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Linear Time-Invariant Systems
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Digital Signal Processing

Linear-Time Invariant System
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• Special importance for their mathematical tractability

• Most signal processing applications involve LTI systems

• LTI system can be completely characterized by their impulse response

• Represent any input

• From time invariance we arrive at convolution
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Digital Signal Processing

LTI System Example
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Digital Signal Processing

Convolution Demo
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Joy of Convolution Demo from John Hopkins University
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Properties of LTI Systems
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• Convolution is commutative

• Convolution is distributive
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Digital Signal Processing

Properties of LTI Systems
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• Cascade connection of LTI systems
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Stable and Causal LTI Systems
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• An LTI system is (BIBO) stable if and only if 

– Impulse response is absolute summable

– Let’s write the output of the system as

– If the input is bounded 

– Then the output is bounded by

– The output is bounded if the absolute sum is finite

• An LTI system is causal if and only if
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Digital Signal Processing

Linear Constant-Coefficient Difference Equations
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• An important class of LTI systems of the form

• The output is not uniquely specified for a given input

– The initial conditions are required

– Linearity, time invariance, and causality depend on the initial conditions

– If initial conditions are assumed to be zero 

system is linear, time invariant, and causal

• Example

– Moving Average

– Difference Equation Representation
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Digital Signal Processing

Eigenfunctions of LTI Systems
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• Complex exponentials are eigenfunctions of LTI systems:

• Let’s see what happens if we feed x[n] into an LTI system:

• The eigenvalue is called the frequency response of the system

• H(ej) is a complex function of frequency

– Specifies amplitude and phase change of the input
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Eigenfunction Demo
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LTI System Demo


