(1) (58 s s (sLadSads 33 (5598

An Overview on Artificial Neural Networks (1)

4als 59Y 5i aLIS
u_)blé QKJS_AL_}‘J (Ls_«..ud_le-é QM‘J
Ol s AR

http://courses.fouladi.ir/deep

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

v GoL 550k
(HOE SASID S (50 93U
ANATOMY OF A NEURAL NETWORK
Input X
Weiahts s Layer
eights (data transformation)
* Lads
Weights |—+ Layer
Ag (data transformation)
Y
Weight Predictions True targets
update Y' Y

S
-

Loss score j

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

(HOE SASID S (50 93U
Baoae (s S0b oSl slaS ol s Ladsy

WS o 8l su (su 500 Olsie s 1) 5ol wia b SO S sula (51858 Jo5le S5

388 oo Ja 93 (g2 Olsie) Heibua LS

Jhhaisla [adla (4 4l isla G gus [Clla gy
Stateful / Memory-ful Stateless | Memory-less

aiiaa adla gl ey s
souilbna b Sora¥ slagyy caiiea olla G gas LaY A
clead 38 ,Sul SGD aiy, S L

sol (5,10 slasals (a3ls 5 s Dense g
sldlss slasals G 5ls s 0 (32850 /LSTM (g4

LstJ.LAS LsL&aJ‘J L)IJJ‘JJQ :Conv2D LS‘L:‘Y

* 0

7Y

(Hos Sl S (0 9300

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

-

=
\-

Baac L;‘):S.sl:v o5l L;L&SJ.L} :LA@‘)!

9o e S e souls sLadaass s gl b sl slanl (sl 5L Loy Guls L1L3 aa LUS Sl Jue S

WS o @dliyo gusoy Ol | pala IS8 S L ola) sl bds Y A sl 8l
a8 oo bgaS a0 plsie) peld KA S L ol 5wl Layer Compatibility
JBe

from tensorflow.keras import layers
layer = layers.Dense(32, input _shape=(784,))

ondyee 15 (A VAY 1S5 g c(suae 581 Jhis 5 sa) (gam— 50 sla) B Y SO
JJ‘J..\A:AVYUTSSJJMﬁM‘JMUSf:%YUf‘GAJﬁ

from tensorflow.keras import models
from tensorflow.keras import layers
model = models.Sequential(]

layers.Dense(32, input_shape=(784,)),

layers.Dense(32)])

e 5,5k) S5 ani e suliiul Keras 5 a3
S iy eile T4 s)y ¥ JSa L 5 0 s o AL L gy &y gl ¢ 3 58 oo 48l Juo 4 oS laasy
el 80l s0la (50959 SIS Hle S 5T 0 (s Y L (3sd JBe o
s o Bl 0T 51 a3 (s 0¥ (oo 9,8 UKl Ballae ()T (0905 S o520

o

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

(HOE SASID S (50 93U

LaY 5 sl : La e

Grae oS0k Jae S
Lo 5 590 Qo Llacgas SIS S

Lo de 5 45 gad Cps 5 oltie
0o S (g8 5 S wals

I S 58w
LS (o oS dud S sLdd S

I Lol sbiad (b 55l s S LAl b

.JJAI&JJJ.’LA@JJ—&‘L}(SJJJJGL&QJ‘JM&

il
’U};é/

Laaay 3 Jod (saidy
Linear Stack of Layers
dALli—gu sladsai
Two-Branch Networks

yu—aans sladsag
Multihead Networks

il sLaS gL
Inception Blocks

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

(HOE SASID S (50 93U
6259k aiT 53 (sl Sy sl La s Ludings 5§ ST ol 53
L.0SS FUNCTIONS AND OPTIMIZERS: KEYS TO CONFIGURING THE LEARNING PROCESS

oo aai oo b B saT Jsb 5o 4S ol JLaS (a4 5) I s S aals
.LSU.@ u.:s‘.cu)‘_ﬁ ‘J Saea) Sl JJ‘LS 6“@:‘2\9 1188 g0 J‘:\.’.c) bst's Loss Function

ol ago 0alall 3 g s 4 (5153 crualio Gua auli LA

Lol aal g ISl S laie S5 ubaal 5y sl 3Lt S (RalS w6 Lol

Lo 5 alSaady BT Al ulasl s s S S 4S WIS o (uaS : Hlwdings Hlewdiags
..L\Su.c L;JLmbd‘.:g b SGD &Jﬂ| J‘ ‘szi s&: Q)Lm‘t_\:ne_y Opnmlzer

