Considerations on Deep Neural Networks Training
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EQUIVALENT REPRESENTATIONS
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DUALITY OF FPROP & BPROP
Forward Propagation Back Propagation
(FPROP) (BPROP)
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NEURON STRUCTURE
L wo
*@® synapse
axon from a neuron ™.
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ACTIVATION (TRANSFER) FUNCTIONS
S|gmo|d 1 / Leaky RelLU

o(x) = 1+é-’v J

-10 v 10

tanh |
tanh(x) i__j[—_:

RelLU
max (0, x)
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max(0.1z, x)

Maxout
max(wi z + by, wi x + by)
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Activation Functions
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olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid
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olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients
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What happens when x = 0?
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Activation Functions
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olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

AR}

C’A:\.ILG &[93

MLQ&AWUJJJGLAL;JJJJ;|QMJ§JA§3&EU

Consider what happens when the input to a neuron (x)

IS always positive:

I wop
@ synapse
axon from a neuron

wWoTo

cell body

w22

g (Z-u:{;r:i b)

output axon

activation
function

f Z’wﬂ?i + b

What can we say about the gradients on w?
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Consider what happens when the input to a neuron
always positive...

[

1S

allowed
gradient
update
directions

gradient
update
directions

f Z W; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative (
(this is also why you want zero-mean datal)
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Zig zag path

hypothetical
optimal w
vector
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Activation Functions
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olz)=1/(14+e7 %)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “Kkill” the
gradients

2. Sigmoid outputs are not
zero-centered

3. exp() is a bit compute expensive
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Activation Functions

tanh(x)
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- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions
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RelLU
(Rectified Linear Unit)
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Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

[Krizhevsky et al., 2012]
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Activation Functions Complites Iix) = max(0.x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

—10 10

RelLU - Not zero-centered output
(Rectified Linear Unit)
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Activation Functions Complites Iix) = max(0.x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

RelLU - Not zero-centered output
(Rectified Linear Unit) - An annoyance:

hint: what is the gradient when x < 07
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What happens when x = 07
What happens when x = 107

EITEN
Up %
Ref: http://cs231n.stanford.edu/




V4

C.’::\JL’.é &l}]

QMQMJ&&&A&‘J&G

O

DATA CLOUD

active ReLU
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P

dead RelLU
will never activate
=> never update
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DATA CLOUD

|

active ReLU

=> people like to initialize
RelLU neurons with slightly
positive biases (e.g. 0.01)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/

dead RelLU
will never activate
=> never update
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Activation Functions Hootal 018]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Leaky ReLU
f(z) = max(0.01z, z)
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Activation Functions Hootal 2018]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10

Parametric Rectifier (PReLU)
Leaky ReLU f(:):) — ma,x(o:a:, ::c)

- i) = max(0.012, ) Vs

3 backprop into \alpha

j (parameter)
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Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky RelLU
adds some robustness to noise

10

T ifz >0
fla) = {a et == 1 ;fléo - Computation requires exp()
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Maxout 4,
Maxout “Neuron” [Goodfellow et al., 2013]
- Does not have the basic form of dot product ->

nonlinearity
- Generalizes ReLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w! z + by, wl z + by)

Problem: doubles the number of parameters/neuron :(
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Use RelLU. Be careful with your learning rates
Try out Leaky RelLU / Maxout / ELU

Try out tanh but don’t expect much

Don’t use sigmoid
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original data zero-centered data normalized data
10 - 10 - 10 -
. A
3| 5 9
0 - 0 - 0
\
R0 = g e 5 5 ST = 5 0

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Remember: Consider what happens when the input to a

neuron Is always positive...

[

allowed
gradient
update
directions

gradient
update
directions

f Z W; T; + b allowed

What can we say about the gradients on w?
Always all positive or all negative (
(this is also why you want zero-mean datal)
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Zig zag path

hypothetical
optimal w
vector
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original data zero-centered data normalized data
10 - 10 - 10 -
. A
3| 5 9
0 - 0 - 0
\
R0 = g e 5 5 ST = 5 0

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

=10
14 -10 -5 o 5

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)
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Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize
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After normalization: less sensitive to small
changes in weights; easier to optimize
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TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e g VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening
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- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.
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Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh
non-linearities, and
initializing as
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described in last slide.

# assume some unit gaussian 10-D input data

D = np.random.randn({16606, 500)

hidden layer sizes = [500]*18

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu':lambda x:np.maximum(@,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == @ else Hs[i-1] # input at this layer

fan in = X.shape[l]

fan_out = hidden_layer sizes[i]

W = np.random.randn(fan_in, fan _out) #* 8.81 # layer initialization
H = np.dot(X, W) # matrix multiply

H = act[nonlinearities[i]](H) # nonlinearity

Hs[i] = H # cache result on this layer

# look at distributions at each layer
print ‘input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean({H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems(}]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+l, layer_means[i], layer stds[il])

# plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer_stds, 'or-'}
plt.title('layer std')

# plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range={(-1,1))
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input layer had mean ©.000927 and std ©.938388

hidden layer 1 had mean -0.000117 and std ©.213081

hidden layer 2 had mean -0.000001 and std @.647551

hidden layer 3 had mean -0.000002 and std 0.910630

hidden layer 4 had mean 0.000081 and std 0.002378

hidden layer 5 had mean 0.000002 and std 0.000532

hidden layer & had mean -0.000000 and std 0.969119

hidden layer 7 had mean ©.000000 and std ©.000026

hidden layer & had mean -0.000000 and std 0.000006

hidden layer 9 had mean 0.000080 and std ©.080001

hidden layer 16 had mean -0.000000 and std 0.000000

iR layer mean _— layer std
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input layer had mean ©.000927 and std ©.938388

hidden layer 1 had mean -0.000117 and std ©.213081

hidden layer 2 had mean -0.000001 and std @.647551

hidden layer 3 had mean -0.000002 and std 0.910630

hidden layer 4 had mean 0.000081 and std 0.002378

hidden layer 5 had mean 0.000002 and std 0.000532

hidden layer & had mean -0.000000 and std 0.969119

hidden layer 7 had mean ©.000000 and std ©.000026

hidden layer & had mean -0.000000 and std 0.000006

hidden layer 9 had mean 0.000080 and std ©.080001

hidden layer 16 had mean -0.000000 and std 0.000000

e layer mean layer std
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All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.
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W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean @.801800 and std 1.001311 AI mOSt a II n e u ron S

hidden layer 1 had mean -0.0900438 and std 0.981879
hidden layer 2 had mean -0.000843 and std 0.981649
hidden layer 3 had mean ©.080566 and std ©.9816€1 Com Ietel
hidden layer 4 had mean ©.000483 and std ©.981755 * . - p y
hidden layer 5 had mean -0.808682 and std 0.981614 1 0 Instead Of 0 01
hidden layer 6 had mean -0.000481 and std 6.981560 ‘ ‘
7
8
9
1

