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MINIMUM-PHASE SYSTEMS AND GENERALIZED LINEAR PHASE
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. |[Opp nheim/Schafer/s.« Problem #5.39] For a minimum phase sequence, we

must have |Amia[0]]> > |h[n]|>. Since it is specified that onc of (a)-(h) is minimum
phase, the minimum phase sequence has to be (f).

. |[Oppenheim/Schafer/n..« Problem #5.40] A zero phase sequence has all its poles

and zcors in conjugate reciprocal pairs. Positive or negative integer delays can only
add poles/zeros to 0 and /or oo. Therefore, for the p rpose of determining if the system
is generalized linear phase poles and zeros at 0/oc can be ignored. Then the systems
shown in (a) and (b) are not generalized linear phase, while the systems shown in (c)
and (d) are. All the systems can have stable inverses except (d).

o

. |[Oppenheim/Schafer/su Problem #5.41] Convolving two symmetric sequences

yields a symmetric sequence, while convolving symmetric and anti-symmetric sequences
yields an anti-symmetric sequence. Therefore, the imp lIse respose of system A is
anti-symmetric, and so is generalized lincar phase. For system B, the convolution
hq|n] % ho[n] is symmetric, but hy[n] % ho[n] + hsn] need neither be symmetric nor
anti-symmetric. Hence in general, this system need not have generalized lincar phase.

S

. |Oppenheim/Schafer /sucx Problem #5.43] Sce the derivation presented in class

or the class notes.

ot

. [Oppenheim/Schafer/su Problem #35.51] The statement is false. The response

shown in Figure 5.35(c) of text (page 294) is a co nterexample.

o

. |Oppenheim/Schafer/nu Problem #5.54] Since z[n] is zero outside a finite

interval, X(z) has to be rational. Beca se z[n] is real valued and minimum phase, it
has to have additional zeros a 32797/ and a 1e~7%7/%. Since z[n] has only 5 non-zero
terms, this is the complete list of zeros X(z) can have. It will have 4 poles a the

origin, and so the ROC of X (z) is |z| > 0. The ROC of Y (2) = ﬁz) is |2 > L.

. |[Oppenheim/Schafer/n.« Problem #5.65] Suppose that H(2) = H,ya(2) ]_[f:’:1 f’:T"f,,

where ai| < 1. Then

N 1 N 1
Buninl0] = lim Hoio(2) = lim H(z2) - [[ = = nlo] - [[ —
z00 25300 oy Tk pop Ok

Therefore, hmin[0] = ﬁrm% > [h[0] .
k=110
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8. [Oppenheim/Schafer/suc Problem #5.66] We have

271 ¥

H(2) = Hpin(2) - # =Q(2) (27— 2) = Q(2)z7t — 21Q(2)
Therefore, Amin[n] = g[n] = 2:q[n — 1]. So,
Fial)” = a1 Bl = (@[] — zxaln — 1) - (aln]” — zfaln — 1)

Simiplifying yields e = (1— z|*) g[n]|*. Then since e > 0, we must have 327" Auin[m][*—
S o [h[m] > 0. The result follows.
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Causal Generalized Linear-Phase Systems

Solution for #4 (5.43)

Now we look at causal systems whose impulse response /[n] is real.

If

= { ST e 153
then

H(E™) = A (e1)e TM/2

where 4,(e/®) is a real, even and periodic function of @.
If

= { M ! 154
then

H(e/®) = A,(e/®)e 10M/12)
where 4,(e/®) is a real, odd and periodic function of .

Equations 15.3 and 15.4 are sufficient conditions for generalized linear-phase but they are not necessary conditions.

Type I FIR Linear-Phase Systems

Type I FIR’s are symmetric about an integer.

A Type I FIR is characterized by
h[n] = h[M — n], 0<n<M

and
M is an even integer
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‘We can show Type I FIR’s have linear-phase by checking its Fourier Transform.

H(e/®) = ;}h[n]e’-’“’"

M/2—1 _ _ M »
= Y e O fhM/2le M2 4y Rlnle /o
n=0 n=M/2+1
M/2-1 ) M )
= Y e O+ hM/2e M2 4N hM—Ke MR (k=M —n)
n=0 k=M/2+1
et _ u _
=Y hlnle O 4 h[M/2)e M2 4N plke MR (hk] = h[M — k)
n=0 k=M/2+1
M/2—1

=Y hln)(e7/O" 4 e OWY o pag/2)eIOM2
n=0

_ M/2-1 M
e joM/2 Y, hin]2cos(n— 7)(D+h[M/2]
=0

The first term e~/*¥/2 gives a phase of —M/2 to H(e/®). Since h[n] is real, the second term in the product above

contribute a phase of 0 or 7t to H(e/®). So the overall phase of H(e/®) is

O)M or O)M +m
2 2
The phase of H(e/®) is linear by definition of linear-phase — jo.+ B, where

M

(x:?, B=0Oorm

Type II FIR Linear-Phase Systems

Type II FIR’s are symmetric about the half of an integer.

