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Discrete-Time Random Signals

In many situations, the processes that generate signals are
so complex as to make precise description of a signal
extremely difficult or undesirable, if not impossible.

In such cases, modeling the signal as a random process is

analytically useful.
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Random Signals

A random signal is considered to be a member of an ensemble of discrete-time
signals that is characterized by a set of probability density functions.

More specifically, for a particular signal at a particular time, the amplitude of
the signal sample at that time 1s assumed to have been determined by an
underlying scheme of probabilities.

That 1s, each individual sample X[n] of a particular signal is assumed to be an
outcome of some underlying random variable x,,. The entire signal is
represented by a collection of such random variables, one for each sample time,
—oo <N <o, This collection of random variables is referred to as a random
process, and we assume that a particular sequence of samples X[n] for

—o0 <N <oo has been generated by the random process that underlies the signal.

To completely describe the random process, we need to specify the individual
and joint probability distributions of all the random variables.
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Random Signals and LTI Systems

Although, for simplicity, we assume that x[n] and h[n] are real valued, the results
can be generalized to the complex case.

Consider a stable LTI system with real impulse response h[n].

Let x[n] be a real-valued sequence that is a sample sequence of a wide-sense
stationary discrete-time random process;

Then, the output of the linear system is also a sample sequence of a discrete-time
random process related to the input process by the linear transformation

©.¢) 0

yinl= Y hln—klx[kl= > hlklx[n —k].

k=—o00 k=—o00

As we have shown, since the system is stable, y[n] will be bounded if X[n] is
bounded. We will see shortly that if the input is stationary, then so is the output.

The mput signal may be characterized by its mean m, and its autocorrelation
function ¢,,[m], or we may also have additional information about 15~ or even
2"d-order probability distributions.
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Characterization of Input and Output by Their Averages

For many applications, it is sufficient to characterize both the input and output in
terms of simple averages, such as the mean, variance, and autocorrelation.
Therefore, we will derive input—output relationships for these quantities.

The means of the input and output processes are, respectively,

mxn — E{Xn}, myn — S{Yn},

where €{-} denotes the expected value of a random variable.

In most of our discussion, it will not be necessary to carefully distinguish
between the random variables X, and y, and their specific values X[n] and y[n].
This will simplify the mathematical notation significantly.

For example, above equations will alternatively be written

my[n] = E{x[n]}, my[n] = E{y[n]}.
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... For Stationary Inputs

If X[n] 1s stationary, then m,[n] is independent of n and will be written as m,,
with similar notation for m [n] if y[n] is stationary.
The mean of the output process is

myln] = E(ylnl} = Y h[kIE{x[n — K1},
k=—00

where we have used the fact that the expected value of a sum is the sum of the
expected values. Since the input is stationary, m,[n — kK] =m, , and consequently,

myln]=m, Y hlk].

k=—00

From the above equation, we see that the mean of the output is also constant. An
equivalent expression to the above equation in terms of the frequency response is

my = H(ejo)mx.
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... Output is Also Stationary

Assuming temporarily that the output is nonstationary, the autocorrelation func-
tion of the output process for a real input is

byyln, n +m] = E{y[n]yln + m]}

— £ Z Z hklh[r]x[n — klx[n +m — r]

k=—o0 r=—00
0 (0.@)
= > Rkl ) hlrl€ixln —klx[n +m — r]}.
k=—00 r=—0o0
Since x[n] 1s assumed to be stationary, £{x[n — k]x[n +m — r]} depends only on the time

difference m + k — r. Therefore,
0

o0
$yyln.n+ml= > hlk]l Y h[rlpeclm +k —r] = ¢yylm].  |(2.186)
k=—o00 r=—00
That is, the output autocorrelation sequence also depends only on the time difference
m. Thus, for an LTI system having a wide-sense stationary input, the output is also
wide-sense stationary.
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Autocorrelation Sequence of h[n]

By making the substitution £ = r — k, we can express Eq. (2.186) as

byylml = > uxlm —£1 ) hlkIh[E + k]

{=—00 k=—00

o (2.187)
= Y uxlm — Lennle],
f=—00
where we have defined
cnnl€] = ) RIKIA[E + K]. (2.188)
k=—0o0

The sequence C,,[ /] 1s referred to as the deterministic autocorrelation sequence or, simply,
the autocorrelation sequence of h[n]. It should be emphasized that c,,[/] is the
autocorrelation of an aperiodic—i.e., finite-energy—sequence and should not be confused
with the autocorrelation of an infinite-energy random sequence. Indeed, it can be seen that
CynL ] is simply the discrete convolution of h[n] with h[—n]. Equation (2.187), then, can be
interpreted to mean that the autocorrelation of the output of a linear system is the
convolution of the autocorrelation of the input with the aperiodic autocorrelation of the
system impulse response.
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Power Density Spectrum

Equation (2.187) suggests that Fourier transforms may be useful in characteriz-
ing the response of an LTI system to a random input. Assume, for convenience, that
m, = 0;1.e., the autocorrelation and autocovariance sequences are identical. Then, with
Dy (e/?), Dyy(e/?), and Cpy(e/?) denoting the Fourier transforms of ¢y, [m], ¢yy[ml,
and cp[€], respectively, from Eq. (2.187),

Dyy (e/?) = Cpin(e!®) Dy (/). (2.189)
Also, from Eq. (2.188),
Chn(e’®) = H(e/?)H* (e/?)