0
a L]
hidden layer 7 had mean -8.080237 and std 0.981520 Satu rated elther _1
hidden layer 8 had mean -8.608448 and sTd 8.981913 3
had mean -6.800893 and std 8.981728
and 1. Gradients

hidden layer
hidden layer 10 had mean ©.000584 and std 6.981736
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Xavier gdud ol ca0,lude i,

input layer had mean ©.001880 and std 1.001311 2 ; T e T .
hidden layer 1 had mean 0.001198 and std ©.627953 W = np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization

hidden layer 2 had mean -0.800175 and std 0.486051
hidden layer 3 had mean 0.080655 and std 8.407723

hidden layer 4 had mean -0.900306 and std 0.357108 4 i initial i 1
hidden layer 5 had mean 0.080142 and std @.320917 XaV|er lnltlallzatlon
hidden layer & had mean -0.000389 and std 0.292116

hidden layer 7 had mean -0.808228 and std 0.273387 [Glorot et al, 201 O]

had mean -0.000291 and std ©.254935
had mean ©.000361 and std ©.239266
0 had mean 0.980139 and std 0.228008

hidden layer
hidden layer
hidden layer

[ e = B B R R S W S ]

ootz layer mean i layer std

Reasonable initialization.
' | \ (Mathematical derivation
e, assumes linear activations)
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Xavier gdud ol ca0,lude i,

input layer had mean ©.080561 and std 0.999444
hidden layer 1 had mean 8.398623 and std 0.582273 |} = pp.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization
hidden layer 2 had mean 9.272352 and std 0.483795 - = —
hidden layer 3 had mean ©.186076 and std ©.276912
hidden layer 4 had mean 9.136442 and std 0.198685

2 [} ]

3 ) Q

4 ] (0] .
hidden layer 5 had mean 9.099568 and std 0.140299 b t hen S n the ReLU
hidden layer & had mean 9.072234 and std 0.183280 u W u I

1 [’ ]

8 [’ ]

9 ] (0]

1

hidden layer had mean 8.049775 and std 0.872748
hidden layer 8 had mean 9.035138 and sid

nonlinearity it breaks.

hidden layer 16 had mean 0.818408 and std ©.826076
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input layer had mean ©.860381 and std @.999444

He 4l sl o lalio (o5,

W =

np.random.randn(fan_in, fan out) / np.sqrt(2/fan_in) # layer initialization

hidden layer 1 had mean 6.562488 and std & 825232

hidden layer 2 had mean ©.553614 and std ©.827835

hidden layer 3 had mean ©.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.826962

hidden layer 5 had mean 0.547678 and std ©.834892

hidden layer & had mean ©.387103 and std ©.8560035

hidden layer 7 had mean 0.596867 and std ©.870610

hidden layer & had mean 0.623214 and std ©.889348

hidden layer ¢ had mean 0.567498 and std ©.845357

hidden layer 10 had mean ©.552531 and std ©.B844523
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He et al., 2015
(note additional 2/)
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input 1 had ©.000501 and std 0.999444 : : T :
ﬁ;g;‘em Tgi;r ? hgﬁa;ean 6_552422 aid <td 8 25032 | W = np.random.randn(fan_in, fan out) / np.sqrt(2/fan_in) # layer initialization

hidden layer 2 had mean ©.553614 and std ©.827835

hidden layer 3 had mean ©.545867 and std ©.813855

hidden layer 4 had mean 0.565396 and std ©.826962

hidden layer 5 had mean 0.547678 and std ©.834892 H t | 201 5

hidden layer & had mean 0.587103 and std ©.860035 e e a .y

hidden layer 7 had mean 0.596867 and std ©.870610

hidden layer & had mean 0.623214 and std ©.889348 =g =

hidden layer ¢ had mean ©.567498 and std 0.845357 (note add |t|0na| 2/)
18 had mean ©.552531 and std 0.844523
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Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenb(hl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
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INITIALIZATION STRATEGIES

@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ |n the non-convex regime initialization is much more
Important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

@ What is known: Initialization should break symmetry (quiz!)
@ What is known: Scale of weights is important

@ Most initialization strategies are based on intuitions and
heuristics

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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INITIALIZATION STRATEGIES: SOME HEURISTICS

@ For a fully connected layer with m inputs and n outputs,
sample:

Wij ~ U(— a\/lm)

-

@ Xavier Initialization: Sample

6 6
vm+n’ \/m+n)

Wij ~U(=

@ Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

@ Works well in practice!

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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INITIALIZATION STRATEGIES: MORE HEURISTICS

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive £ non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation ——
Jm

EITRaN
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Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”
il S Guiboly 5 dee (She s1ola (Tolas) (sdea Lo LY o o5 A asal A o

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[z(*)
k) . [zt

V/ Var[z(%)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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1. compute the empirical mean and
variance independently for each

dimension.
2. Normalize
) r(k) _ E[x(k’)]
v/ Var[z(*)]
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Batch Normalization [loffe and Szegedy, 2019]
FC Usually inserted after Fully
BlN Connected or Convolutional layers,
1 and before nonlinearity.
2 tanh (b sl 5 $31S slar¥ b Junio Lol (slads¥ 31 G ¥ s
58S e 513 et allad Ll ) G
- e
g 1 k k
£ BN ,:E...(k) — CL'( d E[;l?( )]
. : k
: s v/ Var[z(¥)]
P

.

)U N
a1
Ref: http://cs231n.stanford.edu/
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Batch Normalization

|

FC

!

BN

!

tanh

FC

BN

tanh

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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[loffe and Szegedy, 2013]

Usually inserted after Fully

—

Connected or Convolutional layers,

and before nonlinearity.

Problem: do we
necessarily want a
zero-mean unit-variance
input?

(k) _ E[(F)
(k) — £ ™ ]
v/ Var[z(¥)]
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Batch Normalization

Normalize:
~(K) _ r(k) _ E[:;:("’)]
v/ Var[z(¥)]

And then allow the network to squash
the range If it wants to:

y®) = ~(B)Z(k) 4 (k)

[loffe and Szegedy, 2015]

Note, the network can learn:
v*) = /Var[z(*)]
Bk) = E[;c(’f)]

to recover the identity
mapping.

LSS Gl (5 el a0 a1, Y oa g oA ale (a5l wian e s slal 4l 44 La 3l L
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Ll e
: : loffe and Szegedy, 2015
Batch Normalization | gedy, 2019]
Input: Values of = over a mini-batch: B = {x1._,, }; - Improves gradient flow through
Parameters to be learned: v, 3 the network
Output: {y; = BN, 5(z:)} - Allows higher learning rates
| m - Reduces the strong dependence
B < — Z T // mini-batch mean on initialization
=1 - Acts as a form of regularization
s = . in a funny way, and slightly
2 2
¢ — T; — // mini-batch variance ’
B ;( ) reduces the need for dropout,
‘s maybe
T; — 3322—% // normalize y
VOop T € Sl ol 5o QLI S Gl s
Y; — ¥Z; + B =BN,, g(z;) // scale and shift SYL S0l slaF 4 aunlKal ®
CeoleT solie & waud (Sinly Jrals *

sl Y S5 o 5 Ol e (A L)
o9 uLAlS ‘JSJ.:‘ YLA:\A‘J %_Jl% LSBJH‘L?
.dropout 4 ;L3
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Batch Normalization [loffe and Szegedy, 2019]
Input: Values of z over a mini-batch: B = {z1. . }; Note: at test time BatchNorm layer
Parameters to be learned: v, functions differently:

Output: {yz - BNﬁr,ﬁ(-’L’i)}

| m The mean/std are not computed
HB — — Zrz // mini-batch mean [ based on the batch. Instead, a single
=] fixed empirical mean of activations

Ty

o s~ z:(iw.:E — g // mini-batch variance dnung TaEinig is used.
s 1=1
s, BB —— (Q.g. can lbe estimated during training
‘ VoL + € with running averages)
Y; — ¥Z; + B =BN,, g(z;) // scale and shift

L8 g b daslas (Dateh) s Gulul 5 mean/std ¢ ile 5T aKua o
L8 9 o s3lEil (i el Job Hu lacudlad cull a3 80k ul8a (550 5y
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Batch Normalization

