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An Overview on Artificial Neural Networks (2)
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CLASSIFYING NEWSWIRES: A MULTICLASS CLASSIFICATION EXAMPLE
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Technology

Because you have many classes, this problem is an instance of multiclass classification;

and because each data point should be classified into only one category, the problem is more
specifically an instance of single-label, multiclass classification.

If each data point could belong to multiple categories (in this case, topics), you’d be facing a
multilabel, multiclass classification problem.
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~ | Dataset

a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy
dataset for text classification. There

are 46 different topics; some topics are more
represented than others, but each topic

has at least 10 examples in the training set.
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Listing 4.11 Loading the Reuters dataset

from tensorflow.keras.datasets import reuters
(Erain data, train labels), (test data, test labels) = reuters.load data(
num words=10000)

caaolaee & 15 i) gel slasals Hu SGsI 8 aalS NV st S el cpl (JSae o NUM_WOPdS=10000 (L < T
i€ IS el o3l b la sl s b sl g5 oo <= 5 s o 8IS SIS 3500 ol

ol Sl sl 5 S A et JLAT ) slaciual test_data g train_data sla i
LAt (f gud g i) 4560 slael 5 placianltest labels jtrain_labels

>>> len(train_data) >>> train_data[10]

8982 [1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296,
>>> len(test_data) 26, 39, 74, 2979,3554, 14, 46, 4689, 4329, 86, 61,
2246 3499, 4795, 14, 61, 451, 4329, 17, 12]

>>> train_labels[10]
3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

L,
)U};b/



Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S b (subdinl

Lo pd ke il

Listing 4.12 Decoding newswires back to text

word index = reuters.get word index()
reverse word index = dict(
[ (value, key) for (key, value) in word index.items()])
decoded newswire = " ".join(
[reverse word index.get(i - 3, "?") for 1 in train datal[0]])

Note that the indices are offset by 3 because 0, 1, and 2 are reserved
indices for “padding,” “start of sequence,” and “unknown.”
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Listing 4.13 Encoding the input data

x_train = vectorize sequences (train data) <l—‘ Vectorized training data

X _test = vectorize sequences (test data) <1—‘ Vectorized test data
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Listing 4.14 Encoding the labels

def to one hot (labels, dimension=46) :
results = np.zeros((len(labels), dimension))
for i, label in enumerate (labels) :
results[i, label] = 1.
return results

y train = to one hot(train labels) <l—‘ Vectorized training labels

y test = to one hot (test labels) ﬁ Vectorized test labels

Note that there is a built-in way to do this in Keras,
which you’ve already seen in action in the MNIST example:

from tensorflow.keras.utils import to categorical
y train = to categorical (train labels)
y test = to categorical (test labels)

—
’Ujb/



S b (subdinl

BUILDING THE NETWORK
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Listing 4.15 Model definition

model = keras.Sequential ([
layers.Dense (64, activation="relu"),
layers.Dense (64, activation="relu"),
layers.Dense (46, activation="softmax")

1)
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COMPILING THE MODEL
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Listing 4.16 Compiling the model

model .compile (optimizer="rmsprop",
loss="categorical crossentropy",
metrics=["accuracy"])

1 N J X X
CCE=—— 2, 2,3 log() + (1 =) - log(1 = )
i=0 j=0
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VALIDATING THE APPROACH
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Listing 4.17 Setting aside a validation set

x val = x train[:1000]
partial x train = x train[1000:]
y val = y train[:1000]
partial y train = y train[1000:]
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TRAINING THE MODEL

=50l (slasals 5o lads gad (gdad (59,5 2 LIS Y =(epoch) <)y :ﬁ.&d:\ufa‘}g.o'”‘)dd.cd:‘l:ﬁdl;

.’a:\lSGAC;JLESbM‘A;HJL\ldL;bJ‘J\“’ (SJJJ:\Gﬁdem‘xJ&a(SJJ‘):\(OLO‘}M

Listing 4.18 Training the model

history = model.fit (partial x train,
partial y train,
epochs=20,
batch size=512,
validation data=(x_val, y val))
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Listing 4.19 Plotting the training and validation loss

loss

val

epoc
plt
plt
plt.
plt
plt
plt.
plt.

