

درس ۲۰

طراحی فیلترهای گسسته-زمان با ينجرهزني

Discrete-Time Filter Design by Windowing

http://courses.fouladi.ir/dsp

Discrete-Time Filter Design by Windowing

Digital Signal Processing

Filter Design by Windowing

- Simplest way of designing FIR filters
- Method is all discrete-time no continuous-time involved
- Start with ideal frequency response

$$H_{d}\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} h_{d}\left[n\right]e^{-j\omega n} \qquad h_{d}\left[n\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}\left(e^{j\omega}\right)e^{j\omega n}d\omega$$

- Choose ideal frequency response as desired response
 - Most ideal impulse responses are of infinite length
- The easiest way to obtain a causal FIR filter from ideal is

$$h[n] = \begin{cases} h_d[n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

• More generally

$$h[n] = h_d[n]w[n]$$
 where $w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$

Windowing in Frequency Domain

• Windowed frequency response (Periodic Convolution)

$$H\left(e^{j\omega}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d\left(e^{j\omega}\right) W\left(e^{j(\omega-\theta)}\right) d\theta$$

• The windowed version is smeared version of desired response

• If w[n] = 1 for all *n*, then $W(e^{j\omega})$ is impulse train with 2π period (ideal case)

Properties of Windows

- Prefer windows that concentrate around DC in frequency
 - (More similar to impulse \Rightarrow) Less smearing, closer approximation
- Prefer window that has minimal span in time
 - Less coefficient in designed filter, computationally efficient

- So we want concentration in time and in frequency
 - Contradictory requirements!

Example: Rectangular window

• Example: Rectangular window

Commonly Used Windows

Rectangular Window

• Narrowest main lob

- $4\pi/(M+1)$
- Sharpest transitions at discontinuities in frequency response H_d(e^{jw})
- Large side lobs
 - -13 dB
 - Large oscillation around discontinuities
- Simplest possible window

$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

Digital Signal Processing

Bartlett (Triangular) Window

• Medium main lob

 $- 8\pi/M$

- Side lobs
 - − −25 dB

• Simple equation:

$$w[n] = \begin{cases} 2n/M & 0 \le n \le M/2\\ 2-2n/M & M/2 \le n \le M\\ 0 & \text{otherwise} \end{cases}$$

Hanning Window (Hann)

• Medium main lob

 $- 8\pi/M$

- Side lobs - - -31 dB
- Hamming window performs better
- Same complexity as Hamming

$$w[n] = \begin{cases} \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{M}\right) \right] & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

Hamming Window

• Medium main lob

 $- 8\pi/M$

• Good side lobs

- −41 dB

• Simpler than Blackman

 $w[n] = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right) \\ 0 \end{cases}$

Blackman Window

Rectangular w[n]Large main lob 1.0 $12\pi/M$ Blackman 0.8 0.6 Very good side lobs 0.4 -57 dB0.2 0 $\frac{M}{2}$ М Complex equation $w[n] = \begin{cases} 0.42 - 0.5 \cos\left(\frac{2\pi n}{M}\right) + 0.08 \cos\left(\frac{4\pi n}{M}\right) \\ 0 \end{cases}$ $0 \le n \le M$ otherwise M = 50-20 $20 \log_{10} |W(e^{j\omega})|$ -40-60 -80-100 0.2π 0.4π 0.8π 0.6π π Radian frequency (ω)

Digital Signal Processing

Incorporation of Generalized Linear Phase

- Windows are designed with linear phase in mind
 - Symmetric around M/2

$$w[n] = \begin{cases} w[M-n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

• So their Fourier transform are of the form

 $W(e^{j\omega}) = W_e(e^{j\omega})e^{-j\omega M/2}$ where $W_e(e^{j\omega})$ is a real and even

- Will keep symmetry properties of the desired impulse response
- Assume <u>symmetric</u> desired response:

$$H_d(e^{j\omega}) = H_e(e^{j\omega})e^{-j\omega M/2}$$

• With <u>symmetric</u> window

$$H(e^{j\omega}) = A_e(e^{j\omega})e^{-j\omega M/2} \qquad A_e(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_e(e^{j\theta}) W_e(e^{j(\omega-\theta)}) d\theta$$

- Periodic convolution of real functions

Linear-Phase Lowpass filter

• Desired frequency response (with generalized linear phase):

$$H_{lp}\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega M/2} & \left|\omega\right| < \omega_{c} \\ 0 & \omega_{c} < \left|\omega\right| \le \pi \end{cases}$$

• Corresponding impulse response (is also symmetric):

$$h_{lp}[n] = \frac{\sin[\omega_c(n-M/2)]}{\pi(n-M/2)}$$

• Desired response is **even symmetric**, use symmetric window

$$h[n] = \frac{\sin[\omega_c(n-M/2)]}{\pi(n-M/2)} w[n]$$

Kaiser Window Filter Design Method

- Parameterized equation forming a set of windows
 - Has parameter to change main-lob width and side-lob area trade-off

$$w[n] = \begin{cases} I_0 \left(\beta \sqrt{1 - \left(\frac{n - M/2}{M/2}\right)^2} \right) & 0 \le n \le 1 \\ \hline I_0(\beta) & 0 & \text{otherwith} \end{cases}$$

- I₀(.) represents zeroth-order modified
Bessel function of 1st kind

Determining Kaiser Window Parameters

- Given filter specifications Kaiser developed empirical equations
 - Given the peak approximation error δ or in dB as $A = -20\log_{10}\delta$
 - and transition band width $\Delta \omega = \omega_s \omega_p$
- The shape parameter β should be

$$\beta = \begin{cases} 0.1102(A-8.7) & A > 50\\ 0.5842(A-21)^{0.4} + 0.07886(A-21) & 21 \le A \le 50\\ 0 & A < 21 \end{cases}$$

• The filter order *M* is determined approximately by

$$M = \frac{A - 8}{2.285 \Delta \omega}$$

Example: Kaiser Window Design of a Lowpass Filter

- Specifications $\omega_p = 0.4\pi, \omega_p = 0.6\pi, \delta_1 = 0.01, \delta_2 = 0.001$
- Window design methods assume $\delta_1 = \delta_2 = 0.001$
- Determine cut-off frequency

- Due to the symmetry we can choose it to be $\omega_c = 0.5\pi$

• Compute

$$\Delta \omega = \omega_s - \omega_p = 0.2\pi \qquad A = -20 \log_{10} \delta = 60$$

• And Kaiser window parameters

$$\beta = 5.653$$
 $M = 37$ Odd (Type II FIR with Lin. Phase)

• Then the impulse response is given as

$$h[n] = \begin{cases} \frac{\sin[0.5\pi(n-18.5)]}{\pi(n-18.5)} \frac{I_0 \left[5.653\sqrt{1 - \left(\frac{n-18.5}{18.5}\right)^2} \right]}{I_0 (5.653)} & 0 \le n \le M\\ 0 & \text{otherwise} \end{cases}$$

Example Cont'd

Digital Signal Processing

General Frequency Selective Filters

• A general <u>multiband impulse response</u> can be written as

$$h_{mb}[n] = \sum_{k=1}^{N_{mb}} (G_k - G_{k+1}) \frac{\sin \omega_k (n - M/2)}{\pi (n - M/2)}$$

$$G_{N_{mb}+1}=0$$

- Window methods can be applied to multiband filters
- Example multiband frequency response
 - Special cases of
 - Bandpass
 - Highpass
 - Bandstop

Digital Signal Processing