Input: »: N x D

Learnable params:
Y, 0 : D

p,o D
LN % D

Intermediates:

Output: vy : N x D
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Estimate mean and

BatCh Normahzatlon variance from minibatch;

Input: »: N x D

Learnable params:
Y, 0 : D

Intermediates:

Can’t do this at test-time

Output: v : N x D

EITEN
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Batch Normalization: Test Time

Input: »: N x D

Learnable params:
Y, 0 : D

p,o D
LN % D

Intermediates:

Output: vy : N x D

EITEN
Up %
Ref: http://cs231n.stanford.edu/

(Running) average of values
seen during training

(Running) average of values
seen during training

Tijj — 1

»‘/sz—l—e

YiZi,5 + Bj
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NXCxHxW
Normalize * Normalize * * ‘
M,0: 1 x D H,0: 1xCx1lxl
Y,P: 1 x D Y,B: 1xCx1lxl

y = Y(x—-M)/0o+pB y = Y(x-M)/0+B

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Layer Normalization

Batch Normalization for
fully-connected networks

Xx: N x D
Normalize *

M,0: 1 x D

Y,p: 1 x D

y = Y(x-M)/0o+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

X: N x D
Normalize *
H,0: N x 1
Y,B: 1 x D

y = Y(x-M)/0+B
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Instance Normalization

Batch Normalization for
convolutional networks

X: NXCxHxXW

Normalize | !

H,0: 1xCx1lxl
Y,B: 1IxCx1lxl

y = Y(x-M)/0o+B

Instance Normalization for
convolutional networks
Same behavior at train / test!

X: NXCxHXW

Normalize * *

H,0: NxCx1lxl
Y,B: 1xCx1lxl

y = Y(x-M)/0+B

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H,W

LT

H,W
H,W

L
Lo g

(TR

R
R

T
Z LR

Wu and He, “Group Normalization”, arXiv 2018
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Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H, W
LT
H,W
H, W
VA VAT Y
Vi A

H, W

LF T

(BT RS

(TR
R

R

T
Z LR

Wu and He, “Group Normalization”, arXiv 2018 (Appeared 3/22/2018)
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Decorrelated Batch Normalization

Batch Normalization

original data zero-centered data normalized data
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BatchNorm normalizes the
data, but cannot correct for
correlations among the
input features

Decorrelated Batch Normalization

original data decorrelated data whitened data

~ 1

Ty =X"2%(® — p)
DBN whitens the data using the full covariance
matrix of the minibatch; this corrects for correlations

Huang et al, “Decorrelated Batch Normalization”, arXiv 2018 (Appeared 4/23/2018)
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A DIFFICULTY IN TRAINING DEEP NEURAL NETWORKS

A Difficulty in Training Deep Neural Networks

A deep model involves composition of several functions
Uy = Wf(tanh(W?:f(tanh(WQT(tanh(WlTx +b1) +by) +bs3))))

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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A DIFFICULTY IN TRAINING DEEP NEURAL NETWORKS

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

@ Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

@ In Practice: We update all layers simultaneously
@ This can give rise to unexpected difficulties

@ Let's look at two illustrations

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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INTUITION

@ Consider a second order approximation of our cost function
(which is a function composition) around current point 6(?):

1
(Hmxmen+w_ewﬂg+§w—mmfﬂw—9@)

a g is gradient and H the Hessian at 6(©)

@ If € is the learning rate, the new point

0 =00 —cg

EITRaN
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Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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INTUITION

@ Plugging our new point, # = 0% — ¢g into the approximation:

1
JO© —eg) = J(0V) — cg"g + 58" Hg

@ [ here are three terms here:

e Value of function before update

e Improvement using gradient (i.e. first order information)

e Correction factor that accounts for the curvature of the
function

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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INTUITION

a Observations:

o gl Hg too large: Gradient will start moving upwards
o gl'Hg = 0: J will decrease for even large ¢
o Optimal step size ¢* = gl'g for zero curvature,

T .
S ﬁ to take into account curvature

@ Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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HIGHER ORDER EFFECTS: TOY MODEL

h .
@
hQ w9
©
hl w1
O

@ Just one node per layer, no non-linearity

@ gy is linear in  but non-linear in w;

.
)U}’ b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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HIGHER ORDER EFFECTS: TOY MODEL

a Suppose 6 = 1, so we want to decrease our output g

@ Usual strategy:
e Using backprop find g = V(4§ — v)*
e Update weights w :=w — €g

@ The first order Taylor approximation (in previous slide) says
the cost will reduce by eg’'g

@ |f we need to reduce cost by 0.1, then learning rate should be

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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HIGHER ORDER EFFECTS: TOY MODEL

@ The new g will however be:

Y = fc(wl — 691)(’w2 — 692) e (’wl - Egl)

@ Contains terms like €3g1 gagswaws . . . w;

@ If weights wy,ws, ..., w; are small, the term is negligible. But
if large, it would explode

@ Conclusion: Higher order terms make it very hard to choose
the right learning rate

@ Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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BATCH NORMALIZATION

@ Method to reparameterize a deep network to reduce
co-ordination of update across layers

@ Can be applied to input layer, or any hidden layer

@ Let H be a design matrix having activations in any layer for
m examples in the mini-batch

(hir hie hiz ... hag
h21 h22 hgg co hgk
I — . . . :

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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BATCH NORMALIZATION

h11 hi2  hiz ... D
ho1  hoa haz ... hog
H—
_hml hm2  hmg ... hmk‘_

@ Each row represents all the activations in layer for one example
@ Idea: Replace H by H' such that:

H’:u

o

@ 1 is mean of each unit and o the standard deviation

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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BATCH NORMALIZATION

@ . is a vector with p; the column mean
@ o is a vector with o; the column standard deviation

@ H, ; is normalized by subtracting p; and dividing by o;

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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BATCH NORMALIZATION

@ During training we have:

1
— EZHW
J

o = Z —;1,

@ We then operate on H’ as before = we backpropagate
through the normalized activations

Kb/ Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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BATCH NORMALIZATION: WHY IS THIS GOOD?

@ The update will never act to only increase the mean and
standard deviation of any activation

@ Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

@ Batch normalization makes the reparameterization easier

@ At test time: Use running averages of 1 and o collected
during training, use these for evaluating new input x

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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AN INNOVATION

@ Standardizing the output of a unit can limit the expressive
power of the neural network

a Solution: Instead of replacing H by H’, replace it will YH' + 3
@ v and (3 are also learned by backpropagation

@ Normalizing for mean and standard deviation was the goal of
batch normalization, why add ~ and § again?

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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Step 1: Preprocess the data

original data

10 10

zero-centered data

A
3 5 5
0 - 0 - 0
-5 =51 =5
Y
Bt 1 s 1g 105 =3 5 1y "
X -= np.mean(X, axis = 0) .

(Assume X [NxD] is data matrix,
each example in a row)
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normalized data

3 0 5

X /= np.std(X, axis

10

0) .
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Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden —
neurons
(i 10 output
- output layer
3 CIFAR-10 input neurons, one
© images, 3072 layer hidden layer per class
§ numbers

V‘
)U N
1
Ref: http://cs231n.stanford.edu/
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Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model {}
- 0.0001 * np.random.randn(input size, hidden size)
- np.zeros(hidden size)

= np.zeros(output size)
mod l

=
1']
'] = 0.0001 * np.random.randn(hidden size, output size)
4
e

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train] 0.0 disable regularlzatlon

print — ‘\
loss ~2.3.