* 0

7Y

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

J glate S aul 93

COMMON L0OSS FUNCTIONS

$lddab— gu (suisdiab

binary crossentro e
Y (L Two-Class Classification

$lddab—aia (gaudiab

categorical crossentropy Many-Class Classification

9 S

mean-squared error :
Regression

AL 58l

connectionist temporal classification (CTC) g 7 ,
equence-Learning

i SIS woan Tadly n o5 s elins S (595 s el i oS Sl LS
oS alsle alalal (1 aul) Cua ol sl

* 0

7Y

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

INTRODUCTION TO KERAS
4 Keras

Keras is a deep-learning framework for Python
that provides a convenient way to define and train almost any kind of deep-learning model.

Keras was initially developed for researchers, with the aim of enabling fast experimentation.

Keras has the following key features:

O
O
O

It allows the same code to run seamlessly on CPU or GPU.

It has a user-friendly API that makes it easy to quickly prototype deep-learning models.

It has built-in support for convolutional networks (for computer vision), recurrent networks
(for sequence processing), and any combination of both.

[t supports arbitrary network architectures: multi-input or multi-output models, layer sharing,
model sharing, and so on. This means Keras 1s appropriate for building essentially any deep-
learning model, from a generative adversarial network to a neural Turing machine.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A

)U}’ K

INTRODUCTION TO KERAS

—— TensorFlow

Google web search interest for different deep-learning frameworks over time

o ¢

VY Guoe § 8ol
IS b (galad
Joo gl 5o GBS S Ol sieds ol S
INTRODUCTION TO KERAS (-2020)

Keras is a model-level library, providing high-level building blocks
for developing deep-learning models.

TensorFlow / Theano / CNTK / ... | <——— backend engines

CUDA / cuDNN BLAS, Eigen <«— Jow-level libraries

GPU CPU

J Theano (http://deeplearning.net/software/theano)

is developed by the MILA lab at Université de Montréal.
 TensorFlow (http:// www.tensorflow.org) is developed by Google.
L CNTK (https://github.com/Microsoft/cNTK) is developed by Microsoft.

Any piece of code that you write with Keras can be run with
any of these backends without having to change anything in the code.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S
-

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Al

Je pho o9 SIS S Ol sheds Gul S
INTRODUCTION TO KERAS (2021+)

TensorFlow

CPU

GPU

TPU

Deep learning development:
layers, models, optimizers, losses,
metrics...

Tensor manipulation infrastructure:

tensors, variables, automatic
differentiation, distribution...

Hardware: execution

Figure 3.1 Keras and TensorFlow: TensorFlow is a low-level tensor computing
platform, and Keras is a high-level deep learning API

e,
)UjK

Y

oulyS b ool

oIS b a5

DEVELOPING WITH KERAS

Y
2)
3)

4)

A.

B.

a

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S
&

The typical Keras workflow:
Define your training data: input tensors and target tensors.
Define a network of layers (or model) that maps your inputs to your targets.
Configure the learning process by choosing a loss function, an optimizer,
and some metrics to monitor.
Iterate on your training data by calling the fit() method of your model.

There are two ways to define a model:
Using the Sequential class
(only for linear stacks of layers, which is the most common network architecture by far)
Using the functional API
(for directed acyclic graphs of layers, which lets you build completely arbitrary
architectures).
Model subclassing
(a low-level option where you write everything yourself from scratch. This is ideal if you
want full control over every little thing. However, you won’t get access to many built-in
Keras features, and you will be more at risk of making mistakes).

Sequential API
+ built-in layers

Functional API
+ built-in layers

Functional API
+ custom layers
+ custom metrics

+ custom losses
+ ...

Subclassing:
write everything
yourself from scratch

M) £ F Y
—/ / L 4 A4
Engineers with Researchers

Novice users,
simple models

Engineers with
standard use
cases

niche use cases
requiring bespoke
solutions

Figure 7.1 Progressive disclosure of complexity for model building

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

\lg Guoe S5l
ol S L il

(Jso Gusn) Je ol S L da 3

DEVELOPING WITH KERAS

Using the Sequential class

from tensorflow import keras

from tensorflow.keras import layers

model = keras.Sequential([
layers.Dense(64, activation="relu"),
layers.Dense(10, activation="softmax")

1)

Using the functional API

inputs = keras.Input(shape=(3,), name="my input")

features = layers.Dense(64, activation="relu")(inputs)
outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)

With the functional API, you’re manipulating the data tensors that the model processes
and applying layers to this tensor as if they were functions.

