Recurrent Neural Networks (RNN)
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MODELLING CONTEXT AND MEMORY
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ONE-HOT VECTORS

x; = one-hot vector
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LLANGUAGE MODEL
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Language Model
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MEMORY AS A GRAPH

Output
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Output Parameters

Memory Parameters

Input Parameters
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RECURRENT NEURAL NETWORK (RNN)
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RECURRENT NEURAL NETWORK (RNN)

o Vocabulary of 5 words

o A memory of 3 units [Hyperparameter that we choose like layer size]
o ¢:[3x 1], W:[3 x 3]

o An input projection of 3 dimensions

o U:[3 x 5]
o An output projections of 10 dimensions

o V:[10 x 3]
c; =tanh(U x; + Wc,_1)
& y: = softmax(V c¢;)
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ROLLED NETWORK VS. MULTI-LAYER NETWORK
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3-gram unrolled recurrent network
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RECURRENT NEURAL NETWORKS: PROCESS SEQUENCES

one to one

\ Vanilla Neural Networks
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one to one one to many many to one many to many many to many

\ e.g. Image Captioning
Image -> sequence of words
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one to one
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one to one one to many many to one many to many many to many
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one to one
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one to many many to one many to many

many to many
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e.g. Video classification on frame level
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RECURRENT NEURAL NETWORK
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RECURRENT NEURAL NETWORK
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usually want to predict
a vector at some time steps
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RECURRENT NEURAL NETWORK
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We can process a sequence of vectors x by applying a

recurrence formula at every time step: y
he|= | fwl(Fi—15|T4)
new state old state  input vector at some
time step

some function
with parameters W
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RECURRENT NEURAL NETWORK
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We can process a sequence of vectors x by applying a
recurrence formula at every time step: y

hy = fW(ht—la wt)

Notice: the same function and the same set of parameters
are used at every time step.
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(VANILLA) RECURRENT NEURAL NETWORK

The state consists of a single hidden vector h:

y Yt = Whyht - by

hy = fW(ht—la mt)
) ﬁui

hy = tanh(Whhht_l + W nxse + bh)
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RNN: COMPUTATIONAL GRAPH
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RNN: COMPUTATIONAL GRAPH
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RNN: COMPUTATIONAL GRAPH
ho—»fW—>h1—>fW—>h2—>fW—>h3 h;
X1 Xy X3
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RNN: COMPUTATIONAL GRAPH

Re-use the same weight matrix at every time-step
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RNN: COMPUTATIONAL GRAPH: MANY TO MANY
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RNN: COMPUTATIONAL GRAPH: MANY TO ONE

ho—»fW —>h1—>fW —>h2—>fW
I I !
W X4 X, X3
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RNN: COMPUTATIONAL GRAPH: ONE TO MANY
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SEQUENCE TO SEQUENCE: MANY-TO-ONE + ONE-TO-MANY
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Many to one:
Encode input sequence in a single vector
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SEQUENCE TO SEQUENCE: MANY-TO-ONE + ONE-TO-MANY

PSS A
L3 Sl o 4o 59500 sUlia (5,18

Many to one:
Encode input sequence in a single vector

Y1 Yo

ROPNES
LS (53908 Ve S s o) uss sdlis wl 8

One to many:
Produce output sequence from single input vector
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence: “hello”

input layer

1
0
0
0
“h"

O |loo-~o

input chars:

La SIS 51 (sledliis s b sums SIS sy £ cdaa
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence: “hello”

La SIS 51 (sledliis s b sums SIS sy £ cdaa
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ht — tanh(Whhht_l -+ thfli't + bh)

0.3

hidden layer | -0.1

0.9

1

: 0
input layer

P ¥ 0

0

input chars:  “h”

\

0.1 |\w hnl -0-3
-05 —— 0.9
-0.3 0.7

T TW_xh
0 0

0 0

1 1

0 0

“Ill SIIH
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target chars:

Example:
Character-level
Language Model

output layer

Vocabulary:
[haeal,o] hidden layer

Example training
sequence: “hello”

input layer

input chars:

La 3S1LI€ ) sldlos aalo b (gaas ;3SIHIS S ing 1 dua
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1.9 -0.1

-1.1 2.2
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T TW_xh
0 0

0 0

1 1

0 0




Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

¥o

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model
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Sample

Softmax

output layer

hidden layer

input layer

input chars:

({3

.03
A3
.00
.84

1.0
2.2
-3.0
4.1

0.3
-0.1
0.9

A

1
0
0
0
“hy
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

EITEN
Up %
Ref: http://cs231n.stanford.edu/

AL o 50 5L Jae 1l

Sample

Softmax

output layer

hidden layer

input layer

input chars:

0.3
-0.1

0.9

1
0
0
0
“h

K

LS9 o Souad Jue 4 G gad sla SIS 51 (S adaad e jucGinle T ole )y oo

o |loo—=0



Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

Yv

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model
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Sample

Softmax

output layer

hidden layer

input layer

input chars:

HIIJ

f

.03 .25
A3 .20
.00 .05
.84 .50
1 1
1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
T |
0.3 1.0
0.1 —— 03 |
0.9 0.1
T A
1 0
0 1
0 0
0 0
i =

\*..
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model
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Sample

Softmax

output layer

hidden layer

input layer

input chars:

Eie:\

HITJ/\

Hllﬂ

v

O
| f | t
.03 25 A1 A1
13 20 A7 02
.00 .05 68 .08
.84 50 .03 79
t t t t
1.0 0.5 0.1 0.2
2.2 0.3 0.5 15
3.0 1.0 1.9 0.1
4.1 1.2 11 2.9

