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SUPERVISED LEARNING

So far... Supervised Learning

Data: (x, y)
X is data, vy is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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UNSUPERVISED [LEARNING

So far... Unsupervised Learning

Data: x AT SR /\
Just data, no labels! ———

1-d density estimation
Goal: Learn some underlying

hidden structure of the data - 7| ;
Examples: Clustering, o e 00 .
dimensionality reduction, feature . I

learning, density estimation, etc. 2-d density estimation
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REINFORCEMENT LEARNING

Today: Reinforcement Learning

Problems involving an agent / [ T
interacting with an environment, %> 4 Peandly, Action a,
which provides numeric reward | o j

. |S nvironment
signa

Goal: Learn how to take actions

in order to maximize reward -

S G Jla o Jole s Jolit Bl
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: dm Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission.
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What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients
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REINFORCEMENT LLEARNING
Agent
State s .
t Reward r, Action a,
Environment
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REINFORCEMENT LLEARNING

State S,
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Agent

Reward r,
Next state s, .

Environment

Action a,



VY

Gt S Eoly
55 5 Sl

Cart-Pole Problem
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Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step
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- s Objective: Win the game!

12 12
g i hd ., State: Position of all pieces
2, 0 s Action: Where to put the next piece down
- = ° Reward: 1 if win at the end of the game, 0 otherwise
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How can we mathematically formalize the RL problem?

State s, Reward r,

Action a,
Next state s, .

Environment
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MARKOV DECISION PROCESS (MDP)

MDP S i 55 sladil 3o
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Reward Function Transition Model Initial State States of Environment Actions of Agent
/ .
R(s) T'(s,a,s") S0 States s € .S, actions a € A
R(s,a)

R(s,a,s’)
3 Caanlawa 5l 3 Syl 1S3
g Policy Iteration (PI) Value Iteration (VI)
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MARKOV DECISION PROCESS (MDP)

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world
S o paddie | Lis alla JolS S ghds s cdla 18 S yle crvslA

Defined by: (S, A’ R, P, ’}/)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

QYA W
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MARKOV DECISION PROCESS (MDP)

Markov Decision Process
S o oS gl |y cpsleTedla baas = 0 Sl a8 Hu -
- Attime step t=0, environment samples initial state s, ~ p(s,)

- Then, for t=0 until done: LS OLL G =0 gl o ure —

- Agent selects action a, S LA 1 3, GBS Jole —
- Environment samples reward r, ~ R( . | s, @) WS o (5S40 g GBIl 3l aaa —
- Environment samples next state s, ~ P(. | s, 8)) .u< 0 80 50 gon s 3lbuas -
- Agent receives reward r, and next state s LS e il | gans adla s alaly Jole —

- A policy it is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy n* that maximizes cumulative discounted reward: Z'Y Tt
>0
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MARKOV DECISION PROCESS (MDP)

A simple MDP: Grid World

. _ states
actions = { S a il
3P -
1. right — * asds e I8 e (Bl SO
2. left <+— Set a negative “reward”
3 U I * for each transition
' P (eg.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions
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A simple MDP: Grid World
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*

_+_

_+_

_+_

_+_

_+_

_+_

*

+

_+_

+

+

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Random Policy

JAO‘J

Optimal Policy






Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

YO

(980 sou pSubls Jole XS sladdl e

COMPONENTS OF AN RLL AGENT

(980 o pSubs Jole S (sladdl 3

Components of an RL Agent
Juo i &b
Model Value Function
Jole alass L/ el s
bsas 3l oiS—alla 795
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Policy

Jole &,
LR
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©.9. State Action

A— 2

B—— 1

Deterministic policy: a = 7(s)

Stochastic policy: m(a|s) = P[A; = a|S; = 5]
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The optimal policy t*
We want to find optimal policy m* that maximizes the sum of rewards.
How do we handle the randomness (initial state, transition probability...)?
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The optimal policy t*
We want to find optimal policy m* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!
S o pa SLe | (G8LaEAT (o) Lailuly g sene S Loy b 3| Al
o) g el 8L Caua

Formally: = = argmeE Z’Yt?‘tlﬂ with sg ~ p(s0), az ~ m(:|8¢), 8t41 ~ P(:[8¢, ar)
t>0
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, a,, r
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EITEN
Up %
Ref: http://cs231n.stanford.edu/

TRPTIEEE



Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

(980 sou pSubls Jole XS sladdl e

Q—uou) b 5 G5 s

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, @, r,, ...