A Type II FIR is characterized by
h[n] = h[M —n], 0<n<M

and
M is an odd integer
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We can show Type II FIR’s have linear-phase by checking its Fourier Transform.

H(/®) = Z hln]e= 7"

n=0
(M=1)/2 , M ,
= Y ke "+ Y hnle /"
n=0 n=(M+1)/2
(M-1)/2 ) M )
= Y e+ Y M —Ke MR (k=M —n)
n=0 k=(M+1)/2
(M-1)/2 ) M )
= 3 e Y hlke MR (h[k] = h[M — k)
n=0 k=(M+1)/2
(M=1)/2

_ 2 h[n](e—ju)n+e—jm(M—n))
n=0

) (M=1)/2 M
= /M2 S ]2 cos(n — o
n=0

The first term e/*/2 gives a phase of —M/2 to H(e/®). Since /] is real, the second term in the product above
contributes a phase of 0 or 7 to H(e/®). So the overall phase of H(e/®) is

(DM T (DM+T[
2 ° 2

The phase of H(e/®) is linear by definition of linear-phase — jo.+ 8, where

M

o= B=0orm

Type III FIR Linear-Phase Systems

Type III FIR’s are anti-symmetric about an integer.

A Type III FIR is characterized by
h[n] = —h[M —n], 0<n<M

and
M is an even integer
Note that at n = M2,
hiM)2] = —h[M — (M /2= )] —h[M/2]
So we have h[M /2] = 0.
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‘We can show Type III FIR’s have linear-phase by checking its Fourier Transform.

H(/®) = Z{)h[n]e’»"”"

M/2-1 ) ) M
= Y hlle O L hM/2)e M2 4N hlnle/O"
n=0 n=M/2+1
M/2-1 ) M )
=Y hple O+ Y WM —Ke MR (h[M /2] = 0,k =M —n)
n=0 k=M/2+1
M/2—-1 . M )
=Y ke — N hKeVOMH (K] = —h[M —K])
n=0 k=M/2+1
M/2—1

_ 2 h[n](e—ju)n_e—jw(M—n)>
n=0
) M/2—1 M
=M () Y hln|2sin(n — )
n=0

The first term e~/*Y/? gives a phase of —wM/2 to H(e/®). Since /[n] is real, the second term in the product above
contribute a phase of £ or 3F to H(e/®). So the overall phase of H(e/®) is

70)?+5 or 70)?+7

The phase of H(e/®) is linear by definition of linear-phase — jo.+ B, where

o= B=0Oorm

Type IV FIR Linear-Phase Systems

Type IV FIR’s are anti-symmetric about the half of an integer.

A Type IV FIR is characterized by
h[n] = —h[M —n], 0<n<M

and
M is an odd integer
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We can show Type IV FIR’s have linear-phase by checking its Fourier Transform.

. M .
H(/®) = Zz]h[n]e’-’“’"

M=1)/2 , M ,
= > hne ™+ Y hnle /"
n=0 n=(M+1)/2
(M=1)/2 , M _
= Y e+ Y M —Ke MR (k=M —n)
n=0 k=(M+1)/2
(M—1)/2 ) M )
= Y ke — S hKe MO (hk] = —h[M —])
n=0 k=(M+1)/2
(M-1)/2
_ 2 h[n](e—jumie—/u)([vl—n))
n=0
, (M=1)/2 M
= /M2y Y hln]2sin(n— =)o

n=0

The first term e /©M/2 gives a phase of —oM/2 to H(e/®). Since h[n] is real, the second term in the product above
contributes a phase of T or 3F to H(e/®). So the overall phase of H(e/®) is

7mM+E or 7my+3—n
2 2 22

The phase of H(e/®) is linear by definition of linear-phase — jo.+ B, where

The four types of FIR filters all have linear-phase, which is a desirable characteristic in many situations since we can
concentrate on the magnitude response when designing filters. What is the difference among the different types?
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Solution for #5 (5.51)
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Sample number (n)

Ideal lowpass filter impulse responses, with w; = 0.4
Delay = o = 4.3.
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