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Preface

You can know the name of a bird in all the languages of the world, but when
you’re finished, you’ll know absolutely nothing whatever about the bird . . . So
let’s look at the bird and see what it’s doing – that’s what counts. I learned very
early the difference between knowing the name of something and knowing
something. Richard Feynman (1918–1988)

As the title of this book suggests, this book is a minimalist approach to
teaching TCP/IP using laboratory-based experiments. It is minimalist in
that it provides one, possibly idiosyncratic, choice of topics at a depth
we felt was sufficient to learn the basics of TCP/IP. The intention was
not to write a reference text on the subject. The laboratory was important
in giving students the experience of observing the TCP/IP protocols in
action. The act of observing and drawing some conclusions from those
observations, brings to life the often dry study of network protocols, and
motivates students to learn more about them.

Appendix A is necessary reading only for the instructor who is in charge
of setting up the lab. We have attempted to keep costs down so that only the
most Scrooge-like University administrator would raise an eyebrow over
the cost of the lab equipment (as for lab space, that may be another mat-
ter!). We assume that the students have a basic background in networking,
perhaps from a previous course, or perhaps as part of a course that back
loads the experiments in this book after providing a general lecture-based
introduction to networks. Chapter 0 is a quick overview of TCP/IP that
serves two purposes. It provides an overview of the TCP/IP stack, and
serves as the framework for the rest of the book. Chapters 1 to 9 have the
following common structure. Each of them provides introductory material
suitable for presentation in the lecture part of the course followed by a lab
experiment. The lab experiments should follow lectures that provide the

xiii



xiv Preface

students with the basic knowledge they need to perform the experiments
and derive insights from their observations during the course of the exper-
iments. Each lab experiment is designed to take no more than 3 hours to
complete.

The experiments were developed on the basis of a course taught at
the Polytechnic University over the course of over eight years. Initially,
we used SUN workstations with the Solaris operating system, but have
now switched to Linux machines. The primary operating system in this
book is Linux, but with Solaris commands provided when they differ
from Linux commands. Chapter 1 provides an introduction to Linux,
since many students may be unfamiliar with this operating system. It also
introduces key tools used in subsequent experiments such as tcpdump
and Ethereal. Chapter 2 introduces network interfaces, ping and IP ad-
dresses. Chapter 3 introduces bridges, also known as layer two switches,
bridge/router configuration, and the Cisco IOS. Chapter 4 focuses on rout-
ing, with RIP and OSPF as the routing protocols studied, along with the
useful traceroute utility. Chapter 5 introduces UDP and FTP. Chapter 6
follows up with TCP, including a study of its congestion control mecha-
nism. These six chapters are sufficient in many cases to introduce students
to the basics of TCP/IP. Nonetheless, the next three chapters are important
for students who wish to link the basic plumbing of TCP/IP with appli-
cations. Chapter 7 deals with IP multicast and realtime applications. The
web, DHCP, NTP and NAT are some key applications that are presented
in Chapter 8, as well as a brief introduction to socket programming. Net-
work management and security are arguably two of the most important
features that students need to know, at least at a basic level. Chapter 9
provides a brief introduction to this material, which can easily be the sub-
ject of a separate course. A list of key RFCs is provided at the end of the
book.

There are several alternative ways of teaching this material with this
book. A general knowledge of networking is assumed as a prerequisite for
this book. However, an introductory course in networking could be com-
bined with the first six experiments, back-loaded at the end of the course, to
illustrate the lowest four layers of the protocol stack. For computer scien-
tists, a top-down approach is sometimes the preferred approach in teaching
networking. In that case the lab experiments can be re-ordered to focus on
the higher layers.
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Note to instructors
Additional course material, including lecture transparencies, sample lab
reports, homework assignments, examinations, and errata, are available at
the course website: www.cambridge.org/052160124X.
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General conventions

The following conventions are used all through this book.
� In paragraphs, Linux, Unix and Cisco IOS commands are written in a

bold font, such as: telnet and enable.
� In a compound command with options and parameters, the command and

options are in bold, while the parameters are in italics. For example, in
tcpdump -enx host ip addr1 and ip addr2,

the command tcpdump uses options -e, -n and -x. In the filter that fol-
lows, key words such as host, and, not, or etc., are also in bold. The
parameters are ip addr1 and ip addr2, which should be replaced with
the corresponding IP addresses during the exercise.
The following exemplary command,

/etc/init.d/snmpd start|stop,
uses two options. Either start or stop can be used, but not at the same
time.

� The name of a host or router is in the Typewriter typestyle, e.g., shakti
or Router4.

� A protocol header field is also in the Typewriter typestyle, e.g., Length
or Source IP Address.

� Questions in the Lab report section of each exercise should be answered
in the lab report. For example, for Exercise 1 in Chapter 1, students need
to answer the following question in Lab Report 1.
Lab report What is the default directory when you open a new command
tool? What is your working directory?

� In this guide, we focus on the Linux operating system. However, this
guide can also be used with the Sun Solaris operating system. In the
following text, Linux-specific material, or general material that apply to
both operating systems are used, while the Solaris specific materials are
enclosed between horizontal lines.
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0 TCP/IP overview

From these assumptions comes the fundamental structure of the Internet: a
packet switched communications facility in which a number of distinguishable
networks are connected together using packet communications processors called
gateways which implement a store and forward packet forwarding algorithm.

David D. Clark

0.1 The Internet

The Internet is a global information system consisting of millions of com-
puter networks around the world. Users of the Internet can exchange email,
access to the resources on a remote computer, browse web pages, stream
live video or audio, and publish information for other users. With the evo-
lution of e-commerce, many companies are providing services over the
Internet, such as on-line banking, financial transactions, shopping, and on-
line auctions. In parallel with the expansion in services provided, there has
been an exponential increase in the size of the Internet. In addition, various
types of electronic devices are being connected to the Internet, such as cell
phones, personal digital assistants (PDA), and even TVs and refrigerators.

Today’s Internet evolved from the ARPANET sponsored by the
Advanced Research Projects Agency (ARPA) in the late 1960s with only
four nodes. The Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol suite, first proposed by Cerf and Kahn in [1], was adopted for
the ARPANET in 1983. In 1984, NSF funded a TCP/IP based backbone
network, called NSFNET, which became the successor of the ARPANET.
The Internet became completely commercial in 1995. The term “Internet”
is now used to refer to the global computer network loosely connected
together using packet switching technology and based on the TCP/IP pro-
tocol suite.

1



2 TCP/IP overview

The Internet is administered by a number of groups. These groups con-
trol the TCP/IP protocols, develop and approve new standards, and assign
Internet addresses and other resources. Some of the groups are listed here.
� Internet Society (ISOC). This is a professional membership organization

of Internet experts that comments on policies and practices, and oversees
a number of other boards and task forces dealing with network policy
issues.

� Internet Architecture Board (IAB). The IAB is responsible for defining
the overall architecture of the Internet, providing guidance and broad
direction to the IETF (see below).

� Internet Engineering Task Force (IETF). The IETF is responsible for
protocol engineering and development.

� Internet Research Task Force (IRTF). The IRTF is responsible for fo-
cused, long-term research.

� Internet Corporation for Assigned Names and Numbers (ICANN). The
ICANN has responsibility for Internet Protocol (IP) address space alloca-
tion, protocol identifier assignment, generic and country code Top-Level
Domain name system management, and root server system manage-
ment functions. These services were originally performed by the Internet
Assigned Numbers Authority (IANA) and other entities. ICANN now
performs the IANA function.

� Internet Network Information Center (InterNIC). The InterNIC is oper-
ated by ICANN to provide information regarding Internet domain name
registration services.
The Internet standards are published as Request for Comments (RFC),

in order to emphasize the point that “the basic ground rules were that
anyone could say anything and that nothing was official” [2]. All RFCs
are available at the IETF’s website http://www.ietf.org/. Usually, a
new technology is first proposed as an Internet Draft, which expires in six
months. If the Internet Draft gains continuous interest and support from
ISOC or the industry, it will be promoted to a RFC, then to a Proposed
Standard, and then a Draft Standard. Finally, if the proposal passes all the
tests, it will be published as an Internet Standard by IAB.

0.2 TCP/IP protocols

The task of information exchange between computers consists of vari-
ous functions and has tremendous complexity. It is impractical, if not
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Application layer

Transport layer

Network layer

Data link layer

Figure 0.1. The TCP/IP protocol stack.

impossible, to implement all these functions in a single module. Instead,
a divide-and-conquer approach was adopted. The communication task is
broken up into subtasks and organized in a hierarchical way according to
their dependencies to each other. More specifically, the subtasks, each of
which is responsible for a facet of communication, are organized into differ-
ent layers. Each higher layer uses the service provided by its lower layers,
and provides service to the layers above it. The service is provided to the
higher layer transparently, while heterogeneity and details are hidden from
the higher layers. A protocol is used for communication between entities in
different systems, which typically defines the operation of a subtask within
a layer.

TCP/IP protocols, also known more formally as the Internet Protocol
Suite, facilitates communications across interconnected, heterogeneous
computer networks. It is a combination of different protocols, which are
normally organized into four layers as shown in Fig. 0.1. The responsibility
and relevant protocols at each layer are now given.
� The application layer consists of a wide variety of applications, among

which are the following.
� Hypertext Transfer Protocol (HTTP). Provides the World Wide Web

(WWW) service.
� Telnet. Used for remote access to a computer.
� Domain Name System (DNS). Distributed service that translates be-

tween domain names and IP addresses.
� Simple Network Management Protocol (SNMP). A protocol used for

managing network devices, locally or remotely.
� Dynamic Host Configuration Protocol (DHCP). A protocol automating

the configuration of network interfaces.
� The transport layer provides data transport for the application layer,

including the following.
� Transmission Control Protocol (TCP). Provides reliable data transmis-

sion by means of connection-oriented data delivery over an IP network.
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� User Datagram Protocol (UDP). A connectionless protocol, which is
simpler than TCP and does not guarantee reliability.

� The network layer handles routing of packets across the networks, in-
cluding the following.
� Internet Protocol (IP). The “workhorse” of the TCP/IP protocol stack,

which provides unreliable and connectionless service.
� Internet Control Message Protocol (ICMP). Used for error and control

messages.
� Internet Group Management Protocol (IGMP). Used for multicast

membership management.
� The link layer handles all the hardware details to provide data transmis-

sion for the network layer. Network layer protocols can be supported by
various link layer technologies, such as those listed here.
� Ethernet. A popular multiple access local area network protocol.
� Wireless LAN. A wireless multiple access local area network based

the IEEE 802.11 standards.
� Point to Point Protocol (PPP). A point-to-point protocol connecting

pairs of hosts.
� Address Resolution Protocol (ARP). Responsible for resolving net-

work layer addresses.
Figure 0.2 shows the relationship among protocols in different layers. We
will discuss these protocols in more detail in later chapters.

Telnet HTTP

FTP

SMTP

BGP

DNS

NFS

DHCP TFTP RIP

TCP

BOOTP SNMP RTP

UDP

ICMPIGMP OSPF

IP

ARP RARP

Application Layer

Transport Layer

Network Layer

Link Layer

Ethernet, IEEE 802.3, IEEE 802.11
Token Ring, PPP, etc. 

Figure 0.2. The TCP/IP protocols.
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 segment or Ethernet hub

Ethernet
Driver

Ethernet

Telnet Telnet

TCP TCP

IP IP

Host A Host  B

Ethernet
Driver

Ethernet Protocol

IP Protocol

TCP Protocol

Telnet Protocol

Figure 0.3. An illustration of the layers involved when two hosts communicate over the

same Ethernet segment or over an Ethernet hub.

0.3 Internetworking devices

The Internet is a collection of computers connected by internetworking
devices. According to their functionality and the layers at which they are
operating, such devices can be classified as hubs, bridges, switches, and
routers.

Hubs are physical layer devices, used to connect multiple hosts. A hub
simply copies frames received from a port to all other ports, thus emulating
a broadcast medium. Bridges, sometimes called layer two switches,1 are
link layer devices. They do not examine upper layer information, and can
therefore forward traffic rapidly. Bridges can be used to connect distant
stations and thus extend the effective size of a network. Bridges are further
discussed in Chapter 3.

Routers, also called layer three switches, are network layer devices in-
corporating the routing function. Each router maintains a routing table,
each entry of which contains a destination address and a next-hop address.
None of the routers has information for the complete route to a destina-
tion. When a packet arrives, the router checks its routing table for an entry
that matches the destination address, and then forwards the packet to the
next-hop address. Routing is further discussed in Chapter 4.

Figure 0.3 shows the layers involved in communication between two
hosts when they are connected by an Ethernet hub. The hosts can directly

1 The industry, confusingly, also uses the term smart hubs for switches.
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Ethernet
Driver Driver

Ethernet PPP
Driver

Logical Link Control

IP

Telnet Telnet

TCP TCP

Ethernet PPP Link

PPP
Driver

Host A Host  B

IP
IP Protocol

TCP Protocol

Telnet Protocol

Bridge

Figure 0.4. An illustration of the layers involved when two hosts communicate through a

bridge.

IP

Ethernet
Driver Driver

Ethernet PPP
Driver

IP

TCP TCP

Telnet Telnet

Ethernet PPP Link

IP

LLC LLC

PPP
Driver

Host A Host  B

Router

TCP Protocol

Telnet Protocol

IP IP

Figure 0.5. An illustration of the layers involved when two hosts communicate through a

router.

communicate with each other since the same link layer protocol is used.
Figure 0.4 shows how two different network segments using different link
layer technologies are interconnected using a bridge, which interfaces be-
tween the link layer protocols and performs frame forwarding. Figure 0.5
shows how two networks are interconnected by a router, which not only
performs the layer two functions as in Fig. 0.4, but also handles rout-
ing and packet forwarding, which are the major functions of the network
layer.
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Ethernet header IP header TCP header Application data Ethernet trailer

IP datagram

IP header TCP header Application data

TCP segment

TCP header Application data

App header User data

User data

IP

TCP

Applications

Ethernet frame Ethernet

Ethernet Driver

Figure 0.6. Encapsulation of user data through the layers.

As shown in the examples above, a single network segment is formed
using hubs. A number of network segments are interconnected by bridges
and switches to construct an extended local area network associated with
typically a corporate or other institutional networks. Wide Area Networks
(WAN) are constructed by connecting the routers of different enterprise
networks using high-speed, point-to-point connections. These connections
are usually set up over an SDH/SONET circuit-switched network.

0.4 Encapsulation and multiplexing

In a source host, the application data is sent down through the layers in
the protocol stack, where each layer adds a header (and maybe a trailer)
to the data received from its higher layer (called the protocol data unit
(PDU)). The header contains information used for the control functions
that are defined and implemented in this layer. This encapsulation process
is shown in Fig. 0.6. When the packet arrives at the destination, it is sent up
through the same protocol stack. At each layer, the corresponding header
and/or trailer are stripped and processed. Then, the recovered higher layer
data is delivered to the upper layer.

As explained in Section 0.2, one of the advantages of the layered structure
is the great flexibility it provides for network design and management. For
example, different higher layer protocols can use the service provided by
the same lower layer protocol, and the same higher layer protocol can
use the service provided by different lower layer protocols. In the first
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Process

UDP

Process

ICMP

Process

IGMP

Process

OSPF

TCP

IP

Ethernet

ARP

Ethernet driver

RARP

Process

Frame Type

TCP Port Number UDP Port Number

Protocol

Figure 0.7. Multiplexing/demultiplexing in the layers.

case, each packet sent down to the lower layer should have an identifier
indicating which higher layer module it belongs to. As is shown in Fig. 0.7,
multiplexing and demultiplexing is performed at different layers using the
information carried in the packet headers. For example, a communication
process running in a host is assigned a unique port number, which is carried
by all the packets generated by or destined to this process. Transport layer
protocols such as TCP or UDP determine whether a packet is destined for
this process by checking the port number field in the transport layer header.
In the IP case, each protocol using IP is assigned a unique protocol number,
which is carried in the Protocol IP header field in every packet generated
by the protocol. By examining the value of this field of an incoming IP
datagram, the type of payload can be determined. A field called Frame
Type in the Ethernet header is used for multiplexing and demultiplexing at
this level.

0.5 Naming and addressing

In order to enable the processes in different computers to communicate
with each other, naming and addressing is used to uniquely identify them.
As discussed in the previous section, a process running in a host can be
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Figure 0.8. The organization of the domain name space.

identified by its port number. Furthermore, a host is identified by a domain
name, while each network interface is assigned a unique IP address and a
physical, or MAC, address.

0.5.1 Domain name

In the application layer, an alphanumeric domain name is used to identify
a host. Since this layer directly interacts with users, a domain name is more
user friendly than numeric addressing schemes, i.e., it is easier to remember
and less prone to errors in typing.

Domain names are hierarchically organized, as shown in Fig. 0.8. In the
tree structure, the root node has a null label, while each nonroot node has
a label of up to 63 characters. As shown in Fig. 0.8, there are three types
of domains. The arpa domain is mainly used for mapping an IP address to
the corresponding domain name. The following seven domains are called
generic domains with three-character labels, one for each of these special
type of organization. The classification of the generic domains are given
in Table 0.1. The remaining domains are two-character labeled country
domains, one for each country, e.g., ca for Canada and us for the United
States of America. The domain name of a node is the list of labels written
as a text string, starting at the node and ending at the root node. Examples
of domain names are photon.poly.edu and mta.nyc.ny.us, as shown
in Fig. 0.8. In addition to the domain names shown in Fig. 0.8, seven new
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Table 0.1. Classification of the generic domains

domain Description

com Commercial organizations

edu Educational institutions

gov other US government institutions

int International organizations

mil U.S. military groups

net Major network support centers

org Other organizations

top-level domains, .aero, .biz, .coop, .info, .museum, .name, and .pro, were
added to the Internet’s domain name system by ICANN in 2000.

Since the TCP/IP programs only recognize numbers, the domain name
system (DNS) is used to resolve, i.e., translate, a domain name to the
corresponding IP address. Then the resolved IP address, rather than the
domain name, is used in the TCP/IP kernel. DNS is a client/server type
of service. Since the entire database of domain names and IP addresses is
too large for any single server, it is implemented as distributed databases
maintained by a large number of DNS servers (usually host computers run-
ning the DNS server program). Thus each DNS server only maintains a
portion of the domain name database shown in Fig. 0.8. A host can query
the DNS servers for the IP address associated with a domain name, or for
the domain name associated with an IP address. If the DNS server being
queried does not have the target entry in its database, it may contact other
DNS servers for assistance. Or, it may returns a list of other DNS servers
that may contain the information. Thus the client can query these servers
iteratively.

It is inefficient to perform name resolution for the same domain name
every time its IP address is requested. Instead, DNS servers and clients
use name caching to reduce the number of such queries. A DNS server
or client maintains a cache for the names and corresponding IP addresses
which have been recently resolved. If the requested domain name is in the
cache, then there is no need to send a DNS query to resolve it. In addition,
each cached entry is associated with a Time-to-Live timer. The value of
this timer, which is usually set to the number of seconds in two days when
the entry is first cached, is determined by the server that returns the DNS
reply. The entry will be removed from the cache when the timer expires.
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0.5.2 Port number

Port numbers are used as addresses for application layer user processes.
The value of the Port Number field in the TCP or UDP header is used to
decide which application process the data belongs to.

Most network applications are implemented in a client–server architec-
ture, where a server provides a service to the network users, and a client
requests the service from the server. The server is always running and uses a
well-known port number. Well-known port numbers from 1 to 255 are used
for Internet-wide services (e.g., telnet uses 23 and ssh uses port 22), while
those from 256 to 1023 are preserved for Unix specific services (e.g., rlogin
uses 513). On the other hand, a client runs for a period of time associated
with the time needed to fullfil its request. It starts up, sends requests to the
server, receives service from the server, and then terminates. Therefore
clients use ephemeral port numbers which are randomly chosen and are
larger than 1023.

0.5.3 IP address

Each host interface in the Internet has a unique IP address. A host with
multiple interfaces and hence multiple IP addresses is called a multi-homed
host. An IP address is a 32-bit number written in the dotted-decimal nota-
tion, i.e., as four decimal numbers, one for each byte, separated by three
periods.

The global IP address space is divided into five classes, as shown in
Table 0.2. Each IP address has two parts, a network ID, which is common
for all the IP addresses in the same network, and a host ID, which is unique
among all hosts in the same network. Figure 0.9 shows the IP address
formats for the classes, where all class A IP addresses start with “0”, all

Table 0.2. Ranges of different classes of IP addresses

Class From To

A 0.0.0.0 127.255.255.255

B 128.0.0.0 191.255.255.255

C 192.0.0.0 223.255.255.255

D 224.0.0.0 239.255.255.255

E 240.0.0.0 255.255.255.255
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Researved for future use (27bits)01 1 1 1
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Figure 0.9. The format of IP addresses of different classes.

class B IP addresses start with “10”, so on and so forth. The class of an
IP address can thus be easily determined by the first number of its dotted-
decimal representation. An IP address consisting of all zero bits or all one
bits for the host ID field is invalid for a host IP address.

As shown in Fig. 0.9, a class A (or class B) address uses 24 bits (or
16 bits) as the host ID. Institutions assigned with a class A or B network
address usually do not have that many hosts in a single network, resulting
in a waste of IP addresses and inconvenience in network administration and
operation. In order to provide the flexibility in network administration and
operation, the subnetting technique was introduced, where an IP address is
further divided into three levels: a network ID, a subnet ID, and a host ID.
With subnetting, IP addresses can be assigned using a finer granularity, e.g.,
a small organization can be assigned a subnet address that just satisfies its
requirement. In addition, with subnetting, an organization can divide its as-
signed network space into a number of subnets, and assign a subnet to each
department. The subnets can be interconnected by routers (see Section 0.3),
resulting in better performance, stronger security, and easier management.

By using Table 0.2 and Fig. 0.9, it is possible to determine the network
ID of an IP address. In order to determine the subnet ID and host ID, a
subnet mask is used to indicate how many bits are used for the host ID. A
subnet mask is a 32-bit word with “1” bits for the bit positions used by the
network ID and subnet ID, and “0” bits for bit positions used by the host
ID. By using a subnet mask, a class A, class B or even class C network
address can be subnetted based on how many subnets and how many hosts
per subnet are needed.

Figure 0.10 shows how, for the same class B IP address, two different
subnet masks result in two different class B arrangements. In both examples,
the network ID consists of the first 16 bits since it is a class B network
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Class B Network ID = 128.238.

16bits

Subnet ID Host ID

10bits 6bits

Subnet Mask: 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0

Class B Host IDNetwork ID = 128.238.

16bits

Subnet ID

8bits 8bits

Subnet Mask: 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0
                        = 0xFFFFFF00 = 255.255.255.0

                        = 0xFFFFFFC0 = 255.255.255.192

Figure 0.10. An example of subnet masks for two different class B subnet design.

address. The first example uses a 24-bit subnet mask, resulting in a 8-bit
subnet ID and a 8-bit host ID. Therefore, there could be 28 = 256 subnets
and 28 − 2 = 254 hosts2 in each subnet with this subnetting scheme. In the
second example, a 26-bit subnet mask is used, resulting in a 10-bit subnet
ID and a 6-bit host ID. Therefore, there could be 210 = 1024 subnets and
26 − 2 hosts in each subnet with this subnetting scheme. Given a network
address, the administrator can flexibly trade off the number of bits needed
for the subnet ID and for the host ID, to find a subnetting arrangement best
suited for the administrative and operative requirements.

The network ID is often referred to as the network-prefix. When subnet-
ting is used, the combination of the network ID and subnet ID is called the
extended-network-prefix. In addition to using the IP address and network
mask pair, a slash-notation is often used by network engineers, where an IP
address is followed by a “/” and the number of 1’s in the subnet mask. For
example, the class B address arrangements in Fig. 0.10 can be expressed
as 128.238.66.101/24 and 128.238.66.101/26, respectively.

With the combination of an IP address and a port number, a process
running in a host is uniquely identified in the global Internet, since the IP
address is unique in the Internet and the port number is unique within the
host. The combination of an IP address and a port number is called a socket.

0.5.4 IP version 6

Since it was born, the Internet has been growing exponentially. Every new
host computer being connected needs a unique IP address. The recent trends
of pervasive computing that connects laptop computers, personal digital

2 Host IDs are not allowed to be all 1’s or all 0’s.
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assistants (PDA), and cell phones to the Internet, and home networking that
connects consumer electronic devices and home appliances to the Internet
require yet more IP addresses.

However, when the current version of IP (IPv4) was designed, it was
never imagined that the size of the Internet would be so huge. According
to [3], the 32-bit IPv4 addresses will be depleted between 2005 and 2015.
Some short-term solutions have been proposed to slow down the depletion
of IPv4 addresses, including the following.
� Subnetting. As discussed in the previous subsection, this technique uses

network prefixes with IP addresses. Thus IP addresses can be assigned
in a finer granularity than “classful” addressing, which improves the
efficiency of IPv4 addressing.

� Network Address Translator (NAT). With this technique, a section of IP
addresses can be reused by different private networks.

A long-term solution to the above problem is to change the engine of the
Internet, i.e., introduce a new, improved version of IP. The next version of
IP, IPv6, uses 128-bit addresses, which is four times the size of an IPv4
address. Theoretically, there could be 3.4 × 1038 different IPv6 addresses.
Thus, IPv6 provides plenty of IP addresses for all devices that need an IP
address, eliminating the need to conserve address space.

In addition to an enlarged IP address space, the IPv6 design keeps the
good features of IPv4, while eliminating minor flaws and obsolete func-
tions. Some major enhancements are listed.
� A simpler header format. IPv6 uses a 40-byte fixed length header format.

Some fields in the IPv4 header that are not frequently used are removed.
Options are now supported by extension headers that follow the 40-byte
IPv6 header, and are used only when needed.

� Automatic configuration mechanisms. IPv6 has mechanisms that greatly
simplify the network configuration of host computers. An IPv6 host can
be used in a “plug-and-play” mode, i.e., without manual configuration.
Network management and administration are greatly simplified.

� Security. IPv6 has extensions for authentication and privacy, including
encryption of packets and authentication of the sender of packets. IPsec
(Chapter 9) is an IPv6 protocol suite requirement.

� Realtime service support. IPv6 provides the flow labeling mechanism
for realtime services. With the flow label, intermediate routers can eas-
ily identify the flow to which a packet belongs, allowing for differenti-
ated service of packets from different flows. For example, IP datagrams
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corresponding to a delay-sensitive application like a voice conversation
can be served on a priority basis.

0.5.5 Medium access control address

The medium access control (MAC) address, also called the hardware ad-
dress, is used in the link layer to uniquely identify a network interface.
MAC addresses contain no location information. Since the MAC address
is burned in, network interfaces can be used in plug-and-play mode. An IP
address, on the other hand, contains information on the location of the net-
work interface and is used to route packets to or from the interface. An IP
address usually needs to be configured manually, or by the Dynamic Host
Configuration Procotol (DHCP), which will be discussed in Chapter 8.

Different link layer protocols use different MAC addresses. The Ethernet
MAC address is 48 bits long and is globally unique. The first 24 bits of
an Ethernet address is called the vendor component, while the remaining
24 bits is called the group identifier. An Ethernet interface card vendor is
assigned with a block of Ethernet addresses, starting with a unique vendor
component. Each card made by the vendor has a common vendor compo-
nent, followed by a different group identifier. An example MAC address,
using the hexadecimal notation, is: 0x8:0:20:87:dd:88.

The ARP protocol is used to translate an IP address to the corresponding
MAC address. We will discuss ARP in Section 2.2.4 and Ethernet addresses
further in Section 7.2.1.

0.6 Multiple access

The simplest way of interconnecting two computer hosts is using a point-
to-point link with a host on each end. As the number of hosts increases,
this approach may be inadequate, since there needs to be a large number of
links (i.e., N (N − 1)/2) to fully connect N hosts. In this case, a broadcast
network, where all the hosts share a common transmission medium, is
more efficient.

In order to share the common medium (e.g. a cable or a wireless channel)
efficiently, all hosts must follow a set of rules to access the medium. For
example, at any time, there may be only one host allowed to transmit data.
Otherwise, the data from two or more transmitting users may collide with
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each other and be corrupted. Hosts should be able to check the availability of
the medium and to resolve a collision. In addition, since the total bandwidth
of the medium is limited, it is desirable to share it efficiently in terms of
the aggregate throughput of all the hosts. Furthermore, each host should
have a fair chance to access the medium and should not be allowed to take
it forever.

The sharing-rules are defined as medium access control (MAC) pro-
tocols. Two examples are: Carrier Sense Multiple Access/Collision
Detection (CSMA/CD, used in Ethernet), and Carrier Sense Multiple Ac-
cess/Collision Avoidance (CSMA/CA, used in wireless LANs). MAC pro-
tocols are implemented in the link layer. We will discuss CSMA/CD and
CSMA/CA in Chapter 2.

0.7 Routing and forwarding

Various networks can be classified as circuit-switched networks and packet-
switched networks. In a circuit switching network, an end-to-end circuit
is set up by circuit switches along the path. A user communication ses-
sion is guaranteed with a fixed amount of bandwidth, which is useful for
many applications with quality of service (QoS) requirements. However,
the bandwidth will be wasted if the users have no data to send, since the
circuit is not shared by other users. On the other hand, the bandwidth of
a network link is shared by all the users in a packet switching network.
As the name suggests, user data is partitioned and stored in a sequence of
packets and sent through the network. In such networks, packet switches
route the packets, hop by hop, to the destination using information stored
in the packet headers and information learned about the network topology.

Another dimension of classifying networks is defined by how the packets
belonging to the same session are treated. In a connectionless network,
every packet is self-contained, i.e., with sufficient routing information, and
is treated independently, while in a connection-oriented network, an end-
to-end connection is first set up and each packet belonging to the same
session is treated consistently. Table 0.3 gives examples of how current
networks fall in this classification scheme.

Routing and forwarding are the main functions of the network layer.
The IP modules in the hosts and the internet routers are responsible for
delivering packets from their sources to their destinations. Routing and
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Table 0.3. Classification of networks

Packet switching Circuit switching

Connectionless The Internet –

Connection-oriented Asynchronous Transfer Plain Old Telephone

Mode (ATM) networks Service (POTS)

forwarding consist of two closely related parts: maintaining network topol-
ogy information and forwarding packets. Hosts and routers must learn
the network topology in order to know where the destinations are, by ex-
changing information on connectivity and the quality of network links.
The learned information is stored in a data structure called routing tables
in hosts and routers. Routing tables are created or maintained either man-
ually or by dynamic routing protocols. When there is a packet to deliver, a
host or a router consults the routing table on where to route the packet. An
end-to-end path consists of multiple routers. Each router relays a packet
to the next-hop router which brings it closer to its destination. We will
examine routing and forwarding in the Internet in Chapter 4.

0.8 Congestion control and flow control

Internet routers forward packets using the store-and-forward technique,
i.e., an incoming packet is first stored in an input buffer, and then forwarded
to the output port buffer, queued for transmission over the next link. Usually
the buffer in a router is shared by many data flows belonging to different
source-destination pairs. If, in a short period, a large number of packets
arrive, the output port may be busy for a while and the buffer may be fully
occupied by packets waiting for their turn to be forwarded (i.e., the router is
congested). A similiar situation may occur at a destination host, which may
be receiving packets from multiple sources. The packets received are first
stored in a buffer, and then sent to the application processes. If the packet ar-
riving rate is higher than the rate at which the packets are removed from the
buffer, the receiving buffer may be fully occupied by packets waiting to be
processed. In addition, hosts and routers are heterogeneous in terms of their
processing capability and network bandwidth. In the case of a fast transmit-
ter and a slow receiver, the receiver’s buffer may get full. When the buffer,
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Figure 0.11. An illustration of flow control and congestion control in the Internet.

either at the receiver or at an intermediate router, is full, arriving packets
have to be dropped since there is no space left to store them. Packet losses are
undesirable since they degrade the quality of the communication session.

In the Internet, congestion control and flow control are used to cope with
these problems. The basic idea is to let the source be adaptive to the buffer
occupancies in the routers and the receiver (see Fig. 0.11, where the router
has a finite buffer size Br and the receiver has a finite buffer size Bd.). For
example, the receiver may notify the sender how much data it can receive
without a buffer overflow. Then the sender will not send more data than
the amount allowed by the receiver. In the router case, the sender may be
explicitly notified about the congestion in the router, or infer congestion
from received feedback. Then the source will reduce its sending rate until
the congestion is eased. TCP uses slow start and congestion avoidance to
react to congestion in the routers, and to avoid receiver buffer overflow. We
will discuss TCP congestion control and flow control in Chapter 6.

0.9 Error detection and control

When a packet is forwarded along its route, it may be corrupted by transmis-
sion errors. Many TCP/IP protocols use the checksum algorithm (or parity
check) to detect bit errors in the header of a received packet. Suppose the
checksum header field is K bits long (e.g., K = 16 in IP, UDP, and TCP).
The value of the field is first set to 0. Then, the K -bit one’s complement
sum of the header is computed, by considering the header as a sequence
of K -bit words. The K -bit one’s complement of the sum is stored in the
checksum field and sent to the receiver. The receiver, after receiving the
packet, calculates the checksum over the header (including the checksum
field) using the same algorithm. The result would be all ones if the header
is error free. Otherwise, the header is corrupted and the received packet
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is discarded. IP, ICMP, IGMP, UDP and TCP use this algorithm to detect
errors in the headers.

Ethernet, on the other hand, uses the cyclic redundancy check (CRC)
technique to detect errors in the entire frame. With CRC, the entire frame
is treated as a single number, and is divided by a predefined constant, called
the CRC generator. The remainder of the division operation is appended to
the frame (as the trailer) and sent to the receiver. After receiving the frame,
the receiver performs the same division and compares the remainder with
the received one. If the two are identical, there is no error in the frame.
Otherwise, the frame is corrupted and should be discarded.

In addition to bit errors in a received packet, packets may be lost if there
is congestion in the network, or if an incorrect route is used. Sequence num-
bers can be used to detect this type of error. With this technique, the sender
and the receiver first negotiate an initial sequence number. Then the sender
assigns a unique sequence number to each packet sent, starting from the
initial sequence number and increased by one for each packet sent. The re-
ceiver can detect which packets are lost by ordering the received sequence
numbers and looking for gaps in them.

When a packet loss is detected, the receiver may notify the sender, and
request for a retransmission of the lost packet. In addition, the sender can
use other error control schemes, such as forward error correction (FEC), in
the application layer for better protection of the application data. We will
examine TCP error control in Chapter 6.

0.10 Header formats of the protocols

The basic control functions discussed in the previous sections are imple-
mented in different layers, while the information used by the control func-
tions are carried in the packet headers. In this section, we examine the
header formats of Ethernet, IP, UDP and TCP, which will be frequently
used in discussions and data analysis in the following chapters.

0.10.1 Ethernet frame format

The laboratory experiments in this book are all based on Ethernet LANs.
Fig. 0.12 shows the Ethernet frame format. The first 6 bytes give the
Destination Ethernet (MAC) Address, while the next 6 bytes give
the Source Ethernet Address. Next comes the 2-byte Frame Type

field which is used to identify the payload of the Ethernet frame. For
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Figure 0.12. Ethernet frame format.
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Figure 0.13. IP header format.

example, this field is set to 0x0800 for IP datagrams, 0x0806 for ARP
requests and replies, and 0x0835 for RARP requests and replies. The 4-
byte trailer is the CRC bits used for error control.

0.10.2 IP header format

The format of the IP header is given in Fig. 0.13. If no option is present, the
size of the IP header is 20 bytes. Some of the fields are introduced below,
other fields will be explained in later chapters.
� Version: 4 bits. The version of IP used, which is four for IPv4.
� Header Length: 4 bits. The header length in 32-bit words.
� Differentiated Services: 8 bits. Specifies how the upper layer pro-

tocol wants the current datagram to be handled. Six bits of this field are
used as a differential service code point (DSCP) and a two-bit currently
unused (CU) field is reserved.

� Total Length: 16 bits. The IP datagram length in bytes, including the
IP header.

� Identification: 16 bits. Contains an integer that identifies the current
datagram.

� Flags: 3 bits. Consists of a 3-bit field of which the lower two bits control
fragmentation. The highest order bit is not used.

� Fragment Offset: 13 bits. Indicates the position of the fragment’s data
relative to the beginning of the data in the original datagram. It allows
the destination IP process to properly reconstruct the original datagram.
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ChecksumLength

Source Port Number Destination Port Number

Figure 0.14. UDP header format.

8-bit Protocol (0x17)0x00 16-bit UDP Length

32-bit Destination IP Address

32-bit Source IP Address

Figure 0.15. The pseudo-header used in UDP checksum computation.

� Time to Live: 8 bits. A counter that is decremented by one each time
the datagram is forwarded. A datagram with 0 in this field is discarded.

� Protocol: 8 bits. The upper layer protocol that is the source or
destination of the data. The protocol field values for several higher
layer protocols are: 1 for ICMP, 2 for IGMP, 6 for TCP, and 17 for
UDP.

� Header Checksum: 16 bits. Calculated over the IP header to verify its
correctness.

� Source IP Address: 32 bits. The IP address of the sending host.
� Destination IP Address: 32 bits. The IP address of the receiving

host.

0.10.3 UDP header format

The UDP header format is shown in Fig. 0.14. The Port Number fields
identify sending and receiving applications (processes). Given their 16-
bit length, the maximum port number is 216 − 1 = 65, 535. The 16-bit
Length, measured in bytes, ranges from 8 bytes (i.e., data field can be
empty) to 216 − 1 = 65, 535 bytes. The 16-bitChecksum is computed using
the UDP header, UDP data, and a pseudo-header consisting of several IP
header fields, as shown in Fig. 0.15. Using the checksum is optional and
this field can be set to 0x0000 if it is not used.

0.10.4 TCP header format

The TCP header format is shown in Fig. 0.16. The fields are explained
below. A more detailed discussion of TCP can be found in Chapter 6.
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Figure 0.16. TCP header format.

� Source Port Number: 16 bits. The port number of the source process.
� Destination Port Number: 16 bits. The port number of the process

running in the destination host.
� Sequence Number: 32 bits. Identifies the byte in the stream of data from

the sending TCP to the receiving TCP. It is the sequence number of the
first byte of data in this segment represents.

� Acknowledgement Number: 32 bits. Contains the next sequence number
that the destination host wants to receive.

� Header Length: 4 bits. The length of the header in 32-bit words.
� Reserved: 6 bits. Reserved for future use.
� Flags: There are 6 bits for flags in the TCP header, each is used as

follows.
� URG: If the first bit is set, an urgent message is being carried.
� ACK: If the second bit is set, the acknowledgement number is valid.
� PSH: If the third bit is set, it is a notification from the sender to the

receiver that the receiver should pass all the data received to the appli-
cation as soon as possible.

� RST: If the fourth bit is set, it signals a request to reset the TCP con-
nection.

� SYN: The fifth bit of the flag field of the packet is set when initiating a
connection.

� FIN: The sixth bit is set to terminate a connection.
� Window Size: 16 bits. The maximum number of bytes that a receiver

can accept.
� TCP Checksum: 16 bits. Covers both the TCP header and TCP data.
� Urgent Pointer: 16 bits. If the URG flag is set, the pointer points to the

last byte of the urgent message in the TCP payload. More specifically, the
last byte of the urgent message is identified by adding the urgent pointer
value to the sequence number in the TCP header.
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Figure 0.17. An example.

0.11 An example: how TCP/IP protocols work together

In this section, we show how a packet is forwarded from the source to the
destination. As shown in Fig. 0.17, assume a user, named Bob, wants to
book an air ticket from the website: http://www.expedia.com. Here is
what happens in the system kernel and in the network.

First, Bob needs to know the domain name www.expedia.com, e.g.,
from a TV commercial or a web advertisement. If he happens to know the
IP address corresponding to this domain name, he can use the IP address
instead.

The remote computer with the domain name www.expedia.com is a web
server, which is always running and provides the web service. Bob can use
a web browser, which is a web client, to request and receive web service,
i.e., to browse a web page. The HyperText Transfer Protocol (HTTP) is
used by the web server and web browser. Most of the network services
are provided using such a client–server architecture. We will discuss the
client–server architecture in Chapter 5, and we will examine a web server
in Chapter 8.

Bob starts a web browser, e.g., Mozilla, in his computer. Then he types
http://www.expedia.com/index.html in the Location input area.
The prefix http indicates the application layer protocol for this transaction,
followed by the domain name of the web server, www.expedia.com, and
the target file, index.html, in the server.

Next, the web browser needs to translate the domain name to an IP
address, since domain names are not recognizable by the TCP/IP kernel.
This is done via a query–response process using a protocol called the
Domain Name System (DNS). The web browser invokes a function in the
TCP/IP kernel called gethostbyname(), to send a DNS query which in



24 TCP/IP overview

essence asks “what is the IP address of ‘www.expedia.com’?” The query is
sent to the host’s DNS server, which is preconfigured in a file in the host, or is
obtained dynamically using a protocol called Dynamic Host Configuration
Protocol (DHCP) every time when the host bootstraps. A DNS server is a
host maintaining a database of domain names and IP addresses. When the
server receives a DNS query, it searches its database and sends a response
to the querying host with the corresponding IP address. If the DNS server
does not know the IP address of www.expedia.com, it may further query
other DNS servers.

After receiving the DNS reply, the client tries to establish a TCP con-
nection to the web server, since TCP is the transport layer protocol used
by HTTP. The TCP/IP code is in the system kernel, but an application
process can call the socket application programming interface (API) for
TCP/IP services. Each application process invoking the socket API will be
assigned a unique port number. The port number is carried in all the packets
sent by and destined to this process. When the TCP connection is set up,
the application data can be transmitted. The initial application data is a
HTTP request message for the index.html file from the web server. It is
sent down to the TCP layer and encapsulated in a TCP segment. The TCP
header consists of the fields used for end-to-end flow control, congestion
control, and error control, which are essential to providing an end-to-end
stream-based reliable service. We will examine the use of port numbers
and the concept of multiplexing in Chapter 1, study TCP in Chapter 6, and
study socket API in Chapter 8.

Next, the TCP segment will be sent down to the IP layer and encapsu-
lated in an IP datagram. The IP layer is responsible for forwarding the IP
datagram to its destination. In order to deliver a packet to a remote host,
each host or router maintains a routing table storing routing information.
Only the next-hop IP address to a destination is stored. When a host has
an IP datagram to sent, or when a router receives a datagram to forward, it
searches the routing table to find the next-hop router, and forwards the data-
gram to that router. The routing table can be set manually, or dynamically by
routing protocols. We will examine IP routing and configure a commercial
router in Chapter 4.

In this example, the IP module of Bob’s host finds the next-hop router
in its routing table, and sends the IP datagram and the next-hop router’s IP
address down to the MAC layer. This host uses an Ethernet card and the IP
datagram is further encapsulated within an Ethernet frame. The Ethernet
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driver is responsible for delivering the Ethernet frame to the interface of the
next-hop router. Before sending the Ethernet frame out, the device driver
has to resolve the next-hop IP address, since it only recognizes Ethernet
MAC addresses. An ARP request is broadcast, querying the MAC address
associated with the target IP address. When the router interface receives
this ARP request, it responses with an ARP reply containing its MAC
address. Then, the frame is sent on the medium after the ARP reply is
received and the destination MAC address is learned. Note that whenever
the host sends a frame, it uses the CSMA/CD multiple access algorithm to
access the channel and may backoff if collision occurs. We will examine
the operation and configuration of an Ethernet interface in Chapter 2.

Bob’s local network consists of several LAN segments. Several IEEE
802.1d bridges, which are self-configuring and transparent, are used to
connect the LAN segments. The spanning tree algorithm is running in the
bridges to avoid loops in the local network. In this example, the Ethernet
frame is first transmitted on the host’s LAN segment, and then forwarded
to the router interface by an intermediate bridge. We will examine bridges
and the spanning tree protocol in Chapter 3.

Subsequently, the IP datagram is forwarded hop-by-hop by the interme-
diate routers along the route towards its destination. Some of the routers
may be connected by point-to-point long-haul connections running the
SDH/SONET protocol. Finally, the remote host’s MAC module receives
the Ethernet frame. The packet is delivered to the upper layers. At each
layer, the corresponding header is stripped and examined. The informa-
tion carried in the headers is used for such functions such as routing and
forwarding, error control, flow control, and congestion control. In addi-
tion, the information is also used to identify which higher layer module
the payload data belong to. When the Web server at the application layer
receives the HTTP request message, it assembles an HTTP response

message containing the requested file, and sends the response to the client.
The response message is forwarded back to Bob’s host, through a similar
procedure. Finally, Bob can see the homepage of www.expedia.com in his
web browser.



1 Linux and TCP/IP networking

The Linux philosophy is ‘Laugh in the face of danger’. Oops. Wrong One. ‘Do it
yourself’. Yes, that’s it. Linus Torvalds

1.1 Objectives

� Getting acquainted with the lab environment.
� Getting acquainted with the Linux operating system.
� Preview of some TCP/IP diagnostic tools.
� Capturing and analyzing the link layer, IP, and TCP headers.
� Understanding the concept of encapsulation.
� Understanding the concept of multiplexing using port numbers, the IP

protocol field, and the Ethernet frame type field.
� Understanding the client–server architecture.

1.2 Linux and TCP/IP Implementations

1.2.1 TCP/IP Implementations

The TCP/IP protocol architecture was first proposed in the Cerf and Kahn
paper [1]. Since then, the TCP/IP protocol family has evolved over time
into a number of different versions and implementations. The first widely
available release of TCP/IP implementation is the 4.2 Berkeley Software
Distribution (BSD) from the Computer Systems Research Group at the
University of California at Berkeley. Many implementations of TCP/IP
protocols are based on the public domain BSD source code, both for Unix
and non-Unix systems, as well as public domain implementations and im-
plementations from various vendors.

26
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Processes

Socket Layer

Protocol Layer
TCP, UDP, IP, ICMP, IGMP

Interface Layer
Ethernet, PPP, IEEE 802.11, etc.

System Calls

Media

Figure 1.1. Organization of the networking code.

Solaris and FreeBSD are two examples of Unix TCP/IP implementa-
tions. Solaris is an operating system developed by Sun Microsystems. It
supports both the SPARC platform and the x86 platform. FreeBSD is a Unix
operating system derived from BSD. It was developed and is maintained
by a large team of individuals. FreeBSD also supports multiple platforms
and is available free of charge. Linux is a popular Unix-type operating sys-
tem. It was originally created by Linus Torvalds and further improved by
developers all over the world. Linux is developed under the GNU General
Public License. The Linux source code is available in the public domain
and the system kernel is recompilable. Linux can also be embedded in
small devices, such as cellphones and PDAs. These features make Linux
very popular in the computer and networking research communities. In
addition, Linux is gaining support from major computer vendors, such as
IBM, Oracle, and Dell.

From an implementation point of view, the networking code can be
organized into four layers, as illustrated in Fig. 1.1. Most applications
are implemented as user space processes, while protocols in the lower
three layers (i.e., the transport layer, network layer, and data link layer)
are implemented in the system kernel.1 A user space process can obtain
services provided by the kernel by invoking system calls. In the system
kernel, the networking code is organized into three layers, namely the
socket layer, the protocol layer, and the interface layer. The socket layer

1 The core of an operating system, implementing critical system functions, e.g., managing memory
and file systems, loading and executing other programs, and scheduling processes.
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Table 1.1. A few lines in the /etc/services file

· · ·
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd ftpd

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

· · ·
#finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

· · ·

is protocol independent. It provides a common interface to the user pro-
cesses and hides the protocol specific details from them. The protocol
layer contains the implementation of TCP/IP protocols, while the inter-
face layer consists of device drivers which communicate with the network
devices [4].

1.2.2 Network daemons and services

A daemon is a process running in the background of the system. Many
TCP/IP services (e.g., Telnet) are handled by a daemon called inetd.
Rather than running several network-related daemons, the inetd daemon
works as a dispatcher and starts the necessary server processes when re-
quests arrive. When a client wants a particular service from a remote
server, the client contacts the inetd daemon through the server’s well-
known port number, which prompts inetd to start the corresponding server
process.

The network daemons managed by inetd are specified in a configuration
file called/etc/inetd.conf. Each service has a line in the file defining the
network daemon that provides the service and its configuration parameters.
Table 1.1 shows three lines in the/etc/inetd.conffile, which correspond
to Ftp, Telnet, and Finger2 services. One can comment a line, i.e., insert
a # at the beginning of the line, to disable the corresponding service. For
example, the Finger service in the following example is disabled. Note
that there are some stand-alone network daemons that are not managed by
inetd. For example, web service is provided by the httpd daemon, and
DNS service is provided by the named daemon.