S
&

W G 5Bl
oulyS b ool

(Jo G 3aT) Jle & Gl S L a3

DEVELOPING WITH KERAS

The learning process is configured in the compilation step,
where you specify the optimizer and loss function(s) that the model should use,
as well as the metrics you want to monitor during training:

from keras import optimizers
model.compile(optimizer=optimizers.RMSprop(1lr=0.001),
loss="mse"',
metrics=['accuracy'])

Finally, the learning process consists of passing Numpy arrays of input data
(and the corresponding target data) to the model via the fit() method, similar to what you
would do in Scikit-Learn and several other machine-learning libraries:

model.fit(input_tensor, target tensor, batch size=128, epochs=10)

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

K%,

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A

G2as (§ 380bs (5 IS oSl S (g 5lanlel

SETTING UP A DEEP-LEARNING WORKSTATION

S
&

It’s highly recommended, although not strictly necessary,
that you run deep-learning code on a modern NVIDIA GPU.

If you don’t want to install a GPU on your machine, you can alternatively consider
running your experiments on an AWS EC2 GPU instance or on Google Cloud Platform.

Whether you’re running locally or in the cloud, it’s better to be using a LLinux workstation.
<3 amazon [EC 2
wepservices™

Google CloudPlatform

NVIDIA

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

G2as (§ 380bs (5 IS oSl S (g 5lanlel

Saee 55500 slaginle 3T s oal (51 s mase Gl T A5 slade Sids
JUPYTER NOTEBOOKS: THE PREFERRED WAY TO RUN DEEP-LEARNING EXPERIMENTS

-
jupyter
g

Jupyter notebooks are a great way to run deep-learning experiments.
A notebook 1s a file generated by the Jupyter Notebook app (https://jupyter.org),
which you can edit in your browser.

It mixes the ability to execute Python code with
rich text-editing capabilities for annotating what you’re doing.

A notebook also allows you to break up long experiments into smaller pieces
that can be executed independently,
which makes development interactive and means
you don’t have to rerun all of your previous code if something goes wrong late in an experiment.

S
-

= Jupyter waa o @ 08

nbviewer
deep-learning-with-python-notebooks chapter(2_mathematical-building-blocks.ipynb

This is a companion notebook for the book Deep Learning with Python, Second Edition. For readability, it only contains runnable code blocks and section titles, and omits

everything else in the book: text paragraphs, figures, and pseudocode.
If you want to be able to follow what's going on, | recommend reading the notebook side by side with your copy of the book.

This notebook was generated for TensorFlow 2.6.

The mathematical building blocks of neural networks

A first look at a neural network
Loading the MNIST dataset in Keras

In [@]: from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test images, test_labels) = mnist.load data()

In [@]: train_images.shape
In [@]: len(train_labels)
In [@]: train_labels

In [@]: test_images.shape
In [@]: len(test_labels)
In [@]: test_labels

The network architecture

In [@]: From tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([
layers.Dense(512, activation="relu"),
layers.Dense(1®, activation="softmax")

i)

https://nbviewer.org/github/fchollet/deep-learning-with-python-
notebooks/blob/master/chapter02_mathematical-building-blocks.ipynb

le

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Al Guoe S5l
G2as (§ 380bs (5 IS oSl S (g 5lanlel
oK gaoul S slal

GETTING KERAS RUNNING: TWO OPTIONS

To get started in practice, we recommend one of the following two options:

1) Use the official EC2 Deep Learning AMI
(https://aws.amazon.com/amazonai/amis),
and run Keras experiments as Jupyter notebooks on EC2.
Do this if you don't already have a GPU on your local machine.

2) Install everything from scratch on a local Linux workstation.
You can then run either local Jupyter notebooks or a regular Python codebase.
Do this if you already have a high-end NVIDIA GPU.

S
-

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Yy

G2as (§ 380bs (5 IS oSl S (g 5lanlel

ebre 5 Lo 5l (555 o2 Baee oS0k LAl 61 sa)

RUNNING DEEP-LEARNING JOBS IN THE CLOUD: PROS AND CONS

S
&

If you don’t already have a GPU that you can use for deep learning
(a recent, high-end NVIDIA GPU),
then running deep-learning experiments in the cloud is a simple, low-cost way
for you to get started without having to buy any additional hardware.

If you’re using Jupyter notebooks,
the experience of running in the cloud is no different from running locally.

As of mid-2017,
the cloud offering that makes it easiest to get started with deep learning is definitely AWS EC2.
But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long term
—or even for more than a few weeks. EC2 instances are expensive.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

il
’U};b/

iy

giac & sSals (LS oliduudl SO jlasloly

Cona Grae 5080k sl GPU i
WHAT IS THE BEST GPU FOR DEEP LEARNING? (2025)

VRAM

GPU Type .