' &
T TW_hy
0.3 1.0 0.1 |\w bnl-03
0.1 » 03 - 05 > 09
0.9 0.1 03 0.7
'

T ‘ T TW_xh
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
“h” e e

fl
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Minimal character-level vanilla RNM model. Written by Andrej Karpathy (@karpathy)
8S0 License

import numpy as np

data = open('input.txt’,
chars = list(set(data))
data_size, vocab_size = len(data),

'r').read()

1en(chars)
print ‘data has %d unique.' % (data_size,
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { iich for i,ch in enumerate(chars) }

%d characters, vocab_size)

yperparameter
hidden_size = 100
seq_length = 25 #
learning_rate = le-1

para
np.randon.randn(hidden_size, vocab_size)*6.61 put
np.random.randn(hidden_size, hidden_size)‘e.01 # hi
np.random.randn(vocab_size, hidden_size)'e.e1 i
np.zeros((hidden_size, 1)) # hidden bia
by = np.zeros((vecab_size, 1)) # cutput bia

wxh
whh =

der lossFun(inputs,

targets, hprev):

inputs, targets are both list of integers.

hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, (. {1 {}

hs[-1] = np.copy(hprev)

loss = @

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1

hs[t] = np.tanh(np.dot{Wxh, xs[t]) + np. dut(whh ns[t 1]) + hh) t
ys[t] = np.dot(why, hs[t]) + by i
ps[t] = np.exp(ys[t]) / np.sum(np. exD(YS[l]” 4

loss += -np. log(ps[t]l{argets[l} o) ft 1

dwxh, dwhh, dwhy = np.zeros_. nke(wzh) np.zeros_like(whh),
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[e])
for t in reversed(xrange{len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # &
dwhy += np.dot(dy, hs[t]. r)
dby += dy
dh = np.dot(why.T, dy) + dhnext & p int
dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tar linearit
h

np.zeros_like(why)

np.dot(dhraw, xs[t].T)

np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(Whh.T, dhraw)

for dparam in [dwxh, dwhh, dwhy, dbh, dby
np.clip(dparam, -5, S, out=dparam)

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(mputs) 1]

JGs

def sample(h, seed_ix, n):
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
x = np.zeros((vocab_size,
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot (Wxh,
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size),
np.zeros({vocab_size, 1))
x[ix] =
ixes.append(ix)
return ixes

1))

x) + np.dot(whh, h) + bh)

p=p.ravel())
% =

n, p=9, 06
mexh, mwhh, mwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_. ukeiuhvl
mbh, mby = np.zeros_like(bh), np.zeros_like(by)
smooth_loss = -np.log(1.6/vocab_size)*seq_length # loss at iter
while True:

ir peseq_ leng(h-l = len(data) or n
hprev = np.zeros((hidden_size, 1)) # reset RNN memory
p=e8 from start of
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100 == o:
sample_ix = sample(hprev, inputs[e], 2ee)
Ext = ''.join{ix_to_char[ix] for ix in sample_ix)

Print '----\n %S \n----' % (Exe, )

forward seq_lengt aracters through the net and fetch grad
loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun{inputs, targets,
smooth_loss = smooth_loss * ©.999 + loss * ©.801

if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print

hprev)

rfo leter up | rad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):
mem 4= dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagra

+= seq_length
n 4= 1w iteratio inter

°

(https://qist.github.com/karpathy/d4dee566867f8291f086)

min-char-rnn.py qgist: 112 lines of Python
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THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
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at first;

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

¢ train more

“Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

¢ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

¢ train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

L/'
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VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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THE STACKS PROJECT: OPEN SOURCE ALGEBRAIC GEOMETRY TEXTBOOK

2 The Stacks Project
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For @,—, . .. Where L,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S=S8pec(R)=UxxUxxU

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U; XS, U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that O . is a scheme where z, 2, 5" € S’ such that Ox ;- — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2"/S")

and we win.

To prove study we see that F|y is a covering of A, and T; is an object of Fx/s for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M® = I* ®spee(r) Os,s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 77 ¢, (Sch/S) spps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example 7?7. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,,.,
see Descent, Lemma ?7. Namely, by Lemma 77 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim | X| (by the formal open covering X and a single map P_mjx(A) =
Spec(B) over U compatible with the complex

Set(A) = (X, Ox.oy)-

When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, _, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. 0

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set I =
Jy C I Since I™ C I™ are nonzero over ig < p is a subset of J, o 0 Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox:) = 0x(D)

where K is an F-algebra where §,,.; is a scheme over S. a
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X4, we
have

Ox(F) = {morphy xoy (G, F)}

where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=2Y' a53Ya33YaY xx Yo X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and z € G the diagram

S —

l

{—Ox

I\

’
=a —>

|

=a ——ra X

gory

Spec(Ky) Morsess  d(Oxy,.9)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
tvpe f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

o Oy is a sheaf of rings.

m]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, see Lemmas 77?2,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz — Fz -UOx,u) — 0},‘0.\:;(0;,,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme Ox-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.
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block: discard bdi_unregister() in favour of bdi_destroy()
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static void do_command(struct seq file *m, void *v)

{

int column = 32 << (cmd[2] & 0x80);
if (state)

cmd = (int)(int_state * (in_8(&ch->ch _flags) & Cmd) ? 2 : 1);
else

seq = 1;
for (i = 0; i < 16; i++) {

if (k & (1 << 1))

pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000ffff£f£ff8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);

pipe set_bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem_info = &of_changes[PAGE_SIZE];
rek _controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control_check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq_puts(s, "policy ");
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Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