2 Used to display information about a user.
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In Red Hat Linux 9, xinetd replaces inetd, adding stronger security
and more functionality. xinetd uses a simple common configuration file
/etc/xinetd.conf. In addition, each service managed by xinetd uses an
individual configuration file in the /etc/xinetd.d directory. The follow-
ing is the Echo service configuration file /etc/xinetd.d/echo. It can
be seen that the Echo service is enabled and uses TCP in the transport
layer.

# default: off
# description: An echo server. This is the tcp \
# version.
service echo
{

disable = no
type = INTERNAL
id = echo-stream
socket type = stream
protocol = tcp
user = root
wait = no

}

Well-known port numbers are defined in the /etc/services file. A
server can handle multiple clients for a service at the same time through
the same well-known port number, while a client uses an ephemeral port
number. The uniqueness of a communication session between two hosts is
preserved by means of the port number and IP address pairs of the server
and client hosts.

1.2.3 Network configurations files

When a host is configured to boot locally, certain TCP/IP configuration
parameters are stored in appropriate local disk files. When the system
boots up, these parameters are read from the files and used to configure
the daemons and the network interfaces. A parameter may be changed by
editing the corresponding configuration file.

In addition to/etc/services and/etc/inetd.confdiscussed above,
we now list other network configuration files.
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/etc/hosts Stores the host name of this machine
and other machines.

/etc/sysconfig/network Stores the host name and the default
gateway IP address.

/etc/sysconfig/network-

scripts/ifcfg-eth0

Stores the IP address of the first
Ethernet interface.

/etc/default-route Stores a default gateway, i.e., the IP ad-
dress or the domain name of the default
router.

/etc/resolv.conf Stores the IP addresses of the DNS
servers.

/etc/nsswitch.conf Configures the means by which host
names are resolved.

Solaris uses the following network configuration files stored in the /etc
directory.
nodename Host name of the machine.
hostname.interface Interface IP address or the interface name.

inet/hosts Stores IP addresses of the interfaces of the
machine, the corresponding host name for
each interface, IP addresses of the file server,
and IP address and name of the default
router.

defaultdomain The host’s fully qualified domain name.
defaultrouter The name for the network interface that func-

tions as this host’s default router.
inet/netmasks The network ID and the netmask if the network

is subnetted.
inet/networks Associates network names with network num-

bers, enabling applications to use and display
names rather than numbers.

nsswitch.conf Specifies name service to use for a particular
machine.
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1.3 Linux commands and tools

1.3.1 Basic Linux commands

The basic Linux commands are summarized below. See the manual pages
for a list of options for each command.
� man command name: Gets online help for command name.
� passwd: Sets (changes) the password.
� pwd : Displays the current working directory.
� ls : Lists the contents of a directory.
� more file name: Scrolls through a file.

� To list the next page, press the space bar.
� To go backwards, press b.
� To quit from more, press q.

� mv old file name new file name: Renames a file.
mv file name directory name: Moves a file to a directory.
mv old directory name new directory name: Renames a directory.

� rm file name: Deletes(removes) a file.
� mkdir directory name: Creates a directory.
� rmdir directory name: Removes a directory.
� cd directory name: Changes the current working directory to

directory name. If directory name is omitted, the shell is moved to your
home directory.

� cp file name new file name: Copies a file.
cp file name directory name: Copies a file into directory name.

� chmod who op-code permission file or directory name: Changes the file
access permissions.

who: u user, g group, o other users, a all;
op-code: + add permission, − remove permission;
permission: r read, w write, x execute.

� ps: Process status report.
� kill PID: Terminates the process with a process ID PID.
� Ctrl-c : Terminates a command before it is finished.
� cmp file1 file2: Compares file1 and file2 byte by byte.
� grep keyword file(s): Search the file(s) and outputs the lines containing

the keyword.
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Most of the above commands accept input from the system’s standard
input device (e.g., the keyboard) and send an output to the system’s standard
output device (e.g., the screen). Sometimes it is convenient to direct the
output to another process as input for further processing, or to a file for
storage. The redirect operator “>” directs the output to a file, as:

command > file name.
With the pipe operator “|”, two commands can be concatenated as:

command1 | command2,
where the output of command1 is redirected as the input of command2.

1.3.2 Text editor

The vi Editor
The vi editor is one of the most popular text editors. It is the default text
editor of most Linux and Unix systems.

To start vi, enter vi file name at the command line. If no such file exists
yet, it will be created. vi can be in one of the two modes, the command mode
and the text entry mode. The command mode allows a user to use a number
of commands to modify text. Text is inserted and modified in the text entry
mode. Initially, vi enters the command mode and awaits instructions. To
enter text, switch to the text entry mode by typing one of the following keys.

i: Text is inserted to the left of the cursor.
a: Text is appended after the cursor.
o: Text is added after the current line.
O: Text is added before the current line.

To switch back to the command mode, press the Esc key.
In the command mode, the user may use vi’s several editing features, such

as cursor movement, text deletion, text replacement, and search operation.
Some of the basic features are listed here.

h: Moves the cursor one space to the left.
j: Moves the cursor down one line.
k: Moves the cursor up one line.
l: Moves the cursor one space to the right.
Ctrl-f: Scrolls down one full screen.
Ctrl-b: Scrolls up one full screen.
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Ctrl-d: Scrolls down a half page.
Ctrl-u: Scrolls up a half page.

To delete text, place the cursor over the target position, and type the
following commands.

x: Delete the next single character.
dw: Delete the current word.
dd: Delete the current line.

To search for a special string, e.g. foo, in the text file, type /foo in the
command mode. The cursor will jump to the nearest matching position in
the file. To repeat the last search, type n in the command mode.

To save the file and quit vi, press Esc (even if in the command mode, it
doesn’t hurt), and type :wq. To quit vi without saving changes to the file,
use the command :q!

Other text editors
In addition to vi, Red Hat Linux provides a number of graphical text editors
that are intuitive and easy to use. They are especially convenient for users
who are used to a windows-based interface. Examples of such graphical
text editors are given below.

Emacs A free text editor preinstalled in most Linux op-
erating systems. It can be invoked by running
emacs, or by choosing the system menu item:
Programming/Emacs. The system menu pops up
when the Red Hat icon at the lower-left corner of
the workspace is clicked.

gedit An analog to Notepad in Microsoft Windows. It
can be invoked by running gedit, or by choosing the
sytem menu item: Accessories/Text Editor.

OpenOffice.org An analog to the Microsoft Office package.
The Writer component of OpenOffice.org pro-
vides functions similar to that offered by Micro-

soft Word. A file created by OpenOffice.org

Writer can be ported to the Microsoft Word

format.
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There is a graphical text editor available with the Solaris OpenWindows
or Common Desktop Environment (CDE). It can be invoked by running
/usr/openwin/bin/textedit, or from the system program menu. The sys-
tem program menu can be found by clicking the right mouse-key on the
background of the workspace. A new texteditor is started when the Text

Editor menu item is chosen from the menu.

1.3.3 Window dump

The windows on the screen can be dumped into a graphic file. To dump the
entire desktop area, you can simply type the PrintScreen key.3 To dump
a specific window (e.g., a command console), first click in the window and
then type Alt-PrintScreen. The window is then dumped and the user
is prompted for a file name to store it. The window dump is saved in the
Portable Network Graphics (PNG) format. It can be opened, edited, and
converted to other formats (e.g., PostScript, JPEG, or GIF) using the GIMP
graphic editor supplied with Red Hat Linux.

In Solaris, a user may use xwd and an additional tool called xpr to dump
a window. The pipe operator is used to conveniently redirect the output of
xwd as the input of xpr, as:

xwd | xpr -device ps -output file name
After the shape of the mouse pointer changes, click the mouse in the target
window. The keyboard bell rings once at the beginning of the dump and
twice when the dump is completed. The dumped file may be examined with
Image tools found in the Programs menu.

1.3.4 Using floppy disks

To format an MS-DOS formatted disk, insert the disk into the floppy disk
drive and execute: fdformat /dev/fd0. To use an MS-DOS formatted floppy
disk, insert the disk and use the mount /dev/fd04 command to mount the
floppy disk to the /mnt/floppy directory. A new icon called “floppy” will

3 Different keyboards may have different names for this key. For example, Prnt Scrn or PrtSc.
4 /dev/fd0 is the device name of the floppy driver. The device names and their corresponding mount

points are defined in the /etc/fstab file. For example, the CDROM has a device name /dev/cdrom
and is mounted to the /mnt/cdrom directory.
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appear on the desktop after the floppy is mounted. A double-click on this
icon will start a file manager which opens the floppy disk.

To manipulate the files in the floppy disk, use the same Linux commands
as usual. For example, to copy a file into the floppy disk, use

cp file name /mnt/floppy.
To delete a file from the floppy disk, use

rm /mnt/floppy/file name.
The floppy disk can be unmounted by the umount /dev/fd0 command.

Then the “floppy” icon disappears. The floppy disk can be ejected man-
ually. Note that all the opened files in the floppy disk must be closed.
Also, the current directory of any of the command consoles should not be
/mnt/floppy. Otherwise, the umount command will fail with a “device
is busy” warning.

In Solaris, the CDROM and floppy drives are controlled by the volume man-
ager, which is a daemon process named vold. When a floppy disk is inserted
in the drive, vold does not automatically recognize it (However, it recog-
nizes a CD automatically). The user should type the volcheck command,
which mounts the floppy disk under the /floppy/floppy0 directory. To
eject the floppy disk, use the eject command. To format a MD-DOS disk,
use fdformat -v -U -d.

1.4 Diagnostic tools

Diagnostic tools are used to identify problems in the network, as well as
to help understand the behavior of network protocols. We will use the
following tools extensively in the experiments.

1.4.1 Tcpdump

Tcpdump is a network traffic sniffer built on the packet capture library
libpcap.5 While started, it captures and displays packets on the LAN
segment. By analyzing the traffic flows and the packet header fields, a

5 A public domain packet capture library written by the Network Research Group (NRG) of the
Information and Computing Sciences Division (ICSD) of the Lawrence Berkeley National Laboratory
(LBNL) in Berkeley, California.
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128.238.66.100.32785   >   128.238.66.106.23:   .   ack   1   win   8760   (DF)

80ee    426a    8011    0017    6d5f    d426    8d4d    324d

4500    0028    195d    4000    ff06     dbc0    80ee    426b

5010    2238    65a1    0000

   \

timestamp
Ethernet frame type

length
source Ethernet addr.

IP header

dest. Ethernet addr.

dest. IP addr. + port number summary of the TCP header

TCP header don’t fragment bit in the IP headersource IP addr. + port number

20:17:23.913253   8:0:20:87:d7:9a   8:0:20:87:dd:88   0800   54:

Figure 1.2. A typical tcpdump output.

great deal of information can be gained about the behavior of the protocols
and their operation within the network. Problems in the network can also be
identified. A packet filter can be defined in the command line with different
options to obtain a desired output.

A typical output of tcpdump running on a 128.238.66.0 subnet is shown
in Fig. 1.2. The first line of the output gives a summary of the link/IP/TCP
headers, while the following data block contains the raw bits of the IP
datagram.

1.4.2 Ethereal

Ethereal is a network protocol analyzer built on the packet capture library
pcap. In addition to capturing network packets as in Tcpdump, Ethereal
provides a user friendly graphical interface, and supports additional ap-
plication layer protocols. Ethereal can also import pre-captured data files
from other network monitoring tools, such as Tcpdump and Sniffer.

In the following experiments, we use Ethereal to analyze a packet trace
captured by Tcpdump, since generally Ethereal does not allow a normal
user to capture packets (see Section A.5).

1.5 Exercises with Linux commands

We start with a simple single segment network, where all eight comput-
ers are connected in one Ethernet segment (see Fig. 1.3). The host IP
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Table 1.2. The IP addresses of the hosts in Fig. 1.3

Host IP Address Subnet Mask

shakti 128.238.66.100 255.255.255.0

vayu 128.238.66.101 255.255.255.0

agni 128.238.66.102 255.255.255.0

apah 128.238.66.103 255.255.255.0

yachi 128.238.66.104 255.255.255.0

fenchi 128.238.66.105 255.255.255.0

kenchi 128.238.66.106 255.255.255.0

guchi 128.238.66.107 255.255.255.0

66.101/2466.102/2466.103/24

66.104/24 66.105/24 66.106/24 66.107/24

128.238.66.0 subnet

shaktiapah

guchikenchifenchiyachi

vayuagni

66.100/24

Figure 1.3. A single segment network.

addresses are given in Table 1.2. Note that the slash-notation is used, where
“128.238.66.100/24” means an IP address of “128.238.66.100” with a sub-
netmask of “255.255.255.0”.

Exercise 1 Login to the system. The login ID is guest, and the login password is guest1. Get
acquainted with the Gnome environment, the Linux commands, text editors, and the
man pages.

Exercise 2 After logging in, open a command window if one is not opened automatically, by
clicking the right mouse-key on the background and choosing the New Terminal

item in the menu.
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In Solaris OpenWindows environment, click the right mouse key to invoke
the workspace menu. Then choosePrograms/Command Tool ... to bring
up a new command window. In Solaris CDE, click the right mouse key to
get the Workspace Menu. Then choose Tools/Terminal to bring up a
new command window.

Show your login ID by typing whoami in the console.

Create a directory of your own, using mkdir name of your directory. Change to your
directory, using cd name of your directory. You can save your data files for all your
laboratory experiments here.

Open another command window. Run pwd in this and the previously opened con-
soles. Save the outputs in both consoles.

LAB REPORT What is the default directory when you open a new command window?
What is your working directory?

Exercise 3 Run ps -e to list the processes running in your host. After starting a new process by
running telnet in another command window, execute ps -e again in a third window
to see if there is any change in its output.

Find the process id of the telnet process you started, by:

ps -e | grep telnet.

Then use kill process id of telnet to terminate the telnet process.

LAB REPORT Is the Internet service daemon, xinetd, started in your system? Is inetd
started in your system? Why?

Exercise 4 Display the file /etc/services on your screen, using:

more /etc/services.

Then in another console, use the redirect operator to redirect the more output to
a file using more /etc/services > ser more. Compare the file ser more with the
original more output in the other command window.

Copy /etc/services file to a local file named ser cp in your working directory,
using cp /etc/services ser cp. Compare files ser more and ser cp, using cmp
ser more ser cp. Are these two files identical?

Concatenate these two files using cat ser more ser cp > ser cat.

Display the file sizes using ls -l ser*. Save the output. What are the sizes of files
ser more, ser cp, and ser cat?
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LAB REPORT Submit the ls output you saved in this exercise and answer the above
questions.

1.6 Exercises with diagnostic tools

Exercise 5 Read the man pages for the following programs:

arp arping ifconfig tcpdump
ping netstat route ethereal

The arping command is not provided in Solaris 8.0.

Study the different options associated with each command. Throughout this lab you
will use these commands rather extensively.

LAB REPORT Explain the above commands briefly. Two or three sentences per com-
mand would be adequate.

Exercise 6 In this exercise, we will use tcpdump to capture a packet containing the link, IP,
and TCP headers and use ethereal to analyze this packet.

First, run tcpdump -enx -w exe6.out. You will not see any tcpdump output, since
the -w option is used to write the output to the exe6.out file.

Then, you may want to run telnet remote host 6 to generate some TCP traffic.
After you login the remote machine, terminate the telnet session and terminate the
tcpdump program.

Next, you will use ethereal to open the packet trace captured by tcpdump and
analyze the captured packets. To do this, run ethereal -r exe6.out &. The ethereal
Graphical User Interface (GUI) will pop up and the packets captured by tcpdump
will be displayed.

For your report, you need to save any one of the packets that contain the link, IP,
and TCP headers. Carry out the following instructions.

1. Click on a TCP packet from the list of captured packets in the ethereal window.
Then go to the Edit menu and choose Mark Frame.

2. Go to the File menu and choose Print. In the Ethereal:Print dialog that
pops up, check File, Plain Text, Expand all levels, Print detail,

6 We use remote host to denote the IP address of a remote host, i.e., a machine other than the one you
are using.
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and Suppress unmarked frames. Then, enter the output text file name, e.g.,
headers.txt, and click the OK button. The marked packet is now dumped into the
text file, with a detailed list of the name and value of every field in all the three
headers.

LAB REPORT Draw the format of the packet you saved, including the link, IP, and
TCP headers (See Figs 0.12, 0.13, and 0.16 in Chapter 0 of this guide), and
identify the value of each field in these headers. Express the values in the
decimal format.

LAB REPORT What is the value of the protocol field in the IP header of the packet
you saved? What is the use of the protocol field?

Exercise 7 In a manner similar to the previous exercise, we will run tcpdump to capture an
ARP request and an ARP reply,7 and then use ethereal to analyze the frames.

Run tcpdump -enx -w exe7.out to capture all the packets on the LAN segment.

If there is no arp requests and replies in the network, generate some using arping
remote machine.

When Solaris 8.0 is used, you can generate an ARP request and an ARP
reply by running telnet to a remote machine. Note this remote machine
should be a different machine from the one you used in Exercise 6.

After you see several ARP replies in the arping output, terminate the arping and the
tcpdump program. Open the tcpdump trace using ethereal -r exe7.out &. Print one
ARP request and one ARP reply using ethereal.

LAB REPORT What is the value of the frame type field in an Ethernet frame car-
rying an ARP request and in an Ethernet frame carrying an ARP reply,
respectively?

What is the value of the frame type field in an Ethernet frame carrying
an IP datagram captured in the previous exercise?

What is the use of the frame type field?

Exercise 8 Using the tcpdump utility, capture any packet on the LAN and see the output format
for different command-line options. Study the various expressions for selecting
which packets to be dumped.

7 We will examine the Address Resolution Protocol (ARP) in the next Chapter. For this exercise, the
purpose is to examine the use of the frame type field in an Ethernet frame.
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For this experiment, use the man page for tcpdump to find out the options and
expressions that can be used.

If there is no traffic on the network, you may generate traffic with some applications
(e.g. telnet, ping, etc.).

LAB REPORT Explain briefly the purposes of the following tcpdump expressions.
tcpdump udp port 520
tcpdump -x -s 120 ip proto 89
tcpdump -x -s 70 host ip addr1 and (ip addr2 or ip addr3)
tcpdump -x -s 70 host ip addr1 and not ip addr2

1.7 Exercises on port numbers

Exercise 9 Start tcpdump in a command window to capture packets between your machine
and a remote host using:

tcpdump -n -nn host your host and remote host8.

Execute a TCP utility, telnet for example, in another command window.

When you see a TCP packet in the tcpdump output, terminate tcpdump and save its
output.

LAB REPORT What are the port numbers used by the remote and the local computer?
Which machine’s port number matches the port number listed for telnet in
the /etc/services file?

Exercise 10 Start tcpdump in one command window using:

tcpdump -n -nn host your host and remote host.

Then, telnet to the remote host from a second command window by typing tel-
net remote host. Again issue the same telnet remote host command from a third
command window. Now you are opening two telnet sessions to the same remote
host simultaneously, from two different command windows.

Check the port numbers being used on both sides of the two connections from the
output in the tcpdump window. Save a TCP packet from each of the connections.

LAB REPORT When you have two telnet sessions with your machine, what port number
is used on the remote machine?

Are both sessions connected to the same port number on the remote ma-
chine?

8 For some older versions of tcpdump, the -n -nn options is combined into one single -n option.
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What port numbers are used in your machine for the first and second telnet,
respectively?

LAB REPORT What is the range of Internet-wide well-known port numbers? What
is the range of well-known port numbers for Unix/Linux specific service?
What is the range for a client port number? Compare your answer to the
well-known port numbers defined in the /etc/services file. Are they
consistent?

LAB REPORT Explain briefly what a socket is.



2 A single segment network

Metcalfe’s Law: “The value of a network grows as the square of the number of its
users.” Robert Metcalfe

2.1 Objectives

� Network interfaces and interface configuration.
� Network load and statistics.
� The Address Resolution Protocol and its operations.
� ICMP messages and Ping.
� Concept of subnetting.
� Duplicate IP addresses and incorrect subnet masks.

2.2 Local area networks

Generally there are two types of networks: point-to-point networks or
broadcast networks. A point-to-point network consists of two end hosts
connected by a link, whereas in a broadcast network, a number of sta-
tions share a common transmission medium. Usually, a point-to-point net-
work is used for long-distance connections, e.g., dialup connections and
SONET/SDH links. Local area networks are almost all broadcast networks,
e.g., Ethernet or wireless local area networks (LANs).

2.2.1 Point-to-Point networks

The Point-to-Point Protocol (PPP) is a data link protocol for PPP LANs. The
main purpose of PPP is encapsulation and transmission of IP datagrams,
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Figure 2.1. PPP frame format.

or other network layer protocol data, over a serial link. Currently, most
dial-up Internet access services are provided using PPP.

PPP consists of two types of protocols. The Link Control Protocol (LCP)
of PPP is responsible for establishing, configuring, and negotiating the data-
link connection, while for each network layer protocol supported by PPP,
there is a Network Control Protocol (NCP). For example, the IP Control
Protocol (IPCP) is used for transmitting IP datagrams over a PPP link.
Once the link is successfully established, the network layer data, i.e., IP
datagrams, are encapsulate in PPP frames and transmitted over the serial
link.

The PPP frame format is shown in Fig. 2.1. The two Flag fields mark
the beginning and end points of a PPP frame. The Protocol field is used
to multiplex different protocol data in the same PPP frame format. Since
there are only two end hosts in a PPP LAN, neither an addressing scheme
nor medium access control are needed.

2.2.2 Ethernet LANs

In a broadcast network where a number of hosts share a transmission
medium, a set of rules, or protocols, are needed in order to resolve col-
lisions and share the medium fairly and efficiently. Such protocols are
called medium access control (MAC) protocols. Examples of MAC proto-
cols proposed for various networks are: Aloha, Carrier Sense Multiple
Access/Collision Detection (CSMA/CD), and Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA).

Ethernet has been an industry standard since 1982 and is based on the
first implementation of CSMA/CD by Xerox. In an Ethernet LAN, all of
the hosts are connected to a common channel. When a host has a frame to
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Table 2.1. The exponential backoff algorithm used in
CSMA/CD

1. Set a “time slot” to 2a.

2. After the i-th collision, the random transmission time

is uniformly chosen from a range of 0 to 2i − 1 time slots.

3. Do not increase the random time range if i ≥ 10.

4. Give up after 16 collisions and drop the frame.

send, it first senses the channel to see if there is any transmission going on.
If the channel is busy, the host will wait until the channel becomes idle.
Otherwise, the host begins transmission if the channel is idle. Assume the
maximum end-to-end propagation delay is a seconds. After the first bit is
transmitted, the host keeps on sensing the channel for 2a seconds. If there
is no collision detected during this period, the entire frame is assumed to
be transmitted successfully. This is because it takes at most a seconds for
all the hosts to hear this transmission, and another a seconds to hear any
possible collision with another transmission. When a collision is detected,
all hosts involved in the collision stop transmitting data and start to backoff,
i.e., wait a random amount of time before attempting to transmit again. The
random time is determined by the exponential backoff algorithm given in
Table 2.1.

In addition to attaching all hosts to a common cable or a hub, an Ethernet
LAN can be built using Ethernet switches with a star topology. Ethernet
switches, also called switched hubs, are MAC layer devices that switch
frames between different ports. An Ethernet switch offers guaranteed band-
width for the LAN segments connected to each port and separates a LAN
into collision domains. If each Ethernet switch port is connected to a single
host only, CSMA/CD operation is not required. However, in order for the
switch to deal with traffic congestion, the switch may generates a false
collision signal (backpressure) to make the transmitting host back off.

2.2.3 IEEE 802.11 wireless LANs

In addition to PPP and Ethernet LANs, wireless LANs (WLANs) using
the IEEE 802.11 protocols have rapidly gained popularity in recent years.
In a WLAN, computers share a wireless channel. Thus there is no need to
install cables, and the computers can be mobile.
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(a) (b)

Figure 2.2. Different operation modes of IEEE 802.11 WLANs. (a) The infrastructure

mode. (b) The ad-hoc mode.

An IEEE 802.11 WLAN can be configured to work in two modes: the in-
frastructure mode and the ad-hoc mode. In the infrastructure mode shown
in Fig. 2.2(a), fixed access points are used. These access points are con-
nected to the wireline network. Each access point communicates with hosts
within its transmission range and serves as a gateway for the hosts. When an
active mobile host moves from one access point to another, handoff tech-
niques can be applied to switch the connection from the original access
point to the new access point without an interruption. In addition, multiple
access points can be configured to work together to provide extended cov-
erage. In the ad hoc mode shown in Fig. 2.2(b), there is no need for access
points. Host computers can communicate with each other as long as they
are in each other’s transmission range.

In WLANs, CSMA/CD is inadequate because collision detection cannot
be performed effectively in a wireless channel. Rather, CSMA/CA is used
for medium access control. In CSMA/CA, a host first senses the medium
when it has a frame to send. If the medium remains free for a certain period
of time (called the Distributed Coordination Function (DCF) Inter-Frame
Space (DIFS)), the host begins transmitting data. When the transmission
is over, it waits for an acknowledgement from the receiving host. If no ac-
knowledgement received, it assumes that a collision occurred and prepares
to retransmit. On the other hand, if the medium is busy, the host waits for
the end of the current frame transmission plus a DIFS, and then begins
a backoff procedure like in the case of CSMA/CD protocol. Backoff is
performed as follows. The host first chooses a random number within a
certain range as a backoff time, and then listens to the wireless channel to
determine if it is free or busy. The backoff time is decremented by one if
the medium is free in a time slot. However, the host stops decrementing the
backoff time if the medium is busy during a time slot, and resumes decre-
menting it only when the medium becomes free again. When the backoff
time becomes 0 and the channel is idle, the host attemps a transmission.
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Figure 2.3. The hidden terminal and exposed terminal problems of IEEE 802.11

WLANs. (a) The hidden terminal problem. (b) The exposed terminal problem.

The frame will be dropped if the maximum number of retransmissions is
reached.

WLAN has the hidden terminal and exposed terminal problems inher-
ent from the use of wireless channels. Consider the scenario shown in
Fig. 2.3(a), where Host A and C are far away and cannot hear each other.
Host B is somewhere in between and can hear both Host A and C. Host A

is transmitting data to Host B, and Host C also has data to send to B. If
CSMA/CA is used, Host C senses an idle channel because it cannot hear
Host A’s transmission. Host C therefore begins transmitting data to Host
B and collision occurs at Host B. Neither Host A nor C can detect the col-
lision in this case. This is called the hidden terminal problem. Now let
us consider a different scenario, as shown in Fig. 2.3(b). There are four
hosts in the system. Host A and D are far from each other, and Host B and
C are in between. Host A is transmitting data to Host B, while Host C

has data for Host D. If Host D is out of the tranmission range of Host A

and Host B is out of the transmission range of Host C, Host C can start
transmitting without causing or collision at Host B and D. However, if
CSMA/CA is used, Host C detects a busy channel and will wait till the
current transmission is over, resulting in a waste of bandwidth.

In WLAN, the hidden terminal problem is solved by sending request-to-
send (RTS) and clear-to-send (CTS) messages before the data transmission.
When a host wants to send a data frame, it first sends a RTS carrying the time
needed to transmit the frame. The receiving host, if it is free, responds with a
CTS. All other hosts that hear the RTS or CTS will mark the medium as busy
for the duration of the requested transmission. In the above example, Host
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C first sends a RTS to Host B. Since Host B is engaged in the transmission
from Host A, it will not return a CTS. Host C cannot transmit without a
CTS, and the collision is avoided. However, the exposed terminal problem
illustrated in Fig. 2.3(b) is not solved by this mechanism.

IEEE 802.11 is also popularly known as Wi-Fi (Wireless Fidelity).
The Wi-Fi Alliance, a nonprofit international association, certifies in-
teroperability of WLAN products based on the IEEE 802.11 standard
(http://www.wi-fi.org).

2.2.4 The Address Resolution Protocol

ARP and RARP
As shown in Fig. 1.1, the protocol layer uses the service provided by the
interface layer to send and receive IP datagrams. However, IP addresses
used in the protocol layer are not recognizable in the interface layer where
physical addresses (or MAC addresses) are used. Furthermore, different
kinds of physical networks use different addressing schemes. In order to
run TCP/IP over different kinds of physical transmission media, the link
layer provides the function that maps an IP address to a physical network
address. The protocol that performs this translation is the address resolu-
tion protocol (ARP). When a mapping from MAC address to IP address is
needed, the reverse address resolution protocol (RARP) is used. Since each
type of physical network has different protocol details, there are different
ARP RFCs for Ethernet, Fiber-Distributed Data Interface (FDDI), Asyn-
chronos Transfer Mode (ATM), Fiber Channel, and other types of physical
networks. In this section, we focus on Ethernet ARP.

When the device driver receives an IP datagram from the IP layer, it first
broadcasts an ARP request asking for the MAC address corresponding to
the destination IP address. After receiving the ARP request, the destination
host (with the target IP address) will return an ARP reply, telling the sender
its MAC address. After this question-and-answer process, the source device
driver can assemble an Ethernet frame, with the received MAC address as
destination MAC address and with the IP datagram as the payload, and
then transmit it on the physical medium. Obviously, it is inefficient to have
an ARP request/reply exchange for each IP datagram that is sent. Instead,
each host maintains an ARP cache, which contains recently resolved IP
addresses. When a host has an IP datagram to send to another host, it
first checks its ARP cache. If an entry for the destination IP is found, the
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Figure 2.4. ARP packet format.

corresponding MAC address found in the cache is used and no ARP request
and reply will be sent.

Figure 2.4 shows the format of an ARP message, which is 28 bytes long.
An ARP request or reply is encapsulated in an Ethernet frame, with the
Protocol Type field set to 0x0806. An 18-byte padding is needed since
the minimum length of an Ethernet frame is 64 bytes.

In Fig. 2.4, the first four fields define the types of the addresses to
be resolved. Hardware Type specifies the type of physical address used,
and Protocol Type specifies the type of the network protocol address.
The next two fields give the length of these two types of addresses. The
Operation field specifies whether it is an ARP request (with a value of 1),
ARP reply (2), RARP request (3), or RARP reply (4). The following four
fields are the MAC and IP addresses of the sender and the targeted receiver,
respectively.

PPP networks do not use ARP. In this case, hosts must know the IP
address at the end of the PPP link. Usually DHCP is used over a PPP link
where the IP address of one end host is assigned automatically by the other
end host.

Proxy ARP and gratuitous AR0
Proxy ARP and gratuitous ARP are two interesting scenarios of using ARP.
Usually proxy ARP is used to hide the physical networks from each other.
With proxy ARP, a router answers ARP requests targeted for a host. An
example is shown in Fig. 2.5. There are several interesting observations to
make in this example.
1. Host A and Host B are in two different subnets connected by a router.

By setting their network masks appropriately, they are logically in the
same subnet (directly connected) (see the example in Fig. 2.9 and Section
0.5.)

2. In the ARP table of Host A, all the IP addresses in the Host B subnet are
mapped to the same MAC address, i.e., Router Port 0’s MAC address.

3. All packets from the Host A subnet to the Host B subnet are sent to the
router first, and forwarded by the router to the destination.
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Figure 2.5. A proxy ARP example.

Gratuitous ARP occurs when a host broadcasts an ARP request resolving
its own IP address. This usually happens when the interface is configured
at bootstrap time. The interface uses gratuitous ARP to determine if there
are other hosts using the same IP address. It also advertises the sender’s IP
and MAC address, and other hosts in the network will insert this mapping
into their ARP table.

Manipulating the ARP table
An entry in the ARP table has three elements: (1) an IP address, (2) the
MAC address associated with this IP address, and (3) flags. A normal entry
expires 20 min after it is created or the last time it is referred. If an entry
is manually entered, it has a permanent flag and will never time out. If
an entry is manually entered with the pub key word, it has an additional
published flag which means the host will respond to ARP requests on the
IP address in this entry. If a host sends an ARP request but gets no reply, an
incomplete entry will be inserted into the ARP table. The ARP table can be
manipulated using the arp command. Some options of arp are given here.
� arp -a: Displays all entries in the ARP table.
� arp -d: Deletes an entry in the ARP table.
� arp -s: Inserts an entry into the ARP table.

2.3 Network interface

2.3.1 Operations of a network interface

Figure 2.6 illustrates the operations of an Ethernet card with two interfaces.
Most TCP/IP implementations have a loopback interface with the IP address
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Figure 2.6. Functional diagram of an Ethernet interface card.

127.0.0.1 and domain name localhost. It behaves as a separate data
link interface, but packets sent to it will be put in the IP input queue and
will not be transmitted on the medium. The loopback interface is used for
debugging.

The Ethernet interface reads and sends Ethernet frames from or to the
medium. When it receives a frame, it reads the Frame Type field. If Frame
Type is 0x0806, the ARP message carried in the frame is extracted and sent
to the ARP module. If Frame Type is 0x0800, an IP datagram is extracted
and sent to the IP input queue. When the IP layer has a datagram to send,
the device driver first checks if it is destined for itself. In this case (i.e.,
multicast, broadcast, destination IP address is its own IP address, or the
destination IP address is 127.0.0.1), a copy of the datagram is sent to the
loopback interface. Otherwise, the device driver will search the ARP table
for the destination MAC address. If there is no hit in the table lookup,
an ARP request is broadcast. When the sending host gets the destination
MAC address, an Ethernet frame is assembled and the device driver begins
to compete for the channel, attempting to send the frame on the medium.

There is a limit on the frame size of each data link layer protocol. This
limit is determined by the reliability of the physical medium and the nature
of the MAC scheme used. It translates itself to a limit on the size of the IP
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datagram that can be encapsulated in a link layer frame, which is called the
maximum transmission unit (MTU). Examples of MTUs are: 1500 bytes
for Ethernet and 4352 bytes for FDDI. If an IP datagram to be sent is
longer than the MTU of the interface, the IP datagram will be fragmented
and carried in several data link layer frames. We will further discuss MTU
and IP fragmentation in Chapter 5.

2.3.2 Configuring a network interface

The netstat command can be used to display the configuration information
and statistics on a network interface. The same command is also used to
display the host routing table. We list several netstat options below that
will be used frequently in the following experiments.
� netstat -a: Shows the state of all sockets, routing table entries, and inter-

faces.
� netstat -r: Displays the routing table.
� netstat -i: Displays the interface information.
� netstat -n: Displays numbers instead of names.
� netstat -s: Displays per-protocol statistics.

The ifconfig command is used to configure a network interface. The
following options are used for the reconfiguration of the IP address and
network mask.
� ifconfig -a: Shows the states of all interfaces in the system.
� ifconfig interface name down: Disables the network interface,1 where

interface name is the name of the Ethernet interface.2
� ifconfig interface name new IP address up: Assigns a new IP address

to the interface and brings it up.
� ifconfig interface name netmask new netmask: Assigns a new network

mask for the interface.

2.4 The Internet Control Message Protocol

ICMP is a protocol in the network layer that communicates error messages
and other conditions that require attention, as well as routing information.

1 It is recommended that the interface be disabled first, before changing its settings.
2 Different systems may give different names for the interfaces, e.g., le0 for Sun Sparc 4 with SunOS

5.5.1 and hme0 for Sun Ultra 5 with Solaris 8. You can find the name by typing netstat -i or ifconfig
-a.
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Table 2.2. Types and codes of ICMP messages

Type Code Description –

0 0 echo reply query

3 0–15 destination unreachable error

5 0–3 redirect error

8 0 echo request query

9 0 router advertisement query

10 0 router solicitation query

11 0–1 time exceeded error

code(0–15)type(3) checksum

unused (must be 0)

IP header (including options), plus the first 
8 bytes of the original IP datagram payload

0 7 8 15 16 31

Figure 2.7. Format of an ICMP error message.

An ICMP message is encapsulated in an IP datagram, with the Protocol
Type value 0x01.

There are many different ICMP messages, each of which is used for
a specific task. These ICMP messages have a 4-byte common header, as
shown in Fig. 2.7 and Fig. 2.8. The Type and Code fields in the common
header define the function of the ICMP message. Some frequently used
ICMP messages are given in Table 2.2.

Figure 2.7 displays the format of an ICMP error message. The IP header
and the first 8 bytes of the payload of the original IP datagram are carried in
the ICMP error message and returned to the source. The sender can analyze
the returned header and data to identify the cause of the error. Note that the
first 8 bytes of the original IP payload contain the source and destination
port numbers in the UDP or TCP header.

Figure 2.8 gives the format of an ICMP echo request or reply message.
These messages are used by the ping program to determine if a remote host
is accessible. ping sends ICMP echo requests to the target IP address. The
target host will respond with an ICMP echo reply for each ICMP request
correctly received. The round trip time for each request/reply pair may be
reported in the ping console. The fact that no ICMP echo reply is received
means either that there is no path available to the remote host, or the remote
host is not alive. When there are multiple pings running on a host, each of
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type(0 or 8) code(0) checksum

identifier sequence number

optional data

0 7 8 15 16 31

Figure 2.8. Format of an ICMP echo request or echo reply message.

them is assigned a unique identifier. The sequence number field is used
to match reply to request.

2.5 The Sock traffic generator

Sock is a test program that can be run either as a client or as a server, using
UDP or TCP. It also provides a means to set various socket options. Sock
operates in one of the following four modes [5].
1. Interactive client: connects to a server, and copies the standard input,

i.e., keys a user typed, to the server and copies everything received from
the server to the standard output, i.e., the screen.

2. Interactive server: waits for a connection request from a Sock client,
and then copies the standard input to the client and copies everything
received from the client to the standard output.

3. Source client: sends packets to a specified server.
4. Sink server: receives packets from a client and discards the received

data.

2.6 Network interface exercises

The following exercises use the single segment network topology shown
in Fig. 1.3.

Exercise 1 Use the ifconfig -a command to display information about the network interfaces
on your host. Find the IP address and the net mask of your machine.

LAB REPORT How many interfaces does the host have? List all the interfaces found,
give their names, and explain their functions briefly.

LAB REPORT What are the MTUs of the interfaces on your host?

LAB REPORT Is network subnetted? What is the reasoning for your answer? What the
experimental are the reasons for subnetting?



55 2.7 ARP exercises

Exercise 2 While tcpdump host your host is running in one command window, run ping
127.0.0.1 from another command window.

LAB REPORT From the ping output, is the 127.0.0.1 interface on? Can you see any
ICMP message sent from your host in the tcpdump output? Why?

Exercise 3 By using netstat -in command, collect the statistics from all the hosts on the
network. Since we use the same login name and password, we can telnet to other
workstations and run netstat -in there.3

Save the netstat -in outputs.

If you don’t see a significant amount of output packets in the netstat output, the
machine was probably restarted recently. You may do this experiment later, or use
the following sock command to generate some network traffic:

sock -u -i -n200 remote host echo.

LAB REPORT Calculate the average collision rate over all the hosts for the set of
statistics you collected in this exercise.

2.7 ARP exercises

In the following experiment, we shall examine the host ARP table and the
ARP operation, including two interesting cases: proxy ARP and gratuitous
ARP. You may need to ask the lab instructor for the MAC addresses of the
host and router interfaces, and record these MAC addresses in Table A.1
and Table A.2 in the appendix. You need these MAC addresses for the
exercises and lab report.

Exercise 4 Use arp -a to see the entire ARP table. Observe that all the IP addresses displayed
are on the same subnet.

If you find that all the remote hosts are in your host’s ARP table, you need to delete
a remote host (not your workstation) from the table, using,

arp -d remote host.4

Save the ARP table for your lab report.

While tcpdump -enx -w exe2.out is running, ping a remote host that has no entry
in your host ARP table. Then terminate the tcpdump program.

3 After you are done with a remote host, you should exit the telnet session before you telnet to
another remote host. Recursive telnet will generate unnecessary data in the tcpdump output and
cause confusion.

4 If you deleted your workstation’s IP address from the ARP table by mistake, you must add the entry
back in the table. See the arp manual page to add. Note that, in order for your workstation to reply
to the ARP requests, the ARP entry of your workstation must have the P flag in the ARP table.
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Next, run ethereal -r exe2.out& to load the tcpdump trace file.

Observe the first few lines of the packet trace to see how ARP is used to resolve an
IP address.

Run arp -a to see a new line added in your host’s ARP table. Save the new ARP table
for your lab report.

Mark the ARP request packet and the ARP reply packet in the ethereal window. Then
go to menu File/Print ... to print the marked packets for your lab report (See
Exercise 6 of Chapter 1).

LAB REPORT From the saved tcpdump output, explain how ARP operates. Draw the
format of a captured, ARP request and reply including each field and the
value.

Your report should include the answers for the following questions.
� What is the target IP address in the ARP request?
� At the MAC layer, what is the destination Ethernet address of the frame

carrying the ARP request?
� What is the frame type field in the Ethernet frame?
� Who sends the ARP reply?

Exercise 5 While tcpdump host your host is running to capture traffic from your machine,
execute telnet 128.238.66.200. Note there is no host with this IP address in the
current configuration of the lab network.

Save the tcpdump output of the first few packets for the lab report.

After getting the necessary output, terminate the telnet session.

LAB REPORT From the saved tcpdump output, describe how the ARP timeout and
retransmission were performed. How many attemps were made to resolve
a non-existing IP address?

Exercise 6 The network topology for this proxy ARP exercise is shown in Fig. 2.9. We will
divide the group into two subnets interconnected by a router. The IP addresses
and network masks for the hosts are also given in Fig. 2.9. Change the IP address and
network mask of your host accordingly (see Section 2.3.2). The IP addresses and
network masks of the Router4 interfaces are the same as their default settings.
Note that the network mask of the hosts in the 128.238.65.0 network is 255.255.0.0.

Next we will enable the proxy ARP function on the ethernet1 interface of Router4.
1. telnet to Router4 from shakti: telnet 128.238.64.4. The login password is

el537.5

5 Check with your lab instructor for the password of the router your are using, which may be different
from el537.
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Figure 2.9. Network configuration for the proxy ARP experiment.

2. Log in to the router, type enable to enter the Privileged EXEC mode.6 The password
is again el537.

3. Enter the Global Configuration mode by typing config term.
4. Then type the following lines:

interface ethernet 17

ip proxy-arp
Ctrl-Z

5. Type exit to terminate the telnet session.
Now Router4’s ethernet1 interface can perform proxy ARP for the hosts in the
128.238.64.0 subnet.

Run tcpdump -enx on all the hosts.

Then let the hosts in the 128.238.65.0 subnet send UDP datagrams to the hosts in
the 128.238.64.0 subnet. For example, on guchi type:

sock -i -u -n1 -w1000 Host in 64.0 subnet echo.

When you are done with all the hosts in the 128.238.64.0 subnet, save the tcpdump
output for the lab report.

Run arp -a to display the new ARP table in your host. Save the ARP table for your
lab report.

After the lab instructor restores the network into a single subnet (see Fig. 1.3),
change the IP address and network mask of your host’s interface back to their
default values as in Fig. 1.3.

6 We will discuss bridge and router configuration in Chapter 3.
7 The name of the router interfaces may be different for various routers. You can find the names by

typing write term in the Privilege EXEC mode.
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Exchange your data saved in this exercise with a student working in the other
subnet.

LAB REPORT Explain the operation of proxy ARP.

Why can a host in the 128.238.65.0 subnet reach a host in the 128.238.64.0
subnet, even though they have different subnet IDs?

What are the MAC addresses corresponding to hosts in the 128.238.64.0
subnet, in the ARP table of a host in the 128.238.65.0 subnet?

Give one advantage and one disadvantage of using proxy ARP.

Exercise 7 This exercise will be performed by all the students together. While tcpdump -ex
-w exe7.out is running on all the hosts, reboot host guchi.

After guchi is started, terminate tcpdump and run ethereal -r exe7.out & to load
the tcpdump trace. Print the the gratuitous ARP request for your lab report.

LAB REPORT What is the purpose of gratuitous ARP?

LAB REPORT List the sender IP address, target IP address, sender MAC address, and
target MAC address of the gratuitous ARP you saved.

2.8 Exercise with ICMP and Ping

Exercise 8 Use ping -sv remote host to test whether the remote host is reachable, while
running: tcpdump -enx host your host and remote host.

Save the tcpdump and ping output for the future study on ping.

LAB REPORT What ICMP messages are used by ping?

Exercise 9 While running tcpdump -x -s 70 host your host and remote host,

execute the following sock command to send a UDP datagram to the remote host:
sock -i -u -n1 -w1000 remote host 88888.

Save the tcpdump output for the lab report.

LAB REPORT Study the saved ICMP port unreachable error message (see Fig. 2.7).
Why are the first 8 bytes of the original IP datagram payload included in
the ICMP message?

Exercise 10 While tcpdump is running to capture the ICMP messages, ping a host with IP
address 128.238.60.100. Save the ping output.
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Table 2.3. Host IP addresses and network masks for exercise 11

Group Name IP address Subnet mask

Group A shakti 128.238.66.100 255.255.255.0

vayu 128.238.66.100 255.255.255.0

agni 128.238.66.102 255.255.255.0

apah 128.238.66.103 255.255.255.0

Group B yachi 128.238.66.104 255.255.255.0

fenchi 128.238.66.104 255.255.255.0

kenchi 128.238.66.106 255.255.255.0

guchi 128.238.66.107 255.255.255.0

LAB REPORT Can you see any traffic sent on the network? Why? Explain what hap-
pened from the ping output.

LAB REPORT List the different ICMP messages you captured in Exercises 8, 9, and
10 (if any). Give the values of the type and code fields.

2.9 Exercises with IP address and subnet mask

In this section, we will observe what happens when the same IP address is
assigned to two different hosts. We will also set an incorrect subnet mask
for hosts and see what are the consequences. For the next two exercises,
we split the current single segment network into two segments, Group A
and Group B as shown in Table 2.3, so that they will not interfere with each
other.

Exercise 11 Change the IP address of your workstation as shown in Table 2.3.

Delete the entries for all hosts other than your own workstation from your worksta-
tion’s ARP table.

Run tcpdump -enx on all the hosts. Then, do the following three experiments.
1. Execute telnet from one of two hosts with the duplicate IP address to a host with

unique IP address (e.g. shakti –> agni in Group A and yachi –> kenchi in
Group B).
Now, from the other host with the duplicate IP address, execute telnet command
to the same host (vayu –> agni or fenchi –> kenchi).
Observe what happens and save the tcpdump output and the ARP tables in all
the hosts in your group.
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Table 2.4. Host IP addresses and network masks for exercise 12

Group Name IP address Subnet mask

Group A shakti 128.238.66.100 255.255.255.240

vayu 128.238.66.101 255.255.255.0

agni 128.238.66.102 255.255.255.0

apah 128.238.66.120 255.255.255.240

Group B yachi 128.238.66.104 255.255.255.240

fenchi 128.238.66.105 255.255.255.0

kenchi 128.238.66.106 255.255.255.0

guchi 128.238.66.121 255.255.255.240

2. Execute telnet 128.238.66.100 (or 128.238.66.104) from agni (or kenchi).
Which host provides the telnet connection? Why?

3. Execute telnet 128.238.66.100 (or 128.238.66.104) from apah (or guchi). Which
host is connected to apah (or guchi)? Why?

LAB REPORT Explain what happened in the first case and why. Answer the questions
for the second and third cases.

Exercise 12 Change the host IP addresses and the subnet masks as shown in Table 2.4.
Since we still have two separate segments, Groups A and B can do the exercise
independently. Note that two hosts in each group (shakti and apah in Group A,
or yachi and guchi in Group B) are assigned an incorrect subnet mask.

Capture the packets with tcpdump -e for the following cases.
1. When shakti (yachi) pings one of the hosts that have the correct subnet mask.
2. When apah (guchi) pings one of the hosts that have the correct subnet mask.

Now, copy the output displayed from the ping window in apah (guchi). Share
the saved output message with other students.

3. When a host with the correct subnet mask pings shakti (yachi).
4. When a host with the correct subnet mask pings apah (guchi).
To avoid confusion, only one machine in each group should generate traffic in each
case. Clearly, this exercise has to be performed as a team.

LAB REPORT Explain what happened in each case according to the tcpdump outputs
saved. Explain why apah (or guchi in Group B) could not be reached from
other hosts, whereas shakti (or yachi in Group B), which has the same
incorrect subnet mask, could communicate with the other hosts.
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Algorhyme
I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree that must be sure to span
So packets can reach every LAN.
First, the root must be selected.
By ID, it is elected.
Least-cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
Then bridges find a spanning tree. Radia Perlman

3.1 Objectives

� The Cisco Internet Operating System software.
� Configuring a Cisco router.
� Transparent bridge configuration and operation.
� The spanning tree algorithm.