Capacity
Entry-level (e.g.

4 (e.g. 8GB -
RTX 3060, RTX 1268
4060)

Mid-Range (e.qg.,

RTX 3090, RTX 24GB
4090)

High-end Al

GPUs (e.g.

Nvid?ai%é il
H100, AMD HRRE
MI300X)

Super High-end
wida i, | 2208
AMD Instinct 20608
MI300X)

Memory
Bandwidth

~200-300
GB/s

~1,000 GB/s

~1,600+
GB/s

~2,000+
GB/s

Memory
Standard

GDDR6

GDDR6X

HBM2

HBM3

Best For

Small models, image
classification, hobby
projects

Large datasets, deep
neural networks,
transformers

Large language models
(LLMs), Al research,
enterprise-level ML

Large-scale Al training,
supercomputing,
research on massive
datasets

https://cloudzy.com/blog/best-gpu-for-machine-learning/

Best GPUs for Machine Learning in 2025

Mow that you have a good idea of what the best GPUs for machine learning should
have, here's our list of the best GPUs ranked by tops, memory bandwidth, VRAM, etc.

Floating
GPU veRam _emory Memory . ons point Compatibilit
Bandwidth Standard P y

Precision
NWIDIA 188 FPG4, CUDA
H100 GB 78 TB/s HBM3 3,858 FP32, Tensa;Flow
NWL FP16
NWIDIA
A100 FPG4, CUDA,
80GB 2TB/s HBM:2 1,979 FP32, TensorFlow,
Tensor FP18 PyTarch
Core
:;F}I(DIA 24GB 1.008 TB/ GDDREX 826 FP32, CUDA,
’ s ’ FP16 TensorFlow
4090
NWIDIA
RTX FPG4, CUDA,
AGOOOD 483 GB 768 GB/s GDDRB 40 FP32, TensorFlow,
Tensar FP16 PyTaorch
Core
NWIDIA
GeForce FP32, CUDA,
RTX 12GB 504 GB/s GDDRE6X | 35.6 P16 TensorFlow
4070
NWIDIA FPG4, CUDA,
RTX 24GE 1008 TBf/s GDDREX 40 FP32, TensorFlow,
3090 Ti FP16 PyTarch
:th 128 FP64, ROC
adeon 16TB/s HBM3 60 FP32, m,
Instinct GB EP15 TensorFlow

MIZ00

https://cloudzy.com/blog/best-gpu-for-machine-learning/

Tesla M40

s Tesla K80

NVIDIA H100 NVL

NVIDIA A100 Tensor Core GPU

NVIDIA RTX 4090

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

)

aLid (5o (5uidinl

2999 il gl Jhe S
CLASSIFYING MOVIE REVIEWS: A BINARY CLASSIFICATION EXAMPLE

(525989 (saidlib b gk~ g0 guisddib
ceval Sadile (55,800 Sl g 930 0 Seu 53wl 5 (SO

IJ‘:\.AL'&‘JJ
comwlandy e gl giae pulil 5 A0 b Cafie I o alid slaass suiidib (5 ,:S0b Sua

il
’U};é/

YY o S-Sl
Al (SLauEh (uiddubs

IMDB Csbd‘d 4.&‘.\9..0%.0
THE IMDB DATASET

Dataset

a set of 50,000 highly polarized reviews from the
Internet Movie Database.

They’re split into 25,000 reviews for training and
25,000 reviews for testing, each set consisting of
50% negative and 50% positive reviews.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S
-

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Y ot §500
alsd (slasdy (suisddals

|MDB 6bd|d de gono C,JJ‘J.&

Cowl s G510 oty (0ul S) 4 gane ol Lo € crwl SlalS 1 gladlos udh 4o
cl ol ool moais lael 5 gldlas 4 g

[ol B8 S 51,8 elicdd o ot i 4l S (slads punis sue 5]

Loading the IMDB dataset in Keras

from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test data, test labels) = imdb.load data(
num_words=10000)

caaolaee & 15 i) el slasals oSG8 aalS NVt S el cpl Jae 4 NUM_WOPdS=10000 (L < T
S SIS el s3I b alalo o b asl 5 g <= 0 g e GlIS LS 5,00 ol

) Sl et 51 S 085 e o Laads 5l slacoual test_data g train_data sla i
Lol (ufie 85 g 50) Lal o (A 085)) a0 3 placiuul test _labels ytrain_labels