2.30261216167 \
“correct” for returns the loss and the
10 classes gradient for all parameters

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/
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Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model {}
- 0.0001 * np.random.randn(input size, hidden size)
- np.zeros(hidden size)

=
1']
'] = 0.0001 * np.random.randn(hidden size, output size)
'] = np.zeros(output size)

e

mod l

model = init two layer model(32*32*3, 50, 10) # ingut_size, hidden size, number of classes
loss, grad = two _layer net(X train, model, y trainJ le3 Crank up regularlzatlon
print loss

3.06859716482 «q.\
loss went up, good. (sanity check)

A/‘
)U N
1
Ref: http://cs231n.stanford.edu/
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Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

EITEN
Up %
Ref: http://cs231n.stanford.edu/

ool & 9o

model = init two layer model (32+%32*%3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X_tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=2080, reg=0.0,
update='sgd’', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
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Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!
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model = init_two layer model(32+%32*3, 50, 10) # Input size, hidden size, number of classes

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X_tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=06.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Finished epoch 1 / 200: cost 2.302603, train: ©.400000, val 0.400000,
Finished epoch 2 / 200: cost 2.382258, train: 0.450000, val 0.450000,
Finished epoch 3 / 200: cost 2.301849, train: ©.600000, val 0.600000,
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val ©.650000,
Finished epoch 5 / 200: cost 2.300044, train: ©.650000, val 0.650000,
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000,
Finished epoch 7 / 200: cost 2.293595, train: ©.600000, val 0.6000€0,
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000,
Finished epoch 9 / 200: cost 2.268094, train: ©.550000, val 0.550000,
Finished epoch 10 / 200: cost 2.234787, train: 0.500008, val ©.500000,
Finished epoch 11 / 200: cost 2.173187, train: 0.5600000, val 0.500000,
Finished epoch 12 / 200: cost 2.076862, train: ©.500000, val ©.500000,
Finished epoch 13 / 200: cost 1.974890, train: 0.400008, val ©.400000,
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val ©.400000,
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000,
Finished epoch 16 / 200: cost 1.73743@, train: ©.450000, val ©.450000,
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000,
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000,
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000,
Fimichad anash A0 ¢ AAMA. sacs+ 1 AAETEN +rmsn. N SECnAANAN aml A ECAAAA

S P —

1r

el el el el el

Finished epoch 195 / 200: cost ©.882694, train: 1.000000, val 1.000000,

Finished epoch 196 / 200: cost ©,002674, train: 1.000000, val 1.000000,
Finished epoch 197 / 200: cost ©.002655, train: 1.000000, val 1.e00000,
Finished epoch 198 / 200: cost ©.002635, train: 1.000800, val 1.000000,
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000,
Finished epoch 260 / 200: cost 0.002597, train: 1.000000, val 1.000000,

finished optimization. best validation accuracy: 1.000000

.000000e-03

.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.600000e-03
.000000e-03

S N ey

.0000080e-03
.000000e-03
.000000e-03
.000080e-03
.000000e-083
.0000e0e-03
.000000e-03
.000080e-03
.000000e-03
.000080e-03

AANANAA AT

1r 1.000000e-03
1r 1.000080e-03
lr 1.000000e-03
lr 1.000000e-03
1r 1.000000e-03
1r 1.000000e-03
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model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.0000081,
update='sgd', learning rate decay=1,

Start with small e g ot IR
regularization and find

learning rate that

makes the loss go

down.
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- model = init two layer model(32*32*3, 5@, 1@) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
U best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=18, reg=0.0000081,
update='sgd', learning rate decay=1,

Start Wlth Sma” |1earniﬁg_ rate=1eA6,|$érbose=TrueJ

= . & Finished epoch 1 / 10:|cost 2.302576, |[trair]: ©.080000, 1 0.103000, 1r 1.000000e-06
regl_”arlzatlon and flnd Finished epoch 2 / 10:|cost 2.302582, |trair: ©.1216000, 1 0.124000, 1r 1.000000e-06
] Finished epoch 3 / 10:|cost 2.302558, |[trair: ©.119000, 1 ©.138000, 1r 1.000000e-06
|earn|ng rate that Finished epoch 4 / 10:|cost 2.302519, |trair]: ©.127000, val ©.151000, lr 1.000000e-06
Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, 1 6.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trair]: ©.179000, 1 0.172000, lr 1.000000e-06
makes the |OSS go Finished epoch 7 / 18:|cost 2.302466, [trai: ©.180000, \Jal ©.176060, lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, |[trairl: ©.175000, 1 ©.1850600, 1r 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |[trair: ©.206000, al 0.192000, lr 1.000000e-06

down Finished epoch 10 / 10} cost 2.302420| traijn: 0.190000, jval ©.192000, lr 1.000000e-06

- finished optimization. Lhesiualidaiiod accuracy:

Loss barely changing

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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model = init two layer model(32*32*3, 5@, 1@) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

[&em9¥e-bﬂ%ehe9--¥*r6.
learning rate=le-6,|verbose=True)

Finished epoch 1 / 10:|cost 2.302576, |[trair]: ©.080000, 0.103000, 1r
Finished epoch 2 / 10:|cost 2.302582, |trair: ©.1216000, 0.124000, 1r
Finished epoch 3 / 10:|cost 2.302558, |[trair: ©.119000, 0.138000, 1r
Finished epoch 4 / 10:|cost 2.302519, [trairn: ©.127000, 0.151000, 1r
Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, 0.171000, 1r
Finished epoch 6 / 10:|cost 2.302518, |trair]: ©.179000, 0.172000, 1r
Finished epoch 7 / 10:|cost 2.302466, |trair: ©.180000, 0.176000, 1r
Finished epoch 8 / 10:|cost 2.302452, |trair]: ©.175000, 0.185000, 1r
Finished epoch 9 / 10:|cost 2.302459, |trair: ©.206000, 0.192000, 1r
Finished epoch 10 / 16} cost 2.302420| train: 0.190000,

finished optimization. bhesiualidaiiod accuracy: 0. 0

P b et e e et et e

.000000e-06
.000000e-06
.000000e-06
.00eE0Re-06
.00000Re-B6
.000000e-06
.000000e-06
.000000e-06
.000000e-06
1 6.192000, lr 1.000000e-06

Loss barely changing: Learning rate is

probably too low
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Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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model = init two layer model(32*32*3, 50, 10) # input size, hidden size,

trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
finished

epoch 1 / 10:
epoch 2 / 10:
epoch 3 / 10:
epoch 4 / 10:
epoch 5 / 1@:
epoch 6 / 10:
epoch 7 / 18:
epoch 8 / 10@:
epoch 9 / 10:
epoch 10 / 10
optimization.

