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[LeCun et al., 1998]
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Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
I.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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Gradient-Based Learning Applied to Document
Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Hafloer

Abatract

Multilayer Meural Metworks trained with the backpropa-
gation algorithm constitute the best example of a suecessful
Gradient-Based Learning technigue. Given an appropriats
network architecture, Gradient-Hased Learning algorithoms
can he used to sy nthesize a comples decision sorface that can
claseify high-dimenzional patterns such as handwritten char
ters, with nimal preprocessing. This paper reviews var-
fons methods applied to handwritten character recognition
andd npares them an a standard handwritten digit eeog-
nition task. Convolutional Neural Netwaorks, that are specif-
jeally designed ta deal with the variability of 21} shapes, are
shown ta antperform all ather technigues,

Heal-life doc ent. recognition systems are composed
af munlkiple Ailes including field exteaction, segmenta-

tion, recognition, and language modeling. A new learning
paradigm, called Graph Transformer Networks (GTN), al
lowe ench multi-maodule syetemes to he trained globally vsing

Gradient-Hazed methods so 8e to mind
formance measure.

Twao systems for an-line handwriting recognition are de-
reribed, Experiments demmnstrate the adwvantage of glohal
training, and the fAexihility of Graph Transformer Networks,

A Graph Transformer Metwork for reading hank check is
aleo deseribed, Tt vses Convolutional Wenral Metwaork char-
acter recognizers combined with global training technigues
tan praw ides recard acenracy an husiness and personal checks,
It is deployed commercially and reads several million checks
per day.

tige an overall per-

Kegwords  Neural Networke, OCH, Document Hecogni-
i Machine Learning, Gradient-Baszed Learning, Convee
T nal Wenral Netwaorks, Graph Transformer Networks, Fi-
nite State Transducers.

NOMENCLATURE

G Graph translonoer,

G'IN Graph translomer network,
HMAM Hiclelen Markov madel.

« HOS Heuristic overseginentation,
B-NN K-nearest neighlor,

NN Neural network.

OCE Opical character recognition,

PCA Prncipal component analysis,

RBE Radial basis lnetion.,

HE-5WAL Redueed-set support veetor methaodd.
SDNN Space displacement neural network,
SV Bupport vector e thod.

TDNN Tie delay neural network,

V-8V AL Virtual support vector method,
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I. ITwTRODUCTION

COver the last several years, machine learning technigues,
particularly when applisd 1o newral networks, have played
an incwasingly important role in the design of patiern
recogmion systems. In et i eould be argued that the

availability ol learning technigues has been a cracial Tae-
Lor in the recent success of pattermn recognition applica-
Lions such as continuous speech recognition and handwrii-
ing recognition.

The main message ol this paper is that betber patlern
recogmbion systems can be built by relying more on auto-
matic learning, and less on hand-desizned heurisiies. This
is made possible by recent progress in machine leaming
and commputer techuology, Using character recognition as
a case study, we show that hand-cralied feature extrac-
tion can be advantageously replaced by carelully designed
learning mwachines that operate divectly on pixel images.
Using document understanding as a case study, we show
Lhat the twaditional way of building recognition sy stems by
manually integrating individually designed modules can be
replaced by a unilied and wellprincipled design paradigo,
called Graph Transfersier Nefworks, that allows training
all the modudes to aptimize a global pedormance eriterion.

Sinee the early days ol pattermn recognition it has been

known that the sariability and richness of natural da
Le it speech, zlyphs, or other Lypes ol pattemns, make i
almost mpossible to build an aceurate recognition system

:

Enilion
syslems are buill using a combination ol awlomatic learn-
ing technigues and hand-cralted algorithms,  The usual
method of reeognizing individual patterns consists in divied-

entirely by hand, Consequently, most palblern rec

ing the system into two main modwles shown in Hgore 1.
The lirst module, called the [eature extractor, transkros
the input patterns so that they can be represented by low-
dimensional vectors or short strings of symbols that (a) can
be easily matched or compared, and (b) are relatively in-
variant with respect Lo translormations aned distortions of
Lhe inpul patterns that do not change thelr natuee, The
feature extractor contans maost ol the prior knowledge and
is rather specilic to the task, It s also the Tocus ol most of
Lhe dlesizgn elfort, because 1615 olten entively hand-cralted.
The classilier, on the other hand, is olten general-pourpose
and trainable. One ol the main problems with this ap-
proach is that the recognition accuracy is largely deter-
wined by the ability ol the desizner 1o come up with an
appropriate sel ol eatures. This tarns oul to be a daant.-
ing task which, unlortunately, muast be medone for each new
problem. A large amount of the patiem recognition [ier-
ature is devoted (o deseribing and comparing the relative
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky llya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
krizBcs.utoronto.ca ilyaBcs.utoronto.ca hinton@cs.utoronto.ca

Ahbstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional lavers, some of which are followed by max-pooling lavers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating newrons and a very efficient GPU implemen-
tation of the comvolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine kearning methods. To im-
prove their performance, we can collect larger datasets, kearn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g.. NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved gquite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example. the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to leam to recognize them it is
necessary to use much larger training sets. And indeed, the shoricomings of small image datasets
have been widely recognized (e.g., Pintoet al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6]. which consists of
over 15 million labeled high-resolution images in over 22,000 calegories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. Howewer. the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
{CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varyving their depth and breadth, and they also make strong and mostly comect assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train. while their theoretically-best
performance is likely to be only slightly worse.
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ALEXNET: ARCHITECTURE

for layer details refer to:
https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt
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ALEXNET: ARCHITECTURE

' Convolution Layer + ReLU ' Local Contrast Norm.

I Fully ConnectedLayer ’ Pooling
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[Krizhevsky et al. 2012]
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Fan \dense

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55
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Ref: http://cs231n.stanford.edu/
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Fan \dense

1000

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [65x55x96]

Q: What is the total number of parameters in this layer?

EITEN
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [565x55x96]

Parameters: (11*11*3)*96 = 35K

EITEN
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27
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AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x355x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
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Ref: http://cs231n.stanford.edu/
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AlexNet

[Krizhevsky et al. 2012]

Fan \dense

1000

Input: 227x227x3 images
After CONV1: 55x355x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96
Parameters: Q!
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AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT g
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] -C6: 4096 neurons

[4096] FC /- 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

of 4

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Fan \dense

1000

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Fan \dense

1000

Full (simplified) AlexNet architecture: . N
[227x227x3] INPUT - e iy
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC /- 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

Details/Retrospectives:

- first use of RelLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

V‘
)U N
1
Ref: http://cs231n.stanford.edu/
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AlexN ,
e et il ﬂ_ﬂ H\V
[Krizhevsky et al. 2012] |\5 B >\h_ ]
Full (simplified) AlexNet architecture: N S S
[227x227x3] INPUT - LG s

MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer

|[55§55§96] CONV1:96 11x11 filters at stride 4, pad O (55x55%48] X 2

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Historical note: Trained on GTX 580
[13x13x256] MAX POOL2: 3x3 filters at stride 2 GPU with only 3 GB of memory.
[13x13x256] NORMZ2: Normalization layer Network spread across 2 GPUs, half
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 the neurons (feature maps) on each
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 GPU.

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] -C /- 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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AlexNet

AlexNet

N AN e

[Krizhevsky et al. 2012] \ A >\_ I
I Q__hl ; derse’| [dense

Full (simplified) AlexNet architecture: e T o R B
[227x227x3] INPUT o“" T e
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 //'
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer CONV1, CONV2, CONV4, CONV5:
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Connections only with feature maps
[13x13x256] MAX POOL2: 3x3 filters at stride 2 on same GPU

[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] -C /- 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

V‘
)U N
1
Ref: http://cs231n.stanford.edu/
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AlexNet

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT :
[595x55x96] CONV1: 96 11x11 filters at stride 4, pad
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC/: 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

CONV3, FC6, FC7, FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs

Figure copyright Alex Krizhewsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
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2010

2011 2012 2013
Lin et al Sanchez & | Krizhevskyetall Zeiler &
Perronnin (AlexNet) Fergus
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

First CNN-based winner
25

20

16.4

15

152 layers| (152 layers| [152 layers

11.7 19 layers

22 layers,

10

5 o]

8 layers

2010 2011 2012 2013 2014

2014
Lin et al Sanchez & | Krizhevskyetal| Zeiler & Simonyan & Szegedy et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet)

(k Ref: http://cs231n.stanford.edu/
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2015 2016 2017
He et al Shao et al Hu et al
(ResNet) (SENet)

5.1

Human

Russakovsky et al
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ZFNet

image size 224

filter size 7

J'stride 2

stride 2

|\3‘55

Input Image

AlexNet but:
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[Zeiler and Fergus, 2013]

_ 26

Layer 2

13

3x3 max
pool
stride 2

6

Layer 3 Layer 4 Layer 5

CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

13 13
WL .
384 V1 w384 256
e N

4096
units

256

4096
units;

E
class
softmax

Layer6 Layer?7 Output

ImageNet top 5 error: 16.4% -> 11.7%
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

28.2

ZFNet: Improved
25

AlexNet \

20

hyperparameters over

16.4

15

11.7

10

8 layers

shallow

2010 2011 2012 2013
Lin et al Sanchez &  Krizhevsky et al] Zeiler &
Perronnin (AlexNet) Fergus

.