>>> train_data[9]

[1, 14, 22, 16, ... 178, 32]
>>> train_labels[0]

1

il
’U};b/

pld glass guadils

Laals (3o a3l

Listing 4.2 Decoding reviews back to text

word_index is a dictionary mapping

word index = imdb.get word index() siGris toan integer et

reverse word Jndex — diek(
[(value, key) for (key, value) in word index.items()])

decoded : Ak Reverses it,
ecoded_review = " g oy . - | mapping
—> [reverse_word index.get(i - 3, "?") for i in train _datal0]]) integer indices
to words

Decodes the review. Note that the indices are offset by 3
because 0, 1, and 2 are reserved indices for “padding,”
“start of sequence,” and “unknown.”

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

e,
)Uj!

E, Gt (S uEaly
alid (sLauss (suiddas

Lasaly (g 5bwsalel

PREPARING THE DATA

S e S0 E Kol g Ol S e | s alaed B (Sl
c - L 9B 0 oS b Lo

05l 4 crnd Jaas sLasl

€ oo Jsass (samples, word_indices) JKa b punn 55l So 4 15 LT Gup SISy

(B9 (5 8S) A€ o o L 1 g a0 31 olalo s 4o 1 Lo

[crd a ssla Glal Gunsl 5 518 ¢ Hin ladaa] «é‘é—ﬁ » (S ylasas
‘(Dense L;‘l:\Y ..LuLc) S JlS GJL‘M‘ L;JL.SJ.) 6‘.&@&‘_3 uﬁ‘ (5390 .L\‘Jl\ «< LS“&’Y J‘ g One-Hot EnCOdlng

This would mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vector
that would be all Os except for indices 3 and 5, which would be 1s.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

il
)U}; b/

s Gt (S uEaly
e+¢¢§A&£¢5&gd;b

S Lasaly (SJLL.UOJLOT

PREPARING THE DATA

Listing 4.3 Encoding the integer sequences via multi-hot encoding

Creates an all-zero matrix
of shape (len(sequences),
dimension)

import numpy as np
def vectorize sequences(sequences, dimension=10000) :
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate (sequences) :
for j in sequence:
results[i, j] = 1. <
return results

Sets specific indices
of results[i] to 1s

X train = vectorize sequences (train data) Vectorized
X test = vectorize sequences (test data) training data
Vectorized test data

>>> x_train[0]
array([0., 1., 1., ..., 0., 0., 0.])

Vectorizing labels

y _train = np.asarray(train_labels).astype("float32")
y test = np.asarray(test labels).astype("float32")

e,

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

R ot §500
AL (5Laukh (suiiddals

~

BUILDING THE NETWORK

sl e relu enllas ol g5 L (Dense) Jusis Lolas (slads¥ 3 sulaw 4y s o gunds | Sa

Dense sladsy (sdidy

aalél_‘gla‘)ycgug&alm(\l SlS asaal g
0¥ 58 sl Ol glaaaly slaas (Y |

(YL ol b plaisls lad) asls yidus oley lanals slass 4 54
S ab) s Rsnan slaplasl sas e Slal S 4
S 5dise SOIS (Sliwlae SB35 s Lol
23 Gl 521 Lo S (5 5Kk 4 sade ol (Sas

relu relu sigm

16 16 1

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S
-

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA

alid (sLautl (suaiddals
ACTIVATION FUNCTIONS
15 1.00 n
1.0} 075}
05} 0.50
0.0 0.25
%0 a5 10 05 00 05 10 15 0 -3 2 - 0 i 2 3

il
’U};é/

RelLU

Sigmoid

W o suliiul uf gl cudlad s 51 AT (g0
A Glo | Jlaad Hlude S 6
a score between 0 and 1, indicating how likely the

sample is to have the target “1”:
how likely the review is to be positive

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA

Geoe SpuSsly
plsd slaads (gunddab
Sl solare
THE NETWORK ARCHITECTURE Output

e,
’Ujb/

(probability)

}

4 I)
Dense (units=1)
. J
A
4 N\
Dense (units=16)
. J
A
4)
Dense (units=16)
. J
Sequential T
Input

(vectorized text)

Listing 4.4 Model definition

from tensorflow import keras

from tensorflow.keras import layers

model = keras.Sequential ([

1)

layers.Dense (16,
layers.Dense (16,
layers.Dense (1,

activation="relu"),
activation="relu"),
aetiyabdon="gi gmaid"]