How good is a state? Sl O LHalda ol S
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V7(s) =E |3 7'rilso = s,

t>0
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, @, r,, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V7(s) =E |3 7'rilso = s,

t>0

How good is a state-action pair? Sl G A Hulda GRS—alls cda S
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

Q" (s,a) =E |:Z ’Yt?"t|30 = 8,49 = a, W]

£>0
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MAZE PROBLEM

Start

Lo geliue : Jlis

o
-

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

Goal
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m Arrows represent policy 7(s) for each state s
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VALUE FUNCTION

Start | -16 | -15

H

nﬂ
H

m Numbers represent value v;(s) of each state s
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MODEL

m Agent may have an internal

Start -n i model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m [ he model may be imperfect

m Grid layout represents transition model P2,

m Numbers represent immediate reward R2 from each state s
(same for all a)
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Model-Based RL Value-Based RL Policy-Based RL
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Model-Based RL
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Deep RL Approaches
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Value-Based RL
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Q(s,a;0)

Q(s,a;0%) = Q" (s,a)

Policy-Based RL
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meE Z"}’t'?"ﬂso =8,a0=4a,T
>0
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meE Z"}’t'?"ﬂso =8,a0=4a,T
>0

Q* satisfies the following Bellman equation: PaiS o Lia I 1 als (sdulas ol QF
QR*(s,a) =Eg~¢ ['r +ymax Q*(s',a’)|s, a}
a

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

cainls o glas Q*(s),a") b o Sbo)y al€ gl piS—alla (sdugs palie S i((Shags Juol) o ge
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meE Z"}’t'?"ﬂso =8,a0=4a,T
>0

Q* satisfies the following Bellman equation:
Q*(5,0) = Eyng |1+ ymax Q*(s', )]s, ]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)
The optimal policy m* corresponds to taking the best action in any state as specified by Q*

ol sad et 2 QF L€ G ST edla ja 5o (23S o i AT L el Sl TU* g el
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VALUE ITERATION ALGORITHM

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
Qi+1(s,a) =E ['r -+ Y max Qi(s’,a’)ls, a,]

Q, will converge to Q* as i -> infinity

SIS Sl 500 Soseh el sdalae Bl solaiwl () ) I S5 ol , S
S e enlgd o 0l (B a0 | S QF 4 G
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VALUE ITERATION ALGORITHM

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qiti(s,a) = E |r + ymax Qi(s', )]s, a
a

Q. will converge to Q* as i -> infinity

What's the problem with this?

SO Ol JSde
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VALUE ITERATION ALGORITHM

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qiti(s,a) = E |r + ymax Qi(s', )]s, a
a

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state spacel!

SO Ol JSde
P padyoulbilie S il Gol Gl Gnl JSe
sl las (BS-alla cda a6l 0wl Qfs,a)
Lol iUl Slhiwlas Bladds alla lad JS sl dlae cail 50 lad ol sladusy cadla <10,
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VALUE ITERATION ALGORITHM

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qiti(s,a) = E |r + ymax Qi(s', )]s, a
a

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state spacel!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Zd.:b“)
LQ(5,8) a3 (5 s B 0w, S )l saliil
g (sasad S e
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

:Q L;J:SJ‘:\
LQs,8) GraS—0n0 ) b nedS 51 2l 5B Sl saliil
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!