(k Ref: http://cs231n.stanford.edu/
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Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.
)U},

YA ot S5l
VGGNet - GoogLl.eNet

La o gy sl b nslin jo ImageNet YU Lubise o gl uliasl (ills o ol

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

Deeper Networks 152 layers| (152 layers| |152 layers

\ yI— CSS—— A

11.7 || 19 layers| |22 layers

25

20

16.4

15

10

7.3

6.7

5.1
5 | 3.6
B m i .
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) {ResNet) (SENet)
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Small filters, Deeper networks
L. 2 |  CoMv, |
| | I | Pool |
8 layers (AlexNet -—r !
-> 1}(/3 - 1é layers ()VGG16Net) : | B
—
Only 3x3 CONYV stride 1, pad 1 —
and 2x2 MAX POOL stride 2 —
11.7% top 5 error in ILSVRC’13 —
(ZFNet) ———
-> [.3% top S error in [LSVRC'14 AlexNet VGG16 VGG19
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VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan® & Andrew Zisserman”
Visual Geometry Group. Department of Engineering Science, University of Oxford
[karen,az}e@rcbots.ox.ac.uk

ARBRSTRACT

In this work we mvestigate the effect of the convolutional network depth on its
accuracy m the large-scale image recogmition setting. Cur mam confnbution 15
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 = 3) comvolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places m the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best performmg ConviNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convelutional networks (ConviNets) have recently emjoyed a great success in large-scale im-
age and video recognition (Krizhevsky etal. 2012; Zeiler & Fergus, 2013; Sermanet et al.. 2014;
Simenyan & Zisserman 2014) which has become possible due to the large public image repesito-
ties, such as ImagelNet (Deng et al., 2009), and high-performance computing systems, such as GPUs
or large-scale distmbuted clusters (Dean et al., 2012). In particular, an important rele mn the advance
of deep visual recognition architectures has beenplayed by the ImageNet Large-Scale Visual Recog-
nition Challenge (]lSTRC') (Pussakovsky et al., 2014), which has served as a testbed for a few
generations of large-scale image classification systems, from high-dimensional shallow feature en-
codings {Pen'onum et al., 2010) (the winner of ILSVRC-2011) to deep ConvINets (Krizhevsky et al
201 j) (the winner of ILSVRC-. 2012).

With ConvNets becoming moere of a commodity m the computer vision field a number of at-
tempts have been made to improve the ongmal architecture of Knzhevsky etal (2012) in a
bid to achieve better accuracy. For mstance. the best-performing submissions to the ILSVEC-
2013 (Zeiler & Fergus. 2013; Sermanet etal, 2014) uhlised smaller receptive window size and
smaller smde of the first convelutional layer. Another line of improvements dealt with training
and testing the networks densely owver the whole image and over multiple scales (Sermanet et al..
2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture
design — 1ts depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which 1s feasible due to the use of very
small (3 = 3) convolution filters im all layers.

As a result. we come up with sigmficantly more accurate ConvNet architectures, which not only
achieve the state-of-the-art accuracy on ILSVRC classification and localisation tasks. but are also
applicable to other image recognition datasets, where they achieve excellent performance even when
used as a part of a relatively smple pipelines (e, g. deep features classified by a linear SVM without
fine-timing). We have released our two best-performing models® to facilitate further research.

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvlNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the

*current affibation: Google Deephind  ~“cwrent afiliation: University of Ouxford and Google DeepMind
"http: / /www.robots.ox.ac. uk/~vgg/research/very deep/
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Q: Why use smaller filters? (3x3 conv)
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Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer
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VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (3°C?) vs.
7°C? for C channels per layer
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INPUT: [224x224x3]  memory: 224*224*3=150K params:0  (NOtcounting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3 2M params: (3"3"3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)"64 = 36,864
POOLZ2: [112x112x64] memory: 112*112"64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"64)"128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"128)*128 = 147,456
POOLZ2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*128)*256 = 294 912
CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824
POOLZ2: [28x28x256] memory: 28"28"256=200K params: 0

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
POOLZ2: [14x14x512] memory: 14"14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOLZ2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7"512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
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INPUT: [224x224x3]  memory: 224*224*3=150K params:0  (NOtcounting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224"224*64=3 2M params: (3*3*64)"64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"128)*128 = 147,456
POOLZ2: [56x56x128] memory: 56"56%128=400K params: 0

CONV3-256: [56x56x256] memory: 56"56"256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56"56"256=800K params: (3*3%256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824
POOLZ2: [28x28x256] memory: 28°28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 147147512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOLZ2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7"512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters
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INPUT: [224x224x3]  memory: 224*224*3=150K params:0  (NOtcounting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)"64 = 1,728 Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M <arams: (3*3°64)*64 = 36,864 |

POOL2: [112x112x64] memory: 112*112*64=800K params: 0 . M o
CONV3-128: [112x112x128] memory: 112°112*128=16M params: (3*3*64)*128 = 73,728 ost memory is in
CONV3-128: [112x112x128] memory: 112112°128=1.6M params: (3*3*128)*128 = 147,456 early CONV