[iesrning.rateme <]

e

earning rate=le-6,|verbose=True)

cost
cost
cost
cost
cost
cost
cost
cost
cost

NMNNNNNNNRN

.302576,
.302582,
.302558,
.302519,
.302517,
.302518,
.302466,
.302452,
.302459,

cost 2.302420

train:
train:
train:
train:
train:
train:
trairn:
train:

train:

tra

oo O@

=]
(=]

.080000,
.121000,
.119000,
.127000,
.158000,
.179000,
.180000,
.175000,
.206000,
.190000,
Lbesi yalidaiiold accuracy:

]

.103000, 1lr
.124000, 1r
.138000, 1r
.151000, 1r
.171000, 1r
.172000, 1r
.176000, 1r
.185000, 1r
.192000, 1r

oD

P b et e e et et e

number of classes

.000000e-06
.000000e-06
.000000e-06
.00eE0Re-06
.00000Re-B6
.000000e-06
.000000e-06
.000000e-06
.000000e-06

1 6.192000, lr 1.000000e-06

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember

this is softmax)
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model = init two layer model (32+#32+3, 5@, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y_train, X val, y val,
model, two_layer net,
num_epochs=10, reg=0.000001,

update='sgd', learning_rate decay=1,

sample batches = True,

Start with small
regularization and find \

learning rate that Now let's try learning rate 1e6.
makes the loss go

down.

loss not going down:
learning rate too low

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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model = init two layer model(32%32%3, 50, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best_model, stats = trainer.train(X_train, y_train, X val, y val,
model, two_layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning_rate decay=1,
sample batches = True,

Start With Sma” learning_rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en

reQU|arlzat|0n and flnd cug:::ﬁgsin;?gp.sum(np.log{probs[range(N}. yl)) / N

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc

|ea rnln rate that ountered in subtract
probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: ©.091000, val ©.087000, lr 1.000000e+06

makes ‘the |OSS go Finished epoch 2 / 10: cost nan, train: ©.095000, val ©.087000, lr 1.000000e+06

Finished epoch 3 / 10: cost nan, train: ©.100000, val ©.087000, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Lets try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=18, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning_rate=3e-3, verbose=True)

Finished epoch 1 / 10: cost 2.186654, train: 0.308000, val 0.306000, 1lr 3.000000e-03
Finished epoch 2 / 1@: cost 2.176230, train: ©.330000, val ©.350000, lr 3.000000e-03
Finished epoch 3 / 10: cost 1.942257, train: ©0.376000, val ©0.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©.329000, val ©.310000, 1lr 3.000000e-03
Finished epoch 5 / 1@: cost inf, train: ©.1280600, val ©0.128000, 1lr 3.000000e-03
Finished epoch 6 / 10: cost inf, train: ©.144000, val 0.147000, lr 3.000000e-03

3e-3 is still too high. Cost explodes....

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 ... 1e-3]






Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

40

Lo il ol (5 Luueings

Cross-validation strategy

coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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For example: run coarse search for 5 epochs

?2?22;55 Znig?fzﬁiigﬁ_{_fgung nOte |t,S beSt tO OptImIZe
lr = 10**uniform(-3, -6) In |Og Space'

trainer = ClassifierTrainer()
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’, learning rate decay=0.9,
sample batches = True, batch size = 108,
learning rate=1lr, verbose=False)

S

e | val acc: ©.412000, 1r: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |
N val_acc: 0.214000, lr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)
0 val _acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
Q val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
2 val _acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
= val acc: 0.223000, 1lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
—~ . | val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100) |
i nice val acc: 0.241000, Llr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
3 —— | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100) |
"'E' val acc: 0.079000, Lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
Bl val_acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
<

g

©

3

o
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Now run finer search...

max_count = 160 adjust range max _count = 100
for count in xrange(max count): for count in xrange(max_count):

reg = 10*‘Ul:'lif0rm{'5, 5) - reg = 10**uniform(-4, 0)
lr = 10**upiform(-3, -6) 1r = 10**uniform(-3, -4)
| val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) |

Val acc: U.492000, Ur: Z.2/9483c-04, Teg: 9.9913456-04, (I 7 100)

val acc: 0.512000, Llr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)

val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)

val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309%9e-02, (4 / 100) 0 =
5 val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
= val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
w val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) : 2
& val_acc: 0.530000, lr: 5.808183e-04, req: 8.259964e-02, (8 / 100) with 50 hidden neurons.
— val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889%e-64, (9 / 100)
Q val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-63, (10 / 100)
Q val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-61, (11 / 100)
o val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
£ val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
7 [ val acc: 0.531000, Lr: 9.471549%-04, req: 1.433895e-03, (14 / 100) |
— val acc: 0.509000, Llr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
5 val acc: 0.514000, lr: 6.438349%e-04, reg: 3.03378le-01, (16 / 100)
g val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
2 val acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-03, (18 / 100)
c val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-64, (19 / 100)
'Q val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
ii val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
®©
9
o
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Now run finer search...

max_count = 160 adjust range max_count = 100

for count in xrange(max count): for count in xrange(max_count):
reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -6) lr = 10**uniform(-3, -4)

val acc: 0.527000, .340517e-04, reg: 4.097824e-01, (6 / 100) |
ol i W P H % = F g: 9.991345&-94, (I /7 I0U)

val acc: 0.512000, Lr: 8.680827e-04, reg: 1.349727e-02, (2 / 1600)

val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-62, (3 / 100)

val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-62, (4 / 100) o :
5 val acc: 0.498000, Lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
= val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-61, (6 / 100) for a 2-layer neural net
D val acc: 0.522000, Lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . :
& val_acc: 0.530000, lr: 5.808183e-04, req: 8.259964e-02, (8 / 100) with 50 hidden neurons.
- val acc: 0.489000, lr: 1.979168e-04, reg: 1.01088%e-04, (9 / 100)
o val acc: ©.490000, lr: 2.036031e-04, reg: 2.406271e-03, (16 / 100)
Q val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100) But this best
> val acc: 0.460000, Llr: 1.135527e-04, reg: 3.905040e-02, (12 / 100) : . .
g | val acc: 0.515600, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 160) I cross-validation result is
) val acc: 0.531000, Lr: 9.471549¢-04, req: 1.433895e-03, (14 / 100) |- :
— val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100) worrying. Why?
5 val acc: 0.514000, lr: 6.438349%e-04, reg: 3.03378le-01, (16 / 100)
s val _acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-64, (17 / 100)
5 val_acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-63, (18 / 100)
c val acc: 6.500000, lr: 2.412048e-04, reg: 4.997821e-64, (19 / 100)
N val acc: ©.466000, lr: 1.319314e-04, reg: 1.189915e-62, (20 / 100)
< val acc: ©.516000, lr: 8.839527e-04, reg: 1.528291e-62, (21 / 100)
®©
9
o
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Random Search for

Ra N d om Sea rCh VS. G r| d Sea rCh Hyper-Parameter Optimization

Bergstra and Bengio, 2012
Grid Layout Random Lavout

®
Unimportant Parameter
®
Unimportant Parameter

Important Parameter Important Parameter

Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017
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Hyperparameters to play with:
- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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Monitor and visualize the loss curve

25

loss

Loss

good learning rate

low learning rate

high learning rate

0.0
0

20 40 60 80 100
Epoch i
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Loss

W Sate e el

Bad initialization a prime suspect
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Monitor and visualize the accuracy:
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big gap = overfitting

=2 increase regularization strength?

Nno gap
=> |ncrease model capacity?
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Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~le-3

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Activation Functions (use RelLU)

Data Preprocessing (images: subtract mean)
Weight Initialization (use Xavier/He init)
Batch Normalization (use)

Babysitting the Learning process

Hyperparameter Optimization
(random sample hyperparams, in log space when appropriate)
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Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step_size * weights grad # perform parameter update

.
’Ui

(L b/ Ref: http://cs231n.stanford.edu/
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BATCH GRADIENT DESCENT

Algorithm 1 Batch Gradient Descent at lteration k

Require: Learning rate ¢
Require: Initial Parameter 0
1: while stopping criteria not met do

2: Compute gradient estimate over N examples:

5 g TV Y, L(F(xD:0),y )
4: Apply Update: 6 <+ 0 — eg
5. end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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STOCHASTIC GRADIENT DESCENT

Algorithm 2 Stochastic Gradient Descent at lteration &

Require: Learning rate ¢
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Sample example (x¥, y()) from training set
3 Compute gradient estimate:
4 g +VeL(f(x";0),y")
5: Apply Update: 6 <+ 6 — eg
6: end while

@ ¢ is learning rate at step k
@ Sufficient condition to guarantee convergence:

oo o0
Zek:oo and Zei < 00
k=1 k=1

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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LEARNING RATE SCHEDULE

@ In practice the learning rate is decayed linearly till iteration 7

k
er = (1 — a)eg + aer with o = —
-

@ 7 is usually set to the number of iterations needed for a large
number of passes through the data

@ ¢, should roughly be set to 1% of ¢

@ How to set ¢p?