1 Gpee Q s Subs
il Gree poe (54603 S B G508 S
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe 0 ' (a:0)
function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

1 Gpee Q s Subs
il Gree poe (54603 S B G508 S
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q' (s,a) = Egrug [fr + ymax Q*(s’,a’)|s, a,}
alf
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q' (s,a) = Egrug [fr + ymax Q*(s’,a’)|s, a,}
alf

Forward Pass

Loss function: L;(6;) = Es gnp() [(1s — Q(s,056;))?]

where y; = Egng ['r + ymax Q(s',a’;0;-1)|s, a]
a

J)tﬁ‘ c_sl:i 64.\.444‘;..& IJJUL:\# J‘.S
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q' (s,a) = Egrug [fr + ymax Q*(s’,a’)|s, a,}
alf

Forward Pass

Loss function: L;(6;) = Es gnp() [(1s — Q(s,056;))?]

where y; = Egng ['r + ymax Q(s',a’;0;-1)|s, a]
a

Backward Pass
Gradient update (with respect to Q-function parameters 8):

VI%L'L(G%) — Es,arvp(-);s’NS |:T + II;E}.X Q(S’! a"; 9?1—1) o Q(Sa a, 9%))V91, Q(S: a, 91—):|

(0 a2 Q 25 slasiel L 4 ) (Lol S (Slaa 5 555% o0 L3S
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DEEP Q- EARNING

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Egng [‘r +ymax Q*(s',a")|s, a}

Forward Pass
Loss function: L;(60;) = Es gnp() [0 = Q(s,056;))?]

lteratively try to make the Q-value
1. .
where Y; = Eg~g [’r =T ’}’mai}x Q(s’,a;0;_1)|s,a close to the target value (y,) it

should have, if Q-function

corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 8):
V&»Li (9%) — Es,awp(-);s’rvg |:T + II‘IIE}X Q(S’! a"; 9?1—1) o Q(Sa a, 9'&))V61, Q(S: a, 91—):|
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DEEP Q- EARNING

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Sel 5 YL b (530 pLasl 1 b

(5:)\-:: CA-IL; ‘AL.; U"L"“%f (SLQLSJJJJ ZC—\-‘L}
Qz\f‘-g ;Yl.:s :C,u.u‘J e :J:.Q ‘LSJL.‘ GLAJJ:\;S :JQS
Sbed al8 a o el GralS / Gaal53) i plaly
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):
neural network
with weights @ FC-256

(s 64&:"&'
O slasss b

FC-4 (Q-values)

i

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

ATassi sl JIAYXAYXY Giy Syl alls
(09 S @IS 5 e 0mb 4 o ol sad (s AuSA (uliie GRGB (S bass 5l ()
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(O-NETWORK: ARCHITECTURE

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):
neural network
with weights @ FC-256

FC-4 (Q-values)

i

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

- Input: state s,

A/‘
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1
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(O-NETWORK: ARCHITECTURE

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):
neural network
with weights @ FC-256

FC-4 (Q-values)

> Familiar conv layers,
FC layer

i

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

A/‘
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1
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Q-network Architecture

Q(s,a;0):
neural network
with weights @

A/‘
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1
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FC-4 (Q-values)

FC-256

i

[Mnih et al. NIPS Workshop 2013; Nature 2015]

< Last FC layer has 4-d

output (if 4 actions),
corresponding to Q(s,,
a,), Q(s,, a,), Q(s,, a,),
Q(s,a,)

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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(O-NETWORK: ARCHITECTURE

Q-network Architecture

Q(s,a;0):
neural network
with weights @

V‘
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1
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FC-4 (Q-values)

FC-256

i

[Mnih et al. NIPS Workshop 2013; Nature 2015]

< Last FC layer has 4-d

output (if 4 actions),
corresponding to Q(s,,
a,), Q(s,, a,), Q(s,, a,),
Q(s,a,)

Number of actions between 4-18
depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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(O-NETWORK: ARCHITECTURE

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values) i Last FC layer has 4-d
neural network output (if 4 actions),
with weights @ FC-256 corresponding to Q(s,,

Q(s,a,)

A single feedforward pass
to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! W — depending on Atari game

1|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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1
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(O-NETWORK: TRAINING

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Loss function (from before)

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q' (s,a) = Egrup [fr + ymax Q*(s’,a’)|s, a,}
alf

Forward Pass
Loss function: L;(60;) = Es gnp() [0 = Q(s,056;))?]

lteratively try to make the Q-value
ro 1. .
where ¥y; = Egng [’r + ymax Q(s’,a;0;_1)|s,a close to the target value (y,) it