-

L3

-

-

-

-

* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

L4
L4
-
L3
-
-

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

#include <linux/kexec.h>

#include <linux/errno.h>

#include <linux/io.h>

#include <linux/platform_device.h>
#include <linux/multi.h>

#include <linux/ckevent.h>

#include <asm/io.h>

#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>

(b b/ Ref: http://cs231n.stanford.edu/
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#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
finclude <asm/setew.h>
#include <asm/pgproto.h>
fdefine REG_PG vesa_slot_addr_ pack
fdefine PFM_NOCOMP AFSR(0, load)
fdefine STACK DDR(type) (func)
#define SWAP ALLOCATE (nr) (e)
fdefine emulate_sigs() arch_get_unaligned_child()
fdefine access_rw(TST) asm volatile("movd %t%esp, %0, %3" : : "r" (0)); \

if (__type & DO_READ)

| 2nd Edition

static void stat_PC_SEC _ read mostly offsetof(struct seq_argsqueue, \
pC>[11);

static void
os_prefix(unsigned long sys)
{
§ifdef CONFIG_PREEMPT
PUT_PARAM_RAID(2, sel) = get_ state_state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)=-1->1r full; low;
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guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Cell sensitive to position in line:
: $sing of the Berezina lies in the fact
proved the fallacy of all the plans for
and the soundness of the only possible
v and the general mass of the army
ollow the enemy up. The French crowd
speed and all its energy was directed
ike a wounded animal and it was impo
fas shown not so much by the arrangements r
hat took place at the bridges. When th.ﬂ*
, people from Moscow and women with children
ranspor all--carried on by vis inertiae--

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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F_SIGPENDING) ;

If statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Cell that turns on inside comments and quotes:
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quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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SEARCHING FOR INTERPRETABLE CELLS

#ifdef
SRRt 1cC

for

K_
:f i mask l i] & classes[class][i])

CONFIG_AUDITSYSCALL
inline int audit_match_class_bits(int class, u32

(1 = ©; 1 < AUDIT_BITMASK_SIZE; i++)

LIIIIIIII

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

*mask)
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NEURAL IMAGE CAPTIONING

Image Embed|

J \ J \ )

4096-dim

Convolution Layer
+ Non-Linearity

| 2nd Edition
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T T |

Pooling Layer Convolution Layer Pooling Layer
+ Non-Linearity

Fully-Connected MLP
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Image Embedding (VGGNet)

J \ J \ )

4096-dim

Convolution Layer
+ Non-Linearity

| 2nd Edition
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T T |

Pooling Layer Convolution Layer Pooling Layer
+ Non-Linearity

Fully-Connected MLP
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Bl

4096-dim

[T

g 0]
m G sl
Layel Pooling Layer  Convoluti
+ Non-Linearif
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Image Embedding (VGGNet)
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P(next)

<start>

P(next) P(next) P(next)

P(next)

P(next)

Two people and

two

horses.
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[T—E

IIiE Z_DD -

. ;o . P
Convolution Layer Pooling Layer  Convolution L.
+ Non-Linearif + Non-Linearit

Image Embedding (VGGNet)
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P(next)

<start>

P(next) P(next) P(next)

P(next)

P(next)

Two people and

two

horses.
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SEQUENCE MODEL FACTOR GRAPH

http://dbs.cloudcv.org/captioning&mode=interactive
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IMAGE CAPTIONING

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Prepared by Kazim Fouladi | Spring 2021 | 2nd Edition

é/'
) U N
1
Ref: http://cs231n.stanford.edu/



Vo o $500

Rl s 9, s lasl gas

IMAGE CAPTIONING

Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network
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test image
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image B

conv-64
conv-64

maxpool

conv-128
conv-128

max_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax
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image | <

conv-64
conv-64

maxpool

conv-128
conv-128

max_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
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image B

conv-64
conv-64

maxpool

conv-128
conv-128

max_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
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x0
<STA
RT=

<START>

test image
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image -

test image

conv-64
conv-64

max_pool

conv-128

conv-128
ma)_t_pool

conv-256
conv-256

e T before:
conv-512 h = tanh(WXh 5 X + Whh * h)

conv-512

maxpool

Wih
conv-512 .
conv-512 T now:

h = tanh(Wxh * x + Whh * h + Wih * v)

maxpool

FC-4096 0
FC-4096 el

RT=>
\'

<START>
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image B

conv-64
conv-64

maxpool

conv-128
conv-128

max_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
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RT=

straw

<START>

sample!

test image
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image i}

conv-64
conv-64

max_pool

conv-128
conv-128

ma)_t_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
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RT=

straw
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test image
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image i}

conv-64
conv-64

max_pool

conv-128
conv-128

ma)_t_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

!

T

hO —»{ h1

T

T
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RT=

straw
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<START>

test image

sample!
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image @ =

conv-64
conv-64

maxpool

conv-128
conv-128

ma)_tpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512

conv-512

maxpool

FC-4096
FC-4096
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y0 y1 y2
ho | h1 h2

T

T

T

x0
<STA
RT=

straw

hat

<START>

test image
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image i}

conv-64
conv-64

max_pool

conv-128
conv-128

ma)_t_pool

conv-256
conv-256

maxpool

conv-512

conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096
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test image

\ sample

<END> token

y0 y1 y2
ho | h1 h2

=> finish.

