(V) (S 5as qaas sladsad (5,9

An Overview on Artificial Neural Networks (1)

a5 (5u¥ 55 AbIS
u.}b‘.é BTIRRY cu.wdl.@_o PR K
C)‘)@J olﬁ.ﬁd\a

http://courses.fouladi.ir/deep

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

v GoL $r50l
et ggl
ANATOMY OF A NEURAL NETWORK
Input X
Weiahts |- Layer
eights (data transformation)
* Lasy
Weights |—+ Layer
Ag (data transformation)
Y
Weight Predictions True targets
update Y' Y

&
&

N s
=

Loss score j

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

(HES SASHL S (50 93U
Baee (s S0b oSl slaS ol s Laasy

asy
Layer

WS o 8l yu (595009 Olsieds 1) 5ol wia b SO aS sl (351858 Jo5le S5
L8 oo Jugad (e soa Glsie) Heuib i LSy

Jhedisla [adla (s 4l isla gy [/ clla () gus
Stateful /| Memory-ful Stateless | Memory-less

s adla sl lanY s,
ool wia b S raa¥ slag g caiiws alla G gas LAY (A
clead 38 ,Sul SGD a3y, S L <

solw (s,lu s slasals (i 3la 0 :Dense g
sldlss slasals G 3la s 32850 /LSTM (s

6)33"43 LSLAb.J‘J u.'b‘)‘..s‘):s :Conv2D 64:“2

* 0

7Y

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

il

Gaac L;édlf o5l L;LMSJ.L} :LsMg')!

L g o oSS wade sauls sladsass (s o b shad slasl () s SIS 5L sladsy Gala 518 aa SUS) Jue S

WS po @dlisn oy Ol) pala IS S L ola) guilB Lads Y A sl 8 Hkw
a8 oo bgaS agoa Glsie) el KA S L ola, 0wl Layer Compatibility
cJBs

from keras import layers
layer = layers.Dense(32, input_shape=(784,))

oy 1o (A VAY 1S Home cguae 581 shis 50) (g 50 (sLa, 5B Y S

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, input_shape=(784,)))
model.add(layers.Dense(32))

e 5Lk) S5 aui€ o suliiul Keras 5 13
Sy eille T4 st)y ¥ JSE L 5 0 s o AL b gy Sy sl ¢ 3 58 oo 48l Juo 4 oS ladsy
el 80 s0la (5095 IS Lo S 5T g0 (s L 3sd JBe o
Lo s o 7 Bl (T 51 a3 (g0 (oa 5 0a U Ballae (T (s 500 S o 50 0

et ggl

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

K%

LaY 5 g1 : L

FGree soSok Jae S
Laco¥ 51 50 oy Dlacgas SIS S

ladae 1 45 gad S glate Laday 3 s (sdidu
o0 S (53508 S il Linear Stack of Layers

dALi— g (sladsads
S S 650 Two-Branch Networks
L S SR B S0 ey J-w—d-t%‘_;mm’*
- . Multihead Networks
sl Lol sbad (b 55l s S LAl L
s g Jgdae (o g A 4 (539, slasaly EISS Crdaaisl (sLAS gl

vl (039 LA puils s T O 51 m 4l :
Sl 059 slas sl o gl o gadn (T sl 2 45 Inception Blocks

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

et ggl
6259k w153 (s Sy (slaaalSrlasludings 5 ST ol 53
L.0SS FUNCTIONS AND OPTIMIZERS: KEYS TO CONFIGURING THE LEARNING PROCESS

S o (2l b 1) ol s o 4SS (g4 5 @0l ge Hlae (BT 6 Loss Function

ol agpo 0Ll 3 68 el 4 (51 caunlie GBua il LA

s dal s SISl B lale S5 Gelaad s b L3Lol S alS bl Lol

L35 alRiady L) aulB bl s il 6 R 4 4 Wi Lo Cpaal s S lndings SHlasdasgs

* 0

7Y

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

J glaie SIS 2l 3

COMMON L0OSS FUNCTIONS

$lddabo— gu (sunsdlubs

bi t
B Two-Class Classification

$lalab—ain (ganddabs

categorical crossentropy Many-Class Classification

092 S

mean-squared error :
Regression

Al 558l

connectionist temporal classification (CTC) g 7 ,
equence-Learning

piS IS wan Tadly n o5 sl S (595 s el i oS Sl LS
oS alsl alalal (31 i) Ciua ol sl

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

INTRODUCTION TO KERAS
4 Keras

Keras is a deep-learning framework for Python
that provides a convenient way to define and train almost any kind of deep-learning model.