& should have, if Q-function

corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 8):

V&»Li (9%) — Es,amp(-);s’NS |:T + II‘IIE}X Q(S’! a"; 9?1—1) o Q(Sa a, 9'&))V61, Q(S: a, 91—):|
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(O-NETWORK: TRAINING: EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
-  Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Pl Sl Kdie ¢ J gie (slads g3 (s 5la sladiwg 5 (5,800
2T, 0 (s Sub <= aiiua Gunoa ladsgah ©
Lo a3 Ssaad gladila 4 sade Wl 5 e <= NS oo Guaad | (g (o5 5ol (sLAd gl ¢ (a8 Q (oaSi sla el
(o aial s o s LA 53 O slie (5 5T (SLadS sad cably i 0 S 5a Slupas 3K (13K Sl (sl )
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(O-NETWORK: TRAINING: EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
-  Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a, r, s, ,)
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

as game

oo (Sl st Lelae (1,a3) 55b laa gl alasl s Ha ((Sy @y Ty Se) sLaLl 3 Joaan) aladl i galiSla <5 °
(Lf”J:m slads gas Lg‘a‘b) S 9 oo saly UIJJAT‘A‘;JJD sl ) LAJLAg 3 @JL@S L;LAE_\U_\:A.A (590 1 Q e aa °
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(O-NETWORK: TRAINING: EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

Samples are correlated => inefficient learning

Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay

Continually update a replay memory table of transitions (s, a, r,, s,,,) as game
(experience) episodes are played
Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples " .
P Each transition can also contribute

cadl sl oS lie (5 (Sl ot B Lo wilB e DI 58 to multiple weight updates

Lassls SYL LS <= => greater data efficiency
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To remove correlations, build data-set from agent's own experience

S1.4d1, 2,52
S>. a», 13, 53 — s,a,r,s

53.,d3, 4, 54

Sty dt, Nt+1,5t+1 — | Sty dt, lt41. St+1
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)
Store transition (¢;, as, 7y, $1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Satti—a T for terminal ¢
Yi= r; + ymaxy Q(¢;+1,a’;0) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N - Initialize replay memory, Q-network

Initialize action-value function ) with random weights _

for episode = 1, M do b saadla fpolel cau ) lade
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) Qi
fort=1,T do

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)

Store transition (¢;, as, 7y, $1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Satti—a T for terminal ¢
Yi= r; + ymaxy Q(¢;+1,a’;0) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights

for episode = 1, M do - Play M episodes (full games)
}Lliutal;sis?:ince 81 = {z,} and preprocessed sequenced ¢; = ¢(s;) (oS sl 3L 51 asim! M alasi

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)

Store transition (¢;, as, 7y, $1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Satti—a T for terminal ¢
Yi= r; + ymaxy Q(¢;+1,a’;0) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

L/
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) < Initialize state
fort=1,Tdo (starting game
With probability € select a random action a; screen pixels) at the

otherwise select a; = max, Q*(¢(s;),a;0)

; t . beginning of each
Execute action a,; in emulator and observe reward r; and image z; J J

episode

Set 8441 = 81, G4, Te41 and preprocess @41 = B(8¢41) P
Store transition (‘f’;, Aty Tty Gi+1) In D el ol Ak
Sample random minibatch of transitions (¢;,a;,7;, qﬁj‘H) from D cinbn cla w.)
Set s —d for terminal ¢, s ‘Lc_‘-'J-Th&'l_.

" Tj + v maxy Q(¢;+1,a’;6)  for non-terminal ¢, Lot oo (ote LS‘J :
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3 Soox! A

end for
end for
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,Tdo ‘ - For each timestep t
With probability € select a random action a;

of the game
otherwise select a; = max, Q*(¢(s;),a;0) 9
Execute action a,; in emulator and observe reward r; and image z; t ok eli A ile
Set 8441 = 8¢, a4, T¢41 and preprocess @yo1 = G(8¢41) sk !

