resources
— Caches with difficult to predict replacement strategies
— Unified caches (conflicts between instructions and data)
— Pipelines with difficult to predict stall cycles ("bubbles")
— Unpredictable communication times for multiprocessors

« Branch prediction, speculative execution

v\-l- [N 'Y ~ nﬂﬂﬁl

e rrUIJI.b llldl dl IJUDDIUIC dlly I.IIIIU

 Memory refreshes that are possible any time
 |nstructions that have data-dependent execution times

[Dagstuhl workshop on predictability, Nov. 17-19, 2003]

= Trying to avoid as many of these as possible.
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yadadla L AU Jia gabbdla glaSsb
Multiple memory banks or memories

’

AF A

AX] [AY Mx] [MY
Address- [AF ] [MF]
registers | ‘
A0, A1, A2
Address v +, -
generation L2=] v
unit (AGU) —(MR ]

SIlgo sla STy (s )lwoslu
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duoda

Processing units
= Power efficiency of target technologies
= ASICs
* Processors
« LEGO RCX unit
* Energy efficiency
« Code size efficiency and code compaction

Run-time efficiency

 DSP processors

— Addressing modes, AGUs

— Saturating and fixed point arithmetic
— Real-time capability, multiple banks
— Heterogeneous register files, MAC
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