

پردازش سیگنال دیجیتال

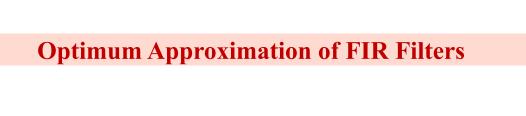
درس ۲۲

تقریب بهینهی فیلترهای FIR

Optimum Approximation of FIR Filters

کاظم فولادی قلعه دانشکده مهندسی، پردیس فارابی دانشگاه تهران

http://courses.fouladi.ir/dsp



Optimum Filter Design

- Filter design by windows is simple but not optimal
 - Like to design filters with minimal length
- Optimality Criterion
 - Window design with rectangular filter is optimal in one sense
 - Minimizes the mean-squared approximation error to desired response
 - But causes large error around discontinuities

$$h[n] = \begin{cases} h_d[n] & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$$

$$\varepsilon^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{d}(e^{j\omega}) - H(e^{j\omega})|^{2} d\omega$$

- Alternative criteria can give better results
 - Minimax: Minimize maximum error
 - Frequency-weighted error
- Most popular method: Parks-McClellan Algorithm
 - Reformulates filter design problem as function approximation

Function Approximation

- Consider the design of type I FIR filter
 - Assume zero-phase for simplicity
 - Can delay by sufficient amount to make causal

$$h_e[n] = h_e[-n]$$
 $A_e(e^{j\omega}) = \sum_{n=-L}^{L} h_e[n]e^{-j\omega n}$

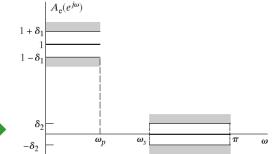
- Assume L = M/2 an integer

$$A_e(e^{j\omega}) = h_e[0] + \sum_{n=1}^{L} 2h_e[n]\cos(\omega n)$$

After delaying the resulting impulse response

$$h[n] = h_e[n - M/2] = h[M - n] \longrightarrow H(e^{j\omega}) = A_e(e^{j\omega})e^{-j\omega M/2}$$

- Goal is to approximate a desired response with
 - $A_{e}(e^{j\omega})$



- Example approximation mask
 - Low-pass filter

Polynomial Approximation

Using Chebyshev polynomials

$$cos(\omega n) = T_n(cos \omega)$$
 where $T_n(x) = cos(ncos^{-1} x)$

• Express the following as a sum of powers

$$A_e(e^{j\omega}) = h_e[0] + \sum_{n=1}^{L} 2h_e[n]\cos(\omega n) = \sum_{k=0}^{L} a_k(\cos\omega)^k$$

• Can also be represented as

$$A_e(e^{j\omega}) = P(x)|_{x=\cos\omega}$$
 where $P(x) = \sum_{k=0}^{L} a_k x^k$

- Parks and McClellan fix ω_p , ω_s , and L
 - Convert filter design to an approximation problem
- The approximation error is defined as

$$E(\omega) = W(\omega) \left[H_d(e^{j\omega}) - A_e(e^{j\omega}) \right]$$

- $W(\omega)$ is the weighting function
- $H_d(e^{j\omega})$ is the desired frequency response; $A_e(e^{j\omega})$ is approximated frequency response
- $W(\omega)$ and $H_d(e^{j\omega})$ defined only over the **passpand** and **stopband**
- Transition bands are unconstrained

Lowpass Filter Approximation

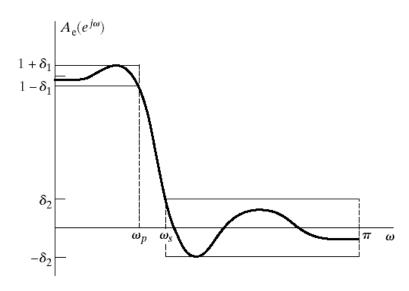
• The weighting function for lowpass filter is

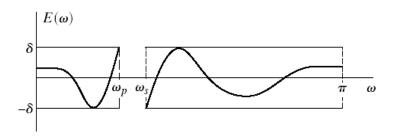
$$W(\omega) = \begin{cases} \frac{\delta_2}{\delta_1} & 0 \le \omega \le \omega_p \\ 1 & \omega_s \le \omega \le \pi \end{cases}$$

- This choice will force the error to $\delta = \max\{|\delta_1|, |\delta_2|\} = \delta_2$ in both bands
- Criterion used is **minmax**

$$\min_{\{h_e[n]:0\leq n\leq L\}} \left(\max_{\omega\in F} |E(\omega)| \right)$$

• F is the set of frequencies the approximations is made over





Alternation Theorem (from Approximation Theory)

