fi=rm 1L

VVddds
O8L S slag ylass
JLw gd 9 s s sladsa
Various Architectures of Convolutional Neural Networks
4als gaY¥ 58 LIS

(5:‘|~)L§ L)-u;sd‘):.l 1‘}—&1_\:&@-0 bd&:ﬂ:ﬁ‘d
Ol LAY

http://courses.fouladi.ir/deep

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Lenet-5

LeNet-5

[LeCun et al., 1998]

Image Maps
Input

Convolutions Fully Connected

Subsampling

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

<
)U M
ds
Ref: http://cs231n.stanford.edu/

PROC, OF THE 1E

Gradient-Based Learning Applied to Document
Recognition

Yamn LeCun, Léon Botton, Yoshua Benglo, and Patrick Haffuer

Abatract
Multilayer qu al Networks trained with the backpropa-
gation algarith netitute the hest exa
Gradient-Based Learning technigue. Given an appropr Mw
netwark architecture, Gradient-Fased Tearning alao

assify high-dimensional patterns such as handw,
acters, with minimal preprocessing. This paper reviews van
s methads applied to handwritten character recogni
and compares then
nition task. Convalu
ally designed to deal with the variability of 2D shapes, are
swn to outperform all other technigues.
Real-life document recognition systems are compased
of multiple modules uding field extraction, segmenta-
tion, recognition, and language modeling. A new learning
paradigm, called Graph Transformer Networks (GTN), ak
Tows snch multi-maodule systems to be trained globally using
Gradient-Based methods so as to minimize an overall per
farmanece measure.

Two eyetems fr on-line handwriting recognition are de-
seribed. Experiments demonstrate the slvantage of glabal
training, and the fAexibility of Graph Transformer Networks.

A Craph Transfarmer Network for reading hank check i
alzo deseribed. It uses Convalutional Neural Network char-
hined with glabal training technigues
iracy on business and personal checks.
ially and reads several million checks

 Keywonds

Meural Wetwarks, OCH, Dacument. Hecagni-
+ Machine Learning, Gradient-Bazed Learning, Conveo-
3 \nn'\ Menral Metworks, Graph Transformer Wetwarks, Fi-
nite State Transd

er,

NOMENCLATU

GT Graph translonmer,

.

GTN Graph translomer network.
« HMM Hidden Markoy moedel.

+ HOS Heuristie oversegmentation.
+ K-NN Konearest ne
+ NN Neural network.
« OCR Optical character recognition
« PCA Prineipal component analy
« RBF Radial basis unction

+ HE-SVM Rechueed-set, support, veetor methaod
s SDNN Space displacernent. nenal network.
SV M Support vector method.

+ TDNN Time delay neural network.

+ VSV Virtual support vector method.

.

hbor.

5.

The with the

Pro-

authars
i Lahs-

cosging Bervicos
Heseareh, 100 Schik
{ yanm,Joanb, yos
i also with the
Cipeir
2920

are Speech mage
Research Laharatar, AT LT
Drive Red Bank, NI 07701, -mail;
haffner} trosearch att.com Yashua Rengio
Département d'Tnformatique et de Recherche
£ité de Montzéal, CP 6128 Suce Contre Vile,
ur, Montrdal, Guébec, Canarda H3C

and

T. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applicd 1o neural networks, have played
an inereasingly important role in the design ol pattern
recognition systems, In et 30 could be argued that the

availability of learning technigques has been a crucial fac-
tor in the recent success of pattern recognition appli
tions such as continuous speech ecognition and handwrit-
ing rec

ttion.

The main mes: = of this paper is that better pattern
recognition systems can be built by relying more on auto-

matie learning, and less on hand-designed heuristies. This

is made possible by recent progress inomachine leaming
and computer technology, Using character recognition as
a cas study, we show that hand-cralied leature exi.

-
tion can be advantageously replaced by carelully designed
learning machines that operate directly on pixel images
Usis

g docuent understanding as a case study, we show

that the traditional way of building recognition systems ly

swanually integrating individually designed modules can be

replaced by a unilied and well-principled design paradign
called Graph Transformmer Networks, that allows training
all the modules Lo optimize a global pedormance criterion

Sinee the early days of pattermn recognition it has been
known that the
be it speech. gly phs, or other types of pattems, wake it
almost mpossible to build an accurate recognition system

variability and richness of natural data,

entirely by hand., Consequently, most patiern recognition
erns are built using a combination of automatic learn-
The usual

inelivid-

sy

ing techniques and hand erafied algorithus.

awethod of recognizing individual patierns consd

ing the system into two main mocdules shown in ligure 1
The lirst module,
the input patterns so that they can be wepresented by low-

called the feature extracior, transkms

dimensional veetors or short strings of symbols that (a) can
be easly matched or compared, and (b) are relatively in-
variant with respect to translornsitions and distortions of
the input patterns that do not change their nature. The
leature extractor contains most of the prior knowledge and
is rather specilic 1o the task. It is also the Tocus of most of
the desizn elfort, because i is often entively hand-cralted,
The classilier. on the other hand, s olten - pose
and trainable. One of the main problems with this ap-
proach is that the recognition aceuracy is largely deter-

mined by the ability of the desizner 1o come up with an
appropriate set of katures. This turns ot to be a daunt-
ing task which, unlortunately. must be edone or each new
problem. A Jarge amount ol the pattem recognition liter-
ature is devated o deseribing and comparing the relative

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.
’Ui

oL S5l
AlexNet
6 JLQJ..A
ALEXNET: ARCHITECTURE
5 Convolutional Layers

138 2048 7048 dense
R e 1000 way
dense | |dense softmax

1000

128 Max L_J
2048 2048

Max_ 128
pooling

KK https://computing.ece.vt.edu/~f15ece6504/

Max pooling

\}

3 Fully Connected Layers

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Tlya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
krizBcs.utoronto.ca ilyaBcs.utoronto.ca hintonf@cs.utoronto.ca

Abstract

‘We trained a large, deep convolutional neural network to classify the 1.2 million
high images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-3 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,006 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected lavers with a final 1000-way sofimax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connecked
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-3 test error rate of 15.3%,
compared 1o 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models. and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved guite well with datasets of this size,

pecially if they are aug d with lahel-pi ing transformations. For example, the cument-
best error rate on the MNIST digit-recognition task {<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed. the shortcomings of small image datasets
have been widely recognized (e.g.. Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of of th ds of fully-seg d images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly comect assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train. while their theoretically-best
performance is likely to be only slightly worse.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet
ImageNet‘,uL.az GA.L:\CML (5‘).:\ :GJLAJA

ALEXNET: ARCHITECTURE

2048 2048

Input 48 128 192 192 128

.
’ﬂi

K b/ https://computing.ece.vt.edu/~f15ece6504/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet

LA‘)lobL} Slaas :CSJLAA.A
ALEXNET: ARCHITECTURE

* 55%55%x96 = 290,400 neurons, each having 11 x11x3 =363 weights + 1 bias
* 290400x364 = 105,705,600 parameters in first layer alone if fully connected.

