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Overview of Adaptive Filters
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The Filtering Problem

» Filters may be used for three information-processing tasks
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* Given an optimality criteria we often can design optimal filters
— Requires a priori information about the environment

— Example:
Under certain conditions the so called Wiener filter is optimal in the mean-squared sense

» Adaptive filters are self-designing using a recursive algorithm

— Useful if complete knowledge of environment is not available a priori
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Applications of Adaptive Filters: Identification

» Used to provide a linear model of an unknown plant
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* Parameters
— U =1input of adaptive filter = input to plant
— Yy = output of adaptive filter
— d = desired response = output of plant
— e=d — y = estimation error
* Applications:
— System identification
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Applications of Adaptive Filters: Inverse Modeling

» Used to provide an inverse model of an unknown plant

System _o 4 Plant
input

1

/

e Delay

Adaptive
filter

/

i

o System
e

I output
-Yv

e Parameters

— U= input of adaptive filter = output to plant

— Yy = output of adaptive filter

— d = desired response = delayed system input

— e=d — y = estimation error

* Applications:
— Equalization
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Applications of Adaptive Filters: Prediction

» Used to provide a prediction of the present value of a random signal
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— U= input of adaptive filter = delayed version of random signal
— y = output of adaptive filter
— d = desired response = random signal
— e=d — y = estimation error = system output
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» Applications:
— Linear predictive coding
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Applications of Adaptive Filters: Interference Cancellation

« Used to cancel unknown interference from a primary signal
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e Parameters

u = input of adaptive filter = reference signal

y = output of adaptive filter
d = desired response = primary signal
e = d — y = estimation error = system output

* Applications:

Echo cancellation
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Stochastic Gradient Approach

Most commonly used type of Adaptive Filters
Define cost function as mean-squared error

+ Difference between filter output and desired response
Based on the method of steepest descent
— Move towards the minimum on the error surface to get to minimum
— Requires the gradient of the error surface to be known
Most popular adaptation algorithm is LMS
— Derived from steepest descent
— Doesn’t require gradient to be know: it is estimated at every iteration

Least-Mean-Square (LMS) Algorithm
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Least-Mean-Square (LMS) Algorithm

* The LMS Algorithm consists of two basic processes

— Filtering process

 Calculate the output of FIR filter by convolving input and taps

 Calculate estimation error by comparing the output to desired signal

— Adaptation process

* Adjust tap weights based on the estimation error
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LMS Algorithm Steps

» Filter output

e Estimation error
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Stability of LMS

The LMS algorithm is convergent in the mean square
if and only if the step-size parameter satisty
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Here A, is the largest eigenvalue of the correlation matrix of the input data
More practical test for stability is
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Larger values for step size
— Increases adaptation rate (faster adaptation)

— Increases residual mean-squared error
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