T

T

T

x0
<STA
RT=

straw

hat

<START>
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A cat sitting on a
suitcase on the floor

Two people walking on
the beach with surfboards
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A cat is sitting on a tree
branch

A tennis player in action
on the court

A dog is running in the
grass with a frisbee

Two giraffes standing in a
grassy field

A white teddy bear sitting in
the grass

A man riding a dirt bike on
a dirt track
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Image Captioning: Failure Cases

S " a tree branch

woman is hi}ng a
cat in her hand

Amanina
baseball uniform
throwing a ball

A person holding a
computer mouse on a desk

C/
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Image Captioning with Attention

RNN focuses its attention at a different spatial location
when generating each word

[A__]
'bird |
flying

over

a
' body
g
water

1.Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word

14x14 Feature Map

i

generation
- *

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

\/ CNN

Image:
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

Features:

LxD
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Image Captioning with Attention

Distribution over
L locations

al

T

CNN = | h0

Features:

Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015
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Image Captioning with Attention

~~BE

Image:
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015
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Features:
L x

Weighted
combination
of features

= | h0

Distribution over

L locations

al

!

Weighted

features: D
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Image Captioning with Attention

CNN

Image:
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015
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Distribution over

L locations
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> | h0 P hi
Features: /\
L x _

Weighted : ’

features: D | © y
Weighted

combination
of features

First word
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Image Captioning with Attention

Image:
HxWx3

Attention”, ICML 2015
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CNN

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual

Features:
L x

Weighted
combination
of features

=g | h0

Distribution over

L locations

al

!

Distribution
over vocab

a2

d1

\/

=

h1

/N

Weighted
features: D

z1

y1

First word
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Image Captioning with Attention

Distribution over  Distribution

ocatio over vocab
al a2 d1

5 : T
i _. CNN =3 | h0 —P> h1 > h2
&
S Featlyes: /\ /\
8 Image: L x N
£ el e
5 HxWx3 g _ z1 y1 2 y2
@ _ eatures: D
_ Weighted
§ Xu et al, “Show, Attend .and Tell: Neural Combination
o Image Caption Generation with Visual
= Attention”, ICML 2015 of features
3
X
2
©
o
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9
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Image Captioning with Attention

Distribution over  Distribution

ocatio over vocab
at a2 d1 a3 d2

S -
5 _. CNN = | h0 —P> h1 * o
&
b~ Featlyes: A
8 Image: L x Weidhted
£ el e
5 HxWx3 g _ z1 y1 77 y2
? _ eatures: D
— Weighted
§ Xu et al, “Show, Attend _and Tell: Neural Combination
o Image Caption Generation with Visual
£ Attention”, ICML 2015 of features
g
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Image Captioning with Attention

Soft attention : ‘ ‘ T - ‘ =
\-_/

bird flying over body water

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention
A stop sign is on a road with a
é mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2021

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/




AA

el i el st Sl s

TyPiCcAL VOA MODELS

Image Embedding (VGGNet)

Neural Network Softmax
over top K answers

\ .@ byioly
J

4096-dim

—> Ply=1]x)

J \ J \ J L
' '
Convolu_tlon I_.ayer Pooling Layer Convolu'tlon I'_ayer Pooling Layer  Fully-Connected MLP Ply=2 )
+ Non-Linearity + Non-Linearity / @
Input Softmax
(Features Il) classifier

Question Embedding (LSTM)

“How many horses are in  this image?”
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Visual Question Answering

(>}

: What endangered animal Q: Where will the driver go Q
is featured on the truck? if turning right?

A: A bald eagle. A: Onto 24 % Rd. A
A: A sparrow. A: Onto 25 % Rd. A
A: A humming bird. A: Onto 23 % Rd. A:
A: Araven. A: Onto Main Street. A:

wal et al, “VQA: Visual Question Answering”, ICCV 2015

st al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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: Who is under the

umbrella?

Two women.

A child.

An old man.

A husband and a wife.
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Visual Question Answering: RNNs with Attention
softmax [ [ [ 1] “

[ 1

LSTM

\ 1
which is \ the\ brown bread ?

What kind of animal is in the photo?
h i\ A cat.

Wil =
- IS

‘Va
-

BCaE
convolutional

attention terms a, feature maps C(l)

Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016 Why is the person holding a knife?
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes. To cut the cake with.
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SEQUENTIAL PROCESSING OF NON-SEQUENCE DATA

Classify images by taking a
series of “glimpses”
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BACKPROPAGATION THROUGH TIME (BPTT)

///LO/SSH\\\

Forward through entire
sequence to compute
loss, then backward
through entire sequence
to compute gradient

A
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TRUNCATED BACKPROPAGATION THROUGH TIME (TBPTT)

Loss

/}‘ !

\\ Run forward and backward through
chunks of the sequence instead of

whole sequence

A

>
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TRUNCATED BACKPROPAGATION THROUGH TIME (TBPTT)

Loss

AR

/

[ [ |

AN\
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Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps
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TRAINING RECURRENT NEURAL NETWORKS

Cross-Entropy Loss

1
le_[yf}i" = L=—logP=ZLt=—T21tlogyt
tk t t

(Backpropagation Through Time: BPTT) gloy Jgbo yu Ll yus :0uldiul 3y g0 als ; o<l

L3 s o suliil (gls yuany (soucls ",li.sa%.o o
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BACKPROPAGATION THROUGH TIME: BPTT

_thbg% = th
t t

oL 0L 0L
v’ ow’ aou
HaaiS oo S8 Y all (95 o2 e S Lisublus (5]
0Lz 0Lz 0Lz
s ov’ ow’ au
?Q c¢; = tanh(U x; + Wci_q)
E y; = softmax(Vc;)
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BACKPROPAGATION THROUGH TIME: BPTT

0L; 3Ly dys

oV 9y, aV

YVt =
[ =

tanh(U x; + Wci_q)

softmax(Vc;)

