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Transform Analysis of LTI Systems
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Quick Review of LTI Systems

3

• LTI Systems are uniquely determined by their impulse response

• We can write the input-output relation also in the z-domain

• Or we can define an LTI system with its frequency response

• H(ej) defines magnitude and phase change at each frequency

• We can define a magnitude response

• And a phase response
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Ideal Low Pass Filter
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• Ideal low-pass filter
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Ideal High-Pass Filter
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• Can be written in terms of a low-pass filter as
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Phase Distortion and Delay
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• Remember the ideal delay system

• In terms of magnitude and phase response

• Delay distortion is generally acceptable form of distortion

– Translates into a simple delay in time

• Also called a linear phase response

– Generally used as target phase response in system design

• Ideal lowpass or highpass filters have zero phase response

– Not implementable in practice
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Ideal Low-Pass with Linear Phase
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• Delayed version of ideal impulse response

• Filters high-frequency components and delays signal by nd

• Linear-phase ideal lowpass filters is still not implementable

• Group Delay

– Effect of phase on a narrowband signal: Delay

– Derivative of the phase

– Linear phase corresponds to constant delay

– Deviation from constant indicated degree of nonlinearity

– arg[] defines unwrapped or continuous phase
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System Functions for Difference Equations
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• Ideal systems are conceptually useful but not implementable

• Constant-coefficient difference equations are 

– general to represent most useful systems

– Implementable

– LTI and causal with zero initial conditions

• The z-transform is useful in analyzing difference equations

• Let’s take the z-transform of both sides
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System Function
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• Systems described as difference equations have system functions of the form

• Example
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Stability and Causality
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• A system function does not uniquely specify a system

– Need to know the ROC

• Properties of system gives clues about the ROC

• Causal systems must be right sided 

– ROC is outside the outermost pole

• Stable system requires absolute summable impulse response

– Absolute summability implies existence of DTFT

– DTFT exists if unit circle is in the ROC

– Therefore, stability implies that the ROC includes the unit circle

• Causal AND stable systems have all poles inside unit circle

– Causal hence the ROC is outside outermost pole

– Stable hence unit circle included in ROC

– This means outermost pole is inside unit circle 

– Hence all poles are inside unit circle
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Example

11

• Let’s consider the following LTI system

• System function can be written as

• Three possibilities for ROC

– If ROC
1 

causal but not stable

– If ROC
2 

stable but not causal

– If ROC
3       

not causal neither stable
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Inverse System

12

• Given an LTI system H(z) the inverse system H
i
(z) is given as

• The cascade of a system and its inverse yields unity

• If it exists, the frequency response of the inverse system is

• Not all systems have an inverse: zeros cannot be inverted

– Example: Ideal lowpass filter

• The inverse of rational system functions

• ROC of inverse has to overlap with ROC of original system
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Examples: Inverse System
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Example 1: Let’s find the inverse system of

• The ROC of the inverse system is either

• Only              overlaps with original ROC 
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Examples: Inverse System
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Example 2: Let’s find the inverse system of

• Again two possible ROCs

• This time both overlap with original ROC so both are valid

– Two valid inverses for this system
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Infinite Impulse Response (IIR) Systems
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• Rational system function

• If at least one pole does not cancel with a zero

• There will at least one term of the form

• Therefore the impulse response will be infinite length
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Infinite Impulse Response (IIR) Systems: Example
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Example: Causal system of the form 

• The impulse response from inverse transform
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Finite Impulse Response (FIR) Systems
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• If transfer function does not have any poles except at z = 0

– In this case N = 0

• No partial fraction expansion possible (or needed)

• The impulse response can be seen to be

• Impulse response is of finite length
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Example: FIR System
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• Consider the following impulse response

• The system function is

• Assuming a real and positive the zeros can be written as

• For k = 0 we have a zero at z0 = a

• The zero cancels the pole at z = a

• We can write this system as

• Or equivalently from H(z) as
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