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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a Potential Problem: Gradient estimates can be very noisy
@ Obvious Solution: Use larger mini-batches

@ Advantage: Computation time per update does not depend on
number of training examples NV

@ This allows convergence on extremely large datasets

@ See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

EITRaN
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@ Batch Gradient Descent:
) 1 i) i
0+ 0—eg

@ SGD:

&« +VoL(f(x1;6),y")
00— cg

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition humber: ratio of largest to smallest
singular value of the Hessian matrix is large

EITEN
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Ref: http://cs231n.stanford.edu/
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Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition humber: ratio of largest to smallest
singular value of the Hessian matrix is large

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,

gradient descent
gets stuck
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Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N
1
LW) =+ > Li(zi,yi, W)
|
i N
VwL(W) =+ > VwLi(wi, yi, W)
1=1
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MOMENTUM

@ The Momentum method is a method to accelerate learning
using SGD
@ In particular SGD suffers in the following scenarios:

e Error surface has high curvature
o We get small but consistent gradients
e The gradients are very noisy

’ .
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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MOMENTUM

1.000

500
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MOMENTUM

@ How do we try and solve this problem?
@ Introduce a new variable v, the velocity

@ We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

@ The velocity is an exponentially decaying moving average of
the negative gradients

v <+ av — eV L(f(x(i); 0), y(i))

@ o € [0,1)Update rule: 0 <0+ v

EITRaN
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MOMENTUM

@ Let's look at the velocity term:

v av — eV | L(f(xD;0),y)

@ The velocity accumulates the previous gradients

@ What is the role of a?

e If o is larger than € the current update is more affected
by the previous gradients
e Usually values for « are set high ~ 0.8,0.9

EITRaN
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Momentum Step
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MOMENTUM: STEP SIZES

In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

|g]|
1l -«

c

If « = 0.9 = multiply the maximum speed by 10 relative to
the current gradient direction

EITRaN
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SGD WITH MOMENTUM

Algorithm 2 Stochastic Gradient Descent with Momentum

Require: Learning rate €,
Require: Momentum Parameter «
Require: Initial Parameter 6
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(, y(®) from training set
3 Compute gradient estimate:
4 g +VoL(f(x;0),y")
5 Compute the velocity update:
6: V 4 av — €g
7: Apply Update: 6 < 6 + v
8: end while

EITRaN
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SGD + Momentum

SGD SGD+Momentum
Viy1 = pvy + V f(2y)
LTi4+1 = Tt — QUt41

T+l = Tt — (]?Vf(.’i’f-g)

while True: V% = B
dx = compute_gradient(x) while True:
x —-= learning_rate * dx dx = compute_gradient(x)
vX = rho * vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum

VX
wh

SGD+Momentum
=gy — Ode(:Bt)

Tyl = Tt + Vg1

o) oy |

=0
ile True:
dx = compute_gradient(x)

vX = rho *x vx - learning_rate * dx

X += VX

o siie go + SN SLal S GralS

SGD+Momentum
Viy1 = pvy + V f(2y)
LTi4+1 = Tt — QUt41

vx = 0@

while True:
dx = compute_gradient(x)
vX = rho * vx + dx
X —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning
i

(i
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‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

—— SGD+Momentum



By Y

S gludaags

o siie go + SN SLal S GralS

SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)", 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep leaming”, ICML 2013
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Nesterov Momentum

_ Gradient

Velocity Velocity
S
©
g actual step actual step
o
S B
Al
2 ]
£ Gradient
w
% Combine gradient at current point with “Look ahead” to the point where updating using
3 velocity to get step used to update weights velocity would take us; compute gradient there and
£ Nesterov, “A methed of solving a convex programming problem with convergence rate O(1/k*2)", 1983 mix it with Ve|OCity to get actual Update direction
N Nesterov, “Introductory lectures on convex cptimization: a basic course”, 2004
i Sutskever et al, “On the importance of initialization and momentum in deep leaming”, ICML 2013
©
3
o
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Nesterov Momentum

Vi1 = PVt — OéVf(CUt -1 p’Ut)
Ti41 = T T Vp41

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of Ty, V f(x¢)

p—

Vi1 = PVt — Ofo(CUt -1 PU

T4+l = Tt + Vet1

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

EITEN
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Nesterov Momentum

Annoying, usually we want
update in terms of Ty, V f(x¢)

p—

Vi1 = PVt — Ofo(CUt -1 PU

T4+l = Tt + Vet1

Gradient

Velocity

Change of variables .’i’t = It + pv; and

rearrange: actual step

U1 = PUt — Ofvf(fﬁt)

Tt4+1 = Tt — PVt T+ (1 iy p)vt-l-l “Look ahead” to the point where updating using
i velocity would take us; compute gradient there and
= Tt + Ut+1 . P(’Ut+1 — Ut) mix it with velocity to get actual update direction

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Nesterov Momentum

Vi1 = PVt — CIVf(iUt -1 PU

p—

T4+l = Tt + Vet1

Change of variables .’i’t = It + pv; and
rearrange:

Vir1 = pvr — aV f(Zy)
Tip1 = Ty — pve + (1 + p)visa
= & + Vi1 + p(Ve+1 — V)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Annoying, usually we want
update in terms of Ty, V f(x¢)

dx = compute_gradient(x)

old v = v

v = rho % v — learning_rate x dx
X += =rho * old_v + (1 + rho) * v
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Nesterov Momentum
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NESTEROV MOMENTUM

@ Another approach: First take a step in the direction of the
accumulated gradient

@ Then calculate the gradient and make a correction

Accumulated Gradien Correction

New Accumulated Gradient

’ L)
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Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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NESTEROV MOMENTUM

@ Recall the velocity term in the Momentum method:

V <— oV — EVQ L(f(x(z)a 9)7 y(z))

@ Nesterov Momentum:

v av—eVy | L(fxD; 0 + av), y@)

@ Update: 0 < 0+ v

EITRaN
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SGD WITH NESTEROV MOMENTUM

Algorithm 3 SGD with Nesterov Momentum

Require: Learning rate €
Require: Momentum Parameter o
Require: Initial Parameter 6
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(, y(®) from training set
3 Update parameters: 0 < 6 + av
4: Compute gradient estimate:
5. & +VL(F(x1;0), )
6: Compute the velocity update: v < av — €g
7: Apply Update: 0 + 60+ v
8: end while
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ADAPTIVE LEARNING RATE METHODS

Motivation

* Till now we assign the same learning rate to all features

* If the features vary in importance and frequency, why is this a good idea?
* It's probably not!
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ADAPTIVE LEARNING RATE METHODS: MOTIVATION

© (= >>

Harder!