—thlogyt = ELt
t t
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BACKPROPAGATION THROUGH TIME: BPTT

% . 6133 6y3 aC3
oW  dys dcz W

sl et b W €3 G il s
Two-fold: ¢; = tanh(U x; + Wcy_1)
0 f(el),Y(x)) _ Of d¢ n af 9y

dx 0 dx Y 9x
603 662 L L L
— =1 Y1, £1 Y2, &2 Y3, &3
ow X 21 5y )
|74
¢, = tanh(U x; + Wci_q)
y: = softmax(Vc;) w
L= ZZtlogyt Eﬁt
U
X1
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BACKPROPAGATION THROUGH TIME: BPTT

dcs
ow
dcy
ow
dcq
ow

dc, )
= C, 2
0
c gcy > %_
17 aw oW
aCO
= C —
0 P D

Yt

tanh(U x; + Wci_q)

softmax(Vc;)

—thlogyt = ELt
t t
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ALTERNATIVES FORMULATION FOR RNNS
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ANOTHER [LOOK AT THE GRADIENTS
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ow ~ “T=15¢, 9c, ow

6_1:% 0L Odcy 0ct—q 0Cry1 < t—r%

dcy dc;  dcy Oci—q OCi—o  Ocy dcy
N J

Rest — short-tervn factors € > T = long-term factors
n determines the
norm of the gradients

el 0C[0C—q 3 313850 s Juala S RNN slag Lol £

’ .
% .
Ref: https://uvadlc.github.io/
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RNN GRADIENTS IN 1D

0L 0L

aCT

dcy - acr . dCT—1 . dCT—> .

0L 0L

<1

aCT

O — =
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> 1

dce - acr . dcT_1 . dCT_> .

aa_fv « 1 = Vanishing gradient

ans S 5o RNN slag Lol S
x
] 0Ct+1
dcc,
<1
acl )
) oL
dCc, —>1=
ow

>1 _J

Exploding gradient
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RNN GRADIENTS IN N-D

dce . :
When ¢ € RNthen —%is a Jacobian
0Ct—1
. 0L 0L dcy Ocr—q dCtyq ) o
dc;  dcp dery dcp_, | dcg = -« 1= Vanishing gradient
<1 <1 <1
N oL 0L dcy Ocr—q 0Ctyq )
dc; dcy dcp_q dcr—p - ¢y - 9L : -
-5 > 1= Exploding gradient
>1 > 1 >1 _J

oy gy gy

d
y € R?,x € R3: — ) @) )
dx |0y dy dy
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RNN GRADIENTS IN N-D

When ¢ € RNthen

-

Ly

. OCt+1

. dCt+1

5 0L . 0L aCT acT_1
dcy - dct Odct_q1 OCT_»
p<l1 p<l1

o 0L L 0L aCT aCT_l
dcy - dct Odct_q1 OCT_»
p>1 p>1

2, ;
2y _—
Ref: https://uvadic.github.io/

\

dce,

p<1_)
\

aCt

aCt 1

~

p>1_J

aCt

ac

axs wia o RNN slagLul £

is a Jacobian

| rotee s3elly (P = 835 5lake (38550 =) (2 S15 b ¢ ok

k1> Vanishing gradient

: = 1= Exploding gradient
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GRADIENT CLIPPING

Pseudocode
1 o 9L oL
5 ow
2. if llgl| > 6y;
& ||g||g
else:
print( ‘Do nothing’)

2, ;
2y _—
Ref: https://uvadic.github.io/
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VANISHING GRADIENTS

dcy
dc,
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0L, ~C 0Ly By, dc dc,

ow 4 dy; dc; dc, W
=
aCk
‘ ‘ — = ‘ ‘ W - 0 tanh(ck_1)
0Ck-1
t=k=t1 t=k=t1
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VANISHING GRADIENTS
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e Uk 4 o Ui ool S

0L, ~o 0Ly dc, dc,
ow ] dy; dcy dc, OW
T=

dcy dc
o= 1= 1_[ W - 8 tanh(c;_,)
t=k=t1 tzk=t
0L dc
oFort=1,r=2 = —2 o« —=2
ow acl

0L dc dcq OcC
Fort=1r=3 =2 -——x—=_—.—-
ofort=1r=3 = <o =75,

0L, dcy dc, 0dcz 0cCy

fort=1,r=4 = 2« 9¢s
orort=1 oW - dc;  dcy dc, dcy
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VANISHING GRADIENTS
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0L, ~C 0Ly By, dc dc,

ow 4 dy; dc; dc, W
T=
6ct_1—[ aCk_nwat b
aCT — ack_l — an (Ck—l)
t=k=t t=k=>t
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VANISHING GRADIENTS

ol u_.\\s.a JA Q‘J b..&.fbda.a.z.:.n Gud‘fd‘; u_bduu‘:\lc:)‘_j

. zL _ 0L 0L,
- t ‘ ow — OW
0L, ~C 0L dc, 0L dc, dc,
oW  Luodc, OW ZLudc, dc, OW
T=1 =1
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VANISHING GRADIENTS

0L _ 0Ly | 0Ly 9Ly 0Ly | OLs

ow — aw | ow ow ' aw | ow

*

oW
.\.

: \ oo
3 N %%
3 ow
0L4 oL
: L | o
. .

