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Finite Precision Numerical Effects

Digital Signal Processing



Quantization in Implementing Systems

Consider the following system:
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A more realistic model would be: (non-linear model)
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In order to analyze it we would prefer: (linearized model)
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Effects of Coefficient Quantization in IIR Systems
When the parameters of a rational system are quantized

— The poles and zeros of the system function move

If the system structure of the system is sensitive to perturbation of coefficients
— The resulting system may no longer be stable
— The resulting system may no longer meet the original specs

We need to do a detailed sensitivity analysis
— Quantize the coefficients and analyze frequency response

— Compare frequency response to original response

We would like to have a general sense of the effect of quantization
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Effects on Roots

M M
Z bkz_k Quantization R Z
H(e) = - ()=
1-> az™" 1- Z az "
=1

k=1

Each root is affected by quantization errors in ALL coefficient
Tightly clustered roots can be significantly effected

— = Narrow-bandwidth lowpass or bandpass filters can be very sensitive to quantization noise

The larger the number of roots in a cluster the more sensitive it becomes

This is the reason why second order cascade structures are less sensitive to
quantization error than higher order system

— Each second order system is independent from each other
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Poles of Quantized Second-Order Sections

Consider a 2nd order system with complex-conjugate pole pair
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The pole locations after quantization will be on the grid point

z-plane

© Realizable pole positions
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Coupled-Form Implementation of Complex-Conjugate Pair

* Equivalent implementation of the second order system

z,=re’ z,=re’?
z,=re’ =rcosO+rsin0

* But the quantization grid this time is

z-plane

o Realizable pole positions «— 4_b1ts
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Effects of Coefficient Quantization in FIR Systems

No poles to worry about only zeros
Direct form is commonly used for FIR systems

M
=> h[n}z™" hn] = h[n]+Ah[n]
=0

Suppose the coefﬁcients are quantized

Zh (2)+AH(2) AH(Z):Z'\jO:Ah[n]z‘”

Quantized system is linearly related to the quantization error

> H(z)

Y

AH(z)

Again quantization noise is higher for clustered zeros
However, most FIR filters have spread zeros
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Round-Off Noise in Digital Filters
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Analysis of Quantization Error

* Combine all error terms to single location to get

e[n]

x|n]

b,

N S

: O
v[n]=y[n] + f[n]
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« The variance of e[n] in the general caseis o. = (M +1+N )7

« The contribution of e[n] to the outputis f[n]=

a fln—k]+e[n]

=~
=

» The variance of the output error term f [n] is

o’ =(M +1+N)21—22
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Round-Off Noise in a First-Order System

Suppose we want to implement the following stable system

b
H(Z):m ‘a‘ <1
The quantization error noise variance is
-2B = 2B oo _
=M 1eN)7 - Sl =25 e =22
12 = 1—\a\

Noise variance increases as |a| gets closer to the unit circle

As |a] gets closer to 1 we have to use more bits to compensate for the
increasing error

e|n] =e,|n] +epn]
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Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

For stable IIR systems the output will decay to zero
when the input becomes zero

A finite-precision implementation, however,
may continue to oscillate indefinitely

Nonlinear behaviour very difficult to analyze so we sill study by example
Example: Limite Cycle Behavior in First-Order Systems

y[n]=ay[n—1]+ x[n] laj<1
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Assume X[n] and y[n—1] o N ‘
implemented by 4 bit *lml vin]

Y ;j_l

0
¥n]
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Example Cont’d

yInl=ay[n-1]+x[n]

Assume that a = %2 = 0.100b and the input is
X[n]= %S[n] — (0.111b)3[n]

If we calculate the output for values of n

n y[n] QuInD Ly
0[7/8=0.111b 7/8 =0.111b
1 [7/16=0.011100b 1/2=0.100b
2 [1/4 = 0.010000b 1/4 =0.010b
3 [1/8 =0.001000b 1/8 =0.001b
4 [1/16 =0.00010b 1/8 =0.001b

b=
-
]

la| <1

L 4

(R

-1 0

A finite input caused an oscillation with period 1
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Example: Limite Cycles due to Overflow

Consider a second-order system realized by

Jn]=xnl+Q(aln-1))+Q(a,yln-2])
— Where Q() represents two’s complement rounding
— Word length is chosen to be 4 bits
Assume a,=3/4=0.110b and a,= —3/4=1.010b
Also assume
y[-1]=3/4=0.110b and y[-2]=-3/4=1.010b
The output at sample n =0 is
y[0]=0.110bx0.110b +1.010bx1.010b
=0.100100b + 0.100100b
After rounding up we get
y[0]=0.101b+0.101b =1.010b = -3/4
Binary carry overflows into the sign bit changing the sign
When repeated for n = 1
y[1]=1.010b+1.010b =0.110 =3/4
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Avoiding Limite Cycles

Desirable to get zero output for zero input: Avoid limit-cycles

Generally adding more bits would avoid overflow

Using double-length accumulators at addition points
would decrease likelihood of limit cycles

Trade-off between limit-cycle avoidance and complexity

FIR systems cannot support zero-input limit cycles (no feedback!)

— because they have no feedback paths. The output of an FIR system will be zero no
later than (M + 1) samples after the input goes to zero and remains there.

— This is a major advantage of FIR systems in applications wherein limit cycle
oscillations cannot be tolerated.
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