48 128 192 192 128
55 13 13
27 13 2048 2048
227 55 1 3
=T A< | | iy
27 13 13
Bz I\ /L
227 7 — ~— 1/ \[]
55 2 13 13 13
| 5 : 13 N) [| || 1000
3 55 27 3 13 2048 2048
48 128 192 192 128

s ;
}’(AK https://computing.ece.vt.edu/~f15ece6504/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet

LA‘*:Q{ CJ‘:\:\JA :GJLAM

ALEXNET: ARCHITECTURE

for layer details refer to:
https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt

2048 2048

Input 48 128 192 192 128

.
’Ui

rk b/ https://computing.ece.vt.edu/~f15ece6504/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet

wols lagY (alas i(s5lens
ALEXNET: ARCHITECTURE

' Convolution Layer + ReLU ' Local Contrast Norm.

I Fully ConnectedLayer ’ Pooling

.
’ﬂi

rb b/ https://computing.ece.vt.edu/~f15ece6504/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

P Got 550
AlexNet

CSJL“M

AlexNet

[Krizhevsky et al. 2012]

L Js
i ul &

1]

i >]

o, h

Architecture:
CONWV1
MAX POOLA1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5

ax POOL3
FC6

128 Max
pooling

208% 2048

<
)U M
7
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\Y
AlexNet

AlexNet

[Krizhevsky et al. 2012]

>

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

<
)U M
ds
Ref: http://cs231n.stanford.edu/

128 Max
pooling

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\Y
AlexNet

AlexNet

[Krizhevsky et al. 2012]

>

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

<
)U M
ds
Ref: http://cs231n.stanford.edu/

128 Max

pooling 2

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

¥
AlexNet

AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

<
)U M
ds
Ref: http://cs231n.stanford.edu/

28 Max
pooling 2

M
3
%l‘>/ I
n
8 oy
&
o
i
i3
5
~ —a
g 2
5 S

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

VO

AlexNet

AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\F
AlexNet

AlexNet

[Krizhevsky et al. 2012]

>

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

<
)U M
ds
Ref: http://cs231n.stanford.edu/

128 Max

pooling 2

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\V
AlexNet

AlexNet

[Krizhevsky et al. 2012]

>

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

<
)U M
ds
Ref: http://cs231n.stanford.edu/

128 Max
pooling

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\A
AlexNet

AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Yense

a0

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AR

AlexNet

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT 7
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOLA1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FCE: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

] ol

pooling 207 2098

48

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet

AlexNet

[Krizhevsky et al. 2012]

T Yense

160

Full (simplified) AlexNet architecture:
[227x227x3] INPUT :
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FCE: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AlexNet

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

] ol

208% 2048

[55x55x96]|JCONV1: 96 11x11 filters at stride 4, pad
Ifﬂ?ﬁ?%]JMAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 2566 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FCE: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

[55X55x48] X 2

Historical note: Trained on GTX 580
GPU with only 3 GB of memory.
Network spread across 2 GPUs, half
the neurons (feature maps) on each
GPU.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Y Gros 55l
AlexNet

AlexNet

[Krizhevsky et al. 2012]

] ol

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOLA1: 3x3 filters at stride 2

208% 2048

[27x27x96] NORM1: Normalization layer CONV1, CONV2, CONV4, CONV5:
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Connections only with feature maps
[13x13x256] MAX POOL2: 3x3 filters at stride 2 on same GPU

[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 2566 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FCE: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Yy

AlexNet

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT y
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FCE: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC&: 1000 neurons (class scores)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

CONV3, FCB, FC7, FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

YY

AlexNet

LAU:ZJ‘) ‘):SL-A-H L.l 4..&&3&-0 o9 ImageNet YL’» u.ul:\:\ac o (SJ‘J:hJ L;-A-Hu-lil:)‘_.l u:l-‘L_.} o @AL::!

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

25
20
15

10

s

2010 2011

Lin et al Sanchez &
Perronnin

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

P
)U N
7Y
Ref: http://cs231n.stanford.edu/

16.4

2012

Krizhevsky et al
(AlexNet)

|152 Iayers| |152 Iayers| |152 Iayers|

Ao A

11.7 | 19 Iayers| |22 Iayers.|'.

7.3 6.7 o
Bliaai
H B =

2013 2014 2014 2015 2016 2017 Human
Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

YO

AlexNet

Lbuind‘) ‘);lLa.u L.l LASGA o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

28.2

25
20
15

10

s

2010 2011

Lin et al Sanchez &
Perronnin

(EK Ref: http://cs231n.stanford.edu/

First CNN-based winner

<

16.4

11.7

2012 2013
Krizhevsky et al| Zeiler &
(AlexNet) Fergus

|152 Iayers| |152 Iayers| |152 Iayers|

A A

| 19 Iayers| |22 Iayers.|'.

7.3 6-7 -
BlaucH
H B =

2014 2014 2015 2016 2017 Human
Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\ig oL S5l
ZFNet

Z F N et [Zeiler and Fergus, 2013]

image size 224 110 13 13 13 _ _
filter size 7 [4]3 3
1 w384 | W1 w384 256
256 \ \ \
'l’strlde 2 96 3x3 max 3x3 max c
3x3 max pool| | contras pool contrast pool 4096 4096 class
S “"dez et stride 2 units| | units| | softmax
3
55 - 3 6 256
Input Image 1 256 s =
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

Yv

ZFNet

Lbuind‘) ‘);lLa.u L.l LASGA o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

25
20
15

10

5

2010 2011

Lin et al Sanchez &
Perronnin

(EK Ref: http://cs231n.stanford.edu/

ZFNet: Improved

hyperparameters over |152 Iayers| |152 IayersJ |152 Iayersl

AlexNet \

Ak

16.4

11.7

2012 2013
Krizhevsky et al| Zeiler &
(AlexNet) Fergus

|19 Iayers| |22 layers |

7.3 &7 :

5 |

B
B B =

2014 2014 2015 2016 2017 Human
Simonyan & Szegedy et al He et al Shao et al Huetal Russakovsky et al
Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

YA droc 5ty
VGGNet - Googl.eNet
Lbuind‘) ‘);lLa.u L.l LASGA o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

Deeper Networks |152 Iayers| |152 Iayers| |152 Iayers|

\ Ao A

|19 Iayers| |22 Iayers,.|

25

20

16.4

15

10
703 6.7
5.1
5 3.6
HEm = B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shac et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus |Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

(EK Ref: http://cs231n.stanford.edu/

x4

Gros $pSaly
VGGNet

VGGNet
e
[Simonyan and Zisserman, 2014] % :%::

I FC 4096 I

Small filters, Deeper networks S
8 layers (AlexNet) _ | _ =]
-> 16 - 19 layers (VGG16Net) el
— ———
Only 3x3 CONYV stride 1, pad 1 — e ="
and 2x2 MAX POOL stride 2 — %
] CEava
11.7% top 5 error in ILSVRC’13 —_— —
LAENEY = e 00—
> 7.3% top 5 error in ILSVRC’ 14 F oo voote

(\ Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.