Nice (all features are equally important)
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grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: What happens with AdaGrad?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

’ .
Up %
Ref: http://cs231n.stanford.edu/



A o $500
(§)budasgs
A1 S1aT
grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q: What happens with AdaGra

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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d’) Progress along “steep” directions is damped:;
" progress along “flat” directions is accelerated
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grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q2: What happens to the step size over long time?
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grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / knp.sqrt(grad_squared) + le-7)

Q2: What happens to the step size over long time?
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Decays to zero
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@ |dea: Downscale a model parameter by square-root of sum of
squares of all its historical values

@ Parameters that have large partial derivative of the loss —
learning rates for them are rapidly declined

@ Some interesting theoretical properties

’ .
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Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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Algorithm 4 AdaGrad

Require: Global Learning rate ¢, Initial Parameter 6, ¢
Initialize r =0

1: while stopping criteria not met do

2 Sample example (x(¥),y(®)) from training set

3 Compute gradient estimate: g < +VoL(f(x(®;0),y®)
4: Accumulate: r+r+gbog
5

6
[

Compute update: Af + —5:\/; OF -
Apply Update: 6 < 0 + A6
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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RMSProp

grad_squared = 0
while True:

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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dx = compute_gradient(x)

grad_squared += dx * dx

X -= learning_rate * dx / (np.sqgrt(grad_squared) + le-7)

'

dx = compute_gradient(x)

grad_squared = 0@
while True:

brad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
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RMSProp

— SGD+Momentum

— RMSProp
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RMSPROP

@ AdaGrad is good when the objective is convex.

@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

@ We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

@ This is an idea that we use again and again in Neural
Networks

@ Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton's coursera course

EITRaN
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RMSPROP

Algorithm 5 RMSProp
Require: Global Learning rate €, decay parameter p, ¢
Initialize r =0

1: while stopping criteria not met do
2 Sample example (x(, y(?)) from training set
3: Compute gradient estimate: g < +VoL(f(x?;0),y®)
4; Accumulate: r < pr+ (1 —p)g © &
5
6
[

Compute update: Af + —5:\/; Og

Apply Update: 6 + 0 + A0
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

VOA

S gludaags

i b ol gl al ST s, S
RMSPROP WITH NESTEROV

Algorithm 6 RMSProp with Nesterov

Require: Global Learning rate ¢, decay parameter p, 0, o, v
Initialize r =0

1: while stopping criteria not met do
2 Sample example (x(, y(®) from training set
3 Compute Update: 0 — 60+ av
4: Compute gradient estimate: g < +V0~L(f(x(i); 0),y™)
5: Accumulate: r < pr+ (1 —p)g© g
6 .
.
8:

€

Compute Velocity: v <— av — E 08
Apply Update: 0 <+ 0+ v
end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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Adam (almost)

first_moment = 0

second_moment = 0

while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

L/
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

|first_m0ment = betal * first_moment + (1 - betal) * dxl

X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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AdaGrad / RMSProp



VA doc s Ealy
(§)budasgs
(ol p03) pll

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

AdaGrad / RMSProp

Bias correction for the fact that Adam with beta1 = 0.9,
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam

.
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ADAM

a We could have used RMSProp with momentum
@ Use of Momentum with rescaling is not well motivated

@ Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments
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ADAM: ADAPTIVE MOMENTS

Algorithm 7 RMSProp with Nesterov

Require: ¢ (set to 0.0001), decay rates p; (set to 0.9), p2 (set to
0.9), 8, 0
Initialize moments variables s =0 and r =0, time stept =0
1: while stopping criteria not met do
Sample example (x(*, y(@) from training set
Compute gradient estimate: g « +VoL(f(x®;6),y®)
t<—1t+1
Update: s < pis+ (1 — p1)g
Update: r < por + (1 — p2)g © &

Correct Biases: § «+ —+ 1 + —%+
1—p3 1—p5

Compute Update: Af = —e\/§’+5
0: Apply Update: 6 <+ 6 + A6
10: end while

EITRaN
% -
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Q: Which one of these
learning rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

a = o "

1/t decay:
a=ap/(1+ kt)
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

4 Loss

good learning rate

Learning rate decay!

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A
loss

low learning rate

high learning rate

good learning rate

EITEN
Up %
Ref: http://cs231n.stanford.edu/

4 Loss _
Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

Epoch
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First-Order Optimization

Loss

w1
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

A
Loss

NN

w1

EITEN
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Ref: http://cs231n.stanford.edu/
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1

EITEN
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 — ) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q: What is nice about this update?
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 — ) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

No hyperparameters!
No learning rate!
(Though you might use one in practice)

Q: What is nice about this update?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 — ) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VoJ(0,)

Q2: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

7(8) ~ J(80) + (8 — &) T VaJ (60) + 5 (8 — ) H(8 — 6y)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N*2) elements

* 1
0 =0,—-H VGJ(GO) Inverting takes O(N”3)

N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.

)U N
1
Ref: http://cs231n.stanford.edu/



WY e s Sty
S Hludaags

99— 4S o (s 5lwding

Second-Order Optimization

0* =0, — H 'VoJ(0,)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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A/‘
)U !
1
Ref: http://cs231n.stanford.edu/



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

WA e s Sty
(S leudaags

99— 4S o (s 5lwding

L-BFGS

- Usually works very well in full batch, deterministic mode
I.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011~
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

EITEN
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In practice:

- Adam is a good default choice in many cases
- SGD+Momentum with learning rate decay often
outperforms Adam by a bit, but requires more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

EITEN
Up %
Ref: http://cs231n.stanford.edu/



YA~

S gludaags

sl sl 5 313

Beyond Training Error

Train Loss

175

15.0

125

10.0

1.5

5.0

25

0.0

0 2500 p000 7500 10000 12500 15000 17500 20000

Better optimization algorithms
help reduce training loss
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But we really care about error on new
data - how to reduce the gap?
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Early Stopping

Train

Loss Accuracy

Stop training here

lteration Iteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that worked best on val
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SGD: 0+ 0 — eg

Momentum: v <— av — €g then 6 < 0 + v

Nesterov: v <~ av — eVy (L(f(x(i); 0+ av), y(i))> then 0 < 0 + v

AdaGrad: r < r +g® g then Af— + 5

RMSProp: r < pr + (1 — p)g © g then Af «+ =5

> then A = —¢

Adam: S «

T
1 - pf 1 —ph

EITRaN
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€
NG

€
BNE

@ g then 60 «+— 0 + Af

© g then 6 < 0 + Af

AN

then 6 < 60 + A0

VT 40
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Adadelta
Rmsprop
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

= Single Model =
04. Standard LR Schedule /) W

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifarl0 (L=100,k=24, B=300 epochs)

05- Single Model °° Snapshot Ensemble /M 10!
04 Standard LR Schedule "'\ 04 Cyclic LR Schedule = /) —_ ?tm_ndarr_t Ir sféhedul_ir]a o
AT | Fn = (Cosine annealing with restart Ir (.
- 0.3 R 03'-‘: f 10" | | | I |
2 0.2 02 | | | | |
S g
o = 0.1+ _ S 10"
< Z 5 J 1 /\ | o
To) -0 -0 ) - AT E 10
& 02 02 ; S =
3V -0.2 4 2l e =
(o)) F x %? |
£ 0.3+ -03- 2= ~ 10
2 0.4l R [ i === 'j_‘|’ sl Model | Model | Model | Model | Model | Model
— 500 . <~ 50 50 T = (= 50 1 2 3 4 5 6
— a0 T — -z 40 w0 T e 40 10 L L I l I
2 el < 30 0 T 30 0 50 100 150 200 250 300
= 20 - o 20 20 T = e 20 E shs
3 pochs
e = -
% Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CYC'IC |earn|ng rate SChedU|eS can
<  Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 i |
f, Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. make thIS Work even bettef.
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Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

True:

data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*X

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Joumal on Control and Optimization, 1992.
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POLYAK AVERAGING: MOTIVATION

Gradient points towards right

e Consider gradient descent above with high step size €
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POLYAK AVERAGING: MOTIVATION

Gradient points towards left
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POLYAK AVERAGING: MOTIVATION

Gradient points towards right
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POLYAK AVERAGING: MOTIVATION

Gradient points towards left
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POLYAK AVERAGING: MOTIVATION

Gradient points towards right
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A SOLUTION

@ Suppose in t iterations you have parameters #1192 . o)
@ Polyak Averaging suggests setting () = 15,00
@ Has strong convergence guarantees in convex settings

@ Is this a good idea in non-convex problems?