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

o Callasd aall (s

S e w8l 15 S0 ¥ 4 ¥ S 5l b sae sladiasS Sk Ol ¢ plad s cllad ol 3

el A gy sden cullas ol 55 S
QS ol oy (g 5aua0 Ladas 8 glas Laday sluad il 580 L
.anAA\JAULA(SLA@&&SngJaGBM;M@J

10

Leaky RelLU

max(0.1z, x)

Sigmoid

o) = 1+é—=’c
lanh Maxout
tanh(x) e max(wi z + by, wlx + by)
RelLU ELU
. >0
max(0,) {;(em S m

EITEN
Up %
Ref: http://cs231n.stanford.edu/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

A

aLid (5o (5l

CHOOSING L.OSS FUNCTION

S
&

Sl Jlaial S €Sl o 903 5 pis dal go (090 adlib gdbiue SH1L
.awlbinary_crossentropy 1oss sl mb sl Glassl o i <=

el sl Mal s ,la3 ga 9 5 SueS (JlEie 93T Jol8ie o 9 01
e | (Lo fmping s g LS 0 o) 58) Jlaal slags) 5 o dali Cross-Entropy

oS suldiwl ol 5 e mean_squared_error sl)G ol Sau sl

ol LIS 5 SV a5 0A b (pladae b oS el (Sle sl 43S G i Y gene JalBie g 3T L

1 N
BCE = — — L log(V)+ (1 —v) -loe(l — V.
Y Z;,y, gy)+ U —y)-log(l -y,

¥y Geot 5 Sy

ﬁ’ laads gundiabs

Jae 0o S LlelS

COMPILING THE MODEL

Listing 4.5 Compiling the model

model .compile (optimizer="rmsprop",
loss="binary crossentropy",
metrics=["accuracy"])

\\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

=
\op o
S N

Al Gt (S uEaly
e.L:é $laadh (sunddab

SS90 aliel
VALIDATING THE APPROACH

c&b\}bT&PJd«ﬁ‘ém a.&gdbﬁb}iﬂﬁwubdb S99 Jde &80 e ,las () o
S olasl e jluie] (gds gane S Wb
&Sw‘d&&.@‘w’b‘}y’fcsubd‘d‘)“bﬂ\‘,‘":JJLLA*‘Ls‘J.s

Listing 4.6 Setting aside a validation set

x val = X train[:10000]
partial x train = x train[10000:]
y val = y train[:10000]
partial y train = y train[10000:]

Original Set

Training Testing

Training Validation Testing

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

e,

I ¥¥ Giae (5 Sy

aLid (SLauE) (suisdiuls
Jae i g

TRAINING THE MODEL

i) sal (slasals 5o Lad gad (s4ad (595 0 LSS Y =(epoch) Sl Ve rasans (i) sl Jas Wb Jls
L0 OVY sl ls sladiws s, b

.’A:\:\SL;ACJJU&:\OM‘J%@:\AAJL.\:\L‘GQJ|J\’,’”63Jﬁ¢4§d\9dﬁ‘)ﬁJGﬁ6\9Jﬁ(QLﬁM

Listing 4.7 Training your model

history = model.fit (partial x train,
partial y train,
epochs=20,
Batch, gike=Fl2,
validation data=(x val, y wval))

L;%:_LUJL;\L‘&‘LSJAS\’,"'6\9)‘)?&34\9&4?%‘6@#‘.“6‘3IdJ‘JJ&Jé&‘&:S@‘ﬂ&LﬂL‘JJ

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

e,
’Ujb/

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

Yo Guoe S5l
Al (SLauEh (uiddubs

Jas a6

MODEL HISTORY

The call to model.fit() returns a History object.
This object has a member history,

which is a dictionary containing data about everything that happened during training.

>>> history dict = history.history
>>> history dict.keys()
[u"accuracy", u"loss", u"val accuracy", u"val loss"]

The dictionary contains four entries:
one per metric that was being monitored during training and during validation.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

e,
’Ujb/

pld LA suisdiul

J)U\ J‘JJAS ‘:_A..uJ

Listing 4.8 Plotting the training and validation loss

import matplotlib.pyplot as plt
history dict = history.history

loss values = history dict["loss"]
val loss values = history dict["val loss"]

~ - ~ N "bo" is for
epochs = range(l, len(loss values) + 1) "blue dot.”
plt.plot (epochs, loss values, "bo", label="Training loss") ue dot.