’ .
Uy Y
Ref: http://cs231n.stanford.edu/

I~

6v6 [cs.CV] 10 Apr 201

]

arXiv:14009.1

=

Published as a conference paper at ICLR. 2013

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan® & Andrew Zisserman”
Visual Geometn Group, Department of Engineering Science, University of Oxford
{xaren,az}ercbots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recogmition setting. Chur main contmbution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 » 3) comvolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission. where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ComvlNets) have recently emjoyed a great success in large-scale im-
age and video recognition (Krizhevsky etal.. 2012; Zetler & Fergus, 2013; Sermanet et al, 2014;
Simonyan & Zisserman 2014) which has become possible due to the large public image reposito-
ties, such as ImageNet (Deng et al . 2009). and high-performance computing systems, such as GPUs
or large-scale distributed clusters (Dean etal.]011). In particular. an important role in the advance
of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al. 2014), which has served as a testbed for a few
generations of large scale image classification systems, from high-dimensional shallow feature en-
codings {Pa‘mnm.n etal 2010} (the winner of ILSVRC-2011) to deep ConvNets (Krizhevsky etal |
2012) (the winner of [LSVRC-2012).

With ConvNets becoming more of a commedity m the computer vision field a mumber of at-
tempts have been made to improve the omginal architecture of Knzhevskyetal (2012) in a
bid to achieve better accuracy. For instance, the hest-performing submissions to the ILSVRC-
2013 (Zeiler & Fergus. 2013; Sermanet et al, 2014) utlised smaller receptive window size and
smaller stride of the first convolutional layer. Another line of improvements dealt with training
and testing the networks densely over the whole image and over multiple scales (Sermanet etal.
2014; Howard, 2014). In this paper, we address another mmportant aspect of ConvNet architecture
design — its depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which 15 feasible due to the use of very
small (3 x 3) convolution filters in all layers.

As a result, we come up with sigmficantly more accurate ConvNet archutectures, which not only
achieve the state-of-the-art accuracy on ILSVEC classification and localisation tasks, but are also
applicable to other image recognition datasets, where they achieve excellent performance even when
used as a part of a relatively simple pipelines (e.g. deep features classified by a linear SVM wathout
fine-tuning). We have released our two best-performing models! to facilitate further research.

The rest of the paper is orgamsed as follows. In Sect. 2, we describe our ConvNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the

“cuwrrent affihation: Google DeepMind ~current affiliation: University of Ouford and Google Desphlind
'http://www.robots.ox.ac.uk/~vgg/research/very deep/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.
)vi

oL S5l
VGGNet
VGGNet =
. . | Snﬂmax | | FC 4098 I
[Simonyan and Zisserman, 2014] Ceoe 1 Ceome

Q: Why use smaller filters? (3x3 conv)

KK Ref: http://cs231n.stanford.edu/

AlexNet

FC 4096

Poal

Pool

Pool

Pool

Input

VGG16

vy

VGGNet

VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

(\ Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.

’ .
Uy Y
Ref: http://cs231n.stanford.edu/

—crr—
——]

ox5 conv. 256

AlexNet

1 Softmax] | FG 4036 |
= 1 C—eEaos 1
| Iy |

| 1 | cony. 512]
1 B | conv: 512]
1 1 | 0w |
1 2. 1 1 3cony, 512]
1 Pool 1 1 Poal |
1 6 1 | conv |
1 v 256] | cony |
| Pool 1 1 Poal]
1 onv128 1 | corv, 128 |
1] 1 conv, 128]
1 Pool] 1 Pool 1
1 g4 1 | con |
1 dconv.64] |[_Sx3conv B4]
1 Input 1 1 Inout 1

VGG16 VGG19

vy

VGGNet

VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

[7x7]

(\ Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.

’ .
Uy Y
Ref: http://cs231n.stanford.edu/

—rr—]
——

X

AlexNet

1 Softmax 1
I FC 1000 I

l FC 4096 I
[FC 4096 I

FC 4096
FC 4096

Pool

Pool

Pool

Pool

Input

VGG16

VGG19

Y

VGGNet

VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C?) vs.
7°C? for C channels per layer

(\ Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

.

’ .
Uy Y
Ref: http://cs231n.stanford.edu/

33 cony, 256
L l1x conv, 96 |
AlexNet

1 Softmax 1
I FC 1000 I

l FC 4096 I
[FC 4096 I

FC 4096
FC 4096

| Pool l

1 Bool] | corv. 512 1
1 =l | nv 512]
1 | | ow, 512"]
1 2 1 1 cony 512]
1 Pool] 1 Paal]
1 i1 1 conv, |
1 X | 1 COMY 1
| Pool] 1 ool]
1 0 a 1 |1 corv, o8]
| 1 1 3 conv, 128 |
| Pool] 1 Pool 1
1 61 1 3 con |
1 conv.64 1 | 3 conv 1
1 Input] 1 Input |
VGG16 VGG19

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Yo

VGGNet

solars ol

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3"3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3"64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112°64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"128)*128 = 147,456
POOL2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)"256 = 294,912
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)"256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3"3*256)"256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3"3*256)"512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3"3*512)"512 = 2,359,296
CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14"512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7°77512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 775124096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 40961000 = 4,096,000

<
)U M
7
Ref: http://cs231n.stanford.edu/

Softmax
FC 1000
FC 4096
FC 4096

O

Pool

O

o | p p
=] e is]
ts] I+ (s} fe}

Input

VGG16

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

vs

VGGNet

solars ol

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224°224*64=3.2M params: (3*3*3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3"64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112764=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"128)*128 = 147,456
POOL2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3"3*128)"256 = 294,912
CONV3-256: [56x56x256] memory: 56756*256=800K params: (3"3*256)"256 = 589,824
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3"3*256)"256 = 589,824
POOL2: [28x28x256] memory: 28728"256=200K params: 0

CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*256)"512 = 1,179,648
CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3"3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14714*512=100K params: (3"3*512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)"512 = 2,359,296
POOL2: [7x7x512] memory: 7°77512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7°7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096"4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters

<
)U M
7
Ref: http://cs231n.stanford.edu/

Softrmax
FC 1000
FC 4096
FC 4096

=]

[e] =
[=1 s

=1

0| pe el B el
[s =
=} c fs] S

Input

VGG16

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

v

VGGNet

solars ol

INPUT; [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3°3*3)"64 = 1,728 Note:

CONV3-64: [224x224x64] memory: 224*224*64=3.2M s (3*3"64)*64 = 36,864

POOL2: [112x112x64] memory: 112*112764=800K params: 0 o
CONV3-128: [112x112x128] memory: 112°112*128=1.6M params: (3*3*64)*128 = 73,728 Most memory is in
CONV3-128: [112x112x128] memory: 112°112*128=1.6M params: (3*3*128)*128 = 147,456 early CONV