POOLZ2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*128)*256 = 294 912

CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824

POOLZ2: [28x28x256] memory: 28"28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296

POOLZ2: [14x14x512] memory: 14"14*512=100K params: 0 Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7"512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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INPUT: [224x224x3]  memory: 224*224*3=150K params:0  (NOtcounting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3"3"3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224"224*64=3 2M params: (3*3*64)"64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"64)"128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"128)*128 = 147,456
POOLZ2: [56x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*128)*256 = 294 912
CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56"56"256=800K params: (3*3*256)*256 = 589,824
POOLZ2: [28x28x256] memory: 28"28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14"14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7"512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096"4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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Going deeper with convolutions
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Google Inc. University of North Carolina, Chapel Hill Google Inc.
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Google Inc. University of Michigan Google Inc. Google Inc.
Vincent Vanhoucke Andrew Rabinovich
Google Inc. Google Inc.
Abstract

We propose a deep convolutional neural network architecture codenamed Incep-
tion, which was responsible for setting the new state of the art for classification
and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14). The main hallmark of this architecture is the improved utilization
of the computing resources inside the network. This was achieved by a carefully
crafted design that allows for increasing the depth and width of the network while
keeping the computational budget constant. To optimize quality, the architectural
decisions were based on the Hebbian principle and the intuition of multi-scale
processing. One particular incarnation used in our submission for ILSVRC14 is
called GoogLeNet, a 22 layers deep network, the quality of which is assessed in
the context of classification and detection.

1 Introduction

In the last three years, mainly due to the advances of deep kearning, more concretely convolutional
networks [10], the quality of image recognition and object detection has been progressing at a dra-
matic pace. One encouraging news is that most of this progress is not just the result of more powerful
hardware, larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and
improved network architectures. No new data sources were used, for example, by the top entries in
the ILSVRC 2014 competition besides the classification dataset of the same competition for detec-
tion purposes. Our GoogleNet submission to ILSVRC 2014 actually uses 123 fewer parameters
than the winning architecture of Krizhevsky et al [9] from two vears ago, while being significantly
more accurate. The biggest gains in object-detection have not come from the utilization of deep
networks alone or bigger models, but from the synergy of deep architectures and classical computer
vision, like the R-CNN algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction of mobile and embedded computing, the
efficiency of our algorithms — especially their power and memory use — gains importance. It is
nou:wm.h\r that the considerations leading to the design of the :Im:p architecture presented in this
paper included this factor rather than having a sheer fixation on accuracy numbers. For most of the
experiments, the models were designed to keep a computational budget of 1.5 billion multiply-adds
at inference time, so that the they do not end up to be a purely academic curiosity, but could be put
to real world use, even on large datasets, at a reasonable cosL
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“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other
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[Szegedy et al., 2014]

Filter
concatenation
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3x3 max
pooling
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Naive Inception module
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Ref: http://cs231n.stanford.edu/

Previous Layer

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
Sx%5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Q: What is the problem with this?
[Hint: Computational complexity]
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[Szegedy et al., 2014]

Example:

Filter
concatenation

1x1 conv, 3x3 conv,

Module input:

5x5 conv,

1 | 192 96 :

Input

28x28x256
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Naive Inception module

3x3 pool

Q: What is the problem with this?
[Hint: Computational complexity]
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GooglLeNet

[Szegedy et al., 2014]

Example:

Filter
concatenation

1x1 conv, 3x3 conv,

Module input:

5x5 conv,

1 | 192 96 :

Input

28x28x256

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Naive Inception module

Q1: What is the output size of the
1x1 conv, with 128 filters?

3x3 pool

Q: What is the problem with this?
[Hint: Computational complexity]
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GooglLeNet

[Szegedy et al., 2014]

Q2: What are the output sizes of

Example: all different filter operations?
Filter
concatenation
28x28x128
1x1 conv, 3x3 conv, 5x5 conv,

1 192 96 :

Module input:

Input

28x28x256

Naive Inception module

EITEN
Up %
Ref: http://cs231n.stanford.edu/

3x3 pool

Q: What is the problem with this?
[Hint: Computational complexity]
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GooglLeNet

[Szegedy et al., 2014]

Q2: What are the output sizes of

Example: all different filter operations?

Filter
concatenation

28x28x128 28x28x192 28x28x96  28x28x256

1x1 conv 3x3 &;nv 5x5 ::onv —
1 192 9 |
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Q: What is the problem with this?
[Hint: Computational complexity]
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GooglLeNet

[Szegedy et al., 2014]

Example:

concatenation

Filter

28x28x128 28x28x192

-~
1x1 conv, 3x3 conv,

Module input:

28x28x96

AN
5x5 conv,

1 | 192 96 :

Input

28x28x256

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Naive Inception module

Q3:What is output size after
filter concatenation?

