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• A continuous-time signal can be represented by its samples as

• We can use bandlimited interpolation to go back to the continuous-time signal 
from its samples

• Some applications require us to change the sampling rate
– Or to obtain a new discrete-time representation of the same continuous-time signal 

of the form

• The problem is to get x'[n] given x[n]
• One way of accomplishing this is to 

– Reconstruct the continuous-time signal from x[n]
– Resample the continuous-time signal using new rate to get x'[n]
– This requires analog processing which is often undesired
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• We reduce the sampling rate of a sequence by “sampling” it

• This is accomplished with a sampling rate compressor

• We obtain xd[n] that is identical to what we would get by reconstructing the 
signal and resampling it with T ' = MT

• There will be no aliasing if 
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Frequency Domain Representation of Downsampling
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• Recall the DTFT of x[n]=xc(nT)

• The DTFT of the downsampled signal can similarly written as

• Let’s represent the summation index as 

• And finally
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Frequency Domain Representation of Downsampling: No Aliasing
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Frequency Domain Representation of Downsampling w/ Prefilter
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Increasing the Sampling Rate by an Integer Factor: Upsampling
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• We increase the sampling rate of a sequence interpolating it

• This is accomplished with a sampling rate expander

• We obtain xi[n] that is identical to what we would get by reconstructing the 
signal and resampling it with T ' = T/L

• Upsampling consists of two steps  
– Expanding

– Interpolating
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Frequency Domain Representation of Expander
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• The DTFT of xe[n] can be written as

• The output of the expander is frequency-scaled
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Frequency Domain Representation of Interpolator
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• The DTFT of the desired interpolated signals is

• The extrapolator output is given as

• To get interpolated signal we apply the following LPF
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Interpolator in Time Domain
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• xi[n] in a low-pass filtered version of x[n]
• The low-pass filter impulse response is

• Hence the interpolated signal is written as 

• Note that

• Therefore the filter output can be written as
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• Combine decimation and interpolation for non-integer factors

• The two low-pass filters can be combined into a single one


