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Digital Signal Processing

Sampling of Continuous-Time Signals



Digital Signal Processing

Signal Types

3

• Analog signals: continuous in time and amplitude
– Example: voltage, current, temperature,…

• Digital signals: discrete both in time and amplitude
– Example: attendance of this class, digitizes analog signals,…

• Discrete-time signal: discrete in time, continuous in amplitude
– Example: hourly change of temperature in Tehran

• Theory for digital signals would be too complicated

– Requires inclusion of nonlinearities into theory

• Theory is based on discrete-time continuous-amplitude signals

– Most convenient to develop theory

– Good enough approximation to practice with some care

• In practice we mostly process digital signals on processors

– Need to take into account finite precision effects

• Our text book is about the theory hence its title

– Discrete-Time Signal Processing



Digital Signal Processing

Periodic (Uniform) Sampling
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• Sampling is a continuous to discrete-time conversion

• Most common sampling is periodic

• T is the sampling period in second

• fs = 1/T is the sampling frequency in Hz

• Sampling frequency in radian-per-second s=2fs rad/sec

• Use [.] for discrete-time and (.) for continuous time signals

• This is the ideal case not the practical but close enough

– In practice it is implement with an analog-to-digital converters

– We get digital signals that are quantized in amplitude and time

     nnTxnx
c

-3 -2 2 3 4-1 10



Digital Signal Processing

Periodic Sampling
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• Sampling is, in general, not reversible

• Given a sampled signal one could fit infinite continuous signals through the 
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• Fundamental issue in digital signal processing

– If we loose information during sampling we cannot recover it 

• Under certain conditions an analog signal can be sampled without loss so that it can be 
reconstructed perfectly



Digital Signal Processing

Sampling Demo
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• In this movie the video camera is sampling at a fixed rate of 30 frames/second. 

• Observe how the rotating phasor aliases to different speeds as it spins faster.

Demo from DSP First: A Multimedia Approach by  McClellan, Schafer, Yoder
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Digital Signal Processing

Representation of Sampling
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• Mathematically convenient to represent in two stages

– Impulse train modulator

– Conversion of impulse train to a sequence

Convert impulse 

train to discrete-

time sequence
x
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Digital Signal Processing

Continuous-Time Fourier Transform
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• Continuous-Time Fourier transform pair is defined as

• We write xc(t) as a weighted sum of complex exponentials

• Remember some Fourier Transform properties

– Time Convolution (frequency domain multiplication)

– Frequency Convolution (time domain multiplication)

– Modulation (Frequency shift)
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Digital Signal Processing

Frequency Domain Representation of Sampling
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• Modulate (multiply) continuous-time signal with impulse train:

• Let’s take the Fourier Transform of xs(t) and s(t)

• Fourier transform of impulse train is again a impulse train

• Note that multiplication in time is convolution in frequency

• We represent frequency with  = 2f hence s = 2fs
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Digital Signal Processing

Frequency Domain Representation of Sampling

10

• Convolution with impulse creates replicas at impulse location:

• This tells us that the impulse train modulator

– Creates images of the Fourier transform of the input signal 

– Images are periodic with sampling frequency

– If  
s
<  

N
sampling maybe irreversible due to aliasing of images
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Digital Signal Processing

Nyquist Sampling Theorem
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• Let xc(t) be a bandlimited signal with

• Then xc(t) is uniquely determined by its samples x[n]= xc(nT) if

• 
N

is generally known as the Nyquist Frequency

• The minimum sampling rate that must be exceeded is known as the Nyquist Rate
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