POOL2: [566x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [56x56Xx256] memory: 56756*256=800K params: (3"3*128)"256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3"3*256)"256 = 589,824

POOL2: [28x28x256] memory: 28°28"256=200K params: 0

CONV3-512: [28x28x512] memory: 28"28*512=400K params: (3"3*256)"512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3"3*512)"512 = 2,359,296

CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0 Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296 in late FC
CONV3-512: [14x14x512] memory: 14714*512=100K params: (3"3*512)"512 = 2,359,296

CONV3-512: [14x14x512] memory: 14714*512=100K params: (3"3*512)"512 = 2,359,296
POOL2: [7x7x512] memory: 7°7"512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

<
)U M
7
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

YA

VGGNet

solars ol

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3"64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112764=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"128)*128 = 147,456
POOL2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [56x56Xx256] memory: 56756*256=800K params: (3"3*128)"256 = 294,912
CONV3-256: [56x56Xx256] memory: 56756*256=800K params: (3"3*256)"256 = 589,824
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3"3*256)"256 = 589,824
POOL2: [28x28x256] memory: 28°28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*256)"512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28*512=400K params: (3"3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28728*512=400K params: (3"3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14714*512=100K params: (3"3*512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)"512 = 2,359,296
POOL2: [7x7x512] memory: 7°77512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7°7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

<
)U M
7
Ref: http://cs231n.stanford.edu/

Softrmax

FC 1000 fc8
FC 4096 o7
FC 4096 fcé

convs-3
conv5-2

convs-1

=]

conv4-3
conv4-2

conv4-1

i#]

conv3-2

conv3-1

[s]
&

conv2-2
conv2-1

=]

0| 0 p e
fs] [s} ts]

convi-2
convi-1
Inpuit

vemsj/

Common names

=

Y ot Sl
VGGNet

VGGNet

. X 1 Softmax 1 | FC 4096]

[Simonyan and Zisserman, 2014] e o 1 [eme]

fc7 | Fcaoes 1 [Pool]

fee | FC 4096 | 1 onv, 512 |

o L Pool] | |

Details: coms-3 [] I =1

- ILSVRC’14 2nd in classification, 1st in e

localization C= =]

_ 5 . 5 . convd-3 | oo 512 | | Sxdconwbia |

Similar training procedure as Krizhevsky e ezl Y—

2012 o7 covir el o]

n_— fc6 C—— =1

- No Local Response Normalisation (LRN) oz]

- UseVGG16 or VGG19 (VGG19 only corvs CEECZI] coma-1 55] ']

& c 4— | Pool 1 1 Pool |

slightly better, more memory) o e =]

- Use ensembles for best results comvs CREENETT] come- S] |]

; [Foo] [Podl]

- FCT7 features generalize well to other convz BTz conv1-2 |] o]

convl convi-1 | Sx3conv. 64 | | 3 conv 1

tasks e (e
AlexNet VGG16 VGG19

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

P
)U N
7Y
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

VGGNet - Googl.eNet
Lbuind‘) ‘);lLa.u L.l LASGA o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

Deeper Networks |152 Iayers| |152 Iayers| |152 Iayers|

\ Ao A

|19 Iayers| |22 Iayers,.|

25

20

16.4

15

10
703 6.7
5.1
5 3.6
HEm = B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shac et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus |Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

&~
’”}

(EK Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

¥\
Googl.eNet

GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational

efficiency
- 22 layers
- Efficient “Inception” module
- No FC layers

- Only 5 million parameters!
12x less than AlexNet

- ILSVRC'14 classification winner
(6.7% top 5 error)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Inception module

17 Sep 2014

1409.4842v1 [cs.CV]

ar Xiv

[=

Going deeper with convolutions

Christian Szegedy Wei Liu Yangging Jia
Guoogle Inc. University of North Carclina, Chapel Hill Googlke Inc.
Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan
Google Inc. University of Michigan Google Inc. Google Inc.
Vincent Yanhoucke Andrew Rabinovich
Google Inc. Google Inc.
Abstract

‘Wi propose a deep convolutional neural network architecture codenamed Incep-
tion, which was responsible for setting the new state of the ant for classification
and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14). The main hallmark of this architecture is the improved utilization
of the computing resources inside the network. This was achieved by a carefully
crafted design that allows for increasing the depth and width of the network while
keeping the computational budget constant. To optimize quality, the architectural
declslons »cn: based on lJ'Le Hebbian principle and the intuition of multi-scale

I ion used in our submission for ILSVRC14 is
called GDochNet 422 layers deep network, the quality of which is assessed in
the context of classification and detection.

1 Introduction

In the last three years, mainly due to the advances of deep learning, more concretely convolutional
networks [10]. the quality of image recognition and object detection has been progressing at a dra-
matic pace. One encouraging news is that most of this progress is not just the result of more powerful
hardware, larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and
improved network archilectures. No new data sources were used, for example, by the top entries in
the ILSVRC 2014 competition besides the classification dataset of the same competition for detec-
tion purposes. Our GoogleNet submission to ILSVRC 2014 actually uses 12 fewer parameters
than the winning architecture of Krizhevsky et al [9] from two years ago, whik being significantly
more accurate. The biggest gains in object-detection have not come from the wtilization of deep
networks alone or bigger models, but from the synergy of deep architectures and classical computer
vision, like the R-CNN algorithm by Girshick et al [6]

Another notable factor is that with the ongoing traction of mobile and embedded computing. the
efficiency of our algorithms — especially their power and memory use — gains importance. It is
noteworthy that the considerations leading to the design of the deep architecture presented in this
paper included this factor rather than having a sheer fixation on accuracy numbers. For most of the
experiments, the models were designed to keep a computational budget of 1.5 billion multiply-adds
at inference time. so that the they do notend up to be a purely academic curiosity. but could be put
to real world use, even on large datasets, at a reasonable cost

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Al G0l 553

Googl.eNet

oiolel Jssle

GooglLeNet

[Szegedy et al., 2014]

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Inception module

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

¥¥

Googl.eNet

GooglLeNet

[Szegedy et al., 2014]

Filter
concatenation

ala EsleT g5l

3x3 max

pooling

Previous Layer

Naive Inception module

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Apply parallel filter operations on
the input from previous layer:
- Multiple receptive field sizes
for convolution (1x1, 3x3,
5 45
- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Q: What is the problem with this?
[Hint: Computational complexity]

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Yo oL S5l
Googl.eNet

iblae (Sanpy IS s ald (2307 J 30

Goog LeNet Q: What is the problem with this?

[Szegedy et al., 2014] [Hint: Computational complexity]
Example:
Fiiter
concatenation
1x1 conv, | | 3x3 conv, 5x5 conv, |
Module input: Input
28x28x256

Naive Inception module

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

5 oL S5l
Googl.eNet

iblae (Sanpy IS s ald (2307 J 30

Goog LeNet Q: What is the problem with this?

[Szegedy et al, 2014] [Hint: Computational complexity]
. Q1: What is the output size of the
Example: 1x1 conv, with 128 filters?

