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Fast Fourier Transforms
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Discrete Fourier Transform
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• The DFT pair was given as

• Baseline for computational complexity: 

– Each DFT coefficient requires

• N complex multiplications

• N−1 complex additions

– All N DFT coefficients require

• N2 complex multiplications

• N(N−1) complex additions

• Complexity in terms of real operations

• 4N2 real multiplications

• 2N(N−1) real additions

• Most fast methods are based on symmetry properties

– Conjugate symmetry

– Periodicity in n and k
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Digital Signal Processing

The Goertzel Algorithm
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• Makes use of the periodicity

• Multiply DFT equation with this factor

• Define 

• With this definition and using x[n] = 0 for n < 0 and n > N−1

• X[k] can be viewed as the output of a filter to the input x[n]

– Impulse response of filter: 

– X[k] is the output of the filter at time n = N

   nuenuW
knNjkn

N

/2][ 
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The Goertzel Filter
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Goertzel Filter

• Computational complexity for each coefficient

– 4N real multiplications

– 2N real additions

– Slightly less efficient than the direct method

• Multiply both numerator and denominator 
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Digital Signal Processing

Second Order Goertzel Filter
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Second order Goertzel Filter

• Complexity for one DFT coefficient

– Poles: 2N real multiplications and 4N real additions 

– Zeros: Need to be implement only once

• 4 real multiplications and 4 real additions

• Complexity for all DFT coefficients

– Each pole is used for two DFT coefficients 

• Approximately N2 real multiplications and 2N2 real additions

• Do not need to evaluate all N DFT coefficients

– Goertzel Algorithm is more efficient than FFT if 

• less than M DFT coefficients are needed

• M < log
2
N
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Decimation-In-Time FFT Algorithms
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• Makes use of both symmetry and periodicity

• Consider special case of N an integer power of 2

• Separate x[n] into two sequence of length N/2

– Even indexed samples in the first sequence

– Odd indexed samples in the other sequence

• Substitute variables n = 2r for n even and n = 2r + 1 for odd

• G[k] and H[k] are the N/2-point DFT’s of each subsequence
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Digital Signal Processing

Decimation In Time
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• 8-point DFT example using 

decimation-in-time:

• Two N/2-point DFTs

– 2(N/2)2 complex multiplications

– 2(N/2)2 complex additions

• Combining the DFT outputs

– N complex multiplications

– N complex additions

• Total complexity

– N2/2 + N complex multiplications

– N2/2 + N complex additions

– More efficient than direct DFT

• Repeat same process 

– Divide N/2-point DFTs into 

• Two N/4-point DFTs

• Combine outputs
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Decimation In Time Cont’d
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• After two steps of decimation in time

• Repeat until we’re left with two-point DFT’s
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Decimation-In-Time FFT Algorithm
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• Final flow graph for 8-point decimation in time

• Complexity:

– Nlog
2
N complex multiplications and additions
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Butterfly Computation
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• Flow graph constitutes of butterflies

• We can implement each butterfly with one multiplication

• Final complexity for decimation-in-time FFT

– (N/2)log
2
N complex multiplications and additions
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In-Place Computation
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• Decimation-in-time flow graphs require two sets of registers

– Input and output for each stage

• Note the arrangement of the input indices

– Bit reversed indexing
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Decimation-In-Frequency FFT Algorithm
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• The DFT equation

• Split the DFT equation into even and odd frequency indexes

• Substitute variables to get

• Similarly for odd-numbered frequencies
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Decimation-In-Frequency FFT Algorithm

14

   ∑





12/

0

2/
]2/[][2

N

n

nr

N
WNnxnxrX      rn

N

N

n

n

N
WWNnxnxrX

2/

12/

0

]2/[][12 ∑








Digital Signal Processing

Decimation-In-Frequency FFT Algorithm
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Decimation-In-Frequency FFT Algorithm
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• Final flow graph for 8-point decimation in frequency