Keras was initially developed for researchers, with the aim of enabling fast experimentation.

Keras has the following key features:

O
O
O

It allows the same code to run seamlessly on CPU or GPU.

It has a user-friendly API that makes it easy to quickly prototype deep-learning models.

It has built-in support for convolutional networks (for computer vision), recurrent networks
(for sequence processing), and any combination of both.

[t supports arbitrary network architectures: multi-input or multi-output models, layer sharing,
model sharing, and so on. This means Keras 1s appropriate for building essentially any deep-
learning model, from a generative adversarial network to a neural Turing machine.

Prepared by Kazim Fouladi | Spring 2021 | 2nd Edition

b\

)U}, b/

INTRODUCTION TO KERAS

—— TensorFlow

72014 112015 TH/2018 12016 TH/2016 1172017

Google web search interest for different deep-learning frameworks over time

* 0

R o $500
Joo gl 5o GBS S ol sie s ol S

INTRODUCTION TO KERAS

Keras is a model-level library, providing high-level building blocks
for developing deep-learning models.

TensorFlow / Theano / CNTK / <——— backend engines

CUDA / cuDNN BLAS, Eigen <— [ow-level libraries

GPU CPU

J Theano (http://deeplearning.net/software/theano)
is developed by the MILA lab at Université de Montréal.
(J TensorFlow (http:// www.tensorflow.org) is developed by Google.
d CNTK (https://github.com/Microsoft/cNTK) is developed by Microsoft.

Any piece of code that you write with Keras can be run with
any of these backends without having to change anything in the code.

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

E Gl § S0y

oIS b dau 53

DEVELOPING WITH KERAS

The typical Keras workflow:
1) Define your training data: input tensors and target tensors.
2) Define a network of layers (or model) that maps your inputs to your targets.
3) Configure the learning process by choosing a loss function, an optimizer,
and some metrics to monitor.
4) Iterate on your training data by calling the fit() method of your model.

There are two ways to define a model:
A. Using the Sequential class
(only for linear stacks of layers, which is the most common network architecture by far)

B. Using the functional API

(for directed acyclic graphs of layers, which lets you build completely arbitrary
architectures).

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Y

ol S b (L

(e o3) Jlia ol S L 55

DEVELOPING WITH KERAS

Using the Sequential class

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, activation='relu', input shape=(784,)))
model.add(layers.Dense(10, activation='softmax'))

Using the functional API

input_tensor = layers.Input(shape=(784,))

x = layers.Dense(32, activation='relu')(input_tensor)
output_tensor = layers.Dense(10, activation='softmax')(x)

model = models.Model(inputs=input tensor, outputs=output tensor)

With the functional API, you’re manipulating the data tensors that the model processes
and applying layers to this tensor as if they were functions.

o
&

e ot S5l
ol S b (L

(Jao GB55eT) B 1 ul S L das 3

DEVELOPING WITH KERAS

The learning process is configured in the compilation step,
where you specify the optimizer and loss function(s) that the model should use,
as well as the metrics you want to monitor during training:

from keras import optimizers
model.compile(optimizer=optimizers.RMSprop(1lr=0.001),
loss="mse’,
metrics=['accuracy'])

Finally, the learning process consists of passing Numpy arrays of input data
(and the corresponding target data) to the model via the fit() method, similar to what you
would do in Scikit-Learn and several other machine-learning libraries:

model.fit(input_tensor, target tensor, batch_size=128, epochs=10)

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

P

WV Geoe S50k
Gas (§ 80b (5 ,IS olShuwsl) S (g 5lanlel

SETTING UP A DEEP-LEARNING WORKSTATION

It’s highly recommended, although not strictly necessary,
that you run deep-learning code on a modern NVIDIA GPU.

If you don’t want to install a GPU on your machine, you can alternatively consider
running your experiments on an AWS EC2 GPU instance or on Google Cloud Platform.