Filter
concatenation
1x1 cdnvl . 3x3 Cbnv, 5x5 conv, 1
12§ | L 192 | 96 3x3 pool
Module input: Input

28x28x256

Naive Inception module

<
JU M
ds
Ref: http://cs231n.stanford.edu/

v Gros 55l
Googl.eNet

blas Sy JSae ala 3leT g3k

Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
Example' Q2: What are the output sizes of

all different filter operations?

Filter
concatenation
28x28x128
“1x1 conv, 3x3 conv, 5x5 conv, |
1281 L__192 | 96 3x3 pool
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

YA oL S5l
Googl.eNet

iblae (Sanpy IS s ald (2307 J 30

Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
Example' Q2: What are the output sizes of

all different filter operations?

Filter
concatenation

28x28x128 28x28x192 = 28x28x96 28x28x256

- r - ¥ " —
1x1 conv, 3x3 conv, 5x5 conv,
12§ L 192 . 96 3x3 pool
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
JU M
ds
Ref: http://cs231n.stanford.edu/

12} oL S5l
Googl.eNet

iblae (Sanpy IS s ald (2307 J 30

Goog LeNet Q: What is the problem with this?

[Szegedy et al., 2014] [Hint: Computational complexity]
. Q3:What is output size after

Exam ple. filter concatenation?

Filter
concatenation

28x28x128 28x28x192 i 28%x28x96 28x28x256

—

3x3 pool

“1x1 conv, 3x3 éznv, 5x5?:onv, ‘
192 96

Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Googl.eNet

iblae (Sanpy IS s ald (2307 J 30

GooglLeNet

[Szegedy et al., 2014]

Q3:What is output size after
filter concatenation?

Example:
28x28x(128+192+96+256) = 28x28x672

Filter
concatenation

28x28x128 28x28x192 = 28x28x96 28x28x256

—

3x3 pool

“1x1 conv, 3x3 c/c'mv, 5x5?:omr, ‘
192 96

Module input: Input
28x28x256

Naive Inception module

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Q: What is the problem with this?
[Hint: Computational complexity]

o) Gros 55l
Googl.eNet

blas Sy JSae ala 3leT g3k

Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
. Q3:What is output size after
Exam ple. filter concatenation?
Conv Ops:
28x28x(128+192+96+256) = 28x28x672 [1x1 conv, 128] 28x28x128x1x1x256
= [3x3 conv, 192] 28x28x192x3x3x256
o= [5x5 conv, 96] 28x28x96x5x5x256
28x28x128 28x28x192 28x28x96 28x28x256 Total: 854M ops
. - A) T
1x1 conv, 3x3 conv, 5x5 conv,
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

oy Gros 55l
Googl.eNet

blas Sy JSae ala 3leT g3k

Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
. Q3:What is output size after
Exam ple. filter concatenation?
Conv Ops:
28x28x(128+192+96+256) = 28x28X672 [1x1 conv, 128] 28x28x128x1x1x256
= [3x3 conv, 192] 28x28x192x3x3x256
concatenation
= [5x5 conv, 96] 28x28x96x5x5x256
28x28x128 28x28x192 28x28x96 28x28x256 Total: 854M ops
- N . T
1x1 conv 3x3 conv, 5x5 conv
: ’ ’ 3x3 pool
1%) Very expensive compute
Module input: input Pooling layer also preserves feature
28x28x256

depth, which means total depth after
concatenation can only grow at every

Naive Inception module
layer!

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

oy G0l 553

Googl.eNet

Goog LeNet Q: What is the problem with this?
[Szegedy et al, 2014] [Hint: Computational complexity]
. Q3:What is output size after
Exam ple. filter concatenation?
28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that
Fiter use 1x1 convolutions to reduce
concatenation
28x28x128 28x28x192 ~ 28x28x96 28x28x256 feature depth
. - ~ " T
1x1 conv, 3x3 conv, 5x5 conv,
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

oY

Googl.eNet

AR IR P S

Reminder: 1x1 convolutions

64

&
)ﬂ M
”¥
Ref: http://cs231n.stanford.edu/

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

(ala}

Googl.eNet

AR IR P S

Reminder: 1x1 convolutions

64

<
)U M
ds
Ref: http://cs231n.stanford.edu/

56

56

1x1 CONV
with 32 filters

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

32

56

56

oF

Googl.eNet

s lS L GaoeT J 30

GooglLeNet

[Szegedy et al., 2014]

Filter
concatenation

3x3 max
pooling

Previous Layer

Naive Inception module

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Filter
concatenation

Previous Layer

g,

3x3 max
pooling

Inception module with dimension reduction

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

ov

Googl.eNet

VN sl g SIS A (Lo ruas (ralS L (i3T5l

GooglLeNet

[Szegedy et al., 2014]

Filter
concatenation

Previous Layer

3x3 miax
pooling

Naive Inception module

<
JU M
ds
Ref: http://cs231n.stanford.edu/

1x1 conv “bottleneck”
layers

Filter
concatenation

1x1
I i convolution
x1 1x1 3x3 max
convolution convolution pooling

Previous Layer

Inception module with dimension reduction

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

OA

Googl.eNet

s olona s ams (alS L 3T 50

GooglLeNet

[Szegedy et al., 2014]

28x28x480

Filter
concatenation

28x28x128 _ 28x28x192 28x28x96 28x28x64

xd c;,‘;: 3x3 c/onv, | [5x5 }éonv, ' 1x?conv, '
128 1?2 9_‘6] 6‘4
28x28x64 28x28x64 28x28x256
1 : L : 1
1x1 conv, 1x1 conv,
Module inpUt: Previous Layer
28x28x256

Inception module with dimension reduction

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5%5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

o4

Googl.eNet

GooglLeNet

[Szegedy et al., 2014]

Stack Inception modules
with dimension reduction
on top of each other

<
)U M
ds
Ref: http://cs231n.stanford.edu/

ans GualS b noleT slad 55k b o) lwdiiy

Inception module

—
T

s

— e =
= ==
e

B . o
i '

‘\7_:. —

Googl.eNet

JﬂlSLSJLAM

GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

A
il
!

Stacked Inception
Modules

L

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

) oL S5l

Googl.eNet

8 (guipdlab oo 555 1 JelS (s olers

GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet) }

architecture I
) ne § i

Classifier output

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Y

Googl.eNet

(S Jumio Loles (slads¥ (3ia) suiiS suindinh g oA JolS (5 lore

GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

<
)U M
ds
Ref: http://cs231n.stanford.edu/

[

Classifier output
(removed expensive FC layers!)

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

P Lt G
Googl.eNet

aﬂ&@@kéﬁsuﬁdﬁwgg‘)w

GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

n #
[

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

£Y G (5 S
Googl.eNet

JA[SGJLAM

GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

B ﬁu} 16

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

0

ResNet

Gl 5Bl

ResNet

[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner
(3.57% top 5 error)

- Swept all classification and
detection competitions in X
ILSVRC’15 and COCO'13! Residual block

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

X
identity

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

#5 s
ResNet

ResNet

[He et al., 2019]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

ol JUd o5 SIS prme (4S8 Ss (550 52 SG2ee ALY A0 513 ad (555 Guls el

&
)M M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

2V
ResNet

ResNet

[He et al., 2019]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

IOC_ layer

Iterations

Training error

Test error

56-laye

Iterations

Q: What'’s strange about these training and test curves?

