

درس ۱۶

فاز خطى تعميميافته

Generalized Linear Phase

کاظم فولادی دانشکده مهندسی برق و کامپیوتر دانشگاه تهران

http://courses.fouladi.ir/dsp

Generalized Linear Phase

Digital Signal Processing

Linear Phase System

• Ideal Delay System

$$H_{id}\left(e^{j\omega}\right) = e^{-j\omega\alpha} \qquad \left|\omega\right| < \pi$$

• Magnitude, phase, and group delay

$$|H_{id}(e^{j\omega})| = 1$$

$$\angle H_{id}(e^{j\omega}) = -\omega\alpha$$

$$grd[H_{id}(e^{j\omega})] = \alpha$$

• Impulse response

$$h_{id}[n] = \frac{\sin(\pi(n-\alpha))}{\pi(n-\alpha)}$$

• If $\alpha = n_d$ is integer

$$h_{id}[n] = \delta[n - n_d]$$

• For integer α linear phase system delays the input

$$y[n] = x[n] * h_{id}[n] = x[n] * \delta[n - n_d] = x[n - n_d]$$

Linear Phase Systems

- For non-integer α the output is an interpolation of samples
- Easiest way of representing is to think of it in **continuous**

 $h_c(t) = \delta(t - \alpha T)$ and $H_c(j\Omega) = e^{-j\Omega\alpha T}$

- This representation can be used even if *x*[*n*] was not originally derived from a continuous-time signal
- The output of the system is

$$y[n] = x(nT - \alpha T)$$

- Samples of a time-shifted, band-limited interpolation of the input sequence *x*[*n*]
- A linear phase system can be thought as

$$H\left(e^{j\omega}\right) = \left|H\left(e^{j\omega}\right)\right|e^{-j\omega\alpha}$$

• A zero-phase system output is delayed by α

Symmetry of Linear Phase Impulse Responses

• Linear-phase systems

$$H\left(e^{j\omega}\right) = \left|H\left(e^{j\omega}\right)\right|e^{-j\omega\alpha}$$

- If 2α is integer
 - Impulse response symmetric

 $h[2\alpha - n] = h[n]$

Digital Signal Processing

Generalized Linear Phase System

Generalized Linear Phase

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega\alpha + j\beta}$$

 $A(e^{j\omega})$: Real function of ω α and β constants

- Additive constant in addition to linear term
- Has constant group delay

$$\tau(\omega) = grd \left[H(e^{j\omega}) \right] = -\frac{d}{d\omega} \left(\arg \left[H(e^{j\omega}) \right] \right) = \alpha$$

• And linear phase of general form

$$\arg \left[H(e^{j\omega}) \right] = \beta - \omega \alpha \qquad 0 \le \omega < \pi$$

Condition for Generalized Linear Phase

• We can write a generalized linear phase system response as

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega\alpha + j\beta} = A(e^{j\omega})\cos(\beta - \omega\alpha) + jA(e^{j\omega})\sin(\beta - \omega\alpha)$$
$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} h[n]\cos(\omega n) - j\sum_{n=-\infty}^{\infty} h[n]\sin(\omega n)$$

• The phase angle of this system is

$$\tan\left(\arg\left[H\left(e^{j\omega}\right)\right]\right) = \tan\left(\beta - \omega\alpha\right) = \frac{\sin(\beta - \omega\alpha)}{\cos(\beta - \omega\alpha)} = \frac{-\sum_{n=-\infty}^{\infty} h[n]\sin(\omega n)}{\sum_{n=-\infty}^{\infty} h[n]\cos(\omega n)}$$

• Cross multiply to get necessary condition for generalized linear phase

$$\sum_{n=-\infty}^{\infty} h[n]\cos(\omega n)\sin(\beta - \omega \alpha) + \sum_{n=-\infty}^{\infty} h[n]\sin(\omega n)\cos(\beta - \omega \alpha) = 0$$
$$\sum_{n=-\infty}^{\infty} h[n][\cos(\omega n)\sin(\beta - \omega \alpha) + \sin(\omega n)\cos(\beta - \omega \alpha)] = 0$$
$$\sum_{n=-\infty}^{\infty} h[n]\sin(\beta - \omega \alpha + \omega n) = \sum_{n=-\infty}^{\infty} h[n]\sin[\beta + \omega(n - \alpha)] = 0$$

Symmetry of Generalized Linear Phase

• Necessary condition for generalized linear phase

$$\forall \omega \quad \sum_{n=-\infty}^{\infty} h[n] \sin[\beta + \omega(n-\alpha)] = 0$$

• For $\beta = 0$ or π

$$\sum_{n=-\infty}^{\infty} h[n] \sin[\omega(n-\alpha)] = 0 \longrightarrow h[2\alpha - n] = h[n]$$