PLE . plaE (epochs, Wal_ less Salbes, "B, label="Validation losSsY)
plt.title("Training and validation loss")

plLE : xlabel ("Epeehs") "b" is for
plt.ylabel ("Loss") "solid blue line."
plt.legend ()

plt.show ()

Training and validation loss

® Training loss
06— Validation loss

0.1+ L]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

¥V

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

pld Lot siudil

CABJJ‘J\}A:!‘L“JJ

Listing 4.9 Plotting the training and validation accuracy

e,
’Ujb/

1k %k >
S ,() , N | Clears the figure
acc = history dict["accuracy"]
val acc = history dict["val accuracy"]

pli.plel (cpochid, ade, "ba', label=-"TEaininhg acc™)
plt.plot (epochs, wval acc, "b", label="Validation acc")
plt.title("Training and validation accuracy")
plt.xlabel ("Epoche")

plt.ylabel ("Accuracy")

plt.legend ()

plt.show ()

1.00 4
0.95 A
9

2 0.90
3

0.85

0.80 4

Training and validation accuracy

® Training accl....
— Validation acc ® []
° Ll
[]
L]
L]

M

25 5.0 7.5 10.0 125 15.0 17.5 20,0
Epochs

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

YA

aLid (5o (5uidinl

e300 slala sad Julas

Training and validation loss Training and validation accuracy

e ® Training loss 1004 @ Training acc e0®0?® LA L
0.6 4 —— Validation loss —— Validationacc g ® .
L]

054 ® 0.95 1 ° 5

0.4 o) "
2 S 0.90- *
o S
- : gh e

@O
o
0.2 0.85 -
" L]
0.1 LI .
o 4
., L e 0o e 0.80 *
2?5 5.ID '.I'TS lC;.D 12;.5 15I.0 l'.-'l.5 2‘[;!.1] 2?5 5:0 '.I'TS].C;.D 12;.5 15:.0 l'.-‘:.S 26.1]
Epochs Epochs
b o (EAS S A b a8 sl (slasuly (595 IS
..L)l:su_.c U‘t':“;é| ‘Sﬁ‘ﬂGJJJ:‘u-‘:‘bJA‘ GLAQJ‘J 6\9‘)‘):3&3..3
‘\}\xuhﬁ@m‘)w&gﬁ)%é\)dQ@Gﬂ&\&\,@n\g&adbg\xu\
J| i u—‘l'JJ"" L;LAQJ‘J S90 Jde &80 &3‘\):‘&&:\:!
. CA_w‘ s u%""""JL.‘l‘"‘ (sLAéJ‘.J XD dd-o C—\BJ Ove]fiﬁing

il
’U};b/

¥4

3 (claudy cuusdd
alsd s Saiddal

G55l i 5 S la

eSS A8 e Sl ¥ 51 G 15 G5 90T a5 0 ¢« B0 s 5 (s S sla (5158 cas 50 (il 0

Retraining a model from scratch

‘\ Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

S
&

model = keras.Sequential([
layers.Dense(16, activation="relu"),
layers.Dense(16, activation="relu"),
layers.Dense(1, activation="sigmoid")
1)
model.compile(optimizer="rmsprop",
loss="binary_ crossentropy"”,
metrics=["accuracy"])
model.fit(x_train, y train, epochs=4, batch size=512)
results = model.evaluate(x_test, y test)

>>> results The first number, 0.29, is the test
[0.2929924130630493, 0.88327999999999995] 055 1a the oot somuraey

This fairly naive approach achieves an accuracy of 88%.
With state-of-the-art approaches, you should be able to get close to 95%.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

aLid (5o (5uidinl

s slasals (595 o3 LAty aal 55 (61 s sasa (55 50T (6450t S5) suliinl

USING A TRAINED NETWORK TO GENERATE PREDICTIONS ON NEW DATA

P saldin) oo cnd g0 S 5o T 5 asdl 65 g 4ol (ana (85 90T 51 G
S dawlae]y adl S b cnle 08 S Sl Jlaial anil o5 oo

>>> model.predict(x_test)
array([[©.98006207]

S
&

[©.99758697]
[©.99975556]

cees
[©0.82167041]
[©.02885115]
[©.65371346]], dtype=float32)
As you can see,

the network is confident for some samples (0.99 or more, or 0.01 or less)
but less confident for others (0.6, 0.4).

