

درس ۲۲

سری فوریهی گسسته

The Discrete Fourier Series

کاظم فولادی دانشکده مهندسی برق و کامپیوتر دانشگاه تهران

http://courses.fouladi.ir/dsp

The Discrete Fourier Series

Digital Signal Processing

Discrete Fourier Series (DFS)

• Given a periodic sequence $\tilde{x}[n]$ with period N so that

 $\widetilde{x}[n] = \widetilde{x}[n+rN]$

• The Fourier series representation can be written as

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k} \widetilde{X}[k] e^{j(2\pi/N)kn}$$

- The Fourier series representation of **continuous-time** periodic signals require infinite many complex exponentials
- Note that for **discrete-time** periodic signals we have

$$e^{j(2\pi/N)(k+mN)n} = e^{j(2\pi/N)kn}e^{j(2\pi mn)} = e^{j(2\pi/N)kn}$$

• Due to the periodicity of the complex exponential we **only** need *N* exponentials for discrete time Fourier series

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)kn}$$

Discrete Fourier Series Pair

• A periodic sequence in terms of Fourier series coefficients

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)kn}$$

• The Fourier series coefficients can be obtained via

$$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j(2\pi/N)kn}$$

• For convenience we sometimes use

$$W_N = e^{-j\frac{2\pi}{N}}$$

• Analysis equation

$$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] W_N^{kn}$$

• Synthesis equation

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$

• DFS of a periodic impulse train

$$\widetilde{x}[n] = \sum_{r=-\infty}^{\infty} \delta[n-rN] = \begin{cases} 1 & n = rN \\ 0 & \text{otherwise} \end{cases}$$

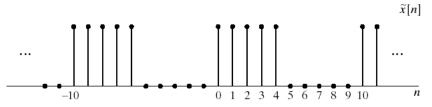
• Since the period of the signal is N

$$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j(2\pi/N)kn} = \sum_{n=0}^{N-1} \delta[n] e^{-j(2\pi/N)kn} = e^{-j(2\pi/N)k0} = 1$$

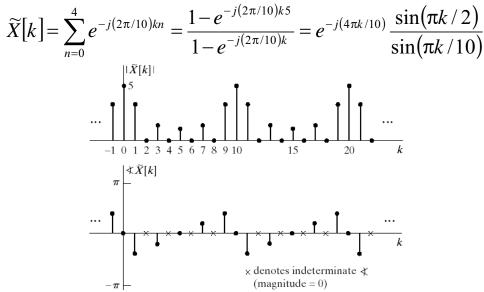
• We can represent the signal with the DFS coefficients as

$$\widetilde{x}[n] = \sum_{r=-\infty}^{\infty} \delta[n-rN] = \frac{1}{N} \sum_{k=0}^{N-1} e^{j(2\pi/N)kn}$$

• DFS of a periodic rectangular pulse train



• The DFS coefficients



Digital Signal Processing

Properties of DFS

• Linearity

$$\begin{array}{cccc} \widetilde{x}_{1}[n] & \xleftarrow{DFS} & \widetilde{X}_{1}[k] \\ \widetilde{x}_{2}[n] & \xleftarrow{DFS} & \widetilde{X}_{2}[k] \\ a\widetilde{x}_{1}[n] + b\widetilde{x}_{2}[n] & \xleftarrow{DFS} & a\widetilde{X}_{1}[k] + b\widetilde{X}_{2}[k] \end{array}$$

• Shift of a Sequence

$$\begin{array}{ccc} \widetilde{x}[n] & \xleftarrow{DFS} & \widetilde{X}[k] \\ \widetilde{x}[n-m] & \xleftarrow{DFS} & e^{-j2\pi km/N} \widetilde{X}[k] \\ e^{j2\pi nm/N} \widetilde{x}[n] & \xleftarrow{DFS} & \widetilde{X}[k-m] \end{array}$$

• Duality

$$\widetilde{x}[n] \xleftarrow{DFS} \widetilde{X}[k] \widetilde{X}[n] \xleftarrow{DFS} N\widetilde{x}[-k]$$