3.2 Ethernet bridges

3.2.1 Use of bridges

Bridges are link layer devices. As illustrated in Fig. 0.3, when two network
segments with different link and physical layer protocols are connected, the
bridge performs a two-way translation of the protocols. The data section
of a transit frame is extracted and re-encapsulated in the frame format used
by the next-hop network segment.

61
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However, there are several reasons to use bridges to connect networks
even with identical protocols, rather than using a large network without
bridges. First, network segments could be far away from each other but
still work within the same logical network. In this case, two remote net-
work segments can be linked by two bridges via a point-to-point wide area
link. Second, there is a limit on the maximum length of the shared medium
in a local network. This further limits the physical size of a single seg-
ment network. Using bridges can effectively extend the size of a local area
network. Third, since the throughput of a local network decreases as the
collision rate increases (see exercises in Chapter 2), small LAN segments
always perform better than large segments with more devices. Last, break-
ing a local network into several segments connected by bridges has security
advantages, since communications within a segment cannot be overheard
from outside that segment.

We will focus on the IEEE 802.1d bridge (which is widely used) in
discussing bridge operations in the following.

3.2.2 Bridge operation

A bridge has several ports, each connected to a network segment. As an
internetworking device, a bridge’s basic function is to forward frames from
one LAN segment to another. When a transparent bridge is used, a frame
is simply copied to the destination network, with no modification in the
header and data section, and the end devices are not aware of the presence
of bridges.

To perform the forwarding function, MAC addresses of the hosts stored
in a filtering database in the bridge is used. The filtering database consists
of a number of entries, each with three elements: (1) the destination MAC
address, (2) the bridge port where frames for this destination MAC address
should be forwarded to, and (3) the age of this entry. The filtering database
could be set manually and be static. However, in an IEEE 802.1d bridge,
the filtering database is maintained automatically by an address learning
process, as illustrated in Fig. 3.1. When the bridge receives a frame from
one of its ports, it infers that the source of this frame can be reached from
the incoming port. Then, the source MAC address field of the frame and the
port needed to reach it are updated in the bridge’s filtering database. The
default age of a new entry is 300 seconds, after which the entry is deleted.

A bridge makes forwarding decisions by filtering database lookups. If
there is an entry corresponding to the destination MAC address of the frame
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The new filtering database:

The original filtering database:
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Figure 3.1. The bridge learns the source address from an incoming frame.
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Figure 3.2. When there is a loop in the bridged network, the address learning scheme will

not work.

found, the bridge forwards this frame to the network segment indicated by
the entry. Otherwise, flooding is used where the received frame is copied
to all the active ports except the incoming port.

3.2.3 Spanning tree algorithm

The address learning scheme described in the last subsection works fine if
there is no loop in the network. When there are more than one path between
a source and a destination, as shown in the example in Fig. 3.2, the address
learning and forwarding scheme may cause serious problems.

In Fig. 3.2, suppose Host1 sends a frame to a HostX (which is not shown
in the figure), for which there is no entry inBridge1 andBridge2’s filtering
database. Both bridges receive the frame on LAN B, and learn that Host1
is on LAN B. So each of the bridges correctly update (or add) the entry
for Host1 in its filtering database. Also, both bridges forward the frame
to LAN A using flooding since there is no entry for HostX in their filtering
database. Then, each bridge will receive the same frame forwarded by the
other bridge, and will incorrectly change the filtering database entry to
indicate that Host1 is on LAN A. Next, each bridge will forward the frame
on LAN B again. This process, which repeats indefinitely, is known as a
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Figure 3.3. An example bridged network with a loop and the corresponding tree with the

loop removed.

broadcast storm. A severe broadcast storm can block other network traffic,
resulting in a network meltdown.

The solution to this problem is to remove loops in bridged networks. A
bridged network can be viewed as a graph, where the bridges are nodes and
the network segments are edges. A tree is a graph with no loops. If we can
build a tree from this graph by disabling some of the bridge ports, loops
will be removed. This is shown in Fig. 3.3, where the loop in the network
is removed by disabling port 2 of Bridge3. It can be seen that from any
host in the tree network to any other host, there is only a single path. The
problem discussed in the previous example is solved.

The spanning tree algorithm defined in the IEEE 802.1d standard is used
in bridged networks to build trees dynamically. It works as follows.
1. Each bridge is assigned a unique identifier, and each port of a bridge is

assigned an identifier unique to that bridge. Typically, the identifier of
a bridge is a priority concatenated with one of the bridge ports’ MAC
address, and the identifier of a port is a priority concatenated with a port
index local to the bridge. Each bridge port has a corresponding path
cost, which indicates the cost to transfer a frame to an attached network
segment through that port.

2. Select the root bridge, which is the one with the lowest-value bridge
identifier. The ID of the root is called the root ID.

3. Each bridge selects its root port. The root port of a bridge is the port
from which the root bridge can be reached with the least aggregate path
cost (called the root path cost).
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2 1 1 1 8 4 8 2 2 2 2 2

Flags
Root ID

Message Age
Message Type

Version
Protocol Identifier

Maximum Age
Hello Time

Forward Delay

Port ID
Root Path Cost Bridge ID

Figure 3.4. BPDU message format. The numbers indicate the field length in byte.

4. Determine the designated bridges and the designated ports. Each net-
work segment is associated with a designated bridge, which provides the
shortest path to the root bridge and is the only bridge allowed to forward
frames to and from the root. The port connecting a designated bridge to
the network segment is a designated port. If more than one bridge pro-
vides the same root path cost, the bridge with the lowest-valued bridge
identifier is selected as the designated bridge.

5. Only the root ports and designated ports of the bridges are allowed to
forward frames. All other bridge ports are blocked.

6. The above steps are repeated whenever the network topology changes.
In the tree shown in Fig. 3.3, Bridge1 is the root bridge since it has the
smallest bridge identifier. Bridge4’s root port is port 1, with a root path
cost of 2 hops. LAN D’s designated bridge is Bridge3, and its designated
port is Bridge3’s port 3.

To implement the spanning tree algorithm in a distributed manner,
bridges exchange configuration information using a message called bridge
protocol data units (BPDUs). The format of a BPDU message is given in
Fig. 3.4 with the definition of the fields given below.
� Protocol Identifier, Version, and Message Type: These three

fields are always set to 0.
� Flags: The least significant bit, called the Topology Change (TC) bit, is

set to signal a topology change. The most significant bit is to acknowledge
receipt of a BPDU with the TC bit set. The remaining six bits are not
used.

� Root ID: Identifies the root bridge by listing its 2-byte priority followed
by a 6-byte Ethernet address. The priority value can be set in the Global
Configuration mode. The default priority is 0x8000.

� Root Path Cost: The path cost to the root bridge.
� Bridge ID: The identifier of the bridge sending the message.
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Figure 3.5. Cisco IOS enables network applications on the network platforms.

� Port ID: Each bridge port has a unique 2-byte identifier. The first byte
is the priority, which is configurable, while the second byte is a number
assigned to the port.

� Message Age:1 Specifies the amount of time since the root originally
sent the BPDU on which the current configuration message is based.

� Maximum Age:1 Indicates when the spanning tree topology is recalcu-
lated if a bridge does not hear BPDUs from the root bridge. The default
value is 15 seconds.

� Hello Time:1 Provides the time period between two BPDUs from the
root bridge. The default value is 1 second.

� Forward Delay:1 provides the amount of time that bridges should wait
before switching a port from the blocking state to forwarding state. If
a bridge port switches state too soon, not all network links may be
ready to change their state, and loops can occur. The default value is
30 seconds.

3.3 Configuring a bridge or router

3.3.1 The Cisco internet operating system

For a bridge or router to work properly, we need higher layer functions for
configuration and management tasks. The Cisco IOS is the most widely
deployed network system software, delivering network services such as
operations, administration, and maintenance of the network platforms and
Internet applications. Cisco IOS supports a broad range of platforms, as
well as many networking protocol families, such as TCP/IP, AppleTalk,
DECnet, Systems Network Architecture (SNA), among others. As shown
in Fig. 3.5, Cisco network platforms and the Cisco IOS software running
on them are a unified system.

1 in 1/256ths of a second.

Network Applications

Cisco IOS

Network Platform
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In our lab, the Cisco IOS software is running in the four routers. In the
following exercises, we will learn how to use the Cisco IOS to configure a
bridge or a router. More specifically, we will configure the interfaces, enable
or disable different functions, choose what protocol (e.g., the spanning
tree algorithm, RIP or OSPF) to use, and display the state of the bridge/
router.

3.3.2 Cisco IOS configuration modes

The Cisco IOS provides different ways to configure and maintain a Cisco
device. The Cisco IOS command-line interface (CLI) is the primary user
interface which allows you to directly and simply execute Cisco IOS com-
mands, whether using a router console or terminal, or using remote access
methods. The Cisco IOS software also includes a web browser user inter-
face (UI) from which you can issue Cisco IOS commands. The Cisco IOS
web browser UI can be accessed from the router home page.

There are six different configuration modes in CLI, each providing a set
of configuration commands. A set of special commands is used to navigate
through these modes. The six configuration modes are listed below.
1. User EXEC mode. This is the mode you are in after you login to the

router. The EXEC commands available in this mode are a subset of
those in the privileged EXEC mode. Most commands in this mode are
used to determine the router status, but do not change the configuration
of the router.

2. Privileged EXEC mode. This is the second level of access for the EXEC
mode. All the EXEC commands are available in this mode. This mode
provides access to the configuration mode by means of the configure
command, and includes advanced testing commands, such as debug.

3. Global configuration mode. This mode provides commands to configure
the system globally. Global attributes can be configured in this mode.

4. Interface Configuration mode. This mode provides commands to con-
figure an interface. Attributes that relate to an interface can be set in this
mode.

5. Subinterface Configuration mode. This is a submode of the interface
configuration mode. In this mode you can configure multiple virtual
interfaces (called subinterfaces) on a single physical interface.

6. ROM Monitor mode. This mode is used to manually locate a valid system
software image from which the device bootstraps.
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prompt
mode : User EXEC

: Router>

prompt
mode : Privileged EXEC

: Router#

enable, enter password

prompt
mode : Global Configuration

: Router(config)#

orend Ctrl–Z

prompt
mode : Interface Configuration

: Router(config–if)#

specify an interface with an 
interface command

specify a subinterface with an 
interface command

during the first 
60 seconds of
system start up

reload , then 
Ctrl–Cpress

continue or C

prompt
mode : Subinterface Configuration

: Router(config–subif)#

prompt
mode : ROM Monitor

: > or boot> or rommon>

end or Ctrl–Z

end or Ctrl–Z

logout

disable

configure terminal

exit

exit

login

Figure 3.6. Navigating through the Cisco IOS configuration modes.

In the following experiments, we will use commands in the first four con-
figuration modes. Figure 3.6 further illustrates configuration modes, their
prompts, and commands used to navigate through them.

To get help, typing ? displays all the commands available in the mode
you are in. Typing ? after a partial command string lists commands in the
current mode that begin with that string. Typing ? after a full command
lists the available syntax for that command.

3.3.3 Bridge/router configuration procedure

As shown in Fig. 3.6, you need to log into the router to perform configu-
rations. If the network is not available, you can configure a router locally.
Each router has a serial console port. You can directly connect a console
terminal (an ASCII terminal or a terminal emulator) to the console port of
the router (see Section A.3.3).

When the router and a host are in the same LAN, you can telnet to the
router for configurations. In order to access the router, you should make sure
that your host is in the same subnet as the router interface. If the workstation
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IP address doesn’t match the subnet of a router, you first need to set your
workstation IP address to match the subnet of the router that you want to
configure. Then you can telnet to the router interface and change the IP
address of each interface as required. If you change the router interface
to another subnet, the telnet session will be frozen since now the router
interface is in a different subnet from your host. In this case, kill the window
and change the IP address of your workstation again to match that of the
router interface. Again, telnet to the new IP address of the router interface
(which you just set), and then do the remaining configuration.2

The following is an example of router configuration from a remote host.
1. Connect the host and a router interface using a hub. Also change the

host’s IP and/or netmask to match the subnet of the router interface if
necessary.

2. Telnet to the router interface, enter the virtual terminal password, which
is el537. Now you are in the User EXEC mode with prompt:

Router>

3. You may enter the Privileged EXEC mode by typing:
Router> enable

After entering the enable password (el537), you will see the Privileged
EXEC prompt:

Router#

You may type write terminal to display the current configuration in the
Privileged EXEC mode.

4. To begin a new configuration, use the following command in the Privi-
leged EXEC prompt:

Router# configure terminal
Then the router displays an explanation of the editing functions. Now
you are in the Global Configuration mode.
In this mode, you can make various configurations, e.g., assigning IP
addresses to the interfaces, specifying which protocols to run, etc. Since
it is impossible to describe all the configuration commands here, we will
introduce configuration commands whenever they are needed.

5. To end the configuration mode, type Ctrl-z. Then, you will get back to
the Privileged EXEC mode. You can examine the new configuration by
typing write terminal again.

2 By defining a virtual interface called loopback, we can change the IP address of any router interface
without an interrupt of the telnet session. However, for the sake of experiments, we do not introduce
the loopback feature in this lab.
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6. Enter the disable command to return to the User EXEC mode. Type exit
to end the connection to the router.
Here, we intentionally omit the command for saving the configuration

changes to NVRAM (Nonvolatile RAM). For more information about the
configuration commands, see [6] and [7].

3.3.4 Configuring a transparent Bridge

This section discusses how to set the IP address of a bridge or router
interface and how to initiate the transparent bridge function. The following
procedure sets the IP address of an interface in a bridge or router.
1. Get to the Global Configuration mode (see the previous section, or

Fig. 3.6).
2. To specify an interface and start the interface configuration, enter:

Router(config)# interface interface type interface number.
For example, type interface ethernet 0 to configure the ethernet 0

interface. Note that since you are in the Global Configuration mode, you
have access to all the bridge/router interfaces (e.g., ethernet 1), and
can configure them here.

3. From the Interface Configuration mode, use the command:
Router(config-if)#ip address new IP address net mask

to set the IP address and subnet mask of the interface.
4. Type Ctrl-z to return to the Privileged EXEC mode. You can type write

terminal to verify the changes just made.
5. Type disable to return to the User EXEC mode. From both EXEC modes,

you can type exit to terminate the telnet session.
To configure a transparent bridge with the spanning tree algorithm, the

following steps are needed in the Global configuration mode.
1. To bridge (as opposed to route) IP datagrams, disable IP routing:

Router(config)# no ip routing
2. Enable each interface:

Router(config)# interface ethernet 0 or 1
3. Assign the network interfaces to a spanning-tree group:

Router(config-if)# bridge-group group
The argument group is a number between one and nine that you choose
to refer to a particular set of bridged interfaces on this bridge. Frames
are bridged only among interfaces in the same group.
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Table 3.1. A basic transparent bridge
configuration example

no ip routing

interface ethernet 0

ip address 128.238.61.1 255.255.255.0

bridge-group 1

interface ethernet 1

ip address 128.238.61.2 255.255.255.0

bridge-group 1

bridge 1 protocol ieee

4. Define the spanning-tree protocol:
Router(config-if)# bridge group protocol protocol

protocol specifies which spanning tree protocol to use. It can be either
ieee for the ieee spanning-tree protocol, or dec for the DEC spanning-tree
protocol.

5. Set the other spanning-tree parameters, e.g., the bridge priority and path
costs, if necessary.
Table 3.1 is an example of a basic transparent bridge configuration used

in Exercise 3 of this chapter.
Initially, routers were configured as shown in Appendix A. Unless you

save the configuration changes to NVRAM permanently, the router will
always reboot with that configuration.

3.4 Exercises on Cisco IOS

The students in the lab should divide themselves into four groups for the
first four exercises. Each group uses two workstations, a bridge, and two
hubs, which are required to be connected as shown in Fig. 3.7, Table 3.2
and Table 3.3.

Exercise 1 In this exercise we build the connection to the router.

Identify the cable from your workstation and the cable from your router interface
(see Fig. 3.7, Table 3.2 and Table 3.3). Plug these two cables into your hub. In this
case, you have built a LAN segment with a star topology. Your partner should build
a star LAN segment on the other side of the router.



72 Bridges, LANs and the Cisco IOS

Table 3.2. Router IP addresses for Fig. 3.7

eth0 eth1

router1 128.238.61.1/24 128.238.61.2/24

router2 128.238.62.2/24 128.238.62.3/24

router3 128.238.63.3/24 128.238.63.4/24

router4 128.238.64.4/24 128.238.64.5/24

Table 3.3. Host IP addresses for Fig. 3.7

HOST A HOST B

Name IP address label Name IP address label

shakti 128.238.61.101/24 1 vayu 128.238.61.102/24 2

agni 128.238.62.102/24 3 apah 128.238.62.103/24 4

yachi 128.238.63.103/24 5 fenchi 128.238.63.104/24 6

kenchi 128.238.64.104/24 7 guchi 128.238.64.105/24 8

BRIDGE

HOST_BHOST_A

eth0 eth1

Figure 3.7. Using a transparent bridge.

After running tcpdump -enx on both workstations, turn on the router. Capture the
gratuitous ARP sent by the router.

Change the IP address of your workstation to be in the same subnet as the router.
You can choose any valid host id for your host.

ping the router interface to test the connection to the router.

LAB REPORT Submit the gratuitous ARP sent by the router. What is the default IP
address of the router interface?

Exercise 2 Telnet to your router. When prompted for a login password, type el537. You
should now be in the User EXEC mode.

Type help to learn how to use the online help.
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Study Fig. 3.6. Navigate through the User EXEC, Privileged EXEC, Global Configu-
ration, and Interface Configuration modes. In each mode, type ? to display a list of
available commands and study these commands.

Type show version in the User EXEC mode to display the Cisco IOS banner. Identify
which Cisco IOS Release is running in the router. Save the Cisco IOS banner for
your lab report.

LAB REPORT Submit the Cisco IOS banner you saved. Identify the release of the
Cisco IOS software in the router.

3.5 A simple bridge experiment

Figure 3.7 shows a simple case of the use of bridges, which consists of
two network segments connected by a bridge. With this simple topology,
we can easily capture initial BPDUs before each bridge is engaged in the
spanning tree calculation.

Configure transparent bridging as in Fig. 3.7, Table 3.2 and Table 3.3.
Note that the default configuration of the hosts and the bridges are differ-
ent from those in the tables. You need to change the IP addresses of the
bridge interfaces,3 as well as set the bridge group and enable the spanning
tree algorithm (see the previouse section on bridge configuration). Do the
following experiments.

Exercise 3 Configure the IP addresses of your workstation and the bridge interfaces as shown
in Fig. 3.7, Table 3.2 and Table 3.3. To avoid confusion, each bridge should be
configured by only one person.

Run tcpdump -en ip proto 1 on your machine, and your partner’s machine.

Send ping messages to your partner’s machine: ping -sv remote machine.

After receiving the tenth echo reply, quit the ping process, and save the tcpdump
outputs from both machines.

During this exercise, don’t run ping programs at the same time. For clean results,
do your experiments in turn.

LAB REPORT What are the IP and MAC addresses of a packet that went from your
machine to the bridge? What are the IP and MAC addresses of a packet
that went from the router to your partner’s machine?

3 As soon as you change the IP address of the bridge interface your host is connected to, the telnet
connection will be lost. You need to again change the IP address of your workstation to be in the
same subnet as the bridge interface. See Section 3.3.3.
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Answer the same questions, but for the echo reply that was returned from
your partner’s machine.

LAB REPORT Using the tcpdump outputs from both machines, calculate the average
delay that a packet experienced in the bridge. Note that the system times
of the two machines might be different. Show all the steps and submit the
tcpdump outputs with your report.

Exercise 4 Run tcpdump -e -c 5 ether multicast on your workstation to capture 5 BPDUs
messages generated by the bridge. Save the BPDUs for the lab report.

You need to collect all the different BPDUs from other students in your lab. At
this time, however, just save your BPDU in the guest home directory (which is
/home/guest/) as “name of your host.ex4” since there is no network connections
to hosts in the other groups. In our next exercise, after we put all the workstations in
one network as shown in Fig. 3.8, you can collect BPDUs from other workstations
using ftp.

You should collect eight different BPDUs in this exercise. These BPDUs will be
helpful when studying the spanning tree algorithm later in this chapter.

LAB REPORT How frequently (in seconds) does a bridge sends its BPDUs?
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Figure 3.8. Bridge experiment network.
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LAB REPORT Submit the eight different BPDUs you saved. Identify the values of root
ID, root path cost, bridge ID, and port ID for each BPDU4.

3.6 Spanning tree exercises

In this section, we will use Fig. 3.8 as our network topology. You need
to change the IP addresses of the bridge interfaces, as well as that of your
workstation. Refer to Section 3.3.4 on how to configure a transparent bridge.
Also see Section 3.3.3 on how to handle a frozen telnet session after you
change the bridge IP address.

Upon being started, a transparent bridge learns the network topology by
analyzing source addresses of incoming frames from all attached networks.
The next exercise shows the process by which a transparent bridge builds
its filtering database.

Exercise 5 After configuring the network in Fig. 3.8, login to the bridge.

Get to the Privileged EXEC mode. Type show bridge to see the entries in the bridge
forwarding database.

Whenever you ping or telnet from your workstation to a host that is not in the table,
observe how the filtering database in the bridge is expanded.

You may use the clear bridge group command to remove any learned entries from
the filtering database, if you see a full filtering database or if you want to repeat the
above exercise.

LAB REPORT From the output of show bridge, identify which bridge ports are blocked,
and which ports are in the forwarding state for each bridge.

Exercise 6 Using tcpdump -ex ether multicast, capture the BPDU packet flowing on your
network segment.

Telnet to the hosts in the other three LAN segments and execute the above tcpdump
command in the telnet window to collect BPDUs sent there.

Login to each bridge to collect the show bridge outputs.

LAB REPORT Submit the four different BPDUs you saved. Identify the values of root
ID, root path cost, bridge ID, and port ID for each BPDU.

LAB REPORT Based upon the initial BPDUs saved in Exercise 4, draw the spanning
tree seen by the BPDUs. Identify the root ports and the root path cost (in hop

4 You may ask the lab instructor for the physical addresses of network interfaces, and record them in
Table A.1 and Table A.2. You need the MAC addresses to help analyze the BPDUs.
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counts) for each bridge. Identify the designated bridge and the designated
port for each LAN segment. Identify the state of each bridge port (blocking
or forwarding).

Don’t just assume that Bridge1 has the highest priority for the root bridge.
Draw the spanning tree based upon your data (eight initial BPDUs).

Write the final BPDUs you collected using the three-tuple format: {root
ID, root path cost, bridge ID}.

Once you have the spanning tree, justify it using the four final BPDUs
collected in this exercise and/or the output of the show bridge command.

Exercise 7 This exercise is performed by all the students together. First, send ping messages
from apah to yachi, while tcpdump is running. Let the two programs run during
this exercise.

Then, disconnect the cable from the ethernet0 port of Bridge2 from the hub,
and type the time command on apah or yachi to get the current time.

Observe the ping and tcpdump windows. When the connection is reestablished,
type the time command again. How long does it take the spanning tree algorithm to
react to the change in the topology?

Once you can successfully reach other hosts, get to the bridges to run show bridge
to collect the port states. Also collect BPDUs from all the LAN segments as you did
in the previous exercise.

After every student has collected the required data, connect the cable to the original
position. Again, measure the time it takes for the bridges to adapt to the new change.

LAB REPORT Draw the new tree formed after the cable was disconnected, based on
the BPDUs you collected in this exercise. Specify the state of each bridge
port.

3.7 Exercise on the Cisco IOS web browser UI

Exercise 8 You can also configure a router using the web browser UI. To enable the web server,
login to the router and execute ip http server in the Global Configuration mode.

Next, start a web browser (e.g., Mozilla in Linux, or Hotjava in Solaris) in your
host, and enter the IP address of the router interface. When prompted, enter el537
for password, and leave the User Name field blank. Then you can browse the router
configuration web pages and configure the router there.



4 Static and dynamic routing

We hoped that we could find a way to permit an arbitrary collection of
packet-switched networks to be interconnected in a transparent fashion, so that
host computers could communicate end-to-end without having to do any
translations in between. Vinton G. Cerf

4.1 Objectives

� Comparison of router and bridge.
� IP forwarding.
� Use of ICMP messages in routing.
� The Routing Information Protocol (RIP).
� The Open Shortest Path First (OSPF) protocol.
� Static routing by manually building the routing tables in the routers and

hosts.
� Use of Traceroute to find an end-to-end route.

4.2 Static and dynamic routing

Routing is the act of transferring packets from a source to a destination using
network layer protocol information. It involves two activities, determining
optimal routing paths and transporting packets through an internetwork.
The key to these two activities is the routing table maintained in each host
and router. The routing table records optimal routes and is consulted when
a forwarding decision is to be made for an arriving packet. The routing
table can be manually set, updated by an ICMP message received, or by
routing daemons implementing dynamic routing protocols.

77
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4.2.1 Next-hop routing

When a host needs to send a packet to a destination, it uses its own netmask
and the IP address of the destination host to find out the network and subnet
ID (or the extended prefix) of the destination. If the host and the destination
have the same extended prefix, the host and destination are on the same
network. Then the host sends the datagram directly to the destination. This
is known as direct delivery, as shown in Fig. 0.3. If the extended prefix of
the host is different from that of the destination, the host and the destination
are in different networks. The host must use indirect delivery and send the
datagram to a router, as shown in Fig. 0.5. The router is then responsible
for delivering the datagram to its destination.

The routing table is consulted for each indirect delivery in order to de-
termine the next hop router. Only one hop on the path from the router to a
destination network is listed in the routing table, instead of the whole path.
Each entry in the routing table points to a router to which it connects directly.
More specifically, each entry in the routing table contains the following.
� A destination IP address: either a complete host address or a network

address. A host address has a nonzero host ID, while a network address
has a host ID of 0.

� The IP address of the next-hop router, or of a directly connected network.
� Flags. There are five flags which can be used for a given route.

� U. The route is up.
� G. The route is to a router (gateway).
� H. The route is to a host.
� D. The route was created by a redirect (see Section 4.2.3).
� M. The route was modified by a redirect.

� The host’s network interface that the datagram should be delivered to,
e.g., the host’s Ethernet interface eth0.
When a router receives a datagram, it extracts the destination IP address

and computes the network prefix. Then the forwarding decision is made
according to the result of routing table lookup, as follows.
1. If the network prefix matches any directly connected network address,

the datagram is delivered directly to the destination over that network.
2. Else if the table contains a host-specific route for that address, the data-

gram is sent to the next hop router specified in that table.
3. Else if the table contains a network-specific route for the destination

host’s subnet, the router forwards the datagram to the router of that
network.
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Table 4.1. An example host routing table (Red Hat Linux 9)

Destination Gateway Genmask Flags MSS Window irtt Iface

128.238.4.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo

0.0.0.0 128.238.4.1 0.0.0.0 UG 40 0 0 eth0

4. Else if there is a default router entry in the routing table, the datagram
is sent to the default router.

5. If not even a default router is found, a routing error is generated and the
datagram is dropped.
As shown above, host entries have priority over network entries, which

have priority over default entries. This sequence of lookups is called the
longest-prefix-matching rule and is commonly used in routing table lookup.
Table 4.1 gives an example routing table from a Linux machine, where
the first entry is for the host’s own subnet, the second entry is for the
loopback interface, and the third entry is the default route with a default
router 128.238.42.1 and a G flag. Both the first and the third entry use the
local Ethernet interface eth0, while the loopback entry uses the loopback
interface lo. When the host has a packet to sent to a destination in the
128.238.4.0 subnet, both the first and the third entry match the destination
address. However, due to the longest-prefix-matching rule, the first route is
used. If the host has a packet to a destination of 128.238.66.100, the default
route will be used.

Considering the fact that table lookup is performed for each IP datagram
in each router along its path, and the tremendous volume of IP datagrams
in today’s Internet, a smaller routing table, which shortens the lookup time,
is always preferred. Most routing tables do not contain host-specific entries
but only network-specific entries, which keeps the table small. For hosts
that can access only one router, using a default route for all the networks
that are not directly connected is more efficient.

4.2.2 Static routing versus dynamic routing

Static routing is useful in the following three situations: the network is
small, there is a single connection point to other networks and there are no
redundant routes. Otherwise, dynamic routing is preferred.

With static routing, the routing table entries are created by default
when the interface is configured during bootstrap (e.g., using the Dynamic
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Host Configuration Protocol (DHCP)), added by the route command (from
the system bootstrap file) or created by an ICMP redirect or router discov-
ery. The latter two will be discussed in Section 4.2.3. In dynamic routing,
a router communicates with other routers, using one of many routing pro-
tocols, to gain information about the network status and build their routing
tables. Therefore, routing tables are automatically updated as the network
changes in the dynamic routing case.

4.2.3 Use of ICMP messages in routing

ICMP redirect
When enabled, a router sends an ICMP redirect error message to the sender
of a datagram if the datagram should have been sent to another router. This
allows the host to build a better routing table. The host may start with just
a default router in its routing table. ICMP redirects from the default router
will allow the host to update and build its routing table.

Figure 4.1 gives the format of an ICMP redirect message. Figure 4.2
shows an ICMP redirect example, where Host X uses Router A as its
default router. When Host X has a datagram to send to Host Y, it sends
the datagram to its default router. When Router A receives the datagram, it

checksum

IP header (including options), plus the first 
8 bytes of the original IP datagram payload

0 7 8 15 16 31

type(5) code(0-3)

correct gateway IP address

Figure 4.1. ICMP redirect message format.

Router A Router B

(1) The first IP datagram

(3) ICMP redirect

forwarded to Router B

(5) Following IP datagramsSource

Destination

(4) A new routing entry added: Host Y, next–hop=Router B

Host X

Host Y
(2) The first IP datagram is 

to Host Y

Figure 4.2. An ICMP redirect example.
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looks up the routing table and decides that Router B is the next-hop router.
However, it detects that the datagram is being sent out on the same interface
it was received on. Then, Router A sends an ICMP redirect message to
Host X, saying that subsequent datagrams to Host Y should be routed to
Router B. After receiving the ICMP redirect message, Host X inserts a
more efficient routing entry for Host Y using Router B as the next-hop
router, with a D flag.

ICMP redirect is enabled by default in the routers in our lab. To enable this
feature if it is disabled, use the following command in the router Interface
Configuration mode:

Router(config-if)# ip redirects.

ICMP router discovery
In networks of moderate size and simple topology ICMP router solicita-
tion and ICMP router advertisement messages can be used to configure
the default route for a host when it bootstraps. When a host boots up,
it sends several ICMP router solicitation messages, a few seconds apart,
to the multicast IP address 224.0.0.2 (ALL ROUTERS). A router interface
listens on the ALL ROUTERS address and responds to ICMP router solicita-
tion messages with ICMP router advertisement messages. In addition, the
router also sends ICMP router advertisement messages periodically. A host
chooses one or more of the advertised addresses as its default router. This
process is called ICMP router discovery.

In Red Hat Linux, router solicitations and router advertisements work
only on IPv6 networks.

In Solaris, the /etc/defaultrouter file stores the default router (IP or
domain name). If this file is empty, the host will use ICMP router discovery
to find a default route. The routing daemon for ICMP router discovery is
/usr/bin/in.rdisc.

To enable the ICMP router discovery protocol on a router interface, type
the following in the Interface Configuration mode:

Router(config-if)# ip irdp.
An ICMP router solicitation message is 8 bytes long, with the 1-byte Type

set to 10, the 1-byte code set to 0, and a 2-byte checksum. The remaining 4
bytes are unused and set to all 0s. An ICMP router advertisement message
carries one or more router IP addresses, as shown in Fig. 4.3.
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checksum

0 7 8 15 16 31

no. of addr.

code(0)type(9)

lifetime

router address [1]

preference level [1]

router address [2]

preference level [2]

......

addr. length(2)

Figure 4.3. ICMP router advertisement message format.

4.2.4 Dynamic routing

The Internet is a collection of networks with a very complex and time-
varying topology. Dynamic routing is needed to eliminate loops in the
paths and to react to changes in the network topology (e.g., a link failure).

The Internet is organized as a collection of Autonomous Systems (AS).
An AS is a set of networks administered by a single entity, e.g., an enterprise
network, or a campus network. Routing protocols used inside an AS are
called interior gateway protocols (IGP), while those used between routers
in different ASs to interconnect them are called exterior gateway protocols
(EGP). The most widely used EGP protocol is the Border Gateway Protocol
(BGP). Classless Interdomain Routing (CIDR) is used to reduce the size
of the Internet routing tables. We will focus on IGPs in this chapter and
examine two popular IGPs: the Routing Information Protocol (RIP) and
the Open Shortest Path First protocol (OSPF). Then, we will discuss CIDR
briefly.

Link state and distance vector routing
Routing algorithms are the core of dynamic routing protocols. These algo-
rithms use a metric to determine the optimal path to a destination. Different
metrics can be used, such as path length, reliability, delay, bandwidth, load,
and communication cost.

Generally there are two types of routing algorithms, namely, distance
vector routing and link state routing. A distance vector routing algorithm
exchanges all or a portion of the router’s routing table with its neighbors in
terms of a vector of distances (number of hops) to destination networks. The
routing table is then computed using the routing information (destination
and distance pairs) received from its neighbors. A router running a link
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state routing algorithm, on the other hand, disseminates routing information
that describes the state of its own links. The link state information, then, is
flooded by every other router over the network. Eventually, all the routers
within the same network have an identical database for the status of all
the links in the network. With this global view of the entire network, each
router computes the shortest paths to all other destinations.

Both types of algorithms work well in most circumstances. Link state
algorithms converge faster and are less prone to routing loops than distance
vector algorithms. However, link state algorithms require more resources
than distance vector algorithms, which therefore leads to a higher cost to
implement and support.

RIP and RIP-2
RIP is a distance vector protocol using hop count as a routing metric to
measure the distance between the source and a destination network. Each
link is assigned a hop-count value (which is 1 typically). The RIP-2 speci-
fication is the latest enhancement to RIP. The routed routing daemon uses
RIP and RIP-2.

RIP routers maintain only the best route (the route with the lowest hop-
count value) to a destination in their routing tables. Each RIP router sends
routing-update messages at regular intervals and when the network topol-
ogy changes. When a router receives a routing update message that indi-
cates a route change, it updates its routing table and immediately sends
routing-update messages to inform its neighbors about the change.

RIP uses a number of timers in routing, as explained below.
1. The route-update timer. Clocks the interval between periodic routing up-

dates, and is generally set to 30 seconds plus a small, randomly generated
number of seconds to avoid collisions.

2. The route-invalid timer. A route becomes invalid when it is not updated
over a period defined by this timer. The route is marked as inaccessible
and advertised as unreachable. However, the router still forwards packets
to this route until the flush interval (see below) expires. The default value
is 180 seconds.

3. The route-hold-down timer. The interval during which routing informa-
tion regarding better paths is suppressed. The interval should be at least
three times the value of the update timer. A route enters into a hold-
down state when an update packet is received indicating the route is
unreachable. The default value is 180 seconds.1

1 Refer to the count-to-infinity discussion later in this section on the use of this timer.
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command(1-6) version(1) set to zero

set to zeroaddress family (2)

4-byte IP address

set to zero

set to zero

metric (1-16)

0 7 8 15 16 31

20 bytes

up to 24 more routes, with the same format as the above 20 bytes

Figure 4.4. RIP message format.

command(1-6)

address family (2)

4-byte IP address

metric (1-16)

0 7 8 15 16 31

20 bytes

routing domain

4-byte next-hop IP address

4-byte subnet mask

route tag

version(2)

up to 24 more routes, with the same format as the above 20 bytes

Figure 4.5. RIP-2 message format.

4. The route-flush timer. Amount of time that must pass before the route
is removed from the routing table. The interval should be longer than
the larger of the invalid and hold-down values. The default value is 240
seconds.
RIP messages are encapsulated in UDP datagrams, using the well-known

port number 520. Figure 4.4 shows the format of a RIP message, and Fig. 4.5
shows the format of a RIP-2 message. The fields of a RIP message are listed
here.
� Command: Indicates whether the packet is a request (1) or a response (2).
� Version Number: Specifies the RIP version used (1 or 2).
� Address-Family Identifier: Specifies the address family used. RIP

can be used to carry routing information for several different protocol
families. For IP, this field is 2.

� Address: Specifies the IP address for the entry.
� Metric: Indicates how many hops have been traversed from the source

to the destination.
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Router A Router B

LAN BLAN A

Figure 4.6. Illustration of the Count-to-Infinity problem.

The RIP-2 message takes advantage of the unused fields in RIP, and
provides additional information such as subnet support and a simple au-
thentication scheme. These fields are listed here.
� Routing Domain: The identifier of the routing daemon that sends this

message (e.g., the process ID of the routing daemon).
� Route Tag: Used to support EGPs, carrying the AS number.
� Subnet Mask: The subnet mask associated with the IP address adver-

tised.
� Next-hop IP Address: Where IP datagrams to the advertised IP ad-

dress should be forwarded to.
RIP is widely used because of its simplicity and low routing overhead.

However, it has the Count-to-Infinity problem which causes routing loops.
Consider the network in Fig. 4.6. InitiallyRouter A connects toLAN A, and
Router B has a routing entry that shows the route to LAN A is through
Router A in one hop. When the link to LAN A fails, Router A examines the
RIP message from Router B and sees that Router B has a one-hop route
to LAN A. Then, Router A advertises a two-hop path to LAN A and routes
all LAN A bound traffic to Router B, resulting in a loop. When Router B

sees the advertisement from Router A, it changes its entry for LAN A to a
three-hop route through Router A. This process will continue indefinitely,
with the route lengths in both routing tables increasing to infinity.

To solve this problem, RIP uses a hop-count limit of 15. In the above
example, when the path length in either routing tables reaches 16, LAN A

will be regarded as unreachable. In the above example, the loop will be
eliminated when the hop-count limit is reached. The downside of this hop-
count limit approach is that the size of the network running RIP is limited.
It also takes a long period for the routing tables to converge after a topology
change. In addition to the hop-count limit, routers hold down any changes
that might affect recently removed routes for the hold-down timer interval,
in order to let the failure propagate through the entire network. Another
technique to improve the stability of RIP is split horizon, where information
about a route is not allowed to be sent back in the direction from which it
came.



86 Static and dynamic routing

Border
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Area 1

Area 2
Area 3

Backbone

Internal Routers

AS Boundary Router

Figure 4.7. An AS with a backbone and three areas.

Open shortest path first
OSPF was standardized in the mid-1980s to overcome the limitations of
RIP. OSPF is a link state routing protocol, where each OSPF router sends
link state advertisements (LSA) to all other routers within the same hi-
erarchical area. LSAs are messages that include information on attached
interfaces, metrics used, and other variables. OSPF routers accumulate link
state information in their link state databases to learn the network topology
and use the shortest path first (SPF) algorithm to calculate the shortest path
to each node. The gated routing doemon uses RIP, RIP-2, and OSPF.

OSPF operates within a hierarchy, which is different from RIP. An au-
tonomous system (AS) is the largest entity within the hierarchy. Then, the
AS is partitioned into several areas. The topology of an area is invisible
to entities outside this area, so that OSPF passes less routing traffic than it
would without the partitioning of the AS. An OSPF backbone, consisting
of all area border routers, networks not completely contained in any area,
and their attached routers, distributes routing information between areas.
Figure 4.7 shows an AS with a backbone and three areas.

After a router is assured that its interfaces are functioning, it sends OSPF
Hello packets to its neighbors. The router also receives hello packets from
its neighbors. In addition to helping detect neighbors, hello packets also
let routers know that other routers are functional. Two routers are said to
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version type (1-5) packet length
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checksum authentication type

authentication

variable length data

Figure 4.8. OSPF message format.

be adjacent when their link state databases are synchronized. Each router
periodically sends LSAs to provide information on the link states, so that
failed routers can be detected quickly. By using the information in LSAs,
a router builds a topological database containing an overall picture of the
area, and calculates a shortest-path tree with itself as root, which then yields
a routing table.

Rather than using TCP or UDP, OSPF uses IP directly. In the IP header,
OSPF has its own value for the protocol field (89, see Fig. 0.7). Each
OSPF packet has a 24-byte header, as shown in Fig. 4.8. The fields in an
OSPF packet header are given.
� Version Number: Specifies the OSPF version used.
� Type: Identifies the OSPF packet type as one of the following.

� Hello: Establishes and maintains neighbor relationships.
� Database Description: Describes the topological database content.
� Link-state Request: A request for the topological database from

neighbor routers when a router discovers that parts of its topological
database are out of date.

� Link-state Update: A response to a link-state request packet.
� Link-state Acknowledgement: Acknowledges link-state update

packets.
� Packet Length: Specifies the packet length in bytes, including the

OSPF header. The maximum length is 216 − 1 = 65535 bytes since this
field is 16 bits long.

� Router ID: Identifies the source of the packet.
� Area ID: Identifies the area to which the packet belongs.
� Checksum: Checks the entire packet contents for transmission errors.
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� Authentication Type: Specifies the authentication type. All OSPF
protocol exchanges are authenticated. This field is configurable on a per-
area basis.

� Authentication: Contains authentication information.

Classless interdomain routing (CIDR)
With the exponential growth of the Internet, routing tables in the core routers
are getting longer and longer. For example, there needs to be a routing entry
for each newly assigned Class C network, and there could be as many as 221

Class C networks. With current technologies, it is impossible to have such
a huge routing table in a core router. To further reduce the routing table
sizes, CIDR uses a technique called supernetting to summarize multiple
routing entries into a smaller number of routing entries.

With CIDR, IP addresses are not classified into classes anymore (“class-
less addressing”). Rather, each IP address consists of two components: a
network prefix ranging from 13 to 27 bits, and a host ID using the re-
maining bits. The slash notation is used to denote an IP address, as “A
dotted-decimal IP address” + “/” + “Number of bits used for the network
prefix”. For example, the slash notation 128.238.66.100/24 means the net-
work prefix has 24 bits, i.e., 128.238.66. In CIDR, the network addresses
are assigned in a hierarchical manner. For example, an ISP is assigned a
network address with a shorter prefix (e.g., 128.238/16), while each client
network of the ISP is assigned the same network address but with a longer
prefix (e.g., 128.238.61/24 and 128.238.62/24). In the core network, rout-
ing entries for a number of networks with the same higher level prefix can
be summarized into a single entry. Therefore, the routing table size can be
greatly reduced. The longest-prefix-matching rule is used in table lookups.

The Internet is currently a mixture of both CIDR-type addresses and the
traditional Class A, B, and C addresses. CIDR is supported in almost all
new Internet authorities strongly encourage its deployment.

4.2.5 Multiple protocol label switching and traffic engineering

Multi-protocol label switching (MPLS) is a virtual-circuit packet switching
technology overlayed on the datagram (connectionless) packet-switched
Internet. This is achieved by attaching short fixed length labels to packets.
The MPLS label is located after the layer two header and before the IP
header. In an MPLS network, labels attached to packets are used to make
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forwarding decisions. Label switching routers can make forwarding deci-
sions based on the label contents rather than the more time consuming table
lookups based on IP addresses.

In a large network, it is possible that available network bandwidth is
not efficiently utilized because the intra-domain routing protocol, such as
OSPF, finds path based on a single “least-cost” scalar metric for each desti-
nation. This least cost route may not have enough resources to carry all the
traffic, or satisfy all the service requirements of carried traffic. Congestion,
at certain hot spots, can result in sub-optimal use of network resources. In
MPLS networks label switched paths (LSPs) can be set up in MPLS net-
works to route around congestion and to create paths for each traffic type,
e.g., Voice over IP (VoIP) or best-effort data. This allows service provider
to use traffic engineering (TE) techniques to maximize the utilization of
network resources, and/or enhance the quality of service it can offer. LSPs
also allow network service providers to set up IP tunnels for virtual private
networks (VPNs). VPN customers, typically large corporations, get the se-
curity and performance benefits of a private data network by setting up IP
tunnels using LSPs in the service provider’s MPLS network.

4.3 Manipulating routing tables

4.3.1 Routing table for a workstation

To build the routing table in a workstation, the route command is used.
Routing entries that are created manually usually do not change, even if
you run a routing daemon. Static routes are often added from the system
startup script. The following commands can be used to display or build the
host routing table.
� netstat -rn: Displays the routing table in the system.
� route add [-host|-net] destination address[/pre f i x] [gw

gateway address] [metric M] [netmask mask] dev inter f ace name:
Inserts a new route to the routing table. routing metric is the hop count
to destination address.

� route del [-host|-net] destination address[/pre f i x] [gw
gateway address] [metric M] [netmask mask] dev inter f ace name:
Deletes an existing route from the routing table.

� route add|del default gw router interface inter f ace name: Adds
(deletes) a default route entry.
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In Solaris 8.0, the route commands are:
� route add [net] dest addr gateway addr metric: Inserts a new route

to the routing table.
� route delete [net] dest addr gateway addr : Deletes an existing route

from the routing table.
� route add|delete default router addr 1: Adds (deletes) a default routing

entry.

4.3.2 Routing table for a router

You can also manually configure the routing table in a router. To display the
router routing table, use the following command in the Privileged EXEC
mode:

router# show ip route.
The following Global Configuration commands can be used to modify the
router routing table.
� Router(config)# ip route prefix mask next hop [admin distance]: Cre-

ates a route to the destination subnet with IP prefix prefix and subnet mask
mask, via next hop. The admin distance argument is optional. If you want
a static route to be overridden by dynamic routing information, specify
admin distance greater than the default administrative distance of the
routing protocol. As an example, a RIP-derived route has the default
value of 120.

� Router(config)# no ip route destination next hop: Removes a route
from the IP routing table.

4.4 Traceroute

Traceroute is a tool that helps determine all the routers in an end-to-end
path. It uses the Time-to-Live (TTL) field in the IP header and the ICMP
protocol. TTL is an 8-bit field usually set to 64. Each router that sees the
datagram decreases the value of TTL by one. If a router receives a datagram
with a TTL value of 1, it discards the datagram and sends an ICMP time

exceeded message back to the source.
Traceroute works as illustrated in Fig. 4.9. First, it sends an IP datagram

to the destination host with the TTL field set to 1. The first router seeing
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(1) ICMP Time Exceeded

(N) ICMP Port Unreachable

(2) ICMP Time Exceeded

(1)  UDP datagram (TTL=1,Dest.=D, Dest. Port No.>30,000)

(2)  UDP datagram (TTL=2,Dest.=D, Dest. Port No.>30,000)

(N) UDP datagram (TTL=N,Dest.=D,Dest. Port No. > 30,000)

...

...

Destination

Router1 Router2

Source

Figure 4.9. The operation of Traceroute.

the datagram decrements the TTL, discards the datagram, and returns an
ICMP time exceeded message to the sender. The datagram carrying this
ICMP message also contains the router’s IP address as the source address.
Thus the first router in the path is identified. Next, Traceroute sends a
datagram with a TTL of 2, and the address of the second router is identified
in a similar way. This continues until the destination host is reached. The
destination host will not discard the datagram even though the TTL field is
1 (because the packet has reached its destination). To find out whether the
destination host is reached, Traceroute chooses a large UDP destination
port number (greater than 30,000), which is unlikely to be in use by any
process at the destination host. Then the destination will return an ICMP
port unreachable message to the source. In summary, the ICMP time

exceeded messages identify the intermediate routers, and the ICMP port

unreachable message identifies the end host.

4.5 A simple router experiment

As in the previous lab, we will divide the students into four groups, each
with two workstations, a router, and two hubs, which are to be connected
as shown in Fig. 4.10. The IP addresses of the routers and hosts are given
in Table 4.2 and Table 4.3, respectively.

Exercise 1 Configure the IP addresses of your workstations and the router as shown in
Fig. 4.10, Table 4.2 and Table 4.3.

Initially your host’s routing table has no entry for the subnet on the other side of
the router. In order to be connected, you need to add a routing entry for the other
subnet in the routing table of your workstation (see section 4.3.1).
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Table 4.2. Router IP addresses for Fig. 4.10

eth0 eth1

router1 128.238.61.1/24 128.238.62.1/24

router2 128.238.62.2/24 128.238.63.2/24

router3 128.238.63.3/24 128.238.64.3/24

router4 128.238.64.4/24 128.238.65.4/24

Table 4.3. Host IP addresses for Fig. 4.10

HOST A HOST B

Name IP address Label Name IP address Label

shakti 128.238.61.101/24 1 vayu 128.238.62.101/24 2

agni 128.238.62.102/24 3 apah 128.238.63.102/24 4

yachi 128.238.63.103/24 5 fenchi 128.238.64.103/24 6

kenchi 128.238.64.104/24 7 guchi 128.238.65.104/24 8

ROUTER

HOST_A HOST_B

eth1eth0

Figure 4.10. Simple router experiment.