28x28x256

T

3x3 pool

Q: What is the problem with this?
[Hint: Computational complexity]
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[Szegedy et al., 2014]

Q3:What is output size after

Exam ple: filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Filter
concatenation

28x28x128 28x28x192 28x28x96  28x28x256

1x1 conv 3x3 c'fmv 5x5 }:onv —
x ] 3 L)
: 192 g9g | | 2xSpool
Module input: Input
28x28%256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Q: What is the problem with this?
[Hint: Computational complexity]
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GooglLeNet

[Szegedy et al., 2014]

Q3:What is output size after

Exam ple: filter concatenation?

28x28x(128+192+96+256) = 28x28x672

Filter
concatenation

28x28x128 28x28x192 28x28x96  28x28x256

1x1 conv 3x3 cf:nv 5x5 }:onv —
X ¥ ’ '
1 192 96 | 3x3 pool
Module input: Input
28x28x256

Naive Inception module

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Q: What is the problem with this?
[Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5X5 conv, 96] 28x28x96x5x5x256
Total: 854M ops
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GooglL.eNet

Slhwlae (Saa [Kaerald (23T 530

Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
_ Q3:What is output size after
Example. filter concatenation?
Conv Ops:
28x28x(128+192+96+256) = 28x28X672 [1x1 conv, 128] 28x28x128x1x1x256
= [3x3 conv, 192] 28x28x192x3x3x256
GogaiTiO” [5x5 conv, 96] 28x28x96x5x5x256
28x28x128 28x28x192 28x28x96  28x28x256 Total: 854M ops
1x1 conv 3x3 t.::)nv 5x5 Eonv —
’ ’ ’ 3x3 pool
1% Very expensive compute
Module input: i Pooling layer also preserves feature
28x28x256

depth, which means total depth after
concatenation can only grow at every

Naive Inception module
layer!

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Goog LeNet Q: What is the problem with this?
[Szegedy et al., 2014] [Hint: Computational complexity]
_ Q3:What is output size after
Example. filter concatenation?
28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that
ot use 1x1 convolutions to reduce
o
28x28x128  28x28x192 ~ 28x28x96  28x28x256 feature depth
- h Y —
1x1 convy, 3x3 conv, 5x5 conv,
1%Mpoo.
Module input: Input
28x28x256

Naive Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Review: 1x1 convolutions

56

64

EITEN
Up %
Ref: http://cs231n.stanford.edu/

56

1x1 CONV
with 32 filters

Ll

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56
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Review: 1x1 convolutions

56

64

EITEN
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56

\X\C,.J.:J.‘JJ.\[S

Alternatively, interpret it as applying

the same FC layer on each input pixel

FC

i hﬁ

1x1x64 1x1x32

1x1 CONV
with 32 filters

L

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56
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Review: 1x1 convolutions Alternatively, interpret it as applying

the same FC layer on each input pixel

56

56

64

EITEN
Up %
Ref: http://cs231n.stanford.edu/

64 32

1x1 CONV
with 32 filters

-

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

FC
f N

32

56

56
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Review: 1x1 convolutions Alternatively, interpret it as applying

the same FC layer on each input pixel

56

64

EITEN
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56

64 32

1x1 CONV
with 32 filters

e
-

preserves spatial
dimensions, reduces depth!

FC
f N

Projects depth to lower
dimension (combination of
feature maps)

32

56

56
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[Szegedy et al., 2014]

Filter
concatenation

3x3 max
pooling

T "

Previous Layer

Naive Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Filter
concatenation

””’7\
S —

3x3 max
pooling

Previous Layer

Inception module with dimension reduction
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GooglLeNet

[Szegedy et al., 2014]

Filter
concatenation

3x3 max
pooling

—

Previous Layer

Naive Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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layers

1x1 conv “bottleneck”

concatenation

Filter

1x1
convolution
g JA] 1x1 3x3 max
convolution convolution pooling

Previous Layer

Inception module with dimension reduction
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GooglLeNet

[Szegedy et al., 2014]

28x28x480
Filter

28x28x128 _ 28x28x192  28x28x96 28x28x64

— . 7 N\ T
1x1 conv, 3x3 conv, 5x5 conv, 1x1 conv,

128 1?2 .9‘6 6:1
28x28x64  28x28x64 28x28x256
. 1 1 1
1x1 conv, 1x1 conv,

64 64 3x3 pool

“Hh“baiégz'”"ﬂﬂﬂﬂJ'-

Module inpUt: Previous Layer
28x28x256

Inception module with dimension reduction

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter’ bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5%5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer
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GooglLeNet

[Szegedy et al., 2014]