Store transition (¢;, as, 7y, $1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Satti—a T for terminal ¢
Yi= r; + ymaxy Q(¢;+1,a’;0) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

L/
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function ) with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a; -
otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)

Store transition (¢;, as, 7y, $1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Satti—a T for terminal ¢
Yi= r; + ymaxy Q(¢;+1,a’;0) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3

end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

(S Sl S
(SLaxs)) Ldalas (S S
ani€ o olazl
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a,; in emulator and observe reward r; and image z;

Set 8441 = 84,4, Ty41 and preprocess ¢ri1 = O(S¢41) - Take the action (a,),
Store transition (¢;, as, 7y, $1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r, and next
Set y; = T , for terminal ﬁf’j—i-l state s,
rj +ymax, Q(¢;+1,a’;0) for non-terminal ¢,
' =y . a5 0Y)? ; : axiS il (a,) s
Perform a gradient descent step on (y; — Q(@;,a;;6))” according to equation 3 et S t
end for sl s
end for Sti1 (s ol

{.s:usu_a saaliie “)
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)

Store transition (¢, a, ¢, ¢14+1) in D < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
T for terminal ¢, AR
Sety.: = J ! 74 BEAEE
Yi { Tj + Y max,s Q(¢j+1,(af; 6) % for no;)—)tgnmnal Pj+1 AL il
Perform a gradient descent step on (y; — Q(¢;, a;; according to equation 3 < .-
end for S o0 8 A

end for
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DEEP Q- EARNING WITH EXPERIENCE REPLAY

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a,; in emulator and observe reward r; and image z;
Set 84.1 = 84,4, Ty and preprocess ¢y = G(S¢41)
Store transition (¢;, as, 7y, $1+1) in D .
Sample random minibatch of transitions (¢;,a;,7;,¢;4+1) fromD «— Experience Replay:

. for terminal ¢, ; Sample a random
Y= { r; +ymax, Q(¢;j.1,a’;8)  for non-terminal ¢ minibatch of transitions
Perform a gradient descent step on (y; — Q(;, a;;6))? according to equation 3 from replay memory
end for and perform a gradient
end for descent step

s plasl il
aiS o (5S40 gad alaill (sadadla B LIS 5 Sulal o e S
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[hwww youtube.com/watch?v=\V1eYniJORnk
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DEEP Q-LEARNING: POLICY GRADIENTS

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

‘ewna Q-Learning <
il saaaay Sl 2315300 Q
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DEEP Q-LEARNING: POLICY GRADIENTS

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

¢ewna Q-Learning <
ol sdanay sl W50 Qs

e iy Sou T.Zq:&a il Siaala Hliws Wl 65 o el Ll
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DEEP Q-LEARNING: POLICY GRADIENTS

Policy Gradients

Formally, let's define a class of parameterized policies:II = {71'9, 0 € Rm}
LS oo Al | sadis el slaciwliw B S S g pie st
For each policy, define its value:

J(@)=E Z’ytnm

t>0
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DEEP Q-LEARNING: POLICY GRADIENTS

Policy Gradients

Formally, let's define a class of parameterized policies:II = {71'9, 0 € Rm}
LS oo Al | sadis el slaciwliw B S S g pie st
For each policy, define its value:

J(@)=E Z’ytnm

t>0

S e a3 | T G e ol 58 s

We want to find the optimal policy #* = arg max J ()
Z

How can we do this?

Sasan alasl ) SIS ol anil 65 o G S5
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DEEP Q-LEARNING: POLICY GRADIENTS

Policy Gradients

Formally, let's define a class of parameterized policies:II = {71'9, 0 € Rm}
LS oo Al | sadis el slaciwliw B S S g pie st
For each policy, define its value:

t
J(@)=E Z’y | o
>0
i€ e a3 | O b el 2 sl

We want to find the optimal policy §* = arg max J(0)

How can we do this?

Gradient ascent on policy parameters!