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

0)

§ (claudy cuuiddslbs
alsd s (S dd

sdas slaiule

FURTHER EXPERIMENTS

S
-

The following experiments will help convince you that the architecture choices
you’ve made are all fairly reasonable, although there’s still room for improvement:

U You used two hidden layers.
Try using one or three hidden layers,
and see how doing so affects validation and test accuracy.
O Try using layers with more hidden units or fewer hidden units:
32 units, 64 units, and so on.
U Try using the mse loss function instead of binary_crossentropy.
U Try using the tanh activation (an activation that was popular in the early days of
neural networks) instead of relu.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

QY

3 (claudy cuusdd
alsd s Sadiab

WRAPPING UP

Here’s what you should take away from this example:

You usually need to do quite a bit of preprocessing on your raw data in order to be able to
feed it—as tensors—into a neural network. Sequences of words can be encoded as binary
vectors, but there are other encoding options, too.

Stacks of Dense layers with relu activations can solve a wide range of problems
(including sentiment classification), and you’ll likely use them frequently.

In a binary classification problem (two output classes), your network should end with a
Dense layer with one unit and a sigmoid activation:

the output of your network should be a scalar between 0 and 1, encoding a probability.
With such a scalar sigmoid output on a binary classification problem,

the loss function you should use is binary crossentropy.

The rmsprop optimizer is generally a good enough choice, whatever your problem.
That’s one less thing for you to worry about.

As they get better on their training data, neural networks eventually start overfitting and
end up obtaining increasingly worse results on data they’ve never seen before.

Be sure to always monitor performance on data that is outside of the training set.

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

oy

<!

Deep Learning
with Python

SECOND EDITION

FRANCOIS CHOLLET

mn
MANNING
SHELTER ISLAND

Francois Chollet,
Deep Learning with Python,
Second Edition, Manning Publications, 2021.

Chapter 4

e,
)U}K

Gelting started
with neural networks:
Classification and regression

This chapter covers

Your first examples of realworld machine learning
workflows
Handling classification problems over vector data

Handling continuous regression problems over
vector data

This chapter is designed to get you started using neural networks to solve real prob-
lems. You'll consolidate the knowledge you gained from chapters 2 and 3, and
you'll apply what you've learned to three new tasks covering the three most com-
mon use cases of neural neworks—binary classification, multiclass classification,
and scalar regression:

* Classifying movie reviews as positive or negative (binary classification)

» Classifying news wires by topic (multiclass classification)

* Estimating the price of a house, given real-estate data (scalar regression)

These examples will be your first contact with end-to-end machine learning work-
flows: you'll get introduced to data preprocessing, basic model architecture princi-
ples, and model evaluation.

a5

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

(Ala}

<!

Deep Learning
with Python

SECOND EDITION

FRANCOIS CHOLLET

m

MANNING
SHELTER ISLAND

Francois Chollet,
Deep Learning with Python,
Second Edition, Manning Publications, 2021.

Chapter 7

e,

Wm‘king with Keras:

A d(eep dive

This chapter covers

Creating Keras models with the sequential
class, the Functional API, and model subclassing
Using built-in Keras training and evaluation loops
Using Keras callbacks to customize training
Using TensorBoard to monitor training and
evaluation metrics

Writing training and evaluation loops from scratch

You've now got some experience with Keras—you're familiar with the Sequential
model, Dense layers, and builtin APIs for training, evaluation, and inference—
compile(}, fit (), evaluate (), and predict (). You even learned in chapter 3 how
to inherit from the Layer class to create custom layers, and how to use the Tensor-
Flow GradientTape to implement a step-by-step training loop.

In the coming chapters, we'll dig into computer vision, timeseries forecast-
ing, natural language processing, and generative deep learning. These complex
applications will require much more than a Sequential architecture and the
default £it () loop. So let’s first turn you into a Keras expert! In this chapter,
you'll get a complete overview of the key ways to work with Keras APIs: everything

172

0F

<!

with Python

FRANCOIS CHOLLET

MANNING
SHELTER ISLAND

Deep Learning

Francois Chollet,
Deep Learning with Python,
Manning Publications, 2018.

Chapter 3

Prepared by Kazim Fouladi | Spring 2025 | 4t Edition

e,

Getting started
with neural networks

This chapter covers

Core components of neural networks
An introduction to Keras
Setting up a deep-learning workstation

Using neural networks to solve basic
classification and regression problems

This chapter is designed to get you started with using neural networks to solve real
problems. You'll consolidate the knowledge you gained from our first practical
example in chapter 2, and you'll apply what you've learned to three new problems
covering the three most common use cases of neural networks: binary classifica-
tion, multiclass classification, and scalar regression.

In this chapter, we’ll take a closer look art the core components of neural nemworks
that we introduced in chapter 2: layers, networks, objective funcrions, and optimiz-
ers. We'll give you a quick introduction to Keras, the Python deeplearning library
that we’ll use throughout the book. You'll set up a deep-learning workstation, with