.
)U}, b/
Ref: https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Va s
PR,

bdl..u.n C)Laa‘
SIMPLE MODIFICATION

@ In non-convex surfaces the parameter space can differ greatly
in different regions

@ Averaging is not useful

@ Typical to consider the exponentially decaying average instead:

6O — D 1 (1 — 0)6® with o € [0, 1]

.
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How to improve single-model performance?
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Regularization: Add term to loss

L= 53, ¥, max(0, f(zi W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization ~ EB(W) =22, Wy, (Weight decay)
L1 regularization RW) = >k 221 [Whil

Elastic net (L1 ) L2) R(W) =2 Zzﬁwﬁz + Wi,

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Regularization: Dropout

p=0.51%

def train_step(X):

"nvn X contains the data

H1
Ul
H1
H2
U2
H2

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

mwn

= np.maximum(O, np.dot(Wl, X) + bl)

= np.random.rand(*Hl.shape) < p # first dropout m
*= U1 # droj

= np.maximum(©, np.dot(W2, Hl) + b2)

= np.random.rand(*H2.shape) < p # se

*= U2 4

out = np.dot(W3, H2) + b3

V‘
)U N
1
Ref: http://cs231n.stanford.edu/

Example forward
pass with a
3-layer network
using dropout
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Regularization: Dropout
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How can this possibly be a good idea?

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Forces the network to have a redundant representation;
Prevents co-adaptation of features

T

has an ear

has a tail AX_A

s furry —X—— . cat
~___— score

has claws +/
mischievous

look
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
240% ~ 107233 possible masks!
Only ~ 10%2 atoms in the universe...
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Dropout: Test time

Output Input
(label) (image)

Dropout makes our output random! | y|= fw(w.E) o

Want to “average out” the randomness at test-time
y=F@) = E.[f(@.2)] = [ ple)f(z,2)a:

But this integral seems hard ...

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Dropout: Test time

Want to approximate
the integral

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Dropout: Test time

Want to approximate

the integral y= 1@ = B:[f(@,9)] = [ p(2)f (@, 2)dz

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Dropout: Test time

Want to approximate

the integral y= 1@ = B:[f(@,9)] = [ p(2)f (@, 2)dz

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy
1

. . . . 1
During training we have: E[a] = (w1 + way) + ;(wiz +0y)

1 1
i E(OT + 0y) + 1(03: + way)

1
:a(wlx + way)

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: E[a] = W1ZT + Wy

During training we have: E[a] :i(wlx + way) + }l(wlx + 0y)
+ %1(0'1“ + 0y) + %(03: + way)
At test time, multiply !
by dropout probability =5 (W1 +way)

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Dropout: Test time

def predict(X):

H1 np.maximum(©®, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probability of keeping a unit active

def train_step(X):
""" X contains the data

# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
Hl *= Ul # drop! y
HZ np.maximum(®, np.dot(WZ, HI) + DZ) dI'Op |n forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)

def predict(X):
H1_=_ﬁﬁ:ﬁ;;imﬁmié,un;:dat(wl, X) + bl)|* p # NOTE: scale the activations I
H2 = np.maximum(®, np.dot(W2, H1) + b2} * p # NOTE: scale the activations Scale at teSt tlme
out = np.dot(W3, H2) + b3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
for example 3-layer neural network
H1l = np.maximum(0, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!
“HZ = np.maximum(0, np.dot (W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

# forward pass

# backward pass: compute gradients... (not shown)

# perform parameter update... (not shown)

| / test time is unchanged!
et e o

Hl = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(®, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Regularization: A common pattern

Training: Add some kind
of randomness

5 = fw(I,Z)

Testing: Average out randomness
(sometimes approximate)

gy = i) = B, [P 2)] = / p(2)f (2, 2)dz

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
y = fwiz,z) Training:
Normalize using
Testing: Average out randomness stats from random
(sometimes approximate) minibatches

y = f(z) = E,[f(z,2)] = /p(z)f(;z:, z)dz  Testing: Use fixed
stats to normalize

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Regularization: Data Augmentation

Cat”  ‘

—V

11

Load image
and label

- CNN

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Regularization: Data Augmentation

Load image
and label

Compute
loss

Transform image

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation
Horizontal Flips

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation  yore complex:

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness
2. Sample a “color offset”

along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Data Augmentation
Get creative for your problem!

Random mix/combinations of :

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

translation

rotation

stretching

shearing,

lens distortions, ... (go crazy)
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect

Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

EITEN
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Ref: http://cs231n.stanford.edu/
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

EITEN
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Ref: http://cs231n.stanford.edu/
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CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu

http://cs231n.github.
http://cs231n.github.
http://cs231n.github.
http://cs231n.github.

io/neural-networks-1/
io/neural-networks-2/
io/neural-networks-3/
io/neural-networks-case-study/
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CMSC 35246 Deep Learning

Spring 2017, University of Chicago

nificant

Time: Mondays and Wednesdays, 3.00pm-4.20pm, Ryerson 2

Office howrs:

* Trivedi: MW 4.30pm=5.30pm; F 4.30pm-6.30pm; 5a 3.00pm-5.00pm; by appointme
+ Hondor: By appointment
Prerequisites
1. Graduate Maching Ledrning courses at the level of STAT 37710/CMEC 35400 or TTIC 31020 (STAT 27725/CMSC 25400 should be 0K
2. Familiarity with
3 5'35'&""""’" profic NCy In Fytnon (aITNougn you Snou 2 fine :‘3. have extensie experience in some other high level language)

Syllabus

Ses schedule

https://ttic.uchicago.edu/~shubhendu/Pages/CMSC35246.html
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Chapter 6

Deep Feedforward Networks
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I. Goodfellow, Y. Bengio, A. Courville,
Deep Learning,
MIT Press, 2016.

Chapter 7

Regularization for Deep Learning
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Chapters 6,7, 8

—

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Chapter 8

Optimization for Training Deep
Models

Deep learning algorithms involve optimization in many contexts. For example,
performing inference in models such as PCA involves solving an optimization
problem. We often use analytical optimization to write proofs or design algorithms.
Of all of the many optimization problems involved in deep learning, the most
difficult is neural network training. It is quite common to invest days to months of
time on hundreds of machines in order to solve even a single instance of the neural
network training problem. Because this problem is so important and so expensive,
a specialized set of optimization techniques have been developed for solving it.
This chapter presents these optimization techniques for neural network training.

If you are unfamiliar with the basic principles of gradient-based optimization,
we suggest reviewing chapter 4. That chapter includes a brief overview of numerical
optimization in general.

This chapter focuses on one particular case of optimization: finding the param-
eters 8 of a neural network that significantly reduce a cost function J(8). which




