
Flex� version ���

A fast scanner generator
Edition ���� March ����

Vern Paxson

Copyright c� ���� The Regents of the University of California� All rights reserved�

This code is derived from software contributed to Berkeley by Vern Paxson�

The United States Government has rights in this work pursuant to contract no� DE�AC�	�

�SF����� between the United States Department of Energy and the University of California�

Redistribution and use in source and binary forms are permitted provided that
 ��� source distri�

butions retain this entire copyright notice and comment� and ��� distributions including binaries

display the following acknowledgement
 �This product includes software developed by the Univer�

sity of California� Berkeley and its contributors� in the documentation or other materials provided

with the distribution and in all advertising materials mentioning features or use of this software�

Neither the name of the University nor the names of its contributors may be used to endorse or

promote products derived from this software without speci�c prior written permission�

THIS SOFTWARE IS PROVIDED �AS IS� AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES� INCLUDING� WITHOUT LIMITATION� THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE�

�

��� Name

�ex � fast lexical analyzer generator

��� Synopsis

flex ��bcdfhilnpstvwBFILTV���� �C�aefFmr� �ooutput �Pprefix �Sskeleton�
���help ��version� ��lename � � ��

��� Overview

This manual describes flex� a tool for generating programs that perform pattern�matching on

text� The manual includes both tutorial and reference sections

Description

a brief overview of the tool

Some Simple Examples

Format Of The Input File

Patterns the extended regular expressions used by �ex

How The Input Is Matched

the rules for determining what has been matched

Actions how to specify what to do when a pattern is matched

The Generated Scanner

details regarding the scanner that �ex produces� how to control the input source

Start Conditions

introducing context into your scanners� and managing �mini�scanners�

Multiple Input Bu�ers

how to manipulate multiple input sources� how to scan from strings instead of �les

End�of��le Rules

special rules for matching the end of the input

Miscellaneous Macros

a summary of macros available to the actions

Values Available To The User

a summary of values available to the actions

�

Interfacing With Yacc

connecting �ex scanners together with yacc parsers

Options �ex command�line options� and the ��option� directive

Performance Considerations

how to make your scanner go as fast as possible

Generating C�� Scanners

the �experimental� facility for generating C�� scanner classes

Incompatibilities With Lex And POSIX

how �ex di�ers from AT�T lex and the POSIX lex standard

Diagnostics

those error messages produced by �ex �or scanners it generates� whose meanings might

not be apparent

Files �les used by �ex

De�ciencies � Bugs

known problems with �ex

See Also other documentation� related tools

Author includes contact information

��� Description

flex is a tool for generating scanners
 programs which recognized lexical patterns in text� flex

reads the given input �les� or its standard input if no �le names are given� for a description of a

scanner to generate� The description is in the form of pairs of regular expressions and C code� called

rules� flex generates as output a C source �le� �lex	yy	c�� which de�nes a routine �yylex
��� This

�le is compiled and linked with the ��lfl� library to produce an executable� When the executable

is run� it analyzes its input for occurrences of the regular expressions� Whenever it �nds one� it

executes the corresponding C code�

��� Some simple examples

First some simple examples to get the �avor of how one uses flex� The following flex input

speci�es a scanner which whenever it encounters the string �username� will replace it with the

user�s login name

	

��
username printf
 ��s�
 getlogin
� ��

By default� any text not matched by a flex scanner is copied to the output� so the net e�ect of

this scanner is to copy its input �le to its output with each occurrence of �username� expanded�

In this input� there is just one rule� �username� is the pattern and the �printf� is the action� The

���� marks the beginning of the rules�

Here�s another simple example

int num�lines � �
 num�chars � ��

��
�n ��num�lines� ��num�chars�
	 ��num�chars�

��
main
�

�
yylex
��
printf
 �� of lines � �d
 � of chars � �d�n�

num�lines
 num�chars ��
�

This scanner counts the number of characters and the number of lines in its input �it produces no

output other than the �nal report on the counts�� The �rst line declares two globals� �num lines�

and �num chars�� which are accessible both inside �yylex
�� and in the �main
�� routine declared

after the second ����� There are two rules� one which matches a newline ���n�� and increments

both the line count and the character count� and one which matches any character other than a

newline �indicated by the ��� regular expression��

A somewhat more complicated example

�� scanner for a toy Pascal�like language ��

��
�� need this for the call to atof
� below ��
�include �math	h�
��

DIGIT �����
ID �a�z��a�z�����

��

�

�DIGIT�� �
printf
 �An integer� �s
�d��n�
 yytext

atoi
 yytext � ��
�

�DIGIT���	��DIGIT�� �
printf
 �A float� �s
�g��n�
 yytext

atof
 yytext � ��
�

if�then�begin�end�procedure�function �
printf
 �A keyword� �s�n�
 yytext ��
�

�ID� printf
 �An identifier� �s�n�
 yytext ��

��������������� printf
 �An operator� �s�n�
 yytext ��

�������n����� �� eat up one�line comments ��

� �t�n�� �� eat up whitespace ��

	 printf
 �Unrecognized character� �s�n�
 yytext ��

��

main
 argc
 argv �
int argc�
char ��argv�

�
��argv
 ��argc� �� skip over program name ��
if
 argc � � �

yyin � fopen
 argv���
 �r� ��
else

yyin � stdin�

yylex
��
�

This is the beginnings of a simple scanner for a language like Pascal� It identi�es di�erent types

of tokens and reports on what it has seen�

The details of this example will be explained in the following sections�

�

��� Format of the input 	le

The flex input �le consists of three sections� separated by a line with just ���� in it

definitions
��
rules
��
user code

The de�nitions section contains declarations of simple name de�nitions to simplify the scanner

speci�cation� and declarations of start conditions� which are explained in a later section� Name

de�nitions have the form

name definition

The �name� is a word beginning with a letter or an underscore �� �� followed by zero or more

letters� digits� � �� or ��� �dash�� The de�nition is taken to begin at the �rst non�white�space character

following the name and continuing to the end of the line� The de�nition can subsequently be referred

to using ��name��� which will expand to ��de�nition��� For example�

DIGIT �����
ID �a�z��a�z�����

de�nes �DIGIT� to be a regular expression which matches a single digit� and �ID� to be a regular

expression which matches a letter followed by zero�or�more letters�or�digits� A subsequent reference

to

�DIGIT���	��DIGIT��

is identical to

��������	�
�������

and matches one�or�more digits followed by a ��� followed by zero�or�more digits�

The rules section of the flex input contains a series of rules of the form

pattern action

�

where the pattern must be unindented and the action must begin on the same line�

See below for a further description of patterns and actions�

Finally� the user code section is simply copied to �lex	yy	c� verbatim� It is used for companion

routines which call or are called by the scanner� The presence of this section is optional� if it is

missing� the second ���� in the input �le may be skipped� too�

In the de�nitions and rules sections� any indented text or text enclosed in ���� and ���� is copied

verbatim to the output �with the ������s removed�� The ������s must appear unindented on lines

by themselves�

In the rules section� any indented or ��� text appearing before the �rst rule may be used to

declare variables which are local to the scanning routine and �after the declarations� code which

is to be executed whenever the scanning routine is entered� Other indented or ��� text in the

rule section is still copied to the output� but its meaning is not well�de�ned and it may well cause

compile�time errors �this feature is present for POSIX compliance� see below for other such features��

In the de�nitions section �but not in the rules section�� an unindented comment �i�e�� a line

beginning with ����� is also copied verbatim to the output up to the next �����

��
 Patterns

The patterns in the input are written using an extended set of regular expressions� These are

�x� match the character �x�

�	� any character �byte� except newline

��xyz�� a �character class�� in this case� the pattern matches either an �x�� a �y�� or a �z�

��abj�oZ��

a �character class� with a range in it� matches an �a�� a �b�� any letter from �j� through

�o�� or a �Z�

���A�Z�� a �negated character class�� i�e�� any character but those in the class� In this case� any

character EXCEPT an uppercase letter�

���A�Z�n��

any character EXCEPT an uppercase letter or a newline

�r�� zero or more r�s� where r is any regular expression

�r�� one or more r�s

�r�� zero or one r�s �that is� �an optional r��

�r��
��� anywhere from two to �ve r�s

�r��
�� two or more r�s

�r� �� exactly � r�s

��name�� the expansion of the �name� de�nition �see above�

���xyz���foo��

the literal string
 ��xyz��foo�

��x� if x is an �a�� �b�� �f�� �n�� �r�� �t�� or �v�� then the ANSI�C interpretation of �x� Otherwise�

a literal �x� �used to escape operators such as ����

���� a NUL character �ASCII code ��

��!�"� the character with octal value ��	

��x�a� the character with hexadecimal value �a

�
r�� match an r� parentheses are used to override precedence �see below�

�rs� the regular expression r followed by the regular expression s� called �concatenation�

�r�s� either an r or an s

�r�s� an r but only if it is followed by an s� The text matched by s is included when

determining whether this rule is the longest match� but is then returned to the input

before the action is executed� So the action only sees the text matched by r� This type

of pattern is called trailing context� �There are some combinations of �r�s� that flex

cannot match correctly� see notes in the De�ciencies � Bugs section below regarding

�dangerous trailing context���

��r� an r� but only at the beginning of a line �i�e�� which just starting to scan� or right after

a newline has been scanned��

�r#� an r� but only at the end of a line �i�e�� just before a newline�� Equivalent to �r��n��

Note that �ex�s notion of �newline� is exactly whatever the C compiler used to compile

�ex interprets ��n� as� in particular� on some DOS systems you must either �lter out

�r�s in the input yourself� or explicitly use r��r�n for �r���

��s�r� an r� but only in start condition s �see below for discussion of start conditions�

�s��s��s��r same� but in any of start conditions s�� s�� or s�

����r� an r in any start condition� even an exclusive one�

���EOF��� an end�of��le �s��s����EOF�� an end�of��le when in start condition s� or s�

�

Note that inside of a character class� all regular expression operators lose their special meaning

except escape ����� and the character class operators� ���� ���� and� at the beginning of the class� ����

The regular expressions listed above are grouped according to precedence� from highest prece�

dence at the top to lowest at the bottom� Those grouped together have equal precedence� For

example�

foo�bar�

is the same as

foo��
ba
r���

since the ��� operator has higher precedence than concatenation� and concatenation higher than

alternation ������ This pattern therefore matches either the string �foo� or the string �ba� followed

by zero�or�more r�s� To match �foo� or zero�or�more �bar��s� use

foo�
bar��

and to match zero�or�more �foo��s�or��bar��s

foo�bar��

In addition to characters and ranges of characters� character classes can also contain character

class expressions� These are expressions enclosed inside ���
 and ���� delimiters �which themselves

must appear between the ��� and ��� of the character class� other elements may occur inside the

character class� too�� The valid expressions are

��alnum�� ��alpha�� ��blank��
��cntrl�� ��digit�� ��graph��
��lower�� ��print�� ��punct��
��space�� ��upper�� ��xdigit��

These expressions all designate a set of characters equivalent to the corresponding standard

C �isXXX� function� For example� ���alnum��� designates those characters for which �isalnum
��

returns true � i�e�� any alphabetic or numeric� Some systems don�t provide �isblank
��� so �ex

de�nes ���blank��� as a blank or a tab�

For example� the following character classes are all equivalent

�

���alnum���
���alpha����digit��
���alpha������
�a�zA�Z����

If your scanner is case�insensitive �the ��i� �ag�� then ���upper��� and ���lower��� are equiva�

lent to ���alpha����

Some notes on patterns

� A negated character class such as the example ���A�Z�� above will match a newline unless ��n�

�or an equivalent escape sequence� is one of the characters explicitly present in the negated

character class �e�g�� ���A�Z�n���� This is unlike how many other regular expression tools

treat negated character classes� but unfortunately the inconsistency is historically entrenched�

Matching newlines means that a pattern like ����� can match the entire input unless there�s

another quote in the input�

� A rule can have at most one instance of trailing context �the ��� operator or the ��� operator��

The start condition� ���� and ���EOF��� patterns can only occur at the beginning of a pattern�

and� as well as with ��� and ���� cannot be grouped inside parentheses� A ��� which does not

occur at the beginning of a rule or a ��� which does not occur at the end of a rule loses its

special properties and is treated as a normal character�

The following are illegal

foo�bar#
�sc!�foo�sc��bar

Note that the �rst of these� can be written �foo�bar�n��

The following will result in ��� or ��� being treated as a normal character

foo�
bar#�
foo��bar

If what�s wanted is a �foo� or a bar�followed�by�a�newline� the following could be used �the

special ��� action is explained below�

foo �
bar# �� action goes here ��

A similar trick will work for matching a foo or a bar�at�the�beginning�of�a�line�

��� How the input is matched

When the generated scanner is run� it analyzes its input looking for strings which match any of

its patterns� If it �nds more than one match� it takes the one matching the most text �for trailing

��

context rules� this includes the length of the trailing part� even though it will then be returned to

the input�� If it �nds two or more matches of the same length� the rule listed �rst in the flex input

�le is chosen�

Once the match is determined� the text corresponding to the match �called the token� is made

available in the global character pointer yytext� and its length in the global integer yyleng� The

action corresponding to the matched pattern is then executed �a more detailed description of actions

follows�� and then the remaining input is scanned for another match�

If no match is found� then the default rule is executed
 the next character in the input is

considered matched and copied to the standard output� Thus� the simplest legal flex input is

��

which generates a scanner that simply copies its input �one character at a time� to its output�

Note that yytext can be de�ned in two di�erent ways
 either as a character pointer or as

a character array� You can control which de�nition flex uses by including one of the special

directives ��pointer� or ��array� in the �rst �de�nitions� section of your �ex input� The default is

��pointer�� unless you use the ��l� lex compatibility option� in which case yytext will be an array�

The advantage of using ��pointer� is substantially faster scanning and no bu�er over�ow when

matching very large tokens �unless you run out of dynamic memory�� The disadvantage is that

you are restricted in how your actions can modify yytext �see the next section�� and calls to the

�unput
�� function destroys the present contents of yytext� which can be a considerable porting

headache when moving between di�erent lex versions�

The advantage of ��array� is that you can then modify yytext to your heart�s content� and calls

to �unput
�� do not destroy yytext �see below�� Furthermore� existing lex programs sometimes

access yytext externally using declarations of the form

extern char yytext���

This de�nition is erroneous when used with ��pointer�� but correct for ��array��

��array� de�nes yytext to be an array of YYLMAX characters� which defaults to a fairly large

value� You can change the size by simply de�ne�ing YYLMAX to a di�erent value in the �rst

section of your flex input� As mentioned above� with ��pointer� yytext grows dynamically to

accommodate large tokens� While this means your ��pointer� scanner can accommodate very large

tokens �such as matching entire blocks of comments�� bear in mind that each time the scanner must

��

resize yytext it also must rescan the entire token from the beginning� so matching such tokens can

prove slow� yytext presently does not dynamically grow if a call to �unput
�� results in too much

text being pushed back� instead� a run�time error results�

Also note that you cannot use ��array� with C�� scanner classes �the c�� option� see below��

��� Actions

Each pattern in a rule has a corresponding action� which can be any arbitrary C statement� The

pattern ends at the �rst non�escaped whitespace character� the remainder of the line is its action�

If the action is empty� then when the pattern is matched the input token is simply discarded� For

example� here is the speci�cation for a program which deletes all occurrences of �zap me� from its

input

��
�zap me�

�It will copy all other characters in the input to the output since they will be matched by the

default rule��

Here is a programwhich compresses multiple blanks and tabs down to a single blank� and throws

away whitespace found at the end of a line

��
� �t�� putchar
 $ $ ��
� �t��# �� ignore this token ��

If the action contains a ���� then the action spans till the balancing ��� is found� and the action

may cross multiple lines� flex knows about C strings and comments and won�t be fooled by braces

found within them� but also allows actions to begin with ���� and will consider the action to be all

the text up to the next ���� �regardless of ordinary braces inside the action��

An action consisting solely of a vertical bar ����� means �same as the action for the next rule��

See below for an illustration�

Actions can include arbitrary C code� including return statements to return a value to whatever

routine called �yylex
��� Each time �yylex
�� is called it continues processing tokens from where

it last left o� until it either reaches the end of the �le or executes a return�

��

Actions are free to modify yytext except for lengthening it �adding characters to its end!these

will overwrite later characters in the input stream�� This however does not apply when using

��array� �see above�� in that case� yytext may be freely modi�ed in any way�

Actions are free to modify yyleng except they should not do so if the action also includes use

of �yymore
�� �see below��

There are a number of special directives which can be included within an action

� �ECHO� copies yytext to the scanner�s output�

� BEGIN followed by the name of a start condition places the scanner in the corresponding start

condition �see below��

� REJECT directs the scanner to proceed on to the �second best� rule which matched the input

�or a pre�x of the input�� The rule is chosen as described above in �How the Input is Matched��

and yytext and yyleng set up appropriately� It may either be one which matched as much

text as the originally chosen rule but came later in the flex input �le� or one which matched

less text� For example� the following will both count the words in the input and call the routine

special�� whenever �frob� is seen

int word�count � ��
��

frob special
�� REJECT�
�� �t�n�� ��word�count�

Without the REJECT� any �frob��s in the input would not be counted as words� since the

scanner normally executes only one action per token� Multiple REJECT$s are allowed� each

one �nding the next best choice to the currently active rule� For example� when the following

scanner scans the token �abcd�� it will write �abcdabcaba� to the output

��
a �
ab �
abc �
abcd ECHO� REJECT�
	��n �� eat up any unmatched character ��

�The �rst three rules share the fourth�s action since they use the special ��� action�� REJECT

is a particularly expensive feature in terms of scanner performance� if it is used in any of the

scanner�s actions it will slow down all of the scanner�s matching� Furthermore� REJECT cannot

be used with the ��Cf� or ��CF� options �see below��

Note also that unlike the other special actions� REJECT is a branch� code immediately following

it in the action will not be executed�

� �yymore
�� tells the scanner that the next time it matches a rule� the corresponding token

�	

should be appended onto the current value of yytext rather than replacing it� For example�

given the input �mega�kludge� the following will write �mega�mega�kludge� to the output

��
mega� ECHO� yymore
��
kludge ECHO�

First �mega�� is matched and echoed to the output� Then �kludge� is matched� but the

previous �mega�� is still hanging around at the beginning of yytext so the �ECHO� for the

�kludge� rule will actually write �mega�kludge��

Two notes regarding use of �yymore
��� First� �yymore
�� depends on the value of yyleng

correctly re�ecting the size of the current token� so you must not modify yyleng if you are using

�yymore
��� Second� the presence of �yymore
�� in the scanner�s action entails a minor performance

penalty in the scanner�s matching speed�

� �yyless
n�� returns all but the �rst n characters of the current token back to the input stream�

where they will be rescanned when the scanner looks for the next match� yytext and yyleng

are adjusted appropriately �e�g�� yyleng will now be equal to n �� For example� on the input

�foobar� the following will write out �foobarbar�

��
foobar ECHO� yyless
"��
�a�z�� ECHO�

An argument of � to yyless will cause the entire current input string to be scanned again�

Unless you�ve changed how the scanner will subsequently process its input �using BEGIN� for

example�� this will result in an endless loop�

Note that yyless is a macro and can only be used in the �ex input �le� not from other source

�les�

� �unput
c�� puts the character c back onto the input stream� It will be the next character

scanned� The following action will take the current token and cause it to be rescanned enclosed

in parentheses�

�
int i�
�� Copy yytext because unput
� trashes yytext ��
char �yycopy � strdup
 yytext ��
unput
 $�$ ��
for
 i � yyleng � !� i �� �� ��i �

unput
 yycopy�i� ��
unput
 $
$ ��
free
 yycopy ��
�

Note that since each �unput
�� puts the given character back at the beginning of the input

stream� pushing back strings must be done back�to�front� An important potential problem

when using �unput
�� is that if you are using ��pointer� �the default�� a call to �unput
��

��

destroys the contents of yytext� starting with its rightmost character and devouring one

character to the left with each call� If you need the value of yytext preserved after a call to

�unput
�� �as in the above example�� you must either �rst copy it elsewhere� or build your

scanner using ��array� instead �see How The Input Is Matched��

Finally� note that you cannot put back EOF to attempt to mark the input stream with an

end�of��le�

� �input
�� reads the next character from the input stream� For example� the following is one

way to eat up C comments

��
���� �

register int c�

for
 � � �
�
while

c � input
�� %� $�$ &&

c %� EOF �
� �� eat up text of comment ��

if
 c �� $�$ �
�
while

c � input
�� �� $�$ �

�
if
 c �� $�$ �

break� �� found the end ��
�

if
 c �� EOF �
�
error
 �EOF in comment� ��
break�
�

�
�

�Note that if the scanner is compiled using �C���� then �input
�� is instead referred to as

�yyinput
��� in order to avoid a name clash with the �C��� stream by the name of input��

� YY FLUSH BUFFER �ushes the scanner�s internal bu�er so that the next time the scanner

attempts to match a token� it will �rst re�ll the bu�er using YY�INPUT �see The Generated

Scanner� below�� This action is a special case of the more general �yy�flush�buffer
�� func�

tion� described below in the section Multiple Input Bu�ers�

� �yyterminate
�� can be used in lieu of a return statement in an action� It terminates the scan�

ner and returns a � to the scanner�s caller� indicating �all done�� By default� �yyterminate
��

is also called when an end�of��le is encountered� It is a macro and may be rede�ned�

��

���� The generated scanner

The output of flex is the �le �lex	yy	c�� which contains the scanning routine �yylex
��� a

number of tables used by it for matching tokens� and a number of auxiliary routines and macros�

By default� �yylex
�� is declared as follows

int yylex
�
�
� � � various definitions and the actions in here � � �

�

�If your environment supports function prototypes� then it will be �int yylex� void ���� This

de�nition may be changed by de�ning the �YY DECL� macro� For example� you could use

�define YY�DECL float lexscan
 a
 b � float a
 b�

to give the scanning routine the name lexscan� returning a �oat� and taking two �oats as

arguments� Note that if you give arguments to the scanning routine using a K�R�style�non�

prototyped function declaration� you must terminate the de�nition with a semi�colon ������

Whenever �yylex
�� is called� it scans tokens from the global input �le yyin �which defaults to

stdin�� It continues until it either reaches an end�of��le �at which point it returns the value �� or

one of its actions executes a return statement�

If the scanner reaches an end�of��le� subsequent calls are unde�ned unless either yyin is pointed

at a new input �le �in which case scanning continues from that �le�� or �yyrestart
�� is called�

�yyrestart
�� takes one argument� a �FILE �� pointer �which can be nil� if you�ve set up YY�INPUT

to scan from a source other than yyin�� and initializes yyin for scanning from that �le� Essentially

there is no di�erence between just assigning yyin to a new input �le or using �yyrestart
�� to

do so� the latter is available for compatibility with previous versions of flex� and because it can

be used to switch input �les in the middle of scanning� It can also be used to throw away the

current input bu�er� by calling it with an argument of yyin� but better is to use YY�FLUSH�BUFFER

�see above�� Note that �yyrestart
�� does not reset the start condition to INITIAL �see Start

Conditions� below��

If �yylex
�� stops scanning due to executing a return statement in one of the actions� the

scanner may then be called again and it will resume scanning where it left o��

By default �and for purposes of e"ciency�� the scanner uses block�reads rather than simple

�getc
�� calls to read characters from yyin� The nature of how it gets its input can be controlled by

��

de�ning the YY�INPUTmacro� YY INPUT�s calling sequence is �YY INPUT�buf�result�max size���

Its action is to place up to max size characters in the character array buf and return in the integer

variable result either the number of characters read or the constant YY NULL �� on Unix systems�

to indicate EOF� The default YY INPUT reads from the global �le�pointer �yyin��

A sample de�nition of YY INPUT �in the de�nitions section of the input �le�

��
�define YY�INPUT
buf
result
max�size� �

� �
int c � getchar
�� �
result �
c �� EOF� � YY�NULL �
buf��� � c
 !�� �
�

��

This de�nition will change the input processing to occur one character at a time�

When the scanner receives an end�of��le indication from YY INPUT� it then checks the

�yywrap
�� function� If �yywrap
�� returns false �zero�� then it is assumed that the function

has gone ahead and set up yyin to point to another input �le� and scanning continues� If it returns

true �non�zero�� then the scanner terminates� returning � to its caller� Note that in either case� the

start condition remains unchanged� it does not revert to INITIAL�

If you do not supply your own version of �yywrap
��� then you must either use ��option

noyywrap� �in which case the scanner behaves as though �yywrap
�� returned ��� or you must

link with ��lfl� to obtain the default version of the routine� which always returns ��

Three routines are available for scanning from in�memorybu�ers rather than �les
 �yy�scan�string
���

�yy�scan�bytes
��� and �yy�scan�buffer
��� See the discussion of them below in the section Mul�

tiple Input Bu�ers�

The scanner writes its �ECHO� output to the yyout global �default� stdout�� which may be rede�

�ned by the user simply by assigning it to some other FILE pointer�

���� Start conditions

flex provides a mechanism for conditionally activating rules� Any rule whose pattern is pre�xed

with ��sc�� will only be active when the scanner is in the start condition named �sc�� For example�

�

�STRING������ � �� eat up the string body 			 ��
� � �

�

will be active only when the scanner is in the �STRING� start condition� and

�INITIAL
STRING
QUOTE��	 � �� handle an escape 			 ��
� � �

�

will be active only when the current start condition is either �INITIAL�� �STRING�� or �QUOTE��

Start conditions are declared in the de�nitions ��rst� section of the input using unindented lines

beginning with either ��s� or ��x� followed by a list of names� The former declares inclusive start

conditions� the latter exclusive start conditions� A start condition is activated using the BEGIN

action� Until the next BEGIN action is executed� rules with the given start condition will be active

and rules with other start conditions will be inactive� If the start condition is inclusive� then rules

with no start conditions at all will also be active� If it is exclusive� then only rules quali�ed with

the start condition will be active� A set of rules contingent on the same exclusive start condition

describe a scanner which is independent of any of the other rules in the flex input� Because of

this� exclusive start conditions make it easy to specify �mini�scanners� which scan portions of the

input that are syntactically di�erent from the rest �e�g�� comments��

If the distinction between inclusive and exclusive start conditions is still a little vague� here�s a

simple example illustrating the connection between the two� The set of rules

�s example
��

�example�foo do�something
��

bar something�else
��

is equivalent to

�x example
��

�example�foo do�something
��

�INITIAL
example�bar something�else
��

��

Without the ��INITIAL
example�� quali�er� the �bar� pattern in the second example wouldn�t

be active �i�e�� couldn�t match� when in start condition �example�� If we just used ��example�� to

qualify �bar�� though� then it would only be active in �example� and not in INITIAL� while in the

�rst example it�s active in both� because in the �rst example the �example� starting condition is an

inclusive ���s�� start condition�

Also note that the special start�condition speci�er ����� matches every start condition� Thus�

the above example could also have been written�

�x example
��

�example�foo do�something
��

���bar something�else
��

The default rule �to �ECHO� any unmatched character� remains active in start conditions� It is

equivalent to

���	���n ECHO�

�BEGIN
��� returns to the original state where only the rules with no start conditions are ac�

tive� This state can also be referred to as the start�condition �INITIAL�� so �BEGIN
INITIAL�� is

equivalent to �BEGIN
���� �The parentheses around the start condition name are not required but

are considered good style��

BEGIN actions can also be given as indented code at the beginning of the rules section� For

example� the following will cause the scanner to enter the �SPECIAL� start condition whenever

�yylex
�� is called and the global variable enter�special is true

int enter�special�

�x SPECIAL
��

if
 enter�special �
BEGIN
SPECIAL��

�SPECIAL�blahblahblah
� � �more rules follow� � �

To illustrate the uses of start conditions� here is a scanner which provides two di�erent interpre�

tations of a string like ���	������ By default it will treat it as as three tokens� the integer ���	��

��

a dot ������ and the integer ������ But if the string is preceded earlier in the line by the string

�expect��oats� it will treat it as a single token� the �oating�point number ��	����

��
�include �math	h�
��
�s expect

��
expect�floats BEGIN
expect��

�expect��������	������� �
printf
 �found a float
 � �f�n�

atof
 yytext � ��
�

�expect��n �
�� that$s the end of the line
 so
� we need another �expect�number�
� before we$ll recognize any more
� numbers
��
BEGIN
INITIAL��
�

������ �

Version �	� December !�� !�

printf
 �found an integer
 � �d�n�

atoi
 yytext � ��

�

�	� printf
 �found a dot�n� ��

Here is a scanner which recognizes �and discards� C comments while maintaining a count of the

current input line�

�x comment
��

int line�num � !�

���� BEGIN
comment��

�comment�����n�� �� eat anything that$s not a $�$ ��
�comment����������n�� �� eat up $�$s not followed by $�$s ��
�comment��n ��line�num�
�comment�������� BEGIN
INITIAL��

��

This scanner goes to a bit of trouble to match as much text as possible with each rule� In

general� when attempting to write a high�speed scanner try to match as much possible in each rule�

as it�s a big win�

Note that start�conditions names are really integer values and can be stored as such� Thus� the

above could be extended in the following fashion

�x comment foo
��

int line�num � !�
int comment�caller�

���� �
comment�caller � INITIAL�
BEGIN
comment��
�

� � �

�foo����� �
comment�caller � foo�
BEGIN
comment��
�

�comment�����n�� �� eat anything that$s not a $�$ ��
�comment����������n�� �� eat up $�$s not followed by $�$s ��
�comment��n ��line�num�
�comment�������� BEGIN
comment�caller��

Furthermore� you can access the current start condition using the integer�valued YY�START

macro� For example� the above assignments to comment�caller could instead be written

comment�caller � YY�START�

Flex provides YYSTATE as an alias for YY�START �since that is what�s used by AT�T lex��

Note that start conditions do not have their own name�space� �s�s and �x�s declare names in

the same fashion as de�ne�s�

Finally� here�s an example of how to match C�style quoted strings using exclusive start con�

ditions� including expanded escape sequences �but not including checking for a string that�s too

long�

��

�x str

��
char string�buf�MAX�STR�CONST��
char �string�buf�ptr�

�� string�buf�ptr � string�buf� BEGIN
str��

�str��� � �� saw closing quote � all done ��
BEGIN
INITIAL��
�string�buf�ptr � $��$�
�� return string constant token type and
� value to parser
��
�

�str��n �
�� error � unterminated string constant ��
�� generate error message ��
�

�str���������!
"� �
�� octal escape sequence ��
int result�

void� sscanf
 yytext � !
 ��o�
 &result ��

if
 result � �xff �
�� error
 constant is out�of�bounds ��

�string�buf�ptr�� � result�
�

�str��������� �
�� generate error � bad escape sequence� something
� like $� �$ or $��������$
��
�

�str���n �string�buf�ptr�� � $�n$�
�str���t �string�buf�ptr�� � $�t$�
�str���r �string�buf�ptr�� � $�r$�
�str���b �string�buf�ptr�� � $�b$�
�str���f �string�buf�ptr�� � $�f$�

�str���
	��n� �string�buf�ptr�� � yytext�!��

�str������n���� �
char �yptr � yytext�

��

while
 �yptr �
�string�buf�ptr�� � �yptr���

�

Often� such as in some of the examples above� you wind up writing a whole bunch of rules all

preceded by the same start condition�s�� Flex makes this a little easier and cleaner by introducing

a notion of start condition scope� A start condition scope is begun with

�SCs��

where SCs is a list of one or more start conditions� Inside the start condition scope� every rule

automatically has the pre�x ��SCs�� applied to it� until a ��� which matches the initial ���� So� for

example�

�ESC��
���n� return $�n$�
���r� return $�r$�
���f� return $�f$�
����� return $��$�

�

is equivalent to

�ESC����n� return $�n$�
�ESC����r� return $�r$�
�ESC����f� return $�f$�
�ESC������ return $��$�

Start condition scopes may be nested�

Three routines are available for manipulating stacks of start conditions

�void yy�push�state
int new�state��

pushes the current start condition onto the top of the start condition stack and switches

to new state as though you had used �BEGIN new�state� �recall that start condition

names are also integers��

�void yy�pop�state
��

pops the top of the stack and switches to it via BEGIN�

�int yy�top�state
��

returns the top of the stack without altering the stack�s contents�

�	

The start condition stack grows dynamically and so has no built�in size limitation� If memory

is exhausted� program execution aborts�

To use start condition stacks� your scanner must include a ��option stack� directive �see Options

below��

���� Multiple input bu
ers

Some scanners �such as those which support �include� �les� require reading from several input

streams� As flex scanners do a large amount of bu�ering� one cannot control where the next

input will be read from by simply writing a YY�INPUT which is sensitive to the scanning context�

YY�INPUT is only called when the scanner reaches the end of its bu�er� which may be a long time

after scanning a statement such as an �include� which requires switching the input source�

To negotiate these sorts of problems� flex provides a mechanism for creating and switching

between multiple input bu�ers� An input bu�er is created by using

YY�BUFFER�STATE yy�create�buffer
 FILE �file
 int size �

which takes a FILE pointer and a size and creates a bu�er associated with the given �le and

large enough to hold size characters �when in doubt� use YY�BUF�SIZE for the size�� It returns

a YY�BUFFER�STATE handle� which may then be passed to other routines �see below�� The YY�

BUFFER�STATE type is a pointer to an opaque struct yy�buffer�state structure� so you may

safely initialize YY BUFFER STATE variables to �

YY�BUFFER�STATE� ��� if you wish� and also

refer to the opaque structure in order to correctly declare input bu�ers in source �les other than

that of your scanner� Note that the FILE pointer in the call to yy�create�buffer is only used

as the value of yyin seen by YY�INPUT� if you rede�ne YY�INPUT so it no longer uses yyin� then

you can safely pass a nil FILE pointer to yy�create�buffer� You select a particular bu�er to scan

from using

void yy�switch�to�buffer
 YY�BUFFER�STATE new�buffer �

switches the scanner�s input bu�er so subsequent tokens will come from new bu�er� Note that

�yy�switch�to�buffer
�� may be used by �yywrap
�� to set things up for continued scanning�

instead of opening a new �le and pointing yyin at it� Note also that switching input sources via

either �yy�switch�to�buffer
�� or �yywrap
�� does not change the start condition�

void yy�delete�buffer
 YY�BUFFER�STATE buffer �

��

is used to reclaim the storage associated with a bu�er� You can also clear the current contents of

a bu�er using

void yy�flush�buffer
 YY�BUFFER�STATE buffer �

This function discards the bu�er�s contents� so the next time the scanner attempts to match a

token from the bu�er� it will �rst �ll the bu�er anew using YY�INPUT�

�yy�new�buffer
�� is an alias for �yy�create�buffer
��� provided for compatibility with the

C�� use of new and delete for creating and destroying dynamic objects�

Finally� the YY�CURRENT�BUFFERmacro returns a YY�BUFFER�STATE handle to the current bu�er�

Here is an example of using these features for writing a scanner which expands include �les �the

���EOF��� feature is discussed below�

�� the �incl� state is used for picking up the name
� of an include file
��

�x incl

��
�define MAX�INCLUDE�DEPTH !�
YY�BUFFER�STATE include�stack�MAX�INCLUDE�DEPTH��
int include�stack�ptr � ��
��

��
include BEGIN
incl��

�a�z�� ECHO�
��a�z�n���n� ECHO�

�incl�� �t�� �� eat the whitespace ��
�incl��� �t�n�� � �� got the include file name ��

if
 include�stack�ptr �� MAX�INCLUDE�DEPTH �
�
fprintf
 stderr
 �Includes nested too deeply� ��
exit
 ! ��
�

include�stack�include�stack�ptr��� �
YY�CURRENT�BUFFER�

yyin � fopen
 yytext
 �r� ��

��

if
 % yyin �
error
 � � � ��

yy�switch�to�buffer

yy�create�buffer
 yyin
 YY�BUF�SIZE � ��

BEGIN
INITIAL��
�

��EOF�� �
if
 ��include�stack�ptr � � �

�
yyterminate
��
�

else
�
yy�delete�buffer
 YY�CURRENT�BUFFER ��
yy�switch�to�buffer

include�stack�include�stack�ptr� ��
�

�

Three routines are available for setting up input bu�ers for scanning in�memory strings instead

of �les� All of them create a new input bu�er for scanning the string� and return a corresponding

YY�BUFFER�STATE handle �which you should delete with �yy�delete�buffer
�� when done with it��

They also switch to the new bu�er using �yy�switch�to�buffer
��� so the next call to �yylex
��

will start scanning the string�

�yy�scan�string
const char �str��

scans a NUL�terminated string�

�yy�scan�bytes
const char �bytes
 int len��

scans len bytes �including possibly NUL�s� starting at location bytes�

Note that both of these functions create and scan a copy of the string or bytes� �This may be

desirable� since �yylex
�� modi�es the contents of the bu�er it is scanning�� You can avoid the

copy by using

�yy�scan�buffer
char �base
 yy�size�t size��

which scans in place the bu�er starting at base� consisting of size bytes� the last two

bytes of which must be YY�END�OF�BUFFER�CHAR �ASCII NUL�� These last two bytes

are not scanned� thus� scanning consists of �base���� through �base�size����� inclu�

sive�

��

If you fail to set up base in this manner �i�e�� forget the �nal two YY�END�OF�BUFFER�

CHAR bytes�� then �yy�scan�buffer
�� returns a nil pointer instead of creating a new

input bu�er�

The type yy�size�t is an integral type to which you can cast an integer expression

re�ecting the size of the bu�er�

���� End�of�	le rules

The special rule ���EOF��� indicates actions which are to be taken when an end�of��le is

encountered and yywrap�� returns non�zero �i�e�� indicates no further �les to process�� The action

must �nish by doing one of four things

� assigning yyin to a new input �le �in previous versions of �ex� after doing the assignment you

had to call the special action YY�NEW�FILE� this is no longer necessary��

� executing a return statement�

� executing the special �yyterminate
�� action�

� or� switching to a new bu�er using �yy�switch�to�buffer
�� as shown in the example above�

��EOF�� rules may not be used with other patterns� they may only be quali�ed with a list of

start conditions� If an unquali�ed ��EOF�� rule is given� it applies to all start conditions which do

not already have ��EOF�� actions� To specify an ��EOF�� rule for only the initial start condition�

use

�INITIAL���EOF��

These rules are useful for catching things like unclosed comments� An example

�x quote
��

� � �other rules for dealing with quotes� � �

�quote���EOF�� �
error
 �unterminated quote� ��
yyterminate
��
�

�

��EOF�� �
if
 ���filelist �

yyin � fopen
 �filelist
 �r� ��
else

yyterminate
��
�

���� Miscellaneous macros

The macro YY�USER�ACTION can be de�ned to provide an action which is always executed prior

to the matched rule�s action� For example� it could be de�ne�d to call a routine to convert yytext

to lower�case� When YY�USER�ACTION is invoked� the variable yy�act gives the number of the

matched rule �rules are numbered starting with ��� Suppose you want to pro�le how often each of

your rules is matched� The following would do the trick

�define YY�USER�ACTION ��ctr�yy�act�

where ctr is an array to hold the counts for the di�erent rules� Note that the macro YY�NUM�

RULES gives the total number of rules �including the default rule� even if you use ��s�� so a correct

declaration for ctr is

int ctr�YY�NUM�RULES��

The macro YY�USER�INIT may be de�ned to provide an action which is always executed before

the �rst scan �and before the scanner�s internal initializations are done�� For example� it could be

used to call a routine to read in a data table or open a logging �le�

The macro �yy�set�interactive
is�interactive�� can be used to control whether the current

bu�er is considered interactive� An interactive bu�er is processed more slowly� but must be used

when the scanner�s input source is indeed interactive to avoid problems due to waiting to �ll

bu�ers �see the discussion of the ��I� �ag below�� A non�zero value in the macro invocation

marks the bu�er as interactive� a zero value as non�interactive� Note that use of this macro

overrides ��option always�interactive� or ��option never�interactive� �see Options below��

�yy�set�interactive
�� must be invoked prior to beginning to scan the bu�er that is �or is not�

to be considered interactive�

The macro �yy�set�bol
at�bol�� can be used to control whether the current bu�er�s scanning

context for the next token match is done as though at the beginning of a line� A non�zero macro

argument makes rules anchored with

��

The macro �YY�AT�BOL
�� returns true if the next token scanned from the current bu�er will

have ��� rules active� false otherwise�

In the generated scanner� the actions are all gathered in one large switch statement and separated

using YY�BREAK� which may be rede�ned� By default� it is simply a �break�� to separate each rule�s

action from the following rule�s� Rede�ning YY�BREAK allows� for example� C�� users to de�ne

YY BREAK to do nothing �while being very careful that every rule ends with a �break� or a

�return�#� to avoid su�ering from unreachable statement warnings where because a rule�s action

ends with �return�� the YY�BREAK is inaccessible�

���� Values available to the user

This section summarizes the various values available to the user in the rule actions�

� �char �yytext� holds the text of the current token� It may be modi�ed but not lengthened

�you cannot append characters to the end��

If the special directive ��array� appears in the �rst section of the scanner description� then

yytext is instead declared �char yytext�YYLMAX��� where YYLMAX is a macro de�nition that

you can rede�ne in the �rst section if you don�t like the default value �generally �KB�� Using

��array� results in somewhat slower scanners� but the value of yytext becomes immune to calls

to �input
�� and �unput
��� which potentially destroy its value when yytext is a character

pointer� The opposite of ��array� is ��pointer�� which is the default�

You cannot use ��array� when generating C�� scanner classes �the ���� �ag��

� �int yyleng� holds the length of the current token�

� �FILE �yyin� is the �le which by default flex reads from� It may be rede�ned but doing so only

makes sense before scanning begins or after an EOF has been encountered� Changing it in the

midst of scanning will have unexpected results since flex bu�ers its input� use �yyrestart
��

instead� Once scanning terminates because an end�of��le has been seen� you can assign yyin

at the new input �le and then call the scanner again to continue scanning�

� �void yyrestart
 FILE �new�file �� may be called to point yyin at the new input �le� The

switch�over to the new �le is immediate �any previously bu�ered�up input is lost�� Note that

calling �yyrestart
�� with yyin as an argument thus throws away the current input bu�er

and continues scanning the same input �le�

� �FILE �yyout� is the �le to which �ECHO� actions are done� It can be reassigned by the user�

� YY�CURRENT�BUFFER returns a YY�BUFFER�STATE handle to the current bu�er�

� YY�START returns an integer value corresponding to the current start condition� You can

subsequently use this value with BEGIN to return to that start condition�

��

���� Interfacing with yacc

One of the main uses of flex is as a companion to the yacc parser�generator� yacc parsers

expect to call a routine named �yylex
�� to �nd the next input token� The routine is supposed to

return the type of the next token as well as putting any associated value in the global yylval� To

use flex with yacc� one speci�es the ��d� option to yacc to instruct it to generate the �le �y	tab	h�

containing de�nitions of all the ��tokens� appearing in the yacc input� This �le is then included

in the flex scanner� For example� if one of the tokens is �TOK NUMBER�� part of the scanner

might look like

��
�include �y	tab	h�
��

��

������ yylval � atoi
 yytext �� return TOK�NUMBER�

���
 Options

flex has the following options

��b� Generate backing�up information to �lex	backup�� This is a list of scanner states which

require backing up and the input characters on which they do so� By adding rules one

can remove backing�up states� If all backing�up states are eliminated and ��Cf� or ��CF�

is used� the generated scanner will run faster �see the ��p� �ag�� Only users who wish

to squeeze every last cycle out of their scanners need worry about this option� �See the

section on Performance Considerations below��

��c� is a do�nothing� deprecated option included for POSIX compliance�

��d� makes the generated scanner run in debug mode� Whenever a pattern is recognized

and the global yy�flex�debug is non�zero �which is the default�� the scanner will write

to stderr a line of the form

��accepting rule at line �"
�the matched text��

The line number refers to the location of the rule in the �le de�ning the scanner �i�e��

the �le that was fed to �ex�� Messages are also generated when the scanner backs up�

accepts the default rule� reaches the end of its input bu�er �or encounters a NUL� at

this point� the two look the same as far as the scanner�s concerned�� or reaches an

end�of��le�

	�

��f� speci�es fast scanner� No table compression is done and stdio is bypassed� The result

is large but fast� This option is equivalent to ��Cfr� �see below��

��h� generates a �help� summary of flex$s options to stdout and then exits� ���� and

���help� are synonyms for ��h��

��i� instructs flex to generate a case�insensitive scanner� The case of letters given in the

flex input patterns will be ignored� and tokens in the input will be matched regardless

of case� The matched text given in yytext will have the preserved case �i�e�� it will not

be folded��

��l� turns on maximum compatibility with the original AT�T lex implementation� Note

that this does not mean full compatibility� Use of this option costs a considerable

amount of performance� and it cannot be used with the ���
 �f
 �F
 �Cf�� or ��CF�

options� For details on the compatibilities it provides� see the section �Incompatibilities

With Lex And POSIX� below� This option also results in the name YY�FLEX�LEX�

COMPAT being de�ne�d in the generated scanner�

��n� is another do�nothing� deprecated option included only for POSIX compliance�

��p� generates a performance report to stderr� The report consists of comments regarding

features of the flex input �le which will cause a serious loss of performance in the

resulting scanner� If you give the �ag twice� you will also get comments regarding

features that lead to minor performance losses�

Note that the use of REJECT� ��option yylineno� and variable trailing context �see

the De�ciencies � Bugs section below� entails a substantial performance penalty� use

of �yymore
��� the ��� operator� and the ��I� �ag entail minor performance penalties�

��s� causes the default rule �that unmatched scanner input is echoed to stdout� to be

suppressed� If the scanner encounters input that does not match any of its rules� it

aborts with an error� This option is useful for �nding holes in a scanner�s rule set�

��t� instructs flex to write the scanner it generates to standard output instead of

�lex	yy	c��

��v� speci�es that flex should write to stderr a summary of statistics regarding the scanner

it generates� Most of the statistics are meaningless to the casual flex user� but the

�rst line identi�es the version of flex �same as reported by ��V��� and the next line the

�ags used when generating the scanner� including those that are on by default�

��w� suppresses warning messages�

��B� instructs flex to generate a batch scanner� the opposite of interactive scanners gener�

ated by ��I� �see below�� In general� you use ��B� when you are certain that your scanner

will never be used interactively� and you want to squeeze a little more performance out

of it� If your goal is instead to squeeze out a lot more performance� you should be using

the ��Cf� or ��CF� options �discussed below�� which turn on ��B� automatically anyway�

	�

��F� speci�es that the fast scanner table representation should be used �and stdio bypassed��

This representation is about as fast as the full table representation �
�f��� and for some

sets of patterns will be considerably smaller �and for others� larger�� In general� if the

pattern set contains both �keywords� and a catch�all� �identi�er� rule� such as in the

set

�case� return TOK�CASE�
�switch� return TOK�SWITCH�
			
�default� return TOK�DEFAULT�
�a�z�� return TOK�ID�

then you�re better o� using the full table representation� If only the �identi�er� rule

is present and you then use a hash table or some such to detect the keywords� you�re

better o� using ��F��

This option is equivalent to ��CFr� �see below�� It cannot be used with �����

��I� instructs flex to generate an interactive scanner� An interactive scanner is one that

only looks ahead to decide what token has been matched if it absolutely must� It turns

out that always looking one extra character ahead� even if the scanner has already

seen enough text to disambiguate the current token� is a bit faster than only looking

ahead when necessary� But scanners that always look ahead give dreadful interactive

performance� for example� when a user types a newline� it is not recognized as a newline

token until they enter another token� which often means typing in another whole line�

Flex scanners default to interactive unless you use the ��Cf� or ��CF� table�compression

options �see below�� That�s because if you�re looking for high�performance you should

be using one of these options� so if you didn�t� flex assumes you�d rather trade o� a bit

of run�time performance for intuitive interactive behavior� Note also that you cannot

use ��I� in conjunction with ��Cf� or ��CF�� Thus� this option is not really needed� it is

on by default for all those cases in which it is allowed�

You can force a scanner to not be interactive by using ��B� �see above��

��L� instructs flex not to generate ��line� directives� Without this option� flex peppers

the generated scanner with line directives so error messages in the actions will be

correctly located with respect to either the original flex input �le �if the errors are

due to code in the input �le�� or �lex	yy	c� �if the errors are flex$s fault ! you should

report these sorts of errors to the email address given below��

��T� makes flex run in trace mode� It will generate a lot of messages to stderr concern�

ing the form of the input and the resultant non�deterministic and deterministic �nite

automata� This option is mostly for use in maintaining flex�

��V� prints the version number to stdout and exits� ���version� is a synonym for ��V��

���� instructs flex to generate a
�bit scanner� i�e�� one which can only recognized
�bit

characters in its input� The advantage of using ���� is that the scanner�s tables can be up

	�

to half the size of those generated using the ���� option �see below�� The disadvantage

is that such scanners often hang or crash if their input contains an ��bit character�

Note� however� that unless you generate your scanner using the ��Cf� or ��CF� table

compression options� use of ���� will save only a small amount of table space� and make

your scanner considerably less portable� Flex$s default behavior is to generate an ��bit

scanner unless you use the ��Cf� or ��CF�� in which case flex defaults to generating

�bit scanners unless your site was always con�gured to generate ��bit scanners �as will

often be the case with non�USA sites�� You can tell whether �ex generated a
�bit or

an ��bit scanner by inspecting the �ag summary in the ��v� output as described above�

Note that if you use ��Cfe� or ��CFe� �those table compression options� but also using

equivalence classes as discussed see below�� �ex still defaults to generating an ��bit

scanner� since usually with these compression options full ��bit tables are not much

more expensive than
�bit tables�

���� instructs flex to generate an ��bit scanner� i�e�� one which can recognize ��bit charac�

ters� This �ag is only needed for scanners generated using ��Cf� or ��CF�� as otherwise

�ex defaults to generating an ��bit scanner anyway�

See the discussion of ���� above for �ex�s default behavior and the tradeo�s between

�bit and ��bit scanners�

���� speci�es that you want �ex to generate a C�� scanner class� See the section on Gener�

ating C�� Scanners below for details�

��C�aefFmr��

controls the degree of table compression and� more generally� trade�o�s between small

scanners and fast scanners�

��Ca� ��align�� instructs �ex to trade o� larger tables in the generated scanner for faster

performance because the elements of the tables are better aligned for memory access

and computation� On some RISC architectures� fetching and manipulating long�words

is more e"cient than with smaller�sized units such as shortwords� This option can

double the size of the tables used by your scanner�

��Ce� directs flex to construct equivalence classes� i�e�� sets of characters which have

identical lexical properties �for example� if the only appearance of digits in the flex

input is in the character class ������� then the digits ���� ���� � � �� ��� will all be put in the

same equivalence class�� Equivalence classes usually give dramatic reductions in the

�nal table�object �le sizes �typically a factor of ���� and are pretty cheap performance�

wise �one array look�up per character scanned��

��Cf� speci�es that the full scanner tables should be generated � flex should not com�

press the tables by taking advantages of similar transition functions for di�erent states�

��CF� speci�es that the alternate fast scanner representation �described above under

the ��F� �ag� should be used� This option cannot be used with �����

		

��Cm� directs flex to construct meta�equivalence classes� which are sets of equivalence

classes �or characters� if equivalence classes are not being used� that are commonly

used together� Meta�equivalence classes are often a big win when using compressed

tables� but they have a moderate performance impact �one or two �if� tests and one

array look�up per character scanned��

��Cr� causes the generated scanner to bypass use of the standard I�O library �stdio�

for input� Instead of calling �fread
�� or �getc
��� the scanner will use the �read
��

system call� resulting in a performance gain which varies from system to system� but in

general is probably negligible unless you are also using ��Cf� or ��CF�� Using ��Cr� can

cause strange behavior if� for example� you read from yyin using stdio prior to calling

the scanner �because the scanner will miss whatever text your previous reads left in

the stdio input bu�er��

��Cr� has no e�ect if you de�ne YY�INPUT �see The Generated Scanner above��

A lone ��C� speci�es that the scanner tables should be compressed but neither equiva�

lence classes nor meta�equivalence classes should be used�

The options ��Cf� or ��CF� and ��Cm� do not make sense together � there is no opportunity

for meta�equivalence classes if the table is not being compressed� Otherwise the options

may be freely mixed� and are cumulative�

The default setting is ��Cem�� which speci�es that flex should generate equivalence

classes and meta�equivalence classes� This setting provides the highest degree of table

compression� You can trade o� faster�executing scanners at the cost of larger tables

with the following generally being true

slowest & smallest
�Cem
�Cm
�Ce
�C
�C�f
F�e
�C�f
F�
�C�f
F�a

fastest & largest

Note that scanners with the smallest tables are usually generated and compiled the

quickest� so during development you will usually want to use the default� maximal

compression�

��Cfe� is often a good compromise between speed and size for production scanners�

��ooutput�

directs �ex to write the scanner to the �le �out�� put instead of �lex	yy	c�� If you

combine ��o� with the ��t� option� then the scanner is written to stdout but its ��line�

directives �see the ��L� option above� refer to the �le output�

	�

��Pprefix�

changes the default �yy� pre�x used by flex for all globally�visible variable and function

names to instead be pre�x� For example� ��Pfoo� changes the name of yytext to

�footext�� It also changes the name of the default output �le from �lex	yy	c� to

�lex	foo	c�� Here are all of the names a�ected

yy�create�buffer
yy�delete�buffer
yy�flex�debug
yy�init�buffer
yy�flush�buffer
yy�load�buffer�state
yy�switch�to�buffer
yyin
yyleng
yylex
yylineno
yyout
yyrestart
yytext
yywrap

