

راہ حل تکلیف شمارہ یY فصل هوم

سیستمهای خطی تغییرنایذیر با زمان

LINEAR TIME-INVARIANT SYSTEMS

🛇 مسئلەھاى تحليلى ـ تشريحى

1. [Oppenheim/Schafer/Buck Problem #2.47] $y[n] = x[n] + 2x[n-1] + x[n-2] = x[n] * (\delta[n] + 2\delta[n-1] + \delta[n-2]).$ Therefore, h[n], the impulse response is $\delta[n] + 2\delta[n-1] + \delta[n-2]$. The system is stable because $\sum_{k \in \mathbb{Z}} |h[n]| = 4 < \infty.$

> $H\left(e^{j\omega}\right) = 1 + 2e^{-j\omega} + e^{-2j\omega}$ $= 2e^{-j\omega}(0.5e^{j\omega} + 1 + 0.5e^{-j\omega})$ $2e^{-j\omega}(1+\cos(\omega))$

 $|H(e^{j\omega})| = 2(\cos(\omega) + 1)$, and $\arg H(e^{j\omega}) = -\omega$.

2. [Oppenheim/Schafer/Buck Problem #2.59]

$$R_x[n] = \sum_{k=-\infty}^{\infty} x^*[k]x[n+k]$$

=
$$\sum_{r=-\infty}^{\infty} x^*[-r]x[n-r]$$

=
$$x^*[-n] * x[n]$$

Substitute $r = -k$

Therefore, $g[n] = x^*[-n]$.

For part (b), note that $x^*[-n] \stackrel{\mathcal{F}}{\leftrightarrow} X^*(e^{j\omega})$. Hence $R_x(e^{j\omega}) = X(e^{j\omega}) x^*(e^{j\omega}) =$ $\left\|X\left(e^{j\omega}\right)\right\|^{2}.$

3. [Oppenheim/Schafer/Buck Problem #2.60]

 $x_2[n] = -\sum_{k=0}^{4} x[n-k]$. Hence $y_2[n] = -\sum_{k=0}^{4} y[n-k]$. For part (b), note that $\delta[n] = \sum_{k=0}^{\infty} x[n-k]$. Therefore by linearity, $h[n] = \sum_{k=0}^{\infty} y[n-k]$. k].

One thing that you should note however is that the solution is not unique, even though it seems to be. The reason is that we could have potentially formed $\delta[n]$ by other combinations of the x[n] as well. In general, h[n] satisfies the relation

$$h[n-1] - h[n] = y[n]$$

This leads to a unique solution if we make additional assumptions (such as causality, FIR'ness etc.). Otherwise, we get a solution that is unique up to the addition of a constant.

4. [Oppenheim/Schafer/Buck Problem #2.62]

In this question, you were asked to use the definition of causality to show that $h[n] \neq 0$ for some n < 0 if and only if the system is causal. A system is causal if whenever $\{x_1[n]\} \xrightarrow{T} \{y_1[n]\}$ and $\{x_2[n]\} \xrightarrow{T} \{y_1[n]\}$ satisfy $x_1[n] = x_2[n]$ for all $n \leq n_0$, then $y_1[n] = y_2[n]$ for all $n \leq n_0$.

For the forward direction, assume that $h[n_0] \neq 0$ for some $n_0 < 0$. Let $x_1[n] = \delta[n+n_0]$. Then

$$y_1[0] = \sum_{k=-\infty}^{\infty} x_1[k]h[0-k] = x[-n_0]h[n_0] = h[n_0] \neq 0$$

Let $x_2[n] = 0$ for all $n \in \mathbb{Z}$. Then by a previous homework problem, $y_2[n] = 0$ for all $n \in \mathbb{Z}$. Therefore, we have $x_1[n] = x_2[n]$ for all $n < -n_0 - 1$. Now, $-n_0 - 1 \ge 0$. However, $h[n_0] = y_1[0] \neq y_2[0] = 0$. Therefore, the system is not causal.

For the converse, note that $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k]$. So, if $x_1[n] = x_2[n]$ for all $n \le n_0$, then $x_1[n-k] = x_2[n-k]$ for $n \le n_0, k \ge 0$. Hence

$$y_1[n] = \sum_{k=0}^{\infty} h[k]x_1[n-k] = \sum_{k=0}^{\infty} h[k]x_2[n-k]$$

for $n \leq n_0$. Therefore the system is causal.

5. [Oppenheim/Schafer/ $_{\text{Buck}}$ Problem #2.66]

$$E(e^{j\omega}) = H_1(e^{j\omega}) X(e^{j\omega})$$

$$F(e^{j\omega}) = E(e^{-j\omega}) = H_1(e^{-j\omega}) X(e^{-j\omega})$$

$$G(e^{j\omega}) = H_1(e^{j\omega}) F(e^{j\omega}) = H_1(e^{j\omega}) H_1(e^{-j\omega}) X(e^{-j\omega})$$

$$Y(e^{j\omega}) = G(e^{-j\omega}) = H_1(e^{-j\omega}) H(e^{j\omega}) X(e^{j\omega})$$
Therefore, $H(e^{j\omega}) = H_1(e^{-j\omega}) H(e^{j\omega})$. Therefore $h[n] = h_1[-n] * h_1[n]$.

6. [Oppenheim/Schafer/Buck Problem #2.81]

Because s and e are uncorrelated, we have $E\{s[n]e[m]\}=0$ for all n, m. Hence

 $E\left\{y[n]y[n+m]\right\} = E\left\{s[n]e[n]s[n+m]e[n+m]\right\} = E\left\{s[n]s[n+m]e[n]e[n+m]\right\}$

Using the fact that s, e are uncorrelated, we get

$$= E \{s[n]s[n+m]\} E \{e[n]e[n+m]\}$$
$$= \sigma_s^2 \sigma_e^2 \delta[m]$$

because $f[m]\delta[m] = f[0]\delta[m]$.