'u.wL“\.w QSLAJSMJQ Sy «Ls;":“’IJS uia.g‘}é‘» Lt

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/



Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

555 S
s el (55800 (gl 5

REINFORCE ALGORITHM

REINFORCE algorithm

Mathematically, we can write: s 5 adl g3 e bl O oty

J(0) = Errp(r;p) [7(7T)]
= /fr'('r)p('r; 6)dr

Lol gL S0 3 S alal 1(T) T se <

Where r(zr) is the reward of a trajectory 7 = (50, ag, 7o, 81, - - )

EITEN
Up %
Ref: http://cs231n.stanford.edu/



Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

A\

Su gl sl el

REINFORCE ALGORITHM

REINFORCE algorithm

Expected reward:  J(0) = E p(r0) [7(7)]

= ffr('r)p('r; f)dr

T
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REINFORCE ALGORITHM

REINFORCE algorithm

Expected reward:  J(0) = E p(r0) [7(7)]

= [r'r('r)p('r; f)dr

Now let’s differentiate this: Vy.J(6) =/r(7)V9p('r;9)dT

-

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

EITEN
Up %
Ref: http://cs231n.stanford.edu/

s oblaly sl

oS (oo e O



Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

AY

Su gl sl el

REINFORCE ALGORITHM

REINFORCE algorithm

Expected reward:  J(0) = E p(r0) [7(7)]

= [r'r('r)p('r; f)dr

Now let’s differentiate this: ng(g) =/

-

EITEN
Up %
Ref: http://cs231n.stanford.edu/

r(7)Vep(T; 6)dr

s oblaly sl

Intractable! Gradient of an
expectation is problematic when p
depends on 6
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REINFORCE ALGORITHM

REINFORCE algorithm

Expected reward:  J(0) = E,p(r0) [r(7)] ARV

= [r'r('r)p('r; f)dr

‘e A : ‘o . . Intractable! Gradient of an
hienyilet's diereniidle s VGJ(G) o /T(T)VBP(T’ Q)d'r expectation is problematic when p

depends on 6
Vop(7;0)
p(T;9)

-

However, we can use a nice trick: v p(7;0) = p(7;6) = p(7:0) Vo logp(T; 0)

pl g e casas I by
oS suliianl (il i85 S )
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REINFORCE ALGORITHM

REINFORCE algorithm

Expected reward:  J(0) = E,p(r0) [r(7)] ARV

= [r'r('r)p('r; f)dr

‘e A : ‘o . . Intractable! Gradient of an
hienyilet's diereniidle s VGJ(G) o /T(T)VBP(T’ Q)d'r expectation is problematic when p

A depends on 6
However, we can use a nice trick: Vop(7;0)
! - Vop(7;0) = p(7;0)— = =p(7;0) Vg logp(T; 0)
If we inject this back: p(T;9)
plsiee e ol b
VoI0) = [ ((Velogpro)prOdr o I
4 Can estimate with
= E vp(r0) [T(T) Vg log p(7;0)) Monte Carlo sampling

s Opead 5 O $,ISe go (65845 gad Sl euldisl s a5 0o ¢ (i 5o (51
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REINFORCE ALGORITHM

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We haVe: p(’}"? 9) = Hp(st+1|shat)7r9(at|st)
t>0

CansS dolas IS eVlaal (iadls ¢ gas | LacueS T assl 65 oo
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REINFORCE ALGORITHM

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We haVe: p(’}"? 9) = Hp(st+1|shat)7r9(at|st)
t>0

Thus: logp(7;0) = > log p(si1]st, ar) + log mg(as]s:)
>0
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REINFORCE ALGORITHM

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We haVe: p(’}"? 9) = Hp(st+1|shat)7r9(at|st)
t>0

Thus: logp(r;6) = ) " log p(ss 415, as) + log ma(as|s:)
t20 Doesn’t depend on

And when differentiating: Ve logp(7;0) = Z Vologme(asls:)  yransition probabilities!

>0 )
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REINFORCE ALGORITHM

VoJ(6) = / (r(1) Vs log p(; 6)) p(r; 6)d7

REINFORCE algorithm = Eqeprie) () Vo log p(7; 0)]

Can we compute those quantities without knowing the transition probabilities?

