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Finite Precision Numerical Effects
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Quantization in Implementing Systems

3

• Consider the following system:

• A more realistic model would be: (non-linear model)

• In order to analyze it we would prefer: (linearized model)
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Effects of Coefficient Quantization in IIR Systems
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• When the parameters of a rational system are quantized
– The poles and zeros of the system function move

• If the system structure of the system is sensitive to perturbation of coefficients
– The resulting system may no longer be stable
– The resulting system may no longer meet the original specs

• We need to do a detailed sensitivity analysis 
– Quantize the coefficients and analyze frequency response
– Compare frequency response to original response

• We would like to have a general sense of the effect of quantization
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Effects on Roots
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• Each root is affected by quantization errors in ALL coefficient
• Tightly clustered roots can be significantly effected

–  Narrow-bandwidth lowpass or bandpass filters can be very sensitive to quantization noise

• The larger the number of roots in a cluster the more sensitive it becomes

• This is the reason why second order cascade structures are less sensitive to 
quantization error than higher order system

– Each second order system is independent from each other
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Poles of Quantized Second-Order Sections

6

• Consider a 2nd order system with complex-conjugate pole pair

• The pole locations after quantization will be on the grid point 

 4-bits

7-bits 

  jj rezrez 21 ,

 cos2,2 rr
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Coupled-Form Implementation of Complex-Conjugate Pair
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  jj rezrez 21 ,

  sincos1 rrrez j

 4-bits

7-bits 

• Equivalent implementation of the second order system

• But the quantization grid this time is
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Effects of Coefficient Quantization in FIR Systems
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• No poles to worry about only zeros
• Direct form is commonly used for FIR systems

• Suppose the coefficients are quantized 

• Quantized system is linearly related to the quantization error

• Again quantization noise is higher for clustered zeros
• However, most FIR filters have spread zeros
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Round-Off Noise in Digital Filters

9

• Difference equations 
implemented with 
finite-precision arithmetic 
are non-linear systems

• Second order direct form I system:

• Model with quantization effect:

• Density function error terms 
for rounding
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Analysis of Quantization Error
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• Combine all error terms to single location to get

• The variance of e[n] in the general case is 

• The contribution of e[n] to the output is

• The variance of the output error term f [n] is
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Round-Off Noise in a First-Order System
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• Suppose we want to implement the following stable system

• The quantization error noise variance is

• Noise variance increases as |a| gets closer to the unit circle

• As |a| gets closer to 1 we have to use more bits to compensate for the 
increasing error
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Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters
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• For stable IIR systems the output will decay to zero 
when the input becomes zero

• A finite-precision implementation, however, 
may continue to oscillate indefinitely

• Nonlinear behaviour very difficult to analyze so we sill study by example
• Example: Limite Cycle Behavior in First-Order Systems

• Assume x[n] and y[n-1] are 
implemented by 4 bit registers 

      1           1  anxnayny
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Example Cont’d
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• Assume that a = ½ = 0.100b and the input is 

• If we calculate the output for values of n

• A finite input caused an oscillation with period 1

       nbnnx  111.0
8
7

n y[n] Q(y[n])
0 7/8 = 0.111b 7/8 = 0.111b
1 7/16 = 0.011100b 1/2 = 0.100b
2 1/4 = 0.010000b 1/4 = 0.010b

3 1/8 = 0.001000b 1/8 = 0.001b
4 1/16 = 0.00010b 1/8 = 0.001b

      1           1  anxnayny
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Example: Limite Cycles due to Overflow
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• Consider a second-order system realized by

– Where Q() represents two’s complement rounding 
– Word length is chosen to be 4 bits

• Assume a1 = 3/4 = 0.110b and a2 = -3/4 = 1.010b
• Also assume 

• The output at sample n = 0 is

• After rounding up we get

• Binary carry overflows into the sign bit changing the sign
• When repeated for n = 1

         2ˆ1ˆˆ 21  nyaQnyaQnxny

    byby 010.14/32ˆ  and  110.04/31ˆ 
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0.100100b  0.100100b      

1.010b  010.1  0.110b  110.00ˆ


 bby

  -3/41.010b0.101b  0.101b0ˆ y

  4/3110.01.010b  1.010b1ˆ y
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Avoiding Limite Cycles
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• Desirable to get zero output for zero input: Avoid limit-cycles

• Generally adding more bits would avoid overflow

• Using double-length accumulators at addition points 
would decrease likelihood of limit cycles 

• Trade-off between limit-cycle avoidance and complexity

• FIR systems cannot support zero-input limit cycles (no feedback!)
– because they have no feedback paths. The output of an FIR system will be zero no 

later than (M + 1) samples after the input goes to zero and remains there. 
– This is a major advantage of FIR systems in applications wherein limit cycle 

oscillations cannot be tolerated.