Stack Inception modules
with dimension reduction
on top of each other

Filter
concatenation

33 max
pooling

Previous Layer

Inception module

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

i B
amil
f

Stacked Inception
Modules

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

! |

Classifier output

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

B i A

Classifier output
(removed expensive FC layers!)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

B il

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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/

Auxiliary classification outputs to inject additional gradient at lower layers

(AvgPool-1x1Conv-FC-FC-Softmax)
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GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

ResNet

[He et al., 2015]

relu

Very deep networks using residual
connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner
(3.57% top 5 error)

Swept all classification and
detection competitions in
ILSVRC’15 and COCOQO’13! Residual block

X
identity

R\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

«AJLA»JLSJLJJJJS‘SML;@S:sL;JJJ:sJSLB::.A.cL;LA@YL;AJJ‘)B‘LAC;JJQJ‘J‘M‘J\L:;

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?
56-layer

Iterations [terations

Training error
Test error

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?
56-layer

Iterations [terations

Training error
Test error

o6-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

e (5] et cawds (ol Lol conwl o0 S Jae 00y 5 5uae Juso
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ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

ResNet

[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at  Joo o gads J8laa w3l gi b 5 50ee Jao

least as well as the shallower model. LS Jae 3 GacalS
A solution by construction is copying the learned O3S (&S oA la 3aob Ol Jael, S
layers from the shallower model and setting 5 FGaeps Jae Sload s nSuls slaeY
additional layers to identity mapping. Lo 2 al&s gl b slag¥ Gals 513

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

] relu
H(x) F{X) + X
\ ‘ X
F(x
relu ) =il identity
X X
“Plain” layers Residual block

ol cbl€s S (55 sl 4o slasy 5 suliial daol,
eollae SB35, 50 @l (355 ()0 paliae (235 sl

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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ResNet

ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

= HOO= Fo)=# X e S . ] relu

H(x) ) + X

Use layers to
fit residual

i ' X F(x) = H(x) - x

relu Fx) s identity in(st)ead éf)
T H(x) directly
X X
“Plain” layers Residual block

S oo ool aBiie 5 shs H(X) slads F(X) = HX) = X swslassls (5315 51 Lade¥ 3

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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ResNet

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Residual block

X
identity

O
Jxd cony, 128

3x3 conv, 128
&

Jxd cony 128
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ResNet

ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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(SJLAM Cél-::‘:)%

X
Residual block

X
identity

T = |
C_ i 1

|| Pog |

0
2xd cony, 512

Sxd copy 510

Jxd cony, 128
3x3 conv, 128

L cony 128 1]

L33 cony 128 ]

3x3 cony, 128

| I conv, 128, /2 I

1 EPogl |

1 Input 1

3x3 conv, 128
filters, /2
spatially with
stride 2

3x3 conv, 64
filters
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ResNet
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ResNet =

[He et al., 2015]

Pog

0
3xd cony, 512

Full ResNet architecture: . — e —

- Stack residual blocks ‘

- Every residual block has
two 3x3 conv layers

- Periodically, double # of

c filters and downsample _ X _

% spatially using stride 2 ety

= (/2 in each dimension)

8 - Additional conv layer at

E the beginning

2 Residual block

g —

L .oz Je—— Beginning
5 [ oo ] conv layer
<

g

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/
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ResNet

[He et al., 2015]

Full ResNet architecture:

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Stack residual blocks
Every residual block has
two 3x3 conv layers
Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)
Additional conv layer at
the beginning

No FC layers at the end
(only FC 1000 to output
classes)

L/'
)U N
a1
Ref: http://cs231n.stanford.edu/

(SJLAM Cél-::‘:)%

X
Residual block

X
identity

L __cotmax ]
o @ No FC layers

Hog

3xd cony, 512

Sxd copy 510

Sxd cony, 512

besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer
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ResNet

[He et al., 2015]

3x3 cony, 012
Sx3 cony 51

Total depths of 34, 50, 101, or
152 layers for ImageNet

3x3 cony, 128

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GooglLeNet)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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solers olia

28x28x256
output

28x28x256
input
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ResNet

ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GooglLeNet)

EITEN
Up %
Ref: http://cs231n.stanford.edu/

28x28x256
output

1x1 conv, 256 filters projects
back to 256 feature maps

(28x28x256)

3x3 conv operates over

only 64 feature maps

T

1x1 conv, 64 filters
to project to
28x28x64

28x28x256
input
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a3 Sk i el

ResNet

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier 2/ initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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ResNet

[He et al., 2015]

Experimental Results

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

Deeper networks now achieve
lowing training error as
expected

Swept 1st place in all ILSVRC
and COCO 2015 competitions
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o5l

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (cuote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd
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ResNet

ResNet

[He et al., 2015]

Experimental Results
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Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

Deeper networks now achieve
lowing training error as
expected

Swept 1st place in all ILSVRC
and COCO 2015 competitions
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o5l

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (cuote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6%
top 3 error) -- better than “human
performance” (Russakovsky 2014)
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ResNet
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

152 layers| (152 layers| [152 layers
25
Ao e A
20 |
16.4
15 .
11.7  |19jayers| |22 layers|
10
7-3 6-7
> [ shallow |
2010 2011 2012 2013 2014 2014 2015 2016 2017
Lin et al Sanchez &  Krizhevskyetal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

/ Ref: http://cs231n.stanford.edu/

5.1

Human

Russakovsky et al
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Comparing complexity...