Run tcpdump -en on your machine, and tcpdump -en on your partner’s machine in
the other subnet simultaneously:

tcpdump -en host remote host and your machine.

Send ping messages continuously to your partner’s machine:

ping -sv remote host.

After receiving the tenth echo reply, quit ping and save the tcpdump outputs from
both machines. Also, copy the ping output.

During this exercise, don’t run the ping program at the same time. For clean results,
do your experiments in turn.

LAB REPORT When a packet was sent to a workstation in the other subnet, explain
how the source and destination Ethernet addresses were changed.

What are the source and destination addresses in the IP and Ethernet headers
of a packet that went from your machine to the router?
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What are the source and destination addresses in the IP and Ethernet headers
of a packet that went from the router to your partner’s machine?

Answer the above two questions, but now for the echo reply that was
returned from your partner’s machine.

LAB REPORT Use the tcpdump outputs from both machines to calculate the average
delay that a packet experienced in the router. Note that the system times
of the two machines might be different. Show all the steps and submit the
tcpdump outputs with your report.

Compare this value with the previous value in the case of the bridge. Which,
a router or a bridge, is faster? Why?

4.6 RIP exercises

In this section, we will examine the operation of RIP. To enable the RIP
routing process in a router, use the following commands in the Global
Configuration mode.

Router(config)# router rip
Router(config)# network network number,

where network number could be 128.238.0.0. To remove the network,
use:

Router(config)# no network network number
To shutdown the RIP process, use:

Router(config)# no router rip
Consider Fig. 4.11 as our network topology for this section. Since the IP

address of ethernet1 in router4 is the only interface which is different
from the initial configuration in Appendix B, we will reboot all the four
routers to restore their default configurations, and change the IP address on
the ethernet1 in router4 only. Since our workstations started routed at
boot-up time, no further action is needed to run RIP on the workstations.2

Exercise 2 Connect the routers and hosts and change the IP addresses of the workstations
and router4 as shown in Fig. 4.11. Also, make sure that your workstation has no
other routing entries than your own subnet and your loopback interface. For how to
remove an entry from the host routing table, see Section 4.3.

Run the RIP process in each router. To avoid confusion, each router should be
configured by only one person.

2 The lab instructor should make sure that the IP-Forwarding function is enabled in each host (see
Appendix A.6).
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Figure 4.11. Network configuration of the RIP experiment.

After starting RIP in all the routers, test connections to other hosts by pinging them.
Once you can successfully reach all the hosts, run the following command to capture
the RIP messages sent on your subnet:

tcpdump -x -s 100 -c 4 -w exe2.out udp port 520.

Save the routing table in your workstation. Note the number of hops needed to reach
destinations other than in your own subnet.

Run ethereal -r exe2.out & to load the packet trace recorded by the above tcpdump
command. Mark and print two different RIP messages captured in your subnet (see
Exercise 6 of Chapter 1). Exchange the printed RIP messages with students in other
groups. You need eight different RIP messages for your lab report.

LAB REPORT Explain why you can only get two different RIP messages in your subnet.
Was a RIP packet forwarded by the routers? Why?

LAB REPORT Draw the format of one of the saved RIP response packets from your sub-
net, including the IP and UDP headers and the RIP message (see Figs 0.13,
0.14, and 4.4). Identify each field, and express their values in decimal
format.
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For the other seven RIP response packets collected, explain the contents of
the RIP messages only, excluding IP and UDP headers.

LAB REPORT Draw the distance tables and the routing tables in the routers based on
Fig. 4.11, assuming that number of hops is used as the metric.

Verify the routing tables using the RIP messages you captured.

Exercise 3 In this exercise we will examine how RIP responds to link failures. Send ping
message continuously from apah to yachi and start tcpdump on apah. Let the
two programs run during this exercise.

Disconnect the cable from the ethernet0 port of router2 from the hub in the
128.238.62.0 subnet, and type the time command to get the current time.

Observe the ping and tcpdump windows. When the connection is re-established,
type the time command again. See how much time RIP takes to alter the routing
table in your workstation to the new topology.

Once you can successfully reach other hosts, connect the cable to the original
position. Again, measure the time that RIP takes to change your routing table.

LAB REPORT Compare this time with the previous value in the spanning tree
experiment.

Explain why it takes this time for RIP to react to the route change. Refer
to Section 4.2.4 for RIP operation and default timer values.

4.7 Routing experiments with ICMP

Exercise 4 Eliminate the routing entries for subnets other than your own and the loopback
interface. Save the routing table for your lab report.

Create a default routing entry using one of the routers directly connected to your
workstation.

While tcpdump -enx -s 100 ip proto 1 is running, send ping messages to a host that
is three hops away through the default router.

After capturing an ICMP redirect message, save the tcpdump output, the ping output,
and your workstation’s routing table. You may need to ping the same host several
times in order to get your routing table updated.

LAB REPORT Submit what you saved in Exercise 4.

Identify every field in the ICMP redirect message (see Fig. 4.2).
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66.107/24
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66.106/24
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Figure 4.12. Network configuration of the ICMP router discovery experiment.

Compare the original routing table with the new routing table. Explain the
meaning of the flags of the new entry.

Exercise 5 This exercise3 is on ICMP router discovery. All students should do this exercise
together, using a single segment network.

Connect the routers and hosts and change the host IP addresses as shown in
Fig. 4.12.

Telnet to the routers, change the IP address of the ethernet1 interfaces as shown
in Fig. 4.12. Enable ICMP router discovery on these two interfaces by the following
Interface Configuration command:

Router(config-if)# ip irdp.

Run tcpdump -enx ip proto 1 on all the hosts except shakti.

The lab instructor should now reboot shakti.

Save the captured route discovery requests and replies for the lab report.

Telnet to shakti and save its routing table for the lab report.

LAB REPORT What is the destination IP address of the ICMP router solicitation
message? Who sends the ICMP router advertisement message?

What are the type and code of the ICMP messages captured?

What are the advertised router IP addresses and their preference levels?

How many default router entries are there in shakti’s routing table?
Why?

3 This exercise is for Solaris only, since Red Hat Linux does not support ICMP router discovery.
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4.8 OSPF exercise

In order to enable OSPF in the routers, you need to create an OSPF routing
process first. Then, define the range of IP addresses to be associated with
the routing process and assign area IDs for these IP addresses, using the
following commands:
Router(config)# router ospf process id
Router(config)# network address wildcard mask area area id.
Process id is a numeric value local to the router. It does not have to match
process ids on other routers. Address is the network address of the interface
on which the OSPF process runs (128.238.0.0 in our case). Wildcard mask
helps reduce the number of configuration commands. 0 is a match and 1 is a
“don’t care” bit (0.0.255.255 in our case). Area id is the number of the area
that the interfaces belong to (see Fig. 4.7). It can be any integer between 0
and 232 − 1 or can have an IP address form. Note that 0 is reserved for the
backbone.

The above commands are required to configure OSPF, while other tasks
(configuring interface parameters, configuring area parameters, etc.) are
optional. For more information on other configuration tasks, refer to the
router manual.

Consider Fig. 4.13 for our OSPF experiment. The lab instructor should
reboot the routers to restore their default configurations.

eth0

eth1

62.2

63.2

Router2

/24

/24

64.100/24

yachi

63.101/24

apah agni

63.100/24

vayu

62.101/24

shakti

62.100/24
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eth0 63.3

64.3/24

/24

Router3

64.101/24

fenchi
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64.4

65.4

/24
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65.101/24

guchi

128.238.62.0 subnet
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128.238.64.0 subnet
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Figure 4.13. Network configuration for the OSPF exercise, the static routing exercise,

and the traceroute exercise.
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Exercise 6 After connecting the cables properly, change the host IP addresses as given in
Fig. 4.13. You need to remove the default route added in Exercise 4 from the host
routing table. Note that the router interfaces are set as Fig. 4.13 by default.

Run the following command to capture any OSPF packets:

tcpdump -x -s 120 ip proto 89

Login to a directly connected router and start the OSPF process. Set the argument
area id to 1 for all the routers.

The workstations in our lab run routed (which uses RIP). The routing daemon
supporting OSPF, gated, is not installed. In order to reach the routers and hosts in
the other subnets, you need to add a default router in your host’s routing table.

Examine the routing table in each router (see Section 4.3). When the routing table
gets an entry for the network that is not directly connected, kill the tcpdump process
and save the tcpdump output.

Collect the tcpdump outputs from other subnets. Study the various types of OSPF
packets from the tcpdump outputs.

You can display OSPF information in a router using the following commands in the
Privileged EXEC mode.

show ip ospf

show ip ospf database [router|network|summary| \
asb-summary|external|database-summary]

show ip ospf interface ethernet [0|1]

show ip ospf neighbor

show ip ospf virtual-links

LAB REPORT Draw the common header of a saved OSPF message, giving the decimal
values of the header fields (see Fig. 4.8).

Submit the routing tables you collected from the routers.

4.9 Static routing experiment

In this experiment, we reuse the network as shown in Fig. 4.13.

Exercise 7 After checking the wiring, as shown in Fig. 4.13, reboot the routers to restore their
initial settings. Check the IP addresses of the workstations as shown in Fig. 4.13.

Remove all the routing entries other than your own subnet and the loopback interface
from your host routing table. Save the output of netstat -rn before building your
workstation’s routing table.
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Examine Fig. 4.13 and build your host’s static routing table manually.

Telnet to a router that is directly connected to your workstation, and save its routing
table before building any route. Save the routing table of the other router if you have
one more router connected directly. You may not be able to telnet to a router that
is not directly connected. In this case, copy the initial routing table of these routers
from students in other subnets later.

Now configure the routing table in each router. See Section 4.3 for commands
and syntax on manipulating router routing tables. Note that each router should be
configured by one person only.

Use ping to test the connections. When you can reach all other subnets successfully,4

save the routing tables in your workstation and all the routers for the lab report.

LAB REPORT Submit the routing tables saved in this exercise.

4.10 Traceroute experiment

In this exercise, we use the same network and configuration of the previous
exercises, and use traceroute to find a multi-hop path.

Exercise 8 Execute tcpdump -enx -s 100 host your host and remote host on your host, where
remote host is a workstation at least two hops away.

Then, execute traceroute remote host to find the route from your host to the remote
host.

Save the output of both traceroute and tcpdump.

LAB REPORT Submit what you saved in this exercise.

From the tcpdump output, explain how the multi-hop route was found.
Explain the sequence of the ICMP messages used.

4 Even when the routing table in your workstation and all the routers are configured perfectly, you may
not be able to ping a remote host, if the routing table in the remote host is incorrect. When you can
get ping reply messages from all the interfaces of the routers successfully, your work is done for this
exercise.
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The principle, called the end-to-end argument, suggests that functions placed at
low levels of a system may be redundant or of little value when compared with
the cost of providing them at that low level.

J. H. Saltzer, D. P. Reed and D. D. Clark

5.1 Objectives

� Study sock as a traffic generator, in terms of its features and command
line options.

� Study the User Datagram Protocol.
� IP fragmentation.
� MTU and path MTU discovery.
� UDP applications, using the Trivial File Transfer Protocol as an example.
� Compare UDP with TCP, using TFTP and the File Transfer Protocol.

5.2 The User Datagram Protocol

Since the Internet protocol suite is often referred to as TCP/IP, UDP, it
may seem, suffers from being considered the “less important” transport
protocol. This perception is changing rapidly as realtime services, such
as Voice over IP (VoIP), which use UDP become an important part of the
Internet landscape. This emerging UDP application will be further explored
in Chapter 7.

UDP provides a means of multiplexing and demultiplexing for user pro-
cesses, using UDP port numbers. It extends the host-to-host delivery service
of IP to the application-to-application level. There is no other transport
control mechanism provided by UDP, except a checksum which protects
the UDP header (see Fig. 0.14), UDP data, and several IP header fields.

100
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Compared with the other transport protocol, TCP, UDP is simpler in the
sense that it does not guarantee successful and in-order delivery of the data-
grams. UDP is used by many network services, such as DNS, TFTP (which
we will examine in this chapter), NFS, RPC, BOOTP/DHCP, and SNMP.
UDP is also suitable for realtime services, such as video streaming and
VoIP, which are delay sensitive and loss tolerant. Besides unicast service,
UDP also provides multicast service. We will examine UDP multicast and
realtime transport in Chapter 7.

5.3 MTU and IP fragmentation

5.3.1 IP fragmentation

In Chapter 2 we saw that an important parameter associated with each
network interface is the MTU. An interesting question with MTU is what
happens if an IP datagram is longer than the MTU of the interface. In
this case, the IP layer splits the datagram into several fragments, each
with a length less than or equal to the MTU. This process is called IP
fragmentation.

The following IP header fields (see Fig. 0.13) are related to IP fragmen-
tation.
� Total Length: After fragmentation, this changes to the size of the frag-

ment in the IP datagram.
� Identification: All fragments from the same IP datagram carry the

original Identification.
� Flags: The “more fragments” flag indicates if the current fragment is the

last one or not, while the “don’t fragment” flag can be set by the source
to disallow fragmentation in intermediate routers.

� Fragment Offset: contains the offset (in 8-byte units) of the current
fragment in the original datagram.
Fragmentation may occur in the source host or an intermediate router.

A fragment may be further fragmented if it is sent to a link with a smaller
MTU. However, reassembly of the fragments is only performed at the
receiver, where IP datagrams with the same identification are put together
to reconstruct the original IP datagram. The More Fragments flag and the
Fragment Offset field are used to put the fragments in the right order.
If fragmentation is needed but the Don’t Fragment flag is set, the router
drops the datagram and returns an ICMP unreachable error message back to
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MTU of the next–hop networkunused (set to 0)

0 7 8 15 16 31

IP header (including options) + first
8 bytes of the original IP datagram data

type (3) code (4) checksum

Figure 5.1. The format of an ICMP unreachable error message.

the source. This feature is used in path MTU discovery to find the smallest
MTU along a path.

5.3.2 Path MTU discovery

The minimum MTU of the links along a path is called the path MTU. Since
fragmentation degrades router performance, a source host can perform path
MTU discovery to find the path MTU. It can then send datagrams no longer
than the path MTU to avoid fragmentation in the routers.

In path MTU discovery, a host sends IP datagrams with the “don’t frag-
ment” bit set. If the MTU of a link is smaller than the IP datagram, the
router drops the datagram and send an ICMP unreachable error to the
source carrying the MTU of the next link. Figure 5.1 shows the format
of an ICMP unreachable error, where byte 7 and 8 store the MTU of the
next-hop network.

The following Interface Configuration command enables the router to
send ICMP unreachable errors:

Router(config-if)# ip unreachables.
The MTU of a host interface can be modified using the following command:

ifconfig interface name mtu new MTU value.
To set the MTU of a router interface, use the following Interface Configu-
ration command:

Router(config-if)# ip mtu new MTU value.

5.4 Client–server applications

5.4.1 The client–server architecture

Most network applications are implemented using a client–server archi-
tecture, where a server provides network service to the clients. Servers
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use well-known port numbers (defined in the /etc/services file), and
are usually running all the time, whereas a client uses an ephemeral port
number and terminates after receiving the service. If a client requests a
service on a port number that no server is associated with, an ICMP port
unreachable error is returned to the client in the case of a UDP packet, and
the TCP connection is reset if TCP is used. In the following, we discuss
two application layer protocols that provide file transfer service.

5.4.2 TFTP

TFTP is a simple file transfer protocol using UDP. Since UDP is connec-
tionless and unreliable, TFTP uses a stop-and-wait flow control algorithm,
where each data packet is acknowledged by an ACK packet before the
next data packet is sent. In addition, a lost packet causes timeout and re-
transmission. TFTP is primarily designed for diskless systems to download
configuration files from a remote server during bootstrapping.

Figure 5.2 shows the architecture of a TFTP session. A common feature
for all the application layer protocols is the user interface (UI) module.
A UI directly interacts with a user, by translating user inputs (such as
keyboard entries and mouse clicks) into protocol primitives and displaying
the results of the operations. The TFTP protocol interpreter accesses the
local file system and communicates with its counterpart at the other end of
the session. The TFTP server uses UDP port 69 for TFTP control messages.
A different ephemeral port number is used by the server for data transfer.

Figure 5.3 shows the packet format of TFTP messages. The opcode field
is used to multiplex different TFTP messages. A typical TFTP session,
where a client downloads a file from the server, is as follows.

Figure 5.2. The architecture of a TFTP session.
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Figure 5.3. The TFTP packet formats.

1. A client sends a read request (RRQ) to a server on UDP port 69.
2. The server responds with data packets (if the requested file exists) of

length 512 bytes and block number starting with 1.
3. The client sends an acknowledgement for the received block.
4. The server sends the next block with the block number increased.
5. The above two steps continue until the last block which is shorter than

512 bytes is received.
As its name implies, TFTP is designed for small and infrequent file

transfers, where throughput is not a major concern. In other cases where
bulk data transfer is needed, FTP, using TCP’s window flow control, is used
for better throughput performance. Another limitation of TFTP is the lack
of a login procedure. This is a “security hole” in TFTP.

5.4.3 FTP

FTP is a file transfer protocol using TCP. Figure 5.4 shows the FTP archi-
tecture, where two TCP connections are used: a control connection (TCP
port 21) for FTP commands and replies, and a data connection (TCP port
20) for file transfer.

To set up an FTP session, the client sends SYN request to the server
TCP port 21 to establish the control connection. TCP connections will
be discussed in the next chapter. Tables 5.1 and 5.2 give the FTP com-
mands and typical server replies that can be sent on the control connection.
User inputs (e.g., get foo.txt) are translated to the primitives (e.g., RETR
foo.txt) shown in Table 5.1 by the UI, and sent on the control connection.
In addition, server responses, shown in Table 5.2, are received from the
control connection and are translated to more friendly messages by the UI
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Table 5.1. Common FTP commands

Command Description

List field list files or directories

PASS password password on server

PORT n1,n2,n3,n4,n5,n6 client IP address (n1.n2.n3.n4) and

port (n5 × 256 + n6)

QUIT log off from server

RETR filename retrieve (get) a file

STOR filename store (put) a file

TYPE type specify file type: A for ASCII, I for image

USER username username on server

Table 5.2. Typical FTP replies

Reply Description

125 Data connection already open; transfer starting.

200 Command OK.

331 Username OK, password required.

425 Can’t open data connection.

452 Error writing file.

500 Syntax error (unrecognized command).

501 Syntax error (invalid arguments).

File System

function
FTP user data transfer

function
FTP server data transfer

File System

Interpreter

Interface

Interpreter
 FTP user Protocol  FTP server ProtocolTCP port 21

TCP port 20

TCP port A

TCP port B

 FTP User

ServerClient

Figure 5.4. The architecture of a FTP session.
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and displayed on the client screen. A data connection is created each time
a file is transferred. To open a data connection, the client first chooses an
ephemeral port number and then sends the port number to the server using
the PORT command, as shown in Table 5.1, via the control connection. Then
the server issues an active open to that port on the client host. File transfer
begins after the data connection is set up.

Many FTP servers support Anonymous FTP, which allows everyone
to log in and perform file uploads and downloads. Public domain free
information is sometimes provided using this technique. The login name
of Anonymous FTP is anonymous, and the password is your own email
address.

Most FTP implementations can be run in the debug mode, which is a
convenient way to study the operations of FTP. To run ftp in the debug
mode, use:

ftp -d ftp server IP.

5.5 Using the sock program

Exercise 1 Use the following commands to observe the basic operation of sock.
� sock host echo
� sock -s 5555
� sock -i -n3 -w2048 host 5555

LAB REPORT Explain the operation of each command.

Exercise 2 Study various options associated with the sock program. A brief list of options
can be displayed by typing sock. More detailed discussion on sock can be found in
Appendix C of [5].

5.6 UDP exercises

Exercise 3 While running tcpdump src host your host, execute the following command with
different values of size (i.e., the size of the datagram).

sock -u -i -n1 -wsize remote host echo

The -u option is used to send UDP datagrams rather than TCP segments.

Increase size (i.e. the size of the datagram) until fragmentation occurs.

Use netstat -in to find out the MTU of the Ethernet interface.
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LAB REPORT What is the maximum value of size for which the UDP datagram can be
sent without IP fragmentation? Justify your answer with the netstat output.

Exercise 4 Capture the data packets generated by the following command using tcpdump src
host your host.

sock -u -i -n1 -w10000 remote host echo

Save the tcpdump output for the lab report.

LAB REPORT Explain the tcpdump output in terms of the IP header fields that are
used in fragmentation.

When IP fragmentation occurs, only the first fragment has the UDP header.
How do you verify this fact from the tcpdump output?

Exercise 5 While running tcpdump src host your host, execute the following command with
different values of size,

sock -u -i -n1 -wsize remote host echo

in order to find out the maximum size of a UDP datagram that the system can send
or receive, even when fragmentation is allowed.

LAB REPORT What is the maximum size of user data in a UDP datagram that the
system can send or receive, even when fragmentation is allowed?

5.7 Path MTU discovery exercise

Exercise 6 In this exercise, students are divided into two groups.

Connect the routers and the workstations as shown in Fig. 5.5. Change the IP
addresses of your workstation accordingly. Note that the router IP addresses are
the same as their default.

Telnet to each router, enable RIP routing (see Section 4.6).

Change the MTU of the ethernet1 interfaces of Router2 and Router4 to 500
bytes. To avoid confusion, each router should be configured by one person only.

Test connectivity by pinging hosts in the other subnets. After you can reach the
hosts in the other subnets, run tcpdump -nx on your workstation.

Start a UDP sock server on apah (guchi), using sock -u -s 5555.

Then run the sock client from shakti (yachi):

sock -i -u -n10 -w1200 -p5 remote host 5555,

where remote host is apah (guchi).
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Figure 5.5. The network setup for Exercise 6.

Observe the DF bit of the first datagram and that of the following datagrams. Save
the tcpdump output for your lab report.

Exchange tcpdump outputs with a student in the other subnet.

LAB REPORT Explain the operation of path MTU discovery based on the tcpdump
outputs saved.

Which ICMP message is used in path MTU discovery? Give the decimal
value of each field of the captured ICMP message.

What is the MTU of the destination network of the UDP datagram? Verify
your answer using both the ICMP message and the IP fragmentation trace
saved.

5.8 Exercises with FTP and TFTP

We will study the performance of FTP and TFTP for file transfer between
two machines. By transferring the same file using these two protocols, we
can compare the operations and performances of UDP and TCP.

Two files (large.dum and small.dum) with random contents are stored
in the /home/LAB directory and in the /tftpboot directory of each
workstation in the lab. We will use the get command to retrieve files
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from a remote host. When FTP is used, you need to change directory
to /home/LAB/ by cd /home/LAB before retrieving the file. If you don’t
know how to use tftp, refer to its manual page.

Exercise 7 In order to compare the transfer rates of FTP and TFTP, we will retrieve a large
file from a remote server using FTP and TFTP, respectively. First run the following
tcpdump command:

tcpdump host your host and remote host > output1

Here we use the redirect operator, >, to save the tcpdump output into a text file
called output1.

Then get the /home/LAB/large.dum file from remote host using ftp.

Also, from the ftp window, record the transfer rate (time) displayed.

Restart the above tcpdump command, with the last argument changed to output2.
Now use tftp to get the /tftpboot/large.dum file.

Save output1 and output2 for the lab report.

LAB REPORT Examining the saved tcpdump output file, output1. Identify the start-
ing and ending time of actual data transfer. Don’t include the time spent
establishing the TCP connection. Calculate the time spent for data transfer.

Compare the time with the value displayed in ftp window. Are they consis-
tent? If there exists any significant difference, what might be the reason?

Now, from the saved output2, carefully determine the starting and ending
time of data transfer for the tftp program.

Compare the time with the value displayed in tftp window. Are they con-
sistent? If there exists any significant difference, what might be the reason?

By comparing the actual data transfer times of ftp and tftp, which of these
two is faster, and why?

Exercise 8 Capture the packets that are exchanged during a tftp session for the
/tftpboot/small.dum file between your host and a remote host, by

tcpdump -x host your host and remote host > output3

Observe the protocol in action. Analyze various types of TFTP messages used by
examining the content of output3. Save output3 for the lab report.

LAB REPORT List all the different types of packets exchanged during the tftp session.
Compare them with the TFTP message format in Fig. 5.3.

Why does the server’s port number change?
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LAB REPORT In most cases, tftp service is restricted.1 Why is tftp service not generally
available to users?

LAB REPORT In Exercise 5, we found the maximum size of a UDP datagram in your
machine. With tftp, which uses UDP, we transferred a file larger than the
maximum UDP datagram size. How do you explain this?

Exercise 9 Repeat the above experiment, but use ftp and change the output file name
to output4. Capture a trace of the packets exchanged when downloading the
/home/LAB/small.dum file using ftp.

Save your tcpdump output. Examine the port numbers used.

LAB REPORT How many well-known port numbers were used? Which machine used
the well-known port numbers? What were the other machine’s port num-
bers?

LAB REPORT As can be seen from the tcpdump output, FTP involves two different
connections, ftp-control and ftp-data. Why are two different connec-
tions used, instead of one connection?

Exercise 10 Run ftp in the debug mode using: ftp -d remote host.

After logging into the remote host, type dir /home/LAB/small.dum in the ftp window.

Then type quit to terminate the ftp session, and save the ftp window output.

LAB REPORT Submit what you saved in this exercise, explaining each line of the
output.

Explain how the PORT command works.

Which connection, the control connection or the data connection, did the
server send the reponse (the LIST output) on?

1 This is not the case in our lab, where we deliberately enabled the TFTP service and use it as a tool
to study the UDP protocol.
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The flow on a TCP connection should obey a ‘conservation of packets’ principle.
· · · A new packet isn’t put into the network until an old packet leaves.

Van Jacobson

6.1 Objectives

� TCP connection establishment and termination.
� TCP timers.
� TCP timeout and retransmission.
� TCP interactive data flow, using telnet as an example.
� TCP bulk data flow, using sock as a traffic generator.
� Further comparison of TCP and UDP.
� Tuning the TCP/IP kernel.
� Study TCP flow control, congestion control, and error control using DBS

and NIST Net.

6.2 TCP service

TCP is the transport layer protocol in the TCP/IP protocol family that pro-
vides a connection-oriented, reliable service to applications. TCP achieves
this by incorporating the following features.
� Error control: TCP uses cumulative acknowledgements to report lost

segments or out of order reception, and a time out and retransmission
mechanism to guarantee that application data is received reliably.

� Flow control: TCP uses sliding window flow control to prevent the re-
ceiver buffer from overflowing.

111
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� Congestion control: TCP uses slow start, congestion avoidance, and fast
retransmit/fast recovery to adapt to congestion in the routers and achieve
high throughput.

The TCP header, shown in Fig. 0.16, consists of fields for the implementa-
tion of the above functions. Because of its complexity, TCP only supports
unicast, while UDP, which is much simpler, supports both unicast and mul-
ticast. TCP is widely used in internet applications, e.g., the Web (HTTP),
email (SMTP), file transfer (FTP), remote access (telnet), etc.

6.3 Managing the TCP connection

In the TCP header, the source and destination port numbers identify the
sending and receiving application processes, respectively. The combination
of an IP address and a port number is called a socket. A TCP connection is
uniquely identified by the two end sockets.

6.3.1 TCP connection establishment

A TCP connection is set up and maintained during the entire session. When
a TCP connection is established, two end TCP modules allocate required
resouces for the connection, and negotiate the values of the parameters
used, such as the maximum segment size (MSS), the receiving buffer size,
and the initial sequence number (ISN). TCP connection establishment is
performed by a three-way handshake mechanism. The TCP header format
is discussed in Section 0.10.
1. An end host initiates a TCP connection by sending a packet with. ISN,

n, in the sequence number field and with an empty payload field. This
packet also carries the MSS and TCP receiving window size. The SYN
flag bit is set in this packet to indicate a connection request.

2. After receiving the request, the other end host replies with a SYN packet
acknowledging the byte whose sequence number is the ISN plus 1
(AC K = n + 1), and indicates its own ISN m, MSS, and TCP receiving
window size.

3. The initiating host then acknowledges the byte whose sequence number
is the ISN increased by 1 (AC K = m + 1).
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Figure 6.1. The time-line illustration of TCP connection management. (a) Three-way

handshake connection establishment; (b) Four-way handshake connection termination.

After this three-way handshake, a TCP connection is set up and data
transfer in both directions can begin. The TCP connection establishment
process is illustrated in Fig. 6.1(a).

6.3.2 TCP connection termination

A TCP connection is full-duplex, where each end application process can
transmit data to and receive data from the other end. During a TCP session,
it is possible that one end application has no more data to send, while the
other end does. Therefore, TCP adopts a four-way handshake to terminate
the connection, giving each end of the connection a chance to shut down
the one-way data flow. To do so, TCP sends a packet with the FIN flag set,
and the other end acknowledges the FIN segment. This process is called the
TCP Half-Close. After one of the data flows is shut down, the data flow in
the opposite direction still works. The TCP connection is terminated only
when the data flows of both directions are shut down. The TCP connection
termination process is illustrated in Fig. 6.1(b).

After the final ACK [segment (4) in Fig. 6.1(b)] is sent, the connection
must stay in the TIME WAIT state for twice the maximum segment life
(MSL)1 time before termination, just to make sure that all the data on this
connection has gone through. Otherwise, a delayed segment from an earlier
connection may be misinterpreted as part of a new connection that uses the
same local and remote sockets.

1 MSL is the maximum time that any segment can exist in the network before being discarded.
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If an unrecoverable error is detected, either end can close the TCP con-
nection by sending a RST segment, where the Reset flag is set.

6.3.3 TCP timers

TCP uses a number of timers to manage the connection and the data flows.
� TCP Connection Establishment Timer. The maximum period of time

TCP keeps on trying to build a connection before it gives up.
� TCP Retransmission Timer. If no ACK is received for a TCP segment

when this timer expires, the segment will be retransmitted. We will dis-
cuss this timer in more detail in the next section.

� Delayed ACK Timer. Used for delayed ACK in TCP interactive data
flow, which we will discuss in Section 6.4.2.

� TCP Persist Timer. Used in TCP flow control in the case of a fast
transmitter and a slow receiver. When the advertised window size from
the receiver is zero, the sender will probe the receiver for its window size
when the TCP Persist Timer times out. This timer uses the normal TCP
Exponential Backoff algorithm, but with values bounded between 5 and
60 seconds.

� TCP Keepalive Timer. When a TCP connection has been idle for a long
time, a Keepalive timer reminds a station to check if the other end is still
alive.

� Two Maximum Segment Life Wait Timer. Used in TCP connection
termination. It is the period of time that a TCP connection keeps alive after
the last ACK packet of the four-way handshake is sent [see Fig.6.1(b)].
This gives TCP a chance to retransmit the final ACK.2 It also prevents the
delayed segments of a previous TCP connection from being interpreted
as segments of a new TCP connection using the same local and remote
sockets.

6.4 Managing the TCP data flow

To the application layer, TCP provides a byte-stream connection. The
sender TCP module receives a byte stream from the application, and puts
the bytes in a sending buffer. Then, TCP extracts the bytes from the sending
buffer and sends them to the lower network layer in blocks (called TCP

2 In Fig. 6.1(b), the server will timeout if the FIN segment is not acknowledged. It then retransmits the
FIN segment.
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segments). The receiver TCP module uses a receiving buffer to store and re-
order received TCP segments. A byte stream is restored from the receiving
buffer and sent to the application process.

6.4.1 TCP error control

Since TCP uses the IP service, which is connectionless and unreliable,
TCP segments may be lost or arrive at the receiver in the wrong order. TCP
provides error control for application data, by retransmitting lost or errored
TCP segments.

Error detection
In order to detect lost TCP segments, each data byte is assigned a unique se-
quence number. TCP uses positive acknowledgements to inform the sender
of the last correctly received byte. Error detection is performed in each
layer of the TCP/IP stack (by means of header checksums), and errored
packets are dropped. If a TCP segment is dropped because TCP checksum
detects an error, an acknowledgement will be sent to the sender for the first
byte in this segment (also called the sequence number of this segment), thus
effectively only acknowledging the previous bytes with smaller sequence
numbers. Note that TCP does not have a negative acknowledgement feature.
Furthermore, a gap in the received sequence numbers indicates a transmis-
sion loss or wrong order, and an acknowledgement for the first byte in the
gap may be sent to the sender. This is illustrated in Fig. 6.2. When segment
7 is received, the receiver returns an acknowledgement for segment 8 to
the sender. When segment 9 is lost, any received segment with a sequence
number larger than 9 (segments 10, 11, and 12 in the example) triggers a

Receiver

time

Sender

segment 9 is lost
segment 8 is received

segment 7 is receivedsegment 12 is received

10 781112 ......

ack 8
ack 9

ack 9
ack 9

ack 9

segment 11 is received
segment 10 is received

Figure 6.2. A received segment triggers the receiver to send an acknowledgement for the

next segment.
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duplicate acknowledgement for segment 9. When the sender receives such
duplicate acknowledgements, it will retransmit the requested segment (see
Section 6.4.3).

As the network link bandwidth increases, a window of TCP segments
may be sent and received before an acknowledgement is received by the
sender. If multiple segments in this window of segments are lost, the sender
has to retransmit the lost segments at a rate of one retransmission per
round trip time (RTT), resulting in a reduced throughput. To cope with
this problem, TCP allows the use of selective acknowledgement (SACK) to
report multiple lost segments. While a TCP connection is being established,
the two ends can use the TCP Sack-Permitted option to negotiate if SACK
is allowed. If both ends agree to use SACK, the receiver uses the TCP Sack
option to acknowledge all the segments that has been successfully received
in the last window of segments, and the sender can retransmit more than
one lost segment at a time.

RTT measurement and the retransmission timer
On the sender side, a retransmission timer is started for each TCP segment
sent. If no ACK is received when the timer expires (either the TCP packet
is lost, or the ACK is lost), the segment is retransmitted.

The value of the retransmission timer is critical to TCP performance.
An overly small value causes frequent timeouts and hence unnecessary
retransmissions, but a value that is too large causes a large delay when a
segment is lost. For best performance, the value should be larger than but
of the same order of magnitude as the RTT. Considering the fact that TCP
is used to connect different destinations with various RTTs, it is difficult
to set a fixed value for the retransmission timer. To solve this problem,
TCP continuously measures the RTT of the connection, and updates the
retransmission timer value dynamically.

Each TCP connection measures the time difference between sending
a segment and receiving the ACK for this segment. The measured delay
is called one RTT measurement, denoted by M . For a TCP connection,
there is at most one RTT measurement going on at any time instant. Since
the measurements may have wide fluctuations due to transient congestion
along the route, TCP uses a smoothed RTT, RT T s, and the smoothed
RTT mean deviation, RT T d, to compute the retransmission timeout (RTO)
value. RT T s

0 is set to the first measured RTT, M0, while RT T d
0 = M0/2

and RT O0 = RT T s
0 + max{G, 4 × RT T d

0 }. G is the timeout interval of
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Figure 6.3. A TCP timer timeout example.

the base timer. For the i th measured RTT value Mi , RTO is updated as
follows (RFC 2988):

RT T s
i = (1 − α) × RT T s

i−1 + α × Mi , (6.1)

RT T d
i = (1 − β) × RT T d

i−1 + β × |Mi − RT T s
i−1|, (6.2)

RT Oi = RT T s
i + max{G, 4 × RT T d

i }, (6.3)

where α = 1/8 and β = 1/4. If the computed RTO is less than 1 second,
then it should be rounded up to 1 second, and a maximum value limit may
be placed on RTO provided that the maximum value is at least 60 seconds.

The TCP timers are discrete. In some systems, a base timer that goes off
every, e.g., 500 ms, is used for RTT measurements. If there are t base timer
ticks during a RTT measurement, the measured RTT is M = t × 500 ms.
Furthermore, all RTO timeouts occur at the base timer ticks. Figure 6.3
shows a timeout example when RT O = 6 seconds, and the timer goes off
at the 12th base timer tick after the timer is started. Clearly the actual time
out period is between 5.5 and 6 seconds. Different systems have different
clock granularities. Experience has shown that finer clock granularities
(e.g., G ≤ 100 ms) perform better than more coarse granularities [8].

RTO exponential backoff
RTT measurement is not performed for a retransmitted TCP segment in
order to avoid confusion, since it is not clear that if the received acknowl-
edgement is for the original or the retransmitted segment. Both RT T s and
RT T d are not updated in this case. This is called Karn’s Algorithm.

What if the retransmitted packet is also lost? TCP uses the Exponential
Backoff algorithm to update RTO when the retransmission timer expires for
a retransmitted segment. The initial RTO is measured using the algorithm
introduced above. Then, RTO is doubled for each retransmission, but with
a maximum value of 64 seconds (see Fig. 6.4).
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Figure 6.4. Exponential backoff of RTO after several retransmissions.

6.4.2 TCP interactive data flow

TCP supports interactive data flow, which is used by interactive user ap-
plications such as telnet and ssh. In these applications, a user keystroke is
first sent from the user to the server. Then, the server echoes the key back to
the user and piggybacks the acknowledgement for the key stroke. Finally,
the client sends an acknowledgement to the server for the received echo
segment, and displays the echoed key on the screen. This kind of design is
effective in reducing the delay experienced by the user, since a user would
prefer to see each keystroke displayed on the screen as quickly as possible,
as if he or she were using a local machine.

However, a better delay performance comes at the cost of bandwidth
efficiency. Consider one keystroke that generates one byte of data. The
total overhead of sending one byte of application data is 64 bytes (recall
that Ethernet has a minimum frame length of 64 bytes, including the TCP
header, the IP header, and the Ethernet header and trailer). Furthermore, for
each keystroke, three small packets are sent, resulting in a total overhead
of 64 × 3 = 192 bytes for only 2 bytes of data (one byte from the client to
the server, and one byte echoed from the server to the client). To be more
efficient, TCP uses two algorithms: Delayed Acknowledgement and the
Nagle algorithm, in order to reduce the number of small segments.

Delayed acknowledgement
TCP uses a delayed acknowledgement timer that goes off every K ms (e.g.,
50 ms). After receiving a data segment, TCP delays sending the ACK until
the next tick of the delayed acknowledgement timer, hoping that new data
to be sent in the reverse direction will arrive from the application during
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this period. If there is new data to send during this period, the ACK can
be piggybacked with the data segment. Otherwise, an ACK segment (with
no data payload) is sent. Depending on when the data segment is received,
when there is new data arriving from the application layer, and when the
delayed acknowledgement timer goes off, an ACK may be delayed from 0
ms up to K ms.

The Nagle algorithm
The Nagle Algorithm says that each TCP connection can have only one
small segment3 outstanding, i.e., that has not been acknowledged. It can
be used to further limit the number of small segments in the Internet. For
interactive data flows, TCP sends one byte and buffers all subsequent bytes
until an acknowledgement for the first byte is received. Then all buffered
bytes are sent in a single segment. This is more efficient than sending
multiple segments, each with one byte of data. But the higher bandwidth
efficiency comes at the cost of increased delay for the user.

6.4.3 TCP bulk data flow

In addition to interactive flows, TCP also supports bulk data flows, where
a large number of bytes are sent through the TCP connection. Applications
using this type of service include email, FTP, WWW, and many others.

TCP throughput performance is an important issue related to the TCP
bulk data flows. Ideally, a source may wish to always use the maximum
sending rate, in order to deliver the application bulk data as quickly as
possible. However, as discussed in Section 0.8, if there is congestion at
an intermediate router or at the receiving node, the more packets a source
sends, the more packets would be dropped. Furthermore, the congestion
will persist until some or all of the data flows reduce their transmission rates.
Therefore, for a high throughput, the source should always try to increase
its sending rate. On the other hand, for a low packet loss rate, the source
rate should be bounded by the maximum rate that can be allowed without
causing congestion or receiver buffer overflow, and should be adaptive to
network conditions.

TCP sliding window flow control
TCP uses sliding window flow control to avoid receiver buffer overflow,
where the receiver advertises the maximum amount of data it can receive

3 which is less than one MSS.
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Figure 6.5. A TCP sliding window flow control example. (a) The sliding window

maintained by the sender. (b) The updated sliding window when an acknowledgement,

[ackno = 5, awnd = 6] is received.

(called the Advertised Window, or awnd), and the sender is not allowed to
send more data than the advertised window.

Figure 6.5(a) illustrates the sliding window flow control algorithm. The
application data is a stream of bytes, where each byte has a unique sequence
number. In Fig. 6.5, each block represents a TCP segment with MSS bytes,
and the number can be regarded as the sequence number of the TCP seg-
ments in units of MSS bytes. In TCP, the receiver notifies the sender (1) the
next segment it expects to receive and (2) the amount of data it can receive
without causing a buffer overflow (denoted as [ackno = x, awnd = y]),
using the Acknowledgement Number and the Window Size fields in the
TCP header. Figure 6.5(a) is the sliding window maintained at the sender.
In this example, segments 1 through 3 have been sent and acknowledged.
Since the advertised window is five segments and the sender already has
three outstanding segments (segments 4, 5, and 6), at most two more seg-
ments can be sent before a new acknowledgement is received.

The sliding window, shown as a box in Fig. 6.5, moves to the right as
new segments are sent, or new acknowledgements and window advertise-
ments are received. More specifically, if a new segment is acknowledged,
Wl, the left edge of the window, will move to the right (window closes).
Wm moves to the right when new segments are sent. If a larger window
is advertised by the receiver or when new segments are acknowledged,
the right edge of the sliding window, Wr, will move to the right (window
opens). However, if a smaller window is advertised, Wr will move to the
left (window shrinks). Figure 6.5(b) illustrates the updated sliding window
when an acknowledgement, [ackno = 5, awnd = 6], is received.

With this technique, the sender rate is effectively determined by (1)
the advertised window, and (2) how quickly a segment is acknowledged.
Thus a slow receiver can advertise a small window or delay the sending of
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acknowledgements to slow down a fast sender, in order to keep the receiver
buffer from overflowing. However, even with effective flow control, a TCP
segment may still be dropped at an intermediate router when the router
buffer is full due to congestion. In addition to sliding window flow control,
TCP uses congestion control to cope with network congestion.

TCP congestion control
TCP uses congestion control to adapt to network congestion and achieve
a high throughput. Usually the buffer in a router is shared by many TCP
connections and other non-TCP data flows, since a shared buffer leads to a
more efficient buffer utilization and is easier to implement than assigning
a separate buffer for each flow. TCP needs to adjust its sending rate in
reaction to the rate fluctuations of other data flows sharing the same router
buffer. In other words, a new TCP connection should increase its rate as
quickly as possible to take all the available bandwidth. When the sending
rate is higher than some threshold, TCP should slow down its rate increase
to avoid congestion.

Considering the huge number of TCP connections going through an In-
ternet core router, routers are designed to be as simple as possible. Usually
a router simply drops incoming packets when its buffer is full, without no-
tifying the sender. However, the sender can infer congestion along the route
when a retransmission timer goes off. In addition, the receiver also reports
congestion to the sender implicitly by sending duplicate acknowledgements
(see Fig. 6.2). When congestion occurs, TCP drastically reduces its sending
rate. The reason is that if the router is congested, the more data sent, the
more data would be dropped. Furthermore, if some of the TCP connections
lose packets and reduce their rates, it is likely that the congestion will abate
and disappear.

More specifically, the sender maintains two variables for congestion
control: a congestion window size (cwnd), which upper bounds the sender
rate, and a slow start threshold (ssthresh), which determines how the
sender rate is increased. The TCP slow start and congestion avoidance
algorithms are given in Table 6.1. According to these algorithms, cwnd
initially increases exponentially until it reaches ssthresh. After that, cwnd
increases roughly linearly. When congestion occurs, cwnd is reduced to
1 MSS to avoid segment loss and to alleviate congestion. It has been shown
that when N TCP connections with similar RTTs share a bottleneck router
with an output link bandwidth of C , their long-term average rates quickly
converge to the optimal operating rates, i.e., each TCP connection has an
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Table 6.1. The slow start and congestion avoidance algorithms

(1) If cwnd ≤ ssthresh then /* Slow Start Phase */

Each time an ACK is received:

cwnd = cwnd + segsi ze

else /* Congestion Avoidance Phase */

Each time an ACK is received:

cwnd = cwnd + segsi ze × segsi ze/cwnd + segsi ze/8

end

(2) When congestion occurs (indicated by retransmission timeout)

ssthresh = max(2, min(cwnd, awnd)/2)

cwnd = 1 segsi ze = 1 M SS bytes

(3) Allowed window = min(cwnd, awnd)
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Figure 6.6. The evolution of cwnd and ssthresh for a TCP connection, including slow

start, congestion avoidance, fast retransmit, and fast recovery.

average rate of C/N , when this additive-increase-multiplicative-decrease
(AIMD) algorithm is used [9]. Another advantage of this algorithm is that
it is self-clocking. The higher the rate at which acknowledgements are
received (which implies that the congestion is light), the quicker the sending
rate increases. Figure 6.6 illustrates the evolution of cwnd and ssthresh
of a TCP connection. It can be seen clearly that the evolution of cwnd has
two phases, i.e., an exponential increase phase and a linear increase phase.
When there is a packet loss, cwnd drops drastically.

TCP allows accelerated retransmissions. Recall that when there is a gap
in the receiving buffer, the receiver will acknowledge the first byte in the
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Table 6.2. TCP fast retransmit/fast recovery algorithm

(1) After the third duplicate ACK is received:

ssthresh = cwnd/2

retransmit the missing segment

cwnd = ssthresh + 3segsi ze

(2) For each additional duplicate acknowledgement received:

cwnd = cwnd + segsi ze

transmit a segment if allowed by cwnd

(3) When the acknowledgement for the retransmitted segment arrives:

cwnd = ssthresh + segsi ze

gap. Further arriving segments, other than the segment corresponding to the
gap, trigger duplicate acknowledgements (see Figure 6.2). After receiving
three duplicate acknowledgements, the sender assumes that the segment
is lost and retransmit the segment immediately without waiting for the
retransmission timer to expire. This algorithm is called the fast retransmit
algorithm. After the retransmission, congestion avoidance, rather than slow
start, is performed, with an initial cwnd equal to ssthresh plus one segment
size.4 This is called the fast recovery algorithm. With these two algorithms,
cwnd and ssthresh are updated as shown in Table 6.2. In the example
shown in Fig. 6.6, TCP fast retransmit and fast recovery occur at time
instances around 610, 740, and 950.

6.5 Tuning the TCP/IP kernel

TCP/IP uses a number of parameters in its operations (e.g., TCP keepalive
timer). Since the TCP/IP protocols are used in many applications, a set of
default values may not be optimal for different situations. In addition, the
network administrator may wish to turn on (or off) some TCP/IP functions
(e.g., ICMP redirect) for performance or security considerations. Many
Unix and Linux systems provide some flexibity in tuning the TCP/IP kernel.

In Red Hat Linux, /sbin/sysctl is used to configure the Linux
kernel parameters at runtime. The default kernel configuration file is
/sbin/sysctl.conf, consisting of a list of kernel parameters and their

4 The duplicate acknowledgements imply that the subsequent segments have been received. Therefore,
the network is not congested and the sender need not switch to the slow start phase to reduce its rate.
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default values. For the parameters with binary values, a “0” means the func-
tion is disabled, while a “1” means the function is enabled. Some frequently
used sysctl options are listed here.
� sysctl -a or sysctl -A: list all current values.
� sysctl -p file name: to load the sysctl setting from a configuration file. If

no file name is given, /etc/sysctl.conf is used.
� sysctl -w variable=value: change the value of the parameter.

The TCP/IP related kernel parameters are stored in the
/proc/sys/net/ipv4/ directory. As an alternative to the sysctl
command, you can modify these files directly to change the TCP/IP kernel
setting. For example, the default value of the TCP keepalive timer is saved
in the /proc/sys/net/ipv4/tcp keepalive time file. As root, you
can run

echo ’3600’ > /proc/sys/net/ipv4/tcp keepalive time
to change the TCP keepalive timer value from its default 7200 seconds to
3600 seconds.

Solaris 8.0 provides a program, ndd, for tuning the TCP/IP kernel, including
the IP, ICMP, ARP, UDP and TCP modules. To display a list of parameters
editable in a module, use the following command:

ndd module \?,
where module could be /dev/ip, /dev/icmp, /dev/arp, /dev/udp, or
/dev/tcp. To display the current value of a parameter, use:

ndd -get module parameter.
To modify the value of a parameter in a module, use:

ndd -set module parameter.

6.6 TCP diagnostic tools

6.6.1 The distributed benchmark system

The distributed benchmark system (DBS) is a benchmark for TCP perfor-
mance evaluation. It can be used to run tests with multiple TCP connections
or UDP flows and to plot the test results. DBS consists of three tools.
� dbsc: the DBS test controller.
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Figure 6.7. The operation of DBS.

