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Relationship between Magnitude and Phase
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Relation between Magnitude and Phase

e For general LTI system
— Knowledge about magnitude doesn’t provide any information about phase
— Knowledge about phase doesn’t provide any information about magnitude

» For linear constant-coefficient difference equations however
— There is some constraint between magnitude and phase

— If magnitude and number of pole-zeros are known
* Only a finite number of choices for phase

— If phase and number of pole-zeros are known
* Only a finite number of choices for magnitude (ignoring scale)

* A cclass of systems called minimum-phase
— Magnitude specifies phase uniquely
— Phase specifies magnitude uniquely
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Square Magnitude System Function

Explore possible choices of system function of the form
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Given ‘H (61 w] we can get C(z)
What information on H(z) can we get from C(z)?
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Poles and Zeros of Magnitude Square System Function
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For every pole d, in H(z) there is a pole of C(z) at d, and (1/d,)"

For every zero ¢, in H(z) there is a zero of C(z) at ¢, and (1/¢))*

Poles and zeros of C(z) occur in conjugate reciprocal pairs

If one of the pole/zero is inside the unit circle the reciprocal will be outside
— Unless there are both on the unit circle

If H(z) is stable all poles have to be inside the unit circle
— We can infer which poles of C(z) belong to H(z)

However, zeros cannot be uniquely determined
— Example to follow
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HI(Z):

Two systems with

H2(2)= (

Example
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Both share the same magnitude square system function
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All-Pass System

A system with frequency response magnitude constant

Important uses such as compensating for phase distortion
Simple all-pass system
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Z_l — a* circle Z-plane
Hap (Z) = 1 . aZ_]
Magnitude response constant )
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Most general form with real impulse response
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A: positive constant, d,: real poles, ¢,: complex poles
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Phase of All-Pass Systems
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Let’s write the phase with a represented in polar form
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The group delay of this system can be written as
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For stable and causal system |r| < 1
— Group delay of all-pass systems is always positive

Phase between 0 and 7 is always negative

arg[Hap (ej‘”)]s 0 for 0<w<m7
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