Whether you’re running locally or in the cloud, it’s better to be using a Linux workstation.
<3 amazon [EC2
wepservices™

Google Cloud Platform

NVIDIA

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

A

Gas (§ 80b (5 ,IS olShuwsl) S (g 5lanlel

Geee souS0b slagiole ST sloal (10 o e UL 1 oA slade Sida
JUPYTER NOTEBOOKS: THE PREFERRED WAY TO RUN DEEP-LEARNING EXPERIMENTS

-
jupyter
4

Jupyter notebooks are a great way to run deep-learning experiments.
A notebook 1s a file generated by the Jupyter Notebook app (https://jupyter.org),
which you can edit in your browser.

It mixes the ability to execute Python code with
rich text-editing capabilities for annotating what you’re doing.

A notebook also allows you to break up long experiments into smaller pieces
that can be executed independently,
which makes development interactive and means
you don’t have to rerun all of your previous code if something goes wrong late in an experiment.

K%

:Jupyter wyter ma (K = O & X

nbviewer
deep-learning-with-python-notebooks / 2.1-a-first-look-at-a-neural-network_ipynb

In [1]: import keras
keras. vwversion

Using TensorFlow backend.

A first look at a neural network

This notebook contains the code samples found in Chapter 2. Section 1 of Deep Learning with Python. MNote that the original text features far more content, in
particular further explanations and figures: in this notebook, you will only find source code and related comments.

We will now take a look at a first concrete example of a neural network, which makes use of the Python library Keras to learn to classify hand-written digits. Unless
you already have experience with Keras or similar libraries, you will not understand everything about this first example right away You probably haven't even
installed Keras yet. Don't worry, that is perfectly fine. In the next chapter, we will review each element in our example and explain them in detail. So don't worry if
some steps seem arbitrary or look like magic to you! We've got to start somewhere.

The problem we are trying to solve here is to classify grayscale images of handwritten digits (28 pixels by 28 pixels). into their 10 categories (0 to 9) The dataset we
will use is the MMIST dataset, a classic dataset in the machine learning community, which has been around for almost as long as the field itself and has been very
intensively studied. It's a set of 60000 training images, plus 10,000 test images, assembled by the National Institute of Standards and Technology (the NIST in
MMIST) in the 1980s. You can think of "solving” MNIST as the "Hello World" of deep learning - it's what you do to verify that your algorithms are working as
expected. As you become a machine learning practitioner, you will see MNIST come up over and over again, in scientific papers, blog posts. and so on.

The MNIST dataset comes pre-loaded in Keras, in the form of a set of four Numpy arrays:

In [2]: from keras.datasets import mnist

(train images, train labels), (test images, test labels) = mnist.load data()

train_images and train labels form the "training set”. the data that the model will learn from. The model will then be tested on the "test set”. test_images

https://nbviewer.jupyter.org/github/fchollet/deep-learning-with-python-
notebooks/blob/master/2.1-a-first-look-at-a-neural-network.ipynb

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Gas (§ 80b (5 ,IS olShuwsl) S (g 5lanlel

K gaoul S s1a

GETTING KERAS RUNNING: TWO OPTIONS

To get started in practice, we recommend one of the following two options:

1) Use the official EC2 Deep Learning AMI
(https://aws.amazon.com/amazonai/amis),
and run Keras experiments as Jupyter notebooks on EC2.
Do this if you don't already have a GPU on your local machine.

2) Install everything from scratch on a local Linux workstation.
You can then run either local Jupyter notebooks or a regular Python codebase.
Do this if you already have a high-end NVIDIA GPU.

S
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

AR

Gas (§ 80b (5 ,IS olShuwsl) S (g 5lanlel

cbie 5 Lot sl (595 s Baae s Subs sLaL S (51 a

RUNNING DEEP-LEARNING JOBS IN THE CLOUD: PROS AND CONS

If you don’t already have a GPU that you can use for deep learning
(a recent, high-end NVIDIA GPU),
then running deep-learning experiments in the cloud is a simple, low-cost way
for you to get started without having to buy any additional hardware.

If you’re using Jupyter notebooks,
the experience of running in the cloud is no different from running locally.

As of mid-2017,
the cloud offering that makes it easiest to get started with deep learning is definitely AWS EC2.
But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long term
—or even for more than a few weeks. EC2 instances are expensive.

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

iy

Gas (§ 80b (5 ,IS olShuwsl) S (g 5lanlel

s Grae 5080k ¢l GPU G i
WHAT IS THE BEST GPU FOR DEEP LEARNING?