� dbsd: the DBS daemon, running on each participating host.
� dbs view: a Perl script file, used to plot the experiment results.

DBS uses a command file to describe the test setting. In the command
file, a user can specify (1) how many TCP or UDP flows to generate, (2)
the sender and receiver for each flow, (3) the traffic pattern and duration of
each flow, and (4) which statistics to collect. During a test, one host serves
as the controller, running dbsc, and all other participating hosts are DBS
hosts, running dbsd. As illustrated in Fig. 6.7, the controller first reads the
command file and sends instructions to all the DBS hosts. Second, TCP (or
UDP) connections will be set up between the DBS hosts and TCP (or UDP)
traffic is transmitted on these connections as specified in the command file.
Third, when the data transmissions are over, the DBS controller collects
statistics from the DBS hosts which may be plotted using dbs view.

6.6.2 NIST Net

NIST Net is a Linux-based network emulator. It can be used to emulate var-
ious network conditions, such as packet loss, duplication, delay and jitter,
bandwidth limitations, and network congestion. As illustrated in Fig. 6.8, a
Linux host running NIST Net serves as a router between two subnets. There
are a number of TCP connections or UDP flows traversing this router host.
NIST Net works like a firewall. A user can specify a connection, by indicat-
ing its source IP and destination IP, and enforce a policy, such as a certain
delay distribution, a loss distribution, or introduce packet duplication on
this connection.
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......
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Figure 6.8. The operation of NIST Net.

6.6.3 Tcpdump output of TCP packets

Generally, tcpdump outputs a captured TCP packet in the following
format.

timestamp src IP.src port > dest IP.dest port: flags seq no ack window urgent options

The following is a sample tcpdump output, which shows a TCP packet
captured at time 54:16.401963 (Minute:Second:MicroSecond). The TCP
connection is between aida.poly.edu and mng.poly.edu, with source
TCP port 1121 and destination TCP port telnet (23). The PUSH flag
bit is set. The sequence number of the first data byte is 1,031,880,194,
and 24 bytes of data is carried in this TCP segment. aida is expect-
ing byte 172,488,587 from mng and advertises a window size of 17,520
bytes.

54:16.401963 aida.poly.edu.1121 > mng.poly.edu.telnet: P 1031880194
:1031880218(24) ack 172488587 win 17520

6.7 Exercises on TCP connection control

Exercise 1 While tcpdump -S host your host and remote host is running, execute: telnet
remote host time.

Save the tcpdump output.

LAB REPORT Explain TCP connection establishment and termination using the
tcpdump output.

LAB REPORT What were the announced MSS values for the two hosts?
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What happens if there is an intermediate network that has an MTU less
than the MSS of each host?

See if the DF flag was set in our tcpdump output.

Exercise 2 While tcpdump -nx host your host and remote host is running, use sock to send
a UDP datagram to the remote host:

sock -u -i -n1 remote host 8888.

Save the tcpdump output for your lab report.

Restart the above tcpdump command, execute sock in the TCP mode:

sock -i -n1 remote host 8888.

Save the tcpdump output for your lab report.

LAB REPORT Explain what happened in both the UDP and TCP cases. When a client
requests a nonexisting server, how do UDP and TCP handle this request,
respectively?

6.8 Exercise on TCP interactive data flow

Exercise 3 While tcpdump is capturing the traffic between your machine and a remote machine,
issue the command: telnet remote host.

After logging in to the host, type date and press the Enter key.

Now, in order to generate data faster than the round-trip time of a single byte to be
sent and echoed, type any sequence of keys in the telnet window very rapidly.

Save the tcpdump output for your lab report. To avoid getting unwanted lines from
tcpdump, you and the student who is using the remote machine should do this
experiment in turn.

LAB REPORT Answer the following questions, based upon the tcpdump output saved
in the above exercise.
(1) What is a delayed acknowledgement? What is it used for?
(2) Can you see any delayed acknowledgements in your tcpdump output?

If yes, explain the reason. Mark some of the lines with delayed ac-
knowledgements, and submit the tcpdump output with your report.

Explain how the delayed ACK timer operates from your tcpdump
output.

If you don’t see any delayed acknowledgements, explain the reason
why none was observed.
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(3) What is the Nagle algorithm used for?
From your tcpdump output, can you tell whether the Nagle algorithm
is enabled or not? Give the reason for your answer.

From your tcpdump output for when you typed very rapidly, can you
see any segment that contains more than one character going from your
workstation to the remote machine?

6.9 Exercise on TCP bulk data flow

Exercise 4 While tcpdump is running and capturing the packets between your machine and
a remote machine, on the remote machine, which acts as the server, execute:
sock -i -s 7777.

Then, on your machine, which acts as the client, execute:

sock -i -n16 remote host 7777.

Do the same experiment three times. Save all the tcpdump outputs for your lab
report.

LAB REPORT Using one of three tcpdump outputs, explain the operation of TCP in
terms of data segments and their acknowledgements. Does the number of
data segments differ from that of their acknowledgements?

Compare all the tcpdump outputs you saved. Discuss any differences
among them, in terms of data segments and their acknowledgements.

LAB REPORT From the tcpdump output, how many different TCP flags can you see?
Enumerate the flags and explain their meanings.

How many different TCP options can you see? Explain their meanings.

6.10 Exercises on TCP timers and retransmission

Exercise 5 Execute sysctl -A | grep keepalive to display the default values of the TCP kernel
parameters that are related to the TCP keepalive timer.

What is the default value of the TCP keepalive timer? What is the maximum number
of TCP keepalive probes a host can send?

In Solaris, execute ndd -get /dev/tcp tcp keepalive interval to display the
default value of the TCP keepalive timer.
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LAB REPORT Answer the above questions.

Exercise 6 While tcpdump is running to capture the packets between your host and a remote
host, start a sock server on the remote host, sock -s 8888.

Then, execute the following command on your host,

sock -i -n200 remote host 8888.

While the sender is injecting data segments into the network, disconnect the cable
connecting the sender to the hub for about ten seconds.

After observing several retransmissions, reconnect the cable. When all the data
segments are sent, save the tcpdump output for the lab report.

LAB REPORT Submit the tcpdump output saved in this exercise.

From the tcpdump output, identify when the cable was disconnected.

Describe how the retransmission timer changes after sending each retrans-
mitted packet, during the period when the cable was disconnected.

Explain how the number of data segments that the sender transmits at once
(before getting an ACK) changes after the connection is reestablished.

6.11 Other exercises

Exercise 7 While tcpdump src host your host is running, execute the following command,
which is similar to the command we used to find out the maximum size of a UDP
datagram in Chapter 5,

sock -i -n1 -wn host echo

Let n be larger than the maximum UDP datagram size we found in Exercise 5 of
Chapter 5. As an example, you may use n = 70,080.

LAB REPORT Did you observe any IP fragmentation?

If IP fragmentation did not occur this time, how do you explain this com-
pared to what you observed in Exercise 5 of Chapter 5?

Exercise 8 Study the manual page of /sbin/sysctl. Examine the default values of some TCP/IP
configuration parameters that you might be interested in. Examing the configuration
files in the /proc/sys/net/ipv4 directory.

When Solaris is used, use ndd to examine the TCP/IP configuration pa-
rameters. See Section 6.5 or the manual page of ndd for the syntax and
parameters.
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Table 6.3. Two groups for exercises in Section 6.12

- host1 host2 host3 host4

Group A shakti vayu agni apah

Group B yachi fenchi guchi kenchi

6.12 Exercises with DBS and NIST Net

In this exercise, students are divided into two groups as shown in Table 6.3.
The four hosts in each group are connected by a hub. All the hosts have the
default IP addresses and subnet masks as shown in Table 1.2.

Before these exercises, the lab instructor should start ntpd to synchronize
the hosts. First, modify the /etc/ntp.conf file in all the hosts as follows:
(1) comment the “restrict default ignore” line, and (2) for host1, host2, and
host3 in Group A, insert a new line “server 128.238.66.103”; for host1,
host2, and host3 in Group B, insert a new line “server 128.238.66.107”. For
example, the /etc/ntp.conf file in host1, host2, and host3 look should
like the following:

· · ·
# restrict default ignore
· · ·
server 128.238.66.103 # for Group A
# server 128.238.66.107 # for Group B
· · ·

Second, start the ntpd daemon by running /etc/init.d/ntpd start. Then all
the hosts in Group A (Group B) will be synchronized with apah (kenchi).
Note that it may take a while (several minutes) for the hosts to be synchro-
nized, since by default an NTP client polls a server every 60 seconds.

Exercise 9 In the following, we will use DBS to study the performance of TCP under differ-
ent background traffic. The DBS command files used in this exercise are given in
Appendix C.1.

TheTCP1.cmd file in Section C.1.1 of Appendix C1 is used to set up a TCP connection
between host1 and host2, where host2 sends a stream of packets to host1. Edit
the TCP1.cmd file, replace the values for the hostname variable to the IP addresses
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of the corresponding hosts in your group as shown in Table 6.3. For example, in
group A, host1 is shakti and host2 is vayu. So the TCP1.cmd for Group A should
be changed as shown below:

· · ·
sender {

hostname = 128.238.66.101
· · ·
receiver {

hostname = 128.238.66.100
· · ·

In all the following experiments, we will use host4 as the DBS controller. Start
tcpdump host host1 IP and host2 IP on all the hosts. Then start dbsd on all other
hosts except host4 (apah in Group A and kenchi in Group B). Next, execute dbsc
TCP1.cmd on host4.

Observe the data transmissions between host1 and host2 from the tcpdump
output.

When the data transmission is over, execute the following two commands on host4
to plot the received sequence numbers and throughput of the TCP connection:

dbs view -f TCP1.cmd -sq sr -p -ps -color > ex9sqa.ps,
dbs view -f TCP1.cmd -th r -p -ps -color > ex9tha.ps.

Save these two Postscript files for the lab report. You can use the GIMP graphical
tool in Red Hat Linux to convert the Postscript files to other formats. The second
dbs view command also gives the average throughput of the TCP connection. Save
this number for the lab report.

Next, edit the TCPUDP.cmd file given in Section C.1.2 of Appendix C. Replace
the hostname fields with the corresponding IP addresses for the senders and
the receivers according to Table 6.3. Then, repeat the above exercise, but use the
TCPUDP.cmd file. This file consists of commands to start a TCP connection with
the same parameters as the previous exercise, and a UDP flow emulating an MPEG
video download. Oberve the impact on TCP performance of the UDP flow.

When the data transmission is over, execute the following two commands to plot
the received sequence numbers and throughput of the TCP connection:

dbs view -f TCPUDP.cmd -sq sr -p -ps -color > ex9sqb.ps,
dbs view -f TCPUDP.cmd -th r -p -ps -color > ex9thb.ps.

Save these two Postscript files, as well as the average throughputs of the TCP
connection and the UDP flow.
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Table 6.4. The NIST Net settings for Exercise 10

Source Dest Delay (ms)

host1 IP host2 IP 20 ms

host3 IP host2 IP 500 ms

LAB REPORT Compare the throughput of the TCP connections in the above two exper-
iments. In which case does the TCP connection have higher throughput?
Justify you answer with the throughput plots and the sequence number
plots.

Exercise 10 5In one command window, execute tcpdump ip host host1 IP and host2 IP to
capture the TCP packets between host1 and host2. In another command window,
run tcpdump ip host host3 IP and host2 IP to capture the TCP packets between
host3 and host2.

On host1, execute Load.Nistnet to load the NIST Net emulator module into the Linux
kernel.

Execute xnistnet on host1 (shakti in Group A and yachi in Group B). Enter the
values in the NIST Net GUI as given in Table 6.4. Then click the Update button
to enforce a 20 ms delay on the TCP connection between host1 and host2, and a
500 ms delay on the TCP connection between host2 and host3.

Start the DBS daemon on host1, host2, and host3, by running dbsd -d.

Edit the TCP2.cmd file given in Section C.1.3 of Appendix C on host4. Set the
hostname values in the command file to the corresponding IP addresses according
to Table 6.3. Execute the DBS controller on host4, by dbsc TCP2.cmd.

Observe the data transmissions shown in the tcpdump outputs. When data trans-
missions are over, save the tcpdump outputs and use the following command to
plot the received sequence numbers and throughputs of the two TCP connections:

dbs view -f TCP2.cmd -sq sr -p -ps -color > ex10sq.ps,
dbs view -f TCP2.cmd -th r -p -ps -color > ex10th.ps,

Save the plots and the mean throughputs of the two TCP connections from the
dbs view outputs.

LAB REPORT From the received sequence number plot, can you tell which TCP
connection has higher throughput? Why? Justify your answer using the
tcpdump outputs and the dbs view plots.

5 This exercise is for Linux only, since NIST Net does not run on Solaris.
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Exercise 11 6Restart the xnistnet program on host1. Set Source to host2’s IP address
and Dest to host1’s IP address. Set Delay for this connection to be 500 ms, and
Delsigma to 300 ms. This enforces a mean delay of 500 ms and a delay deviation
of 300 ms for the IP datagrams between host1 and host2.

Execute tcpdump ip host host1 IP and host2 IP on all the hosts.

Start a sock server on host1 by running sock -i -s 7777. Start a sock client on
host2 by running sock -i -n50 host1 IP 7777 to pump TCP packets to host1.

When the data transfer is over, examine the tcpdump outputs to see if a retransmis-
sion or fast retransmission occured. If you cannot see one, you may try running the
sock program again.

LAB REPORT Submit the section of a tcpdump output saved that has out of order TCP
segments arriving at the receiver.

Exercise 12 7This exercise is similar to the previous one, except that Delay is set to 100 ms,
Delsigma is set to 0 ms, and Drop is set to 5%.

Run the sock server and client. When the data transfer is over, examine the tcpdump
output. Can you see any packet loss and retransmission? Justify your answer using
the tcpdump output.

Try different values for the Drop field, or different combinations of Delay,
DelSigma, and Drop.

LAB REPORT Answer the above questions.

6 This exercise is for Linux only, since NIST Net does not support Solaris.
7 This exercise is for Linux only, since NIST Net does not support Solaris.



7 Multicast and realtime service

We are now in a transition phase, just a few years shy of when IP will be the
universal platform for multimedia services. H. Schulzrinne

7.1 Objectives

� Multicast addressing.
� Multicast group management.
� Multicast routing: configuring a multicast router.
� Realtime video streaming using the Java Media Framework.
� Protocols supporting realtime streaming: RTP/RTCP and RTSP.
� Analyzing captured RTP/RTCP packets using Ethereal.

7.2 IP multicast

IP provides three types of services, i.e., unicast, multicast, and broadcast.
Unicast is a point-to-point type of service with one sender and one receiver.
Multicast is a one-to-many or many-to-many type of service, which delivers
packets to multiple receivers. Consider a multicast group consisting of a
number of participants, any packet sent to the group will be received by all
of the participants. In broadcasts, IP datagrams are sent to a broadcast IP
address, and are received by all of the hosts.

Figure 7.1 illustrates the differences between multicast and unicast. As
shown in Fig. 7.1(a), if a node A wants to send a packet to nodes B, C,
and D using unicast service, it sends three copies of the same packet,
each with a different destination IP address. Then, each copy of the packet
will follow a possibly different path from the other copies. To provide
a teleconferencing-type service for a group of N nodes, there need to be

134
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CA

(a)

D

BNetwork

CA

(b)

D

BNetwork

Figure 7.1. Comparison of IP unicast and multicast. (a) A unicast example, where node A

sends three copies of the same packet to nodes B, C, and D. (b) A multicast example,

where node A sends a packet to the multicast group, which consists of nodes B, C,

and D.

N (N − 1)/2 point-to-point paths to provide a full connection. On the other
hand, if multicast service is used, as illustrated in Fig. 7.1(b), node A only
needs to send one copy of the packet to a common group address.1 This
packet will be forwarded or replicated in a multicast tree where node A is
the root and nodes B, C, D are the leaves. All nodes in this group, including
node B, C, and D, will receive this packet. With multicast, clearly less
network resources are used.

IP multicast is useful in providing many network services, e.g., nam-
ing (DNS), routing (RIP-2), and network management (SNMP). In many
cases, it is used when a specific destination IP address is unknown. For
example, in the ICMP router discovery exercise in Chapter 4, a host sends
an ICMP router solicitation message to a multicast group address meaning
all routers in this subnet. All routers connecting to this subnet re-
ceive this request, although the host may not know if there are any routers
out there, and if there are, what IP addresses their interfaces have. In ad-
dition, IP multicast is widely used in multimedia streaming (e.g., video
conferencing and interactive games) due to its efficiency. As illustrated
in Fig. 7.1, a multicast group (consisting of nodes A, B, C, D) is easier
to manage and uses less network resources than providing an end-to-end
connection between every two participating nodes.

The example in Fig. 7.1(b) illustrates the three key components in pro-
viding multicast services.

1 RFC 1112 indicates that the sender, e.g. node A, does not have to be in the multicast group.
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1. Multicast addressing. How to define a common group address for all the
nodes in the group to use, and how to map a multicast group address to
a MAC address.

2. Multicast group management. The multicast group is dynamic, meaning
that users may join and leave the group during the multicast session.
A multicasting router needs to keep track of the memberships of the
multicast groups, and a participant may want to know who else is in the
group.

3. Multicast routing. A multicast tree should be found and maintained
from a participating node to all other nodes in the group, and the tree
should be updated when either the network topology changes or the
group membership changes.

We will examine these three key components of IP multicasting in the
following sections.

7.2.1 Multicast addressing

IP multicast addressing
One salient feature of IP multicast is the use of a group IP address instead
of a simple destination IP address. A multicast group consists of a number
of participating hosts and is identified by the group address. A multicast
group can be of any size, and the participants can be at various geographical
locations.

In the IP address space, Class D addresses are used for multicast group
addresses, ranging from 224.0.0.0 to 239.255.255.255. There is no structure
within the Class D address space. This is also different from unicast IP
addresses, where the address field is divided into three sub-fields, i.e.,
network ID, subnet ID, and host ID. However, some segments of Class
D addresses are well-known or reserved. For example, all the Class D
addresses between 224.0.0.0 and 224.0.0.255 are used for local network
control, and all the Class D addresses between 224.0.1.0 and 224.0.1.255
are used for internetwork control. Table 7.1 gives several examples of the
well-known Class D addresses. For example, in Exercise 5 of Chapter 4,
a host sends an ICMP router discovery request to the Class D address
224.0.0.2, which is the group ID of all the router interfaces in a subnet.

Ethernet multicast addressing
A 48-bit long Ethernet address consists of a 23-bit vendor component, a 24-
bit group identifier assigned by the vendor, and a multicast bit, as illustrated
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Table 7.1. Examples of reserved multicast group addresses

224.0.0.1 All systems in this subnet

224.0.0.2 All routers in this subnet

224.0.0.4 All Distance Vector Multicast Routing Protocol routers in this subnet

224.0.0.5 All Multicast extension to OSPF routers in this subnet

224.0.0.9 Used for RIP-2

224.0.0.13 All Protocol Independent Multicast routers in this subnet

224.0.1.1 Used for the Network Time Protocol

Vendor component (23 bits)

Multicast bit

Group ID (24 bits) 

Figure 7.2. The multicast bit in an Ethernet address (the eighth bit).

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 23 bits

23 bits5 bits

A Class D multicast group address

An Ethernet multicast address

01-00-5E is used for IP multicast
The last 23 bits are mapped

The multicast bit (is set to 1)

1 1 01

Figure 7.3. Mapping a Class D multicast IP address to an Ethernet multicast address.

in Fig. 7.2. The vendor block is a block of Ethernet addresses assigned to a
vendor. For example, Cisco is assigned with the vendor component 0x00-
00-0C. Thus all the Ethernet cards made by Cisco have Ethernet addresses
starting with this block. The multicast bit is used to indicate if the current
frame is multicast or unicast. If the multicast bit is set, this Ethernet address
is a multicast Ethernet address. Therefore, a multicast Ethernet address
assigned to Cisco starts with 0x01-00-0C.

Multicast address mapping
The Ethernet address segment starting with 0x01-00-5e is used for IP mul-
ticasting. When there is a multicast packet to send, the multicast destination
IP address is directly mapped to an Ethernet multicast address. No ARP re-
quest and reply are needed. The mapping is illustrated in Fig. 7.3. Note that
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only the last 23 bits of the Class D IP address is mapped into the multicast
MAC address. As a result, 25 = 32 Class D IP addresses will be mapped
to the same Ethernet multicast address. Thus the device driver or the IP
module should perform the packet filtering function to drop the multicast
IP datagrams destined to a group it does not belong to.

At the receiver, the upper layer protocol should be able to ask the IP
module to join or leave a multicast group. The IP module maintains a list
of group memberships. This list is updated when an upper layer process
joins a new group or leaves a group. Similarly, the network interface should
be able to join or leave a multicast group. When the network interface joins a
new group, its reception filters are modified to enable reception of multicast
Ethernet frames belonging to the group. A router interface should then be
able to receive all the multicast IP datagrams.

7.2.2 Multicast group management

The Internet Group Management Protocol (IGMP) is used to keep track
of multicast group memberships in the last hop of the multicast tree. A
host uses IGMP to announce its multicast memberships, and a router uses
IGMP to query multicast memberships in the attached networks. Figure 7.4
shows the IGMP version 1 message format. An IGMP message is eight
bytes long. The Type field is set to 1 for a query sent by a router, and 2 for
a report sent by a host. The last four bytes carry a multicast group address.
For the IGMPv2 message format in Fig. 7.5, the possible Type values
are: 0x11 for membership query, 0x16 for version 2 membership report,
0x17 for leaving the group, and 0x12 for version 1 membership report
to maintain backward-compatibility with IGMPv1. The Max Resp Time,

Unused

32–bit Class D IP Address

Version Type Checksum

1 4 5 8 9 16 17 32

Figure 7.4. The IGMP version 1 message format.

Max Resp Time Checksum

1 8 16 17 32

Type

32-bit Class D IP Address

9

Figure 7.5. The IGMP version 2 message format.
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which is applicable only to query messages, specifies the maximum allowed
time before sending a report message, in units of 1/10 seconds.

With IGMP, multicast routers periodically send host membership queries
to discover which multicast groups have members on their attached local
networks. By default, the queries are transmitted at 60 second intervals.
These queries are sent to the Class D address 224.0.0.1 (all hosts in the
subnet) with a TTL of 1. When a host receives an IGMP query, it responds
with an IGMP report for each multicast group in which it is a member.
The destination IP address of the IP datagram carrying the IGMP report
is identical to the multicast group it is reporting on. Recall that a router
interface receives all multicast datagrams. In order to avoid a flood of
reports, a host delays an IGMP report for a random amount of time. During
this interval, if it overhears a report reporting on the same group address,
it cancels the transmission of the report. Thus the total number of reports
transmitted is suppressed. When a host leaves a multicast group, it may do so
silently and its membership record at the router will expire and be removed.
Later versions of IGMP (e.g., IGMPv2 or IGMPv3) allow a host to report
to all the routers when it leaves a multicast group (type value is 0x17).

A multicast router maintains a multicast group membership table. The
table records which groups have members in the local networks attached
to each of the router interfaces. The router uses the table to decide which
ports to forward a multicast datagram to.

7.2.3 Multicast routing

In IP multicast, participants in a group could be in different geographical
locations. A user can join and leave the multicast session at will. The size of
a group could be from 1 to an arbitrarily large number. These make multicast
routing more difficult than unicast routing. A critical issue in supporting IP
multicast is how to find the trees for distributing multicast IP datagrams at
a moderate cost (in terms of both network bandwidth resources and router
CPU and memory usage).

Distance Vector Multicast Routing Protocol (DVMRP)
As suggested by its name, DVMRP is a distance vector-based multicast
routing protocol. A DVMRP router exchanges multicast routing informa-
tion with its neighbors, and builds the multicast routing table based on these
multicast routing updates.
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DVMRP uses a flood-and-prune approach in routing multicast IP data-
grams. In DVMRP, a source broadcasts the first multicast IP datagram over
the network. A DVMRP router R forwards a multicast packet from source
S if, and only if the following conditions apply.
� The packet comes from the shortest route from R back to S. This scheme

is called Reverse Path Forwarding.
� R forwards the packet only to the child links for S. A child link of R for S

is defined as the link that has R as parent on the shortest path tree where
S is the root. The child links are found by multicast routing updates.

Thus, a multicast datagram is effectively flooded to the entire network using
the shortest path tree with S as the root. In addition, DVMRP assigns various
values to the TTL field of multicast datagrams to control the scope of the
broadcast. Furthermore, each link can be assigned with a TTL threshold in
addition to the routing cost. A router will not forward a multicast/broadcast
datagram if its TTL is less than the threshold.

When the packet arrives at a router with no record of membership in that
group, the router will send a prune message, or a non-membership report,
upstream of the tree, so that the branch will be deleted from the multicast
tree. On the other hand, when a new member in a pruned subnet joins the
group, the new membership will be detected by the router using IGMP.
Next, the router will send a message to the core to undo the prune. This
technique is called grafting.

As in RIP, DVMRP is based on the distance vector routing algorithm.
Therefore, it has the same limitations as RIP, e.g., it also has the count-to-
infinity problem. DVMRP uses multiple multicast trees, each with a source
as its root. The multicast routing daemon for DVRMP is mrouted.

Multicast extension to OSPF (MOSPF)
MOSPF is an intra-domain multicast routing protocol, i.e., it finds multicast
trees within an AS. Recall that as described in Section 4.2.4, OSPF uses
LSAs to exchange link state information. In MOSPF, a new LSA called
group membership LSA is used. In addition to other types of LSAs, multicast
routers also flood group membership LSAs to distribute group membership
information on the attached networks. A MOSPF router then computes the
shortest path tree to all other subnets with at least one member of the
multicast group.

As in DVMRP, MOSPF uses multiple multicast trees, each with a source
as the root. In order to reduce the routing overhead, both DVMRP and
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source 1 source 2

source 3
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Figure 7.6. A shared multicast tree.

MOSPF perform the tree computation on-demand, i.e., the computation is
triggered by the first arriving multicast datagram to a group.

Core-based tree (CBT)
Both DVMRP and MOSPF use one multicast tree for each source. This
could be very costly when the network is large-scale and there are a large
number of active multicast sessions. An alternative is to use a shared mul-
ticast tree for all the sources in the group.

As illustrated in Fig. 7.6, a shared tree consists of a special router called
the core (or the Rendezvous Point (RP)) of the tree, and other routers (called
on-tree routers), which form the shortest path route from a member host’s
router to the core. To build a shared tree for a multicast session, a core
is first chosen. Then the on-tree routers send Join requests to the core,
and set up the routing tables accordingly. When the shared tree is set up,
multicast datagrams from all the sources in the group are forwarded in this
tree.

Unlike DVMRP, CBT does not broadcast the first datagram. Thus the
traffic load is greatly reduced, making it suitable for multicasting in large-
scale and dense networks. Moreover, the sizes of the multicast routing
tables in the routers are greatly reduced, since a router only needs to store
information for each multicast group, i.e., the number of CBT router en-
tries is the same as the number of active groups. Recall that in DVMRP
or MOSPF, an intermediate router needs to store information for each
source in every multicast group, resulting in the DVMRP router entries of
∑

i∈(active groups) (No. of sources in group i). However, CBT has the traffic
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concentration problem, where all the source traffic may concentrate on a
single link, resulting in congestion and a larger delay than multiple-tree
schemes.

Protocol Independent Multicast (PIM)
Multicast routing protocols can be roughly classified into two types: source-
tree based and shared-tree based. Clearly, each type has its strengths and
limitations. For example, using a separate tree for each source facilitates
a more even distribution of the multicast traffic in the network. Moreover,
multicast datagrams from a source are distributed in the shortest path tree,
resulting in a better delay performance. However, each multicast router has
to maintain states for all sources in all multicast groups. This may be too
costly when there are a large number of multicast sessions. Shared-tree-
based protocols solve this problem by using a shared tree for all the sources
in a group, resulting in a greatly reduced number of states in the routers.
However, this is at the cost of the traffic concentration problem. Moreover,
the shared tree may not be optimal for all the sources, resulting in larger
delay and jitter. Also, the performance of the shared tree largely depends
on how the Rendezvous Point is chosen.

Since a multicast protocol may be used in various situations, where the
number of participants and their locations, the number of sources, and the
traffic sent by each source may be highly diverse, it is very difficult to find
a single protocol which is suitable for all of the scenarios. A solution to this
problem is to use a multi-modal protocol that can switch its operation mode
for different applications. The Protocol Independent Multicast protocol
(PIM) is such a protocol with two modes: the dense mode where source-
based trees are used, and the sparse mode where a shared tree is used. In
the dense mode, PIM works like DVMRP. In the sparse mode, PIM works
like CBT. When there is a high-rate source, its local router may initiate a
switch to the source-based tree mode and use a source-based shortest path
tree for that source.

7.2.4 The multicast backbone: MBone

MBone stands for the multicast backbone. It was created in 1992, initially
used to send live IETF meetings around the world. Over the years, MBone
has evolved to become a semi-permanent IP multicast testbed, consisting of
volunteer participants (e.g., network providers and institutional networks).
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It has been used for testing of new protocols or tools (e.g., the vic teleconfer-
encing tool in 1994), live multicasting of academic conferences (e.g., ACM
SIGCOMM), the NASA space shuttle missions, and even a Rolling Stones
concert.

MBone is an overlay network with a double-layer structure. The lower
layer consists of a large number of local networks that can directly support
IP multicast, called multicast islands. The upper layer consists of a mesh
of point-to-point links, or tunnels, connecting the islands. The mrouted
multicast routing daemon is running at the end points of the tunnels using
the DVMRP protocol. Multicast IP datagrams are sent and forwarded within
the islands. However, when a multicast IP datagram is sent through a tunnel,
it is encapsulated in a unicast IP datagram. When the unicast IP datagram
reaches the other end of the tunnel, the unicast IP header is stripped and the
recovered multicast IP datagram is forwarded. Note that such a dual-layer
structure is also suggested and used in IPv6 deployment.

7.2.5 Configuring a multicast router

Configuring IGMP
IGMP is automatically enabled when a multicast protocol is started on a
router interface. The following command can be used in the Interface Con-
figuration mode (see Section 3.3.2) to have a router interface join a multicast
group. The no form of this command cancels the group membership.
ip igmp join-group group-address
no ip igmp join-group group-address
The frequency at which IGMP requests are sent can be configured using the
following commands in the Interface Configuration mode. The no-version
of the command restores the default value of 60 seconds.
ip igmp query-interval new-value-in-seconds
no ip igmp query-interval
To display IGMP related router configuration or information, use the fol-
lowing command in the Privileged EXEC mode.
� show ip igmp groups: Displays the multicast groups in the attached

networks.
� show ip igmp interface: Displays multicast related information on a

router interface.
� debug ip igmp: Displays IGMP packets received and transmitted.
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Configuring multicast routing
It takes two steps to set up multicast routing in a Cisco router. First, enable
multicast routing using the following command in the Global Configuration
mode. The no-version of the command disables multicast routing.
ip multicast-routing
no ip multicast-routing
Next, configure each router interface in the Interface Configuration mode,
e.g., specifying which multicast routing protocol to use. The following
command enables PIM on an interface and sets the mode in which PIM
works:

ip pim [dense-mode | sparse-mode | dense-sparse-mode].
When dense-sparse-mode is specified in the above command, PIM oper-
ates in a mode determined by the group. The following commands can be
used to display multicast related information in a Cisco router in the Global
Configuration mode.
� show ip mroute: Displays the multicast routing table.
� show ip mroute summary: Displays a one-line summary for each entry

in the multicast routing table.
� show ip mroute count: Displays multicast statistics.
� show ip dvmrp route: Displays the DVMRP routing table.
� show ip pim neighbor: Lists PIM neighbors discovered by the router.
� show ip pim interface: Displays router interface configurations.

Cisco IOS multicast diagnostic tools
Cisco IOS provides several multicast diagnostic tools as listed in the
following. These tools are executable in the Privileged EXEC mode.
� mtrace source [destination] [group-IP]: Traces the path from a source

to a destination in a multicast tree.
� mrinfo [hostname | address] [source-address | interface]: Verifies mul-

ticast neighbors and shows multicast neighbor router information.
� mstat source [destination] [group-IP]: Shows IP multicast paths in an

ASCII graphic format, as well as statistics such as packet drops, dupli-
cates, TTLs, and delays.

� ping group-IP: This command can be executed in both a router and a
host. When a multicast group IP address is pinged, all the interfaces in
the group will respond.
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7.3 Realtime multimedia streaming

7.3.1 Realtime streaming

Realtime multimedia applications are increasingly popular in today’s In-
ternet. Examples of such applications are video teleconferencing, Internet
telephony or Voice over IP (VoIP), Internet radio, and video streaming.
These new applications raise new issues in network and protocol design.

VoIP enables telephony service, traditionally provided over circuit
switched networks, e.g., the Public Switched Telephone Network (PSTN),
in the packet-switched, best effort Internet. With this service, the voice
signal is digitized at the source with an analog to digital converter, seg-
mented into IP packets and transmitted through an IP network, and fi-
nally reassembled and reconverted to analog voice at the destination. Some
of the underlying protocols used in VoIP service will be covered in this
section.

Another example of realtime service is video streaming, as illustrated in
Fig. 7.7. Frames are generated at the source (e.g., from the output of a video
camera) continuously, and then encoded, packetized and transmitted. At the
receiver, the frames are reassembled from the packet payloads and decoded.
The decoded frames are then continuously displayed at the receiver. The
network should guarantee delivery of the video packets at a speed matching
the display rate, otherwise the display will stall.

However, the underlying IP network only provides connectionless, best-
effort service. Video packets may be lost and delayed, or arrive at the
receiver out of order. This is further illustrated in Fig. 7.8. Although the

source

a corrupted frame

frames

Encoder Packetizer

ReassemblyDecoder

Network

display

Transport Control

Transport Control

Figure 7.7. The architecture of Internet video streaming.
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Figure 7.8. A video streaming example: the playout buffer is used to absorb jitter.

video frames are sent periodically at the source, the received video frame
pattern is distorted. Usually the receiver uses a playout buffer to absorb
the variation in the packet interarrival times (called jitter). Each frame is
delayed in the playout buffer for a certain amount of time and is extracted
from the buffer at the same rate at which they are transmitted at the source.
An overdue frame, which arrives later than its scheduled time for extraction
from the buffer (or the time it is supposed to be displayed), is useless and
discarded. The difference between the arrival time of the first frame and the
time it is displayed is called playout delay. With a larger playout delay, a
frame is due at a later time, and thus a larger jitter is tolerable and fewer
frames will be overdue. But this improvement in loss rate is at the cost of
a larger delay experienced by the viewer.

In addition to the jitter control discussed above, there are many other
requirements for effective realtime multimedia streaming. These require-
ments can be roughly categorized into two types: end-to-end transport
control and network support. End-to-end transport control is implemented
at the source and receiver, assuming a stateless core network, while network
support is implemented inside the network. Several important end-to-end
controls for realtime streaming are listed here.
� Sequence numbering. As shown in the above example, there needs to be

a means for the receiver to detect if the arriving packets are out of order.
One way to do this is to assign a unique identifier, called the sequence
number, to each packet. The sequence number is increased by one for each
packet transmitted. By examining the sequence numbers of the arriving
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packets, the receiver can tell if a packet is out-of-order or if a packet is
lost.

� Timestamping. The source should send the sampling instance of each
frame to the receiver, so that the receiver can replay the frames at the
right pace. Timestamps can also be used by a receiver to compute jitter
and round trip time.

� Payload type identification. As there are many different multimedia
data types, coding schemes, and formats, the sender should inform the
receiver about the payload type, so that the receiver can interpret the
received data.

� Error control. Since the underlying IP network is unreliable, error con-
trol is needed to protect video packets. Traditional error control tech-
niques include Forward Error Correction (FEC) and Automatic Repeat
reQuest (ARQ).

� Error concealment. When packets are lost, the receiver may perform
error concealment to reduce the impact of the lost packets. For exam-
ple, when a frame is lost, the player may repeat the previous frame, or
interpolate the lost frame using adjacent frames.

� Quality of Service (QoS) feedback. The receiver may collect statistics,
such as loss rate, jitter, received frame quality, and send them back to the
sender. With such information, the sender may adjust its parameters or
operation modes to adapt to congestion or packet losses in the network.

� Rate control. A multimedia session may have a high data rate (e.g.,
high quality video streaming). Usually UDP is used for multimedia data
transfer. The high-rate UDP data flows may cause congestion in the net-
work, making other adaptive TCP flows suffer from low throughput (see
Exercise 9 in Chapter 6). The sender needs to be adaptive to network con-
gestion. When there is congestion, the sender may reduce its sending rate,
e.g., by reducing the frame rate or changing the encoding parameters.
In addition to the end-to-end transport controls, realtime multimedia

streaming also requires support from the packet-switched IP network. Ex-
amples of such supports are: (1) reservation of bandwidth along the network
path for a multimedia session; (2) scheduling packets at the core routers
to guarantee their QoS requirements; (3) sophisticated routing algorithms
to find a route that satisfies the QoS requirements of a multimedia session
(e.g., enough bandwidth or a low loss probability); and (4) shaping and
policing the multimedia data flow to make it conform to an agreed-upon
traffic specification.
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Figure 7.9. The protocol stack supporting multimedia services.

7.3.2 Protocols supporting realtime streaming services

Figure 7.9 shows the protocol stack supporting multimedia services. As
shown in the figure, there are several such protocols at the application
layer, e.g., the Realtime Transport Protocol (RTP), the Realtime Transport
Control Protocol (RTCP), the Real Time Streaming Protocol (RTSP), and
the Session Initiation Protocol (SIP). UDP is usually used at the transport
layer, providing multiplexing and header error detection (checksum) ser-
vices. There are a number of reasons why TCP is not used for multimedia
transport. For example, the delay and jitter caused by TCP retransmission
may be intolerable, TCP does not support multicast, and TCP slow-start
may not be suitable for realtime transport.

RTP is an application layer transport protocol providing essential support
for multimedia streaming and distributed computing. RTP encapsulates re-
altime data, while its companion protocol RTCP provides QoS monitoring
and session control.

RTP/RTCP are application layer protocols. Usually they are integrated
into applications, rather than a separate standard protocol module in the sys-
tem kernel. This makes it flexible, allowing it to support various multimedia
applications with different coding formats and transport requirements. RTP
is deliberately not complete. A complete specification of RTP requires a
set of profiles defining payload type codes, their mapping into the pay-
load formats, and payload specifications. RTP/RTCP is independent of the
underlying transport and network layer protocols. RTP/RTCP does not by
itself provide timely delivery or other QoS guarantees. Rather, RTP/RTCP
relies on the lower-layer protocols for reliable service. Figure 7.10 shows
the RTP header format. The fields are listed here.
� Version (V): 2 bits. This field shows the RTP version, which is cur-

rently 2.
� Padding (P): 1 bit. If this bit is set to 1, the RTP payload is padded

to align to the 32-bit word boundary. The last byte of the payload is the
number of padding bytes.
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Figure 7.10. The RTP header format.

� Extension (X): 1 bit. If set, there is a variable size extension header
following the RTP header.

� CSRC Count (CC): 4 bits. This field indicates the number of contributing
source (CSRC) identifiers that follow the common header. A CSRC is a
source that contributes data to the carried payload.

� Marker (M): 1 bit. The interpretation of this bit is defined by a profile.
This bit can be used to mark a significant event, e.g., the boundary of a
video frame, in the payload.

� Payload Type (PT): 7 bits. This field identifies the format of the RTP
payload and determines its interpretation by the application. For example,
the payload type for JPEG is 26, and the payload type for H.2612 is 31.

� Sequence Number: 16 bits. This field is the sequence number of the RTP
packet. The initial value of the field is randomly generated. The value is
increased by 1 for each RTP packet sent. This field can be used for loss
detection and resequencing.

� Timestamp: 32 bits. This field identifies the sampling instant of the first
octet of the RTP payload, used for synchronization and jitter calculation.

� Synchronization Source (SSRC) Identifier: 32 bits. This field
identifies the synchronization source, which is the source of a RTP packet
stream.

� Contributing Source (CSRC) Identifier List: 0 to 15 items,
each with 32 bits. The list of identifiers of the sources whose data is
carried (multiplexed) in the payload.
RTCP uses several types of packets, e.g., Sender Report (SR) and Re-

ceiver Report (RR) for QoS reports, Source Description (SDES) to de-
scribe a source, goodbye (BYE) packet for leaving the group, and other
application-specific packets (APP). A RTCP packet may be the concatena-
tion of several such packets. The format of a RTCP SR packet is shown in
Fig. 7.11. A RTCP RR packet has the same format as a RTCP SR, but with
the PT field set to 201 and without the Sender Info block. The following
list gives the definitions of the header fields.

2 A video coding standard published by the International Telecommunications Union (ITU).
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Figure 7.11. The format of a RTCP sender report.

� NTP Timestamp: 64 bits. This field carries the wallclock time (absolute
time) when the report is sent. It is used in the round trip time calculation.

� Sender’s Packet Count: 32 bits. The total number of RTP packets
sent by this sender.

� Sender’s Octet Count: 32 bits. The total number of RTP bytes sent
by this sender.

� Fraction Lost: 8 bits. This field is the fraction of RTP data packet lost
from the source during the last reporting period.

� Cumulative Number of Packets Lost: 24 bits. This field is the total
number of RTP data packet lost from the source since the beginning of
the session.

� Extended Highest Sequence Number Received: 32 bits. The lower
16 bits of this field contain the highest sequence number received in
a RTP packet from the source. The higher 16 bits contain an extension of
the sequence number with the corresponding count of sequence number
cycles.

� Interarrival Jitter: 32 bits. This is an estimate of the statisti-
cal variance of the RTP data packet interarrival time, measured in
timestamp units (e.g., sampling periods) and expressed as an unsigned
integer.
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� Last SR (LSR): 32 bits. This field is the middle 32 bits out of 64 in
the NTP timestamp received as part of the most recent RTCP SR packet
from the source.

� Delay since Last SR (DLSR): 32 bits. This field is the delay, ex-
pressed in unit of 1/65536 second, between receiving the last SR packet
from the source and sending this reception report block.
During a RTP session, participants send QoS reports (SR or RR) peri-

odically. However, the number of participants in a RTP multicast session
could range from 1 to a very large number. If every participant sends QoS
reports at a fixed rate, when the group size is large, there will be a large
amount of QoS report traffic, eventually causing congestion and leaving
no bandwidth for other data. Rather, based on the numbers of senders
and receivers in the last report period, RTP calculates the report trans-
mission interval dynamically, keeping the bandwidth used on the reports
a relatively constant portion of the total bandwidth used in the RTP ses-
sion. RTP also enforces a 5-second minimum interval between consecutive
reports.

RTSP is an application layer control protocol for initiating and directing
realtime streaming. It provides the “Internet VCR remote control” func-
tions, e.g., pause, fast-forward, and rewind. RTSP can be transported using
UDP or TCP. It works with RTP/RTCP for controlled streaming, as illus-
trated in Fig. 7.12.

SIP is another application layer control protocol providing signaling for
realtime transport in the Internet. There are two basic components in SIP,
i.e., the SIP user agent which is the end system of a call, and the SIP network
server which handles the signaling procedures. SIP is widely used in IP
telephony. Its International Telecommunication Union (ITU) counterpart
is the ITU-T H.323 standard.

Server Client

RTSP: streaming control

RTP: multimedia data

RTCP: QoS feedback

Network

Figure 7.12. A multimedia streaming example.
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7.3.3 Java Media Framework and JMStudio

RTP/RTCP was first proposed in early 1996 as RFC 1889. Since then, there
have been a number of independent RTP/RTCP implementations, e.g., the
vic video conferencing tool and the JavaTM Media Framework (JMF).

JMF is a Java application programming interface (API) for multimedia
data processing and streaming. It provides a library package for transport
and playout of realtime media. Since it is written in Java, it has the advantage
of platform independence, i.e., once written, the same program runs on
various platforms. RTP/RTCP and RTSP are all implemented in JMF.

In the JMF installation package, there is a tool called JMStudio which
can stream video using RTP/RTCP. In the following exercises, we will use
JMStudio as a tool to examine video streaming.

7.4 Simple multicast exercises

For all the exercises in this section, the network topology is given in Fig. 1.3,
where all the hosts are connected to a single network segment using their
default IP addresses, i.e., from 128.238.66.100 to 128.238.66.107.

Exercise 1 Execute netstat -rn to display the routing table of your host. If there is no entry for
the 224.0.0.0 subnet, you need to provide a default route for multicast traffic, by:

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth03

Save the new routing table.

In Solaris, usually this entry is already in the routing table.

LAB REPORT Submit the routing table you saved.

Exercise 2 Execute netstat -g to show the multicast group memberships for all the interfaces
in your host.

LAB REPORT How many multicast groups did the interface belong to? What were the
groups? Explain the meaning of the group IDs.

3 This command can be appended to the /etc/rc.local file, so that it will be executed automatically
when the system bootstraps. Each time when the network interface is brought down and up again by
the ifconfig command, you may need to run the route command to re-insert the multicast routing
entry.



153 7.4 Simple multicast exercises

Exercise 3 Execute ping 224.0.0.1. Examine the ping output to see which hosts reply.

Ping a broadcast address using ping -b 128.238.66.255. Examine the ping output
to see which hosts reply.

In Solaris, use ping -sv target I P in both cases.

LAB REPORT Which hosts replied when the multicast address was pinged? Which
hosts replied when the broadcast address was pinged?

In each case, was there a reply from your host?

Exercise 4 Execute tcpdump -n -nn -e and tcpdump ether multicast -n -nn -e to capture
an Ethernet unicast frame, an Ethernet multicast frame, and an Ethernet broadcast
frame.

To generate an Ethernet unicast frame, run sock -i -u -n1 remote host echo.

Execute sock -i -u -n1 230.11.111.10 2000 to generate an Ethernet multicast frame.

Generate another Ethernet multicast frame, but with a different group address of
232.139.111.10.

To generate an Ethernet broadcast frame, you may ping a remote host that has no
entry in the ARP table of you host. Recall that the ARP request is broadcast.

Save the frames captured for the lab report.

LAB REPORT Compare the source and destination MAC addresses of the frames you
captured.

Use one of the multicast frames captured to explain how a multicast group
address is mapped to a multicast MAC address. For the two multicast frames
captured, do they have the same destination MAC address? Why?

Exercise 5 Start the multicast client netspy on all the hosts, by executing

netspy 224.111.111.111 1500.

Then, start the multicast sender netspyd on shakti, by executing

netspyd 224.111.111.111 1500 1.

Execute tcpdump ip multicast on every host to capture multicast IP datagrams.

Login to shakti from a remote machine, e.g., kenchi, using telnet or ssh.

Save the captured multicast datagram sent by netspyd and exit the telnet (or ssh)
session.
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LAB REPORT From the tcpdump output, how many messages are sent by netspyd
when a new user logged in to shakti? From the netspy outputs on all the
hosts, how many copies of the message are received in total?

Did shakti, where the multicast sender, netspyd, was running, receive
the multicast datagram? Why? If yes, through which interface did shakti

receive this datagram?

Exercise 6 Keep the netspy and the tcpdump programs running. Execute ping 224.111.111.111
from kenchi. Examine the tcpdump and ping outputs to see which hosts replied.

To avoid confusion, students should do this exercise by turns.

Terminate the netspy programs on several hosts, e.g., shakti, vayu, and fenchi.
Execute the ping command again. Also, examine the tcpdump and the ping outputs
to see which hosts replied.

7.5 IGMP exercises

In the following exercises, students are divided into two groups, Group A
and Group B, each with four hosts and one router. The network topology of
each group is given in Fig. 7.13, and the corresponding host IP addresses
and router IP addresses are given in Table 7.2 and Table 7.3, respectively.

Table 7.2. Hosts IP addresses for Fig. 7.13

GROUP A GROUP B

Host Name IP address Name IP address

host1 shakti 128.238.63.100/24 yachi 128.238.64.100/24

host2 vayu 128.238.63.101/24 fenchi 128.238.64.101/24

host3 agni 128.238.64.103/24 kenchi 128.238.65.100/24

host4 apah 128.238.64.104/24 guchi 128.238.65.101/24

ROUTER

host3 host4host1 host2

eth0 eth1

Figure 7.13. The network topology for the exercises in Section 7.5.
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Table 7.3. Router IP addresses for Fig. 7.13

Group Name eth0 eth1

Group A router3 128.238.63.3/24 128.238.64.3/24

Group B router4 128.238.64.4/24 128.238.65.4/24

Exercise 7 Connect the hosts and the route in your group as shown in Fig. 7.13. Set the IP
address of your host as given in Table 7.2. Note that the IP addresses of the router
interfaces are the same as their default IP addresses.