- F_{p} denote the closed subset
 - consisting of the disjoint union of closed subsets of the real axis x
- The following is an rth order polynomial

$$P(x) = \sum_{k=0}^{r} a_k x^k$$

- $D_{p}(x)$ denotes given desired function that is continuous on F_{p}
- $W_p(x)$ is a positive function (weighting function) that is continuous on F_p
- The weighted error is given as

$$E_p(x) = W_p(x) [D_p(x) - P(x)]$$

• The maximum error is defined as

$$||E|| = \max_{\mathbf{x} \in F_n} |E_p(\mathbf{x})|$$

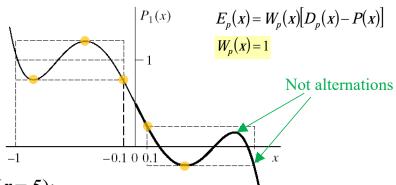
- A necessary and sufficient condition that P(x) be the unique t^{th} order polynomial that minimizes ||E|| is that $E_p(x)$ exhibit at least (r+2) alternations, i.e.:
- There must be at least (r+2) values x_i in F_p such that $x_1 < x_2 < ... < x_{r+2}$

$$E_p(x_i) = -E_p(x_{i+1}) = \mp ||E|| \text{ for } i = 1,2,...,(r+2)$$

Alternation Theorem (from Approximation Theory): Example

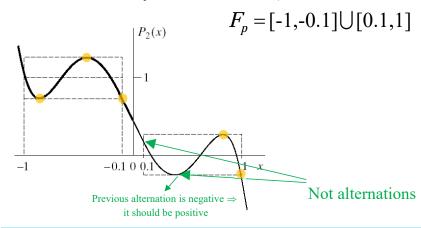
• Examine polynomials P(x) that approximate

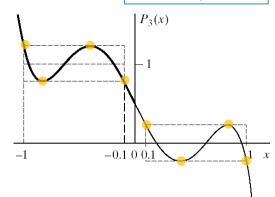
$$D_p(x) = \begin{cases} 1 & \text{for } -1 \le x \le -0.1 \\ 0 & \text{for } 0.1 \le x \le 1 \end{cases}$$



- Fifth order polynomials shown (r=5):
- Which satisfy the theorem? (At least r + 2 = 7 alternations)

$$||E|| = \max_{\mathbf{x} \in F_p} |E_p(\mathbf{x})|$$





Optimal Type I Lowpass Filters

• In this case the P(x) polynomial is the cosine polynomial

$$P(\cos \omega) = \sum_{k=0}^{L} a_k (\cos \omega)^k$$

• The desired lowpass filter frequency response ($x = \cos \omega$)

$$D_p(\cos \omega) = \begin{cases} 1 & \cos \omega_p \le \omega \le 1 \\ 0 & -1 \le \omega \le \cos \omega_s \end{cases}$$

• The weighting function is given as

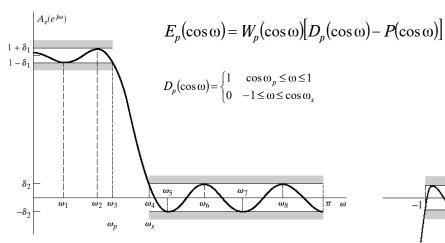
$$W_p(\cos \omega) = \begin{cases} 1/K & \cos \omega_p \le \omega \le 1 \\ 1 & -1 \le \omega \le \cos \omega_s \end{cases}$$

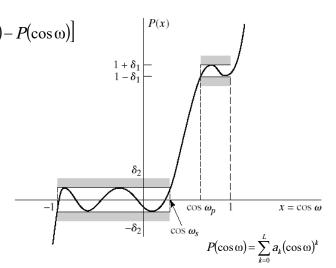
• The approximation error is given as

$$E_p(\cos\omega) = W_p(\cos\omega) [D_p(\cos\omega) - P(\cos\omega)]$$

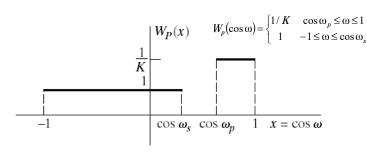
Min. number of alternations in F_p must be L + 2

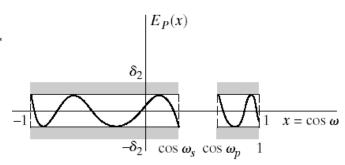
Typical Example Lowpass Filter Approximation





• 7th order approximation





Properties of Type I Lowpass Filters

- Maximum possible number of alternations of the error is L+3
- Alternations will always occur at ω_p and ω_s
- All points with zero slope inside the passpand and all points with zero slope inside the stopband will correspond to <u>alternations</u>
 - The filter will be equiripple except possibly at 0 and π

Flowchart of Parks-McClellan Algorithm