80 1

Top-1 accuracy [%]

e
e\* e‘.

ejg\ @‘3; x&%ﬁ
R 0%e?

XGG,

ev

2

gﬁ AQ> A5k N2

AR A
: Nee “\e‘ ?""‘0 ¢

\!be

GWLAA
; | Inception-v4
801 s 5 =
Inceptmn—\ﬂ ° ResNet-152
ResNet-50 E VGG-16 VGG-19
75. ...RE_SNer_l.DI..................___.__.__._____...
ResNet—B{
E i | 3 % :
& 70 gﬁ ResNet-18
3 GooglLeNet
2 ENet |
& 651 !
'é' ° B.N~NIN |
(7T NN SN | NUORE:. . * U 35M-----65M----- 95M-----125M ---155M---
BN-AlexNet
55 " AlexNet
50 | 1
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network IVIodeIs for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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Comparing complexity...
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.
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An Analysis of Deep Neural Network IVIodeIs for Practical Applications, 2017.
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é/'
) U N
1
Ref: http://cs231n.stanford.edu/

0 5 10 15

20 25 30 35 40
Operations [G-Ops]



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Jid 51 9 5318 s (sLadSds () 5813 58 (5Las slass

GoogLeNet : Saiay s4wnlis

Comparing complexity...
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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Comparing complexity...
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AlexNet:
Smaller compute, still memory
heavy, lower accuracy
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An Analysis of Deep Neural Network IVIodeIs for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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Comparing complexity...
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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Forward pass time and power consumption
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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Network in Network (NIN)

[Lin et al. 2014]

- Mlpconv layer with

“micronetwork” within each conv

layer to compute more abstract
features for local patches

- Micronetwork uses multilayer
perceptron (FC, i.e. 1x1 conv
layers)

- Precursor to GooglLeNet and
ResNet “bottleneck” layers

- Philosophical inspiration for
GooglLeNet

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Improving ResNets...

ldentity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from
creators of ResNet

- Creates a more direct path for
propagating information throughout
network (moves activation to residual
mapping pathway)

- Gives better performance

EITEN
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Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
Important factor, not depth

- User wider residual blocks (F x k
filters instead of F filters in each layer)

- 30-layer wide ResNet outperforms
152-layer original ResNet

- Increasing width instead of depth
more computationally efficient
(parallelizable)

EITEN
Up %
Ref: http://cs231n.stanford.edu/
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Wide residual block
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Improving ResNets...
Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)

[Xie et al. 2016] 256-d out

- Also from creators of
ReSNet 256-d out

- Increases width of
residual block through
multiple parallel
pathways
(“cardinality”)

- Parallel pathways
similar in spirit to
Inception module 256-d in

256-d in

EITEN
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Improving ResNets...

Deep Networks with Stochastic Depth

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and
training time through short networks during
training

- Randomly drop a subset of layers during each
training pass

- Bypass with identity function

- Use full deep network at test time

EITEN
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Ref: http://cs231n.stanford.edu/




Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

.
)U},

293¢ Ja o slaResNet

La o gy sl b nslin jo ImageNet YU Lubise o gl uliasl (ills o ol

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Network ensembling
30 282

152 layers||[152 layers||[152 layers

25
A--t---k-t--A

20

16.4

15

11.7 (19 ayers| |22 layersl,."!

10
7-3 6.7
5.1
o B o o
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan &  Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

(k Ref: http://cs231n.stanford.edu/
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Improving ResNets...
“Good Practices for Deep Feature Fusion”

[Shao et al. 2016]
- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,

Wide Resnet models
- |ILSVRC’16 classification winner

Inception- | Inception- | Inception- | Resnet- : :
20 4,01 4.26 4.65 2.99

Err. (%) 4.