Login to the router and run ip multicast-routing to enable multicast routing in the
Global Configuration mode. Then, enable the PIM protocol on each interface, by
running ip pim dense-mode in the Interface Configuration mode.4 Now the router
is enabled to do multicast routing using PIM.

Login to the router, execute show ip igmp interface and show ip igmp group in
the Privileged EXEC mode. Examine the multicast group memberships currently
recorded in the router and the configurations of the router interfaces.

Exercise 8 Start netspy on all the hosts, by using:

netspy 224.111.111.111 1500.

Start netspyd on host1 (shakti in Group A and yachi in Group B), by using:

netspyd 224.111.111.111 1500 16.

Login to the router. Run show ip igmp interface and show ip igmp group in the
Privileged EXEC mode again to examine the current membership records.

Try if you can ping a host on the other side of the router. Login to host1 from host2

in your group, then logout. See if the multicast messages sent by netspyd reach the
other side of the router.

LAB REPORT Can you ping a host on the other side of the router? Will the router
forward a multicast IP datagram to the other side? Justify your answers.

Exercise 9 Execute tcpdump ip multicast -w ex9a.out in one console to capture IGMP mes-
sages. At the same time, execute tcpdump ip multicast in another console to mon-
itor the capture process. When you see three or more IGMP queries in the second
tcpdump output, terminate both tcpdump programs.

Start ethereal by using ethereal -r ex9a.out to analyze the IGMP messages you
captured. Print and save two different IGMP messages.

4 As usual, each router should be configured by one person to avoid confusion.
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Repeat the above experiment, but change the output file to ex9b.out. Terminate
netspy on host2 and host4. Terminate the tcpdump programs and analyze the IGMP
leave message you captured.

LAB REPORT What is the value of the Time-to-Live (TTL) field for the IGMP mes-
sages? Why do we not set the TTL to a larger number?

What is the default frequency at which the router sends IGMP queries?

Exercise 10 Login to the router. See if you can make a router interface (e.g., Ethernet0) join
a multicast group of 224.0.0.2, using

ip igmp join-group 224.0.0.2.

LAB REPORT Explain why the above command fails.

7.6 Multicast routing exercises

For the rest of the exercises in this chapter, the network topology is given
in Fig. 7.14. The exercises will be jointly performed by all the students.
The IP addresses of the hosts and router interfaces are given in Fig. 7.14.

Exercise 11 Connect the hosts and routers as illustrated in Fig. 7.14. Configure the IP addresses
of the hosts and router interfaces as given in the figure. Note that most of the router
interfaces use their default IP addresses, only the Ethernet0 interface of Router4
needs to be changed to 128.238.63.4.

router1

router2

router3 router4

eth0

eth1 eth0 eth0

eth0

eth1

eth1

eth161.1/24

62.1/24

62.2/24 63.2/24

63.3/24

64.3/24

63.4/24

65.1/24

shakti vayu

agni yachi

fenchi kenchi guchi

apah

61.100/24 61.101/24

62.100/24 63.100/24 63.101/24

64.100/24 65.100/24 65.101/24

Figure 7.14. The network topology for the exercises in Section 7.6 and 7.7.
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Enable PIM multicast routing in all the routers (see Exercise 7).

Run tcpdump ip multicast on all the hosts.

Execute netspy 224.111.111.111 1500 on shakti, agni, apah, fenchi, and
kenchi. Execute netspyd 224.111.111.111 1500 16 on yachi. To generate mul-
ticast traffic, you can login (by telnet or ssh) to or logout of yachi. Each time
when the login user set of yachi changes, netspyd on yachi will send a multicast
datagram to group 224.111.111.111, to report the change in its login users.

Can you see the netspy messages on the 128.238.65.0 (or the 128.238.61.0) subnet
in the tcpdump output?

Terminate the netspy program on kenchi (or shakti). Can you see the netspy
messages on the 128.238.65.0 (or the 128.238.61.0) subnet?5

Save one of the PIM routing packets. You may use ethereal to analyze it.6 What is
the destination IP address used in this PIM routing packet?

LAB REPORT Answer the above questions.

Exercise 12 In this exercise, try the mstat Cisco IOS command to find the multicast tree from
a source. The mstat command is executable in the Privileged EXEC mode. You can
always type “?” to get help on the syntax of the command.

Exercise 13 Keep netspy running on all the hosts. Ping the multicast group address from
yachi, using

ping 224.111.111.111 -t n.

The parameter n is the TTL to be set to the multicast datagrams sent by ping. Try
different values of n, e.g., 1, 2, 3, and 16. See how far a multicast datagram can
travel with different TTL values.

Now, login to Router2, in the Interface Configuration mode, set the TTL threshold
of the Ethernet0 interface to 32, using:

ip multicast ttl-threshold 32.7

Run the ping command with n = 16 again. Can you see the multicast datagrams in
the 128.238.61.0 and 128.238.62.0 subnet? Try n = 33. Answer the same question.

LAB REPORT Answer the above questions.
What is the use of the TTL threshold in the router interface?

5 If IGMPv1 is used, a participant does not send a leave message when it leaves the group. In this
case, the membership record in the router expires in 120 seconds. During this interval, the router still
forwards multicast datagram through the port.

6 As usual, first capture the packet using tcpdump -w output f ile, then open the output file using
ethereal.

7 The syntax of this command may be different for different versions of Cisco IOS. You may use “?”
to get help.
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7.7 Multicast video streaming exercise

In the following exercise, we use jmstudio for video streaming. The routers
and hosts have the same configurations as in Fig. 7.14.

Exercise 14 Start jmstudio on all the hosts, by using jmstudio &.

On shakti, go to the jmstudio menu: File/Transmit .... In the “RTP Transmit”
dialog, chose file /home/guest/video/Hurr-Lili-Trailer.mpeg. Then click
the “next” button. In the next window, click the “next” button again. In the following
window, specify the multicast group address to be 224.123.111.101, with port
number 22224 and TTL 33. Then click the “Finish” button. Now the jmstudio on
shakti is transmitting the video clip using RTP/RTSP/UDP/IP to the multicast group
224.123.111.101 on port 22224.

On all other hosts, go to the jmstudio menu: File/Open RTP Session .... In the
following “Open RTP Session” dialog, specify the same group address, port number
and TTL as that used in shakti. Now you should see the received video is displayed
on the screen.

Execute tcpdump ip multicast -w ex14.out in one console to capture the multicast
datagrams. In another console, execute tcpdump ip multicast to monitor the capture
process. When you see some RTCP packets in the second tcpdump output, terminate
both tcpdump programs.

Use ethereal to load the ex14.out file. Analyze the header format of a RTP data
packet and a RTCP Sender (or Receiver) Report packet.
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The dream behind the Web is of a common information space in which we
communicate by sharing information. Tim Berners-Lee

8.1 Objectives

� The HyperText Transfer Protocol and the Apache web server.
� The Common Gateway Interface.
� The Dynamic Host Configuration Protocol.
� The Network Time Protocol.
� The Network Address Translator and the Port Address Translator.
� An introduction to socket programming.

8.2 The HyperText Transfer Protocol

8.2.1 The HyperText Transfer Protocol and the Web

In the early days of the Internet, email, FTP, and remote login were the
most popular applications. The first World Wide Web (WWW) browser was
written by Tim Berners-Lee in 1990. Since then, WWW has become the
second “Killer App” after email. Its popularity resulted in the exponential
growth of the Internet.

In WWW, information is typically provided as HyperText Markup Lan-
guage (HTML) files (called web pages). WWW resources are specified by
Uniform Resource Locators (URL), each consisting of a protocol name
(e.g., http, rtp, rtsp), a “://”, a server domain name or server IP address, and
a path to a resource (an HTML file or a CGI script (see Section 8.2.2)).
The HyperText Transfer Protocol (HTTP) is an application layer protocol

159
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Table 8.1. A HTTP client request and an HTTP server response

A HTTP GET /usage/try1.htm HTTP/1.1\r\n

client Accept: image/gif, image/jpeg, */*\r\n

request Accept-Language: en-us\r\n

Accept-Encoding: gzip, deflate\r\n

User-Agent: Mozilla/4.0 (Red Hat Linux)\r\n

Host: 128.238.42.129\r\n

Connection: Keep-Alive\r\n

\r\n

A HTTP HTTP/1.1 200 OK\r\n

server Date: Sat, 18 Oct 2003 19:28:32 GMT\r\n

response Server: Apache/2.0.40 (Red Hat Linux)\r\n

Last-Modified: Sat, 18 Oct 2003 04:11:58 GMT\r\n

Accept-Ranges: bytes\r\n

Content-Length: 529\r\n

Connection: close\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n

\r\n

Data (529 bytes)

for distributing information in the WWW. In common with many other
Internet applications, HTTP is based on the client–server architecture. An
HTTP server, or a web server, uses the well-known port number 80, while
an HTTP client is also called a web browser. With HTTP, a browser sends
a request to a server for a file, and the server responds with the requested
file if it is available.

HTTP messages are English-based and flexible, which are different from
those lower layer protocols where the messages are code-based. As the
examples in Table 8.1 show, an HTTP message consists of the following
components.
� A start-line. In an HTTP request, usually the start-line is a request for

a file. In the example, “GET” is an HTTP method which instructs the
server to return a file. The next parameter is the directory and name of
the target file. The last parameter is the version of HTTP. There are two
versions, HTTP/1.0 and HTTP/1.1, that are widely used in the WWW.
In an HTTP response, the start-line contains a code indicating the status
of the corresponding request. The definitions of the codes are given in
Table 8.2.
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Table 8.2. Definitions of the HTTP response status codes

Codes Meaning Example

1XX Informational 100: The server has received the first part of the request.

2XX Success 200: The request is successful and the response is returned in

the following message body.

3XX Redirection 300: Multiple choices.

4XX Client error 404: The requested file is not found.

5XX Server error 500: Internal server error.

� Optional headers. Following the start-line is a list of HTTP head-
ers. Each line consists of a header name and a value. These head-
ers are English-based with intuitive meanings. For example, the
header “Host: 128.238.42.129\r\n” means that this request is from
host 128.238.42.129. The header “User-Agent: Mozilla/4.0 (Red Hat
Linux)\r\n” means the client is using the Red Hat Linux operating sys-
tem and the web browser is Mozilla 4.0. Headers are optional. Each
header line ends with a “\r\n”.

� A blank line, i.e., a “\r\n” only.
� For an HTTP response, the requested file or other data follows the blank

line.
HTTP uses TCP for file transfers. Before an HTTP request, the client

first establishes a TCP connection to the server. After the HTTP response
is sent, the server may terminate the TCP connection. Many HTML files
have embedded objects, e.g., pictures, audio/video, or Java applets. When
an HTML file is received, the web browser parses the file to identify the
embedded objects, and then sends an HTTP request to the server for each
embedded object. For example, for an HTML file with two pictures, the
client sends three HTTP requests, with the first one for the original file and
the other two for the pictures. With HTTP/1.0, the client establishes a TCP
connection for each request. The TCP connection is terminated by the server
when transmission of the requested file (an HTML file or an embedded
object) is over. This may be inefficient when the HTML file has many
embedded objects, since TCP connection establishments and terminations
waste both network and server resources and introduce additional delays.
In HTTP/1.1, persistent connections are supported, where all the embedded
objects are sent through the TCP connection established for the first request.
In the example in Table 8.1, the persistent connection feature is enabled



162 The Web, DHCP, NTP and NAT

at the client (see header “Connection: Keep-Alive”), and disabled at the
server (see header “Connection: close”). Note that a TCP connection is
persistent if and only if both the client and server enable this feature.

HTTP allows the use of proxies for web access control and better perfor-
mance. A proxy is an intermediary between an HTTP client and an HTTP
server. To the client, the proxy acts as if it were the target server, while
to the server, the proxy acts as a normal client. When a proxy is used for
a local network, local clients direct all their HTTP requests (to various
servers) to the proxy. A request to the proxy contains the full URL in the
start-line, rather than just the directory and the target file name in a nor-
mal HTTP request (Table 8.1), in order to inform the proxy server which
server to forward the request to. Proxies can be used with firewalls to block
undesired traffic. Furthermore, a proxy usually maintains a web cache for
recently downloaded files. Web caching exploits the property of temporal
locality in HTTP requests.1 When a request arrives, the proxy first searches
the cache. If there is a hit, the cached file is returned to the client and there
is no need to request the file from the remote server. With web caching,
both the response time experienced by the client and the work load at the
web server are reduced.

8.2.2 The Common Gateway Interface procotol

Web pages used to be static, consisting of text and pictures. With Java tech-
nology and the Common Gateway Interface (CGI) protocol, web pages can
now be dynamic. A user can send data to the server and web pages can be
generated on-demand. Dynamic web pages provide a two-way communi-
cation between web clients and web servers, making web applications such
as an on-line opinion poll or e-commerce possible.

CGI uses two files, an HTML form where a user can input data, and a CGI
script that processes user input data and generates a response dynamically.
Any program, written in any language, that can read input from the standard
input (STDIN) and write output to the standard output (STDOUT) can be
used as CGI script. With CGI, a user first downloads the HTML form
using a web browser. The form consists of text inputs, checklists, and
buttons. A user can make choices, input text, and click the button to submit
the data. The web server then invokes the CGI script that uses the user data

1 This means when a file is downloaded, it is likely to be downloaded again in the near future, by the
same or a different user.
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as input to generate a response (usually an HTML file) dynamically. The
web server then returns the CGI response to the client.

8.2.3 The Apache web server

WWW service is provided by web servers. According to the web server
survey from Netcraft, the Apache server is the most popular web server in
the Internet.2 The Apache server is an open source software, included in
both the Red Hat Linux 9 and Solaris 8 installation CDs.

The Apache server daemon is httpd. The following command starts,
stops, or restarts the Apache server:

/etc/rc.d/init.d/httpd start|stop|restart.
To check the status of the Apache server, execute pgrep httpd. Then

the process ids of the active httpd processes will be displayed. To check if
the web server is correctly installed and started, you can start the Mozilla
browser on the server host and enter the http://localhost URL. If the
test page appears in the browser window, the server is up and working
properly.

The Apache server uses the /etc/httpd/conf/httpd.conf config-
uration file. There are more than two hundred configuration directives in
the Apache configuration language. In most of the cases, the default val-
ues should be sufficient. The ServerName server name|server IP directive
specifies the web server, while the Port n directive specifies the server port
number (80 by default). The KeepAlive on|off directive turns on (off) the
persistent connection feature. The root directory of the HTML files can
be specified by the Document Root directory directive. By default,
all HTML files are stored in the /var/www/html/ directory. The URL
for the file /var/www/html/abc.html is http://server/abc.html. If
the UserDir public html directive is used, a user, e.g., guest, can put
his/her HTML files in the /home/guest/public html directory, which
can be accessed with the http://server/~guest/ f ile name URL.

Stability, scalability, and response time are three important performance
metrics in web server design. Apache is a process-based web server. When
started, the initial Apache process (called the master server) launches one
or more child processes, each listening on the HTTP port (80 by default)
and handling client requests. This approach has several advantages. First,
the web server is more stable. If one child process crashes, other child

2 According to a survey at http://news.netcraft.com/archives/web\_server\_survey.
htm, 64.61% of the 43,700,759 websites polled use the Apache server, as of October 2003.



164 The Web, DHCP, NTP and NAT

processes won’t be affected. Second, multiple child processes allow more
client requests to be processed simultaneously, resulting in better scala-
bility. Since client requests are processed in parallel, the server response
time is reduced too. The StartServers n directive is used to tell Apache
to spawn n child servers when started. The MinSpareServers n and the
MaxSpareServers n directives allow Apache to add or delete child pro-
cesses as the web usage fluctuates.

To enable CGI, the ScriptAlias /cgi-bin/ “/var/www/cgi-bin”
directive should be in the httpd configuration file. By default, CGI scripts
are stored in the /var/www/cgi-bin directory. The URL for a CGI script,
e.g., foo.pl, is http://server/cgi-bin/foo.pl.

In Solaris, the Apache executables and the configuration files are
stored in different directories. The HTTP daemon is controlled
by /etc/init.d/apache start|stop|restart. The configuration file is
stored at: /etc/apache/httpd.conf. By default, HTML files are
stored at /var/apache/htdocs, and CGI scripts are stored at
/var/apache/cgi-bin/.

8.3 The Dynamic Host Configuration Protocol

8.3.1 The DHCP protocol

In Chapter 2 and Chapter 5, we have discussed how to configure a network
interface and set up a host’s routing table. When the network has a large
number of hosts and a complex topology, configuring the hosts manually
is both cumbersome and error prone. As a solution to this problem, the
Dynamic Host Configuration Protocol (DHCP) is used to configure hosts
automatically.

DHCP is designed to configure TCP/IP host computers in a central-
ized manner.3 A DHCP server maintains a collection of configuration
parameters required to make TCP/IP work, including an IP address and
possibly other parameters such as the subnet mask and the default gateway
IP address. A DHCP client queries the server(s) for the configuration pa-
rameters. A DHCP server, when queried, returns configuration parameters
to the client. DHCP can provide persistent storage of network parameters

3 An older protocol for this purpose is BOOTP, with which DHCP is backward compatible.
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Figure 8.1. The typical operation of DHCP.

for the clients, i.e., a client can be assigned with the same set of parameters
whenever it bootstraps, or is moved to another subnet. The DHCP server
keeps a key-value entry for each client that should be configured statically
(e.g., an email or web server) and uses the entries to match queries from the
clients. The entry could be a combination of a subnet address and the MAC
address (or the domain name) of a client. DHCP can also assign configu-
ration parameters dynamically. In this case, the DHCP server maintains a
pool of parameters (e.g., a range of IP addresses) and assigns an unused set
of parameters to a querying client. A DHCP client leases an IP address for
a period of time. When the lease expires, the client may renew the lease,
or the IP address is put back to the pool for future assignments.

Figure 8.1 illustrates the operations of DHCP, where two DHCP servers
are used. These are the operations.
1. A client first broadcasts a DHCPDISCOVERY message on its local

physical network during bootstrapping. The message may be forwarded
by relay agents to servers in other physical networks.

2. Each server may respond with a DHCPOFFER message with an available
network address in the Your IP Address field.

3. The client may receive one or more DHCPOFFER messages. Then,
it chooses one server from all the responding servers based on the
configuration parameters offered, and broadcasts a DHCPREQUEST
message with the Server Identifier option to indicate the selected
server.

4. When the DHCPREQUEST message is received, only the chosen server
responds with a DHCPACK message carrying a full set of configuration
parameters to the client.

When the client receives this message, it checks the parameters and
configures its TCP/IP modules using the parameters. The message also
specifies the duration of the lease. When the lease expires, the client
may ask the server to renew it. If the server does not hear from the client



166 The Web, DHCP, NTP and NAT

Transaction ID

Number of Seconds Flags

Client IP Address

Your IP Address

Server IP Address

Relay Agent IP Address

Client Hardware Address (16 bytes)

Server Hostname (64 bytes)

Boot Filename (128 bytes)

Options (variable)

Opcode Hardware Type

0 8 9 15 16 23 24 31

Hop CountHw Add. Len.

Figure 8.2. The DHCP message format.

beyond the expiry of the lease period, it will put the assigned address
back in the pool and may assign this address to other hosts.

5. The client may send a DHCPRELEASE message to the server to relin-
quish the lease on a network address.
Figure 8.2 shows the format of a DHCP message. The fields are listed

here.
1. Opcode: 1 means a boot request, and 2 means a boot reply. Every DHCP

message sent from a client has the boot request code (1). The boot reply
code (2) is written in every DHCP message sent from a server.

2. Hardware Address Type: The values of this field are defined in the
“Assigned Numbers” RFC. For an Ethernet MAC address, the value is 1.

3. Hardware Address Length: The length of the hardware address.
4. Hop Count: This is optionally used by relay agents when a host boots

via a relay agent. A relay agent is a host or router that forwards DHCP
messages between DHCP clients and servers.

5. Transaction ID: This is a randomly generated number used to
associate a query and response between a client and a server.

6. Number of Seconds: This is the number of seconds elapsed since
the client began the address acquisition or renewal process.

7. Flags: The leftmost bit is the Broadcast flag, while the remaining 15
bits are reserved for future use and must be set to zero. The Broadcast
flag is used in case that a client cannot receive a unicast IP datagram
before its interface is configured.
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8. Client IP Address: This field is only used when the client is in
BOUND, RENEW, and REBINDING state and can respond to ARP
requests.

9. Your IP Address: This field is the client’s IP address.
10. Server IP Address: This is the IP address of the next server to use

in the bootstrap process.
11. Relay Agent IP Address: This is used when booting via a relay

agent.
12. Client Hardware Address: This is the hardware address of the

client. In the case of Ethernet, the first 6 bytes are filled with the
client’s Ethernet address, and the remaining bytes are set to 0.

13. Server Hostname: This is the host name of the DHCP server.
14. Boot Filename: This is set in a DHCPOFFER message. The server

can fill in this field with the fully qualified, null terminated path name
of a file to bootstrap from.

15. Options: This is the optional parameter field. The Message Type

option defines the type of the DHCP messages which is more specific
than the Opcode field. This option has to be present in every DHCP
message. Different message types are used at different stages of the
client/server interaction.

8.3.2 Configuring DHCP

The DHCP server daemon is dhcpd, while the DHCP client daemon is
dhcpcd. To start the DHCP server, run /usr/sbin/dhcpd. To start the DHCP
client, run /usr/sbin/dhcpcd. Both commands may be appended to the
/etc/rc.d/rc.local file to be executed automatically when the system
bootstraps.

The DHCP server dhcpd uses a configuration file /etc/dhcpd.conf.
Table 8.3 gives an example of the configuration file. Lines 1 and 2 define
the lease time in seconds. Line 3 to line 7 define the parameters required to
configure a network interface. Line 9 to line 11 define an IP address pool
with two IP addresses. Multiple ranges of IP addresses can be defined here.
These IP addresses can be assigned to a requesting host. Lines 13 to 16
define a static assignment, where host apah will always be assigned with
a fixed IP address of 128.238.66.100. A static assignment is useful when
a host is used as an Internet server, e.g., email server or web server, and a
fixed IP address is required.
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Table 8.3. A DHCP server configuration file

1 default-lease-time 600;

2 max-lease-time 7200;

3 option subnet-mask 255.255.255.0;

4 option broadcast-address 128.238.66.255;

5 option routers 128.238.66.1;

6 #option domain-name-servers 128.238.2.38, 128.238.3.21;

7 #option domain-name “poly.edu”;

8

9 subnet 128.238.66.0 netmask 255.255.255.0 {
10 range 128.238.66.111 128.238.66.112;

11 }
12

13 host apah {
14 hardware ethernet 08:00:20:79:e9:9f;

15 fixed-address 128.238.66.110;

16 }

In Solaris, a DHCP server stores client configuration in two types of files:
a dhcptab file that stores all the information that a client can obtain from
the server, and one or more network tables mapping client identifiers to
IP addresses and the configuration parameters associated with each IP
address. These files can be edited by the graphical configuration tool DHCP
Manager, or by the command line tools dhcpconfig (generating the table
files), dhtadm (configuringdhcptab), and pntadm (managing the network
tables).

The DHCP server daemon is in.dhcpd. The DHCP client daemon is
dhcpagent. If the startup script finds a /etc/dhcp.interface file, it
starts the dhcpagent daemon and contacts DHCP servers for configuration
parameters for that interface. The Solaris DHCP client can be controlled by
the ifconfig command: ifconfig interface dhcp options. The options are:
start: Restarts the DHCP client.
inform: Requests network information only.
extend: Requests a lease extension.
release: Releases the IP address.
drop: Drops the lease without informing the DHCP server.
status: Displays the network interface status.
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8.4 The Network Time Protocol

8.4.1 The NTP protocol

With the fast growth of the Internet, accurate timing is becoming more and
more important in network design, management, security, and diagnosis.
For example, many network systems log network events. If the timing in a
system is not accurate or the systems are not synchronized, it would be very
difficult to analyze the logfiles. Some diagnostic tools, such as tcpdump,
record packets captured along with the time when they were captured.
Network measurement (e.g., DBS in Chapter 6) also requires accurate
timing and synchronization.

The Network Time Protocol (NTP) is a protocol used to provide accurate
timing and to synchronize computers and other network devices. NTP is
an application layer protocol using UDP and TCP port 123.

Timing service is provided in the Internet in a hierarchical manner, as
shown in Fig. 8.3. The NTP servers and clients are organized into 16
strata. An NTP primary server, or stratum 1, is a host synchronized with
a high precision clock, e.g., an atomic clock or Global Positioning System
(GPS) signals. Each server chooses one or more higher stratum servers and
synchronizes with them. Choosing multiple higher stratum servers results
in better reliability, since one or more of the servers in use may be down
or unreachable, or their timing information may be inaccurate. The further
a computer is from stratum 1, the less accurate its clock is. A list of public

Stratum 1

Stratum 2 ...

......
Figure 8.3. The hierarchical strata structure of NTP time service.
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NTP primary time servers (stratum 1) and secondary servers (stratum 2)
can be found at http://www.ntp.org.

In NTP, clients and servers can operate in the multicast or broadcast
mode, where timing information is broadcast or multicast by the servers.
On the other hand, a client can proactively poll the servers for timing infor-
mation. An NTP client can synchronize with an NTP server in two ways.
The client can use rdate or ntpdate to query time information from and
synchronize to a remote NTP server whenever it wishes to. Furthermore,
the client can start the ntpd daemon which synchronizes with the NTP
server continuously and automatically.

8.4.2 Configuring NTP

The NTP network daemon is ntpd, which can be controlled by the
following.
� /etc/init.d/ntpd start|stop|restart: Starts, stops, or restarts the NTP

daemon.
� /etc/init.d/ntpd status: Shows the status, e.g., stopped or started, of the

NTP daemon.
ntpd uses the /etc/ntp.conf configuration file and can be started as
an NTP server or an NTP client. Some frequently used entries in the
/etc/ntp.conf are listed here.
� server server IP|server domain name [prefer]: Specifies an NTP server

to synchronize to.
� peer host IP|host domain name: Specifies an NTP peer. ntpd can

operate in the peer mode, where multiple peers communicate with each
other to determine which one has the most accurate clock and synchronize
to it.

� broadcastclient: Configures a broadcast client, which receives broadcast
time information to synchronize with a broadcast server.

� multicastclient: Configures a multicast client.
� broadcast broadcast address|multicast address ttl ttl value: Configures

either a broadcast or a multicast NTP server.
� restrict network address|host IP address [flags]: Restricts NTP service

to this server.
NTP also uses several other configuration files in the/etc/ntpdirectory.

For example, the /etc/ntp/ntp.drift file contains the latest estimation
of the clock frequency error, called drift. ntpd keeps on monitoring the
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frequency error and records the measured error in this file at hourly in-
tervals. ntpd also supports authentication using the /etc/ntp/keys file,
which stores keys and key IDs. The client and the server must have the
same key and key ID in their /etc/ntp/keys files in order to commu-
nicate with each other. These configuration files must be specified in the
/etc/ntp.conf file.

In Solaris, the NTP configuration files are stored in the /etc/inet/

directory. A server configuration template /etc/inet/ntp.server and
a client configuration template /etc/inet/ntp.client are provided.

8.4.3 Network timing tools

Most Linux or Unix systems provide the following NTP tools for system
synchronization or other timing related tasks.
� date: Displays or sets the current system time.
� rdate [options] remote host: Gets time from the network. The options

follow.
-P : Prints the returned time.
-s: Sets the current system time to the returned time.
-u: Uses UDP rather than TCP in the transport layer.
rdate uses the RFC 868 time server,4 with UDP and TCP port 37.

� ntptrace host: Traces time information back to the high stratum servers
in the synchronization tree.

� ntpdate [options] ntp server: Synchronizes the local clock with the re-
mote server once.

� ntpq: Queries the state of the NTP daemon on a local or remote host.
A Cisco router can also be configured to use NTP. For example, the

Global Configuration command ntp server NTP server IP specifies an
NTP server with which the router will synchronize to. The Global Config-
uration command ntp access-group controls access to NTP service on the
system.

4 The time and time-udp services should be enabled in the Linux machine in order to respond to a
rdate query, by chkconfig time on and chkconfig time-udp on, respectively.

In Solaris, the lines corresponding to time and time-udp services in the /etc/inetd.conf file
should be uncommented.
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8.5 The IP network address translator

8.5.1 Network address translation and port address translation

With the growth of the Internet, IP addresses have become a scarce re-
source. The IP Network Address Translator (NAT) is designed to conserve
IP addresses. With NAT, there are two types of IP addresses: private IP
addresses which are not globally unique and can only be assigned to local
hosts, and public IP addresses that are globally unique and are assigned
by the Internet Corporation for Assigned Names and Numbers (ICANN)
or an equivalent address registry. A NAT router, which connects a private
network to the Internet, performs translation of the private and public IP
addresses for all the outgoing and incoming IP datagrams. The ICANN
has reserved three blocks of the IP address space for private networks, as
given in Table 8.4. With NAT, these IP addresses can be reused by different
private networks.

Figure 8.4 shows an example of NAT. The private network consists of
nine hosts and connects to the Internet via a stub router. The internal inter-
faces are assigned with Class A IP addresses from 10.0.0.1 to 10.0.0.10,
and the router uses an IP address pool consisting of two public IP addresses.
When an internal host with a private IP address 10.0.0.2 sends an IP data-
gram to the Internet, the router chooses an available IP address from the
address pool (128.238.4.12 in this example), changes the source IP address
of the datagram to this public address, and forwards this datagram to the
Internet. The router also associates the private IP address with the public
IP address. From now on, the source IP address of all outbound datagrams
from 10.0.0.2 will be translated to the same public IP address 128.238.4.12.
In addition, the destionation IP address of all the incoming datagrams to
128.238.4.12 will also be translated to 10.0.0.2 before being forwarded
to the private network. When the connection is over (by a timeout), the

Table 8.4. Blocks of the IP addresses for private networks

Class From To Prefix

A 10.0.0.0 10.255.255.255 10/8

B 172.16.0.0 172.31.255.255 172.16/12

C 192.168.0.0 192.168.255.255 192.168/16
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10.0.0.2 10.0.0.3 10.0.0.10

...

The Internet

10.0.0.1
src IP: 10.0.0.2

src IP: 128.238.4.12
NAT stub router
 Address pool:
    128.238.4.12
    128.238.4.13

Association:
10.0.0.2 128.238.4.12

Figure 8.4. A NAT example.

association is released and the public address 128.238.4.12 is put back into
the pool for future use.

In the example, a pool of public IP addresses is dynamically shared by
all the internal hosts. NAT also supports static translation, where a private
address is persistently mapped to a public address. Static mapping is useful
for internal servers (e.g., an email server or a web server).

If there are many internal hosts in the private network sharing a small
number of public IP addresses, connections will be blocked when no free
public IP address is available. Port Address Translation (PAT) can be used
in this case to reduce the blocking rate. PAT extends the notion of translation
one step further by also translating transport identifiers, i.e., TCP and UDP
port numbers and ICMP query identifiers. With PAT, multiple internal hosts
can share a single public IP address, while different transport identifiers
are used to distinguish them. A NAT/PAT router translates both the source
IP address and the source port number of an outbound packet. Then the
router records the association of the private IP address and the public IP
address, as well as the internal source port number and the external source
port number. PAT is ideal for small offices or home networks that need to
have full Internet access at a low cost.

In addition to IP address reuse, there are several other advantages of using
NAT. With NAT, the structure of the private network is hidden. Moreover,
NAT can also be used with a firewall to filter undesired traffic, resulting
in better security. When the private network switches to a different ISP,
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only the public IP addresses (which were assigned by the original ISP)
need to be changed. The internal settings of the private network can remain
unchanged. This is useful for large private networks where the configuration
task would be time-consuming and error prone.

The disadvantage of using NAT/PAT is that the stub router may be con-
gested and become the performance bottleneck, since in addition to IP
address and port translations, the router has to recalculate the header check-
sums. Furthermore, ICMP error messages need to be handled carefully and
the ICMP payload may also have to be translated. NAT does not directly
support applications with interdependent control and data connections, e.g.,
H.323, RTP/RTCP, and FTP. Special application gateways are required to
support such applications.

8.5.2 Configuring an NAT router

To configure an NAT router, do the following.
1. To specify the public IP address pool ranging from first IP to last IP,

use the following Global Configuration command:
ip nat pool name of pool first IP last IP netmask mask

2. To define an access list controlling which internal hosts can use the IP
addresses in the pool, use the following Global Configuration command:
access-list access-list number deny host denied host IP
access-list access-list number permit network address bit mask
The access-list number parameter in the above commands represents
an IP standard access-list, with valid values ranging from 0 to 99. The
bit mask parameter specifies which bits in the network address should be
ignored. A “1” (“0”) in the bit mask means the corresponding network
address bit should be ignored (compared).

3. Associate the access-list with the public IP address pool:
ip nat inside source list access-list number pool name of pool.

4. To specify a router interface which has a public IP address and connects
to the Internet, use the following Interface Configuration commands:
interface name of interface
ip address public IP address netmask
ip nat outside

5. To specify a router interface which has a private IP address and con-
nects to the private network, use the following Interface Configuration
commands:
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interface name of interface
ip address private IP address netmask
ip nat inside

6. To define a static translation, use:
ip nat inside source static private IP address public IP address

Note that if a static translation is defined, the internal host with the pri-
vate IP address should be denied from using the shared public address
pool.

7. To configure PAT, use:
ip nat inside source list list number interface \ router interface

overload
Then all the internal hosts use the same public IP address, i.e., the IP
address of the outside router interface, using port translations.

8.6 Socket programming in a nutshell

Most of the applications discussed so far are implemented using the socket
Application Programming Interface (API). In this section, we will give a
brief overview of socket programming basics. For a more complete treat-
ment, see Stevens [12].

As shown in Fig. 8.5, the TCP/IP protocols are implemented in the
system kernel. User applications can use the TCP/IP service through the
socket API. In such applications, each participating process should create
a socket, containing the IP address of the host where the process is running

user process user process user process
...

socket API
user space

system kernel

Transport Layer: TCP, UDP

Network Layer: IP

Link Layer: Ethernet, PPP, Wireless LAN

Figure 8.5. The socket API provides an interface for the user processes to access the

TCP/IP services in the system kernel.
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and a unique port number. Then, the application process can use the socket
functions for sending or receiving data. There are three types of sockets for
applications to use. If reliable transport service is required, TCP sockets can
be used to create a TCP connection between the communicating parties.
Otherwise, UDP sockets can be used to provide datagram service. In addi-
tion, applications can also bypass the transport layer protocols by invoking
raw sockets to use the IP datagram service directly.

The client–server architecture is used in socket programming. A server
socket listens at a port, receives client requests, and provides the requested
service, while a client socket connects to the server socket to get the desired
service. In the lab exercise, we will write server and client programs using
TCP and UDP sockets. Some frequently used socket functions are listed
below.
� socket(). Creates a new socket. You can specify which type of socket to

create, e.g., for TCP sockets use type SOCK STREAM, while for UDP
sockets use type SOCK DGRAM.

� bind(). Establishes the local association of a socket by assigning a local
name to the unnamed socket.

� setsockopt(). Sets the current value for a socket option.
� listen(). Makes the TCP server socket wait for incoming requests from

the TCP clients.
� connect(). Initiate a connection on a socket.
� accept(). Accepts an incoming TCP connection request.
� send(), sendto(). Transmits application data to the remote socket(s).
� recv(), recvfrom(). Receives data from the network.
� close(). Shuts down the socket, i.e., terminates the connection and releases

the resources.
The syntax of the functions, e.g., sendto(), can be found in the manual
pages, e.g., by typing man sendto, or from Stevens [12].

Figure 8.6 illustrates the typical flow of TCP and UDP socket operations.
First, the user process creates a socket by calling the socket() function
and specifying the type of socket to create, i.e., a stream socket (TCP) or
a datagram socket (UDP). Then, the created socket can be assigned with
a port number and IP address by calling the bind() function. Usually a
server socket has a static IP address and a well-known port number, while
bind() is optional for a client socket since the system will choose a random
port number for the client if bind() is not called. If stream sockets are used,
the TCP server socket then enters a listening state by calling the listen()
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close()
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send(), recv() send(), recv()

close() close()

data

Figure 8.6. Typical flow of TCP and UDP socket operations.

function, waiting for requests from TCP clients. A TCP client, on the other
hand, calls the connect() function to send a TCP connection request (a
SYN segment) to the TCP server. When the server receives the request,
it calls the accept() funtion to create a new socket locally, which serves
as the end point of the TCP connection on the server side. In other words,
the TCP server socket serves as a front-end, receiving incoming client
requests and creating the corresponding local sockets. Then, data can be
transmitted between the newly created socket on the server side and the
TCP client socket on the client side. If datagram sockets are used, there is
no need to set up or terminate the connection since UDP is connectionless.
Thus, after creating the sockets and calling bind(), the UDP client and
UDP server can directly exchange data by calling the send() or recv()
functions. When data transmission is over, both the server and the client
can call the close() function to terminate the connection (in the stream
socket case) and release the resources (e.g., port numbers and memory, in
both the stream and datagram socket cases).

The best way to learn programming, perhaps, is to read the source code
and try it out. Four examples of socket programs, namely UDPserver.c,
UDPclient.c, TCPserver.c, and TCPclient.c, are given in Ap-
pendix C.4. Moreover, the netspy and netspyd programs used in Chapter 7
are multicast socket programs and the source code is given in Appendix C.2.

To compile a socket program, e.g., TCPclient.c, use:
gcc -o TCPclient TCPclient.c -lnsl
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Use the following command when compiling a socket program, e.g.,
TCPclient.c, in Solaris:

gcc -o TCPclient TCPclient.c -lnsl -lsocket -lresolv.

8.7 HTTP exercises

For the exercises in this section, the network topology is given in Fig. 1.3,
where all the hosts are connected to a single network segment using their
default IP addresses, i.e., from 128.238.66.100 to 128.238.66.107.

Exercise 1 Study the Apache server configuration file (see Section 8.2.3). Examine the various
configuration directives used and the corresponding settings.

Start the Apache server on your host. In order to check if the server is working
properly, you may start a Mozilla web browser to download the test page at
http://localhost/.

Then, execute pgrep httpd to list the process IDs of the httpd processes started.
Save the output and the configuration file for the lab report.

LAB REPORT How many httpd processes were started? Which one was the master
server, and which ones were the child servers? Justify your answer using
the httpd.conf file.

What is the purpose of initiating multiple httpd processes?

Exercise 2 Execute tcpdump host your host and remote host -w ex3.out to capture packets
between your host and a remote host.

Login to the remote host’s web server: telnet remote host 80.

In the login console, type the following HTTP request line by line:

GET /usage/index.html HTTP/1.0
From: guest@your host
User-Agent: HTTPTool/1.0

Note that you need to type the Return key to input the last line, which is blank.
When the telnet process is terminated, save the output for your lab report.

Terminate tcpdump. Use ethereal to load the ex3.out file and analyze the captured
HTTP packets. Print and save the HTTP request and response.
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Save the HTTP response’s data part into a file, named ex3.html. Use Mozilla to
view the file.

LAB REPORT Submit the HTTP request and response, including the start-lines and all
the headers.

Exercise 3 By default, Apache server supports persistent connections. Before this exercise,
the lab instructor should check the KeepAlive directive in the server configuration
file to make sure it is turned on, as KeepAlive on.

Execute tcpdump host your host and remote host -w ex4a.out to capture packets
between your host and a remote host.

Start Mozilla on your host. Go to menu Edit/Preferences /Advanced/HTTP

Networking, and uncheck the Enable Keep-Alive checkbox to disable persis-
tent connections.

Enter the URL http://remote host/try1.html, to download the HTML file con-
sisting a line of text, an embedded picture, and a hyperlink.

Use ethereal to load the ex4a.out file, and print the HTTP requests and responses
for the lab report.

Restart the tcpdump program, but dump the output to a ex4b.out file.

Go toMozillamenuEdit/Preferences/Advanced/HTTP Networking, and en-
able persistent connections by checking Enable Keep-Alive.

Use Mozilla to reload the try1.html file.

Use ethereal to load the ex4b.out file, and print the HTTP requests and responses
for the lab report.

LAB REPORT When you browsed the try1.html file for the first time, how many
HTTP requests were sent? Which files were requested? How many TCP
connections were used?

Answer the above questions for when you browsed the try1.html file for
the second time.

What is the purpose of using persistent connections?

Exercise 4 Execute tcpdump host your host and remote host -w ex5.out to capture packets
between your host and a remote host.

Use Mozilla to download the http://remote host/try2.htm file, which is an
HTML form, from the remote host.

Fill a text string, e.g., the name of the host being used, into the text field in the form
and click the submit button in the form.
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When the server response is received, terminate tcpdump.

Use ethereal to load the ex5.out file. Examine how CGI works, and identify the
data string sent to the server. Save the HTTP request containing the data string for
lab report.

LAB REPORT Submit the data string sent to the server.

8.8 DHCP exercises

For the exercises in this section, we use the same network setting as the
one used in the previous exercises.

Exercise 5 In this exercise, we use guchi as the DHCP server, with a configuration file shown
in Table 8.3. Do the following.
1. Start the DHCP server on guchi in the foreground and working in the debugging

mode: /usr/sbin/dhcpd -d -f.
2. Execute tcpdump -exn -nn -s 100 -w exdhcp.out to capture the DHCP messages

in the network segment.
3. Then do the following to enable DHCP for the Ethernet interface on shakti.

Go to the system menu: System Settings/Network. In the Network

Configuration dialog, choose the Device tab, and click on the eth0 item.
Next, click the Edit button to bring up the Ethernet Device dialog. In this di-
alog, check Automatically obtain IP address settings with and se-
lect dhcp from the following drop list. When the configuration is done, save the
new configuration and then execute /etc/init.d/network restart to load the new
configuration.
When shakti is successfully reconfigured, execute ifconfig -a to display its
network interface configurations and execute netstat -rn to display its routing
table. Save the outputs for the lab report.

4. Then, repeat 3 for vayu.
5. Repeat 3 for agni.
6. Repeat 3 for apah.
Terminate tcpdump. Use ethereal to load the exdhcp.out file. Print out the DHCP
messages for the lab report.

Save the DHCP server output on guchi for the lab report.

LAB REPORT Compare the DHCP operation captured by tcpdump and that shown by
the DHCP server output. Explain how DHCP works.

Did shakti and vayu successfully obtain a set of new parameters? Com-
pare the ifconfig and netstat output with the parameters carried in the
corresponding DHCP messages.
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Answer the above question for agni. Explain why agni failed.

Answer the above question for apah. Explain why apah succeeded.

If Solaris is used, execute /usr/sadm/admin/bin/dhcpmgr & to start the
graphical DHCP Manager on guchi and configure the DHCP tables as
shown in Table 8.3. Then the DHCP server can be started or stopped by
/etc/init.d/dhcp start|stop. The DHCP queries can be generated by the
ifconfig interface dhcp start command.

8.9 NTP exercises

Before proceeding to the next exercise, reboot the hosts to restore their
original configurations.

Exercise 6 Execute date to display the system time of your host. Display the manual page of
date, and study its options and usages.

Try the following date commands:
date −−date=‘2 days ago’
date −−date=‘3 months 2 days’
date −−set=‘+3 minutes’
date −r file name
You can choose any file in the current directory for the file name parameter. Save
the outputs of the above commands.

LAB REPORT Submit the date outputs you saved. Explain the use of the commands.

Exercise 7 While tcpdump -n -nn -ex host your host and remote host is running, execute
rdate -p remote host to display the system time of the remote machine.

Repeat the above rdate command, but use the -u option.

Save the tcpdump outputs for the lab report.

LAB REPORT What port numbers were used by the remote machine? What port num-
bers were used by the local host?

How many bytes of data were returned by the remote time server, both in
the UDP case and in the TCP case?

What TCP header options were used?
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Exercise 8 In this exercise, we start the NTP server daemon on shakti and use NTP to
synchronize all the other hosts to shakti.

Study the NTP configuration file /etc/ntp.conf in shakti and in your host.
If you are using another machine, you can telnet to shakti and display the
/etc/ntp.conf file in the telnet window.

Start the NTP server on shakti by: /etc/init.d/ntpd start. To determine the status
of the NTP server, use /etc/init.d/ntpd status.

Use tcpdump -ex -n -nn host your host and shakti to capture packets between your
host and shakti.

Execute ntpdate -d -v 128.238.66.100 to synchronize your host to shakti. Study
the output of this command.

Save the ntpdate and the tcpdump outputs for the lab report.

LAB REPORT Which port does the NTP server use? Justify your answer using the
tcpdump output.

Exercise 9 Keep the NTP server running on shakti. Execute tcpdump -exn -nn host your host
and 128.238.66.100 -w ex9.out to capture the NTP messages between your host
and shakti.

Start the NTP clients on your host, by /etc/init.d/ntpd start.

Wait for several minutes. Then terminate the tcpdump program. Use ethereal to load
the ex9.out file. Analyze the captured NTP packets. Print one of the NTP packets
for the lab report.

Execute ntptrace to show the client/server relation of NTP.

LAB REPORT Submit the NTP packet captured. List the fields and their values.

What was the rate at which NTP queries were sent by the client?

Which stratum was your host in? Which stratum was the NTP server in?

8.10 NAT exercises

For the exercises in this section, we use a network setting as shown in
Fig. 8.7. The lower subnet is a private network where the hosts are assigned
with the Class A addresses with the 10.0.0.0/8 prefix. The upper subnet
represents the Internet. The hosts, i.e., shakti and vayu are assigned with
public IP addresses. Router 1 is used as the stub router, which performs
address or port translation for the private network.

Exercise 10 Connect the hosts and Router 1 as shown in Fig. 8.7. Then set the IP address
and the network mask of your host as shown in the figure. In addition, you need to
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Table 8.5. NAT Router Configuration in Fig. 8.7

ip nat pool mypool 128.238.61.102 128.238.61.103 netmask 255.255.255.0

ip nat inside source list 8 pool mypool

ip nat inside source static 10.0.0.7 128.238.61.104

interface ethernet 0

ip address 128.238.61.1 255.255.255.0

ip nat outside

interface ethernet 1

ip address 10.0.0.1 255.0.0.0

ip nat inside

access-list 8 deny host 10.0.0.7

access-list 8 permit 10.0.0.0 0.0.0.255

shakti vayu

agni

10.0.0.2/8

apah

10.0.0.3/8

yachi

10.0.0.4/8

fenchi

10.0.0.5/8

kenchi

10.0.0.6/8

guchi

10.0.0.7/8

eth0

10.0.0.1/8eth1

The Internet

128.238.61.100/24 128.238.61.101/24

128.238.61.1/24

Private Network

router 1

Figure 8.7. The network configuration for the NAT exercises.

add a default route in your host’s routing table, using the router interface on your
subnet as the default router.

One student should telnet to the router and configure the router as shown in
Table 8.5. Note that there is a static translation that maps 10.0.0.7, or guchi, to
128.238.61.104.

Login to the router, execute write term to display the current router configura-
tion. Execute show ip nat translations in the Privileged EXEC mode to display the
translation table. Save both outputs for the lab report.

LAB REPORT How many entries were there in the translation table? Why?

Exercise 11 Keep the login session to the router running. Execute tcpdump -exn -nn on all
the hosts.
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Before any host in the private network send any packets out, ping an inside host
(e.g., fenchi) from an outside host (e.g., vayu). You may try to ping 10.0.0.5,
128.238.61.102, 128.238.61.103, or 128.238.61.104. Can you ping these IP ad-
dresses?

Let an inside host send packets to an outside host, e.g., from fenchi, execute ping
128.238.61.100. Can you ping fenchi from an outside host now? Why? Which IP
address should be used in the ping command in order to ping fenchi?

Execute show ip nat translations in the router login window to display the translation
table. Save the output for the lab report.

Exchange the data you saved with a student in the other subnet.

LAB REPORT Answer the above questions. Use the saved translation table to justify
your answers.

Compare the IP header of the ICMP query captured in the private network
with that of the same ICMP query captured in the upper subnet, list their
differences. Explain how NAT works.

In addition to the IP address, what else was changed in the ICMP query
packet?

Exercise 12 Keep the login session to the router running. Execute tcpdump -enx -s 100 ip
proto 1 -w exc.out to capture ICMP messages.

Execute sock -i -u -n1 128.238.61.101 8888 on agni to generate an ICMP port
unreachable error.

Use ethereal to load the exc.out file. Print the ICMP error message for the lab
report.

Execute show ip nat translations in the router login window to display the translation
table. Save the output for the lab report.

Exchange the data you saved with a student in the other subnet.