We haVe: p(’}"? 9) = HP(StJrllSt: at)’:’i'g(a.t|8t)
t>0

Thus: logp(r;6) = " log p(sti1]se, ar) + log me(ax|s.)

t>0
. L. Doesn’t depend on
And when differentiating: Ve logp(;6) = Z Vo log mg(at|st) transition probabilities!
£>0

Therefore when sampling a trajectory 7, we can estimate J(0) with

VoJ(0) = ) r(r)Velogmo(arls:)

t>0

e CnedS 358 sabal, B 15 J(0) ail e (T ol 5 S 5 (586 sl a8 (0l i
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REINFORCE ALGORITHM: INTUITION
Intuition
Gradient estimator: ~ VjJ(0) ~ Z r(7)Velog me(at|st) LS & 30medl
t>0
Interpretation:

- Ifr(z) is high, push up the probabilities of the actions seen
- Ifr(z) is low, push down the probabilities of the actions seen

:J:\-U.é:\
B IP M Iy sad swss sla i e Ylaial :..Lfbl_j Yl_s r(T) S
PR L.):":.":’ ‘J s s4sY (5‘.&‘_)1135 oY Llaa) :J_CBL) L'):s:sL) r(t) ;‘ 3k
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REINFORCE ALGORITHM: INTUITION
Intuition
Gradient estimator: ~ VyJ(6) ~ Z r(7)Velog me(at|st)
t>0
Interpretation:

- Ifr(z) is high, push up the probabilities of the actions seen
- Ifr(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

«< {.\:\3;.3 Q‘J&‘éd‘—m b‘g:: L:t C_\.‘.u‘ &sn.n
ol oA T lagis sdaa sB0T aal o sa (5,550 5 S S
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REINFORCE ALGORITHM: INTUITION

UP

DOWN

UP
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REINFORCE ALGORITHM: INTUITION
Intuition
Gradient estimator: ~ VjJ(0) =~ Z r(7)Ve log mg(at|st)
t>0
Interpretation:

- Ifr(z) is high, push up the probabilities of the actions seen
- Ifr(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

S0 w0 Yb bl SIS Gl casa s 0l b
el e L3l [, 538l 55 S sla s 4] liel ol ol )

S SaS () 50edS 4 pail g3 e LT
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction

Gradient estimator: Vg J(0) ~ Z r(7)Ve log mg(at|st)
t>0
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction

Gradient estimator: Vg J(0) &~ Z r(7)Ve log mg(at|st) OLaIS 05
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VeJ(G)%Z Z’rf Vo logme(as|st)

t>0 \t/'>t

:J gl o
<ﬁ&Yb|JaJﬁb%duﬁl§«SgQYL¢h‘
adla (T 50 e 9 b s paaas Galaly b 45 188
(s Gl e slae)
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction

Gradient estimator: Vg J(0) ~ Z r(7)Ve log mg(at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VeJ(G)%Z Z?"t’ Vo logme(as|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VodJ(0 Z ny o Vo log mg(a|se)
t>0 \ />t

ip9u ol
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’'t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.
= JS.C&A
v labiae Lo g3 (553805 S ala a0 lats
g oo dolul | La i e Ylaal Gu s YU il ende  (Sea bagalaly S1Jbs gl 5
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’'t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

C ol ago Sy 4 (Ja
L3 g 835 9T a4 an e ST A el (g5 5 S b i palaly SO <
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REINFORCE ALGORITHM: VARIANCE REDUCTION

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ(0) =~ Z Zf}f by —|b(st)|| Velogme(as|ss)

>0 \t'>t
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

VoJ(0) =~ Z Zf}f by — b(sg) | Velogmg(as|ss)

t>0 \t'>t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories
ool LS“:“':‘ L S
a8l 5 (s4an (595 3 0SB sad S slagilaly Bl eul S sade Sl
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

VoJ(0) =~ Z Zf}f by — b(sg) | Velogmg(as|ss)

t>0 \t'>t
A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

A ethba S
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Sasla) g0 da 0L Gl Lol 0yl
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?
Saslasl oo da b ol L ol
A: Q-function and value function!
G55l B s Qals
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s if Q" (ss,at) — V7 (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Sade S g oo Jlandiga Sy cilla S5 50 A GBS S b 055 s bty
Qﬂ-(sta a’t) o V’"(St)
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REINFORCE ALGORITHM: VARIANCE REDUCTION