—
’UjK

= history.history["loss"]
loss = history.history(["val loss"]

hs = range(l, len(loss)
.plot (epochs, loss, "bo",
.plot (epochs, wval loss,
title("Training and validation loss")
.xlabel ("Epochs")
.ylabel ("Loss")

legend ()
show ()

+ 1)
label="Training loss")

Ilbll ,

label="Validation loss")
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Listing 4.20 Plotting the training and validation accuracy

plt.clf () | Clears the figure

acc = history.history["accuracy"]
val acc history.history["val accuracy"]

plt.plot (epochs, acc, "bo", label="Training accuracy")

plt.plot (epochs, val acc, "b", label="Validation accuracy")

plt.title("Training and validation accuracy")

plt.xlabel ("Epochs")
plt.ylabel ("Accuracy")
plt.legend()
plt.show()
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Listing 4.21 Retraining a model from scratch

model = keras.Sequential ([

layers.Dense (64, activation="relu"),
layers.Dense (64, activation="relu"),

layers.Dense (46, activation="softmax")
1)
model .compile (optimizer="rmsprop",
loss="categorical crossentropy",
metrics=["accuracy"])
model.fit (x train,
y train,
epochs=9,
batch size=512)
results = model.evaluate(x test, y test)

>>> results
[0.9565213431445807, 0.79697239536954589]

This approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%.



This approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%. But in
this case, we have 46 classes, and they may not be equally represented. What would be
the accuracy of a random baseline? We could try quickly implementing one to check
this empirically:

>>> import copy

>>> test labels copy = copy.copy(test labels)

>>> np.random.shuffle(test labels copy)

>>> hits array = np.array(test labels) == np.array(test labels copy)
>>> hits array.mean ()

0.18655387355298308

As you can see, a random classifier would score around 19% classification accuracy, so
the results of our model seem pretty good in that light.
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Generating predictions for new data

predictions = model.predict(x_test)

# Each entry in predictions is a vector of length 46:
>>> predictions[@].shape
(46, )

# The coefficients in this vector sum to 1:
>>> np.sum(predictions[0])
1.0

# The largest entry is the predicted class:
# the class with the highest probability:
>>> np.argmax(predictions[0])

4
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A DIFFERENT WAY TO HANDLE THE LABELS AND THE LOSS

We mentioned earlier that another way to encode the labels
would be to cast them as an integer tensor, like this:

y_train = np.array(train_labels)
y test = np.array(test labels)

The only thing this approach would change is the choice of the loss function.
The loss function categorical crossentropy, expects the labels to follow a categorical encoding.
With integer labels, you should use sparse_categorical_ crossentropy:

model.compile (optimizer="rmsprop",
loss="sparse categorical crossentropy",
metrics=["accuracy"])

This new loss function is still mathematically the same as categorical_crossentropy;
it just has a different interface.



iy
Eod b sl guisdiib

b g &5 S slaad ials cuaal
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Listing 4.22 A model with an information bottleneck

model = keras.Sequential ([
layers.Dense (64, activation="relu"),
layers.Dense (4, activation="relu"),
layers.Dense (46, activation="softmax")
1)
model .compile (optimizer="rmsprop",
loss="categorical crossentropy",
metrics=["accuracy"])
model.fit (partial x train,
partial y train,
epochs=20,
batch size=128,
validation data=(x val, y val))

The network now peaks at ~71% validation accuracy, an 8% absolute drop.
This drop 1s mostly due to the fact that you’re trying to compress a lot of information
(enough information to recover the separation hyperplanes of 46 classes)
into an intermediate space that is too low-dimensional.
The network is able to cram most of the necessary information
into these eight-dimensional representations, but not all of it.
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FURTHER EXPERIMENTS

The following experiments will help convince you that the architecture choices
you’ve made are all fairly reasonable, although there’s still room for improvement:

 Try using larger or smaller layers: 32 units, 128 units, and so on.
1 You used two hidden layers.
Now try using a single hidden layer, or three hidden layers.
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Here’s what you should take away from this example:

If you’re trying to classify data points among N classes,
your network should end with a Dense layer of size .
In a single-label, multiclass classification problem, your network should end with a softmax
activation so that it will output a probability distribution over the N output classes.
Categorical crossentropy is almost always the loss function you should use for such problems.
It minimizes the distance between the probability distributions output by the network and the
true distribution of the targets.
There are two ways to handle labels in multiclass classification:
U Encoding the labels via categorical encoding (also known as one-hot encoding) and
using categorical crossentropy as a loss function
L Encoding the labels as integers and using the sparse categorical crossentropy loss
function
If you need to classify data into a large number of categories, you should avoid creating
information bottlenecks in your network due to intermediate layers that are too small.
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NOTE: Don’t confuse regression and the algorithm logistic regression. Confusingly,
logistic regression isn’t a regression algorithm—it’s a classification algorithm.
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THE BOSTON HOUSING PRICE DATASET
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Boston

| Housing Price
' Dataset

It has relatively few data points: only 506,

split between 404 training samples and 102 test samples.
And each feature in the input data (for example, the crime
rate) has a different scale.

For instance, some values are proportions, which take
values between 0 and 1; others take values between 1 and
12, others between 0 and 100, and so on.