LAB REPORT Analyze the IP headers, the ICMP headers, and the ICMP payloads of
the ICMP port unreachable errors captured in the private network and in
the public network from the first experiment. Explain how ICMP error was
handled by the NAT router.

Exercise 13 Reboot the router to restore its default configuration. Then, configure the router
to use PAT, as given in Table 8.6. Now all the hosts in the private network use the
same IP address 128.238.61.1. However, note that there is a static translation that
maps guchi’s port 80 to 128.238.61.1 port 80.
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Table 8.6. PAT Router Configuration in Fig. 8.7

ip nat inside source list 8 interface ethernet 0 overload

ip nat inside source static tcp 10.0.0.7 80 128.238.61.1 80

interface ethernet 0

ip address 128.238.61.1 255.255.255.0

ip nat outside

interface ethernet 1

ip address 10.0.0.1 255.0.0.0

ip nat inside

access-list 8 deny host 10.0.0.7

access-list 8 permit 10.0.0.0 0.0.0.255

Execute tcpdump on all the hosts.

Generate traffic between the inside and outside hosts. Examine the tcpdump output
to see how PAT works.

Start the Apache web server on guchi. Also, start the web browser Mozilla on an
outside host (e.g., shakti), and enter the URL http://128.238.61.1. Save the
tcpdump output.

Use show ip nat translations to display and then save the translation table.

Exchange the data you saved with a student in the other subnet.

LAB REPORT From the tcpdump data, explain how PAT worked, both for a dynamic
translation and a static translation.

With PAT, can you have two web servers in the private network? If not,
why? If yes, explain how this can be done.

8.11 Socket programming exercises

Exercise 14 Examine the UDP socket programs /home/guest/UDPserver.c and
/home/guest/UDPclient.c to learn how to write a UDP socket program.

Compile the C programs using gcc -o UDPserver UDPserver.c -lnsl and gcc -o
UDPclient UDPclient.c -lnsl.

Start tcpdump host remote host to capture packets from or to a remote host.
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On the remote host, start the UDP server by UDPserver server port. Then, start the
UDP client on your host by UDPclient remote host server port a message. You may
execute the UDP client program on other hosts to connect to the same UDP server.

Terminate tcpdump, examine its output and compare the output with the UDP server
and client outputs.

Repeat the above experiments, but now use the TCPserver.c and TCPclient.c.

Exercise 15 Execute man setsockopt to display the various socket options and how to set
them.

Examine the netspy and netspyd souce code in Appendix C.2 to see how to create
a multicast socket and how to set the TTL value for the packets.

Exercise 16 This is an optional exercise on socket programming. Or, it can be assigned as
a take-home project for extra credits. Note that familiarity with C programming is
required.

PROBLEM Examine the message exchanges of FTP. Write a FTP client program which
takes a file name as input, and upload the file to a standard FTP server on
a remote machine.

HINTS
� First you need to set up the control connection to Port 21 of the remote

machine, using a TCP socket.
� When the control connection is established, you need to exchange FTP

commands with the remote FTP server, as given in Table 5.1.
� You can first run telnet remote host 21, then type help to list all the FTP

commands. Also, you can try the commands out in the telnet window,
e.g., use USER guest to send the user ID and PASS guest1 to send the
password to the FTP server. To terminate the telnet session, type QUIT.

� In your program, these messages should be sent to the FTP server by
calling the send() function of the local TCP socket.

� Also your program needs to parse the server responses (some examples
are given in Table 5.2) to find out the status of the previous FTP command.

� The FTP data connection should be established using the PORT com-
mand (see Chapter 5).
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The Internet is an insecure place. The MIT Kerberos Team

9.1 Objectives

� SNMP and MIBs, using NET-SNMP as an example, and using NET-
SNMP utilities to query MIB objects.

� Encryption, confidentiality, and authentication, including DES, RSA,
MD5 and DSS.

� Application layer security, using SSH and Kerberos as examples.
� Transport layer security, including SSL and the secure Apache server.
� Network layer security, IPsec and Virtual Private Networks.
� Firewalls and IPTABLES.
� Accounting, auditing, and intrusion detection.

9.2 Network management

9.2.1 The Simple Network Management Protocol

In addition to configuring network devices when they are initially deployed,
network management requires the performing of many tasks to run the net-
work efficiently and reliably. A network administrator may need to collect
statistics from a device to see if it is working properly, or monitor the net-
work traffic load on the routers to see if the load is appropriately distributed.
When there is a network failure, the administrator may need to go through
the information collected from the nearby devices to identify the cause. The
Simple Network Management Protocol (SNMP) is an application layer pro-
tocol for exchanging management information between network devices.
It is the de facto network management standard in the Internet.
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Figure 9.1. Typical SNMP operations.

Figure 9.1 illustrates a typical SNMP management scenario, consisting
of an SNMP manager and multiple managed devices. A managed device,
e.g., a host computer or a router, maintains a number of Management Infor-
mation Bases (MIB), which record local management related information.
An SNMP agent (usually a daemon on UDP port 161) runs in the managed
device, providing an interface between the SNMP manager and the MIB.
The SNMP manager can perform read or write operations on the elements
in the MIB (or MIB objects) by sending SNMP messages to the agent.
When the agent receives the message, it performs the required operation
on the target MIB object, and returns a response to the manager. When
a significant event occurs at the managed device, the agent may send a
trap message to the manager (on UDP port 162) to report the event. An
analysis tool, e.g., a graphical tool that plots the received data, may help
the administrator better understand the management information collected
from the managed devices.

SNMP defines several types of messages for exchanging management
information between an SNMP manager and an SNMP agent. The messages
are listed here.
� Get. Fetches the value of one or more objects.
� GetNext. Fetches the value of the next object after the specified object.
� Set. Sets the value of one or more objects.
� Response. Returns the value of one or more objects.
� Trap. Reports the occurrence of some significant events on a managed

device. The manager does not acknowledge receptions of Traps.
� Inform. Reports the occurrence of some significant events on a man-

aged device. The manager returns a response when an inform message is
received to acknowledge it.

� GetBulk. This message allows exchanging of responses as large as possi-
ble given the constraint on message sizes. It is used to minimize the num-
ber of protocol message exchanges required to retrieve a large amount
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Figure 9.2. The SNMP message formats.

of management information. GetBulk is only available in SNMPv2 and
SNMPv3.
The SNMP message formats are given in Fig. 9.2. The message fields

are given here.
� Version Number. This is the version of SNMP. The current version is

SNMPv3, but the coexistence of SNMPv1, SNMPv2, and SNMPv3 is
allowed. SNMPv2 extends SNMPv1 by defining additional operations,
while SNMPv3 extends SNMPv2 by adding security and remote config-
uration capabilities.

� Community Name. Defines the access scope for SNMP managers and
agents. An SNMP message carrying a different community name
is discarded. This provides a simple authentication for the SNMP
messages.

� Protocol Data Unit (PDU) Type. Specifies the SNMP message
type.

� Request ID. This field is used to match an SNMP request with the
corresponding response.

� Error Status. This field is only set by an SNMP response. It is an
integer specifying an error.

� Error Index. This field is only set by an SNMP response. If an error
occurred, it is an integer offset specifying which object was in error.

� Objects and Values. A list of objects and their values.

9.2.2 The MIB structure

In SNMP, a managed device maintains a large number of SNMP objects
storing management information. The Structure of Management Informa-
tion (SMI) defines the rules for describing management information and the
data types used in SNMP. Some examples of the data types are: (1) Integer,
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Figure 9.3. The MIB tree hierarchy.

which is a signed integer in the range of −2,147,483,648 to 2,147,483,647;
(2) Octet String, which is an ordered sequence of 0 to 65,535 octets; (3)
Sequence, which defines a vector, with all elements having the same data
type.

The objects are organized as a tree with an anonymous root, as illustrated
in Fig. 9.3. Each level of the tree consists of several groups, each assigned
with both a text-based name and a numerical identifier. The leaves of the
mib-2 subtree are MIB objects. Note that vendor-specific MIBs, e.g., the
Cisco MIBs, are located in the enterprise subtree. A node (or leaf) in
the tree is identified by a concatenation of the names (or IDs) of all its
predecessors starting from the root. For example, the system node can be
identified by either 1.3.6.1.2.1.1 or iso.org.dod.internet.mgmt.
mib-2.system. The object identifiers are used in the SNMP messages to
specify the target MIB objects. In Fig. 9.3, the leaf node tcpMaxConn is
an object of Integer data type which defines the maximum number of TCP
connections this system can support. It can be identified by either1.3.6.1.
2.1.6.4 or iso.org.dod.internet.mgmt.mib-2.tcp.tcpMaxConn.
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9.2.3 NET-SNMP

NET-SNMP, formerly known as UCD-SNMP, is a very popular public
domain SNMP implementation consisting of an extensible SNMP agent, a
set of tools to request or set information from SNMP agents, a set of tools
to generate and handle SNMP traps, and an SNMP API library for writing
SNMP related programs. NET-SNMP is included in the Red Had Linux 9
installation CDs.

The SNMP MIBs are stored in the /usr/share/snmp/mibs directory.
The SNMP agent daemon uses the /etc/snmp/snmpd.conf configuration
file, where the community name and many other configuration options may
be set. The SNMP agent daemon snmpd is controlled by:

/etc/init.d/snmpd start|stop.
If snmpd is started, MIB objects can be accessed by the following tools

included in the NET-SNMP package.
� snmpget: Retrieves management data from a remote host, given the do-

main name or IP address of the remote host, the MIB object ID, and
the authentication information (e.g., the community name). For exam-
ple, the following command prints the time elapsed since host shakti
was started, using the community name test:

snmpget -c test -v 2c shakti.poly.edu system.sysUpTime.0.
� snmpgetnext: Retrieves the value of the object with the next object ID.
� snmpset: Sets the value of a MIB object in a remote host.
� snmptable: Retrieves and displays an SNMP table from a remote host.
� snmpwalk: Performs a series of GetNext operation, until the last object

in the specified group is read.
� snmptrap: Sends an SNMP trap message to the SNMP manager. The

traps are sent by the daemon snmptrapd, while the snmptrapd.conf

file defines the events for which traps are sent.

Sun has its proprietary network management tool, called SUNNet
ManagerTM. NET-SNMP can also run on Solaris. You can download
the NET-SNMP binary package from ftp://ftp.sunfreeware.com/

and install it, or download the NET-SNMP source code package from
http://www.net-snmp.org and build it. Detailed instructions on instal-
lation are provided in the corresponding web sites.
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9.3 Network security overview

As the Internet grows, information security has become a very important
and challenging issue. When a computer is connected to the Internet, it is
exposed to attackers from all over the world. In the Internet, many local
networks are broadcast networks (e.g., Ethernet or IEEE 802.11 Wireless
LAN) and Internet routers are shared by many data flows. Therefore, mes-
sage exchanges between two end hosts may be intercepted or modified by
an attacker. Since the Internet is a distributed network, there is no global
control over all the networks and users. An attacker may claim a false
identity to gain unauthorized access to information or disrupt the normal
operation of a network system.

The basic network security model is shown in Fig. 9.4 where two end
users communicate through an insecure network. In order to protect mes-
sages against opponents in the network, the sender may encrypt the mes-
sages using a key before sending them out to the network. The receiver uses
the corresponding key (which could be the same key as the one used by the
sender or a different key) to decrypt the message. If the keys are kept safely,
the messages will not be decipherable to an opponent. In order to distribute
the keys reliably, a third party which is trusted by both end users may
be used. Also this third party may provide certificates that authenticate the
users. Figure 9.5 shows the model for the network access security, where
a gatekeeper function protects the internal information system against at-
tacks from the outside network. In addition, the internal network performs
accounting and auditing in order to detect an intrusion.

The basic elements of information security are Authentication,
Authorization, and Accounting (AAA). Authentication is concerned with

End Host or Network

Key

MessageMessage

A Trusted Third Party

Key

End Host or Network

Network

Encryption Decryption
Attacker

Figure 9.4. The network security model.
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Figure 9.5. The network access security model.

ensuring that a communication is authentic, or a user is whom he or she
claims to be. Authorization is concerned with assigning legitimate privi-
lege (e.g., access to a root command or a system) to users. Accounting logs
user or network behavior. The log files can then be used to detect a security
intrusion. Other important security services are: Confidentiality, which pro-
tects transmitted data from analysis; Integrity, which ensures that a piece of
information is not altered; Nonrepudiation, which ensures that the sender
(receiver) cannot deny sending (or receiving) a piece of information; and
Availability, which ensures the accessibility of a network service.

9.4 Encryption, confidentiality, and authentication

9.4.1 Data encryption

To provide the confidentiality service, a user may encrypt its messages
before sending them out to the network, as illustrated in Fig. 9.4. Most
classical encryption techniques use permutation, where the order of the
plaintext characters is changed, or substitution, where a plaintext alphabet
is mapped to a different one. The module which performs the encryption
function is called a cipher.

Based on the operation mode, ciphers can be classified into two cate-
gories: stream ciphers and block ciphers. A stream cipher encrypts data bit
by bit or byte by byte, while a block cipher first packs the data bits into
a fixed length block, and then encrypts the whole block into a ciphertext
block. For both categories, a key is used to encrypt the plaintext, while a
corresponding key is needed to decrypt the ciphertext. Based on how the
keys are used, ciphers can be classified into two categories: symmetric-key
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ciphers, where the same key is used for encryption and decryption, and
public-key ciphers, where a private key is used for encryption and a public
key is used for decryption, or vice versa. The effectiveness of the encryption
schemes depends on the keys. The longer a key is, the more difficult it is
to decrypt the ciphertext by brute force. Furthermore, in an open network
environment with many servers and clients, any client may request service
from any server. For each of the client/server connections, one or more keys
may be needed. This requires keys be generated and distributed efficiently
and reliably.

Most block ciphers can be characterized by the Feistel network model
[13], as shown in Fig. 9.6. In this model, a 2w bit plaintext block is encrypted
into a 2w bit ciphertext block. The Feistel network consists of a number
of identical blocks (called rounds) concatenated in a chain. The plaintext
is first divided into two w-bit blocks, L1 and R1, and fed into the first
round. Each round i takes the outputs of the previous round, Li and Ri ,
as inputs. The right half of the input data, Ri , is first processed with a
round function F , using a secret key Ki . The round function F performs
bit operation on the input block and the key, e.g., permutation, expansion,
and exclusive-OR. Then the exclusive-OR (denoted as ⊕ in Fig. 9.6) of the
left half of the input data, Li , and the output of F is computed. The output
of the operation is switched with Ri and fed into the next round. The same
Feistel network is used to decrypt the ciphertext, with the keys applied in
a reversed order, i.e., Kn is used in round 1, Kn−1 is used in round 2, and
so on so forth.

The Data Encryption Standard (DES) is the most widely used encryption
standard. DES is a block-based cipher with 16 rounds, 64-bit blocks, and
56-bit keys. With DES, the 56-bit key is fed into a key generating module
which computes 16 48-bit subkeys, one for each round. The strength of DES
is the so called Avalanche Effect, where a small change in the plaintext or
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the 56-bit key produces a significant change in the ciphertext. This makes
the ciphertext difficult to decrypt by brute force. Since the same keys are
used in the encryption and decryption, DES is a symmetric cipher.

In 1998 the Electronic Frontier Foundation broke DES using a specially
developed computer called the DES Cracker at a cost under $250,000.
Thereafter, Triple DES (3DES) was designed to provide stronger security.
3DES uses the same DES encryption, but repeats it three times. 3DES uses
three 64-bit keys, resulting in a dramatic increase in cryptographic strength.
The Advanced Encryption Standard (AES) was developed to replace DES.
AES uses the Rijndael algorithm, which is also a multiple-round, block-
based cypher, but is not based on a Feistel network [14].

9.4.2 The public-key encryption schemes

Public-key encryption algorithms use two different but related keys: a pri-
vate key and a public key, for each user. As their names suggest, a user’s
private key is kept secret, while the user’s public key is distributed publicly.
A ciphertext produced by a private key can only be decrypted by the public
key. On the other hand, a ciphertext produced by a public key can only be
decrypted by the private key. The pair of keys can be used in the following
ways.
� To provide authentication. If user Bob wants to send a message to user

Alice, he can encrypt the message using his own private key. When Alice
receives this encrypted message from Bob, she can decrypt the message
using Bob’s public key. In this example, all other users can decrypt the
message since Bob’s public key is known to all. However, Alice knows
that the message can only be sent by Bob, since only Bob knows his own
private key.

� To provide confidentiality. If Bob does not want the message to be
readable by other users, he can encrypt the message using Alice’s public
key. Alice can decrypt the message using her private key. Since no one
else knows Alice’s private key, the message is indecipherable to all other
users.

� To provide both authentication and confidentiality. Bob may first en-
crypt the message using Alice’s public key (this ensures only Alice can
decrypt the message), and then further encrypt the ciphertext with his pri-
vate key (this guarantees the message is from Bob). When Alice receives
this message, she first decrypts the message using Bob’s public key, then
decrypts the results using her private key.
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Table 9.1. Key computation in RSA

(1) Find two prime numbers p and q.

(2) n = pq.

(3) Find e which is less than and relatively prime to (p − 1)(q − 1).

(4) d = e−1 mod (p − 1)(q − 1).

The Rivest–Shamir–Adleman (RSA) scheme is a widely used, general-
purpose, public-key encryption scheme. RSA uses a block cipher, where
each block has a size less or equal to B = log2(n) in bits. Let M be the
plaintext and C the ciphertext. Both M and C are interpreted as positive
integer values during the RSA calculation. RSA encryption and decryption
are performed as:

C = Me mod n; (9.1)

M = Cd mod n = (Me)d mod n = Med mod n, (9.2)

where n is the largest binary value that a plaintext could have (i.e., n = 2B).
The public key consists of the pair of numbers {e, n}, while the private key
is {d, n}. Any three-tuple of n, e and d that satisfies Equation (9.2) produces
a pair of keys. RSA uses the scheme shown in Table 9.1 to compute the
keys [13].

RSA uses the exponential function in encryption and decryption, which
has higher computational cost compared with the permutation and substi-
tution operations used in many traditional encryption schemes. In practice,
public-key schemes are used in key-management and signature applica-
tions. Encrypting of the whole message using public-key encryption is not
recommended.

9.4.3 Hashing and message authentication

Hashing is the operation that maps a message of variable length into a hash
value with fixed length. The function defining the mapping is called a hash
function. The difference between hashing and the schemes discussed so far
is that hashing is not reversible, i.e., a hash value can be computed from
a message, but the message can never be recovered from a received hash
value only. The simplest hashing scheme is the block-based XOR scheme,
where a message is first divided into equal-sized blocks, [B1, B2, . . . Bn],
and then the bit-by-bit XOR operation is performed over all the blocks,
i.e., H = B1 ⊕ B2 ⊕ · · · ⊕ Bn .
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Figure 9.7. The MD5 message digest algorithm.

Many network applications require message integrity. In order to provide
an integrity check and authenticate a message, hashing can be used to
generate a digest of the message, called the Message Authentication Code
(MAC). The receiver can use the digest to verify if the message is authentic.

The Message Digest 5 (MD5) algorithm is one of the most widely used
hashing algorithms for providing message authentication. Figure 9.7 illus-
trates the MD5 algorithm. With MD5, an X -bit message is first padded so
that it is just 64 bits shy of being a multiple of 512 bits long. The padding
bits, which could be 1 to 512 bits, start with a “1” bit, followed by a se-
quence of “0” bits. Then, the 64-bit message length field follows, which
is the length of the message before the padding bits were added. If the
message is longer than 264 bits, only the lower order 64 bits of X are used
in this field. After padding, the message is divided into 512-bit blocks,
each fed into a hash function. The hash functions are cascaded as shown
in Fig. 9.7. The last stage produces a 128-bit message digest.

The message digest can be encrypted with the sender’s private key, ap-
pended to the message, and transmitted to the receiver. The receiver, after
receiving the message, may use the same MD5 algorithm to compute the
digest of the received message. The original digest is decrypted using the
sender’s public key. If the message is genuine, the two digests should be
identical.

9.4.4 Digital signatures and authentication

The above schemes assume that the two users involved in a communication
are friendly. When there is a lack of complete trust between the users,
digital signatures can be used to provide nonrepudiation service. A digital
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signature is analogous to handwritten signatures. It can be used to verify
the date and time of a message, and to authenticate the contents of the
message.

Generally, a digital signature is a bit pattern which includes a digest of
the message (e.g., hashing value), the user IDs, a timestamp, and some
other information. The digital signature is usually encrypted using either
the symmetric encryption techniques or public-key encryption techniques.
A message can be signed by the sender, and then be verified by the receiver
by examining the digital signature. This approach is called the direct digital
signature since only the communicating parties are involved. On the other
hand, an arbitrator can be used to provide certificates to the users. This
approach is called the arbitrated digital signature. Before a connection is
established between a sender and a receiver, the sender first contacts the
arbitrator (or the Authentication Server). The arbitrator validates the users
and the message, and issues a certificate to the sender and, if required, to
the receiver. The certificate may include a secret key used for this session.

The Digital Signature Standard (DSS) is a widely used digital signa-
ture scheme issued by the National Institute of Standards and Technology
(NIST). It makes use of a hashing algorithm called the Secure Hash Al-
gorithm (SHA), and the signature generated is encrypted using public-key
encryption.

9.5 Application layer security

The security techniques discussed in the previous section can be deployed
at different layers in the TCP/IP protocol stack. In the following, we discuss
the application of such techniques in the application, transport, and network
layers.

9.5.1 The Secure Shell protocol and OpenSSH

Secure SHell (SSH) is a set of protocols for secure remote login and other
secure network services over an insecure network. It consists of three major
components: (1) The Transport Layer Protocol [SSH-TRANS]: which pro-
vides server authentication, (2) The User Authentication Protocol [SSH-
USERAUTH]: which authenticates the client-side user to the server, and
(3) The Connection Protocol [SSH-CONNECT]: which multiplexes the
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encrypted tunnel into several logical channels. SSH will replace traditional
remote access protocols, such as Rlogin, Telnet, FTP, and Remote Shell
(Rsh), where security was not a major design objective. SSH supports al-
most any kind of public-key algorithm and various types of authentication.
The SSH client and server use digital signatures to verify their identity. All
communication between the client and server is encrypted.

The OpenSSH suite is a public domain implementation of the SSH proto-
cols, including ssh, scp, and sftp. OpenSSH also includes the SSH daemon
sshd, the secure FTP daemon sftp-server, and other basic utilities. Both
Linux and Solaris platforms are supported. The OpenSSH daemon uses the
/etc/ssh/sshd config file for configuration, and can be turned on or
off by:

/sbin/service sshd start|stop.
There are multiple OpenSSH clients, one for each remote access service.
The following are the client programs.
� ssh: A secure client for logging into a remote machine and executing

commands there. For example, to login into shakti as user guest, use:
ssh guest@128.238.66.100.

� scp: A secure client for copying files between hosts. For example, to
upload a file foo.txt to host shakti, use:

scp foo.txt guest@128.238.66.100:/home/guest/foo.txt.
� sftp: A secure interactive file transfer program.

OpenSSH also provides several tools for key management, including:
(1) ssh-keygen, which is used to create keys (host keys and user keys) for
public-key authentication; (2) ssh-agent, which is an authentication agent
holding RSA keys; (3) ssh-add: which is used to register new keys with
the SSH agent; and (4) ssh-keyscan: which is used to gather SSH public
keys.

9.5.2 Kerberos

Kerberos is a network authentication protocol developed by the MIT Project
Athena team, which uses symmetric key encryption for authenticating users
for network services. Kerberos uses a trusted Authentication Server and a
Ticket-Granting Server (TGS) to provide two types of tickets to a user:
a ticket-granting ticket and one or more service-granting tickets, one for
each network service. More specifically, Kerberos works in the following
way.
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1. When a user logs on to a computer, a request for the ticket-granting ticket
is sent to the Authentication Server. The Authentication Server, after
verifying the user ID, returns a ticket-granting ticket which is encrypted
using the user’s key.

2. The returned ticket-granting ticket is then decrypted using the user’s
key. The ticket is valid for a period of time (e.g., 10 hours), and is stored
for future use. Note that the user’s key is computed from the user’s
password. In this way, there is no need to transmit the user’s password
in the network.

3. When the user requests a network service, the ticket-granting ticket is
used to request the corresponding service-granting ticket. The TGS uses
the received ticket-granting ticket to authenticate the request, and returns
the requested service-granting ticket to the user.

4. Then the user can request the network service using the service-granting
ticket.

With Kerberos, the ticket-granting ticket application is performed once per
user login, while the service-granting ticket application is performed once
per service. In addition, the user password is not transmitted, preventing it
from being sniffed by an attacker.

9.6 Transport layer and web security

As discussed in Section 8.2, the HTTP requests and responses are sent as
plaintext. However, in some situations, e.g., financial transactions, extra
security for the web service is needed. Web security can be provided in
different ways by: (1) using the application layer security protocols, such
as Kerberos; (2) using the Secure Sockets Layer (SSL) in the transport layer;
and (3) using IP security (IPsec) in the Network Layer. In this section, we
discuss the SSL protocol and the secure Apache server. We will discuss
IPsec in the next section.

9.6.1 The Secure Sockets Layer protocol

The Secure Sockets Layer protocol (SSL) is designed to provide secure
communications between a client and a server. As shown in Fig. 9.8, SSL
uses TCP’s reliable transport service for data communication. SSL is in-
dependent of the higher layer application protocols. Application protocols,
such as HTTP, FTP, and Telnet, can use SSL for secure communication.
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Figure 9.8. The SSL protocol stack.
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Figure 9.9. The format of a SSL record.

SSL consists of four protocols: the SSL Handshake Protocol, the SSL
Change Cipher Spec Protocol, the SSL Alert Protocol, and the SSL
Record Protocol, as shown in Fig. 9.8. All higher layer messages, including
the messages used in the first three SSL protocols, are encapsulated in SSL
records which are defined in the SSL Record Protocol. The SSL record
header consists of an 8-bit Content Type field, an 8-bit Major Version field,
an 8-bit Minor Version field, and a 16-bit Compressed Length field, as shown
in Fig. 9.9. The SSL record data section consists of a Message Authenti-
cation Code (MAC) (see Section 9.4.3), the actual data, and the possible
padding bytes. When a higher layer message arrives, it is first fragmented
to fixed length blocks (padding may be inserted). Each block may then be
compressed. The MAC is computed using the possibly compressed data, a
secret key, and a 32-bit long sequence number using a hash function.
Then, the data and the MAC are encrypted and the SSL record header
is appended.

SSL can negotiate an encryption algorithm and session key, as well
as authenticate for the secure connection. The SSL Handshake Protocol
is used for the client and server to authenticate each other, to negotiate an
encryption algorithm and a MAC algorithm, and to exchange the encryption
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keys. The SSL Change Cipher Spec Protocol is used to update the set of
ciphers to be used on this connection. The SSL Alert Protocol is used to
deliver SSL-related alerts to the peer entity.

9.6.2 Secure Apache server

The Apache web server can use SSL to provide a secure web service: i.e.,
certification of server and client, encryption of HTTP messages, etc. A
secure Apache server uses TCP port 443 with URLs starting with https:

//, while the unsecured Apache servers run on TCP port 80 (with the
same IP address) with URLs starting with http://. The mod ssl Apache
loadable module and the openssl utility are needed to set up a secure Apache
server. These are both preinstalled in Red Hat Linux 9.

To set up a secure Apache server, follow the steps below.
1. Create a private key: Execute the following commands:

openssl genrsa 1024 > /etc/httpd/conf/ssl.key/server.key,
chmod go-rwx /etc/httpd/conf/ssl.key/server.key.

You will be prompted to create a password while running the first com-
mand. SSL uses public-key encryption for exchanging certificates and
the symmetric key between the server and a client. The server encrypts
its certificates using this private key and sends it to the client, along
with the server’s public key. The client can decrypt the certificate us-
ing the server’s public key. Thus the server is certified. Next, the client
generates a symmetric key, which will be used in data encryption and
MAC calculations. The symmetric key is encrypted using the server’s
public key and sent to the server. Since only the server has the private
key to decrypt this, the symmetric key is now known to the server and
the client only. Next, the encryption algorithm and the hash function to
use may be negotiated between the client and the server. The following
data exchanges between the server and client are all encrypted using the
symmetric key. Thus a secure connection is set up. These operations are
defined in the SSL Handshake Protocol.

2. Create a certificate: The certificate of the server can be assigned by a
certificate authority (CA), or be signed by itself. To apply a CA signed
certificate, use:

openssl req -new -key /etc/httpd/conf/ssl.key/server.key \
-out /etc/httpd/conf/ssl.crt/server.crt
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You will be asked a number of questions regarding the server’s domain
name, location, organization, etc. Next, send the created certificate to
a CA. The CA will verify the identity of the server and assign a new
certificate for this server.

To create a self-signed certificate, go to the /etc/httpd/conf direc-
tory, and execute: make testcert.

You will be prompted for the password which was set when you created
the server private key, and a number of questions regarding the server’s
identity. Once the certificate is created, the server can send it to a client
to authenticate itself.

3. Restart the Apache server: to load the new key and the new certificate,
use: /etc/rc.d/init.d/httpd restart
To test the secure Apache server, you can start a Mozilla web browser,

and enter the URL https://server IP. A dialog window will pop up
asking if the certificate of the server should be accepted.

9.7 Network layer security

Security can be provided in the application layer, where security protocols
are tailored for a specific application, e.g., SSH. On the other hand, security
can also be provided in the lower layers, e.g., SSL and IP Security (IPsec),
where all higher layer applications can enjoy the protection provided by
a secured lower layer transparently. In the following, we discuss security
support in the network layer.

IP security, or IPsec, is a set of protocols providing authentication and
confidentiality services in the network layer. Since all protocols at the
higher layers (e.g., TCP, UDP, and ICMP) have their data encapsulated
in IP datagrams, IPsec protects all distributed applications. Higher layer
protocols can enjoy the protection provided by IPsec transparently.

A typical application of IPsec is providing secure connectivity over the
Internet for distributed hosts and networks. As illustrated in Fig. 9.10, two
office networks (typically belonging to the same organization) can be con-
nected by a secure channel provided by IPsec. In each office network, ap-
plication data is transmitted as plaintext in regular IP datagrams. However,
the data between the two office networks is encrypted and authenticated.
The security-related operations, including authentication, encryption, and
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IPsec Gateway IPsec Gateway

Figure 9.10. An IPsec scenario.

key management, are performed at the two IPsec-capable devices and are
transparent to the users. There is no need to change or configure the hosts
or the programs running in the hosts for the security service. The network
shown in Fig. 9.10 is also called a Virtual Private Network (VPN). Com-
pared with traditional approaches that use a leased line to connect the office
networks, VPN provides good security at a lower cost.

IPsec uses two protocols to provide security: (1) an authentication
protocol that uses an Authentication Header (AH), and (2) an encryp-
tion/authentication protocol, called the Encapsulating Security Payload
(ESP), that encrypts the higher layer data and provides an optional au-
thentication service. Both AH and ESP support two modes of operation:
the transport mode and the tunnel mode. The Transport mode provides
protection for upper-layer protocols. As shown in Fig. 9.11, the origi-
nal IP header is untouched, while the remaining part of the IP datagram
is either authenticated by AH, or encrypted and authenticated by ESP.
The transport mode is usually used for end-to-end communication be-
tween two hosts. The tunnel mode protects the entire IP datagram. As
illustrated in Fig. 9.11, a new IP header is used to route the packet,
while the original IP datagram, including its header and data, are au-
thenticated or encrypted. For the example in Fig. 9.10, a tunnel is es-
tablished between the two IPsec gateways. An outbound IP datagram is
first encrypted or authenticated, then encapsulated and forwarded in a
new IP datagram. When the new IP datagram arrives at the destination
network’s IPsec gateway, the new header is stripped and the original IP
datagram is decrypted and restored. Recall that in the MBone, similar
tunnels are used to route multicast IP datagrams between two multicast
islands.
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Figure 9.11. Encapsulation of an IP datagram using the IPsec authentication header and

encapsulating security payload.

9.8 System security

9.8.1 Firewalls

A firewall is a device or program inserted between a private network and
the Internet to control access. A firewall can be used to block undesired
traffic from the outside, or to prevent an internal user from receiving an
unauthorized external network service.

Usually the firewall is the only access point of a private network, i.e.,
all outbound traffic from the private network should be routed through the
firewall in order to enforce the desired access control. There are three types
of firewalls. A packet filter blocks selected network packets. An application
gateway, or a proxy server, is mainly used to regulate outbound traffic. A
proxy server acts as a relay for a specific application (e.g., web service). The



206 Network management and security

traffic between the internal client and the remote server (e.g., HTTP requests
and responses) is relayed by the proxy server. A circuit-level gateway acts
like a switch board, switching an internal connection to another external
connection.

9.8.2 iptables

Packet filtering is built into the Linux kernel. The default firewall in Linux
kernel 2.4 is the iptables (also called the netfilter). A firewall policy, also
called a rule, consists of two components: a condition (e.g., destination port
number of a packet) and the operation (called the target) on the packets
that satisfy the condition (e.g., drop). In Linux, rules are organized into
three tables, based on the operations to be performed. The filter table is the
default table for filtering packets. The nat table is used to alter packets that
create a new connection, while the mangle table is used for some specific
types of packet alteration. In each table, rules are further organized into
several chains, based on the type of packets they regulate. For example,
the filter table has three chains: the INPUT chain which consists of the
rules applied to the packets destined to the host, the OUTPUT chain which
consists of the rules applied to the packets generated by the host, and the
FORWARD chain which consists of the rules applied to the packets routed
by the host (when the host is configured to be a router).

In iptables, a packet is first dispatched to the corresponding chain. Then
the packet is checked against each rule in that chain, one at a time. If there is
a match, the target defined in that rule is performed on that packet. Rules in
the tables are configured by running the iptables command, which defines
the packet type and the corresponding target. The syntax of iptables is:
iptables [-t table-name] command chain-name parameter1 option-1 . . . \

parameterN optionN
The table-name could be filter, nat, or mangle. Commands indicate what

kind of application to perform on the table, e.g., -A means appending the
rule to the end of the specified chain and -F flushes the selected chain (i.e.,
deletes all the rules in that chain). The next parameter, chain-name is the
name of the chain to configure, i.e., INPUT, OUTPUT, or FORWARD in
the filter table. Next is a list of parameters and options, which defines the
rule. Several frequently used parameters are listed.
� -d: indicates the destination hostname, IP address or network address of

a packet.
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� -s: indicates the source hostname, IP address or network address of a
packet.

� -i: indicates the incoming interface of a packet.
� -p: indicates the IP protocol for the rule, which could be icmp, tcp, udp

or all.
The target option could be the following.
� ACCEPT. Allows the packet to successfully move on to its destination

or another chain.
� DROP. Drops the packet without notifying the sender.
� QUEUE. Queues the packet to be handled by a user-space appli-

cation.
� RETURN. Stops checking the packet against the rules in the current

chain.
� LOG. Logs all packets that satisfy this rule.
� REJECT. Drops the packet and notifies the sender.
The command iptables -h displays a detailed list of the parameters and
options.

After configuring the tables, you can restart iptables to load the
new rules by: /sbin/service iptables restart. Or you can save the rules
by /sbin/service iptables save. The rules will be saved in the /etc/

sysconfig/iptables file. The /sbin/chkconfig –level 345 iptables on
command makes the system start iptable when it bootstraps.

9.8.3 Auditing and intrusion detection

There are many ways to check if a system is compromised. For exam-
ple, all Unix and Linux systems log network events and user activity. By
examining the log files, an intruder may be identified. Usually the log
files are stored in the /var/log directory. The system logging daemon is
syslogd, which supports both local and remote logging. Red Hat Linux
9 provides a graphical interface tool, redhat-logviewer, for browsing the
system logs.

Both Red Hat Linux and Solaris support the following commands to
monitor active users or check network services.
� users: displays a list of user names currently logged on.
� who: displays information about currently logged-on users.
� last: displays data about current and recent logins.
� netstat -l: lists listening sockets.
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� chkconfig −−list:1 lists services named in the /etc/init.d/ directory
and their status.
A public domain tool called Tripwire can provide an integrity check

on the system files. If a system file is changed by an attacker or a virus,
Tripwire can detect and report the change. Tripwire is available from
http://tripwire.org.

9.9 SNMP exercises

For the exercises in this section, the network topology is given in Fig. 1.3,
where all the hosts are connected in a single network segment using their
default IP addresses, i.e., from 128.238.66.100 to 128.238.66.107.

Before the lab, the lab instructor should:
1. Backup the original snmpd configuration file:

mv /etc/snmp/snmpd.conf /etc/snmp/snmpd.conf.save.
2. Create a simple configuration file /etc/snmp/snmpd.conf with a sin-

gle line defining a read-only community guest:

rocommunity guest

Exercise 1 Use pgrep snmpd to check if snmpd is started. Try to stop and then start the SNMP
agent daemon using /etc/init.d/snmpd start|stop.

Study the snmpd configuration file/etc/snmp/snmpd.conf. Also study the default
configuration file /etc/snmp/snmpd.conf.save. This file is well commented.
Read the comments and study the configuration options.

Study the MIB files in the/usr/share/snmp/mibs directory. Examine the Interface
MIB IF-MIB.txt and the TCP MIB TCP-MIB.txt to see the MIB objects and data
types. Save these two files for the lab report.

LAB REPORT What is the community name used in this lab? What is the use of the
community name?

What is the data type for the MIB object ifMtu.2? What is the definition
of the MIB object ifPhysAddress and ifInOctets?

What is the data type and definition oftcpRtoAlgorithm? What values are
allowed for tcpRtoAlgorithm? What is the definition of tcpMaxConn?

1 Not available in Solaris.
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Exercise 2 Use snmpwalk -v 2c -c guest localhost interface to display the Interface MIB.

Use snmpwalk -v 2c -c guest localhost tcp to display the TCP MIB.

You may run man snmpwalk to find out the meanings of the options used in the
commands. Compare the outputs with the MIB files you saved in the previous
exercise. Also compare the outputs of the first command with that of ifconfig -a.

Retry the snmpwalk commands, but change guest to public. Can you display the
MIBs this time?

LAB REPORT What is the MTU of the Ethernet interface? What is the MTU of the
loopback interface? Justify your answer with the snmpwalk output and the
netstat output.

Why did the snmpwalk command with a community name public fail?

Exercise 3 Execute tcpdump udp port 161 -w ex3.out to capture SNMP messages.

Execute snmpget -v 2c -c guest remote host IF-MIB::ifMtu.1 to get the MIB object
IF-MIB::ifMTU.1 from a remote machine.

Save the snmpget output and terminate tcpdump.

Use ethereal to load the ex3.out file and analyze the format of the captured SNMP
Get and Response messages. Print the messages for the lab report.

LAB REPORT What is the port number used by the SNMP agent?

What are the full text-based and numerical object ID’s of the MIB object
interface.ifMTU.2? What was the value returned? Justify the answer
using Fig. 9.3 and the ifconfig output.

Draw the format of one of the SNMP messages saved, including the name
and value of each field.

9.10 Exercises on secure applications

Exercise 4 Execute tcpdump -enx -s 100 -w ex4a.out host your host and remote host to
capture packets between your machine and a remote machine.

Execute ftp remote machine. When prompted, type “1111” for the login ID, and
“2222” for the login password. Then terminate tcpdump and ftp.

Use ethereal to load the ex4a.out file. Analyze and print the packets that carry the
login ID and the password for the lab report.

Repeat the above experiment, but use telnet and save the tcpdump output in the
ex4b.out file.
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LAB REPORT Can you see the login ID and the password in the FTP experiment?
Submit the two packets you printed.

Can you see the login ID and the password in the TELNET experiment?
Submit the packets you printed.

What is the difference between FTP and TELNET in their transmission of
user ID’s and passwords? Which one is more secure?

Exercise 5 Execute tcpdump -enx -s 100 -w ex5a.out host your host and remote host to
capture packets between your machine and a remote machine.

Execute sftp remote machine. When prompted, type “yes” to continue the connec-
tion and “1111” for the login password. Then terminate tcpdump.

Use ethereal to load the ex5a.out file. Analyze and print one or two SSH packets
for the lab report.

Repeat the above experiment, but use ssh and save the tcpdump output in the
ex5b.out file.

LAB REPORT In each experiment, can you extract the password from the tcpdump
output? Can you read the IP, TCP, SSH headers? Can you read the TCP
data?

What is the client protocol (and version) used in both cases?

What is the port number used by the ssh server? What is the port number
used by the sftp server? Justify your answer using the tcpdump output and
the /etc/services file.

9.11 Exercises on secure Apache server

In the exercises in this section, teams of two students work together using
two workstations.

Exercise 6 Run man openssl to study the OpenSSL command line tool.

Create a new private key for the Apache server, using:

openssl genrsa 1024 > /etc/httpd/conf/ssl.key/server.key.

To create a self-signed certificate, go to the /etc/httpd/conf directory, and ex-
ecute: make testcert.

Then you will be asked a number of questions, regarding the location, affiliation,
etc. of the Apache server. After you type in the answers, a self-signed certificate is
created at /etc/httpd/conf/ssl.crt/server.crt.



211 9.12 Exercises on Firewalls and Iptables

Save the make output for the lab report.

Exercise 7 Restart the Apache server to load the new key and the new certification:
/etc/rc.d/init.d/httpd restart.

Execute tcpdump -w https.out host your host and remote host to capture the pack-
ets between your host and a remote host.

On the remote host, start the Mozilla web browser. After typing in the URL
https://your host, a dialog window titled “Website Certified by an Unknown
Authority” will pop up, reporting the reception of a certificate signed by an unknown
authority and asking if you want to continue.

Click the “View Certificate” button. Then a “Certificate Viewer” window pops up,
displaying detailed information about the received certificate. Examine the certificate
and dump the window into a picture if necessary (see Section 1.3.3 on how to dump
a window). Save the pictures for the lab report.

Click the “Continue” button in the “Website Certified by an Unknown Authority”
dialog window to accept the certificate. Then terminate tcpdump and Mozilla.

Use ethereal to load the https.out file and examine the operation of SSL.

LAB REPORT What is the port number used by the secure Apache server?

Compare the general information of the received certificate with the make
output saved in the last exercise. Are they consistent?

What is the Subject of the received certificate? Who is the Issuer of this
certificate? Are they the same?

What is the Certificate Signature Algorithm used to generate and
distribute this certificate?

When was the certificate signed? When will it expire?

9.12 Exercises on Firewalls and Iptables

In this exercise, students pair up to work together using two workstations.

Exercise 8 Execute iptables -L -v to list the existing rules in the filter table. Save the output
for the lab report.

Append a rule to the end of the INPUT chain, by executing

iptables -A INPUT -v -p TCP −−dport 23 -j DROP.

Run iptables -L -v again to display the filter table. Save the output.
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On both machines in your group, execute tcpdump host your host and remote host.
Then, telnet to the host where the rule is set from the remote machine. Save the
tcpdump output for the lab report.

LAB REPORT Can you telnet to the host from the remote machine?

From the tcpdump output, how many retries did telnet make? Explain the
exponential backoff algorithm of TCP timeout and retransmission.

Exercise 9 Delete the rule created in the last exercise, by:

iptables -D INPUT -v -p TCP –dport 23 -j DROP.

Then, append a new rule to the INPUT chain:

iptables -A INPUT -v -p TCP −−dport 23 -j REJECT \
−−reject-with tcp-reset.

Execute iptables -L -v to display the new rule.

On both machines in your group, restart tcpdump, and then telnet to the host where
the rule is set from the remote machine. Save the tcpdump output for the lab report.

LAB REPORT Explain the difference between the tcpdump outputs of this exercise
and the previous exercise. How many attempts did TCP make this time?

9.13 Exercises on auditing and intrusion detection

Exercise 10 Start the graphical interface tool redhat-logviewer to examine the log files in your
host. If a log (e.g., the Apache Access Log) is too long, type a keyword (e.g.,
GET) in the “Filter for” field to display those log entries containing the keyword.
Enter the keyword “failed” to display logged failures.

Go to menu Edit/Preferences ... to see where the log files are stored.

Exercise 11 Red Hat Linux uses a utility called Webalizer to analyze the web server log files.
Webalizer reads the Apache log files and creates a set of web reports on server
statistics. It is pre-installed in Red Hat Linux 9.

To view the reports, startMozilla and enter the URLhttp://localhost/usage/
index.html. Examine the web statistics displayed in the browser. Also click on
the month links in the Summary by Month table to see the statistics of each
month.

Next, enter the URLhttp://remote host /usage/index.html to view the reports
on the remote machine.
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LAB REPORT List the most frequently visited pages at the local Apache server and
the remote Apache server during the most recent month, respectively.

List the web pages that have the most number of bytes transferred by the
local and the remote server during the most recent month, respectively.

Exercise 12 Execute netstat -l to display the listening sockets in your host.

Execute chkconfig −−list to list the services in the /etc/init.d/ directory and
their status. Save the output for the lab report.

LAB REPORT Is the rlogin service enabled in your host?



References and Further reading

References

1. V. C. Cerf and R. E. Kahn, A protocol for packet network interconnections, IEEE

Transactions on Communications, COM-22:5, (1994) 637–48.

2. J. Reynolds and J. Postel, The Request for Comments Reference Guide, IETF Request

For Comments 1000, August 1987. [Online]. Available at: http://www.ietf.org.

3. C. Huitema, IPv6: The New Internet Protocol. Available at: http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf. (Prentice Hall, 1998).

4. G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The Implementation.

(Reading, MA, USA: Addison-Wesley, 1995).

5. W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. (Reading, MA, USA:

Addison-Wesley, 1994).

6. Cisco IOS documentation, Cisco IOS Configuration Fundamentals Command Refer-

ence – Release 12.2. [Online]. Available at: http://www.cisco.com.

7. Cisco IOS documentation, Cisco IOS Configuration Fundamentals Configuration

Guide – Release 12.2. [Online]. Available at: http://www.cisco.com.

8. V. Paxson and M. Allman, Computing TCP’s Retransmission Timer, IETF Request For

Comments 2988, November 2000. [Online]. Available at: http://www.ietf.org.

9. D. Chiu and R. Jain, Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks, Computer Networks and ISDN Systems, 17, (1989),

1–14.

10. H. Schulzrinne, A. Rao and R. Lanphier, Real Time Streaming Protocol, IETF RFC

2326, April 1998. [Online]. Available at: http://www.ietf.org.

11. J. Rosenberg, et al., SIP: Session Initiation Protocol, IETF RFC 3261, June 2002.

[Online]. Available at: http://www.ietf.org.

12. R. Stevens, UNIX Network Programming, Volume 1: Network APIs: Sockets and XTI,

2nd edn. (Upper Saddle River, NJ, USA: Prentice Hall, 1998).

13. W. Stallings, Cryptography and Network Security: Principles and Practice, 2nd edn.

(Upper Saddle River, NJ, USA: Prentice Hall, 1999).

214



215 Further reading

14. National Institute of Standards and Technology, Announcing the Advanced Encryption

Standard (AES), Federal Information Processing Standards Publication 197, November

2001.

Further reading

15. The IETF website. [Online]. Available at: http://www.ietf.org.

16. The Linux Documentation Project website. [Online]. Available at: http://www.tldp.

org/.

17. The Cisco documentation website. [Online]. Available at: http://www.cisco.com/

univercd/home/home.htm.

18. Sun, Solaris 8 System Administration Guide, Volume 1, Volume 2, and Volume 3.

[Online]. Available at: http://www.sun.com.

19. Get IEEE 802 website. [Online]. Available at: http://standards.ieee.org/

getieee802/.

20. Cisco IOS documentation, Cisco IOS Bridging and IBM Networking Configuration

Guide. [Online]. Available at: http://www.cisco.com.

21. The NIST Role-Based Access Control website. [Online]. Available at: http://csrc.

nist.gov/rbac/.

22. J. H. Saltzer, D. P. Reed and D. D. Clark, End-to-end arguments in system design.

[Online]. Available at: http://www.reed.com/Papers/EndtoEnd.htm.



Appendix A: instructor’s guide

Finally, after years of working with network programming, I came to realize that
80% of all network programming problems were not programming problems at
all, but were from a lack of understanding of how the protocols operate.

I also realized that (there) were numerous publicly-available tools out there that
aid in understanding the protocols and anyone could use them, when shown how.

W. Richard Stevens

A.1 Lab operation mechanism

This guide is based on a lab course offered at Polytechnic University,
Brooklyn, New York, USA. The course personnel were a faculty member
who delivered lectures on TCP/IP protocols and two lab instructors who
were responsible for the setup and maintenance of the lab, and assisting
students during experiments. Each experiment, consisting of the exercises
in one chapter of this book, typically took the students two to three hours
to complete.

