Considerations on Deep Neural Networks Training

4al3 (0¥ 53 LIS
u_.‘b‘.é OKM;‘J ‘(.S-U'“'L.Ledc QMS‘J
C)‘)@J olﬁ.ﬁd\a

http://courses.fouladi.ir/deep

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Julas slacs ylasalay

EQUIVALENT REPRESENTATIONS

LT o ¥ladl 5 Y g0 & Siula

S
&

k k+1
h h hk hk+1
————| max(0, W*"'h") > —_—| W/ >
k
h
k+1
h
k
o hl k+1
k]
® Wk+1 ® h2 F+1
o o hk 2
k+1
o o : \
h
o 4

gl g jlidiisl sy (SIS 9u

DUALITY OF FPROP & BPROP
Forward Propagation Back Propagation
(FPROP) (BPROP)

S .
é &2 =S
e SUM : COPY
- B z
3 = ____ 1 | e @: &=
: COPY v SUM
L/

o
&

o GoL $r50l
3 il
NEURON STRUCTURE
L wo
*@® synapse
axon from a neuron ™.

. WoZo

w1

cell body

W22

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U N
1
Ref: http://cs231n.stanford.edu/

Zwimi +b
i

f

f (Z w;T; + b)

e
output axon

activation
function

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

R EEY
(s o))
ACTIVATION (TRANSFER) FUNCTIONS
S|gmo|d 1 / Leaky RelLU

o(x) = 1+é-’v J

-10 v 10

tanh |
tanh(x) i__j[—_:

RelLU
max (0, x)

-10 Y 10

EITEN
Up %
Ref: http://cs231n.stanford.edu/

max(0.1z, x)

Maxout
max(wi z + by, wi x + by)

10

ELU

T x>0
O:'(em_]_) .'1:<0 - " 10

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

C’A:\JLG &[93

Activation Functions

N
o

~10 10

Sigmoid

EITEN
Up %
Ref: http://cs231n.stanford.edu/

o geSes 5

olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

CA:\JLG &[93

Activation Functions

Sigmoid

EITEN
Up %
Ref: http://cs231n.stanford.edu/

olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

4 Gt S8l
R EEY
(]:8; / /,;__
X 9o sigmoid o(z)=1/(1+ e_i) asf/
< P ate - n_gf-
a g /|
0L 9o oL\ oL
0x__ 9z 9o oy e e
What happens when x = -107?
What happens when x = 0?
What happens when x = 107

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

C’.a:\.ll.d &[93

Activation Functions

N
o

—10

Sigmoid

EITEN
Up %
Ref: http://cs231n.stanford.edu/

10

olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AR}

C’A:\.ILG &[93

MLQ&AWUJJJGLAL;JJJJ;|QMJ§JA§3&EU

Consider what happens when the input to a neuron (x)

IS always positive:

I wop
@ synapse
axon from a neuron

wWoTo

cell body

w22

g (Z-u:{;r:i b)

output axon

activation
function

f Z’wﬂ?i + b

What can we say about the gradients on w?

EITEN
Up %
Ref: http://cs231n.stanford.edu/

VY
C’.a....\.ll.’.iZ (__3[93

MLQAEAM:MAUJJJGLALSJJJJJi‘QM%@EU

Consider what happens when the input to a neuron
always positive...

[

1S

allowed
gradient
update
directions

gradient
update
directions

f Z W; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative (
(this is also why you want zero-mean datal)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Zig zag path

hypothetical
optimal w
vector

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Al

C’.a:\.ll.’.é &Lg}

Activation Functions

N
A"

—10

Sigmoid

EITEN
Up %
Ref: http://cs231n.stanford.edu/

10

olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “Kkill” the
gradients

2. Sigmoid outputs are not
zero-centered

3. exp() is a bit compute expensive

b Y

C’.a....\.ll.’.iZ (__3[93

Activation Functions

tanh(x)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Sl gyl =136 s

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

\O

G (5 Sl

C.’::\Jl.’.é (’7."33

Activation Functions

10

—10 10

RelLU
(Rectified Linear Unit)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U N
a1
Ref: http://cs231n.stanford.edu/

Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

[Krizhevsky et al., 2012]

A\l o $500

C.’::\JL’.% &l}]

QMQMJ&&&A&‘J@G

Activation Functions Complites Iix) = max(0.x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

—10 10

RelLU - Not zero-centered output
(Rectified Linear Unit)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U N
a1
Ref: http://cs231n.stanford.edu/

W ot s rafoly

C.’::\JL’.% &l}]

QMQMJ&&&A&‘J&G

Activation Functions Complites Iix) = max(0.x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

RelLU - Not zero-centered output
(Rectified Linear Unit) - An annoyance:

hint: what is the gradient when x < 07

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA gL §-500
R EEY
I e 1o s Il aal g 3
X 55] RelU o(z) = ma.x(O,::)
-« 6_ gate -
9L 9o oL oL
Or Oz Oo oo ~10 ° 10
What happens when x = -107
What happens when x = 07
What happens when x = 107

EITEN
Up %
Ref: http://cs231n.stanford.edu/

V4

C.’::\JL’.é &l}]

QMQMJ&&&A&‘J&G

O

DATA CLOUD

active ReLU

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

P

dead RelLU
will never activate
=> never update

C’.a....\.ll.’.iZ &ﬂ}]

G (5 Sl

QMQMJ&S:'L;‘QAAA‘J(S\[S

V/\/

DATA CLOUD

|

active ReLU

=> people like to initialize
RelLU neurons with slightly
positive biases (e.g. 0.01)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

dead RelLU
will never activate
=> never update

A ol Sl
Caallad &l}]

J‘Julfbl Csbd_&‘g_‘.us:t u_'a.a JA‘J C_.su

Activation Functions Hootal 018]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Leaky ReLU
f(z) = max(0.01z, z)

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

. G (5 Sl

C’.a....\.ll.’.iZ &ﬂ}]

el goad susy ha aaly s

Activation Functions Hootal 2018]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10

Parametric Rectifier (PReLU)
Leaky ReLU f(:):) — ma,x(o:a:, ::c)

- i) = max(0.012,) Vs

3 backprop into \alpha

j (parameter)

’U 'y
1
Ref: http://cs231n.stanford.edu/

Yy G (5 Sl

C.’::\JL’.% &l}]

ol b aaly mls

Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky RelLU
adds some robustness to noise

10

T ifz >0
fla) = {a et == 1 ;fléo - Computation requires exp()

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

A G (5 Sl

Caallad &b}

Maxout 4,
Maxout “Neuron” [Goodfellow et al., 2013]
- Does not have the basic form of dot product ->

nonlinearity
- Generalizes ReLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w! z + by, wl z + by)

Problem: doubles the number of parameters/neuron :(

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

Yo
C’.a....\.ll.’.iZ (__3[93

Use RelLU. Be careful with your learning rates
Try out Leaky RelLU / Maxout / ELU

Try out tanh but don’t expect much

Don’t use sigmoid

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

YV ol Sl

Lasala (s 5Ia g i

original data zero-centered data normalized data
10 - 10 - 10 -
. A
3| 5 9
0 - 0 - 0
\
R0 = g e 5 5 ST = 5 0

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

YA

Lasala UBJIAJ.QQI%Q

Lasals (g 5luwa sl /g 5ludle 5 & g, s

Remember: Consider what happens when the input to a

neuron Is always positive...

[

allowed
gradient
update
directions

gradient
update
directions

f Z W; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative (
(this is also why you want zero-mean datal)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Zig zag path

hypothetical
optimal w
vector

Y G-c «5)‘.‘.5"11’

Lasala (s 5Ia g i

sadle y5 slasals / 80N yo— yis slasals

original data zero-centered data normalized data
10 - 10 - 10 -
. A
3| 5 9
0 - 0 - 0
\
R0 = g e 5 5 ST = 5 0

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

Lasaly @Jldﬁyg.g

s ..1:\3“ L;LM..:L& / amw,ﬁi L;LM.J‘J

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

=10
14 -10 -5 o 5

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

)

Ldsala (p 3l g3 yis

Lasalys (SJLA.AJLOJ.\ s

Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

A
A
o o\ A
® A
5 yldle b 3
09 Slomdl G gaiaddal S Gl
< sl pubia Hlen 055 s Sk

A
A

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

After normalization: less sensitive to small
changes in weights; easier to optimize

s 3tdlo 5 3
o Sl 4 guiddal S Gl
< al Gulia 38 G55 G sile
o) JSeulw (g ldiagy

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Yy

Ldsala (p 3l g3 yis

bl gl 08 slada 5

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e g VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

EITEN
Up %
Ref: http://cs231n.stanford.edu/

iy

La059 el gl SR ,luds

- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Yo

LG)9 eyl (SR ,lude

Sa oS HSabad slael 5l suldial - sl soul

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y5

LG)9 eyl (SR ,lude

Sa S Salad ulael Sl aalanwl: ol soul

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.

EITEN
Up %
Ref: http://cs231n.stanford.edu/

v

008 s gl (B4 Hluse

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh
non-linearities, and
initializing as

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

described in last slide.

assume some unit gaussian 10-D input data

D = np.random.randn({16606, 500)

hidden layer sizes = [500]*18

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu':lambda x:np.maximum(@,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == @ else Hs[i-1] # input at this layer

fan in = X.shape[l]

fan_out = hidden_layer sizes[i]

W = np.random.randn(fan_in, fan _out) #* 8.81 # layer initialization
H = np.dot(X, W) # matrix multiply

H = act[nonlinearities[i]](H) # nonlinearity

Hs[i] = H # cache result on this layer

look at distributions at each layer
print ‘input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean({H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems(}]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+l, layer_means[i], layer stds[il])

plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer_stds, 'or-'}
plt.title('layer std')

plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range={(-1,1))

YA

008 s gl (B4 Hluse

input layer had mean ©.000927 and std ©.938388

hidden layer 1 had mean -0.000117 and std ©.213081

hidden layer 2 had mean -0.000001 and std @.647551

hidden layer 3 had mean -0.000002 and std 0.910630

hidden layer 4 had mean 0.000081 and std 0.002378

hidden layer 5 had mean 0.000002 and std 0.000532

hidden layer & had mean -0.000000 and std 0.969119

hidden layer 7 had mean ©.000000 and std ©.000026

hidden layer & had mean -0.000000 and std 0.000006

hidden layer 9 had mean 0.000080 and std ©.080001

hidden layer 16 had mean -0.000000 and std 0.000000

iR layer mean _— layer std
0.00030 e —yg——— —— - - -

=0.00002

-0.00004 2
- -0.L0008 Y
[¢) e |
= s -
S =000
L ;
£ T nan i - .
< FO0NE 1 2 3 4 5 3 7 & T 2 3 4 5 & [&
o 0000 00 o0 > e 250 2
al
o
[a\} 50000 200400 S0qas 250900 250qan 250400 25040 - % 50 2 as
o 000
£
‘5_ 40000 00qan 2004400 ol v} DO 20040 00T 20300 200400
» 15000
- 0000 Eagoo 130903 150800 130908 15080 15003 10400
S 100400
% 20000 nagos 100400 100d00 100500 160400 100G00 1001 160000
o
L SO400
E 10000 g S0g00 S0400 S0 S0 E 00 000 0900 0400
N
(“ - " " ~ " ” ” ” ”
’;i S10-0.8 00 05 10-L0-05 00 05 10-1.0-0.5 00 05 10-10-0500 05 10-10-05 0.0 05 10-1.0-0.5 60 05 10-1.0-05 00 05 10-10-05 00 05 10-10-0800 65 10-1.0-05 00 05 10
a
°
g
[
aQ
o
o

!