As of mid-2017,
the NVIDIA TITAN Xp had recommend as the best card on the market for deep learning.
For lower budgets, you may want to consider the GTX 1060.

Tesla M40

Tesla K80

Yo
AL (5o (5l

29999 il gl Jhe S
CLASSIFYING MOVIE REVIEWS: A BINARY CLASSIFICATION EXAMPLE

(523989 (sadlib b gk — g guisddib
coval Sudle (55800 Jilae g 930 0 Seu 53wl 5 (SO

:JL:.OC):JJJ
cowlandy e o) giae pulul 5y (S0 b Sl I Ho alid slanss gutsdiils (5 ,.Sub Sua

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

K%

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

72

AL (5o (5l

THE IMDB DATASET

IMDB 6éd‘d ‘LCJ.A%A

Dataset

a set of 50,000 highly polarized reviews from the
Internet Movie Database.

They’re split into 25,000 reviews for training and
25,000 reviews for testing, each set consisting of
50% negative and 50% positive reviews.

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

B ot S5l
alss slaads gundiub

IMDB L;bd‘d de oo Qd.s‘\j.s

el 0 G531 et (oulS) 4 same il Lo oS el S LS 31 (slllss o5 5

Loading the IMDB dataset in Keras

from keras.datasets import imdb
(train_data, train_labels), (test data, test labels) =
imdb.load data(num_words=10000)

sl 45 1y iyl sLasals 5o 300518 sl V- ¢+ o oS il Gl e 4 NUM_wOrds=10000 ;L. < 1
i€ IS el o3l b la syl s b sl g e <= 5 b e 8IS HUS 3500 ol

) SlalS ot B S 085 e ot Laads o) slacowal test_data jtrain_data sla e
co) (ufle 085 (55 Lal 5 (fAhe 085 (51) a0 5 placiwnltest _labels jtrain_labels

>>> train_data[9]

[1, 14, 22, 16, ... 178, 32]
>>> train_labels[0]

1

L]
’U};b/

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

YA

L,
’U};b/

Reverses it, mapping
integer indices to words

GoL $r50l
alss slaads gundiub
Laass yie Gl,&:ml
word_index is a dictionary mapping
word_index = imdb.get_word_index () words to an integer index.
reverse word_index = dict(
- > [(value, key) for (key, value) in word_index.items()])
decoded_review = ' '.join(
[reverse_word_index.get(i - 3, '?') for i in train_datal[0]]) <———

Decodes the review. Note that the indices
are offset by 3 because 0, 1, and 2 are
reserved indices for “padding,” “start of
sequence,” and “unknown.”

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Y C «5)‘.‘.5"11’
alss slaads gundiub

Lasaly (g sbwsalel

PREPARING THE DATA

S e S E Sl Ol et | reais alael B S
(55 L) 5B 4 oS b Laced

05l 4] Jsas slasl

oS o Jass (samples, word_indices) Uil musis 5 5udll SO a0, LT Gugen Sylasay

(§ 19— (51 8S) i€ o o La 1 5 1a0 31 lalo 40 1 Lo

[l o sala lelS Guwasl 5 e i ndaa] «éb—ﬁ » (§y)aSas
‘(Dense LS‘&‘Y ..LuLo) S J‘S GJL.‘A.C.\ 5‘)‘.3\).3 6&54‘4 u:\| (530 JJ‘JL «< LS“‘:‘Y J‘ e One-Hot Encodmg

This would mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vector
that would be all Os except for indices 3 and 5, which would be 1s.

L,
’U};b/

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

AL (5o (5l

oS lasoly g5 lwsaleT

PREPARING THE DATA

Encoding the integer sequences into a binary matrix

import numpy as np
def vectorize sequences(sequences, dimension=10000) :
results = np.zeros((len(sequences), dimension))
Creates an all-zero matrix of shape (len(sequences), dimension)
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
Sets specific indices of results[i] to 1s
return results
x_train = vectorize sequences(train_data) # Vectorized training data
x_test = vectorize sequences(test data) # Vectorized test data

>>> x_train[0]
array([0., 1., 1., ..., 0., 0., 0.])