S0 = |H(")P,

D,y (/) = [H(e/®)* Dy (e7®). (2.190)
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Power Density Spectrum

Equation (2.190) provides the motivation for the term power density spectrum.
Specifically,

1 (" -
Ey*Inl} = ¢y [0] = o /_ Py do (2.191)

= total average power in output.

Substituting Eq. (2.190) into Eq. (2.191), we have

T

1 . .
E(y*n]} = ¢yy[0] = E/ |H (/)P D, (/) do. (2.192)

—T

Suppose that H (e/®) is an ideal bandpass filter, as shown in Figure 2.18(c). Since ¢ [m]
is a real, even sequence, its Fourier transform is also real and even, i.e.,

D (€/?) = Dy (e77?).
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Power Density Spectrum

Likewise, | H (e/®)|? is an even function of w. Therefore, we can write

¢yy[0] = average power in output

- 1
D, (/) dw + 2—/ P, (e/?)dw.
T J_

wp

o0 (2.193)

1 o

21 Jo,

Thus, the area under ®,, (e/®) for w, < |®| < w can be taken to represent the mean-
square value of the input in that frequency band. We observe that the output power
must remain nonnegative, so

lim  ¢,,[0] > 0.

(wp—wq)—0

This result, together with Eq. (2.193) and the fact that the band w, < w < wp can be
arbitrarily small, implies that

Qi (e/?) >0  forall w. (2.194)

Hence, we note that the power density function of a real signal is real, even, and non-
negative.
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White Noise

The concept of white noise is exceedingly useful in a wide variety of contexts in the
design and analysis of signal processing and communications systems. A white-noise
signal is a signal for which ¢y [m] = cr%ﬁ[m]. We assume in this example that the signal
has zero mean. The power spectrum of a white-noise signal is a constant, i.e.,

Dy (e/?) = (rf for all w.

The average power of a white-noise signal is therefore
L i L[ 5 2
¢xx[0]=E/;H<Dxx(e~ )dwzgﬁnaxdwzax.

The concept of white noise is also useful in the representation of random signals
whose power spectra are not constant with frequency. For example, a random signal
y[n] with power spectrum @y, (e/®) can be assumed to be the output of an LTI system
with a white-noise input. That is, we use Eq. (2.190) to define a system with frequency
response H (e/?) to satisfy the equation

Dyy(e/?) = |H ()02,

where 03 is the average power of the assumed white-noise input signal. We adjust
the average power of this input signal to give the correct average power for y[n]. For
example, suppose that i[n] = a" u[n]. Then,

; 1
H(?) = ————,
& 1—ae 7@
and we can represent all random signals whose power spectra are of the form
2 2
; 1 2 o
Dyy(e/?) = ‘— oy = A .
Y 1—ae /®| " 144?2—-2acosw
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Cross-Correlation Between the Input and Output

Another important result concerns the cross-correlation between the input and
output of an LTT system:

Gyxlm] = E{x[nlyln + m]}

=£ {x[n] > hlklx[n 4+ m — k]} (2.195)
k=—00
= Y h[klgyc[m —kI.
k=—00

In this case, we note that the cross-correlation between input and output is the convo-
lution of the impulse response with the input autocorrelation sequence.
The Fourier transform of Eq. (2.195) is

Dy (/) = H(e!?)Dyy (/). (2.196)

This result has a useful application when the input is white noise, i.e., when
¢.x[m] = 028[m]. Substituting into Eq. (2.195), we note that

¢yxlm] = o h[m]. (2.197)
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... For a Zero-Mean White-Noise Input

That is, for a zero-mean white-noise input, the cross-correlation between input and
output of a linear system is proportional to the impulse response of the system. Similarly,
the power spectrum of a white-noise input is

O (e/?) =02, —m<w<m. (2.198)
Thus, from Eq. (2.196),

D, (e/?) = 02 H (). (2.199)

In other words, the cross power spectrum is in this case proportional to the frequency re-
sponse of the system. Equations (2.197) and (2.199) may serve as the basis for estimating
the impulse response or frequency response of an LTT system if it is possible to observe
the output of the system in response to a white-noise input. An example application is
in the measurement of the acoustic impulse response of a room or concert hall.
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