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Optimum Approximation of FIR Filters
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Optimum Filter Design
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• Filter design by windows is simple but not optimal

– Like to design filters with minimal length

• Optimality Criterion

– Window design with rectangular filter is optimal in one sense

• Minimizes the mean-squared approximation error to desired response

• But causes large error around discontinuities

– Alternative criteria can give better results

• Minimax: Minimize maximum error

• Frequency-weighted error

• Most popular method: Parks-McClellan Algorithm

– Reformulates filter design problem as function approximation
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Function Approximation
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• Consider the design of type I FIR filter

– Assume zero-phase for simplicity

– Can delay by sufficient amount to make causal

– Assume L = M/2 an integer

• After delaying the resulting impulse response

• Goal is to approximate a desired response with 

• Example approximation mask 

– Low-pass filter
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Polynomial Approximation
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• Using Chebyshev polynomials 

• Express the following as a sum of powers

• Can also be represented as

• Parks and McClellan fix p, s, and L

– Convert filter design to an approximation problem

• The approximation error is defined as

– W() is the weighting function

– Hd(e
j) is the desired frequency response; Ae(e

j) is approximated frequency response

– W() and Hd(e
j) defined only over the passpand and stopband

– Transition bands are unconstrained
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Lowpass Filter Approximation
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• The weighting function for 
lowpass filter is

• This choice will force the error to 
 = max{|1|,|2|}= 2 in both bands

• Criterion used is minmax

• F is the set of frequencies the 
approximations is made over
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Alternation Theorem (from Approximation Theory)
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• Fp denote the closed subset 

– consisting of the disjoint union of closed subsets of the real axis x

• The following is an rth order polynomial

• Dp(x) denotes given desired function that is continuous on Fp

• Wp(x) is a positive function (weighting function) that is continuous on Fp

• The weighted error is given as

• The maximum error is defined as

• A necessary and sufficient condition that P(x) be the unique rth order polynomial that 

minimizes        is that Ep(x) exhibit at least (r + 2) alternations, i.e.:

• There must be at least (r + 2) values xi in Fp such that x1 < x2 < … < xr+2
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Alternation Theorem (from Approximation Theory): Example
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• Examine polynomials P(x)

that approximate

• Fifth order polynomials shown (r = 5):

• Which satisfy the theorem? (At least r + 2 = 7 alternations)
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Optimal Type I Lowpass Filters
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• In this case the P(x) polynomial is the cosine polynomial

• The desired lowpass filter frequency response (x = cos )

• The weighting function is given as

• The approximation error is given as 
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Typical Example Lowpass Filter Approximation
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• 7th order approximation
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Properties of Type I Lowpass Filters
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• Maximum possible number of alternations of the error is L + 3

• Alternations will always occur at p and s

• All points with zero slope inside the passpand and 

all points with zero slope inside the stopband

will correspond to alternations

– The filter will be equiripple except possibly at 0 and 
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Flowchart of Parks-McClellan Algorithm
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