2, ;
2y _—
Ref: https://uvadic.github.io/
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VANISHING GRADIENTS
L, E)Lz 6L3 aL4 aLS
o Letssay—Woc 1,520 1/10,—2 o« 1/100, = o 1/1000,—2 < 1/10000
=¥, 2L = 11111

o If— rescaled to 1 > 255 oc 1075
oW oW

(S e S8 oae—slB S (595 5 88 s 580k)

0L _ 0Ly | 0Ly 0L;
ow ~ ow | ow ow = aw = aw
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FIXING VANISHING GRADIENTS

(JJ.&LJM45..).:Su.o‘)\9_x.:..o“)Ua.;dLs/&“u.u)leJ'S\}lf&LA&\}J&JJJJO&M‘J&JYJiJ%{%

0L 0cCpiq 2
Q= 2 O, = z act*(lnact 1
‘ ‘ 0Ct11

taiile (did ydny G850 slad o5k ol soliiwl %
(Long Short-Term Memory Module) oY sk ciasoli s (salisSla Jg35L O
(Gated Recurrent Unit Module) ouds (5 jl3S6 jl g 4o SdS s anlg J935 O
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FIXING VANISHING GRADIENTS

aals Sa oS LA LS50 i a5 gl wlbcgle) Jsb Ho e JUESw
il T (sl o 3o € (5L Jlad s & 3l sulisal : Jasl

4
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DEEP RNNS
. A
Multilayer RNNs
i
hi_tanhwf(;;;) f 4 + 4+ 4 % 4
t—1 RS R S R S| S S I S
h € R Wt [n x 2n]
g s e e s s
LSTM: W' [4n x 2n) I = S gy =
i sigm 5 tr t £+ t 1 t 1
/ = | 5181 |yt (hf ) T I
0 ilgrﬂ hi_1
an
g _ T ffff ¥
d=fod_+i0g depth
hl = o ® tanh(c})

time
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MULTILAYER RNNS

Multilayer RNNs

-1
h! = tanh W' (ht )

l
ht—l

h € R™

R\ Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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Wt [n x 2n]

w¥aia SEKL e glasis

depth

time
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VANILLA RNN GRADIENT FLOW

hy = tanh(Whhht_l -+ Wmhxt)

L — tanh (Whh Wh:c) i1
h,[_1 » stack —> ht Lt

he—1

Lt

| = tanh | W

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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VANILLA RNN GRADIENT FLOW

Backpropagation from h,
to h,_, multiplies by W
(actually W,

1L
h,[_1 < » stack L ht

| = tanh | W

hy = tanh(Whhht_l -+ Wmhxt)
hi 1

Lt

— tanh (Whh Wh:r;)

v

he—1

Lt

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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VANILLA RNN GRADIENT FLOW
C Y s N s ™ s
W—( )= tanh W— el W-—( )= tanh W— == @nh
h0 ur— - stack TL_, h 1 —r—> stack TL_, h2 — stack “——» h3 ——> stack ‘ L—_» h 4
_ I J \ I 4 N T / _ T J
X4 X5 X3 Xy

Computing gradient of
h, involves many
factors of W

(and repeated tanh)
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Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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VANILLA RNN GRADIENT FLOW

h0 <~ stack
1
I
X1

factors of W
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Computing gradient of
h, involves many

(and repeated tanh)
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Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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VANILLA RNN GRADIENT FLOW

- ? 4 \_ T 4 - T /f T A/
X4 X2 X3 X4
Largest singular value > 1: Gradient clipping: Scale

Computing gradient of

Exploding gradients

gradient if its norm is too big

h, involves many
factors of W
(and repeated tanh)

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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grad_norm = np.sum(grad * grad)

Largest singular value < 1: if grad_norm > threshold:

Vanishing gradients

grad *= (threshold / grad_norm)

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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VANILLA RNN GRADIENT FLOW
e ™ . ™ ™ - N
W—* — tanh W—"' —* tanh W—"' S T W—"' — > tanh
hO <> stack TL—> h 1 -~ stack “\—-— h2 - > stack H——-— h3 -~ stack ‘ L__, h 4
_ ? 4 k T 4 & T J T /
X4 X5 X3 X4

Largest singular value > 1:

Computing gradient of  Exploding gradients
hy involves many

factors of W
(and repeated tanh)

Largest singular value < 1:

Vanishing gradients —» Change RNN architecture

Prepared by Kazim Fouladi | Spring 2021 | 2 Edition

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”,
IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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LONG SHORT-TERM MEMORY (LSTM)

Vanilla RNN LSTM

1 o
h Joc o R (h;c_l)
_ t—1 '
o=t (1 (1)) IS

ct=fOc-1+10g
ht = 0 ® tanh(c)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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LONG SHORT-TERM MEMORY (LSTM)

EITRaN
% . |
Ref: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM)

[Hochreiter et al.,

4h x 2h

EITEN
Up %
Ref: http://cs231n.stanford.edu/

1997]

vector from
below (x)

X

h

vector from
before (h)

sigmoid

sigmoid

sigmoid

tanh

4h

4*h

I: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g. Gate gate (7), How much to write to cell

?
]
0
g

O

:"W(
g

tanh

hi—1

Lt

)

cc=fOCc_1+:t0g

hi =0® tanh(ct)




° previous cell state

° forget gate output




o previous cell state
o forget gate output

o input gate output

o candidate

(input gate == update gate)



o previous cell state
° forget gate output

° input gate output

o candidate
o new cell state

° output gate output

° hidden state

(input gate == update gate)
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

( N
C > O—» + —» C e
-1 ; A t
y I
= |
2, W— _L’ © tanh
=

_ ~ 9 |
%
P

.