Vectorizing labels

y train = np.asarray(train_labels).astype('float32')
y test = np.asarray(test labels).astype('float32"')

S
<

i o $500
alss slaads gundiub
Sad Al

BUILDING THE NETWORK

ol e PelU cullad ol 55 b (Dense) Juaie Loles (slade¥ 5 sulas (i S o) a1, Sa

LgJLu.og‘J.:\

Dense sladsy (s4idsy

éJuLA‘JJ\g.A(SLA‘\:*YJ‘AA;(\l Sals asaad o
©Y 58 sl Ol laaaly alaas (Y |

(YL obal b plaidl L) wils sidu Ol slasals slasd 4 5a
S0k 1 st sla plail aas e slal i 4
Soiiee SOIS (Sllas 5 5l S Lol
L3t Gl 520 (sla S (6 S0l 4 s il (e

relu relu sigm

16 16 1

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

S
&

. G (5 Sl

alss slaads gundiub
cullad ol 3
ACTIVATION FUNCTIONS

15 1.00 —
1.0} : . Q.75

0.5} : : 0.50

0.0 0.25

050 5 0 05 0.0 05 1.0 15 e = -2 -1 0 i 2 3

RelLU Sigmoid

2 o suliil udh sl cudlad 5 51 AT (g0
S Gla | Jlaad Hlade S 6
a score between 0 and 1, indicating how likely the

sample is to have the target “1”:
how likely the review is to be positive

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

K%

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

alss slaads gundiub
‘Ls:\-htl (5JLQM
THE NETWORK ARCHITECTURE Output
(probability)
?
(2\
Dense (units=1)
. /
A
(2\
Dense (units=16)
. J/
)
(2\
Dense (units=16)
. J
Sequential T
Input

(vectorized text)

The model definition

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1l, activation='sigmoid'))

S
<

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

YY Gt S Eoly
oD a8 Cullad pals s

S e aal53 1 LS00 0¥ G Y K3 Gl i slahas 5580k ISl Jhd il callad il

QS ol oy (g 5aua0 Ladas 18 glad Laday sluad il 58l L
g aalsa b slac sl il G Luls B s 5 gia o

S|gmo|d Leaky RelLU

1 max(0.1z,)
14-e—*

o(m) =

-10 © 10 L 10

tanh V Maxout

tanh(a:) 0 ﬂ . max(w?x + b1, ng + b2)

10 10

RelLU ELU
max (0, x) z >0
= . N ale—1) z<0 - . o

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Yo

alis clasis caiaadile

S s Slasl

CHOOSING LOSS FUNCTION

S
&

Crosl Jlalal S 40l oo goA 5 it dal go (9990 (suindiib gl SH L
.ewlbinary_crossentropy 1loss (el mb gl il o yigs <=

M‘Qb%‘&@#&e‘)\g;ju:&ms‘dacﬁawdﬁj J:‘&Ls*ﬁﬂﬁ
i o) (LA sin o088 s LeS 0 o) 8) Jdal glags) 95 o dals Cross-Entropy

S suliiwl ol 5 e suimean_squared_error ails 3361 al s Ko)l

oo LIS 5 s SYLSAT (2 g5A b (pladae b S il (Sl s 438 Gyt Y gens alE3e o 5 0T Ll

1 N
BCE = — — L log(Vv))+ (1 —v) -loe(l — V.
N ;Oy gy)+ U —=y)-log(l-Yy)

vs GoL $r50l
alss slaads gundiub

Jae Gu S blelS

COMPILING THE MODEL

Compiling the model

model.compile(optimizer="rmsprop’,
loss="'binary_ crossentropy’,
metrics=['accuracy'])

Configuring the optimizer

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(1lr=0.001),
loss="binary_crossentropy’,
metrics=['accuracy’])

Using custom losses and metrics

from keras import losses

from keras import metrics

model.compile(optimizer=optimizers.RMSprop(1lr=0.001),
loss=1osses.binary_crossentropy,
metrics=[metrics.binary_accuracy])

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

E ot S5l
alss slaads gundiub

S S 80 eaieliel
VALIDATING THE APPROACH

coBDeol (e 5o (dleads sass o 53SE K 5a 4K Slasuly (s 55 s Jae @38 s oS (gl
S alan) e jlaie) (sds gane S il
&Sw‘.&;‘f‘.@‘wﬂ‘)yTgL&bde‘Mdm\',' M ‘JJ"“""Uf‘LS‘J"