3.52 2.92 (-0.6)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Adaptive feature map reweighting

30 282

25

20

16.4

15

10

5
2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

(k Ref: http://cs231n.stanford.edu/

2013

Zeiler &
Fergus

19 layers

22 layers,

2014

Simonyan &  Szegedy et al
Zisserman (VGG) (GooglLeNet)

2014

152 layers| (152 layers||[152 layers
e s B
2.3
2015 2016 2017
He et al Shao et al Hu et al
(ResNet) (SENet)
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Human
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Improving ResNets...
Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

|« Ix
Add a “feature recalibration” module that [Imf";nl S
learns to adaptively reweight feature maps =" | —=—
Global information (global avg. pooling iz
layer) + 2 FC layers used to determine =
feature map weights

ILSVRC17 classification winner (using ®
ResNeXt-152 as a base architecture)

X U yIIHI]I[[]
1% xC

F,. (W)

I
1% 1%C
F

SE-Inception Module
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Beyond ResNets...

FractalNet: Ultra-Deep Neural Networks without Residuals
[Larsson et al. 2017]

Fractal Expansion Rule : G

- Argues that key is transitioning ;
effectively from shallow to deep
and residual representations are
not necessary

J
I~
o

<-D<-g

- Fractal architecture with both ‘ & —
shallow and deep paths to output fot2) + =2
- Trained with dropping out — 3 ==
sub-paths istmreiog T o

- Full network at test time = == 5
e | T

fa(2) Yy

Figures copynght Larsson et al., 2017. Reproduced with permission.
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Beyond ResNets...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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SqueezeNet

Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer
Parameters and <0.5Mb Model Size

[landola et al. 2017]

- Fire modules consisting of a
‘squeeze’ layer with 1x1 filters
feeding an ‘expand’ layer with 1x1
and 3x3 filters

- AlexNet level accuracy on
ImageNet with 50x fewer
parameters

- Can compress to 510x smaller
than AlexNet (0.5Mb)

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition
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Figure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.
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Meta-learning: Learning to learn network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)
[Zoph et al. 2016] Sample architecture A

with probability p

- “Controller” network that learns to design a good [ l
network architecture (output a string
corresponding to network design)

- lterate: t J

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

- —

1) Sample an architecture from search space Compute raient of p and
2) Train the architecture to get a “reward” R the controller
corresponding to accuracy Number| [riter | [Fier | [SERE [striae | [Number] [Fieer

. of Filters|' | Height \ Width ".I Height y Width s [of Filtersf, Height [

3) Compute gradient of sample probability, and
scale by R to perform controller parameter
update (i.e. increase likelihood of good
architecture being sampled, decrease L 5 . 5
likelihood of bad architecture) e BEETve— — e A —
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Meta-learning: Learning to learn network architectures...
Learning Transferable Architectures for Scalable Image

Recognition

[Zoph et al. 2017]
. _ o _

- Applying neural architecture search (NAS) to a Wfﬁxiﬁj :P

large dataset like ImageNet is expensive
- Design a search space of building blocks (“cells”)

Hl l D ll Drj
\ i .' i

that can be flexibly stacked sy
- NASNet: Use NAS to find best cell structure on @
smaller CIFAR-10 dataset, then transfer oy ik

architecture to ImageNet

E ] Select cne Selsct second Select operation for Salect oparation for Salect mathod to ;
‘é ' D hidden siate [ hidden stata [ firsthidden state [ | second hidden state [™ combine hiddemstate | 2 2020202020200 Te=m=a==e==
\ \ \ \ \
P T e T e
£= » 3 L N
-l e
=2 oor 2 % 2 maxpod
E 3 2 | | B
v 7 v 7 v N \ 7 7
- — - - - L I
----------------
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Summary: CNN Architectures
Case Studies
- AlexNet
- VGG
- GooglLeNet
- ResNet
Also....
- NiN (Network in Network) - DenseNet
- Wide ResNet - FractalNet
- ResNeXT - SqueezeNet
- Stochastic Depth - NASNet

- Squeeze-and-Excitation Network
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Weights & Biases Documentation
Choose the product for which you need documentation.

o7 W&B Weave W&B Models
- Use Al models in your app Develop Al models #
Use W&B Weave to manage Al models in your Use W&B Models to manage Al model
code. Features include tracing, output development. Features include training, fine-
evaluation, cost estimates, and a playground for tuning, reporting, automating hyperparameter
comparing different large language models sweeps, and utilizing the model registry for
(LLMs) and settings. versioning and reproducibility.
» Introduction « Introduction
» Quickstart e Quickstart
« YouTube Demo  YouTube Tutoria
» Try the Playground (Free sign up required) » Online Course
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https://docs.wandb.ai/
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“* VGG, GoogleNet, ResNet all in wide use, available in model zoos
+* ResNet current best default, also consider SENet when available
¢ Trend towards extremely deep networks

¢ Significant research centers around design of layer / skip connections and
improving gradient flow

¢ Efforts to investigate necessity of depth vs. width and residual connections

¢ Even more recent trend towards meta-learning
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CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2019

Previous Years: [Winter 2
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puter Vision has become ubigquitous in our society, with apphcations in searcn, Imac

http://cs231n.stanford.edu
http://cs231n.github.io/convolutional-networks/