Boston House Prices dataset

Data Set Characteristics:
:Number of Instances: 586
:Number of Attributes: 13 numeric/categorical predictive
:Median Value (attribute 14) is usually the target

:Attribute Information (in order):

- CRIM per capita crime rate by town

- IN proportion of residential land zoned for lots over 25,808 sq.ft.
- INDUS proportion of non-retail business acres per town

- CHAS Charles River dummy variable (= 1 if tract bounds river; @ otherwise)
- NOX nitric oxides concentration (parts per 18 million)

- RM average number of rooms per dwelling

- AGE proportion of owner-occupied units built prior to 1248

- DIS weighted distances to five Boston employment centres

- RAD index of accessibility to radial highways

- TAX full-value property-tax rate per $18,808

- PTRATIO pupil-teacher ratio by town

- B 160@(Bk - @.63)"2 where Bk is the proportion of blacks by town

- LSTAT % lower status of the population

- MEDV Median value of owner-occupied homes in $1888°'s

:Missing Attribute Values: None
:Creator: Harrison, 0. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-porice data of Harrison. D. and Rubinfeld. D.L. "Hedonic
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Listing 4.23 Loading the Boston housing dataset

* 0

from tensorflow.keras.datasets import boston housing
(train data, train targets), (test data, test targets) = (
boston housing.load dataf())

a0l il ST G gad V2 ¥ g i) gel gigad Yo F
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>>> train_data.shape
(404, 13)
>>> test data.shape
(102, 13)

>>> train_targets
[ 15.2, 42.3, 50. ... 19.4, 19.4, 29.1]
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Listing 4.24 Normalizing the data

mean = train data.mean (axis=0)
train data -= mean

std = train data.std(axis=0)
train data /= std

test data -= mean

test data /= std
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DATA NORMALIZATION: TECHNIQUES

, r — min(x
T =

max(x) — min(x

~ max(z) — min(x)

T average

std(x
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Listing 4.25 Model definition

def build model () :

L,
)Ujb/

model = keras.Sequential ([
layers.Dense (64, activation="relu"),
layers.Dense (64, activation="relu"),
layers.Dense (1)

Because we need to instantiate
the same model multiple times,
we use a function to construct it.

1)
model.compile (optimizer="rmsprop", loss="mse", metrics=["mae"])
return model
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Mean squared error
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K-FOLD CROSS-VALIDATION

. K-fold cross-validation <.:<s
(K = 4,5Y 50n0) asiS o 51581 Jsbos K 4515 552 50 sLasual
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Data split into 3 partitions
A

- A\
Validation )
Fold 1 Validation Training Training —
score #1
- I - Validation Final score:
Fold 2 { Training Validation Training > core #2 > S eran
Fold 3 Training Training Validation | —» validation
score #3 )

3-fold cross-validation
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Listing 4.26 K-fold validation

k =4
num val samples = len(train data) // k
num_epochs = 100
all scores = []
for i in range (k) :
print (f"Processing fold #{i}")

Prepares the
validation data: data
from partition #k

val data = train data[i * num val samples: (i + 1) * num val samples] <+

val targets = train targets[i * num val samples: (i + 1) * num val samples]

partial train data = np.concatenate ( Prepares the training data:
[train datal:1 * num val samples], data from all other partitions

train datal[(i + 1) * num val samples:]],
axis=0)
partial train targets np.concatenate (
[train targets[:1 * num val samples],
train targets[(i + 1) * num val samples:]],
axis=0)
model = build model () <+
model.fit (partial train data, partial train targets,
epochs=num epochs, batch size=16, verbose=0)
val mse, val mae = model.evaluate(val data, val targets, verbose=0)
all scores.append(val mae)

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

Evaluates the model on
the validation data

* 0

i
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# Running this with num_epochs = 100 yields the following results:

>>> all scores
[2.112449, 3.0801501, 2.6483836, 2.4275346]

>>> np.mean(all scores)
2.5671294

The different runs do indeed show rather different validation scores, from 2.1 to 3.1.
The average (2.6) 1s a much more reliable metric than any single score—that’s the
entire point of K-fold cross-validation. In this case, you’re off by $2,600 on average,
which is significant considering that the prices range from $10,000 to $50,000.
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num_epochs = 500
all mae histories = []
for i in range (k) :

L,
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Listing 4.27 Saving the validation logs at each fold

Prepares the
validation data: data

from partition #k
print (f"Processing fold #{i}")

val data = train datali * num val samples: (i + 1) * num val samples] <
val targets = train targets[i * num val samples: (i + 1) * num val samples]
partial train data = np.concatenate (

[train data[:1 * num val samples],

train datal(i + 1) * num val samples:]],

Prepares the training
data: data from all
other partitions

axis=0)
partial train targets = np.concatenate (
[train targets[:1 * num val samples], Builds the Keras
train targets[(i + 1) * num val samples:]], model (already
axis=0) compiled)
model = build model ()
history = model.fit (partial train data, partial train targets, Trains the
validation data=(val data, val targets), model (in
epochs=num epochs, batch size=16, verbose=0) silent mode,

mae history = history.history["val mae"] verbose=0)
all mae histories.append(mae history)
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You can then compute the average of the per-epoch MAE scores for all folds.