Setting aside a validation set

Xx_val = x_train[:10000]
partial x_train = x_train[10000:]
y val = y train[:10000]
partial y train = y train[10000:]

Original Set
< ' o

Training Testing

Training Validation Testing

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

N ot S5l
alss slaads gundiub

Jae i) g

TRAINING THE MODEL

55T glasals 5o Lad sa3 (st (555 53 LIS Y = (epoch) K1 Y+ anans (55 50715 Joo Wb Jls
L5 VY glols sladiws s, b

.ﬁSwQJLBSQM‘J%@l.;uJL:x:L‘C;bJ‘J\’,”'GJJxﬁgdddm‘xd&SjJﬁ‘QLabM

Training the Model

model.compile(optimizer="rmsprop’,
loss="binary_ crossentropy’,
metrics=['acc'])
history = model.fit(partial x_train,
partial y train,
epochs=20,
batch_size=512,
validation data=(x_val, y val))

H‘)L}lc‘csﬁd.d\’,"’6\93\).3&34\9;3)13‘(5@[;.06b_}:JJ‘AAJ%\gLsSJl‘bSAch‘JAgLQL‘JJ

L/

] ’?L/

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Y4

alis clasis g aiaadile

Jae seaa 6

MODEL HISTORY

The call to model.fit() returns a History object.
This object has a member history,

which is a dictionary containing data about everything that happened during training.

>>> history dict = history.history
>>> history dict.keys()
[u'acc', u'loss', u'val acc', u'val loss']

The dictionary contains four entries:
one per metric that was being monitored during training and during validation.

3 (claudy cuisdd
ald s Sediab

;;)LS|J|J3A3 'L_LuJ

Plotting the training and validation loss

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

import matplotlib.pyplot as plt

0.7

0.6

history dict = history.history o5
loss values = history dict['loss'] 5
val loss values = history dict['val loss’] &

0.1

0.0

epOChS = Pa nge(l, 1en (acc) + 1) 2.5 5.0 7.5 10.0 12‘.5 15.0 175 200

Epochs

plt.plot(epochs, loss values, 'bo', label='Training loss’)
'bo' is for "blue dot".
plt.plot(epochs, val loss values, 'b', label='Validation loss’)
'b' is for "solid blue line".
plt.title('Training and validation loss')
plt.xlabel('Epochs"')
plt.ylabel('Loss")
plt.legend()
plt.show()

¥

AL (5o (5l

CABJJ‘JJA:\HJ

Plotting the training and validation accuracy

plt.

acc_
val

‘\ Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

o
&

plt.
plt.
plt.
plt.
plt.
plt.
plt.

clf() # clear the figure

1.00
0.95

values = history_dict['acc'] T
acc_values = history dict['val_acc’] oss

0.80

plot(epochs, acc, 'bo', label='Training acc')
plot(epochs, val acc, 'b', label='Validation acc')
title('Training and validation accuracy')
xlabel('Epochs")

ylabel('Loss')

legend()

show()

2.5 5.0 7.5 10.0 12. L 15.0 175 20.0
Epochs

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Al GL SpuS 2
alss slaads gundiub
&8y 9 SBS) slale gad Julas
Training and validation loss Training and validation accuracy
e ® Training loss 1004 @ Training acc e0®0?® L B
0.6 4 —— Validation loss —— Validationacc g ® .
®
054 ® 0.95 1 e 5
0.4) ”
2 S 0.90 o
o =}
o : 2T e
©
2]
0.2 0.85 -
" L]
0.1 ® e .
e 1
0.0 ML I P 0807 o
2?5 5.ID '.I'TS lC;.D 12;.5 15:.0 l?I.S EE;UD 2?5 5:0 '.I'TS].C;.D 12;.5 15:.0 l?I.S 2I3II.'IZI
Epochs Epochs
b e JEAK Sl A b i sel (slasals (555 8O
.A:sl:;u_c J&g‘}é\ S@‘ﬂg\g‘)f&ﬁb‘}ylguad‘d (590 3 sy
*J‘JJL)II:\J¢MJ&‘\B‘L}?J%&S&‘JJCA—LLI;U‘\JJiU:&‘@A.uAJL;C&C‘(SL&éJ‘J&‘\)JLO‘
S b a gl (slasuly (s 5 Jae o8 U)o s
. G,_«.u‘ 8 uA._w‘)L\lrJ GLAAJLS TXB) dd-o CABJ 0ve7fitting