[Hint: look at the order of the curves]

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

A
ResNet

ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

Iﬁla_\"e'

Iterations

Training error

Test error

56-layer

[terations

S6-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

feand 200 ooty cawds (ol bl canwl 60 S Jae Sus S 5aae Jus

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

#4 s
ResNet

ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

o) oA Sgsae gladas giladings el (g ludiug galiue (J<ae tdad 8

&
)M M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

ResNet

ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at Jus sad Jslaa Wl g b 3 5see Jos

least as well as the shallower model. L3S Jae 55 3acalS
A solution by construction is copying the learned O30S (S 1Akl 3u0b 5l dael, S
layers from the shallower model and setting 3 BFaepS Jae Slaad s Sab sl
additional layers to identity mapping. bt Sil gl b slaY Gals 51,3

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

A o 58l
ResNet

ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

l relu
H(x) F(x) +x
X
F(x
[relu) s identity
X X
“Plain” layers Residual block

sloailassl ninl&s S (il sl o sladsy 5l suldiwl 1ol
collae SIS 85 50 Bl (55158 (5] s paliane (336 slads

&
)ﬂ M
”¥
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Al o 58l
ResNet

ResNet

[He et al., 2019]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + x | retu
g HO=FO s ~
[| Use layers to
fit residual
X F(x) = H(x) - x
[relu i lrelu identity in(st)ead c(>f)
T H(x) directly
X X
“Plain” layers Residual block

oS o ool asBiine 5 sbay H(X) slaas F(X) = H(X) = X swslasdls (531,55 515 Lacs¥)

<
)M M
ds
Ref: http://cs231n.stanford.edu/

vy

ResNet

ResNet

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

Y Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

’ .
Uy %
Ref: http://cs231n.stanford.edu/

solars ol

F(x)

X
Residual block

X
identity

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

V¥

ResNet

ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

solars ol

3x3 conv, 128
filters, /2
spatially with
stride 2

X

F(x
) identity

3x3 conv, 64
filters

X
Residual block

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

e

ResNet
sobeas ol
ResNet
[He et al., 2015]
Full ResNet architecture: —
[relu

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

F(x) +x

F(x)

X
Residual block

X
identity

conv layer

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

\7d

ResNet
solers ol
R ==
es N et L e E'O ZC iaggrs
esiaes
[He et al., 2015] st
classes
Full ResNet architecture: [| — Global
- Stack residual blocks e s it o
- Every residual block has after last
conv layer

two 3x3 conv layers
Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)
Additional conv layer at
the beginning

No FC layers at the end
(only FC 1000 to output
classes)

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

X

F(x
) identity

X
Residual block

\a%

Goe 55
ResNet
solers ol
ResNet
[He et al., 2015]
Total depths of 34, 50, 101, or
—_—

152 layers for ImageNet

Y Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

’ .
Uy Y
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

VA

ResNet

ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GooglLeNet)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

solars ol

28x28x256
output

28x28x256
input

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

va

ResNet

ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GoogLeNet)

<
)U M
ds
Ref: http://cs231n.stanford.edu/

1x1 conv, 256 filters projects
back to 256 feature maps

(28x28x256)

3x3 conv operates over

only 64 feature maps

1x1 conv, 64 filters
to project to
28x28x64

28x28x256
output

28x28x256
input

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

ResNet

Jae 5o Sl 55 5l

ResNet

[He et al., 2019]

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier 2/ initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

&
)M M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AN

ResNet

ResNet

[He et al., 2019]

Experimental Resulis

- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

<
)U M
ds
Ref: http://cs231n.stanford.edu/

oS gl

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (guote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AY

ResNet

ResNet

[He et al., 2019]

Experimental Resulis

- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

- Deeper networks now achieve
lowing training error as
expected

- Swept 1st place in all ILSVRC
and COCO 2015 competitions

<
)U M
ds
Ref: http://cs231n.stanford.edu/

o3 gl

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (guote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
+ COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than “human
performance” (Russakovsky 2014)

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

AY ot 5 Sl
ResNet

Lbuz\") ‘):lL-A-H L.l 4..&&3&-0 o9 ImageNet YL’» u.ul:\:l-c o (SJ‘J:hJ L;-A-Hu-lil:)‘_.l u:l-‘L_‘} o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
|152 Iayers| |152 Iayers| |152 Iayers|
25 '
20 :
16.4

15 .

| 19 Iayers| |22 Iayers.|'
10 -

7.3 6.7
5 3.6 =
shallow .
| shallow | . B= £ I3 23 .
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

(EK Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Ab ot S0

Jhdi gl 9 318 (puas glaasads 035‘335 slag jlars

Inception-v4
80 80
Inception-v3 ResNet-152
ResNet-50 I VGG-16 VGG19
D B e S B B B B PLE et B ©ResNet-101 s -
ResNet-34
£10 g0 ResNet-18
& 3 GooglLeNet
g 3 ENet
g 65 9 65
.;;L é‘ © en-NIN
~ 60 = 60 Sl 5M. 35M - 65M - 95M - 125M 155M-
BN-AlexNet
55 55 | AlexNet
=0 WD et 4D N sk G2 % 0 5 10 15 20 25 30 35 40
G gt S S) ,’5 ‘; 0> 40r N NP
P\ej_\{ ﬁ%‘x\‘\ “ \\&e{\, G (3 '& 5‘* N e‘ 20 00(‘ Operations [G-Ops]
2 e
o Wee® ?Ff’ o

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017 . Reproduced with permission.

P
)!J M
7
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AF

JLdi gl 9 LS cmas glaasads § 9Sb oS slags jleas

Inception-v4 : Sauay

Comparing complexity...

80

75

~
=]

o
o

Top-1 accuracy [%]

=2}
=]

55

50

e~ \“-) 13
.fs\ .;_\3 v\ Q}*\ N Y (,\ (_,3:\@{3 "y"e AN

P)e \«ee

Lsml.u

Inception-v4: Resnet + Inception!

