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Digital Signal Processing

Overview of Adaptive Filters
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The Filtering Problem
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• Filters may be used for three information-processing tasks

– Filtering

– Smoothing

– Prediction

• Given an optimality criteria we often can design optimal filters

– Requires a priori information about the environment

– Example: 

Under certain conditions the so called Wiener filter is optimal in the mean-squared sense

• Adaptive filters are self-designing using a recursive algorithm

– Useful if complete knowledge of environment is not available a priori
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Applications of Adaptive Filters: Identification
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• Used to provide a linear model of an unknown plant

• Parameters

– u = input of adaptive filter = input to plant

– y = output of adaptive filter

– d = desired response = output of plant

– e = d − y = estimation error

• Applications: 

– System identification
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Applications of Adaptive Filters: Inverse Modeling
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• Used to provide an inverse model of an unknown plant

• Parameters

– u = input of adaptive filter = output to plant

– y = output of adaptive filter

– d = desired response = delayed system input

– e = d − y = estimation error

• Applications: 

– Equalization
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Applications of Adaptive Filters: Prediction
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• Used to provide a prediction of the present value of a random signal

• Parameters

– u = input of adaptive filter = delayed version of random signal

– y = output of adaptive filter

– d = desired response = random signal

– e = d − y = estimation error = system output

• Applications: 

– Linear predictive coding
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Applications of Adaptive Filters: Interference Cancellation

7

• Used to cancel unknown interference from a primary signal

• Parameters

– u = input of adaptive filter = reference signal

– y = output of adaptive filter

– d = desired response = primary signal

– e = d – y = estimation error = system output

• Applications: 

– Echo cancellation
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Stochastic Gradient Approach
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• Most commonly used type of Adaptive Filters

• Define cost function as mean-squared error

• Difference between filter output and desired response

• Based on the method of steepest descent

– Move towards the minimum on the error surface to get to minimum

– Requires the gradient of the error surface to be known

• Most popular adaptation algorithm is LMS

– Derived from steepest descent

– Doesn’t require gradient to be know: it is estimated at every iteration

• Least-Mean-Square (LMS) Algorithm 
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Least-Mean-Square (LMS) Algorithm
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• The LMS Algorithm consists of two basic processes

– Filtering process

• Calculate the output of FIR filter by convolving input and taps

• Calculate estimation error by comparing the output to desired signal

– Adaptation process

• Adjust tap weights based on the estimation error
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LMS Algorithm Steps
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• Filter output 

• Estimation error

• Tap-weight adaptation
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Stability of LMS
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• The LMS algorithm is convergent in the mean square 

if and only if the step-size parameter satisfy

• Here max is the largest eigenvalue of the correlation matrix of the input data

• More practical test for stability is

• Larger values for step size

– Increases adaptation rate (faster adaptation)

– Increases residual mean-squared error
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