• For $\beta = \pi/2$ or $3\pi/2$

$$\sum_{n=-\infty}^{\infty} h[n] \cos[\omega(n-\alpha)] = 0 \longrightarrow h[2\alpha - n] = -h[n]$$

Causal Generalized Linear-Phase System

• If the system is **causal** and generalized linear-phase

 $h[M-n] = \mp h[n]$

• Since h[n] = 0 for n < 0 we get

$$h[n] = 0 \qquad n < 0 \quad \text{and} \quad n > M$$

An FIR impulse response of length M + 1 is generalized linear phase if it is **symmetric**

• Here *M* is an even integer

Type I FIR Linear-Phase System

• **Type I** system is defined with symmetric impulse response

h[n] = h[M-n] for $0 \le n \le M$

- *M* is an **even** integer
- The frequency response can be written as

$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n}$$
$$= e^{-j\omega M/2} \left[\sum_{n=0}^{M/2} a[n]\cos(\omega n)\right]$$

$$a[0] = h[M/2]$$

 $a[k] = 2h[M/2-k]$ for $k = 1,2,...,M/2$

Type II FIR Linear-Phase System

• **Type II** system is defined with symmetric impulse response

h[n] = h[M-n] for $0 \le n \le M$

- *M* is an **odd** integer
- The frequency response can be written as

$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n}$$
$$= e^{-j\omega M/2} \left[\sum_{n=1}^{(M+1)/2} b[n] \cos\left(\omega\left(n-\frac{1}{2}\right)\right) \right]$$

$$b[k] = 2h[(M+1)/2 - k]$$

for $k = 1, 2, ..., (M+1)/2$

Type III FIR Linear-Phase System

• **Type III** system is defined with symmetric impulse response

h[n] = -h[M-n] for $0 \le n \le M$

- *M* is an **even** integer
- The frequency response can be written as

$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n}$$
$$= je^{-j\omega M/2} \left[\sum_{n=1}^{M/2} c[n]\sin(\omega n)\right]$$

$$c[k] = 2h[M/2-k]$$

for $k = 1, 2, ..., M/2$

Type IV FIR Linear-Phase System

• **Type IV** system is defined with symmetric impulse response

h[n] = -h[M-n] for $0 \le n \le M$

- M is an **odd** integer
- The frequency response can be written as

$$H(e^{j\omega}) = \sum_{n=0}^{M} h[n]e^{-j\omega n}$$
$$= je^{-j\omega M/2} \left[\sum_{n=1}^{(M+1)/2} d[n] \sin\left(\omega\left(n-\frac{1}{2}\right)\right) \right]$$

$$d[k] = 2h[(M+1)/2 - k]$$

for $k = 1, 2, ..., (M+1)/2$

Location of Zeros for Symmetric Cases

• For type I and II we have

$$h[n] = h[M-n] \xrightarrow{z} H(z) = z^{-M}H(z^{-1})$$

- So if z_0 is a zero $1/z_0$ is also a zero of the system
- If h[n] is real and z_0 is a zero z_0^* is also a zero
- So for real and symmetric h[n] zeros come in sets of four
- Special cases where zeros come in pairs
 - If a zero is on the unit circle reciprocal is equal to conjugate
 - If a zero is real conjugate is equal to itself
- Special cases where a zero come by itself
 - If $z = \pm 1$ both the reciprocal and conjugate is itself
- Particular importance of z = -1

$$H(-1) = (-1)^M H(-1)$$

- If M is odd implies that

$$H(-1) = 0$$

- Cannot design high-pass filter with symmetric FIR filter and *M* odd

Location of Zeros for Antisymmetric Cases

• For type III and IV we have

$$h[n] = -h[M-n] \xrightarrow{z} H(z) = -z^{-M}H(z^{-1})$$

- All properties of symmetric systems holds
- Particular importance of both z = +1 and z = -1

$$H(1) = -H(1) \Longrightarrow H(1) = 0$$

• Independent from M: odd or even

- If z = -1

- If z =

$$H(-1) = (-1)^{M+1} H(-1)$$

• If M + 1 is odd implies that

$$H(-1)=0$$

Typical Zero Locations

Digital Signal Processing

Relation of FIR Linear Phase to Minimum-Phase

- In general a linear-phase FIR system is not minimum-phase
- We can always write a linear-phase FIR system as

$$H(z) = H_{\min}(z)H_{uc}(z)H_{\max}(z)$$

$$H_{\max}(z) = H_{\min}(z^{-1})z^{-M_i}$$

- And M_i is the number of zeros
- $H_{\min}(z)$ covers all zeros inside the unit circle
- $H_{\rm uc}(z)$ covers all zeros on the **unit circle**
- $H_{\text{max}}(z)$ covers all zeros outside the unit circle