�If you are using a C�� scanner� then only yywrap and yyFlexLexer are a�ected��

Within your scanner itself� you can still refer to the global variables and functions

using either version of their name� but externally� they have the modi�ed name�

This option lets you easily link together multiple flex programs into the same exe�

cutable� Note� though� that using this option also renames �yywrap
��� so you now

must either provide your own �appropriately�named� version of the routine for your

scanner� or use ��option noyywrap�� as linking with ��lfl� no longer provides one for

you by default�

��Sskeleton�file�

overrides the default skeleton �le from which flex constructs its scanners� You�ll never

need this option unless you are doing flex maintenance or development�

flex also provides a mechanism for controlling options within the scanner speci�cation itself�

rather than from the �ex command�line� This is done by including ��option� directives in the

�rst section of the scanner speci�cation� You can specify multiple options with a single ��option�

directive� and multiple directives in the �rst section of your �ex input �le� Most options are given

simply as names� optionally preceded by the word �no� �with no intervening whitespace� to negate

their meaning� A number are equivalent to �ex �ags or their negation

�bit �� option
�bit �� option
align �Ca option
backup �b option

	�

batch �B option
c�� �� option

caseful or
case�sensitive opposite of �i
default�

case�insensitive or
caseless �i option

debug �d option
default opposite of �s option
ecs �Ce option
fast �F option
full �f option
interactive �I option
lex�compat �l option
meta�ecs �Cm option
perf�report �p option
read �Cr option
stdout �t option
verbose �v option
warn opposite of �w option

use ��option nowarn� for �w�

array equivalent to ��array�
pointer equivalent to ��pointer�
default�

Some ��option$s� provide features otherwise not available

�always�interactive�

instructs �ex to generate a scanner which always considers its input �interactive�� Nor�

mally� on each new input �le the scanner calls �isatty
�� in an attempt to determine

whether the scanner�s input source is interactive and thus should be read a character

at a time� When this option is used� however� then no such call is made�

�main� directs �ex to provide a default �main
�� program for the scanner� which simply calls

�yylex
��� This option implies noyywrap �see below��

�never�interactive�

instructs �ex to generate a scanner which never considers its input �interactive� �again�

no call made to �isatty
���� This is the opposite of �always�� interactive�

�stack� enables the use of start condition stacks �see Start Conditions above��

�stdinit� if unset �i�e�� ��option nostdinit�� initializes yyin and yyout to nil FILE pointers�

instead of stdin and stdout�

	�

�yylineno�

directs flex to generate a scanner that maintains the number of the current line read

from its input in the global variable yylineno� This option is implied by ��option

lex�compat��

�yywrap� if unset �i�e�� ��option noyywrap��� makes the scanner not call �yywrap
�� upon an

end�of��le� but simply assume that there are no more �les to scan �until the user points

yyin at a new �le and calls �yylex
�� again��

flex scans your rule actions to determine whether you use the REJECT or �yymore
�� features�

The reject and yymore options are available to override its decision as to whether you use the

options� either by setting them �e�g�� ��option reject�� to indicate the feature is indeed used� or

unsetting them to indicate it actually is not used �e�g�� ��option noyymore���

Three options take string�delimited values� o�set with �$�

�option outfile��ABC�

is equivalent to ��oABC�� and

�option prefix��XYZ�

is equivalent to ��PXYZ��

Finally�

�option yyclass��foo�

only applies when generating a C�� scanner ����� option�� It informs flex that you have de�

rived �foo� as a subclass of yyFlexLexer so flex will place your actions in the member function

�foo��yylex
�� instead of �yyFlexLexer��yylex
��� It also generates a �yyFlexLexer��yylex
��

member function that emits a run�time error �by invoking �yyFlexLexer��LexerError
��� if called�

See Generating C�� Scanners� below� for additional information�

A number of options are available for lint purists who want to suppress the appearance of

unneeded routines in the generated scanner� Each of the following� if unset� results in the corre�

sponding routine not appearing in the generated scanner

input
 unput
yy�push�state
 yy�pop�state
 yy�top�state

	

yy�scan�buffer
 yy�scan�bytes
 yy�scan�string

�though �yy�push�state
�� and friends won�t appear anyway unless you use ��option stack���

���� Performance considerations

The main design goal of flex is that it generate high�performance scanners� It has been op�

timized for dealing well with large sets of rules� Aside from the e�ects on scanner speed of the

table compression ��C� options outlined above� there are a number of options�actions which degrade

performance� These are� from most expensive to least

REJECT
�option yylineno
arbitrary trailing context

pattern sets that require backing up
�array
�option interactive
�option always�interactive

$�$ beginning�of�line operator
yymore
�

with the �rst three all being quite expensive and the last two being quite cheap� Note also that

�unput
�� is implemented as a routine call that potentially does quite a bit of work� while �yyless
��

is a quite�cheap macro� so if just putting back some excess text you scanned� use �yyless
���

REJECT should be avoided at all costs when performance is important� It is a particularly

expensive option�

Getting rid of backing up is messy and often may be an enormous amount of work for a compli�

cated scanner� In principal� one begins by using the ��b� �ag to generate a �lex	backup� �le� For

example� on the input

��
foo return TOK�KEYWORD�
foobar return TOK�KEYWORD�

the �le looks like

	�

State �' is non�accepting �
associated rule line numbers�

� "
out�transitions� � o �
jam�transitions� EOF � ���!�n p��!�� �

State �� is non�accepting �
associated rule line numbers�

"
out�transitions� � a �
jam�transitions� EOF � ���!�(b��!�� �

State �� is non�accepting �
associated rule line numbers�

"
out�transitions� � r �
jam�transitions� EOF � ���!�q s��!�� �

Compressed tables always back up	

The �rst few lines tell us that there�s a scanner state in which it can make a transition on an �o�

but not on any other character� and that in that state the currently scanned text does not match

any rule� The state occurs when trying to match the rules found at lines � and 	 in the input �le�

If the scanner is in that state and then reads something other than an �o�� it will have to back up

to �nd a rule which is matched� With a bit of head�scratching one can see that this must be the

state it�s in when it has seen �fo�� When this has happened� if anything other than another �o� is

seen� the scanner will have to back up to simply match the �f� �by the default rule��

The comment regarding State � indicates there�s a problem when �foob� has been scanned�

Indeed� on any character other than an �a�� the scanner will have to back up to accept �foo��

Similarly� the comment for State � concerns when �fooba� has been scanned and an �r� does not

follow�

The �nal comment reminds us that there�s no point going to all the trouble of removing backing

up from the rules unless we�re using ��Cf� or ��CF�� since there�s no performance gain doing so with

compressed scanners�

The way to remove the backing up is to add �error� rules

��
foo return TOK�KEYWORD�
foobar return TOK�KEYWORD�

fooba �

	�

foob �
fo �

�� false alarm
 not really a keyword ��
return TOK�ID�
�

Eliminating backing up among a list of keywords can also be done using a �catch�all� rule

��
foo return TOK�KEYWORD�
foobar return TOK�KEYWORD�

�a�z�� return TOK�ID�

This is usually the best solution when appropriate�

Backing up messages tend to cascade� With a complicated set of rules it�s not uncommon to get

hundreds of messages� If one can decipher them� though� it often only takes a dozen or so rules to

eliminate the backing up �though it�s easy to make a mistake and have an error rule accidentally

match a valid token� A possible future flex feature will be to automatically add rules to eliminate

backing up��

It�s important to keep in mind that you gain the bene�ts of eliminating backing up only if you

eliminate every instance of backing up� Leaving just one means you gain nothing�

Variable trailing context �where both the leading and trailing parts do not have a �xed length�

entails almost the same performance loss as REJECT �i�e�� substantial�� So when possible a rule like

��
mouse�rat�
cat�dog� run
��

is better written

��
mouse�cat�dog run
��
rat�cat�dog run
��

or as

��
mouse�rat�cat run
��
mouse�rat�dog run
��

��

Note that here the special ��� action does not provide any savings� and can even make things

worse �see De�ciencies � Bugs below��

Another area where the user can increase a scanner�s performance �and one that�s easier to

implement� arises from the fact that the longer the tokens matched� the faster the scanner will run�

This is because with long tokens the processing of most input characters takes place in the �short�

inner scanning loop� and does not often have to go through the additional work of setting up the

scanning environment �e�g�� yytext� for the action� Recall the scanner for C comments

�x comment
��

int line�num � !�

���� BEGIN
comment��

�comment�����n��
�comment����������n��
�comment��n ��line�num�
�comment�������� BEGIN
INITIAL��

This could be sped up by writing it as

�x comment
��

int line�num � !�

���� BEGIN
comment��

�comment�����n��
�comment�����n���n ��line�num�
�comment����������n��
�comment����������n���n ��line�num�
�comment�������� BEGIN
INITIAL��

Now instead of each newline requiring the processing of another action� recognizing the newlines

is �distributed� over the other rules to keep the matched text as long as possible� Note that adding

rules does not slow down the scanner# The speed of the scanner is independent of the number of

rules or �modulo the considerations given at the beginning of this section� how complicated the

rules are with regard to operators such as ��� and ����

A �nal example in speeding up a scanner
 suppose you want to scan through a �le containing

identi�ers and keywords� one per line and with no other extraneous characters� and recognize all

the keywords� A natural �rst approach is

��

��
asm �
auto �
break �
� � � etc � � �

volatile �
while �� it$s a keyword ��

	��n �� it$s not a keyword ��

To eliminate the back�tracking� introduce a catch�all rule

��
asm �
auto �
break �
			 etc 			
volatile �
while �� it$s a keyword ��

�a�z�� �
	��n �� it$s not a keyword ��

Now� if it�s guaranteed that there�s exactly one word per line� then we can reduce the total

number of matches by a half by merging in the recognition of newlines with that of the other

tokens

��
asm�n �
auto�n �
break�n �
� � � etc � � �

volatile�n �
while�n �� it$s a keyword ��

�a�z���n �
	��n �� it$s not a keyword ��

One has to be careful here� as we have now reintroduced backing up into the scanner� In

particular� while we know that there will never be any characters in the input stream other than

letters or newlines� flex can�t �gure this out� and it will plan for possibly needing to back up

when it has scanned a token like �auto� and then the next character is something other than a

newline or a letter� Previously it would then just match the �auto� rule and be done� but now

it has no �auto� rule� only a �auto�n� rule� To eliminate the possibility of backing up� we could

either duplicate all rules but without �nal newlines� or� since we never expect to encounter such

��

an input and therefore don�t how it�s classi�ed� we can introduce one more catch�all rule� this one

which doesn�t include a newline

��
asm�n �
auto�n �
break�n �
� � � etc � � �

volatile�n �
while�n �� it$s a keyword ��

�a�z���n �
�a�z�� �
	��n �� it$s not a keyword ��

Compiled with ��Cf�� this is about as fast as one can get a flex scanner to go for this particular

problem�

A �nal note
 flex is slow when matching NUL�s� particularly when a token contains multiple