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s if Q" (ss,at) — V7 (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: V,J(6) = Z(Q‘”(st, ag) — V™ (s¢))Velogme(as|sy)

t>0
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ACTOR-CRITIC ALGORITHM

Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

rediiue
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ACTOR-CRITIC ALGORITHM

Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

aly
10 s S0b 3l sulanl b

(oS S 515 0 S0k g crwbiw slag Lol S Al 55 o

(Q b)) sy Sy 5 (wwlow) R3S 909 58 GEO T L
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ACTOR-CRITIC ALGORITHM

Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay

5 i€ CLAT ) S Al o€ 0 € o avanad S50

S Nl Tl S Ss 5 cl su g A HaBda o) GRS S e S0k G ol
S oo Sawn | a8 gadils g Guinan ®

S o 1 i L 5 sl 3 (S e mlla ) i (a0 il LS o) € o 0l 0
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ACTOR-CRITIC ALGORITHM

Actor-Critic Algorithm

Problem: we don’'t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor

how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values

of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay

Remark: we can define by the advantage function how much an

action was better than expected A™(s,a) = Q" (s, a) — V™(s)

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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ACTOR-CRITIC ALGORITHM

Actor-Critic Algorithm

Initialize policy parameters 60, critic parameters ¢
For iteration=1, 2 ... do
Sample m trajectories under the current policy

AG 0
Fori=1, ..., mdo
Fort=1, ..., Tdo

A= 9" trt = Vy(sh)
i
Af + Af + AV, log(at|s?)

A 3 Y Vo4
0« ald
¢ + BAg

End for
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the
3"

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

e aiiS o XS5l o 9uad S ) 93 (595 9 (AT sl S Laupanl S dlin S

S Saotn 1 G IS B S oo il o

o3l 0 Lul ¢ (g iy ubile ¢ Shiwlas pulie (g nad s cadin OlS ja 5 lusl SHyol B aled) s
ol b g el oal g 5 La K550 508 50 (36 S [Mnih et al. 2014]
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the
3*

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

oLl a..s.\d UJ.SL‘ (SLA‘JA_\A_JS JlA o “\J L‘ RE|NFORCE J‘ adls_u.u‘ L‘ wmds LSLAU"""S ulA.u‘ USJJSA 6‘)" u-aul_u.u 6‘)_\SJL\
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

(X4, ¥q)
Input
image

. [Mnih et al. 2014]
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

2

Input

image ‘
‘Iiilll
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

2

Input

image ‘
‘Iiilll
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

2

Input

image ‘
‘Iiilll
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RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)
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Ref: http://cs231n.stanford.edu/
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[Mnih et al. 2014]

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition



AN Geoe S50k
QIS ya Caa 685 Al 4 oS
iS50 e 55 Jae

RECURRENT ATTENTION MODEL (RAM)

REINFORCE in action: Recurrent Attention Model (RAM)

L,i'

Has also been used in many other tasks including fine-grained image recognition,
Image captioning, and visual question-answering!
2008 sl (el ol s Joli GSas Bl g 5l (ol S sl sl rines
L olana Gl g 4 gy 5 s sluad (IS s3e
Figures copyright Daniel Levy, 2017. Reproduced with permission. [Mnih et al. 2014]
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More policy gradients: AlphaGo

AlphaGo [Nature 2016]:

- Required many engineering tricks

- Bootstrapped from human play

- Beat 18-time world champion Lee Sedol
AlphaGo Zero [Nature 2017]:

- Simplified and elegant version of AlphaGo

- No longer bootstrapped from human play

- Beat (at the time) #1 world ranked Ke Jie
Alpha Zero: Dec. 2017

- Generalized to beat world champion

programs on chess and shogi as well

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Summary

- Policy gradients: very general but suffer from high variance so
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually more
sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(0), often good
enough!
- Q-learning: Zero guarantees since you are approximating Bellman
equation with a complicated function approximator

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2019

Previous Years: [Winter 2

truck
w.
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@irplane

horse

puter Vision has become ubigquitous in our society, with apphcations in searcn, Imac

http://cs231n.stanford.edu