Listing 4.28 Building the history of successive mean K-fold validation scores

average mae history = |
np.mean([x[1] for x in all mae histories]) for i1 in range (num_ epochs) ]
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Listing 4.29 Plotting validation scores

plt.plot(range(l, len(average mae history) + 1), average mae history)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

plt.xlabel ("Epochs")
plt.ylabel ("Validation MAE")
plt.show()

Validation MAE
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Listing 4.30 Plotting validation scores, excluding the first 10 data points

truncated mae history = average mae history[10:]

plt
plt
plt

plt.

—
)Ujb/

.plot (range (1, len(truncated mae history) + 1), truncated mae history)
.xlabel ("Epochs™")

.ylabel ("Validation MAE")

show ()

Omit the first 10 data points, which are on a different scale than the rest of the curve.
Replace each point with an exponential moving average of the previous points, to obtain a smooth curve.



exponential moving average

EMA = Price(t) xk+ EMA(y) x (1 — k)
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Listing 4.31 Training the final model

Gets a fresh,

compiled model CH
model = build model () QJ P Trains it ofn Itnhed
model.fit (train data, train targets, entirety of the data

epochs=130, batch size=16, verbose=0)
test mse score, test mae score = model.evaluate(test data, test targets)

# Here’s the final result:

>>> test _mae_score
2.4642276763916016

We’re still off by about $2,500.

—
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4.3.5

Generating predictions on new data

When calling predict () on our binary classification model, we retrieved a scalar score
between 0 and 1 for each input sample. With our multiclass classification model, we
retrieved a probability distribution over all classes for each sample. Now, with this sca-
lar regression model, predict () returns the model’s guess for the sample’s price in
thousands of dollars:

>>> predictions = model.predict (test data)
>>> predictions [0]
array ([9.990133], dtype=float32)

The first house in the test set is predicted to have a price of about $10,000.
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Here’s what you should take away from this example:

L)

» Regression is done using different loss functions than what we used for classification.
o Mean squared error (MSE) is a loss function commonly used for regression.
o Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression.
A common regression metric is mean absolute error (MAE).

R

% When features in the input data have values in different ranges, each feature should be
scaled independently as a preprocessing step.

¢ When there is /ittle data available, using K-fold validation is a great way to reliably
evaluate a model.

“ When little training data is available, it’s preferable to use a small network with few
hidden layers (typically only one or two), in order to avoid severe overfitting.

o
-
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¢ You’ll usually need to preprocess raw data before feeding it into a neural network.

¢+ When your data has features with different ranges, scale each feature independently
as part of preprocessing.

¢ As training progresses, neural networks eventually begin to overfit and obtain
worse results on never-before-seen data.

¢ If you don’t have much training data, use a small network with only one or two
hidden layers, to avoid severe overfitting.

¢ If your data is divided into many categories, you may cause information bottlenecks
if you make the intermediate layers too small.

¢ Regression uses different loss functions and different evaluation metrics than
classification.

¢ When you’re working with little data, K-fold validation can help reliably evaluate
your model.

o
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Gelting started
with neuwral networks:
Classification and regression

This chapter covers

= Your first examples of realworid machine learning

workflows

= Handling classification problems over vector data
= Handling continuous regression problems over

vector data

This chapter is designed to get you started using neural networks to solve real prob-
lems. You'll consolidate the knowledge you gained from chapters 2 and 3, and
you'll apply what you've learned to three new tasks covering the three most com-
mon use cases of neural networks—binary classification, multiclass classification,
and scalar regression:

*  Classifying movie reviews as positive or negative (binary classification

*  Classifying news wires by topic {multiclass classification)

* Esumating the price of a house, given real-estate data (scalar regression )
These examples will be your first contact with end-to-end machine learning work-
flows: you'll get introduced to data preprocessing, basic model architecture princi-
ples, and model evaluation.
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G(ettz'-n.g started
with newral networks

This chapter covers

= Core components of neural networks
= An introduction to Keras

= Setting up a deeplearning workstation

= Using neural networks to solve basic
classification and regression problems

This chapter is designed to get you started with using neural networks to solve real
problems. You'll consolidate the knowledge you gained from our first practical
example in chapter 2, and you'll apply what you've learned to three new problems
covering the three most common use cases of neural networks: binary classifica-
tion, multiclass classification, and scalar regression.

In this chapter, we’ll take a closer look at the core componenis of neural networks
that we introduced in chapter 2: layers, nerworks, objective functions, and optimiz-
ers. We'll give you a quick introduction to Keras, the Python deeplearning library
that we’ll use throughout the book. You'll set up a deep-learning workstation, with