Due to the limitation of space and equipment, the whole class was divided
into small groups of eight (i.e., the number of workstations in the lab). The
groups were scheduled to use the lab in different time slots. In the labs,
each student was assigned a workstation and was required to perform the
experiments independently. If required, two or more students could share
a workstation and perform the experiments together.

Students were required to read the corresponding chapter in this book
before the lab experiments. Pre-lab reading and preparation result in the
students getting the most from the exercises, rather than blindly following
the instructions without understanding the underlying concepts. For each
experiment, they did the following.
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1. Interconnected hosts using hubs, bridges, routers, and cables/connectors
to build networks with various topologies.

2. Configured the hosts, the bridges, and the routers, e.g., setting the host
or router IP addresses, choosing which protocol to run, etc.

3. Ran network applications to generate network traffic related to the pro-
tocol being studied.

4. Ran diagnostic applications simultaneously to monitor and capture pack-
ets in the network, and saved the collected data.

5. Analyzed data and wrote a lab report after the experiments.
Throughout the laboratory sessions, students were required to carry out the
following.
1. Bring a textbook if being used, this book, and a 3.5′′ floppy disk to

each session of the laboratory. The floppy disk may be used to copy
experimental data since the hosts in the lab may not be connected to the
Internet.

2. In most of the exercises, use the dotted-decimal IP addresses rather than
the machine names (e.g., use 128.238.66.100, instead of shakti), since
we did not run a domain name server, and did not want to change the
/etc/hosts file for each experiment.

3. The laboratory report should be word-processed. Experimental data may
not be copied by hand, although minor handwritten corrections were
allowed. In addition, the laboratory report should have the name of the
workstation assigned to the student and the date the experiment was
performed.

4. Do not include unnecessary data that has no direct bearing on the results
reported in the report. Submit the output data only if it is related to the
answer.

5. Do not turn off the workstation. If workstations are not shutdown prop-
erly, the file system may be damaged. If there is a problem with a work-
station or a router, contact the lab instructor.

A.2 Lab equipment

The Internet consists of host computers, hubs, switches, bridges,
and routers. In the experiments, we build various networks using
these devices. The equipment used in the lab included the following
items.
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Figure A.1. An overview of the TCP/IP networking lab equipment.

1. Eight1 desktop PCs with the Red Hat Linux 9.0 (or a later version)
operating system, each with an Ethernet interface card.

You can also set up the TCP/IP lab with eight Workstations with the Solaris
8 (or a later version) operating system, each equipped with an Ethernet
interface card.

2. Four1 Cisco 2600 series routers with Cisco IOS release 12.0. Each router
has two Ethernet interfaces and a console port for local configurations.
These routers will be configured to work as bridges in Chapter 3, and as
routers in Chapters 2, 4, and 5, respectively.

3. Eight Ethernet Hubs. These hubs are used to build Ethernet LAN seg-
ments with the star topology. Each hub should have at least four ports.
In some exercises, more ports are required to connect all the hosts (and
some router ports) to form a single LAN segment. In these cases, two or
more hubs could be concatenated to extend the number of ports.

4. A number of Ethernet Cables. We use 10 Base-T cables with RJ-45
connectors. In addition, a RJ-45-to-RJ-45 crossover cable and a RJ-45-
to-DB-9 adapter are needed in order to configure a router through the
console port. These generally come with a new router.
Figure. A.1 is an overview of the lab equipment. As shown in the figure,

we name the computers and the routers for easy exposition. The routers
and hubs are installed on a rack at one end of the room. The computer

1 We used eight workstations in our lab. However, a minimum setup consisting of five workstations
and two routers is needed (see Section A.4).
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Table A.1. Host IP and MAC addresses

Label Host Name IP Address MAC Address

1 shakti 128.238.66.100

2 vayu 128.238.66.101

3 agni 128.238.66.102

4 apah 128.238.66.103

5 yachi 128.238.66.104

6 fenchi 128.238.66.105

7 kenchi 128.238.66.106

8 guchi 128.238.66.107

named gateway is used for Internet access, which is optional and will be
discussed in section A.6.

This guide focuses on the Internet protocols rather than specific products.
In the experiments, we try to avoid the proprietary aspect of the hardware
and the operating system used. With minimal modifications, this guide can
be used with other systems, e.g., PCs with the Mandrake Linux or the
FreeBSD operating system.

A.3 Software installation and configuration

A.3.1 Operating system

To install Red Hat Linux 9.0 on a desktop computer, you need to insert the
Red Hat Linux 9.0 CD into the CDROM Driver, and boot the computer from
the CDROM. Then, follow the instructions from the installation program.
In most cases, we use the default configurations. Therefore you just need
to click the Next button to continue the installation process. The following
is a list of the lab-specific selections.
1. You need to give a host its domain name and an IP address for the

Ethernet interface. You may refer to Fig. A.1 and Table A.1 for the host
names and IP addresses used in this guide.

2. Do not enable DHCP.2 Do not install DNS. Do not give a gateway IP
address.

3. Disable the firewall.
4. Choose the server installation, including the kernel source.

2 But you need to install both the DHCP server and the client.
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5. After the installation, create a user named guest, with a password of
guest1. Choose bash as the login shell for user guest. See Section A.5
for how to assign partial root privilege to user guest.
Edit the .bash profile file, change the line that defines the PATH

environment variable to:

PATH=$PATH:$HOME/bin:/usr/sbin:/sbin:/usr/local/bin .

Now user guest can access the diagnostic tools without typing the full
path. Note that you need to run source .bash profile for the new PATH

to take effect. You can verify the new PATH by: echo $PATH. When
you install a new program, you may also append the directory of the
executable to the PATH variable.

6. Enable the following services, using the chkconfig command as root:3

Ftp: /sbin/chkconfig vsftpd on,
Telnet: /sbin/chkconfig telnet on,
Echo: /sbin/chkconfig echo on,

/sbin/chkconfig echo-udp on,
Time: /sbin/chkconfig time on,

/sbin/chkconfig time-udp on.
7. If the Linux system installed does not support multicast by default, you

may need to recompile the kernel. Make sure the IP: multicasting

option is enabled before the kernel is compiled.

Installing Solaris 8.0 is similar to the above. Basically, you can use all the
default settings for each installation step. When the installation finishes,
you need to create a new user named guest with a password of guest1,
and set the PATH environment for guest.
To enable the above services in Solaris, you need to edit the
/etc/inetd.conf file. Make sure that the lines corresponding to these
services are uncommented. Then reboot the machine, or run pkill -HUP
inetd to let inetd reload the new configuration.

Initially the workstations are connected in a single LAN segment, as
shown in Fig. 1.3. The IP addresses of the host interfaces are given in
Table A.1. You need to insert the MAC addresses of the host interfaces.

3 You can enable these services using the graphical configuration tool as well. Invoke the system
menu by clicking the Red Hat logo at the lower left corner of the workspace. Then go to /System
Settings/Server Settings/Services as root. A dialog pops up with a list of services available
from this host. You need to simply select the services you want to enable, e.g., Telnet, then reboot
the computer.
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A.3.2 Diagnostic tools

Many TCP/IP implementations, e.g., Red Hat Linux and Sun Solaris, pro-
vide some useful tools for network maintenance and diagnosis. In addition
to these tools, we use several other tools in the experiments. All the addi-
tional tools used in the lab are in the public domain, and can be downloaded
for free.

The following is a list of the diagnostic tools used in the lab, as well as
the links to download them and a brief installation guide. More information
on installation and usage can be found at the websites given below.

sock
Sock is a network traffic generator written by W. Richard Stevens. It can be
downloaded from W. Richard Stevens’ homepage: ftp://www.kohala.
com/start/unpv12e.html. You can download the source code package
and build the sock program locally. The README file coming with the pack-
age gives detailed instructions on building sock. Basically, you need to
build the libraries first, and then build sock.

The Transaction TCP (T/TCP) for Linux project website provides
a refined version of sock at: http://ttcplinux.sourceforge.net/
tools/tools.html. Both the binary executable and the source code pack-
age are available. In fact, you can simply download the binary code and
use it in the lab.

tcpdump
Tcpdump is a command-line-based network traffic sniffer and analyzer. It
is preinstalled in Red Hat Linux 9.0 at /usr/sbin/tcpdump.

If you are using Solaris, or your Linux system does not have a preinstalled
tcpdump, you need to install the program. tcpdump depends on the libcap
package which captures packets from a network interface. You can down-
load both the rpm packages or the source code packages for libcap and
tcpdump from the tcpdump homepage: http://www.tcpdump.org. If
you download the source code package, you need to build tcpdump locally,
by running ./configure, make, and make install.

ethereal
Ethereal is a network traffic sniffer and analyzer with a graphical user
interface. It has similar functions as tcpdump, but with an enhanced user
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interface. Ethereal depends on two packages: the GTK+ version 1.2 or later
for the graphical user interface, and the libcap package for packet capture.
Both packages are preinstalled in Red Hat Linux 9.0.

Ethereal is included in the Red Hat Linux 9 installation CDs.
To install, insert the Red Hat Linux Installation CD 1 into the
CD drive and reboot the system. In the following Anaconda Red
Hat Linux installer, choose Perform an upgrade of an existing

installation, customize packages to be upgraded, and check
Skip boot loader updating. In the following Individual Package

Selection window, choose ethereal and click the Next button. Then
Ethereal will be installed.

Alternatively, you can download the source package,
ethereal-0.9.10.tar.gz (or a later version), from the Ethereal
website: http://www.ethereal.com. Then,
1. Run gunzip ethereal-0.9.10.tar.gz and tar -xvf ethereal-0.9.10.tar to

uncompress and extract the tar ball.
2. Change to the ethereal-0.9.10 directory, run ./configure, make, and

make install.
The executable is installed at /usr/local/bin/ethereal. A companion
command-line tool, tethereal, is installed in the same directory. tethereal
is useful when the graphical environment, i.e., gnome or XWindows, is not
available.

Glib and GTK+ packages are also included in the Solaris Companion Soft-
ware CD, or are downloadable from http://www.sun.com/software/

solaris/freeware/. You need to make sure that these two packages are
installed. Then, uncompress and install the package by bunzip ethereal-
x.y.z-solaris2.9-sparc-local.bz2 and pkgadd -d ethereal-x.y.z-solaris2.9-
sparc-local.

The routed Routing Daemon
The routed rpm package is included in the Red Hat Linux 9 installa-
tion CDs. You can install the package from the CDs, or download it
from, e.g., http://rpmfind.net/linux/RPM/redhat/severn/i386/
routed-0.17-15.i386.html and install it using: rpm -ivh routed-0.17-
15.i386.rpm. The program is installed at /usr/sbin/routed. If you wish
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to start routed every time when the system boostraps, execute chkconfig
routed on as root.

In Solaris, the RIP routing daemon is /usr/sbin/in.routed, which is
preinstalled.

The TFTP client and server
TFTP is used in Chapter 5. To install TFTP,
1. Download the TFTP client package (e.g., tftp-0.32-4.i386.rpm)

and the server package (e.g., tftp-server-0.32-3.i386.rpm) from
the Red Hat website: http://www.redhat.com/swr/. Note that the
rpm packages are also included in the Red Hat Linux 9 installation CDs.

2. Run the following as root: rpm -ivh tftp-0.32-4.i386.rpm and rpm -ivh
tftp-server-0.32-4.i386.rpm.
Now the TFTP client and server are installed. A directory named

/tftpboot is created for files that you want to distribute using TFTP.
Then, change the line disable=yes to disable=no in the TFTP config-
uration file /etc/xinetd.d/tftp. Finally, you need to restart the xinetd
daemon, by running the following command as root: /etc/rc.d/init.d/xinetd
restart.

TFTP is preinstalled in Solaris 8.0. Generally it is disabled due to security
concerns. The following instructions show how to enable the TFTP server.
1. Turn on the in.tftpd daemon by creating the /tftpboot directory,

i.e., run the following as root: mkdir /tftpboot.
2. Create a symbolic link to the directory, by: ln -s /tftpboot/. /tftpboot/

tftpboot.
3. Uncomment the TFTP line in the /etc/inetd.conf file. This line

should look like the following:

tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

Reboot the host, then a tftp client can only download files in the
/tftpboot directory.
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JMStudio
JMStudio is a Java-based realtime streaming tool from Sun Microsys-
tems. It is provided as a demonstration of the Sun Java Media Frame-
work (JMF). We use JMStudio in the multimedia multicasting exercises in
Chapter 7.

Installing Java Development Kit (JDK)
Since JMStudio is a Java program, you need to have JDK for Linux (or a
later version) installed first. You can download the Linux version of Java 2
Standard Edition (J2SE) 1.4.2 from http://java.sun.com/j2se/1.4.

2/ download.html. Then, get into the directory where this installer file is
stored, and run the following to make it executable:
chmod 755 j2sdk-1 4 2-nb-3 5 1-bin-linux.bin.
Next, type the following command to start the installation process:
./j2sdk-1 4 2-nb-3 5 1-bin-linux.bin
You will be asked several questions by the installation wizard. You must
agree to the license agreement, and may choose the default answer in all
other cases. When the installation is over, you need to append the directory
of JDK executables, e.g., /opt/j2sdk nb/j2sdk1.4.2/bin, to guest’s
PATH environment variable.

Installing JMF
JMF works with Red Hat Linux 6.2 or a later version. The
Linux JMF package, (jmf-2 1 1e-linux-i586.bin), can be down-
loaded from http://java.sun.com/products/java-media/jmf/2.

1.1/download.html. Then, get into the directory where this installer file
is stored, and run the following:
chmod +x ./jmf-2 1 1e-linux-i586.bin.
Next, run the installer to extract JMF to a directory, e.g., /home/LAB/.
A directory called JMF-2.1.1e will be created in this directory. Then in
the configuration file /home/guest/.bash profile, set the CLASSPATH
environment parameter to reference the JMF directory:

JMFHOME=/home/LAB/JMF-2.1.1e
export JMFHOME
CLASSPATH=$JMFHOME/lib/jmf.jar:.:$CLASSPATH
export CLASSPATH

Next, set the LD LIBRARY PATH environment parameter to reference the
JMF libraries:
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LD LIBRARY PATH=$JMFHOME/lib:$LD LIBRARY PATH
export LD LIBRARY PATH

Now JMF is installed. You can find the JMFStudio executable, jmstudio,
in the $JMFHOME/bin/ directory.

The DBS TCP Benchmark
Distributed Benchmark System (DBS) is a TCP performance measurement
tool. We use DBS as a TCP traffic generator in Chapter 6.

Package Dependencies
DBS depends on three software packages. It uses perl 5.0 or a later
version and gnuplot to plot the measured traces. These two packages
are preinstalled in Red Hat Linux 9.0. DBS also uses ntp to synchro-
nize the clocks of all the participating hosts, which is available from
http://www.ntp.org/downloads.html. Similarly, ntp is preinstalled
in Red Hat Linux 9.0 as well.

Both perl and ntp are preinstalled in Solaris 8.0. gnuplot is in-
cluded in the Solaris Companion CD free software and can be down-
loaded from http://www.sun.com/software/solaris/freeware/

pkgs_download.html.

Installing DBS
You can download the source code package of DBS from http:

//www.kusa.ac.jp/~yukio-m/dbs/download.html. DBS supports
Linux kernel 2.0.* or later, as well as Sun OS 4.1.3, 4.1.4, and 5.5.*,
and FreeBSD. To install DBS:
1. After you download the dbs-1.2.0beta1.tar.gz file, extract it by:

gun-zip dbs-1.2.0beta1.tar.gz and tar -xvf dbs-1.2.0beta1.tar. A direc-
tory calleddbs-1.2.0beta1 is created, which contains all the DBS files.

2. Go to directory ../dbs-1.2.0beta1/src, and run make.
3. Run make install as root to copy the executables to the

/usr/local/etc directory. You may add the /usr/local/etc

to user guest’s PATH environment.
When the installation is over, you need to delete the first two lines in the

/usr/local/etc/dbs view file. The first line is “#!/usr/local/bin/perl”,
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and the second line is “#!/usr/local/bin/perl -d”. These two lines point to a
wrong directory for perl.

When installing DBS on Solaris, you need to uncomment the LDFLAGS line
in the Makefile. The first two lines in the /usr/local/etc/dbs_view file
should not be deleted.

The NIST Net emulator
NIST Net is a Linux-based network emulation package. NIST Net sets up
a single Linux computer as a router and perform firewall-like functions,
to emulate a wide variety of network conditions. We will use NIST NET
to perturb the normal operations of a TCP connection, e.g., to introduce
packet loss or to emulate a congestion situation.

The official NIST Net website is http://snad.ncsl.nist.gov/itg/
nistnet/install.html. To install NIST Net, do the following.
1. Recompile the Linux kernel4. When configuring the kernel using make

menu-configure, do the following:
(a) Turn off module versioning: disable the “Loadable module support”

→ “Set version information on all module symbols” option.
(b) Set the realtime clock driver to be compiled as a module: Select “M”

for the “Character device”→“Enhanced Real Time Clock Support”
option.

2. Execute tar xvfz nistnet.2.0.12.tar.gz to extract the package into a di-
rectory, e.g., /home/guest/nistnet/.

3. Execute make, and make install.
4. Append the directory of the NIST Net executables to the PATH environ-

ment variable of guest.

The Netspy multicast tool
Netspy is a simple multicast tool written by one of the authors of this
book, Shiwen Mao, for the multicast exercises in Chapter 7. It has two
components: netspy, which is a multicast client, and netspyd, which is
a multicast sender. The source code for these two programs is given in
Appendix C.2. To compile the code on Red Hat Linux, use:
gcc -o netspy netspy.c -lnsl -lresolv and
gcc -o netspyd netspyd.c -lnsl -lresolv.

4 See the http://www.tldp.org/HOWTO/Kernel-HOWTO/ page on how to compile a Linux kernel.
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To compile the code on Solaris 8.0, an additional compilation option
-lsocket is needed.

The executables can be put in the /usr/local/netspy directory, and this
directory should be appended to the PATH environment variable.

Accessory files
The TFTP exercise in Chapter 5 uses two files with randomly generated
contents, a small file (1 kbyte) called small.dum and a large file (1 Mbyte)
called large.dum. You can put these two files in the /tftpboot directory.
The FTP exercise in Chapter 5 also uses these two files, but stored in a
different directory at /home/LAB/.

The DBS exercises in Chapter 6 uses three command files in the
/home/guest/ directory: TCP1.cmd, TCP2.cmd, and TCPUDP.cmd.
The files are given in Appendix C.1. Also a directory named
/home/guest/data should be created to store data files for the DBS ex-
periments.

You need a video clip for the realtime multicasting exercises in
Chapter 7. You can download the video clip from, e.g., http://www.
gomovietrailers.com, and put it in the /home/guest/ video.

The Apache exercises in Chapter 8 uses two HTML files given in Ap-
pendix C.3. These two HTML files, along with an arbitrary GIF formatted
picture file mypic.gif are stored in the /var/www/html/ directory. A Perl
CGI script, hello.pl, which is given in Appendix C.3, should be stored
in the /var/www/cgi-bin directory. Note that you need to run chmod +x
hello.pl to make it executable.

The four C programs for the socket programming exercises in Chap-
ter 8 are given in Appendix C.4. These four files may be stored in the
/home/guest directory.

A.3.3 Router configuration

In order to configure a router, you need to access the router from a computer,
then run the configuration commands from the router. There are two ways
to connect to a router. If you know the login and enable passwords, you
can telnet to the router through one of its Ethernet interfaces. See Chapter 3
for a detailed introduction to the Cisco IOS and on how to configure a router
through telnet.
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Figure A.2. Connecting to the router’s console port.

Table A.2. Default IP and MAC addresses for the routers

router Label IP Address MAC Address

1 router1 eth0 128.238.61.1

router1 eth1 128.238.62.1

2 router2 eth0 128.238.62.2

router2 eth1 128.238.63.2

3 router3 eth0 128.238.63.3

router3 eth1 128.238.64.3

4 router4 eth0 128.238.64.4

router4 eth1 128.238.65.4

Another way to access a router is through its console interface using a
crossover cable. As shown in Fig. A.2, you can use a crossover 10 Base-T
cable with RJ-45 connectors and a RJ-45-to-DB-9 adapter to connect the
router console port to the COM1 port of the computer. Then you can run
a terminal emulator (e.g., c-kermit from http://www.columbia.edu/

kermit/ckermit.html, or HyperTerminal in Microsoft Windows) to
access the router. The serial connection should have a data rate of 9600
baud, 1 stop bit with 8 data bits, no flow control, and no parity.

Once you access the router, you can begin to configure it. See Chapter 3
for instruction on configuring a Cisco router. More details can be found
from the Cisco website http://www.cisco.com/. If you do not know
either the login or enable password, refer to the document http://
www.cisco.com/warp/public/474/pswdrec_2600.shtml on how to
recover it.

The default IP addresses of the router interfaces are given in Table A.2.
The router default configuration is given in Appendix B. As in Table A.1,
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you need to insert the MAC addresses of the router interfaces, which you
can find by running tcpdump in the lab or from the router documentations,
in Table A.2.

A.4 Estimated budget

All the diagnostic tools we use in the experiments are public domain soft-
ware, which can be downloaded free of charge. For the hardware devices,
although this guide is based on a setup of eight computers and four routers,
a smaller setup is adequate. Table A.3 lists the minimum hardware require-
ments for each lab.

Also note that the experiments focus on the networking protocol op-
erations, and thus do not require high-end computers and routers. Our
experience shows that PCs with middle of range (or low) configuration
(e.g., PII 500MHZ CPU, 256M memory, and several hundred MB of hard-
drive) or Sun Ultra 5 workstations, and Cisco 2600 series routers are ade-
quate for all the exercises. The estimated budget for a 8-seat laboratory is
about $17,500, which consists of 4×$2000 for the routers, 8×$1000 for
the computers, and $1500 for accessories (hubs, cables, connectors, desks,
and chairs). Further reduction on cost can be achieved if second-hand com-
puters and routers are available or if the minimum setup shown in Table A.3
is used.

Table A.3. The minimum set of workstations and routers needed
for each lab

Laboratory Number of Workstations Number of Routers

Chapter 1 2 0

Chapter 2 3 1

Chapter 3 2 2

Chapter 4 3 2

Chapter 5 2 1

Chapter 6 2 0

Chapter 7 3 2

Chapter 8 5 1

Chapter 9 2 0
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A.5 Root privilege for system commands

We would suggest the creation of a normal user account on each host
with the same user ID and password for students to use, e.g., user “guest”
with password “guest1”. Allowing students to login as “root” is not rec-
ommended, especially when some of them are not familiar with Linux or
Unix systems. However, when configuring a host, students still need root
privilege to run several system tools which are only executable by the root.
There are several ways to grant partial root privilege to a normal user, as
discussed in the following.

A.5.1 The wheel group

In most Linux systems, there is a preinstalledwheelgroup. By adding a user
to the wheel group and making a certain system command accessible to
the wheel group, the administrator can have flexible control over assigning
the root privileges. The general procedure is the following.
1. Edit /etc/group, add the target user’s id, e.g. guest, in the wheel group,

as:

wheel:x:10:root,guest

2. Change the group attribute of the executable, e.g. /sbin/xyz, to the
wheel group: chgrp wheel /sbin/xyz.

3. Change the mode of the executable, using chmod 4750 /sbin/xyz.
Note that this approach does not work for ethereal, since both setuid

and setgid are not supported by GTK+ for security considerations. A nor-
mal user can execute the ethereal program, but he or she is not allowed to
capture packets from the network interfaces. In the following experiments,
we will use tcpdump to capture a packet trace first, then use ethereal to
load the trace and analyze it.

A.5.2 Role-Based Access Control

Role-Based Access Control (RBAC) is a standard of National Institute of
Standards and Technology (NIST) aiming to assign limited administrative
capabilities to normal users. Sun’s Solaris 8.0 is one of its first commercial
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implementations. RBAC is so popular that there has been an annual ACM
RBAC workshop since 1996. The official RBAC website is:http://csrc.
nist.gov/rbac/.

RBAC uses a set of configuration files to define a number of roles and
profiles, and to assign a specific capability to a certain role. An interested
reader can refer to [18] for more details.

A.5.3 Sudo

Sudo is another useful tool that allows an administrator to assign privilege
for some users to run some commands as root. It also logs user behavior
for auditing purposes. Sudo is preinstalled in Red Hat Linux 9.0.

To assign a command (e.g., tcpdump) to a normal user (e.g. guest),
you need to edit the Sudo configuration file /etc/sudoers using the Sudo
editor visudo, i.e., adding a new line at the end of the /etc/sudoers file:

guest ALL=/usr/sbin/tcpdump

Note that it is a TAB character after guest in the above line. Then user
guest can run tcpdump using:
sudo /usr/sbin/tcpdump.
He or she will be prompted for user guest’s password. After entering the
correct password, tcpdump begins to run. In the next five minutes, guest
can run tcpdump without entering a password. After that, the user will be
prompted for the password again.

Sudo is not preinstalled in Solaris 8.0. You can download the package
from http://www.courtesan.com/sudo/. To install Sudo on a Solaris
machine:
1. Download the Sudo source package, sudo-1.6.3.tar.gz.
2. Uncompress and extract the source package, by gunzip sudo-

1.6.3.tar.gz and tar xvf sudo-1.6.3.tar.
3. Get into the ../sudo-1.6.3 directory. Execute: ./configure, make, and

make install.
Sudo and the Sudo editor visudo are installed at /usr/local/bin. You
may need to append these directories into the PATH environment variable
of user guest.
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A.6 Internet access

All experiments in this guide can be done without Internet access. In fact,
to avoid disturbing the normal operation of the campus network, it is rec-
ommended to keep the experimental network isolated. Students need to use
floppy disks or other storage media to copy the experimental data.

If Internet access is available in the lab, students can transfer the ex-
perimental data using FTP or email. For example, there could be a ninth
workstation which is multihomed, as shown in Fig. A.1. One interface of
this machine connects to the internal network, while the other interface
connects to the Internet. Note that routing and forwarding should be dis-
abled in this multihomed host to keep the laboratory network isolated. We
need to make sure that the Linux IP Forwarding module is not loaded, by
running the following command:

echo “0” > /proc/sys/net/ipv4/ip forward.

In Solaris, login as the root and execute: touch /etc/notrouter, to create an
empty file /etc/notrouter. When the machine reboots, the startup script
looks for the presence of this file. If it exists, the startup script will not start
in.routed -s or in.rdisc -r, and does not turn on IP Forwarding.
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of the routers

B.1 Initial configuration of router1

Configuring global parameters.

Enter host name [router1]: router1

Enter enable password : el537

Enter virtual terminal password : el537

Configure SNMP Network Management? [yes]: no

Configure IP? [yes]: yes

Configure IGRP routing? [no]: no

Configure RIP routing? [yes]: no

Configure DECnet? [no]: no

Configure XNS? [no]: no

Configure Novell? [no]: no

Configure AppleTalk? [no]: no

Configure CLNS? [no]: no

Configure Vines? [no]: no

Configure bridging? [no]: no

Configuring interface parameters.

Configuring interface Ethernet0:

Is this interface in use? [yes]: yes

Configure IP on this interface? [yes]: yes

IP address for this interface : 128.238.61.1

Number of bits in subnet field [0]: 8

Class B network is 128.238.0.0,

8 subnet bits; mask is 255.255.255.0
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Configuring interface Ethernet1:

Is this interface in use? [yes]: yes

Configure IP on this interface? [yes]: yes

IP address for this interface : 128.238.62.1

Number of bits in subnet field [0]: 8

Class B network is 128.238.0.0,

8 subnet bits; mask is 255.255.255.0

The following configuration command script was created.

hostname router

enable password el537

line vty 0 4

password el537

!

ip routing

no decnet routing

no xns routing

no novell routing

no appletalk routing

no clns routing

no vines routing

no bridge 1

!

interface Ethernet0

ip address 128.238.61.1 255.255.255.0

!

interface Ethernet1

ip address 128.238.62.1 255.255.255.0

!

Use this configuration? [yes/no]: yes

[OK]

Use the enabled mode ’configure’ command

to modify this configuration.
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B.2 Initial configurations of the other routers

The initial configurations of the other routers are similar to that of router1,
with different interface IP addresses, as given in Table A.2.



Appendix C: source code

C.1 Command files for the DBS experiments

The following two command files are modified from the examples in the
DBS package.

C.1.1 TCP1.cmd

This is the command file for a single TCP connection.

# TCP1
{

sender {
hostname = host2;
port = 0;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
send_buff = 32768;
recv_buff = 32768;
mem_align = 2048;
pattern {8192, 8192, 0.0, 0.0}

}
receiver {

hostname = host1;
port = 20000;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
recv_buff = 32768;
send_buff = 32768;
mem_align = 8192;
pattern {8192, 8192, 0.0, 0.0}

}
file = data/tcp1-host2-host1;
protocol = TCP;
start_time = 0.0;
end_time = 30;
send_times = 2048;

}
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C.1.2 TCPUDP.cmd

This is the command file for a single TCP connection and a UDP flow.

# TCP
{

sender {
hostname = host2;
port = 0;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
send_buff = 32768;
recv_buff = 32768;
mem_align = 2048;
pattern {8192, 8192, 0.0, 0.0}

}
receiver {

hostname = host1;
port = 20000;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
recv_buff = 32768;
send_buff = 32768;
mem_align = 8192;
pattern {8192, 8192, 0.0, 0.0}

}
file = data/tcpudp-host2-host1;
protocol = TCP;
start_time = 0.0;
end_time = 30;
send_times = 2048;

}

# UDP
{

sender {
hostname = host3;
port = 20000;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
send_buff = 32768;
recv_buff = 32768;
mem_align = 8192;
# A sample MPEG traffic paterm (GOP=12)
# This is modeled from
# Craig Partridge, Gigabit Networking,
# Addison-Wesley, p187, 1993
pattern {40960, 1024, 0.033333333, 0;

2048, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;

10240, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;

10240, 1024, 0.033333333, 0;
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2048, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;

10240, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;
2048, 1024, 0.033333333, 0;}

}
receiver {

hostname = host1;
port = 20000;
mem_align = 2048;
pattern {8192, 8192, 0.0, 0.0}

}
file = data/tcpudp-host3-host1;
protocol = UDP;
start_time = 2.0;
end_time = 30;
send_times = 50;

}

C.1.3 TCP2.cmd

This is the command file for two TCP connections.

# TCP1
{

sender {
hostname = host2;
port = 0;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
send_buff = 32768;
recv_buff = 32768;
mem_align = 2048;
pattern {8192, 8192, 0.0, 0.0}

}
receiver {

hostname = host1;
port = 20000;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
recv_buff = 32768;
send_buff = 32768;
mem_align = 8192;
pattern {8192, 8192, 0.0, 0.0}

}
file = data/tcp2-host2-host1;
protocol = TCP;
start_time = 0.0;
end_time = 30;
send_times = 2048;

}
# TCP2
{

sender {
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hostname = host3;
port = 0;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
send_buff = 32768;
recv_buff = 32768;
mem_align = 2048;
pattern {8192, 8192, 0.0, 0.0}

}
receiver {

hostname = host1;
port = 20000;
so_debug = OFF;
tcp_trace = OFF;
no_delay = OFF;
recv_buff = 32768;
send_buff = 32768;
mem_align = 8192;
pattern {8192, 8192, 0.0, 0.0}

}
file = data/tcp2-host3-host1;
protocol = TCP;
start_time = 0.0;
end_time = 30;
send_times = 2048;

}

C.2 Netspy source code

C.2.1 netspy.c source code
/******************************************/
/* netspy.c */
/* */
/* Written by Dr Shiwen Mao */
/* Dept. ECE, Polytechnic University */
/* */
/* 7/17/2003 */
/******************************************/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h> /* close */

#define MAX_MSG 100

void main(int argc, char *argv[]) {

int sd, rc, n, cliLen;
struct ip_mreq mreq;
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struct sockaddr_in cliAddr, servAddr;
struct in_addr mcastAddr;
struct hostent *h;
char msg[MAX_MSG];

int SERVER_PORT;

if(argc!=3) {
printf("usage : %s <mcast address> <mcast
port number>\n", \

argv[0]);
exit(0);

}

SERVER_PORT = atoi(argv[2]);

/* get mcast address to listen to */
h=gethostbyname(argv[1]);
if(h==NULL) {
printf("%s : unknown group ’%s’\n",argv[0],argv[1]);
exit(1);

}

memcpy(&mcastAddr, h->h_addr_list[0],h->h_length);

/* check given address is multicast */
if(!IN_MULTICAST(ntohl(mcastAddr.s_addr))) {
printf("%s : given address ’%s’ is not multicast\n",
argv[0], \

inet_ntoa(mcastAddr));
exit(1);

}

/* create socket */
sd = socket(AF_INET,SOCK_DGRAM,0);
if(sd<0) {
printf("%s : cannot create socket\n",argv[0]);
exit(1);

}

/* bind port */
servAddr.sin_family=AF_INET;
servAddr.sin_addr.s_addr=htonl(INADDR_ANY);
servAddr.sin_port=htons(SERVER_PORT);
if(bind(sd,(struct sockaddr *) &servAddr,

sizeof(servAddr))<0){
printf("%s : cannot bind port %d \n",argv[0],
SERVER_PORT);
exit(1);

}

/* join multicast group */
mreq.imr_multiaddr.s_addr=mcastAddr.s_addr;
mreq.imr_interface.s_addr=htonl(INADDR_ANY);

rc = setsockopt(sd,IPPROTO_IP,IP_ADD_MEMBERSHIP, \
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(void *) &mreq,
sizeof(mreq));

if(rc<0) {
printf("Netspy : cannot join multicast group
’%s’", \

inet_ntoa(mcastAddr));
exit(1);

}
else {
printf("\nNetspy : listening to mgroup %s:%d\n\n", \

inet_ntoa(mcastAddr),
SERVER_PORT);

/* infinite server loop */
while(1) {
cliLen=sizeof(cliAddr);
n = recvfrom(sd,msg,MAX_MSG,0, \

(struct sockaddr *) &cliAddr,
&cliLen);

if(n<0) {
printf("Netspy : cannot receive data\n");
continue;

}

printf(" == : %s\n", msg);
}/* end of infinite server loop */

}
}

C.2.2 netspyd.c source code
/******************************************/
/* netspyd.c */
/* */
/* Written by Dr Shiwen Mao */
/* Dept. ECE, Polytechnic University */
/* */
/* 7/17/2003 */
/******************************************/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h> /* close */

#include <utmp.h>
#include <time.h>
#include <sys/timeb.h>
#include <string.h>
#include <netdb.h>

#define MAX_LOGIN 256

int main(int argc, char *argv[]) {
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int sd, i;
unsigned char ttl;
struct sockaddr_in cliAddr, servAddr;
struct hostent *h;
int SERVER_PORT;
char ampm[]="AM";
struct tm* today;
char hostn[128];
char message[200];
struct utmp *upt_var;
struct utmp old_utmp[MAX_LOGIN];
int flags[MAX_LOGIN];
int old_len, found = -1;

old_len = 0;
for(i=0;i<MAX_LOGIN;i++){
flags[i] = -1;

}

gethostname(hostn, sizeof(hostn));

if(argc!=4) {
printf("usage netspyd <mgroup_addr> <port_number> \

<TTL_value>\n");
exit(1);

}
ttl = atoi(argv[3]);

SERVER_PORT = atoi(argv[2]);

h = gethostbyname(argv[1]);
if(h==NULL) {
printf("netspyd : unknown host ’%s’\n", argv[1]);
exit(1);

}

servAddr.sin_family = h->h_addrtype;
memcpy((char *) &servAddr.sin_addr.s_addr, \

h->h_addr_list[0],
h->h_length);

servAddr.sin_port = htons(SERVER_PORT);

if(!IN_MULTICAST(ntohl(servAddr.sin_addr.s_addr))) {
printf("netspyd : address ’%s’ is not multicast
\n", \

inet_ntoa(servAddr.sin_addr));
exit(1);

}

sd = socket(AF_INET,SOCK_DGRAM,0);
if (sd<0) {
printf("netspyd : cannot open socket\n");
exit(1);

}

cliAddr.sin_family = AF_INET;
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cliAddr.sin_addr.s_addr = htonl(INADDR_ANY);
cliAddr.sin_port = htons(SERVER_PORT+1);
if(bind(sd,(struct sockaddr *) &cliAddr,

sizeof(cliAddr))<0) {
perror("bind");
exit(1);

}
if(setsockopt(sd,IPPROTO_IP,IP_MULTICAST_TTL,&ttl,

sizeof(ttl))<0){
printf("netspyd : cannot set ttl = %d \n",ttl);
exit(1);

}

printf("netspyd started : \n");
printf(" [local address : %s:%d]
\n" , \
hostn, SERVER_PORT+1);

printf(" [multicast group : %s:%d]
\n\n" , \
inet_ntoa(*(struct in_addr *)h->h_addr_list[0]),
SERVER_PORT);

while(1){
setutent();

while((upt_var = getutent()) != NULL){
if(upt_var->ut_type == USER_PROCESS){
found = -1;
for(i=0;i<old_len;i++){
if(upt_var->ut_pid == old_utmp[i].ut_pid){
found = 1;
flags[i] = 1;

}
}

if(found == -1){
today = localtime(&upt_var->ut_time);
if(today->tm_hour>12){
ampm[0] = ’P’;
today->tm_hour -= 12;

}
else{
ampm[0] = ’A’;

}

printf(" == : %s logged on to %s at %.5s %s,
pid=%d\n",\

upt_var->ut_user,hostn, asctime(today)
+11, ampm, \

upt_var->ut_pid);
sprintf(message, "%s logged on to %s at %.5s
%s", \

upt_var->ut_user,hostn, asctime(today)
+11, ampm);
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sendto(sd, message, strlen(message)+1, 0, \
(struct sockaddr *) &servAddr, sizeof
(servAddr));

}
}

}

endutent();

for(i=0;i<old_len;i++){
if(flags[i] == -1){
today = localtime(&old_utmp[i].ut_time);
if(today->tm_hour>12){
ampm[0] = ’P’;
today->tm_hour -= 12;

}
else{
ampm[0] = ’A’;

}
printf(" == : %s logged out from %s at %.5s %s,
pid=%d\n",\

old_utmp[i].ut_user, hostn, asctime(today)
+11, ampm,\

old_utmp[i].ut_pid);
sprintf(message, "%s logged out from %s at %.5s
%s", \

old_utmp[i].ut_user,hostn, asctime(today)
+11, ampm);

sendto(sd, message, strlen(message)+1, 0, \
(struct sockaddr *) &servAddr, sizeof
(servAddr));

}
}

setutent();

old_len = 0;
while((upt_var = getutent()) != NULL){

if(upt_var->ut_type == USER_PROCESS){
memcpy((struct utmp *)&old_utmp[old_len], \

upt_var,
sizeof(struct utmp));

flags[old_len] = -1;
old_len = old_len + 1;

}
}

endutent();
sleep(2);
}

close(sd);
exit(0);

}
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C.3 HTML and CGI files

C.3.1 The try1.html file used in Chapter 8

This is an example HTML file, with a line of text, a hyperlink, and an
embedded picture.

<html>
<head>
<title>An Example HTML File</title>
</head>
<body>
<p>This is a text line.</p>
<p><a href="usage/index.html">This is a hyperlink</a>.

</p>
<p>Here is an embedded picture:
<img border="0" src="mypic.gif" width="164"

height="123"></p>
</body>
</html>

C.3.2 The try2.html file used in Chapter 8

This is a HTML form, with which a user can send data to the web server,
and to invoke the CGI script on the server to handle the data.

<html>
<head>
<TITLE>An Exsample HTML FORM</TITLE>
</head>

<body>
<p>
<p>
<hr>
<FORM ACTION="/cgi-bin/hello.pl" METHOD="GET">
Type you name:
<p> <INPUT TYPE="TEXT" NAME="name">
<p> <INPUT TYPE="SUBMIT">
</FORM>
<hr>
</body>
</html>

C.3.3 The hello.pl CGI script used in Chapter 8

This CGI script reads a text string, and returns a HTML file with the line
“This is the data you entered: string!”. The script is written in Perl.
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#!/usr/bin/perl

print "Content-type: text/html\r\n\r\n";
print "<html><head><title>CGI Response</title>
</head>\r\n";

print "<hr>\r\n";
print "<p>\r\n";
print "The data received by the server is:\r\n";
print "<p>\r\n";
print "$ENV{’QUERY_STRING’}\r\n";
print "<p>\r\n";
print "<hr>\r\n";
print "</body></html>\r\n";

In Solaris, change the first line to “#!/usr/local/bin/perl”.

C.4 Socket programming source codes

C.4.1 UDPserver.c
/////////////////////////////////////////////////////
// UDPserver.c -- Sockets that use UDP datagrams //
// //
// Written by Dr Shiwen Mao, Polytechnic Univ. //
// December 2003. //
/////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define BUFFLEN 100

int main(int argc, char* argv[])
{
int sockserver;
struct sockaddr_in server_addr;
struct sockaddr_in client_addr;
int addr_len, sendlen, rcvdlen;
char buf[BUFFLEN];

if(argc !=2){
printf("Usage: UDPserver server_port \n");
exit(1);

}
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// Create the UDP server socket
if ((sockserver = socket(AF_INET, SOCK_DGRAM,

0))==-1){
printf("Error in creating UDP socket.\n");
exit(1);

}

// Set the server socket address
server_addr.sin_family = AF_INET;
server_addr.sin_port = atoi(argv[1]);
server_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(server_addr.sin_zero), ’\0’, 8);

// Associate the server socket address with the
server socket

if (bind(sockserver, (struct sockaddr *)
&server_addr, \

sizeof(struct sockaddr))
==-1){

printf("Error in binding the socket address.\n");
exit(1);

}

while(1){
// Receive a message from the UDP client socket
addr_len = sizeof(struct sockaddr);
if ((rcvdlen=recvfrom(sockserver,buf, BUFFLEN-1,

0, \
(struct sockaddr *)&client_addr, &addr_len))
== -1) {
printf("Error in recvfrom.\n");
exit(1);

}
printf("got a %i byte packet from client %s\n", \

rcvdlen,inet_ntoa
(client_addr.sin_addr));

buf[rcvdlen] = ’\0’;
printf("message: %s\n",buf);

// Return the message to the client
if ((sendlen=sendto(sockserver, buf, rcvdlen, 0, \

(struct sockaddr *)&client_addr, \
sizeof(struct sockaddr)))==-1){

printf("Error in sendto.\n");
exit(1);

}
printf("returned %d bytes to client %s\n",
sendlen,\

inet_ntoa
(client_addr.sin_addr));

printf("message: %s\n\n", buf);
}

return 0;
}
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C.4.2 UDPclient.c
/////////////////////////////////////////////////////
// UDPclient.c -- Sockets that use UDP datagrams //
// //
// Written by Dr Shiwen Mao, Polytechnic Univ. //
// December 2003. //
/////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define BUFFLEN 100

int main(int argc, char *argv[])
{
int sockclient;
struct sockaddr_in server_addr;
struct hostent *hent;
int sendlen,rcvdlen,addrlen;
char buf[BUFFLEN];

if (argc != 4) {
printf("Usage: UDPclient server_ip server_port
message\n");
exit(1);

}

// Get the UDP server’s IP address
if ((hent=gethostbyname(argv[1])) == NULL) {

printf("Error in gethostbyname.\n");
exit(1);

}

// Create the UDP client socket
if ((sockclient = socket(AF_INET, SOCK_DGRAM, 0))
== -1) {
printf("Error in creating UDP socket.\n");
exit(1);

}

// Set the UDP server’s address
server_addr.sin_family = AF_INET;
server_addr.sin_port = atoi(argv[2]);
server_addr.sin_addr = *((struct in_addr *)
hent->h_addr);

memset(&(server_addr.sin_zero), ’\0’, 8);

// Send the message to the UDP server
if ((sendlen=sendto(sockclient, argv[3],
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strlen(argv[3]), \
0, (struct sockaddr *)
&server_addr, \

sizeof(struct sockaddr)))
==-1){

printf("Error in sendto.\n");
exit(1);

}
printf("sent %d bytes to %s\n", \

sendlen, inet_ntoa
(server_addr.sin_addr));

printf("message: %s\n\n", argv[3]);

// Receive the returned message from the server
if ((rcvdlen=recvfrom(sockclient,buf, BUFFLEN-1,
0, \

(struct sockaddr *)&server_addr, &addrlen))
== -1){

printf("Error in recvfrom.\n");
exit(1);

}
printf("received %d bytes from server %s\n",
rcvdlen, \

inet_ntoa
(server_addr.sin_addr));

buf[rcvdlen] = ’\0’;
printf("received message: %s\n", buf);

// Shutdown the UDP client socket
close(sockclient);

return 0;
}

C.4.3 TCPserver.c
/////////////////////////////////////////////////////
// TCPserver.c -- A TCP server socket //
// //
// Written by Dr Shiwen Mao, Polytechnic Univ. //
// December 2003. //
/////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define BACKLOG 10
#define BUFFLEN 100

int main(int argc, char *argv[])
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{
int sockserver, sockclient;
struct sockaddr_in server_addr, client_addr;
int sockin_size;
int sendlen, rcvdlen;
char buf[BUFFLEN];

if (argc != 2){
printf("Usage: TCPserver server_port\n");
exit(1);

}

// Create the TCP server socket
if ((sockserver = socket(AF_INET, SOCK_STREAM, 0))
== -1) {
printf("Error in creating the server socket.\n");
exit(1);

}

// Set the server socket address
server_addr.sin_family = AF_INET;
server_addr.sin_port = atoi(argv[1]);
server_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(server_addr.sin_zero), ’\0’, 8);

// Associate the server address with the
server socket

if (bind(sockserver, (struct sockaddr *)
&server_addr, \

sizeof(struct sockaddr)) == -1) {
printf("Error in bind.\n");
exit(1);

}

// Waiting for client requests
if (listen(sockserver, BACKLOG) == -1) {

printf("Error in listen.\n");
exit(1);

}

while(1) {
// Accept a client connection request
sockin_size = sizeof(struct sockaddr_in);
if ((sockclient = accept(sockserver, \

(struct sockaddr *)&client_addr, \
&sockin_size)) == -1) {

printf("Error in accept.\n");
continue;

}
printf("TCP server: connection request from
%s\n", \

inet_ntoa
(client_addr.sin_addr));

// Receive a message from the connected client
if ((rcvdlen=recv(sockclient, buf, BUFFLEN-1, 0))
==-1){
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printf("Error in recv.\n");
continue;

}
buf[rcvdlen] = ’\0’;
printf("Received from client: %s\n", buf);

// Return the message to the client
if ((sendlen=send(sockclient, buf, rcvdlen, 0))
== -1){
printf("Error in send.\n");
continue;

}
printf("Sent to client: %s\n\n", buf);

// Close the client socket, terminate the TCP
connection.

close(sockclient);
}

return 0;
}

C.4.4 TCPclient.c
/////////////////////////////////////////////////////
// TCPclient.c -- A TCP client socket //
// //
// Written by Dr Shiwen Mao, Polytechnic Univ. //
// December 2003. //
/////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define BUFFLEN 100

int main(int argc, char *argv[])
{
int sockserver;
struct hostent *hent;
struct sockaddr_in server_addr;
int sendlen, rcvdlen;
char buf[BUFFLEN];

if (argc != 4) {
printf("Usage: TCPclient server_ip server_port
message\n");
exit(1);

}

// Get the TCP server’s IP address
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if ((hent=gethostbyname(argv[1])) == NULL) {
printf("Error in gethostbyname.\n");
exit(1);

}

// Create the TCP client socket
if ((sockserver = socket(AF_INET, SOCK_STREAM, 0))
== -1){
printf("Error in creating the socket.\n");
exit(1);

}

// Set the server socket address
server_addr.sin_family = AF_INET;
server_addr.sin_port = atoi(argv[2]);
server_addr.sin_addr = *((struct in_addr *)
hent->h_addr);

memset(&(server_addr.sin_zero), ’\0’, 8);

// Connect to the above server socket
if (connect(sockserver, (struct sockaddr *)
&server_addr, \

sizeof(struct sockaddr))
== -1) {

printf("Error in connect.\n");
exit(1);

}

// Send a message to the TCP server
if ((sendlen=send(sockserver, argv[3],
strlen(argv[3]), 0))==-1){
printf("Error in send.\n");
exit(1);

}
printf("Sent to server: %s\n", argv[3]);

// Receive the returned message from the server
if ((rcvdlen=recv(sockserver, buf, BUFFLEN-1, 0))
== -1) {
printf("Error in recv.\n");
exit(1);

}
buf[rcvdlen] = ’\0’;
printf("Received from server: %s\n",buf);

// Close the TCP client socket
close(sockserver);
return 0;

}
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