Properties of DFS

Periodic Sequence (Period N)	DFS Coefficients (Period N)
1. $\tilde{x}[n]$	$\tilde{X}[k]$ periodic with period N
2. $\tilde{x}_1[n], \tilde{x}_2[n]$	$\tilde{X}_1[k], \tilde{X}_2[k]$ periodic with period N
3. $a\tilde{x}_1[n] + b\tilde{x}_2[n]$	$a\tilde{X}_1[k] + b\tilde{X}_2[k]$
4. $\tilde{X}[n]$	$N\tilde{x}[-k]$
5. $\tilde{x}[n-m]$	$W_N^{km} \tilde{X}[k]$
$6. W_N^{-\ell n} \tilde{x}[n]$	$\tilde{X}[k-\ell]$
7. $\sum_{m=0}^{N-1} \tilde{x}_1[m]\tilde{x}_2[n-m] \text{(periodic convolution)}$	$\tilde{X}_1[k]\tilde{X}_2[k]$
8. $\tilde{x}_1[n]\tilde{x}_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} \tilde{X}_1[\ell] \tilde{X}_2[k-\ell] \text{(periodic convolution)}$
9. $\tilde{x}^*[n]$	${\tilde{X}}^*[-k]$
10. $\tilde{x}^*[-n]$	${\tilde{X}}^*[k]$

Properties of DFS Cont'd

Periodic Sequence (Period N)	DFS Coefficients (Period N)
11. $\mathcal{R}e{\tilde{x}[n]}$	$\tilde{X}_{e}[k] = \frac{1}{2}(\tilde{X}[k] + \tilde{X}^{*}[-k])$
12. $j\mathcal{I}m\{\tilde{x}[n]\}$	$\tilde{X}_{o}[k] = \frac{1}{2}(\tilde{X}[k] - \tilde{X}^{*}[-k])$
13. $\tilde{x}_e[n] = \frac{1}{2}(\tilde{x}[n] + \tilde{x}^*[-n])$	$\mathcal{R}e\{\tilde{X}[k]\}$
14. $\tilde{x}_o[n] = \frac{1}{2}(\tilde{x}[n] - \tilde{x}^*[-n])$	$j\mathcal{I}m\{\tilde{X}[k]\}$
Properties 15–17 apply only when $x[n]$ is real.	
15. Symmetry properties for $\tilde{x}[n]$ real.	$\begin{cases} \tilde{X}[k] = \tilde{X}^*[-k] \\ \mathcal{R}e\{\tilde{X}[k]\} = \mathcal{R}e\{\tilde{X}[-k]\} \\ \mathcal{I}m\{\tilde{X}[k]\} = -\mathcal{I}m\{\tilde{X}[-k]\} \\ \tilde{X}[k] = \tilde{X}[-k] \\ \angle \tilde{X}[k] = -\angle \tilde{X}[-k] \end{cases}$
16. $\tilde{x}_e[n] = \frac{1}{2}(\tilde{x}[n] + \tilde{x}[-n])$	$\mathcal{R}e\{\tilde{X}[k]\}$
17. $\tilde{x}_0[n] = \frac{1}{2}(\tilde{x}[n] - \tilde{x}[-n])$	$j\mathcal{I}m\{\tilde{X}[k]\}$

Periodic Convolution

• Take two periodic sequences

$$\widetilde{x}_{1}[n] \xleftarrow{DFS} \widetilde{X}_{1}[k]$$

$$\widetilde{x}_{2}[n] \xleftarrow{DFS} \widetilde{X}_{2}[k]$$

• Let's form the product

$$\widetilde{X}_{3}[k] = \widetilde{X}_{1}[k]\widetilde{X}_{2}[k]$$

• The periodic sequence with given DFS can be written as

$$\widetilde{x}_{3}[n] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \widetilde{x}_{2}[n-m]$$

• **Periodic convolution** is commutative

$$\widetilde{x}_{3}[n] = \sum_{m=0}^{N-1} \widetilde{x}_{2}[m] \widetilde{x}_{1}[n-m]$$

Periodic Convolution Cont'd

$$\widetilde{x}_{3}[n] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \widetilde{x}_{2}[n-m]$$

• Substitute periodic convolution into the DFS equation

$$\widetilde{X}_{3}[k] = \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \widetilde{x}_{2}[n-m] \right) W_{N}^{kn}$$

• Interchange summations

$$\widetilde{X}_{3}[k] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \left(\sum_{n=0}^{N-1} \widetilde{x}_{2}[n-m] W_{N}^{kn} \right)$$