)U N
1
Ref: http://cs231n.stanford.edu/

(
S
0
9

g
_ o W (ht_1
o Lt
tanh

Ct :fQCt_l —{‘@@g
ht - o®tanh(ct)

)
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Backpropagation from c, to

y N c., only elementwise
C > O—> + —» C _  Mmultiplication by f, no matrix
1 < T*— j — L multiply by W
> f
g

— an 1 g ht—1
W ?_-»QJ'@ tanh 1=1 . W(:Et)
g

tanh
X - 0 e —> .
1 $ t G=Ff@c1+i0®g

| ]'Lt =0® tELIlh(Ct)

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

i
a N Y. B p ~
@—= +— C — G)—-+?_-C — - ®:+:_+C —
: [ : [ : I
I I I
W—( L tanh —"C,, L ® tanh W—( e ® tanh
y = ' g i
—_— sﬁg l _— stli ° l D s::k X l
¢ p o ey~ N 0 °e—=h7= U f o e—=h7—-

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
f N
Br—=p—= 1€ — ®——+:C — ” ®:+:C —
f f
i i
W_.\LT g} W-— g}@ tanh
|
— > stack —* stack

Similar to ResNet!
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

=i}
/ o R
C.= O—+—>C —~C N —C - it e
0 t t Z I
f f f
. = - =, - 9,
W Q?—Eg-_rp tzlnh W T/ gJ,Q talnh W g_J_,G) tTh
—T— stack —T— stack —T—* stack
\_ 1|A (0] ®_"ht7_“ 1|A (0] ®_"ht7_“ \ T (0] ®—'ht7_"
In between:
] Highway Networks
Similar to ResNet! g="T(x,Wr)

R\ Prepared by Kazim Fouladi | Spring 2021 | 2 Edition
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y=gOH(@x W)+ (1-g)0Ow

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015
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Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

\CA Geoe oSl
=Y gk Siae—oli ¢S sdasla
Lads s
MEET LSTMSs
4 N\ |\ N
—) @ —»>
anh>
A — ¥
Iclrllclllltalnhlljl
—> -
j y le P, Y,

Neural Network
Layer

Pointwise Vector
Operation Transfer

Concatenate
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LSTMS INTUITION: MEMORY

¥
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

dails :LSTM (g0 5t S u

dasls [ Jsbo el
Cell State / Memory
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LSTMS INTUITION: FORGET GATE

Jt = U(Wf'[ht—laaft] + bf)

o2 b assln sbo | oledb) 5 cus ol wls LT
Should we continue to remember this “bit” of information or not?

S Gsel 3 1 (sland 5 cpda wile) (3 Jeld 4 by o wle Ml anal pa po cadan o man Jeld Sy g b e

¥
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMS INTUITION: INPUT GATE

it =0 (Wi'[ht—laxt] + b@)
Ct :tanh(WC'[ht_l,Q?t] —+ bc)

S=—

)
o~~~
[y

e bassln sba 1) ole Dl bl e ol Wb LT

Should we continue to remember this “bit” of information or not?
If so, with what?

ol GG (Wland y cuda wiile) waa Jeli 4 b gy o ole Mol anal g2 oo ctlan 5o s Jel8 S5 s b 1L

¥
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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dasla Slwe,4 : LSTM (o4 S0
LSTMS INTUITION: MEMORY UPDATE

t

Jt itr-% Ct — ft k Ct—l -+ ’L.t % ét

Shs shlaas | cpl + S Ghsal 58, O
Forget that + Memorize this

T4 aan wde wle Wl o 5580 5 dadla 5 s, ne wle M) 8ia 1 Jlis

¥
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMS INTUITION: OUTPUT GATE

Ot — U(Wo [ht—lamt] + bo)
hy = o * tanh (C})

~

~
~~
—

Should we output this “bit” of information to “deeper” layers?
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LSTMS INTUITION: ADDITIVE UPDATES

Backpropagation from C,
to C,_, only elementwise
multiplication by f, no

< matrix multiply by W

Crp 0 G ol oLaml

¥
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMS INTUITION: ADDITIVE UPDATES

®

Uninterrupted gradient flow!

D,

=

-—

—}@

@ >
Eanh>
®
(o] (o] (&) (o]
—
J 7

2, ;
Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMS INTUITION: ADDITIVE UPDATES

® D,

Uninterrupted gradient flow!

-—

a
—»> ® >
Ganh>
A ¢
[tanh | | O |
—- — —+
.. _/ L

Similar to ResNet!

nad|
T00d
70 AUOD BT
7O AUOD eXe
TO AUOD EXg
7O AUOD eXe
T AUOD EXe
7O AUOD EXg
T00d
0001 O
Xewnog

7O AUOD X

.
)U},

(k Ref: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LONG SHORT-TERM MEMORY

i =o(xUY +m_ W) Ce—1 (D (D) Ct
%) o) S & >

f= U(xtU +m_ W ) 3

S (0) (0) tanh

2 = yle + 4 0

UE 0 O'(xt me_q ) £, i 0,

° Cr = tanh(xtU(g) + mt_lw(.g)) 4><.>

N o -

& cr =¢Cr1 O f +c,Oi

£ - t o O |[tanh|| O

2 m; = tanh(c;) © o

g me_q m;

ug_ Output

% nput

2, ;
2y _—
Ref: https://uvadic.github.io/
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CELL STATE
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Cell state Line
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LSTM NON-LINEARITIES

LS o Jag g s S 4k :(control gate) J s (o319 ,9) ews 0 € (0,1)
iS50 euba e tanh € (—1,1)

i = O-(XtU(l) + mt_lw(i)) Ct_]_ /\ /_IB Ct
f = O'(xtU(f) + mt_1W(f)) \“J
. . tanh
= AS4 _Wwte
0 a(xt +me_q ) ft i, ‘ 2
& = tanh(x, U9 + m,_,Ww9) O
N Ce

cr=C1 Of+GOI

¢ =1 Of+6 o o ||tanh|| O
m; = tanh(c,) © o

mt-l A m;

Ovttp ut
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LSTM STEP-BY-STEP: STEP 1
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LSTM STEP-BY-STEP: STEP 2
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LSTM STEP-BY-STEP: STEP 3
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LSTM STEP-BY-STEP: STEP 4
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LSTM VARIANTS #1: PEEPHOLE CONNECTIONS

ft =0 (Ws-|Cem1,hi—1,2¢] + by)
it =0 (Wi [Cy—1,hi—1, 2] + ;)
— Ot — 0 (WO'[C‘tv ht—laxt] T bo)
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Let gates see the cell state / memory.
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LSTM VARIANTS #2: COUPLED GATES

Ct:ft*ct—1+(1_ft)*ét
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Only memorize new if forgetting old
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LSTM VARIANTS #3: GATED RECURRENT UNITS

N
K\
|

o (W, - |hi—1,2¢])
o (Wr ' [ht_la mt])
tanh (W - [ry * hy—1, 2¢])

<
~
|

o3
]

ol
|

_(].—Zt)*ht_l—i-zt*ﬁt

W QUL I
QL@_}gu_.;JJ.$=4£§L;fJJ‘&3JJ.?\9ﬁJ.@64J&.§L;
oS tsal i 1 panad oleMal 5 Ll Sl 1 was oledll =7

Changes:
No explicit memory; memory = hidden output
Z = memorize new and forget old
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Other RNN Variants

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation
Cho et al. 2014]

7

F'e= U(ermL + Wirhi—1 + bfr')
2t = O'(sziﬁt + thht—l + bz)

hi = tanh(Wepxt + Whn(re © he—1) + bp)
he = 2: ® hy_q —|—(1—zt)®ﬁt

[LSTM: A Search Space Odyssey,
Greff et al., 2013]
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[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUTI:

hesr

MUT2:

he4a

MUT3:

heyq

nn
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sigm(Wx; + b;)

sigm(Wx + Wi he + b;)
tanh(Wyn(r @ he) + tanh(z,) + by,) ¢
he ©(1—2)

sigm(Wex, + Wiahe + by)

sigm(xr; + Wy hy + 6;)

tanh(Whn(r @ he) + Wenze + bn) @ 2

hy (1—2)

sigm(Wx; + Wi, tanh(h;) + b,)
sigm(Wiexy + Wichy + b;)
tanh(Wyn(r © hy) + Wz + by) G
h,®(1-2)
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s RNNs allow a lot of flexibility in architecture design.
¢ Vanilla RNNs are simple but don’t work very well.

¢ Common to use LSTM or GRU:
their additive interactions improve gradient flow.

¢ Backward flow of gradients in RNN can explode or vanish.

¢ Exploding is controlled with gradient clipping.

¢ Vanishing is controlled with additive interactions (LSTM)
“ Better/simpler architectures are a hot topic of current research

¢ Better understanding (both theoretical and empirical) is needed.
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CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2019

Previous Years: [Winter 2
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puter Vision has become ubigquitous in our society, with apphcations in search, image understanding, apps, mapping, medicine

http://cs231n.stanford.edu
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Lecture 8: Recurrent Neural Networks

Deep Learning @ UvA

https://uvadlc.github.io/
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Understanding LSTM Networks

Posted on August 27, 2015

Recurrent Neural Networks

Humans don’t start their thinking from scratch every second. As you read this essay, vou
understand each word based on your understanding of previous words. You don’t throw

evervthing away and start thinking from scratch again. Your thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major shortcoming. For example,
imagine you want to classify what kind of event is happening at every point in a movie. It's
unclear how a traditional neural network could use its reasoning about previous events in the

film to inform later ones

Recurrent neural networks address this issue. They are networks with loops in them, allowing

information to persist

®
LA
()

Recurrent Neural Networks have loops.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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I. Goodfellow, Y. Bengio, A. Courville,
Deep Learning,
MIT Press, 2016.

Chapter 10
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Chapter 10

Sequence Modeling: Recurrent
and Recursive Nets

Recurrent neural networks or RNNs (Humelbart of ol 10504) are a family of
neural networks for processing sequential data. Much as a convolutional network
is a neural network that is specialized for processing a grid of values X such as
an image, a recurrent neural network is a neural network that is specialized for
processing a sequence of values =1, ..., 27). Just as convolutional networks
can readily scale to images with large width and height, and some convolutional
networks can process images of variable size, recurrent networks can scale to much
longer sequences than would be practical for networks without sequence-based
specialization. Most recurrent networks can also process sequences of variable

length.

To go from multi-layer networks to recurrent networks, we need to take advan-
tage of one of the early ideas found in machine learning and statistical models of
the 1980s: sharing parameters across different parts of a model. Parameter sharing
makes it possible to extend and apply the model to examples of different forms
(different lengths, here) and generalize across them. If we had separate parameters
for each value of the time index, we could not generalize to sequence lengths not
seen during training, nor share statistical strength across different sequence lengths
and across different positions in time. Such sharing is particularly important when
a specific piece of information can occur at multiple positions within the sequence.
For example, consider the two sentences “T went to Nepal in 2009” and “In 2009,
I went to Nepal.” If we ask a machine learning model to read each sentence and
extract the year in which the narrator went to Nepal, we would like it to recognize
the year 2009 as the relevant piece of information, whether it appears in the sixth
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