(O™ e“'

?g:‘a ?‘e,‘o?\ c,?\?‘eg (\ce()“ o

80

~
=

o]
o

Top-1 accuracy [%]

@
=1

55

Inception-v4
Inception-v3 5 ResNet-152
ResNet-50 il VGG-16 VGG-19
TR ©ResNet-101° g
i . ResNet-34
‘ResNet-18 i
oogleNet
O oqen
ENet
© Bn-uin
i BM---35M - §5M-----05M - 125M---155M---
BN-AlexNet
| AlexNet
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

P
)!J M
7
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AV s 5ol
JLdi gl 9 LS cmas glaasads § 9Sb oS slags jleas
VGG : S slic

C . lexit VGG: Highest
omparing compiexity... memory, most
operations
Inception-v4
80 80 . i J
Inception-v3 . ResNet-152
ResNet-50 if VGG-16
B | e R T R e T S e B OE B B PO Beap e i " "ResNet-101 - -
ResNet-34
£10 g0 ResNet18 |
> > °
& 3 GooglLeNet
g 3 ENet
% 63 S 65
il % © en-NIN
=] o H
= 60 = 60 — 5M -----35M 65M---- 95M- - 125M - 155M-
BN-AlexNet
55 55 | AlexNet
0 = X 4% LR S RN e 0 5 10 1.5 20 25 30 35 40
e G oY A0 A9 ,’5 ‘; Q¥ a2 N
P\e_’_\{ 1_\% ‘x\s\ ?f“\ \% C')G 6(’ \& B\Q w\@ A e‘-';x'_\o‘\o{@o Operations [G-Ops]
o 227 Q\e'(’ ?-E"c’\(\c'e\o"e

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017 . Reproduced with permission.

P
)!J M
7
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

M s 5 Sl
JLdi gl g 99l cas (sladsad) oSL oS (sl jlass
GoogLeNet : Suiasy g4unlis
]) GooglLeNet:
Comparing complexity... most efficient
Inception-v4
80 80 :
Inreptinnva Reshet-152
Resljet-50 b VGG-16 VGG-19
75 LLE e .R NngE‘_\‘letJDI' e Py -
H esNet-.

E 70 g 70 ‘ResNer-18 :
g E °°}QGoogLENet
=i 3 ENet
< 65 g 65 ' :
5 = BN-NIN
E 0 el il

604 60 i BMo---35M-— 65M.----95M - 125M - 155M---

BN-AlexNet
55 55 " AlexNet
5 AT\ D Al] s 0 5 10 15 20 25 30 35 40
REE et \A $e AP AL A2 ak O \,0 Ahr A & ‘
ph‘?'* o Q\ t‘(, \\\ \566 C; ec;@e’ﬁ ,‘Qe"(; V“?‘e\a \;\f\::e (ito(‘d&o(\ Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

P
)!J M
7
Ref: http://cs231n.stanford.edu/

AS s sty
JLdislg 9ol oas sladsad ;58U sS slag jlers
AlexNet L;id:;__;:\:: Gi.unfl.lo

]) AlexNet:
Comparing complexity... Smaller compute, still memory

heavy, lower accuracy

Inception-v4
80 80 .
Infeqtion-v3 ResNet-152
Resljet-50 1 VGG-16
L S e O B OE OB G 75 ; ResNet-101 .
ResNet-34
£ 90 g0 ResNet-18
z g |0
£ & GooglLeNet
g g .| Fhet
% 63 S 65
.a ; EN-NIN |
e 2 -
60 60 ~--BM:------35M 65M-----95M - 125M - 155M-
BN-AlexNet
55 55 | AlexNet
20 x oo X el B <O od.el 3 B B 0 5 10 15 20 25 30 35 40
TR AR R R, HY A0 4Bk 4?7 N
et St B P e Rt e S
- ()
o GO° 7! e ?‘56\ [0(."'

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017 . Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

JLdislg 9ol oas sladsad ;58U sS slag jlers

ResNet: Saay

Comparing complexity...

80 80
75 75
g 70 g 70
z Z
g g
g 3
& 65 S 65
T 5
T = g0
55 55
* o X AD AL TR -] .
Rt et W \A Yse AP A0 A2 Ak o0 gv a5k D
‘*e* e @ % "\\ SN e‘}@e‘g‘Q s?\etg\‘\e" 9“\0:0’000
T REeT g W\

Lsi.uu‘.s.a

ResNet:
Moderate efficiency depending on
model, highest accuracy

Inception-v4
Inception-v3 E ResNet-152
ResNet-50 I VGG-16 VGG-19
S ResNet-101° P 4 e
1 . ResNet-34
,'Resl\let—lﬂ |
°° GooglLeNet
ENet
© Bn-nin
—eeedeenn “eoeooo-BM-------35M-- 65M----- 95M -----125M---155M---
BN-AlexNet
| AlexNet
5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

EITEN
Uy %
Ref: http://cs231n.stanford.edu/

a3 oL s s
JLdi gl g 99l cas (sladsad) oSL oS (sl jlass
Hoae Ol 5 5y LI oal le) stunlis
= BN-NIN
— GooglLeNet
=== |nception-v3
Inception-v4
e o « AlexNet E
E. ”ﬁmuw BN-AlexNet =
) e T e ——— — VGG-16 S
iE| 2R “— VGG-19 g
= \\ = ResNet-18 a
a2 — ResNet-34 §
£ _\ ~— ResNet-50 5
Tl ee—— Agghict1o) :
g ResNet-152 =
i — ENet 2 m— BN-NIN BN-AlexNet === ResNet-50
10 \ = GoogleNet — \VGG-16 ResNet-101
] 9 — Inception-v3 - VGG-19 ResNet-152
Inception-v4 — ResNet-18 = ENet
] - AlexNet —— ResNet-34
5 8
1 2 4 8 16 32 64 1 2 4 8 16 32 54

Batch size [/]

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

<
)U M
7
Ref: http://cs231n.stanford.edu/

Batch size [/]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

qy
459.&‘,445.}.&

Network in Network (NiN)

[Lin et al. 2014]

Mipconv layer with

“micronetwork” within each conv

layer to compute more abstract

features for local patches

- Micronetwork uses multilayer
perceptron (FC, i.e. 1x1 conv
layers)

- Precursor to GoogLeNet and
ResNet “bottleneck” layers

- Philosophical inspiration for

GooglLeNet

Figures copyright Lin et al., 2014. Reproduced with permission.

<
JU M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

Ay

3 93¢ Js yu sLaResNet

Goee slowilasdly slacis o Jlea slacalSs
Improving ResNets...

|dentity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from
creators of ResNet

- Creates a more direct path for
propagating information throughout
network (moves activation to residual
mapping pathway)

- Gives better performance

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

A0

3 93¢ Js yu sLaResNet

oot glenileils slacos

Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
important factor, not depth

- User wider residual blocks (F x k
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms
152-layer original ResNet

- Increasing width instead of depth
more computationally efficient
(parallelizable)

<
)M M
ds
Ref: http://cs231n.stanford.edu/

e

Basic residual block

Wide residual block

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

a5 ot S Sl
193¢ Js s sLaResNet

(ResNeXt) saee rioe slacos (5l sudpans slawilasil sladous

Improving ResNets...
Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)

[Xie et al. 2016] 256-d out
- Also from creators of

ResNet 256-d out
- Increases width of

residual block through T

multiple parallel

pathways T

(“cardinality”)

- Parallel pathways
similar in spirit to
Inception module 266-d in

256-din

&
)U M
”¥
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

av

3 93¢ Js yu sLaResNet

S Gae b SGsee glaeses

Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and
training time through short networks during
training

- Randomly drop a subset of layers during each
training pass

- Bypass with identity function

- Use full deep network at test time

&
)M M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

AA ot S5ty
s g3 Js o sLaResNet

LAJJJ_) JfL“" L.l 4.4.51:1‘3-0 o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Network ensembling

30 282
|152 Iayers| 152 layers |152 Iayers|
25
VS e mmae e
20 :
16.4

15 .

11.7 |19 Iayers| |22 Iayers.|
10

703 6.7"
5 3.6 =
2l aaaB
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

(EK Ref: http://cs231n.stanford.edu/

KX

s g3 Js o sLaResNet

(ran s S0k S) La (K55 Gaae cooap slor 0a lee sladsas

Improving ResNets...
“Good Practices for Deep Feature Fusion”

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,
Wide Resnet models
- ILSVRC’16 classification winner

Inception- | Inception- | Inception- | Resnet-

Err. (%) 4.20 2.92(-0.6)

(\ Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

EITE N
Uy Y
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

&~
’”}

(EK Ref: http://cs231n.stanford.edu/

s g3 Js o sLaResNet

LAJJJ_) JfL“" L.l 4.4.51:1‘3-0 o9 ImageNet YL) u.ul:\:\-c o Ls‘)‘é:td L;-A-Hu-li!:)‘_.l uIl.‘L_‘; o &\L:..l

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Adaptive feature map reweighting

30 282

|152 Iayers| |152 Iayers| 152 layers
25
.
20
16.4
15 .
11.7 | 19 Iayers| |22 Iayers.|
10
5
2.3
2010 2011 2012 2013 2014 2014 2015 2016 2017
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al Shao et al Huetal
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

5.1

Human

Russakovsky et al

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

A o 5 Sty
s g3 Js o sLaResNet

(SENet) Squeeze-and-Excitation sla«<is

Improving ResNets...
Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

- Add a “feature recalibration” module that
learns to adaptively reweight feature maps "=
- Global information (global avg. pooling
layer) + 2 FC layers used to determine
feature map weights
- ILSVRC'17 classification winner (using
ResNeXt-152 as a base architecture) o S

Fo. (W)
TR

l-"“/HIIHI]]}I] | %= \ /7
Fscale (1)

w' w

X v

H' Fir H

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

VY

LaResNet ;) 31,8

LasloailasSls 5 suldiuwl & gus aee slosle qrae slacad : JUSI 8 (g

Beyond ResNets...

FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

- Argues that key is transitioning
effectively from shallow to deep
and residual representations are
not necessary

- Fractal architecture with both
shallow and deep paths to output

- Trained with dropping out
sub-paths

- Full network at test time

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Fractal Expansion Rule

I ==
folz) fos1(2)
Layer Key
"= convolution
£ Joil
1 Pool
== Predictio

fa(z)

Figures copyright Larsson et al., 2017. Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AR

LaResNet 1 31,

E
i

o1 Jumie Jli ol SIS slaeSos

Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017] i

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

Concat
L~

] o]

Dense Block

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Softmax

FC

Pool

Dense Block 3

Pool

Dense Block 2

Pool

Dense Block 1

Input

L

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

V¥

SqueezeNet

Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer
Parameters and <0.5Mb Model Size

[landola et al. 2017]

- Fire modules consisting of a
‘squeeze’ layer with 1x1 filters
feeding an ‘expand’ layer with 1x1
and 3x3 filters

- AlexNet level accuracy on
ImageNet with 50x fewer
parameters

- Can compress to 510x smaller
than AlexNet (0.5Mb)

<
JU M
ds
Ref: http://cs231n.stanford.edu/

saue e

1x1 convolution filters

999

eipand

1x1 and 3x3 convolution filters

”,,))) YD I IO
W or oy o YD O Yo 15 YD YD
1 X6 15 YD Xo X5) Y

RelU

Figure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017 . Reproduced with permission.

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AR Gros 5L
S Sab—l S
(NAS) (255 (5580l b ae (solans (s satuna 14Kl slag slane 5580k 38 Sub

Meta-learning: Learning to learn network architectures...
Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016] g
- “Controller” network that learns to design a good l
network architecture (output a string ‘ “AJEE.;:{E%EWE”&R" |
corresponding to network design)
- lterate: J
1) Sample an architecture from search space BB gRe ane
2) Train the architecture to get a “reward” R R
o s o . i, [, |, [i, e, [,

3) Compute gradient of sample probability, and
scale by R to perform controller parameter
update (i.e. increase likelihood of good
architecture being sampled, decrease L - i e e i
likelihood of bad architecture) e g — — D e,

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

AN Grot 55>
S Sab—l S
o2l iy ulile wlid il (sl 50 i JEI lagsslare (5 5Sab aSud slags slane (5 S0k (18 Sl

Meta-learning: Learning to learn network architectures...

Learning Transferable Architectures for Scalable Image

Recognition
[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a Fﬂ”ﬁé% _ﬁ g?ﬁ

large dataset like ImageNet is expensive o
- Design a search space of building blocks (“cells”) w&;ﬂ DH DEI \J L{HL;] uﬁ'u
that can be flexibly stacked ;17 /
- NASNet: Use NAS to find best cell structure on Bl g
smaller CIFAR-10 dataset, then transfer Normat Cer Redtucton Col
architecture to ImageNet

Select operation for

Select secand
Nddﬂ slam hi¢den state

S\claperan n for % | Select mathod to

softmax

[repeat B times | & !
repeat B times y s Ao

.
5 i n iy
F D first hidgen slzie cond hidgen slale cambina hidden state e
T IR I I
£5
I R R RN
\ v Y f
‘
;

<
)U M
ds
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

ARA"%
dlasslasls cuassladsicia s lass
Summary: CNN Architectures
Case Studies
- AlexNet
- VGG
- GoogleNet
- ResNet
Also....
- NiN (Network in Network) DenseNet
- Wide ResNet FractalNet
- ResNeXT SqueezeNet
- Stochastic Depth NASNet

- Squeeze-and-Excitation Network

&
)ﬂ M
”¥
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

VA Geoe §p 5
JLd gl g gils (sas slaasads slas jlaxs

(S

% VGG, GoogLeNet, ResNet all in wide use, available in model zoos
*»» ResNet current best default, also consider SENet when available
¢ Trend towards extremely deep networks

¢ Significant research centers around design of layer / skip connections and
improving gradient flow

¢ Efforts to investigate necessity of depth vs. width and residual connections

¢ Even more recent trend towards meta-learning

&
)M M
ds
Ref: http://cs231n.stanford.edu/

VY-

‘;La!(:\la

E‘I_ CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2019

Previous Years: [Winter 2015] (W

=

]
B
L]
E
E
E
Z
E
E
E

truck
sﬁirj
-:6Il|:|!3r|E‘

|‘|0r1‘-'

Prepared by Kazim Fouladi | Spring 2019 | 1st Edition

http://cs231n.stanford.edu
%@b/ http://cs231n.github.io/convolutional-networks/