NUL�s� It�s best to write rules which match short amounts of text if it�s anticipated that the text

will often include NUL�s�

Another �nal note regarding performance
 as mentioned above in the section How the Input is

Matched� dynamically resizing yytext to accommodate huge tokens is a slow process because it

presently requires that the �huge� token be rescanned from the beginning� Thus if performance is

vital� you should attempt to match �large� quantities of text but not �huge� quantities� where the

cuto� between the two is at about �K characters�token�

���� Generating C�� scanners

flex provides two di�erent ways to generate scanners for use with C��� The �rst way is to

simply compile a scanner generated by flex using a C�� compiler instead of a C compiler� You

should not encounter any compilations errors �please report any you �nd to the email address given

in the Author section below�� You can then use C�� code in your rule actions instead of C code�

Note that the default input source for your scanner remains yyin� and default echoing is still done

to yyout� Both of these remain �FILE �� variables and not C�� streams�

You can also use flex to generate a C�� scanner class� using the ���� option� �or� equivalently�

��option c����� which is automatically speci�ed if the name of the �ex executable ends in a ���� such

as flex��� When using this option� �ex defaults to generating the scanner to the �le �lex	yy	cc�

�	

instead of �lex	yy	c�� The generated scanner includes the header �le �FlexLexer	h�� which de�nes

the interface to two C�� classes�

The �rst class� FlexLexer� provides an abstract base class de�ning the general scanner class

interface� It provides the following member functions

�const char� YYText
��

returns the text of the most recently matched token� the equivalent of yytext�

�int YYLeng
��

returns the length of the most recently matched token� the equivalent of yyleng�

�int lineno
� const�

returns the current input line number �see ��option yylineno��� or � if ��option

yylineno� was not used�

�void set�debug
 int flag ��

sets the debugging �ag for the scanner� equivalent to assigning to yy�flex�debug �see

the Options section above�� Note that you must build the scanner using ��option

debug� to include debugging information in it�

�int debug
� const�

returns the current setting of the debugging �ag�

Also provided are member functions equivalent to �yy�switch�to�buffer
�
 yy�create�buffer
��

�though the �rst argument is an �istream�� object pointer and not a �FILE��� �yy�flush�buffer
���

�yy�delete�buffer
��� and �yyrestart
�� �again� the �rst argument is a �istream�� object

pointer��

The second class de�ned in �FlexLexer	h� is yyFlexLexer� which is derived from FlexLexer�

It de�nes the following additional member functions

�yyFlexLexer
 istream� arg�yyin � �
 ostream� arg�yyout � � ��

constructs a yyFlexLexer object using the given streams for input and output� If not

speci�ed� the streams default to cin and cout� respectively�

�virtual int yylex
��

performs the same role is �yylex
�� does for ordinary �ex scanners
 it scans the input

stream� consuming tokens� until a rule�s action returns a value� If you derive a subclass

S from yyFlexLexer and want to access the member functions and variables of S inside

�yylex
��� then you need to use ��option yyclass��S�� to inform flex that you will

be using that subclass instead of yyFlexLexer� In this case� rather than generating

�yyFlexLexer��yylex
��� flex generates �S��yylex
�� �and also generates a dummy

�yyFlexLexer��yylex
�� that calls �yyFlexLexer��LexerError
�� if called��

��

�virtual void switch�streams
istream� new�in � �
 ostream� new�out � ���

reassigns yyin to new�in �if non�nil� and yyout to new�out �ditto�� deleting the pre�

vious input bu�er if yyin is reassigned�

�int yylex
 istream� new�in � �
 ostream� new�out � � ��

�rst switches the input streams via �switch�streams
 new�in
 new�out �� and then

returns the value of �yylex
���

In addition� yyFlexLexer de�nes the following protected virtual functions which you can rede�ne

in derived classes to tailor the scanner

�virtual int LexerInput
 char� buf
 int max�size ��

reads up to �max�size� characters into buf and returns the number of characters read�

To indicate end�of�input� return � characters� Note that �interactive� scanners �see the

��B� and ��I� �ags� de�ne the macro YY�INTERACTIVE� If you rede�ne LexerInput
�

and need to take di�erent actions depending on whether or not the scanner might be

scanning an interactive input source� you can test for the presence of this name via

��ifdef��

�virtual void LexerOutput
 const char� buf
 int size ��

writes out size characters from the bu�er buf� which� while NUL�terminated� may also

contain �internal� NUL�s if the scanner�s rules can match text with NUL�s in them�

�virtual void LexerError
 const char� msg ��

reports a fatal error message� The default version of this function writes the message

to the stream cerr and exits�

Note that a yyFlexLexer object contains its entire scanning state� Thus you can use such objects

to create reentrant scanners� You can instantiate multiple instances of the same yyFlexLexer class�

and you can also combine multiple C�� scanner classes together in the same program using the

��P� option discussed above� Finally� note that the ��array� feature is not available to C�� scanner

classes� you must use ��pointer� �the default��

Here is an example of a simple C�� scanner

�� An example of using the flex C�� scanner class	

��
int mylineno � ��
��

string �����n�����

ws � �t��

��

alpha �A�Za�z�
dig �����
name
�alpha���dig���#�
�alpha���dig����	���#���
num! ������dig���	�
�eE�������dig����
num� ������dig���	�dig��
�eE�������dig����
number �num!���num��

��

�ws� �� skip blanks and tabs ��

���� �
int c�

while

c � yyinput
�� %� ��
�
if
c �� $�n$�

��mylineno�

else if
c �� $�$�
�
if

c � yyinput
�� �� $�$�

break�
else

unput
c��
�

�
�

�number� cout �� �number � �� YYText
� �� $�n$�

�n mylineno���

�name� cout �� �name � �� YYText
� �� $�n$�

�string� cout �� �string � �� YYText
� �� $�n$�

��

Version �	� December !��

int main
 int �� argc ��
 char�� �� argv �� �
�
FlexLexer� lexer � new yyFlexLexer�
while
lexer��yylex
� %� ��

�
return ��
�

��

If you want to create multiple �di�erent� lexer classes� you use the ��P� �ag �or the �prefix�� op�

tion� to rename each yyFlexLexer to some other xxFlexLexer� You then can include ��FlexLexer	h��

in your other sources once per lexer class� �rst renaming yyFlexLexer as follows

�undef yyFlexLexer
�define yyFlexLexer xxFlexLexer
�include �FlexLexer	h�

�undef yyFlexLexer
�define yyFlexLexer zzFlexLexer
�include �FlexLexer	h�

if� for example� you used ��option prefix��xx�� for one of your scanners and ��option

prefix��zz�� for the other�

IMPORTANT
 the present form of the scanning class is experimental and may change consid�

erably between major releases�

���� Incompatibilities with lex and POSIX

flex is a rewrite of the AT�T Unix lex tool �the two implementations do not share any code�

though�� with some extensions and incompatibilities� both of which are of concern to those who

wish to write scanners acceptable to either implementation� Flex is fully compliant with the POSIX

lex speci�cation� except that when using ��pointer� �the default�� a call to �unput
�� destroys the

contents of yytext� which is counter to the POSIX speci�cation�

In this section we discuss all of the known areas of incompatibility between �ex� AT�T lex� and

the POSIX speci�cation�

flex$s ��l� option turns on maximum compatibility with the original AT�T lex implemen�

tation� at the cost of a major loss in the generated scanner�s performance� We note below which

incompatibilities can be overcome using the ��l� option�

flex is fully compatible with lex with the following exceptions

� The undocumented lex scanner internal variable yylineno is not supported unless ��l� or

��option yylineno� is used� yylineno should be maintained on a per�bu�er basis� rather than

a per�scanner �single global variable� basis� yylineno is not part of the POSIX speci�cation�

�

� The �input
�� routine is not rede�nable� though it may be called to read characters following

whatever has been matched by a rule� If �input
�� encounters an end�of��le the normal

�yywrap
�� processing is done� A �real� end�of��le is returned by �input
�� as EOF�

Input is instead controlled by de�ning the YY�INPUT macro�

The flex restriction that �input
�� cannot be rede�ned is in accordance with the POSIX

speci�cation� which simply does not specify any way of controlling the scanner�s input other

than by making an initial assignment to yyin�

� The �unput
�� routine is not rede�nable� This restriction is in accordance with POSIX�

� flex scanners are not as reentrant as lex scanners� In particular� if you have an interactive

scanner and an interrupt handler which long�jumps out of the scanner� and the scanner is

subsequently called again� you may get the following message

fatal flex scanner internal error��end of buffer missed

To reenter the scanner� �rst use

yyrestart
 yyin ��

Note that this call will throw away any bu�ered input� usually this isn�t a problem with an

interactive scanner�

Also note that �ex C�� scanner classes are reentrant� so if using C�� is an option for you� you

should use them instead� See �Generating C�� Scanners� above for details�

� �output
�� is not supported� Output from the �ECHO� macro is done to the �le�pointer yyout

�default stdout��

�output
�� is not part of the POSIX speci�cation�

� lex does not support exclusive start conditions ��x�� though they are in the POSIX speci��

cation�

� When de�nitions are expanded� flex encloses them in parentheses� With lex� the following

NAME �A�Z��A�Z�����
��
foo�NAME�� printf
 �Found it�n� ��
��

will not match the string �foo� because when the macro is expanded the rule is equivalent to

�foo�A�Z��A�Z�����%� and the precedence is such that the �%� is associated with ��A�Z�������

With flex� the rule will be expanded to �foo��A�Z��A�Z������%� and so the string �foo� will

match�

Note that if the de�nition begins with ��� or ends with �#� then it is not expanded with paren�

theses� to allow these operators to appear in de�nitions without losing their special meanings�

But the ��s�
 ��� and ���EOF��� operators cannot be used in a flex de�nition�

Using ��l� results in the lex behavior of no parentheses around the de�nition�

The POSIX speci�cation is that the de�nition be enclosed in parentheses�

� Some implementations of lex allow a rule�s action to begin on a separate line� if the rule�s

pattern has trailing whitespace

��

��
foo�bar�space here�

� foobar�action
�� �

flex does not support this feature�

� The lex ��r� �generate a Ratfor scanner� option is not supported� It is not part of the POSIX

speci�cation�

� After a call to �unput
��� yytext is unde�ned until the next token is matched� unless the

scanner was built using ��array�� This is not the case with lex or the POSIX speci�cation�

The ��l� option does away with this incompatibility�

� The precedence of the ���� �numeric range� operator is di�erent� lex interprets �abc���	��

as �match one� two� or three occurrences of �abc��� whereas flex interprets it as �match �ab�

followed by one� two� or three occurrences of �c��� The latter is in agreement with the POSIX

speci�cation�

� The precedence of the ��� operator is di�erent� lex interprets ��foo�bar� as �match either