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Y4

008 s gl (B4 Hluse

input layer had mean ©.000927 and std ©.938388

hidden layer 1 had mean -0.000117 and std ©.213081

hidden layer 2 had mean -0.000001 and std @.647551

hidden layer 3 had mean -0.000002 and std 0.910630

hidden layer 4 had mean 0.000081 and std 0.002378

hidden layer 5 had mean 0.000002 and std 0.000532

hidden layer & had mean -0.000000 and std 0.969119

hidden layer 7 had mean ©.000000 and std ©.000026

hidden layer & had mean -0.000000 and std 0.000006

hidden layer 9 had mean 0.000080 and std ©.080001

hidden layer 16 had mean -0.000000 and std 0.000000

e layer mean layer std
0020 e —y—— - - -

- eIt}
- q0bE Y
[¢) |
— -
5 00L
w ;
< . - - .
< Sl B F 3 B B
o €00] 0 o
al
o
Al] SoEeod 250440 2 90 age 09 a
o 0
£
‘5_ 400040 hil 200 A HHOD el [G400 a
(9p] 150000
- 0000 Eago 1504 15080 oo 150 15090 1504 1040
.-6 o040
% 20000 nadgo 1008 100G 10060 100400 1001 106000
o
L 50000
= 10060 " ofon T i oo ik (i) (00 oo 50400 0400
N
m " " ”
fi 4 0§ 10 0 05 10-L0-0.500 05 10-1.04 0-1.8-0.5 O 5 00 05 10-10-05 60 05 L0-10-0800 05 10-1.0-0500 05 10
a
o]
g
[
Q
o
o

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

008 s gl (B4 Hluse

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean @.801800 and std 1.001311 AI mOSt a II n e u ron S

hidden layer 1 had mean -0.0900438 and std 0.981879
hidden layer 2 had mean -0.000843 and std 0.981649
hidden layer 3 had mean ©.080566 and std ©.9816€1 Com Ietel
hidden layer 4 had mean ©.000483 and std ©.981755 * . - p y
hidden layer 5 had mean -0.808682 and std 0.981614 1 0 Instead Of 0 01
hidden layer 6 had mean -0.000481 and std 6.981560 ‘ ‘
7
8
9
1

0
a L]
hidden layer 7 had mean -8.080237 and std 0.981520 Satu rated elther _1
hidden layer 8 had mean -8.608448 and sTd 8.981913 3
had mean -6.800893 and std 8.981728
and 1. Gradients

hidden layer
hidden layer 10 had mean ©.000584 and std 6.981736

B layer mean
' P
{ | ! . .
oo ! f
a6z ! =
| 005030
00900 f f
/ / ogsozs| -
= D003 | \ / -
\ ’
] - M { o300
/ > b i f
4o f - ! 4
f 1 5. \
\ L1 P \'\ [b
| \ | / .
..... N f v Y / -, .
L , T |
o jlw. 3 b |: I\ -
- . \ .
o T)] = T s T B E] €] ¥
233001 1 =70 & 2500 = o e il & = X
00000 g 200400 gD i pails G s Inogarn i (S 20400
1200048 B 1rogan 153408] (i 100 150430 Pl e 150900 10800
ilualeil] B Laogan wagas o (4 1o BLiE (i Lk s 1o pled o]
0000 soffoo sofoo oo =00 sofeo sofoa sofoo sifoo sofoo
19-05 00 10-05 00 05 10 I 05 10-E0-05 00 0-1.0-05 00 05 10-1.0-05 80 10-1.0-0.5 0.0 10-1.5-05 80 ¢5 0=0.5 00 05 10-1.0-6.5 40 1

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

EITEN
Up %
Ref: http://cs231n.stanford.edu/

b ot S5l
008 s gl (B4 Hluse

Xavier gdud ol ca0,lude i,

input layer had mean ©.001880 and std 1.001311 2 ; T e T .
hidden layer 1 had mean 0.001198 and std ©.627953 W = np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization

hidden layer 2 had mean -0.800175 and std 0.486051
hidden layer 3 had mean 0.080655 and std 8.407723

hidden layer 4 had mean -0.900306 and std 0.357108 4 i initial i 1
hidden layer 5 had mean 0.080142 and std @.320917 XaV|er lnltlallzatlon
hidden layer & had mean -0.000389 and std 0.292116

hidden layer 7 had mean -0.808228 and std 0.273387 [Glorot et al, 201 O]

had mean -0.000291 and std ©.254935
had mean ©.000361 and std ©.239266
0 had mean 0.980139 and std 0.228008

hidden layer
hidden layer
hidden layer

[e = B B R R S W S]

ootz layer mean i layer std

Reasonable initialization.
' | \ (Mathematical derivation
e, assumes linear activations)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

¥y o $500
033 4yl (A luse

Xavier gdud ol ca0,lude i,

input layer had mean ©.080561 and std 0.999444
hidden layer 1 had mean 8.398623 and std 0.582273 |} = pp.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization
hidden layer 2 had mean 9.272352 and std 0.483795 - = —
hidden layer 3 had mean ©.186076 and std ©.276912
hidden layer 4 had mean 9.136442 and std 0.198685

2 [}]

3) Q

4] (0] .
hidden layer 5 had mean 9.099568 and std 0.140299 b t hen S n the ReLU
hidden layer & had mean 9.072234 and std 0.183280 u W u I

1 [’]

8 [’]

9] (0]

1

hidden layer had mean 8.049775 and std 0.872748
hidden layer 8 had mean 9.035138 and sid

nonlinearity it breaks.

hidden layer 16 had mean 0.818408 and std ©.826076

s layer mean o layer st
040 0h
N\
b
35| N
05
0 30 N
9 .
0325 \
020 2
L Y .
\\\.
015 e
. 8
""-\-\. -
~
atp .. B
». -
005 g S -
— -
*—] - -
000 i
] 2 3 3 7 B 1 2 3 5 5 7 8 3
200000 2E8500 00 35 [} 35 I ¢ s o0 e [} S O C Q0
pgao el (o] B0 F0qao
250000 st i 25000 i -
4000 ngan
a0 Eukel 1l
50000 50400
200000 200000 20000
250000 250000 idoo 24
040 20040
150000 152400 150g00 200000 00000
" s 200f0
o 50 A
G 5 i =atlae 1sodas 00408 200400
100000 105108 100 150000
03000 Lt
SO000] o [ACHES bl 3 100900
SO000 sofoo e ool "
sdoa 00 ! o400 - f_.ll
B0l 0E5202530 DOCSE01202530 00051015202530 00051 015207530 000510152025300005101520253000051015202530 000510052025300005001520255030051015202550

!

EITEN
Up %
Ref: http://cs231n.stanford.edu/

‘il

008 s gl (B4 Hluse

input layer had mean ©.860381 and std @.999444

He 4l sl o lalio (o5,

W =

np.random.randn(fan_in, fan out) / np.sqrt(2/fan_in) # layer initialization

hidden layer 1 had mean 6.562488 and std & 825232

hidden layer 2 had mean ©.553614 and std ©.827835

hidden layer 3 had mean ©.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.826962

hidden layer 5 had mean 0.547678 and std ©.834892

hidden layer & had mean ©.387103 and std ©.8560035

hidden layer 7 had mean 0.596867 and std ©.870610

hidden layer & had mean 0.623214 and std ©.889348

hidden layer ¢ had mean 0.567498 and std ©.845357

hidden layer 10 had mean ©.552531 and std ©.B844523

i layer mzan o layer std
063 0ss -
/.‘ coe :
4 ..". /
81 _/" 1 087 '
pEn 4 i
"l - '-‘. 086 b
L) B Y i
3o 085 .

558 { \ [
c _r"" . i -
2 e~ A% / ; os2 -
= =3 - \ / % -
ho] i Y, % / "
L 05 - P ‘\‘. 082
%‘ . '/ . - #

034y)] 3 3 G ¥ g e 3 3 G T 7 :
[Te} 09600 300 q00 00 = 700 a0 s £EG0T o0
Qal
o
A 25 I=] 00 & Ehy Elel Sato0 25000 250400 50 250400
)]
£
5_ 200000 W00 200800 200000 200qn bl i) il i 200400 00 0040
»
- 150000 150400 154800 150000 1500 1504900 150400 150002 150 150000
f@
=] 100000 s 100400 100000 120d0 1000 100000 100400 103 100400
o
L
E 0000 000 S0q00 sqoa 000 S000 S04 00 foali ter) LS pil S0foa
N
< b b A i i - g ;
! 530000510152025300005101520253000051025202530 B005101520253000051015202530000510152025300005L01520253¢ 008510152 00O051015202530
FY
o
g
[
Q
o
o

!

EITEN
Up %
Ref: http://cs231n.stanford.edu/

He et al., 2015
(note additional 2/)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

¥¥ o $500
033 4yl (A luse

He 4l sl o lalio (o5,

input 1 had ©.000501 and std 0.999444 : : T :
ﬁ;g;‘em Tgi;r ? hgﬁa;ean 6_552422 aid <td 8 25032 | W = np.random.randn(fan_in, fan out) / np.sqrt(2/fan_in) # layer initialization

hidden layer 2 had mean ©.553614 and std ©.827835

hidden layer 3 had mean ©.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.826962

hidden layer 5 had mean 0.547678 and std ©.834892 H t | 201 5

hidden layer & had mean 0.587103 and std ©.860035 e e a .y

hidden layer 7 had mean 0.596867 and std ©.870610

hidden layer & had mean 0.623214 and std ©.889348 =g =

hidden layer ¢ had mean ©.567498 and std 0.845357 (note add |t|0na| 2/)
18 had mean ©.552531 and std 0.844523

hidden layer

des layer mean i layer std -
/.‘ coe :
4 1
P
/) 087 '
_// L}
5 . Y\ 086 -
858 - il
' 08s
858 .
\ el T [e
o357 { 4
= - / . -
i 0Bz
SEE Vi / N 08
G AN 3 - . 0.85
- // N - o nan
" S / 082
053 g A e
4 L 09
ok 1 2 3 3 5 ; 7 T e 1) 3 G § 7 T
N000 264400 262400 203400 255500 303905 282400 3500 22500 03400 E 0.85
1 o ~
20690 aa 2 3 20 zafoo 2zodo 253400 i =90 LR —ENIV""EW.'l =1 ours
200000 W00 200800 200000 200400 bl i) 20000 200400 Wgnd 0040 H - P
¥ i ot]| (— fiyVar[wy] = 1 Xawier
150000 150400 15000 152000 $ET, 150400 150400 150403 150000 180400 " " £ £ .
o 1 2 3 4 5 L] 7 -]]
Epoch
100000 s 1 I 10340 120d0 1000 10000 10040 10300 100400
0000 00 i fali] ZaM i) oo S0 S04 00 oo 1y i) S0foa

0000510152025300005101520253000051005202530 0005101520253000051015202530%00510152025300005L015202530 D0051015202530 DO051015202510

0153

!

EITEN
Up %
Ref: http://cs231n.stanford.edu/

i O

008 s gl (B4 Hluse

ool Jld o g5 sed e S lag s sl auslate Ciwlio iy,

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenb(hl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

2

aal gl oA ylads (5Las 531yl

INITIALIZATION STRATEGIES

@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ |n the non-convex regime initialization is much more
Important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

@ What is known: Initialization should break symmetry (quiz!)
@ What is known: Scale of weights is important

@ Most initialization strategies are based on intuitions and
heuristics

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

"y G (5 Sl
aal gl oA luls (sLags 531yl
Solon) a8 Wi

INITIALIZATION STRATEGIES: SOME HEURISTICS

@ For a fully connected layer with m inputs and n outputs,
sample:

Wij ~ U(— a\/lm)

-

@ Xavier Initialization: Sample

6 6
vm+n’ \/m+n)

Wij ~U(=

@ Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

@ Works well in practice!

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA

aal gl oA ylads (5Las 531yl

DSo0 S gud i

INITIALIZATION STRATEGIES: MORE HEURISTICS

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive £ non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation ——
Jm

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

w5l Jlo

Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”
il S Guiboly 5 dee (She s1ola (Tolas) (sdea Lo LY o o5 A asal A o

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[z(*)
k) . [zt

V/ Var[z(%)] this is a vanilla
differentiable function...

EITEN
Up %
Ref: http://cs231n.stanford.edu/

o)

w5l Jlo

LS

Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

1. compute the empirical mean and
variance independently for each

dimension.
2. Normalize
) r(k) _ E[x(k’)]
v/ Var[z(*)]

oy

w5l Jlo

Batch Normalization [loffe and Szegedy, 2019]
FC Usually inserted after Fully
BlN Connected or Convolutional layers,
1 and before nonlinearity.
2 tanh (b sl 5 $31S slar¥ b Junio Lol (slads¥ 31 G ¥ s
58S e 513 et allad Ll) G
- e
g 1 k k
£ BN ,:E...(k) — CL'(d E[;l?()]
. : k
: s v/ Var[z(¥)]
P

.

)U N
a1
Ref: http://cs231n.stanford.edu/

oY

w5l Jlo

CSo bty g e S50 o L O st i

Batch Normalization

|

FC

!

BN

!

tanh

FC

BN

tanh

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

[loffe and Szegedy, 2013]

Usually inserted after Fully

—

Connected or Convolutional layers,

and before nonlinearity.

Problem: do we
necessarily want a
zero-mean unit-variance
input?

(k) _ E[(F)
(k) — £ ™]
v/ Var[z(¥)]

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

oy

w5l Jlo

Batch Normalization

Normalize:
~(K) _ r(k) _ E[:;:("’)]
v/ Var[z(¥)]

And then allow the network to squash
the range If it wants to:

y®) = ~(B)Z(k) 4 (k)

[loffe and Szegedy, 2015]

Note, the network can learn:
v*) = /Var[z(*)]
Bk) = E[;c(’f)]

to recover the identity
mapping.

LSS Gl (5 el a0 a1, Y oa g oA ale (a5l wian e s slal 4l 44 La 3l L

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

RO o $500
w5l Jlo

Ll e
: : loffe and Szegedy, 2015
Batch Normalization | gedy, 2019]
Input: Values of = over a mini-batch: B = {x1._,, }; - Improves gradient flow through
Parameters to be learned: v, 3 the network
Output: {y; = BN, 5(z:)} - Allows higher learning rates
| m - Reduces the strong dependence
B < — Z T // mini-batch mean on initialization
=1 - Acts as a form of regularization
s = . in a funny way, and slightly
2 2
¢ — T; — // mini-batch variance ’
B ;() reduces the need for dropout,
‘s maybe
T; — 3322—% // normalize y
VOop T € Sl ol 5o QLI S Gl s
Y; — ¥Z; + B =BN,, g(z;) // scale and shift SYL S0l slaF 4 aunlKal ®
CeoleT solie & waud (Sinly Jrals *

sl Y S5 o 5 Ol e (A L)
o9 uLAlS ‘JSJ.:‘ YLA:\A‘J %_Jl% LSBJH‘L?
.dropout 4 ;L3

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

OF C 6)'9.5‘&'
w5l Jlo

u.‘i-:\Ln‘)T elﬁm By BN (54:?}1 J‘)S.La.c

Batch Normalization [loffe and Szegedy, 2019]
Input: Values of z over a mini-batch: B = {z1. . }; Note: at test time BatchNorm layer
Parameters to be learned: v, functions differently:

Output: {yz - BNﬁr,ﬁ(-’L’i)}

| m The mean/std are not computed
HB — — Zrz // mini-batch mean [based on the batch. Instead, a single
=] fixed empirical mean of activations

Ty

o s~ z:(iw.:E — g // mini-batch variance dnung TaEinig is used.
s 1=1
s, BB —— (Q.g. can lbe estimated during training
‘ VoL + € with running averages)
Y; — ¥Z; + B =BN,, g(z;) // scale and shift

L8 g b daslas (Dateh) s Gulul 5 mean/std ¢ ile 5T aKua o
L8 9 o s3lEil (i el Job Hu lacudlad cull a3 80k ul8a (550 5y

EITEN
Up %
Ref: http://cs231n.stanford.edu/

av

w5l Jlo

LA

Batch Normalization

Input: »: N x D

Learnable params:
Y, 0 : D

p,o D
LN % D

Intermediates:

Output: vy : N x D

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/

N
1
Hi =N E Tij
i=1
N
5 1 Z
i=1
~ g T Hy
Li,j =
U? + €

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

OA

w5l Jlo

meie 690 3 osbuls 5 0SSk Gredd By sl alS0a 5o

Estimate mean and

BatCh Normahzatlon variance from minibatch;

Input: »: N x D

Learnable params:
Y, 0 : D

Intermediates:

Can’t do this at test-time

Output: v : N x D

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

04

w5l Jlo

uD:sLo\}TeK.\A o<

Batch Normalization: Test Time

Input: »: N x D

Learnable params:
Y, 0 : D

p,o D
LN % D

Intermediates:

Output: vy : N x D

EITEN
Up %
Ref: http://cs231n.stanford.edu/

(Running) average of values
seen during training

(Running) average of values
seen during training

Tijj — 1

»‘/sz—l—e

YiZi,5 + Bj

F Geoe S50k

w5l Jlo

Jhi sl $l8 slaaseds sl

Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NXCxHxW
Normalize * Normalize * * ‘
M,0: 1 x D H,0: 1xCx1lxl
Y,P: 1 x D Y,B: 1xCx1lxl

y = Y(x—-M)/0o+pB y = Y(x-M)/0+B

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

é/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

‘A

w5l Jlo

sl olwdle s

Layer Normalization

Batch Normalization for
fully-connected networks

Xx: N x D
Normalize *

M,0: 1 x D

Y,p: 1 x D

y = Y(x-M)/0o+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

X: N x D
Normalize *
H,0: N x 1
Y,B: 1 x D

y = Y(x-M)/0+B

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

‘Al

w5l Jlo

@l s5luwdle s Jld 5l 5 8318 sladSads (51 5

Instance Normalization

Batch Normalization for
convolutional networks

X: NXCxHxXW

Normalize | !

H,0: 1xCx1lxl
Y,B: 1IxCx1lxl

y = Y(x-M)/0o+B

Instance Normalization for
convolutional networks
Same behavior at train / test!

X: NXCxHXW

Normalize * *

H,0: NxCx1lxl
Y,B: 1xCx1lxl

y = Y(x-M)/0+B

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Y

w5l Jlo

sobudle s glag¥ gaunlio 1 JLd ol 5 9IS lasid ol
Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H,W

LT

H,W
H,W

L
Lo g

(TR

R
R

T
Z LR

Wu and He, “Group Normalization”, arXiv 2018

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

Al o $500

w5l Jlo

23S soladle s 1 Lk 5l SIS slacad (51 0

Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H, W
LT
H,W
H, W
VA VAT Y
Vi A

H, W

LF T

(BT RS

(TR
R

R

T
Z LR

Wu and He, “Group Normalization”, arXiv 2018 (Appeared 3/22/2018)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U N
a1
Ref: http://cs231n.stanford.edu/

0

G (5 Sl

w5l Jlo

Decorrelated Batch Normalization

Batch Normalization

original data zero-centered data normalized data

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

BatchNorm normalizes the
data, but cannot correct for
correlations among the
input features

Decorrelated Batch Normalization

original data decorrelated data whitened data

~ 1

Ty =X"2%(® — p)
DBN whitens the data using the full covariance
matrix of the minibatch; this corrects for correlations

Huang et al, “Decorrelated Batch Normalization”, arXiv 2018 (Appeared 4/23/2018)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

FF ot S5l
G smas ladsad (i) gel ju (65l ga S

A DIFFICULTY IN TRAINING DEEP NEURAL NETWORKS

A Difficulty in Training Deep Neural Networks

A deep model involves composition of several functions
Uy = Wf(tanh(W?:f(tanh(WQT(tanh(WlTx +b1) +by) +bs3))))

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

4%

Gpas gras ladsad (i) 9ol Hi (5] gibs

A DIFFICULTY IN TRAINING DEEP NEURAL NETWORKS

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

@ Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

@ In Practice: We update all layers simultaneously
@ This can give rise to unexpected difficulties

@ Let's look at two illustrations

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

FA G- «5)‘.‘.5411'
G smas ladsad (i) gel jo (65l ga S

&

S 94—t

INTUITION

@ Consider a second order approximation of our cost function
(which is a function composition) around current point 6(?):

1
(Hmxmen+w_ewﬂg+§w—mmfﬂw—9@)

a g is gradient and H the Hessian at 6(©)

@ If € is the learning rate, the new point

0 =00 —cg

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

£4

Gpas gras ladsad (i) 9ol Hi (5] gibs

&

JJ.G—LH
INTUITION

@ Plugging our new point, # = 0% — ¢g into the approximation:

1
JO© —eg) = J(0V) — cg"g + 58" Hg

@ [here are three terms here:

e Value of function before update

e Improvement using gradient (i.e. first order information)

e Correction factor that accounts for the curvature of the
function

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

G smas ladsad (i) gel jo (65l ga S

INTUITION

a Observations:

o gl Hg too large: Gradient will start moving upwards
o gl'Hg = 0: J will decrease for even large ¢
o Optimal step size ¢* = gl'g for zero curvature,

T .
S ﬁ to take into account curvature

@ Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A

Gpas gras ladsad (i) 9ol Hi (5] gibs

AL 45 e ST

HIGHER ORDER EFFECTS: TOY MODEL

h .
@
hQ w9
©
hl w1
O

@ Just one node per layer, no non-linearity

@ gy is linear in but non-linear in w;

.
)U}’ b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VY

Gpas gras ladsad (i) 9ol Hi (5] gibs

AL 45 e ST

HIGHER ORDER EFFECTS: TOY MODEL

a Suppose 6 = 1, so we want to decrease our output g

@ Usual strategy:
e Using backprop find g = V(4§ — v)*
e Update weights w :=w — €g

@ The first order Taylor approximation (in previous slide) says
the cost will reduce by eg’'g

@ |f we need to reduce cost by 0.1, then learning rate should be

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

1

0.
g7

g

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Al

Gpas gras ladsad (i) 9ol Hi (5] gibs

AL 45 e ST

HIGHER ORDER EFFECTS: TOY MODEL

@ The new g will however be:

Y = fc(wl — 691)(’w2 — 692) e (’wl - Egl)

@ Contains terms like €3g1 gagswaws . . . w;

@ If weights wy,ws, ..., w; are small, the term is negligible. But
if large, it would explode

@ Conclusion: Higher order terms make it very hard to choose
the right learning rate

@ Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V¥

w5l Jlo

BATCH NORMALIZATION

@ Method to reparameterize a deep network to reduce
co-ordination of update across layers

@ Can be applied to input layer, or any hidden layer

@ Let H be a design matrix having activations in any layer for
m examples in the mini-batch

(hir hie hiz ... hag
h21 h22 hgg co hgk
I — . . . :

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Vo

w5l Jlo

BATCH NORMALIZATION

h11 hi2 hiz ... D
ho1 hoa haz ... hog
H—
hml hm2 hmg ... hmk‘

@ Each row represents all the activations in layer for one example
@ Idea: Replace H by H' such that:

H’:u

o

@ 1 is mean of each unit and o the standard deviation

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

id

w5l Jlo

BATCH NORMALIZATION

@ . is a vector with p; the column mean
@ o is a vector with o; the column standard deviation

@ H, ; is normalized by subtracting p; and dividing by o;

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\4%

w5l Jlo

BATCH NORMALIZATION

@ During training we have:

1
— EZHW
J

o = Z —;1,

@ We then operate on H’ as before = we backpropagate
through the normalized activations

Kb/ Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VA

w5l Jlo

BATCH NORMALIZATION: WHY IS THIS GOOD?

@ The update will never act to only increase the mean and
standard deviation of any activation

@ Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

@ Batch normalization makes the reparameterization easier

@ At test time: Use running averages of 1 and o collected
during training, use these for evaluating new input x

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

va C «5)‘.‘.5411’
w5l Jlo

osls S
AN INNOVATION

@ Standardizing the output of a unit can limit the expressive
power of the neural network

a Solution: Instead of replacing H by H’, replace it will YH' + 3
@ v and (3 are also learned by backpropagation

@ Normalizing for mean and standard deviation was the goal of
batch normalization, why add ~ and § again?

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

AN

S Sals awai

Lasals (a3la i 1) o€

Step 1: Preprocess the data

original data

10 10

zero-centered data

A
3 5 5
0 - 0 - 0
-5 =51 =5
Y
Bt 1 s 1g 105 =3 5 1y "
X -= np.mean(X, axis = 0) .

(Assume X [NxD] is data matrix,
each example in a row)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

!

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

normalized data

3 0 5

X /= np.std(X, axis

10

0) .

AY
S Sals awai
o ls Ll Y LK

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden —
neurons
(i 10 output
- output layer
3 CIFAR-10 input neurons, one
© images, 3072 layer hidden layer per class
§ numbers

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AY

S Sals awai

Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model {}
- 0.0001 * np.random.randn(input size, hidden size)
- np.zeros(hidden size)

= np.zeros(output size)
mod l

=
1']
'] = 0.0001 * np.random.randn(hidden size, output size)
4
e

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train] 0.0 disable regularlzatlon

print — ‘\
loss ~2.3.

2.30261216167 \
“correct” for returns the loss and the
10 classes gradient for all parameters

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AY

S Sals awai

G (5 Sl

Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model {}
- 0.0001 * np.random.randn(input size, hidden size)
- np.zeros(hidden size)

=
1']
'] = 0.0001 * np.random.randn(hidden size, output size)
'] = np.zeros(output size)

e

mod l

model = init two layer model(32*32*3, 50, 10) # ingut_size, hidden size, number of classes
loss, grad = two _layer net(X train, model, y trainJ le3 Crank up regularlzatlon
print loss

3.06859716482 «q.\
loss went up, good. (sanity check)

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AD

S Sals awai

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

EITEN
Up %
Ref: http://cs231n.stanford.edu/

ool & 9o

model = init two layer model (32+%32*%3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X_tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=2080, reg=0.0,
update='sgd’', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

AF

S Sals awai

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

é/'
)U'
1
Ref: http://cs231n.stanford.edu/

X IR E

model = init_two layer model(32+%32*3, 50, 10) # Input size, hidden size, number of classes

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X_tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=06.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Finished epoch 1 / 200: cost 2.302603, train: ©.400000, val 0.400000,
Finished epoch 2 / 200: cost 2.382258, train: 0.450000, val 0.450000,
Finished epoch 3 / 200: cost 2.301849, train: ©.600000, val 0.600000,
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val ©.650000,
Finished epoch 5 / 200: cost 2.300044, train: ©.650000, val 0.650000,
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000,
Finished epoch 7 / 200: cost 2.293595, train: ©.600000, val 0.6000€0,
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000,
Finished epoch 9 / 200: cost 2.268094, train: ©.550000, val 0.550000,
Finished epoch 10 / 200: cost 2.234787, train: 0.500008, val ©.500000,
Finished epoch 11 / 200: cost 2.173187, train: 0.5600000, val 0.500000,
Finished epoch 12 / 200: cost 2.076862, train: ©.500000, val ©.500000,
Finished epoch 13 / 200: cost 1.974890, train: 0.400008, val ©.400000,
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val ©.400000,
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000,
Finished epoch 16 / 200: cost 1.73743@, train: ©.450000, val ©.450000,
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000,
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000,
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000,
Fimichad anash A0 ¢ AAMA. sacs+ 1 AAETEN +rmsn. N SECnAANAN aml A ECAAAA

S P —

1r

el el el el el

Finished epoch 195 / 200: cost ©.882694, train: 1.000000, val 1.000000,

Finished epoch 196 / 200: cost ©,002674, train: 1.000000, val 1.000000,
Finished epoch 197 / 200: cost ©.002655, train: 1.000000, val 1.e00000,
Finished epoch 198 / 200: cost ©.002635, train: 1.000800, val 1.000000,
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000,
Finished epoch 260 / 200: cost 0.002597, train: 1.000000, val 1.000000,

finished optimization. best validation accuracy: 1.000000

.000000e-03

.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.600000e-03
.000000e-03

S N ey

.0000080e-03
.000000e-03
.000000e-03
.000080e-03
.000000e-083
.0000e0e-03
.000000e-03
.000080e-03
.000000e-03
.000080e-03

AANANAA AT

1r 1.000000e-03
1r 1.000080e-03
lr 1.000000e-03
lr 1.000000e-03
1r 1.000000e-03
1r 1.000000e-03

AV ol Sl

S Sals awai
cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.0000081,
update='sgd', learning rate decay=1,

Start with small e g ot IR
regularization and find

learning rate that

makes the loss go

down.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U’
1
Ref: http://cs231n.stanford.edu/

AA G0l S
S Sals awai
cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

- model = init two layer model(32*32*3, 5@, 1@) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
U best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.0000081,
update='sgd', learning rate decay=1,

Start Wlth Sma” |1earniﬁg_ rate=1eA6,|$érbose=TrueJ

= . & Finished epoch 1 / 10:|cost 2.302576, |[trair]: ©.080000, 1 0.103000, 1r 1.000000e-06
regl_”arlzatlon and flnd Finished epoch 2 / 10:|cost 2.302582, |trair: ©.1216000, 1 0.124000, 1r 1.000000e-06
] Finished epoch 3 / 10:|cost 2.302558, |[trair: ©.119000, 1 ©.138000, 1r 1.000000e-06
|earn|ng rate that Finished epoch 4 / 10:|cost 2.302519, |trair]: ©.127000, val ©.151000, lr 1.000000e-06
Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, 1 6.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trair]: ©.179000, 1 0.172000, lr 1.000000e-06
makes the |OSS go Finished epoch 7 / 18:|cost 2.302466, [trai: ©.180000, \Jal ©.176060, lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, |[trairl: ©.175000, 1 ©.1850600, 1r 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |[trair: ©.206000, al 0.192000, lr 1.000000e-06

down Finished epoch 10 / 10} cost 2.302420| traijn: 0.190000, jval ©.192000, lr 1.000000e-06

- finished optimization. Lhesiualidaiiod accuracy:

Loss barely changing

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U'
a1
Ref: http://cs231n.stanford.edu/

A4

S Sals awai

cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

model = init two layer model(32*32*3, 5@, 1@) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

[&em9¥e-bﬂ%ehe9--¥*r6.
learning rate=le-6,|verbose=True)

Finished epoch 1 / 10:|cost 2.302576, |[trair]: ©.080000, 0.103000, 1r
Finished epoch 2 / 10:|cost 2.302582, |trair: ©.1216000, 0.124000, 1r
Finished epoch 3 / 10:|cost 2.302558, |[trair: ©.119000, 0.138000, 1r
Finished epoch 4 / 10:|cost 2.302519, [trairn: ©.127000, 0.151000, 1r
Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, 0.171000, 1r
Finished epoch 6 / 10:|cost 2.302518, |trair]: ©.179000, 0.172000, 1r
Finished epoch 7 / 10:|cost 2.302466, |trair: ©.180000, 0.176000, 1r
Finished epoch 8 / 10:|cost 2.302452, |trair]: ©.175000, 0.185000, 1r
Finished epoch 9 / 10:|cost 2.302459, |trair: ©.206000, 0.192000, 1r
Finished epoch 10 / 16} cost 2.302420| train: 0.190000,

finished optimization. bhesiualidaiiod accuracy: 0. 0

P b et e e et et e

.000000e-06
.000000e-06
.000000e-06
.00eE0Re-06
.00000Re-B6
.000000e-06
.000000e-06
.000000e-06
.000000e-06
1 6.192000, lr 1.000000e-06

Loss barely changing: Learning rate is

probably too low

S Sals awai

cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

)U' ;
1
Ref: http://cs231n.stanford.edu/

model = init two layer model(32*32*3, 50, 10) # input size, hidden size,

trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
finished

epoch 1 / 10:
epoch 2 / 10:
epoch 3 / 10:
epoch 4 / 10:
epoch 5 / 1@:
epoch 6 / 10:
epoch 7 / 18:
epoch 8 / 10@:
epoch 9 / 10:
epoch 10 / 10
optimization.

[iesrning.rateme <]

e

earning rate=le-6,|verbose=True)

cost
cost
cost
cost
cost
cost
cost
cost
cost

NMNNNNNNNRN

.302576,
.302582,
.302558,
.302519,
.302517,
.302518,
.302466,
.302452,
.302459,

cost 2.302420

train:
train:
train:
train:
train:
train:
trairn:
train:

train:

tra

oo O@

=]
(=]

.080000,
.121000,
.119000,
.127000,
.158000,
.179000,
.180000,
.175000,
.206000,
.190000,
Lbesi yalidaiiold accuracy:

]

.103000, 1lr
.124000, 1r
.138000, 1r
.151000, 1r
.171000, 1r
.172000, 1r
.176000, 1r
.185000, 1r
.192000, 1r

oD

P b et e e et et e

number of classes

.000000e-06
.000000e-06
.000000e-06
.00eE0Re-06
.00000Re-B6
.000000e-06
.000000e-06
.000000e-06
.000000e-06

1 6.192000, lr 1.000000e-06

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember

this is softmax)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

4)

S Sals awai

cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

model = init two layer model (32+#32+3, 5@, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y_train, X val, y val,
model, two_layer net,
num_epochs=10, reg=0.000001,

update='sgd', learning_rate decay=1,

sample batches = True,

Start with small
regularization and find \

learning rate that Now let's try learning rate 1e6.
makes the loss go

down.

loss not going down:
learning rate too low

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Ay o $500
S Sals awai
cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

model = init two layer model(32%32%3, 50, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y_train, X val, y val,
model, two_layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning_rate decay=1,
sample batches = True,

Start With Sma” learning_rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en

reQU|arlzat|0n and flnd cug:::ﬁgsin;?gp.sum(np.log{probs[range(N}. yl)) / N

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc

|ea rnln rate that ountered in subtract
probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: ©.091000, val ©.087000, lr 1.000000e+06

makes ‘the |OSS go Finished epoch 2 / 10: cost nan, train: ©.095000, val ©.087000, lr 1.000000e+06

Finished epoch 3 / 10: cost nan, train: ©.100000, val ©.087000, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Ay

S Sals awai

cslio (5u80b 753 GRL 5 S sS O a5 oY S Cusd bip s

Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U’
1
Ref: http://cs231n.stanford.edu/

model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=18, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning_rate=3e-3, verbose=True)

Finished epoch 1 / 10: cost 2.186654, train: 0.308000, val 0.306000, 1lr 3.000000e-03
Finished epoch 2 / 1@: cost 2.176230, train: ©.330000, val ©.350000, lr 3.000000e-03
Finished epoch 3 / 10: cost 1.942257, train: ©0.376000, val ©0.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©.329000, val ©.310000, 1lr 3.000000e-03
Finished epoch 5 / 1@: cost inf, train: ©.1280600, val ©0.128000, 1lr 3.000000e-03
Finished epoch 6 / 10: cost inf, train: ©.144000, val 0.147000, lr 3.000000e-03

3e-3 is still too high. Cost explodes....

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 ... 1e-3]

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

40

Lo il ol (5 Luueings

Cross-validation strategy

coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

EITEN
Up %
Ref: http://cs231n.stanford.edu/

e o $500

Lo i ol (5 Luueings

(¥ 50V e s oaba 8 i Lt (5550 sl

For example: run coarse search for 5 epochs

?2?22;55 Znig?fzﬁiigﬁ_{_fgung nOte |t,S beSt tO OptImIZe
lr = 10**uniform(-3, -6) In |Og Space'

trainer = ClassifierTrainer()
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’, learning rate decay=0.9,
sample batches = True, batch size = 108,
learning rate=1lr, verbose=False)

S

e | val acc: ©.412000, 1r: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |
N val_acc: 0.214000, lr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)
0 val _acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
Q val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
2 val _acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
= val acc: 0.223000, 1lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
—~ . | val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100) |
i nice val acc: 0.241000, Llr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
3 —— | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100) |
"'E' val acc: 0.079000, Lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
Bl val_acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
<

g

©

3

o

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

Y G (5 S
L ol jlo— yald (6 Hludaags
(V;l\‘)dlﬁ.@:@km s JL&;|L5§3|JSM|

Now run finer search...

max_count = 160 adjust range max _count = 100
for count in xrange(max count): for count in xrange(max_count):

reg = 10*‘Ul:'lif0rm{'5, 5) - reg = 10**uniform(-4, 0)
lr = 10**upiform(-3, -6) 1r = 10**uniform(-3, -4)
| val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) |

Val acc: U.492000, Ur: Z.2/9483c-04, Teg: 9.9913456-04, (I 7 100)

val acc: 0.512000, Llr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)

val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)

val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309%9e-02, (4 / 100) 0 =
5 val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
= val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
w val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) : 2
& val_acc: 0.530000, lr: 5.808183e-04, req: 8.259964e-02, (8 / 100) with 50 hidden neurons.
— val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889%e-64, (9 / 100)
Q val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-63, (10 / 100)
Q val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-61, (11 / 100)
o val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
£ val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
7 [val acc: 0.531000, Lr: 9.471549%-04, req: 1.433895e-03, (14 / 100) |
— val acc: 0.509000, Llr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
5 val acc: 0.514000, lr: 6.438349%e-04, reg: 3.03378le-01, (16 / 100)
g val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
2 val acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-03, (18 / 100)
c val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-64, (19 / 100)
'Q val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
ii val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
®©
9
o

L/'
)U'
a1
Ref: http://cs231n.stanford.edu/

aA G (5 S
La fiol iyl (5 Lusings
(V;W)Jlﬁu:@km o olie) o550l

Now run finer search...

max_count = 160 adjust range max_count = 100

for count in xrange(max count): for count in xrange(max_count):
reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -6) lr = 10**uniform(-3, -4)

val acc: 0.527000, .340517e-04, reg: 4.097824e-01, (6 / 100) |
ol i W P H % = F g: 9.991345&-94, (I /7 I0U)

val acc: 0.512000, Lr: 8.680827e-04, reg: 1.349727e-02, (2 / 1600)

val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-62, (3 / 100)

val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-62, (4 / 100) o :
5 val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
= val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-61, (6 / 100) for a 2-layer neural net
D val acc: 0.522000, Lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . :
& val_acc: 0.530000, lr: 5.808183e-04, req: 8.259964e-02, (8 / 100) with 50 hidden neurons.
- val acc: 0.489000, lr: 1.979168e-04, reg: 1.01088%e-04, (9 / 100)
o val acc: ©.490000, lr: 2.036031e-04, reg: 2.406271e-03, (16 / 100)
Q val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100) But this best
> val acc: 0.460000, Llr: 1.135527e-04, reg: 3.905040e-02, (12 / 100) : . .
g | val acc: 0.515600, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 160) I cross-validation result is
) val acc: 0.531000, Lr: 9.471549¢-04, req: 1.433895e-03, (14 / 100) |- :
— val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100) worrying. Why?
5 val acc: 0.514000, lr: 6.438349%e-04, reg: 3.03378le-01, (16 / 100)
s val _acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-64, (17 / 100)
5 val_acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-63, (18 / 100)
c val acc: 6.500000, lr: 2.412048e-04, reg: 4.997821e-64, (19 / 100)
N val acc: ©.466000, lr: 1.319314e-04, reg: 1.189915e-62, (20 / 100)
< val acc: ©.516000, lr: 8.839527e-04, reg: 1.528291e-62, (21 / 100)
®©
9
o

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

44 G 550

Lo i ol (5 Luueings

g slaiel b swla (8L (gl (o8 st ol o (HBolad (g sadua

Random Search for

Ra N d om Sea rCh VS. G r| d Sea rCh Hyper-Parameter Optimization

Bergstra and Bengio, 2012
Grid Layout Random Lavout

®
Unimportant Parameter
®
Unimportant Parameter

Important Parameter Important Parameter

Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Ve s 5Bl

Lo i ol (5 Luueings

Hyperparameters to play with:
- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’U 'y
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Cross-validation
“‘command center”

Bl
Up %
Ref: http://cs231n.stanford.edu/

- Y

Lo i ol (5 Luueings

W Sate e el

Monitor and visualize the loss curve

25

loss

Loss

good learning rate

low learning rate

high learning rate

0.0
0

20 40 60 80 100
Epoch i

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

- v

Lo i ol (5 Luueings

Loss

W Sate e el

Bad initialization a prime suspect

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U N
a1
Ref: http://cs231n.stanford.edu/

time

- ¥

Lo i ol (5 Luueings

Loss

W Sate e el

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
}U N
a1
Ref: http://cs231n.stanford.edu/

time

V-0

Lo i ol (5 Luueings

W Sate e el

Monitor and visualize the accuracy:

0.80

075

070}

>

065 | f.'l

foe-

a

2
s @
= 5 060 |- ‘H
3 !
< L=
A B
- O oss5} /\j

|

Q | /
Q A
L J\ /V\/\ A AAAN
& A
()
= 0.45
g — Training accuracy
e — Validation accuracy
£ 040 s
N 0 20 40 80 80 100
¥
>
o
©
o
©
o
o
o
V

.

)U N
a1
Ref: http://cs231n.stanford.edu/

big gap = overfitting

=2 increase regularization strength?

Nno gap
=> |ncrease model capacity?

\-F o $500
L ol jlo— yald (6 Hludaags
Lagos Sod L lag sy ilwaliag s u < Jliy

Track the ratio of weight updates / weight magnitudes:

assume parameter vector W and its gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~le-3

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

- v

dMA

EITEN
Up %
Ref: http://cs231n.stanford.edu/

308 slhn B sia

Activation Functions (use RelLU)

Data Preprocessing (images: subtract mean)
Weight Initialization (use Xavier/He init)
Batch Normalization (use)

Babysitting the Learning process

Hyperparameter Optimization
(random sample hyperparams, in log space when appropriate)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S Hlwdasgs

Optimization

Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step_size * weights grad # perform parameter update

.
’Ui

(L b/ Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VY-

S gludaags

sliws Sbal S Guals
BATCH GRADIENT DESCENT

Algorithm 1 Batch Gradient Descent at lteration k

Require: Learning rate ¢
Require: Initial Parameter 0
1: while stopping criteria not met do

2: Compute gradient estimate over N examples:

5 g TV Y, L(F(xD:0),y)
4: Apply Update: 6 <+ 0 — eg
5. end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AR

S gludaags

GRADIENT DESCENT

’ L]
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Lol S Jnalk

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VWY

S gl

siabas SLul S Jralg
STOCHASTIC GRADIENT DESCENT

Algorithm 2 Stochastic Gradient Descent at lteration &

Require: Learning rate ¢
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Sample example (x¥, y()) from training set
3 Compute gradient estimate:
4 g +VeL(f(x";0),y")
5: Apply Update: 6 <+ 6 — eg
6: end while

@ ¢ is learning rate at step k
@ Sufficient condition to guarantee convergence:

oo o0
Zek:oo and Zei < 00
k=1 k=1

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VY

S gl

GonSab £ sl
LEARNING RATE SCHEDULE

@ In practice the learning rate is decayed linearly till iteration 7

k
er = (1 — a)eg + aer with o = —
-

@ 7 is usually set to the number of iterations needed for a large
number of passes through the data

@ ¢, should roughly be set to 1% of ¢

@ How to set ¢p?

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VY

S gl

ol g e
MINIBATCHING

a Potential Problem: Gradient estimates can be very noisy
@ Obvious Solution: Use larger mini-batches

@ Advantage: Computation time per update does not depend on
number of training examples NV

@ This allows convergence on extremely large datasets

@ See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

O

S gludaags

STOCHASTIC GRADIENT DESCENT

L]
)U}’ b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Sl SLul Sl

i #

S gl

Sl Sbul £ JualS ol s o slaws Sbal S Guals

@ Batch Gradient Descent:
) 1 i) i
0+ 0—eg

@ SGD:

&« +VoL(f(x1;6),y")
00— cg

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VYV

S gludaags

Sl Sbal £ Guall e i

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition humber: ratio of largest to smallest
singular value of the Hessian matrix is large

EITEN
Up %
Ref: http://cs231n.stanford.edu/

VA o $500
gl
Sl Sbal £ Guall e i

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition humber: ratio of largest to smallest
singular value of the Hessian matrix is large

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

EITEN
Up %
Ref: http://cs231n.stanford.edu/

N
R
Sl Sbal £ Guall e i

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\Y-

S gludaags

SSL1 SLol S (ralS e)i,
Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,

gradient descent
gets stuck

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YWY

S gludaags

SSL1 SLol S (ralS e)i,
Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

EITEN
Up %
Ref: http://cs231n.stanford.edu/

B
s by
S ALl S S oI s

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N
1
LW) =+ > Li(zi,yi, W)
|
i N
VwL(W) =+ > VwLi(wi, yi, W)
1=1

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Bl
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\YY

S gl

(CI5) psiese
MOMENTUM

@ The Momentum method is a method to accelerate learning
using SGD
@ In particular SGD suffers in the following scenarios:

e Error surface has high curvature
o We get small but consistent gradients
e The gradients are very noisy

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

\YY Guoc 58l
S Hludaags

(CI5) psiese

MOMENTUM

1.000

500

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U};
ﬁb/ Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\YO

S gl

(CI5) psiese
MOMENTUM

@ How do we try and solve this problem?
@ Introduce a new variable v, the velocity

@ We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

@ The velocity is an exponentially decaying moving average of
the negative gradients

v <+ av — eV L(f(x(i); 0), y(i))

@ o € [0,1)Update rule: 0 <0+ v

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\YF

S gl

(CI5) psiese
MOMENTUM

@ Let's look at the velocity term:

v av — eV | L(f(xD;0),y)

@ The velocity accumulates the previous gradients

@ What is the role of a?

e If o is larger than € the current update is more affected
by the previous gradients
e Usually values for « are set high ~ 0.8,0.9

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\YV

S gludaags

MOMENTUM

Momentum Step

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

(CI5) psiese

Gradient Step

ctual Step

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VYA

S gl

al& slasylusl: (GISS) o 533 9o

MOMENTUM: STEP SIZES

In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

|g]|
1l -«

c

If « = 0.9 = multiply the maximum speed by 10 relative to
the current gradient direction

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA

S gl

MOMENTUM

(CI5) psiese

’ L)
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\Y -

S gludaags

psiiese b (BN SLul S Shals
SGD WITH MOMENTUM

Algorithm 2 Stochastic Gradient Descent with Momentum

Require: Learning rate €,
Require: Momentum Parameter «
Require: Initial Parameter 6
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(, y(®) from training set
3 Compute gradient estimate:
4 g +VoL(f(x;0),y")
5 Compute the velocity update:
6: V 4 av — €g
7: Apply Update: 6 < 6 + v
8: end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y

S gludaags

o siie go + SN SLal S GralS

SGD + Momentum

SGD SGD+Momentum
Viy1 = pvy + V f(2y)
LTi4+1 = Tt — QUt41

T+l = Tt — (]?Vf(.’i’f-g)

while True: V% = B
dx = compute_gradient(x) while True:
x —-= learning_rate * dx dx = compute_gradient(x)
vX = rho * vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VWYY

S gludaags

SGD + Momentum

VX
wh

SGD+Momentum
=gy — Ode(:Bt)

Tyl = Tt + Vg1

o) oy |

=0
ile True:
dx = compute_gradient(x)

vX = rho *x vx - learning_rate * dx

X += VX

o siie go + SN SLal S GralS

SGD+Momentum
Viy1 = pvy + V f(2y)
LTi4+1 = Tt — QUt41

vx = 0@

while True:
dx = compute_gradient(x)
vX = rho * vx + dx
X —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

S Hlwdasgs

o siie go + SN SLal S GralS

SGD + Momentum Gradient Noise

Local Minima Saddle points

e N\

Poor Conditioning
i

(i

) U I3 b/
Ref: http://cs231n.stanford.edu/

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

—— SGD+Momentum

By Y

S gludaags

o siie go + SN SLal S GralS

SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)", 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep leaming”, ICML 2013

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

1Yo s 5Bl

S gludaags

8 5 il o gile go

Nesterov Momentum

_ Gradient

Velocity Velocity
S
©
g actual step actual step
o
S B
Al
2]
£ Gradient
w
% Combine gradient at current point with “Look ahead” to the point where updating using
3 velocity to get step used to update weights velocity would take us; compute gradient there and
£ Nesterov, “A methed of solving a convex programming problem with convergence rate O(1/k*2)", 1983 mix it with Ve|OCity to get actual Update direction
N Nesterov, “Introductory lectures on convex cptimization: a basic course”, 2004
i Sutskever et al, “On the importance of initialization and momentum in deep leaming”, ICML 2013
©
3
o

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

By #

S gludaags

8 5 il o gile go

Nesterov Momentum

Vi1 = PVt — OéVf(CUt -1 p’Ut)
Ti41 = T T Vp41

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

% ot 5ol

S gludaags

8 5 il o gile go

Nesterov Momentum

Annoying, usually we want
update in terms of Ty, V f(x¢)

p—

Vi1 = PVt — Ofo(CUt -1 PU

T4+l = Tt + Vet1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

EITEN
Up %
Ref: http://cs231n.stanford.edu/

VYA G syeSily
S Hludaags

8 5 il o gile go

Nesterov Momentum

Annoying, usually we want
update in terms of Ty, V f(x¢)

p—

Vi1 = PVt — Ofo(CUt -1 PU

T4+l = Tt + Vet1

Gradient

Velocity

Change of variables .’i’t = It + pv; and

rearrange: actual step

U1 = PUt — Ofvf(fﬁt)

Tt4+1 = Tt — PVt T+ (1 iy p)vt-l-l “Look ahead” to the point where updating using
i velocity would take us; compute gradient there and
= Tt + Ut+1 . P(’Ut+1 — Ut) mix it with velocity to get actual update direction

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

\va

S gludaags

8 5 il o gile go

Nesterov Momentum

Vi1 = PVt — CIVf(iUt -1 PU

p—

T4+l = Tt + Vet1

Change of variables .’i’t = It + pv; and
rearrange:

Vir1 = pvr — aV f(Zy)
Tip1 = Ty — pve + (1 + p)visa
= & + Vi1 + p(Ve+1 — V)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Annoying, usually we want
update in terms of Ty, V f(x¢)

dx = compute_gradient(x)

old v = v

v = rho % v — learning_rate x dx
X += =rho * old_v + (1 + rho) * v

S Hlwdasgs

B g o ke g0

Nesterov Momentum

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U I3 b/
Ref: http://cs231n.stanford.edu/

— SGD+Momentum

== Nesterov

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AR

S gl

8 9 il a giko go
NESTEROV MOMENTUM

@ Another approach: First take a step in the direction of the
accumulated gradient

@ Then calculate the gradient and make a correction

Accumulated Gradien Correction

New Accumulated Gradient

’ L)
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\YY

S gludaags

NESTEROV MOMENTUM

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

8 5 il o gile go

Next Step

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y Y

S gl

8 9 il a giko go
NESTEROV MOMENTUM

@ Recall the velocity term in the Momentum method:

V <— oV — EVQ L(f(x(z)a 9)7 y(z))

@ Nesterov Momentum:

v av—eVy | L(fxD; 0 + av), y@)

@ Update: 0 < 0+ v

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VY

S gludaags

i o sihe g0 Ly SLEH SLl S Shals
SGD WITH NESTEROV MOMENTUM

Algorithm 3 SGD with Nesterov Momentum

Require: Learning rate €
Require: Momentum Parameter o
Require: Initial Parameter 6
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(, y(®) from training set
3 Update parameters: 0 < 6 + av
4: Compute gradient estimate:
5. & +VL(F(x1;0),)
6: Compute the velocity update: v < av — €g
7: Apply Update: 0 + 60+ v
8: end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AN

S gludaags

0525301 (R85 (s Sub £ 5 slag sy
ADAPTIVE LEARNING RATE METHODS

Motivation

* Till now we assign the same learning rate to all features

* If the features vary in importance and frequency, why is this a good idea?
* It's probably not!

’ L]
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\¥s G Sl
§ jldiigs
8328501 (R85 s Sub £ 5 slagi s,
ADAPTIVE LEARNING RATE METHODS: MOTIVATION

© (= >>

Harder!

Nice (all features are equally important)

L]
)U}, b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

v o $500
S lbudisgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

VWA Geos Sl
(§)budasgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: What happens with AdaGrad?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

A o $500
(§)budasgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: What happens with AdaGra

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

d’) Progress along “steep” directions is damped:;
" progress along “flat” directions is accelerated

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Vo GoL $r50l
(§)budasgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q2: What happens to the step size over long time?

!

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VO

(§)budasgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q2: What happens to the step size over long time?

!

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

Decays to zero

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\OY

ADAGRAD

@ |dea: Downscale a model parameter by square-root of sum of
squares of all its historical values

@ Parameters that have large partial derivative of the loss —
learning rates for them are rapidly declined

@ Some interesting theoretical properties

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\OY

S gludaags

J‘;‘JT 33:“)\9@‘

Algorithm 4 AdaGrad

Require: Global Learning rate ¢, Initial Parameter 6, ¢
Initialize r =0

1: while stopping criteria not met do

2 Sample example (x(¥),y(®)) from training set

3 Compute gradient estimate: g < +VoL(f(x(®;0),y®)
4: Accumulate: r+r+gbog
5

6
[

Compute update: Af + —5:\/; OF -
Apply Update: 6 < 0 + A6
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

\OY

S gludaags

g#“)r:\. uu‘. ‘ﬁ‘-JT

RMSProp

grad_squared = 0
while True:

AdaGrad

RMSProp

Tieleman and Hinton, 2012

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

dx = compute_gradient(x)

grad_squared += dx * dx

X -= learning_rate * dx / (np.sqgrt(grad_squared) + le-7)

'

dx = compute_gradient(x)

grad_squared = 0@
while True:

brad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S Hlwdasgs

sl al T

RMSProp

— SGD+Momentum

— RMSProp

.
’Ui

(L b/ Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\oF

S gl

g#“);‘. uu‘. ‘ﬁ‘-JT

RMSPROP

@ AdaGrad is good when the objective is convex.

@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

@ We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

@ This is an idea that we use again and again in Neural
Networks

@ Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton's coursera course

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YoV ot 5ol
S Hludaags
s ol ol T a5 I

RMSPROP

Algorithm 5 RMSProp
Require: Global Learning rate €, decay parameter p, ¢
Initialize r =0

1: while stopping criteria not met do
2 Sample example (x(, y(?)) from training set
3: Compute gradient estimate: g < +VoL(f(x?;0),y®)
4; Accumulate: r < pr+ (1 —p)g © &
5
6
[

Compute update: Af + —5:\/; Og

Apply Update: 6 + 0 + A0
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VOA

S gludaags

i b ol gl al ST s, S
RMSPROP WITH NESTEROV

Algorithm 6 RMSProp with Nesterov

Require: Global Learning rate ¢, decay parameter p, 0, o, v
Initialize r =0

1: while stopping criteria not met do
2 Sample example (x(, y(®) from training set
3 Compute Update: 0 — 60+ av
4: Compute gradient estimate: g < +V0~L(f(x(i); 0),y™)
5: Accumulate: r < pr+ (1 —p)g© g
6 .
.
8:

€

Compute Velocity: v <— av — E 08
Apply Update: 0 <+ 0+ v
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VoA

S gludaags

(2208) ol

Adam (almost)

first_moment = 0

second_moment = 0

while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

L/

EITEN
Q;B/
Ref: http://cs231n.stanford.edu/

V£

S gludaags

(2208) ol

Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

|first_m0ment = betal * first_moment + (1 - betal) * dxl

X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Momentum

AdaGrad / RMSProp

VA doc s Ealy
(§)budasgs
(ol p03) pll

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

VY o $500
§)luudasgs
(ol p03) pll

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

AdaGrad / RMSProp

Bias correction for the fact that Adam with beta1 = 0.9,
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S Hlwdasgs

(ol p3) ol

Adam

SGD

SGD+Momentum

RMSProp

Adam

.
’Ui

(L b/ Ref: http://cs231n.stanford.edu/

/Al

S gl

‘Q‘JT
ADAM

a We could have used RMSProp with momentum
@ Use of Momentum with rescaling is not well motivated

@ Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\FO

S gludaags

e‘JT ﬁ:‘:'JJg‘
ADAM: ADAPTIVE MOMENTS

Algorithm 7 RMSProp with Nesterov

Require: ¢ (set to 0.0001), decay rates p; (set to 0.9), p2 (set to
0.9), 8, 0
Initialize moments variables s =0 and r =0, time stept =0
1: while stopping criteria not met do
Sample example (x(*, y(@) from training set
Compute gradient estimate: g « +VoL(f(x®;6),y®)
t<—1t+1
Update: s < pis+ (1 — p1)g
Update: r < por + (1 — p2)g © &

Correct Biases: § «+ —+ 1 + —%+
1—p3 1—p5

Compute Update: Af = —e\/§’+5
0: Apply Update: 6 <+ 6 + A6
10: end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\£5

S gludaags

eolading slaga g, siel b smla s ,uSub £ 5

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Q: Which one of these
learning rates is best to use?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\FV

S gludaags

eolading slaga g, siel b smla s ,uSub £ 5

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

a = o "

1/t decay:
a=ap/(1+ kt)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\EA

S gludaags

eolading slaga g, siel b smla s ,uSub £ 5

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

4 Loss

good learning rate

Learning rate decay!

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Epoch

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\#4

S gludaags

eolading slaga g, siel b smla s ,uSub £ 5

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

4 Loss _
Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

Epoch

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V-

S gludaags

Jol—45 e g lwdnge

First-Order Optimization

Loss

w1

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

WA

S gludaags

Jol—45 e g lwdnge

First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

A
Loss

NN

w1

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VWY

S gludaags

pod e obudng

Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1

EITEN
Up %
Ref: http://cs231n.stanford.edu/

%
S Hludaags

pod e obudng

Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 —) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q: What is nice about this update?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

WY G syeSily
S Hludaags

pod e obudng

Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 —) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

No hyperparameters!
No learning rate!
(Though you might use one in practice)

Q: What is nice about this update?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
1
Ref: http://cs231n.stanford.edu/

S Hludaags

pod e obudng

Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 —) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q2: Why is this bad for deep learning?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Vs G syeSily
S Hludaags

pod e obudng

Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 —) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N*2) elements

* 1
0 =0,—-H VGJ(GO) Inverting takes O(N”3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
1
Ref: http://cs231n.stanford.edu/

WY e s Sty
S Hludaags

99— 4S o (s 5lwding

Second-Order Optimization

0* =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

WA e s Sty
(S leudaags

99— 4S o (s 5lwding

L-BFGS

- Usually works very well in full batch, deterministic mode
I.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011~
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VA

S Hlwdaags

In practice:

- Adam is a good default choice in many cases
- SGD+Momentum with learning rate decay often
outperforms Adam by a bit, but requires more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

YA~

S gludaags

sl sl 5 313

Beyond Training Error

Train Loss

175

15.0

125

10.0

1.5

5.0

25

0.0

0 2500 p000 7500 10000 12500 15000 17500 20000

Better optimization algorithms
help reduce training loss

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

Accuracy
as - —e— train
+— val
0.8 1
0.7 -
06 -
oot e tobet ot
20000t etetettsteinley
05 {eeee®®
0 2500 5000 7500 10000 PS00 15000 17500 20000

But we really care about error on new
data - how to reduce the gap?

VAN G syeSily
S Hludaags

P>

‘ﬁ&-ﬁd\s‘} JEJS

Early Stopping

Train

Loss Accuracy

Stop training here

lteration Iteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that worked best on val

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\AY

S gludaags

SGD: 0+ 0 — eg

Momentum: v <— av — €g then 6 < 0 + v

Nesterov: v <~ av — eVy (L(f(x(i); 0+ av), y(i))> then 0 < 0 + v

AdaGrad: r < r +g® g then Af— + 5

RMSProp: r < pr + (1 — p)g © g then Af «+ =5

> then A = —¢

Adam: S «

T
1 - pf 1 —ph

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

€
NG

€
BNE

@ g then 60 «+— 0 + Af

© g then 6 < 0 + Af

AN

then 6 < 60 + A0

VT 40

WY

S gl

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

BT
Up %
Ref: http://cs231n.stanford.edu/

(o) Lagig, sl G o581 55

250, %,
%9,
R,
%% ';’0,’ %Y,
’& ’A‘é "»"

(/7 "
O
el

GRHI

90,%
W0,

%

o

%,
%
‘Q

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

(X
s
Qo8
XK

1.0

\AY

S gl

(250 o588 slajlased s) Lagh s, sl G su5Sal 5

T e Y

— SGD
- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

T rr i

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U I3 b/
Ref: http://cs231n.stanford.edu/

W
(o> sladas
Ladae oS 53

Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AV

o>y sladse

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

= Single Model =
04. Standard LR Schedule /) W

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

EITEN
Up %
Ref: http://cs231n.stanford.edu/

M rot Grefaly
(§2a iy slaae

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifarl0 (L=100,k=24, B=300 epochs)

05- Single Model °° Snapshot Ensemble /M 10!
04 Standard LR Schedule "'\ 04 Cyclic LR Schedule = /) —_ ?tm_ndarr_t Ir sféhedul_ir]a o
AT | Fn = (Cosine annealing with restart Ir (.
- 0.3 R 03'-‘: f 10" | | | I |
2 0.2 02 | | | | |
S g
o = 0.1+ _ S 10"
< Z 5 J 1 /\ | o
To) -0 -0) - AT E 10
& 02 02 ; S =
3V -0.2 4 2l e =
(o)) F x %? |
£ 0.3+ -03- 2= ~ 10
2 0.4l R [i === 'j_‘|’ sl Model | Model | Model | Model | Model | Model
— 500 . <~ 50 50 T = (= 50 1 2 3 4 5 6
— a0 T — -z 40 w0 T e 40 10 L L I l I
2 el < 30 0 T 30 0 50 100 150 200 250 300
= 20 - o 20 20 T = e 20 E shs
3 pochs
e = -
% Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CYC'IC |earn|ng rate SChedU|eS can
< Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 i |
f, Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. make thIS Work even bettef.
O
©
o
S
o
N
o

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VA4

(e diws slaJas

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:

data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*X

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Joumal on Control and Optimization, 1992.

EITEN
J;K
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V4.

POLYAK AVERAGING: MOTIVATION

Gradient points towards right

e Consider gradient descent above with high step size €

’ L)
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Y

POLYAK AVERAGING: MOTIVATION

Gradient points towards left

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

VY

POLYAK AVERAGING: MOTIVATION

Gradient points towards right

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Y

POLYAK AVERAGING: MOTIVATION

Gradient points towards left

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

i\ Y
PR,

POLYAK AVERAGING: MOTIVATION

Gradient points towards right

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Va0
PR,

Jael)
A SOLUTION

@ Suppose in t iterations you have parameters #1192 . o)
@ Polyak Averaging suggests setting () = 15,00
@ Has strong convergence guarantees in convex settings

@ Is this a good idea in non-convex problems?

.
)U}, b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Va s
PR,

bdl..u.n C)Laa‘
SIMPLE MODIFICATION

@ In non-convex surfaces the parameter space can differ greatly
in different regions

@ Averaging is not useful

@ Typical to consider the exponentially decaying average instead:

6O — D 1 (1 — 0)6® with o € [0, 1]

.
)U}, b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

VAA

(S olwplaae) § gaalja yY¥ oS

How to improve single-model performance?

17.5

15.0

125

10.0

1.5

5.0

25

0.0

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

Train Loss

0

2500 5000 7500 10000 12500 15000 17500 20000

09 1

0.8 1

0.7 4

0.6 1

05

Accuracy

lotee®®

—e— frain
+— val

L 44 ba

2®om“owo-t

2500 5000 7500 10000 12500 15000 17500 20000

Regularization

) U N
a1
Ref: http://cs231n.stanford.edu/

e e
G935 55
Wl G dlen S Gu S L)

Regularization: Add term to loss

L= 53, ¥, max(0, f(zi W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization ~ EB(W) =22, Wy, (Weight decay)
L1 regularization RW) = >k 221 [Whil

Elastic net (L1) L2) R(W) =2 Zzﬁwﬁz + Wi,

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Ol 3 Y 98

ERIEY R R

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

EITEN
Up %
Ref: http://cs231n.stanford.edu/

3

Ol 3 Y 98

ERIEY R R

Regularization: Dropout

p=0.51%

def train_step(X):

"nvn X contains the data

H1
Ul
H1
H2
U2
H2

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

mwn

= np.maximum(O, np.dot(Wl, X) + bl)

= np.random.rand(*Hl.shape) < p # first dropout m
*= U1 # droj

= np.maximum(©, np.dot(W2, Hl) + b2)

= np.random.rand(*H2.shape) < p # se

*= U2 4

out = np.dot(W3, H2) + b3

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Example forward
pass with a
3-layer network
using dropout

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

E- v

Ol 3 Y 98

Regularization: Dropout

ERIEY R R

How can this possibly be a good idea?

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Forces the network to have a redundant representation;
Prevents co-adaptation of features

T

has an ear

has a tail AX_A

s furry —X—— . cat
~___— score

has claws +/
mischievous

look

Ol 3 Y 98

ERIEY R R

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
240% ~ 107233 possible masks!
Only ~ 10%2 atoms in the universe...

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Ol 3 Y 98

otule 3T Gley 5o (s3I0 95

Dropout: Test time

Output Input
(label) (image)

Dropout makes our output random! | y|= fw(w.E) o

Want to “average out” the randomness at test-time
y=F@) = E.[f(@.2)] = [ple)f(z,2)a:

But this integral seems hard ...

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y-0

Ol 3 Y 98

otule 3T Gley 5o (s3I0 95

Dropout: Test time

Want to approximate
the integral

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\R¥e Geoe S50k
Ogul 33,9 55,

otule 3T Gley 5o (s3I0 95

Dropout: Test time

Want to approximate

the integral y= 1@ = B:[f(@,9)] = [p(2)f (@, 2)dz

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y-V Geoe S50k
O+l 33 ,¥ 85,

otule 3T Gley 5o (s3I0 95

Dropout: Test time

Want to approximate

the integral y= 1@ = B:[f(@,9)] = [p(2)f (@, 2)dz

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy
1

. . . . 1
During training we have: E[a] = (w1 + way) + ;(wiz +0y)

1 1
i E(OT + 0y) + 1(03: + way)

1
:a(wlx + way)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA Geoe S50k
Ogul 33,9 55,

otule 3T Gley 5o (s3I0 95

Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy

During training we have: E[a] :i(wlx + way) + }l(wlx + 0y)
+ %1(0'1“ + 0y) + %(03: + way)
At test time, multiply !
by dropout probability =5 (W1 +way)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y4

O gl 33 ,5Y 55

otule 3T Gley 5o (s3I0 95

Dropout: Test time

def predict(X):

H1 np.maximum(©®, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

EITEN
Up %
Ref: http://cs231n.stanford.edu/

\AR o $500
092l 33,¥ 95,

""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probability of keeping a unit active

def train_step(X):
""" X contains the data

forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
Hl *= Ul # drop! y
HZ np.maximum(®, np.dot(WZ, HI) + DZ) dI'Op |n forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

def predict(X):
H1_=_ﬁﬁ:ﬁ;;imﬁmié,un;:dat(wl, X) + bl)|* p # NOTE: scale the activations I
H2 = np.maximum(®, np.dot(W2, H1) + b2} * p # NOTE: scale the activations Scale at teSt tlme
out = np.dot(W3, H2) + b3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

YA G0-L (55

Ol 3 Y 98

Ouols ol s

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
for example 3-layer neural network
H1l = np.maximum(0, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!
“HZ = np.maximum(0, np.dot (W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

forward pass

backward pass: compute gradients... (not shown)

perform parameter update... (not shown)

| / test time is unchanged!
et e o

Hl = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(®, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

)U"
1
Ref: http://cs231n.stanford.edu/

Y
O 9l 13)Y 65
Jslie s SN <

Regularization: A common pattern

Training: Add some kind
of randomness

5 = fw(I,Z)

Testing: Average out randomness
(sometimes approximate)

gy = i) = B, [P 2)] = / p(2)f (2, 2)dz

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Y\Y G (5 Sl

O gl 33 ,5Y 55

Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
y = fwiz,z) Training:
Normalize using
Testing: Average out randomness stats from random
(sometimes approximate) minibatches

y = f(z) = E,[f(z,2)] = /p(z)f(;z:, z)dz Testing: Use fixed
stats to normalize

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U !
1
Ref: http://cs231n.stanford.edu/

YVY

Ol 3 Y 98

2l Hdlsaly

Regularization: Data Augmentation

Cat” ‘

—V

11

Load image
and label

- CNN

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

Compute
loss

Mo deec 5oLy
O gl 33 ,5Y 55

2l Hdlsaly

Regularization: Data Augmentation

Load image
and label

Compute
loss

Transform image

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

YV

Ogal 3)Y 65

LS:"S‘ U‘J;J.a w‘ﬁ‘éé‘d

Data Augmentation
Horizontal Flips

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U I3 b/
Ref: http://cs231n.stanford.edu/

Y\V

Ol 3 Y 98

G (5 Sl

oolas slagubie 5 Lagl S olélaals

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

T\A deec 5oLy
O gl 33 ,5Y 55
30l slageliie 5 Lol S ol53lenls

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
a1
Ref: http://cs231n.stanford.edu/

Y4

UJ‘JQ&JJ Z@‘\}é‘éé‘d

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U I3 b/
Ref: http://cs231n.stanford.edu/

vy deec 5oLy
G5l 33 ,Y 55

UJ‘J,}S.\J Z@‘\}é‘éé‘d

Data Augmentation yore complex:

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness
2. Sample a “color offset”

along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

) U I3 b/
Ref: http://cs231n.stanford.edu/

Y

O gl 33 ,5Y 55

Gl § S0y

uzs‘\}é‘éd‘d

Data Augmentation
Get creative for your problem!

Random mix/combinations of :

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

translation

rotation

stretching

shearing,

lens distortions, ... (go crazy)

é/‘
)U !
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y Y

O gl 33 ,5Y 55

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Y Y

Ol 3 Y 98

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

vre feoc sy Eols
O 9l 13)Y 65
oS pas Ko 3240

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YO

O gl 33 ,5Y 55

uj‘.jl\ Gec

Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

ByYv

kel paae

L]
’U};b/

i\l

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu

http://cs231n.github.
http://cs231n.github.
http://cs231n.github.
http://cs231n.github.

io/neural-networks-1/
io/neural-networks-2/
io/neural-networks-3/
io/neural-networks-case-study/

truck
pom

&hip

Birplane

horse

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YYA

CMSC 35246 Deep Learning

Spring 2017, University of Chicago

nificant

Time: Mondays and Wednesdays, 3.00pm-4.20pm, Ryerson 2

Office howrs:

* Trivedi: MW 4.30pm=5.30pm; F 4.30pm-6.30pm; 5a 3.00pm-5.00pm; by appointme
+ Hondor: By appointment
Prerequisites
1. Graduate Maching Ledrning courses at the level of STAT 37710/CMEC 35400 or TTIC 31020 (STAT 27725/CMSC 25400 should be 0K
2. Familiarity with
3 5'35'&""""’" profic NCy In Fytnon (aITNougn you Snou 2 fine :‘3. have extensie experience in some other high level language)

Syllabus

Ses schedule

https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html

L,
)Ujb/

yvya

Chapter 6

Deep Feedforward Networks

Deep fd
or mult]
The goal
for a claf
defines
in the b
Th
function|
define f
outputs
are exte|
networ!
Feed|
tioners.
example]
specialig
stepping
languagy
Feed|
represer|
ciated W
together
in a cha
common
layer of

I. Goodfellow, Y. Bengio, A. Courville,
Deep Learning,
MIT Press, 2016.

Chapter 7

Regularization for Deep Learning

A centr}
perform|
used in
at the e}
as regul
availab]
regularil
Chaj
ting, bi:
notions
In ¢
ization
to form)
Som|
If you
sections
basic co
Ins
a learni
its trai
constraj
parame|
thought]
carefull

Chapters 6,7, 8

—

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Chapter 8

Optimization for Training Deep
Models

Deep learning algorithms involve optimization in many contexts. For example,
performing inference in models such as PCA involves solving an optimization
problem. We often use analytical optimization to write proofs or design algorithms.
Of all of the many optimization problems involved in deep learning, the most
difficult is neural network training. It is quite common to invest days to months of
time on hundreds of machines in order to solve even a single instance of the neural
network training problem. Because this problem is so important and so expensive,
a specialized set of optimization techniques have been developed for solving it.
This chapter presents these optimization techniques for neural network training.

If you are unfamiliar with the basic principles of gradient-based optimization,
we suggest reviewing chapter 4. That chapter includes a brief overview of numerical
optimization in general.

This chapter focuses on one particular case of optimization: finding the param-
eters 8 of a neural network that significantly reduce a cost function J(8). which

