هوالحكيم

پردازش سیگنال دیجیتال نيمسال دوم ٩٧-١٣٩۶ نيمسال دوم ١٣٩٤

http://courses.fouladi.ir/dsp

راه حل تکلیف شماره ی ۵ فصل چارم

پردازش گسسته–زمان سیگنالهای پیوسته–زمان

DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

مسئله های تعلیلی ـ تشریعی

راه حل تکلیف شمارهی ۵

1. [Oppenheim/Schafer/Buck Problem #4.29] Suppose that $x[n] \overset{\mathcal{F}}{\leftrightarrow} X(e^{j\omega})$, and $x_u[n]$ is the signal that results when x[n] is upsampled by 2. Then $x_u[n] \overset{\mathcal{F}}{\leftrightarrow} X(e^{j2\omega})$. Let $Y_u(e^{j\omega}) = H_1(e^{j\omega}) X(e^{j\omega})$ and $y_u[n] \overset{\mathcal{F}}{\leftrightarrow} Y_u(e^{j\omega})$. Then $Y_1(e^{j\omega})$ is the signal that results from downsampling $Y_u(e^{j\omega})$ ($y_u[n]$) by 2. Therefore,

$$Y_{1}(e^{j\omega}) = \frac{1}{2} \left[Y_{u}(e^{j\omega/2}) + Y_{u}(e^{j(\omega-2\pi)/2}) \right]$$

$$= \frac{1}{2} \left[X(e^{j2\omega/2}) H_{1}(e^{j\omega/2}) + X(e^{2j(\omega-2\pi)/2}) + H_{1}(e^{j(\omega-2\pi)/2}) \right]$$

$$= \frac{1}{2} \left[X(e^{j\omega}) H_{1}(e^{j\omega/2}) + X(e^{j(\omega-2\pi)}) H_{1}(e^{j(\omega/2-\pi)}) \right]$$

$$= \frac{1}{2} \left[H_{1}(e^{j\omega/2}) + H_{1}(e^{j(\omega/2-\pi)}) \right] X(e^{j\omega})$$

Therefore, $H_2(e^{j\omega}) = \frac{1}{2} \left[H_1(e^{j\omega/2}) + H_1(e^{j(\omega/2-\pi)}) \right].$

2. [Oppenheim/Schafer/Buck Problem #4.34] The first thing to note is that the system shown in Figure P4.34-1 simply convolves x[n] with h[n] to get y[n], where $h[n] \stackrel{\mathcal{F}}{\leftrightarrow} H(e^{j\omega})$. Note that the sampling rate does not figure anywhere in this, and so may be chosen arbitrarily. So we pick T to be 1. Since $\omega = \Omega T$, we have $H(j\Omega) = e^{-j\Omega T/2} = e^{-j\Omega/2}$. For the second part, let $\omega_0 = 5\pi/2$. Then

$$\cos(\omega_0 n - \pi/4) = \frac{e^{j(\omega_0 n - \pi/4)} + e^{-j(\omega_0 n - \pi/4)}}{2} = \frac{e^{-j\pi/4}}{2} e^{j\omega_0 n} + \frac{e^{j\pi/4}}{2} e^{-j\omega_0 n}$$

Now, $e^{-j\omega_0 n}$ and $e^{j\omega_0 n}$ are eigenfunctions of the system, and are scaled by $H(e^{j\omega_0})=e^{j\pi/4}$ and $H\left(e^{j(-\omega_0)}\right)=e^{-j\pi/4}$ respectively. Therefore,

$$y[n] = \frac{e^{-j\pi/4}}{2} e^{j\omega_0 n} H\left(e^{j\omega_0}\right) + \frac{e^{j\pi/4}}{2} e^{-j\omega_0 n} H\left(e^{j(-\omega_0)}\right)$$
$$= \frac{e^{-j\pi/4}}{2} e^{j\omega_0 n} e^{-j\pi/4} + \frac{e^{j\pi/4}}{2} e^{-j\omega_0 n} e^{j\pi/4}$$
$$= \cos(\omega_0 n - \pi/2)$$

- 3. [Oppenheim/Schafer/Buck Problem #4.36] The continuous frequency Ω and the discrete frequency ω are related by $\Omega T = \omega$. We need $X(e^{j\omega}) = 0$ for $\omega > \pi/2$. We have $X_c(j\Omega) = 0$ for $\Omega > 2\pi(100)$. Therefore, we need $(2\pi \cdot 100)T \leq \pi/2$ or $T \geq \frac{1}{400}$. For the second part, we have to chose T' = 2T.
- 4. [Oppenheim/Schafer/Buck Problem #4.37] Going from s[n] to $s_1[n]$ requires chaning the sampling rate by a factor of 3/5. Therefore, we use the system shown in Figure 4.28 of the text, with L=3, and M=5.

راه حل تکلیف شمارهی ۵

- 5. [Oppenheim/Schafer/Buck Problem #4.42] It is not possible. The Nyquist criterion requires strict inequality (so we need $T<\frac{1}{500}$). As a counter example, consider the signal $x_c(t)=\sin(2\pi\cdot 250\cdot t)$, with corresponding sampled sequence $x[n]=x_c(n/500)=\sin(2\pi\cdot (250)\cdot n/500)=\sin(n\pi)=0$. You are not going to be recovering anything from this signal. The remaining answers are now obvious.
- 6. [Oppenheim/Schafer/Buck Problem #4.46] $y_i[n] = x[3n+i]$. Therefore,

$$x[n] = \begin{cases} y_0[n/3] & \text{if } 3|n\\ y_1[(n-1)/3] & \text{if } 3|(n-1)\\ y_2[(n-2)/3] & \text{else} \end{cases}$$

The answer for part (b) is yes as well because the output of the filters have bandwidth at most $\pi/3$, and so no aliasing will take place. To reconstruct, upsample $y_1[n]$, $y_2[n]$ and $y_3[n]$ by 3, then pass the upsampled signal through $H_i(z)$, and add. For part (c), the answer is yes. We note that $Y_3(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega/2}) + X(e^{j(\omega/2-\pi)}) \right]$, and

$$Y_4\left(e^{j\omega}\right) = \begin{cases} \frac{1}{2} \left[X(e^{j\omega/2}) - X(e^{j(\omega/2-\pi)}) \right] & \text{if } 0 \le \omega < \pi \\ \frac{1}{2} \left[-X(e^{j\omega/2}) + X(e^{j(\omega/2-\pi)}) \right] & \text{else} \end{cases}$$

A simple calculation now shows that the system shown in the figure reconstructs x[n].