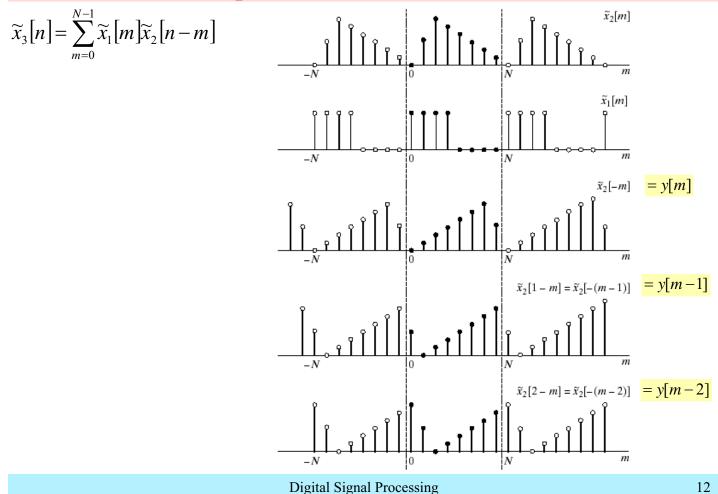
• The inner sum is the DFS of shifted sequence

$$\sum_{n=0}^{N-1} \widetilde{x}_2[n-m] W_N^{kn} = W_N^{km} \widetilde{X}_2[k]$$

• Substituting

$$\widetilde{X}_{3}[k] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \left(\sum_{n=0}^{N-1} \widetilde{x}_{2}[n-m] W_{N}^{kn} \right) = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] W_{N}^{km} \widetilde{X}_{2}[k] = \widetilde{X}_{1}[k] \widetilde{X}_{2}[k]$$

Graphical Periodic Convolution



The Fourier Transform of Periodic Signals

- Periodic sequences are not absolute or square summable

 → they don't have a Fourier Transform
- We can represent them as sums of complex exponentials: **DFS**
- We can combine **DFS** and **Fourier transform**
- Fourier transform of periodic sequences
 - Periodic impulse train with values proportional to DFS coefficients

$$\widetilde{X}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \widetilde{X}[k] \delta\left(\omega - \frac{2\pi k}{N}\right)$$

- This is periodic with 2π since DFS is periodic

• The inverse transform can be written as

$$\frac{1}{2\pi} \int_{0-\varepsilon}^{2\pi-\varepsilon} \widetilde{X}(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{0-\varepsilon}^{2\pi-\varepsilon} \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \widetilde{X}[k] \delta\left(\omega - \frac{2\pi k}{N}\right) e^{j\omega n} d\omega$$
$$\frac{1}{N} \sum_{k=-\infty}^{\infty} \widetilde{X}[k] \int_{0-\varepsilon}^{2\pi-\varepsilon} \delta\left(\omega - \frac{2\pi k}{N}\right) e^{j\omega n} d\omega = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j\frac{2\pi k}{N}n}$$

$$\widetilde{X}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \widetilde{X}[k] \delta\left(\omega - \frac{2\pi k}{N}\right)$$

• Consider the periodic impulse train

$$\widetilde{p}[n] = \sum_{r=-\infty}^{\infty} \delta[n - rN]$$

• The DFS was calculated previously to be

$$\widetilde{P}[k] = 1$$
 for all k

• Therefore the Fourier transform is

$$\widetilde{P}\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \delta\!\left(\omega - \frac{2\pi k}{N}\right)$$

Relation between Finite-length and Periodic Signals

- Consider finite length signal x[n] spanning from 0 to N-1
- Convolve with periodic impulse train

$$\widetilde{x}[n] = x[n] * \widetilde{p}[n] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n-rN] = \sum_{r=-\infty}^{\infty} x[n-rN]$$

• The Fourier transform of the periodic sequence is

• This implies that

$$\widetilde{X}[k] = X\left(e^{j\frac{2\pi k}{N}}\right) = X\left(e^{j\omega}\right)_{\omega=\frac{2\pi k}{N}}$$

• DFS coefficients of a periodic signal can be thought as equally spaced samples of the Fourier transform of **one** period

• Consider the following sequence

 $x[n] = \begin{cases} 1 & 0 \le n \le 4 \\ 0 & \text{otherwise} \end{cases}$

• The Fourier transform

$$X(e^{j\omega}) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

• The DFS coefficients

$$\widetilde{X}[k] = e^{-j(4\pi k/10)} \frac{\sin(\pi k/2)}{\sin(\pi k/10)}$$

