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Linear Phase System

3

• Ideal Delay System

• Magnitude, phase, and group delay

• Impulse response

• If  = nd is integer

• For integer  linear phase system delays the input

           jj

id eeH

 
 
   











j

id

j

id

j

id

eHgrd

eH

eH 1

    
 


n

n
nh

id

sin

   
did

nnnh 

           
ddid

nnxnnnxnhnxny 



Digital Signal Processing

Linear Phase Systems

4

• For non-integer  the output is an interpolation of samples

• Easiest way of representing is to think of it in continuous

• This representation can be used even if x[n] was not originally derived from a 

continuous-time signal

• The output of the system is 

• Samples of a time-shifted, band-limited interpolation of the input sequence x[n]

• A linear phase system can be thought as

• A zero-phase system output is delayed by 
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Symmetry of Linear Phase Impulse Responses
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• Linear-phase systems

• If 2 is integer

– Impulse response symmetric
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Generalized Linear Phase System

6

• Generalized Linear Phase

• Additive constant in addition to linear term

• Has constant group delay

• And linear phase of general form
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Condition for Generalized Linear Phase

7

• We can write a generalized linear phase system response as

• The phase angle of this system is

• Cross multiply to get necessary condition for generalized linear phase
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Digital Signal Processing

Symmetry of Generalized Linear Phase

8

• Necessary condition for generalized linear phase

• For  = 0 or 

• For  = /2 or 3/2
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Causal Generalized Linear-Phase System
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• If the system is causal and generalized linear-phase 

• Since h[n] = 0 for n < 0  we get

An FIR impulse response of length M + 1 is generalized linear phase

if 

it is symmetric

• Here M is an even integer
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Type I FIR Linear-Phase System

10

• Type I system is defined with 

symmetric impulse response

– M is an even integer

• The frequency response can be written as

• Where 

    MnnMhnh  0for      
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Digital Signal Processing

Type II FIR Linear-Phase System

11

• Type II system is defined with 

symmetric impulse response

– M is an odd integer

• The frequency response can be written as

• Where 

    MnnMhnh  0for      
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Digital Signal Processing

Type III FIR Linear-Phase System

12

• Type III system is defined with 

symmetric impulse response

– M is an even integer

• The frequency response can be written as

• Where 

    MnnMhnh  0for      
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Digital Signal Processing

Type IV FIR Linear-Phase System

13

• Type IV system is defined with 

symmetric impulse response

– M is an odd integer

• The frequency response can be written as

• Where 

    MnnMhnh  0for      
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Digital Signal Processing

Location of Zeros for Symmetric Cases
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• For type I and II we have

• So if z0 is a zero 1/z0 is also a zero of the system

• If h[n] is real and z0 is a zero z0
* is also a zero

• So for real and symmetric h[n] zeros come in sets of four

• Special cases where zeros come in pairs

– If a zero is on the unit circle reciprocal is equal to conjugate

– If a zero is real conjugate is equal to itself

• Special cases where a zero come by itself

– If z = 1 both the reciprocal and conjugate is itself

• Particular importance of z = -1

– If M is odd implies that 

– Cannot design high-pass filter with symmetric FIR filter and M odd
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Location of Zeros for Antisymmetric Cases

15

• For type III and IV we have

• All properties of symmetric systems holds

• Particular importance of both z = +1 and z = -1

– If z = 1

• Independent from M: odd or even

– If z = -1

• If M + 1 is odd implies that 

       1 zHzzHnMhnh
Mz

     111
1  
HH

M

  01 H

      0111 ⇒ HHH



Digital Signal Processing

Typical Zero Locations
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type I

type III

type II

type IV



Digital Signal Processing

Relation of FIR Linear Phase to Minimum-Phase
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• In general a linear-phase FIR system is not minimum-phase

• We can always write a linear-phase FIR system as

• Where 

• And Mi is the number of zeros

• Hmin(z) covers all zeros inside the unit circle

• Huc(z) covers all zeros on the unit circle

• Hmax(z) covers all zeros outside the unit circle
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