L]
’U};b/

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Al Geoe S50k
alss slaads gundiub

G5l i 5 g S sla

eS8 e Sl V51 Gy 15 G5 0T Sl 55 e ¢ B ot B oS sla (5153 <o e Gl oo

Retraining a model from scratch

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1l, activation='sigmoid’))
model.compile(optimizer="'rmsprop’,

loss="binary_ crossentropy’,

metrics=["accuracy'])
model.fit(x_train, y train, epochs=4, batch size=512)
results = model.evaluate(x_test, y test)

>>> results
[0.2929924130630493, 0.88327999999999995]

This fairly naive approach achieves an accuracy of 88%.
With state-of-the-art approaches, you should be able to get close to 95%.

o
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

¥ Geoe S50k
alsd slaads susdiub

i sLasuls (555 o WSy 9l 55 (5100 s (i 5eT (645008 S 5 suliil
USING A TRAINED NETWORK TO GENERATE PREDICTIONS ON NEW DATA

PaaiS ealiii) e cunl g0 S 5o T 5 andl 65 g 4ol (g (85 90T 51 G
S dalae]y adl 8o b cule 08 S Sl Jladal anil o5 oo

>>> model.predict(x_test)
array([[©.98006207]

[©.99758697]

[©.99975556]

ceey
[©.82167041]
[©.02885115]
[©.65371346]], dtype=float32)
As you can see,

the network is confident for some samples (0.99 or more, or 0.01 or less)
but less confident for others (0.6, 0.4).

o
&

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

¥o

alis clasis g aiaadile

s slagiole T

FURTHER EXPERIMENTS

o
&

The following experiments will help convince you that the architecture choices
you’ve made are all fairly reasonable, although there’s still room for improvement:

1 You used two hidden layers.
Try using one or three hidden layers,
and see how doing so affects validation and test accuracy.
O Try using layers with more hidden units or fewer hidden units:
32 units, 64 units, and so on.
 Try using the mse loss function instead of binary crossentropy.
 Try using the tanh activation (an activation that was popular in the early days of
neural networks) instead of relu.

Prepared by Kazim Fouladi | Spring 2021 | 2" Edition

Y5

alid clasis st

e

WRAPPING UP

Here’s what you should take away from this example:

You usually need to do quite a bit of preprocessing on your raw data in order to be able to
feed it—as tensors—into a neural network. Sequences of words can be encoded as binary
vectors, but there are other encoding options, too.

Stacks of Dense layers with relu activations can solve a wide range of problems
(including sentiment classification), and you’ll likely use them frequently.

In a binary classification problem (two output classes), your network should end with a
Dense layer with one unit and a sigmoid activation:

the output of your network should be a scalar between 0 and 1, encoding a probability.
With such a scalar sigmoid output on a binary classification problem,

the loss function you should use is binary crossentropy.

The rmsprop optimizer is generally a good enough choice, whatever your problem.
That’s one less thing for you to worry about.

As they get better on their training data, neural networks eventually start overfitting and
end up obtaining increasingly worse results on data they’ve never seen before.

Be sure to always monitor performance on data that is outside of the training set.

YA

<!

with Python

FRANCOIS CHOLLET

MANNING
SHELTER ISLAND

Deep Learning

Francois Chollet,
Deep Learning with Python,
Manning Publications, 2018.

Chapter 3

Prepared by Kazim Fouladi | Spring 2021 | 2nd Edition

—

G(ettz'-n.g started
with newral networks

This chapter covers

= Core components of neural networks
= An introduction to Keras

= Setting up a deeplearning workstation

= Using neural networks to solve basic
classification and regression problems

This chapter is designed to get you started with using neural networks to solve real
problems. You'll consolidate the knowledge you gained from our first practical
example in chapter 2, and you'll apply what you've learned to three new problems
covering the three most common use cases of neural networks: binary classifica-
tion, multiclass classification, and scalar regression.

In this chapter, we’ll take a closer look at the core componenis of neural networks
that we introduced in chapter 2: layers, nerworks, objective functions, and optimiz-
ers. We'll give you a quick introduction to Keras, the Python deeplearning library
that we’ll use throughout the book. You'll set up a deep-learning workstation, with