�foo� at the beginning of a line� or �bar� anywhere�� whereas flex interprets it as �match either

�foo� or �bar� if they come at the beginning of a line�� The latter is in agreement with the

POSIX speci�cation�

� The special table�size declarations such as ��a� supported by lex are not required by flex

scanners� flex ignores them�

� The name FLEX SCANNER is de�ne�d so scanners may be written for use with either

flex or lex� Scanners also include YY�FLEX�MAJOR�VERSION and YY�FLEX�MINOR�VERSION

indicating which version of flex generated the scanner �for example� for the ��� release� these

de�nes would be � and � respectively��

The following flex features are not included in lex or the POSIX speci�cation

C�� scanners
�option
start condition scopes
start condition stacks
interactive�non�interactive scanners
yy�scan�string
� and friends
yyterminate
�
yy�set�interactive
�
yy�set�bol
�
YY�AT�BOL
�
��EOF��
���
YY�DECL
YY�START
YY�USER�ACTION
YY�USER�INIT
�line directives

��

���$s around actions
multiple actions on a line

plus almost all of the �ex �ags� The last feature in the list refers to the fact that with flex you

can put multiple actions on the same line� separated with semicolons� while with lex� the following

foo handle�foo
�� ��num�foos�seen�

is �rather surprisingly� truncated to

foo handle�foo
��

flex does not truncate the action� Actions that are not enclosed in braces are simply terminated

at the end of the line�

���� Diagnostics

�warning
 rule cannot be matched�

indicates that the given rule cannot be matched because it follows other rules that

will always match the same text as it� For example� in the following �foo� cannot be

matched because it comes after an identi�er �catch�all� rule

�a�z�� got�identifier
��
foo got�foo
��

Using REJECT in a scanner suppresses this warning�

�warning
 �s option given but default rule can be matched�

means that it is possible �perhaps only in a particular start condition� that the default

rule �match any single character� is the only one that will match a particular input�

Since ��s� was given� presumably this is not intended�

�reject�used�but�not�detected undefined�
�yymore�used�but�not�detected undefined�

These errors can occur at compile time� They indicate that the scanner uses REJECT

or �yymore
�� but that flex failed to notice the fact� meaning that flex scanned the

�rst two sections looking for occurrences of these actions and failed to �nd any� but

somehow you snuck some in �via a include �le� for example�� Use ��option reject�

or ��option yymore� to indicate to �ex that you really do use these features�

�flex scanner jammed�

a scanner compiled with ��s� has encountered an input string which wasn�t matched

by any of its rules� This error can also occur due to internal problems�

��

�token too large
 exceeds YYLMAX�

your scanner uses ��array� and one of its rules matched a string longer than the �YYL��

MAX constant ��K bytes by default�� You can increase the value by de�ne�ing YYLMAX

in the de�nitions section of your flex input�

�scanner requires �� flag to use the character x�

Your scanner speci�cation includes recognizing the ��bit character x and you did not

specify the �� �ag� and your scanner defaulted to
�bit because you used the ��Cf� or

��CF� table compression options� See the discussion of the ���� �ag for details�

�flex scanner push�back overflow�

you used �unput
�� to push back so much text that the scanner�s bu�er could not hold

both the pushed�back text and the current token in yytext� Ideally the scanner should

dynamically resize the bu�er in this case� but at present it does not�

�input buffer overflow
 can$t enlarge buffer because scanner uses REJECT�

the scanner was working on matching an extremely large token and needed to expand

the input bu�er� This doesn�t work with scanners that use REJECT�

�fatal flex scanner internal error��end of buffer missed�

This can occur in an scanner which is reentered after a long�jump has jumped out �or

over� the scanner�s activation frame� Before reentering the scanner� use

yyrestart
 yyin ��

or� as noted above� switch to using the C�� scanner class�

�too many start conditions in �� construct%�

you listed more start conditions in a �� construct than exist �so you must have listed

at least one of them twice��

���� Files

��lfl� library with which scanners must be linked�

�lex	yy	c�

generated scanner �called �lexyy	c� on some systems��

�lex	yy	cc�

generated C�� scanner class� when using �����

��FlexLexer	h��

header �le de�ning the C�� scanner base class� FlexLexer� and its derived class�

yyFlexLexer�

�flex	skl�

skeleton scanner� This �le is only used when building �ex� not when �ex executes�

��

�lex	backup�

backing�up information for ��b� �ag �called �lex	bck� on some systems��

���� De	ciencies � Bugs

Some trailing context patterns cannot be properly matched and generate warning messages

��dangerous trailing context��� These are patterns where the ending of the �rst part of the rule

matches the beginning of the second part� such as �zx��xy��� where the �x�� matches the �x� at

the beginning of the trailing context� �Note that the POSIX draft states that the text matched by

such patterns is unde�ned��

For some trailing context rules� parts which are actually �xed�length are not recognized as such�

leading to the abovementioned performance loss� In particular� parts using ��� or �n� �such as

�foo�	��� are always considered variable�length�

Combining trailing context with the special ��� action can result in �xed trailing context being

turned into the more expensive variable trailing context� For example� in the following

��
abc �
xyz�def

Use of �unput
�� invalidates yytext and yyleng� unless the ��array� directive or the ��l� option

has been used�

Pattern�matching of NUL�s is substantially slower than matching other characters�

Dynamic resizing of the input bu�er is slow� as it entails rescanning all the text matched so far

by the current �generally huge� token�

Due to both bu�ering of input and read�ahead� you cannot intermix calls to �stdio�h� routines�

such as� for example� �getchar
��� with flex rules and expect it to work� Call �input
�� instead�

The total table entries listed by the ��v� �ag excludes the number of table entries needed to

determine what rule has been matched� The number of entries is equal to the number of DFA

states if the scanner does not use REJECT� and somewhat greater than the number of states if it

does�

��

REJECT cannot be used with the ��f� or ��F� options�

The flex internal algorithms need documentation�

���� See also

lex���� yacc���� sed���� awk����

John Levine� Tony Mason� and Doug Brown
 Lex � Yacc� O�Reilly and Associates� Be sure to

get the �nd edition�

M� E� Lesk and E� Schmidt� LEX � Lexical Analyzer Generator�

Alfred Aho� Ravi Sethi and Je�rey Ullman
 Compilers
 Principles� Techniques and Tools�

Addison�Wesley ������� Describes the pattern�matching techniques used by flex �deterministic

�nite automata��

���� Author

Vern Paxson� with the help of many ideas and much inspiration from Van Jacobson� Original

version by Jef Poskanzer� The fast table representation is a partial implementation of a design done

by Van Jacobson� The implementation was done by Kevin Gong and Vern Paxson�

Thanks to the many flex beta�testers� feedbackers� and contributors� especially Francois Pinard�

Casey Leedom� Stan Adermann� Terry Allen� David Barker�Plummer� John Basrai� Nelson H�F�

Beebe� �benson)odi	com�� Karl Berry� Peter A� Bigot� Simon Blanchard� Keith Bostic� Frederic

Brehm� Ian Brockbank� Kin Cho� Nick Christopher� Brian Clapper� J�T� Conklin� Jason Cough�

lin� Bill Cox� Nick Cropper� Dave Curtis� Scott David Daniels� Chris G� Demetriou� Theo Deraadt�

Mike Donahue� Chuck Doucette� Tom Epperly� Leo Eskin� Chris Faylor� Chris Flatters� Jon Forrest�

Joe Gayda� Kaveh R� Ghazi� Eric Goldman� Christopher M� Gould� Ulrich Grepel� Peer Griebel�

Jan Hajic� Charles Hemphill� NORO Hideo� Jarkko Hietaniemi� Scott Hofmann� Je� Honig� Dana

Hudes� Eric Hughes� John Interrante� Ceriel Jacobs� Michal Jaegermann� Sakari Jalovaara� Jef�

frey R� Jones� Henry Juengst� Klaus Kaempf� Jonathan I� Kamens� Terrence O Kane� Amir Katz�

�ken)ken	hilco	com�� Kevin B� Kenny� Steve Kirsch� Winfried Koenig� Marq Kole� Ronald Lam�

precht� Greg Lee� Rohan Lenard� Craig Leres� John Levine� Steve Liddle� Mike Long� Mohamed

el Lozy� Brian Madsen� Malte� Joe Marshall� Bengt Martensson� Chris Metcalf� Luke Mewburn�

�	

Jim Meyering� R� Alexander Milowski� Erik Naggum� G�T� Nicol� Landon Noll� James Nordby�

Marc Nozell� Richard Ohnemus� Karsten Pahnke� Sven Panne� Roland Pesch� Walter Pelissero�

Gaumond Pierre� Esmond Pitt� Jef Poskanzer� Joe Rahmeh� Jarmo Raiha� Frederic Raimbault�

Pat Rankin� Rick Richardson� Kevin Rodgers� Kai Uwe Rommel� Jim Roskind� Alberto Santini�

Andreas Scherer� Darrell Schiebel� Raf Schietekat� Doug Schmidt� Philippe Schnoebelen� Andreas

Schwab� Alex Siegel� Eckehard Stolz� Jan�Erik Strvmquist� Mike Stump� Paul Stuart� Dave Tall�

man� Ian Lance Taylor� Chris Thewalt� Richard M� Timoney� Jodi Tsai� Paul Tuinenga� Gary Weik�

Frank Whaley� Gerhard Wilhelms� Kent Williams� Ken Yap� Ron Zellar� Nathan Zelle� David Zuhn�

and those whose names have slipped my marginal mail�archiving skills but whose contributions are

appreciated all the same�

Thanks to Keith Bostic� Jon Forrest� Noah Friedman� John Gilmore� Craig Leres� John Levine�

Bob Mulcahy� G�T� Nicol� Francois Pinard� Rich Salz� and Richard Stallman for help with various

distribution headaches�

Thanks to Esmond Pitt and Earle Horton for ��bit character support� to Benson Margulies and

Fred Burke for C�� support� to Kent Williams and Tom Epperly for C�� class support� to Ove

Ewerlid for support of NUL�s� and to Eric Hughes for support of multiple bu�ers�

This work was primarily done when I was with the Real Time Systems Group at the Lawrence

Berkeley Laboratory in Berkeley� CA� Many thanks to all there for the support I received�

Send comments to �vern)ee	lbl	gov��

i

Table of Contents

��� Name �

��� Synopsis �

��	 Overview �

��� Description �

��� Some simple examples �

��� Format of the input �le �

��
 Patterns �

��� How the input is matched �

��� Actions ��

���� The generated scanner ��

���� Start conditions ��

���� Multiple input bu�ers �	

���	 End�of��le rules ��

���� Miscellaneous macros �

���� Values available to the user ��

���� Interfacing with yacc ��

���
 Options ��

���� Performance considerations � 	

���� Generating C�� scanners ��

���� Incompatibilities with lex and POSIX ��

���� Diagnostics ��

���� Files ��

���	 De�ciencies � Bugs ��

���� See also ��

���� Author ��

