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PREFACE

Compiler design is one of the first major areas of systems programming
for which a strong theoretical foundation is becoming available, Volume I
of The Theory of Parsing, Translation, and Compiling developed the relevant
parts of mathematics and language theory for this foundation and developed
the principal methods of fast syntactic analysis. Volume II i3 a continuation
of Volume I, but except for Chapters 7 and 8 it is oriented towards the non-
syntactic aspects of compiler design.

The treatment of the material in Volume II is much the same as in Volume
I, although proofs have become a little more sketchy, We have tried to make
the discussion as readable as possible by providing numerous examples, each
illustrating one or two cancepts.

Since the text emphasizes concepts rather than language or maching
details, a programming laboratory should accompany a course based on this
book, so that a student can develop some facility in applying the concepts
discussed to practical problems. The programming exercises appearing at the
ends of sections can be used as recommended projects in such a laboratory.
Part of the laboratory course should discuss the code to be generated for such
programming language constructs as recursion, parameter passing, subroutine
linkages, array references, loops, and so forth.

Use of the Book

The notes from which this book evelved were used in courses at Princeton
University and Stevens Institute of Technology at both the senior and grad-
uate levels, The material in Volume II was used at Stevens as a one semester
course in compiler design following a one semester course based on Volume 1.

As a text in compiler design, we feel, certain sections of the book are more
important than others. On a first reading proofs can be omitted, along with
Chapter 8 and Sections 7.4.3, 7.5.3, 9.3.3, 10.2.3, and 10.2.4,

vii



viii PREFACE

Ag in Volume I, problems and bibliographic notes appear at the end of
each section, We have coarsely graded problems, other than research and
open problems, according to their level of difficulty, using stars. Unstarred
problems test understanding of basic definitions. Singly starred problems re-
quire one significant insight for their solution. Doubly starred problems are
considerably harder than singly starred problems.
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7 TECHNIQUES FOR
PARSER OPTIMIZATION

In this chapter we shall discuss various techniques that can be used to
reduce the size and/or increase the speed of parsers,

First, we shall consider reducing storage requirements for precedence
matrices. In certain cases, including many of practical interest, we shall
show that an m X n precedence matrix can be replaced- by two vectors of
length m and n, respectively. We shall also discuss how a precedence matrix
can be modified without affecting the shift-reduce parsing algorithm con-
structed from the matrix.

Next we shall show how a production language parser can be mechan-
ically generated from a weak precedence grammar, and then we shall consider
various techniques which can be used to reduce the size of the resulting parser.

Finally, we shall consider in some detail various transformations which
can be used to reduce the size of an LR parser without adversely affecting
its error-detecting ability. The “Simple LR” method of DeRemer and the
grammar splitting method of Korenjak are discussed in detail.

The techniques presented in this chapter are indicative of the types of
optimization that can be performed on all parsers constructed by the methods
of Chapter 5 (in Volume I). Many more optimizations are possible, but a
complete “catalogue” of these does not exist. The summary at the end of
this chapter is recommended for those readers desiring merely an overview
of parser optimization techniques.

7.1. LINEAR PRECEDENCE FUNGCTIONS

A matrix whose entries are either —1, 0, -1, or “blank” will be called
" a precedence matrix. There are obvious applications for precedence matrices

543
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in the implementation of precedence-oriented parsing algorithms. For exam-
ple, we can use a precedence matrix to represent the Wirth—Weber precedence
relations for a precedence grammar by associating

—1 with <«
0 with =
+1 with =

blank with error

Or we can use a precedence matrix to represent the parsing decisions of
a shift-reduce parsing algorithm. One such representation would be to
associate

—1 with shift
0 with error
+1 with reduce

In this section we shall show how a precedence matrix can often be concisely
represented by a pair of vectors called linear precedence functions,

7.1.1. A Matrix Representation Theorem

Let M be anm X nprecedence matrix. We say that a pair (f, g) of vectors
of integers represents M if

W =i fo L)

@ g=1(8:8...,8); and

(3) f, << g, whenever M, = -1,
fi =g, whenever M,; =0, and
fi > g; whenever M, = 1.

We can use fand g in place of M as follows. To determine M, we look up
frand g If f, << g, f; = g;, or f; > g,, we shall assume that M, = —1, 0,
or +1, respectively. Note that by using fand g in place of M in this manner,
we do not recover the blank entries of M, because one of the relations <7, =,
or > holds between each f, and g,.

We shall call the vectors f and g linear precedence functions for M. By
using f and g to represent M, we can reduce the storage requirement for the
precedence matrix from m X n entries to m 4 » entries. We should point
out, however, that linear precedence functions do not exist for every pre-
cedence matrix.

Example 7.1
Consider the simple precedence grammar G with productions

8 — aSc|bSe|c



sec. 7.1 LINEAR PRECEDENCE FUNCTIONS 545

s e

a = <- | <

b = <+

c D

$ <<l < Fig. 7.1 Matrix of Wirth-Weber pre-
cedence relations,

The Wirth—-Weber precedence relations for & are shown in the matrix in
Fig. 7.1. We shall henceforth call this matrix the matrix of Wirth—Weber
precedence relations 10 avoid confusion with the term precedence matrix.
We can represent the precedence relations in Fig. 7.1 by the precedence
matrix M shown in Fig. 7.2, associating

—]1 with <
0 with =
“+1 with =

and leaving blank entries unchanged. We can then represent this precedence
matrix by the linear precedence functions

f=0,0,0,2,0
g=(0,1,1,1,0)

5 08 J—l —1| =1 i .
Fig. 7.2 Precedence matrix M.

We can easily verify that these are linear precedence functions for M. For
example, f, = 2 and g, = 0. Thus, since £, > g, fand g faithfully represent
the 41 entry M.

The entry M,, in the precedence matrix is blank. However, f, = 2 and
g, = 0. Thus, if we use fand g to represent M, we would reconstruct M,
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as +1 (since £, > g,). Likewise, the blank entries M, M, M,, and M,,
would all be represented by +1's, and M,,, M., M,;, M;. M, and M,
would be represented by 0's.

The blank entries in the original precedence matrix represent error con-
ditions. Thus, if we use linear precedence functions to represent the prece-
dence telations in this fashion, we shall lose the ability to detect an error
when none of the three precedence relations holds. However, this error will
eventually be caught by attempting a reduction and discovering that there is
1o production whose right side is on top of the pushdown list. Nevertheless,
this delay in error detection could be an unacceptable price to pay for the
convenience of using precedence functions in place of precedence matrices,
depending on how important early error detection is in the particular com-
piler involved. [7]

Example 7.2

We can overcome much of this loss of timely error detection by imple-
menting a shift-reduce parsing algorithm for a precedence grammar in which
we associate both the precedence relations < and == with shift and = with
reduce, Moreover, for the shift-reduce parsing action function we nced only
the precedence relations from N U Z U {$} to £ U {$}. For example, we can
associate < and = with —1 and » with -1 and obtain the precedence

I 2 3 4
a b ¢ §
1§ =1
2 a|-1]-1|-1
3 b =1|~1]=1
4 ¢ +1 [ +1
S e e Y Fig. 7.3 Precedence matrix A",

matrix M’ in Fig. 7.3 from Fig. 7.1. The blank entries represent error condi-
tions. We can show that

f=000020 and g=(,1,10

are linear precedence functions for M’. These linear precedence functions
have the advantage that they reproduce the blank entries M, ,, M,,. M,,, and
M., as0(since f, = f, = f, = fs = g,). We can thus use 0 to denote an error
condition and in this way preserve error detection that was present in the
original matrix M'. We shall consider this problem in greater detail in Section

7.13. [
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We shall first present an algorithm which, given a precedence matrix M,
will find precedence functions for M whenever they exist. In the next section
we shall present a modification of this algorithm which when presented with
a precedence matrix with —1, +1, and blank entries will find precedence
functions for the matrix such that blank entries will be represented by 0’s
as often as possible.

We first observe that if two rows of a precedence matrix M have identical
entries, then the two rows can be merged into a single row without affecting
the existence of linear precedence functions for M. Likewise, identical col-
umns can be merged. We shall call a precedence matrix in which all identical
rows and identical columns have been merged a reduced precedence matrix.
We can find precedence functions more efficiently if we first reduce the pre-
cedence matrix, of course.

ALGORITHM 7.1
Computation of linear precedence functions,
Input. Anm x nmatrix M whose entries are —1, 0, +1, and blank.

Output. Two vectors of integers / = (f,, ..., f,)and g =(g,,....8)
such that

hi<g ifM,=-1
f=g ifM, =0
fi>g M, =+1

or the output “no” if no such vectors exist.
Method.

{1) Construct a directed graph with at most m + » nodes, called the
linearization graph for M. Initially, label m nodes F,, F,, ..., F, and the
remaining n nodes &, G,, . .., G,. These nodes will be manipulated, and at
all times there will be some node F, representing F, and a node G representing
G,. Initially, F, = F, and G = @, for all  and j. Then do step (2) or (3), as
appropnate for each i and 7

(2) If M,, = 0, create a new node N by merging E and G N now repre-
sents all those nodes previously represented by F and G

(3 If M, = +1, draw an edge from £, to G IfM = —1, draw an
edge from G to £,

4 If the resultmg graph is cyclic, answer “no.”

(5) If the linearization graph is acyclic, let £, be the length of a longest
path beginning at F, and let g; be the length of a longest path beginning
at G, [

In step (4) of Algorithm 7.1 we can use the following general technique
to determine whether a directed graph & is cyclic or acyclic:
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(1) Let G be the graph at hand initially.

{2y Find a node ¥ in the graph at hand that has no descendants. If no
such node exists, report that G is cyclic. Otherwise, remove .

(3) If the resulting graph is empty, report that & is acyclic. Otherwise,
repeat step (2).

Once we have determined that the graph is acyclic, we can use the follow-
ing labeling technique in step (5) of Algorithm 7.1 to determine the length
of a longest path extending from every node.

Let G be a directed acyclic graph (dag).

(1) Initially, label each node in G with 0,

{2) Repeat step (3) until no further changes can be made to the labels
of G. At that time the label on cach node gives the length of a longest path
beginning at that node.

(3) Find a node ¥ in G. Let N have direct descendants N, N,, ..., N,
with labels 7, £,, ..., I,. Change the label of N to max{/,,/,,..., L} + L
(If &£ =0, the label of N remains 0.) Repeat this step for every node in G-

It should be clear that we shall repeat step (3) at most / times per node,
where [ is the length of a longest path in G.
Example 7.3

Consider the precedence matrix M of Fig. 7.4,

1]=1/=1[0 -1

2 +1|—1| O

3 —1 +11 0

4 -1 |+

3 o Fig. 74 Precedence matrix.

The linearization graph constructed from M is shown in Fig. 7.5. Note
that in step (2) of Algorithm 7.1, three pairs of nodes are merged: (F,, G,),
(I, Gy, and (F, Gy).

The linearization graph is acyclic. From step (§) of Algorithm 7.1 we
obtain linear precedence functions = (0,1,2,1,3) and g =(3,2,0,2, 1).
For example, f, is 3 since the longest path beginning at node F; is of
length 3. []

THEOREM 7.1

A precedence matrix has linear precedence functions if and only if its
linearization graph is acyclic. .
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Fig. 7.5 Linearization graph.

Proof.

If: We first note that Algorithm 7.1 emits fand g only if the linearization
graph is acyclic. It suffices to show that if fand g are computed by Algorithm
7.1, then

(1) M,; = 0 implies that f; =g,
(2) M,; = -+1 implies that f; > g,, and
(3) M,; = —1 implies that f; < g,

Assertion (1) is immediate from step (2) of Algorithm 7.1. To prove assertion
(2), we note that if M,; = +1, then edge (£, G} is added to the linearization
graph, Hence, f; > g, since the length of a longest path to a leaf from node
F, must be at least one more than the length of a longest path from G , if
the linearization graph is acyclic. Assertion (3) follows similarly.

Ownly if: Suppose that a linear precedence matrix M has linear precedence
functions f and g but that the linearization graph for M has a cycle consist-
ing of the sequence of nodes N, N,,..., N,, N.,,, where N,,, =N, and
k = 1. Then by step (3), for alt i, 1 <Ci <k, we can find nodes A, and 7,
such that

(1} H,and I,,, are original F's and G’s;

(2) H, and [, are represented by N, and ¥,,,, respectively; and,

(3) Either H,1s F_, I,,,is G, and M, = -1, 0or H,is G, I,,, is F, and
M, =—1

rm
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We observe by rule (2) that if nodes F,, and G, are represented by the same
N, then f,, must equal g, if f and g are to be lingarizing functions for M.

Let fand g be the supposed linearizing functions for M. Let 4, be f,, if H,
is F,andleth beg, if H is G .Lethibe s iff is F andlethibeg, if ],
is G,. Then

hy> Wy =h, > = =k >,

But since N, is N,, we have A, = k,. However, we just showed that
A, > Myt Thus, a precedence matrix with a cyclic linearization graph cannot
have linear precedence functions. [

COROLLARY

Algorithm 7.1 computes linear precedence functions for M whenever
they exist and produces the answer “no” otherwise. [ ]

7.1.2. Applications to Operator Precedencs Parsing

We can try to find precedence functions for any matrix whose entries
have at most three values. The applicability of this technique is not affected
by what the entries represent. To illustrate this point, in this section we shall
show how precedence functions can be applied to represent operator pre-
cedence relations.

Example 7.4
Consider our favorite grammar G, with productions

E—FE4T|T
T—T=«F|F
F—s (E)|a

The matrix giving the operator precedence relations for @, is shown in
Fig. 7.6.

$ < || <

{ L] =

+ <> ||| >

. <[> > < | >

a |-> > | > >

3 [-> NS > f‘;lgatlgs tl-\’:/311-51tg;(.c:'f operator precedence
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I 2 3 4 5
1 -1 ~1] =1 $
2 —1 =1 -1] 0] ¢
k2 IS B S TN I 3 I (S

4 |+l | =1+ | +I | +1] =

$ ( + = ) Fig. 7.7 Reduced precedence
a matrix M.

Fig. 7.8 Linearization graph for M".

If we replace < by —1, == by 0, and > by 41, we obtain the reduced
precedence matrix A" shown in Fig. 7.7. Here we have combined the rows
labeled @ and ) and the columns labeled ( and a. The Knearization graph for
M’ is shown in Fig. 7.8. From this graph we obtain the linear precedence
functions f* = (0,0, 2, 4, 4) and g" = (0, 5, 1, 3, 0) for M’. Hence, the linear
precedence functions for the original matrix are f =(0,0,2,4,4,4) and
g=1{0,51,350. O

7.1.3. Weak Precedence Functions

As pointed out previously, —1, 0, and +1 of the mairix of Algorithm
7.1 can be identified with the Wirth—-Weber precedence relations <2, ==, and
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=, respectively. If linear precedence functions are found, then the precedence
relation between X and Y is determined by applying the first function to X
and the second to Y. In this case, all pairs X and Y will have some precedence
relation between them, so error detection is delayed until either the end of
the input is reached or an impossible reduction is called for.

However, the lincar precedence function technique can be applied to
the representation of shift-reduce parsing decisions with an opportunity of
retaining some of the error-checking capability present in the blank entries
of the original matrix of precedence relations. Let us define a weak prece-
dence matrix as an m ¥ n matrix M whose entries are —1, -1, and blank,
The —1 entries generally denote shifts, the +1 entries reductions, and the
blank entries errors. Such a matrix can be used to describe the shift-reduce
function of a shift-reduce parsing algorithm for a weak precedence grammar,
a (1, I-precedence grammar, or a simple mixed strategy precedence grammar.

We say that vectors fand g are weak precedence functions for a weak pre-
cedence matrix M if f; < g, whenever M,, = —1 and f, > g, whenever
M, =+1

The condition f; = g, can then be used to denote an error condition,
represented by a blank entry A4, In general, we may not always be able to
have f, = g, wherever M, is blank, but we would like to retain as much of
the error-detecting capability of the original matrix as possible.

Thus, we can view the problem of finding weak precedence functions for
a weak precedence matrix M as one of finding functions which will produce
as many O’s for the critical blank entries of M as possible. We choose not to
fill in all blanks of the weak precedence matrix with 0’s immediately, since
this would restrict the number of useful weak precederice matrices that have
weak precedence functions. Some blank entries may have to be changed to
—1 or +1 in order for weak precedence functions to exist (Exercise 7.1.9).
In addition, some blank entries may never be consulted by the parser, so
these entries need not be represented by 0’s.

The conecept of independent nodes in a directed acyclic graph is of impor-
tance here. We say that two nodes N, and N, of a directed acyclic graph
are independent if there is no path from N, to ¥, or from N, to N .

We could use Algorithm 7.1 directly to produce weak precedence func-
tions for a weak precedence matrix M, but this algorithm as given did not
attempt to maximize the number of 's produced for blank entries. However,
we shall use the first three steps of Algorithm 7.1 to produce a linearization
graph for M.

From Theorem 7.1 we know that M has weak precedence functions if
and only if the linearization graph for M is acyclic. The independent nodes
of the lingarization graph determine which blank entries of M can be pre-
served. That is, we can have f, = g, if and only if F, and G, are independent
nodes. Of course, if we choose to have £, = g;, then there may be other pairs
of independent nodes whose corresponding numbers cannot be made equal.
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Example 7.5

The matrix of Wirth-Weber precedence relations for the grammar G,
is shown in Fig. 7.9. The columns corresponding to nonterminals have been
deleted, since we shall use this matrix only for shift-reduce decisions. The
corresponding reduced weak precedence matrix is shown in Fig. 7.10, and
the linearization graph that results from this reduced matrix is shown in
Fig. 7.11. In thjs graph the nodes labeled F, and G, are independent. Also,
G, and G, are independent, but £, and @, are not. [}

a () T =+ §

E = | =
T e R e
F | |
a R N
) e x|
(] <e | <<
+ | <
* | <o | <o
<< Fig. 7.9 Precedence relations for Gg.
1 2 3 4
I -1 E
P +1 | —1] +1 T
3 +1 | +1| #1 | F,a,)
4 [ -1 G(+.+8%
a Yy = 8 Fig, 7.10 Reduced weak precedence
=+ matrix,

We can geoeralize step (5) of Algorithm 7.1 to determine precedence
functions which maximize the number of 0’s produced for blank entries.
We can view the determination of the components of the precedence vectors
as an assignment of numbers to the nodes of the linearization graph. Any
set of pairwise-independent nodes can be assigned the same number, but
a node which is an ancestor of one or more nodes must be assigned a larger
number than any of its descendants.

We shall assign numbers to the nodes as follows. First, we partition the
nodes of the linearization graph into clusters of independent nodes such



554 TECHNIQUES FOR PARSER OPTIMIZATION CHAP. 7

@ e Fig. 7.11 Linearization graph.

that the total number of F-G pairs together in a cluster is as large as possible
and no one cluster contains both descendents and ancestors of another
cluster. In general there may be many different sets of clusters possible, and
certain F-G pairs may be more desirable than others. This part of the process
may well be a large combinatorial problem.

However, once we have partitioned the graph into a set of clusters, we
can then find a linear order < on the clusters such that, for clusters € and
C’, C < C"if C contains a node that is a descendant of a node in ', If
C,, Cpy v .o, C is the sequence of clusters in this linear order, we then assign
0 to all nodes in C,, 1 to all nodes in C,, and so forth.

Example 7.6

Consider the linearization graph for ¢, shown in Fig. 7.11. The set
|F,, F,, G} is an example of a cluster of independent nodes, and so are
{F,. G,, G, {F,, G}, {G, G,}, and {F,, ¢,}. However, the cluster {G,, G,]
is not desirable, since both nodes in this cluster are labeled by G’s and
thus it would not produce a O entry In the weak precedence matrix. The
cluster {F,, G,} might be more desirable than the cluster {F,, G,}, since
/3 = g, will detect errors whenever aa, &, )a, or )( appear in an inpui string,
while f, = g, will detect errors only for the pairs Fa and T(. Also, note that
if we detect an error whenever aa appears, we shall not be able to reduce
a to F, so the adjacencies Fa and Ta would never occur.

Thus, one possible clustering of nodes is {F], {F,, G, G} {F.} {G;}
{F,, G,}. Taking the linear order on clusters to be the left-to-right order
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shown, we obtain the weak precedence functions
/=0241) and g=(4131

These functions define the precedence matrix shown in Fig. 7.12. ]

Wby
|
|
s
X
|
*

1~
<
o]
+
+
—_—
+
—
+

¢ |~1|-1j0olo|-1]0O
to=t|=1f{0f0|~]]0O
* |[—-l|-1| 0| 0|-T] 0
s [<i]=1]olo-1] 0 F(:E (’}‘7;2 Resulting precedence matrix

7.1.4. Modification of Precedence Matrices

Example 7.6 suggests that certain error entries in the matrix of Wirth—
Weber precedence relations will never be consulted by the shift-reduce
parsing algorithms for simple and weak precedence grammars (Algorithms
5.12 and 5.14). If we can isolate these entries and replace them by “don’t
cares,” then we can ignore these entries when we are attempting to find weak
precedence functions that cover as many error entries as possible.

To understand what modifications can be made to a matrix of precedence
relations, we first define what we mean when we say two shifi-reduce parsing
algorithms are exactly equivalent, We shall use the notation for shift-reduce
parsing algorithms that was given in Section 5.3 (Volume I).

DEFINITION

Let @, =(f,g)t and @, =(f,,£,) be two shift-reduce parsing
algorithms for a context-free grammar G = (N, I, P, S). We say that @, and
@, are exactly equivalent if their behavior on each input string is identical:
that is, if an input string w is in L{G}, then both parsing algorithms accept
w. If wis not in L(G), then both parsers announce error after the same number
of steps and in the same phase. If in the reduction phase, an error relation is
found after scanning an equal number of symbols down the stack.

We shall determine which blank entries in the canonical matrix of Wirth-
Weber precedence relations can be changed without affecting the parsing

THere f; is the shift—reduce function and g, is the reduce funciion,
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behavior of the shift-reduce parsing algorithm constructed from that matrix
using Algorithm 5.12. The chief use of this analysis is in finding good clusters
for weak precedence functions as discussed in the previous section. Blank
entries which should not be changed will be called essential blanks. The
theorem that follows identifies the essential blanks.

First, let us establish some notational conventions. Suppose that ¢ =
(N, Z, P, 5) is a CFG. We let M_ be the matrix of canonical Wirth—-Weber
precedence relations for G. (These are the ones that are created by the defini-
tion.) We shall subscript these precedence relations with ¢. If no Wirth—
Weber precedence relation holds between a pair of symbols X and ¥, we
shall write X 7, Y.

‘We can also create an arbitrary matrix M of <’s, ==, =>"s, and blanks.
If M has the same dimensions as M, then we shall call M a matrix of pre-
cedence relations for G. We shall write X 7 ¥ if the (X, ¥) entry in M is
blank.

We can use Algorithm 5.12 to counstruct the shift-reduce parsing algor-
ithm @&, = (f,, g,) for G using the Wirth-Weber precedence relations in M.
We can also use Algorithm 5.12 to construct another shift-reduce parsing
algorithm @ = (f, g) for G using the precedence relations in M. Theorem
5.15 guarantees that @, is a valid parsing algorithm for &, but there is no
guarantee that @ will be a valid parsing algorithm for G. However, the fol-
lowing theorem states necessary and sufficient conditions for @ to be exactly
equivalent to @,.

THEOREM 7.2

@ is exactly equivalent to @, if and only if the following four conditions
are satisfied forall ¥and ¥YinN U Z U {8}, gandbin X U {$},and 4 in N.

D) X<, Y then ¥ < Y.
(b) If X¥=_ Y, then ¥ =71
(¢) If X =, q, then X = a.
2y b2 a,thend?a.
(3) If A ?, a, then either
(a) A?aor
(b) For all Z in N 1J £ such that A — ¢Z is a production in P
the relation Z = _g is false.
{4) If X ?_ A, then either
(a) X?A4or
(b) For all Z in N U X such that 4 — Zu is in P the relation X' < Z
is false.

Proof.

If: By condition (1), the moves of @ and @, must agree until the latter
detects an error. Therefore, it suffices to show that if the two parsing
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algoritbms reach configuration Q@ = (X, --- X,, @, --- a,, m) and we find
Q| & error, then Q|4 error, and, moreover, the mechanism of error detec-
tion is the same in both @ and @_.

Let us first assume that in configuration 0, f.(X,, @,) = error but
f(X,, a,) = error. We shall show that a contradiction arises. Thus, suppose
that X 7. a, but that X_ ? a, does not hold. By condition (2), X, must be
a nonterminal. By condition (3), for all Ysuchthat X, —aYisinP, ¥ = a,
is false.

Examination of the precedence parsing algorithm indicates that the
only way for a nonterminal to be on top of the stack is for the previous move
to have been a reduction. Then there is some production X, — aY in P
such that the move of both parsers before configuration Q was entered is
(x,-+- XY, a - a,n) Q. But this implies that ¥ > a,, in con-
tradiction.

The other possibility is that in configuration @, g (X, --- X, €) = error
but g(X, -+ X, e) # error. The only case that needs to be considered here
is that in which X, =, a,, X,, = a, and there is some s such that X, ?, X, ,
while X,=,X,,, and X,=X,,, for s <i<m, but the relation X, X,
does not hold. We claim that X, must be a nonterminal, because the only
way @, could place a terminal above X, on the stack is if X, <, X, or
X, =, X,

By condition (4), we can not have X, <, Yif X, , — Ye is in P. But the
only way that X,,, could appear next to X, on the stack is for a reduction
of some Ya to X,,, to occur. That is, there must be some configuration
(X, -+« XY, b, --- b, #") leading to @ such that

(Xl e X;Y“; b1 ot bks 75”){‘&.:— (X! U X:Xﬁ-l!bt e bk: 71:”1,:).

But then X, «_ ¥ in violation of condition (4).

Only if: Tt is straightforward to show that if condition (1} is violated,
the parsers are not exactly equivalent. We therefore omit this portion of
the proof and proceed to the more difficult portions.

Case 1: Suppose that condition (2) is violated. That is, for some & ?, q,
we do not have b ? 4. Since G is a simple precedence grammar (and hence
proper), there is some sentence whbx in L(G). Consider the parsing of wba by
@, and @. Since whbx is in L{G), neither parser can declare an error until
the @ in wba becomes the next input symbol. Thus, both parsers must enter
some configuration ($a, ba$, x), at which time the b is shifted onto the stack,
yielding configuration ($ab, a$, n). Since b ?, a but b 7a is false, @, and @
are not exactly equivalent,

Case 2: Suppose that condition (3} is violated. That is, we have 4 ?,_ a,
A ?ais false, and there is some 4 — aX in P such that X » 4.
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Since G is proper, there is some right-sentential form SA4w of G and there
is some x in E* such that 4 = 0X = B,= - = ﬂnﬁ; x. Moreover,

there exists y in £* such that § = y. By Lemma 5.3, if ¥ is the last symbol
ofany of ,,..., f,or x,then ¥ > _a.

In the parsing of yxw, we note that the first symbol of w is not shifted
until yx is reduced to fA. Therefore, the parsing of yxa will proceed exactly
as that of yxw—until configuration ($84, a$, ") is reached. But 4?2, a
holds while 4 ? @ does not, so the two parsers are not exactly equivalent,

Case 3: Suppose that condition (4) is violated. That is, we have X' 7, A
and some production 4 — Ya such that X? A4 is false and X' <, V.
Let fAw be a right-sentential form and 4 =Yg —p, = .- = p,=> x.

Also, let dXu be a right-sentential form such that d = yand X 2 7. Then
by Lemma 5.3, X is related by <, to every first symbolin eachof y,, ..., 7,
and x. Moreover, the last symbol of each right-sentential form in a deriva-
tion X r:} z is related by 3=, to the first symbol of x.

Then when parsing yzxw, the configuration (34 X, xw$, n) will be reached,
and subsequently (30X 4, w$, n’) will be entered. The parsers will eventually
attempt to reduce by the production that introduced A into fAw. If X' 7, 4,
but X ? A is false, the exact equivalence of the two parsers is again contra-
dicted. []

Example 7.7

Consider the following simple precedence grammar G:

E— E+ A|A
A-—-s>T
—TxF|F
F—>(B|a
B— E)

1t should be evident that I{G) = L(G,). The matrix of canonical Wirth-
Weber precedence relations for G is shown in Fig. 7.13. Let us consider
which entries of Fig. 7.13 can be modified according to Theorem 7.2. Condi-
tion (1) states that no nonblank entries can be changed. Condition (2) states
that all blank entries in the intersection of the last six rows and the last six
colummns are essential.

By condition (3), (E, %) is an essential blank since £ — A is a production
and A = §. The remaining blanks in the last six columns are not essential
and thus can be changed arbitrarily.
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E A T F B a ( ) + =+ §

E = | =

A > | > >
T >l 2|
F > > > | >
B - S I
@ = B N -
} x| > >
(<< |<l<]=]<]<

N al<| < <| <

. = <

< < <] < < | <

Fig. 7.13 Mairix of canonical Wirth-Weber precedence relations.

Condition (4} requires that the (3, B) entry be an essential blank, because
B — E)is a production and § <= E. The remaining blank entries in the first
five columns can be changed arbitrarily. []

If we use Algorithm 5.14 to construct a shifi-reduce parsing parsing
alporithm for a uniquely invertible weak precedence grammar, then we can
show that the analogous parsers @ and @, of Theorem 7.2 are exacily
equivalent if and only if the first three conditions of Theorem 7.2 are sat-
isfied.t

Example 7.8

Using conditions (1)+3) of Theorem 7.2 on the weak precedence relations
for G, shown in Fig. 7.9 (p. 553), we find that all the blanks in the last six
rows are essential. The only other essential blank is (£, $), since £ — Tis a
production and 7 = §.

Examining the linearization graph of Fig. 7.11, we find that there are
no precedence functions such that every essential blank is represented by 0.

tRecall that reductions do not depend on the precedence matrix in a weak precedence
parser.
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This would require, for example, that nodes F,, G,, G,, and G, all be placed
in one cluster.

At this point we might give up trying to use precedence functions to
implement the parser. However, we can consider using a slightly weaker
definition of equivalence between parsers.

Exact equivalence is very stringent. In practical situations we would be
willing to say that twe shifi-reduce parsing algorithms are equivalent if they
either both accept the same input strings or both announce error at the same
position on erroneous input strings. Thus, one parser could announce error
while the other made several reductions (but no shift moves) before announc-
ing error. Under this definition, which we shall call simply equivalence, we
can modify precedence relations even more drastically but still preserve
equivalence. (See Exercise 7.1.13.)

With this weaker definition of equivalence we can show that a shifi-
reduce parsing algorithm using the precedence functions

ET F a () + % §

fFl 0]2|5|5)|4|5|4|4:4

¢ sls|1]1]3 0

is equivalent to the parser constructed by Algorithm 5.14 from the weak
precedence relations in Fig. 7.9. []

We shall explore this weaker form of equivalence in much greater detail
in Sections 7.2, 7.3, and 7.4.

EXERCISES

7.1.1. Find linear weak precedence functions for the following grammars
or prove that none exist:
(a) §— S4|4
A—(5)()
by E— E+T|+TIT
T— T+ F|F
Fs (BE)ja
7.1,2, Show that if M’ is a matrix formed from M by permuting some rows

and/or columnns, then the vectors f and g produced by Algorithm 7.1
for M’ will be permutations of those produced for M.

7.1.3. Find linear precedence functions for the matrix of Fig. 7.14.

7.1.4. Find an algorithm to determine whether a matrix has linear precedence
functions fand g such that f = g.
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7.1.6.

7.1.7,

7.1.8.

7.1.9.
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+1 | +1 | +1

+1 | +1 | +1

—1] -1 +1 [ +1] +1

=1 -1 —1] +1 | +1| +1

1| =1 =1|—=1] +1 ]| 1

-1 -1 =i|-1|-1] 0

Fig. 7.14 Matriz.

(a} Show that the technique given after Algorithm 7.1 for determining
whether a directed graph is acyclic actually works.

(b} Show that this technique can be implemented to work in time
O(n) + O(e), where n is the number of nodes and ¢ is the number
of edges in the given graph. Hint; Choose a node in the graph.
Color all nodes on a path extending from this node until either a
leaf or previously colored node is encountered. If a leaf is found,
remove it, back up to its immediate ancestor, and then continue the
coloring process.

(a) Show that the labeling technique given after Algorithm 7.1 will
find the length of a longest path beginning at each node.

(b) Show that this technique can be implemented in time O(z) 4 0 (e),
where # is the number of nodes and ¢ the number of edges in the
graph.

Give an algorithm which takes a matrix M with entries —1,0, +1,

and blank and a constant & and determines whether there exist vectors

Fand g such that
() IfM,; = —I,then i + k < g3
(2 M,; =0, then |f; —g;| < k;

(3) If M,; = +1, then f; > g, + k.

DEFINITION

Let M be a weak precedence matrix. We say a sequence of integers
Iy, By, - . ., ix, Where k is even and greafer than 3, is a cycle of M if

(1) M, = —lforoddj, M, ., = +1 foreven j, and M,,;, = +1,
or

(2) My, = +1Tor odd j, M,, ;, = —1 foreven j,and M, ,, = —1.
Show that there exist weak precedence functions for a weak precedence
matrix if and only if M contains no cycle.

Let M be a weak precedence matrix and let 7, J, &, and { be indices such
that either

(1) My =M, = —1, M;; = +1, and M, is blank, or
(2) Mk = Mﬂ = +l, Mjk = 4‘1, and Mt is blank,
Let M’ be M with M, replaced by —1 in case (1) and by +1 in case (2).



562 TECHNIQUES FOR PARSER OPTIMIZATION CHAP. 7

7.1.10.

7.1.11.

*7.1.12.

*7.1.13.

Show that f and g are weak precedence functions for M if and only if f
and g are weak precedence functions for M,

DEeFmaTION

We say that two rows (columns) of a precedence matrix are comr-
patible if whenever they differ one is blank. We can merge compatible
rows (columns) by replacing them by a single row (column) which
agrees with all their nonblank entries.

Show that the operations of row and column merger preserve the prop-
erty of not having linearizing functions.

We can also use linear precedence functions to represent the <
and == relations used by the reduce function in the shift-reduce parsing
algorithm constructed by Algorithm 5.12, First, we construct a weak
precedence matrix M in which —1 represents «, +1 represents =,
and blanks represent both > and error. We then attempt to find linear
precedence functions for M, again attempting to represent as many
blanks as possible by 0’s.

Represent the < and == relations of Fig. 7.13 with linear precedence
functions. Use Theorem 7.2 to locate the essential blanks and attempt
to preserve these blanks.

Show that under the definition of exact equivalence for weak prece-
dence parsers a blank entry (X, ¥) of the matrix of Wirth-Weber
precedence relations is an essential blank if and only if one of the fol-
lowing conditions holds:

(1) Xand Yarein X U {$}; or
() Xisin N, ¥isin £ U {3}, and there is a production X — &Z
such that Z =, ¥.

In the following problems, “equivalent” is used in the sense of
Example 7.8,

Let @, and @ be shift-reduce parsing algorithms for a simple precedence
grammar as in Theorem 7.2. Prove that &, is equivalent to @ if and
only if the following conditions are satisfied:

(D) @ If X<, ¥, then X = ¥.
(b) f X=, ¥, then XY= Y.
() If X »,a, then X > a.
(&) If b 7, @, then b < ais false,
DIf A2%aand A< g or A==q, then there is no derivation
A ﬁo&l}(f;—; v = X, m>=1, such that for 1 <</ <m, X; 7.
a and X;»¢a, and X, >, 4,0rX, is 2 terminal and X > a
(4) If A, < @ or A; = a for some a, then there does not exist a
derivation A, => 4, => -+~ = A4, = Ba, m > 1, a symbol X, and a
production B — ¥ f§ such that
{(a) X, A, but X < A4, for 2 <<i<m;
(b) X 2, Bbut X <« B; and
© Y« T
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*7.1.16.
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Show that the parser using the precedence funciions of Example 7.8
is equivalent to the canonical precedence parser for G,.

Let M be a matrix of precedence relations constructed from A, the
matrix of canonical Wirth-Weber precedence relations, by replacing
some blank entries by *». Show that the parsers constructed from M
and M, by Algerithm 5.12 {or 5.14) are equivalent.

Consider a shift-reduce parsing algorithm for a simple precedence
grammar in which after each reduction a check is made to determine
whether the <@ or == relation holds between the symbol that was
immediately to the left of the handle and the nonterminal to which the
handle is reduced. Under what conditions will an arbitrary matrix of
precedence relations yield a parser that is exactly equivalent (or equiv-
alent) to the parser of this form constructed from the canonical Wirth—
Weber precedence relations ?

Show that every CFL has a precedence grammar (not necessarily
uniquely invertible)} for which linear precedence functions can be found.

Research Problems

7.1.18.

7.1.19.

Give an efficient algorithm to find linear precedence functions for a
weak precedence grammar G that yields a parser which is equivalent
to the canonical precedence parser for .

Devise good error recovery routines to be used in conjunction with
precedence functions.

Programming Exercises

7.1.29,
7.1.21.

7.1.22,

7.1.23,

Construct a program that implements Algorithm 7.1.

‘Write a program that implements a shift-reduce parsing algorithm using
linear precedence functions to implement the fand g functions.

Write a program that determines whether a CFG is a precedence gram-
mar that has linear precedence functions.

Write a program that takes as input a simple precedence grammar G
that has linear precedence functions and constructs for @ a shift—reduce
parser utilizing the precedence functions.

BIBLIOGRAPHIC NOTES

Floyd [1963] used linear precedence functions to represent the matrix of operator
precedence relations. Wirth and Weber [1966] suggested their use for representing
Wirth-Weber precedence relations. Algorithms to compute linear precedence
functions have been given by Floyd [1963], Wirth [1965], Bell [1969], Martin [1972],
and Aho and Ullman [1972a].

Theorem 7.2 is from Aho and Ullman [1972b], which also contains answers to
Exercises 7.1.13 and 7.1.15. Exercise 7.1.17 is from Martin [1972].
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7.2. QOPTIMIZATION OF FLOYD-EVANS PARSERS

A shift-reduce parsing algorithm provides a conceptually simple method
of parsing, However, when we attempt to implement the two functions of
the parser, we are confronted with problems of efficiency. Tn this section we
shall discuss how a shift-reduce parsing algorithm for a uniquely invertible
weak precedence grammar can be implemented using the Floyd-Evans
production language. The emphasis in the discussion will be on methods
by which we can reduce the size of the resulting Floyd—Evans production
language program without changing the behavior of the parser. Although
we only consider precedence grammars here, the techniques of this section
are also applicable to the implementation of parsers for each of the other
classes of grammars discussed in Chapter 5 (Volume T).

7.2.1. Machanical Generation of Floyd-Evans
Parsars for Waak Precedence Grammars

We begin by showing how a Floyd-Evans production language parser
can be mechanically constructed for a uniquely invertible weak precedence
grammar. The Floyd-Evans production language is described in Section
5.4.4 of Chapter 5. We shall illustrate the algorithm by means of an example.

As expected, we shall use for our example the weak precedence grammar
G, with productions

WHE—-FE+T
) E—T

(3) T—TxF
HT—F

(5) F—(E)

6) F—a

The Wirth-Weber precedence relations for G, were shown in Fig. 7.9. (p.
553). From each row of this precedence matrix we shall generate statements
of the Floyd-Evans parser. We use four types of statements: shift statements,
reduce statements, checking statements, and computed goto statements.t
We shall give statements symbolic labels that denote both the type of state-
ment and the top symbol of the pushdown list. In these labels we shall use
S for shift, R for reduce, C for checking, and & for goto, followed by the
symbol assumed to be on top of the pushdown list.

We shall generate the shift statements first and then'the reduce statements.

tThe computed goto statement involves an extension of the production language of
Section 5.4.4 in that the next label can be an expression involving the symbol #, which,
as In Section 5.4.4, represenis an unknown symbol matching the symbol at a designated
position on the stack or in the lookahead. While we do not wish to discuss details of
implementation, the reader should observe that such computed gotos as are used here
can be easily implemented on his favorite computer.
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For weak precedence grammars the precedence relations <€ and == indicate
shift and 2 indicates a reduction.
The E-row of Fig. 7.9 generates the statements

(7.2.1) SE:  E|) — B * S)
Ej+ — E+| * S+
$EIS |  accept
E\ |  error

The first statement states that if £ is on top of the pushdown list and the
current input symbol is ), then we shift ) onto the pushdown list, read the
next input symbol, and go to the statement labeled S). If this statement does
not apply, we see whether the current input symbol is +. If the second
statement does not apply, we next see if the current input symbol is $. The
relevant action here would be to go into the halting state accept if the
pushdown list contained $£. Otherwise, we report error. Note that no reduc-
tions are possible if E is the top stack symbol.

Since the first component of the label indicates the symbol on top of
the pushdown list, we can in many cases avoid unnecessary checking of
the top symbol of the pushdown list if we know what it is. Knowing that
E is on top of the pushdown list, we could replace the statements (7.2.1) by

SE: N o— ) x 8)
[+ —  +| * S+
5413 | accept
| | error

Notice that it is important that the error statement appear last. When F is
on top of the pushdown list, the current input symbol must be ), +, or $.
Otherwise we have an error. By ordering the statements accordingly, we can
first check for ), then for -, and then for $, and if none of these is the cur-
rent input symbol, we repott error.

The row for T in Fig. 7.9 generates the statements

ST [# —> x| * S

RT: E+T| — E| cT

Tl -— FE| CcT

{7.2.2) CT: ] | SE
|-+ SE

i
I'$ | SE
|  error
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Here the precedence relation T'= = generates the first statement. The
precedence relations " = ), T -+, and T = § indicate that with 7 on top
of the pushdown list we are to reduce. Since we are dealing with a weak
precedence grammar, we always reduce using the longest applicable pro-
duction, by Lemma 5.4. Thus, we first look to see if £ + T appears on top
of the pushdown list. If so, we replace £ -+ T by E. Otherwise, we reduce
T to E. When the two RT statements are applicable, we know that 7 is on
top of the pushdown list. Thus we could use

RT: E+4+ #| — E| cr
#| > E] cr

and again avoid the unnecessary checking of the top symbol on the push-
down list.

After we perform the reduction, we check to see whether it was legal,
That is, we check to see whether the current input symbol is either ), 4,
or §. The group of checking statements labeled CT is used for this purpose.
We report error if the current input symbol is not ), -+, or $. Reducing first
and then checking to see if we should have made a reduction may not always
be desirable, but by performing these actions in this order we shall be able
to merge common checking operations.

To implement this checking, we shall introduce a computed goto state-
ment of the form

G: #1 I SH

indicaiing that the top symbal of the pushdown list is to become the last
symbol of the label.

Now we can replace the checking siatements in (7.2.2) by the following
sequence of statements:

CT: t) | G
|+ | G
|8 G
| | eIToT
G #| | s#

We shall then be able to use these checking statements in other sequences.
For example, if a reduction in G, is accomplished with 7 on top of the stack,
the new top of the stack must be E. Thus, the statements in the CT group
could all iransfer to SE. However, in general, reductions to several different
nonterminals could be made, and the compuied goto is quite useful in
establishing the new top of the stack.
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Finally, for convenience we shall allow statements to have more than
one label, The use of this feature, which is not difficult to implement, will
become apparent later, We shall now give an algorithm which makes use
of the preceding ideas.

ALGORITHM 7.2
Floyd-Evans parser from a uniquely invertible weak precedence grammar.
Input. A uniquely invertible weak precedence grammar G = (N, Z, P, §).

Output. A Floyd-Evans production language parser for G.
Method.

(1) Compute the Wirth-Weber precedence relations for G.

(2) Linearly order the elements in N U E U {8} as (X,, X,, ..., X,).

{3) Generate statements for X, X,, ..., X, as follows. Suppose that X,
is not the start symbol. Suppose further that either X, < g or X, = a for all
ainf{a, a, ...,a}, and X, > b for all b in {b,,..., 5} Also, suppose
A —a X, A4, —aX,. .., 4, — & X, are the productions having X, as
the last symbol on the right-hand side, arranged in an order such that ¢ X;
is ot a suffix of & X, for p <Z ¢. Moreover, let us assume that 4, — a,X; has
aumber p,, 1 << h < k. Then generate the statements

SX,: |a, — a,| x-Sa,
fa, — a,| * Sa,
|a, — a; = Sa,

RX;: o3| — 4] emit p CX,
aHF | —> A, emit p, cx,
ol —> AL emit p, CcX,
| | error
cx: 1, | G
|6, i G
|, | G

| | error
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If j is zero, then the first statement of the RJX, group also has label SX,.
If & is zero, the error statement in the RX, group has label RX,. If X, is
the start symbol, then we do as above and also add the statement

$4 13 ] accept

to the end of the SX, group. S$ is the initial statement of the parser.
{4) Append the computed goto statement:

G: #1 | S# L]
Example 7.9

Consider the grammar ,. From the F row of the precedence matrix
we would get the following statements:

SF: RFt: Txd| —>T| emit3 CF
#| —T| emit 4 CF

| | error

CF: B | G
i+ { G
I [ G
|8 | G
| | €rror

Note that the third statement is useless, as the second statement will always
produce a successful match. We could, of course, incorporate a test into
Algorithm 7.2 which would cause useless statements not to be produced.
From now on we shall assume useless statements are not generated.

From the a row we get the following statements:

Sa: Ra: # —F| emit 6 Ca
Ca: ) | G
|+ | G
| * | G
| $ | G
| ] error

Notice that the checking statements for @ are identical to those for F.

tNote the use of multiple labels for a location. Here, the SF group is empty.
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In the next section we shall outline an algorithm which will merge redun-
dant statements. In fact, the checking statements labeled CT could also be
merged with CF if we write

Ca: CF: | = i G
CT: B] | G
[+ | G
| $ | G
|

Our merging algorithbm will also consider partial mergers of this nature.
The row labeled ( in the precedence matrix generates the statements

error

S(: [ (] * S(
la — a * Sa

[ [ erTor
Similar statements are also generated by the rows labeled +, », and $. [

We shall leave the verification of the fact that Algorithm 7.2 produces
a valid right parser for & for the Exercises.

7.2.2. Improvemant of Floyd—Evans Parsers

In this section we shall consider technigues which can be used to reduce
the number of shift and checking statements in the Floyd-Evans parser
that results from Algorithm 7.2. Our basic technique will be to merge com-
mon shift statements and common checking statements. The procedure
may introduce additional staterments having the effect of an unconditional
transfer, but we shall assume that these branch statements have relatively
small cost. We shall treat the merger of shift statements here: the same
technique can be used to merge checking statements.

Let G = (N, £, P, §) be a uniquely invertible weak precedence grammar.
Let M be its matrix of Wirth-Weber precedence relations. The matrix M
determines the shift and checking statements that arise in Algorithm 7.2,

From the precedence matrix M, we construct a merged shift matrix M,
as follows:

(1) Delete all = entries and replace the == entries by <. {Since we care
only about shifts, the < and == relations can be identified.)
(2) If two or more rows of the resulting matrix are identical, replace
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them by one row in A, with the new row identified with the set of symbols
in N U T v {8} with which the original rows were associated.
(3) Delete all rows with no < entries and call the resulting matrix A .

Exampla 7.10

The merged shift matrix for G, from Fig. 7.9 is shown in Fig. 7.15. This
merged shift matrix is a concise representation of the situations in which
the parser is to make a shift move. [

C a ) + =+ %

E < | <

T <

{(,-4-,*! $} < | s

Fig. 7.15 Merged shift matrix.

From the merged shift matrix M,, we construct an unordered labeled
directed graph (4, R), called the shift graph associated with M, as follows:

(1) For each row of M, labeled Y, there is a node in 4 labeled Y.

(2) There is one additional node labeled ¢¥ in A representing a fictitious
empty row.

(3) Mrow Y of M is covered by row Z of M, (that is, in whatever column
Y has a << entry, Z has a <¢ entry), then edge (¥, Z) is in R, and edge (¥, Z)
is labeled with the number of columns in which Z, but not ¥, has a < entry.
Note that ¥ may be the empty row. We let /(Y, Z) denote the label of edge
(Y, 2).

Example 7.11

Consider the shift matrix M, given in Fig. 7.16. The shift graph associated
with M is shown in Fig. 7.17. []

a; an da ag das a4

Y| < G| <

B« < | < <

5| < <

Y| < <

¥s < . .
Fig. 7.16 Shift matrix M..
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Fig. 7.17 Shift graph from M.

It should be clear that the shift graph is a directed acyclic graph with
a single root, @. The number of shift statements generated by Algorithm
7.2 is equal to the number of shift (< and ==) entries in the precedence
matrix M. Using the shift matrix A, and merging rows with similar shift
entries, we can reduce the number of shift statements that are required.
The technigue is to construct a minimum cost directed spanning tree (subset
of the edges which forms a tree, with all nodes included) for the shift graph,
where the cost of a spanning tree is the sum of the Jabels of the edges in
the tree.

A path from @ to ¥ to Z in the shift graph (4, R} has the following
interpretation. The label /¢, ¥) gives the number of shift statements gener-
ated for row ¥ of M. Thus, the number of shift statements that would be
generated for rows Yand Zis /(@, Y} + (@, Z). However, if there is a path
from & to ¥ to Z in the graph, we can first generate the shift statements for
row Y. To generate the shift statements for row Z, we can use the shift
statements for row Y and precede them by those shift statements for row Z
which are not already present. Thus, we would generate the following se-
quence of shift statements for rows ¥ and Z:

SZ. Shift statements for entries in Z but notin ¥
SY: Shift statements for entries in ¥
The number of shift statements for ¥ and Z would thusbe /(z, ¥) + (Y, Z)

= I(¢, Z), rather than I, Y) + {5, Z). We thus get the shift statements
for row Y “for free.”
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We can generalize this technique in an algorithm which takes an arbitrary
directed spanning tree for a shift graph and constructs a sct of shift state-
ments “corresponding” to that spanning tree. The number of shift statements
is equal to the sum of the labels of the edges of the tree. The method is given
in the following algorithm.

ALGORITHM 7.3

Set of shift statements from spanning tree.

Input. A shift matrix M, and a spanning tree for its shift graph.

Quiput. A sequence of Floyd-Evans production language statements.

Method. For each node Y of the spanning tree except the roof, construct
the sequence of statements

L: |a, —a,] * Sa,
la, — a, | * Sa,
|a, — a,]| * Sa,
I I L
where L is the label of row Y in M, (i.e., the set of labels SX,, ..., SX,,
where X, ..., X, are the symbols whose rows in the precedence matrix
form row Y in M,). L’ is the label for the direct ancestor of node ¥ in the
spanning tree; &, . .., a, are the columns covered by row Y of M, but not

by its direct ancestor.
For node @, we add a new computed goto statement:

@ #] I Ry

The statements for the nodes can be placed in any order. However, if
the statement

I | L

immediately precedes the statement labeled L', then the former siatement
may be deleted. [}

Example 712

The tree of Fig, 7.18 is a spanning tree for the shift graph of Fig, 7.17,
The following sequence of statements could be generated from the tree
of Fig. 7.18 by Algorithm 7.3. Of course, the sequence of the statements is
not completely fixed by Algorithm 7,3, and other sequences are possible.
By S7, is meant the set of labels corresponding to row Y, in the shift graph.
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n
O Fig. 7.18 Spanning tree,

SY,: Ja, — a, | * Sa,
|ag —> a4 *Sa,
I | %]
SY,: las — a;| x Sa;
SY,: |a, —> a4 | * Sa,
|a; — ay| x Sa
SY,: |a, — a,| % Sa,
la, — a,| * Sa,
I | %]
SY;: la, —a,| * Sa,
a: #| l R# M

THECREM 7.3

Algorithm 7.3 produces a sequence of production language statements
which may replace the shift statements generated by Algorithm 7.2, with
no change in the parsing action of the program.

Proof. We observe that when started at the sequence of statements gener-
ated by Algorithm 7.3 for node Y, the statements which may subsequently
be executed are precisely those generated for the ancestors of node Y. It is
straightforward to show that these statements test for the presence in the
lockahead position of exactly those symbols whose columns are covered
by row Y of the shift matrix.

The statement with label & ensures that if no shift is made, we transfer
to the proper R-group. []
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The spanning tree for a given shift graph which produces the fewest shift
statements by Algorithm 7.3 is surprisingly easy to find. We observe that,
neglecting the unconditional transfer statements, the number of statements
generated by Algorithm 7.3 (all of which are of the form |a — a * Sa
for some 4) is exactly the sum of the labels of the edges in the tree.

ALGORITHM 7.4
Minimurn cost spanning tree from shift graph.
Input. Shift graph (4, R} for a precedence matrix M.
Output. Spanning tree (4, R’} such that 3,y yiep (X, ¥) is minimal.

Method. For each node Y in 4 other than the root, choose a node X such
that I(X, ¥) is smallest among all edges entering Y. Add (X, ¥)to R". []

Example 7,13

The spanning tree in Fig. 7.18 is obtained from the shift graph of Fig.
7.17 using Algorithm 7.4. ]

THEOREM 7.4

The number of shift statements generated by Algorithm 7.3 from a span-
ning tree is minimized for a given shift graph when the tree produced by
Algorithm 7.4 is chosen.

Proof. Since every node except the root of (4, R) has a unique direct
ancestor, (4, R") must be a tree. Since in every spanning tree of (4, R) one
edge enters each node other than the root, the minimality of (A4, R') is
immediate. [ ]

We observe that we can define a reduce matrix M, from a precedence
matrix M by deleting all but the > entries and merging rows exactly as we
did for the shift matrix. We can then define a reduce graph in exact analogy
with the shift graph and minimize the number of checking statements by an
obvious analog of Algorithm 7.4. We leave the details to the reader. We
shall give an example of the minimization of the entire Floyd-Evans parser
for &y,

Example 7.14
The M, matrix for G, is
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where ¥ = {(, 4, #, 3}. The M, matrix (the matrix for reductions) is

where Z = {F, g, )}.

Employing Algorithm 7.4 for merging both shift statements and for
merging checking statements, we generate the following Floyd-Evans parser
for G,. The initial statement is S§.

S S+ Sx 5§ W o —( ] * S(
la —>a | x Sa
| | %)

SE: D o—) | * S)
|+ — +] = S+
$HTLS | accept
I | ]
ST | —>x | # Sk
3 #1 | R#
RT: E+#| —E| emitl cT
#| —E| emit 2 cr
SF: RF: Txf| —T| emit 3 CF
#| —T| emit 4 CF
Sa: Ra: # —F| emit 6 Ca
S). R (E¥£] —F| emit 5 C)
RE: R{: R+: Rx: RS: | | error
CF, Ca: C) | * | G
CT: D | G
|+ I G
I$ ! G
| | error
G: #| | S#

tHere, this statement can be executed only with E on top of the stack. If it could be
executed otherwise, we would have to replace # by E (or in general, by the start symbol).
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The penultimate statement plays the role of & for the checking state-
ments. [

There are other improvements that can be made to Floyd-Evans parsers.
One is to combine two statements into a single staiement. For example,
the second statement of the parser for G, could have been combined with
the statement labeled Sg into

|la —>F| emit6 Ca

If we are willing to change the behavior of the parser slightly, we can
effect further changes. One change would be to delay error detection. For
example, the parser in Section 5.4.3 for G, uses only 11 statements, but it
delays error detection in some cases.

We should emphasize that all the parsing algorithms discussed in Chapter
5 can be mplemented in the Floyd-Evans production language. To imple-
ment these parsing algorithms efficiently, we can use techniques similar to
those presented in this section.

Finally, there is the question of implementing the Floyd-Evans produc-
tion language parser itself. A production language statement may cause
the following elementary operations to be performed: read an input symbol,
compare symbols, place symbois on stack, pop symbols on the stack, generate
output. These operations are quite straightforward to implement. Hence,
we can construct a program that will map a Floyd-Evans parser into a se-
quence of these elementary operations. A small interpreter can then be
provided to execute this sequence of elementary operations.

EXERCISES

7.2.8. Use Algorithm 7.2 to generate Floyd-Evans parsers for the following
weak precedence grammars:
@ S 8+ I
I— ()]|a(S)]|a
(b) §— 0S1]0L
© E—E+T|\T
T— TxF|F
F— FtPiP
P (E)la
7.2.2. Use the technigques of this section to improve the parsers constructed
in Exercise 7.2.1.

7.2.3. For the weak precedence matrix of Fig. 7.19, find the shift and reduce
matrices.



X,
¢}
X3
X
Xs
Xe
Xy

X

7.24.

7.2.5.

*7.2.6.

7.2.7.

*7.2.8,

*7.2.9.

7.2.10.

*7.2.11,

*7.2.12.

EXERCISES 577
Xy Xy X3 Xs X5 Xe

O < I >
< < = | > | >
b N L >
= ER = = | <
< S R
<< > = | &
= || > Al I
< = <

Fig. 7.19 Matrix of precedence rela-

tions,

From the shift and reduce matrices consiructed in Exercise 7.2.3, con-
struct the shift and reduce graphs.

Use Algorithm 7.3 to find shortest sequences of shift and checking state-
ments for the graphs of Exercise 7.2.4.

Devise an algorithm to generate a deterministic left parser in production
language for an LL{1) grammar.

Using the algorithm developed in Exercise 7.2.6, construct a left parser
in production language for the following LL(1) grammar:

E—TE’
E' — + TE'|e
T-—> FT'
T'—> % FT'|e
F——s (E)|a
Use the technigues of this section to improve the parser constructed in
Exercise 7.2.7.

Devise an algorithm to generate a deterministic right parser in pro-
duction fanguage for an LR(1) grammar.

Using the aigorithm developed in Exercise 7.2.9, construct right parsers
for ¢y and the grammar in Exercise 7.2.7.

Use the techniques of this section to improve the parsers constructed in
Exercise 7.2.10. Compare the resulting parsers with those in Examples
5.47 and 7.14 and the one in Exercise 7.2.8.

Is it possible to test a production language parser to determine if it is
a valid weak precedence parser for a given grammar?
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*7.2.13. Construct an algorithm to generate a production language program that
simulates a deterministic pushdown transducer. What improvements
can be made to the resulting program?

Research Problems

It should be evident that this section does not go very deeply into
its subject matter and that considerable further improvements can be
made in parsers implemented in production language. We therefore
suggest the following areas for further research.

7.2.14, Study the optimizations which are possible when various kinds of shift—
reduce zlgorithms are to be implemented in production language. In
particular, one might examine the algorithms used to parse LL{k}, BRC,
extended precedence, simple mixed strategy precedence, and LR(k)
STAMIMATrs,

7.2.15. Extend the parser optimizations given in this section by allowing post-
ponement of error detection, statement merger and/or other reasonable
alterations of the production language program,

7.2.16. Develop an alternative to production language for the implementation
of parsing algorithms. Your language should have the property that
cach statement can be implemented by some constant number of machine
statements per character in the statement of your language. A “reason-
able” random access machine should serve as a benchmark here.

Programming Exercises

7.2.17. Design elementary operations that can be used to implement Floyd-
Evans production language statements. Construct an interpreter that
will execute these elementary operations.

7.2,18. Construct a compiler which will take a program in production language
and generate for it a sequence of elementary operations which can be
executed by the interpreter in Exercise 7.2.17.

7.2.19. Write a program that will construct production langnage parsers for a
vseful class of context-free grammars.

7.2.20. Construct a production language parser for one of the grammars in the
Appendix of Volume I, Incorporate an error recovery routine which gets
called whenever error is announced. The error recovery routine should
adjust the stack and/or input so that normal parsing can resume.

BIBLICGRAPHIC NOTES

Production language and variants thereof have been popular for implementing
parsers. Techniques for the generation of production language parsers have been
developed by a number of people, including Beals [1969], Beals et al. [1969],
DeRemer [1968], Earley [1966], and Haynes and Schutte [1970]. The techniques
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presented in this section for generating production language parsers were origi-
nated by Cheatham [1967]. The use of computed goto’s in production language
and the optimization method in Section 7.2.2 is due to Ichbiah and Morse [1970].
Some error recovery techniques for production language parsers are described in
LaFrance [1970].

7.3, TRANSFORMATIONS ON SETS OF LR(k) TABLES

We shall discuss the optimization of LR(k) parsers for the remainder of
this chapter. The reason for devoting such a large amount of space to LR(k)
parsers and their optimization is twofold. First, the LR(k) grammars are the
largest natural class of unambiguous grammars for which we can construct
deterministic parsers. Secondly, using optimizations it is possible to produce
LR parsers that are quite competitive with other types of parsers.

In Chapter 5 the parsing algorithm for LR(k) grammars was given. The
heart of this algorithm is a set of LR(k) tables which governs the behavior
of the parser. In Section 5.2.5 an algorithm was presented which could be
used to automatically construct the canonical set of LR(k) tables for an
LR(k) grammar {Algorithm 5.7).

However, as we noted, this canonical set of LR(k) tables can be imprac-
tically large for a grammar of practical interest if k& = 1. Nevertheless, the
LR(k) parsing algorithm using the canonical set of LR(k) tables [the
canonjcal LR{k) parser] has some desirable features:

(1) The parser is fast. An input string of length n can be parsed in cn
moves, where ¢ is a small constant,

(2) The parser has good error-detecting capability. For example, suppose
that the string xa is a prefix of some sentence in the language at hand but
that xab is not a prefix of any sentence. On an input string of the form
xaby, the canonical LR({1) parser would parse x, shift 4, and then announce
error. Thus, it would announce error when the input symbol & becomes
the lookahead string for the first time. In general, the canonical LR (k) parser
will announce error at the earliest possible opportunity in a left-to-right
scan of the input string.

Precedence parsers do not enjoy this early error-detecting capability.
For example, in parsing the input string xaby mentioned above, it is possible
for a precedence parser to scan arbitrarily many symbols of y before announc-
ing error, {See Exercise 7.3.5.)

LL(k) parsers share the fast speed and good error-detecting capability
of LR(k) parsers. However, not every deterministic language has an LL
grammar, and, in general, it is often possible to find a more “natural” LR
grammar to describe a programming language and its translation. For
this reason, for the remainder of this chapter we shall concentrate on tech-
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niques for constructing small LR(%k) parsers. Many of these techniques can
also be applied to LL(k) grammars.

In this section we shall discuss LR{k) parsers from a general point of
view. We shall say that two LR(k) parsers are equivalent if given an input
string w either they both accept w or they both announce error at the same
symbol in w. This is exactly akin to the notion of “equivalence” we encoun-
tered in Example 7.8,

In this section we shall present several transformations which can be
used to reduce the size of an LR(k) parser, while producing an equivalent
LR(k) parser. In Section 7.4 we shall present techniques which can be used
to produce directly, from certain types of LR(k) grammars, LR(k) parsers
that are considerably smaller than, but equivalent to, the canonical LR(k)
parser. In addition, the techniques discussed in this section can also be
applied to these parsers. Finally, in Section 7.5 we shall consider a more
detailed implementation of an LR parser in which common scanning actions
can be merged.

7.3.1. The General Notion of an LR{k) Table

A set of LR({¥) tables forms the basis of the LR(k)} parsing algorithm
(Algorithm 5.7). In general, there are many different sets of tables which
can be used to comstruct equivalent parsers for the same LR(k) grammar.
Consequently, we can search for a set of tables with certain desirable prop-
erties, e.g., smallness.

To understand what changes can be made to a set of LR(k) tables, let us
examine the behavior of the LR (k) parsing algorithm in detail. Thisalgorithm
places LR(k) tables on the pushdown list. The LR(k) table on top of the push-
down list dictates the behavior of the parsing algorithm, Each table is a pair
of functions { £, g>. Recall that f, the parsing action function, given a look-
ahead string, tells us what parsing action to take. The action may be to (1)
shift the next input symbol onto the pushdown list, (2) reduce the top of
the pushdown list according to a named production, (3) announce comple-
tion of the parsing, or (4) declare that a syntactic error has been found in
the input. The second function g, the goto function, is invoked after each
shift action and each reduce action. Given a symbol of the grammar, the goto
function returns either the name of another table or an error notation.

A sample LR(1) table is shown in Fig. 7.20. In the LR(k) parsing

action goto
a b e hY A a b
T
S 3 X Ts X T;

Fig. 7.20 LR(i) table.
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algorithm, a table can influence the operation of the parser in two ways.
First, suppose that table T, is at the top of the pushdown list. Then the
parsing action function of T, influences events. For example, if & is the look-
ahead string, then the parser calls for a reduction using production 3. Or if
a is the lookahead string, the parser shifts the current input symbol (here, @)
onto the pushdown list, and since g{e} = T, the name of table 7', follows a
onto the top of the pushdown list.t

The second way in which a table can influence the action of the parser
appears immediately after a reduction. Suppose that the pushdown list is
AT 6T, ST, and that a reduction using the production S -— bS5 is called
for by T,. The parser will then remove four symbols (two grammar symbols
and two tables) from the stack, leaving eA7, there.l At this point table T,
is exposed. The nonterminal S is then placed on top of the stack, and the goto
function of T, is invoked to determine that table T, = g(5) is to be placed
on top of S.

We shall take the viewpoint that the important times in an LR parsing
process occur when a new table has just been placed on top of the pushdown
list. We call such a table a governing table. We shall examine the charac-
teristics of an LR parser in terms of the sequence of governing tables. If a
governing table T calls for a shift, then the next governing table is determined
by the goto function of T'in a straightforward manner. If T calls for a reduc-
tion, on the other hand, the next governing table is determined by the goto
function of the ith table from the top of the pushdown list, where 7 is the
length of the right-hand side of the reducing production. What table might
be there may seem hard to decide, but we can give an algorithm to determine
the set of possible tables.

With the viewpoint of governing tables in mind, we shall attermnpt to deter-
mine when two sets of LR(k) tables give rise to equivalent parsers. We shall
set performance criteria that elaborate on what “equivalent™ means. First,
we shall give the definition of a set of LR (%) tables that extends the definition
given in Section 5.2.5. Included as both a possible action and a possible
goto entry will be a special symbol ¢, which can be interpreted as “don’t
care.” It turns out, as we shall see, that many of the error entries in a set of
LR(k) tables are never exercised; that is, the LR(k) parsing algorithm will
never consult certain error entries no matter what the input is. Thus, we can

tAs we mentioned in Chapter 5, it is not necessary to write the grammar symbols on
the pushdown list. However, since the action of an LR(k) parser is more evident with the
grammar symbols present, in this section we shall assume that the grammar symbols also
appear on the pushdown list.

INote that when the canonical LR(k) parser calls for a reduction according to pro-
duction i, the right-hand side of production 7 will always be a suffix of the grammar
symbols on the stack. Thus, in the parsing process it is not necessary to match the right-
hand side of the production with the grammar symbols on the stack.



582 TECHNIQUES FOR PARSER OPTIMIZATION CHAP, 7

change these entries in any fashion whatsoever, and the parser will still operate
in the same way.

DEFINITION

Let G be a CFG. A set of LR(k) tables for G is a pair (4, T,), where J is
a set of tables for & and T, called the initial table, is in 3. A table for G is
a pair of functions {/, g>, where

(1) f'is a mapping from I** to the set consisting of @, error, shift, accept,
and reduce i for all production indices i, and
(2) g maps N U Z to 3 U {g, error}.

‘When T, is understood, we shall refer to (3, T,) simply as 3. The canonical
set of LRk} tables constructed in Section 5.2.5 is a set of LR(k) tables in
the formal sense used here. Note that g never appears in a canonical set of
LR (%) tables.

Example 7.15
Let G be defined by the productions
(I) §— 84
(2) §-~ A
(3) A—ad
4 A—b

In Fig. 7.21 is a set of LR(1) tables for G.

action goto
a b e § A a b

h| s § x| xXx ©nn T
T 4 4 4 v ¢ ¢ 9

VB 2 w 7 T X Vi b4

Fig. 7.21 Set of LR(1) tabies.

We shall see that the tables of Fig. 7.21 do not in any sense parse accord-
ing to the grammar G. They merely “fit” the grammar, in that the tables
defined use only symbols in G, and the reductions called for use productions
which actually exist in G. ]

We can redefine the LR(k) parsing algorithm based on a set of LR{k)
tables as defined above. This algorithm is essentially the same as Algorithm
5.7 when we consider a g entry as an error entry. For completeness we shall
restate the algorithm.

DEFINITION

Let (3, 7,) be a set of LR(k) tables for a CFG ¢ = (N, E, P, 8). A con-
Siguration of the LR(k) parser for (3, Tp) is a triple (T, X, T, - - - X, T, W, 1),
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where

(1) T,isin 3,0 =/ i < m, and T, is the initial table;
@ X sinNUZ, 1 <i<m

(3} wisin I*; and

(4} = is an output string of production numbers.

The first component of a configuration represents the contents of the
pushdown list, the second the unused input, and the third the parse found
so far.

An initial configuration of the parser is one of the form (7}, w, &) for
some w in I¥. As before, we shall express a move of the parsing aigorithm
by the relation — on configurations defined as follows.

Suppose that the parser is in configuration (7, X,7- - - X,,T,,, w, ©), where
T, ={f grisatableind. Let w be in £* and let u = FIRST (w). That is, w is
the string remaining on the input, and  is the lookahead string.

(1} If f() = shift and w = aw’, where @ € Z, then

(To X, Ty -+ X, Ty aw', ) = (T, X, T, -+ X, T, aT, w', m)
where T = g(a). Here, we make a shift move in which the next input symbol,
a, is shifted onto the pushdown list and then the table g(a) is placed on top
of the pushdown list.

(2) Suppose that f(u} = reduce i and that production i is 4 — y, where
|9} = r. Suppose further that r <{ m and that T, , =<{f",g>. T,,_, is the
table that is exposed when the string X, ., 7, .+, - X,.T, is removed
from the pushdown list. Then we say that

(T X, T, X, Ty wo 1y = (T X, T\ -+ X, T, AT, w, i)

where T = g'(4). Here a reduction according to the production 4 — y is
made. The index of this production is appended to the output string, and
a string of length 2|y| is removed from the top of the pushdown list and
replaced by AT, where T = g'(4) and g’ is the goto function of the table
immediately below the last table removed. Note that in the reduction the
symbols removed from the pushdown list are not examined. Thus, it may
be possible to make a reduction such that the grammar symbols removed
do not correspond to the right-hand side of the production governing the
reduction.?

(3 If f(u) = ¢, error or accept, there is no next configuration C such
that (ToX, T -+ X, T, w,m) | C.

There is also no next configuration if in rule (1) w = ¢ (then there is no
next input symbol) or g(@) is not a table name, or in rule (2) » > m (then

+This will never happen if the canonical set of tables is used. In general, this sitnation
is undesirable and should only be permitted if we are sure an error will be declared shortly.



584 TECHNIQUES FOR PARSER OPTIMIZATION : CHAP, 7

there are not enough svmbols on the pushdown list} or g'(a) is not a table
name.

We call (T, X,T, --- X,,T,, w, =} an error indication if there is no next
configuration. However, as an exception, we call (T,ST,, e, n) an accepting
configuration if T, =< {, g> and f(e) = accept.

We define -, {*, and |-~ in the usual manner. We say that configuration
C is accessible if C, | % C for some initial configuration C,. We shall now

summarize the parsing algorithm.
ALGORITHM 7.5
LR{k) parsing algorithm.

Input. A CFG G =(N, &, P, 5), a set (3, T,) of LR(k) tables for G, and
an input string w € T*.

Outpuf. A sequence of productions @ or an error indication.
Method.

(1) Conmstruct the initial configuration (T, w, e).

{2) Let C be the latest configuration constructed. Construct the next
configuration C’ such that C i— €’ and then repeat step (2). If there is no
next configuration €', go to step (3).

(3) Let C = {a, x, ) be the last configuration constructed. If C is an
accepting configuration, then emit x and halt. Otherwise, indicate error. [

It should be evident that this algorithm can be implemented by a deter-
ministic pushdown transducer with a right endmarker.

If Algorithm 7.5 reaches an accepting configuration, then the output
string x is called a parse for the input string w. We say that =z is valid if = is
a right parse for w according to the grammar G. Likewise, we say that a set
of LR(k) tables is valid for a grammar G if and only if Algorithm 7.5 produces
a valid parse for each sentence in L{G) and does not produce a parse for any
w not in L{G).

By Theorem 5.12 we know that the canonical set of LR(k) tables for an
LR (k) grammar G is valid for G, However, an arbitrary set of LR(k) tables
for a grammar G obviously need not be valid for G,

Example 7.16

Let us trace through the sequence of moves made by Algorithm 7.5 on
input ab using the LR(1) tables of Fig. 7.21 (p. 582) with T, as the initial
table.

The initial configuration is (T, ab, ). The action of T, on lookahead a
is shift and the goto of T, on 2 is T, so

(Tjs Gb, e) = (TlaTn b, e) ’
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The action of T, on & is also shift but the goto is T, s0
(T.al, b, &) = (T,aT,pT,, e, ¢)

The action of T, on e is reduce 4; production 4 is 4 — 5. Thus, the topmost
table and grammar symbol are removed from T,a4T,6T,, leaving T,aT,.
The goto of T, on 4 is T, s0

(T,aT . bT,, e, e} — (T,aT AT,, e, 4)

The action of T, on lookahead e is ¢. That is, no next configuration can be
constructed, Since (T,aT,AT,, e, 4) is not an accepting configuration, we have
an indication of error.

Since agh is in L{G), this set of tables is obviously not valid for the grammar
in Example 7.15. [

7.3.2, Equivalence of Table Sets

We can now describe what it means for two sets of LR(k) tables to be
equivalent. The weakest equivalence we might be interested in would require
that, using Algorithm 7.5, the two sets of tables produce the same parse
for those sentences in the language L(() and that one would not parse a sen-
tence not parsed by the other. The error condition might be detected at
different times by the two sets of tables.

The strongest equivalence we might consider would be one which required
that the two sets of tables produce identical sequences of parsing actions,
That is, suppose that (T, w, &) and (T, w, e) are initial configurations for
two sets of tables § and 3. Then forany i >0

(Tm W, E) |_IV (TOXITI e Xann X, 7:)
using tables in J if and only if
(T‘;), W, B) IL (TloXllT’l PR X:‘T:" xf} TE’)

using tablesin ¥, where m=n, x =x",a=a"and X, = X}, for 1 <<i<Im.

Each of these definitions allows us to develop techniques by which sets
of tables can be modified while these equivalences are preserved. Here we
shall consider an equivalence that is intermediate in stringency. We require,
of course, that Algorithm 7.5 using one set of tables finds a parse for an input
string w if and only if it finds the same parse for w using the other set of
tables. Moreover, as in the strongest kind of equivalence, we further require
that Algorithm 7.5 trace through the same sequence of parsing actions on
each input string whenever both sets of tables specify parsing actions. How-
ever, we shall allow one set of tables to continue making reductions, even
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though the other set has stopped parsing. We have the following motivation
for this definition.

When an error occurs, we wish to detect it using either set of tables, and
we want the position of the error to be as apparent as possible. It will not
do for one sef of tables to detect an error while the other shifts a large number
of input symbols before the error is detected. The reason for this requirement
is that one would in practice like to discover an error as close to where it
occurred as possible, for the purpose of producing intelligent and intetligible
diagnostics.

In practice, on encountering an error, one would transfer to an error
recovery routine which would modify the remaining input string and/or
the contents of the pushdown list so that the parser could proceed to parse the
rest of the input and detect as many errors as possible in one pass over
the input. It would be unfortunate if large portions of the input had been
processed in a meaningless way before the error was detected. We are thus
motivated to make the following definition of equivalence on sets of LR
tables. It is a special case of the informal notion of equivalence discussed
in Section 7.1.

DEFINITION

Let (3, T,) and (3, T,) be two sets of LR{k) tables for a context-free
grammar G = (N, I, P, 8).

Let w be an input string in ¥, C, = (T, w, e}, and C, = (T, w, ).
let Co-C, -C, | --+ and Cy = C, I C3 1 --- be the respective
sequences of configurations constructed by Algorithm 7.5. We say that
(3, T,) and (3, Ty) are equivalent if the following four conditions hold, for
alt i >> 0 and for arbitrary w.

(1) If C, and C| both exist, then we can express these configurations
as C, = (T X, T, - X, T, x,n) and C;, =(T,X,T, --- X, T., x, m); that
is, as long as both sequences of configurations exist, they are identical except
for table names. '

(2) C, is an accepting configuration if and only if C} is an accepting
configuration.

(3) If C, is defined but C; is not, then the second components of C,_,
and C, are the same,

(4) If C; is defined but C, is not, then the second componeunts of C_;
and C7 are the same.

What conditions (3) and (4) are saying is that once one of the sets of tables
has detected an error, the other must not consume any more input, that is,
not call for any shift actions, However, conditions {3) and (4) allow one set
of tables to call for one or more reduce actions while the other sef has halted
with a don’t care or error action.

Notice that neither set of tables has to be valid for G. However, if two
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sets of tables are equivalent and one is valid for G, then the other must also
be valid for G.

Example 7.17
Consider the LR{1) grammar G with the productions

(1) §— aSb

2 §S— ab
(3, T,), the canonical set of LR(1) tables for G, is shown in Fig. 7.22. Figure
7.23 shows another set of LR(1) tables, (U, U/,), for G. Let us consider the

action goto
a b e hy a b

Tyt 8§ X X1 h
htX X Al X X
s § x| I T
X 8§ X | X X T
s s x|Hn n T

s X X 2|Xx Xx X

sl X X 1] X X X
HlX S XX X T
Rl X 2 x| ¥ Xx X
H X 1 X X X X

Fig. 7.22 (3, To)

behavior of the LR(1) parsing algorithm using 3 and U on the input string
abb. Using 3, the parsing algorithm would make the following sequence
of moves:

(T,, aab, &) | (T,aTy, bb, €)

= (ToaT2bTs, b, €)

The last configuration is an error indication. Using the set of tables I, the
parsing aigorithm would proceed as follows:

(Uy, abb, €) |- (Uyal;, bb, ¢)

b= (Usal U, b, €)
= {(U,SU,,5,2)
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action g:oE
a b ¢ S a b
UUI7S X x|\ UG U e
Ul ¢ X Ale ¢ ¥
U § 8§ X |y U Us
Usl ¢ 8§ X ' ¢ Us
Uy X 2 2 ¢ ¢ ¢
U| X 1 1 [T "]
Fig. 7.23 (U, Up)

The last configuration is an error confipuration. Note that the canonical
parser announces error as soon as it sees the second & in the input string
for the first time, But the parser using the set of tables U reduced ab to S
before announcing error, However, the second b is not shifted onto the push-
down list, so the equivalence condition has not been violated.

It is not too difficult to show that J and ‘UL are indeed equivalent. There is
an algorithm to determine whether an arbitrary set of LR(k) tables for
an LR(k) grammar is equivalent to the canonical set of LR(%) tables for
that grammar, We leave the algorithm as an exercise. [

7.3.3. ¢-Inaccessible Sets of Tables

Many of the error entries in a canonical set of LR(k) tables are never
used by the LR(k) parsing algorithm. Such error entries can be replaced by
¢’s, which are truly don’t cares in the sense that these entries never influence
the computation of the next configuration for any accessible configuration.
We show that all error symbols in the goto field of a canonical set of tables
can be replaced by ¢’s and that if a given table can become the governing
table only immediately after a reduction, then the same replacements can
be made in the action field.

DEFINITION
Let (3, T;) be a set of LR(k) tables, k > 1, and let

C= (TOXITIXZTZ e XmTrm W, ﬂ)

be any accessible configuration, Let T = {/, g> and u = FIRST, (w). We say
that 3 is free of accessible ¢ entries, or g-inaccessible for short, if the follow-
ing statements are true for arbitrary C:

(1} e # o
(2) If F(u) = shift, then g(a) = ¢, where a is the first symbol of u.
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(3) If f(u) =reduce i, production iis 4 — ¥, --- ¥, r>0,and 7, _,
i8{f’, g", then g'(4) 3= ¢.

Informally, a set of LR(k) tables is g-inaccessible if whatever g entries
appear in the tables are never referred to by Algorithm 7.5 during the parsing
of any input string. We shall now give an algorithm which replaces as many
error entries as possible by p in the canonical set of LR(k) tables while keep-
ing the resulting set of tables p-inaccessible.

Thus, we can identify the error entries in a canonical set of LR(k) tables
which are never consulted by the LR(k) parsing algorithm by using this
algorithm to change the unused error entries to ¢’s.

ALGORITHM 7.6

Construction of a g-inaccessible set of LR{k) tables with as many ¢’s
as possible.

Input. An LR(k) grammar G =(N, X, P, §), with k> 1, and (J, T,),
the canonical set of LR(k) tables for G.

Output. (¥, T,), an equivalent set of LR{k)} tables with all unused error
entries replaced by p.

Method.
(1) For each T =</, g> in 3, construct a new table {f', g™, where

g(X)  if g(X) 5 error
@ otherwise

gX) = {
Let (3,, T}) be the set of tables so constructed.
{2) The set of tables (3', T) is then constructed as follows:
(ay T, isin &',
(b) For each table T =<, g> in 3, — {T,} we add to 3’ the table
T =<{f', g>. where f' is defined as follows:
() f"(w) = f(u) whenever f(u) 7 error.
(ii} If f{wb) = error for some v in ¥~ ' and b in T and for some
a < ¥ thereisatable {f,, g,> in J, such that f,(av) = shift
and g(@) =7, then f"(vh) = error.
(i) If f(u) = error for some u in T** Y and for some o « £
there is a table (£}, g,> in 3, such that f(au) = shift and
g,(@) =T, then f'(u) = error.
(iv) Otherwise f'(u) = ¢. (]

In step (1) of Algorithm 7.6 all error entries in the goto functions are
changed to ¢ entries, because when k = 1, a canonical LR(k) parser will
always detect an error immediately after a shift move, Hence, an error entry
in the goto field will never be exercised.

Step (2) of Algorithm 7.6 replaces error by ¢ in the action field of table
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T if there is no table {f|, g,> and lookahead string au such that f(au) =
shift and g (a) = T. Under these circumstances table T can appear on top
of the stack only after a reduction. However, if an error has occurred, the
canonical LR(1) parser would have announced error before making the reduc-
tion. Thus, all error eniries in tables such as T will never be consulted and
can therefore be treated as don’t cares.

We should reiterate that Algorithm 7.6 as stated works only for sets of
LR(k) tables where k 2> 1. For the LR(0) case, the lookahead string will
always be the empty string. Therefore, all errors must be caught by the goto
entries. Thus, in a set of LR(Q) tables not all error entries in the goto field
are don’t cares. We leave it for the Exercises to deduce which of these entries
are don’t cares.

Example 7.18
Let G be the LR(1) grammar with productions
(1) §— SaSh
) S—e

The canonical set of LR{%) tables for G is shown in Fig, 7.24(a), and the tables
after application of Algorithm 7.6 are shown in Fig. 7.24(b).

Note that in Fig. 7.24(b) all error’s in the right-hand portions of the
tables (goto fields) have been replaced by ¢'s. In the action fields, 7, has been
left intact by rule (2a) of Algorithm 7.6. The only shift actions occur in tables
T, and T,; these result in T, T, or T; becoming the governing table, Thus,
error entries in the action fields of these tables are left intact. We have changed
error {0 ¢ elsewhere. [ ]

THEOREM 7.5

The set of tables 3' constructed by Algorithm 7.6 is p-inaccessible and
equivalent to the canonical set 3.

Proof. The equivalence of 3 and &’ is immediate, since in Algorithm 7.6,
the only alterations of ¥ are to replace error’s by ¢’s, and the LR (k) parsing
algorithm does not distinguish between errcr and ¢ in any way.t We shall
now show that if a ¢ entry is encountered by Algorithm 7.5 using the set of
tables ', then 3’ was not properly constructed from gJ,

Suppose that 3" is not g-inaccessible. Then there must be some smallest
i such that C, |-~ C, where C, is an initial configuration and in configuration
C Algorithm 7.5 consults a g-entry of 3. Since T, is not altered in step (2a),
we must have i > 0. Let C = (T, X7, -+« X, T w, @), where T,, = {f, &>
and FIRST,(w) = u. There are three ways in which a g-entry might be
encountered.

TThe purpose of the ¢’s is only to mark entries which can be changed.



TRANSFORMATIONS ON SETS OF LR{k) TABLES 591

sEC. 7.3
action £oto.

a b e S a b
T 2 X 2 n X X
' S X 4 X n, X
T, 2 2 X n X X
T sF 8§ X X r, T
T, 2 2 X Ty X
T 1 X | A X X
Ty s 8§ X X 7, T,
7, 1 1 X X X X

(a) Canonical Set of LR{1) Tables
action goto

a &b e S a b
T 2 X 2 Ty ¢ v
T S ¢ A4 g T, ¢
T, 2 2 X Ty ¢
Ty S 5 v ¢ T, T
T, 2 2 X Te ¢ o
Ts 1 X 1 ¢ ¢ @
T S 5 ¢ v Ty T
Ty b1 ¥ @

(b) ¢-Free Set of Tables

Fig. 7.24 A set of LR(]1) tables before
and after application of Algorithm 7.6.

Case ] : Suppose that f{t) = . Then by step (2aii) and (2aiii) of Algorithm
7.6, the previous move of the parser could not have been shift and must have

been reduce. Thus, C, =L C’' | C, where

C'=TX T, - X [T 11U -+ YU x, TC,),

and the reduction was by production X,, — ¥, --- ¥,. (w is =’ followed by
the number of this production.)

Let us consider the set of items from which the table U, is constructed.
(If ¥ =0, read T,_, for U,). This set of itemns must include the item
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[X,— Y, +-- ¥, ,ul. Recalling the definition of a valid item, there is
some y < T* such that the string X, --- X,uy is a right-sentential form.
Suppose that the nonterminal X, is introduced by production 4 — ¢ X, 8.
That is, in the augmented grammar we have the derivation

S* % yAx = yaX, Bx % yaX uy

where ya = X, - -+ X,_,. Since u is in FIRST(fx), item {4 — aX,-f, ¥]
must be valid for X, ..- X,, if v = FIRST{x).

We may conclude that the parsing action of table T, on u in the canonical
set of tables was not error and thus could not have been changed to ¢ by
Algorithm 7.6, contradicting what we had supposed.

Case 2: Suppose that f{u) = shift and that « is the first symbol of u
but that g(a) = ¢. Since f(u) = shift, in the set of items associated with
table T, there is an item of the form [4 — -af, ¢] such that u is in
EFF(afiv) and [4 — a-af, v] is valid for the viable prefix X, --- X,.
(See Exercise 7.3.8.) But it then follows that [4 — aa- 5, #] is valid for
X, --- X,a and that X, --. X,a is also a viable prefix. Hence, the set
of valid items for X, --- X,« is nonempty, and g(a) should not be ¢ as
supposed.

Case 3: Suppose that f(u) = reduce p, where production p is X, -+ X,,,
T,_,is {f',g"y, and g'(4A) = . Then the item [4 — X, --- X,,-, u] is valid
for X, --- X, and the item [4 — ' X, .-+ X, u]is valid for X, --- X,_,.
In a mannper similar to case 1 we claim that there is an item [B — aAd- §, v]
which is valid for X, - - X,_ |4, and thus g'(4) should not be @. []

We can also show that Algorithm 7.6 changes as many error eniries in
the canonical set of tables to ¢ as possible. Thus, if we change any error
entry in 3’ to g, the resulting set of tables will no longer be g-inaccessible.

7.3.4. Table Mergers by Compatible Partitions

In this section we shall present an important technique which can be used
to reduce the size of a sef of LR(k) tables. This technique is to merge two
tables into one whenever this can be done without altering the behavior of
the LR(k) parsing algorithm using this set of tables. Let us take a g-Inacces-
sible set of tables, and let T, and 7, be two tables in this set. Suppose that
whenever the action or goto entries of T, and T, disagree, one of them is ¢.
Then we say that T, and T, are compatible, and we can merge 7, and T,
treating them as one table.

In fact, we can do more. Suppose that T and T, were almost compatible
but disagreed in some goto entry by having T; and T, there. If 75 and T,
were themselves compatible, then we couid simultaneously merge T, with
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T, and T, with T,. And if T, and 7T, missed being compatible only because
they had 7, and T, in corresponding goto entries, we could still do the
merger.

We shall describe this merger algorithm by defining a compatible parti-
tion on a set of tables, We shall then show that all members of each block
in the compatible partition may be simultaneously merged into a single table,

DEFINITION

Let (3, T,) be a set of g-inaccessible LR(k) tables and let IT ={§,, . .., §,}
be a partition on 3. Thatis, §, U §, U --- U §,=J,and foralli =/, §,
and §, are disjoint, We say that I is a compatible partition of width p if for
all blocks §,, | <{i <C p, whenever { f}, g,> and {f,, g,> are in §,, it follows
that

(1) fi(u) == f,(w) implies that at least one of £, (&) and f,(u) is ¢ and that
(2) g,(X) 5 g,(X) implies that either

(2) At least one of g,(X) and g,(X)is p, or

(&) g,{X) and g,(X) are in the same block of IT.

We can find compatible partitions of a set of LR(k) tables using tech-
niques reminiscent of those used to find indistinguishable states of an incom-
pletely specified finite automaton. Qur goal is to find compatible partitions
of least width, The following algorithm shows how we can use a compatible
partition of width p on a set of LR(k) tables to find an equivalent set con-
taining p tables.

ArcoriteM 7.7
Merger by compatible partitions.

Input. A g-inaccessible set (8, T,) of LR(k) tables and a compatibie
partition IT ={§,,...,§,} on 3.

Cutput. An equivalent g-inaccessible set (5, Fy) of LR(k) tables such
that #3° = p. -

Method.

(1) Forall i, 1 < i < p, construct the table U, = {f, g» from the block
S, of I as follows:
(a) Suppose that (f’,g"> is in §, and that for lockahead string u,
F(u) # @. Then let f(u) = f'(). If there is no such table in §,,
set f(1)y = ¢.
(b) Suppose that {f’, g"> is in §, and that g'(X) is in block §,. Then
set g(X) = U,. If there is no table in §, with g'(X) in §,, set
g(X) =p.
(2) T is the table constructed from the block containing 7,. T

The definition of compatible partition ensures us that the construction
given in Algorithm 7.7 will be consistent.
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Example 7.19
Consider G, our usual grammar for arithmetic expressions:

N E—E+T
() E—T

(B3 T-+T+F
4 T—F

(5 F—(£)
(6) F—a

The ¢-inaccessible set of LR(1} tables for G, is given in Fig. 7.25,

We observe that T, and 7, are compatible and that T, and T, are com-
patible. Thus, we can construct a compatible partition with {7, T,,} and
{T14. T;,) as blocks and all other tables in blocks by themselves. If we replace
{75, Tyo} by U, and {T,, T,,} by U, the resulting set of tables is as shown
in Fig. 7.26. Note that goto entries Ty, T4, 14, and T,, have been changed
to U, or U, as appropriate.

The compatible partition above is the best we can find. For example,
T,s and T, are almost compatible, and we would group them in one block
of a partition if we could also group Ty, and 7, in a block of the same parti-
tion. But T, and T, disagree irreconcifably in the actions for -+, %, and ).

O

We shall now prove that Algorithm 7.7 produces as output an equivalent
p-inaccessible set of LR(k) tables.

THEOREM 7.6

Lei 3’ be the set of LR{k) tables constructed from J using Algorithm 7.7.
Then 3 and 3" are equivalent and g-inaccessible.

Proof. Let T’ in 3’ be the table constructed from the block of the com-

patible partition that contains the table T in 3. Let C, = (T, w, €) and

o = (T, w, €) be initial configurations of the LR(k) parser using 3 and ¥,
respectively. We shall show that

(13.1)  Co|+ (TuX,T, --- X,T,,x, %) using?3
ifand only if O (TRX 7Ty -« X, T, x,n) using 3’

That is, the only difference between the LR(k) parser vsing 3 and ¥ is that
in using 3’ the parser replaces table T'in 3 by the representative of the block
of Tin the partition IT.

We shall prove statement (7.3.1) by induction on i. Let us consider the
“only if” portion. The basis, i = 0, is trivial. For the inductive step, assume
that statement (7.3.1) is true for /. Now consider the i + st move. Since
3 is p-inaccessible, the actions of T, and T, on FIRST,(x) are the same,
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action goto

a + » (Y e E T F a—_+ * )
LWl § X x § X X T Ty Ty Ty ¢ ¢ T5 o
L ¢ S ¢ v ¢ A ¢ ¢ v 9o Ts v v 9
Lle 2 5 ¢ ¢ 2 ¢ v ¢ v ¢ Ty ¢
Ty p 4 4 v o 4 A A
L, X 6 6 X X 6 A
.| 8 x x 5§ Xx X Ty To Tio Ty ¢ ¢ T o
Tg | § X X § X X w T3 Ty Ty v v T5 ¢
.| S X X S X X v ¢ Tu Ty o o Ts ¢
Tes | ¢ § » ¢ § ¢ v 9w v Ty e v Ty
Ty | ¢ 2 8 ¢ 2 ¢ w v v v v Tz p ¢
Tl o 4 4 » 4 o A A A
Wi 6 6 X 6 X R R R R " ")
T X X 5§ X x Tig T9 T)gy Ty ¢ ¢ Tz ¢
Ty v 1 08 » ¢ 1 v ¢ ¢ v v T; ¢ o
Tu! » 3 3 ¢ ¢ 3 " R A
Ts) X 5 5 X X 5 A
Ty § & X § & X v Tw Tio Ty v ¢ Ty ¥
T, § X X § x X e ¢ Ty Ty ¢ ¢ Ty v
Tg| » § ¢ ¢ S ¢ vy ¢ ¢ ¢ Ty v ¢ Ty
Tl ¢ 1 N ¢ ¢ ¢ v v Ty ¢ e
Ty| ¢ 3 3 ¢ 3 p v v ¥ ¥ ¥ ¢ ¥ ¢
Ty ¥ 5 5 X 5 X Y ¥ ¥ ¥ ¥ ¥ ¢ 9

Fig. 7.25 g-inaccessible tables for Go.

Suppose that the action is shift, that a is the first symbol of x, and that the
goto entry of T, on a is T" By Algorithm 7.7 and the definition of compatible
partition, the goto of T}, on a is T7 if and only if 7" is the representative of
the block of IT containing 7.
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action Boto

a + = ) e E T F a + =x }
Hh|s§ ¥ x § X X T T, Uy Ty ¢ ¢ T3 v
e § ¢ » v 4 v v v v Tg ¢ ¢ ¢
,Lie 2 8§ ¢ ¢ 2 v ¢ ¢ ¢ 9 T; v 9
T, | ¥ 6 6 X X 6 " R " I A B
T, | § X X § X X Ty Ty U, Tw ¢ ¢ T ¢
Te, 18 X X 8§ X X ¢ T3 U Ty v o T5 v
T, s X X 85 X X ¢ v Uy Tg o ¢ T5 ¢
Ty | S ¢ 9 5 ¢ v v w ¢ T ¢ w Ty
Ty | ¢ 2 8§ ¢ 2 ¢ ¢ v 9w v v Iy; ¢ ¢
Ty x 6 6 X 6 X ¢ ¥ P ¥ ¥ ¥ 9 ¥
Ta| 8§ X X S X X | Tig T Uy Ty ¢ ¢ Ty v
Tpi e 1 8 ¢ ¢ | v v v v v Ty ¢ ¢
Tis| X 5§ 5 X X 5 R A R B B
Te| § ¥ x § x x ¢ Ty Uy Ty w ¢ To @
™| § ¥ X § X X ¢ ¢ U T, 9w ¢ Ty ¢
Ta|e S v v § ¢ ¢ ¢ ¢ v T v ¢ Ty
Te|w 1 8§ ¢ | v v v 9w v Ty v v
Ty | X 5 5 X 5 R T
Uy | ey 4 4 ¢ 4 P P ¢ ¥ ¥ ¥ ¢ ¢
Uy | 3 3 ¢ 3 3 A 4

Fig. 7.26 Merged tables.

If the action is reduce by some production with r symbols on the right,
then comparison of T, and T7,_, yields the inductive hypothesis for i + 1.
For the “if” portion of (7.3.1), we have only to observe that if T7, has
a non-g action on FIRST(x), then 7, must agree with 7, since J is ¢-

inaccessible. [

We observe that Algorithm 7.7 preserves equivalence in the strongest
sense. The two sets of tables involved always compute next configurations
for the same number of steps regardless of whether the input has a parse.
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7.3.5. Postponement of Error Checking

Qur basic technique in reducing the size of a set of LR(k) tables is to
merge tables wherever possible. However, two tables can be merged inté
one only if they are compatible. In this section we shall discuss a technique
which can be used to change essential error entries in certain tables to reduce
entries with the hope of increasing the number of compatible pairs of tables
in a set of LR(k) tables.

As an example let us consider tables T, and T, in Fig. 7.25 (p. 595) whose
action fields are shown below:

action

a |+ |« | | ) |e

Te | X 6 6 X | X 6

T“.' X 6 6 X [ X

If we changed the action of T, on lookahead ) from error to reduce 6 and
the action of 7, ; on e from error to reduce 6, then 7, and T,; would be com-
patible and could be merged into a single table. However, before we make
these changes, we would like to be sure that the error detected by T, on )
and the error detected by T, on e will be detected on a subsequent move
before a shift move is made, In this section we shall derive conditions under
which we can postpone error detection in time without affecting the position
in the input string at which an LR(k) parser announces error. In particular,
it is easy to show that any such change is permissible in the canonical set
of tables.

Suppose that an LR (%) parser is in configuration (7, X\ 7, - -+ X, T,,, w, )
and that table T, has action error on lookahead string # == FIRST,(w).
Now, suppose that we change this error entry in 7, to reduce p, where p is
production A — ¥, -.- ¥,. There are two ways in which this error could
be subsequently detected.

In the reduction process 2r symbols are removed from the pushdown
list and table T, _, is exposed. If the goto of T,,_, on 4 is ¢, then error would
be announced. We could change this ¢ to error. However, the goto of 7,
on A could be some table 7. If the action of T on lookahead  is error or ¢
(which we can change to error to preserve g-inaccessibility), then we would
catch the error at this point. We would also maintain error detection if
the action of T on u was reduce p’ and the process above was repeated. In
short, we do not want any of the tables that become governing tables after
the reduction by production p to call for a shift on lookahead u (or for
acceptance). :

Note that in order to change error enirics to reduce entries, the full
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generality of the definition of equivalence of sets of LR(k) tables is needed
here. While parsing, the new set of tables may compute next configurations
several steps farther than the old set, but no input symbols will be shifted.

To describe the conditions under which this alteration can take place,
we need to know, for each table appearing on fop of the pushdown list
during the parse, what tables can appear as the » 4 1st table from the top
of the pushdown list. We begin by defining three functions on tables and
strings of grammar symbols.

DEFINITION

Let (3, T;) be a set of LR{k) tables for grammar G = (N, I, P, §). We
extend the GOTO function of Section 5.2.3 to tables and strings of grammar
symbols, GOTO maps § x (N U Z)* to U as foliows:

(1) GOTO(T, ¢) = T for all Tin 3.

() fT={fg>, GOTOT, X) = g(X) forall XYin N L ¥ and T in 3.

(3) GOTO(T, aX) = GOTO(GOTO(T, o}, X) for all ¢ in (N U T)* and
Tin 4,

We say table that T in (3, T,) has height r if GOTO(T,, o) = 7 implics
that || > r,

We shall also have occasion to use GOTO™!, the “Inverse” of the GOTO
function. GOTO™* maps 3 x (N U L)* to the subsets of 3. We define
GOTO YT, &) = {T"|GOTO(T", a) = T}.

Finally, we define a function NEXT(T,, p), where T'is in 3 and p is produce-
tion A — X, - X, as follows:

(1) If T does not have height r, then NEXT(T, p) is undefined.
(2) If T has height r, then NEXT(7, p) = {T"|there exists 7" = 3 and
a € (N U Iy such that 77 € GOTONT, a) and T' = GOTO(T", A)}.

Thus, NEXT(T, p) gives all tables which could be the next governing
table after T if T is on top of the pushdown list and calls for a reduction by
production p. Note that there is no requirement that X, --- X, be the top
r grammar symbols on the pushdown list. The only requirement is that there
be at feast r grammar symbels on the list. If the tables are the canonical
ones, we can show that only for & = X, - -« X, among strings of length r
will GOTO™! (T, &) be nonempty.

Certain algebraic properties of the GOTO and NEXT functions are left
for the Exercises.

The GOTO function for a set of LR(k) tables can be conveniently por-
trayed in terms of alabeled graph. The nodes of the GOTO graph are labeled
by table names, and an edge labeled X is drawn from node 7, to node T, if
GOTO(T,, X} =T,. Thus, il GOTO(T, X, X, --- X,) =77, then there will
be a path from node T to node 7° whose edge labels spell out the string
X, X, -+ X,. The height of a table T can then be interpreted as the length
of the shortest path from 7 to T in the GOTO graph.



SEC. 7.3 TRANSFORMATIONS ON SETS OF LR(k) TABLES 599

The NEXT function can be easily computed from the GOTO graph.
To determine NEXT(T, i), where production iis 4 —~ X, X, -.- X,, we
find all nodes 77" in the GOTO graph such that there is a path of length r
from T to T. We then add GOTO(T", A) to NEXT(T, i} for each such 7",

Example 7.20

The GOTO graph for the set of tables in Fig. 7.25 (p. 595) is shown in
Fig. 7.27.

Fig. 7.27 GOTO graph.
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From this graph we can deduce that GOTO[T,, (E)] =T,;, since
GOTO[T, (] = Ts, GOTO[T;, E] = T, and GOTO[T,,)] = Ts.

Table T; has height 2, so NEXT(T%, 5), where production 5 is F — (E),
is undefined.

Let us now compute NEXT(T;, 5). The only tables from which there is
a-path of length 3 to T;, are T, T, and T,. Then GOTO(T,, F) =T,
GOTO(T,, F) =T;, and GOTO(T,, F) =T,,, and so NEXT(T,,, 5 =
{T:, Ty} [

We shall now give an algorithm whereby a set of g-inaccessible tables
can be modified to allow certain errors to be detected later in time, although
not in terms of distance covered on the input. The algorithm we give here is
not as general as possible, but it should give an indication of how the more
general modifications can be performed.

We shall change certain error entries and g-entries in the action field to
reduce entries. For each entry to be changed, we specify ithe production to
be used in the new reduce move. We collect permissible changes into what
we call a postponement set. Each element of the postponement set is a triple
(T, u, i}, where T is a table name, u is a lookahead string, and i is a produc-
tion number. The element (7, », {) signifies that we are to change the action
of table T on lookahead u to reduce i.

DEFINITION

Let (3, T;) be a sct of LR(k) tables for a grammar G = (N, Z, P, §).
We call @, a subset of 3 x T* X P, a postponement set for (3, T,) if the
following conditions are satisfied.

If(T,u,i)isin @ with T = {f, g>, then

(1) f(u) = error or p;

(2) If production {is 4 — &« and T = GOTO(T,, #), then ¢« is a suffix
of £;

(3) There is no i’ such that (7, «, {") is also in @; and

(4 If 77 is in NEXT(T,{) and T' = {f’, g, then f'(u) = error or ¢.

Condition (1) states that only error entries and g-entries are to be changed
to reduce entries. Condition (2) ensures that a reduction by production 7
will occur only if & appears on top of the pushdown list. Condition (3) ensures
uniqueness, and condition (4) implies that reductions caused by introducing
extra reduce actions will eventually be caught without a shift occurring,

Referring to condition (4), note that (7", u, j/) may also be in ®. In this
case the value of /(1) will also be changed from error or ¢ to reduce j. Thus,
several reductions may be made in sequence before error is announced.

Finding a postponement set for a set of LR{k) tables which will maximize
the total number of compatible tables in the set is a large combinatorial
problem. In one of the examples to follow we shall hint at some heuristic
techniques which can be used to find appropriate postponement sets, How-
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ever, we shall first show how a postponement set is used to modify a given
set of LR(k)} tables.

ALGORITHM 7.8
Postponement of error checking.

Input. An LR(k) grammar G = (N, Z, P, §), a g-inaccessible set (3, T,)
of LR{k) tables for G, and a postponement set &.

Cutput. A g-inaccessible set 3 of LR(k) tables equivalent to 3.
Method.

(1) For each (T, u, i) in ®, where T' = {f, g», change f(x) to reduce i.
(2) Suppose that (7, w, {) s in @ and that production 7/ is 4 — «. Forall
T ={f". g such that GOTO(T",¢) =T and g'(d) = ¢, change g'{A)
to error.
(3) Suppose that (T, u, i}is in @ and that T = {f”, g">isin NEXT(T, 1).
K f'(x) = @, change f'(u) to error.
(4) Let 3’ be the resulting set of tables with the original names retained.
]

Example 7.21
Consider the grammar G with productions

(1) S — AS
2 S—b
(3) A aB
4) B— aB
(5) B- b

The g-inaccessible set of LR(1) tables for & obtained by using Algorithm
7.6 on the canonical set of LR(1) tables for & is shown in Fig. 7.28.

We can choose to replace both error entries in the action field of T, with
reduce 5 and the error entry in 7 with reduce 2. That is, we pick a postpone-
ment set @ = {(T',, a,5), (L', b, 5), (T, e, 2)}. Production 5 is B — b, and
GOTO(T,, b) = GOTO(T,, b} = T,. Thus, the entries under Bin Toand T,
must be changed from ¢ to error. Similarly, the entries under S for 1 and T,
are changed to error. Since NEXT(T,, 5) and NEXT(T,, 2) are empty, no
@’s in the action fields need be changed to error. The resulting set of tables
is shown mn Fig. 7.29.

If we wish, we can now apply Algorithm 7.7 with a compatible partition
grouping T, with T,, T, with T,, and T, with T;. (Other combinations of
three pairs are also possible.) The resulting set of tables is given in Fig. 7.30.

[

THEOREM 7.7

Algorithm 7.8 produces a g-inaccessible set of tables 3’ which is equiva-
lent to 3.
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action goto

a b e S A B a b
T |§ § X | TW T o T3 T,
T |y ¢ A v ¢ ¢ ¢ @
i S § ¢ Te Ty ¢ T3 Ty
Ty § 8 ¢ ¢ Tg T, Ty
T, |x X 2 " )
Ts | e ¢ 1 R B I I
Ts | 3 3 ¢ ¢ ¢ ¥ 9 ¥
T, | 8§ § X | ¢ ¢ Ty T; Ty
Ts |5 5 X e ¢ ¢ ¥ ¥
Ty | 4 4 ¢ ® ¢ ¥ ¢ ¢

Fig. 7.28 ¢-inaccessible tables for G.

Aaction £oto

a b e § A B a b
T,| 8§ § x | 1n 1, x 13 T,
Ti| ¢ A A
T, 8 S e | Ts T, X T3 T,
T3] S S X | X ¢ Tg T; Ty
T, 5 5 2 Y ¢ 9 e @
To | ¢ ¢ 1 ¢ ¥ ¥ ¢ ¢
Te1 3 3 9 v ¥ v v ¥
S S X e To T Ty
Tg | 5 5 A A
Iy | 4 4 ¢ R T N

Fig. 7.29 Tables after postponement of error checking.

CHAP. 7
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action goto

a b e S A B a &
o | § § x " I, X Ty T,
T, | § § 4 T, T, X Ty T,
T, 18 5§ X X o T, T, T,
T, | 5 05 2 N
s | 303 1 v v ¢ v 9
7, | 8§ 5 X o Ty T, T,
o | 4 4 ¢ Yy v v ¢ ¢

Fig. 7.30 Merged tables.

Proof. Let Cy = (T, w, €) be an initial configuration of the LR{k) parser
{using either 3 or 3’ —the table names are the same), Let C, - C, - -+ = C,
be the entire sequence of moves made by the parser using 3 and let
Cob= C = - -+ b (), bethe corresponding sequence for ', Since ¥ is formed
from 3 by replacing only error entries and gp-entries, we must have m > n,
and C; = C, for 1 <C 7 < n. (That is, the table names are the same, although
different tables are represented.)

‘We shall now show that either m = n or if m > n, then no shift or accept
moves are made after configuration €, has been entered.

If m = n, the theorem Is immediate, and if C, is an accepting configu-
ration, then m = n. Thus, assume that C, declares an error and that m > =.
By the definition of a postponement set, since the action in configuration
C, is error and the action in C% is not error, the action in configuration C/,
must be reduce. Thus, let 5 be the smallest integer greater than » such that
the action in configuration C; is shift or accept. (If there is no such s, we
have the theorem.)

Then there is some r, where »# < r <C s, such that the action entry consulted
in configuration C, is one which was present in one of the tables of 3. The
case r = s 1Is not ruled out, as certainly the shift or accept entry of C; was
present in 3. The action entry consulted in configuration C,_, was of the form
reduce / for some i. By our assumption ob ¢, that entry must have been intro-
duced by Algorithm 7.8,

Let T, and T, be the governing tables in configurations C,_; and C;, re-
spectively. Then T, is in NEXT{(T, §), and condition (4) in the definition of
a postponement set is violated. []

We shall now give a rather extensive example in which we illustrate how
postponement sets and compatible partitions might be found. There are
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a number of heuristics used in the example. Since these heuristics will not be
delineated elsewhere, the reader is urged to examine this example with care,

Example 7.22

Consider the tables for G, shown in Fig. 7.25 (p.595). Our general
strategy will be to use Algorithm 7.8 to replace error actions by reduce
actions in order to increase the number of tables with similar parsing action
functions. In particular, we shall try to merge into one table all those tables
which call for the same reductions.

Let us try to arrange to merge tables T, and T,,, because they reduce
according to production 5, and tables T, and T, which reduce according
to production 6.

To merge T, and T,,, we must make the action of T',; on ) be reduce 5
and the action of T,, on e be reduce 5. Now we must check the actions of
NEXT(T,5, 5) = {7, T,,} and NEXT(T,,, 5) = {T¢, T2} o1 ) and e. Since
T, and T, each have g action on), we could change these ¢’s to error’s and
be done with it, However, then T, and T, would no longer be compatible—
nor would T, and T,,—s0o we would be wise to change the actions of T}
and T, on ) instead to reduce 4 and reduce 3, respectively.

We must then check NEXT(T,, 4) = NEXT(Ty,, 3) = [T, T},}. Asimilar
argument tells us that we should not change the actions of I, and T, on)
to error, but rather to redirce 2 and reduce 1, respectively. Further, we see that
NEXT(T,, 2) = {T,} = NEXT(T,;, 1). Thereis nothing wrong with changing
the action of 7', on ) to error, so at this point we have taken into account all
modifications needed to change the action of T, ; on ) to reduce 3.

We must now consider what happens if we change the action of T,; on
e to reduce 5. NEXT(T;, 4) = {T,, T2}, but we do not want to change
the actions of T',, and T,, on e to error, because then we could not possibly
merge these tables with T, and T,,. We thus change the actions of T, and
T,o on e to reduce 4 and reduce 3, respectively. We find that

NEXT(T,,, 4) = NEXT(Tq, 3) = {Ts, T1o}.

We do not want to change the actions of T, and T, on e to error, so let
T, have action reduce 2 on ¢ and T, have action reduce 1 on e. We find
NEXT(T,, 2) = NEXT(Ts, 1} = {Ty, Ty} These tables will have their ac-
tions on e changed to error.

We have now made T;; and T,, compatible without disturbing the pos-
sible compatibility of T, and T,, of Ty, and T,,, of T, and Ty, of T, and T,
or of T, and 7,,. Now let us consider making 7T, and 7, compatible by
changing the action of T, on ) to reduce 6 and the action of T}, on e to
reduce 6. Since NEXT(T,, 6) = {T;, T} and NEXT(T,,, 6) = {T, T3}, the
changes we have already made to T, and 7', and to 7, and T3, allow us to
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make these changes to T, and T,, without further ado. The complete post-
ponement set consists of the following elements:

(72, 2] [T, 6, 2]

(75,04 [T e 4]
(7). 6] (T, e, 6]
15,0, 1] [Tise 1]
(714, ), 3] {720, €, 3]
(T15,): 5] (T3 €, 5]

The result of applying Algorithm 7.8 to the tables of Fig. 7.25 with this
postponement set is shown in Fig. 7.31. Note that no error entries are intro-
duced into the goto field.

Looking at Fig. 7.31, we see that the following pairs of tables are imme-
diately compatible:

T3-T1 1}
T,-T,
Ty 4Ty
T,sT5,

Moreover, if these pairs form blocks of a compatible partition, then
the following pairs may also be grouped:

Te- Ty
Te-T,,
7Ty,
T, 3'T1 9
T3-Ts
TsTys

If we apply Algorithm 7.7 with the partition whose blocks are the above
pairs and the singletons {T,} and {7}, we obtain the set of tables shown in
Fig. 7.32. The smaller index of the paired tables is used as representative
in each case. It is interesting to note that the “SLR™ method of Section
7.4.1 can construct the particular set of tables shown in Fig. 7.32 directly
from G,.

To illustrate the effect of error postponement, let us parse the erroneous
input string @). Using the tables in Fig. 7.25, the canonical parser would
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Action £oto

a + = () e E T F a + = ( )
T, 185 X ¥ § X X T, T, T3 Ty » ¢ T ¢
Ty |9 S v ¢ X A4 ¢ v v w Iz v ¢ v
hn|le 2 8§ ¢ 2 2 e v ¢ ¢ ¢ T3 9 v
T, |¢ 4 4 o 4 4 T T R R B B
T, X 6 6 X 6 6 Y ¢ ¢ 9 ¢ ¥ ¥ ¢
)8 X ¥ S X X Tg Ty Ty Tu ¢ ¥ T ¢
Te |§ X ¥ § X X v T3 Ty Ty » w To ¢
s x x 5 x «x ¢ ¢ Ty Ty v ¢ T3 ¢
Ts |e S ¢ v § X v v ¢ ¢ T ¢ ¢ Ty
Ty j ¢ 2 ¢ 2 2 v ¢ v ¢ v T3 v ¢
Tw e 4 4 v 4 4| ¢ 9 ¢ v ¢ v ¢ ¢
T, |X¥ 6 6 X &6 6 A
To |8 X X § X X | Tig T g Ty v ¢ T v
Ty |e 108 v 1 1 v ¢ v v v T, v ¢
Tu|» 3 3 ¢ 3 3 ¢ ¥ oY e ¥ v Y Y
s |X 5 5 X 3 5 T R I A "
T | S X X S X X ¢ Tio Two T v ¢ T @
Ip | § X X § X X w v T Ty v ¢ Tp v
Tg | ¢ § ¢ ¢ § X e ¢ ¢ v Tig v ¢ Ty
Tg | » I ¢ 1 1 v v v w v T v ¢
Ty |y 3 3 9 3 3 A -
Ty | X 5 5 X 5 5 R R B N A

Fig. 7.31 Application of postponement algorithm.

make one move:

[Ty, @), €] - [TeaTy, ), €]

The action of T on } is error.
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action _goto

a + * () e E T F a + == ( )
T s X X § X X NN T, Ty Ty, ¢ ¢ T; ¢
Ti ¢ § v v X A4 ¢ ¢ v v Tg v ¢ v
Ty v 2 8 » 2 1 v v v ¢ v T; ¢ 9
Ty | 4 4 ¢ 4 4 ¢ ¢ ¢ ¢ ¢ 9 ¢ ¥
T, | X 6 6 X 6 6 A A A
I, |§ x*x x § X X Tg Ty T3 Ty ¢ ¢ Ts
Te | §$ X X 8§ X X | ¢ Tu T3 Ty ¢ o Ts v
I, | § X X § X Xx ¢ w9 Ty Ty ¢ ¢ Ty vy
T3 |¢ 8§ v ¢ § X e v v v Ts v o Tis
Tule 18§ o 1 1 v v ¢ ¢ ¢ Ty 9 ¢
Ty|e 3 2 ¢ 3 3 ¥ ¥ P ¥ ¥ ¥ P ¢
Ty | X 5 5 X 5 5 R B B R B B

Fig. 7.32 After application of merging algorithm.

607

However, using the tables in Fig. 7.32 to parse this same input string,

the parser would now make the following sequence of moves:

[Tﬂs a): e] I_' [TﬂaTtts ): e]

Here three reductions are made before the announcement of error.

7.3.6.

b [TuFT3, ), 6]
= [ToTT5, ), 64]
= [T.ET, ), 642]

Elimination of Reductions by Single Productions

O

We shall now consider an important modification of LR(k) tables that
does not preserve equivalence in the sense of the previous secticns. This
modification will never introduce additional shift actions, nor will it even
cause a reduction when the unmodified tables detect error. However, this
modification can cause certain reductions to be skipped altogether. As a result,
a table appearing on the pushdown list may not be the one associated with
the string of grammar symbols appearing below it (although it will be com-
patible with the table associated with that string). The modification of this
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section has to do with single productions, and we shall treat it rather more
informally than we did previous modifications.

A production of the form A — B, where A and B are nonterminals, is
called a single production. Productions of this nature occur frequently in
grammars describing programming languages. For instance, single produc-
tions often arise when a context-free grammar is used to describe the prece-
dence levels of operators in programming languages. From example, if a
string a, + a, = g, is to be interpreted as a, + (g, * @,), then we say the
operator = has higher precedence than the operator +.

Our grammar (, for arithmetic expressions makes » of higher precedence
than +. The productions in G, are

()E—-E+T
() E—T
NTr—-T=F
4 T—F
(3) F—(E)
) F—a

We can think of the nonterminals £, 7, and F as generating expressions on
different precedence levels reflecting the precedence levels of the operators.
E generates the first level of expressions. These are strings of T7s separated
by +7%s. The operator + is on the first precedence level. T generates the second
level of expressions consisting of F’s separated by #s. The third level of
expressions are those generated by F, and we can consider these to be the
primary expressions.

Thus, when we parse the string ¢, -+ a, * 4, according to &, we must
first parse a, * a, as a T before combining this T with a, into an expression F.

The only function served by the two single productions £ — T and
T —» F is to permit an expression on a higher precedence level to be trivially
reduced to an expression on a lower precedence level. In a compiler the
translation rules wsually associated with these single productions merely
state that the translations for the nonterminal on the left are the same as
those for the nonterminal on the right. Under this condition, we may, if we
wish, eliminate reductions by the single production.

Some programming languages have operators on 12 or more different
precedence levels, Thus, if we are parsing according to a grammar which
reflects a hierarchy of precedence levels, the parser will often make many
sequences of reductions by single productions. We can speed up the parsing
process considerably if we can eliminate these sequences of reductions, and
in most practical cases we can do so without affecting the translation that is
being computed.

In this section we shall describe a transformation on a set of LR(k) tables
which has the effect of eliminating reductions by single productions wherever
desired.
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Let (3, T,) be a g-inaccessible set of LR(k) tables for an LR(k) grammar
G =(N,E, P, §}, and assume that 3 has as many g-entries as possible. Sup-
pose that A — B is a single production in P.

Now, suppose the LR(k) parsing algorithm using this set of tables has
the property that whenever a handle ¥, Y, -+ - ¥, is reduced to B on look-
ahead string u, B is then immediately reduced to 4. We can often modify
this set of tables so that ¥, - .- Y, is reduced to 4 in one step. Let us examine
the conditions under which this can be done.

Let the index of production 4 — B be p. Suppose that T ={f,g> is
a table such that f(u) = reduce p for some lookahead string u. Let I’ =
GOTO YT, B)and let U = {U|U = GOTO(T', A) and T' = J']. 3" consists
of those tables which can appear immediately below B on the pushdown
list when T is the table above B. If (3, T,) is the canonical set of LR(k)
tables, then U is NEXT(T, p) (Exercise 7.3.19).

To eliminate the reduction by production p, we would like to change
the entry g'(B)} from Tto g'(4) for each { ', g™ in 3", Then instead of making
the two moves

yr'y,u, r,u, - YU, w, o) | (y7T'BT, w, ni)
= (T AU, w, ntip)

the parser would just make one move:
GT'Y.U Y, U, -- Y, U,w ) — (yT"4AU, w, =i)

We can make this change in g'(B) provided thati the entries in T and all
tables in 9l are in agreement except for those lookaheads which call
for a reduction by production p. That is, let T = {f, g> and suppose
U = (S 80 {fas 8D - - - » fom £}- Then we require that

(1} For all % in T** if f{u)} is not @ or reduce p, then f,(w) is either ¢ or
the same as f(u) for 1 << i<<m,

(2) Forall Xin N U I, if g(X) is not p, then g (X} is etther ¢ or the same
as g{(X)for 1 << i < m.

If both these conditions hold, then we modify the tables in 3" and U as
follows:

(3) Welet g'(B)be g'(d) forall (£, g"> in &".
4y For | <<i<{m
{a) for each u € T** change fi(u) to f(uw) if f(u) = ¢ and if fu) is
not g or reduce p, and
{b) for each X € N U X change g(X) to g(X) if g(X) = .

The modification in rule (3) will make table 7 inaccessible if it is possible
to reach T only via the entries g'(B) in tables {f7, g™ in ¥".
Note that the modified parser can place symbols and tables on the push-
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down list that were not placed there by the original parser. For example,
suppose that the original parser makes a reduction to B and then calls for
a shift, as follows:

(yI'Y, U, Y, U, --- YU, aw, ) b (yT'BT, aw, zi)
— (T BTaT"”, w, mi)

The new parser would make the same sequence of moves, but different sym-
bols would appear on the pushdown list. Here, we would have

GT' Y, U YU, -« YU, aw,m) - (T’ AU, aw, i)
- T AT aT", w, 7i)

Suppose that T' = { f, g>, T" = {J’, g'v, and U = {f,, g, ». Then, U 1s g'(4).
Table U’ has been constructed from U according to rule (4) above. Thus,
if f{v) = shift, where v = FIRST(aw), we know that fi(») is also shift.
Moreover, we know that g,(q) will be the same as g(a). Thus, the new parser
makes a sequence of moves which is correct except that it ignores the ques-
tion of whether the reduction by 4 — B was actually made or not.

In subsequent moves the grammar symbols on the pushdown list are
never consulted. Since the goto entries of U’ and T agree, we can be sure
that the two parsers will continue to behave identically (except for reductions
by single production 4 — B).

We can repeat this modification on the new set of tables, attempting to
eliminate as many reductions by semantically insignificant single produc-
tions as possible.

Example 7.23

Let us eliminate reductions by single productions wherever possible in the
set of LR(1) tables for G, in Fig, 7.32 (p. 607). Table T} calls for reduction
by production 2, which is £ — T. The set of tables which can appear imme-
diately below T, on the stack is {T,, Ti}, since GOTO(T,, E) = T and
GOTO(T;, By = T,.

We must check that except for the reduce 2 entries, tables T, and T, are
compatible and T, and T are compatible. The action of T, on = is shift. The
action of T, and T, on * is g. The goto of T, on  is T',. The goto of T and
T; on # is @¢. Therefore, T, and T, are compatible and 7, and T} are com-
patible. Thus, we can change the goto of table T, on nonterminal T from T,
to 7, and the goto of T on T from T, to T,. We must also change the action
of both T, and T on = from g to shift, since the action of T, on * is shift.
Finally, we change the goto of both T} and 7, on  from ¢ to T, since the
goto of T, on = is T7,.

Table T, is now inaccessible from T, and thus can be removed.
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Let us now consider the reduce 4 moves in table T,. (Production 4 is
T — ¥.) The set of tables which can appear directly below T, is {Ty, T, Te)-
Now GOTO{T,,T)=T,, GOTO(T;,T) =T, and GOTOT,, T) =T,;.
[Before the modification above, GOTO(T,, T) was T,, and GOTO(T,, T)
was T,,] We must now check that T is compatible with each of T, T, and
T,5. This is clearly the case, since the actions of T, are either ¢ or reduce 4,
and the gotos of T, are ali ¢.
Thus, we can change the goto of Ty, T, and T, on Fto T, Ty, and Ty,
respectively. This makes table 77 inaccessible from T,
The resuliing set of tables is shown in Fig. 7.33(a). Tables T, and T, have
been removed.
Thers is one further observation we can make. The goto entries in the
columns under E, T, and F all happen to be compatible. Thus, we can merge
these three columns into a single column, Let us label this new column by E.
The resulting set of tables is shown in Fig. 7.33(b).
The only additional change that we need to make in the parsing algorithm
is to use Ein place of T and F to compute the goto eniries. In effect the set
of tables in Fig. 7.33(b) is parsing according to the skeletal grammar
W) E-E+E
(3 E—~E=xE
(5) E— (E)
6) E—a

as defined in Section 5.4.3,

For example, let us parse the input string (@ - a) x @ using the tables in
Fig. 7.33(b). The LR(1) parser will make the following sequence of moves.

[To. (e +a@yxa, el LT, a4+ a) «a, e
b= [To(Tsal,, + a) % a, €]
b= [To(TSETy, + a) * a, 6]
b [To(TETs 4T, &) * a, 6]
- [To(T5ETy+-T4aT,, ) = a, 6)
- [To(TET,+T,ET,s, ) * a, 66)
= [T(TsET;, ) * a, 661]
b= [Lo(TSET )T, 5, * 4, 661]
- [T,ET,, » a, 6615]
b [TLET, T, a, 6615]
b [TLET *T,aT,, e, 6615]
b [T ET,sT,ET,,, €, 66156]
- [TLET,, ¢, 661563]
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action goto
a + -2 o ) e E T F a + =*= ( )]
§F X X 5 x X n n n Ty ¢ ¢ Is ¢
S § ¢ X A v ¢ v ¢ Tg Ty e v
X 6 6 X 6 6 v ¢ v ¥ ¥ ¥ v 9
S X x S X x Ty Ty Ts To v v Ts v
s X X § Xx X ¢ T3 T3 Ty ¢ ¢ Ts o
S X X 5 X X v ¢ Ty Ty ¢ v T5 ¢
¢ § 5§ ¢ 5 X v v v ¢ Tg I; ¢ Ty
¢ 1 5 ¢ 1 1 v ¢ ¢ ¢ ¢ T3 ¢ 9
¢ 3 3 ¢ 3 3 vy ¥ v v 9 ¢ ¢ @
X § 5 X s 3 £ P P ® ¥ ¥ P ¢
{a) before column merger
agtion goto

a + * () e E a + = ( )
Ly |§ ¥ X § X X N Ty ¢ v Ts ¢
W ¢ § 5§ ¢ X A ¢ w Tg T ¢ v
T, |X 6 6 X 6 6 " " I I
s | § X X § x X Ty To v ¢ T5 @
T | X X § X X Ty Ty ¢ ¢ Ts @
S x X § X X [T, T, o 9 Ts »
Tg | ¢ § 8§ » § X ¢ v Tg T; ¢ Ty
T3 1 5 p 1 1 ¢ v 9 Ty o v
Tiu | ¢ 3 3 3 | ¢ 9 v ¢ v v
Ts|x 5 s x § s ¢ ¢ ¢ 9 @ ¢

(b) after column merger

Fig. 7.33 LR(1) tables after elimination of single productions.
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The last configuration is an accepting configuration. In parsing this same
input string the canonical LR(1) parser for G, would have made five addi-
tional moves corresponding to reductions by single productions. | |

The technique for eliminating single productions is summarized in
Algorithm 7.9. While we shall not prove it here in detail, this algorithm
enables us to remove all reductions by single productions if the grammar
has at most one single production for each nonterminal. Even if some non-
terminal has more than one single production, this algorithm will still do
reasonably well.

ALGORITHM 7.9
Elimination of reductions by single productions.

Input. An LR(k) grammar G == (N, E, P, S) and a p-inaccessible set of
tables (4, T,) for G.

Output. A modified set of tables for G that will be “equivalent” to (3, T)
in the sense of detecting errors just as soon but which may fail to reduce by
some single productions.

Method.

(1) Order the nonterminals so that N = {4, ..., 4}, and if 4, — A4, is
a single production, then ¢ << j. The unambiguity of an LR grammar guaran-
tees that this may be done.

{2y Do step (3)forj = 1,2, ..., n, in turn,

(3) Let 4,— A, be a single production, numbered p, and let T, be a
table which calls for the reduce p action on one or more lookahead strings.
Suppose that T, is in NEXT(T,, p)t and that for all lookaheads either the
actions of T'; and T, are the same or one is g or the action of T is reduce p.
Finally, suppose that the goto entries of T, and 1) also either agree or one
is @. Then create a new table T which agrees with 7, and T, wherever they
are not g, except at those Jookaheads for which the action of T, is reduce p.
There, the action of T, is to agree with 7,. Then, modify every table 7 =
{f,g) such that g(4,;)= T: and g(4,;) = T, by replacing T; and T; by T3 in
the range of g.

(4) After completing all modifications of step (3), remove all tables which
are no longer accessible from the initial table. [

We shall state a series of results necessary to prove our contention that
given an LR([} grammar, Algorithm 7.9 completely eliminates reductions by
single productions if no two having the same left or same right sides, provided
that no nonterminal of the grammar derives the empty string only. (Such a

FNEXT must always be computed for the current set of tables, incorporating all
previous modifications of step (3)
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nonterminal can easily be removed without affecting the LR{I}-ness of the
grammar.)

LEMMA 7.1
Let G =(N, Z, P, §) be an LR(l) grammar such that for each C & N,

there is some w == ¢ in £* such that € => w. Suppose that A = B by a se-
guence of single productions. Let &, and &, be the sets of LR(1} items that
are valid for viable prefixes y4 and yB, respectively. Then the following
conditions hold:

(DI [C—a, - XB,,alisin®, and [D — «, - Yf,,b] isin @,, then
X#Y

(2y If [C—»>a, - f,a)is in @, and b is in EFF(f,a),t then there is no
item of the form [0 — a, - §,,¢] in @, such that & € EFF(f#,c) except
possibly for [E — B -, b], where 4 = E=B by a sequence of single produc-
tions.

Proof. A derivation of a coatradiction of the LR{I) condition when
condition (1) or-(2) is violated is left for the Exercises. [ ]
COROLLARY

The LR(l) tables constructed from @, and @, do not disagree in any
action or goto entry unless one of them is g or the table for @, calls for
a reduction by a single production in that entry.

Proof. By Theorem 7.7, since the two tables are constructed from the sets
of valid items for strings ending in a nonterminal, all error entries are don’t
cares. Lemma 7.1{]) assures that there are no conflicts in the goto entries;
part (2} assures that there are no conflicts in the action entries, except for
resolvable ones regarding single productions. [ ]

Lemma 7.2

During the application of Algorithm 7.9, if no two single productions
have the same left or the same right sides, then each table is the result of
merging a list (possibly of length 1) of LR{1)tables T, . .., T which were con-
structed from the sets of valid items for some viable prefixes yA4y, yAs, . . .,
YAn, where 4;, — A;isin Pfor 1 <7< a

Proof. Exercise. [ ]

THEOREM 7.8

If Algorithm 7.9 is applied to an LR(I[) grammar G and its canonical set
of LR(1) tables g, if G has no more than one single production for any non-
terminal, and if no nonterminal derives e alone, then the resulting set of
tables has no reductions by single produoctions.

tNote that #; could be 2 here, in which case @; calls for a reduction on lookahead 5.
Otherwise, & calls for a shift.
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Proof. Intuitively, Lemmas 7.1 and 7.2 assure that all pairs T, and 7,
considered in step (3) do in fact meet the conditions of that step. A formal
proof is left for the Exercises. [ ]

7.3.1.

7.3.2.

7.3.3.

7.3.4.

7.3.5.

7.3.6.

EXERCISES

Construct the canonical sets of LR(1) tables for the following grammars:
(a) §— ABAC
A-—aD
B-——b i C
C—cld
D — D00
(b) §— aSs|b
{c) §— SSalb
(& E—E+T|T
T-—Tx F\F
F PtFiFP
P— (E)|ala(L)
L I E|E
Use the canonical set of tables from Exercise 7.3.1(a) and Algorithm
7.5 to parse the input string a0ba00c,

Show how Algorithm 7.5 can be implemented by
{a) a deterministic pushdown transducer,
(b} a Floyd-Evans production language parser.

Construct a Floyd-Evans production language parser for G from

{a) The LR(!) tables in Fig. 7.33(a).

(b) The LR{!) tables in Fig. 7.33(b).

Compare the resulting parsers with those in Exercise 7.2.11.

Consider the following grammar G which generates the language
L = {a0a’b|i, n = 01 U {Oa"lafen i, n = 0}:

S—> A|08B

A-—> adbj0]0C

B—> aBe|l|1C

C—» aCla
Construct a simple precedence parser and the canonical LR(1) parser
for G. Show that the simple precedence parser will read all the a’s
following the | in the input string a"la’é before announcing error.

Show that the canonical LR(1) parser will announce error as soon as
it reads the 1.

Use Algorithm 7.6 to construct a @-inaccessible set of LR(I) tables for
each of the grammars in Exercise 7.3.1,
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7.3.7.

7.3.8,

*7.3.9,

*7.3.10.

**7.3.11.

*7.3.12.

*7.3.13.

*7.3.14.

*#7.3.15.
*7.3.16.

7.3.17.
7.3.18.

7.3.19.

*7.3.20.

7.3.21.

Use the techniques of this section to find a smaller equivalent set of
LR(1) tables for each of the grammars of Exercise 7.3.1,

Let § be the canonical collection of sets of LR(k) itemns for an LR(k)
grammar & = (N, , P, 5). Let @ be a set of items in §. Show that
(a) If item [4 — & - B, u] is in @, then ¥ € FOLLOW,(4).

(b) If @ is not the initial set of items, then @ contains at lzast one item
of the form [4 — «X - f, 1] for some X in N © X,

©) If[B— - fB,v]is in @ and B = 5’, then there is an item of the
form [4 — o - By, u] in Q.

(d) If{4 — & - BB, ulis in @ and EFF(Bfu) contains g, then there is
an item of the form [ — - gy, »] in @ for some y and ». {This result
provides an easy method for computing the shift entries in an LR(1)
parser.)

Show that if an error entry is replaced by ¢ in &', the set of LR(k)
tables constructed by Algorithm 7.6, the resulting set of tables will no
longer be g-inaccessible.

Show that a canonical LR(k) parser will announce error either in the
injtial configuration or immediately after a shift move.

Let G be an LR(k) grammar. Give upper and lower bounds on the
number of tables in the canonical set of LR(k) tables for G. Can you
give meaningful upper and lower bounds on the number of tables in
an arbitrary valid set of LR(k) tables for G?

Modify Algorithm 7.6 to construct a @-inaccessible set of LR(0) tables
for an LR{0) grammar.

Devise an algorithm to find all g-entries in an arbitrary set of LR(k)
tables.

Devise an algorithm to find all g-entries in an arbitrary set of LL{k)
tables.

Devise an algorithm to find all g-entries in an LC(k) parsing table.

Devise a reasonable algorithm to find compatible partitions on a set of
LR{k) tables.

Find compatible partitions for the sets of LR(1) tables in Exercise 7.3.1.

Show that the relation of compatibility of LR(k) tables is reflexive and
symmetric but not transitive.

Let (3, Ty) be the canonical set of LR(%) tables for an LR(k) grammar
G. Show that GOTO(T,, o) is not empty if and only if & is a viable
prefix of €. Is this true for an arbitrary valid set of LR(%) tables for G?

Let (3, Ty) be the canonical set of LR{(k) tables for . Find an upper
bound on the height of any table in 3 (as a function of &).

Tet 3 be the canonical set of LR(k) tables for LR{k} grammar

G = (N,Z, P, 5). Show that for all Te 3, NEXT(T, p) is the set
{GOTO(T", AY|T" € GOTO~(T, &), where production p is 4 — &},



7.3.22.

*7.3.23.

*7.3.24.

*7.3.25.

7.3.26.

**7.3.27.

*7.3.28,
*#47.3.29.

EXERCISES 617

Give an algorithm to compute NEXT(T, p} for an arbitrary set of
LR(k) tables for a grammar G. .

Let 3 be a canonical set of LR(%) tables. Suppose that for each T 3
having one or more reduce actions, we select one production, p, by
which T reduces and replace all error and ¢ actions by reduce p. Show
that the resulting set of tables is equivalent to 3.

Show that reductions by single productions cannot always be eliminated
from a set of LR{k) tables for an LR{k) grammar by Algorithm 7.9.

Prove that Algorithm 7.9 results in a set of LR (k) tables which is equiv-
alent to the original set of tables except for reductions by single pro-
ductions.

A binary operator 8 associates from left to right if a@bfc¢ is to be inter-
preted as ((aBb)8¢). Construct an LR(1) grammar for expressions over
the alphabet {a, (,)] togetber with the operators {4, —, *,/, 1}. All
operators are binary except 4+ and —, which are both binary and
(prefix) unary. All binary operators associate from left to right except
1. The binary operators. -+ and — have precedence level 1, x and / have
precedence level 2, 1T and the two unary operators have precedence
level 3.

Develop a technique for automatically constructing an LR(1) parser for
expressions when the specification of the expressions is in terms of a
set of operators together with their associativities and precedence levels,
as in Exercise 7.3.26.

Prove that 3 and UL in Example 7.17 are equivalent sets of tables.
Show that it is decidable whether two sets of LR(k) tables are equivalent,

DEFINITION

The following productions generate arithmetic expressions in which
8,,8,,...,8, represent binary operators on » different precedence
levels. #, has the lowest precedence, and £, the highest. The operators
associate from left to right.

Eo—> Euf E. | E,
E) —> E192EzlEz

En—l —> E, —lenEnIEn
En —_— (E]) I a
We can also generate this same set of expressions by the following
“tagged LR(1)” grammar:

M E - EBE O<i<j<n
(2) Ei — (Ey) 0<Ci<n
(3 E —a 0<i<n
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In these productions the subscripts are to be treated as tags on the
nonterminal £ and terminal 8. The conditions on the tags reflect the
precedence levels of the operators. For example, the first production
indicates that a level i expression can be a level i expression followed
by an operator on the jth precedence level followed by a level j expression
provided that 0 <{i <7 <{ n. The start symbol has the tag 0.

The expression af,(af a), which is analogous ic a = (@ + a), has
the parse tree shown in Fig. 7.34. In the tree we have shown the values
of the tags associated with the nonterminals.

I
/
/

EO )

& £

a a Fig. 7.34 Parse tree,

Although the tagged grammar is ambiguous without the tags, we
can construct an LR(1)-like parser that uses tags with LR(1) tables
wherever necessary to correctly parse input strings. Such an LR(1)
parser is shown in Fig. 7.35.

To illustrate the behavior of the parser, let us parse the input string
al ;(afl 1 a). The parser starts off in configuration ([T}, 0], aff ,(af,a), €)
in which the tag 0 is associated with the initial table T,. The parsing
action of [T, {] on input a is shift, and so the parser enters configuration

([TU: OlaTZ: 62(‘1310)5 e)
The action of T; on @, is reduce by production 3; that is, £ — a.
The goto of [T, i] on E is [Ty, i]. The value of the tag is transmitted

from T, to T,. Therefore, the parser then enters configuration

([To, 0JEIT, 0], Bx(ab), ), 3)
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action foto

a 8 ( ) e E a 8 ( )
s X § X (13,11 T X (101 X
X 5 x A X X [T X X
X 3 X 3 3 X b¢ X X X
s X 5 X X (75,1 T X [1y,0] X
s X § x x [Tei] Ty X (01 X
X S X § X X X (T.0 X T,
X RI X R2 R2 X X ([T, X X
X 21 x 2 2 X X X b¢

Fig. 7.35 LR(1) parser with tags,

The complete sequence of moves made by the parser would be as follows:

([TG: 0]: 092(‘191“), e)

F ([T, 0)aTs, 8:(a8,0), €)

F (7o, 0IE[T, 0, 82(ab,a), 3)

- ([T, O1E[T, 01Ty, 2], (af 1), 3)

- ([T, O1E[Ty, 01,17, 2)(T5, 01, af,4), 3)

b= (iTo, O1E[T, 0102[ Ty, 21(T3, OlaTy, 614), 3)

- ({70, O1E(T,, 010:Ty, 2)(Ts, 01£(Ts, 0], €14), 33)

b ([To, OJE(T,, 002[T,, 2)( T3, O1€(Ts, 016,[T, 11, &), 33)
|- ([T, C)ELT;, 010[T4, 2H(T5, OJE(T, 0164[7,, 11aT>, ), 33)
- ((T,, O1EITy, 010:[T,, 21((T, OIE(Ts, 018 [T, 11E(T;, 1], ), 333)
= ([To, O1E[T), 0o(T, 2)(T5, OIE(TS, 0), ), 3331,)

= ([To, OIELT,, 018,17, 2(Ts, O1E(Ts, 0Dy, €, 33311)

— ([Ty, O1E[T, 016.[T,, 21E(Ts, 2, ¢, 3331,2)

b= ([Ty, Q1EIT, 0], &, 3331,21,)

*%7.3.30. Show that the parser in Fig. 7.35 correctly parses all expressions gen-
erated by the tagged grammar.

7.3.31. Construct an LR(1) parser for the untagged grammar with operators
on n different precedence levels. How big is this parser compared with
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the tagged parser in Fig. 7.35. Compare the operating speed of the two
parsers.

*7.3.32. Construct a tagged LR{1)-like parser for expressions with binary opera-
tors of which some associate from left to right and others from right
to left,

**73,33, The following tagged grammar will generate expressions with binary
operators on »n different precedence levels:

(1) E;— (Eo)Ri, 0<<i<n

@) E,— aR,, 0<i<n

@) Ry —8ER ;.. O0<i<j<k<n
@) R, e 0<i<j<n

Construct a tagged LL(1)-like parser for this grammar. Hint: Although
this grammar has two tags on R, only the first tag is needed by the
parser.

7.3.34. Complete the proof of Lemma 7.1 and its corollary.
7.3.35. Prove Lemma 7.2,
7.3.36, Complete the proof of Theorem 7.8.

Open Problem

7.3.37. Under what conditions is it possible to merge all the goto columns for
the nonterminals after eliminating reductions by single productions,
as we did for Gy ? The reader should consider the possibility of relating
this question to operator precedence. Recall that Gy is an operator
precedence grammar.

Research Problems

7.3.38. Develop additional techniques for modifying sets of LR tables, while
preserving “equivalence” in the sense we have been using the term.

7.3.39. Develop techniques for compactly representing LR tables, taking advan-
tage of ¢ entries.

Programming Exercises

7.3.40. Design elementary operations that can be used to implement an LR{1)
parser. Some of these operations might be: read an input symbol, push
a symbol on the pushdown list, pop a certain number of symbols from
the pushdown Hst, emit an output, and so forth. Construct an inter-
preter that will execute these elementary operations.

7.3.41. Construct a program that takes as input a set of LR(1) tables and
produces as output a sequence of elementary instructions that imple-
ments the LR(1) parser using this set of tables.
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7.3.42. Consfruct a program that takes as input a set of LL{1) tables and
produces as output a sequence of elementary instructions that simulates
the L1(1) parser using this set of tables.

7.3.43. Write a program to add don’t care entries to the canonical set of LR
tables.

*7.3.44. Write a program to apply some heuristics for error postponement and
table merger, with the goal of producing small sets of tables.

7.3.45., Implement Algorithrh 7.9 to eliminate reductions by single productions
where possible.

BIBLIOGRAPHIC NOTES

The transformations considered in this section were developed by Aho and
Ullman [1972¢, 1972d]. Pager [1970] considers another approach to the simplifi-
cation of LR(k) parsers in which a parser can be modified to such an extent that
it may no longer delect errors at the same position on the input as the canonical
LR(%k) parser and may need to look at the stack to determine which reduction to
make. The idea of using tags in LL grammars and parsers was suggested by
P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Lewis and Rosenkrantz {1971]
repori that by using tags to handle expressions and conditional statements, the
syntax analyzer in their ALGOL 60 compiler was reduced to a 29 by 37 LL(I)
parsing table.

7.4. TECHNIQUES FOR CONSTRUCTING LR(k)
PARSERS

The amount of work required to construct the sets of LR(k) items [and
hence the canonical LR (k) parser] grows rapidly with the size of the grammar
and with k, the length of the lookahead string. For large grammars the
amount of computation needed to construct the canonical set of LR(k)
tables is so large as to be impractical, even if £ = 1. In this section we shall
consider some more practical fechnigques which can be used to construct
valid sets of LR(I) tables from certain LR(l) grammars.

"The first technique that we shall consider is the construction of the canon-
ical collection of sets of LR{0) items for a grammar G. If each set of LR(0)
items is consistent,t then we can construct a valid set of LR{0) tables for G.
If a set of LR(0) items is not consistent, then it is reasonable io attempt to
use lookahead strings in this set of items to resolve parsing action conflicts.

tA set of LR(k) items, @, is consistent if we can construct an LR(k) table from @ in
which the parsing actions are unique.
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The saving in this approach 1s due to the fact that we would use lookahead
only where lookahead is needed. For many grammars this approach will
produce a set of tables which is considerably smaller than the canonical set
of LR(k) tables for G. However, for some LR(k) grammars this method does
not work at all.

We shall also consider another approach to the design of LR(k) parsers.
In this approach, we split a large grammar into smaller pieces, constructing
sets of LR(%) items for the pieces and then combining the sets of items to
form larger sets of items. However, not every splitting of an LR(k) grammar
( is guaranteed to produce pieces from which we can construct a valid set
of tables for G.

741, Simple LR Grammars

In this section we shall attempt to construct a parser for an LR{(k) gram-
mar G by first constructing the collection of sets of LR(0) items for G. The
method that we shall consider works for a subclass of the LR grammars
called the simple LR grammars.

DEFINITION

Let ¢ = (N, X, P, §) be a CFG {[not necessarily LR(0)]. Let §, be the
canonical collection of sets of LR(0) items for G, Let @ be any set of items
in §,. Suppose that whenever [4 — o - f,¢] and [B— y - §, ¢] are two
distinct items in @, one of the following conditions is satisfied:

(1) Neither of 8 and & are e.

(2) B e, § = e, and FOLLOW (B) n EFF, (f FOLLOW (4)) =&
(3) B =e, 6=e and FOLLOW, (4) N EFF,(6 FOLLOW (B)) =&
4y B =6 =e and FOLLOW,(4) N FOLLOW_(B) =&

Then G 1s said to be a simple LR(k) grammar [SLR(X) grammar, for short].

Example 7.24

Let G, be our usval grammar

E—E+T|T
T—>TxF|F
F—s(E)|a

The canonical collection of sets of LR(0) items for & is listed in Fig.
7.36, with the second components, which are all e, omitted.

tWe could use FOLLOW;_1(A) here, since § must generate at least one symbol of
any string in EFF(# FOLLOW (4)).
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@g: E— -E ®s: E—EH+ T
E— -E+T T— T+ F
E-— T T— F
T— -TxF F-— (E)
T-—-F F—s g
?*'(E) Gy: T—>T%-F

— g F— '(E)

@ E-——E- F— -a
E— E 4+ T Rs: F—r{E)

;. E—T- E— E- 4T
T—T sF @s: E—E+ T

Q3: T-—— F- T— T-xF

Giy: F—a @Ryo: T—TxF

@;: F-— (E) @sj1: F— (E)
E— .E+4T
E— T
T— TxF
T'— -F
F—s (E)

F— -a
Fig. 7.36 LR(Q) items for Gy.

G, is not SLR(0} because, for example, @, confains the two items
[E'-— E-]and [E-— E- + T] and

FOLLOW (E") = {e} = EFF,[+ T FOLLOW (E)].{

However, G, is SLR(1). To check the SLR(1} condition, it suffices to
consider sets of items which

{1} Have at least two items, and
{2) Have an item with the dot at the right-band end.

Thus, we need concern ourselves only with @, @,, and &,. For @, we observe
that FOLLOW (E") = [¢} and EFF,[4 I" FOLLOW (E)] = {+]. Since
{e} N {+]} = @, @, satisfies condition (3) of the SLR(1) definition. @, and
@, satisfy condition (3) similarly, and so we can conclude that G, is SLR{I).

[

Now let us attempt to construct a set of LR(1) tables for an SLR(I)
grammar G starting from $,, the canonical collection of sets of LR(Q) items
for G. Suppese that some set of items @ in §, has only the items [4 — o -, €]
and [B— B - v,e]. We can construct an LR(1) table from this set of

tNote that for all &, FIRSTo(z) = EFFo{e) = FOLLOWo{e) = {e].
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items as follows. The goto entries are constructed in the obvious way, as
though the tables were LR(0) tables. But for lookahead a, what should the
action be? Should we shift, or should we reduce by production 4 — a.
The answer lies in whether or not @ € FOLLOW (4). If 2 € FOLLOW ,(4),
then it is impossible that a is in EFF,(y), by the definition of an SLR(1)
grammar. Thus, reduce is the appropriate parsing action. Conversely, if a is
not in FOLLOW (4), then it is impossible that reduce is correct. If ¢ isin
EFF(y), then shift is the action; otherwise, error is correct. This algorithm
is summarized below. '

ALGORITHM 7.10

Construction of a set of LR(k) tables for an SLR(k) grammar.

Input. An SLR(k) grammar G = (N, E, P, S) and §,, the canonical col-
lection of sets of LR(0) items for G.

Outpui. (3, T,), a set of LR(k) tables for G, which we shall call the SLR(k)
set of tables for G.

Method. Let @ be a set of LR(0) items in §,. The LR(k) table T associated
with @ is the pair {f, g, constructed as follows:

(1) For all u in X**,
(a) f{u) =shift if [4 > - f,¢lisin @, B +# e, and » is in the set
EFF (8 FOLLOW (4)).
(b) f(u) =reduce i if [A — o -, €] is In @, 4 — a is production i
in P, and u is in FOLLOW (4).
(¢} f(e) =aceeptif[§'-— § -, ¢elisin@.F
(d) f(u) = error otherwise.
(2) Forall Xin N U Z, g(X) is the table constructed from GOTO(@, X).
T,, the initial table, is the one associated with the set of items containing
[S— - S,el. [

We can relate Algorithm 7.10 to our original method of constructing
a set of tables from a collection of sets of items given in Section 5.2.5. Let
@' be the set of items [4 — o - B, u)suchthat[4d — & - f,e] isin @ and u
is in FOLLOW (4). Let §;, be {@'|@ = §,}- Then, Algorithm 7.10 yields the
same set of tables that would be obtained by applying the construction given
in Section 5.2.5 to 8.

It should be clear from the definition that each set of items in §; s con-
sistent if and only if G is an SLR(k) grammar.

Example 7.25

Eet us construct the SLR(1) set of tables from the sets of items of Fig.
7.36 (p. 623). We use the name T, for the table constructed from @, We
shall consider the construction of table T, only.

1The canonical collection of sets of items is constructed from the augmented grammar.
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@,is [E—T:-],[T-—T- «F]§. Let T, = {/, g Since FOLLOW(E)
is {+,), e}, we have f(+) =f[)] = f(e) =reduce 2. (The usval production
numbering is being used.) Since EFF(x F FOLLOW(T)) = {*}, f(*) = shift.
For the other lookaheads, we have f(a) = f[(] = error.

The only symbol X for which g(X} is defined is X’ = ». It is easy to see
by inspection of Fig. 7.36 that g(x) = T,. The entire set of tables is given
in Fig. 7.37.

_action_ goto

a + & { ) e E T F a + % ( )]
T, | x x 8§ X X | 1, 1 T, T, X Ts X
"l X § X X X A4 X X X Te X X
L, |x 2 8§ Xx 2 2 X X X X X T X
Ty X 4 4 X 4 4 X X X X X
T, |X 6 6 X 6 &6 X X X X X X X X
s 8§ X X § X X Ty T, Th T, X X T X
T, s X x § x X | X Ty T TWw X X 7T, X
| sS X X 5 X x X X Ty Ty X X Ts X
T, | X § X X § X | X X X X Tg X X Ty
T X 1 § x |1 1 X x X X X 1, X
Ty | X 3 3 X 3 ¥ ¥ X X X X
T | X 5 5 X 5 5 X X X X Xx X

Fig. 7.37 SLR(1) tables for Gy.

Except for names and g entries, this set of tables is exactly the same as
that in Fig. 7.32 (p. 607). [

We shall now prove that Algorithm 7.10 will always produce a valid set
of LR(k) tables for an SLR(k} grammar G. In fact, the set of tables produced
is equivalent to the canonical set of LR{X) tables for G.

THEOREM 7.9

If G is an SLR(k) grammar, (J, T,), the SLR(k) set of tables constructed
by Algorithm 7.10 for & is equivalent to (3, ), the canonical set of LR{k)
tables for G.

Proof. Let §, be the cancnical collection of sets of LR(k) items for &
and let §, be the collection of sets of LR(0) items for G. Let us define the
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core of a set of items @ as the set of bracketed first components of the items
in that set. For example, the core of [4 — & - B, u]is[4 — « - S].t We shall
denote the core of a set of items @ by CORE(®).

Each set of items in §, is distinct, but there may be several sets of items
in §, with the same core. However, it can easily be shown that §, =
{CORE@)|& & §4. :

Let us define the function 4 on tables which corresponds to the function
CORE on sets of items. We let A(T) = T if T is the canonical LR(X) table
associated with @ and 7 is the SLR(k) table constructed by Algorithm 7.10
from CORE(&). It is easy to verify that A commutes with the GOTO function.
That is, GOTO*(T), X) = H(GOTO(T, X)).

As before, let

@ ={d—a-pullld>a fele@ and ue FOLLOW(A)}.

Let § = {@'[@ £ §,}. We know that (3, T,) is the same set of LR(k) tables
as that constructed from §, using the method of Section 5.2,5. We shall show
that (3, T,) can also be obtained by applying a sequence of transformations to
(3., T.), the canonical set of LR(k) tables for G. The necessary steps are the
following.

{I) Let @ be the postponement set consisting of those triples (7', u, 1)
such that the action of T on « is error and the action of A(T) on u is reduce i.
Use Algorithm 7.8 on @ and (3, T,) to obtain another set of tables (3, 7).

(2) Apply Algorithm 7.7 to merge all pairs of tables T and T, such that
KT, = B{T,). The resulting set of tables is (3, T,).

Let (T, u, i) be an element of ®. To show that & satisfies the requirements
of being a postponement set for J,, we must show that if T =", g'">
is in NEXT(T, i}, then f"'() = error. To this end, suppose that production
iis A— o and T’ = GOTO(T,, fA4) for some viable prefix fA. Then
T = GOTO(T,, pux).

In contradiction let us suppose that /(1) = error. Then there is some item
[B—y - 8, v] valid for §4, where u is in EFF{d»).1 Every set of items,
except the initial set of items, contains an item in which there is at least one
symbol to the left of the dot. (See Exercise 7.3.8.) The initial set of iterns is
valid only for e. Thus, we may assume without loss of generality that y = y'4
for some y'. Then [B— y' - 44, »] is valid for B, and so is [4 — - a, u).
Thus, [4 — & -, u] is valid for fa, and fF(u) should not be error as assumed.
We conclude that @ is indeed a legitimate postponement set for J,.

Let 3, be the result of applying Algerithm 7.8 to 3, using the postpone-

tWe shall not bother to distinguish between [4 -— & - fland [4 — & - 8, ¢].
INote that this statement is true independent of whether § = e or not.
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ment set ®. Now suppose that 7 is a table in J, associated with the set of
items @ and that T’ is the corresponding modified table in §,. Then the only
difference between T and 7' is that 7% may call for a reduction when 7
announces an error. This will occur whenever u is in FOLLOW(A) and the
only items in @ of the form [4 — & -, #] have v %= w. This follows from the
fact that because of rule (1b) in Algorithm 7.10, 77 will call for a reduction
on all u such that u is FOLLOW({A) and {4 — « -] is an item in CORE{®).

‘We can now define a partition IT ={®,, ®,, ..., ®,} on 3, which groups
tables T, and 7, in the same block if and only if AT,) = A(T,). The fact
that & commutes with GOTO ensures that IT will be a compatible partition.
Merging all tables in each block of this compatible partition using Algorithm
7.7 then produces J.

Since Algorithms 7.7 and 7.8 each preserve the equivalence of a set of
tables, we have shown that 3, the set of LR(k) tables for G, is equivalent to
4, the canonical set of LR(k) tables for G. []]

Before concluding our discussion of SLR parsing we should point out
that the optimization techniques discussed in Section 7.3 also apply to SLR
tables. Exercise 7.4.16 states which error entries in an SLR(1) set of tables
are don’t cares.

7.4.2. Extending the SLR Concept to non-5LR
Grammars

There are two big advantages in attempting to construct a parser for
a grammar from §,, the canonical collection of sets of LR(0) items. First,
the amount of computation needed to produce §, for a given grammar is
much smaller in general than thai required to generate §,, the sets of LR(1)
items. Second, the number of sets of LR(0) items is generally considerably
smaller than the number of sets of LR(1) items.

However, the following question arises: What should we do if we have
a grammar in which the FOLLOW sets are not sufficient to resolve parsing
action conflicts resulting from inconsistent sets of LR(0) items? There are
several technigues we should consider before abandoning the LR{0) approach
to parser design. One approach would be fo try to use local context to resolve
ambiguities. If this approach is unsuccessful, we might attempt to split one
set of items into several. In each of the pieces the local context might result
in unique parsing decisions. The following two examples illustrate each of
these approaches.

Example 7.26

Consider the LR(1) grammar & with productions

(1) S— Aa
() S — dAb
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3 S—ocb

4y §— dca

5 A—c¢
Even though L{G) consists only of four sentences, G is not an SLR(k) gram-
mar for any k 2> 0. The canonical collection of sets of LR(0) items for G is
given in Fig. 7.38, The second components of the items have been omitted

Gy § 5
S — -Aa| -dAb| -cb| -dea
A— ¢

& S — 8
Ry: S— Aa
@: S—d-Ab|d-ca

A— ¢
G4: S—cb
A-—c
As: S — Aa-

Qs: S—dA-b
4, S—dca
A—re-
Ag: §—> ch-
Qs: S§— dAb-
Rio: S— dea-

¥ig. 738 Scts of LR(0) itemns,

and we have used the notation 4 — «, - 8,|a, - f.| -+ [&, - §, as short-
hand for the # items [A—a, - Sl [A—o, - B,),...,[A—a, - Bl
There are two sets of items that are inconsistent, @, and @,. Moreover,
since FOLLOW(A} = (a, b}, Algorithm 7.10 will not produce unique parsing
actions from @, and @, on the lookaheads b and a, respectively.

However, let us examine the GOTO function on the sets of items as
graphically shown in Fig. 7.39.f We see that the only way to get to @, from
@, is to have ¢ on the pushdown list. If we reduce ¢ to A, from the produc-
tions of the grammar, we see that a is the only symbol that can then follow
A. Thus, T,, the table constructed from @, would have the following unique
parsing actions:

a b ¢ d

T4: | reduce S shift error error

tNote that this graph is acyclic but that, in general, a goto graph has cycles,



SEC. 7.4 TECHNIQUES FOR CONSTRUCTING LR(k) PARSERS 629

Fig, 7.39 GOTO graph.

Similarly, from the GOTQ graph we see that the only way to get to &, from
@, 1s to have dc on the pushdown list. In this context if ¢ is reduced to 4,
the only symbol that can then legitimately follow A is b. Thus, the parsing
actions for T, the table constructed from @,, would be

a b c d

T;: | shift reduce 5 error error

The remaining LR(1) tables for & can be constructed using Algorithm 7.10
directly. []

The grammar in Example 7.26 is not an SLR grammar. However, we were
able to use lookahead to resolve all ambiguities in parsing action decisions
in the sets of LR(0) items. The class of LR(k) grammars for which we can
always construct LR parsers in this fashion is called the class of lookahead
LR(k) gramnmars, LALR(k) for short (see Exercise 7.4.11 for a more precise
definition). The LALR(k) grammars are the largest natural subclass of the
LR(k) grammars for which k& symbol lookahead will resolve all parsing ac-
tion conflicts arising in §,, the cancnical collection of sets of LR(0) items.
The lookaheads can be computed directly from the GOTO graph for §, or
by merging the sets of LR{k) items with identical cores. LALR grammars
include all SLR grammars, but not ail LR grammars are LALR grammars.

We shall now give an example in which a set of items can be “split” to
obtain unique parsing decisions.
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Example 7.27
Consider the LR{1) grammar G with productions

() §— Aa
(2} S — ddb
(3) S — Bb
@) §— dBa
(5) A - c
(6) B—>c

This grammar is quite similar to the one in Example 7.26, but it is not an
LALR grammar. The canonical collection of sets of LR(0) items for the
augmented grammar is shown in Fig, 7.40. The set of items @, is inconsistent
because we do not know whether we should reduce by production 4 — ¢
or B— ¢. Since FOLLOW(A4) = FOLLOW(B) = {q, b}, using these sets
as lookaheads will not resolve this ambiguity. Thus G is not SLR(1).

Ag: &' — -§ @s: A—r e
S— -da B— ¢
8 — -ddb . .
S BB Qs: S— Aa
§— .dBa Gq: S — Bb-
A— ¢ @g: S—dd-b
B— ¢

Ry: §— dB-a
Grp: S — ddb-
Q1  §— dBa-

ai: S — 8-
Ay §— A-a
G3: S-—Bb
Ay: S—d-4b
S—d-Ba
A— ¢
B— ¢

Fig. 7.40 LR(0) iterns.

Examining the productions of the grammar, we know that if we have
only ¢ on the pushdown list and if the next input symbol is &, then we should
use production 4 — ¢ to reduce ¢. If the next input symbol is b, we should
use production B — c¢. However, if de appears on the pushdown list and
the next inpnt symbol is @, we should use production B — ¢ to reduce c.
If the next input symbol is &, we should use 4 — c.

The GOTO function for the set of items is shown in Fig, 7.41. Unfor-
tunately, @, is accessible from @, vnder both ¢ and de. Thus, @, does not
tell us whether we have ¢ or dec on the pushdown list, and hence G is not
LALR(1},



SEC., 7.4 TECHNIQUES FOR OONSTRUCTING LR(k) PARSERS 631

Fig. 741 GOTO graph.

However, we can construct an LR(1) parser for G by replacing @; by two
identical sets of items @5 and @Y such that @ is accessible only from @, and
@5 18 accessible from only @,. These new sets of items provide the additional
needed information about what has appeared on the pushdown list. '

From @5 and @7 we can construct the tables with unique parsing actions
as follows:

a b c d

Ti:| reduce 6 | reduce 5 | error | error

T§:| reduce 5 | reduce 6 | error | error

The value of the goto functions of T's and T is always error. [ ]
7.4.3. Grammar Splitting

In this section we shall discuss another technique for constructing LR
patsers. It is not as easy to apply as the SLR approach, but it does work in
situations where the SLR approach does not. Here, we partition a grammar
G=(N,EX,P S into several component grammars by treating certain
nonterminal symbols as terminal symbols. Let N’ = N be such a set of
“splitting” nonterminals. For each A in N’ we can find G, the comporent
grammar with start symbol A, using the following algorithm.

ALGORITHM 7.11
Grammar splitting.
Input. A CFG G = (N, Z, P, 5) and N, a subset of N,
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Output. A set of component grammars G, for each 4 € N,
Method. For each A € N, construct G, as follows:

(1) On the right-hand side of each production in P, replace every non-
terminal B € N’ by B. Let N be {#|B € N’} and let the resulting set of
productions be P.

(2) Define G, =N —N U {4LZ U RN, B, 4.

(3} Apply Algorithm 2.9 to eliminate useless nonterminals and produc-
tions from . Call the resulting reduced grammar G,. [7]

Here we consider the building of LR(1) parsers for each component gram-
mar and the merger of these parsers. Alternatives involve the design of dif-
ferent kinds of parsers for the various components. For example, we could
use an LL{1) parser for everything but expressions, for which we would use
an operator precedence parser. Research extending the techniques of this
section to several types of parsers is clearly needed.

Example 7.28

Let G, be the usval grammar and let N’ = {£, T’} be the splitting nonter-
minals. Then 2 consists of

E—>E+f‘]f
T—> T« F|F
F—>(E)|a

Thus, Gg = (E},{E, T, +},{E— £+ T|T}, E), and G, is given by
(T, F}, {1,E, (), a,*, (T > T = F|F, F — (E)[a}, T). []

We shall now describe a method of constructing LR(1} parsers for certain
large grammars. The procedure is to initially partition a given grammar into
a number of smaller grammars. If a collection of consistent sets of LR(I)
items can be found for each component grammar and if certain conditions
relating these sets of items are satisfied, then a set of LR(1) items can be
constructed for the original grammar by combining the sets of items for
the component grammars. The underlying philosophy of this procedure is
that much less work is usually involved in building the collections of sets of
LR(1) items for smaller grammars and merging them together than in con-
structing the canonical collection of sets of LR(1) items for one large gram-
mar. Moreover, the resulting LR(1) parser will most likely turn out to be
considerably smaller than the canonical parser.

In the grammar-splitting algorithm we treat 4 as the start symbol of its
own grammar and use FOLLOW(A) as the set of possible lookahead sirings
for the initial set of items for the subgrammar G,. The net effect will be to
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merge certain sets of items having common cores. The similarity to the SLR
algorithm should be apparent. In fact, we shall see that the SLR algorithm,
is really a grammar-splitting algorithm with N” = N,

The complete technique can be summarized as follows.

(1) Given a grammar ¢ = (N, X, P, S), we ascertain a suitable splitting
set of nonterminals N = N. We include S in N, This set should be large
enough so that the component grammars are small, and we can readily
construct sets of LR(1) tables for each component. At the same time, the
number of components should not be so large that the method will fail to
produce a set of tables. (This comment applies only to non-SLR grammars,
If the grammar is SLR, any choice for N’ will work, and choosing N = I’
yields the smallest set of tables.)

(2) Having chosen N’, we compute the component grammars using
Algorithm 7.11.

(3) Using Algorithm 7.12, below, we compute the sets of LR(1) items for
each component grammar.

(4) Then, using Algorithm 7.13, we combine the component sets of items
into §, a collection of sets of items for the original grammar. This process
may not always yield a collection of consistent sets of items for the original
grammar. However, if § is consistent, we then construct a set of LR(1)
tables from § in the usual manner.

ALGorITHM 7.12

Construction of sets of LR(1}) items for the component grammars of
a given grammnar.

Input. A grammar G = (N, I, P, 5), a subset N of N, with § ¢ N’,
and the component grammars G, for each 4 € N,

Output. Sets of LR(1) items for each component grammar.

Method. For notational convenience let N' ={§,,.5;, ..., S,}. We shall
dencte Gy, as G,.

If & is a set of LR(1) items, we compute @', the closure of @ with respect
to G, in a manner similar, but not identical, to Algorithm 5.8. @ is defined
as follows:

(1) @ = @'. (That is, all-items in & are in @".)

(2) If [B—a - CB,u] is in @ and C — ¢ is a production in G,, then
[C— - »,%]isin @ for all v in FIRSTY(f ), where ' is f with each symbol
in N replaced by the original symbol in N,

Thus all lookahead strings are in X*, while the first components of the
items reflect productions in G,.

For each G,, we construct §,, the collection of sets of LR(I} items for G,,
as follows:
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(1) Let @&} be the closure (with respect to G, of
(S, — - &, a}|S, — ais a production in G, and a is in FOLLOWY(S))}.

Let §, = [a}}.
(2) Then repeat step (3) until no new sets of items can be added to §,.
B IAisin §, let @ be {{[4— aX- f,uli[4—a  Xf,u is in &1
Here X isin N U £ U N. Add @”, the closure (with respect to G,) of @',
to §. Thus, @ = GOTO{@, X). []

Note that we have chosen to add FOLLOW(A) to the lookahead set of
gach initial set of items rather than augmenting each component grammar
with a zeroth production. The effect will be the same.

Example 7.29

Let us apply Algorithm 7.12 to G,, with N' ={E T}. We find that
FOLLOW(E) ={+,), ¢} and FOLLOW(T) = {-}, %, ), e}. Thus, by step (1),
@ consists of

[E—> - E+T,+ 7}/
[E— T, /)¢
Likewise, @7 consists of
[T—> - T« F,+/[=/)/d
[T— - F +/x]}e]
[F—> - (E), + /% /)€
[F—>a,+[=x[)]¢]
The complete sets of items generated for G, are shown in Fig. 7.42, and
those for G, are shown in Fig. 7.43.

Note that when @% is constructed from Qf, for example, the symbol T
1s a terminal, and the closure operation yields no new items. [

We now give an algorithm that takes the sets of items generated by
Algorithm 7.12 for the component grammars and combines them to form

[E— -E+ T, +/)/e
[E— T +1/)/el

af: [E—E+T +/)}ie
ef: E-— T, +/} el
af; [E—E+-T, +/)e
@k [E— E4 T, +/)}e

ag:

Sk

Fig. 7.42 Sets of items for Gg.
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[T—-F,  +/+])]e)
[F— -(E), +/=]}/¢]
[F—sa, +]%])]el

el: [T— F+F, +/+])/el
@l: [T—F, +/+)jé
al: [F—(E), +/+/)/e
arl. [F— a-, +1*{)/ €]
{[T—> PeF, +/xi)el

QD
Sry

{[T"‘, AR

al: J[F— (), +/[+)]e
[F— -a +/x{)]e
af: [F—(E), +/+{)/e
al: (T—TeF, L /wuf)]e]
@y [F-— (£, +/*/)]e

Fig. 7.43 Sets of items for Gr.

a set of LR(1) tables for the original grammar, provided that certain condi-
tions hold.

ALGORITEM 7.13

Construction of a set of LR(1) tables from the sets of LR(1) items of
component grammars.

Input. A CFG G =N, Z, P, 5,), a splitting set N' = {S,, 8, ..., S},
and a collection {&], &}, ..., @.] of sets of LR(1) items for each component
grammar G,.

Quiput. A valid set of LR(1) tables for G or an indication that the sets of
items will not yield a valid set of tables.

Method.

(1) In the first component of each item, replace each symbol of the form
S, by S,. Each such S, is in N'. Retain the original name for each set of items
so altered.

{2) Letd, =[[§] - - §;, el}. Apply the following augmenting operation
to g,, and call the resulting set of items g,. 4, will then be the “initial” set
of items in the merged collection of sets of items.

Augmenting Operation. If a set of items @ contains an item with a first
component of the form 4 — o - Bff and B—%:r S,y for some S; in N, y in

(N U Z)*, then add @f to @. Repeat this process until no new sets of items
can be added to Q.

(3) We shall now construct §, the cellection of sets of items accessible
from 4. Initially, let § = {9,}. We then perform step (4) until no new sets
of items can be added to §.
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(4) Let g bein §. 4 can be writtenas @ U &/ U &ff U -- - U @}, where
@ is either the empty set or {[§)| — - .5, eli or {[S, — S, -, €]}. Foreach X
in NU Z, let @ = GOTO(@, X) and @ = GOTO(@{:, X).T Let 4" be the
union of @ and these @/~’s. Then apply the augmenting operation to 8" and
call the resulting set of items 9’. Let KGOTOL be the function such that
KGOTO(4, Xy = 9" if 9, X, and 4’ are related as above. Add ¢ to § if it is
not already there, Repeat this process until for all 9in § and X in N U Z,
KGOTO(9, X) is in §.

{5) When no new set of items can be added to §, construct a set of LR(1)
tables from § using the methods of Section 5.2.5. If table 7' ={f g» is
being constructed from the set of items g, then g(X) is KGOTO(g, X). Ifany
set of items produces parsing action conflicts, report failure. [

Example 7.30

Let us apply Algorithm 7.13 to the sets of items in Figs. 7.42 and 7.43.
The effect of step (1) should be obvious, Step (2) first creates the set of items
8, ={[E' — - E, &l}, and after applying the augmenting operation, 4, =
{E"— - E el uaf ual.

At the beginning of step (3), § = {9.}. Applying step (4), we first compute

§, = GOTO(,, E) = {[E' — E -, ]} U &~.

Thatis, GOTO{[E' — - E,e]}, E) ={[E'— E -, e]} and GOTO{GE, E) =
GOTO(@%, E) is empty. The augmenting operation does not enlarge 4,.
We then compute 4, = GOTO(d,, T) = @f U &7. The augmenting operation
does not enlarge 4,. Continuing in this fashion, we obtain the following col-
lection of sets of 1tems for §:

5= (' —> - E,el} U GF U aF
g, ={[E'—> E-,el} U@RF

g, =@F U aT
4, = @3

4, =@l
do=afuajual
g, = @5 U a

4, =as

g, — QF U @7

1"Ihe GOTO function for Gy, is meant here, However if X is splitting nonterminal then
use X in place of X.

1The K honors A, J. Korenjék, inventor of the method being described.
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g, = Q% U Q%
g, =G%
g, = ai

All sets of items in § are consistent, and so from § we can construct
the set of LR(1) tables shown in Fig. 7.44. Table T, is constructed from 4,.

This set of tables is identical to that in Fig. 7.37 (p. 625). We shall see
that this is not a coincidence. [ ]

action goto

a + * ()} e E T F a + * ()
T, |8 x x X X | 1y T, Ty Ty X Ts X
nlx § x x x 4 X X T X X
T, | X 2 8§ Xx 2 2 X X 1 b'e
T, | X 4 4 X 4 4 X X X X
T, |Xx 6 6 X 6 6| ¥ X X X X X X X
Ts | S X X § X X | Ty T, T3 Ty, X X Ty X
Te | S X X § X X | X Ty, T,y T, X X Ty X
T, 18§ X X § X X | X X T, T, X X Ts X
Tg | X § X X § X | X X X X Tg X X Ty,
Te [ X 1§ Xx 1 1 X X X X T, X
T | X 3 3 X 3 3 | x X X X X X
T.| X 5 § X 5 5§ X X X X X X X

Fig. 7.44 Tables for Gy from Algorithm 7.13.

We shall now show that this approach yields a set of LR(1) tables that is
equivalent to the canonical set of LR(1) tables. We begin by characterizing
the merged collection of sets of items generated in step (4) of Algorithm 7.13.

DEFINITION

Let KGOTO be the function in step (4) of Algorithm 7.13. We extend
KGOTO to strings in the obvious way; i.e.,

(1) KGOTO(4, ¢) = 4, and

(2) KGOTQ(, aX) = KGOTG(KGOTO(, ), X).
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Let G = (N, X, P, $) be a CFG and N’ a splitting set. We say that item
[A— o B,a] is quasi-valid for string y if it is valid (as defined in Section
5.2.3) or if there is a derivation S %Jle% 6,0,Ax = 0,6,4fx in the
aungmented grammar such that

(1) 6,6,a =7,

{2) Bisin N', and

{3) ais in FOLLOW(B).

Note that if [4A — & - §, 4] is quasi-valid for p, then there exists a lookahead
b such that [4 — & - 8, B] is valid for y. (b might be a.)
Lemma 7.3

Jet G =(N,Z, P, §) be a CFG as above and let KGOTO(dg,,y) =4
for some y in (N U T)*. Then 4 ig the set of quasi-valid items for y.

Proof. We prove the result by induction on |y|. The basis, y = e, is omit-
ted, as it follows from observations made during the inductive step.

Assume that y =9'X and 3C, the set of quasi-valid items for y', is
KGOTO(d,, y). Let 3 = gfr U - -+ U gf= The case where [$" — - S, ¢] or
[§"— § -, €] is in JC can be handled easily, and we shall omit these details
here. Suppose that [4 —a - §,4] is in § = KGOTO(d,, 9’ X). There are
three ways in which [4 — « - 3, 4] can be added to 4.

Case 1: Suppose that [4 — « - f, a] is in GOTOf, X) for some p,
¢ =o'Xand that[4 — &' - Xf,a]lisingfr. Then[4 — & - Xf, 4] is quasi-
valid for ', and it follows that [4 — a - £, a] is quasi-valid for y.

Case 2; Suppose that [4 -— « - f, 4] is in GOTO(g/r, X) and that ¢ = e.
Then there is an item [B— 8,X - C8,, b] in GOTO(df, X), and C = Aw,
where a € FIRST(wd,b). Then [B— &, - XCd,, b] is quasi-valid for v,
and [B-—— §,X - C4,, b] is quasi-valid for y. If @ is the first symbol of w or
w = e and a comes from §,, then [4 — « - f#, 4] is valid for p. Likewise, if
[B— 8, X Cd,,b]is valid for y,s0is [4 — o - 8, a].

Thus, suppose that w = e, 4, = e, a=25b, and [B— 3§ X C5,,b] is
quasi-valid, but not valid for y. Then there is a derivation

S L 5,Dx 2> 5,5,Bx = 5,6,6,XCy,x = 5,5, XAx,

where 8,6,0,X =9, D isin N, and b is in FOLLOW(D). Thus, item
[4 — & - B,a] is quasi-valid for y, since g = b,

Case 3: Suppose that [4 — & - §, a] is added to 4 during the augmenting
operation in step (4). Then & = ¢, and there must be some [B— 8, X - C§,,5)
in GOTO(sf, X) such that C=> Dw, => Aw,w,, D is in N, and a s in
FIRST(w,¢) for some ¢ in FOLLOW(D). Thatis, Dis S, , where[4 — a - 8, 4]
is added to 3C when g} is adjoined. The argument now proceeds as in case 2,

We must now show the converse of the above, that if [4 — a - 8, 4] is
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quasi-valid for y, then it is in 9. We omit the easier case, where the item is
actually valid for y. Let us assume that [4 — o - f, 4] is quasi-valid, but not
valid. Then there is a derivation

) % é,Bx % 0,0,Ax=>6,6,08x

where y = §,6,0, Bisin N, and g is in FOLLOW(B). If a = ¢, then we may
write o = ¢’ X. Then [4 — a' + X8, 4] is quasi-valid for " and is therefore
in . It is immediate that [4 — « - £, 4] isin 4.

Thus, suppose that & = e. We consider two cases, depending on whether
J,%eord, =e

Case 1: 8, = e. Then there is a derivation B %: 6,C = 8,0,X5, and
ds %}A. Then [C — &, - XJs, a] is quasi-valid for ¢’ and hence is in 3C.
1t follows that [C — §,X - §,, a]isin 4. Since &, % A, itis not hard to show
that ecither in the closure operation or in the augmenting operation
[A - a- B dlis placed in 4.

Case 2: &, — e. Then there is a derivation §’ r=:: 8,Cy => 8,0,Xd,7,
where O,y => Bx. Then [C— 6, - X8, | is valid for o, where c is
FIRST(y). Hence, [C — 8,X - &5, c] is in 4. Then, since &,y T‘E’ Bx, in the
augmenting operation, all items of the form [B — - €, ] are added to 4,
where B — ¢ is a production and b is in FOLLOW(R). Then, since B % A,

the item [4 — « - §, a} is added to 4, either in the modified closure of the set
containing [B — - €, b] or in a subsequent augmenting operation. [

THEOREM 7.10

Let (N, X, P, 8) be a CFG. Let (3, T} be the set of LR(1) tables for G
generated by Algorithm 7.13. Let (3,, T,) be the canonical set. Then the two
sets of tables are equivalent.

Proof. We observe by Lemuma 7.3 that the table of J associated with string
y agrees in action with the table of J, associated with y wherever the latter is
not error, Thus, if the two sets are inequivalent, we can find an input w such
that (T, w) |2= (T.X, T\ - -+ X,.T, x)} using 3,, and an error is then declared,
while
(TO’ W) }i (TDXlT’J U Xme! x)
P~ (T, Y. U, -+ YU, %)
T YU, - YU AU X7

using 3.

tWe have omitted the output field in these configurations for simplicity.
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Suppose that table U, is constructed from the set of items 4. Then 4 has
some member [4 — & - B, b] such that £ = e and «a is in EFF(#). Since
(A — o B, B] is quasi-valid for ¥, --- ¥,, by Lemma 7.3, there is a deri-

vation 8’ % yAy — yafy for some p, where yo = ¥, - - Y. Since we have
derivation Y, --- Y,,=}X, - X,, it follows that there is an item

[B— & - ¢, ¢] valid for X, --- X, where a is in EFF(ec). (Thecase ¢ =g,
where @ = ¢, is not ruled out. In fact, it will occur whenever the sequence of
steps

(ToX\ Ty - X, T ) |2 (T YUy -+ - YU, x)

is not null. If that sequence is null, then [4 — a - f, 5] suffices for
[B—d-€1c])

Since a = FIRST(x), the hypothesis that 3 declares an error in configu-
ration (T, X\ 7 - -+ X, Th,, x) is false, and we may conclude the theorem. [ ]

Let us compare the grammar-splitting algorithm with the SLR approach.
The grammar-splitting algorithm is a generalization of the SLR method in
the following sense.

THeOREM 7.11

LetG = (N, £, P, §)be a CFG. Then G is SLR(1) if and only if Algorithm
7.13 succeeds, with splitting set N. If so, then the sets of tables produced by
the two methods are the same.

Proof. If N' = N, then [4 — & - §, a] is quasi-valid for y if and only if
[A— o - B, b]is valid for some b and a is in FOLLOW(A4). This is a con-
sequence of the fact that if B ‘f:,’ 4C, then FOLLOW(B) = FOLLOW (C).
It follows from Lemma 7.3 that the SLR sets of items are the same as those
generated by Algorithm 7.13. [

Theorem 7.9 is thus a corollary of Theorems 7.10 and 7.11.

Algorithm 7.13 brings the full power of the canonical LR(1) parser con-
struction procedure to bear on each component grammar. Thus, from an
intuitive point of view, if 2 grammar is not SLR, we would like to isolate in
a single component cach aspect of the given grammar that results in its being
non-SLR. The following example illustrates this concept.

Example 7.31
Consider the following LR(1) grammar:
(1) §S— Aa
(2) S— ddd

(3) S — cbh
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@) S — BB
(5) A —c
(6) B — Be
(7) B— b

This grammar is not SLR because of productions (1), (2), (3}, and (5). Using
the splitting set {8, B}, these four productions will be together in one com-
ponent grammar to which the full LR(1} technique will then be applied.
With this splitting set Algorithm 7.13 would produce the set of LR(1) tables
in Fig. 7.45. [

action foto

a b ¢ d e § A B a« b ¢ d
To|X & 8§ § X | T, T, T3 X Ty T Tg
T'lx x X X 4 X X X X X
hi{s x x X X | x X T; X b'¢
hlx § 5 x X X X Ty X T, Ty, X
Lilx 7 1 x 7 X X X X X X X
ils s x x x X X X X Ty X X
Ts |lx x § x X X Ty, X X X Tp X
hilx x x x i X X X X X X X
Ts |x x s x 4 X X ¥ X X T, X
To | x 6 6 X 6 X X X X X X X
Tw| X X X X 3 X X X X X X Xx
v X § X X X | X X X X Tns X X
Tolx 5 x X X | X X X X X X X
Ts|x x x x 2 X x X X X X X

Fig. 7.45 LR(1} tables,

Finally, we observe that neither Algorithm 7.10 nor Algorithm 7.13 make
maximal use of the principles of error postponement and table merger. For
example, the SLR(1) grammar in Exercise 7.3.1(a) has a canonical set of 18
LR(1) tables. Algorithm 7,13 will vield a set of LR(1) tables containing at
least 14 tables and Algorithm 7.10 will produce a set of 14 SLR(1} tables.
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But a judicious application of error postponement and table merger can result
in an equivalent set of 7 LR(I) tables,

*14.1.

742,
7.4.3.
*7.4.4.
74.5.
*7.4.6.

7.4.7.

7.4.8.

7.4.9.

7.4.10,

EXERCISES

Consider the class {Gy, G5, ...} of LR(0) grammars, where G, has the
following productions:

§— A; l<i<n

Ay —> aA; l<ij<n
A——>aB|by 1<i<n
B,—— a,B|§, 1<ij<n

Show that the number of tables in the canonical set of LR(0) tables
for G, is exponential in n.

Show that each grammar in Exercise 7.3.1 is SLR(1).

Show that every LR(0) grammar is an SLR(0)} grammar.

Show that every SMSP grammar is an SLR(1) grammar.

Show that the grammar in Example 7.26 is not SLR(L) for any £ > 0.

Show that every LL{1) grammar is an SLR(J)} grammar. Is every LL{2)
grammar an SLR(2) grammar?

Using Algorithm 7.10, construct a parser for each grammar in Exercise
7.3.1.

Let §, be the canonical collection of sets of LR(k) items for G. Let &,
be the sets of LR{Q) items for &. Show that §, and §, have the same
sets of cores, Hint: Let @ = GOTO(Q,, &), where @, is the initial set
of §., and proceed by induction on | &|.

Show that CORE(GOTO(@®, o)) = GOTO(CORE(®), &), where G € §,
as above.

DEFINTTION

A grammar G = (N, X, P, S) is said to be lookahead LR(K)
[LALR(L)] if the following algorithm succeeds in producing LR(k)
tables:

(1) Construct §., the canonical collection of sets of LR(k) items
for G.

{2) For each @ & §., let @' be the union of those 8 € §, such
that CORE(®) = CORE(@).

(3) Let § be the set of those @' constructed in step (2). Construct
a set of LR(k) tables from § in the usual manner.

Show that if G is SLR(k), then it is LALRC(k).



7.4.11.

7.4.12.

7.4.13.

7.4.14.
*7.4,15.

*7.4.16.

*7.4.17.

7.4.18.
7.4.19.

**7.4,20,

*74.21.

EXERCISES 643

Show that the LALR table-constructing algorithm above yields a set of
tables equivalent to the canonical set.

(a) Show that the grammay in Example 7.26 is LALR(1).
(b) Show that the grammar in Example 7.27 is not LALR(%) for any &,
Let G be defined by

S— L-=RIR
L—*R|a

R—>L

Show that ¢ is LALR(1) but not SLR(I).
Show that there are LALR grammars that are not LL, and conversely.

Let G be an LALR(1) grammar, Let §, be the canonical collection of
sets of LR(D) items for G. We say that §, has a shift-reduce conflict
if some @< $§; contains items [4— -] and [B— § - ay] where
a € FOLLOW(A). Show that the LALR parser resolves each shift-
reduce conflict in the LR(Q) items in favor of shifting.

Let (3, Ty) be the set of SLR(1) tables for an SLR(I) grammar
& = (N, L, P, §). Show that:

(1) All error entries in the goto field of each table are don’t cares.

(2) An error entry on input symbol a in the action field of table T
is essential (not a2 don’t care) if and only if one of the following con-
ditions holds.

(a) Tis Ty, the initial table.

(b) There is a table 7' = (f, g) in J such that T = g(b) for some
bin X.

(c) There is some table T7 = (/, g) such that T € NEXT (7, {)and
fla) = reduce /.
Let G = (N, £, P, §) be a CFG. Show that G is LR(k) if and only if,
for each splitting set N” = N, all component grammars G, are LR(%),
A e N, [Note: G may not be LR(X) but yet have some splitting set
N’ such that each G4 is LR(k) for 4 € N']

Repeat Exercise 7.4,17 for LL(k) grammars.

Use Algorithms 7.12 and 7.13 to construct a set of LR(1) fables for
G, using the splitting set {E, T, F}. Compare the set of tables obtained
with that in Fig. 7.44 (p. 637).

Under what conditions will all splitting sets on the nonterminals of a
grammar ¢ cause Algorithms 7.12 and 7.13 to produce the same set
of LR(1} tables for G?

Suppose that the LALR(1) algorithm fails to produce a set of LR(1)
tables for a grammar G = (N, X, P, 5) because a set of items containing
[A— 6 -, a) and [B-— f -y, ] is generated such that y 3= e and
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7.4.22.

7.4.23.

*7.4.24.

*7.4.25.
*7.4.26.

a € EFF(yb). Show that if ' = N is a splitting set and 4 € N, then
Algorithm 7,13 will also not produce a set of LR{1) tables with unique
parsing actions.

Use Algorithms 7.12 and 7.13 to try to construct a set of LR(I} tables
for the grammar in Example 7.27 using the splitting set {5, 4].

Use Algorithms 7.12 and 7.13 te construct a set of LR(I) tables for
the grammar in Exercise 7.3.1{a) using the splitting set {S, 4}

Use error postponement and table merger to find an equivalent set of
LR(1) tables for the grammar in Exercise 7.3.1{(a) that has seven tables.
Give an example of a (1, 1)-BRC grammar which is not SLR(1).

Show that if Algorithm 7.9 is applied to a set of SLR(1) tables for a
grammar having at most one single production for any nonterminal,
then all reductions by single productions are eliminated.

Research Problems

7.4.27,

7.4.28.

7.4.29.

Find additional ways of constructing small sets of LR(k) tables for
LR{k) grammars without reserting to the detailed transformations of
Section 7.3. Your methods need not work for all LR(k) grammars but
should be applicable to at least some of the practically important
grammars, such as those listed in the Appendix of Volume 1.

When an LR(k) parser enters an error configuration, in practice we
would call an error recovery routine that modifies the input and the
pushdown list so that normal parsing can resume. One method of
modifying the error configuration of an LR({1) parser is to search
forward on the input tape until we find one of certain input symbols.
Once such an input symbol a has been found, we look down into the
pushdown list for a table T = ¢ f, g> such that T was constructed from
a set of items @ containing an item of the form [4 — - 2, a], 4 £ 5.
The error recovery procedure is to delete all input symbols up to a
and to remove all symbols and tables above T on the pushdown list.
The nonterminal 4 is then placed on top of the pushdown list and
table g(A) is placed on top of 4. Because of Exercise 7.3.8(c),
g(A) = error. The effect of this error recovery action is to assume that
the grammar symbols above T on the pushdown list together with the
input symbols up to a form an instance of 4, Evaluate the effectiveness
of this error recovery procedure, either empirically or theoretically.
A reasonable criterion of effectiveness is the likelihood of properly
correcting the errors chosen from a set of “likely” programmer errors.

Yyhen a grammar is split, the component grammars can be parsed in
different ways. Investigate ways to combine various types of parsers for
the components. In particular, is it possible to parse one component
bottom up and another top down?
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Programming Exercises

7.4.30. Write a program that constructs the SLR(1) set of tables from an
SLR(1) grammar.

7.4.31, Write a program that finds all inaccessible error entries in a set of
LR (1) tables.

7.4.32. Write a program to construct an LALR(I) parser from an LALR(1)
grammar.

7.4.33. Construct an SLR(I} parser with error recovery for one of the gram-
mars in the Appendix of Volume I.

BIBLIOGRAPHIC NOTES

Simple LR (k) grammars and LALR(X) grammars were first studied by DeRemer
11969, 1971]. The technique of constructing the canonical set of LR(0) items fora
grammar and then using lookahead to resolve parsing decision ambiguities was
also advocated by DeRemer. The grammar-splitting approach to LR parser design
was put forward by Korenjak [1969].

Exercise 7.4.1 is from Earley [1968]. The error recovery procedure in Exercise
7.4.28 was suggested by Leinius [1970]. Exercise 7.4,26 is from Aho and Ullman
[1972d}.

7.5. PARSING AUTOMATA

Instead of looking at an LR parser as a routine which treats the LR tables
as data, in this section we shall take the point of view that the LR tables
control the parser. Adopting this point of view, we can develop another
approach to the simplification of LR parsers.

The central idea of this section is that if the LR tables are in control of
the parser, then each table can be considered as the state of an automaton
which implements the LR parsing algorithm. The automaton can be consider-
ed as a finite automaton with “side effects” that manipulate a pushdown list.
Minimization of the states of the automaton can then take place in a manner
similar to Algorithm 2.2

7.5.1. Canonical Parsing Automata

An LR parsing algorithm makes its decision to shift or reduce by looking
at the next k input symbols and consulting the governing table, the table on
top of the pushdown list. If a reduction is made, the new governing table is
determined by examining the table on the pushdown list which is exposed
during the reduction.



646 TECHNIQUES FOR PARSER OPTIMIZATION CHAP, 7

It is entirely possible to imagine that the tables themselves are parts of
a program, and that program control lies with the governing table itself.
Typically, the program will be written in some easily interpreted language,
so the distinction between a set of tables driving a parsing routine and an
interpreted program is not significant,

Let G be an LR(0) grammar and (3, T,,) the set of LR{0) tables for G.
From the tables we shall construct a parsing automaton for G that mimics
the behavior of the LR(0) parsing algorithm for G using the set of tables 3.

We notice that if T = {, g is an LR(0) table in J, then f(e) is cither
shift, redoce, or accept. Thus, we can refer to tables as “shift” tables or
“reduce” tables as determined by the parsing action function. We shall
initially have one program for each table. We can interpret these programs
as states of the parsing automaton for G.

A shift state T = { f, g does the following:

(1) T, the name of the state, is placed on top of the pushdown list.
(2) The next input symbol, say a, is removed from the input and control
passes to the state g(a).

In the previous versions of LR parsing we also placed the input symbol &
on the pushdown list on top of the table 7. But, as we have pointed out,
storing the grammar symbois on the pushdown list is not necessary, and for
the remainder of this section we shall not place any grammar symbols on
the pushdown Hst.

A reduce siate does the following:

(1) Let A — & be production { according to which the reduction is to be
made. The top |&| — I symbols are removed (popped) from the pushdown
list.} (If & = e, then the controlling state is placed on top of the pushdown
list.)

{2) The state name now on top of the pushdown list is determined. Sup-
pose that that state is T = { f, g>. Control passes to the state g(A4) and the
production number / is emitted.

A special case occurs when the “reduce” action really means accept.
In that case, the entire process terminates and the automaton enters an
(accepting) final state.

It is straightforward to show that the collection of states defined above
will do to the pushdown list exactly what the LR(k) parser does (except here
we have not written any grammar symbols on the pushdown list) if we
identify the state names and the tables from which the states are derived.
The only exception is that the LR(k) parsing algorithm places the name of
the governing table on top of the pushdown list, while here the name of

1We remove [a| — 1 symbols, rather than || symbols because the table corresponding
to the rightmost symbol of & is in contro] and does not appear on the list.
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that table does not appear but is indicated by the fact that program control
lies with that table.

We shall now define the parsing automaton which executes these parsing
actions directly. There is a state of the automaton for each state (1.e., table)
in the above sense. The input symbols for the automaton are the terminals
of the grammar and the state names themselves, A shift state makes tran-
sitions only on terminals, and a reduce state makes transitions only on state
names. [n fact, a state T calling for a reduction according to production
A-— ot need have a transition specified for state 7 only when T is in
GOTO(T", a).

We should remember that this automaton is more than a finite automaton,
in that the states have side effects on a pushdown list. That is, each time
a state transition occurs, something happens to the pushdown list which is
not reflected in the finite automaton model of the system, Nevertheless, we
can reduce the number of states of the parsing automaton in 2 manner similar
to Algorithm 2.2. The difference in this case is that we must be sure that all
subsequent side effects are the same if two states are to be placed in the same
equivalence class. We now give a formal definition of a parsing automaton.

DEFINITION

Let G = (N, £, P, S) be an LR(0) grammar and (3, 7,) its set of LR{0)
tables. We define an incompletely specified automaton M, called the canonical
parsing automaton for G. M isa 5-tuple (3, T U 3 U {$}, 4, T, {T}}), where

(1) g is the set of states.

(2) £ U Jis the set of possible input symbols. The symbols in Z are on
the input tape, and those in 3 are on the pushdown list. Thus, 3 is both the
set of states and a subset of the inputs to the parsing automaton.

(3) & is a mapping from 3 X (X U J) to 3. § is defined as follows:

{a) If T € 3 is a shift state, &7, a) = GOTOQ(T, @) for all a € .

(b) If T £ 3 is a reduce state calling for a reduction by production
Ao and if T' is in GOTO YT, a) [i.e., T = GOTOT", w)],
then 8(7, T") = GOTO(T', 4.

{c) &(T, X) is undefined otherwise.

The canonical parsing automaton is a finite transducer with side effects
on a pushdown list. Its behavior can be described in terms of configurations
consisting of 4-tuples of the form {a, 7, w, 7), where

(1) @ represents the contents of the pushdown list (with the topmost
symbol on the right).

(2) T is the governing state.

{3) wis the unexpended input.

{(4) = is the output string to this point.

Moves can be reflected by a relation | on configurations. If T is a shift
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state and 8(T, @} = 77, we write (&, T, aw, n) — (&7, T', w, m). If T calls for
a reduction according to the 7th production 4 — y and 87T, T") =T, we
write @T'8, T, w, m) (@77, T, w, =i} for all § of length jy| — L If|y] =0,
then (&, T, w, ) - (&7, T, w, =i). In this case, T and T are the same. Note
that if we had included the controlling state symbol as the top symbol of
the pushdown list, we would have the configurations of the usual LR parsing
algorithm.

We define &, P, and 2= in the usual fashion. An inizial configuration is
one of the form (e, Ty, w, €), and an accepting configuration is one of the form
(To, Tys e, my. If (e, Ty, w, ) 2= (T, T, e, @), then we say that z is the parse
produced by M for w,

Example 7.32
Let us consider the LR(0) grammar G

() §—ad
(2) S — aB
(3 A — b4
W A—c
(5) B—bB
6 B—d

generating the regular set ab*(¢c + ). The ten LR(0) tables for G are listed
i Fig. 7.46.

e S a b o
s | 1, x T, X
| 4 X X X X X
Ty | S X Ty T, X T Tg Ty
Ty 1 X X X
T, | 2 X X X x X
Ts | S X Ty Ty X Ts T, Ty
Te | 4 X X X X xXx X X
T, | 6 X X X X xXx X X
Ty | 3 X X X X X X X
Ty | S X X ¥ X ¥ X X

Fig. 7.46 LR(0) tables.
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Ty, T, and T are shift states. Thus, we have a parsing automaton with
the following shift rules:

o(Ty,a) =T,
(T, b) =T
(T, 0) =Ty
oI, d) =1,
oTs, ) =T
O(Ts,c) =T
0T, dy =T,

We compute the transition rules for the reduce states 1, Ty, Ty, T4, Ty and
T, Table T, reduces using production § — a4. Since GOTO (T, ad) ={T,}
and GOTO(T,, S) =T,, 8(T,, T,) = T, is the only rule for 7, Table T,
reduces by B — d. Since GOTO™ (T, d) ={T,, T}, GOTO(T,, B} = T,, and
GOTO(T;, B) = T, the rules for T, are 8(7,, T,) = T, and (T, T;) = T,.
The reduce rules are summarized below:

T, Ty=T,
Ty, Ty) =T,
T, T,) =T, 0(Tg Ts) =Ty
T, T)=T, T, TH=T,
Ty, Ty} =T, 0T, Ty =T,
Ty, T)=T, (T, T5) =T,
The transition graph of the parsing automaton is shown in Fig. 7.47,

With input abe, this canonical automaton would enter the following
sequence of configurations;

(e, Ty, abc, €) — (Ty, Ty, be, €)
(1T, T, ¢, €)
(T Ty, e, €)
- (To T3 T, Ty, €, 4)
b (ToT., Ty, e, 43)
I (Te, T, €, 431)

Thus, the parsing automaton produces the parse 431 for the input abe,

[]



650 TECHNIQUES FOR PARSER OPTIMIZATION CHAP, 7

Fig, 7.47 Transition graph of canonical automaton.

7.5.2. Splitting the Functions of States

One good feature of the parsing automaton approach to parser design is
that we can ofien split the functions of certain states and attribute them fo
two separate states, connected in series. If state A 15 split into two states A,
and A, while B is split into B, and B,, it may be possible to merge, say 4,
and B,, while it was not possible to merge 4 and B. Since the amount of
work done by A, and A4, {or B, and B,) exactly equals the amount done by
A (or B), no increase in cost occurs if the split is made, However, if state
mergers can be made, then improvement is possible. In this section we shall
explore ways in which the functions of certain states can be split with the hope
of merging common actions.

We shail split every reduce state into a pop state followed by an interroga-
tion state. Suppose that T'is a reduce state calling for a reduction by produe-
tion A -— & whose number is 7. When we split T, we create a pop state whose
sole function is to remove || — 1 symbols from the top of the pushdown
list, If & = e, the pop state will actually add the name 7 to the top of the
pushdown list. In addition, the pop state will emit the production number /.

Control is then transferred to the Interrogation state which examines
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the state name now on top of the pushdown list, say ¥/, and then transfers
control to GOTO(U, A4).

In the transition graph we can replace a reduce state 7 by a pop state,
which we shall also call 7, and an interrogation state, which we shall call 7.
All edges entering the old T still enter the new T, but all edges leaving the old
T now leave T’, One unlabeled edge goes from the new T to 77, This trans-
formation is sketched in Fig. 7.48, where production i is 4 — a.

Shift states and the accept state will not be split here.

T Pop
State
T
T Determine [nterrogation

state on top
of stack

State
0ld reduce state

Split Reduce State

Fig. 7.48 Splitting reduce states,

The automaton constructed from @ canonical parsing automaton in
the above manner is called a split canonical parsing automaton.

Example 7.33

The split parsing automaton from Fig. 7.47 is shown in Fig. 7.49. We
show shift states by [_], pop states by A, and interrogation and accept states

by O.

To compare the behavior of this split automaton with the automaton in
Example 7.32, consider the sequence of moves the split automaton makes on
input abe:

(e, Ty, abe, €) = (T4, Ty, be, €)
|_ (T0T23 TSs <, E)
['_ (TDTZTS’ TE: e, e)
= (ToTT5, T, 0, 4)
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= (TeTTs, T, 6, 4)
- (ToT2, T, e, 43)
b (ToT3, T3, €, 43)
(T, T4, e, 431)
F (To, Ty, e,431)

start —~ T

a /\b .
b
i Ts
¢ d
c d

Ts n T3 Ts
% %s
Tg T3 Té
T T2
ONONONRO
To To

Fig. 7.49 Split canonical automaton.

If M, and M, are two parsing automata for a grammar G, then we say
that M, and M, are equivalent if, for each input string w, they both produce
the same parse or they both produce an error indication after having read
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the same number of input symbols. Thus, we are using the same definition
of equivalence as for two sets of LR(k) tables.

If the canonical and split canonical automata are run side by side, then
it is casy to see that the resulting pushdown lists are the same each time
the split automaton enters a shift or interrogation state. Thus, it should be
evident that these two automata are equivalent.

There are two kinds of simplifications that can be made to split parsing
automata. The first is to eliminate certain states completely if their actions
are not needed. The second is to merge states which are indistinguishable,
The first kind of simplification eliminates certain interrogation states.

If an interrogation state has out-degree ], it may be removed. The pop
state connected to it will be connected direcily, by an unlabeled edge, to
the state to which the interrogation state was connected.

We call the automaton constructed from a split canonical automaton
by applying this simplification a semireduced automaton.

Example 7.34

Let us consider the split parsing automaton of Fig. 7.49. 7% and T, have
only one transition, on 7,. Applying our transformation, these states and
the T, transitions are eliminated. The resulting semireduced automaton is
shown in Fig. 7.50. [

THEOREM 7.12

A split canonical parsing automaton M| and its semireduced automaton
M, are equivalent.

Proof. An interrogation state does not change the symbols appearing on
the pushdown list. Moreover, if an interrogation state T has only one transi-
tion, then the state labeling that transition must appear at the top of the push-
down list whenever M, enters state 7. This follows from the definition of
the GOTO function and of the canonical automaton. Thus, the first trans-
formation does not affect any sequence of stack, input or output moves
made by the avtomaton. [

We now turn to the problem of minimizing the states of a semireduced
automaton by merging states whose side effects (other than placing their
own name on the pushdown list) are the same and which transfer on corre-
sponding edges to states that are themselves indistinguishable. The mini-
mization algorithm is similar in spirit to Algorithm 2.2, although
modifications are necessary because we must account for the operations on
the pushdown [ist.

DEFINITION

Let M = (0, X, §, 4., {¢,}) be a semireduced parsing antomaton, where
¢, is the initial state and g, the accept state. Note that ¢ < Z. Also, we shall
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start ———-= T
b
a
k,
T 4 Ts
c d ¢ d
T 't
@ 73
Ts T 4 Ty
I T3
T3 T T Ty
i T2

0

Fig. 7.50 Semi-reduced automaton.

use e to “label” transitions hitherto unlabeled. We say that p and ¢ in Q are
O-indistinguishable, written p = g, if one of the following conditions is satisfied
by the transition diagram for M (the case p = g is not excluded):

(1) p and ¢ are both shift states.

(2) p and g are both interrogation states.

(3) p and g are both pop states, and they pop the same number of symbols
from the pushdown list and cause the same production number to be emitted.
(That is, p and g reduce according to the same production.)

(4) p =g =g, (the final state),

Otherwise, p and g are 0-distinguishable. In particular, states of different
types are always 0-distinguishable.

We say that p and ¢ are k-indistinguishable, written p = g, if they are
(k — D-indistinguishable and one of the following holds:
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(1) p and g are shift states and
{a) For every a ¢ % U {e}, an edge labeled a leaves either both or
neither of p and g. If an edge labeled a leaves each of p and ¢
and enters p’ and ¢’, respectively, then p’ and ¢’ are {(k — 1)-
indistinguishable states.
(b) There is no interrogation state with transitions on p and ¢ to
(k — 1)-distinguishable stafes.
{2) p and ¢ are pop states and the edges lcaving them go to (k — 1)-
indistinguishable states.
(3) p and g are interrogation states, and for all states s either both or
neither of p and g have transitions on s. If both do, then the transitions lead
to (k — 1) indistinguishable states.

Otherw1se p and g are k- dtstmguzshable We say that p and g are indistin-
guishable, written p = g, if they are k-indistinguishable for all X > 0. Other-
wise, p and g are distinguishable.

Lemma 7.4
Let M = (0, E d, 44, {g.}) be a semireduced automaton. Then

(1) Forall k, = is an equwalence relation on @, and
k+1 k+2

(2) If_=liﬁ—l, then = == = . . -,

Proof. Exercise similar to Lemma 2.11, []

Example 7.35

Consider the semireduced automaton of Fig. 7.50. Recalling the LR(0)
tables from which that automaton was constructed (Fig. 7.46 on p. 648),
we see that all six pop states reduce according to different productions and
hence are O-distinguishable. The other kinds of states are, by definition,
0-indistinguishable from those of the same kind, and so < has equivalence
classes {To, Ty, T3, (i), (T3}, (T2}, (Th {50 (T, (), {T% T, T, T

To compute =, we observe that 7, and T are 1-distinguishable, because
T% branches to 0-distinguishable states T, and T on T, and T, respectively.
Also, T, is 1-distinguishable from T, and T, because the former has a {ransi-
tion on &, while the latter do not. Ty and T are [-distinguishable because they
branch on T, to O-distinguishable states. Likewise, the pairs Ty-T, Ti-T,
and 73T, are ]-distinguishable. The other pairs which are O-indistinguish-
able are also 1-indistinguishable. Thus, the equivalence classes of = which
have more than one member are {T, T4} and {T%, Ts}. We find that o

]

DEFINITION

Let M, = (3, ZX,0,49,{g,]) be a semireduced auvtomaton. Let Q" be
the set of equivalence classes of = and let {¢] stand for the equivalence class
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containing g. The reduced automaton for M, is M, = (Q', %', &, [g,], {l¢,1D,
where

HE=C—-Qu ¢,

(2) Forallg e Qanda € T U {e} — Q, §(q], @) = [8(g, a)]; and

(3) Foraltgandp & Q, 6'([q], [r]) = [é(q, P)].

Exampla 7.36

In Example 7.35 we found that 7, = Ty and T5 = 7. The transition
graph of the reduced automaton for Fig. 7.50 is shown in Fig, 7.51. 7% and
T’ have been chosen as representatives for the two equivalence classes with
more than one member, [

From the definition of =, it follows that the definition of the reduced
automaton is consistent; that is, rules (2) and (3) of the definition do not
depend on which representative of an equivalence class is chosen.

We can also show in a straightforward way that the reduced and semi-

—_—
start ——— T
b
a
A
-
7 < s
ol ¢ 4 |4
T T3
Ts T4
T T
5 I 7 5
Tg T3 T4 Tﬂ

Q

Fig. 7.51 Reduced anfornaion.
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reduced automata are equivalent. Essentially, the two automata will always
make similar sequences of moves. The reduced automaton enters a state
representing the equivalence class of each state entered by the semireduced
automaton. We state the correspondence formally as follows.

THECREM 7.13

Let M, be a semireduced automaton and M, the corresponding reduced
automaton. Then forall { > 0, thereexist Ty, . . ., T,,, Tsuch that

(e, TO: W, 8) |T§—‘ (T()Ti T T;m T: Xy 7:)
if and only if
(e, [To), w, &} I (TollT] - - [T, [T, %, 70),

where T, is the initial state of M and [v] denotes the equivalence class of
state u.

Proof. Elementary induction on i, [ ]

COROLLARY
M, and M, are equivalent. [

7.5.3. Generalizations to LR(k) Parsers

We can also construct a canonical parsing automaton from a set of LR(k)
tables for an LR(k) grammar with & > 0. Here we consider the case in which
k = 1. The parsing automaton behaves in much the same fashion as the
canonical parsing automaton for an LR(0) grammar, except that we now can-
not clagsify each table solely as a shift, reduce, or accept table.

As before, thers will be a state of the automaton corresponding to each
table. If the automaton is in configuration (T,T, - -- T,., T, w, m), the auto-
maton behaves as follows:

(1} The lookahead string @ = FIRST(w) is determined.
(2) A decision is made whether to shift or reduce. Thatis, if T =< f, g,
then f(a) is determined.
{a) If f(a) = shift, then the automaton moves into the configuration
(ToTy -+ T, T, w, ), where T' = g{a) and aw’ = w.
"~ (b) If f{g) = reduce i and production iis 4 — o, where|a| =r > 0,
the automaton enters configuration (T,T, --- T,_,,,, T', w, &),
where 7" = g (A If T _.,, = {F ', g [If the productionis 4 — e,
then the resulting configuration will be (T, 7, - - - T,,T, T, w, mi),
where 7' = g(A), assuming that T = {f, g>.]
{c) If f{a}) = accept or error, then the automaton halts and reports
acceptance or rejection of the input.

Tt is possible to split states in variocus ways, so that particular pushdown
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list operations can be isolated with the hope of merging common operations.
Here, we shall consider the following state-splitting scheme.

Let T be a state corresponding to table T = { f, g>. We split this state into
read, push, pop, and interrogation states as follows:

{1) W¢ create a read state labeled 7" which reads the next input symbol.
Read states are indicated by .

(2) If f(z) = shift, we then create a push state labeled 7° and draw anedge
with label # from the read state T to this push state. If g{a) = 77, we then
draw an unlabeled edge from T2 to the read state labeled T'. The push state
T has two side effects. The input symbol & is removed from the input, and
the table name T is pushed on top of the pushdown list. We indicate push
states by [ ].

(3) If f(a) = reduce i, then we create a pop state 7, and an interrogation
state T,. An edge labeled a is drawn from T to T,. If production {is 4 — a,
then the action of state 7', is to remove |&| — 1 symbols from the top of the
pushdown list and to emit the production number i. If & = ¢, then T, places
the original table name T on the pushdown list. Pop states are indicated by A.
An unlabeled edge is then drawn from T to T,. The action of T, is to examine
the symbol now on top of the pushdown list. If GOTO~!(T, &) contains T
and GOTO(T", 4) = T, then an edge labeled 7" is drawn from T, to the
read state of T", Interrogation states are also indicated by (. The labels on
the edges leaving distinguish these circles from read states.

Thus, state T would be represented as in Fig. 7.52 if' f(a) = shift and
F(b) = reduce :.

Read State Pop State

Push State Interrogation State

Fig. 7.52 Possible representation for state T

(4) The accepting state is not split.

Example 7.37

Let us consider the LR(1) grammar G
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(1} S— AB
(2) A-—adb
(B)A—e
(4) B— bB
(5 B—b

A set of LR(1) tables for & is shown in Fig. 7.53.

action goto

a b e § A B a b
| § 2 X n n x T,
| X X A X X X
| X 5 X X X rn, X T
5 3 X X Te X T; X
| X X 1 X X X
75 | X § 5 X X T, X T
Te | X § X X X X Ty
| X X X X X
T, | X 2 X X X X

Fig. 7.53 LR(1) tables.

The parsing automaton which results from splitting states as described
above is shown in Fig. 7.54. [

There are several ways in which the number of states in a split automaton
for an LR(1) grammar can be reduced:

([) ¥ an interrogation state has only one edge leaving, the interrogation
state can be eliminated. This simplification is exactly like the corresponding
LR(0} simplification.

(2) Let T be a read state such that in every path into T the [ast edge
entering a pop state is always labeled by the same input symbol or always by
e. Then the read state may be eliminated. (One can show that in this case
the read state has only one edge leaving and that the edge is labeled by
that symbol.)

Example 7.38

Let us consider the automaton of Fig. 7.54, There are three interrogation
states with out-degree 1, namely 77, 7%, and 7. These states and the edges
leaving can all be eliminated.
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Fig. 7.54 Split automaion for LR(1) grammar,

Next, let us consider read state 7. The only way T can be reached is via
the paths from T and T or T, and T%. The previous input symbol label is b
in either case, meaning that if T; or T see & on the input, they transfer to 7%
or T% for a reduction. The b remains on the input until T, examines it and
decides to transfer to T% for a shift. Since we know that the b is there, T is
superfluous; T% can push the state name T, on the pushdown list without
looking at the next input symbol, since that input symbol must be b if the
automaton has reached state T,
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Similarly, T, can be eliminaied. The resulting automaton is shown in
Fig. 7.55. []

As with the LR(0) semireduced automaton, we can also merge compatible
states without affecting the action of the automaton. We leave these matters

to the reader, In Fig. 7.55, the only pair of states which can be merged is
T and T3.

Start

Fig. 7.55 Semireduced automaton.

7.5.4. Chapter Summary

In this chapter we have seen a large number of techniques that can be
used to reduce the size and increase the speed of parsers. In view of all these
possibilities, how should one go about constructing a parser for a given
grammar ? .

First a decision whether to use a top-down or bottom-up parser must be
made. This decision is affected by the types of translations which need to be
computed. The matter will be discussed in Chapter 9.
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If a top-down parser is desired, an LL(1) parser is recommended. To
construct such a parser, we need to perform the following steps:

(1) The grammar must be first transformed into an LL(1) grammar,
Very rarely will the initial grammar be LL(1). Left factoring and elimination
of left recursion are the primary tools in attempting to make a4 grammar
LL(1), but there is no guarantee that these transformations will always
succeed. (See Examnples 5.10 and 5.11 on p. 345 of Volume L.)

(2) However, if we can obtain an equivalent LL{I) grammar ¢, then
using the techniques of Section 5.1 (Algorithm 5.1 in particular), we can
readily produce an LL{1) parsing table for G. The entries in this parsing
table will in practice be calis to routines that manipulate the pushdown list,
produce output, or generate error messages.

(3) There are two technigues that can be used to reduce the size of the
parsing table: '

(a) If a production begins with a terminal symbol, then it is not
necessary to stack the terminal symbol if we advance the input
pointer. (That is, if production 4 — ag is to be used and a is
the current input symbol, then we put ¢ on the stack and move the
input head one symbol to the right.) This technique can reduce
the number of different symbols that can appear on the pushdown
list and hence the number of rows in the LL(1) parsing table.

(b) Several nonterminals with similar parsing actions can be com-
bined into a single nonterminal with a “tag” which describes
what nonterminal it represents, Nonterminals representing
expressions are amenable to this combination. (See Exercises
7.3.28 and 7.3.31)

If a bottom-up parser is desired, then we recommend a deterministic
shift-reduce parsing algorithm such as an SLR(1) parser or LALR(1) parser,
if necessary. It is easy to describe the syntax of most programming languages
by an SLR(1) grammar, so little preliminary modification of the given gram-
mar should be necessary. The size of an SLR({1} or LALR(]) parser can be
reduced significantly by a few optimizations. It is usually worthwhile to
eliminate reductions by single productions.

Further space optimization is possible if we implement an LALR(1) parser
in the style of the production language parsers of Section 7.2. The parsing
action entries of each LR(1) table could be implemented as a sequence of
shift statements, followed by a sequence of reduce statements, followed by
one unconditional error statement. If all reduce statements involve the same
production, then all these reduce statements and the following error statement
could be replaced by one statement which reduces by that production regard-
less of the input. The error-detecting capability of the parser would not be
affected by this optimization, See Exercises 7.3.23 and 7.5.13. The non-¢ goto
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entries for each LR(1) table could be stored as a list of pairs (4, T} meaning
on nonterminal A place T on top of the stack. The gotos on terminals could
be encoded in the shift statements themselves. Note that no g-entries would
have to be stored. The optimizations of Section 7.2 merging common se-
quences of statements would then be applicable.

These approaches to parser design have several practical advantages.
First, we can mechanically debug the resulting parser by generating input
strings that will check the behavior of the parser., For example, we can easily
construct input strings that cause each useful entry in an LL(1} or LR(1)
table to be exercised. Another advantage of LL{1} and LR(l)} parsers,
especially the former, is that minor changes to the syntax or semantics can
be made by simply changing the appropriate entries in a parsing table.

Finally, the reader should be aware that certain ambiguous grammars
have “LL”or “LR” parsers that are formed by resolving parsing action con-
flicts in an apparently arbitrary manner (see Exercise 7.5.14). Design of
parsers of this type warrants further research,

EXERCISES

7.5.1. Construct a parsing automaton M for Gy. Construct from M an equiva-
lent split, a semireduced, and a reduced automaton.

7.5.2. Construct. parsing automata for each grammar in Exercise 7.3.1.

7.5.3. Split states to construct reduced parsing automata from the parsing
automata in Exercise 7.5.2.

7.54, Prove Lemma 7.4,

7.5.5. Prove that the definition of the reduced automaton in Section 7.5.2 is
consistent; that is, if p = g, then 8(p, a) = (g, @) for all ain T’ U (e}

7.5.6. Prove Theorem 7.13.

DEFINITION

Let G=M, X P, 5) be an augmented CFG with productions
numbered 0, 1, . .. such that the zeroth production is §* — §. Let L7 =
{#aq, #F1,- .., F} be a set of gpecial symbols not in N U Z. Let the
ith production be 4 -—— f and suppose that S :‘» oAw = afiw. Then
afi#; is called a characteristic string of the rlght-scntentxal form ofiw.

*7.5.7. Show that the set of characteristic strings for a CFG is a regular set.

7.5.8. Show that a CFG & is unambiguous if and only if cach right-sentential
form of G, except 8, has a unique characteristic string.
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7.5.9. Show that a CFG is LR(4) if and only if each right-sentential form &fw
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such that $’ = oAw = afw has a characteristic string which may be
determined from only & and FIRST,(w).
7.5.10, Let G = (N, L, P, §) be an LR(0) grammar and (3, T,) its canonical set
of LR(0) tables. Let M = (3,20 ,4,7,{T:}) be the canonical
parsing automaton for G. Let M = (3 U {g,L. T U X', &, Ty, {g7]) be
the deterministic finite automaton constructed from M by letting

M §Tay=3T,a)forall TinJand ain X.
(2) §°(T, #)) = q7if 8(T, T") is defined and T is a reduce state calling
for a reduction using production i,
Show that L{AM") is the set of characteristic strings for G.

Give an algorithm for merging “equivalent” states of the semireduced
automaton constructed for an LR(1) grammar, where equivalence is

7.511.
*7.5.12. Suppose that we modify the definition of “equivalence” in Exercise
7.5.11 to admit the equivalence of states that transfer to equivalent states

taken to mean that the two states have transitions on the same set of
on symbol @ whenever both states have a transition on a. Is the resulting

symbols and {ransitions on each symbol are to equivalent states.t

automaton equivalent (in the formal sense, meaning one may not shift
if the other declares error) to the semireduced automation?

7.5.13. Suppose a read state 7 of an LR(1) parsing automaton has all its tran-
sitions to pop states which reduce by the same production, Show that if

we delete T and merge all those pop states to one, the new automaton will

make the reduction independent of the lookahead, but will be équivalent

to the original automaton,
*7.5.14. Let G be the ambiguous grammar with producticns
S if b then SE|a
FE—else S|e

{a) Show that L{G) is not an LL language.
(b) Construct a 1-predictive parser for & assuming that whenever E

is on top of the stack and else is the next input symbol, production
(¢) Construct an LR(1) parser for & by making an analogous assump-

E > else S is to be applied.

tion.
7.5.15. Apply the technique used here—breaking a parser into a large number
of active components and merging or eliminating some of them-—to

Research Problems
parsers other than LR ones. For example, the technigque in Section 7.2

1This definition can be made precise by defining relations %, é, ...asin Lemma 7.2,
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effectively treated the rows of a precedence matrix as active elements.
Develop techniques applicable to LL parsers and various kinds of pre-
cedence parsers.

Certain states of a canonical parsing automaton may recognize only
regular sets. Consider splitting the shift states of a parsing automaton
into scan states and push states. The scan state might remove input
symbols and emit output but would not affect the pushdown list. Then
a scan state might transfer control to another scan state or a push state.
Thus, a set of scan states can behave as a finite transducer. A push state
would place the name of the current state on the pushdown list. Develop
transformations that can be used to optimize parsing automata with
scan and push states as well as split reduce states.

Express the optimizations of Section 7.3 and 7.5 in each other’s terms.

Programming Exercises

7.5.18.

7.5.19.

7.5.20.

Design elementary operations that can be used to implement spilit
canonical parsing automata, Construct an inierpreter for these elemen-
tary operations.

Write a program that will take a split canonical parsing automaton and
construct from it a sequence of elementary operations that simulates
the behavior of the parsing automaton.

Construct two LR(1) parsers for one of the grammars in the Appendix
of Volume 1. One LR(I} parser should be the interpretive LR(1) parser
working from a set of LR(1) tables. The other should be a sequence of
elementary operations sumulating the parsing automaton. Compare the
size and speed of the parsers,

BIBLIOGRAPHIC NOTES

The parsing automaton approach was suggested by DeRemer [1969]. The
definition of characteristic string preceding Exercise 7.5.7 is from the same source.
Classes of ambiguous grammars that can be parsed by LL or LR means are dis-
cussed by Aho, Johnson, and Ullman (1972].



8 THEORY OF DETERMINISTIC
PARSING

In Chapter 5 we were introduced to various classes of grammars for which
we can construct efficient deterministic parsers. In that chapter some inclu-
sion relations among these classes of grammars were demonstrated. For
example, it was shown that every (m, £)-BRC grammar is an LR(k) grammar.
In this chapter we shall complete the hierarchy of relationships among these
classes of grammars.

One can also ask what class of langnages is generated by the grammars in
a given class. In this chapter we shall see that most of the classes of grammars
in Chapter 5 generate cxactly the deterministic context-free languages.
Specifically, we shall show that each of the following classes of grammars
generates exactly the deterministic context-free languages:

(1) LR(1},

(2) (1, D-BRC,

(3) Uniquely invertible (2, 1)-precedence, and
(4) Simple mixed strategy precedence.

In deriving these resulis we provide algorithms to convert grammars of one
kind into another. Thus, for each deterministic context-free language we can
find a grammar that can be parsed by a Ul (2, [)-precedence or simple mixed
strategy precedence algorithm, However, if these conversion algorithms are
used Indiscriminately, the resulting grammars will often be too large for
practical use.

There are three interesting proper subclasses of the deterministic context-
free languages: )

(1) The simple precedence languages,
{2) The operator precedence languages, and
(3) The LL languages.

666



SEC. 8.1 THEORY OF LL LANGUAGES 687

The operator precedence languages are a proper subset of the simple pre-
cedence languages and incommensurate with the LL languages. In Chapter
3 we saw that the class of Ul weak precedence languages is the same as the
simple precedence languages. Thus, we have the hierarchy of languages
shown in Fig. 8.1,

Deterministic
Context-free Languages

Simple
Precedence

Operator
Precedence

Fig. 8.1 Hierarchy of deterministic contexi-free languages.

In this chapter we shall derive this hierarchy and mention the most strik-
ing features of each class of languages. This chapter is organized into three
sections. In the first, we shall discuss LL languages and their properties.
In the second, we shall investigate the class of deterministic langnages, and
in the third section we shall discuss the simple precedence and operator
precedence languages.

This chapter is the caviar of the book. However, it is not essential to
a strict diet of “theory of compiling,” and it can be skipped on a first reading. t

8.1. THEORY OF L1 LANGUAGES

We begin by deriving the principal results about LL languages and gram-
mars. In this section we shall bring out the following six results:

{Readers who dislike caviar can skip it on subsequent readings as well,
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(1) Every LL{k) grammar is an LR(k) grammar (Theorem 8.1).

(2) Forevery LL(k) language there is a Greibach normal form LL(k + 1)
grammar (Theorem 8.5).

(3) Tt is decidable whether two LL grammars are equivalent {Theorem
8.6),

(4) An e-free language is LL(k) if and only if it has an e-free LL{k 4+ 1)
grammar (Theorem 8.7}.

(5) For k& > 0, the LL(k) languages are a proper subset of the LL(k - 1)
languages (Theorem 8.8).

(6) There exist LR languages which are not LL languages (Exercise
8.1.11).

8.1.1. LL and LR Grammars

Qur first task is to prove that every LL(k) grammar is an LR(k) grammar.
This result can be intuited by the following argument, Consider the deriva-
tion tree sketched in Fig. 8.2.

8

w x y Fig. 8.2 Sketch of derivation tree.

In scanning the input string wxy, the LR(k} condition requires us to
recognize the production 4 -— ¢ knowing wx and FIRST,(»). On the other
hand, the LL{%) condition requires us to recognize the production 4 — ¢
knowing only w and FIRST,(xy). Thus, it would appear that the LL{k)
condition is more stringent than the LR(%) condition, so that every LL{k)
grammar is LR(k). We shall now formalize this argument.

Suppose that we have an L1(k) grammar & and two parse trees in G.
Moreover, suppose that the frontiers of the two trees agree for the first m
symbols. Then to every node of one tree such that no more than m — &
leaves labeled with terminals appear to its left, there corresponds an “essen-
tially identical” node in the other tree. This relationship is represented picto-
rially in Fig. 8.3, where the shaded region represents the “same” nodes. We
assume that |w| = m — k and that FIRST,(x,) = FIRST (x,). We can state
this observation more precisely as the following lemma.
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w X1

(a) (b)

Fig. 8.3 Two parse trees for an LL(%) grammar.

Lemma 8.1
Let G be an LL(%) grammar and let

™ * L *
S = w Ag = w,x, and S = w,Bf = w,x,
Lo lm im im,

be two leftmost derivations such that FIRST/(w,x,) = FIRST(w,x,) for
[ =k -+ max(|w,|,|w,]). (That is, w x, and w,x, agree at least k symbols
beyond w, and w,.)

() Ifm, =m,, thenw, =w,, 4 =B,and g = 8,

(2) I m, < m,, then § = w, Ao "= w, B = w,x,.

Proof. Examining the LL(k) definition, we find that if m, <Cm,, each
of the first m, steps of the derivation § % w,Bf are the same as those of
S % w;Aw, since the lookahead strings are the same at each step. (1) and
(2) follow immediately. [

THEOREM 8.1
Every L1{k} grammart is LR(k).

Proof. Let G = (N, Z, P, §) be an LL(k) grammar and suppose that it is
not LR(k). Then there exist two rightmost derivations in the augmented
grammar

(8.1.1) S‘%an,“T;:»aﬁxl
(8.1.2) S' =% pBy = pdy

such that pdy = afx, for some x, for which FIRST,(x,} = FIRST,(x,).
Since G is assumed not to be LR{1), we can assume that adx, = ypBy.

tThroughout this book we are assuming that a grammar has no useless productions.
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In these derivations, we can assume that / and j are both greater than zero.
Otherwise, we would have, for example,

S =t § = §
5’ == By —> Sfy

which would imply that G was left-recursive and hence that & was not LL.
Thus, for the remainder of this proof we can assume that we can replace S
by S in derivations (8.1.1) and (3.1.2).

Let x,, x,, x,, and x, be terminal strings derived from a, 8, y, and 4,
respectively, such that x,x,x, — x,x;». Consider the leftmost derivations
which correspond to the derivations

(8.1.3) S % eAx, == afix, r:’:‘:» X, XX

and

(8.1.4) S%;:»yBy?ﬁy r::':n:-xyxf,y
Specifically, let

(8.1.5) S%-)x,Aqfxmﬁq%xaxﬂﬂl—:Z»x,xﬂxl
and

(8.1.6) S %;-:» x,86 — x,00 %- x,x,0 1=:> X, X5 ¥

where 71 and & are the appropriate strings in (N L) T)*.
By Lemma 8.1, the sequence of steps in the derivation S%xamp is

the initial sequence of steps in the derivation § % x,B0 or conversely. We
assume the former case; the converse can be handled in a symmetric manner.
Thus, derivation (8.1.6) can be writien as

(8.1.7) 5 1::> x, A1 == x.Bn ::1::- x, B8 == x,00 —l—m-:> x,x40 %:» X, Xs ¥

Let us fix our attention on the parse tree T of derivation (8.1.7). Let n,
be the node corresponding to 4 in x,4# and », the node corresponding to
Bin x,Bf. These nodes are shown in Fig. 8.4. Note that #, may be a descen-
dant of n,. There cannot really be averlap between x, and x,. Either they
are disjoint or x, is a subword of x,;. We depict them this way merely to
imply either case.

Let us now consider two rightmost derivations associated with parse
tree T. In the first, T is expanded rightmost up to (and including) node n;
in the second the parse tree is expanded up to node »,. The latter derivation
can be written as

S =—>yBy —> y3y
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§
g
iy
)
4 R J L J
Y Y ¥
x‘x Xﬂ X2
— ) J
v v -
x, X ¥y

Fig. 8.4 Parse tree T

This derivation is in fact derivation (8,1.2). The rightmost derivation up to
node n,, is

(8.1.8) 5= a'dx, = a'Bx,

for some &’. We shall subsequently prove that o' = .

Let us temporarily assume that &' = . We shall then derive a contradic-
tion of the LL(k)-ness of G and thus be able to conclude the theorem. If
o' = o, then pdy — o' fx, = afix,. Thus, the same rightmost derivations can
be used to extend derivations (8.1.2) and (8.1.8) to the string of terminals
x,%;¥. But since we assume that nodes », and n, are distinct, derivations
(8.1.2) and (8.1.8) are different, and thus the completed derivations are
different. We may conclude that x,x, y has two different rightmost derivations
and that G is ambiguous. By Exercise 5.1.3, no LL grammar is ambiguous.
Hence, G cannot be LL, a contradiction of what was assumed,

Now we must show that ¢” = «. We note that a’ is the string formed by
concatenating the labels from the left of those nodes of T whose direct
ancestor is an ancestor of n,. (The reader should verify this property of right-
most derivations.) Now let us again consider the leftmost derivation (8.1.5),
which has the same parse tree as the rightmost derivation (8.1.3). Let 77 be
the parse tree associated with derivation (8.1.3). The steps of derivation
{8.1.5) up to x,An are the same as those of derivation {8.1.7) up to x,An.
Let n, be the node of T* corresponding to the nonterminal replaced in deriva-
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tion (8.1.7) at the step x, 4y = x,f7. Let IT be the preorderingt of the inte-
rior nodes of parse tree 7 up to node #, and [T’ the preordering of the interior
nodes of 7" up to node #;. The ith node in IT matches the ith node in IT" in
that both these nodes have the same tabel and that corresponding descen-
dants either are matched or are to the right of n, and n, respectively.

The nodes in 7' whose direct ancestor is an ancestor of #/, have labels
which, concatenated from the left, form «. But these nodes are matched with
those in T which form &', so that &' = &. The proof is thus complete. []

The grammar
S— 4| B
A—adb|0
B aBbb|1
is an LR(0) grammar but not an LL grammar (Example 5.4), so the contain-
ment of LL grammars in LR grammars s proper. In fact, if we consider the
LL and LR grammars along with the classes of grammars that are left- or

right-parsable (by 2 DPDT with an endmarker), we have, by Theorems 5.5,
5.12, and 8.1, the containment relations shown in Fig. 8.5.

LR
Left Right
Parsable LL b Parsable
a
4 a

Fig. 8.5 Relations between classes of grammars,

1T is the sequence of interior nodes of Tin the order in which the nodes are expanded
in a leftmost derivation.
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We claim that each of the six classes of grammars depicted in Fig. 8.5 is
nonempty. We know that there exists an LL grammar, so we must show
the following.

THEOREM 8.2

There exist grammars which are

(1) LR and left-parsable but not LL.

(2) LR but not left-parsable.

(3) Left- and right-parsable but not LR.

(4) Right-parsable but not LR or left-parsable.
(5) Left-parsable but not right-parsable.

Progf. Each of the following grammars inhabits the appropriate region.
(1) The grammar G, with productions

S—>A|B
A—>aad|aa
B——+aaB|a
i1s LR(1) and left-parsable but not LL.
(2) The grammar G, with productions
S —> Ab| Ac
A — AB|a
B——a
is LR(1) but not left-parsable, See Example 3.27 (p. 272 of Volume I).
(3} The grammar G, with productions
S~ Ab|Bc
A— Aala
B— Ba|a
is both left- and right-parsable but is not LR,
(4) The grammar G, with productions
S+ Ab|Bc
A——AC|a
B— BC|a
C—a

is right-parsable but neither LR nor left-parsable.
(5) The grammar G, with productions
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S —> BAb | CAc
A—> Bdla
B—sa

C—ra

is left-parsable but not right-parsable, See Example 3.26 (p. 271, Volume I).
]

8.1.2. LL Grammars in Greibach Normal Form

In this section we shall consider transformations which can be applied to
LL grammars while preserving the LL property. Our first results involve
e-productions. We shall give two algorithms which together convert an LL(k)
grammar into an equivalent LL{(k 4+ 1) grammar without e-productions.
The first algorithm modifies a grammar so that each right-hand side is either
e or begins with a symbol (possibly a terminal) which does naot derive the
empty string. The second algorithm converts a grammar satisfying that con-
dition to one without e-productions. Both algorithms preserve the L.L-ness
of grammars,

DEFINITION

Let G = (N, %, P, ) be a CFG. We say that nonterminal A is nullable
if A can derive the empty string. Otherwise, a symbol in N U I is said to be
nonnullable. Every terminal is thus nonnullable. We say that G is ronnullable
if each production in Pis of the form 4 —eor 4 — X, --+ X, where X,
is a nonnullable symbol,

ALGORITHM 8.1

Conversion to a nonnullable grammar,
Input. CFG G = (N, Z, P, §).

Qutput. A nonnullable context-free grammar G, = (N,, Z, P,, §;) such
that 1(G)) = L(G) — {e}.

Method.

(1) Let N'=N U {44 is a nullable nonterminal in N}. The barred
nonterminal 4 will generate the same strings as 4 except e. Hence 4 is non-
nullable.

(2) If e is in L(G), let S, = §. Otherwise S, = §.

(3) Each non-e-production in P can be uniquely written in the form
A—B, -+ B X, --- X, (withm>0,n=>0,and m + n > (), where each
B, is a nullable symbol, and if » > 0, X, is a nonoullable symbol. The
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remaining X,, 1 < j<(n, can be either nullable or nonnullable. Thus, X
is the leftmost nonnullable symbol on the right-hand side of the production.
For each non-e-production A -— B, --- B, X, -+« X, we construct P’ as fol-
lows:
(a) If m = 1, add to P’ the m productions
A—BB,---B X --- X%

n

A—>BB, - B X, - X,

n

A—>B X, .- X,
(b) If n > 1 and m > 0, add to P’ the production

A—X - X,
{c) Inaddition, if 4 is itself nullable, we also add to P’ all the produc-
tions in (a) and (b} above with 4 instead of 4 on the left.
D IA—eisinP,weadd 4 —eto P
(5) Let G, = (N, %, P,, §) be ¢ = (N, I, P', §) with all useless sym-
bols and productions removed. []

Example 8.1

Let G be the LL(1) grammar with productions

S — 4B
A—>ad|e
B—>bA|e

Each of the nonterminals is nullable, so we introduce new nontermi-
nals §, 4, and B; the first of these is the new start symbol. Productions
A— aA and B — bA each begin with a nonnullable symbol, and so their
right-hand sides are of the form X, X, for the purpose of step (3) of Algorithm
8.1, Thus, we retain these productions and also add 4 - a4 and B — b4
to the set of productions.

In the production 8 — AB, each symbol on the right is nullable, and so
we can write the right-hand side as B, B,. This production is replaced by
the following four productions:

S — AB|B
S-— AB|B
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Since § is the new start symbol, we find that S is now inaccessible. The
final set of productions construeted by Algorithm 8.1 is

S— AB|B
A ad
A—>ad|e
B—>bd
B—>bdle ]

The following theorem shows that Algorithm 8.1 preserves the LL(k)-
ness of a grammar.
THECREM 8.3

If &, is constructed from G by Algorithm 8.1, then

(1) L(G)) = L(G) — {¢}, and
2) If Gis LL(k), then so is G .

Proaf.

(1} Straightforward induction on the length of strings shows that for all
Ain N,

{a) 4 %:-wifand only if 4 %wand
(b) A== wif and only if w + e and 4 = w.

The details are left for the Exercises,
For part (2), assume the contrary. Then we can find derivations in G|

* - *
S| — WA(;(,:;-wﬁa:—_:» WX
G Gy 1lm G im
% » *
S| == wdo — WP == Wy
G lm G, 1Im Gy lm

where FIRST, (x) = FIRST,(3), £ +# y, and A is ejther 4 or A.

We can construct from these two derivations corresponding derivations
in G of wx and wy as follows. First define h(4) = h(A) = A for A € N and
Ma)=afora e X,

For each production 8 — ¢ in P, we can find a production B — &'A(5)
in P from which it was constructed in step (3) of Algorithm 8.1. That is,
B = k(B), and &' is some (possibly empty) string of nullable symbols. Each
time production B — & is used in one of the derivations in G,, in the corre-
sponding derivation in G we replace it by B — &'h(d), followed by a leftmost
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derivation of e from &' if §° = e. In this manner, we construct the derivations
m G

S = wah(@) ==> wh h(B)A(@) o wh(B)h(a) > wx
S i wAR(@) 5wy hph(a) Sz whh(@) T wy
We can write the steps between wfh(S)h{x) and wh()h(t) as
WBR(BH() = w8, == w8, == -+ = W, = wh(B)(a)

and those between wy h(y)i(a) and wh(p)h(e) as
wy h(Ph(e) = we, = we, —> -« => we,, = wh(y)h(e).

If z = FIRST(x) = FIRST(y), then we claim that z is in FIRST(J,) and
FIRST(¢,) for all i, since f" and p" consist only of nullable symbols (if g
and y" are not e). Since G is LL{k), it follows that §, = ¢, for all i. In par-
ticular, §'#(f} = ¥'Aly). Thus, § and y are formed from the same production
by Algorithm 8.1. If §' == y', then in one of the above derivations, a non-
terminal derives e, while in the other it does not. We may contradict the
LL(k)-ness of G in this way and so conclude that §” = y'. Since £ and y are
assumed to be different, they cannot both be e, and so they each start with
the same, nonnullable symbol. It is then possible to conclude that m = n
and arrive at ihe contradiction f =7y. [

Our next transformation will eliminate e-productions entirely from an LL
grammar G. We shall assume that e ¢ L(G). Qur strategy will be to first
apply Algorithm 8.1 to an LL{k) grammar, and then to combine nonnullable
symbols in derivations with all following nullable symbols, replacing such
a string by a single symbol. If the grammar is LL{k), then there is a limit to
the number of consecutive nullable symbols which can follow a nonnull-
able symbol.

DeFINITION
Let @ = (N, %, P, §) be a CFG. Let ¥, be the set of symbols of the form
[XB, --- B,] such that

(1) X is a nonnullabie symbol of G (possibly a terminal).

{2} B,,..., B, are nullable symbols (hence nonterminals).

(3) If i J, then B, B, (That is, the list B,..., B, contains no
repeats,)

Define the homomorphism g from ¥V, to (N U XZ)}* by g([a]} = a.
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LeMMA 8.2

Let G =(N, E, P, S) be a nonnullable LL(%X) grammar such that every
nonterminal derives at least one nonempty terminal string. Let V; and g
be as defined above, Then for each left-sentential form & of @ such that
o = e there is a unique g in V% such that A(f) = «.

Proof. We can write & uniguely as &8, --- «,, m > 1, where each a,
is a nonnullable symbol X followed by some string of nullable symbols
(because every non-e-sentential form of G beging with a nonnullable symbol).
1t suffices to show that [a,] is in V,; for each i. If not, then we can write ,
as XpByBS, where B is some nullable symbol and £, y, and § consist only
of nullable symbols, i.e., &, does not satisfy condition (3) of the definition
of ¥,. Let w be a nonempty string such that B % w. Then there are two dis-
tinct leftmost derivations:

BByBS ==> ByBS —=> wyBS =—>w
and
BByBS 1=’:> Bd 1::1> wé % w

From these, it is straightforward to show that ¢ is ambiguous and hence not
LL. []

The following algorithm can be used to prove that every LL{k) language
without e has an LL(k + 1) grammar with no e-productions.

ALGORITHM 8.2

Elimination of e-productions from an LL(k) grammar.

Inpur. An LL(k) grammar G, = (N, X, P., §)).

Output. An LL{(k 4+ 1) grammar G = (N, X, P, §) such that L(G) =
LG} — {e}.

Method.

(D) First apply Algorithm 8.1 to obtain a nonnullable LL{k) grammar
Gz = (st zZ, P, Sz)'

(2) Eliminate from G, each nonterminal A4 that derives only the empty
string by deleting A from the right-hand sides of productions in which it
appears and then deleting all 4-productions. Let the resulting grammar be
G, =(N,, L, P, 5,

(3) Construct grammar G = (N, Z, P, 5) as follows:

(a) Let N be the set of symbols [Xzx] such that
(i) X is a nonnullable symbol of G,,
(ii} ¢ is a string of nullable symbols,
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(iii)) X ¢ X (i.e., we do not have X € T and & = e simulta-
neously),

{(iv) o has no repeating symbols, and

(v) Xe actually appears as a substring of some left-sentential
form of G,.

(6) S =I[S,].

(c} Let g be the homomorphism g([e]) = ¢ for all [¢] in N and let
gla) = a for a in Z. Since g~!(f) contains at most one member,
we use g~ Y{f) to stand for y if y is the lone member of g~ '(f).
We construct P as follows:

(i) Let [4a] be in N and let 4-— £ be a production in P,.
Then [Aa] — g~*{fa) is a production in P,
(if) Let [axAf] bein N, witha € ZTand 4 ¢ N,. Let A — y be
in P,, with y 2= e. Then [a¢A 8] — ag™'(yf) is in P.
(iii) Let [axdf] be in N with g € X. Then [azAf] — a is also
mP. [

Example 8.2

Let us consider the grammar of Example 8.1. Algorithm 8.1 has already
been applied in that example. Step (2) of Algorithm 8.2 does not affect the
grammar. We shall generate the productions of grammar G as needed to
assure that each nonterminal involved appears in some left-sentential form.
The start symbol is [5]. There are two S-productions, with right-hand sides
AB and B. Since 4 and B are nonnullable but B is nullable, g~ 1(4B) = [4B]
and g~*(B) = [B). Thus, by rule (i) of step (3c), we have productions

[S1— [4B1][B]

Let us consider nonterminal [4B]. 4 has one production, 4 — aA.
Since g™ (a4 B) = [aAB], we add production

{AB) — [aAB]

Consideration of [B] causes us to add

[B] —[b4]

We now apply rules (ii) and (iii} to the nonterminal [a4 B}. There is one
non-e-production for 4 and one for B, Since g~ (adB) = [aAB], we add

[aAB] —— alaAB]
corresponding to the A-production. Since g~ !(bA4) = [bA], we add
[aAB] - a[bA]
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corresponding to the B-production. By step (iii), we add
[@aAB] —> a
Similarly, from nonterminal [bA4] we get
[bA] — blad]l b

Then, considering the newly introduced nonterminal [a4], we add produc-
tions

iad] — afad]|a

Thus, we have constructed the productions for alf nonterminals intro-
duced and so completed the construction of G. [

THEOREM 8.4

The grammar G constructed from G, in Algorithm 8.2 is such that

(1) L(G) = L(G,) — {e}, and

2y If G, is LL(k), then G is LL(k + 1).

Proof. Let g be the homomorphism in step (3¢) of Algorithm 8.2,

(1) A straightforward inductive argument shows that A %::- ., where
A e Nand § & (NuU I if and only if g(A) 2> 2(B) and § 5 e. Thus,

[S,] :> w, for w mm T*, if and only if S, :» W and w # e. Hence, L(G) =
LG, ) That L(G,} = L(G,) — {e} 1s part (l) ‘of Theorem 8. 3, and it is easy to
see that step (2) of Algorithm 8.2, converting G, to G,, does not change the
language generated.

(2} Here, the argument is similar to that of the second pait of Theorem
8.2. Given a leftmost derivation in G, we find a corresponding one in G,
and show that an L1L(k + 1) confiict in the former implies an LL(k) conflict
in the latter. The intuitive reason for the parameter & £ 1, instead of %,
is that if a production of & constructed in step (3cii) or (iii) is used, the ter-
minal a is still part of the lookahead when we must determine which produc-
tion to apply for a4 f. Let us suppose that & is not LL(k -+ I). Then there
exist derivations

* *
Gl G 1lm G lm
and
* *
S == wAg == wyad == wy
G1lm Glm G 1m

where 8 = 9, but FIRST,, {x) = FIRST, (¥). We construct corresponding
derivations in G, as follows:
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(a) Each time production [4a] — g~ '{fa), which is in P because of
rule (3c¢i), is used, we use production 4 — f of G,.

(b) Each time production [axAff] — ag™'(yf), which is in P by rule
(3cii), is used, we do a leftmost derivation of ¢ from g, followed
by an application of production 4 — 7.

(c} Each time production [aaAf] -— a is used, we do a leftmost deri-
vation of e from a4 . Note that this derivation will involve one
or more steps, since g4 f < e.

. . f * . . . -
Thus, corresponding to the derivation S —_ wAa is a unique derivation
m

g(S)m%:wg(A)g(m). In the case that 4 is a bracketed string of symbols
beginning with a terminal, say o, the border? of wg(4)e(er) is one symbol
to the right of w. Otherwise it is immediately to the right of w. In either case,
since x and y agree for k£ + 1 symbols and & is LL(k), the steps in &, corre-
sponding to the application of productions 4 — fand 4 — y in G must be
the same,

Straightforward examination of the three different origins of productions
of G and their relation to their corresponding derivations in G, suffices to
show that we must have f§ = y, contrary to hypothesis. That is, let 4 = {J].
If 8 begins with a nonterminal, say § = €&, case (2a) above must apply in
both derivations. There is one production of G,, say C — §”, such that
B=y=g18"d) .

If § begins with a terminal, say d = aé’, case (2b) or (2c) must apply.
The two derivations in (7, replace a certain prefix of § by e, followed by
the application of a non-e-production in case (2b), It is easy to argue that
f = yin either case. [] :

We shall now prove that every LL(k) language has an LL(k +- 1) grammar
in Greibach normal form (GNF). This theorem has several important apph-
cations and will be used as a tool to derive other results. Two preliminary
lemmas are needed.

Lemma 8.3
No LL(k) grammar is left-recursive.

Proof. Suppose that G = (N, I, 2, S) has a left-recursive nonterminal 4.
Then there is a derivation 4 = Ae. If & = e, then it is easy to show that G
is ambiguous and hence cannot be LL. Thus, assume that & = ¢ for some
» € T*. We can further assume that 4 = y for some ¥  £* and that there
exists a derivation

% * *
S == wAd = wAe*d — wur*x
1m 1m lin

1Border 2s in Section 5.1.1.
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Hence, there is another derivation:
* #* ' % 41 * E41
S = wAd = wAe"é — wAa**'d — wuv**ix
im Im 1m 1m

Since FIRST (uv*x) = FIRST, (uv**'x), we can readily obtain a contradic-
tion of the LL(k) definition from these two derivations, for arbitrary k. [

ILEMMA 8.4

Let ¢ =(N,Z, P, §) be a CFG with 4 — Bg in P, where B € N. Let
B— B,[B,|-- |8, beall the B-productions of Gand let G, =(N, Z, P;, §)
be formed by deleting 4 — Ba from P and substituting the productions
A— Ba| 0| | B Then L{G,) = L(G), and if G is LL(k), then sois G,.

Proof. By Lemma 2.14, L(G,) = L(G). To show that G, is LL(k) when &
is, we observe that leftmost derivations in &, are essentially the same as
those of G, except that the successive application of the productions 4 — Bu
and B — f§,in G is done in one step in &, Informally, since Bz beging with
a nonterminal, the two steps in G are dictated by the same k symbol look-
ahead string. Thus, when parsing according to G, that lookahead dictates
the use of the production 4 — f&. A more detailed proof is left for the
Exercises. []

ALGORITHM 8.3
Conversion of an LL(k) grammar to an LI(k + 1) grammar in GNF.
Input. LL(K) grammar G, = (N, £, P, §,).
Qutput. LL{k + 1) grammar G = (N, X, P, S} in Greibach normal form,
such that L(G) = L(G,) — {e}. ‘
Method.

(1) Using Algorithm 8.2, construct from &, an LI{(k 4+ 1) grammar
G, = (N, I, P,, S) with no e-productions.

(2) Number the nonterminals of N,, say N, = {4,, ..., 4}, such that
if 4, — Ad,aisin P,, then j > i. Since, by Lemma 8.3, G is not left-recursive,
we can do this ordering by Lemma 2.16.

(3) Successively, for i =m — 1,m — 2,..., 1, replace all productions
A, — Ao by those A, — fa such that 4, — g is currently a production.
‘We shall show that this operation causes all productions to have right-hand
sides that begin with terminals. Call the new grammar ¢, =(N,, %, P,, §).

(4) For each a in I, let X, be a new nonterminal symbol. Let

N =N, U {X,|e € Z}.

Let P be formed from P, by replacing each instance of terminal @, which is
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not the leftmost symbol of its string, by X, and by adding productions X, — a
for each a. Let G = (N, Z,P, S). ¢ is in GNF, []

THEOREM 8.5

Every LL(k) lapguage has an LL(k + 1) grammar in GNF.

Proof. It suffices to show that & constructed in Algorithm 8.3is LL(k + 1)
if G, is LL(k). By Lemma 8.4, G, is LL{(k + 1). We claim that the right-hand
side of every production of G, begins with a terminal. Since G, is not left-
recursive, the argument is the same as for Algorithm 2.14.

It is easy to show that the construction of step (4) preserves the LL(k 4 1)
property and the language generated. It is also clear that G is in GNF.
The proofs are left for the Exercises. [7]

8.1.3. The Equivaience Problem for LL Grammars

We are almost preparted to give an algorithm to test if two LL(k) gram-
mars are equivalent, However, one additional concept is necessary.

DEFINITION
Let G = (N, X, P, S) be a CFG. For ¢ in (N U Z)*, we define the thick-
ness of o in G, denoted TH%(%), to be the length of the shortest string w in
I* such that oc:Z:‘» w. We leave for the Exercises the observations that
THS(xf) = THO(x) + THO(f) and that if & = B, then THO(a) <C TH(S).
We further define TH¢(w, w), where & is in (N U Z)* and wis in I*%,
to be the length of the shortest string x in X* such that o :» xand w =

FIRST,(x). If no such x exists, TH{(«, w) is undefined. We omlt kand G
from TH$ or THY where obvious.

The algorithm to test the equivalence of two LL{k) grammars is based on
the following lemma.

LeEMMA 8.5

Let G, =(N,Z, P, S) and G, =(N,, I, Pz, S,) be LL{k) grammars
in GNF such that L{G,) = L(G,). Then there is a constant p, dependmg
on G, and Gz, with the following property. Suppose that S, :*;:» Wil => wx

and that 5, G!=> wh :»wy, where ¢ and § are the open portions of Wl and
wf, and FIRST, (x) = FIRSTk(y) Then | TH® (e) — THo(f}| < p.¥

Proof. Let ¢ bé the maximum of TH(y) or TH(y) such that ¢ is a right-
hand side of a production in P, or P,, respectively. Let p = f(k + 1), and
suppose in contradiction that

8.1.9) THO(x) — THS(B) > p

tAbsolute value, not length, is meant here by | |,
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We shall show that as a consequence of this assumption, L(G,) == L(G,).
Let z = FIRST{x) = FIRST(y). We claim that TH®(f, z) << TH%(8) + p,
for there 1s a derivation § ;%: ¥, and hence, since G, is in GNF, thereis a
derivation, # G%ﬂ:-zé for some §, requiring no more than k steps. It is easy
to show that
TH®(g) << THf) + kt

since “at worst” d 1s f with most of the right-hand sides of k productlons
appended. We conclude that

(8.1.10) TH®(B, z) <. k + TH*(@) < TH*(B) + p

It is trivial to show that TH%(e, z) 2> TH%{(«), and so from (8.1.9) and
(8.1.10) we have

(8.1.11) \ TH% (&, z) > TH®(B, z)

If we let u be a shortest string derivable from 4, then TH®(§, z) <C|zu|.
The string wzu is in L(G,), since § = wf 2> wzd <> wzu. But it is impossible
that os=:2>zu, because by (8.1.11) THSa, z) > |zu|. Since &, is LLLK), if
there is any leftmost derivation of wzu in G,, it begins with the derivation
S, ::» wa. Thus, wzu is not in L(G,), contradicting the assumption that
L(G ) = L(G,). We conclude that TH®(a) — THO(f) < p = t(k + 1). The
case TH®(f) — TH®(&) > p is handled symmetrically. [T

Lemma 8.6

ft is decidable, for DPDA P, whether P accepts all strings over its input
alphabet.

Proof. By Theorem 2.23, L{P), the complement of L{#)}, is a deterministic
language and hence a CFL. Moreover, we can effectively construct a CFG
G such that I(0) = L{P). Algorithm 2.7 can be used to test if L(G) = 3.
Thus, we can determine whether P accepts all strings over its input alphabet.

L]

We are now ready to describe the algorithm to test the equivalence of
two LL{k) grammars.
THEOREM 8,6

It is decidable, for two LL(%) grammars &, =(N,, Z,,P,5,) and
G, =(N,, Z,, P,, 5,), whether L(G,} = L{G)).

Proof. We first construct, by Algorithm 8.3, GNF grammars G} and G,
equivalent to &, and G,, respectively (except possibly for the empty string,
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which can be handied in an obvious way). We then construct a DPDA P
which accepts an input string w in (£, U %,)* if and only if

(1) wis in both L(G,) and I{G,) or
{2) wisin neither L{(G,) nor L{G,).

Thus, L(G ) = L(G,) if and only if L{P) = (£, U I,)*. We can use Lemma
8.6 for this test.

Thus, to complete the proof, all we need to do is show how we construct
the DPDA P. P has a pushdown list consisting of two parallel tracks. P
processes an input string by simultaneously parsing its input top-down
according to &) and Gj.

Suppose that P’s input is of the form wx. After simulating | w| steps of
the leftmost derivations in ¢ and &}, P will have on its pushdown list the
contents of each stack of the k-predictive parser for &) and G, as shown in
Fig. 8.6, We note from Algorithm 5.3 that the stack contents are in each

Parser

// open portion for G} =

open portion for G5 = §

Tig. 8.6 Representation of left sentential forms we and w§,

case the open portions of the two current left-sentential forms, together with
some extra information appended to the nonterminals to guide the parsing.
We can thus think of the stack contents as consisting of symbols of ¢| and
G%. The extra information is carried along automatically,

Note that the two open portions may not take the same amount of space.
However, since we can bound from above the difference in their thicknesses,
then, whenever L(G ) = I{(#,), we know that P can simulate both derivations
by reading and writing a fixed distance down its pushdown list. Since G
and ¢, are in GNF, P alternately simulates one step of the derivation in G/,
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one in &, and then moves its input head one position. If one parse reaches
an error condition, the simulation of the parse in the remaining grammar
continues until it reaches an error or accepting configuration.

It is necessary only to explain how the two open portions can be placed
so that they have approximately the same length, on the assumption that
L(G,)) = L{G,). By Lemma 8.5, there is a constant p such that the thicknesses
of the two open portions, resulting from processing the prefix of any input
string, do not differ by more than p.

For each grammar symbol of thickness ¢, P will reserve ¢ cells of the
appropriate track of its pushdown list, placing the symbol on one of them.
Since G and G, are in GNF, there are no nullable symbols in either grammar,
and so ¢ > 1 in each case. Since the two strings o and § of Fig. 8.6 differ in
thickness by at most p, their representations on #’s pushdown list differ in
length by at most p cells,

To complete the proof, we design P to reject its input if the two open
portions on its pushdown list ever have thicknesses differing by more than
P symbols. By Lemma 8.5, L(G} # L(G,) in this case. Also, should the
thicknesses never differ by more than p, P accepts its input if and only if it
finds a parse of that input in both ¢ and &), or in npeither of G| and G}.
Thus, P accepts all sirings over its input alphabet if and only if L(G,) =

LG,). O
8.1.4. The Hierarchy of LL Languages

We shall show that for all k£ >> 0 the LL(k) languages are a proper subset
of the LL(k + 1) languages. As we shall see, this situation is in direct con-
trast to the situation for LR languages, where for each LR language we can
find an LR(1) grammar.

Consider the sequence of languages L, L,,...,L,, ..., where

L, ={ew|r>1 and w is in {b, c, b*d}"].

In this section, we shall show that L, is an LL{k) language but not an
LL(k — 1) language, thereby demonstrating that there is an infinite proper
hierarchy of LL{(k) languages. The following LL(k) grammar generates L, :

S—»>al
T—SA|A
A—>bB|c
B—>blde

We now show that every LL(kx) grammar for L, must contain at least one
e-production.
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LemmMa 8.7
L, is not generated by any LL(k) grammar without e-productions.
Proof. Assume the contrary. Then we may, by steps (2)-(4) of Algorithm
8.3, find an LL(k) grammar, G = (N, {e, b, ¢, 4}, P, §), in GNF such that
L{G) = L,. We shall now proceed to show that any such grammar must

generate sentences not in L,.
Consider the sequence of strings &, { =1,2,..., such that

{ ; k=1 .
S = d'a, = a***"1§
im Im

for some 4. Since G is LL(k} and in GNTF, ¢, is unique for each i. For if not,
let &, = o,. Then it is easy to show that &/**b** is in L(G), which is contrary
to assumptions if { 5% j. Thus, we can find 7 such that |a,{> 2k - 1.

Pick a value of i such that &, = By for some fand yin N* and Be N
such that | #| and |y | are at least £ — 1. Since G is LL(%}, the derivation of
the sentence a'**~1p***~1 is of the form

55 o' By A Y A
Im lm '

Since G isin GNF and |f| > k — 1, we must have B a1, B B,
and y=*>b"‘ for some j > 0,/ = 1, and m > k — 1, where

i+k—1=jti+m

If we consider the derivation of the sentence @™** tet**~1, we can also
conclude that B = ¢” for some n = 1.

Finally, if we consider the derivation of the sentence g**~ip/+/*4-1ighm
we find that

& # : * &
S]=’ a[ﬁBy 1:> aH-k“ibJB,y l=> al-f-k—lb]-i-l,y ﬁ al’+k—lb}'+i+k—ldbm.
m o m

The existence of the latter derivation follows from the fact that the sentence
@teT i pri eI dbm aprees with @4 b for (i +k— D+ G+ i+ k-1
symbols. Thus, y = pEidhm,

Putting these partial derivations together, we can obtain the derivation

* * ke * o * _ -
S]::* ai’ﬁB}, J:>al+k 1bjBy ? aa+k ibjcny ? ai'i-il lbjcnbff ldbm
n m

But the result of this derivation is not in L., because it contains a substring
of the form eb*~'d. (Every 4 must have k &’s before it.) We conclude that L,
has no LL(k) grammar without e-productions. []

We now show that if a language L is generated by an LL{k) grammar
with no e-productions, then L is an LL{k — 1) language.
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THEOREM 8.7

If a Janguage I has an LL(k) grammar without e-productions, k > 2,
then L has an LL{x — 1) grammar.

Progf. By the third step of Algorithm 8.3 we can find an LL{k) grammar
in GNF for L. Let G = (N, X, P, §) be such a grammar. From &, we can
construct L.I{k — 1} grammar G, = (N, Z, P,, §), where

(DN, =Nu{4,a|4d &N, acZ and A — agisin P for some a}
and

(2) P, ={A ~al4,a]|A — anisin P} {[4, a] — «|4 — ao is in P}.
It is left for the Exercises to prove that G, is LL{k — 1). Note that the con-
struction here is an example of left factoring. []

Example 8.3

Let us consider &, the natural LI{k + 1) grammar for the language L, of
Lemma 8.7, defined by

S »aSd]ad
A > bdlb|c

We construct an LL(k) grammar for L, by adding the new symbols
[S, al, {4, B], and [4, c]. This new grammar G} is defined by productions

S ——da[§, a)

A — b4, b] | ¢[A, ]
[S,a] — S4 |4
[4, 8] —> b d|e

[4,¢] —e

It is left for the Exercises to prove that G, and G, are, respectively,
LL(k + Dyand LL(k). [

THEOREM 8.8

For all k& == 1, the class of LL{k — 1) languages is properly included
within the LL(k) languages.

Proof. Clearly, the LI(0) languages are a proper subset of the LI(1)
languages. For k > 1, using Lemma 8.7, the language I, has no LL(k)
grammar without e-productions. Hence, by Theorem 8.4 it has no LL{k — 1)
grammar. Tt does, as we have seen, have an LL{k) grammar. [ ]
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EXERCISES

Give additional examples of grammars which are

(a) LR and (deterministically) left-parsable but not LL.
(b) Right- and left-parsable but not LR.

(¢) LR but not left-parsable.

Convert the following LL{]) grammar to an LL(2) grammar with no
e-productions:

E—> TE’

E'—s + TE|e

T— FT”

T — ~x FT'|e

F—sal(E)

Convert the grammar of Exercise 8.1.2 to an LL(2) grammar in GNF.
Prove part (1} of Theorem 8.3,

Complete the proof of Lemma 8.4.

Complete the proof of Theorem 8.5.

Show that G, constructed in the proof of Theorem 8.7, is LL{k — 1).
Show that a language is LL(O) if and only if it is & or a singleton,

Show that G and G} in Example 8.3 are, respectively, LL(k + 1) and
LL{%).

Prove that each of the grammars in Theorem 8,2 has the properties
attributed to it there.

Show that the language L = {a"b"|n = 1} U [a%c"|n = 1} is a determin-
istic language which is not an LL language. F{inf: Assume that L has
an LL{k) grammar G in GNF. Show that L(G) must contain strings not
in L by considering left-sentential forms of the appearance o't for { > 1.
Show that L = {a"b™ || << m < n} is a deterministic language which is
not LL. Note that L is the concatenation of the two LL(1) langnages
a* and (" |n > 1).

Show that every LL(k) language has an LL{k + 1) grammar in CNF.

Let L=L, WL, - UL, where each L; is an LL language,
1 << i< m. Show that if L is regular, then L, is regular for all £,

Show that if L is an LL language but not regolar, then L is not LL.

Show that the LL languages are not closed under union, intersection,
complementation, concatenation, reversal, or e-free homomorphism.
Hint: See Exercises 8.1.11, 8.1.12, and 3.1.15.
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8.1.17. Prove that THO(&f8) — THO(@) | THO(S) and that if o = f, then
TH(®) < THO(S).

8.1.18. Give algorithms to compute THE(®) and THx, z).
8.1,19, Show that G, of Algorithm 8.1 left-covers & of that algorithm,

8.1.20, Show that every LL{k} grammar G is left-covered by an LL(k 4 1)
grammar in GNF.

8.1.21, For k > 2, show that every LL{k) grammar without e-productions is
left-covered by an LL(k — 1) grammar.

**8.1.22. Show that it is decidable, given an LR(X) grammar G, whether there
exists a &” such that & is LL(k").

BIBLIOGRAPHIC NOTES

Theorem 8.1 was first suggested by Knuth {1967]. The results in Sections §8.1.2
and 8.1.3 first appeared in Rosenkrantz and Stearns [1970], Solutions to Exercises
8.1.14-8.1.16 and 8.1.22 can be found in there also. The hierarchy of LL(k)} lan-
guages was first noted by Kurki-Suonio [1965].

Several earlier papers gave decidability resulis related to Theorem 8.6. Korenjak
and Hopcroft [1966] showed that it was decidable whether two simple LL(1)
grammars were equivalent. McNaughton [1967] showed that equivalence was
decidable for parenthesis grammars, which are grammars in which the right-hand
side of each production is surrounded by a pair of parentheses, which do not
appear elsewhere within any production. Independently, Paull and Unger (1968a]
showed that it was decidable whether two grammars were structurally equivalent,
meaning that they generate the same strings, and that their parse trees are the
same except for labels. (Two grammars are structurally equivalent if and only if
the parenthesis grammars constructed from them are equivalent,)

8.2, CLASSES OF GRAMMARS GENERATING
THE DETERMINISTIC LANGUAGES

In this section we shall see that various classes of grammars generate
exactly the deterministic languages. Among these are the LR(I), (1, 1)-BRC,
simple MSP, and UL (2, I)-precedence grammars. In addition, if a deter-
ministic language has the prefix property, then it has LR(0) and (I, 0)-BRC
grammars. Note that any language can be given the prefix property by
appending a right endmarker to each sentence in the language.

8.2.1. Normal Form DPDA’s and Canonical Grammars

The general strategy of Section 8.2 is to construct grammars from DPDA’s
having certain special properties. These grammars, or simple modifications
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of them, will be in the classes mentioned above. We shall first define the
special properties desired in a DPDA.

DEFINITION

A DPDA P=(Q,Z, 1,8, ¢, Z,, F) is in normal form if it has all the
following properties:

(1} P is loop-free. Thus, on each input, P can make only a bounded num-
ber of moves.

(2) Fhas a single member, g, and if (g,, w, Z,) % {gq,, e, y), theny = Z.
That is, if P accepts an input string, then P is in the final state g, and the push-
down list consists of the start symbol alone.

(3) O can be written as @ = Q, U 0, U Q, U {g,}, where @, Q,, and
Q, are disjoint sets, called the scan, write, and erase states, respectively; ¢,
is in none of these three sets. The states have the following properties:

(a) If gisin @, then for each ¢ € Z, there is some state p_ such that
8{q, a,Z) =(p,, Z} for all Z. Thus, if P is in a scan state, the
next move is to scan the input symbol. In addition, this move is
always independent of the symbol on top of the pushdown list.

(b) Ifgisin Q,, then d(g, e, Z} = (p, YZ) for some p and ¥ and for
all Z. A write state always prints a new symbol on top of the
pushdown list, and the move is independent of the current input
symbol and the symbol on top of the pushdown list.

(c) If g is in Q,, then for each Z e T, there is some state p, such
that (g, ,Z) = (p,, €). An erase state always removes the top-
most symbol from the pushdown list without scanning a new
input symbol.

(d) d(g,, a,Z) = @ for all ain £ U {e} and Z € T'. No moves are
possible in the final state.

4 If (g, w, 2) = (p, e, Z), then w == e. That is, a sequence of moves
which (possibly) enlarges the stack and returns to the same level cannot
occur on e input. A sequence of moves (g, w, Z) 2= (p, e, Z)} will be called
a traverse. Note that the possibility or impossibility of a traverse for given
g, p, and w is independent of Z, the symbol on top of the pushdown list.

In short, a scan state reads the next input symbol, a write state prints
a new symbol on the stack, and an erase state examines the top stack symbaol,
erasing it. Only scan states may shift the input head.

THEOREM 8.9

If L = T* is a deterministic language, and ¢ is not in Z, then L¢ is L(P)
for some DPDA P in normal form.
Proof. We shall construct a sequence of six DPDA’s P,—P,, constructing

P, from P, such that P, , has more of the properties of a normal form
DPDA than £, does. £, will be our desired DPDA in normal form.
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For P, we use Lemma 2.28 to find a continuing, and hence loop-free,
DPDA such that £ = L(P,). We then transform P, into P, using the con-
struction of Lemma 2.21, treating P, as an extended DPDA. The resulting
‘DPDA P, will be continuing, and each state will act either as an erase or write
state or will leave the stack fixed, although any state of P, may advance
the input.

Then we use the construction of Theorem 2.23 to construct P, from P,.
P, will have all the properties of P, and, in addition, will make no e-move
in a final state. ‘

Next, we construct P, from P,, so that P, has al! the properties of P,
mentioned but accepts L¢, where ¢ is not in the alphabet of L. 2, will have
a unique final state, g,, and will only accept if the stack consists of its start
symbol only. P, has two bottom markers, Z, and Z,. Z, is the start symbol,
and the first two moves of P, print Z, above Z, and P,’s start symbol above
Z,. P, then simulates P,. If P, accepts, then oninput ¢, P, enters a new state
q, and erases its stack down to Z . Then, P, erases Z,, enters state g,, and
makes no further moves.

To put P, in normal form, it remains to

(1) Separate the (input) scan operation from the stack manipulations and
(2) Eliminate traverses on input e.

For (1}, we modify P, to create P,. For each state g of P, on which an e-
move is not possible, except ¢ = g¢,, we create new states g, for each a in Z.
We have g transfer to g, on input g and then have P; make the move from
state g, on input e that P, made from state g on input a.

Finally, we observe that it is decidable whether (g, e, Z) |5- (p, e, Z) for
each ¢ and p. This question is independent of Z because of the construction
of P,. An algorithm to decide this question is left for the Exercises. We
observe that all DPDA’s constructed, including P, are loop-free. Hence,
for each state g there is a unique state g’ (possibly ¢’ = g) such that

(4.6, 2)=(q', e 2),

but for no ¢ does {(g’, e, Z) |-~ (g", e, Z). We construct the final DPDA P, in
our sequence from P; by giving g the moves of ¢’ in each situation above.
P, is then the desired DPDA P.

The detailed construction corresponding to these intnitive ideas is left
for the Exercises. [ ]

We next give a method of constructing what we call the canonical gram-
mar from a normal form DPDA. This method is somewhat different from
that of Lemma 2.26 in that here we make use of the special properties of
a normal form DPDA,
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DErmITION

Let M =(Q,%, T, 0,9, Z,, {q,]) be a normal form DPDA with push-
down top at the left. The canonical grammar for P is G = (N, I, P, 1g,q,]),
where

(1) N is the set of pairs [gp] in @ X @ such that g is a scan or write
state and p is arbitrary. The nonterminal [¢p] will generate exactly those
terminal strings w such that A can make a traverse from state g to state p
under input w. That is, [gp] % w if and only if (g, w, Z)|+=(p, e, Z) for all
ZmnT. :

(2) The set of productions P’ is constructed as follows:

(a} If 8(q, a, Z) = (¢, Z), then we add

991 —a
to P. Also, forallr € Q, U 0, we add

lrg'] — [rgla

to P'. Note that here ¢ is a scan state.
(b) If §(g, e, 2) = (5, YZ) and d(p, e, ¥) = (g, €), then we add

(99'] — [sp}
to P',and foralir e Q,U Q,,
[rg] - [rqllsp]

is added to P’. Here, g is a write state and p an erase state.
(3) N and P are constructed by eliminating useless nonterminals and
productions from N’ and P’. The productions in P will be of the forms

(1) lg91 — =,
(2) l9g') — [pp'la,
(3} lag'] — [pp’), and
(4) [991 — [pp' 1.
We say that a production of the ith form is of zype i for 1 < i < 4.
We make the following observations about canonical grammars.
{1) If [q¢'] — a is in P, then g is a scan state.
(2) If [q¢'] — [pp'Ja is in P, then p’ is a scan state.
(3) If [gg'] — [pp’] Is in P, then g is a write state and p’ Is an erase state.
(4) If [4q'] — [pp']lrr1isin P, then p’ is a write state and ' an erase state.

The next observation is also useful, Let ¢ be any write state of M. From



694 THEQRY OF DETERMINISTIC PARSING CHAP. 8

state ¢, M can write only a fixed number of symbols on its pushdown list
before scanning another input symbol. That is, there exists a finite sequence
of states g,,...,q, such that ¢, = ¢, 8{(g,, ¢, Z) = (g,,,, Y. Z)yfor t << i<k
and all Z, and ¢, is a scan state. The sequence has no repeats, and k = 1 is
possible, The justification is that should there be a repeat, then M is not
loop-free; if the sequence is longer than # @, then there must be a repeat.
We call this sequence of states the write sequence for state g.

THEOREM 8.10

G =(N,Z, P, S)is the canonical grammar constructed from a normal
form DPDA M =(Q, %, T, 8,4,, Z,, {q,}), then L(G) = L(M)} — {e}.

Proof. Here we shall prove that [¢¢'] generates exactly the input strings
for which a traverse from g to g’ is possible. To do so, we shall prove the fol-
lowing statement inductively:

8.2.1) [qq'] = w for some n and w # e if and only if
g, w,2)|=(q", e, 2Z) for some m > 0 and arbitrary Z

If: The basis, m = 1, is trivial. In this case, w must be a symbol in Z,
and [gg] — w must be a production in P. For the inductive step, assume
that (8.2.1) is true for values smaller than m and that (g, w, Z) = (¢, e, Z).
Then the configuration immediately before (4', e, Z) must be either of the
form (p, a, Z) or (p, &, YZ).

In the first case, p is a scan state, and (g, w, Z) "= {p, a, Z). Hence,
(g. w', Z)E=L (p, e, Z) if wa =w. By the inductive hypothesis, [¢p] 2w
By definition of G, [g¢] — [gplais in P, so [¢g'] = w.

In the second case, we must be able to find states » and s and express
W as w,w,, so that

(g, wywy, Z) 122 (r, Wy, Z)
= (s, w,, YZ)
[ (p, e, YZ)
=(q'.e2)

where m, <\ m, m, <. m, and the sequence (s, w,, YZ) |2 {p, e, YZ) never
erases the explicitly shown Y. If m, = 0, then r = g and w, = w. It follows
that [gq") — [sp] is in P. It also follows from the form of the moves that
(s, w,, Y) 22 (p, e, Y), and hence, [sp] = w,. Thus, {gq'] = w.

If m, > 0, then (g, w,, Z)}= (r, e, Z), and so by hypothesis, [gr] = w,.
As above, we also have [sp] = w,. The construction of G assures that
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[gq'] — [qrllsp] is in P, and so [ggq'] 2w

Only if: This portion is another straightforward induction and is left
for the Exercises.

The special case of (8.2.1} where ¢ = g, and ¢' = g, yields the theorem.

il

COROLLARY 1

If L is a deterministic language with the prefix property and e is not in L,T
then L is generated by a canonical grammar,

Proaf. The construction of a normal form DPDA for such a language is
similar to the construction in Theorem 8.9, [ ]

COROLLARY 2

If L = Z* is a deterministic language and ¢ is not in X, then L¢ has
a canonical grammar. [}

8.2.2. Simple MSP Grammars and Deterministic Languages

We shall now proceed to prove that every canonical grammar is & simple
MSP grammar. Recall that a simple MSP grammar is a (not necessarily UD)
weak precedence grammar G = (N, Z, P, S) such that if A — x¢ and B — «
are in P, then /(4) M I{B) = &, where I(C) is the set of nonterminal or ter-
minal symbols which may appear immediately to the left of C in a right-
sentential form; i.e, {C) = {X|X < Cor X = C}.

We begin by showing that a canonical grammar is a (1, 1)-precedence
grammar (ndt necessarily Ul).

LEMMA 8.8

A canonical grammar is proper (i.e., has no useless symbols, e-produc-
tions, or cycles).

Progf. The construction of a canonical grammar eliminates useless
symbols and e-productions. It suffices to show that there are no cycles.
A cycle can occur only if there is a sequence of productions of type 3, say
lg.4:) — [gie1@: 1), | <X i <j, where [¢,43] ={g,q)}. But then the rules for
the construction of a canonical grammar imply that the write sequence for
g, begins with ¢,,¢,,...,4; and thus has a repeat. This would imply that
the underlying normal form DPDA has a loop, and we may therefore con-
clude that no cycles occur. [

tNote that if L has the prefix property and e is in L, then L = {e}.
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LeMMA 8.9

A canonical grammar is a (not necessarily UI) (I, 1)-precedence gram-
mar.}

Proof. Let G =(N,Z,P, 5 be a canonical grammar. We consider
the three possible precedence conflicts and show that none can oceur.

Case 1. Suppose that X < ¥ and X == Y. Since X — ¥, there must be
a production 4 — XY of type 2 or 4. Thus, X = [g¢], and either ¥ € Z
and ¢’ is a scan state or ¥ = [pp'] and p’ is an erase state.

Since X < Y, there must also be a production B — XC of type 4, where
C <> Yu for some . Let X = [gq'] as above. Then g’ must be a write state,
because B — XC is a type 4 production. Moreover, ¥ must be of the form
[pp'], where p’ is an erase state, and hence 4 — X ¥ is of type 4. We may con-
clude from the form of type 4 productions that p is the second state in the
write sequence of ¢’. Because B — XC is a type 4 production, we may also
conclude that C = [pp”] for some p”.

Now, let us consider the derivation C':_:f Yo, which we may write as

[Sls’l] ﬁ [SZS;]mZ ﬁ: Tt T: [Sn‘slt:]“’n,

where [5,51] = [pp”] and [s,5] = [pp’]. We observe from the form of pro-
ductions that for each ¢ either 5,,, = s, (if [5,5}] is replaced by a production
of type 2 or 4) or s,,, is the state following s, in the write sequence of ¢’ (if
[s.57] is replaced by a production of type 3). Only in the latter case will si,, be
an erase state, and thas we may conclude that since 5}, (= p’} is an erase state,
s, (= p) follows 5,_, on the write sequence of ¢’. Since s,_, is either p or fol-
lows p on that sequence, we may conclude that p appears twice in the write
sequence of ¢'. Since this would imply a loop, we conclude that there are no
conflicts between < and == in a canonical grammar.

Case2: X < Yand X = Y. Since X < ¥, we may conclude as in case 1
that X = [g¢’), where ¢’ is a write state. Butif X » ¥, then there is a produc-
tion 4 — BZ, where B = o X and Z = ¥YB. The form of the productions
assures us that if B = a{gq’], then ¢’ is an erase state. But we already found
g’ to be a write state. We may conclude that no conflicts between < and =
exist.

Case 3: X= Y and X = Y. Since X == ¥, we may conclude as in case 1
that X =[gq’]l, where ¢’ is a write or scan state. But, since X » ¥, we may
conclude as in case 2 that ¢’ is an crase state.

Thus, a canonical grammar is a precedence grammar. [ ]

To prove that a canonical grammar is simple MSP, we need only prove it to be weak
precedence, rather than (1, 1)-precedence. However, the additional portion of this lemma
is interesting and easy to prove.
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THEOREM 8.11
A canonical grammar is a simple mixed strategy precedence grammar.

Proof. By Theorem 8.10 and Lemmas 8.8 and 8.9, it suffices to show that
for every canonical grammar G = (N, X, P, )

(DIf A—oaXYB and B— Yf are in P, then X is not in /(B); and
() IfA— oand B— a are in P, 4 == B, then I(4) " I(B) = @&.

We have (1) immediately, since if X' <« B or X == B, then X < Y. But if
A— gXYf is a production, then X == 7, and so we have a precedence
conflict, in violation of Lemma 8.9.

Now let us consider (2). 4 -— « and B — o cannot be distinct type 2
productions, for if 4 = [¢¢'], B = [pp’], and & = [rr']a, and if G comes from
a DPDA M = (Q, %, T, 6. 9,, Z,, {g,}), we have

5(’”, a, Z) = (qf) Z) = (P'> Z)

Thus ¢ = p’. But the form of type 2 productions assures us that g =p = r,
so A = B, which we assumed not to be the case. A similar argument, left
for the Exercises, shows that 4 — & and B -—— @ cannot be distinct type 4
productions.

Let us now consider the case & = g, 1.e., where 4 — ot and B — ¢ are
productions of type 1. In general, if X < Y or X == Y, we have seen that X
must be a nonterminal (proof of Lemma 8.9, case 1). Thus, suppose that
C is in both /{(4) and /(B). Then there exist productions D, — CD, and
E, — CE,,where D, = AP and E, <> By. The cases A = D,orB=E,are
not ruled out. Let C =[gq’], 4 = [pp’], and B = [r+']. Then p and r are scan
states, since [pp’] — a4 and [rr'] — @ are type 1 productions. By a previous
argument, p and » must each appear in the write sequence of ¢’, and thus
each must end that sequence. Hence, p == r. Since

Hp,a,2y=p,2)=(",2)

we have p' =r" and 4 = B, in contradiction. Thus, 4 — ¢ and B— «
may not be of type 1.

Last, suppose that 4 — « and B — « are of type 3. As in the previous
paragraph, let C be in {(A) n i(B), with C ={gq'], 4 =[ps], and B =[r'].
Then p and r are each in the write sequence of ¢'. If p = r, let 8(p, e, Z)
be (s, ¥). Then & = [55'] for some 5', and 6(s', e, ¥) ={(p’, &) = (+', €). Thus,
r" = p’, and again A = B, which we know not to be the case,

We conclude that p == ». However, if & = [ss7], then s follows both p
and r in the write sequence of ¢ and thus appears twice. We conclude that
A — o and B — o are not of type 3 and that condition (2) does not occur,
Thus, & is simple MSP. [
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As a consequence of Theorem 8.11, L¢ has a simple MSP grammar for
every deterministic language I, where ¢ is an endmarker, In fact, we can prove
more, by showing that ¢ can be removed from the end of each string generated
by a canonical grammar; the modified grammar will also be simple MSP.
As the construction which eliminates endmarkers will be used several times,
we shall give it the status of an algorithm.

ALGORITHM 8.4

Elimination of the right endmarker from the sentences generated by
& proper gramimar.

Input. A proper grammar G = (N, X U {¢}, P, §), where ¢ is not in X
and I{G) is of the form L¢ for some L = T+,

Outpur. A grammar G, = (N, X, P,, S) such that L(G ) = L.

Method,

(1) Remove all productions of the form A4 — ¢ from 2.

(2) Replace all productions in P of the form 4 — af, where o = ¢, by
4 —a.

B3 IfAd—aBisin P, a = e, andB=Z>¢, then add 4 — o to P.

(4) Remove useless nonterminals and productions from N and the
resultant set of productions. Let N, and P, be the nonterminals and produc-
tions remaining. [

THEOREM 8.12
If &, is the grammar constructed in Algorithm 8.4, then L(G,) = L.

Proof. Since every sentence w in £{G) is of the form x¢ for x € T+, it
follows that for every 4 € N, either A:ig u implies u ¢ L7, or A-—% u
implies ¥ = v¢, where v € T* Let us call nonterminals of the first kind
intermediate and nonterminals of the latter type completing. A straightfor-
ward induction on the length of derivations shows that if A is an intermediate

nonterminal, then A :Z> u if and only if 4 —;f:’ u, u € L* Likewise, if 4 is
a completing nonterminal, then A4 -_f—;;- v¢ if and only if 4 % v, The proof is

left for the Exercises.
We now have S=» w¢ if and only if S=>w. Thus, L(G,) = L. []

THEOREM 8.13

If L is a deterministic language and e is not in L, then L is generated by
a simple MSP grammar.

Proof. Let L < X* and ¢ not be in Z. Then by Corollary 2 to Theorem
8.10, L¢ is generated by a canonical grammar G = (N, I, £, $), which by
Theorem 8.11 is a simple MSP grammar. Let G, = (N, I, P,, §) be the
grammar constructed from G by Algorithm 8.4. Then L(G,) = L, and we
shall show that ¢, is also simple MSP.
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It is easy to show that &, will have no e-productions or useless symbols.
If &, had a cycle, it would have to involve a production 4 — B which is in
P, bui'not in P. Suppose that 4 — BX is in P for some X such that X:*> ¢

Suppose further that 4 = B => A. Tt follows that 4 :> Aw¢ for some w in
(X U [¢D¥*, and hence G generates words with more than one ¢. Since we
know this not to be the case, we conclude that | is proper,

Next, we must show that 7, is a precedence grammar. Since ¢ appears
only at the right-hand end of strings generated by S in G, it is easy to show
that the only new relations for G, that do not hold for G invelve § {the end-
marker in the precedence formalism) on the right. But X > § is the only
relation that can hold with § on the right, and so G, must be a precedence
grammar,

Third, we must show that no new conflicts 4 — ¢X¥Yf and B— ¥§,
with X in {(B), occur in & . As in Theorem 8.10, the simple precedence
property rules out such problems.

Last, we must show that there is no pair of productions A4 — a and
B— g in P, where 4 == B. Three cases need to be considered.

Case 1: Suppose that ¢ = C and that A — CX and B — CY are in P,
where X=Z> #and Y% ¢. Let C =[qq'). If ¢’ is a scan state, then X = ¥ = £
As we saw in the proof of Theorem 8.11, the left-hand side of a type 2 produc-
tion is uniquely determined by its right-hand side, and so 4 = B, contirary
to hypothesis. If g’ is a write state, let p be the unique scan state in the write
sequence of ¢’ and let 8(p, ¢, Z) = (p', Z), where § is the move function of
the DPIDA from which G was constructed. After entering state p’, the DPDA
can do nothing but erase its stack, because if it scans or writes, either it
acceplts a string with ¢ in the middle or X or Y are useless symbols. There is
then a unique state p'’ in which the DPDA finds itself after erasing the sym-
bols pushed on the pushdown list during the write sequence of ¢, Thus,
X = Y again, and we conclude that 4 = B.

Case 2: Suppose that &« = C and that A — C and B— CX are in P,

where X_ii»;f If C =[gq'], then g" is an erase state, as 4 — C is a type 3
production. But since B— CX is a type 2 or 4 production, ¢’ must be a
write or scan state. We thus have a contradiction,

Case 3:If4 = Cand 4 — CX and B — C are in P, then we have a situ-
ation symmetric to case 2.
We conclude that G, is simple MSP. []

8.2.3. BRC Grammars, LR Grammars, and
Deterministic Languages

We shall show that a canonical grammar is alse a {1, 0}-BRC grammar
and hence, by Theorem 521, an LR(0} grammar. Intuitively, the reason
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that no lookahead is needed for the shift-reduce parsing of a canonical
grammar is that every terminal and every nonterminal [gq'], where ¢" is an erase
state, indicates the right-hand end of a handle. We shall give a formal proof
incorporating this idea.

THEOREM 8.14
A canonical grammar is a (1, 0)-BRC grammar,

Progf. Let G = (N, Z, P, §) be a cancnical grammar. Suppose that G
were not (1, 0)-BRC. Then we can find derivations in the augmented grammar
G = (N U S}, 5, P U S — 8}, 8) namely $5"=> aXAw = aXpw and
NAN :> yBx =» ydx, where pdx can be written as o Xﬁy with | x| <C|y]| but
& XAy = ;va We observe that every right-sentential form of & has an open
portion consisting of nonterminals only, and so X N and «, &’ and y are
in N*. We shall consider four cases, depending on the type of the production
A—f
Case 1: Suppose that § = @, where a € X, Since | x| < |y |, we must have
x = y and either § = a or § = Xa. In the first case, X is in I(4) M I(B),
which can only occur if 4 = B, since we know G to be simple MSP. In the
second case, we have productions 4 — a and B — Xa, with X = I{4),
again violating the simple MSP condition.

Case 2: Suppose that § = Ca for some C € N. Then since | x| << |y,
we must have x =y and § =a or § = Ca. If § = Ca, then 4 = B, since
productions of type 2 are uniquely invertible, as we saw in Theorem 8.11,
It then follows that &' ¥4y = yBx, contrary to hypothesis. If § = a, we have
C == a from 4 — Ca. Since C must be the last symbol of y, we have C << B
or C = B, and hence, C < a, in violation of the fact that & is a precedence
grammar.

Case 3: Suppose f = C for some C & N. Either 6§ =C, d=a or
0 = Caforsomeq € L,ord = XC.If § = C, then Xisin{4) " {(B), which
violates the simple MSP condition, Let C =[gq']. Then ¢’ is an erase state.
If 8 = a then C is the last symbol of y. Since B appears to the right of C
in a right sentential form, ¢’ must be a write state, We thus have a contra-
diction, If § = Ca, then ¢" would be a scan state, and so we eliminate this
possibility. If § = XC, then since X is in /{A4), we have a violation of the
simple MSP condition, with productions 4 — C and B — XC.

Case 4: Suppose that § = CD for C and D in N. Then ¢ is one of D, aor
Da for some a € X, or CD, Since type 4 productions are uniquely invertible
(proof of Theorem 8.11), if § = CD, then 4 = B and a’'X4y = yBx. Let
= [gq]. Because of production A — CD,q’ is an erase state. If § = Da,
then ¢" would be a scan state, and so we eliminate this possibility. If § = q,
then as in Case 3, we can show that ¢’ is a write state. If § = D, then the
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last symbol of » is C, and so C is in /(B). With productions 4 — CD and
B — D, we have a violation of the simple MSP condition. []

COROLLARY 1

Every deterministic language L with the prefix property has a (I, 0)-
BRC grammar.,

Proof. If e is not in L, the resvlt is immediate. If e ¢ L, then L = {e}.
It is easy to find a (I, 0-BRC grammar for this language. []

COROLLARY 2

If L < Z*isa deterministic language and ¢ is notin I, then L¢ has a (1, 0)-
BRC grammar. []

We can now prove a theorem about arbitrary deterministic languages
which is almost a restatement of Corollary 2 above,

THEOREM 8.15
Every deterministic language is generated by a (I, 1)-BRC grammar.

Proof. Let G be a canonical grammar and construct &, from & by
Algorithm 8.4. Tt is necessary to show that G, is (1, 1)-BRC. Intuitively,
the problem is to recognize when a production 4 — B of G|, which is not
a production of G, is to be used for a reduction. However, the one-symbol
lookahead allows us to make such a reduction only when 3, the BRC end-
marker, is the lookahead. A formal proof is left for the Exercises. [ ]

THEOREM 8.16

{1} Every deterministic language with the prefix property has an LR(0)
grammar.

(2) Every deterministic language has an LR(I) grammar.

Proof. From Theorem 5.21, every (m, k)-BRC grammar is an LR(k)

grammar. The result is thus immediate from Theorem 8.15 and Coroilary i
to Theorem 8.14. [}

8.2.4, Extended Precedence Grammars and
Deterministic Languages

Up to this point we have seen that if L is a deterministic context-free
language, then

{1} There is a normal form DPDA P such that L(P) = L¢,

{(2) There is a simple mixed strategy precedence grammar & such that
L(G) = L — {e}, and

(3) There is a (1, 1)-BRC grammar G such that L(G) = L.
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We shall now show that there is also a UI (2, 1}-precedence grammar G
such that L{(G) = L — {e}. We already know that a canonical grammar is
a (1, 1)-precedence grammar, although it is not necessarily Ul. To obtain
our result, we shall perform several transformations on a canonical grammar
that will convert it to a Ul (2, 1)-precedence grammar. These transformations
are summarized as follows:

(1) Bach nonterminal is augmented to record the symbeol to its left in
a rightmost derivation.

(2) Single productions are eliminated by replacing the productions
A— Band B— ¢, |---|a, by the productions 4 — «,|---|&,,.

(3) Nonterminals are “split” so that each nonterminal either has one
production of the form A4 — a or has no production of that form.

(4) Finally, nonterminals are “strung out” to restore unique invertibility
to nonterminals whose production is 4 — a. That is, a set of productions
A, —a, ..., A, — a will be replaced by 4, — A4,,...,4,_, — A, and
Ay — a.

The first three operations each preserve the (I, I)-precedence nature of
the grammar. The fourth step may make the grammar (2, 1)-precedence at
worst, but the fourth step is needed to ensure unique invertibility. We now
give the complete algorithm.

ALGORITHM 8.5
Conversion of a canonical grammar to a Ul (2, 1)-precedence grammar.
Input. A canonical grammar G = (N, X, P, 8).
QCutput. An equivalent uniquely Invertible (2, 1)-precedence grammar
G, =(N,Z, P, S,
Method.

(1) Construct &, = (N, T, P,, S,) from G as follows:

(a) Let N, be the set of symbols 4,, where 4 € Nand X € N U {$}.

(b} Let §; = S;.

{(c) P} consists of productions 4y — By, Ay — ByCy, Ay — Bya,
and Ay — g, for all X « N U {$], whenever 4 — B, 4-— BC,
A — Ba, and 4 — g are in P, respectively.

(d) N, and P, are formed from Nj and P!, respectively, by deleting
useless symbols and productions.

(2) Construct G, = (N,, I, P,, S,) from G, as follows:

{a) Remove all single productions from P, by performing the follow-
ing operation until no further change is possible. If 4 — B is
currently a production of P,, add 4 — & for each production
B— qin P, and delete 4 — B.

(b) Let N, and P, be the resulting set of useful nonterminals and
productions.
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(3) Construct G, = (N,, X, P,, S, from G, as follows:
{a) Let Nj consist of N, and all symbols 4% such that 4 — ais in P,.

(b) Add to P; the production 4° — a for alt 47 in Nj,
(¢ fAisin N,, A — aisin P,, and « is not a single terminal, add
A — o' to P for each o’ in 4™ (o}, where A is the homomorphism:

hla) =a foralla ¢ Z
h(B*) = B for all B* ¢ Nj
HBy=B8 forallB € N,

(@) Let N, and P, be the useful portions of Nj and P4.
{4) Construct G, = (N,, Z, P, S,) from G, as follows:
{a) N, =N, and S, = S§,.
(b) P, is P, with the following change. If 4, —a, 4,—a,...,
A, — a are all the productions with g on therightin P, in some
order and k& > 1, then these productions are replaced in P, by
A — Ay, A, — Ay o A — A, and 4, — a. ]

Example 8.4
Let G be defined by the following productions:

§S—— AB
A—salb
B— AC
C—D
D—>a

Then G, is defined by
Sy — A8,
As—)d‘b
B, —> A,C,
Ay,—>ailb
C,— D,
D,—>a

In step (2) of Algorithm 8.5, C, — D, is replaced by C, — a. D, is then

useless.
In step (3), we add nonterminals 4§, 4%, 4%, 4%, and C%. Then Ag, 4,

and C, become useless, so the resulting productions of ¢, are

Sy — A8, A58,
$—a
A3 —> b
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B — A5C5| A4C5
a—a
AL — b

4—da

In step (4), we string out A§, 4%, and €7, and we string out 4§ and 4%,
The resufting productions of G, are

Sg— A8, | A%B,
B, — ACY | ALCY
A§ —> 47

G C5
Cy—a
Af — A4

A — b []

We shall now prove by a series of lemmas that &, is a UI (2, 1}-precedence
grammar.

Lemma 8.10
In Algorithm 8.5,

(1) L(G)) = L(G),

(2) G, is a {1, 1)-precedence grammar, and

{3y f A — g and B-— & are In P, and « is not a single terminal, then
A=258.

Proof. Assertion (1) is a straightforward induction on lengths of deriva-
tions. For (2), we observe that if X and Y are related by <, ==, or » in G|,
then X" and ¥, which are X and Y with subscripts (if any)} deleted, are simi-
larly related in G. Thus G, is a (I, 1)-precedence grammar, since G is.

For (3), we have noted that productions of types 2 and 4 are unigquely
invertible in G. That is, if 4 — CX and B— CX are in P, then 4 = B.
It thus follows that if 4, — C, X, and B, — C, X arein P, then 4, = B,.
Similarly, if X is a terminal, and 4, — Cy X and B, — C, X are in P,, then
A4, = B,.

We must consider productions in P, derived from type 3 productions;
that is, suppose that we have 45 — C, and B, — C,. Since we have elimi-
nated useless productions in G, there must be right-hand sides XD and XE
of productions of & such that 0 =:> Aa and E=Z> Bf for some & and f.
Let X ={gq'], 4 = [pp’], B =[#'], and C ={ss'). Then p and r are in the
write sequence of ¢, and s follows both of them. We may conclude that
p=r. Since A— € and B— C are both type 3 productions, we have
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p’ =r’. Thatis, let § be the transition function of the DPDA underlying G.
Then &p, e, Z) = (s, YZ) for some ¥, and &(s",e, V) = (p’,e) = (+', €).
Thus, A = B, and 4, = B,.

The case X == § is handled similarly, with g,, the start state of the underly-
ing DPDA, playing the role of ¢’ in the above. [ ]

Lemma 8.11

The three properties of &, stated in Lemma 8.10 apply equally to G, of
Algorithm 8.5,

Proof. Again {1} is a simple induction. To prove (2), we observe that
step (2) of Algorithm 8.5 introduces no new right-hand sides and hence no
new = relationships. Also, every right-sentential form of G, is a right-
sentential form of G, and so it is easy to show that no < or = relationships
are introduced.

For (3), it suffices to show that if A, — B, is a production in P,, then
B, appears on the right of no other production and hence is useless and
eliminated in step (2b). We already know that there is no production
Cy —> B, in P, if C'# A. The only possibilities are productions C, — B,aq,
Cy — ByD,, or C, — X,B,. Now 4 — Bis a type 3 production, and so if
B ={gq’], then ¢’ is an erase state. Thus, Cy — Bya and C, — B, D, are
impossible, because € — Ba and C — BD are of types 2 and 4, respectively.

Let us consider a production C, — X, B,. Let X =[pp’) and 4 = [#+'].
Then g is the second state in the write sequence of p’, because C — XB is
a type (4) production. Also, since A — B is a type 3 production, g follows
i any write sequence in which » appears. But since X can appear immedi-
ately to the left of A in a right-sentential form of &, » appears in the write
sequence of p’, and r = p’. Thus, g appears twice in the write sequence of
p’, which is impossible. ]

LEMMA 8.12

The three properties of G, stated in Lemma 8.10 apply equally to G,
of Algorithm 8.5,

Proof. Again, (1) is straightforward. To prove (2), we note that if X and
Y are related in G, by <, ==, or =, then X" and ¥’ are so related in G,
where X’ and Y’ are X and Y with superscripts (if any) removed. Thus, G,
is (1, D-precedence, and (2) holds. Part (3) is straightforward. []

THEOREM 8.17

G, of Algorithm 8.5 is a Ul (2, 1)-precedence grammar,

Proof. Since for each a in E, P, has at most one production 4 — a, it
should be clear that &, is UL It is easy to show that the only new



706 THEORY OF DETERMINISTIC PARSING CHAP. 8

(L, 1)-precedence conflicts which might be introduced involve new relations
(1) A% 3> band (2} C < A43.

Conflicts of form (1} occur because some B¢ = & or B¢ == b holds in G,
and B %‘a» A%. We might also have 4% == bor 4% << bin G, and hence in G,.

Conflicts of form {2) occur by essentially the same mechanism. We could
have C=BZ or C < BL in G,, and BZ *_gf A%, We could also have == 43
in G, and hence in G,. (C' is C with subscripts and superscripts deleted.)

We shall show that potential conflicts of form (1) are resolved by con-
sidering (2, 1)-precedence relations. Those of form (2) cannot occur.

Case I: Suppose for some C € N, that C4% = b in G, and that either
CA%L = b or CA% < bin both ¢, and G,. Then C = X% for some Z and 4
the latter symbol may not actually appear. We observed that since A% = b
is a relation in &, but not in G,, there must exist a derivation B¢ %:- A% such
that € can appear to the left of Bf in a rightmost derivation of G,. Thus,
Y =X

We must show that there cannot be two distinct nonterminals B% and 4%
in N,. That is, there cannot exist By and A, in N,, with 4 = B, 4 :} a,

and B :’Z} a Let A =[gq'], 8 =[pp), and X = [rr']. We observe that g and

p are both in the write sequence of r'. Also, if [ss] :i} a and [s57] :i} a, then
referring to the DPDA underlying G, we may conclude that s° = ', Thus,
g’ 1s uniquely determined by ¢, and p" by p, given that [g4'] :Z:- aand [pp’] :i} a.

It follows that since ¢ and p are in the write sequence of ' and g == p,
then either B appears as a sentential form in the derivation A :j;:- a or A

appears in B :Za» a.

Assume the former without loss of generality. Then there is a nontrivial
derivation of B from A in G, and this derivation must use only type (3) pro-
ductions. Then A4, %}, B,, and B, should have been removed in step (2)
of Algorithm 8.5. In contradiction, we conclude that B¢ does not exist in G,.

The case where § replaces C in the above is handled similarly. Here, g,,
the start state of the underlying DPDA, plays the role of r'.

Case 2: Suppose that for some C, we have C < 4% in G, and C== 4%
in both G, and &,. Then there is some B% such that C < B% or C = B% in
&, and By %:» A%. By the same argument as in case 1, we conclude that
C = X% and that 4, %? B,, or vice versa. Thus, 4, or B, should have been
removed in step (2) of Algorithm 8.5. Note that there cannot be a (I, 1)-

precedence conflict here, let alone a (2, 1)-precedence conflict.
We conclude that G, is a UT (2, I)-precedence grammar. [_]

COROLLARY 1

Every deterministic language L with the prefix property but without e
has a UI (2, 1)-precedence grammar. [ |
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COROLLARY 2

If L = E*is a deterministic language and ¢ is not in £, then L¢ has a Ul
(2, 1)-precedence grammar. []

‘We can strengthen Theorem 8.17 by deleting the endmarker in Corollary 2.

THEOREM 8.18

Every deterministic language without e has a Ul (2, 1)-precedence grani-
mar.

Proof. Let L¢ have canonical grammar G. Apply Algorithm &5 to G and
Algorithm 8.4 to the resulting G,. We claim that the grammar constructed
by Algorithm 8.4 is also a UL (2, 1}-precedence grammar. The proof is left
for the Exercises. []

EXERCISES

8.2,1. Find a nommal form DPDA, accepiing
@) (wew®|w € (a + b)*L
(b) {ambrambm |m, n > 1.
) L(Go).

8.2.2. Find the canonical grammar for the normal form DPDA
P = ({QD, 1,492,493, q'f}s {0: ]}: {Zg, le X}, 6; 99, ZG; [qf})
where & is given, for all ¥, by

5(90, e, Y)=1(g,7Z,Y)
69,0, ) = (g2, ¥)
g, I, ¥) = (g5, Y)
32, €, Y) = (g;, XY)
8(gs. &, X) = (g1, €)
83, e, Z1) = (g7, €)
6(qs, e, Zy) = (gy, Ot

8.2.3. Identify the write, scan, and erase states in Exercise 8.2.2.
8.24. Give formal constructions for Theorem 8.9.
The following three exercises refer to a canonical grammar
G={N,% P 5.

8.2.5. Show that
{a) If [gg'] — ais in P, then g is a scan state.
(b) If [gg’] — [pp’la is in P, then p’ is a scan state.

1This rule is never used but appears for the sake of the normal form,
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8.2.6.

8.2.7.
8.2.8.
8.2.9,
8.2.10.

8.2.11.
8.2.12.
8.2.13.
*8.2.14.

8.2.15.

**8.2.16.

8.2.17.

*8.2.18.

8.2.19.
*8.2.20.

**8.2.21.

*8.2.22.

(c) If[gg’] — [pp7]is in P, then g is a write state and p’ an erase state.

(d) If [q¢') — [pp'][rr’] is in P, then p’ is a write state and »” is an erase
state.

Show that if [g¢7)[pp’] appears as a substring in a right-sentential form

of G, then

{a) ¢’ is a write state.

g +p.
{c) p is in the write sequence of ¢,

Show that if [gg7] = afpp’], then p’ is an erase state,
Prove the “only if” portion of Theorem 8.10.
Give a formal proof of Theorem 8.15,

Use Algorithm 8.5 to find UI (2, 1)-precedence grammars for the fol-
lowing deterministic languages:

@) {00 |n > 0} U (00 n = O}

(b) {(07al™0" | 2= 0, m 2= 0} L {0™H1"0F{n = 0, m = 0],

Complete the case X = $ in Lemma 8.10.

Complete the proof of Theorem 8.17.

Prove Theorem 8.18.

Show that a CFL has an LR(0) grammar if and only if it is determin-
istic and has the prefix property.

Show that a CFL has a {1, 03-BRC grammar if and only if it is deter-
ministic and has the prefix property.

Show that every deterministic language has an LR(1) grammar in
(a) CNF,
{b) GNF.

Show that if 4 — & and B — o are type 4 productions of a canonical
grammar, then 4 = B.

If G of Algorithm 8.4 is a canonical grammar, does ¢, constructed in
that algorithm right-cover G? What if & is an arbitrary grammar?

Complete the proof of Theorem 8.12.

Show that every LR(k) grammar is right-covered by a (1, £}-BRC
grammar. Hint: Modify the LR(k) grammar by replacing each ter-
minal & on the right of productions by a new nonterminal X, and
adding production X, — a. Then modify nonterminals of the grammar
to record the set of valid items for the viable prefix to their right,

Show that every LR(k) grammar is right-covered by an LR(k) grammar
which is also a (not necessarily UI} (1, 1)-precedence grammar.

Show that G, of Algorithm 8.5 right-covers G of that algorithm,
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Open Problems
8.2.23. Is every LR{k) grammar covered by an LR(1) grammar?

8.2.24. s every LR(k) grammar covered by a UL (2, 1)-precedence grammar?
A positive answer here would yield a positive answer to Exercise 8.2.23.

8.2.25. We stated this one in Chapter 2, but no one has solved it yet, so we
shall state it again. Is the equivalence problem for DPDA’s decidable?
Since all the constructions of this section can be effectively carried out,
we have many equivalent forms for this problem. For example, one
might show that the equivalence problem for simple MSP grammars
or for UI (2, 1)-precedence grammars is decidable.

BIBLIOGRAPHIC NOTES

Theorem 8.11 was first derived by Aho, Denning, and Ullman [1972]. Theorems
%.15 and 8,16 initially appeared in Knuth [1965]. Theorem 8.18 is from Graham
[1970]. Exercise 8.2.21 is from Gray and Harrison [1969).

8.3. THEORY OF SIMPLE PRECEDENCE LANGUAGES

We have seen that many classes of grammars generate exactly the deter-
ministic languages. However, thete are also several important classes of
grammars which do not generate all the deterministic languages, The LL
grammars are such a class, In this section we shall study another such class,
the simple precedence grammars. We shall show that the simple precedence
languages are a proper subset of the deterministic languages and are incom-
mensurate with the LL languages. We shall also show that the operator
precedence languages are a proper subset of the simple precedence languages.

8.3.1. The Ciass of Simple Precedence Languages

As we remarked in Chapter 5, every CFL has a Ul grammar and a prece-
dence grammar. When these properties occur simultaneously in a grammar,
we have a simple precedence grammar and language. It is interesting to
examine the power of simple precedence grammars. They can generate only
deterministic languages, since each simple precedence grammar has a deter-
ministic parser. We shall now prove the two main results regarding the class
of simple precedence languages. First, we show that

L, ={a0"in> 13U (B0 [n > 1}

is not a simple precedence language.
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THEOREM 8.19

The simple precedence languages form a proper subset of the deterministic
languages.

Proof. Clearly, every simple precedence grammar is an LR(1) grammar,
To prove proper inclusion, we shall show that there is no simple precedence
grammar that generates the deterministic language L,.

Intuitively, the reason for this is that any simple precedence parser for L,
cannot keep count of the number of 0°s in an input string and at ihe same time
know whether an @ or a b was seen at the beginning of the input. If the parser
stores the first input symbol on the pushdown list followed by the succeeding
string of 0’s, then, when the I's are encountered on the input, the parser will
not know whether to match one or two 1’s with each 0 on the pushdown list
without first erasing all the 0’s stored on the stack. On the other hand, if
the parser tries to maintain on top of the pushdown list an indication of
whether an a or b was initially seen, then it must make a sequence of reduc-
tions while reading the 0’s, which destroys the count of the number of s
seen on the input.

We shall now construct a formal proof motivated by this intuitive reason-
ing. Suppose that & = (N, Z, P, 5§} is a simple precedence grammar such
that L(G)} = L,. We shall show as a contradiction that any such grammar
must alse derive sentences not in L.

Suppose that an input string a0"w, w € 1*, is to be parsed by the simple
precedence parser constructed for & according to Algorithm 5.12. As a0®
is the prefix of some sentence in L, for all #, each O must eventually be shifted
onto the stack. Let ¢, be the stack contents after the ith 0 is shifted. If &, = &,
for some i < J, then a0/l* and 4071/ would either both be accepted or both
be rejected by the parser, and so a, # &, if i # /.

Thus, for any constant ¢ we can find an o, such that |2, | > ¢ and «, is
a prefix of every a, j = i (for if not, then we could construct an arbitrarily
long sequence «,, o, . . . such that {a,, | = |, | for £ > 2 and thus find
two identical a’s). Choose i as small as possible. Then there must be some
shortest string f ¢ e such that for each £, o,f* is w,,,,, for some m > 0,
The reason is that since @, s never erased as long as 0’s appear on the input,
the symbols written on the stack by the parser do not depend on a, The
behavior of the parser on input al” must be cyclic, and it must enlarge the
stack or repeat the same stack contents (and we have just argued that it may
not do the latter).

Now, let us consider the behavior of the parser on an input string of
the form b0"x. Let y, be the stack after reading 50, We may argue as above,
that for some y,, j as small as possible, there is a shortest string 6 # e such
that for each k, y,6* = v, , for some g > 0. In fact, since p, is never erased,
we must have § = ff and ¢ = m, That is, a simple induction on r > 0 shows
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that if after reading ¢0'*" the stack holds g, then after reading 50/*7, the
stack will hold ye,.

Consider the moves made by the parser acting on the input string
aly*mx[i+mk - After reading a0**, the stack will contain &, 8% Then let s be
the largest number such that after reading [**=%~¢ the parser will have o,
left on its stack for some { in (N U X)* (i.e., on the next | input, one of the
symbols of &, s involved in a reduction). It is easy to show that s is unique;
otherwise, the parser would accept a string not in L,.

Similarly, let r be the largest number such that beginning with y,8* on
its stack the parser with input 129*7%~7 makes a sequence of moves ending
up with some y { on its stack. Again, r must be unique.

Then for all k, the input 50/+m¥1#+mk=s+s must be accepted, since b0/ +m*
causes the stack to become a;f*, and 17*™*~* causes the stack to become
a . The erasure of the f’s occurs independently of whether &, or &, is below,
and 1" causes acceptance. But since m =2 0, it is impossible that we have
[+ mk — s+ r =2+ mk) for all k.

We conclude that L, is not a simple precedence language. [ ]

TueoreM 8.20
The classes of LL and simple precedence languages are incommensurate.
Proof. L, of Theorem 8.19 is an LL(1) language which is not a simple
precedence language. The natural grammar for L,
S—>ad|bB
A-—>041]01
B—> 0811|011
is easily shown to be an LL({2) grammar, Left factoring converts it to an
LL(1) grammar.
We claim that the language L, = {0"al" |n > 1} U [0"62"|n = 1} is not

an LL language. (Sce Exercise 8.3.2.}) L, is a simple precedence language;
it has the following simple precedence grammar:

S—>A|B
A —>0A4lla
B—0B2|b O

8.3.2. Operator Precedence Languagas

Let us now turn our attention to the class of languages generated by
the operator precedence grammars. Although there are ambiguous operator
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precedence grammars (the grammar S — A|B, A-— a, B-— a4 is a simple
example), we shall discover that operator precedence languages are a proper
subset of the simple precedence languages. We begin by showing that every
operator precedence language has an operator grammar which has no single
productions and which is uniquely invertible.

LEMMa 8.13

Every (not necessarily UI) operator precedence grammar is equivalent to
one with no single productions.

Proof. Algorithm 2,11, which removes single productions, is easily seen
to preserve the operator precedence relations between terminals. [

We shall now provide an algorithm to make any context-free grammar
with no single productions uniquely invertible.
ALGORITHM 8.6

Conversion of a CFG with no single productions to an equivalent Ul
CFG.

Input, A CFG ¢ = (N, Z, P, §) with no single productions.
Output. An equivalent Ul CFG G, = (N, %, P,, S))-
Method,

(1} The nonterminals of the new grammar will be nonempty subsets of N,
Formally, let Ny = {M|M < Nand M = g} U {S,}.

(2) For each wg, w,,...,w, in X* and M, ..., M, in N, place in P
the production M — w,M w, --- M, w,, where

M ={A|there is a production of the form 4 — wyB,w, --- B,w,,
where B, ¢ M, for | < i<k}

provided that M == @. Note that only a finite number of productions are so
generated. . :

(3) For all M = Nsuch that § £ M, add the production §, — M to Pf.

(4) Remove all useless nonterminals and productions, and let N, and P,
be the useful portions of N} and P/, respectively. [

" Example 8.5

Consider the grammar

S — a|adbs
A ——>a|aShA
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From step (2) we obtain the productions

{8} —> a{A}b{S}| alS, Ab{S}| a{A}b(S, 4}
{A}—> alS)b{4} | oS, 43b{4} | a{SILLS, 4}
(S, 4] —> a| afS, A}b(S, 4)

From step (3) we obtain the productions
S, —> {SHIS, 4}

From step (4) we discover that all {S}- and {A}-productions are useless, and
so the resulting gramimar is

S, —> (S, 4}
(S, A} —> alafS, AIB[S, 4} ]

LeEmMA 8.14

The grammar G, constructed from G in Algorithm 8.6 is Ul if G has no
single productions and is an operator precedence grammar if G is operator
precedence. Moreover, L{G|) = L(G).

Proof. Step (2) certainly enforces unique invertibility, and since G has
no single productions, step (3) cannot introduce a nonuniquely invertible
right side. A proof that Algorithm 8.6 preserves the operator precedence
relations among terminals is straightforward and left for the Exercises.
Finally, it is easy to verify by induction on the length of a derivation that

if A e M, then 4 = w if and only if M=>w. []

We thus have the following normal form for operator precedence gram-
mars.

THEOREM 8.21

If L is an operator precedence language, then L = L(G) for some operator
precedence grammar G = (N, £, P, S) such that

(1) G 1s UI,

(2) S appears on the right of no production, and

{(3) The only single productions in P have S on the left.

Proof. Apply Algorithms 2.11 and 8.6 to an arbitrary operator precedence
grammar, [_]

We shall now take an operator precedence grammar G in the normal
form given in Theorem 8.21 and change G into a Ul weak precedence gram-
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mar G, such that L{G,) = §L{(G), where ¢ is a left endmarker. We can then
construct a Ul weak precedence grammar G, such that L(G,) = L(G). In
this way we shall show that the operator precedence languages are a subset
of the simple precedence languapges.

ALGORITHM 8.7

Conversion of an operator precedence grammar to a weak precedence
grammar,

Input. A U operator precedence grammar G = (N, I, P, §) satisfying
the conditions of Theorem 8.21.

Output. A Ul weak precedence grammar G, =(N,Z U {¢}, P, S)
such that L(G,) = ¢L(G), where ¢ is not in X.

Method.

(1) Let N consist of all symbols [X 4] suchthat X € £ U {fland 4 € N,
(2) Let 8§, = [¢S].
(3) Let # be the homomorphism from N| U X U [¢]} to N « X such that
(a) Ala) =a, fora € ¥ U {{}, and
(b} Afad]) = ad.
Then & '(e) is defined only for strings & in {N U Z)* which begin with a
symbol i & U {¢} and do.not have adjacent nonterminals. Moreover, /' (&)
is unique if it is defined. That is, A7 combines a nonterminal with the ter-
minal appearing to its left. Let P consist of all productions [a4] — /4~ '{ax)
such that 4 — ¢ isin Pand aisin T U {¢].
(4) Let N, and P, be the useful portions of N| and P, respectively. [

Example 8.6
Let G be defined by
S—> A
A—>adbAcladd|a

We shall generate only the useful portion of Nj and P in Algorithm 8.7.
We begin with nonterminal [¢S]. its production is [¢S]— [¢4]. The produc-
tions for [¢A4] are [¢d] — fladlbAle, [fA]l — ¢[ad]d, and [¢4] — ¢a. The
productions for [a4] and [0A4] are constructed similarly. Thus, G, is

[¢S]— [¢4]

(¢A] —— fladlibAlc | flad]d | fa

fad] — alad)[bAlc | alad])d | aa

[64] — bladl[bA]c | blaAld | ba [
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LemMa 8.15

In Algorithm 8.7 the grammar G| is a UI weak precedence grammar such
that 7{G,} = ¢L(G).

Proof. Unique invertibility is easy to show, and we omit the proof. To
show that G, is a weak precedence grammar, we must show that <« and =
are digjoint from = in G,¥. Let us define the homomorphism g by

{1} gla) =afora e &,
(2) g = 8, and
(3) gad]) = a.

It suffices to show that

(DIf X< Yin G, then g(X) < g(¥Y) or g(X)—=g(¥) in G.

() If X=Yin G, then g(X) < g{¥) or g{X)=g(¥Y) in G.

(3) If X > Yin G, then g(X) » g(Y) in G.

Case I: Suppose that X' < Yin G,, where X = ¢ and X 7 §. Then there
is a right-hand side in P,, say aX[ad]B, such that [a4] :r Yy for some 7.
If @ is not e, then it is easy to show that there is a nght-hand side in P with
substring A(X[aA]} and thus g(X) = a in G. But the form of the productions
in P, implies that g{ ¥) must be a. Thus, g(X) = g{¥}.

If 2 is e and X ¢ %, then the left-hand side associated with right-hand
side aX[aA]f is of the form [ XB] for some B € N. Then there must be a pro-
ductionin P whose right-hand side has substring XB. Moreover, B — adh(f)
is a production in P. Hence, X < @ in G. Since g(X) = X in this case, the
conclusion g(X) < g(Y) follows. If ¢ is e and X = [bB] for some & € X
and B € N, let the left-hand side associated with right-hand side aX[aA]f
be [bC). Then there is a right-hand side in P with substring &C, and
C— BaAdh(Byisin P. Thus, b < ain G, and g(X) < g(¥) follows. The case
in which & = e and X = [¢B] for some B € N is easily handled, as is the
case where X itself is ¢ or §

Case 2: The case X == Y is handled similarly to case 1.

Case 3: X > Y. Assume that ¥ == §. Then there is some right-hand side
in P, say a[ad)Zf, such that [ad] %l» X and Z%} Yd for some y and 4.
The form of productions in P, again implies that either Z = ¥ and both are
mITU{8lorZ=[aBland ¥ =[aClor ¥ =g, for some B and C in N.
In any case, g(Z) = g(Y).

There must be a right-hand side in P with substring Ag(Z) because

tHere and subsequently, the symbols <, =, and > refer to operator precedence rela-
tions in G and Wirth-Weber precedence relations in G;.

14 is the homomorphism in Algorithm 8.7,
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alad)Zf is a right-hand side of P,. Since ¢ has no single productions except
for starting productions, y is not ¢, and so g(X) is derived from A rather
than a in the derivation [aA] % X, Thus, g(X) > g(Z), and g(X) = g(¥)
inG. ‘

The case ¥ = § is handled easily.

To complete the proof that ¢, is a weak precedence grammar, we must
show thatif 4 — aXf and B— farein P,, then neither X <« Bnor X == B
holds. Let B = [aC], and suppose for the moment that ¢ = .S, Then, since
G has no single productions without S on the left, we know that § =Yg’
for some B’ = e, where A{Y) = a. Since 8" 5= e, #(f") has at least one ter-
minal; let b be the leftmost one. Then, since a can appear to the left of C
in a right-sentential form of G, we know that @ << b in G. But since X f is
a right-hand side in P,, A(B) is a subword of some right-hand side in P, and
30 a == b in G. We thus rule out the possibility that C 5= 5.

If C == §, then by Theorem 8.21(2), we must have a = ¢. But then, since
«X f is a right-hand side in P,, ¢ must appear in a right-hand side in P, which
we assumed not to be the case.

We conclude that &, 1s a weak precedence grammar. The proof that
E{(G|) = ¢L(G) is straightforward and will be omitted. []

THEOREM 8.22

If L is an operator precedence language, then L is a simple precedence
language.

Proof. By Theorem 8.21 and Lemma 8.15, if L = %* is an operator pre-
cedence language, then ¢ is a Ul weak precedence language, where ¢ is not
in X, A straightforward generalization of Algorithm 8.4 allows us to remove
the left endmarker from the grammar for ¢L constructed by Algorithm 8.7,
{The form of productions in Algorithm 8.7 assures that the resulfing grammar
will be UI and proper.) The actual proof is left for the Exercises. By Theorem
5.16, L is a simple precedence language. [ ]

8.3.3. ' Chapter Summary

We have, in Chapter 8, shown the inclusion relations for classes of Jan-
guages indicated in Fig. 8,7, All inclusions are proper,

Examples of languages which are contained in the regions shown in Fig,
8.7 are

(1) {0"1"|n = 1} is LL{1) and operator precedence,

{2) {0°1"n > 11 W {0"2"[r = 1} is operator precedence but not LL.

(3) {a0"1"0™ |, 1 = 13 L (BO™ 1707 |11, 1 2= 1} U {00720 {m, n > 1} s
simple precedence but neither operator precedence nor L1L.

@) {a0"1"0™ | m, n == 1} W {BO™1"0"|m, n == 1} is LL(I) and simple pre-
cedence but not operator precedence.
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Fig. 8.7 Subclasses of deterministic languages.

(5) (a0"1"|n = 1} U {pOF1*"|n >> 1} is LL({1) but not simple precedence.

(6) {a0"1"|n > 1} U {a0"2% | n 2> 1} U {60"1% |1 > 1} is deterministic but
not LL or simple precedence.

(N {0"1*|n = 13 W {0"1*"| n == 1} is context-free but not deterministic,

Proofs that these languages have the ascribed properties are requested
in the Exercises.

8.3.1.

*8.3.2.

*8.3.3.
8.3.4.

8.3.5.

EXERCISES

Show that the grammar for L, given in Theorem 8.20 is LL(2). Find an
LL(1) grammar for L;.

Prove that the language L, = {0"al”|n = 1} U {0"62" |1 = 1} is not an
LL language. Hint: Assume that L, has an LL(k) grammar in GNF.

Show that L, of Exercise 8.3.2 is an operator precedence language,

Prove that Algorithm 2,11 (elimination of single productions) preserves
the propertics of

(a) Operator precedence.

(b} (m, n)-precedence.

() (m, m)-BRC.

Prove Lemma 8.14.
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*8.3.6.

8.3.7.

8.3.8.
8.3.9.

8.3.10.

*8.3.11,
*8.3.12.

8.3.13.

8.3.14.

8.3.15.
8.3.16.

#%8,3.17.

Why does Algerithm 8.6 not necessarily convert an arbitrary precedence
granunar into a simple precedence grammar ?

Convert the following operator precedence grammar o an equivalent
simple precedence grammar:

§ — if b then Sy else §|if b then Sla
S1 — if b then S, else S |a

Prove case 2 of Lemma 8,15,

Give an algorithm to remove the left endmarker from the Ianguage
generated by a grammar. Show that your algorithm preserves the Ul
weak precedence property when applied to a grammar constiucted by
Algorithm 8.7,

Show that the simple precedence language
L={a0'1"0"|n>1,m>= 13U {0"1"0|n>1,m =1}

is not an operator precedence language.
Hint: Show that any grammar for L must have 1 < 1 and 1 > 1 as
part of the operator precedence relations.

Show that L of Exercise 8.3.10 is a simple precedence language.

Prove that the languages given in Section 8.3.3 have the properties
ascribed to them.

Give additional examples of languages which belong to the various
regions in Fig. 8.7.

Generalize Theorem 8.18 to show that L, of that theorem is not UI
(1, k)-precedence for any &,

Show that G; of Algorithm 8.7 righi-covers & of that algorithm,

Doees Gy constructed in Algorithm 8.6 right-cover & of that algorithm
if G is proper?

Let L be the simple precedence language
{am0aibr | i, n = 0} L [0a"laien |1, n = 0.

Show that there is no simple precedence parser for L that will announce
error immediately after reading the 1 in an input string of the form
a*la'h, (See Exercise 7.3.5.)

Open Question

8.3.18.

What is the relationship of the class of Ul (1, k)}precedence languages,
%k > 1, to the classes shown in Fig. 8.77 The reader should be aware
of Exercise 8.3.14.
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BIBLIOGRAPHIC NOTES

The proper inclusion of the simple precedence languages in the deterministic
context-free languages and the proper containment of the operator precedence
languages in the simple precedence languages were first proved by Fischer [1969].



9 TRANSLATION AND
CODE GENERATION

A compiler designer is usually presented with an incomplete specification
of the language for which he is to design a compiler. Much of the syntax of
the language can be precisely defined in terms of a context-free grammar.
However, the object code that is to be generated for each source program is
more difficult to specify. Broadly applicable formal methods for specifying the
semantics of a programming language are still a subject of current research.

In this chapter we shall present and give examples of declarative formal-
isms that can be used to specify some of the translations performed within a
compiler. Then we shall investigate techniques for mechanically implementing
the translations defined by these formalisms,

9.1. THE ROLE OF TRANSLATICN IN COMPILING

We recall from Chapter I that a compiler is a translator that maps strings
into strings. The input to the compiler is a string of symbols that constitutes
the source program. The output of the compiler, called the object {or target)
program, is also a string of symbols. The object program can be

(I} A sequence of absolute machine instructions,
{2) A sequence of relocatable machine instructions,
{3) An assembly language program, or

{4) A program in some other language.

Let us briefty discuss the characteristics of each of these forms of the object
program.
(1} Mapping a source program into an absolute machine language pro-

720
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gram that can immediately be executed is one way of achieving very
fast compilation. WATFOR is an example of such a compiler, This type
of compilation is best suited for small programs that do not use sepa-
rately compiled subroutines.

{2) A relocatable machine instruction is an instruction that references
memory locations relative to some movable origin. An object program in
the form of a sequence of relocatable machine instructions is usually called
a relocatable object deck. This object deck can be linked together with other
object decks such as separately compiled user subprograms, input-output
routines, and library functions to produce a single relocatable object deck,
often called a load module. The program that produces the load module
from a set of binary decks is called a fink editor. The load module is then
put into memory by a program called a loader that converts the relocatable
addresses into absolute addresses. The object program is then ready for
execution.

Although linking and loading consume time, most commercial compilers
produce relocatable binary decks because of the flexibility in being able to
use extensive library subroutines and separately compiled subprograms.

(3) Translating a source program into an assembly Janguage program
that is then run through an assembler simplifies the design of the compiler.
However, the total time now required to produce an executable machine
language program is rather high because assembling the output of this type
of compiler may take as much time as the compilation itself.

{4) Certain compilers (e.g., SNOBOL) map a source program into
another program in a special mnternal language. This internal program is
then executed by simulating the sequence of instructions in the internal
program. Such compilers are usvally called interpreters. However, we can
view the mapping of the source program into the internal language as an
instance of compilation in itself,

In this book we shall not assume any fixed format for the output of
a compiler, although in many examples we use assembly language as the
object code. In this section we shall review compiling and the main processes
that map a source program intc object code.

9.1.1. Phases of Compilation

In Chapter I we saw that a compiler can be partitioned inio several
subtranslators, each of which participated in translating some representation
of the source program toward the object program. We can model each
subtranslator by a mapping that defines a phase of the compilation such
that the composition of all the phases models the entire compilation.

What we choose to call a phase is somewhat arbitrary, However, it is
convenient to think of lexical analysis, syntactic analysis, and code generation
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as the main phases of compilation. However, in many sophisticated compilers
these phases are often subdivided into several subphases, and other phases
(e.g., code optimization) may also be present.

The input to a compiler is a string of symbols. The lexical analyzer is
the first phase of compilation. It maps the input into a string consisting of
tokens and symbol table entries. During lexical analysis the original source
program is compressed in size somewhat because identifiers are replaced by
tokens and unnecessary blanks and comments are removed. After lexical
analysis, the original source program is still essentially a string, but certain
portions of this string are pointers to information in a symbol table.

A finite transducer is a good model for a lexical analyzer. We discussed
finite transducers and their application to lexical analysis in Section 3.3.
In Chapter 10 we shall discuss techniques that can be used to insert and
retrieve information from symbol tables,

The syntax analyzer takes the output of the lexical analyzer and parses
it according to some underlying grammar. This grammar is similar to the one
used in the specification of the source language. However, the grammar for
the source language usually does not specify what constructs are to be
treated as lexical items. Keywords and identifiers such as labels, variable
names, and copstants are some of the constructs that are usually recognized
during lexical analysis. But these constructs could also be recognized by
the syntax analyzer, and in practice there is no hard and fast rule as to what
constructs are to be recognized lexically and what should be left for the
syntactic analyzer,

After syntactic analysis, we can visualize that the source program has
been transformed into a tree, called the syntax free. The syntax tree is closely
related to the derivation tree for the source program, often being the deri-
vation tree with chains of single productions deleted. In the syntax tree
interior nodes generally correspond to operators, and the leaves represent
operands consisting of pointers into the symbol table. The structure of
the syntax tree reflects the syntactic rules of the programming language in
which the source program was written, There are several ways of physically
representing the syntax tree, which we shall discuss in the next section. We
shall call a representation of the syntax tree an jntermediate program.

The actual output of the syntactic analyzer can be a sequence of com-
mands to construct the intermediate program, to consult and modify the
symbol table, and to produce diagnostic messages where necessary. The
model that we have used for a syntactic analyzer in Chapters 4-7 produced
a left or right parse for the input. However, it is the nature of syntax trees
used in practice that ong may easily replace the production numbers in a left
or right parse by commands that construct the syntax tree and perform
symbol table operations. Thus, it is an appealing simplification to regard the
left or right parses produced by the parsers of Chapters 4-7 as the inter-
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mediate program itself, and to avoid making a major distinction between a
syntax tree and a parse tree.

A compiler must also check that certain semantic conventions of the
source language have been obeyed. Some comemon examples of conventions
of this nature are

(1) Each statement label referenced must actually appear as the label of
an appropriate statement in the source program.

(2) No identifier can be declared more than once.

(3) All variables must be defined before use.

(4) The arguments of a function call must be compatible both in number
and in attributes with the definition of the function.

The checking of these conventions by a compiler is called semantic analy-
sis. Semantic analysis often occurs immediately after syntactic analysis, but
it can also be done in some fater phases of compilation. For example, check-
ing that variables are defined before use can be done during code optimization
if there is a code optimization phase. Checking of operands for correct
attributes can be deferred to the code generation phase.

In Chapter 10, we shall discuss property grammars, a formalism that
can be used to model aspects of syntactic and semantic analysis.

After syntactic analysis, the intermediate program is mapped by the code
generator into the object program. However, to generate correct object code,
the code generator must also have access to the information in the symbol
table. For example, the attributes of the operands of a given operator deter-
mine the code that is to be generated for the operator. For instance, when
A and B are floating-point variables, different object code will be generated
for A -- B than will be generated when A4 and B are integer variables.

Storage allocation also occurs during code generation (or in some sub-
phase of code generation). Thus, the code generator must know whether
a variable represents a scalar, an array, or a structure. This information is
contained in the symbotl table.

Some compilers have an optimizing phase before code generation. In this
optimizing phase the intermediate program is subjected to transformations
that attempt to put the intermediate program into a form from which a more
efficient object language program can be produced. It i1s often difficulf to
distinguish some optimizing transformations from good code generation
techniques. In Chapter 11 we shall discuss some of the optimizations that
can be performed on intermediate programs or while generating intermediate
programs.

An actual compiler may implement a phase of the compilation process
In one or more passes, where a pass consists of reading input from secondary
memory and then writing intermediate results into secondary memory.
What is implemented in a pass is a function of the size of the machine on
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which the compiler is to run, the language for which the compiler is being
developed, the number of people engaged in implementing the compiler,
and so forth, Ti is even possible to implement all phases in one pass. What
the optimal number of passes to implement a given compiler should be is
a topic that is beyond the scope of this book.

9.1.2. Representations of the Intermediate Program

In this section we shall discuss some possible representations for the
intermediate program that is produced by the syntactic analyzer. The inter-
mediate program should reflect the syntactic structure of the source program,
However, it should also be relatively easy to transiate each statement of the
intermediate program into machine code.

Compilers performing extensive amounts of code optimization create
a detailed representation of the intermediate program, explicitly showing
the flow of control inherent in the source program. In other compilers the
representation of the intermediate program is a simple representation of
the syntax tree, such as Polish notation. Other compilers, doing little code
optimization, will generate object code as the parse proceeds. In this case,
the “intermediate™ program appears only figuratively, as a sequence of steps
taken by the parser.

Some of the more common representations for the intermediate program
are

(1) Postfix Polish notation,

{(2) Prefix Polish notation,

(3) Linked list structures representing trees,

(4) Multiple address code with named results, and

(5) Multiple address code with implicitly named results.

Let us examine some examples of these representations.
We defined Polish notation for arithmetic expressions in Section 3.1.1.
For example, the assignment statement

(9.1.1) A=B+Cx—D

with the normal order of precedence for the operators and assignment symbol
{=) has the postfix Polish representation?

ABCD — % + =
and the prefix Polish representation
—A+BxC—D

1In this representation, — is a unary operator and *, +, and = are all binary operators.
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In postfix Polish notation, the operands appear from left to right in the
order in which they are used. The operators appear right after the operands
and in the order in which they are used. Postfix Polish notation is often used
as an intermediate language by interpreters. The execution phase of the inter-
preter can evaluate the postfix expression using a pushdown list for an accu-
mulator. (See Example 9.4.)

Both types of Polish expressions are linear representations of the syntax
tree for expression (9.1.1), shown in Fig. 9.1. This tree reflects the syntactic
structure of expression (9.1.1). We can also use this tree itself as the inter-
mediate program, encoding it as a linked list structure,

o Fig. 9.1 Syntax tree.

Another method of encoding of the syntax tree is to use multiple address
code. For example, using multiple address code with named results, expres-
sion (9.1.1) could be represented by the following sequence of assignment
statements:

T <~——D
T, ~— =CT,
T, «— 48T,
A - T3T

A statement of the form 4 «— @B, --- B, means that r-ary operator # is to
be applied to the current values of variables B, - - -, B, and that the resulting

tNote that the assignment operator must be treated differently from other operators.
A simple “optimization™ is to veplace 73 by A in the third line and to delete the fourth
line.
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value is to be assigned to variable 4. We shall formally define this particular
intermediate language in Section 11.1.

Multiple address code with named results requires a temporary variable
name in each assignment instruction to hold the value of the expression
computed by the right-hand side of each statement. We can avoid the use of
the temporary variables by using multiple address code with implicitly
named results. In this notation we label each assignment statement by
a number. We then delete the left-hand side of the statement and reference
temporary results by the number assigned to the statement generating the
temporary result. For example, expression (9.1.1) would be represented by
the sequence

i: —D

2. =C (1)

3: +B(Q2)
4: =A(3)

Here a parenthesized number refers to the expression [abeled by that number.

Multiple address code representations are computationally convenient if
a code optimization phase occurs after the syntactic analysis phase. During
the code optimization phase the representation of the program may change
considerably. It is much more difficult to make global changes on a Polish
representation than a linked list representation of the intermediate program.

As a second example let us consider representations for the statement

(9.1.2) if I = J then S, else 5,

where S| and §, represent arbitrary statements.
A possible postfix Polish representation for this statement might be

I J EQUAL? L, JFALSE S| L JUMP S

Here, S| and S are the postfix representations of §, and §,, respectively;
EQUAL? is a Boolean-valued binary operator that has the value true if its
two arguments are equal and false otherwise, L, is a constant which names
the beginning of §;. JFALSE is a binary operator which causes a jump to
the location given by its second argument if the value of the first argument is
false and has no effect if the first argument is true, L is a constant which is
the first instruction following §5. JUMP is a unary operator that causes
a jump to the location given by its argument.

A derivation tree for statement (9.1.2) is shown in Fig. 9.2, The important
syntactic information in this derivation tree can be represented by the syntax
tree shown in Fig. 9.3, where St and S} represent syntax trees for §, and S,.
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< if statement >

if < expression > then  <statemeni > else < statement >

< expression > <relop> <var>

< var > = J

Fig. 3.2 Derivation tree.

< if statement >

5 53

Fig. 9.3 Syntax tree.

A syntactic analyzer generating an intermediate program would parse
expression (9.1.2) tracing out the tree in Fig. 9.2, but its output would be
a sequence of commands that would construct the syntax tree in Fig. 9.3.

In general, in the syntax tree an interior node represents an operator
whose operands are given by its direct descendants. The leaves of the syntax
tree correspond to identifiers. The leaves will actually be pointers into the
symbol table where the names and attributes of these identifiers are kept.

Part of the output of the syntax analyzer will be commands to enter
information into the symbol table. For exarmple, a source language state-
ment of the form

INTEGER [

will be translated inte a command that enters the attribute “integer” in the
symbol table location reserved for identifier 7. There will be no explicit repre-
sentation for this statement in the intermediate program.
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9.1.3. Models for Code Generation

Code generation is a mapping from the intermediate program to a string,.
We shall consider this mapping to be a function defined on the syntax tree
and information in the symbol table. The nature of this mapping depends
on the source language, the target machine, and the quality of the object
code desired.

One of the simplest code generation schemes would map each multiple
address statement into a sequence of object language instructions independent
of the context of the multiple address instructions. For example, an assign-
ment instruction of the form

A «— 1+ BC

might be mapped into the three machine instructions

LOAD B
ADD C
STORE 4

Here we are assuming a one accumulator machine, where the instruction
LOAD B places the value of memory location B in the accumulator, ADD
C addst the value of memory location C to the accumulator, and STORE A
places the value in the accumulator into memory location 4. The STORE
instruction leaves the contents of the accumulator unchanged.

However, if the accumulator initially contained the value of memory
location B (because, for example, the previous assignment instruction was
B« 1+ DF), then the LOAD B instruction would be unnecessary. Also,
if the next assignment instruction is F«— -+ AG and no other reference 1s
made to A4, then the STORE A instruction is not needed. _

In Sections 11.1 and 11.2 of Chapter 1 we shall consider some techniques
for generating code from multiple address statements.

EXERCISES

9.1.1. Draw syntax trees for the following source Janguage statements:
@) A=(B—CY(B+ C) (as in FORTRAN),
(b) 7 = LENGTH({C!1]|C2) (as in PL/T).
(c) if B > C then
if D> FEthend :=B+ (Celse d :=8B—(C
eke 4 :=BxC (as in ALGOL).

FLet us assume for simplicity that there is only one type of arithmetic. If more than
one, e.g., fixed and floating, is available, then the translation of - will depend on symbol
table information about the attribuies of B and C.
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9.1.2. Define postfix Polish representations for the programs in Exercise 9.1.1,

9.1.3. Generate multiple address code with named results for the statements
in Exercise 9.1.1.

9.1.4. Construct a deterministic pushdown transducer that maps prefix Polish
notation into postfix Polish notation.

9.1.5. Show that there is no deterministic pushdown transducer that maps
postfix Polish notation into prefix Polish notation. Is there a nondeter-
ministic pushdown transducer that performs this mapping? Hint: see
Theorem 3.15.

9.1.6. Devise an algorithm using a pushdown list that will evaluate a postfix
Polish expression,

9.1.7. Design a pushdown transducer that takes as input an expression w in
L(Gy) and produces as output a sequence of commands that will build
a syntax tree {or multiple address code) for w.

9.1.8. Generate assembly code for your favorite computer for the programs
in Exercise 9.1.1.

*9.1.9. Devisc algorithms to generate assembly code for your favorite computer
for intermediate programs representing arithmetic assignments when
the intermediate program is in
(a) Postfix Polish notation,

(b) Multiple address code with named results.
(c) Multiple address code with implicitly named results.
(d) The form of a syntax tree.

*9,1,10, Design an intermediate language that is suitable for the representation
of some subset of FORTRAN (or PL/l1 or ALGOL) programs. The
subset should include assignment statements and some control state-
ments, Subscripted variables should also be allowed.

**9,1,11, Design a code generator that will map an intermediate program of
Exercise 2.1.10 into machine code for your favorite computer.

BIBLIOGRAPHIC NOTES

Unfortunately, it is impossible to specify the best object code even for common
source language constructs, However, there are several papers and books that
discuss the translation of various programming languages. Backus et al. [1957]
give the details of an early FORTRAN compiler. Randell and Russell [1964] and
Grau et al, [1967] discuss the implementation of ALGOL 60. Some details of PL/I
implementation are given in IBM {1969

There are many publications describing technigues that are useful in code
generation. Knuth [1968a} discusses and analyzes various storage allocation tech-
niques. Elson and Rake [1970] consider the generation of code from a tree-
structured intermediate language. Wilcox [1971] presents some general models
for code generation.
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9.2, SYNTAX-DIRECTED TRANSLATIONS

In this section we shall consider a compiler model in which syntax analysis
and code generation are combined into a single phase. We can view such
a model as one in which code generation operations are interspersed with
parsing operations. The term syntax-directed compiling is often used to
describe this type of compilation.

The techniques discussed here can also be used to generate intermediate code
instead of object or assembly code, and we give one example of translation to
intermediate code. The remainder of our examples are to assembly code.

COur starting point is the syntax-directed translation scheme of Chapter 3.
We show how a syntax-directed translation can be implemented on a deter-
ministic pushdown transducer that does top-down or bottom-up parsing.
Throughout this section we shall assume that a DPDT uses a special symbol
3 to delimit the right-hand end of the input string. Then we add various
features to make the SDTS more versatile. First, we allow semantic rules
that permit more than one translation to be defined at various nodes of
the parse tree. We also allow repetition and conditionals in the formulas
for these translations. We then consider translations which are not strings;
integers and Boolean variables are useful additional types of translations.
Finally, we allow translations to be defined in terms of other translations
found not only at the direct descendants of the node in question but at its
direct ancestor,

First, we shall show that every simple SDTS on an LL grammar can be
implemented by a deterministic pushdown transducer. We shall then inves-
tigate what simple SDTS’s on an LR grammar can be so implemented. We
shall discuss an extension of the DPDA, called a pushdown processor, to
implement the full class of SDT’s whose underlying grammar is LL or LR.
Then, the implementation of syntax-directed translations in connection with
backtrack parsing algorithms is studied briefly.

9.2.1. Simple Syntax-Directed Trans|ations

In Chapter 3 we saw that a simple syntax-directed translation scheme can
be implemented by a nondeterministic pushdown transducer. In this section
we shall discuss deterministic implementations of certain simple syntax-
directed translation schemes,

The grammar & underlying an SDTS can determine the translations
definable on I{G) and the efficiency with which these translations can be
directly implemented.

Example 9,1

Suppose that we wish to map expressions generated by the grammar G,
below, into prefix Polish expressions, on the assumption that =’s are to take
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precedence over —+'s, e.g., @+ a -+ a has prefix expression 4 * aaa, not
x a -+ aa. G is given by E— a 4+ E|a= Ela. However, there is no syntax-
directed translation scheme which uses ¢ as an underlying grammar and
which can define this translation. The reason for this is that the output gram-
mar of such an SDTS must be a linear CFG, and it is not difficult to show
that the set of prefix Polish expressions over {+, %, a} corresponding to the
infix expressions in L{G) is not a linear context free language. However, this
particular translation can be defined using a simple SDTS with G, [except
for production F — (E)] as the underlying grammar. []

In Theorem 3.14 we showed that if {x, v} is an element of a simple syntax-
directed translation, then the oufput y can be generated from the left parse
of x using a deterministic pushdown transducer. As a consequence, if a gram-
mar G can be deterministically parsed top-down in the natural manner using
a DPDT M, then M can be readily modified to implement any simple SDTS
whose underlying grammar is G. If ¢ is an LL{X) grammar, then any simple
SDT defined on & can be implemented by a DPDT in the following manner.

THEOREM 9.1

Let T=(N, £, A, R, §) be a semantically unambiguous simple SDTS
with an underlying LL{k) grammar. Then {(x3, »)|{x, ¥} € (T} can be de-
fined by a deterministic pushdown transducer.

Progf. The proof follows from the methods of Theorems 3.14 and 5.4.
If G is the underlying grammar of T, then we can construct a k-predictive
parsing algorithm for G using Algorithm 5.3. We can construct a DPDT
M with an endmarker to simulate this k-predictive parser and perform the
translation as follows,
Let A’ ={a'|a € A}, assume A' N Z = ¢, and let A(a) = ¢ for all
a € A. The parser of Algorithm 5.3 repeatedly replaces nonterminals by
right-hand sides of productions, carrying along LL(k) tables with the non-
terminals. M will do essentially the same thing. Suppose that the left parser
replaces 4 by w,B,w, --- B, w, [with some LL(k) tables, not shown, append-
ed to the nonterminals]. Let
A—wBw - - Bw, x,Bx -8B

m m?

X

m"Tm

be a rule of R. Then M will replace 4 by w h(x,)B,wh(x,) - - B, w, h(x,).

As in Algorithm 5.3, whenever a symbol of T appears on top of the push-
down list, it is compared with the current input symbol, and if a match occurs,
the symbol is deleted from the pushdown list, and the input head moves
right one cell. When a symbol &' in A’ is found on top of the pushdown list,
M emits @ and removes o' from the top of the pushdown list without moving
the input head. M does not emit production indices.

A more formal construction of M is left to the reader. []
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Example 9.2
Let 7" be the simple SDTS with the rules

S ——> aShSe, 15253
S—d 4
The underlying grammar is a simple LL(l) grammar. Therefore, no LL

tables need be kept on the stack. Let M be the deterministic pushdown
transducer (Q, Z, A, T, 8, ¢, S, {accept]), where

© = {g, accept, error}
T ={abed$}
Fr={s,81 Uz UA
A=1{1,2,34}

Since £ M A = &, we shall let A = A. & could be defined as follows:

g, a, S) = (g, SH25c3, DT
6(9,d, 5) =(g.e,4)

(g, b,6) = (g, ¢, )
6(g,¢.0) = (g, ¢, 0
d(g,e,2) =(g,¢,2)
5(g,e,3) = (g, ¢ 3)

d(q, §, $) = (accept, ¢, €)

Otherwise,
6(g, X, ¥) = (error, ¢, ¢)
It is easy to verify that t(M) = {(x$, »}|(x, ») € ©(T)}. ]

Let us now consider a simple SDTS in which the underlying grammar is
LR(k). Since the class of LR(k) grammars is larger than the class of LL{k)
grammars, it is interesting to investigate what class of simple SDTS’s with
underlying LR{k)} grammars can be implemented by DPDT’s. It turns out
that there are semantically unambiguous simple SDT’s which have an under-
lying LR(kX) grammar but which cannot be performed by any DPDT. Intui-

1In these rules we have taken the liberty of producing an output symbol and shifling
the input as soon as a production has been recognized, rather than doing these actions
in separate steps as indicated in the proof of Theorem 9.1.
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tively, the reason for this is that a translation element may require the
generation of output long before it can be ascertained that the production
to which this translation element is attached is actually used.

Exampla 9.3
Consider the simple SDTS T with the rules

S —— Sa, aSa
S —> Sh, bSh

S—ee

The underlying grammar 1s LR{1), but by Lemma 3.15 there is no DPDT
defining {(x3, ¥){(x, ¥} € ©(T)}. The intuitive reason for this is that the first
rule of this SDTS requires that an @ be emitted before the use of production
S — Sa can be recognized. [ ]

However, if a simple SDTS with an underlying LR(k) grammar does
not require the generation of any output until after a production is recog-
nized, then the translation can be implemented on a DPDT.

DEFINITION

An SDTS T= (N, Z, A, R, 5) will be called a postfix SDTS if each rule
in Ris of the form A — @, #, where § is in N*A¥*, That is, each translation
element is a string of nonterminals followed by a string of output symbols.

THECREM 9.2

Let T=(N, Z,A, R S) be a semantically unambiguous simple postfix
SDTS with an underlying LR(k) grammar. Then [(x$, »)|(x, ) € o(T)}
can be defined by a deterministic pushdown transducer.

Proof. Using Algorithm 3.11, we can construct a deterministic right parser
M with an endmarker for the underlying LR(k).grammar. However, rather
than emitting the production number, M can emit the string of output
symbaols of the trapslation element associated with that production. That
is, if 4 —» o, fx is a rule in R where § € N* and x € A*, then when the
production number of 4 —— ¢ is to be emitted by the parser, the string x
is emitted by M. In this fashion M defines {(x5, ¥){{x, ¥} € ©(T)}. []

We leave the converse of Theorem 9.2, that every deterministic pushdown
transduction can be expressed as a postfix simple SDTS on an LR(I) gram-
mar, for the Exercises.

Example 9.4

Postfix translations are more useful than it might appear at first. Here,
let us consider an extended DPDT that maps the arithmetic expressions of



734 TRANSLATION AND CODE GENERATION CHAP, 9

L(G,) into machine code for a very convenient machine. The computer for
this example has a pushdown stack for an accumulator. The instruction

LOAD X

puts the value held in location X on top of the stack; all other entries on
the stack are pushed down. The instructions ADD and MPY, respectively,
add and multiply the top two levels of the stack, removing the two levels
but then pushing the result on top of the stack. We shall use semicolons to
separate these instructions,

The SDTS we have in mind is

E— E4T,ET ‘ADD;
E—T, T
Tr—Ts¥F TF ‘MPY;
T—+F, F
F—(E), E

F—>a, ‘LOAD ay

In this example and the ones to follow we shall use the SNOBOL convention
of surrounding literal strings in translation rules by quote marks. Quote
marks are not part of the output string.

With input @ + (@ = )3, the DPDT enters the following sequence of
configurations; we have deleted the LR(k) tables from the pushdown list.
We have also deleted certain obvious configurations from the sequence as well
as the states and bottom of stack marker.

[e, a -+ (a*xa)s, e
i— [a, 4+ {(axa)s, e
|— [F, 4 (a* a)3, LOAD a;]
|*[£, + (@a* a)s, LOAD a;]
|2 [E + (e, * a)§, LOAD a;]
[—[E + (F, * a)§, LOAD a; LOAD a;]
—[E + (T, * a)}, LOAD a; LOAD a;]
L2 [E+ (Txa, )8, LOAD a; LOAD a;]
[—[E 4+ (T* F,)§, LOAD a; LOAD a; LOAD a;]
—I[E+T, )3, LOAD g4; LOAD a; LOAD a; MPY]

—[E+(E )5, LOAD a; LOAD a; LOAD a; MPY ]
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FI[E + (E), §, LOAD a; LOAD a; LOAD a; MPY ;]
R[E4+ T, 5, LOAD a; LOAD a; LOAD a; MPY]
[E, $, LOAD a; LOAD a; LOAD a; MPY; ADD;)

Note that if the different &’s representing identifiers are indexed, so that
the input expression becomes, say, 4, + (@, * @,), then the output code
would be

LOAD a,
LOAD a,
LOAD a,
MPY
ADD

which computes the expression correctly on this machine. [’}

While the computer model used in Example 9.4 was designed for the
purpose of demonstrating a syntax-directed translation of expressions with
few of the complexities of generating code for more common machine models,
the postfix scheme is capable of defining useful classes.of translations. In
the remainder of this chapter, we shall show how cbject code can be generated
for other machine models using a pushdown transducer operating on what is
in essence a simple postfix SDTS with an underlying LR grammar.

Suppose that we have a simple SDTS which has an underlying LR(k)
grammar, but which is not postfix. How can such a translation be performed ?
One possible technique s to use the following multipass translation scheme.
This technique illustrates a cascade connection of DPDT’s. However, in
practice this transtation would be implemenfed in one pass using the tech-
niques of the next section for arbitrary SDTS’s.

Let 7= (N, £, A, R, §) be a semantically unambiguous simple SDTS
with an underlying LR(k) grammar . We can design a four-stage transiation
scheme to implement ={7"). The first stage consists of a DPDT. The input to
the first stage is the input string w3. The output of the first stage is &, the right
parse for w according to the underlying input grammar G. The second stage
reverses z to create xf, the right parse in reverse.t

The input to the third stage will be z2 The output of the third stage will
be the translation defined by the simple SDTS T° = (N, Z’, A, R', S), where

TRecall that =, the right parse, is the reverse of the sequence of productions used in 2
rightmost derivation. Thus, #R begins with the first production used and ends with the
last production used in a rightmost derivation. To obiain 7% we can merely read the
buffer in which 7 is stored backward.
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R’ contains the rule
A~—>iB B, _ ---B.,y,B, - yBy,

m”md

A— x,B.x, -+ B, x, Is the ith production in the underlying LR(k) grammar.
it is eagsy to prove that (z®, p®) is in (") if and onlyif (S, S5) =T:-7!" (w, 1.

T is a simple SDTS based on an LL{]} grammar and can thus be impie-
mented on a DPDT. The fourth stage merely reverses the output of the third
stage. If the output of the third stage is put on a pushdown list, then the fourth
stage merely pops off the symbols from the pushdown list, emitting each
symbol as it is popped off,

Figure 9.4 summarizes this procedure.

if and only if 4 — x,B,x, --- B,x,, ¥.B,», --+ B,.», isarulein R and

#, the right parse for w

Stage
1
R
K Stage T
2
R R
i Stage y
e ———] 3 I
R
Y Stage Y
-~ 4 >

Fig. 9.4 Simple SDT on an LR{k) grammar.

Each of these three stages requires a number of basic operations that is
linearly proportional to the length of w. Thus, we can state the following
result.

THEOREM 9.3

Any simple SDTS with an underlying LR(k) grammar can be implemented
in time proportional to its input length.

Proof. A formalization of the discussion above. [ |
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9.2.2. A Generalized Transducer

‘While the pushdown transducer is adequate for defining all simple SDTS’s
on an LL grammar and for some simple SDTS’s on an LR grammar, we
need a more versatile model of a translator when doing

{I) Nonsimple SDTS’s,

(2) Nonpostfix simple SDTS’s on an LR grammar,

(3) Simple SDTS’s on a non-LR grammar, and

(4) Syntax-directed translation when the parsing is not deterministic
one pass, such as the algorithms of Chapters 4 and 6.

We shall now define a new device called a pushdown processor (PP} for
defining syntax-directed translations that map strings into graphs. A push-
down processor 1s a PDT whose output is a labeled directed graph, generally
a tree or part of a tree which the processor is constructing. The major feature
of the PP 1s that its pushdown list, in addition to pushdown symbols, can
hold pointers te nodes in the output graph.

Like the extended PDA, the pushdown processor can examine the top k
cells of its pushdown list for any finite & and can manipulate the contents of
these cells arbitrarily. Unlike the PDA, if these & cells include some pointers
to the output graph, the PP can modify the output graph by adding or deleting
directed edges connected to the nodes pointed to. The PP can also create
new nodes, label them, create pointers to them, and create edges between
these nodes and the nodes pointed to by those pointers on the top k cells of
the pushdown list.

As itis difficult to develop a concise [ucid notation for such manipulations,
we shall use written descriptions of the moves of the PP. Since each move of
the PP can involve only a finite number of pointers, nodes, and edges, such
descriptions are, in principle, possible, but we feel that a formal notation
would serve to obscure the essential simplicity of the translation algorithms
involved. We proceed directly to an example,

Example 9.5

Let us design a pushdown processor P to map the arithmetic expressions
of L{G,} into syntax trees. In this case, a syntax tree will be a tree in which
each interior node is labeled by - or » and leaves are labeled by «. The fol-
lowing table gives the parsing and output actions that the pushdown proces-
sor is to take under various combinations of current input symbol and
symbol on top of the pushdown list. P has been designed from the SLR(1)
parser for G given in Fig. 7.37 (p. 625).

However, here we have eliminated table T, from Fig. 7.37, treating
F— a as a single production, and have renamed the tables as follows:
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Old name ITO W Ts Ts Tr Ty To Tio Ti

Newnamc‘.’[‘o Ty ( 4+ = T2 Tn Ta )

In addition $ is used as a right endmarker on the input. The parsing and out-
put actions of P are given in Figs. 9.5 and 9.6, P uses the LR(1} tables to
determine its actions. In addition P will attach a pointer to tables T, T, T,
and T, when these tables are placed on the pushdown list.7 These pointers
are to the output graph being generated. However, the pointers do not affect
the parsing acttons. In parsing we shall not place the grammar symbols on
the pushdown list. However, the table names indicate what that grammar
symbol would be.

The last column of Fig, 9.5 gives the new LR(1) table to be placed on
top of the pushdown list after a reduce move. Blank entries denote error
situations. A new input symbol is read only after a shift move. The numbers
in the table refer to the actions described in Fig. 9.6.

Let us trace the behavior of P on input @, = (a, + a,)$. We have sub-
scripted the @’s for clarity. The sequence of moves made by P is as follows:

Pushdown List Input
1y To ay*{az + a1)l
(2) TolT1,pi] # (az + a$
(3) TolTi, p1) (g2 + a3)$
@ TolT1,p1]%( ay -+ a3)$
(5) TolTy, p:) % ([T2, pal + a1)8
6 TolTw,pd * {2 pal + a)s
(M TolTy, pil = (T2, p2] + [15, 3) )%
(8 TolT1, 1l (T2, pal )%
(9 TolT\, p:] * (T2, pad) $
(10) TolT1, P11 % [Ty, p4] $
(1) TolTy, psl $

Let us examine the interesting moves in this sequence. In going from
configuration {1) to configuration (2), P creates a node n, labeled a and sets
a pointer p, to this node. The pointer p, is stored with the LR(1) table T, on
the pushdown list. Similarly, going from configuration (4) to configuration
{3), P creates a new node n, labeled «, and places a pointer p, to this node
on the pushdown list with LR(1) table 7. In configuration (7) another node
n, labeled a, is created and p, is established as a pointer to »,.

fln practice, these pointers can be stored immediately below the tables on the push-
down list,
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[nput
Symbol ;
Table on action
Top of
Pushdown List a + * { ) $ goto
| 1 shift ( T
I shift + | shift % accept
e shift + shift » shift )
T 2 shift * 2 2
7 3 3 3 3
¥ 4 shift ( T3
- 5 shift ( Ty
( 6 shift ( 7
} 7 7 7 7
Fig. 9.5 Pushdown processor P,
(1) Create a new node n labeled @, Push the symbol [T, p] on top of the pushdown list,

@

(3)
#
&)
(&)
@)

where p is a pointer to 7. Read a new input symbaol.

At this point, the top of the pushdown list contains a string of four symbols of the
form XIT;, p1] + [T, p2], where p1 and p; are pointers to nodes 7, and »z, respectively,
Create a new node n labeled +. Make n; and #; the left and right direct descendants
of n. Replace [T, p11 + [T}, p2] by [T, pl, where T = goto(X) and p is a pointer to
node .

Same as (2) above with  in place of +,

Same as (1) with T3 in place of T5.

Same as (1) with T4 in place of T.

Same as (1) with T3 in place of T7.

The pushdown list now contains X{[T, p]), whete p is a pointer to some node n.
Replace ([T, p]) by [T7, p], where 77 = goto(.X).

Fig. 9.6 Processor output actions.

In going to configuration (8), P creates the ocutput graph shown in Fig,

9.7. Here, p, is a pointer to node r,. After entering configuration (11},
the output graph is as shown in Fig. 9.8. Here p, is a pointer to node n,.
In configuration (11}, the action of T, on input § js accept, and so the trec
in Fig. 9.8 is the final output. This tree is the syntax tree for the expression
a x{a, + a;).
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Fig. 9.8 Final output.

9.2.3. Deterministic One-Pass Bottom-Up Translation

This is the first of three sections showing how various parsing algorithms
can be extended to implement an SDTS by the use of a deterministic push-
down processor instead of a pushdown transducer. We begin by giving

.an algorithm to implement an arbitrary SDTS with an underlying LR
grammar,

ALGORITHM 9.1
SDTS on an LR grammar.

Input, A semantically unambiguous SDTS T:=(N, X, A, R, S) with
underlying LR(k) grammar ¢ = (N, %, P, S) and an input w in T*.
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Qutput. An output tree whose frontier is the output for w.

Method. The tree is constructed by a pushdown processor A, which
simulates @, an LR(k) parser for G. M will hold on its pushdown list (top
at the right) the symbols in N U T and the LR(k) tables exactly as @ does.
In addition, immediately below each nonterminal, M will have a pointer to
the output graph being generated. The shift, reduce, and accept actions of M
are as follows:

(1) When @ shifts symbol a onto its stack, M does the same.
(2) If @ reduces X, --- X, to nonterminal 4, M does the following:

{a) Let A — X, -+~ X, woBw, --- Bw, be a rule of the SDTS,
where the 8’s are in one-to-one correspondence with those of
the X’s which are nonterminals.

(b} M removes X, --- X, from the top of its stack, along with inter-
vening pointers, LR(k) tables, and, if X, is in N, the pointer
immediately below X .

(¢} M creates a new node n, labels it 4, and places a pointer to »
below the symbol 4 on top of its stack.

(d) The direct descendants of n have labels reading, from the left,
woB,w, - - B,w_. Nodes are created for each of the symbols of
the w’s. The node for B,, 1 < i < r, is the node pointed to by
the pointer which was immediately below X, on the stack of M,
where X, is the nonterminal corresponding to B, in this particular
rule of the SDTS.

(3) If @’s input becomes empty {we have reached the right endmarker)
and only pS and two LR(k) tables appear on 3M’s pushdown list, then M
accepts if @ accepts; p points to the root of the output tree of M. ]

Example 9.6
Let Algorithm 9.1 be applied to the SDTS

S —— aS4, 048
S—>b1
A—>bAS, 154

A~—sa0

with input abbab. The underlying grammar is SLR(1), and we shall omit
discussion of the LR(1) tables, assuming that they are there and guide the
parse properly. We shall list the successive stack contents entered by the push-
down processor and then show the tree structure pointed to by each of the
pointers. The LR(1) tables on the stack have been omitted.
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(e, abbabl) |*- (ab, bab¥)
- {ap,S, bab$)
I (ap,Sba, b%)
+— (ap,Sbp,4, b%)
F— (ap,Sbp,4b, $)
— (ap.Shp,Ap,S, )
F—(ap,Sp.4, 3)
b (psS, )

The trees constructed after the third, fifth, seventh, eighth, and ninth
indicated configurations are shown in Fig. 9.9(a)(e).

Note that when bp,Ap,S is reduced to A, the subtree formerly pointed to
by p, appears to the left of that pointed to by p,, because the transtation
element associated with A — bSA4 permutes the S and 4 on the right. A simi-
lar permutation occurs at the final reduction. Observe that the yield of Fig.
9.9(e) is 01101. [

THEOREM 9.4

Algorithm 9.1 correctly produces the transtation of the input word
according to the given SDTS.

Proof. Elementary induction on the order in which the pointers are created
by Algorithm 9.1. []

We comment that if we “implement” a pushdown processor on a reason-
able random access computer, a single move of the PP can be done in a finite
number of steps of the random access machine. Thus, Algorithm 9.1 takes
time which is a linear function of the input length.

9.2.4, Deterministic One-Pass Top-Down Translation

Suppose that we have a predictive (top-down) parser. Converting such
a parser to a translator requires a somewhat different approach from the way
in which a bottom-up parser was converted into a translator, Let us suppose
that we have an SDTS with an underlying LL grammar, The parsing process
builds a tree top-down, and at any stage in the process, we can imagine that
a partial tree has been constructed. Those leaves in this partial tree labeled
by nonterminals correspond to the nonterminals contained on the pushdown
list of the predictive parser generated by Algorithm 5.3. The expansion of
a nonterminal is tantamount to the creation of descendants for the corre-
sponding leaf of the tree.

The translation strategy is to maintain a pointer to each leaf of the “cur-
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BiRit

(a)

7

(d)

Fig. 9.9 Translation by pushdown processor.

rent” treec having a nonterminal label. While doing ordinary LL parsing,
that pointer will be kept on the pushdown list immediately below the nontet-
minal corresponding to the node pointed to. When a nonterminal is expanded
according to some production, new leaves are created for the corresponding
translation element, and nodes with nonterminal labels are pointed to by
newly created pointers on the pushdown list. The pointer below the expanded
nonterminal disappears. It is therefore necessary to keep, outside the push-
down processor, a pointer to the root of the tree being created. For example,
if the pushdown list contains 4p, and the production 4 — aBbCe, with
translation element 0C1 B2, is used to expand 4, then the pushdown processor
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will replace Ap by aBp bCp,c. If p pointed to the leaf labeled 4 before the
expansion, then after the expansion A4 is the root of the following subtree;

© © O @ &

where p, points to node B and p, points to node C.
ALGORITHM 9.2
Top-down implementation of an SDTS on an LL grammar.

Input. A semantically unambiguous SDTS T = (N, L, A, R, S) with
an underlying LL{k) grammar G = (N, Z, P, S).

Output. A pushdown processor which produces a tree whose frontier is
the output for w for each w in L({).

Method, We shall construct a pushdown processor M which simulates
the LL(k) parser @ for G. The simulation of @ by M proceeds as follows.
As in Algorithm 9.1, we ignore the handling of tables. 1t is the same for M
as for a.

(1} Initially, M will have Sp, on its pushdown stack (the top is at the left),
where p, is a pointer to the root node »,.

{2y If @ has a terminal on top of its pushdown list and compares it with
the current input symbol, deleting both, Af does the same.

(3) Suppose that @ expands a nonterminal A [possibly with an associated
LL(k) table] by production 4 — X ... X, having translation element
YoB,¥, - -+ B.y,, and that the pointer immediately below A (it is easy to show
that there will always be one) peints to node n. Then M does the following:

{a) M creates direct descendant nodes for n labeled, from the left,

with the symbols of y,B,», --- By,

{b) On the stack M replaces 4 and the pointer below by X, --- X,
with pointers immediately below those of X, --- X, which are
nonterminals. The pointer below X, points to the node created
for B, if X, and B, correspond in the rule

A'_)Xl vee XL BBy, e By,

(4) If M’s pushdown list becomes empty when it has reached the end of
the input sentence, it accepts; the output is the tree which has been construct-
ed with root .. [
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Example 9.7

We shall consider an example drawn from the area of natural language
translation. It is a little known fact that an SDTS forms a precise model for
the translation of English to another commonly spoken natural language,
pig Latin. The following rules informally define the translation of a word
in English to the corresponding word in pig Latin:

(1) 1f a word begins with a vowel, add the suffix YAY.

(2) If a word begins with a nonempty string of consonants, move all
consonants before the first vowel to the back of the word and append
suffix AY.

(3) One-letter words are not changed.

(4) U following a Q is a consonant.

(5) Y beginning a word is a vowel if it is not followed by a vowel.

We shall give an SDTS that incorporates only rules (1) and (2). Tt is left
for the Exercises to incorporate the remaining rules.
The rules of the SDTS are as follows:

{word> — {consonantsd {vowel>{letters),
{vowely{tetters>{consonantsy ‘AY’

{word)y —> {vowel>(letters), {vowel>lettersy “YAY’
{consonants —> {consonant »{consonants, {consonant>{consonants
{consonantsy —» {consonant, {consonant>

(letters >y —> (letter {letters), letter>{letters )
{lettersy) —> e, e
{vowely —s A’ A

{vowely — ‘B, ‘E’

{vowel> — U7, P
{consonanty — ‘B’, ‘B’

{consonanty — ‘C’, ‘'C

{consonanty — ‘Z°, 'L’
{lettery — <vowel», (vowel>

{letter> —— {consonant ), {consonant)
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The underlying grammar is easily seen to be LL({2). Let us compute
the output translation corresponding to the input word “THE”. As in
the previous two examples, we shall first list the configurations entered by the
processor and then show the tree at various stages in its construction. The
pushdown top is at the left this time.

Input Stack

(1) THES$ {word>p,

(2) THES$ {consonants) pavowel)palettersdpy

(3) THE$  <{consonant)ps{consonants)>pe{vowel}p;{lettersypa
(4) THES$ T<{consonants) pglvowel> pilettersd py

(5) HES {consonants? ps{vowel} p3Jettersypy

{(6) HES$ {consonant}p;{vowel>piletters>py

(7) HES H{vowel) palettersdpy

(8) ES$ {vowel}palettersy pa
(9) E3 E{letters> py

(10 3 (letters>py

an s e

The tree structure after steps 1, 2, 6, and 11 are shown in Fig. 9.10(a)—(d),
respectively. []

As in the previous section, there is an easy proof that the current algorithm
performs the correct translation and that on a suitable random access
machine the algorithm can be implemented to run in time which is linear in
the input length. For the record, we state the following theorem.

THECREM 9.5

Algorithm 9.2 constructs a pushdown processor which produces as output
a tree whose frontier is the translation of the input string.

Proof. We can prove by induction that an input string w has the net effect
of erasing nonterminal 4 and pointer p from the pushdown list if and only if
(A, A) =:> (w, x), where x is the frontier of the subtree whose root is the
node pointed to by p (after erasure of 4 and p and the symbols to which A4
is expanded). Details are left for the Exercises. [ ]

9.2.6. Translation in a Backtrack Envircnment

The ideas central to the pushdown processor can be applied to backtrack
parsing algorithms as well. To be specific, we shall discuss how the parsing
machine of Section 6.1 can be extended to incorporate tree construction.
The chief new idea is that the processor must be able to “destroy,” if need be,
subtrees which it has constructed. That is, certain subtrees can become inac-
cessible, and while we shall not discuss it here, the memory cells used to
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< word >

lpnj ’P3‘

< word > < vowel > < letters > < consonants >

(a) (b)

<word >

< vowel > <letters > < consonants > A Y

© 7\
< consonant > < consonants >
T D
< consonant >
< word >
<vowel > < letlters > <consonants > A
¢ < consonant > < consonants >

()] T <{ consonant >

H

Fig. 9.10 Translation to pig Latin.

represent the subtree are in practice returned to the available memory.
We shall modify the parsing machine of Section 6.1 to give it the capa-
bility of placing pointers to nodes of a graph on its pushdown list. {Recall
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that the parsing machine already has pointers to its input; these pointers are
kept on one celt along with an information symbol.) The rules for manipu-
lating these pointers are the same as for the pushdown processor, and we shall
not discuss the matter in any more detail.

Before giving the translation algorithm associated with the parsing
machine, let us discuss how the notion of a syntax-directed translation
carries over to the GTDPL programs of Section 6.1. It is reasonable to
suppose that we shall associate a translation with a “call” of a nonterminal
if and only if that call succeeds,

Let = (N, X, R, §) be a GTDPL program. Let us interpret a GTDPL
statement 4 — a, where a is in £ U {e}, as though it were an attempt to
apply production 4 — a in a CFG. Then, in analogy with the SDTS, we
would expect to find associated with that rule a string of output symbols.
That is, the complete rule would be 4 -— a, w, where w is in A*, A being
the *output alphabet.”

The only other GTDPL statement which might yield a translation is
A — B[C, D], where 4, B, C, and D are in N. We can suppose that two CFG
productions are implied here, namely 4 — BC and 4 — D. If B and C
succeed, we want the translation of 4 to involve the translations of 8 and C.
Therefore, it appears natural to associate with rule A — B[C, D] a irans-
lation element of the form wBxCy or wCxBy, where w, x, and y are in A%,
(If B = C, then there must be a correspondence specified between the non-
terminals of the rule and those of the translation element.)

If B fails, however, we want the franslation of A4 to involve the trans-
lation of D. Thus, a second translation element, of the form uwDw, must be
associated with the rule 4 — B[C, D]. We shall give a formal definition of
such a translation-defining method and then discuss how the parsing machine
can be generalized to perform such translations.

DEFINITION

A GTDPL program with output is a system P = (N, Z, A, R, §), where N,
X, and § are as for any GTDPL program, A is a finite set of ouzpurt symbols,
and R is a set of rules of the following forms:

() A—fie
() A—a, ywherea € £ U feland y € A*
(3) (@) 4-— B[C, D], y,By,Cps, y.Dys
(b) A — B[C, D], ylcy28y3= YDy,
where y, is in A*

There is at most one rule for each nonterminal.
We define relations => between nonterminals and triples of the form
(u[ v,y r), where y and v are in T*, y € A*, and r is 5 or 2 Here, the first

"
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component is the input string, with iaput head position indicated; the
second component is an output string, and the third is the outcome, either
success or failure,

(1} If 4 has rule 4 — ¢, p, then for all w in ¥, 4 = (al w,y,8). Ifvis
in * but does not begin with g, then A4 N T v, e f)

(2) If A hasrule 4 — B[C, D|, ¥, Ey,Fy,, v, Dy;,where E = Band F=C
or vice versa, then the following hold:

(@) If B3 (u, | tyttg, Xy, 8) and C=> (u, | 1y, X, 5), then

LIRS TE
A== (uu, T ts, ¥, X, ¥,%, 73, 5)

if E=RBand F= C, and

m+na+i
A= (g, [ 1y, y0X,3,%, V5, 8)

if E=Cand F= 8. Incase B = C, we presume that the cor-
respondence between E and F on the one hand and the positions
held by B and C on the other is indicated by superscripts, e.g.,
A — BW[B™, D), yB®p, By, y,Dy;.

(b) If B> (u, [ vy, %, 8) and C => ([ u,, e, 1), then

mtag+1

A= (F Uity €, f)

©) If B () uyug, e, ) and D= (u, [ uy, x, 5), then

mtagt+l

A'=>" (u, [ uy, yxys,5)

) I B3 (T ue f)and D= G u e, f), then A" S25" P uy e, £).
Note that if 4 == (u| », y, f), then 4 = ¢ and y = e. That is, on failure
the input pointer is not moved and no translation is produced, It also should
be observed that in case (2b) the translation of B is “canceled” when C
fails.
We Jet = be the union of = for n > 1. The franslation defined by P,
denoted ©(P), is {(w, X)| S = (W[, x, 9)}.

Example 9.8

Let us define a GTDPL program with output that performs the pig
Latin translation of Example 9.7. Here we shall use lowercase output and
the following nonterminals, whose correspondence with the previous exam-
ple is listed below. Note that X and C, represent strings of nonterminals.
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Here Example 9,7
W {word)
Ciy {consonant>
C, {consonants’
Cs {consonant>*
L; {letter)
L, {letters)
Vv {vowel
X {voweld(letters)

In addition, we shall use nonterminals S and F with rules S — e and
F — £ Finally, the rules for C,, ¥, and L must be such that they match any
consenant, vowel, or letter, respectively, giving a translation which is the
letter matched. These rules involve additional nonterminals and will be
omitted. The important rules are

W — C,[X, X], XC,‘ay’, X ‘vay
c,—CJC, Fl, C/C,, F
¢, —C|[C, 8], C,C, Ay
L,—L[L, S, L,L, Y
X——V[L, F], VL, F

For example, if we consider the input string ‘and’, we observe that
V= (a I nd, a, 5) and that L, = (ad |, nd, 5). Thus, X = (and I, and, s).
Since C, = (' and, ¢, f), it follows that C, = (" and, e, f). Thus, we have
W = (and I, andyay, 53. [

Such a translation can be implemented by a modification of the parsing
machine of Section 6.1. The action of this modified machine is based on
the following observation. If procedure 4 with rule 4 — BI[C, D] is called,
then A will produce a translation only if B and C succeed or if B fails and D
succeeds. The following algorithm describes the behavior of the modified
parsing machine.

ALGORITHM 9.3
Implementation of GTDPL programs with output.
Input. P = (N, E, A, R, §), a GTDPL program with cutput.

Quipur. A modified parsing machine M such that for each input w, M
produces a tree with frontier x if and only if (w, x) is in z(P).

Method. If we ignore the translation efements of the rules of P, we have
a GTDPL program P’ in the sense of Section 6.1. Then we can use Lemma
6.6 to construct M’, a parsing machine that recognizes L{P").
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We shall now informally describe the modifications of M’ we need to
make to obtain the modified parsing machine M. The modified machine A
simulates M’ and also creates nodes in an output tree, placing pointers to
these nodes on its pushdown list.

With an input string w, M has initial configuration (begin, [ w, (S, O)p,).
Here p, is a pointer to a root node 7.

(1) (a) Suppose that 4 — B[C, D], y,Ey,Fy,, y,Dy, is the rule for 4.

Suppose that M makes the following sequence of moves imple-
menting a call of procedure 4 under the rule 4 — B[C, D]:

(begin, u, | myuy, (4, i)p) |— (begin, u, [ w,u;, (B, /)4, i)p)
- (success, wu, [ 3, (4, D))
F— (begin, u,u, T u;, (C, i}p)

Then M would make the following sequence of moves correspond-
ing to the moves above made by M":

(5.2.1) (begin, u, [ u,u,, (A, Dpy)

(9.2.2) — (begin, v, [ uyuy, (B, ))ps(A, Dpapy")
(9.2.3) [ (success, w, i, T s, (A, Dpppy”)
(9.2.4) L— (begin, w1, | 4, (C, Dpcy)

In configuration (9.2.1) M has a pointer p,, to a leaf n,, directly
below 4. (We shall ignore the pointers to the input in this discus-
sion.) In going to configuration (9.2.2), A creates a new node n,,
makes it a direct descendant of n,, and places a pointer p, to n,
immediately below and above 4. Then M places B on top of
the pushdown list. In (9.2.3) M returns to A in state success.
In going to configuration (9.2.4), M creates a direct descendant
of n, for each symbol of y, Ey,Fy, and orders them from the left.
Node n,, which has already been created, becomes the node for
E or F, whichever is B. Let the node for the other of £ and F be
ne. Then in configuration (9.2.4), M has replaced Apyp, by Cp,,
where p. is a pointer to #,. Thus if E = C and F =B, then at
configuration (9.2.4), node », is root of the following subtree;

4

Xi e Y2 g Y1

/N
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(b) If, on the other hand, B returns failure in rule 4 — B[C, D],
M will make the following sequence of moves:

9.2.1) (begin, u, [ uyu;, (A, 1)p7")

. (9.2.2) {— (begin, u, [ w,u5, (B, flp A, Dpapy)
(9.2.5) F= (failure, u, [ w,u,, (A, Dpepy")
(9.2.6) F— (begin, u, [ uyuy, (D, Hpoy")

In going from configuration (9.2.5) to (9.2.6), M first deletes n,
and all its descendants from the output tree, using the pointer p,
below A4 to locate n,. Then M creates a direct descendant of n,
for each symbel of y, Dy, in order from the left and replaces
Apgp,on top of its pushdown list by Dp,,, where p,, is the pointer
to the node created for D.
(2) If A - a, yis a rule a in £ U {e}, then M would make one of the
following moves: :
(a) (begin, u[ av, (4, i)py) - (success, va| »,¥). In this move a
direct descendant of n, (the node pointed to by p,) would be
created for each symbol of y. If ¥ = e, then one node, labeled e,
would be created as a direct descendant.
(b) (begin, u| v, (A, Dp,y) — (failure, &' | v', ¥}, where |u'| =i and
v does not begin with an a.
(3) If 4 — f, eis a rule, then M would make the move in (2b).
(4) If M’ reads its entire input w and erases all symbols on its pushdown
list, then the tree constructed with root », will be the translation of w. []

THEOREM 9.6

Algorithm 9.3 definés a modified parsing machine which for an input
w produces a tree whose frontier is the transiation of w.

Proof. This is another straightforward inductive argument on the number
of moves made by M. The inductive hypothesis is that if M, started in state
begin with 4 and a pointer p to node # on top of its pushdown list and uw to
the right of its input head, uses input & with the net effect of deleting 4 and p
from the stack and ending in state success, then the node pointed to by p
will be the root of a subtree with frontier y such that 4 = (ul v, 9, 8. ]

Example 9.9

Let us show how a parsing machine would implement the translation of
Example 9.8. The usual format will be followed. Configurations will be
indicated, followed by the constructed tree. Moves representing recognition
by C,, ¥, and L, of consonants, vowels, and letters will not be shown.
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State Input Pushdown List
begin I and Wpi
begin I and CapaWpapa
begin I and CrasCapap2Wpap:
failure I and Capap2Wpap
begin I and FpaWpap:
failure ['and Wpap

begin [ and Aps
begin [ and VosXpsps
suecess al nd Xpsps

begin al nd Lap,y
begin alnd Lipglapspr
SuCCess anf d Lapspa
hegin anl d Lips
begin anl d LipioLapiops
suCcCess and Lipiops
begin and | Lapns
begin and b LipizLlaprapn
failare and [ Liprapn
begin and [ Spi1s

SHCCEss and | e

We show the tree after every fourih-listed configuration in Fig. 9.11(a)-

(). [

Although we shall not discuss it, the techniques suggested in Algorithm
9.3 are applicable to the other top-down parsing algorithms, such as
Algorithm 4.1 and translation built on a TDPL program.

EXERCISES

9.2.1. Construct a pushdown transducer to implement the following simple
SDTS:



(a) (b)

t The empty string is meant here; it is the translation of §

Fig. 9.11 Translation of pig Latin by parsing machine.

754
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E— E+ T, ET'ADDY
E—>T, T
T—T=F, TF'MPY;
T—F, F

F——s FtP FP'EXP;
F—P, P
P—(E), E

P——a, ‘LOADa”

The transducer should be based on an SLR(1) parsing algorithm. Give
the sequence of output strings during the processing of

@ atax(a+ a.

®ataxata

9.2.2. Repeat Exercise 9.2.1 for a pushdown processor parsing in an LL(1)
manner. Modify the underlying grammar when necessary. :

9.2.3. Show how a pushdown transducer working as an LL(I) parser would
translate the following strings according to the simple SDTS

E—TE, TE

E'—— + TE', T'ADD; E’
E —>e, €

Tr— FT', FT’

T — % FT', F'MPY} T’

T — e, e
F—> (E), E
F—ra, ‘LOAD a;’

@) ax(a-+a)
b) la+a)xa) -+ a

9.2.4. Show how a pushdown processor would translate the word abbaaaa
according to the SDTS

§ > adDAD, 040 4]

§— b, 2
A —— hSIEE 1 §FEIQ
A—>ra, e '

(a) Parsing in an LL(1) mode.
(b) Parsing in an LR(1) mode.
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9.2.5.

9.2.6.
*9.2.7.

*9.2.8.

9.2.9,
9.2.10.
9.2.11.

9.2.12,

9.2.13.

*49.2.14.

9.2.15,
9.2.16.
*9,2.17.

Show that there is no SDTS which performs the translation of Example
9.1 on the given grammar £ — a + E|e * E|a.

Give a formal construction for the PDT M of Theorem 9.1.

Prove that every DPDT defines a postfix simple syntax-directed trans-
lation on an LR(t) grammar. Hint: Show that every DPDT can be put
in a normal form analogous to that of Section 8.2.1,

Show that there exist translations 7 = {(x§, )} such that T is definable
by a DPDT but {{(x, 3){(x$, ») € T} is not definable any DPDT. Con-
trast this result with Exercise 2.6,20(b).

Give a formal proof of Theorem 9.3,
Prove Theorem 9.4.

Extend the SDTS of Example 9.7 to incorporate rules {3), (4), and (5)
for pig Latin.

Can the SDTS of Example 9,7 be replaced by a simple SDTS if we
assume that no English word begins with more than four consonants?
What happens to the number of rules of the SDTS?

Show how a parsing machine with pointers would translate the word
abb according to the following GTDPL program with ocutput:

§— A[B, C1,0B4, 11C

A—a, 0
B—— S[C, 4], 0CS, 14
C— b, i

Construct P, a GTDPL program with output, such that 7(P) = {{x, })|x
is a string with # a’s and v b’s, 7 > 0, and y = g°b"}. Construct M,
a modified parsing machine, from P so that T(M) = 7(P). Is there (a)
a TDPL pregram with output or (b) an SDTS that defines the same
translation ?

Prove Theorem 9.5.
Prove Theorem 9.6,

Extend the notion of a processor with pointers to a graph and give
translation algorithms for SDTS’s based on the following algorithms:
(a) Algorithm 4.1.

(b) Algorithm 4.2.

(¢) The Cocke-Younger-Kasami algorithm.

(d) Earley's algorithm.

(e) A two-stack parser (see Section 6.2).

(f) A Floyd-Evans parser.
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Research Problem

9.2.18. Inimplementing a translation, we are often concerned with the efficiency
with which the translation is performed. Develop optimization tech-
niques similar to those in Chapter 7 to find efficient transtators for
useful classes of syntax-directed translations.

Programming Exercises

9.2.19., Construct a program that takes as input a simple SDTS on an LL(1)
grammar and produces as output a franslator which implements the
given SDTS.

9.2.20. Construct a program that produces a translator which implements a
postfix simple SDTS on an LALR(1) grammar.

9.2.21. Construct a program that produces a translator which implements an
arbitrary SDTS on an LALR(1) grammar.

BIBLIOGRAPHIC NOTES

Lewis and Stearns [1968] were the first to prove that a simple SDTS with an
underlying LL{X) grammar can be implemented by a deterministic pushdown trans-
ducer. They also showed that a simple postfix SDTS on an LR(k) grammar can
be performed on a DPDT and that every DPDT transiation can be effectively de-
seribed by a simple postfix SDTS on an LR (k) grammar (Exercise 9.2.7). The push-
down processor was introduced by Aho and Ullman [1969a].

In many compiler<compilers and compiler writing systems, the formalism used
to describe the object compiler is similar to a syntax-directed translation scheme,
The syntax of the language for which a compiler is being constructed is specified
in terms of a context-free grammar. Semantic routines are also specified and
associated with each production. The object compiler that is produced can be
modeled by a pushdown processor; as the object compiler parses its input, the
semantic routines are invoked to compute the output. TDPL with output is a
simplified model of the TMG compiler writing system [McClure, 1965]. Mcliroy
[1972] has implemented an extension of TMG to allow GTDPL-type parsing rules
and simulation of bottom-up parsers. GTDPL with output is a simplified model
for the META family of compiler-compilers [Schorre, 1964].

Two classes of simple SDTS’s which each include the simple SDTS’s on an
LL grammar and the postfix simple SDTS’s on an LR grammar are mentioned by
Lewis and Stearns [1968] and Aho and Ullman [1972g]. Each of these classes is
implementable on a DPDT.

9.3. GENERALIZED TRANSLATION SCHEMES

In this section we shall consider how the idealized translations discussed
previously can be extended in a natural way to enable us to perform a wider
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and more useful class of translations. Here we shall adopt the point of view
that the most general translation element that can be associated with a pro-
duction can be any type of function. The main extensions are to allow several
translations at each node of the parse tree, to allow use of other than string-
valued variables, and to allow a translation at one node to depend on trans-
lations at its direct ancestor, as well as its direct descendants.

We shall also discuss the important matter of the timing of the evaluation
of translations at various nodes.

9.3.1. Mulitipla Translation Schemas

Our first extension of the SDTS will allow cach node in the parse tree to
possess several string-valued transiations. As in the SDTS, each translation
depends on the translations of the various direct descendants of the node in
question. However, the translation elements can be arbitrary strings of output
symbols and symbols representing the translations at the descendants. Thus,
translation symbols can be repeated.

DEFINITION

A generalized syntax-directed translation scheme (GSDTS) is a system
T=(MN,X AT, R, S), where N, I, and A are finite sets of nonterminals, in-
put symbols, and output symbols, respectively. I is a finite set of rranslation
symbols of the form A,, where 4 € N and 7 is an integer, We assume that
S, € T'. Sis the start symbol, a member of N. Finally, R is a set of rules of
the form

A—>msAi=BHA2:ﬁZ!""Am:ﬁm

subject to the following constraints:

() A;eTforl <j<m,

(2) Each symbol of 8, ..., 8, is either in A or a symbol B, in T such
that B is a nonterminal which appears in «.

(3} If & has more than one symbol B, then each B, in the #’s is associated
by a superscript to one of these instances of B.

We call A — o the underlying production of the rule. We call 4, a trans-
lation of A and A, = B, a translation element associated with this rule. If P
denotes the set of underlying productions of all tules, then G = (N, &, P, 5)
is the underlying grammar of T. If no two rules have the same underlying
production, then T is said to be semantically unambiguous.

We define the output of a GSDTS in a bottom-up fashion. With each
interior node n of a parse tree {in the underlying grammar) labeled 4, we
associate one string for each A, in [". This string is called the value (or
translation) of A4, at node n, Each value is computed by substituting the values
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defined at the direct descendants of n for the translation symbols of the
translation element for A,. The proper translation element for 4, is the one
associated with the production used at n. For example, suppose that

A — BaC, A4, =86B,C,B, A,=CcB,

is a rule in a GSDTS and that the underlying production 4 — BaCis used to
expand a node labeled A in the derivation tree, as shown in Fig. 9.12. Then if

Fig. 9.12 Portion of a parse tree.

the values of B, and B, at node B and of C, and C, at node C are as in Fig.
9.12, the value of A4, defined at the node labeled A4 is bx, y,x, and the value
of A, at that node is y,cx,.

The translation defined by T, denoted 1(T), is the set of pairs

{(x, ¥) | x has a parse tree in the underlying grammar of T,
and y is the value of S, at the root of that treel.

Example 9.10

Let T = (iS5}, {a}, {a}, {$}, 5.}, R, S} be a- GSDTS, where R consists of
the following rules:

S—als, S5 =858,5a S, =S54

S—>a § =aq, S, =a

Then =(T) = {{¢", )| n > |}. For example, ¢* has the parse tree of Fig.
9.13(a). The values of the two translations at each interior node are shown
in Fig, 9.13(b).

For example, to calculate the value of S, at the root, we substitute into
the expression §,.5,5,4a the values for S, and S, at the node below the root.
These values are ¢® and 4?, respectively. A proof that ©(7T) maps a" to ¢
reduces to observing that (n 4 1)* =n2 4+ 2n 4+ 1. []
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Fig, 9.13 Generalized syntax directed translation.

Example 9.11

We shall give an example of formal differentiation of expressions involy-
ing the constants 0 and 1, the variable x, and the functions sine, cosine, -+,
and #. The following grammar generates the expressions:

E- > E+T|T
T—>Tx*F|F
F—— (E}|sin(E)]|cos(E)| x|0]1

We associate with each of E, T, and F two translations indicated by
subscripts 1 and 2. Subscript 1 indicates an undifferentiated expression; 2
indicates a differentiated expression. E, is the distinguished translation. The
appropriate laws for the derivatives are

d(f(x) + g(x)) = df (x) + dg(x)
df (x)g(x) = fx)dg(x) + g(x)df(x)
d sin(f(x)) = cos(f(x)df(x)
d cos(f(x)) = —sin(f(x))df (x)
dx =1
d0 =0
dl =0
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The following GSDTS, T, reflects these laws:

E—“'_>E+T E]:Ei—l_Tl

E,=E +T,
E->T E =T,
E2=T2

T—>T+F  T,=T,+F,
Ty =T, % Ey + () + F,

T—F T, =F,
T, =F,

F——(E) Fy = (&)
Fy, =(Ey)

F —— sin(E) F, = sin(E))

Fy = cos(E}) * (E,)
F— cos(E) F, = cos(E,)

F, = —sin(E)) * (F,)

F——>x F, =
F, =
F—s0 F, =0
F, =
F—s>1 F, =
£, =90

We leave for the Exercises a proof that if (&, §) is in 7(7), then § is the deri-
vative of &. § may contain some redundant parentheses.

The derivation tree for sin(cos(x)) + x Is given in Fig. 9.14,

The values of the iranslation symbols at each of the interior nodes are
listed below:

Nodes EI, T], or Fi Ez, T or Fa
A3, R X 1
Hyz, i, Mo X 1
Ry, g, Rz COS(JC) _Sin(x) * (1)
Hg, M5, Ny sin(cos(x}) cos{cos(x)) # (—sin(x) * (1))

71 sin{cos(x)) - x cos(cos(x)) x (—sin{x) % (1)) + 1 ]
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Fig. 9.¥4 Derivation tree for sin {cos (x)) + x.

The implementation of a GSDTS is not much different from that of an
SDTS using Algorithms 9.1 and 9.2. We shall generalize Algorithm 9.1 to
produce as output a directed acyclic graph (dag) rather than a tree. It is then
possible to “walk” over the dag in such a way that the desired translation
can be obtained.

ALGORITHM 9.4

Bottom-up execution of a GSDTS.

Input. A semantically unambiguous GSDTS T'=(N,Z, A, T, R, S),
whose underlying grammar & is LR(k), and an input string x € I*.
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Qutput. A dag from which we can recover the output y such that (x, ¥)
isin T.

Method. Let @ be an LR(k) parser for G. We shall construct a pushdown
processor M with an endmarker, which will simulate @ and construct a dag.
If @ has nonterminal 4 on its pushdown list, A will place below 4 one pointer
for each translation symbol 4, € I'. Thus, corresponding to a node labeled
A on the parse tree will be as many nodes of the dag as there are translations
of 4, i.e,, symbols 4, in I'. The action of M is as follows:

(1) If @ shifts, M does the same.

(2) Suppose that @ is about to reduce according to production 4 — ¢,
with translation elements 4, = 8, ..., 4, = f,.. Atthis point M will have
e on top of its pushdown list, and immediately below each nonterminal in
u there will be pointers to each of the translations of that nonterminal. When
M makes the reduction, M first creates »m nodes, one for each translation
symbol A, The direct descendants of these nodes are determined by the
symbolsin §,, ..., §,. New nodes for output symbols are created. The node
for translation symbol B, = I' is the node indicated by that pointer below
the nonterminal B in & which represents the kth translation of B. (As usual,
if there is more than one B in &, the particular instance of B referred to will
be indicated in the translation element by a superscript.) In making the reduc-
tion, M replaces & and its pointers by 4 and the m pointers to the translations
for A. For example, suppose that @ reduces according to the underlying
production of the rule

A—> BaC, A, =bBC,B,, A,=CcB,

Then M would have the string p, p, Bap.,p.,C on top of its pushdown list
{Cis on top), where the p’s are pointers to nodes representing translations. In
making the reduction, M would replace this string by p,p, 4, where p,,
and p, are pointers to the first and second translations of 4. After the reduc-
tion the output dag is as shown in Fig. 9.15. We assume that p,, points to

the node for X,.
N\ /

</
ONOBOSORONO

Fig. 9.15 Portion of output dag.
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(3) If M has reached the end of the input siring and its pushdown list
contains S and some pointers, then the pointer to the node for S, is the root
of the desired output dag. [

We shall delay a complete example until we have discussed the inter-
pretation of the dag. Apparently, each node of the dag “represents” the value
of a franslation symbol at some node of the parse tree. But how can that value
be producsd from the dag? It should be evident from the definition of the
translation associated with a dag that the value represented by a node n
should be the concatenation, in order from the left, of the values represented
by the direct descendants of node . Note that two or more direct descendants
may in fact be the same node. In that case, the value of that node is to be
repeated.

With the above in mind, it should be clear that the following method of
walking through a dag will produce the desired output.

ALGORITHM 9.5
Translation from dag.
Input. A dag with leaves labeled and a single root,
Output. A sequence of the symbols used to label the leaves.

Method. We shall use a recursive procedure R(n), where # is a node of the
dag. Initially, R(n,) is called, where n, is the root.

Procedure R(n).

(1) Let a;, a,. ..., a, be the edges leaving » in this order. Do step (2)
for a4, 4,, . . ., a, in order.
(2) Let ¢ be the current edgs,
(a) If g, enters a leaf, emit the label of that leaf.
(b) If @, enters an interior node »’, perform R{n'). [ |

THEOREM 9.7

If Algorithm 9.5 is applied to the dag produced by Algorithm 9.4, then
the output of Algorithm 9.5 is the translation of the input x to Algorithm 9.4

Proof. Each node n produced by Algorithm 9.4 corresponds in an obvious
way to the value of a tramslation symbol at a particular node of the parse
tree for x. A straightforward induction on the height of a node shows that
R(n) does produce the value of that translation symbol. []

Example 8.12

Let us apply Algorithms 9.4 and 9.5 to the GSDTS of Example 9.10
{p. 759), with input aaaq.

The sequence of configurations of the processor is [with LR(1) tables
omitted, as usuall
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Pushdewn List Input
() e aaaa$
2 a aaal
(3) aa aal
(4) aoa a$
(5) agaa §

(6) aaapip»S $
(7} aapipsS $
(8) apspsS 3
(9 prpsS 3

The trees constructed after steps 6, 7, and 9 are shown in Fig. 9.16(a)-
(¢). Nodes on the left correspond to values of S, and those on the right to
values of §,.

The application of Algorithm 9.5 to the dag of Fig. 9.16(c) requires many
invocattons of the procedure R(n). We begin with node »,, since that corre-
sponds to §,. The sequence of calls of R{(#) and the generations of output
a will be listed. A call of R(n;) is indicated siﬁlp]y as n,. The sequence is
1y, N 7, AN AN, QAN QaR N, QAN N adan N nguaad. [

9.3.2. Varieties of Translations

Heretofore, we have considered enly string-valued translation variables in
a translation scheme. The same principles that enabled us to define SDTS’s
and GSDTS’s will allow us to define and implement translation schemes
containing arithmetic and Boolean variables, for example, in addition to
string variables.

The strings produced in the course of code generation can fall into several
different classes:

{I) Machine or assembly code which is to be output of the compiler.

(2) Diagnostic messages; also output of the compiler but not in the same
stream as (1).

(3) Instructions indicating that certain operations should be performed
on data managed by the compiler itself.

Under (3), we would include instructions which do bookkeeping operations,
arithmetic operations on certain variables used by the compiler other than
in the parsing mechanism, and operations that allocate storage and generate
new labels for output statements. We defer discussion of when these instruc-
tions are executed to the next section.

A few examples of types of translations which we might find useful during
code generation are

{1) Elements of a finite set of modes (real, integer, and so forth} to indi-
cate the mode of an arithmetic expression,
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()

(¢}
Fig. 9.16 Dag constructed by Algorithm 9.4.
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(2) Strings representing the labels of certain statements when compiling
flow of control structures (if-then-else, for example), and
(3) Integers indicating the height of a node in the parse tree,

We shall generalize the types of formulas that can be used in a syntax-
directed translation scheme to compute translations. Of course, when dealing
with numbers or Boolean variables, we shall use Boolean and arithmetic
operators to express translations. However, we find it convenient to also use
conditional statements of the form if B then E, else E,, where B is a Boolean
expression and E, and E, are arbitrary expressions, including conditionals.

For example, we might have a production 4 — BC, where B has a
Boolean translation B, and C has two string-valued translations C, and C,.
The formula for the translation of A, might be if B, then C, else C,. That
is, if the left direct descendant of the node whose translation A4, is being
computed has translation B, = true, then take C,, the first translation of the
right direct descendant, as A,; otherwise, take C,. Alternatively, B might
have an integer-valued translation B,, and the formula for A4, might be
if B, = 1 then C, else C,. This statement would cause 4, to be the same
as C, unless B, had the value 1.

We observe that it is not hard to generalize Algorithm 9.4, a bottom-up
algorithm, to incorporate the possibility that certain translations are numbers,
Boolean values, or elements of some finite set. In a bottom-up scheme the
formulas for these variables {and the string-valued variables} are evaluated
only when all arguments are known.

In fact, it will often be the case that all but one of the translations asso-
ciated with a node are Boolean, integer or elements of a finite set. If the
remaining (string-valued) translation can be produced by rules that are
essentially postfix simple SDTS rules (with conditionals, perhaps), then
we can implement the entire translation on a DPDT which keeps the non-
string translations on its pushdown list. These translations can be easily
“attached” to the pushdown cells holding the nonterminals, there being
an obvious connection between nonterminals on the pushdown list and
interior nodes of the parse tree. If some translation is integer-valued, we have
gone outside the DPDT formalism, but the extension should pose no problem
to the person implementing the translator on a computer.

However, generalizing Algorithms 9.2 and 9.3, which are top-down, is
not as easy. When only strings are to be constructed, we have allowed the
formulas to be expanded implicitly, i.e., with pointers to nodes which will
eventually represent the desired string. However, it may not be possible to
treat arithmetic or conditional formulas in the same way.

Referring to Algorithm 9.2, we can make the following modification.
If a nonterminal 4 on top of the pushdown list is expanded, we leave the
pointer immediately below 4 on the pushdown list. This pointer indicates
the node n which this instance of A represents. When the expansion of A is
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complete, the pointer will again be at the top of the pushdown list, and the
translations for all descendants of »# will have been computed. (We can show
this inductively.) It is then possible to compute the translation of » exactly
as if the parse were bottom-up. We leave the details of such a generalization
for the Exercises.

We conclude this section with several examples of more general trans-
iation schemes.

Example 9.13

We shall elaborate on Section 1.2.5, wherein we spoke of the generation
of code for arithmetic expressions for a single accumulator random access
machine. Specifically, we assume that the assembly language instructions

ADD o
MPY o
LOAD «
STORE «

are available and have the obvicus meanings.

We shall base our translation on the grammar G,. Nonterminals E, T,
and F will each have two translation elements. The first will produce a string
of output characters that will cause the value of the corresponding input
expression to be brought to the accumulator. The second translation will
be an integer, representing the height of the node in a parse tree. We shall
not, however, count the productions £E— T, T— F, or F— (E) when
determining height. Since the only need for this height measure is to deter-
mine a safe temporary location name, it is permissible to disregard these
productions. Put another way, we shall really measure height in the syntax
tree.

The six productions and their translation elements are listed below:

() E—>E+T E =T, “STORE® E, 7 E SADD ¥ E,
E, =max(E;, T, + |
(2 E—T E =Tt
E, =T,
3y T— TxF TW=F “STORE® T, 7T, MPY§S T,
T, = max(T,, ) + 1
11If we were working from the syntax lree, rather than the parse tree, reductions by

E— T, T— Fand F— (E) would not appear. We would then have no need to implement
the trivial translation rules associated with these productions.
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@ T—F I'=F
T,=F,

6) F—>®  F=E
F, =E,

6 F-—a F, = ‘LOAD’ NAME(a)
F, =1

Again we use the SNOBOL convention in the translation elements for
the definition of strings. Quotes surround strings that denote themselves.
Unquoted symbols denote their current value, which is to be substituted for
that symbol. Thus, in rule (1), the translation element for £, states that
the value of E, is to be the concatenation of

{1} The value of T, followed by a semicolon;

(2} The instruction STORE with an address $n, where » is the height
of the node for £ (on the right-hand side of the production), followed by
a semicolon;

(3) The value of E; (the left argument of +) followed by a semicolon;
and

(4) The instruction ADD $a, where n is the same as in (2).

Here $n is intended to be a temporary location, and the translation for
E, (on the right-hand side of the translation element) will not use that loca-
tion because of the way E,, T,, and F; are handled.

The rule for production (6) uses the function NAME(«), where NAME
is a bookkeeping function that retrieves the internal (to the compiler) nane
of the identifier represented by the token . Recall that the terminal symbols
of all our grammars are intended to be tokens. If a token represents an iden-
tifier, the token will contain a pointer to the place in the symbol table where
information about the particular identifier is stored. This information tells
which identifier the token really represents, as well as giving attributes of that
identifier.

The parse tree of (¢ + @) * {a + a), with values of some of the transla-
tion symbols, is shown in Fig. 9.17. We assume that the function NAME(a)
yields a,, a,, a,, and a,, respectively, for the four identifiers represented

bya [

Example 9.14

The code produced by Example 9.13 is by no means optimal. A con-
siderable improvement can be made by observing that if the right operand is
a single identifier, we need not load it and store it in a temporary. We shall
therefore add a third translation for £, 7, and F, which is a Boolean variable



770 TRANSLATICN AND CODE GENERATION CHAP. §

Ty =LOADay; STORE $1; LOAD a5;

ADD $1; STORE $2; LOAD a;;

STORE $1; LOAD a, ; ADD $1; MPY $2
Ty =3

LOADa,; ADD $1
E,=2

LOAD ay; ADD $1
E =2

e E; =LOADu,; STORE $1; e E, = LOADa,;STORE $1;

Fig. 9.17 TParse tree and translations.

with value true if and only if the expression dominated by the node is a single
identifier.

The first translation of E, T, and F is again code to compute the expres-
sion. However, if the expression is a single identifier, then this translation is
only the “NAME” of that identifier. Thus, the translation scheme does not
“work” for single identifiers. This should cause little trouble, since the expres-
sion grammar is presumably part of a grammar for assignment and the
translation for assignments such as 4 «— B can be handled at a higher level.

The new rules are the following:
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() E-—E+T E =ifT, then
if E; then ‘LOAD’ E;, ;ADD’ T,
else E, ;ADD’ T:
else if £, then T, *;STORE 31;LOAD’ E|
“:ADD §1°
else 7, S;STORE ¥ E, ;" E, ;ADD § E,
E, =max(E,, T,) + 1

E, = false
2 E—T E, =T,

&, =T,

E, =T,

(3 T—TxF T, =if F, then
if T; then ‘LOAD’ T, “;MPY" F,
else T, *;MPY" F,
else if 7, then F, “;STORE $1;,LOAD’ T,
“MPY $1I°
else F; ;STORE S T, ;' T, ;MPY §' T,
T, =max(T,, F,) + 1

T, = false
4y T—F T, =F
T, =F
T, =F,
(5 F—>(E) F, = E,
F, =E,
F, =E,
6y F——>a F, = NAME(@)
F,=1
F; = true

In rule (1), the formula for E, checks whether either or both arguments
are single identifiers, If the right-hand argument is a single identifier, then
the code generated causes the left-hand argument to be computed and the
right-hand argument to be added to the accumulator. If the left-hand argu-
ment is a single identifier, then the code generated for this argument is the
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identifier name. Thus, ‘LOAD’ must be prefixed to it. Note that £, = 1 in
this case, and so $1 can be used as the temporary store rather than ‘% E,
(which would be $1 in this case anyway).

The code produced for {a + a) * (¢ + @) is

LOAD a,; ADD a,; STORE §2; LOAD a,; ADD a,; MPY $2
Note that these rules do not assume that 4 and = are commutative. [ ]

Our next cxample again deals with arithmetic expressions. It shows how
if three address code is chosen as the intermediate language, we can write
what is essentially a simple SDTS, implementable by a deterministic push-
down transducer that holds some extra information at the cells of its push-
down list.

Example 8.15

Let us translate L(G,) to a sequence of three address statements of the
form A «— + BC and 4 — » BC, meaning that 4 is to be assigned the sum
or product, respectively, of B and C. In this example 4 will be a string of
the form $i, where / is an integer. The principal translations, E,, T, and F,,
will be a sequence of three address statements which evaluate the expression
dominated by the node in question; E,, T,, and F, are integers indicating
levels, as in the previous examples. E;, 7, and F; will be the name of a vari-
able which has been assigned the value of the expression by the aforemen-
tioned code. This name is a program variable in the case that the expression
is a single identifier and a temporary name otherwise. The following is the
translation scheme:

E—E++T E =ET ‘¥ max(E,, T,) ‘«— +" ET,°}

E, = max(E,, T;) + 1
E, =% max{E,, T,)

E—T E, =1
E, =T,
E3:T3

T—>T+F T, =TF ‘S max(Ty, F,) ‘— »" T,F, *;
T, =max(T,, F;) + |
T, =S max(T,, F5)
T—>F T =F
T, =F,
T, =F,
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F—(E) Fo=E,
F,=E,
Fy =E,
F—>a F, =
F, =
F, = NAME(a)

As an example, the output for the input a, * {a, + a,) is

$l «— 4+ a,a,;
32 e—xa$l;

We leave it to the reader to observe that the rules for E,, T, and F,
form a postfix simple SDTS if we assume that the values of second and third
translations of %, T, and F are output symbols. A practical method of imple-
mentation is to parse G, in an LR(1) manner by a DPDT which keeps the
values of the second and third translations on its stack. That is, each push-
down cell holding F will also hold the values of E, and E, for the associated
node of the parse tree (and similarly for cells holding T and F).

The translation is implemented by emitting

¥ max(E,, Tp) <+ BTy *)

every time a reduction of E + T to F is called for, where E,, E;, T,, and T,
are the values attached to the pushdown cells involved in the reduction.
Reductions by T— T'x F are treated analogously, and nothing is emitted
when other reductions are made.

We should observe that since the second and third translations of E, T,
and F can assume an infinity of values, the device doing the translation is
not, strictly speaking, a DPDT. However, the extension is easy to implement
in practice on a random access computer. [ ]

Example 9.16

We shall generate assembly code for control statements of the if-then—
else form. We presume that the nonterminal S stands for a statement and
that one of its productions is § — if B then S else S. We suppose that S has
a translation S, which is code to execute that statement. Thus, if a production
for S other than the one shown is used, we can presume that S, is correctly
computed,

Let us assume that B stands for a Boolean expression and that it has two
translations, 8, and B,, which are computed by other rules of the translation
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systern. Specifically, B, is code that causes a jump to location B, if the
Boolean expression has value false,

To generate the expected code, S will need another translation .S, which
is the location to be transferred to after execution of ' is finished. We assume
that our computer has an instruction JUMP ¢ which transfers control to
the location named «,

To generate names for these locations, we shall assume the existence of
a function NEWLABEL, which when invoked generates a name for a label
that has never been used before. For example, the compiler might keep
a global integer / available. Each time NEWLABEL is invoked, it might
increment i by 1 and return the name $3i. The function NEWLABEL is not
actually invoked for this S-production but will be invoked for some other
S-productions and for B-productions.

We also make use of a convenient assembler pseudo-operation, the likes
of which is found in most assembly languages. This assembly instruction is
of the form

EQUAL a, 8

It generates no code but causes the assembler to treat the locations named
o and # as the same location.

The EQUAL instruction is needed because the two instances of S on
the right-hand side of the production § — if B then S else S each have a name
for the instruction they expect to execute next. We must make sure that
a location allotted for one serves for the other as well.

The translation elements for the production mentioned are

S — if B then S else S §, = ‘EQUAL’ S{" 47 S ¢
B,y S ;JUMP’
5474 B, 7 S
5, = S

That is, the translation for § consists of the concatenation of

(1) An instruction to cause 5§’ and S3* to represent the same location;

{(2) Object code for the Boolean expression (8,), which causes a jump to
location B, if false;

(3) Object code for the first statement (S{*"} followed by a jump to the
location labeled S5" (the location with that label exists outside the statement
being compiled); and

{4) Object code for the second statement (S§{2'). The first location for that
code is given label B,.

The translation for S, is the same as translation §, of the first substate-
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ment. Thus, whether B is true or false, the location $i (which now equals
S§¥) will be reached.
Let us consider the nested statement

if BY then if B then § else S else S

generated by two applicﬁtions of the production in question. (The super-
scripts are just for reference and strictly speaking should not appear.) The
object code generated for this nested staterment would be (with semicolons
replaced by new lines)

EQUAL §§", ${

code for B

EQUAL S{1, §i2

code for B

code for §t!
JUMP 54"
B code for §'%
JUMP S
B code for 8¢ ]

Example 917

As the last example in this section, we consider generating object code
for a call of the form

call X(EW, ..., E™)

We suppose that there is an assembly instruction CALL X which transfers to
location X and places the current location in a register reserved for returning
from a function call. We translate call X(E, ..., E™) into code which
computes the values denoted by each of the expressions E%, ..., E™ and
stores their values in temporary locations ¢,, ..., ¢,. These computations
are followed by the assembly instruction CALL X and » “argument-holding”
instructions ARG ¢, ..., ARG t,, which are used as pointers to the argu-
ments of this call of X.

We should comment that an alternative method of implementing a call is
to place the values of EW, ..., E™ directly in the locations following the
instruction CALL X, A translation scheme generating this type of call is
left for the Exercises.

The important productions describing the call statement are

S—>calla 4
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A—e|(L)
L—EL|E

That is, a statement can be the keyword call followed by an identifier and
an argument list (4). The argument list can be the empty string or a paren-
thesized list (L) of expressions. We assume that each expression £ has two
translations E, and E,, where the translation of E; is object code that leaves
the value of E in the accumulator and the translation of E, is the name of
a temporary location for storing the value of E. The names for the tempo-
raries are created by the function NEWLABEL. The following rules perform
the desired translation:

S—callad 8, =A4, ";,CALL NAME(q) 4,
A—> (L) A, =L,
A, =L,
A—>e A, =e
4, =
L—FE L L, =E, “STORFE’ E, ‘L,
‘L, =‘ARG E,*; L,
L—E L, =E, *;STORF’ E,
L, ="ARG E,

For example, the statement call AB(E‘", E‘®) would, if the temporaries
for £ and E® were $31 and 3$$2, respectively, be compiled into
code for EV
STORE $51
code for E®
STORE 352
CALL AB
ARG 5§81
ARG 532

9.3.3. Inheritad and Synthesized Translations

There is another generalization of the syntax-directed translation that
may be useful in certain applications, We have considered translations of
nonterminals which are functions only of translations at the direct descendant
nodes. It is also possible that the value of a translation could be a function
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of the values of the translations at its direct ancestor as well as its direct
descendants. We make the following definition.

DEFINITION

A translation of a nonterminal in a transiation scheme is said to be a
synthesized translation if it is a function only of translations at itself and
the direct descendants of the nodes at which it is computed. The translation
18 an inherited translation if it is a function only of translations at itself and
the direct ancestor of nodes at which it is computed. All translations con-
sidered so far have been synthesized and, in fact, have not had formulas
involving translations at the same node.

We shall define translation elements associated with a production in
the usual way if the translation defined is synthesized. However, the rules
for Inherited translations associated with a production may use as arguments
the translations associated with the left-hand side of the production and
compute a translation associated with some particular symbol on the right.
1t is thus necessary that we distinguish the nonterminal on the left from any
instances of that symbol on the right. As usual, superscripts will be used for
this task.

Example 2.18

Let us consider the translation rule

AT > AV4D L0 = g2 4Dp
A(ZZ) ::Afll)

3 — 1
AP = ad

Here A has two translations 4,, which is synthesized, and A,, which is
inherited. The rule for 4, is of the type with which we are familiar. The rules
for AP and A% are examples of rules for inherited attributes. Let us refer
to the portion of a tree in Fig. 9.18. The rule for A» says that translation 4,
at node n, is to be made equal to the translation 4; at r,. Since A, at n, is
defined in terms of A4, at #,, here we have a simple example of circular
definition, and this rule is not acceptable as it stands. [ ]

(4"

OO
Fig. 9.18 Portion of a tree.
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Implementation of a translation scheme with both inherited and synthe-
sized attributes is not easy. In the most general case, one must first construct
the entire parse tree and then compute at each node whatever translations
can be computed in terms of the already computed translations at the descen-
dant and ancestor nodes. Presumably, one begins with the synthesized
attributes at nodes of height 1. When a translation is recomputed, all trans-
lations depending on it, whether inherited or synthesized, must be recom-
puted. It is thus possible that there is no end to the sequence of translations
which must be recomputed. Such a translation scheme is said to be circular.
It is decidable whether a translation scheme is circular, although the decision
algorithm is complicated, and we shall leave it for the Exercises. We shail
give one example in which for any parse tree there is a natural order in which
to compute the various translations.

Example 9.19

Let us compile code for arithmetic expressions to be executed on a
machine with two fast registers, denoted the A and B registers, The relevant
instructions are

LOADA
LOADB
STOREA
STOREB
ADDA
ADDB
MPY
ATOB

8 R & f &8 8 &

The meaning of the first six instructions should be obvious. We can load,
store, or perform addition in either register. We presume that the MPY
instruction takes its left argument in the B register and leaves the result in
the A4 register, as is the case for floating-point arithmetic on some computers.
The last instruction, ATOB, with no argument, transfers the contents of
the A register to the B register.

We shall build our translation on G, exactly as we did in Example 9.13.
The translations E,, T, and F, will represent code to compute the value of
the associated input expression, sometimes leaving the result in the A register
and sometimes in B. However, the code for E, at the root of the parse tree
for the input expression will always leave the value of the expression in the 4
register. F,, T,, and F, are integers which measure the height of the node,
as in Example 9.13. There will be translations E,, T,, and F; which are
Boolean and have the value true if and only if the value of the expression is
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to be left in the A register. These last three translations are all inherited,
while the first six are synthesized. We dispense with the code-improving
feature of Example 9.14. The rules of the translation scheme are
EV > E® LT E{ =if E{" then
T, ;STOREA § E{» ;' (¥
“;ADDA § E{®
else 77, ;STOREA §' E® *; ED
“ADDB $’ E®
EN =max(E®, T,) + 1
Ei® = EVt

T, = true
E—T E =1
E,=T
Ty =FE;

T s TR g F T = if T4 then
F, ;STOREA § T@® ‘7 T®
SMPY § TR
else F; “;STOREA § 1{» ;) T(»
MPY § T ,ATOB’
T4 = max(T¥, F,) + 1

T = false
F, = trne
T—> F T, =F
T,=F
F,=1T,
F—> (E) F, =E,
F,=F,
E, =F,
F—s>aq F| =if F; then ‘LOADA’> NAME(a)
else ‘LOADB’ NAME(a)
F,=1

TWe assume that all Boolean translations initially have the value true. Thus, if EY?
refers to the root, it is already defined.
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The strategy is to compute all right-hand operands in register A. The left-
hand operand of = is always computed in B, and the left-hand operand of
+ is computed in either 4 or B, depending on where the value of the com-
plete expression is desired. Thus, the transtation element for £{* associated
with production £ — E 4 T gives a translation which computes T"in register
A, stores it in a safe temporary, then computes E in either 4 or B, whichever
is desired, and performs the addition. The rule for T{" associated with pro-
duction T — T+ Fcomputes Fin register A, stores it, computes 7 in register
B, multiplies, and, if desired, transfers the result in register B.

The parse tree of (g + a) = a is shown in Fig. 9.19, with some interior

=
—-

Fig. 9.19 Parse tree.

nodes named. Inherited and synthesized atfributes propagate unchanged
up and down chains £ — T - F. Here, we describe one sequence of com-
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putation of the translations, omitting the propagation of translations from
£ to T to Fand conversely:

Translation At Node Value
T4 s true
Es ni3 false
F3 151 false
F3 na true
Fl Rz LOADA (153
Fy "y 1
F] Hy LOADB ay
Fz M1 1
Ej ny LOADA az; STOREA $1; LOADB a;; ADDB §1
E, 7y 2
F3 74 true
Fy e LOADA a;
Fz N4 1
Ty ns LOADA a3; STOREA 32; LOADA a;;

STOREA $}; LOADB a,; ADDB §1; MPY §2
e Rs 3

O
9.3.4. A Word About Timing

We have pictured a compiler as though the three steps of lexical analysis,
syntactic analysis, and code generation were done one at a time, in that order,
However, this time division is only for representational purposes and may
not oceur in practice,

First, the lexical analysis phase normally produces tokens only as they
are needed by the parser. The input string of tokens, which we have shown
when demonstrating the action of parsers, does not necessarily exist in
reality. The tokens are found only when the parser is about to look at them.
Of course, this difference does not affect the action of the parser in any way.

As we have already indicated, the parsing and code generation phases
may occur simultaneously, Thus, the three phases can operate in lock-step.
When the parser cannot parse further, it gets another token from the lexical
analyzer. After each reduction (if bottom-up) or nonterminal expansion (if
top-down) by the parser, the code generation phase operates on the node or
nodes of the parse tree that have just been produced.

If the translation being produced were one string, there would be little
concern about when different pleces of the translation were produced.
However, we recall that the various pieces of translation being produced
may be of several types: for example, object code, diagnostics, and instruc-
tions to be executed by the compiler itself, such as instructions to enter infor-
mation into the bookkeeping mechanism.
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Should the method of translation be a pushdown transducer, or a similar
device, where a single stream of output emerges from the device, we again
have little problem with the timing of translations. Symbols are deemed out-
put as they emerge from the device. If we assume that different kinds of
output are differentiated by metasymbols, then the output stream can be
divided as it emerges. For example, intermediate code is passed to the opti-
mization phase, diagnostics are placed on their own list to await printing,
and bookkeeping instructions are executed immediately.

Let us suppose that one of the more general versions of Algorithms 9.1~
9.4 is being used to perform some generalized syntax-directed translation.
We could wait until the entire tree or dag is constructed and then construct
a single output stream. The division of the stream into object code and
instructions would occur exactly as for a pushdown transducer. This means
that bookkeeping instructions would not be executed until the entire output
was constructed and that the instructions are reached as the output is pro-
cessed. This arrangement requires an extra pass over the output and a large
random access memory but may be the most practical arrangement if the
power of the more general syntax-directed translation schemes is needed.

Alternatively, one could adopt the convention that bookkeeping and
other compiler instructions are associated with particular nodes of the parse
tree and are executed just as soon as that node is constructed. However, if
the parsing algorithm involves backtrack, one must be careful not to execute
an instruction associated with a node which is subsequertly found not to be
part of the parse. In such a situation, a mechanism to negate the effect of
such an instruction is needed.

EXERCISES

9.3.1. Find G8DTS’s for the following translations:
(@) {(@", a")|n =1}
(b) {la* a®}n= 1}
(© {w, ww)|w € (0 + 1)*}.
9.3.2. Show that there exist GSDTS definable translations that are not SDT’s.

**9.33, Let T be a semantically unambiguous GSDTS with infinite domain
whose underlying CFG is proper. Show that one of the following three
conditions must held:

(1) There exist constants ¢; and ¢, greater than 1 such that if
{x, ¥y € ©(T), then [y| < ¢}, and for an infinity of x, there exists
(x, 1) € H(T)with |¥! = i\

(2) There exist constanis ¢y and ¢, greater than 0 and an integer
i > 1 such that if (x, ») € 7(I) and x = e, then | y| << ¢, | x|, and for
an infinity of x, there exists (x, ¥) € 2(T) with | ¥| = ¢; | x[.

(3) The range of T is finite.



9.34.

9.35.

9.3.6.

*9.3.7.

9.3.8.

9.3.9.

9.3.10.
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Show that the translation {(a%, a™)|»1 is the integer part of 4/ 7 } cannot
be defined by any GSDTS.

For Exercise 9.3.1(a)-(c), give the dags produced by Algorithm 5.4
with inputs @3, g4, and 011, respectively.

Give the sequence of nodes visited by Algorithm 9.5 when applied to
the three dags of Exercise 9.3.5.

Embellish Example 9.16 to include the production § — while B do §,
with the intended meaning that alternately expression B is to be tested,
and then the staternent S done, until such time as the value of B becomes
false.

The following grammar generates PL/I-like declarations:

D— (LM
L—>a L|D,Lia|D
M———%m1|mzl---|mk

The terminal @ stands for any identifier; m;, . . ., m, are the k possible

attributes of identifiers in the language. Comma and parentheses are
also terminal symbols. L stands for a list of identifiers and declarations;
D is a declaration, which consists of a parenthesized list of identifiers
and declarations. The intention is that the atiribute derived from AL
is to apply to all those identifiers generated by L in the production
D — (LM even if the identifier is within a nested declaration. For
example, the declaration (g, (az, as;}m,)nt, assigns attribute w1, to a;
and a; and attribute m, to a;, d,, and a;. Buiid a transiation scheme,
invelving any type of translation, that will translate strings generated
by D into £ lists; list i is to hold exactly those identifiers which are
given attribute m;.

Modify Example 9.17 to place values of the expressions, rather than
pointers to those values, in the ARG instructions.

Consider the following translation scheme:

N— L0 L N, = L4 4 L) [ 210

N—L N =1L,
L—— LB Ly=2L,+ B
Ly=L,+1
L—B Ly =218
Ly =1
B—0 B =0
B—>1 B =1

In the underlying grammar, & is the start symbol and derives binary
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*9.3.11.

*9.,3.12,

9.3.13.

*%9.3.14.

numbers {possibly with a binary point). L stands for a list of bits and
B for bit. The translation elements are arithmetic formulas. The frans-
lation element N, represents a rational number, the value of the binary
number derived by the nonterminal ¥. The translation elements Ly, L,,
and B, take integer values. For example, 11.01 has the translation 3;.
Show that (T} = {(b, d)| & is a binary number and d is the value of 5],

Consider the following translation scheme with the same underlying
grammar as in Exercise 9.3.10 but involving both synthesized and
inherited attributes:

N—> L. L N =L £ L@

L =0
L) = L@
N—L Ny =L,
L,=20
L —» g L(II) =L(12) + B1
B, = L{
L =L + 1
Lt =L@ 4+ 1
L— B L, =B
By =L
Ly=1
B—> 0 B, =0
B——1 B, =22

The parse tree for 11.01 together with the values of the translation
elements associated with each node is shown in Fig. 9.20. Note that
to compute the translation element N, we must first compute the Lj's
to the right of the radix point bottom-up, then the L.’s top-down, and
finally the Zy’s bottom-up. Show that this translation scheme defines
the same translation as the scheme in Exercise 9.3.10.

Show that any translation that can be performed using inherited and
synthesized translations can be performed using synthesized translations
only. Hint; There is no restriction on the structure of a translation.
Thus, one translation defined at a node can be the entire subtree that
it dominates,

Can every translation using synthesized translations be performed using
inherited translations only?

Give an algorithm to test whether a given transiation scheme involving
inherited and synthesized attributes is circular.
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9.3.15.

*9.3.16.

9.3.17.

Fig. 9.20 Parse tree with translations.

Modify Example 9.18 to incorporate the code-improving featurs of
Example 9.14.

The differentiation algorithm of Example 9.11 allowed the generation
of expressions such as 1 % ¢cos{x) or 0 = x +(1) * 1 (the formal derivative
of 1 * x). We can detect and eliminate expressions which are expficitly
0 or 1, where the definition of explicit is as follows:

(1) 0 is explicitly 0; 1 is explicitly 1,

{2) If E, is explicitly 0 and E; is any expression, then E, x E; and
E; # Ey are explicitly 0.

(3) If E, and E; are explicitly 1, then E, = E; is explicitly 1,

(4) If E; is explicitly 0 and E; is explicitly 1, then F; + E, and
E, + E, are explicitly 1.

(5) If £, and E, are explicitly 0, then £, -+ E; is explicitly 0.
Meodify the GSDTS, including the underlying grammar, if necessary,
s0 that no subexpressions which are explicitty 0 appear in the trans-
lation, and ne explicit 1 appears as a muttiplicative factor.

Consider the following grammar for assignment statements involving
subscripted variables:

A-—I:=F
E— Eladop>T|T
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9.3.18.

*%9,3,19.

T— T<{mulop)F| F

F— (E)|1

I— ala(l}

L—E,L|E
{adopy —> 4| -

{mulop) —> *|/
An example of a statement generated by this grammar would be
ale,a) :=alataax{at+a) +a

Here, a is a token representing an identifier. Construct z translation
scheme based on this grammar that will generate suitable assembly or
multiple address code for assignment statements.

Show that the GSDTS of Example 9.11 correctly produces an expression
for the derivative of its input expression.

Show that

Hay,..ab... byaibi...ab)n>1,
a; e {0,1}and b, € {2,3 for L << i< n)

is not definable by a GSDTS.

Research Problem

2.3.20.

Translation of arithmeltic expressions can become quite complicated if
operands can be of many different data types. For example, we could
be dealing with identifiers that could be Boolean, string, integer, real,
or complex—the last three in single, double, or perhaps higher preci-
sions. Moreover, some identifiers conld be in dynamically allocated
storage, while others are statically allocated, The number of combina-
tions can easily be large enough to make the translation elements asso-
ciated with a production such as £— E 4 T quite cumbersome. Given
a translation which spells out the desired code for each case, can you
develop an automatic way of simplifying the notation? For instance,
in Example 9.19, the then and else portions of the translation of E{"
differ only in the single character 4 or B at the end of ADD. Thus,
almost a factor of 2 in space could be saved if a more versatile defining
mechanism were used.

Programming Exercise

*9.3.21.

Construct a translation scheme that maps a subset of FORTRAN into
intermediate language as in Exercise 9.1.10. Write a program to imple-
ment this translation scheme. Implement the code generator designed
in Exercise 9.1.11. Combine these programs with a lexical analyzer to
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produce a compiler for the subset of FORTRAN. Design test strings
that will check the correct operation of each program.

BIBLIOGRAPHIC NOTES

Generalized syntax-directed translation schemes are discussed by Aho and
Ullman [1971], and a solution to Exercise 9.3.3 can be found there. Knuth [1968b]
defined translation schemes with inherited and synthesized attributes. The GSDT’s
in Exercises 9.3.10 and 9.3.11 are discussed there.

The solution to Exercise 9.3.14 is found in Bruno and Burkhard [1970] and
Knuth [1968b]. Exercise 9.3.12 is from Knuth [1968b].



1 o BOOKKEEPING

This chapter discusses methods by which information can be quickly
stored in fables and accessed from these tables. The primary application of
these techniques is the storage of information about tokens during lexical
analysis and the retrieval of this information during code generation. We shall
discuss two ideas—simple information retrieval techniques and the formalism
of property grammars. The latter is a method of associating attributes and
identifiers while ensuring that the proper information about each identifier
is available at each node of the parse tree for translation purposes.

10.1. SYMBOL TABLES

The term symbol table is given to a table which stores names and infor-
mation associated with these names. Symbol tables are an integral feature of
virtually all compilers. A symbol table is pictured in Fig. 10.1. The entries
in the name field are usnally identifiers. If names can be of different lengths,
then it is more convenient for the entry in the name fieid to be a pointer to
a storage area in which the names are actually stored.

The entries in the data field, sometimes called descripfors, provide infor-
mation that has been collected about each name. In some situations a dozen
or more pieces of information are associated with a given name. For example,
we might need to know the data type (real, integer, string, and so forth) of
an identifier; whether it was perhaps a label, a procedure name, or a formal
parameter of a procedure; whether it was to be given statically or dynamically
allocated storage; or whether it was an identifier with structure (e.g., an
array), and if so, what the structure was (e.g., the dimensions of an array).
If the number of pieces of information associated with a given name is vari-

788
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NAME DATA
I INTEGER
LOOP LABEL
X REAL ARRAY Fig. 10.1 Symbol table,

able, then it is again convenient to store a pointer in the data field to this
information.

10.1.1. Storage of Information About Tokens

A compiler uses a symbol table to store information about tokens, par-
ticularly identifiers. This information is then used for two purposes. First,
it is used to check for the semantic correctness of a source program. For
example, if a statement of the form

GOTO LOOP

is found in the source program, then the compiler must check that the identi-
fier LOOP appears as the label of an appropriate statement in the program.
This information will be found in the symbol table (although not necessarily
at the time at which the goto statement is processed). The second use of
the information in the symbol table is in generating code. For example, if
we have a FORTRAN statement of the form

A=B+C

in the source program, then the code that is generated for the operator +
depends on the attributes of identifiers B and C (e.g., are they fixed- or
floating-point, in or out of “common,” and so forth).

The lexical analyzer enters names and information into the symbol table,
For example, whenever the lexical analyzer discovers an identifier, it consults
the symbol table to see whether this token has previously been used. If not,
the lexical analyzer inserts the name of this identifier into the symbol table
along with any associated information. If the identifier is already present in
the symbol table at some location /, then the lexical analyzer produces the
token ({identifier), /) as output.

Thus, every time the lexical analyzer finds a token, it consults the symbol
table. Therefore, to design an efficient compiler, we must, given an instance
of an identifier, be able to rapidly determine whether or not a location in
the symbol table has been reserved for that identifier. If no such entry exists,
we must then be able to insert the identifier quickly into the table.
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Example 10.1

Let us suppose that we are compiling a FORTRAN-like language and
wish to use a single token type (identifier> for all variable names. When
the (direct) lexical analyzer first encounters an identifier, it could enter into
a symbol fable information as to whether this identifier was fixed- or floating-
point. The lexical analyzer obtains the information by observing the first
letter of the identifier. Of course, a previous declaration of the identifier to be
a function or subroutine or not to obey the usual fixed-floating convention
would already appear in the symbol table and would overrule the attempt
by the lexical analyzer to store its information. [}

Example 10.2

Let us suppose that we are compiling a language in which array declara-
tions are defined by the following productions:

{array statement —> array {array list>
<array list> — {array definition}, (array listy|{array definition)
{array definition — (identifier’ ((integer>)

An example of an array declaration in this language is
(10.1.1) array AB(10), CD(20)
For simplicity, we are assuming that arrays are one-dimensional here.

The parse tree for statement (10,1.1) is shown in Fig. 10.2, treating 4B and
CD identifiers and 10 and 20 as integers,

< array statement >

N

array < array list >

N

< array definition > < array list >

IR

< identifier >, <integer >, <{ array definition >

//\\

<identifier >, < integer >,

Fig. 10.2 Parse tree of array staternent.
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In this parse tree the tokens <identifier>,, {identifier>,, {integer),, and
{integer, represent AB, CD, 10, and 20, respectively.

The array statement is, naturally, nonexecutable; it is not compiled into
machine code. However, it makes sense to think of its translation as a se-
quence of bookkeeping steps to be executed immediately by the compiler.
That is, if the translation of an identifier is a pointer to the place in the symbol
table reserved for it and the translation of an integer is itself, then the syntax-
directed translation of a node labeled {array definition» can be instructions
for the bookkeeping mechanism to record that the identifier is an array
and that its size is measured by the integer. [7]

The ways in which the information stored in the symbol table is used are
numerous. As a simple example, every subexpression in an arithmetic expres-
sion may need mode information, so that the arithmetic operators can be
interpreted as fixed, floating, complex, and so forth. This information is
collected from the symbol table for those leaves which have identifier or
constant labels and are passed up the tree by rules such as fixed + floating =
floating, and floating 4 complex = complex, Alternatively, the language, and
hence the compiler, may prohibit mixed mode expressions altogether (e.g.,
as in some versions of FORTRAN).

10.1.2. Storage Mechanisms

We conclude that there is a need in a compiler for a bookkeeping method
which rapidly stores and retrieves information about a large number of differ-
ent items (e.g., identifiers). Moreover, while the number of items that actually
oceur is large, say on the order of 100 to 1000 for a typical program, the
number of possible items is orders of magnitude larger; most of the possible
identifiers do not appear in a given program.

Let us briefly consider possible ways of storing information in tables in
order to better motivate the use of the hash or scatter storage tables, to be
discussed in the next section.

Our basic problem can be formulated as follows. We have a large collec-
tion of possible items that may occur. Here, an item can be considered to
be a name consisting of a string of symbols. We encounter items in an un-
predictable fashion, and the exact number of items to be encountered is
unknown in advance. As each item is encountered, we wish to check a table
to determine whether that item has been previously encountered and if it
has not, to enter the name of the item into the table. In addition, there will
be other information about items which we wish to store in the table.

We might initially consider using a direct access table to store information
about items. In such a table a distinct location is reserved for each possible
item, Information concerning the item would be stored at that location, and
the name of the item need not be entered in the table. If the number of pos-
sible iterns is small and a unique location can readily be assigned to each item,



752 BOOKKEEPING char. 10

then the direct access table provides a very fast mechanism for storing.and
retrieving information about items. However, we would quickly discard the
idea of using a direct access table for most symbol table applications, since
the size of the table would be prohibitive and most of it would never be used.
For example, the number of FORTRAN identifiers (a letter followed by up
to five letters or digits) is about 1.33 x 10°

Another possible method of storage is to use a pushdown list. If a new
item is encountered, its name and a pointer to information concerning that
item is pushed onto the pushdown list. Here, the size of the table is propor-
tional to the number of items actually encountered, and new items can be
inserted very quickly. However, the retrieval of information about an item
requires that we search the list until the item is found. Thus, retrieval on
the average requires time proportional to the number of items on the list.
This technique is often adequate for small lists. In addition, it has advantages
when a block-structured language is being compiled, as a new declaration
of a variable can be pushed on top of an old one. When the block ends, all
its declarations are popped off the list and the old declarations of the vari-
ables are shll there.

A third method, which is faster than the pushdown list, is to use a binary
search tree. In a binary search tree each node can have a lef? direct descendant
and a right direct descendant. We assume that data items can be linearly
ordered by some relation <, e.g., the relation “precedes in alphabetical
order.” Items are stored as the labels of the nodes of the tree. When the first
item, say a,, is encountered, a root is created and labeled &, If &, is the next
item and a, < &,, then a leaf labeled o, is added to the tree and this leaf is
made the left direct descendant of the root. (If @, < &,, then this leaf would
have been made the right direct descendant.) Each new item causes a new
leaf to be added to the tree in such a position that at all times the tree will
have the following property. Suppose that ¥ is any node in the tree and that
N is labeled f§. If node ¥ has a left subtree containing a node labeled @, then
« << B. If node N has a right subtree with a node labeled y, then § < y.
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The following algorithm can be used to insert items into a binary search
tree.

ALGORITHM 0.1

Insertion of items into a binary search tree.

Input. A sequence o, . . ., &, of items from a set of items 4 with a linear
order <C on A.

Outpur. A binary tree whose nodes are each Jabeled by one of o, ..., a,,
with the property that if node N is labeled # and some descendant N’ of N
is labeled §, then § <¢ ¢ if and only if N7 is in the left subtree of .

Method.

(1) Create a single node (the root) and label it o,.
(2) Suppose that a,,...,a,_, have been placed in the tree, i > 0. If
i =n -+ 1, halt. Otherwise, insert a, in the tree by executing step (3) begin-
ning at the root.
(3) Let this step be executed at node N with label £.
(a) If &, < B and N has a left direct descendant, N,, execute step (3)
at N,. If N has no left direct descendant, create such a node and
label it o,. Return to step (2).
(&) If § < @, and N has a right direct descendant, & ,, execute step (3)
at N, If N has no right direct descendant, create such a node
and label it ¢, Return to step (2). []

The method of retrieval of itemns is essentially the same as the method for
insertion, except that one must check at each node encountered in step (3)
whether the label of that node is the desired item.

Example 10.3

Let the sequence of items input to Algorithm 10.1 be XY, M, QB, ACE,
and OP. We assume that the ordering is alphabetic, The tree constructed is
shown in Fig. 10.3. [ ]

It can be shown that, after » items have been placed in a binary search
tree, the expected number of nodes which must be searched to retrieve one
of them is proportional to log n. This cost is acceptable, although hash
tables, which we shall discuss next, give a faster expected retrieval time.

10.1.3. Hash Tables

The most efficient and commonly used method for the bookkeeping neces-
sary in a compiler is the Aash table. A hash storage symbol table is shown
schematically in Fig. 10.4.
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Fig. 10,3 Binary search tree.

NAME POINTER
0
1
o
Ttem * Information
. about &
h h(e) a ]
Hashing
function
*
n—1
Hash Table Data Storage Table

Fig. 10.4 Hash storage scheme.

The hash storage mechanism uses a hashing function, h, a hash table,
and a data storage table. The hash table has n entries, where n is fixed before-
hand. Each entry in the hash table consists of two fields—a name field and
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a pointer field. Initially, each entry in the hash table is assumed to be empty.t
If an item @ has been encountered, then some location in the hash table,
usually A(e), contains an entry whose name field contains & (or possibly
a pointer to a location in a name table in which & is stored) and whose pointer
field holds a pointer to a block in the data storage table containing the infor-
mation associated with a.

The data storage table need not be physically distinet from the hash
table. For example, if & words of information are needed for each item,
then it is possible to use a hash table of size kn. Each item stored in the hash
table would occupy a block of k consecutive words of storage. The appro-
priate location in the hash table for an item a can then readily be found by
multiplying A(e), the hash address for &, by k and using the resulting address
as the Jocation of the first word in the block of words for .

The hashing function A is actually a list of functions 4, h,,. .., A, each
from the set of items to the set of integers {0, 1,..., 7 — 13. We shall call
h, the primary hashing function. When a new item ¢ is encountered, we can
use the following algorithm to compute A(x), the hash address of a. If ¢ has
been previously encountered, A{w) is the location in the hash table at which
& is stored. If o has not been encountered, then A(a) is an empty location
into which ¢ can be stored.

ALGORITHM 10.2
Computation of a hash table address.

Input. An item e, a hashing function A consisting of a sequence of functions
hy, By .o,k each from the set of items to the set of integers {0, 1,...,n— 1}
and a (not necessarily empty} hash table with » locations.

Output. The hash address () and an indication of whether o has been
previously encountered. If « has already been entered into the hash table,
A{er) is the location assigned to «. If & has not been encountered, A(e) is
an empty location into which e is to be stored.

Method.

(1} We compute Ay (@), A,(a), . .., & (&) in order using step (2) until no
“collision”™ oceurs. If 2, (&) produces a collision, we terminate this algorithm
with a failure indication.

(2) Compute 4,(e) and do the following:

(a) If location Afa) in the hash table is empty, let A(x) = A{e),
report that e« has not been encountered, and halt.
{b) If location A(a) is not empty, check the name entry of this loca-

1Sometimes it is convenient to put the reserved words and standard functions in the
symbol table at the start.
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tion.t If the name is a, let A{et) = (), report that o has already
been entered, and halt. If the name is not &, a collision occurs
and we repeat step (2) to compute the next alternate address.

]

Each time a location A,(x) is examined, we say that a probe of the table
is made.

When the hash table is sparsely filled, collisions are rare, and for a new
item &, A(x) can be computed very quickly, usually just by evaluating the
primary hashing function, h,(a). However, as the table fills, it becomes
increasingly likely that for each new item a, A, (e) will already contain another
item. Thus, collisions become more frequent as more items are inserted into
the table, and thus the number of probes required to determine A(e) increases.
However, it is possible to design hash tables whose overall performance is
much superior to binary search trees.

Ideally, for each distinct item encountered we would like the primary
hashing function A, to yield a distinct location in the hash table. This, of
course, is not generally feasible because the total number of possible items
is usually much larger than a, the number of locations in the table. In
practice, # will be somewhat larger than the number of distinct items ex-
pected. However, some course of action must be planned in case the table
overflows.

To store information about an item &, we first compute A(a). If & has not
been previously encountered, we store the name & in the name field of loca-
tion /i{e). [If we are using a separate name table, we store o in the next empty
focation in the name table and put a pointer to this location jn the name
field of location h(e).] Then we seize the next available block of storage in
the data storage table and put a pointer to this block in the pointer field of
location A{e). We can then insert the information in this block of data storage
table.

Likewise, to fetch information about an item «, we can compute A(a),
if it exists, by Algorithm 10.2. We can then use the pointer in the pointer field
to locate the information in the data storage table associated with item .

Example 10.4

Let us choose n = 10 and let an item consist of any string of capital
Roman letters. We define CODE(a), where # is a string of letters to be the
sum of the “numerical value” of each letter in &, where A has numerical
value of 1, B has value 2, and so forth. Let us define A;(a), for 0 << j <9,

{If the name entry contains a pointer to a name table, we need to consult the name
table to determine the actual name.



sEC. 10.1 $YMBOL TABLES 797

to be (CODE(e) + jymod 10.1 Let us insert the items A, W, and EF into
the hash table,

We find that A,(A) = (I mod 10} =1, so A is assigned to location 1.
Next, W is assigned to location A, (W) = (23 mod 10) = 3. Then, EF
is encountered. We find 2, (EF) = (5 + 6)mod 10 = 1. Since location 1 is
already occupied, we try # (EF} =(5 + 6 4 I)mod 10 =2, Thus, EF is
given location 2. The hash storage contents are now as depicted in Fig. 10.5.

Name  Pointer

0
( A | e data for A
2 EF ——-.\
3 W *  data for W
4
5

data for EF
6
7
8 .

-

9 -

Fig. 10.5 Hash table contents.

Now, suppose that we wish to determine whether item HX is in the table.
We find A,(HX) = 2. By Algorithm 10.2, we examine location 2 and find
that a collision occurs, since location 2 is filled but not with HX. We then
examine location 4, (HX) = 3 and have another collision. Finally, we com-
pute 2,(HX) = 4 and find that location 4 is empty. Thus, we can conclude
that the item HX s not in the table. []

10.1.4. Hashing Functions

it is desirable to use a primary hashing function k; that scatters items
uniformly throughout the hash table. Functions which do not map onto
the entire range of locations or tend to favor certain locations, as well as
those which are expensive to compute, should be avoided.

Some commonly used primary hashing functions are the following.

ta mod & is the remainder when a is divided by b.
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(1) If anitem o 1s spread across several computer words, we can numeric-
ically sum these words {or exclusive-or these words) to obtain a single word
representation of «. We can then treat this word as a number, square it, and
use the middle log, # bits of the result as A (x). Since the middle bits of
the square depend on all symbols in the item, distinct items are likely to
yield different addresses regardless of whether the items share common
prefixes or suffixes.

(2) We can partition the single word representation of & into sections of
some fixed length (log, # bits is common). These sections can then be sum-
med, and the log, n low-order bits of the sum determine A,(e).

(3) We can divide the single word representation of & by the table size
r and use the remainder as A (a). (n should be a prime here.)

Let us now consider methods of resolving collisions, that is, the design
of the alternate functions k,, k,, . . ., #,. First we note that b (x) should be
different from #,(a) for all i = j. If 4(¢) produces a collision, it would be
senseless to then probe A, (a) if A,. (%) = A(x). Also, in most cases we want
m = rn — 1, because we always want to find an empty slot in the table if one
exists. In general the method used to resolve collisions can have a significant
effect on the overall efficiency of a scatter store system.

The simplest, but as we shall see one of the worst, choices for the func-
tions &, Ay, ..., h,_; 18 to use

hlo) =[he) +imod nfor 1 <<7i<<mn— 1

Here we search forward from the primary location A,(«) until no collision
occurs. If we reach location » — 1, we proceed to location 0. This method
is simple to implement, but clusters tend to occur once several collisions are
encountered. For example, given that s,(a) produces a collision, the prob-
ability that A, (&) will also produce a collision is greater than average.

A more efficient method of generating alternate addresses is to use

o) = (hy{et) +r)mod nfor 1l <<i<Cmn—1

where 7, is a pseudorandom number. The most rudimentary random number
generator that generates every integer between 1 and » — 1 exactly once
will often suffice. (See Exercise 10.1.8.) Each time the alternate functions are
used, the random number generator is initialized to the same point. Thus, the
SAme SeqUEnce r, #4, . . . 18 generated each time A is invoked, and the “random™
number generator is quite predictable.

Other possibilities for the alternate functions are

hi(e) = [i(A(®) + D]mod n



sec, 101 SYMBOL TABLES 799

and
hiey = [hy(e) + & + bilmod #,

where 2 and b are suitably chosen constants.
A somewhat different method of resolving collisions, called chaining, is
discussed 1n the Exercises.

10.1.6. Hash Table Efficiency

We shall now address ourselves to the question, “How long, on the
average, does it take to Ingert or retrieve data from a hash table?” A com-
panion question is, “Given a set of probabilities for the various items, how
should the functions #,, . . ., &,_, be selected to optimize the performance of
the hash table?” Interestingly, there are a number of open questions in this
area.

As we have noted, it is foolish to have duplications in the sequence of
locations Ay(e), . . ., A,_ () for any . We shall thus assume that the best
system of hashing functions avoids duplication. For example, the sequence
hgy o - .y by of Exzample 10.4 never causes the same location to be exam-
ined twice for the same item.

If n is the size of the hash table with locations numbered from Gton — |
and h,, ..., A,_, are the hashing functions, we can associate with each item
¢ a permutation IT, of {0,..., n — 1}, namely II, = [A{e), . . ., A, _,(2)].
Thus, the first component of II, gives the primary location to be assigned
to &, the second component gives the next alternate location, and so forth.
If we know p,, the probability of item & occurring, for all items &, we can
define the probability of permutation I1 to be 3] p,, where the sum is taken
over all items ¢ such that IT, = Il. Hereafter we shall assume that we have
been given the probabilities of the permutations.

It should be clear that we can calculate the expected number of locations
which must be examined to insert an item into a hash table or find an item
knowing only the probabilities of the permutations. It is not necessary to
know the actual functions 4, ..., h,., to evaluate the efficiency of a par-
ticular hashing function. In this section we shall study properties of hashing
functions as measured by the probabilities of the permutations.

We are thus motivated to make the following definition, which abstracts
the problem of hash table design to a question of what is a desirable set of
probabilities for permutations,

DEermNITION

A hashing system is a number n, the table size, and a probability function
p on permutations of the integers 0 through » — 1. We say that a hashing
system is random if p(II) = 1/r! for all permutations IT.
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The important functions associated with a hashing system are

(1) p(ii, - - - i), the probability that some-item will have i, as its primary
location, £, the first alternate, i, the next alternate, and so forth (each i, here
is an integer between O and n# — 1), and

@ p(fi,, iy, - . ., i,]), the probability that a sequence of k iterns will fill
exactly the set of locations {¢, ..., 7.}

The following formulas are easy to derive:

{10.1.2) pliy L) = inotamo§i| r'gp(il sy ifk<n

(10.1.3) pliy - - ip) = p(IT)

where IT is the permutation [{,, ..., 7]

(10.14) P(S) = T (S — (1) T plwi)

where § is any subset of {0, ..., n — 1} of size k and the rightmost sum is

taken over all w such that w is any string of &k -— I or fewer distinct locations
in § — {i}. We take p(@) = 1.

Formula (10.1.2) allows us to compute the probability of any sequence
of locations occurring as alternates, starting with the probabilities of the
permutations. Formula (10.1.4) allows us to compute the probability that
the locations assigned to k items will be exactly those in set 5. This probability
is the sum of the probability that the first k — [ items will fill all locations in
S except location i and that the last item will fill i, taken over all i in S,

Example 10.5
Let # = 3 and let the probabilities of the six permutations be

Permutation Probability

[0, 1,2]
[0,2,1]
[1,0,2)
[1,2,0]
12,0,1]
(2,1,0]

SO PP R 1 Ry

By (10.1.3) the probability that the string of locations 012 is generated
by applying the hashing function to some item is just the probability of
the permutation [0, 1, 2]. Thus, p(012) = .1. By (10.1.2) the probability that
01 1s generated is p(012). Likewise, p(02) is the probability of permutation
[0, 2, 1], which is .2. Using formula (10.1.2), p(0) = p(01) - p(02) = .3.
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The probability of each string of length 2 or 3 is the probability of the unique
permutation of which it is a prefix. The probabilities of strings 1 and 2 are,
respectively, p(10) + p(12) = 4 and p(20) 4 p(21) = .3.

Let us now compute the probabilities that various sets of locations are
fitled. For sets § of one element, (10.1.4) reduces to p({{}) = p(i). Let us com-
pute p(}0, 1} by (10.1.4). Direct substitution gives

p({0, 13) = pONIp(1) + pO1)] + p{1H[PO) + p(10)]
= 3[4+ 0]+ 403+ 1] =31

Similarly, we obtain
p0,2) =30 and  p({1,2) =.39
To compute p({0, 1, 21) by (10.1.4), we must evaluate

(0, DHp(2) + p(02) + p(12) + p(012) + p(102)]
-+ p({0, 2P[p(1) 4- p(01) 4 p(21) + p(021) + p(201)]
-+ p({1, 2D[p©0) -+ p(10) + p20) + p(120) + p(210)]

which sums to [, of course, [ ]

The figure of merit which we shall use to evaluate a hashing system is
the expected number of probes necessary to insert an item ¢ into a tabie In
which & out of # locations are filled. We shall succeed on the first probe if
ho(e) == i and location { is one of the n — k empty locations. Thus, the
probability that we succeed on the first probe is given by

300 3 p()

where the rightmost sum is taken over all sets S of & locations which do not
contain i.

If hyfa) is In S but #,(z) ¢ S, then we shall succeed on the second try.
Therefore, the probability that we fail on the first try but succeed on the
second is given by

n=1n

b3

i=

P S p(S)

-1
=0

e

where the rightmost sum is taken over all sets S such that #£S5 =k, i € §,
and j ¢ S. Note that p(if) =01if i = /.

Proceeding in this manner, we arrive at the following formula for £(k, n),
the expected number of probes required to insert an item into a table in which
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k out of n locations are filled, k << n:

(10.1.5) Bk, = 3. m S p(9) 5 (S)
where

(I} The middle summation is taken over all w which are strings of distinct
locations of length m and

{2) The rightmost sum is taken over all sets S of k locations such that all
but the last symbol of w is in §. {(The last symbol of w is not in $.)

The first summation assumes that m steps are required to compute the
primary location and its first m — 1 alternates. Note that if & <C n, an empty
location will always be found after at most & 1 tries.

Example 10.6

Let us use the statistics of Example 10.5 to compute E{2, 3). Equation
(10.1.5) gives

B =3 m % pw) O

§ such that #5=2 and all but
tha last symbol of w is in

== p(O)p((1, 23) + p(1)p({0, 21) + p(2)p({0, 1})
-+ 2[pODp(0, 23) + p(10)p({1, 2}) + p(02)p({0, 1})
+ pQO)p({1, 23 + p(12)p({0, 1}) + p21)p({0, 2]
+ 3[p(012)p({0, 1}) + p(021)p({0, 23) -+ p(102)p({0, 1})
+ p(1200p({1, 23) + p(201)p({0, 2}) + p(210)p((1, 2])]

== 2.008
[

Another figure of merit used to evaluate hashing systems is R(k, n), the
expected number of probes required to retrieve an item from a table in which
k out of n locations are filled. However, this figure of merit can be readily
computed from E(k, n}. We can assume that each of the & items in the table
is equally likely to be retrieved. Thus, the expected retrieval time is equal to
the average number of probes that were required to originally insert these
k items into the table, That is,

k-1
R(k, n) = = 32 (i, )
k =3
For this reason, we shall consider F(k, n) as the exclusive figure of merit.

A natural conjecture is that perforimance is best when a hashing system
is random, on the grounds that any nonrandomness can only make certain
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locations more likely to be filled than others and that these are exactly the
Iocations more likely to be examined when we attempt to insert new items,
While this will be seen not to be precisely true, the exact optimum is not
known. Random hashing is conjectured to be optimum in the sense of mini-
mum retrieval time, and other common hashing systems do not compare
favorably with a random hashing system. We shall therefore calculate E(k, )
for a random hashing system.

Lemma 10.1
If a hashing system is random, then
{1) For all sequences w of locations such that 1 < |w| <n,
pw) =(n —|whin!
(2) For all subsets Sof {0, 1,...,n—1},
1

(45)
Proof.

(1) Using (10,1.2), this is an elementary induction on (# — | w|), starting
atiw| == and ending at |w| = 1.
(2) A simple argument of symmetry assures us that p(S) is the same for

p(S) =

all 5 of size k. Since the number of sets of size k is (ﬁ), part (2) is immedi-

ate. []
Lemma 10.2

Ifn>k, thenjgké (’kI :ﬁ) = (n f,; 1).
Proof. Exercise. [ ]

THeOREM 10.]
If a hashing system is random, then E(k,n) = (n + 1)/(n + 1 — k).

Proof. Let us suppose that we have a hash table with & out of n locations
filled. We wish to insert the k + Ist item ¢. It follows from Lemma 10.1(2)
that every set of k locations has the same probability of being filled. Thus
E(k, n) is independent of which & locations are actually filled. We can there-
fore assume without loss of generality that locations 0,1,2,...,k — 1
are filled.

To determine the expected number of probes required to insert &, we
examine the sequence of addresses obtained by applying £ to «. Let this
sequence he A (), A. (%), ..., A,_ (%) By definition, all such sequences of
n locations are equally probable.
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Let g, be the probability that the first j — 1 locations in this sequence
arein{0, 1,.. ., k& — 1} but that the jth is not. Clearly, E(k, n), the expected
number of probes to insert a, is 3 %521 jg,. We observe that

T+
Ed
+

k+i m k+1 1

k+1
(10.1.6) j;jqj =3 Xdn= I

1 = J=1 m

But 335tL g, is just the probability that the first j — I locations in the
sequence Ag(e), fy (), .. ., B,_;(6) are between O and k — 1, Le., that at
least j probes are required to ingert the k& 4- 1st item. By Lemma 10.1{1),
this quantity is

EN(k—=1\ (k~i+2\_ k! (n—j—{—l)I:(E:;i%)
(n)(n—l) (nquLZ) k—j+ 1) n! (z)
Then,

e $ DO eyt

using Lemma 10.2. []

We observe from Theorem 10.1 that for large # and £, the expected time
to insert an item depends only on the ratio of k£ and » and is approximately
1/{1 — p), where p = k/n. This function is plotted in Fig. 10.6.

The ratio kfr is termed the lpad factor. When the load factor is small,
the insertion time increases with k, the number of filled locations, at a slower
rate than log k, and hashing is thus superior to a binary search. Of course,
if k& approaches n, that is, as the table gets filled, insertion becomes very
expensive, and at k = », further insertion is impossible unless some mecha-
nism is provided to handle overflows. One method of dealing with overflows
is suggested in Exercises 10.1.11 and 10.1.12.

The expected number of trials to insert an item is not the only criterion
of goodness of a hashing scheme. One also desires that the computation of
the hashing functions be simple. The hashing schemes we have considered
compute the alternate fonctions A,(a), . . ., A,_, (&) not from « itself but from
ho(e), and this is characteristic of most hashing schemes. This arrangement is
efficient because #,{e) is an integer of known length, while & may be arbitrarily
long. We shall call such a method hashing on locations. A more restricted
case, and one that is even easier to implement, is linear hashing, where h,(x)
is given by (A {a) + D)mod n. That is, successive locations in the table are
tried until an empty one is found; if the bottom of the table is reached, we
proceed to the top. Example 10.4 (p. 796) is an example of linear hashing.
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10— L

E(k,n)

kin

Fig. 10.6 Expected insertion time as a function of load factor for
random hashing,

We shall give an example to show that linear hashing can be inferior to
random hashing in the expected number of trials for insertion. We shall
then discuss hashing on locations and show that at least in one case it, too,
1s inferior to random hashing.

Example 10.7

Let us consider a linear hashing system with » = 4 and probability 1/4
for each of the four permutations [0123], [1230], (2301)], and [3012]. The reader
can show that performance is made worse only if these probabilities are
made unequal. For random hashing, Theorem 10.1 gives E(2, 4) = 5/3.

By (10.1.4), we can calculate the probabilities that a set of two locations
is filled. These probabilities are

p(f0, 17) = p({1, 21} = p({2, 3D = p({3, 0P = 3/16
and
p({0,2]) = p(f1,3}) = 1/8

Then, by (10.1.5), we compute E(2, 4) for linear hashing to be 27/16, which
is greatec tham 5/3, the cost for random hashing. []

We shall next compare hashing on locations with random hashing in
the special case that the third item is entered into the table. We note that
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when we hash on locations there is, for each location i, exactly one permu-
tation, IT,, that begins with ¢ and has nonzero probability, We can denote
the probability of IT, by p,. We shall denote the second entry in IT,, the first
alternate of i, by a,. If p, = 1/n for each 7, we call the system random hashing
on locations.

THEOREM [0.2

E(2, n) is smaller for random hashing than for random hashing on loca-
tions for all n > 3.

Proof. We know by Theorem 10.1 that E(2, n) for random hashing is
(n + 1)/(n — 1). We shall derive a lower bound on E(2, n) for hashing on
locations. Let us suppose that the first three items to be entered into the table
have permutations II,, II,, and IT,, respectively. We shall consider two
cases, depending on whether / = j or not.

Case I:i - j. This occurs with probability (# — 1)/n. The expected num-
ber of trials to insert the third item is seen to be

L4 Q)+ Qe — Dl =@+ D — 1.

Case 2: [ = j. This occurs with probability 1/n. Then with probability
(n — 2)/n, the third item is inserted in one try, that is, k =i and k = a,,
the second location filled. With probability 1/n, &k = a,, and at least two
tries are made, Also with probability 1/n, £ =i, and three tries must be
made. (This follows because we know that the second try is for a, which
was filled by j.) The expected number of tries in this case is thus at least
[(n — 2)/n} + (2/n) + (3/n) = (n - 3)/n.

Weighting the two cases according to their likelihoods, we get, for random
hashing on location,

A () + (1)) -

n n n n?

The latter expression exceeds {# | 1)/(n — D) forn > 3. [

The point of the previous example and theorem is that many simple
hashing schemes do not meet the performance of random hashing. Intuitively,
the cause is that when nonrandom schemes are used, there is a tendency for
the same location to be tried over and over again. Even if the load factor is
small, with high probability there will still be some locations that have been
tried many times. If a scheme such as hashing on locations is used, each
time a primary location A,(a) is filled, all the alternates of /,(xx) which were
tried before will be tried again, resulting in poor performance.

The foregoing does not imply that one should not use a scheme such
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a$ hashing on locations if there is a compensating saving in time per insertion
try.

In fact, it is at least possible that random hashing is not the best we can do.
The following example shows that E(k, n) does not always attain a minimum
when random hashing is used. We conjecture, however, that random hashing
does minimize R{k, n), the expected retrieval time,

Example 10.8

Let the permutations [0123] and [1032] have probability .2 and let [2013],
[2103], [3012], and [3102] have probability .15, all others having zero probabil-
ity. We can calculate E(2, 4) directly by (10.1.5), obtaining the value 1.665.
This value is smaller than the figure 5/3 for random hashing. []

EXERCISES

10.1.1. Use Algorithm 10.1 to insert the following sequence of items into a
binary search tree: T, D, H, F, A, P, 0, Q, W, TO, TH. Assume that
the items have alphabetic order.

10.1.2, Design an algorithm which will take a binary search tree as input and
list all elements stored in the tree in order. Apply your algorithm to
the tree constructed in Exercise 10.1.1.

*10.1.3. Show that the expected time to insert (or retrieve) one item in a binary
search tree is O(log n), where # is the number of nodes in the tree.
What is the maximum amount of time required to insert any cne item?

*10.1.4. What information about FORTRAN variables and constants is needed
in the symbol table for code generation?

10.1.5. Describe a symbol table storage mechanism for a block-structured
language such as ALGOL in which the scope of a variable X is limited
to a given block and all blocks contained in that block in which X is
not redeclared.

10.1.6. Choose a table size and a primary hashing function 4,. Compute
ho(et), where o is drawn from the set of (a) FORTRAN kevwords,
(b) ALGOL keywords, and (¢) PL/I keywords. What is the maximum
number of iterms with the same primary hash address? You may wish
to do this calculation by computer. Sammet [1969] will provide the
needed sets of keywords.

*10.1.7. Show that R(k, r) for random hashing approximates (—1/g) log (1 — ),
where p = kfn. Plot this function.
Hint: Approximate (nfk) 3,50 (# - Df(n — i + 1) by an integral.
*10.1.8. Consider the following pseudorandom number generator. This genera-

tor creates a sequence ry, ¥z, - - . , 7,—1 ©f numbers which can be used
to compute A{a) = [h(a) + r,Jmod »n for I <7< n — 1. Each time
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*#10.1.9.

**10.1.10.

that a sequence of numbers is to be generated, the integer R is initially
set to 1. We assume that n = 22. Each time another number is required,
the foliowing steps are executed:

() R=5%R.

(2) R = R mod 4n.

(3) Return r = [R/4].

Show that for each {, the differences r,., — r; are all distinct for & > 1
and i +k<n-— 1.

Show that if &, = [hy + @2 + bilmod »n for 1 <<i<{r — 1, then at
most half the locations in the sequence A, As, bz, . . ., h,_y are distinct.
Under what conditions wili exactly half the locations in this sequence
be distinet?
How many distinct locations are there in the sequence kg, Ay, . .., A,y
if for 1 << i < pf2
Ayioy = [hg -+ i]lmod p
_ 2
hos = o — [(251) +1]  modp
and p is a prime number ?
DEFINITION

Another technique for resolving collisions that is more efficient in
terms of insertion and retrieval time is chaining. In this method one
field is set aside in each entry of the hash table to hold a pointer to
additional entries with the same primary hash address. AH entries with
the same primary address are chained on a linked list starting at that
primary location.

There are several methods of implementing chaining, One method,
called direct chaining, uses the hash table itself to store all items. To
insert an item &, we consult location Ay{a).

(1) If that location is empty, & is installed there. If A{¢) is filled
and is the head of a chain, we find an empty entry in the hash table
by any convenient mechanism and place this entry on the chain
headed by Ay(z).

(2) If he(et) is filled but not by the head of a chain, we move the
current entry f in A(%) to an empty location in the hash zable and
insert & in Ag(0). [We must recompute () to keep £ in the proper
chain.]

This movement of entries is the primary disadvantage of direct
chaining. However, the method is fast., Another advantage of the
technique is that when the table becomes full, additional items can be
placed in an overflow table with the same insertion and retrieval
strategy.



10.1.11.

*10.1.12.

10.1.13.

*10.1.14.

*10.1.15.

EXERCISES 809

Show that if alternate locations are chosen randomly, then R(k, n),
the expected retrieval time for direct chaining, is 1 - p/2, where
p = k/n. Compare this function with R(k, n) in Exercise 10.1.7.

Another chaining technigue which does not require items to be
moved uses an index table in front of the hash table. The primary
hashing function 4, computes addresses in the index table. The entries
in the index table are pointers to the hash table, whose entries are
filled in sequence,

To insert an item % in this new scheme, we compute Ay(®), which
is an address in the index table. 1f Ay{&) is empty, we seize the next
available location in the hash table and insert & into that location.
We then place a pointer to this location in hg{d).

If hy(e) already contains & pointer to a location in the hash table,
we go to that location. We then search down the chain headed by
that [ocation, Once we reach the end of the chain, we take the next
available location in the hash table, insert & into that location, and
then attach this Jocation to the end of the chain.

If we fill the hash table in order beginning from the top, we can
find the next available location very quickly. In this scheme no items
ever need to be moved because each entry in the index table always
points to the head of a chain.

Moreover, overflows can be simply accommodated in this scheme
by adding additional space to the end of the hash iable,

What is the expected retrieval time for a chaining scheme with an
index table? Assume that the primary- locations are uniformly dis-
tributed.

Consider a random hashing system with » locations as in Section
10.1.5. Show that if & is a set of k& locations and i ¢ 5, then
3w Pwi) = 1)(n — k), where the sum is taken over all w such that w
is a string of & or fewer distinct focations in .S.

Prove the following identities:
X .
@) fg(njl)=(n+£+l)'
2 GEZH=("7")
@ B ) =TT CRET:
Suppose that items are strings of from one to six capital Roman letiers.
Let CODE(e) be the function defined in Example 10.4. Suppose that

item & has probability (1/6)26-12l. Compute the probabilities of the
permutations on {0, 1,...,n — 13 if

(a) h(o) = (CODE(@) + dmodn, 0 <i<n—1.
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**+10.1.16.

*10,1.17.

*10.1.18.

*10.1.19.

*10.1.20.

*10.1.21.

(b) Ade) = (b} +1))mod n,1 < § << n—1 where
hy(e)=CODE(e} mod 1

Show that for linear hashing with the primary location #4(¢) randomly

distributed, the limit of E(k, n) as £ and n approach co with kjn = p

is given by 1 4+ [p(1 — p/2)/(1 — p)?]. How does this compare with

the corresponding function of p for random hashing?

DEFINITION

A hashing systern is said to be k-uniform if for each set
§<i{0,1,2,...,n— 1} such that #8§ = k the probability that a
sequence of & distinct locations consists of exactly the Iocations of §
is 1/(3). (Most important, the probability is independent of §.)

Show that if a hdshing system is k-uniform, then
Eh,n) =(n 4 Dfin +1 — k),

as for random hashing.

Show that for each hashing system such that there exists k& for which
Elk,n) < (7 + 1)}/(n + 1 — k), there exists k" < k such that

EE,n>E+ D41 —Kk)

Thus, if a given hashing system is better than random for some &, there
is a smaller &° for which performance is worse than random. Hint:
Show that if a hashing system is (4 — 1)-uniform but not L-uniform,
then E(k, #) > (n + 1}/(n — k& + 1).

Give an example of a hashing system which is &-uniform for all &£ but
is not random.

Generalize Example 10.7 to the case of unequal probabilities for the
cyclic permutations.

Strengthen Theorem 10.2 to include systems which hash on locations
but do not have equal p,’s.

Open Problems

10.1.22.

16.1.23.

10.1.24.

Is random hashing optimal in the sense of expected retrieval time?
That is, is it true that R{k, ») is always bounded below by

() Tih(n + D 4- 1 = 7

We conjecture that random hashing is optimal.

Find the greatest Jower bound on E{k, n) for systems which hash on
locations. Any lower bound that exceeds{n + 1)/(r + 1 — k) would be
of interest.

Find the greatest lower bound on E(k, n) for arbitrary hashing systems.
We saw in Example 10.8 that (# + 1}/(n + 1 — &) is not such a bound.
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Research Problem

10.1.25. 1In certain uses of a hash table, the items entered are known in advance.
Examples are tables of library routines or tables of assembly language
operation codes, If we know what the residents of the hash table are,
we have the opportunity to select our hashing system to minimize the
expected lookup time, Can you provide an algorithm which takes the
list of items to be stored and yields a hashing system which is efficient
to implement, yet has a low lookup time for this particular loading of
the hash table?

Programming Exercises

10.1.26. Implement a hashing system that does hashing on locations. Test the
behavior of the system on FORTRAN keywords and common func-
tion names.

10.1.27. Implement a hashing system that uses chaining to resolve collisions.
Compare the behavior of this system with that in Exercise 10.1.26.

BIBLIOGRAPHIC NOTES

Hash tables are also known as scatter storage tables, key transformation tables,
randomized tables, and computed entry tables. Hash tables have been used by
programmers since the early 1950°s. The earliest paper on hash addressing is by
Peterson [1957]. Morris [1968] provides a good survey of hashing techniques. The
answer to Exercise 10.1.7 can be found there,

Methods of computing the alternate functions to reduce the expected number
of collisions are discussed by Maurer [1968], Radke [1970], and Bell [1970]. An
answer to Exercise 10.1.10 can be found in Radke [1970]. Ullman [1972] discusses
k-uniform hashing systems.

Knuth [1973] is a good reference on binary search frees and hash tables.

10.2. PROPERTY GRAMMARS

An interesting and highly structured method of assigning properties to
the identifiers of a programming language is through the formalism of
“property grammars,” These are context-free grammars with an additional
mechanism to record information about identifiers and to handle some of
the non-context-free aspects of the syntax of programming languages (such
as requiring identifiers to be declared before their use). In this section we
provide an introduction to the theory of property grammars and show how
a property grammar can be implemented to model a syntactic analyzer that
combines parsing with certain aspects of semantic analysis.
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10.2.1. Motivation

Let us try first to understand why it is not always sufficient to establish
the properties of each identifier as it is declared and to place these properties
in some location in a symbol fable reserved for that identifier. If we consider
a block-structured language such as ALGOL or PL/I, we realize that the
properties of an identifier may change many times, as it may be defined in
an outer block and redefined in an inner block. When the inner block ter-
minates, the properties return to what they were in the outer block.

For example, consider the diagram in Fig. 10.7 indicating the block struc-
ture of a program. The letters indicate regions in the program. This block
structure can be presented by the tree in Fig. 10.8.

begin block 1
A

begin block 2

— begin block 3

—— end block 3

end black 2

begin block 4

L—— end block 4
G

end block [ Fig. 10.7 Block structure of a program.

Suppose that an identifier 7 is defined in block 1 of this program and is
recorded in a symbol table as soon as it is encountered, Suppose that 7 is
then redefined in block 2. In regions B, C, and D of this program, f has the
new definition. Thus, on encountering the definition of I in block 2, we must
enter the new definition of 7 in the symbol table. However, we cannot merely
replace the definition that f had in block 1 by the new definition in block 2,
because once region E is encountered we must rever( to the original definition
of 1.

One way to handle this problem is to associate two numbers—a level
number and an index—with each definition of an identifier. The level number
is the nesting depth, and each block with the same level number is given
a distinct index. For example, identifiers in areas B and B of block 2 would
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block 1
A block 2 E block 4
B block 3 D F

C

Fig. 10.8 Tree representation of block structure.

have level number 2 and index I. Identifiers in area ¥ of block 4 would have
level number 2 and index 2.

If an ideniifier in the block with level i and index j is referenced, we look
in the symbol table for a definition of that identifier with the same level
number and index. However, if that identifier is nowhere defined in the block
with level number i, we would then look for a definition of that identifier
in the block of level number / — 1 which contained the block of level number
i and index j, and so forth. If we encounter a definition at the desired level
but with too small an index, we may delete the definition, as it will never
again apply. Thus, a pushdown list is useful for the storing of definitions of
cach identifier as encountered. The search described is also facilitated if the
index of the currently active block at each level is available,

For example, if an identifier X is encountered in region C and no defini-
tion of K appeared in region C, we would accept a definition of K appear-
ing in region B (or D, if declarations after use are permitted). However, if
no definition of X appeared in regions B or D, we would then accept a
definition of X in regions A, E, or G. But we would not look in region F for
a definition of K.

The level-index method of recording definitions can be used for languages
with the conventional nesting of definitions, e.g., ALGOL and PL/I. How-
ever, in this section we shall discuss a more general formalism, called prop-
erty grammars, which permits arbitrary conventions regarding scope of
definition. Property grammars have an inherent generality and elegance
which stem from the uniformity of the treatment of identifiers and their
properties. Moreover, they can be implemented in an amount of time which
is essentially linear in the tength of the compiler input. While the constant
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of proportionality may be high, we present the concept in the hope that
future research may make it a practical compiler technique.

10.2.2. Definition of Property Grammar

Informally, a property grammar consists of an undertying CFG to whose
nonterminal and terminal symbols we have attached “property tables.”
We can picture a property table as an abstraction of a symbol table. When
we parse boftom-up according to the underlying grammar, the property
tables attached to the nonterminals together represent the information avail-
able in the symbol table at that point of the parse.

A property table T is 2 mapping from an index set f to a property set V.
Here we shall use the set of nonnegative integers as the index set. We can
interpret each integer in the index set as a pointer into a symbol table. Thus, if
the entry pointed to in the symbol table represents an identifier, we can treat
the integer as the name of that identifier.

- The set ¥ is a set of “properties” or “values” and we shall use a finite set
of integers for V. One integer (usually 0) is distinguished as the “neutral”
property. Other integers can be associated with various properties which
are of interest. For example, the integer 1 might be associated with the prop-
erty “this identifier has been referenced,” 2 with “declared real,” and so forth.

In tables associated with terminals all but one index is mapped to the
neutral property. The remaining index can be mapped to any property
(including the neutral one). However, if the terminal is the token (identifier’,
the index which represents the name of the particular token (that is, the data
component of the token) would be mapped onto a property such as “this
is the identifier mentioned here.”

For example, if we encounter the declaration real B in a program, this
string might be parsed as

{declarationy [1:2]

real identifier [1:1]

where the data component of the token {identifier’> refers to the string B.
With the terminal {identifier> is associated the table [1: 1], which associates
the property 1 (perhaps “mentioned”™) with the index 1 (which now corre-
sponds to B) and the neutral property with all other indices. The terminal
token real is associated with a table which maps all indices to the neutral
property. Such a table will normally not be explicitly present.

With the nonterminal {declaration’ in the parse tree we associate a table
which would be constructed by merging the tables of its direct descendants
according to some rule, Here, the table that is constructed is [1: 2], which
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associates property 2 with index 1 and the neutral property with all other
indices. This table can then be interpreted as meaning that the identifier
associated with index [ (namely B) has the property “declared real.”

In general if we have the structure

A

T
Xl Xz "'Xk
T, T

in a parse tree, then the property of index 7 in table T is a function only of
the property of index i in tables T\, T,, . . . , T. That is, each index is treated
independently of all others.

We shall now define a property grammar precisely.

DEFINITION
A property grammar is an 8-tuple G = (N, T, P, S, V, v,, F, u), where

() (N, %, P, 5)is a CFG, called the underiping CFG;
(2) V is a finite set of properties;
(3) v, in V is the neutral property;
(4) F = Vis the set of acceptable properties; v, is always in F; and
{5) uis a mapping from P x V* to V, such that
(a) If u(p, s) is defined, then production p has a right-hand side exact-
ly as long as s, where s is a string of properties;
(b) wlp, vov, -+« vy) I8 v, if the siring of v,’s is as long as the right-
hand side of production p, and is undefined otherwise.

The function u tells how to assign properties in the tables associated with
interior nodes of parse trees. Depending on the production used at that node,
the property associated with each integer is computed independently of
the property of any other integer. Condition (5b) establishes that the table
of some interior node can have a nonneutral property for some integer only
if one of its direct descendants has a nonneutral property for that integer.

A sentential form of G is a string X, T, X, T, - - - X,T,, where the X’s are
symbols in N U T and the Ts are property tables. Each table is assumed to
be attached to the symbol immediately to its left and represents a mapping
from indices to ¥ such that all but a finite number of indices are mapped
to v,.

We define the relation =>, or = if ¢ is understood, on seniential forms
as follows. Let ¢ AT be a sentential form of Gand 4 — X, --- X be pro-
duction p in P. Then 0dTf = aX\T, - .- X, T, f if for all indices i,
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#(p, T(OT,) - - - T,(0) = T().

Let ——%, or = if G is understood, be the reflexive, transitive closure of =. The

language defined by , denoted L{G), is the set of all &, T,a,T, - - - a,T, such
that for some table T

(1) ST a,T,a,T, - a,T,;
(2) Each a,is in X;

(3) For all indices /, T(i} is in F; and

(4) For each j, T, maps all indices, or all but one index, to v,.

We should observe that although the definition of a derivation is top-
down, the definition of a property grammar lends itself well to bottom-up
parsing, If we can determine the tables associated with the terminals, we can
construct the tables associated with each node of the parse tree deterministic-
ally, since g is a function of the tables associated with the direct descendants
of a node.

It should be clear that if G is a property grammar, then the set

laa, - alaTa,T, - aT_isin L{G)

for some sequence of tables 7, T, .. ., T}

is a context-free language, because any string generated by the underlying
CFG can be given all-neutral tables and generated in the property grammar.

CONVENTION

We continue to use the convention regarding context-free grammars,
@ b, e, ... arein X and so forth, except v now represents a property and s
a string of properties. If 7 maps all integers to the neutral property, we write
X instead of XT.

Example 10.9

We shall give a rather lengthy example using property grammars to handle
declarations in a block-structured language. We shall alsc show how, if
the underlying CFG is deterministically parsable in a bottom-up way, the
tables can be deterministically constructed as the parse proceeds.t

Let G =(N,Z, P, 5 V,0,{0}, 4) be a property grammar with

(i) N = {{block), {statement}, (declaration list>», <statement list},
variable list}}]. The nonterminal {variable list> generates a list of variables
used in a statement. We are going to represent a statement by the actual
variables used in the statement rather than giving its entire structure. This

1Our example grammar happens to be ambiguous but will illustrate the points to be
made,
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abstraction brings out the salient features of property grammars without
involving us in too much detail.

(ii) £ = [begin, end, declare, label, goto, a}. The terminal declare stands
for the declaration of one identifier. We do not show the identifier declared,
as this information will be in the property table attached to declare. Likewise,
label stands for the use of an identifier as a statement label. The identifier
itself is not explicitly showi. The terminal goto stands for goto{label), but
again we do not show the label explicitly, since it will be in the property
table attached 1o gote. The terminal @ represents a variable.

(iii) P consists of the following productions.

(1) <block> — begin {declaration list>»{statement list> end
(2) (statement list) - {statement list) {statement>
(3) <statement list> -—— {statement’>
(4) <{statement> — {block}>
(5) (statement) —— label {variable list>
(6) <statement)> — (variable list)
(7) <{statement) — goto
(8) <variable listy — (variable list> a
(9) (variable listy — ¢
(10} <{declaration list> —» declare {declaration list>
(11) <{declaration list) — e

Informally, production (1) says that a block is a declaration list and a list of
statements surrounded by begin and end. Production (4) says that a statement
can be a block; productions (5) and (6) say that a statement is a list of the
variables used therein, possibly prefixed with a label. Production {7) says that
a statement can be a goto statement, Productions (8) and (9) say that a vari-
able list is a string of 0 or more «&'s, and productions (10) and (11) say that
a declaration list is a string of 0 or more declare's.

(iv) ¥ =1{0,1,2,3,4}is a set of properties with the following meanings:

0 Identifier does not appear in the string derived from this node (neutrat
property),
Tdentifier is declared to be & variable.

2 Identifier is a label of a statement.

Identifier is used as a variable but is not (insofar as the descendants
of the node in question are concerned) yet declared.,

4 Identifier is used as a goto target but has not yet appeared as a label.
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(v} We define the function g on properties with the following ideas in
mind:

{a) If an invalid use of a variable or label is found, there will be no
way to construct further tables, and so the process of table com-
putation will “jam.” (We could also have defined an *error”
property.)

(b) An identifier used in a goto must be the label of some statement
of the block in which it is used.t

{(c) An identifier used as a variable must be declared within its block
or a block in which its block is nested.

We shall give u(p, w) for each production in turn, with comments as to
the motivation,

(I) {block» — begin {declaration list> {statement list’> end

§ ’ u(l, )
60 0 0 Q0 0
0100 0
0130 )
00 3 0 3
00 20 0

The only possible property for all integers associated with begin and end
is 0 and hence the two columns of 0’s, In the declaration list each identifier
will have property 0 {= not declared) or 1 (= declared). If an identifier is
declared, then within the body of the block, ie., the statement list, it can
be used only as a variable (3) or not used (0). In either case, the identifier is
not declared insofar as the program outside the block is concerned, and so
we give the identifier the 0 property. Thus, the second and third lines appear
as they do.

If an identifier is not declared in this block, it may still be used, either
as a label or variable. If used as a variable (property 3), this fact must be
transmitted outside the block, so we can check that it is declared at some
appropriate place, as in line 4. If an identifier is defined as a label within
the block, this fact is not transmitted outside the block (line 5), because
a label within the block may not be transferred to from outside the block.,

Since g is not defined for other values of s, the property grammar catches
uses of labels not found within the block as well as uses of declared variables
as tabels within the block. A label used as a variable will be caught at another
point.

tThis differs from the convention of ALGOL, e.g., in that ALGOL allows transfers
to a block which surrounds the current one. We vse this convention to make the handling
of labels differ from that of identifiers,
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(2) <(statement listy — {statement list)> (statement)

5 #2,5)

RSN A RO RO WD
SN A RNO R R DWW D
RN RERWWWL O

Lines 2-4 say that an identifier used as a variable in {statement list)
or {statement> on the right-hand side of the production is used as a vari-
able insofar as the {statement list)> on the left is concerned. Lines 5-7 say
the same thing about labels. Lines 8-11 say that a label defined in either
{statement list> or (statement} on the right is defined for {statement list)
on the left, whether or not that label has been used.

At this point, we catch uses of an identifier as both a variable and label
within one block.

(3) {statement list> — {statement

Properties are transmitted naturally. Property 1 is impossible for a state-
ment.

{4y {statement> —> {block>

5 | uld,s)
0 0
3 3

The philosophy for preduction (3) also applies for production (4}).
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(5) {statement) —» label {variable list}

s us, 9

The use of an identifier as a label in label or variable in {variable list) is
transmitted to the {statement) on the right.

(6) <statement> — {variable list>

s | w6, 5)
0 0
3 3

Here, the use of a variable in (variable list) is transmitted to (statement).

() (statement> — goto

s | a{7,9
0 0
4 4

The use of a label in goto is transmitted to {statement).

(8) {variable list) — (variable list} a

8 u(8, 53

Any use of a variable is transmitted to {variable list).
(9) <(variable list> —¢

$ | u0,9)

e 0

The one value for which g is defined is s = e. The property must be 0
by definition of the neutral property.
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(10) {declaration list) — declare {declaration list}

s | #(0, 5)

Declared identifiers are transmitted to {declaration list).
(11) <{declaration list) —>e

s | u(ll, s)
I 0

The situation with regard to production (9) also applies here.

We shall now give an example of how tables are constructed bottom-up
onl a parse tree. We shali use the notation [f, : v, i, : v,,...,1, :9,] for the
table which assigns to index i, the property v, for 1 <C j < n and assigns the
neutral property to all other indices.

Let us consider the input string

begin
declare [1 : 1]
declare [2 : 1]
begin
label [1 : 2} a [2 : 3]
goto [1 : 4)
end
afl +3]

end

That is, in the outer block, identifiers 1 and 2 are declared as variables
by symbols declare[] : 1] and declare[2 : 1]. Then, in the inner block, identifier
1 is declared and used as a label (which is legitimate) by symbols label[l : 2]
and goto[l : 4], respectively, and identifier 2 is used as a variable by symbol
a[2 : 3], Returning to the outer block, 1 is used as a variable by symbol
all : 3]

A parse tree with tables associated with each node is given in Fig, 10.9.

[
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begin < declaration list > < statement list > end
[1:1,2:1)] [1:3,2:3]
declare < declaration list > < statement list > < statement >
[1:11 2:1] {2:3] [1:3]
declare < declaration list > < statement > < variable list >
[2:1] [2:3] (1:3]
e < block > < varizble list > a
[2:3] [1:3)
begin < declaration list > < statement list >  end e
(f:2,2:3]
e < statement list > < statement >
[1:2,2:3] [1:4]
< statement > goto
(1:2,2:3] {1;4]
label < variable list >
[1:2] [2:3)
< variable list > a
[2:3]

Fig. 10.9 TParse tree with tables.

e
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The notion of a property grammar can be generalized. For example,

(1) The mapping z can be made nondeterministic; that is, let u(p, w)
be a subset of V.

(2) The existence of a neutral property need not be assumed.

(3) Constraints may be placed on the class of tables which may be asso-
ciated with symbols, e.g., the all-nentral table may not appear.

Certain theorems about property grammars in this more general formu-
lation are reserved for the Exercises.

10.2.3. Implementation of Property Grammars

We shall discuss the implementation of a property grammar when the
underlying CEG can be parsed bottom-up deterministically by a shift—
reduce algorithm. When parsing top-down, or using any of the other parsing
algorithms discussed in this book, one encounters the same timing problems
in the construction of tables as one has timing the construction of translation
strings in syntax-directed translation. Since the solutions are essentially those
presented in Chapter 9, we shall discuss only the bottom-up case.

In our model of & compiler the input to the lexical analyzer does not have
tables associated with its terminals. Let us assume that the lexical analyzer
will signal whether a token involved is an identifier or not. Thus, each token,
when it becomes input to the parser, will have one of two tables, an all-neutral
table or a table in which one index has the nonneutral property, We shall
thus assume that unused input to the parser will have no tables at all; these
are constructed when the symbol is shifted onto the pushdown list.

‘We also assume that the tables do not influence the parse, except to inter-
ruptit when there is an error. Thus, our parsing mechanism will be the normal
shift-reduce mechanism, with a pointer to a representation of the property
table for each symbol on the pushdown list.

Suppose that we have [B, T,][C, T.] on top of the pushdown list and that
a reduction according to the production 4 — BC is called for. Our problem
is to construct the table associated with 4 from 7, and T, quickly and con-
veniently. Since most indices in a table are mapped to the nentral property,
it is desirable to have entries only for those indices which do not have the
neutral property.

We shall implement the table-handling scheme in such a way that all
table-handling operations and inquiries about the property of a given index
can be accomplished in time that is virtually linear in the number of opera-
tions and inquirics. We make the natural assumption that the number of
table inquiries is proportional to the length of the input. The assumption is
correct if we are parsing deterministically, as the number of reductions made
(and hence the number of table mergers) is proportional to the length of the
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input, Also, a reasonable franslation algorithm would not inquire of prop-
erties more than a constant number of times per reduction.

In what follows, we shall assume that we have a property grammar whose
underiying CFG is in Chomsky normal form. Generalizations of the
algorithms are left for the Exercises. We shall also assume that each index
{identifier) with a nonneutral property in any property table has a location
in a hash table and that we may construct data structures out of elementary
building blocks called celfs. Each cell is of the form

DATUM!I | --- | DATUMm | POINTER] | ... | POINTERx

consisting of one or mote fields, each of which can contain some data or
a pointer to another cell. The cells will be used to construct linked lists,

Suppose that there are k properties in ¥. The property table associated
with a grammar symbol on the pushdown list is represented by a data struc-
ture consisting of up to k property lists and an intersection list. Bach property
list is headed by a property list header cell. The intersection list is headed by
an fntersection list leader cell. These header cells are linked as shown in Fig.
10.10,

The property header cell has three fields:

PROPERTY COUNT | NEXT HEADER

Property Header Cell

Grammar Symbol B
Push.down

Pointer to Property Table Fntry

@— Hik [weess e H2 |« H1

Intersection . v— +
List Header Headers for Property Lists

Fig. 10.10 A pushdown list entry with structure representing
property table,
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The intersection list header cell contains only a pointer to the first cell
on the intersection Hist. Ail cells on the property lists and the intersection lists
are index cells. An index cell consists of four pointer fields:

TOWARD INTERSECTION TOWARD AWAY FROM
PROPERTY LIST HASH TABLE | HASH TABLE

Index Cell

Suppose that T'is a property table associated with a symbol on the pushdown
list. Then T will be represented by p property lists, where p is the number of
distinct properties in 7, and one intersection list. For each index in T having
a nonneutral property j, there is one index cell on the property list headed
by the property list header cell for property J.

All index cells having the same property are linked into a tree whose root
is the header for that property. The first pointer in an index cell is to its
direct ancestor in that tree.

If an index cell is on the intersection list, then the second pointer in that
cell is to the next cell on the intersection list. The pointer is absent if an index
cell is not on the intersection list.

The last two pointers link index cells which represent the same index but
in different property tables. Suppose that §7,9T, 8T, & represents a string of
tables on the pushdown list such that T, 7,, and 7 each contain index i
with a nonneutral property and that all tables in &, £, ¥, or § give index {
the neutral property.

If table 7, is closest to the top of the pushdown list, then C,, the index
cell representing / in 7, will have in its third field a pointer to the symbol
table location for 7. The fourth field in C, has a pointer to C,, the cell in 7,
that represents .. In C,, the third field has a pointer to cell C; and the fourth
field has a pointer to the cell representing { in 7.

Thus, an additional structure is placed on the index cells: All index cells
representing the same index in all tables on the pushdown list are in a doubly
linked list, with the hash table entry for the index at the head.

A cell i3 on the intersection list of a table if and only if some table above
it on the pushdown list has an index cell representing the same index. In
the example above, the cell C, above will be on the intersection list for T,.

Example 10.10

Suppose that we have a pushdown list containing grammar symbols B
and C with C on top. Let the tables associated with these entries be, respec-
tively,

T, =[1:9,2:9,,5:0,,6 12,8 'v,]



826 BOOKKEEPING cHAP. 10

and

T,=[2:v,3:0,,4:v,,5:9,7 19,8 :9,]

Then a possible implementation for these tables is shown in Fig. 10.11. Circles

Pushdown
List

------------- 400
.
< s
/
i
< v
<,
7,
S .
s
// Ve
rd //
L&
-
L
Symbol
Table

| =l|K|th | B|WwW| | -

Fig. 10.11 Implementation of property tables.

indicate index cells. The number inside the circle is the index represented
by that cell. Dotted lines indicate the links of the intersection list. Note that
the intersection list of the topmost table is empty, by definition, and that
the intersection list of table T, consists of index cells for indices 2, 5, and 8.
Dashed lines indicate links to the hash table and to cells representing the
same index on other tables. We show these only for indices 2 and 3 to avoid
clutter. []
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Suppose that we are parsing and that the parser calls for BC on its stack
to be reduced to 4. We must compute table T for 4 from tables T, and T,
for B and C, respectively. Since C is the top symbeol, the intersection list
of 7 contains exactly those indices having a nonneutral property on both
T, and T, (hence the name “intersection list™). These indices will be set aside
for later consideration,

Those indices which are not on the intersection list of T, have the neutral
property on at least one of Ty or T,. Thus, their property on 7' is a function
only of their one nonneutral property. Neglecting those indices on the inter-
section list, the data structure representing table 7" can be constructed by
combining various trees of 7', and T',. After doing so, each entry on the inter-
section list of 77, is treated separately and made to point to the appropriate
cell of 7.

Before formalizing these ideas, we should point out that in practice we
would expect that the properties can be partitioned into disjoint subsets such
that we can express Vas V', x V, X --- X ¥V, for some relatively large m.
The various components, ¥, V,, . . . would in general be small. For example,
V', might contain two elements designating “real” and “integer”. V¥, might
have two elements “single precision” and “double precision™; ¥V, might
consist of “dynamically allocated” and “statically allocated,” and so on.
One element of each of V,, ¥,, ... can be considered the default condition
and the product of the default elements is the neutral property. Finally, we
may expect that the various components of an identifier’s property can be
determined independently of the others.

If this situation pertains, it is possible to create one property header for
each nondefault element of ¥, one for gach nondefault element of V,, and
so on. Each index cell is linked to several property headers, but at most one
from any V,. If the links to the headers for ¥, are made distinct from those
to the headers of ¥, for i # j, then the ideas of this section apply equally
well to this situation, and the total number of property headers will approxi-
mate the sum of the sizes of the V;’s rather than their product.

We shall now give a formal algorithm for implementing a property gram-
mar. For simplicity in exposition, we restrict our consideration to property
grammars whose underlying CFG is in Chomsky normal form.

ALGorITHM [0.3
Table handling for property grammar implementation.

Input. A property grammar G = (N, X, P, S, V, v,, F, u} whose underly-
ing CFG is in Chomsky normal form. We shall assume that a nonneutral
property is never mapped into the neutral property; that s, if u(p, v,v,) = v,,
then », = v, = v,. {This condition may be easily assumed, because if we
find u(i, »,v,} = v, but », or v, is not v,, we could on the right-hand side
replace v, by ¥, a new, nonneutral property, and introduce rules that would
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make v, “look like” v,.] Also, part of the input to this algorithm is a shifi-
reduce parsing algorithm for the underlying CFG.

Output. A modified shift-reduce parsing algorithm for the underlying
CFG, which while parsing computes the tables associated with those nodes
of the parse tree corresponding to the symbols or the pushdown list,

Method. Let us suppose that each table has the format of Fig. 10.10,
that is, an intersection list and a list of headers, at most one for each property,
with a tree of indices with that property attached to each header. The opera-
tion of the table mechanism will be described in two parts, depending on
whether a terminal or two nonterminals are reduced. (Recall that the underly-
ing grammar is in Chomsky normal form.)

Part 1. Suppose that a terminal symbol a is shifted onto the pushdown
list and reduced to a nonterminal A, Let the required table for 4 be [i 1 2.
To implement this operation, we shall shift 4 onto the pushdown list directly
and create the table [7 : v] for 4 as follows.

(1} In the entry for A at the top of the pushdown list, place a pointer to
a single property header cell having property » and count 1. This property
header points to an intersection list header with an empty intersection list.

(2) Create C, an index cell for i.

(3) Place a pointer in the first field of C to the property header cell.

(4) Make the second field of C blank.

(5) Place a pointer in the third field of C to the hash table entry for { and
also make that hash table entry point to C.

(6) If there was previously another cell C’ which was linked to the hash
table entry for i, place C’ on the intersection list of its table, (Specifically,
make the intersection list header point to C* and make the third field in C’
point to the previous first cell of the intersection list if there was one.)

(7) Place a pointer in the fourth field of C to C".

(8) Make the pointer in the third field of C” point to C.

Part 2: Now, suppose that two nonterminals are reduced to one, say by
production 4 -— BD, Let T, and T, be the tables associated with Band D,
respectively. Then do the following to compute T, the table for A.

(1} Consider each index cell on the intersection list of T',. (Recall that T,
has no intersection list.) Each such cell represents an entry for some index {
on both T, and T,. Find the properties of this index on these tables by
Algorithm 10.4.1 Let these properties be », and #,. Compute » = u(p, v,v,),

1Obviously, one can find the property of the index by going from its cells on the two
tables to the roots of the trees on which the cells are found. However, in order that the table
handling as a whole be virtually linear in time, it is necessary that following the path to
the root be done in a special way, This method will be described subsequently in Algorithm
10.4,
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where p is production 4 — BD. Make a list of all index cells on the inter-
section list along with their new properties and the old contents of the cells
onT, and T,.

{(2) Consider the property header cells of T,. Change the property of
the header cell with property v to the property u(p, ¢v,). That is, assume
that all indices with property v on 7, have the neutral property on 7.

{3) Consider the property header cells of T,. Change the property of
the header cell with property » to u(p, #,¢). That is, assume that all indices
with property » on T, have the neutral property on T).

(4) Now, several of the property header cells formerly belonging to T,
and T, may have the same property. These are merged by the following
steps, which combine two trees inito one:

{a) Change the property header cell with the smaller count (break
ties arbitrarily) into a dummy index cell not corresponding to
any index. ‘

(b) Make the new index cell point to the property header cell with
the larger count.

{c) Adjust the count of the remaining property header cell to be
the sum of the counts of the two headers plus 1, so that it reflects
the number of index cells in the tree, including dummy cells.

(5) Now, consider the list of indices created in step (1). For each such
index,

(a) Create & new index cell C.

{b) Place a pointer in the first field of C to the property header cell
with the correct property and adjust the count in that header cell.

(c) Place pointers in the third field of C to the hash table location for
that index and from this hash table entry to C.

{d) Place a pointer in the fourth field of C to the first index cell below
(on the pushdown list) having the same index.

{e) Now, consider C, and C,, the two original cells representing this
index on T, and T,. Make C; and C, into “dummy” cells by
preserving the pointers in the first field of C, and C, (their links
to their ancestors in their trees) but by removing the pointers in
the third and fourth fields (their links to the hash table and to
cells on other tables having the same index). Thus, the newly
created index cell C plays the role of the two cells C, and C,
that have been made dummy cells.

{6) Dummy cells that are leaves can be returned to available storage. [

Example 10.11

Let us consider the two property tables of Example 10.10 (Fig. 10.11
on p. 826). Suppose that u(p, s¢) is given by the following fable:
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st | plp,st)
Yo Ui v
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In part 2 of Algorithm 10.3 we must first consider the intersection list of
T, which consists of index cells 2, 5, and 8. (See Fig. 10.11.) Inspection of
the above table shows that these indices will have properties v,, v,, and v,,
respectively, on the new property table T

Then, we consider the property header cells of T and 5. u{p, vv)=w,
and u(p,v2,) = v, so the properties in the header cells all remain the
same. Now, we merge the tree for », on T, into the tree for v, on 7, since
the latter is the larger. The resulting tree is shown in Fig. 10.12(a). Then,
we merge the tree for v, on T, into the tree for v, on 7). The resulting tree is
shown in Fig, 10.12(b). It should be observed that in Fig. 10.12(a) node 5

b ¥
; ; dummy dummy
)

()
(

»

a

Fig. 10.12 Merged trees.

has been made a direct descendant of the header, while in Fig. 10.11 it was
a direct descendant of the node numbered 3. This is an effect of Algorithm
10.4 and occurred when the intersection list of T, was examined. Node 2 in
Fig. 10.12(b) has been moved for the same reason.

In the last step, we consider the indices on the intersection list of T7.
New index cells are created for these indices; the new cells point directly to
the appropriate header. All other cells for that index in table T are made
dummy cells. Dummy cells with no descendants are then removed. The
resulting table 7" is shown in Fig. 10,13, The symbol table is not shown,
Note that the intersection list of T is empty.
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Pushdown A I
List ! |
¥

; dummy \‘ dumimy
O O

Fig. 10.13 New table 7.

Now suppose that an input symbol is shifted onto the pushdown list and
reduced to D[2: v,]. Then the index cell for 2, which points to », in Fig.
10.13, is linked to the intersection list of its table. The changes are shown
in Fig. 10.14. [

We shall now give the algorithm whereby we inquire about the property
of index i on table T. This algorithm is used in Algorithm 10.3 to find the
property of indices on the intersection list,
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Fig. 10.14 Tables after shift.



832 BOOKKEEPING CcHap. 10

ALGORITHM 10.4
Finding the property of an index.

Input. Anindex cell on some table 7. We assume that tables are structured
as in Algorithm 10.3,
Output. The property of that index in table T.

Method.

(1} Follow pointers from the index cell to the root of the tree on which
it appears. Make a list of all cells encountered on this path.

(2) Make each cell on the path, except the root itself, point to the root
directly. (Of course, the cell on the path immediately before the root already
does s0.} [

Note that it is step (2) of Algerithm 10.4, which is essentially a “side
effect” of the algorithm, that is of significance. It is step (2) which guarantees
that the aggregate time spent on the table handling will be virtually propor-
tional to Input length.

10.2.4. Analysis of the Table Handling Algorithm

The remainder of this chapter is devoted to the analysis of the time com-
plexity of Algorithms 10.3 and 10.4. To begin, we define two functions #
and G which will be used throughout this section.

DEFINITION
We define F(n) by the recurrence:

A1) =1
F(n) = 2700

The following table shows some values of F(n).

Now let us define G{(n) to be the least integer § such that F(i) > n. G(n)
grows so slowly that it is reasonable to say that G(n) << 6 for all » which are
representable in a single computer word, even in floating-point notation.
Alternatively, we could define G(n) to be the number of times we have to
apply log, to # in order to produce a number equal to or less than Q.
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The remainder of this section is devoted to proving that Algorithm 10.3
requires O(nG{n)) steps of a random aceess computer when the input string is
of length n. We begin by showing that exclusive of the time spent in Algorithm
10.4, the time complexity of Algorithm 10.3 is O(x).

Lemma 10.3

Algorithm 10.3, exclusive of calls to Algorithm 10.4, can be implemented
to run in time O(z) on a random access computer, where » is the length of
the input string being parsed.

Proof. Eachexecution of part 1 requires a fixed amount of time, and there
are exactly » such executions. :

In part 2, we note that steps (1) and (5) take time proportional to the
length of the intersection list. (Again recall that we are not counting the time
spent in calls of Algorithm 10.4.} But the only way for an index cell to find
its way onto an intersection list is in part 1. Each execution of part | places
at most one index cell on an intersection list, Thus, at most n indices are
placed on all the intersection lists of all tables. After execution of part 2,
all index cells are removed from the intersection list, and so the aggregate
amount of time spent in steps (1) and (5) of part 2 is 0(n).

The other steps of part 2 are easily seen to require a constant amount of
time per execution of part 2. Since part 2 is executed exactly n — | fimes,
we conclude that all time spent in Algorithm 10.3, exclusive of calls to
Algorithm 10.4, is 0(n). [

‘We shall now define an abstract problem and provide a solution, mirror-
ing the ideas of Algorithms 10.3 and 10.4 in terms that are somewhat more
abstract but easier to analyze.

DEFINITION
For the remainder of this section let us define a set merging problem as

(1} A collection of objects a,, . . ., a,;
(2) A collection of set names, including 4,, A,,..., A,; and
(3) A sequence of instructions I,, Iy, . . ., I,,, where each [, is of the form

(2) merge(4, B, C) or

(b) find(a),

where A, B, and C are set names and a is an object.
(Think of the set names as pairs consisting of 4 table and a property. Think
of the objects asg index cells.)

The instruction merge(A4, B, C) creates the union of the sets named A
and B and calls the resulting set C, No output is generated,

The instruction find(a) prints the name of the set of which « is currently
a member.

Initially, we assume that each object 4, is in the set A,; that is, 4, = {a,}.
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The response to a sequence of instructions I, I, . . ., I, is the sequence of
outputs generated when each instruction is executed in turn.

Example 10,12

Suppose that we have objects a,, a,, . . ., g, and the sequence of instruc-
tions

merge(d,, 4, A,)
merge(A,, A,, A,)
merge(A,, A, As)
merge(A,, A, A,)
merge(d,, A, Ag)
find(a,)

After executing the first instruction, A, is {a,, a,}. After the second instruc-
tion, 4, is {a,, a,}. After the third instruction, 4; is {a,, @;}. Then after the
instruction merge(4,, 4,, 4,), A, becomes [a,,a,, a,, a,}. After the last
merge instruction, A; = [a,, a,,...,a;}. Then, the instruction find{a,)
prints the name A, which is the response to this sequence of instructions. [

We shall now give an algorithm to execute any instruction sequence of
length O(n) on # objects in 0(nG(n)) time. We shall make certain assumptions
about the way in which objects and sets can be accessed. While it may not
initially appear that the property grammar implementation of Algorithms
10.3 and 10.4 meets these conditions, a little reflection will suffice to see that
in fact objects (index cells) are easily accessible at times when we wish to
determine their property and that sets (property headers) are accessible when
we want to merge them.

ALGORITHM 10.5
Computation of the response to a sequence of instructions.

Input. A collection of objects {a,, . .., g,} and a sequence of instructions
L, ..., I, of the type described above.

Cutput. The response to the sequence [, ..., 1,

Method. A set will be stored as a tree in which each node represents one
element of the set. The root of the tree has a label which gives

(1) The name of the set represented by the tree and
(2) The number of nodes in that tree (count).

We assume that it is possible to find the node representing an object or
the root of the tree representing a set in a fixed number of steps, One way of
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accomplishing this is to use two vectors OBJECT and SET such that
OBJECT(q) is a pointer to the node representing « and SET(A) is a pointer
to the root of the tree representing set 4.

Initially, we construct # nodes, one for each object 4, The node for g,
is the root of a one-node tree. Initially, this root is labeled 4, and has a count
of I.

(1) To execute the instruction merge(4, B, C), locate the roots of the trees
for A and B [via SET(4) and SET(8)]. Compare the counts of the trees
named A and B. The root of the smaller tree is made a direct descendant of
the larger. (Break ties arbitrarily.) The larger root is given the name C, and
its count becomes the sum of the counts of 4 and B.% Place a pointer in
location SET(C) to the root of C.

(2) To execute the instruction find{a), determine the node representing a
via OBJECT(a). Then follow the path from that node to the root r of its
tree. Print the name found at r. Make all nodes on this path, except r, direct
descendants of .} [7]

Example 10.13

Let us consider the sequence of instructions in Example 10.12. After
executing the first three merge instructions, we would have three trees, as
shown in Fig. 10.15, The roots are labeled with a set name and a count.

4, Ay Ag

o e Fig. 10.15 Trees after three merge
instructions.

(The count is not shown.) Then executing the instruction merge(4,, 4,, A,),
we obtain the structure of Fig. 10.16. After the final merge instruction
merge(4,, 4;, A;), we obtain Fig. 10.17. Then, executing the instruction
find{a,), we print the name 4; and make nodes @, and a, direct descendants
of the root. (a, is already a direct descendant.) The final structure is shown
in Fig. 10,18, [

1tThe analogy between this step and the merge procedure of Algorithm 10,3 should
be obvious, The discrepancy in the way counts are handled has to do simply with the
question of whether the root is counted or not. Here it is; in Algorithm 10.3 it was not.
1The analogy to Algorithm 10.4 should be obvious,
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A Ag

Fig. 10.16 Trees afier next merge instruction.

Fig. 10.17 Tree after last merge instruc-
tion.

o
ea. ee
(=21

Fig. 10.18 Tree after find instruction,

We shall now show that Algorithm 10.5 can be executed in O(nG(n))
time on the reasonable assumption that execution of a merge instruction
requires one unit of time and an instruction of the form find(a) requires time
proportional to the length of the path from the node representing a to the
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root. All subsequent results are predicated on this assumption. From this point
on we shall assume that n, the number of objects, has been fixed, and that
the sequence of instructions is of length 0(n).

DEFINITION

We define the rank of a node on one of the structures created by
Algorithm 10.5 as follows.

(1) A leaf is of rank 0.

(2) If a node N ever has a direct descendant of rank J, then ¥ is of rank
at Jeast 7 1.

(3) The rank of a rode is the least integer consistent with (2).

It may not be immediately apparent that this definition is consistent.
However, if node M is made a direct descendant of node N in Algorithm
10.5, then Af will never subsequently be given any more direct descendants.
Thus the rank of M may be fixed at that time. For example, in Fig. [0.17
the rank of node a, can be fixed at 1 since a; has one direct descendant of
rank 0 and a, subsequently acquires no new descendants.

The next three lemmas state some properties of the rank of a node.

Lemma 10.4

Let N be a root of rank | created by Algorithm 10.5. Then N has at least
2! descendants.

Proof. The basis, i = 0, 1s clear, since a node is trivially its own descen-
dant. For the inductive step, suppose node N is a root of rank /. Then, ¥
must have at some time been given a direct descendant M of rank i — 1.
Moreover, M must have been made a direct descendant of N in step (1) of
Algorithm 10.5, or else the rank of ¥ would be at least i 4+ 1. This implies
that M was then a root so that, by the inductive hypothesis, M has at least
2t-1 descendants at that time, and in step (1) of Algorithm 10.5, & has at
least 217! descendants at that time. Thus, & has at least 2! descendants after
merger. As long as N remains a root, it cannot lose descendants. [}

Lemma 10.5

At all times during the execution of Algorithm 10.5, if & has a direct
descendant M, then the rank of NV is greater than the rank of M.

Proof. Straightforward induction on the number of instructions ex-
ecuted. [

The following leraoma gives a bound on the number of nodes of rank /.
Lemma 10.6

There are at most #n27' nodes of rank 7.

Progf. The structure created by Algorithm 10.5 is a cellection of trees.
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Thus, no node is a descendant of two different nodes of rank 7. Since there
are n nodes In the structure, the result follows immediately from Lemma
104, []

COROLLARY
No node has rank greater than log,n. [
DEFINITION
With the number of objects n fixed, define groups of ranks as follows.
We say integer { is in group j if and only if
logy () = i > log{* " (n),

where logi! (n) = log, # and logl Y (n) = logi® (log, (n)). That is, logl®
is the function which applies the log, function & times. For example,

logs* {65536) = log{® (16) = log, (4) = 2.

A node of rank r is said to be in rank group j if ¥ is In group j. Since
logl® (F{k)) = 1 and no node has rank greater than log, #, we note that no
nede is in a rank group higher than G(n). For example, if n = 65536, we
have the following rank groups.

Rank of Node Rank Group
0 5
1 4
2 3
3,4 2
5,6,...,16 1

We are now ready to prove that Algorithm 10.5 is of time complexity
O(nG(n)).
THEOREM 10,3

The cost of executing any sequence ¢ of 0(n) instructions on » chjects is
0(nG(n)).

Proof. Clearly the total cost of the merge instructions in ¢ is 0(#) units
of time. We shall account for the lengths of the paths traversed by the find
instructions in ¢ In two ways. In executing a find instruction suppose we
move from node A to node N going up a path. If M and N are in different
rank groups, then we charge one unit of time to the find instruction itself.
We also charge | if N is the root. Since there are at most G(n) different rank
groups along any path, no find instruction is charged more than G(#) units.

If, on the other hand, M and ¥ are in the same rank group, and N is not
a root, we charge 1 time unit to node M itself. Note that Af must be moved



sgc. 10.2 PROPERTY GRAMMARS 839

in this case. By Lemma 10.5, the new direct ancestor of A is of higher rank
than its previous direct ancestor. Thus, if M is in rank group j, M may be
charged at most log} (n) time units before its direct ancestor becomes one
of a lower rank group. From that time on, M will never be charged; the cost
of moving M will be borne by the find instruction executed, as described in
the paragraph above.

Clearly the charge to all the find instructions is 0(rG(n)). To find an upper
bound on the total charge to all the objects we sum over all rank groups the
maximum charge to each node in the group times the maximum number of
nodes in the group. Let g, be the number of nodes in rank group j and c;
the charge to all nodes in group . Then:

logg 1% {n)
(10.2.1) g < n2-*

T k=logz®tV ()

by Lemma 10.6.

The terms of (10.2.1} form a geometric series with ratic 1/2, so their
sum is no greater than twice the first term. Thus g, < 2p 271" which
is 2nflogy” (n). Now ¢, is bounded above by g,log}” (n), so ¢, << 2x. Since j
may vary only from 1 to G(n), we see that O(nG(»)) units of time are charged
to nodes. It follows that the total cost of executing Algorithm 0.5 is

0(nG(m). [

Now we apply our abstract result to property grammars.
TueEOREM 10.4

Suppose that the parsing and table-handling mechanism constructed in
Algorithms [0.3 and 10.4 is applied to an input of length n. Also, assume
that the number of inquiries regarding properties of an index in tables is
0(x) and that these inquiries are restricted to the top table on the pushdown
list for which the index has a nonneutral property.t Then the total time
spent in table handling on a random access computer is 0{nG(n)).

Proof. First, we must observe that the assumptions of our model apply,
namely that the time needed in Algorithm 10.3 to reach any node which
we want to manipulate is fixed, independent of n. The property headers
{roots of trees) can be reached in fixed time since there are a finite number of
them per table and they are linked. The index cells (nodes for objects) are
directly accessible either from the hash table when we wish to inquire of their
properties (this is why we assume that we inquire only of indices on the top
table) or in turn as we proceed down an interscetion list.

1If we think of the typical use of these properties, e.g., when a is reduced to Fin Go
and properties of the particular identifier @ are desired, we see that the assumption is quite
plausible,
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It thus suffices to show that each index and header cell we create can be
modeled as an object node, that there are 0(r) of them, and that all manipu-
lations can be expressed exactly as some sequence of merge and find instruc-
tions. The following is a complete list of all the cells ever created.

(1} 2n “objects” correspond to the n header cells and » index cells created
during the shift operation (part 1 of Algorithm 10.3). We can cause the index
cell to point to the header cell by a merge operation.

(2) At most n objects correspond to the new index cells created in step
(5) of part 2 of Algorithm 10.3. These cells can be made to point to the
correct root by an appropriate merge operation.

Thus, there are at most 3r objects (and r in Algorithm 10.5 means 3n
here). Moreover, the number of instructions needed to manipulate the sets
and objects when “simulating” Algorithms 10.3 and 10.4 by Algorithm 10.5
is O{n). We have commented that at most 3# merge instructions suffice to
initialize tables after a shift [(1) above] and to attach new index cells to headers
[(2) above). In addition, 0(#) merge instructions suffice in step (4) of part 2
of Algorithm 10.3 when two sets of indices having the same property are
merged. This follows from the fact that the number of distinct properties is
fixed and that only # — 1 reductions can be made.

Lemma 10.3 implies that O(x) find instructions suffice to account for the
examination of properties of indices on an intersection list [step (1) of part 2
of Algorithm 10.3]. Finally, we assume in the hypothesis of the theorem
that 0(n) additional find instructions are needed to determine properties of
indices (presumably for use in translation). If we put all these instructions
in the order dictated by the parser and Algorithm 10.3, we have a sequence
of O(r) instructions, Thus, the present theorem follows from Lemma 10.3
and Theorem 10.3. [7]

EXERCISES
10.2.1. Let G be the CFG with productions

E—E+TIEDTT
T (E)|a

where @ represents an identifier, 4 represents fixed-point addition,
and @ represents floating-point addition. Create from G a property
grammar that will do the following:

{1} Assume that each a has a table with one nonneutral entry.

(2) If node = in a parse tree uses production £ — E - T, then
all the a’s whose nodes are dominated by » are said to be “used in a
fixed-point addition,”



10.2.2.

*10.2.3.

10.2.4.

EXERCISES a8

(3) If, as in (2), production £ — E & T'is used, all a’s dominated
by n are “used in a floating-point addition.”

(4) The property grammar must parse according to G, but check
that an identifier which is used in a floating-point addition is not
subsequently (higher up the parse tree) used in a fixed-point addition.

Use the property grammar of Example 10.9 and give a parse tree, if
one exists, for each of the following input strings:
(2) begin
declare[1: 1]
declare[1: 1]
hegin
a(1:3]
end
label[2:2]a[1: 3]
hegin
declare[3:1]
al3:3]
end
goto[2:4]
end
{b) begin
declare[1: 1]
a[l1:3]
begin
declare[2: 1]
goto[1:4]
end
end

DEFINITION

A nondeterministic properfy grammar is defined exactly as a prop-
erty gramrmar, except that

(1) The range of u is the subsets of ¥, and

(2) There is no requirement as to the existence of a neutral property.

Using the conventions of this section, we say that @ATf =>
X\ Ty -+ X, T8 if A— X, -.. X, is some production, say p, and
for each i, T() is a member of u(p, T1() - - T{i)). The 2 relation
and the language generated are defined exactly as for the deterministic
case.
Prove that for every nondeterministic property grammar G there is a
property grammar & (possibly without a neutral property) generating
the same language, in which g is a function.
Show that if the grammar G of Exercise 10.2.3 has a neutral property
(i.e., all but a finite number of integers must have that property in
each table of each derivation), then grammar G*is a property grammar
with the neutral property.
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10.2.5.

*10.2.6.

**10.2.7.

10.2.8.

10.2.9,

Generalize Algorithm 10.3 to grammars which are not in CNF. Your
generalized algorithm should have the same fime complexity as the
original.

Let us modify our property grammar definition by requiring that no
terminal symbol have the all-neutral table. If & is such a property
grammer, let L(G) be {a, - a,jay T, -+ a,T, is in L(G) for some
(not all-neutral) tables Ty, ..., T,}. Show that L(G) need not be a
CFG. Hinr: Show that {a'bic¥|i <{ j < k} can be so generated.

Show that for “property grammar” G, as modified in Exercise 10.2.6,
it is undecidable whether L'(G) = &, even if the underlying CFG of
G is right-linear,

Let G be the underlying CFG of Example 10.9. Suppose the termi-
nal declare associates one of two properties with an index—either
“declared real” or “declared integer.” Define a property grammar on
G such that if the implementation of Algorithm 10.3 is used, the highest
table on the pushdown list having a particular index i with nonneutral
property (i.e., the one with the cell for { pointed to by the hash table
entry for i) will have the currently valid declaration for identifier 7 as
the property for i. Thus, the decision whether an identifier is real or
integer can be made as soon as its use is detected on the input stream.

Find the output of Algorithm 10.5 and the final tree structure when
given a set of objects {ay,...,a,,} and the following sequence of
iostructions. Assume that in case of tie counts, the root of A4; becomes
a descendant of the root of 4, if 7 < j.

merge( 4, Ay, A1)
merge{d;, Ay, A;)
merge(As, As, A
merge(4s, As, Aa)
merge(A4,, Ag, A)
merge(Aq, A;, A7)
merge{A o, A11, A1o)
merge(d;;, Aig, 410)
find(a,)

merge(4y, A5, A1)
merge(A;, Ao, Az)
find(z,)

merge{Ad,, A, A)
find(as)

find(a,)
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*%10.2.10. Suppose that Algorithm 10.5 were modified to allow either root to be
made a descendant of the other when mergers were made. Show that
the revised algorithm is of time complexity at best O(n log n).

Open Froblems

10.2.11. Is Algorithm 10.5 as stated in this book really {(»nG{»)) in complexity,
or is it O(m), or perhaps something in between?

10.2.12. Is the revised algorithm of Exercise 10.2.10 of lime complexity
O{rlog ) ?

Research Problem

10.2.13. Investigate or characterize the kinds of properties of identifiers which
can be handied correctly by property grammars.

BIBLIOGRAPHIC NOTES

Property grammars were first defined by Stearns and Lewis (1969]. Answers
to Exercises 10.2.6 and 10.2.7 can be found there. An = log log n method of imple-
menting property grammars is discussed by Stearns and Rosenkrantz [1969].

To our knowledge, Algorithm 10,5 originated with R, Morrtis and M, D, Mcllroy,
but was not published. The analysis of the algorithm is due t¢ Hopcroft and
Ullman [1972a). Exercise 10.2.10 is from Fischer [1972].



1 l CODE OPTIMIZATION

One of the most difficult and least understood problems in the design of
compilers is the generation of “good” object code, The two most common
criteria by which the goodness of a program is judged are ifs running time
and size. Unfortunately, for a given program it is generally impossible to
ascertajn the running time of the fastest equivalent program or the length of
the shortest equivalent program. As mentioned in Chapter 1, we must be
content with code improvement, rather than true optimization when programs
have loops.

Most code improvement algorithms can be viewed as the application of
various transformations on some intermediate representation of the source
program in an attempt to manipulate the intermediate program into a form
from which more efficient object code can be produced. These code improve-
ment transformations ¢can be applied at any point in the compilation process.
One common technique is to apply the transformations to the intermediate
language program that occurs after syntactic analysis but before code gen-
eration.

Code improvement transformations can be classified as being either
machine-independent or machine-dependent. An example of machine-inde-
pendent optimization would be the removal of useless statements from a
program, those which do not in any way affect its output.t Such machine-
independent transformations would be beneficial in all compilers.

Machine-dependent transformations would attempt to transform a pro-
gram into a form whereby advantage could be taken of special-purpose

Since such statements should not normally appear in a program, it is likely that an
error is present, and thus the compiler ought {o inform the user of the uselessness of the
statement.

844
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machine instructions, As a consequence, machine-dependent transformations
are hard to characterize in general, and for this reason they will not be dis-
cussed further here,

In this chapter we shall study various machine-independent transfor-
mations that can be applied to the intermediate programs occurring within
a compiler after synfactic anpalysis but before code generation. We shall
begin by showing how optimal code can be generated for a certain simple
but important class of straight-line programs, We shall then extend this class
of programs to include loops and examine some of the code improvement
techniques that can be applied to these programs.

11.1. CPTIMIZATION OF STRAIGHT-LINE CODE

We shall first consider & program schema that models a block of code
consisting of a sequence of assignment statements, each of which has the
form 4 «— f(B,,..., B,), where 4 and B,, .. ., B, are scalar variables and f
is a function of # variables for some r. For this restricted class of programs,
we develop a set of transformations and show how these transformations can
be used to find an optimal program under a rather general cost function.
Since the actual cost of a program depends on the nature of the machine
code that will eventually be produced, we shall consider what portions of
the optimization procedure are machine-independent and how the rest de-
pends on the actual machine model chosen.

11.1.1. A Model of Straight-Line Code

We shall begin by defining a block. A block models a portion of an
intermediate language program that contains only multiple-address assign-
ment statements.

DEFINITION

Let X be a countable set of variable names and © a finite set of operators.
We assume that each operator 8 in @ takes a known fixed number of oper-
ands. We also assume that © and ¥ are disjoint.

A statement is a string of the form

A..(_.__ﬁB] ...Br

where A4, B,, ..., B, are variables in X and @ is an r-ary operator in ©.
We say that this statement assigns (or sefs) A and references B, ..., B,.
A block ® is a triple (P, I, U), where

(1y Pisalist of statements §,; §,; ... ; S,, where n > 0;
(2) Iis a set of input variables; and
(3) Uis a set of output variables.
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We shall assume that if statement S, references A, then A is either an
input variable or assigned by some statement before S, (i.e., by some S,
such that 7 <<j). Thus, in a block all variables referenced are previously
defined, either internally, as assigned variables, or externally, as input vari-
ables. Similarly, we assume each cutput variable either is an input variable
or is set by some statement.

A typical statement is 4 — +BC, which is just the prefix form of the
more common assignment “4 «- B + C.” If a statement sets variable A,
we can associate a “value” with that assignment of 4. This value is the for-
mula for 4 in terms of the (unknown) initial values of the input variables.
This formula can be written as a prefix expression involving the input vari-
ables and the operators.

For the time being we are assuming that the input variables have unknown
values and should be treated as algebraic unknowns. Moreover, the meaning
of the operators and the set of quantities on which they are defined is not
specified, and so a formula, rather than a quantity, is all that we can expect
as a value.

DEFINITION

To be more precise, let (P, [, U) be a block with P =5;...; 5, We
define #,(4), the vafue of variable 4 immediately after time ¢, 0 << 1 < n,
to be the following prefix expression:

{1) If A 18 in Z, then v,(4) = A.
(2) If statement §,is 4 — 6B, --- B,, then
(a} v(4) =6v, (B, -+ v,_\(B).
(6) v(C) = 9,_,(C) for all C = 4, provided that 4,_,{C) is defined.
{3) For all 4 in E, (A4} is undefined unless defined by (1) or (2)
above.

We observe that since each operator takes a known number of operands,
every value expression is either a single symbol of £ or can be uniquely
written as 8F, .-+ E,, where 6 is an r-ary operator and £, . . ., E, are value
expressions. (See Exercise 3.1.17.)

The value of block & = (P, I, U}, denoted «{®), is the set

{v (4} A « U, and n is the number of statements of P}

Two blocks are (tapologically) equivalent (=) if they have the same value.
Note that the strings forming prefix expressions are equal if and only if they
are identical. That is, we assume no algebraic identities for the time being.
In Section 11.1.6 we shall study equivalence of blocks under certain alge-
braic laws.



sec. 11.1 OPTIMIZATION OF STRAIGHT-LINE CODE 847

Example 11.1
Let I = {4, B}, let U = {F, (7}, and let P consist of the statementst

T<«— A+ B
S«—4— B
T«—T=T
S«— 855
Fe T+ 8
G—T— 8§
Initially, v,(4) = A and v,(B) = B. After the first statement, v (T) =
A + B {in prefix notation », (T} = + 4B}, v (4) = 4, and »,(B) = B. After
the second statement, »,(S) = A — B, and other variables retain their previous
values. After the third statement, v,(T) = (4 -+ B) = (4 + B). The last three

statements cause the following values to be computed (other values carry over
from the previcus step):

v,(8) = (4 — B) x (A — B)
ve(F) = (A + B) % (4 + B) + (4 — B)x (4 — B)
2 (G) =(A+ By« (A +B)—(4—B)y=(4d — B)

Since v4,(F) = v,(F), the value of the block is

{44+ B)+(A+B) (A B)=(4-— B),
(A+ B)*(A+ B)—(A— B)x(4 — B)}.%

Note that we are assuming that no algebraic laws pertain. If the usual laws
of algebra applied, then we could write F = 2(42 + B?) and G =448, ]

To avoid uandue complexity, we shall not consider statements involving
structured variables (arrays and so forth) at this time. One way to handle
arrays is the following. If A4 is an array, treat an assignment such as A{(f) =J
as if 4 were a scalar variable assigned some function of 7, J and its former
value, That is, we wrile 4 «— 6A1J, where 8 is an operator symbolizing as-
signment in an array, Similarly, an assignment such as J = A(J) could be
expressed as J «— wAlL

tIn displaying a list of statements we often use a new ling in place of a semicolon to
separate statements. In examples we shall use infix notation for binary operators,

1In prefix notation the value of the block is
{+*+AB+ABx—AB—AB, —x+ AB++ABs—AB—AB},
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In addition, we make several other assumptions which make this theory
less than generally applicable. For example, we ignore test statements, con-
stants, and assignments of the form A «— B. However, changing the assump-
tions will lead to a similar theory, and we make our assumptions primarily
for convenience, in order to give an example of this family of theories.

Our principal assumptions are:

(1) The important thing about a block is the set of functions of the input
variables (variables defined outside the block) computed within the block.
The number of times a particular function is computed is not important,
This philosophy stems from the view that the blocks of a program pass
values from one to another. We assume that it is never necessary for a block
to pass two copies of a value to another block.

{2} The variable names given to the functions computed are not impor-
tant. This assumption is not a good one if the block is part of a loop and
the function computed is fed back. That is, if f <~ F+ 1 is computed, it
would not do to change this computation to J «— I 4 1 and then repeat the
block, expecting the computation to be the same. Nevertheless, we make
this assumption because it fends a certain symmetry to the solution and is
often valid. In the Exercises, the reader is asked to make the modifications
necessary o allow certain output values to be given fixed names.

(3) We do not include statements of the form X « ¥. If such a statement
occurred, we could substitute Y for X and delete it anyway, provided that
assumption (2) holds. Again, this assumption lends symmetry to the model,
and the reader is asked to modify the theory to include such statements,

11.1.2. Transformations on Blocks

We observe that given two blocks 8, and ®,, we can test whether ®,
and ®, are equivalent by computing their values »(®,) and »(®,) and deter-
mining whether o(®,) = »(®,). However, there are an infinity of blocks
equivalent to any given block.

For example, if ® = (P, I, ) is a block, X is a variable not mentioned
in ®, A is an input variable, and & is any operator, then we can append the
statement X «— B4 - - - 4 to P as many times as we choose without changing
the value of ®.

Under a reasonable cost function, all equivalent blocks are not equally
efficient. Given a block ®, there are various transformations that we can
apply to map & into an equivalent, and possibly more desirable block &'
Let 3 be the set of all transformations which preserve the equivalence of
blocks. We shall show that each transformation in 3 can be implemented
by a finite sequence of four primitive transformations on blocks. We shall
then characterize those sequences of transformations which lead to a block
that is optimal under a reasonable cost criterion.
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DEFINITION

Let @ = (P, 1, U) be a block with P =5, 5,;...; S, For notational
uniformity we shall adopt the convention that all members of the input
set I are assigned at a zeroth statement, S, and all members of the output
set U are referenced at an » - Ist statement, §5,,,,.

Variable A4 is active immediately after time ¢, if

(1} A is assigned by some statement 5,;

(2} A is not assigned by statements S, ,, S;;5, ..., 5}

(3} A is referenced by statement S, ; and

hHo<i<t<j<n

If j above is as large as possible, then the sequence of statements S, |,
Si420 - - -» 8,4 is said to be the scope of statement S, and the scope of this
assignment of variable 4. If 4 is an output variable and not assigned after
S,, then f =n + 1, and U is also said to be in the scope of S,. (This follows
from the above convention; we state it only for emphasis.)

If a block contains a statement 5 such that the variable assigned in §
is not active immediately after this statement, then the scope of 5 is null,
and S is said to be a useless statement. Put another way, § is useless if . sets
a variable that is neither an output variable nor subsequently referenced.

Example 11.2
Consider the following block, where a, §, and y are lists of zero or more
statements:
o

A«—B+4C

B
D—A=E

Y

If A is not assigned in the sequence of statements f§ or referenced in y, then
the scope of A «— B - C includes all of § and the statement D «— 4 « E.
If no statement in ¢ references D, and D is not an output variable, then the
statement D «— A * Fis useless. [ ]

We shall now define four primitive equivalence-preserving transforma-
tions on blocks. We assume that 8 = (P, I, U) is a block and that P is
§:38, . .- ; 5, As before, we assume that 5, assigns all input variables and
that S,,, references all output variables. We shall define our transformations
in terms of their effect on this block ®. Our first transformation is intuitively
appealing. We remove from a block any input variable or statement that
does not affect an output variable,
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T, : Elimination of Useless Assignments '
If statement .S, 0 <] { <{n, assigns 4, and A4 is not active after time /, then

(I) If i > 0, S, can be deleted from P, or
(2) If i =0, 4 can be deleted from 1.

Example 11.3
Let & = (P, 1, U), where I ={A4, B, C}, U ={F, G}, and P consists of

Fe—A+ 4
Ge—FxC
Fe_A+ B
G«——A=x 8B

The second statement is useless, since its scope is null. Thus one application
of T, maps ® into B, = (P, {, U), where F, is

Fe—A4d+ 4
Fe—A+ B
G«—AxB

In ®,, the input variable C is now useless, and the first staternent in P is
also useless. Thus, we can apply transformation T, twice in succession to
obtain ®, = (P,, {4, B}, U), where P, consists of

F«—A+ B
Gee—Adx B

Note that 8, is obtained whether we first remove input variable C or whether
we first remove the first statement in P,. [ ]

A systematic method of eliminating all useless statements from a block
& = (P, 1, U) is to determine the set of useful variables {those that are used
directly or indirectly in computing an output) after each statement of the
block, beginning with the last statement in P and working up. Certainly,
U, = U 1s the set of variables that ate useful after the last statement S,

Suppose that statement S, is 4 «— @ B, --- B, and that U, is the set of
variables useful after S,.

(D If 4 & U, S, is a useful statement, since the variable 4 is used to
compute an output variable. Then U,_,, the set of useful variables after
statement S,_,, is found by replacing 4 in U, by the variables 8,,..., B,
e, U, =, —4A) U i{B,..., 81
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(2) If 4 ¢ U, then statement S, is useless and can be deleted. In this
case U,_, = U,

(3) Once we have computed U/,, we can remove all input variables in J
which do not appear in Uj.

Our second transformation on blocks merges common expressions as
follows.

T.,: Elimination of Redundant Computations
Now let us suppose that ® = (P, I, U} is a block in which P is of the form

o
A<«—8C, --C.
B
B«—0C,---C,
¥
where none of C,, ..., C, is A or is assigned in a statement of §. Transfor-

mation T, maps ® into & = (P’, I, U"), where P'is

&
D« 0C, ---C,

ﬁl

¥

and
(1) B is B with all references to A4 changed to D in the scope of the

explicitly shown A, and
(2) ¥ is y with all references to 4 and B changed to D in the scopes of

the explicitly shown A and B,

If the scope of A or Bextends to S,.,, then U'is U with 4 or B changed to
D. Otherwise ' = U.

D can be any symbol which does not change the value of the block,
Any symbol not mentioned in P is suitable, and some symbols of P might

also be usable.

Exampie 11.4
Suppose that & == (P, {4, B}, {F, G}), where P consists of

S«— A+ B
Fe—Ax S8
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R<«—B+ B
Te—— A% S
G+—T=*R

The second and fourth statements perform redundant computations, so trans-
formation T, can be applied to ® to produce &' = (#',{4, B}, {D, G}, where
P’ consists of

S«— A+ B
D«—Ax§S
R«—B-+ B
G<—D*R

The output set becomes { D, G}. D may be any new symbol or one of the
variables F, 4, S, or T. It is easy to check that letting D be B, R, or G changes
the value of the program. [ ]

T, Renaming

Clearly, the name of an assigned variable is irrelevant insofar as the value
of a block ® = (P, I, U} is concerned. Suppose that statement S, in P is
A+ @B, -.- B, and that C isavariable thatis not active in the scope of S,.
Then we can let & = (P’, I, U’), where P’ is P with S, replaced by
C+«—8B,--- B, and with all references to A replaced by references to C
in the scope of S,. If U is in the scope of S, then U’ is U with 4 changed
to C. Otherwise U’ = U. Transformation T, maps & mto ®',

Example 11.6
Let ® =(P, {4, B}, {F}), where P is

Te«— A=*B

T+«—T+ A

Fe—-TxT
One application of T, enables us to change the name of the first assigned
variable from Tto S. Thus 7, maps ® into ®" =(P’, {4, B},{F}), where P’ is

S«—AxB

Te—S-4 4

Fe Ts+T

Note that only the first assignment of T has been replaced by S. [
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T,: Flipping

Let ® = (P, I, U) be a block in which statement §,is 4 — 88, --- B,
statement §,,, 8 C—wD, --- D, Aisnotone of C, D, ..., D, and C
isnotone of 4, B,..., B,.. Then transformation T, maps the block ® into
® = (P, I, U), where P’ is P with §, and §,., interchanged.

Example 11.6
Let ® = (P, {d, B}, {F, G}) in which P is

Fe—A+ B
G«—AsB
T, can be applied to transform ® into (P, {4, B}, {F, G}), where P’ is

Ge—A=x B
Fe-4A-+ B

However, T, can not map the block ®, = (P, {4, B}, {F, G}), where P, is

Fe—43 B
G«——Fs+ A

into the block &, = (P,, {4, B}, {F, G}), where P, is

Ge«—Fx A
F«—A4A+ B

In fact, ®, is not even a block, because variable Fis used without a previous
definition. []

We shall now define certain equivalence relations that reflect the action
of the four transformations defined.

DEFINITION
Let S be a subset of {1, 2, 3, 4}. We say that &, = ®,, if one application

of transformation 7, changes &, into ®,, where 7 isin S. We say &, 4%» &,
if there is a sequence €, ..., &, of blocks such that

He, =38,

Q) ¢, = &,.

(3) For cach i, 0 <</ < n, either €, => €,,, or €, = €,

Thus, 4%» is the least equivalence relation containing = and reflects
the idea that the transformations can be applied in either direction,
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CONVENTION

We shall represent subsets of {1, 2, 3, 4} without braces, so, for exam-
ple, = would be written =.

We would now like to show that &, and ®, are equivalent blocks if and
only if there is a sequence of transformations invelving only I', through T,
which transforms ®, into ®,. That is, 8, = &, if and only if ®, ﬁ%n ®,.
The “if” portion of this statement is easy to verify. All that is needed is
to show that each transformation individually preserves the value of a
block.

THeOREM 11.1
If®, = &, then®, =&,
1,2,3,4

Proof. Exercise. The reader should -also show that any new name may
be chosen for D in T,, as stated in the description of that transformation. [

COROLLARY
f®, <> &, then @ =8, []

‘We shall prove the converse of the corollary to Theorem 11.1 in Section
11.1.4.

11.1.3. A Graphical Representation of Blocks

In this section we shall show that for each block ® = (P, I, U) we can
find a directed acyclic graph (dag) D that represents ® in a natural way.
Each leaf of D corresponds to one input variable in J and each interior node
of D corresponds to a statement of P. The transformations on blocks con-
sidered in the previous section can then be applied to dags with equal ease.

DEFINITION

Let ® =(P, I, U) be a block. We construct a labeled ordered dag,
denoted D(®), from @& as follows:

(D LetP=S8,:...;8S,

(2) For each A in [, create a node with label 4. At this point in the
algorithm, the node for A is said to be the last definition of A.

{3) For i =1,2,...,n, do the following. Let S, be 4 — 6B, --- B,.
Create a new node labeled 8, with r directed edges leaving. Order the edges
from the left, and let the jth edge from the left point to the last definition of
B, 1 << j < r. The new node labeled § becomes the last definition of A.
This node corresponds to statement S, in P.

(4) After step (3), those nodes which are the last definitiont of an output
variable are further labeled “distinguished.” We shall circle distinguished
nodes.
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Exampla 11.7
Let ® = (P, {4, B}, [F, G}) be a block, where P consists of the statements

T« A-}+ B
Fe—AxT
T'«— B+ F
G<«—B=T

The dag D(®) 1s given in Fig. 11.1

n4

n2
“o n
Fig. 11.1 Example of a dag.

Note in Fig. 11.1 that the four statements of & correspond in order to
nodes n,, n,, n;, n,. Also note that the right descendant of n, is s, rather
than 7, because when r, i3 created, n, is the last definition of 7. []

Each dag represents an equivalence class of 4%» in a natural way. That is,
if a block ®, can be transformed into &, by some sequence of transformations
T, and T, then blocks ®, and ®, have the same dag, and conversely. Half
of this assertion is the following lemma, which is left to the reader to check
using the definitions.

Lemma 11.1
If @, = ®,, then D(®,) = D(®,).
Proof. Exercise. [_]

COROLLARY
If ® <> ®,, then D@®) = D(®,). [
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The more difficult portion of our assertion is the other direction. For its
proof we need the following definition and lemma.

DEFINITION
A block ® = (P, I, U) is said to be open if

(1) No statement in P is of the form 4 «— &, where 4 is in 7, and
(2) No two statements in P assign the same variable.

In an open block ® = (P, I, U), a distinct variable X, not in Fis assigned
. by each statement S, in P. The following lemma states that an open block
can always be created by renaming variables using only transformation T,.

Lemma 11.2

Let & = (P, I, U) be a block. Then there is an equivalent open block
® = (P, 1, U") such that B <> G¥'.
Proof. Exercise. [_]

The following theorem shows that two blocks have the same dag if and
only if one block can be transformed into the other by renaming and flipping.

THEOREM 11.2

D(®,) = D(®,) if and only if ®, 43*:: ®,.

Proof. The “if” portion is the corollary to Lemma 11.1. Thus, it suffices
to consider two blocks &, = (P, I, U/} and &, =(2,, I, U,) such that
D(®,) = D(®,) = D. Since the dags are identical, the input sets must be
the same, and so we may let I, = I, = I. Also, the number of statements in
P, and P, must be the same, and $0 we may suppose P, = S§,;...;5,and
P,=R;;...; R,

Using T,, the renaming transformation, we can comnstruct two open
blocks &, = (P4, I, U) and &, = (P}, I, U,) having the same set of as-
signed variables, such that

() & <> ®;;

2) & <= ®,;

(3) Let P{ = 8;...;S,and P, = R|;...; R). Then S} and R) assign
the same variable if and only if they correspond to the same node of D.
fObserve by the corollary to Lemma 11.1 that D(®)) = D(®),) = D.]

In creating the open blocks, we first rename all the variables of &, and ®,
with entirely new names. Then, we can rename again to satisfy condition (3).

Now we-shall construct a sequence of blocks €, ..., €, such that
@ ¢, =8
O e, =08

(6) € <> @, for 0 < i < n;
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(7) The statements of @, are R;...; R; followed by those statements
among S%;...;.S, which do not set variables also assigned by any of
R, ..., R. Clearly D{@) = D, and statements defining the same variable
in G, and ®), create the same node in D.

We begin with G, = ®}., Condition (7) is satisfied trivially. Suppose
that we have constructed €,, i >> 0. We can write the list of statements in ©,
as Ry ... ; R; 8,;...; 8, in which the statements S, ..., 5’ , satisfy
condition (7). By definition of P} and P, we can find S, which assigns the
same variable as R, ,. Since 8, and R},, correspond to the same node of D,
it follows that &7, references only variables which are in I or assigned by
Ky -3 R, and, in fact, R,;, = 5, Thus, by repeated application of 7',
we may move 5, in front of all of 87; ---; 8% .. The resulting block is
€, ;, and conditions (6) and (7) are easily checked,

When 7 in condition (7) is equal to »n, we obtain condition (5). Thus

* * *
B, = B «— @), <= &,,
3 4 3
. * I .
from which ®; <= ®, is immediate. [
3,4

COROLLARY
If D(®,) = D(®,), then B, = ®,.
Proof. Immediate from Theorems 11.1 and 11.2. [

By the above corollary, we can naturally give a value to a dag, namely
the value of any block having that dag.
Example 11.8

Consider the two blocks B, = (P,, {4, B}, {FDand &, = (P,,[4, BL{F}),
with P, and P, as follows:

Py P,
C+— A+ A4 C«— BxB
D« Bx B D—Ax A4
E—C-D E—D+C
F+—C+H4+ D Ce— D~ C
F« EIF Fe— C/E

Blocks ®, and ®, have the same dag, which is shown in Fig. 11.2. Using T,
we can map ®, and ®, into open blocks ®| = (P, [4, B}, [X,}) and
®, = (P}, {4, B}, {X,}) so that condition (3) in the proof of Theorem 11.2
is satisfied. P} and P} are shown on the following page.
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Fig. 11.2 Dag for & and ®&,.

P Py
X i« A» A X, «— BaxB
X, — B=B Xy+—AxA
Xy e— X1 — X Xo— X, + X3
Xy — X1+ X X3+ X1 — X
Xs —— X3/ Xy Xs — X3lX,

Then, beginning with block €, having the list of statements P}, we can readily
construct the blocks €, &,, €,, €,, and @, in the proof of Theorem 11.2.
Block €, is obtained by using T, to move the second statement in front of

the first, as shown below:

¢y Cs
X, +— B*x R X, +— BB
Ay e—Ax A Xy e—AduA
Xae— X, — & Xyg+— Xy + Xz
Xe— X1+ X7 Az— X1 — X2
Xs — X3/ X, X5 X3/ Xy

Then @, = @,. Block @, is constructed from @,, using T, to move the fourth
statement in front of the third as shown above,-and €, and €, are both the

same as €,. [}
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11.1.4. Characterization of Eguivalences Batween Blocks

We shall now show that ®, = ®, if and only if &, 1<2%>4 ®,. In fact there

is a stronger result, namely that ® = ®, if and only if ®, 41%» ®,. That is,
transformations T, and T, are sufficient to map any block into any other
equivalent block. We shall leave the proof of this stronger result for the
Exercises. {See Exercises 11.1.9 and 11.1.10)

DErINITION
A block ® is reduced if there is no block ®’ such that ® = ®’.

A reduced block contains no useless statements or redundant compu-
tations. Given any block ®, we can find a reduced block equivalent to it by
repeatedly applying T, and T, in their forward directions. Since each appli-
cation of T, or T, reduces the length of the block, we must eventually come
upon a reduced block, Our goal is to show that for reduced blocks ®, and &,
we have ®, = ®, if and only if D{®,) = D(®,). Thus, given a block ®,
we can find one dag corresponding to all reduced blocks obtainable from ®
by any sequence of transformations 77, and T, whatsoever. Finding this
dag is an important step in the “optimization” of the block, whatever machine
model we are using.

DermNiTION

Let P =.5,;...;S, be the list of statements in a block. Let E(P} be the
set of expressions computed by P. Formally,

E(P) = (4|5, assigns A, | < t < n).

Expression # is computed k times by P if there are exactly & distinct
values of t such that v(4) = 5 and S, sets 4.

Lemma 11.3

If® = (P, I, U) is a reduced block, then P does not compute any expres-
sion more than once.

Proof. If two statements compute the same expression, find the “first”
instance of an expression computed twice. That is, if S, and S, { < j, com-
pule the same expression #, we say that (i, j) is the first instance if for all
pairs §, and S, & < /, which compute the same expression, either { <Z k or
both i = k and j << I Tt is left for the Exercises to show that an application
of T, in the forward direction would be applicable to S, and S, contradic-
ting the assumption that P is reduced. [
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LemMma 11.4

If®, =(P,,1,,U,)and B, = (P, I,, U,) are equivalent reduced blocks,
then E(P,) = E(P,).

Proof. If E(P,} %= E(P,), we may, without loss of generality, let # be the
last computed expression in E(P,} — E(P,). Since »(®,) = »(®,) and each
expression may be uniquely split into subexpressions, it follows that # is not
a subexpression of any expression in »(®,). Thus, the statement computing
nin P, is useless and can be eliminated using transformation T',, contradicting
the assumption that ®  was reduced. Details are left for the Exercises. [

THEOREM 11.3

Let ®, and ®, be two reduced blocks. Then &, = @&, if and only if
D(®,) = D(®,).

Proof. The “if” portion is a special case of the corollary to Theorem
11.2. Thus, let @, = ®,. By the previous two lemmas, there is a one-to-one
correspondence between those statements of @, and ®, which compute the
same expressiont.

Suppose that D(®,) 7 D{®,). We shall atterpt to “match” the nodes
of D(®,) and D(®,) as far “up” the dag as possible. Clearly, the leaves of
the two dags must match, for if not, the input sets of B, and ®, would be
different. We could then find an input variable of cne which was not refer-
enced and apply T, to eliminate that input variable. Since &, and &, are
reduced, we would have a contradiction,

We proceed to match nodes; if a node of IN®,) and a node of D(®,)
have the same (operator) label, if their edges leaving are equal in number,
and if corresponding edges (from the left) point to matching nodes, then
the two nodes in question are matched. If in so doing we match all nodes of
D{®)) and D{®,), then these dags are the same.

Otherwise, we shall come to some node of D(&,) or D(®,) which does
not match a node in the other dag, Without loss of generality, we can assume
that such a node occurs in D(®,} and that we pick the “lowest” such node,
one such that each edge leaving it points 10 a node which is matched. Let
this node be n,. We observe that matched nodes of D(®,) and D(®,) are
created by statements of ®, and ®, which compute the same expression.
An easy induction on the order of matching shows this.

However, by Lemma 11.3, no node can possibly be matched with two
nodes of the other dag. By Lemma 11.4, there is a nede s, of D(®,) which
is created by a statement of 8, which computes the same expression as the
statement of ®,; which creates »,. Since expressions “parse” uniquely,
the direct descendants of »#, and », are matched. This follows from our
assumption that », was as “low” on D{®,) as possible. Thus, »n, and n,
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could have been matched, contrary to hypothesis. Hence, D(®,) = D(®,).
]

COROLLARY

All reduced blocks equivalent to a given block have the same dag. [7]

We can now put the various pieces together to obtain the result that
the four transformations are sufficient to transform a block into any of its
equivalents.

‘THEOREM 11.4

®, = &, if and only if B, <> @,

Proof. The “if” portion is the corollary to Theorem 11.1. Conversely,
assume that ®, = ®,. Then there exist reduced blocks ®) and &) such that
®, ‘,t—{’ ®' and ®, ¢]*:1> @®,. By the corollary to Theorem 11.1, 8, =®, and
®, = ®,. Thus, ®| = &,. By Theorem 11.3 D{®)) = D(®}). By Theorem
1.2, B, <*> @} Hence, B, <> ®,. []

2,34
11.1.5. Optimization of Blocks
Let us now consider the question of transforming a block ® into a block

®" which is optimal with respect to some cost criterion on blocks. In practice,
we have the situation portrayed in Fig. 11.3. Given a block ®, we want

®’ Code
Generator

® —— Optimizer — Py

Fig. 11.3 Optimization scheme.

to ultimately produce an object language program that is optimal with
respect to some cost function on object programs such as program size or
execution speed. Qur optimizer applies a sequence of transformations to
® in order to produce &', a block equivalent to ®, from which an optimal
object language program can be generated. Thus, cne problem is to find
some cost criterion on blocks that mirrors the cost of the object program
which will ultimately be produced.

There are certain cost criteria on blocks for which the idea of optimiza-
tion does not even make sense. For example, if we said that the longer a block
is, the better it is, then there would be no optimal block equivalent to a given
block. Here we shall resirict our thinking to cost functions on blocks that
reflect most of the common criteria applied to object language programs,
such as speed of execution or amount of storage used.
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DEFINITION

A cost criterion on blocks is a function from blocks to real numbers.
A block ® is optimal under cost criterion C if C(®) << C(®") for all &’
equivalent to ®. A cost criterion C is reasonable if ®, = ®, implies that
C(®,) < C(®,), and every block has an optimal equivalent under C. That
i, a cost criterion 1s reasonable if transformations 7', and T, applied in
the forward direction do not increase the cost of a block.

LEMMA 11.5

If C is a reasonable cost criterion, then every block has a reduced equiva-
lent which 1s optimal under C.

Proof. Immediate from definitions. []

Lemma 11.5 states that given a block & we can confine our search for
an equivalent optimal block to the set of reduced blocks equivalent to ®.
The following lemma states that only reduced blocks equivalent to a given
reduced block ® will be found by applying a sequence of transformations
T,and T, to ®&.

Lemma 11.6
If &, 15 a reduced block and &, 43*=4> ®,, then ®, is reduced.
Proof. Exercise. [ ]

Our next result shows that if we have an open block initially, then a se-
quence of renamings followed by a flip can be replaced by the flip followed
by the renamings.

LemmMma 11.7

Let ®, be an open block and &, 4%» ®, => ®;. Then there exists a block
®, such that &, = ®; 4%» ®,.

Proof. Exercise. [ ]

We are now prepared to give a general framework for optimizing blocks
according to any reasonable cost criterion. The following theorem provides
the basis for this optimization.

THEOREM 11.5

Let & be any block. There exists a block ®' equivalent to ® such that if
C is any reasonable cost criterion, then there also exist blocks ®, and ®,
such that

(D) @& <> @,

(2) @, <> ®,, and

(3) ®, is optimal under C.
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Proof. Let B be any reduced block equivalent to ®. We can transform
®" into ®', an open block equivalent to ®" using only T,. By Lemma 11.6,
®’ is reduced as well as open.

Let ®, be an optimal reduced block equivalent to &, By Lemma 11.5,
®, exists. Thus, D((Bz) = D(®") by the corollary to Theorem 11.3. By
Theorem 11.2, ®’ <3—_> ®,. Weobservethat T, and T, are their own “inverses,’
that is, @ = @’ if and only if €’ = €. Hence, we can find a sequence of
blockse@,,...,@ suchthat® =€, ®, =€, ,and @, 72 G forl <7< n.
Using Lemma 11.7 iteratively, we can move a[[ uses of T ahead of those of
T,. Thus, we can find &, such that ®’ 4f> ®, 4._3.> ®,. ]

If we examine Theorem 11.5, we see that it divides the optimization pro-
cess into three stages. Suppose that we wish to optimize a given block &:

(1) From ® we can first eliminate redundant and useless computations
and rename variables to obtain a reduced open block ®’.

{2) In ® we can then reorder statemenis by flipping, until a block ®, is
obtained in which the statements are in the best order,

(3) Finally we can rename variables in &, until an optimal block ®, is
found.

We note that step (1) can be performed efficiently (as a function of block
length), It is left to the reader to give an algorithm for step (1) which takes
time 0(z log ) on a block having n statements.

Often, one of steps (2) and (3) is trivial. Our next example shows how
statements in our intermediate language can be converted to assembly lan-
guage in such a way that the number of assembly language instructions
executed is minimized. This optimization algorithm will be seen not to need
step (3). Renaming of variables will not subsequently affect the cost.

Example 11.9

We shall now take an example that has some interesting ideas not found
elsewhere in the book, The reader is urged to examine it closely. Let us
consider generating machine code for blecks. We postulate a compuier
with a single accumulator and the following assembly language instructions
with meanings as shown.

(1) LOAD M. Here the contents of memory location M are loaded into
the accumulator,

(2) STORE M. Here the contents of the accumulator are stored into
memory location M.

(3) 8 MaM,, - -, M,. Here ¢ is the name of an r-ary operator. The first
argument of # is in the accumulator, the second in memory location M,
the third in memory location M, and so forth. The result obtained by apply-
ing @ to its arguments is placed in the accumulator.
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A code generator would translate a statement of the form 4 «— 6B, - .- B,
into the following sequence of machine instructions:

LOAD B,
8 B, ...,B,
STORE A

However, if the value of B, is already in the accumulator (i.e., the previous
statement assigned B,), then the first LOAD instruction need not be gener-
ated. Likewise, if the value of A is not required, except as the first argument
of the next statement, then the final STORE instruction is not necessary.

The cost of the statement 4 «— §B, --- B canthusbe 1,2 or3. Itis 3
if B, is not found in the accumulator and there is a subsequent reference
to this assignment of A4 that is not the first argument of the next statement
(i.e., A has to be stored). It is | if B, is already in the accumulator and there
is no reference to this computation of A4 other than as the first argument of
the next statement. Otherwise, the cost is 2.

We should point out that this cost assumption glosses over a number of
considerations, To show that it correctly reflects the number of instructions
needed to execute the block on our machine, we should first rigorously
define the effect of a sequence of assembly instructions. If this is done in
the expected way, then every assembly language program can be related to
a block in our intermediate language by identifying assembly instructions
of type (3), the operations, with statements of the block. All these details
are left for the Exercises. In this example we shall take the cost function on
blocks to be as we have stated it,

Let vs consider the block &, = (P,, {4, B, C}, {F, GY), which might be
obtained from the FORTRAN statements

F=A+B+x(4d—B
G=(Ad—B)*x{d—C)«(B—C)

The list of statements in P, is

T« -A+ B
S<«—A—B
Fe—T=*§
I'«—A—B
S<«—A4—C
Re—B-—-C
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T<«—Tx*S
G«—Tx* R

There are no useless statements. However, we note one instance of redun-
dancy, between the second and fourth statements. We can eliminate this
redundancy and then give each statement a new variable name to assign,
obtaining the reduced open block 8, = (2,, {4, B, C}, [X;, X,}). @, plays the
role of ®' in Theorem 11.5. The statements of P, are

X, «—A4AL+ B
X,«— A-B
Xy«— X, » X,
X,«—A-—-C
X;«=—B8-—-0C
Xege— X, = X,
X,o«— X% X,

The dag for @, is shown in Fig. 11.4. Node », is created from the state-
ment of P, which sets X,.

We observe that there are a large number of programs into which @&,
can be transformed using only 7T,. We leave it for the Exercises to show
that this number is the same as the number of linear orders of which the
partial order represented by Fig. 11.4 is a subset.

An upper bound on that number would be 7!, the number of permuta-
tions of the seven statements. However, the actual number will be less in
this case, as not all statements of P, can ever pass over each other by using
T,. For example, the third statement of P, must always follow the second,
because the third references X, and the second defines it. Note that an appli-
cation of T, may change the name of X, but that the same relation will hold
with a new name.

Another interpretation of the limits on 7',’s ability to reorder the block
is to observe that in any such reordering, each node of D{®,) will correspond
to some statement. The statement corresponding to an interior node »
cannot precede any statement corresponding to an interior node which is
a descendant of node n.

While the problem of this example is simple enough to enumerate all
linear orderings of P,, we cannot afford the time to do this for an arbitrary
block. Some heuristic that will produce good, although not necessarily
optimal, orderings quickly is needed. We propose one here. The following
algorithm produces a linear ordering of the nodes of a dag. The desired block
has statements corresponding to these nodes in reverse order. We express
the algorithm as follows:
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Fig- 11.4 Dag for ®8,.

(1) We construct a list L. Initially, L is empty.

{2) Choose a node n of the dag such that & is not on L, and if there are
any edges entering », they come from nodes already on L. Add nto L. If no
such » exists, end.

(3) If n, is the last node added to L, the leftmost edge leaving », points
to an interior node » not in L, and all of #°s direct ancestors are already in L,
add » to L and repeat step (3). Otherwise go to step (2).

For example, using the dag of Fig. 11.4, we might begin with L = n,,
By step (3), we would add », to L. Then we would choose #,, add it to L, and
follow it by ng and #,. Two more uses of rule (2) would add n, and »,, so
a candidate for L is ny, an,, ny, g, 1y, n,, 0. Recalling that the statement
assigning X, creates node », and that the list £. corresponds to the statements
in reverse, we obtain the block ®, = (P,, {4, B, C}, {X,, X,}]). K is casy to

check that ®, <:t> ®&,. The list of statements in P, is

X, «—8B—-C
X, «—A4-C
X,«—A—B
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Xo— X, + X,
X, «— X% X,
X «~——A-+B
X, «— X + X,

The assembly language programs obtained from ®, and ®, are shown
in Fig. 1L.5.

LOAD 4 LOAD B
ADD B SUBTR C
STORE X STORE X;
LOAD 4 LOAD A4
SUBTR R SUBTR C
STORE X3 STORE X,
LOAD X; LOAD A4

MULT Xx: SUBTR B

STORE X, STORE X»
LOAD A4 MULT X
SUBTR C MULT X
STORE X, STORE X5
LOAD B LOAD A
SUBTR C ADD B
STORE X MULT X,
LOAD X3 STORE X;
MUILT X4

MULT X

STORE X4

(a) From &, {b) From ®;

Fig. 11.5 Assembly language programs.

11.1.6. Algebraic Transformations

In many programming languages certain algebraic laws are known to
hold among some operators and operands. These algebraic laws can often
be used to reduce the cost of a program in a manner which would not be
possible using only the four topological transformations hitherto considered.

Some useful, common algebraic laws are the following:

(1) A binary operator 8 is commutative if &6 8 = f 6 o for all expres-
sions & and . Integer addition and multiplication are examples of commu-
tative operators.{

tHowever, care must be exercised if the operands of 2 commutative operator are func-
tions with side effects. Por example, f(x) + £(») may not be equal to g(3) + f(x) if the
function f alters the value of y.



868 CODE OPTIMIZATION CHAP, 11

(2) A binary operator 8 is associative if 4 8 (86 y) = (0§ B) 0 y for all
o, B, and p. For example, addition is associative because

e+ B+ =(+p+ypt

(3) A binary operator @, distributes over a binary operator 8, if
w8, (8,y)=(a8, £}8,{af, y). For example, multiplication distributes
over addition because @ = (f + ¥} =a* § + & +y. The same caveats as
for (1) and (2) also apply here.

{4) A unary operator @ is a seff-inverse if B8x = o for all . For exam-
ple, Boolean not and unary minus are self-inverses.

{5} An expression ¢ is said to be an identity under a (binary) operator
BifcBa =a8¢e=uaforall ¢ Some common examples of identity expres-
sions are :

(a) The constant 0 is an identity under addition. So is any expression
which has the value 0, such as & — ¢, ¢ + 0, (— &) + o, and so
forth.

{b) The constant 1 is a multiplicative identity.

{c) The Boolean constant true is a conjunctive identity.

(That is, & and true = g for all a).
(d) The Boolean constant false is a disjunctive identity.
{That is, & or false — g for all ).

If & is a set of algebraic laws, we say that expression ¢ is equivalent to
expression § under &, written o =, f, if & can be transformed into § using
the algebraic laws in @.

Example 11.10

Suppose that we have the expression
Ax(BxC)+ (Bx Ayx D+ A« E

Using the associative law of « we can write 4 = (B * C) as (4 * B) » C. Using
the commutative law for =, we can write B * 4 as 4 » B. Then using the dis-
tributive law, we can write the entire expression as

(AxsBYy»(C+ D)+ A= E

Finally, applying the associative law to the first term and then the distributive
law, we can write the expression as

Ax(Bx(CH+ D)+ E)

FOne must also use this transformation with care. For example, suppose x is very
much larger than y, z = —x, and floating-point calculation is done. Then {(y + x) + =
may give 0 as a result, while ¥ + (x + z) gives ¥ as an answer,
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Thus, this expression is equivalent to the original under the associative,
commnutative, and distributive laws for 4 and . However, this final expres-
sion can be evaluated using two multiplications and two additions, while
the original expression required five multiplications and two additions. [}

We can extend the definition of equivalence under a set of algebraic laws
@ 1o blocks. We say that blocks &, and B, are equivalent under @, written
®, =, ®,, if for each expression « in »(®,) there is an expression f in »(®,) .
such that & =, f, and conversely.

Each algebraic law induces a corresponding transformation on blocks
(and dags).

Example 11.11

If + is commutative, then the transformation on blocks correspond-
ing to this algebraic law would allow us to replace a statement of the form
X «— A -+ Bin a block by the statement X «+- B + A4,

The associated transformation on dags would allow us to replace the
structure

by the structure

anywhere within a dag. []

Example 11,12

Let vs consider the transformation on blocks corresponding to the
associative law for 4, Here we can replace a sequence of two statements
of the form
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Xe-B+C

Ye—A4+ X
by the three statements

X«—B4C

X' «—— A+ B

Y«~— X'+ C

where X’ is a new variable, This transformation wounld have the following
analog on dags:

Note that we preserve the statement X — B 4+ C, because the variable
X may be referenced by some later statement. However, if the statement
X «— B4 C is useless after the transformation, then we may remove
this statement using transformation T,. If, in addition, the statement
X' «— A + B can be removed by T",, we have used the associative law to
advantage. (See Exercise 11.1.17.) T

Given a finite set of algebraic laws and the corresponding transformations
on blocks, we would like to use these in conjunction with the four topological
transformations of Section 11.1.2 on a given block to find an optimal
equivalent block. Unfortunately, for a particular set of algebraic laws, there
may be no effective way of applying these transformations to find an opti-
mal block.

The approach usually taken is to apply algebraic transformations in
limited ways, in the hopes of doing most of the possible “simplification” of
expressions and of producing as many common subexpressions as possible.
A typical scheme would uniformly replace §8 ¢ by « 8 # if & were a com-
mutative binary operator and « preceded f under some lexicographic order-
ing of variable names. If # were an associative and commutative binary
operator, then &, 8 o, @ - - - § &, would be transformed by ordering the names
&, ..., o lexicographically and grouping from the left.

We conclude this section with an example that illustrates the possible
effect of algebraic transformations on blocks,
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Example 11.13

Consider the block ® = (P, 1, {Y}), where I = {4, B, C, D, E, F} and
P is the following sequence of statements:

X, «—8-C
Xy,«~—A4A=+X,
X,«—E=r

X, «—DxX,
Ye—X,+ X,

® compules the expression
Y={A+(B—C)x(D=x(FxF)

The dag for ® is shown in Fig. 11.6.

Fig. 11.6 Dag for ®.

Suppose that we wish to generate an assembly code program for & where
we are using the assembly code and cost function of Example 11.9 (p. 863).
If we generate assembly code directly from ®, the resuliing assembly lan-
guage program would have a cost of 15.

Now let us suppose that = is a commutative and associative operator and
that we wish to find an optimal block for ® that is equivalent to ® under
the associative and commutative law for =. We shall apply to ® the algebraic
transformations corresponding to the two algebraic laws for =. Qur goal
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in applying these transformations will be to try to obtain a sequence of
statements in which intermediate results can be immediately used by the
following instruction without being stored,
Assuming that s is associative, in ® we can replace the two statements
X,«— ExF
X, «—DxX,
by the three statements

X,«— ExF
X, «— D= E
X, «— X3+ F
Now the statement X, «— E * F ig useless and can be deleted by transfor-

mation T',. Then using the associative transformation, we can replace the
statements

X, «— X{*F
Y«—X,s X,
by the statements
X, «— X} s F
Xo<—X,» X}
Ye—-XyxF

The statement X, — X% # Fis now useless and can be deleted. At this point
we have the statements

X, «—B—-C
X,«—Ax»X,
X,« -D+E
Xy+— X, = X7
Y«— X, F
Now if we apply the associative transformation once more to the third and

fourth statements, we abtain (after deleting the resulting uscless statement)
the block

X «—B—-C
X,«——Ad=xX,
Xy <«~—X,«D



sec, 11.1 OPTIMIZATION OF STRAIGHT-LINE CODE 873

X, «— X/ E
Ye«e— X, % F

Finally, if we assume that  is commutative, we can permute the operands
of the second statement to obtain the following block &':

X«~—B-C
X,«—— X, %4
Xi«—X,xD
Xie—X{*E
Ye— X, F

The dag for ®' is shown in Fig. 11.7. & has a cost of 7, the lowest possible
cost for a block equivalent to ®'. In the next section we shall give a sys-
tematic method for optimizing arithmetic expressions using the associative
and commautative algebraic laws. []

Fig. 11.7 Dag for ®’.
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11.1.1.

11.1L.2.

11.1.3.

*11.1.4.

11,1.5.

*11.1.6.

EXERCISES
Let ® = (P, (4, B, C}, {F, G}) be a block in which P is

T«—— A+ B
Re—AxT
S«—B+C
Fe«e—RxS
Te——Ax A
Re—A4A-+R
S<«—Ax R
Ge—S8S+T

(a) What is o(®)?

(b) Indicate the scope of each statement in P.

{¢) Does P have any useless statements ?

(d)} Transformation T, is applicable io the first and sixth statements
What values may D (as defined on p. 851) take in this application.
of T,?

(e) Draw a dag for .

{f) Find an equivalent reduced block for ®.

(g) How many different reduced blocks are equivalent to & except for
renaming? (More technically, let ®’ be an open reduced block
equivalent to 8. What is the cardinality of {®” |®" <:t:> &1

(h} Find a block equivalent to ® that is optimal according to the cost
criterion of Example 11.9 (p. 863).

Prove that transformations T, T3, and T, preserve block equivalence
(that is, if 8 = ®’, then »{(®) = +(®") for i = 1, 3, and 4).

Show that in transformation 7T, as presented on p. 851, if D is any
symbol not mentioned in £, then v(®) = »(®").

Give an algorithm to determine the set of permissible names for D in
transformation T,.

Prove that the algorithm following Example 11.3 removes all useless
statements and input variables from a bleck. Show that the number
of steps required to implement this algorithm is linearfy proportional
to the number of statements in a block.,

Devise an algorithm to remove all redundant computations (trans-
formation T3) from a block in time O(n log n), where n is the number
of statements in the block.t (Note the similarity to minimizing finite
state machines by Algorithm 2.6.)

Do not forget that the set of possible names of variables is infinite. Thus, some book-
keeping techniques such as those mentioned in Section 10.1 must be used,



11.1.7.
11.1.8.

*11.1.9.

*11.1.10.

*11.1.1L

*11.1.12,

11.1.13.
11.1.14.

EXERCISES 875

Devise an algorithm to compute the scope of a statement in a block.

Define the transformations on dags that are analogous to the trans-
formations 75-T on blocks.

Exercises 11.1.9 and 11.1.10 show that if ®, 14%4 ®,, then
®; ﬂ_i_;csz.

Show that if &, = @®,, then there is a block &, such that &, = @,
and ®, => ®,. Thus, transformation T, can be implemented using
one application of T in reverse followed by one application of 7.
Show that if ®, = (®,, then there is a block &; such that &, = ®,
and &3 =1’ G.’)l.

DEFINITION

A set S of transformations on blocks is complete if v(®,) = +(®;)
implies that &, ¢%=» ®,. S is minimal complete if no proper subset
of §is complete,

Exercises 11.1.9 and 11.1.10 show that {7y, 7;} is complete. The
following two exercises show that {77, T} is minimal complete.

Show that block B = (P, {4, B}, {C, D]} cannot be transformed into

® = (P, (A, B},{C, D}), where F and P are as shown, using only trans-
formations T, T3, and T,.

P P
E« A+ B C+— A+ B
De Ex E De—CxC
C— A4+ R

Hence, {Ty, Ty, Ty} is not complete, and so {T,} cannot be complete.

Show that block ® = (P, {4, B}, {C}) cannot be transformed into
®' = (P, {4, B}, {C} using only transformations T3, 7,, and T,,
where P and P are

P P
Ce— A»B C«A+ B
Ce- A+ B

Provide an algorithm to determine whether two blocks are equivalent.

Let P = 5,;8;;...; 5, be a sequence of assignment statements. Let
I be a set of input variables. Give an algorithm to locate all undefined
(referenced before being assigned) variables in P.
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*11.1.15.

**11.1.16.

¥*11.1.17.

11.1.18.

“*11.1.19.

*11.1.20.

**11.1.21.

*11.1.22.

Consider blocks as defined but also include statements of the form
A «— B with the obvious meaning, Find a complete set of transfor-
mations for such blocks.,

Assume that addition is commutative. Let 7 be the transformation
which replaces a statement 4 «— B + C by 4 «— C + B. Show that T
together with transformations T, and T, transform two blocks into
one another if and only if they are equivalent under the commutative
law of addition.

Assume that addition is associative. Lef 7, be the transformation which
replaces two statements X « A + B; Y «— X 4 C by the three state-
ments X« A+ B; X' — B+ C; Y+ A + X’ or the statements
X—B4+CY — A+ Xby X —B+C X — A+ B Y— X +C,
where X7 is a new variable. Show that T, T, and T, transform two
blocks into one another if and only if they are equivalent under the as-
sociative law of addition.

What is the transformation on blocks that corresponds to the distri-
butive law of * over +? What is the corresponding transformation on
dags?

Show that there exist sets of algebraic Iaws for which it is recursively
undecidable whether two expressions are equivalent.

DEFINITION

An algebraic law is operand-preserving if no operands are created
or destroyed by one application of the algebraic law. For example,
the commmutative and associative laws are operand-preserving but the
distributive law is not,

An algebraic law is operator-preserving if the number of operators
is not affected by one application of the law. The algebraic law
#60o =& (self-inverse) is not operator-preserving, but the law
@—fH-—r=a~@ +pis.

The number of interior nodes and the number of [eaves in the
dag associated with a block are preserved when the transformations
corresponding to operator- and operand-preserving algebraic laws are
applied to the block.

Show that under a set of operator- and operand-preserving algebraic
laws it is decidable whether two blocks are equivalent.

Extend Theorem 11.5 to apply to optimization of blocks using both
the topological transformations of Section 11.1,2 and an arbitrary
collection of operator- and operand-preserving algebraic transfor-
mations.

Consider blocks in which variables can represent one-dimensional
arrays. Let us consider assignment statements of the form

(1) 4X)— Band

(2} B — A(X),



11.1.23.
11.1.24.
11.1.25.
11.1.26.
*11.1.27.

11.1.28.
11.1.29.

11.1.30.
*11.1.31.

*11.1.32.

EXERCISES 877

where A is a one-dimensional array and B and X are scalars.
If we have block in which each statement is of form (1) or (2) or
B+ @C, -.- C,, where B, C,, ..., C, are scalars, find some iransfor-
mations that can be applied to these blocks making use of the fact
that 4 is an array.

Prove Lemma 11.1.
Prove Lemma 11.2.
Complete the proof of Lemma 11.3.
Complete the proof of Lemma 11.4.

Give an example of a cost criterion C such that if @, = ®,, then
C(®,) < C(®,), vet not every block has an optimal block under C.

Prove Lemma 11.6,

Show that if ®; is open and ®, = ®,; = ®;, then there is a block
® such that & = ® = ®;.

Prove Lemma 11.7. Hint: Use Exercise 11.1.29.

Suppose that we have a machine with N registers such that operations
can be done with any or all arguments in registers, the result appearing
in any designated register. Show that the output values of a block
can be computed on such a machine with no store instructions (the
results appearing in registers) if and only if that block has an equiva-
lent block in which no more than N variable names appear in the
insfructions.

Show that if T, and T, are applied to a given block & in any order
until a reduced block is obtained, then a unigue block (up to renam-
ing) results,

Research Problems

11.1.33.

11.1.34.

Using the cost criterion of Example 11.9, or some other interesting cost
criterion, find a fast algorithm to find an optimal block equivalent to
a given one.

Find a collection of algebraic transformations that is useful in opti-
mizing a large class of programs. Devise efficient techniques for
applying these transformations.

Programming Exercises

11.1.35.

11.1.36.

Using a suitable representation for dags, implement transformations
T; and T, of this section.

Implement the heuristic suggested in Example 11.9 to “optimize” code
for a one-accumulator machine.



878 CODE OPTIMIZATION CHAP. 11

BIBLIOGRAPHIC NOTES

The presentation in this section follows Aho and Ullman [1972e]. Igarishi [1968]
discusses transformations on similar blocks with 4 «— B statements permitied
and names of output variables considered important, DeBakker [1971) considers
blocks in which all statements are of the form 4 «— B. Bracha [1972] treats straight
line blocks with foward jumps.

Richardson [1968] proved that no algorithm to “simplify” expressions exists
when the expressions are taken to be over quite simple operators. The answer to
Exercise 11.1.19 can be found in his article. Caviness [1970] also treats classes of
algebraic laws for which equivalence of blocks is undecidable.

Floyd [1961a] and Brener [1969] have considered algorithms to find common
subexpressions in straight-line blocks when certain algebraic laws pertain. Aho
and Ullman {1972f] discuss the equivalence of blocks with structured variables as
in Exercise 11.1.22, Some techniques useful for Exercise 11.1.32 can be found in
Aho, Sethi, and Ullman [1972].

11.2. ARITHMETIC EXPRESSIONS

Let us now turn our attention to the design of a code generator which
produces assembly language code for blocks. The input to the code generator
is & block consisting of a sequence of assignment statements, The output is
an equivalent assembly language program.

We would like the resulting assembly language program to be good under
some cost function such as number of assembly language instructions or
number of memory fetches. Unfortunately, as mentioned in the last section,
there is no efficient algorithm known that will produce optimal assembly
code, even for the simple “one-accumulator” machine of Example 11.9.

In this section we shall provide an efficient algorithm for generating
assembly code for a restricted class of blocks—those that represent one
expression with no identical operands. For this class of blocks our algorithm
will generate assembly language code that is optimal under a variety of cost
criteria, including program length and number of accumulators used.

While the assumption of no identical operands is certainly not realistic,
it is often a good first-order approximation. Moreover, if we are to generate
code using a syntax directed translation with synthesized attributes only, the
assumption is quite convenient. Finally, experience has shown that the prob-
lem of generating optimal code for expressions with even one pair of identical
operands is extremely difficult in comparison,

A block representing one expression has only one output variable. For
example, the assignment statement F = Z # (X - ¥) can be represented by
the block ® = (P, [X, Y, Z}, {F]), where P is
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Re— X+7Y
Fe—Z =+ R

The restriction that the assignment involve an expression with no identical
operands’ is equivalent to requiring that the dag for the expression be a
tree.

For convenience we shall assume that all operators are binary. This
restriction is not scrious, since it is straightforward to generalize the results
of this section to expressions involving arbitrary operators.

We shall generate assembly code for a machine having N accumulators,
where N >> 1. The cost criterion will be the fength of the assembly language
program {i.e., the number of instructions). The algorithm is then extended to
take advantage of operators which we know are commutative or associative.

11.2.1. The Machine Modsl

We consider a computer with N = 1 general-purpose accumulators and
four types of instructions.

DEFINITION

An assembly language instruction is a string of symbols of one of the fol-
lowing four types:

LOAD M, A
STORE A4, M

OP§ A4, MB
OPO A, BC

In these insiructions, M is a memory location and A4, B, and C are accumu-
lator names (possibly the same). OP & is the operation code for the binary
operator §, We assume that each operator # has a corresponding machine
instruction of type (3} and (4).

These instructions perform the following actions:

{1) LOAD M, A places the contents of memory location M into accumu-
lator A.

(2) STORE 4, M places the contents of accumulator 4 into memory
location M.

(3) OP 8 4, M, B applies the binary operater € to the contents of accumu-
lator 4 and memory location M and places the resylt in accumulator B.

{4) OP 8 A, B, C applies the binary operator 8 to the contents of accumu-
lators 4 and B and stores the result in accumulator C.

If there is but one accumulator, this set of instructions reduces to that in
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Example 11.9, except for type (4) instructions, which become OP 8 4, 4, 4.
The algorithm we have in mind does not take advantage of such an instruc-
tion, and so for these purposes, our instruction set can be thought of as
a generalization of one-address, single-accumulator instructions.

An gssembly language program (program for short) is a sequence of assem-
bly language instructions.

IfP=1I,;1L;...;1, 1s a program, we can define the value of register
R after instruction t, denoted v (R), as follows. (A register is either an accumu-
lator or 2 memory location.)

(1) v{R) = R if R is a memory location and is undefined if R is an
accumulator.,

(2) Let I, be LOAD M, A. Then »(4) = v,_,(M).

(3) Let I be STORE A, M. Then v,(M) = v,_ (A).

(4) Let I, be OP 0 A, R, C. Then v,(C) = @ v_,{4A) »,_ (R). Note that R
may be an accumulator or a memory Jocation.

(5) If »,(R) is not defined by (2)-(4) but »,_,(R) has been defined, then
v(R) = v,_ (R). Otherwise, v{R) is undefined.

Thus, values are computed exactly as one would expect. LOADYs and
STORE’s move values from one register to another, leaving them also in
the original register. Operations place the computed valve in the accumu-
lator designated by the third argument, leaving other registers unchanged in
value, We say that a program P computes expression ¢, leaving the result in
accumulator A4, if after the last statement of P, accumulator 4 has the
value a.

Example 11.14

Consider the following assembly language program with two accumu-
lators 4 and B. The values of the accumulators after each instruction are
shown beside each instruction in infix notation, as usual.

w{A4) v(B)
LOAD X, A X Undefined
ADD 4,7, A X+Y Undefined
LOAD Z,B X+ Y Z
MULT B, A4,A4 Zx(X+ 1) Z

The value of accumulator A at the end of the program corresponds to the
(infix) expression Z * (X + Y). Thus, this program computes Z = (X' + ¥,
leaving the result in accumulator A. (Technically, the expression Z is also
computed.) [
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In this section we shall formally define an (arithmetic) syntax tree as a
labeled binary tree 7 having one or more nodes such that

(1) Each interior node is labeled by a binary operator # in &, and
(2) Each leaf is labeled by a distinct variable name X in .

For convenience we assume that @ and X are disjoint. Figure 11.8 shows
the tree for Z + (X + ¥).

° ° Fig. 1.8 Tree for Z« (X + Y.

We can assign values to the nodes of a tree from the bottom as follows:

{1} If node » is a leaf labeled X, then r has value X.
(2) If n is an interior node labeled # with direct descendants n, and »,
whose values are v, and v,, then » has value 8» v,

The value of a tree is the value of its root. For example, the value of the
tree in Fig. 11.8 is Z % (X + Y) in infix notation.

Let us briefly discuss the relation between the intermediate language
blocks of Section 11.1 and the assembly language programs we have just
defined. First, given a reduced block in which

(1} All operaters are binary,
(2) Each input variable is referenced once, and
{3) There is exactly one output variable,

the dag associated with the block will be a tree. This tree is a synfax (ree in
our current terminology. The value of the expression is also the value of
the block.

We can naturally convert the intermediate Janguage block to an assembly
language program, statement by statement. It turns out that if this conversion
takes account of the possibility that desired values are already in accumu-
lators, then we can produce an optimal assembly program from a given
reduced open block using only transformation T, as suggested by Theorem
11.5, and then performing conversion to assembly language.

However, it may not be entirely obvious that the above is true; the reader
should verify these facts for himself. What we achieve by essentially rework-
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ing many of the definitions of Section 11.1 for assembly language programs
is to show that there is no strange optimal assembly language program which
is not related by any natural statement-by-statement conversion to an inter-
mediate language block obtainable from a reduced open block and trans-
formation T,.

11.2.2. The Labsling of Tress

Fundamental to our algorithm for generating code for expressions is
a method of attaching additional labels to the nodes of a syntax tree. These
labels are integers, and we shall subsequently refer to them as the labels of
nodes, even though each node is also labeled by an operator or variable.
The integer label determines the number of accumulators needed to evaluate
an expression optimally.

ALGORITHM 11.1
Labeling of syntax trees.
Input. A syniax tree 1.
Output. A labeled syntax tree.

Method, We assign integer labels to the nodes of T recursively from the
bottom as follows:

(I) If a node is a leaf and either the left direct descendant of its direct
ancestor, or a root (i.e., the tree consists of this one node), label this node 1;
if it is a leaf and the right direct descendant, label it Q.

(2) Let node » have direct descendants n, and n, with labels /| and /..
If I, == I,, let the label of # be the larger of /, and Z,. If I, = /,, let the label
of n be one greater than /,. []

Example 11.15

The arithmetic expression 4 % (B — C)/(D x (E — F)) is expressed in
tree form in Fig. 11.9. The integer labels are shown. [ ]

The following algorithm converts a labeled syntax tree into an assembly
language program for a machine with & accumulators. We shall show that
for each N the program produced is optimal under a variety of cost criteria,
including program length.

ALGORITHM 11.2
Assembly code for expressions.

Input. A labeled syntax tree T and N accumulators 4,, 4,,..., 4, for
some N > 1.
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Fig. 11.9 Labeled syntax tree.

Output. An assembly language program P such that #(4 ) after the last
instruction of Pis »(T); i.e., P computes the expression represented by T,
leaving the result in accumulator A,

Method. We assume that 7 has been labeled using Algorithm 11.1. We
then execute the following procedure code(n, i) recursively. The input to code
is 2 node n of T and an integer i between 1 and N. The integer { means that
accumulators 4., A, ,, ..., 4, are currently available to compute the expres-
sion for node »n. The output of code(n, /) is a sequence of assembly language
instructions which computes the value v(n), leaving the result in accumu-
lator A4,.

Initially we exccute code(n,, 1), where #, is the root of 7. The sequence
of instructions generated by this call of the procedure code is the desired
assembly language program.

Procedure codefn, i).
We assume that # is a node of T"and that / is an integer between 1 and N.

(1) If node n is a leaf, do step (2). Otherwise, do step (3).

(2) If code(n, i) is called and » is a leaf, then # will always be a left direct
descendant (or the root if # is the only node in the tree). If leaf # has variable
name X associated with it, then

code(n, 1) = ‘LOAD X, A

[meaning that the output of code(n, i} is the instruction LOAD X, 4,]. End.
{3) We reach this point only if # is an interior node. Let # have operator
6 associated with it and direct descendants n, and », with labels /, and 7,
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as shown:

11 Iz

The next step is determined by the values of labels 7, and /,:
{a) If 1, = 0 {node n, is a right leaf), then do step (4).
{(by If 1 <</, < I, and !, < N, then do step (5).
{c) If | <C 1, <1, and [, << N, then do step (6).
(d) f N<{/, and N < [,, then do step (7).

) code(r, /) = code(n, i)
‘OP 6 A, X, A

Here X is the variable associated with leaf n,, and OP @ is the operation code
for operation . The output of eode(n, ) is the cutput of code(n,, i) followed
by the instruction OP 8§ 4, X, 4,.
(5) code(n, 1) = code(n,, {)
code(n,, i + 1)
‘0P8 AI+[! Ar: Ai‘

()] code(n, i) = code(n,, i)
code(n,, i 4+ 1)
‘OP O A, Apys A/

&) code(n, i} = code(n,, i)
T <+— newtemp
*‘STORE A4, T
code(r, 1)
‘OPG A, T, A;

Here newtemp is a function which whenever invoked produces a new tempo-
rary memory location for storing intermediate results. [ ]

Later we shall show that the following relationships between /,, /,, and i
hoid when steps (35), (6), and (7) of Algorithm 11.2 are invoked:
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Step Relation
&) i<N-I
(6 i=N—-1I
ol i=1

Note also that Algorithm 11.2 requires instructions of type (4} of the form

OP§ A,B A
OP6 4,B B

By making the procedure code slightly more complicated in step (5), we can
eliminate the need for insiructions of the form

OP6 A, B, B

which ig not part of the instruction repertoire of some multiregister machines.
{See Exercise 11.2,11.)

We can view code(n, 7) as a function which computes a translation at each
node of an expression in terms of the translations and labels of the direct
descendants of the node. To get acquainted with Algorithm 1].2, let us con-
sider several examples.

Example 11.16

Let T be the syntax tree consisting of the single node X (labeled 1). From
step (2) code is the single instruction LOAD X, 4,. [

Example 11.17

Let T be the Jabeled syntax tree in Fig. 11.10. The assembly language
program for T using Algorithm 1[.2 with ¥ = 2 is produced as follows.
The following sequence of calls of code(n, i) is generated. We also show the
step of Algorithm 11.2 which is invoked during each call. Here, we indicate
& node by the variable or operator associated with it.

Call Step of Algorithm 11.2
code(s, 1) . {3c)
code(Z, 1) 2)
code(+, 2) (3a)

code( X, 2) (2)
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1
7)1 LOAD Z, 4, ADD 4,, Y, 4,

T,: LOAD X, 4,

Fig. 11.10 Labeled syntax tree with translations.

The call code(X, 2) generates the instruction LOAD X, 4,, which is the trans-
lation associated with node X. The call code{--, 2} generates the instruction
sequernce

LOAD X, 4,
ADD 4, Y, 4,

which is the translation for node 4.

The call code(Z, 1) generates the instruction LOAD Z, A,, the translation
for node Z. The call code(#, 1) generates the final program which is the trans-
lation for the root: ‘

LOAD Z, A,
LOAD X, A4,

ADD A, Y, 4,
MULT A4, A4,, 4,

This program is similar (but not identical) to that in Example 11.14. The
value in accumulator 4, at the end of this program is clearly Z « (X 4+ Y.

[J

Example 11.18

Let us apply Algorithm 11.2 with N = 2 to the syntax tree in Fig. 11.9
(p. 883). The following sequence of calls of code(n, i) is generated. Here »,
refers to the left descendant of /, =, to the right descendant of /, —, to the
right descendant of %,, and —; to the right descendant of %, The step of
Algorithm 11.2 which is applicable during each call is also shown.



SEC. 11.2 ARITHMETIC EXPRESSIONS 887

Call Step
code(/, 1) 3d)
code(sg, 1) (3¢}
code(D, 1) (2)
code{—z, 2) (3
code(E, 2) 2
code(s ., 1) (3c)
code(4, 1) @
code(—z, 2) (3a)
code(B, 2) €3]

The following program is generated by code(/, 1):

LOAD D, 4,

LOAD E A4,
SUBTR A,,F, 4,
MULT A, 4,, 4,
STORE 4,, TEMPI
LOAD 4,4,

LOAD B, 4,
SUBTR 4, C, 4,
MULT 4, 4,, 4,
DIV A, TEMP!, 4,

Here TEMPI is a memory location generated by newtemp. [ ]

We shall prove that the label of the root of the labeled syntax tree pro-
duced by Algorithm 11.1 is the smallest number of accumulators needed to
compute that expression without using any STORE instructions.

We begin by making several observations about Algorithm 11.2.

Lemma 11.8

The program produced by procedure code(n, i) in Algorithm 11.2 correctly
computes the value of node n, leaving that value in the ith accumulator,

Proof. An elementary induction on the height of a node. [}

LemMA 11.9

If Algorithm 11.2, with ¥ accumulators available, is applied to the root
of a syntax tree, then when procedure code(n, {) is called on node n with
label [ either
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(1) I = N and N accumulators are available for this call (i.e., i = 1), or

(2) I < N and at least / accumulators are available for this call (i.e.,
i< N-—-I+1.

Proof. Another elementary induction, this time on the number of calls
of code(n, i) made prior to the call in question. [ ]

THEOREM 11.6

Let T be a syntax tree and let N be the number of available accumulators.
Let / be the label of the root of 7. Then there exists a program to compute
T which uses no STORE instructions if and only if [ < N.

Proof.

If: If 1 < N, then step (7) of procedure code(n, i) is never executed, That
is, a node whose two direct descendants have labels equal to or greater than N
has a label at least N + 1 itself. Step (7) is the only step which generates a
STORE instruction. Therefore, if /< N, the program constructed by Algo-
rithm 11.2 has no STORE's.

Only if: Assume that ! > N. Since N >> 1, we must have { > 2. Suppose
that the conclusion is false. Then we may assume without loss of generality
that T has a program P which computes it using ¥ accumulators, that P
has no STORE statements, and that there is no syntax tree 7° which has
fewer nodes than 7T and also violates the conclusion. Since the label of the
root of T exceeds 1, T cannot be a single leaf. Let »n be the root and let #,
and », be its direct descendants, with labels I, and [,, respectively.

Case -1, =1 The only way the value of # can be computed is for the
value of n, to appear at some time in an accumulator, since n, cannot be
a leaf, We form a new program P’ from P by deleting those statements follow-
ing the computation of the value of n,. Then P’ computes the subtree with
root #, and has no STORE’s. Thus, a violation with fewer nodes than T
ocecurs, contrary to our assumption about 7.

Case 2: 1, = I This case is similar to case 1.

Case 3: 1, =1, =1 — 1. We have assumed that no two leaves have the
same¢ associated variable name. We can assume without loss of generality
that P is “as short as possible,” in the sense that if any statement were deleted,
the value of » would no longer appear in the same accumulator at the end
of P. Thus, the first statement of P must be LOAD X, 4, where X is the
variable name associated with some leaf of T, for any other first statement
could be deleted.

Let us assume that X is the value of a leaf which is a descendant of n,
(possibly n, itself). The case in which X is a value of a descendant of », is
symmetric and will be omitted. Then until 7, is computed, there is always at
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least one accumulator which holds a value involving X. This value could
not be used in & correct computation of the value of »n,. We may conclude
that from P we can find a program P’ which computes the value of n,, with
label / — 1, which uses no STORE’s and no more than N — 1 accumulators
at any time. We leave it to the reader to show that from 2’ we can find an
equivalent P** which never mentions more than ¥ — 1 different accumulators.
{Note that P’ may mention all ¥ accurnulators, even though it is not “using”
more than N — 1 at any time.) Thus, the subtree of n, forms a smaller vio-
lation of our conditions, contradicting the minimality of T, We conclude
that no violation can occur, [

11.2.3. Programs with STORE's

We shall now consider how many LOAD’s apd STORE’s are needed to
compute a syntax tree using & accumulators when the root has a label greater
than #. The following definitions are useful.

DerNITION

Let T'be a syntax tree and let ¥ be the number of available accumulators.
A node of T is major if each of its direct descendants has a label equal to or
greater than N. A node is minor if it is a leaf and the left direct descendant
of its direct ancestor (i.e., a leaf with label 1).

Example 11.19

Consider the syntax tree of Fig. 11.9 (p. 883) again, with N = 2. The only
major node is the root. There are four minor nodes, the leaves with values
A, B, D, and E. []

Lemuma 11.10

Let T be a syntax tree. There exists a program to compute T using m
LOADs if and only if 7 has no more than m minor nodes.

Proof. If we examine procedure code(n, {) of Algorithm 11.2, we find that
only step (2) introduces a LOAD statement. Since step (2) applies only to
minor nodes, the “if” portion is immediate.

The “only if” portion is proved by an argument similar to that of Theorem
11.6, making use of the facts that the only way the value of a leaf can appear
in an accomulator is for it to be “LOADed” and that the left argument of
any operator must be in an accumulator. [}

LEMMA 11.11

Let T be a syntax tree. There exists a program 2 to compute T using M
STORE’s if and only if T has no more than M major nodes.
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Proof.

If: Again referring to procedure code(n, i), only step (7) introduces a
STORE, and it applies only to major nodes.

Only if: This portion is by induction on the number of nodes in T. The
basis, a tree with one node, is trivial, as the label of the root is 1, and there
are thus no major nodes. Assume the result for syntax trees of up to &k — 1
nodes, and let T have k nodes.

Consider a program P which computes T, and let M be the number of
major nodes of T. We can assume without loss of generality that P has as
few STORE’s as any program computing 7. If M = Q, the desired result is
immediate, and so assume that M > 1. Then P has at least one STORE,
because the label of a major node isat least N + 1, and if no STORE’s were
present in P, a violation of Theorem 11.6 would occur.

The value stored by the first STORE instruction of P must be the value
of some node # of 7', or else a program with fewer STORE’s than P but com-
puting T could easily be found. Moreover, we may assume that n is not
a leaf for the same reason. Let 7 be the syntax trec formed from T by making
node n a leaf and giving it some new name X as value, Then 7" has fewer nodes
than 7, and so the inductive hypothesis applies to it. We can find a program
P’which evaluates 7' using exactly one fewer STORE than P. P'is constructed
from P by deleting exactly those statements needed to compute the first
value stored and replacing subsequent references in P to the location used
for that STORE by the name X until a new value is stored there,

If we can show that 77 has at least M — 1 major nodes, we are done,
since by the inductive hypothesis, we can then conclude that P’ has at least
M — 1 STORE’s and thus that P has at least M STORE’s.

We observe that no descendant of # in T' can be major, since a violation
of Theorem 11.6 would occur. Consider a major node »’ of I If n is not
a descendant of »', then #’ will be a major node in T”. Thus, it suffices to
consider those major nodes 7, n,, . . . on the path from # to the root of T.
By the argument of case 3 of Theorem 11.6, n cannot itself be major. The
first node, a,, if it exists, may no longer be major in 7’. However, the label
of n, in 7" is at least N, because the direct descendant of n, that is not an
ancestor of #n must have a label at least N in T and 7”. Thus, n,,n,,... are
still major nodes in T¥. We conclude that 7* has atleast M — | major nodes.
The induction is now complete. [ ]

TyeoreMm 11.7

Algorithm 11.2 always produces a shortest-length program to compute
a given expression.

Proof. By Lemmas 11.10 and 11.11, Algorithm 11.2 generates a program

with the fewest LOAD’s and STORE’s possible. Since the minimum number
of operation instructions is clearly equal to the number of interior nodes of
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the tree and Algerithm I11.2 yields one such instruction for each interior
node, the theorem follows. []

Exampls 11.20

As pointed out in Example 11.19, the arithmetic expression of Fig. 11.9
has one major and four minor nodes (assuming that ¥ = 2). It also has five
interior nodes. Thus, at least ten statements are necessary to compute jt.
The program of Example 11.18 has ten statements. Note that one of these is
STORE, four are LOAD?’s, and the rest operations. [ ]

11.2.4. Effect of Some Algebraic Laws

We can define the cost of a syatax tree as the sum of

(1) The number of interior nodes,
(2) The number of major nodes, and
(3) The number of minor nodes.

The results of the previous section indicate that this cost is a reasonable
measure of the “complexity” of a syntax tree, in that the number of instruc-
tions needed to compute a syntax tree is equal to the cost of the tree,

Often, algebraic laws may apply to certain operators, and making use of
these identities can reduce the cost of a given syntax tree. From Section 11.1.6
we know that each algebraic law induces a corresponding transformation on
syntax trees. For example, if » is an interior node of a syntax tree associated
with a commutative operator, then the commutative transformation reverses
the order of the direct descendants of »,

Likewise if @ is an associative operator [i.e., a8 (88y) = (a8 8) 8 7],
then using the corresponding associative transformation on trees we can
transform twe syntax trees as shown in Fig. 11.[1. The associative transfor-
mation depicted in Fig. [1.11 corresponds to the transformation

X<«—B88C X «—A@B
>
Y ABX Y« X'8C

on blocks. In Section 11.1.6 we retained the statement X «— B 8 C after the
transformation from left to right. However, in our present discussion this
statement will always be useless afier the transformation, and so it can be
safely removed without changing the value of the block.

DEFINITION

Given a set @ of algebraic laws, we say that two syntax trees T, and T,
are equivalent under @, written T, =, T,, if there exists a sequence of trans-
formations derived from these laws which will transform T, into T,. We shall
write [T]g to denote the equivalence class of trees {77 | T =4 T}
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Fig. 11.11 Associative transformation on syntax trees,

Thus, if we are given a syntax tree T and we know that a certain set @
of algebraic laws prevails, then to find an optimal program for 7" we might
want to search [T], for an expression tree with the minimum cost. Once we
have found a minimum cost tree, we can apply Algorithm 11.2 to find the
optimal program, Theorem 11.7 guarantees that the resulting program will
be optimal.

If each law preserves the number of operators, as do the commutative
and associative laws, then we need only minitnize the sum of major and
minor nodes. Asan example, we shall give algorithms to do this minimization,
first in the case that some operators are commutative and second in the case
that some commutative operators are also associative.

Given a syntax tree 7" and a set @ of algebraic laws, the next algorithm
will find a syntax tree T in [T], of minimal cost provided that @ contains
only commutative laws applying to certain operators. Algorithm 11.2 can
then be applied to 7' to find the optimal program for the original tree T.

ALGORITHM 11.3
Minimal cost syntax tree assuming some commutative operators,
Input. A syntax tree T (with three or more nodes) and a set of commu-
tative laws Q.
Ouiput. A syntax tree in [T, of minimal cost.

Method. The heart of the algorithm is a recursive procedure commute(r)
which takes a node » of the syntax tree as argument and returns as output
a modified subtree with node n as root. Initially, commute(n,) is called,
where r, is the root of the given tree T.
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Procedure commute(n).

(1) If node » is a leaf, commute(s) = n.
(2) If node » is an interior node, there are two cases to consider:

(a) Suppose that node » has two direct descendants », and », (in this
order) and that the operator attached to n is commutative. If z,
is a leaf and n, is not, then the output of commute(r) is the tree of
Fig. 11.12(a).

(b} In all other cases the output of commute(n) is the tree of Fig.

11.12(b). []

Example 11.21

Consider Fip. 11.9 (p. 883) and assume only # is commutative. Then the
result of applying Algotithm 11.3 to that tree is shown in Fig. 11.13. Note
that the label of the root of Fig. 11.13 is 2 and that there are two minor nodes.

(a)

(b)

Fig. 11.12 Result of commute procedure,
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Fig. 11,13 Revised arithmetic expression.

Thus, if two accumulators are available, only seven statements are needed
to compute this tree, compared with ten for Fig. 11.9. [

THEOREM 11.8

If the only algebraic law permitted is the commutative law of certain
operators, then Algorithm 11.3 produces that syntax tree in the equivalence
class of the given tree with the least cost,

Proof. 1t is easy to see that the commutative law cannot change the
number of interior nodes. A simple induction on the height of a node shows
that Algorithm 11.3 minimizes the number of minor nodes and the label
that would be associated with each node after applying Algorithm 11.1.
Hence, the number of major nodes is also minimized. [

The situation is more complex when certain operators are both commu-
tative and associative. In this case we can often transform the tree extensively
to reduce the number of major nodes.

DEFINITION
/4

Let T be a syntax tree. A set S of two or more nodes of T is a cluster if

{1} Each node of § is an interior node with the same associative and
commutative operator.

(2) The nodes of S, together with their connecting edges, form a tree.

(3) No proper superset of .5 has properties (1) and (2).
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The root of the cluster is the root of the tree formed as in (2) above. The
direct descendants of a cluster S are those nodes of T which are not in S but
are direct descendants of a node in §.

Example 11.22

Consider the syntax tree of Fig. 11.14, where + and % are considered
associative and commutative, while no other algebraic laws pertain.

Fig. 11.14 Syntax tree.

The three clusters are circled. The cluster which includes the root of
the tree has as direct descendants, in order from the left, the root of cluster
2, the node to which the — operator is attached, and the root of cluster 3. []

We observe that the clusters in a syntax tree T can be uniquely found
and that the clusters are disjoint. To find a tree of minimal cost in [T],, when
@ contains laws reflecting that some operators are associative and commu-
tative while others may be only commutative, the concept of an associative
tree, which condenses clusters into a single node, is introduced.

DEFINITION

Let T be a syntax tree, Then 77, the associative tree for T, is formed by
replacing each cluster 5 of T by a single node » having the same associative
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and commutative operator as the nodes of the cluster S. The direct descen-
dants of the cluster in 7 are made direct descendants of nin T

Example 11,23

Consider the syntax tree Tin Fig. 11.15. Assuming that 4 and = are both
associative and commutative, we obtain the clusters which are circled in
Fig. 11.15. The associative tree for T is shown in Fig. 11.16. Note that the
associative tree is not necessarily a binary tree. [ ]

0 foloh ;

50 0000 O
O 0000000
O @ O O

Fig. 11.15 Syntax tree with clusters.

We can label the nodes of an associative tree with infegers from the bot-
tom up as follows:

(1) A leaf which is the leftmost direct descendant of its ancestor is labeled
1. All other leaves are labeled 0.
(2) Let # be an interior node having nodes n,, n,, . .., 1, with labels
Iyl ..., L, as direct descendants, m > 2.
(a) Ifone of 4, 1,, ..., 1, is Jarger than the others, let that integer be
the label of node n.
{(b) If node n has a commutative operator and #, is an interior node
with, =1 and the rest of #,,. .., 7y, #.4y, . . ., 7, Are leaves,
then label node 7 by 1.
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Fig. 11.16 Associative tree.

(c} Provided that (b} does not apply, if /, = [, for some i 5« j and J,
is greater than or equal to all other /,’s, let the label of node a
be f, + 1.

Example 11.24

Consider the associative tree in Fig. 11.16. The labeled associative tree is
shown in Fig. 11.17,

Note that condition (2b) of the labeling procedure applies to the third
and fourth direct descendants of the root, since * is a commutative opera-

tor. [

We now give an algorithm which takes a given syntax tree and produces
that tree in its equivalence class with the smallest cost.
ALGORITHM 11.4

Minimal cost syntax tree, assuming that certain operators are commu-
tative and that certain operators are both associative and commutative but
that no other algebraic Jaws pertain.

Input. A syntax tree T and a set @ of commutative and associative-
commutative laws.

Output. A syniax tree in [T)e of minimal cost.

Method. First create T, the labeled associative tree for T. Then compute
acommute(,), where acommute is the procedure defined below and n, is
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(2

Fig. 11.17 Labeled associative tree.

the root of 7", The output of acommute(n,) is a syntax tree in [T], of minimal
cost.

Procedure acommute(r).

The argument # is a node of the labeled associative tree. If » is a leaf,
acommute(y) is » itself. If » is an interior node, there are three cases to
consider:

(1) Suppose that node # has two direct descendants #, and n, (in this
order) and that the operator attached to » is commutative (and possibly
associative),

{a) If n,is a leaf and n, is not, then the output acommute(n) is the tree
of Fig. 11.18(a).
(b) Otherwise, acommute{n) is the tree of Fig. 11.18(b).
(2) Suppose that 8, the operator attached to n, is commutative and asso-

clative and that n has direct descendants n,, n,,...,n,, m> 3, in order
from the left. :
Let n,, be a node among n,, . . ., n, having the [argest label. If two or

more nodes have the same largest label, then choose ng,, be be an interior
node. Let p,,pss.. .5 Py be, in any order, the remaining nodes in
{nls LR ﬂm} - {nmax}‘

Then the output of acommute(n) is the binary tree of Fig. 11.19, where
each r,, 1 << i<m — 1, isanew node with the associative and commutative
operator & of n attached.
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acommute (z,)

(&)

acommute (n,) acommute (15)
1 2

(b}

Fig. 11.18 Result of acommute procedure.

(3) If the operator attached to = is neither commutative nor associative,
then the output of acommute(n) is as in Fig. 11.18(b). [

Example 11.25

Let us apply Algorithm 11.4 to the labeled associative tree in Fig. 11.17.
Applying acommute to the root, case {2) applies, and we choose to treat the
first direct descendant from the left as n,,,. The binary tree which is the out-
put of Algorithm 11.4 is shown in Fig. 11.20. []]

We shall conclude this section by proving that Algorithm 11.4 finds
a tree in [T, with the least cost. The following lemma is central to the proof.

LemMa 11,12

Let T be a labeled syntax tree and § a cluster of 7. Suppose that » of
the direct descendants of § have labels > N, where N is the number of accu-
mulators. Then at least r — 1 of the nodes of .S are major,
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acommute (p; )

acommute (p, )

acommute (1., )

Fig. 11.19 Result of acommute procedure,

Proof. We prove the result by induction on the number of nodes in 7.
The basis, one node, is trivial. Thus, assume that the result is true for all
trees with fewer nodes than T, Let node n be the root of 5 and let » have
direct descendants », and », with labels /, and /,. Let T, and T, be the names
of the subtrees with roots n, and n,, respectively,

Case 1. Neither n, nor a, is in .5. Then the result is trivially true.

Case 2: n, is1n S, but a1, is not. Since T, has fewer nodes than T, the induc-
tive hypothesis applies to it. Thus, in 7,, $ — {n} has at least r — 2 major
nodes if /, > N and at least » — | major nodes if [, < N. In the latter case,
the conclusion is trivial. In both cases, the result is trivial if r < 1, Thus,
consider the case r > 1 and /, > N, Then & — {n} has at least one direct
descendant with label > ¥, so [, >> N. Thus, »n is a major node, and §
contains at least r — 1 major nodes,
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(+) - RO,
OB OBNOIOIONO
OBNOIOI0N0
ORNOIONNO

Fig. 11.20 Output of Algorithm 11.4,

+

Case 3: n, is in S, but g, is not. This case is similar to case 2.

Case 4: Both n, and n, are in S. Let r, of the direct descendants of S with
labels at least &V be descendants of », and r, of them be descendants of »,.
Then r, + #, = r. By the inductive hypothesis, the portions of $in T, and T,
have, respectively, at least , — [ and at least », — 1 major nodes. If neither
¥, NoT r, is zero, then [/, 2> N and I, > N, and so » is major. Thus, S has at
least (r, — I) + (r, — 1) + L = r — | major nodes. If r, = O, then r, =7,
and so the portion of §in T, has at least r — 1 major nodes. Thecase r, =0
is analogous. [ ]

TueOREM [1.9
Algorithm 11.4 produces a tree in [T]q, that has the least cost.

Proof. A straightforward induction on the number of nodes in an associa-
tive tree 4 shows that the result of applying procedure acommute to its root
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is a syntax tree T whose root after applying the labeling Algorithm 11.1
has the same label as the root of 4. No tree in [T], has a root with label
smalier than the [abel of the root of A4, and no tree in [T], has fewer major
or minor nodes.

Suppose otherwise. Then let 7" be a smallest tree violating one of those
conditions, Let # be the operator at the root of T.

Case 1: 0 is neither associative nor commutative. Every associative or
commutative transformation on T must take place wholly within the subtree
dominated by one of the two direct descendants of the root of 7. Thus,
whether the violation is on the label, the number of major nodes, or the num-
ber of minor nodes, the same violation must occur in one of these subtrees,
contradicting the minimality of T.

Case 2: @ is commutative but not associative. This case is similar to case
1, except that now the commutative transformation may be applied to the
root. Since step (1) of procedure acommute takes full advantage of this trans-
formation, any violation by T again implies a violation in one of its subtrees.

Case 3: 8 is commutative and associative. Let S be the cluster containing
the root. We may assume that no violation occurs in any of the subtrees
whose roots are the direct descendants of S. Any application of an associative
or commutative transformation must take place wholly within one of these
subtrees, or wholly within S. Inspection of the result of step (2) of procedure
acommute assures us that the number of minor nodes resulting from cluster
S is minimized. By Lemma 11.12, the number of major nodes resulting from
S is as small as possible (inspection of the result of procedure acommute is
necessary to see this), and hence the label of the root is as small as possible.

‘Finally we observe that the alterations made by Algorithm 11.4 can
always be accomplished by applications of the associative and commutative
transformations. [ ]

EXERCISES

11.2.1. Assuming that no zlgebraic laws prevail, find an optimal assembly
program with the number of accumulators N = 1, 2, and 3 for each
of the following expressions:

(@ A—BxC—Dx(E+F).

A+ B+ (C«x(D+E/FFGO«H)+UT+ ).

© UsB-CNx(D*x(ExF) +{(G+H+ D)+ T+ &K+ L),
Determine the cost of each program found.

11.2.2, Repeat Exercise 11.2.1 assuming that + and * are commutative.

11.2.3. Repeat Exercise 11.2.1 assuming that -+ and * are both associative
and commutative.



11.2.4.

*11.2.5.

11.2.6.

*11.2.7.

*11.2.8.
*11.2.9.

**11,2.10.

11.2.11.

11.2.32.

*11.2.13.

EXERCISES 903

Let E be a bipary expression with & operators. What is the maximum
number of parentheses required to express E without using any
unnecessary parentheses?

Let 7"be a binary syntax tree whose root is labeled N > 2 after apply-
ing Algorithm 11.1. Show that T contains at least 3 x 2¥-2 — ]
interior nodes,

Let T be a binary expression tree with & interior nodes. Show that T
can have at most k& minor nodes.

Given N > 2, show that a tree with M major nodes has at least
3(M -} 1)28-2 — | interior nodes.
What is the maximum cost of a binary syntax tree with & nodes?

‘What is the maximum saving it the cost of a binary syntax tree of &
nodes in going from a machine with & accumulators to one with
N 4 1 accumulators ?

Let @ be an arbitrary set of algebraic identities, Is it decidable whether
two binary syntax frees are equivalent under @?

For Algorithm 11.2 define the procedure code(n, [iy, 7, ..., ] to
compute the value of node r with accumulators A4,, 4,,,..., 4.
leaving the result in accumulator 4. Show that by making step (5)
to be
COde{n} [i]: iz; LN ik]) -

code(rny, [i, i1, i3, .. ., ]

md'e(nls [ily i3: i4, AIRIEIEY ik])

‘OP8 A, A, A

Algorithm 11.2 can be modified so that assembly language instructions
of types (3) and (4) are only of the form

OPO 4,B, 4
Let
a] if 5> 0
sign(a, b) = 10 if5=0
—la| ifb<O

Show that sign is associative but not commutative. Give examples of
other operators which are associative but not commutative.

The instructions
LOAD M, A
STORE A4, M
OP# A, M, B
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*11.2.14.

*11.2.15.

11.2.16.

*11.2.17.

11.2.18.

11,2.19.

¥11.2.20.

*11.2,21,

11.2.22.

each use one memory reference. If B is an accumulator, then
OP @& A, B, C uses none. Find the minimum number of storage refer-
ences generated by 2 program that computes a binary syntax tree with
k nodes.

Show that Algorithm 11.2 produces a program which requires the
fewest number of memory references to compute a given expression.

Taking G, as the underlying grammar, construct a syntax-directed
translation scheme which translates infix expressions into optimal
assembly language programs, assuming & accumulators and that

(a) No algebraic identities hold,
(b) + and * are commutative, and
{c) + and # are associative and commutative.

Give algorithms to implement the procedures code, commute, and
acommute in linear time.

Certain operators may require extra accumulators (e.g., subroutine
calls or multiple precision arithmetic). Modify Algorithms 11.1 and
11.2 to take into account the possible need for extra accumulators
by operators.

Algorithms 11.1-11.4 can also be applied to arbitrary binary dags if
we first convert a dag into a tree by duplicating nodes. Show that now
Algorithm 11.2 will not always generate an optimal program. Esti-
mate how bad Algorithm 11.2 can be under these conditions,

Generalize Algorithms 11.1-11.4 to work on expressions involving
operators with arbitrary numbers of arguments.

Arithmetic expressions can have unary + and unary — operators,
Construct an algorithm to generate optimal code for arithmetic
expressions with unary - and —. [Assume that all operands are
distinct and that the usual algebraic laws relating unary + and —
to the four binary arithmetic operators apply.]

Construct an algorithm to generate optimal code for a single arith-

metic expression in which each operand is a distinct variable or an
integer constant. Assume the associative and commutative laws for
+ and = as well as the following identities:

(Da+0=0+a=0.

(Dol =1+8=0a.

(3) ¢, # ¢, = ¢3, where ¢, is the integer that is the result of apply-
ing the operator # to integers ¢, and ¢,

Find an algorithm to generate optimal code for a single Boolean
expression in which each operand is a distinct variable or a Boolean
constant (0 or 1). Assume that Boolean expressions involve the
operators and, or, and not and that these operators satisfy the laws
of Boolean algebra. (See p. 23 of Volume 1.)
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*#11.2.23. In certain sifuations two or more operations can be executed in parallel.
The algorithms in Sections 11.1 and 11.2 assume serial execution.
However, if we have a machine capable of performing paraliel opera-
tions, then we might attempt to arrange the order of execution to
create as many simultaneous parallel computations as possible. For
example, suppose that we have a four-register machine in which four
operators can be simultaneously executed, Then the expression
Ay + Ay + Ay + Ay + A5 + A + A7 + Ay can be done as shown
in Fig. 11.21. In the first step we would load A4; into the first register,

step 4

step 3

step 2

step 1

Fig. 11.21 Tree for parallel computation.

A5 into the second, A5 into the third, and 4, into the fourth, In the
second step we would add 4, to register 1, 44 to register 2, A; to
register 3, and A, to register 4, After this step register 1 would con-
tain A; 4+ A4,, register 2 would contain 4, + 44, and so forth. At
the third step we would add register 2 to register I and register 4 to
register 3. At the fourth step we would add register 2 to register 1.
Define an N-register machine in which up to & parallel operations can
be executed in one step. Assuming this machine, modify Algorithm
11.1 to generate optimal code (in the sense of fewest steps) for single
arithmetic expressions with distinct operands,

Research Problem

11.2.24. Find an efficient algorithm that will generate optimal code of the type
mentioned in this section for an arbitrary block.

Programming Exercise
11.2.25. Write programs to implement Algorithms 11.1-11.4.
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BIBLIODGRAPHIC NOTES

Many papers have been written on the generation of good code for arithmetic
expressions for a specific machine or class of machines. Floyd [1961a] discusses a
number of optimizations involving arithmetic expressions including detection of
common subexpressions, He also suggested that the second operand of a non-
commutative binary operator be evaluated first. Anderson [1964] gives an algorithm
for generating code for a one-register machine that is essentially the same as the
code produced by Algorithm 11.1 when N = 1. Nakata [1967] and Meyers [1965]
give similar results.

The number of registers required to compute an expression tree has been inves-
tigated by Nakata [1967], Redziejowski [1968], and Sethi and Ullman {1970].
Algorithms 11.1-11.4 as presented here were developed by Sethi and Ullman [1970].
Exercise 11.2.11 was suggested by P. Stockhausen, Beatty [1972] and Frailey [1970]
discuss extensions involving the unary minus operator. An extension of Algo-
rithm 11.2 to certain dags was made by Chen [1972].

There are no known efficient algorithms for generating optimal code for arbi-
trary expressions. One heuristic technique for making register assignments in a
sequence of expression evaluations is to use the following algorithm.

Suppose that expression & is to be computed next and its value stored in a fast
register (accumulator).

(1) If the value of & is aIready stored in some register 7, then do not recompute .
Register { is now “in use.”

(2) If the value of & is not in any register, store the value of & in the next unused
register, say register /. Register j is now in use. If there is no unused register avail-
able, store the contents of some register X in main memory, and store the value
of & in register k. Choose register & to be that register whose value wiil be unrefer-
enced for the longest time,

Belady [1966] has shown that this algorithm is optimal in some situations. However,
the model assumed by this algorithm (which was designed for paging} does not
exactly model straight line code. In particlar, it assumes the order of computation
to be fixed, while as we have seen in Sections 11.1 and 11.2, there is often much
advantage to be had by reordering computations.

A similar register allocation problem is discussed by Horw:tz et al. [1966].
They assume that we are given a sequence of operations which reference and
change values. The problem is to assign these values to fast registers so that the
number of loads and stores from the fast registers to main memory is minimized.
Their solution is to select a least-cost path in a dag of possible solutions. Techniques
for reducing the size of the dag are given. Further investigation of register alloca-
tion where order of computation is not fixed has been done by Kennedy [1972]
and Sethi [1972].

Translating arithmetic expressions into code for parallel computers is discussed
by Allard et al. [1964], Hellerman [1966], Stone [1967], and Baer and Bovet [1968].
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The general problem of assigning tasks optimally to parallel processors is
very difficult. Some interesting aspects of this problem are discussed by Graham
[1972].

11.3. PROGRAMS WITH LOOPS

When we consider programs that contain loops, it becomes literally
impossible to mechanically optimize such programs. Most of the difficulty
stems from undecidability results. Given two arbitrary programs there is no
algorithm to determine whether they are equivalent in any worthwhile sense,
As a consequence there is no algorithm which will find an optimal program
equivalent to given program under an arbitrary cost criterion.

These results are understandable when we realize that, in general, there
are arbitrarily many ways to compute the same function. Thus, there is an
infinity of algorithms that can be used to implement the function defined
by the source program. If we want true optimization, a compiler would
have to determine the most efficient algorithm for the function computed by
the source program, and then it would have to generate the most efficient
code for this algorithm. Needless to say, from both a theoretical and a prac-
tical point of view, optimizing compilers of this nature do not exist.

However, in many situations there are a number of transformations that
can be applied to a program to reduce the size and/or increase the speed of
the resulting object language program. In this section we shall investigate
several such transformations. Through popular usage, transformations of
this nature have become known as “optimizing” transformations. A more
accurate term would be “code-improving” transformations. However, we
shall bow to tradition and use the more popular, but less accurate term
“optimizing transformation” for the remainder of this book. Qur primary
goal will be to reduce the running time of the object language program.

We begin by defining intermediate programs with loops. These programs
will be very primitive, so that we can present the essential concepts without
going into a tremendous amount of detail. Then we define a flow graph for
a program, The flow graph is a two-dimensional representation of a program
that displays the flow of control between the basic blocks of a program.
A two-dimensional structure usually gives a more accurate representation
of a program than a linear sequence of statements.

In the remainder of this section we shall describe some important trans-
formations that can be applied to a program in an attempt to reduce the
running time of the object program. Ino the next section we shall look at ways
of collecting the information needed to apply seme of the transformations
presented in this section,
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11.3.1. The Program Model

We shall use a representation for programs that is intermediate between
source Jlanguage and assembly language. A program consists of a sequence
of statements. Each statement may be labeled by an identifier followed by
a colon. There will be five basic types of statements: assignment, goto,
conditional, input-output, and halt.

(1} An assignment statement is a string of the form A — 8 B, --- B,,
where A is a variable, B,,..., B, are variables or constants, and @ is an
r-ary operator. As in the previous sections, we shall usunally use infix nota-
tion for binary operators. We also allow a statement of the form A4 — B in
this category.

(2) A goto statement is a string of the form

goto {Jabel>

where (label) is a string of letters. We shall assume that if a goto statement is
used in a program, then the label following the word goto appears as the
Iabel of a unique statement in the program.

(3) A conditional statement is of the form

if A {relation)> B goto {label>

where A and B are variables or constants and {relation is a binary relation
such as <<, <7, =, and =.
(4) An input-output statement is cither a read statement of the form

read A
where A is a variable, or a write statement of the form
write B

where B is a variable or a constant. For convenience we shall use the state-
ment

read A, A, ... A

to denote the sequence of statements

read A,
read A,

read A

n

We shall use a similar convention for write statements.
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(5) Finally, a halt statement is the instruction halt.
The intuitive meaning of each type of statement should be evident, For
example, a conditional statement of the form

if Ar Bgoto L

means that if the relation » holds between the current values of 4 and B,
then control is to be transferred to statement labeled f.. Otherwise, conirol
passes to the following statement.

A definition statement (or definition for short) is a statement of the form
read A or of the form 4 — 8B, --- B,. Both statements are said to define
the variable 4.

We shall make some further assumptions about programs. Variables
are simple variables, e.g., 4, B, C, .. ., or simple variables indexed by one
simple variable or constant, e.g., A(1), A(2), A(F), or A(J). Further, we shall
assume that all variables referenced in a program must be either input vari-
ables (i.e., appear in a previous read statement) or have been previously
defined by an assignment statement, Finally, we shall assume that each
program has at least one halt statement and that if a program terminates,
then the last statement executed is a halt statement.

Execution of a program begins with the first statement of the program
and continues until a halt statement is encountered. We suppose that each
variable is of known type (e.g., integer, real) and that its value at any time
during the execution is either undefined or is a quantity of the appropriate
type. {It will be assumed that a1l operators used are appropriate to the types
of the variables to which they apply and that conversion of types occurs
when appropriate.)

In general the input variables of a program are those variables associated
with read statements and the output variables are the variables associated
with write statements. An assignment of a value to each input variable each
time it is read is called an inpur setting. The value of @ program under an input
setting is the sequence of values written by the output variables during
the execution of the program. We say that two programs are equivalent if
for each input setting the two programs have the same value.t

This definition of equivalence is a generalization of the definition of
equivalent blocks used in Section 11.1. To see this, suppose that two blocks
®, =(P,I,,U)and B, = (P,,1,, U,) are equivalent in the sense of Section
11.1, We convert &, and ®, into programs ¢, and @, in the obvious way

+We are assuming that the meaning of each operator and relational svmbol, as well as
the data type of each variable, is established. Thus, our notion of eguivalence differs from
that of the schematologists (see for example, Paterson [1968] or Luckham et al. [1970]),
in that they require two programs to give the same value not only for each input setting,
but for each data type for the variables and for each set of functions and relations that
we substitute for the operators and relational symbols.
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That is, we place read statements for the variables in /; and 7, in front of P,
and P,, respectively, and place write statements for the variables in U, and
U, after P, and P,. Then we append a halt statement to each program, How-
ever, we must add the write statements to P, and P, in such a fashion that
each output variable is printed at least once and that the sequences of values
printed will be the same for both &, and ®,. Since ®, is equivalent to ®,,
we can always do this.

The programs @, and ®, are easily seen to be equivalent no matter what
the space of input settings is and no matter what interpretation is placed on
the functions represented by the operators appearing in &, and @,. For
example, we could choose the set of prefix expressions for the input space
and interpret an application of operator £ to expressions €,, .. ., €, to yield
fe; - €,

However, if @, and &, are not equivalent and @, and ®, are programs
that correspond to B, and ®,, respectively, then there will always be a set of
data types for the variables and interpretations for the operators that causes
®, and @, to produce different output sequences. In particular, let the vari-
ables have prefix expressions as a “type” and let the effect of operator 8
on prefix expressions €, €,, . .., €, be the prefix expression fe €, - - - €.

Of course, we may make assumptions about data types and the algebra
connected with the function and relation symbols that will cause @, and @,
to be equivalent. In that case &, and &, will be equivalent under the corre-
sponding set of algebraic laws,

Example 11.26
Consider the following program for the Euclidean algorithm described
on p. 26 (Volume I). The output is to be the greatest comnmon divisor of
two positive integers p and g.
read p
read g
loop: ¥ «— remainder(p, ¢)
if r=0 goto done
p<—gq
Ge—r
goto loop
done: write g
halt

If, for example, we assign the input variables p and ¢ the values 72 and 56,
respectively, then the output variable g in the write statement will have value
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3 when that statement 18 executed with the normal interpretation of the
operators. Thus, the value of this program for the input setting p «— 72,
g +— 56 is the “sequence” 8 which is generated by the output variable ¢.

If we replace the statement goto loop by if g == 0 goto loop, we bave an
equivalent program. This follows because the statement goto loop cannot be
reached unless the fourth statement finds » 2= 0. Since ¢ is given the value of
r at the sixth statement, it is not possible that ¢ = 0 when the seventh state-
ment is executed. [ ]

Tt should be observed that the transformations which we may apply are to
a large extent determined by the algebraic laws which we assume hold,

‘Example 11.27

For some types of data we might assume that a * 2 = 0 if and only if
a = 0. If we assume such a law, then the following program is equivalent
to the one in Example 11.26: '
read p
read ¢
loop: r «— remainder(p, q)
t<—r%r
if =0 goto done
pe—q
g<—r
goto  loop
done: write ¢
halt

Of course, this program would not be more desirable in any circumstance
we can think of. However, without the law stated above, this program and
the one in Example 11.26 might not be equivalent. [ ]

Given a program P, our goal is to find an equivalent program P’ such
that the expected runping time of the machine language version of P’ is less
than that of the machine language version of P. A reasonable approximation
of this goal is to find an equivalent program P” such that the expected num-
ber of machine language instructions to be executed by P" is less than the
number of instructions executed by P, The latter goal is an approximation in
that not every machine instruction requires the same amount of machine
time to be executed. For example, an operation such as multiplication or
division usually requires more time than an addition or subtraction., How-
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ever, initially we shall concentrate on reducing the number of machine
language instructions that need to be executed.

Most programs contain certain sequences of statements which are exe-
cuted considerably more often than the remaining statements in the pro-
gram. Knuth [1971] found that in a large sample of FORTRAN prograrms,
a typical program spent over one-half of its execution time in less than 4 ¢
of the program. Thus, in practice it is often sufficient to apply the optimiza-
tion procedures only to these heavily traveled regions of a program. Part of
the optimization may involve moving statements from heavily traveled
regions to lightly traveled ones even though the actual number of state-
ments in the program itself remains the same or even increases,

We can often deduce what the most frequently executed parts of a source
program wiil be and pass this information along to the optimizing compiler
along with the source program. In other cases it is relatively easy to write
a routine that will count the number of times a given statement in a program
is executed as the program is run. With these counts we can obtain the “fre-
quency profile” of a program to determine those parts of the program in
which we should concentrate our optimization effort.

11.3.2. Flow Analysis

Our first step in optimizing a program is to determine the flow of control
within the program. To do this, we partition & program into groups of
statements such that no transfer occurs into a group except to the first state-
ment in that group, and once the first statement is executed, all statements
in the group are executed sequentially. We shall call such a group of state-
ments a basic block, or block if no confusion with the term “block” in the
sense of Section 11.1 arises.

DEFRINITION
A statement S in a program P is a basic block entry if

(1) §is the first statement in P, or

(2) S is labeled by an identifier which appears after goto in a goto or
conditional statement, or

(3) Sis a statement immediately following a conditional statement.

The basic block belonging to a block entry S consists of S and all state-
ments following §

(1) Up to and including a halt statement or
{2) Up to but not including the next block entry.

Notice that the program constructed from a block in the sense of Section
11.1 will be a basic block in the sense of this section.
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Example 11.28

Consider the program of Example 11.26. There are four block entries,
namely the first statement in the program, the statement labeled /oop, the
assignment statement p <— ¢, and the statement labeled done.

Thus, there are four basic blocks in the program. These blocks are given
below:

Block 1 read p
read g
Block 2 loop: r «— remainder(p, q)

if r=0 goto done
Biock 3 pe<—gq
g<«—Fr
goto loop
Block 4 done: write g
halt |

From the blocks of a program we can construct a graph that resembles
the familiar flow chart for the program.

DEFINITION

A flow graph is a labeled directed graph & containing a distinguished node
n such that every node in G is accessible from n. Node n is called the begin
node.

A flow graph of a program is a fiow graph in which each nede of the graph
corresponds to a block of the program. Suppose that nodes / and j of the flow
graph correspond to blocks i and j of the program. Then an edge is drawn
from node i to node j if

(1) The last statement in block { is not a goto or halt statement and block
J follows block i in the program, or

(2) The last statement in block i is goto L or if - .- goto L and L is the
label of the first statement of block /.

The node corresponding to the block containing the first statement of
the program is the begin node.

Clearly, any block that is not accessible from the begin node can be
removed from a given program without changing its value. From now on
we shall assume that all such blocks have been removed from each program
under consideration.
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Exampie 11.29

The flow graph for the program of Example 11.26 is given in Fig, 11.22.
Biock 1 is the begin node. [

readp |k

loop: r + remainder (p,q)
if r=0goto done Block 2

pP*q done: write
Block 3 qr hati J Block 4
goto loop

Fig. 11.22 Flow graph.

Many optimizing transformations on programs require knowing the
places in a program at which a variable is defined and where that definition
is subsequently referenced. These definition-reference relationships are
determined by the sequences of blocks that can actually be executed. The
first block in such a sequence is the begin node, and each subsequent block
must have an edge from the previous block. Sometimes the predicates used
in the conditional statements may preclude some paths in the flow graph
from being executed. However, there is no algorithm to detect all such situ-
ations, and we shall assume that no paths are precluded from execution.

It is also convenient to know for a block ® whether there is another block
®’ such that each time ® is executed, ®' was previously executed. One appli-
cation of this knowledge is that if the same value is computed in both &
and ®', then we can store this value after it is computed in ®" and thus
avoid recomputing the same value in ®. We now develop these ideas formally.

DEFINITION

Let F be a flow graph whose blocks have names chosen from set A,
A sequence of blocks @, --- ®, in A* is a (block} computation path of F if

(1) ®, is the begin node of F.
(2) For 1 <C i < n, there is an edge from block &,_, to ®B,.
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In other words, a computation path &, - -+ ®, is a path from ®, to ®,in F
such that ®, is the begin node.

We say that block ®' dominates ® if ® == ® and every path from the
begin node to ® contains ®'. We say that & directly dominates & if

(1) ®" dominates ®, and
(2) If ® dominates ® and ®"” = ®’, then &’ dominates ®'.

Thus, block ® directly dominates ® if ®” is the block “closest” to &
which deminates @,

Example 11.30

Referring to Fig. 11.22, the sequence 1232324 is a computation path.
Block 1 directly dominates block 2 and dominates blocks 3 and 4. Block 2
directly dominates blocks 3 and 4. [

Here are some algebraic properties of the dominance relation.
Lemma 11.13

(1) If ®, dominates ®, and &, dominates ®,, then &, dominates ®,
{transitivity).

(2) If @, dominates ®,, then ®, does not dominate ®, (asymmetry).

(3) If ®, and ®, dominate ®,, then either ®, dominates &, or conversely.

Proof. (1) and (2) are Exercises. We shall prove (3). Let €, --. € ®, be
any computation path with no cycles (i.e., € = ®,, and €, = €, if i = ).
One such path exists since we assume that all nodes are accessible from
the begin node. By hypothesis, € = &, and €, = ®, for some i and j.
Assume without loss of generality that / <C j. Then we claim that &, domi-
nates ®,.

In proof, suppose that &, did not dominate ®&,. Then there is a compu-
tation path ®, .. - N, ®,, where none of D,,..., D, are ®. It follows
that D, --- D, B,€,,, --- €8, is also a computation path. But none of
the symbols preceding ®, are @,, contradicting the hypothesis that ®, domi-
nates ®@,. [ ]

Lemma 11.14

Every block except the begin node (which has no dominators), has
a unique direct dominator,

Proof. Let § be the set of blocks that dominate some block ®&. By Lemma
11.13 the dominance relation is a (strict) linear order on §. Thus, § has a mini-
mal element, which must be the direct dominator of &. (See Exercise 0.1.23.)

]
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We now give an algorithm to compute the direct dominance relation
for a flow graph.

ALGORITHM 11.5
Computation of direct dominance,

Input. A fiow graph Fwith A ={®,, ®,, ..., ® ], the set of blocks in F.
We assume that &, is the begin node.

Output. DOM{(®), the block that is the direct dominator of block @&,
for each @& in A, other than the begin node.

Method. We compute DOM(®) recursively for each & in A — {®,}L
At any time, DOM(®) will be the block closest to ® found to dominate &.
Ultimately, DOM(®) will be the direct dominator of ®. Initially, DOM(®)
is ®, for all & in A — {®,}. For i =2,3,...,n do the following two
steps:

(1) Delete block ®, from F. Using Algorithm 0.3, find each block ® which
is now ipaccessible from the begin node of F. Block @&, dominates ® if and
only if ® is no longer accessible from the begin node when @&, is deleted from
F. Restore ®; to F.

(2) Suppose that it has been determined that ® dominates ® in step (1).
If DOM(®) = DOM(®), set DOM(®) to &, Otherwise, leave DOM(®)
unchanged. [ ]

Example 11.31

Let us compute the direct dominators for the flow graph of Fig. 11.22
using Algorithm 11.5. Here A = {®,, B,, ®,, ®,}. The successive values of
DOM(®) after considering ®,, 2 <{ { < 4, are given below:

i DOM(®3) DOM(&;) DOM(B4)
Initial @, ®, ®;

2 @, Gy &z

3 ®q ®2 B2

4 [ [.7% @,

Let us compute line 2. Deleting block &, makes blocks ®, and &, inaccessible.
We have thus determined that ®, dominates 8, and ®,. Prior to this point,
DOM(®,) = DOM(®,) = ®,, and so by step (2) of Algorithm 11.5 we set
DOM(®,) to ®,. Likewise, DOM(®,) is set to &,. Deleting block B, or &,
does not make any block inaccessible, so no further changes occur. [

THEOREM 11.10
When Algorithm 11.5 terminates, DOM(®) is the direct dominator of ®.
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Proof. We first observe that step (1) correctly determines those ®’s domi-
nated by &, for ®, dominates ® if and ouly if every path to ® from the
begin node of F goes through ®&,.

We show by induction on 7 that after step (2) is executed, DOM(®) is
that block ®,, 1 < k <C i, which dominates @ but which, in turn, 1s dominated
by all 8/’s, [ <Cj <, which also dominate ®. That such a ®, must exist
follows directly from Lemma 11.13. The basis, 7 = 2, is trivial.

Let us turn to the inductive step. If &, ,, does not dominate &, the con-
clusion is immediate from the inductive hypothesis. If &,, , does dominate &,
but there is some ®,, I < j < {, such that &, dominates & and &,,, domi-
nates ®&,, then DOM(®) = DOM(®,,,). Thus, DOM(®) does not change,
which correctly fulfills the inductive hypothesis. If &,., dominates & but is
dominated by all ®,’s which dominate ®, 1 < j <C i, we claim that prior to
this step, DOM(®) = DOM(®,, ). For if not, there must be some ®,,
1 << k < i, which dominates ®,,, but not &, which is impossible by Lemma
11.13(1). Thus DOM(®)} is correctly set to &, ., completing the induction. ]

We observe that if F is constructed from a program, then the number of
edges is at most twice the number of blocks. Thus, step (1) of Algorithm 11.5
takes time proportional to the square of the number of blocks. The space
taken is proportional to the number of blocks.

If 8,,®,,...,®, are the blocks of a program (except for the begin
block), then we can store the direct dominators of these blocks as the sequence
€,,C,,...,C, where € is the direct dominator of &, for [ <7< n All
dominators for block ®&, can be recovered from this sequence easily by
finding DOM(®,), DOM(DOM{®,)), and so forth until we reach the begin
block.

11.3.3. Examples of Transformations on Programs

Let us now turn our attention to transformations that can be applied to
a program, or its flow graph, in an attempt to reduce the running time of
the object language program that is ultimately produced. In this section we
shall consider examples of such transformations. Although there does not
exist a complete catalog of optimizing transformations for programs with
loops, the transformations considered here are useful for a wide class of
programs.

1. Removal of Useless Statements

This is a generalization of transformation T, of Section 11.1. A statement
that does not affect the value of a program is unnecessary in a program and
can be removed. Basic blocks that are not accessible from the begin node
are clearly useless and can be removed when the flow graph is constructed.
Statements which compute values that are not ultimately used in computing
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an output variable also fall into this category. In Section 11.4, we shall pro-
vide a tool for implementing this transformation in a program with loops.

2. Elimination of Redundant Computations

This transformation is a generalization of transformation T, of Section
11.1. Suppose that we have a program in which block @ dominates block
®" and that ® and ® have statements 4 «— B+ C and 4" — B+ C,
respectively. If neither B nor C are redefined in any (not necessarily cycle
free) path from & to ®’ (it is not hard to detect this; see Exercise 11.3.5),
then the values computed by the two expressions are the same. We may
insert the statement X «— A after 4 «+— B -+ C in ®, where X is a new vari-
able. We then replace A’ — B+ C by A" < X. Moreover, if 4 is never
redefined going from ® to ®', then we do notneed X «— 4, and 4" «— 4
serves for 4" — B + C.

In this transformation we assume that it is cheaper to do the two assign-
ments X «— A4 and 4 «— X than to evaluate 4’ «— B 4 C, an assumption
which is realistic for many reasonable machine models.

Example 11.32

Consider the flow graph shown in Fig. 11.23, In this flow graph block @&,
dominates blocks ®,, ®,, and ®,. Suppose that all assignment statements
involving the variables 4, B, C, and D are as shown in Fig. 11.23. Then
the expression B -+ C has the same value when it is computed in blocks
®,, B,, and ®,. Thus, it is unnecessary to recompute the expression B 4 C
in blocks @, and ®,. In block ®, we can insert the assighment statement
X «- A after the statement 4 «— B + C. Here X is a new variable name.
Then in blocks ®, and ®, we can replace the statement A «— B + C and
G — B+ C by the simple assignment statements 4 «— X and G «— X,
respectively, without affecting the value of the program. Note that since A
is computed in block ®,, we cannot use 4 in place of X. The resulting flow
graph is shown in Fig. 11.24.

The assignment 4 «— X now in ®, is redundant and can be eliminated.
Also note that if the statement F+«— 4 + G in block ®, is changed to
B+« A4+ G, then we can no longer replace G — B+ C by G+— X in
block &,. [

Eliminating redundant computations (common subexpressions) from
a program requires the detection of computations that are common to two
or more blocks of a program. While we have shown a redundant computa-
tion occurring at a block and one of its dominators, an expression such as
A 4+ B might be computed in several blocks, none of which dominate a given
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B<D+D
- C+D*D |®,
A+B+C
ACBxC | o A+ B+C
F<A+G 2 E<Axdq |®3
G «B+C
D+D+1 |®4

B

Fig. 11.23 Flow graph.

block ® (which also needs expression 4 + B). In general, a computation of
A -+ Bis redundant in a block ® if

(1} Every path from the begin block to ®& (including those which pass
several times through ®) passes through a computation of 4 4 B, and

(2) Along any such path, no definition of 4 or B occurs between the last
computation of A - B and the use of 4 + Bin ®.

In Section 11.4 we shall provide some tools for the detection of this more

general situation.
We should note that as in the straight-line case, algebraic laws can increase
the number of common subexpressions.

3. Replacing Run Time Computations by Compile Time Computations

It makes sense, if possible, to perform a computation once when a pro-
gram is being compiled, rather than repeatedly when the object program is
being executed. A simple instance of this is constant propagation, the replace-
ment of a variable by a constant when the constant value of that variable is
known.
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Be=D+D

C+DxD ®

A< B+C 1

X<4
A< B+C A-X
Fea+ |®2 E«Axd ®a

G<X

Deptl | B

®s

Fig. 11.24 Transformed fiow graph,

Exampie 11.33
Suppose that we have the block

read R

PI «— 3.14159
A «——4/3
B<«— APl
C<«—RT3
V«—E=xC

write

We can substitute the value 3.14159 for PI in the fourth statement to obtain
the statement B «— A4 * 3.14159. We can also compute 4/3 and substitute
the resulting value in B «— A4 = 3.14159 to obtain B «— 1.33333 » 3,14155.
We can compute 1.33333 = 314159 = 4.18878 and substitute 4.18878 in
the statement ¥V «— B % C to obtain V' — 4.18878 = C. Finally, we can elimi-
nate the resulting useless statements to obtain the following shorter equiva-
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lent progtam;
read R
C+«—R1T3
V<« 418878 x C
write V [

4. Reduction in Strength

Reduction in strength involves the replacement of one operator, requiring
a substantial amount of machine time for execution, by a less costly com-
putation. For example, suppose that a PL/I source program contains the
statement

7 = LENGTH(S1|| 52)

where §1 and S2 are strings of variable length. The operator || denotes string
concatenation. String concatenation is relatively expensive to implement.
However, suppose we replace this statement by the equivalent statement

I = LENGTH(S1) + LENGTH(S2)

We would now have to perform the length operation twice and perform one
addition. But these operations are substantially less expensive than string
concatenation.

Other examples of this type of optimization are the replacement of cer-
tain multiplications by additions and the replacement of certain expo-
nentiations by repeated multiplication. For example, we might replace the
statement C «— R 1 3 by the sequence

C«—R=xR
C«~—C=R

assuming that it is cheaper to compute R« R = R rather than cailing sub-
routines to evaluate R® as ANTILOG(3 » LOG(R)).

In the next section we shall consider a more interesting form of reduction
in strength within loops, where it is possible to replace certain multiplications
by additions.

11.3.4. Loop Optimization

Roughly speaking, a loop in a program is a sequence of blocks that can
be executed repeatedly. Loops are an integral feature of most programs,
and many programs have loops that are executed a large number of times.
Many programming languages have constructs whose explicit purpose is
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the establishment of a loop. Often substantial improvements in the running
time of a program can be made by taking advantage of transformations
that only reduce the cost of loops. The general transformations we just dis-
cussed—removal of useless statements, elimination of redundant compu-
tation, constant propagation, and reduction in strength—are particularly
beneficial when applied to loops. However, there are certain transformations
that are specifically directed at loops. These are the movement of compu-
tations out of loaps, the replacement of expensive computations in a loop
by cheaper ones, and the unrolling of foops.

To apply these transformations, we must first isolate the loops in a given
program. In the case of FORTRAN DO loops, or the intermediate code
arising from a DO loop, the identification of a loop is easy. However, the
concept of a loop in a flow graph is more general than the loops that resuit
from DO statements in FORTRAN. These generalized loops in flow graphs
are called “strongly connected regions.” Every cycle in a flow graph with a
single entry point is an example of a strongly connected region. However,
more general loop structures are also strongly connected regions. We define
a strongly connected region as follows.

DEFINITION

Let F be a flow graph and § a subset of blocks of F. We say that § is
a strongly connected region (region, for short) of Fif

(1) There is a unique block ® of § (the entry) such that there is a path
from the begin node of F to ® which does not pass through any other block
in §.

(2) There is a path (of nonzero length) thatis wholly within § from every
block in § to every other block in §.

Example 11.34

Consider the abstract flow graph of Fig. 11.25, {2, 3, 4, 5} is a strongly
connected region with entry 2. {4} is a strongly connected region with entry 4.
{3, 4, 5, 6} is a region with entry 3. {2, 3, 7} is a region with entry 2. Another
region with entry 2 is {2, 3, 4, 5, 6, 7}. The latter region is maximal in that
every other region with entry 2 is contained in this region. [

The important feature of a strongly connected region that makes it
amenable to code improvement is the single identifiable entry block. For
example, one optimization that we can perform on flow graphs is to move
a computation that is invariant within a region into the predecessors of the
entry block of the region (or we may construct a new block preceding the
entry, to hold the invariant computations).

We can characterize the entry blocks of a flow graph in terms of the
dominance relation.
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Fig, 11.25 Flow graph.

TreOREM 11.11

Tet F be a flow graph. Biock ® in F is an entry block of a region if and
only if there is some block ®" such that there is an edge from ®' to & and
® either dominates ®* or is ®’,

Proof.

Only if: Suppose that ® is the entry block of region §. If § = {®], the
result is trivial, Otherwise, let ®° be in $, ®' 7= ®. Then ® dominates &',
for if not, then there is a path from the begin node to & that does not pass
through ®, violating the assumption that & is the unique entry block.
Thus, the entry block of a region dominates every other block in the region.
Since there is a path from every member of § to &, there must be at least
one ® in § — {®} which links directly to @.

If: The case in which ® == ®’ is trivial, and so assume that ® = ®".
Define § to be ® together with those blocks ®'' such that ® dominates ®''
and there is a path from ®” to ® which passes only through nodes dominated
by ®. By hypothesis, ® and ®' are in §. We must show that § is a region with
entry ®. Clearly, condition (2) of the region definition is satisfied, and so we
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must show that there is a path from the begin node to & that does not pass
through any other block in §. Let €, - - - € ® be a shortest computation path
leading to @. If €, is in §, then there is some i, | <{i < j, such that €, = @,
because @ dominates €,. Then €;- - - €,® is not a shortest computation path
leading to ®, a contradiction. Thus, condition (1) of the definition of a strongly
connected region holds. [

The set § constructed in the “if”” portion of Theorem 11.11 is clearly the
maximal region with entry ®. It would be nice if there were a unique region
with entry ®, but unfortunately this is not always the case. In Example 11.34,
there are three regions with entry 2, Nevertheless, Theorem 11.11 is useful
in constructing an efficient algorithm to compute maximal regions, which
are unique.

Unless a region is maximal, the entry block may dominate blocks not
in the region, and blocks in the region may be accessible from these blocks,
In Example 11.34, e.g., region {2, 3, 7} can be reached via block 6. We there-
fore say thata region is single-entry if every edge entering a block of the region,
other than the entry block, comes from a block inside the region. In Example
11.34, region {2, 3,4, 5, 6, 7} is a singie-entry region, In what follows, we
assume regions to be single-entry, although generalization to all regions is
not difficult.

1. Code Motion

There are several transformations in which knowledge of regions can be
used to improve code. A principal one is code motion. We can move a region-
independent computation outside the region. Let us say that within some
single-entry region variables ¥ and Z are not changed but that the statement
X — Y + Z appears. We may move the computation of ¥+ Z to a newly
created block which [inks only te the entry block of the region.t All links from
outside the region that formerly went to the entry now go to the new block.

Exampie 11.35

It may appear that region-invariant computations would not appear
except in the most carelessly written programs. However, let us consider
the following inner DO loop of a FORTRAN source program, where J is
defined outside the loop:

K=0
DO 3 I=1,1000
3 K=J+14+1I+K

The intermediate program for this portion of the source program might

1+The addition of such a block may make the flow graph unconstructable from any
program. However, the property of constructability from a program is never used here,
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look like this:

K<«—20
1

loop: T«—J+1
S«—T+4+17
K«~—S+ K
if 7=1000 goto done
f<«—T4+1
goto loop

done: hal¢

The corresponding flow graph is shown in Fig. 11.26.

&,

Py
1.

R

T<J+1
S«T+/
K<§S+K
I = 10007

halt @,

I<f+1 ®
3 Fig. 11.26 Flow graph.

We observe that {®,, ®,} in Fig. 11.26 is a region with entry ®,. The
statement T« J + 1 Is invariant in the region, so it may be moved to a new
block, as shown in Fig. 11.27.

While the number of statements in the flow graphs of Figs. 11.26 and 11.27
is the same, the presumption is that statements in a region will tend to be
executed frequently, so that the expected time of execution has been
decreased. [}

2. Induction Variables

Another useful transformation concerns the elimination of what we shall
call induction variables.
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K0
I +1 !

T«/+1 |®;

l r
S«T+7
K+S+K |@,
I =1000?
I_,. halt |®,

4

I<i+1 |®
3 Fig. 11.27 Revised flow graph.
DERINITION

Let § be a single entry region with entry ® and let X be some variable
appearing in a statement of the blocks of §. Let B, --- B®C, --- C_ be
any computation path such that €, isin §, 1 <7 << m, and ®, if it exists,
is not in §. Define X, X,, . . . to be the sequence of values of X each time X
is assigned in the sequence ®@, --- ¢,. If X,, X,,... forms an arithmetic
progression (with positive or negative difference) for arbitrary computation
paths as above, then we say that X is an induction variable of §.

We shall also consider X to be an induction variable if it is undefined
the first time through ® and forms an arithmetic progression otherwise. In
this case, it may be necessary to initialize it appropriately on entry to the
region from outside, in order that the optimizations to be discussed here may
be performed.

Note that it is not trivial to find all the induction variables in a region.
In fact, it can be proven that no such algorithm exists. Nevertheless, we can
detect enough induction variables in common situations to make the concept
worth considering.

Example 11.36

In Fig. 11.27, the region {®,, ®,} has entry ®&,. If ®, is entered from
®}, and the flow of control passes repeatedly from &, to ®, and then back
to ®&,, the variable 7 takes on the values 1, 2, 3, . .. . Thus, [is an induction
variable. Less obviously, S is an induction variable, since it takes on values
T+ 1,T+2 T+ 3,-.-.However, K is notaninduction variable, because
it takes values T+ 1, 2T+ 3,37+ 6, ---. []
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The important feature of induction variables is that they are linearly
related to each other as long as control is within their region. For example,
in Fig. 11.27, the relations $ =7 4 [ and I = § — T hold every time we
leave ®,.

If, as in Fig. 11.27, one induction variable is used only to control the
region (indicated by the fact that its value is not needed outside the region
and that it is always set to the same constant immediately before entering
the region), it is possible to eliminate that variable. Even if all induction
variables are needed outside the region, we may use only one inside the
region and compute the remaining ones when we leave the region.

Example 11.37

Consider Fig. 11.27. We shail eliminate the induction variable I, which
qualifies under the criteria listed above. Its role will be played by S. We
observe that after executing ®,, S has the value T+ I, so when control
passes from ®, back to ®,, the relation § = T - 7 — | must hold. We can
thus replace the statement § «—- T4 7 by § — S + 1. But we must then
initialize S correctly in ®), so that when control goes from ®} to ®,, the
value of § after executing the statement § «— S+ 1 is T'+ I. Clearly, in
block ®, we must introduce the new statement S5 «— T after the statement
T—J+1.

We must then revise the test 7 = 1000 ? so that it is an equivalent test on S.
When the test is executed, & has the value T + I. Consequently, an equiva-
lent test is

R«—— T+ 1000
S=R?

Since R is region-independent, the calculation R «- 7"+ 1000 can be
moved to block ®). It is then possible to dispense with [ entirely. The result-
ing flow graph is shown in Fig. 11.28.

We observe from Fig. 11.28 that block &, has been entirely eliminated
and that the region has been shortened by one statement. Of course, &),
has been increased in size, but we are presuming that regions are executed
more frequently than blocks outside the region. Thus, Fig. 11.28 represents
a speeding up of Fig. 11.27.

We observe that the step S «+— T in ®} can be eliminated if we identify
S and T. This is possible only because at no time will the values of S and T
be different, yet both will be “active” in the sense that they may both be
used fater in the computation. That is, only § is active in &,, neither is active
in ®,, and in ®), both are active only between the statements § «— T and
R+ T+ 1000. At that time they certainly have the same value. If we
replace T" by S, the result is Fig, 11.29.

To see the improvement between Figs. 11.26 and 11.29, let us convert
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K0 (®
K<0 (@,
: 2
|
TeJ+1
ST ®) SeJ+] &
R« T+ 1000 R+« S+ 1000 |*?
1 ¥
l i
S+5+1 S+85+1]
K<S+K |@®, KeS+K @,
S =R? S =R?
halt ® 4 halt ® 4
Fig. 11.28 Further revised flow gragh. Fig. 11,29 Final flow graph.

each into assembly language programs for a crude one-accumulator machine.
The operation codes should be transparent. (JZERO stands for “jump if
accumulator is zero” and JNZ for “jump if accumulator is not zero.”) The
two programs are shown in Fig. 11.30.

LOAD =0 LOAD =0
STORE X STORE X
LOAD =1 LOAD J
LOOP: STORE 1 ADD =1
LOAD J STORE S
ADD =1 ADD = 1000
ADD I STORE R
ADD K LOOP: 1.OAD S
STORE K ADD =1
LOAD [ STORE §
SUBTR = 1000 ADD K
JZERQ DONE STORE K
LOAD [ LOAD §
ADD =1 SUBTR R
JUMP LOOP INZ LOOP
DONE: END END
(a) (b)
Program from Fig. 11.26 Program from Fig. 11.29

Fig. 11.30 Eguivalent programs.
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Observe that the length of the program in Fig. 11.30(b) is the same as
that of Fig. 11.30(a). However, the Joop in Fig. 11.30(b) is shorter than in
Fig. 11.30(a) (8 instructions vs. 12), which is the important factor when
time is considered. |

3. Reduction in Strength

An interesting form of reduction in strength is possible within regions.
If within a region there is a statement of the form A «— B * [, where the value
of B is region-independent and the values of 7 at that statement form an
arithmetic progression, we can replace the multiplication by addition or
subtraction of a quantity, which is the product of the region-independent
value and the difference in the arithmetic progression of the induction
variable. It is necessary to properly initialize the quantity computed by the
former multiplication statement.
Example 11.38

Consider the following portion of a source program,

DO 5 J=I1,N
DO 5 I=1,M
5 AN =B
which sets array A equal to array B assuming that both 4 and B are M by
N arrays. Suppose element A(J, Jyisstored inlocation 4 + M «(J—- 1)+ 1 — 1
for 1<<I<IM, 1<J<N. Let us make a similar assumption about
B (1, J). For convenience, let us denote location 4 + 7. by A(L). Then the
following partially optimized intermediate program might be created from
this source program: Mo M — 1
N «— N1
Je— 1
outer: J——J41
[e— —1
Kv— M«J
loop: T—141
L«—K T
A(LY «<— B(L)
if I' << M goto loop
if J << N’ goto outer
halt

The flow graph for this program is shown in Fig. 11.3L. In this flow
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I+0 ®,
KeMxJS

T« [+]
L« K+7T
ALY+ B(L)

I< M
—

SN ®4

halt &

Fig. 11.31 Flow graph.

graph {®,, ®,, B,} is a region in which M is invariant and J is an induc-
tion variable with increment 1. We can therefore replace statement
K M+J by statement K «— K + M provided K is initialized to —M
outside the region. The flow graph that results is shown in Fig. 11.32, The
program represented by this new flow graph is longer than before, but the
region represented by blocks ®&Y, ®, and ®, can be executed more quickly,
becanse a multiptication has been replaced by an addition. Moreover,
additional time can be saved by eliminating the induction variable J in
favor of L.

It is interesting to note that we can obtain a far more economical program
by replacing the entire region {®7, ®,, ®,} by a single block in which A(L)
is set to B(L) for 1 <L K<< M x N. The resulting flow graph is shown in
Fig. 11.33. [

4. Loop Unrolling

The final code-improving transformation which we shall consider is
exceedingly simple but often overlooked, It is loop unrelling. Consider the
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MM -1
N«N-1 |8
Je=—1
Y
Ke-M |G
JeJ+1
I«=-1 ®;
KeK+M
; Y
I<r+1
LeK+1 ®
AWy +B(Ly |73
i<m”
J<NT? | By
halt &
Fig. 11.32 MNew flow graph.
L+«-1
T+MxN
L+L+1
ALY+ B(L)
L<T?
halt )
Fig. 11.33 Final flow graph.
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flow graph in Fig. 11.34. Blocks ®, and ®, are executed 100 times. Thus 100
test instructions are executed. We could dispense with all 100 test instruc-
tions by “unrolling” the loop. That is, the loop could be unfolded into
a straight-line block consisting of 100 assignment statements:

A1) < B(1)
A(2) < B(2)

A(100) — B(100)

A less frivolous approach would be to unroll the loop “once™ to obtain the
flow graph in Fig. 11.35. The program in Fig. 11,35 is longer, but fewer
instructions are executed. In Fig. 11.35 only 50 test instructions are used,
versus 100 for the program in Fig. 11.34.

<1 @& l
R gy

A < B()
A5 | e 2 1001

halt

T<i+1 | & 1<—I+1I

Fig. 11.34 Flow graph. Fig. 11.35 Unrolled flow graph.

EXERCISES

11.3.1. Construct intermediate programs equivalent to the following source
programs:
@ S=UA+B+C)+.5
D=8 — A+ (S —B+(§—O)
AREA = SQRT(D)
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(b) for I : = 1 step 1 unfil ¥ do
begin
Al = B[ + C[I+2];
if (4{I] = 0) then halt
else A[I]: =1
end
(¢ DOS5SI=1N
5 AL D) = C# AL I}

11.3.2. What functions are computed by the following two intermediate lan-
guage programs?
(a) read &
S—0
I+—1
loop: Se—84T
if I == N goto done
I=I+1
goto loop
done: write §
halt
(b) read N
T N4 1
T—T*N
T«—T=x.5
write T
halt
Are the two programs equivalent, if & and I represent integers and §
and [ represent reals?

11.3.3. Consider the following program P:

read A, B
R«—1
C«—Ax 4
D«—RBsHB
if C < Dgoto X
E«—AxA
R<«—R+1
E«—E+4+ R
write £
halt

X: E<«—Bs B
R«—R+12
E«——E+R
write £
if E > 100 goto ¥
halt
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Y: R«—R-—1
goto X
Construct a flow graph for P.

11.3.4. Find the dominators and direct dominators of each node in the flow
graph of Fig. 11.36.

11.3.5. Let ON(®,, ®;) be the set of blocks that can appear on a path from
block ®; to block ®, (without going through -®, again, although

the path may go through ®, more than once) in a flow graph. Show
that if ®, dominates ®,, then

ON(®,, B;) = [®|there is a path from ® to &,
when ® is deleted from the flow graphj.

What is the time required fo compute ON(®,;, ®,)?

B,

Fig. 11.36 Flow graph.



11.3.6.
11.3.7.

11.3.8.

11.3.9.

11.3.10.

11.3.11.

11.3.12.

*11.3.13.

*11.3.14.

11.3.15,

EXERCISES 935

Prove assertions (1) and (2) of Lemma 11,13,

We can define a postdominance relation as follows. Let F be a flow
graph and ® a node of F. A node ®’ is a postdominator of & if every
path from & to a halt statement passes through &', An immediate
postdominator of ® is postdominated by every other postdominator
of ®. Show that if a node in a fiow graph has a postdominator, then
it has an immediate postdominator,

Devise an algorithm to construct the immediate postdominators of all
nodes in a flow graph.

Find all strongly connected regions in Fig. 11.36, Which regions are -
maximal?

Let P be the program in Exercise 11.3.3.

{a) Eliminate all common subexpressions from P.

(b) Eliminate all unnecessary constant computations from P.
(c) Remove all invariant computations from the loop in P.

Find all induction variables in the following program. Eliminate as
many as you can and replace as many multiplications by additions as
possible.

T<«—1
read J, X

X: A«—K=1T
B+—Jx[
C<«— A+ B
write C
T«—T-+1
if 7 < 100 goto X
halt

Give algorithms to find all (a) regions (b) single-entry regicns and (¢)
maximal regions in a flow graph.

Give an algorithm to detect some of the induction variables in a single-
entry region.

Generalize the algorithm in Exercise 11.3.13 to handie regions that are
not single-entry.

Give an algorithm to move region-independent computations out of a
{not necessarily single-entry) region. Hinf: Blocks outside the region
that can reach the region other than by the region entry are permitted
to change variables involved in the region-invariant computation.
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**11.3.16.

*11.3.17.
11.3.18.

*11.3.19.

*11.3.20.

We may need to place new blocks between blocks outside the region
and blocks within the region.

Show that it is undecidable whether two programs are equivalent.
Hint: Choose appropriate data types and interpretations for the
operators.

Show that it is undecidable whether a variable is an induction variable.

Generalize the notion of scope of variables and statements to pro-
grams with loops. Give an algorithm to compute the scope of a variable
in a program with loops.

Extend transformations 7,-T; of Section 11.1 to apply to programs
with no backward loops (programs with assignment staternents and
conditiopal statements of the form if x R ¥ goto I, where L refers to
a statement after this conditional statement),

Show that it is undecidable whether a program will ever {erminate,

Research Questions

11.3.21.

11.3.22.

Characterize the machine models for which the transformations we
have described will result in faster-running programs.

Develop algorithms that will detect large classes of the phenomena
with which we have been dealing in this section, e.g., loop-invariant
computations or induction variables. Note that, for most of these
phenomena, there is no algorithm to detect all such instances.

Open Question

11.3.23.

Is it possible to compute direct dominators of an »n-node flow graph
in Iess than O(n2) steps? It is reascnable to suppose that 0(s#2) is the
best we can do for the entire dominance relation, since it takes that
long just to print the answer in matrix form.

BIBLIOGRAPHIC NOTES

There are several papers that have proposed various optimizing transformations
for programs. Nievergelt [1965], Marill [1962], McKeeman [1965}, and Clark [1967]
list a number of machine independent transformations. Gear [1965] proposes an
optitmizer capable of some common subexpression elimination, the propagation of
constants, and loop optimizations such as strength reduction and removal of in-
variant computations. Busam and Englund [1969] discuss similar optimizations in
the context of FORTRAN. Allen and Cocke [1972] provide a good survey of these
techpigues. Allen [1969] discusses a global optimization scheme based on finding
the strongly connected regions of a program.

The dominator approach to code optimization was pioneered by Lowry and
Medlock [1969], although the idea of the dominance relation comes from Prosser

[1959].
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There has been a greaf deal of theoretical work on program schemas, which are
similar to our flow graphs, but with unspecified spaces for the values of variables
and unspecified functions for operators. Two fundamental papers regarding equiva-
lence between such schemas independent of the actual spaces and functions are
lanov [1958]) and Luckham et al. [1970]. Kaplan [1970] and Manna [1973] survey
the area.

11.4. DATA FLOW ANALYSIS

In the previous section, we used certain information about the com-
putations in the blocks of a program without describing how this informa-
tion could be efficiently computed. In particular, we have used

(1) The “available” expressions upon entering a block. An expression
A + Bissaid to be available on entering a block if 4 -1+ Bis always computed
before reaching the block but not before a definition of 4 or B.

(2) The set of blocks in which a variable could have last been defined
before the flow of control reaches the current block. This information is
useful for propagating constants and detecting useless computations. Another
application is in detecting possible programmer errors in which a variable
is referenced before being defined.

A third type of information that can be computed using the techniques
of this section is the computation of active variables, those whose value
must be retained on exit from a block. This information is useful when blocks
are converted to machine code, as it indicates those variables which must
either be stored or retained in a fast register on exit from the block. In terms
of Section 11.1, this information is needed to determine which variables are
output variables. Note that a variable might not be computed in the block
in question (but rather in a previous block) and still be an input and output
variable of the block,

Of these three problems, we shall here discuss only question (2)-—the
determination of where a variable could have been defined previous to reach-
ing a given block, Our technique, called “interval analysis,” partitions a flow
graph into larger and larger sets of nodes, placing a hierarchical structure
on the entire graph. This structure is used to give an efficient algorithm for
a class of flow graphs, called “reducible” graphs, that occurs with surprising
frequency in flow graphs derived from actual programs. We then show
the extension necessary to handle irreducible graphs.

In the Exercises, we shall discuss some of the changes necessary to gather
the other two types of information using interval analysis.

11.4.1. Intervals

We begin with the definition of a type of subgraph that is useful in data
flow analysis.
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DEFINITION

If & is a node of a flow graph F, we define I(h), the interval with header
h, as the set of nodes of F constructed as follows:

{1} his in f(A).

(2) If n is a node not vet in I(h), n is not the begin node, and all edges
entering » leave nodes in I(h), then add n to I{A).

(3) Repeat step (2} until no more nodes can be added to I(h).

Example 11.39

Consider the flow graph of Fig. 11.37,

Let us consider the interval with header »,, the begin node. By step (1),
I(n,) includes »,. Since the only edge to enter node n, leaves n,, we add n,
to I{n,}. Node »n; cannot be added to f(n,), since », can be entered from node

Fig. 11.37 Flow graph.
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ny as well as »,. No other nodes can be added to I(n,). Thus, I(n)) = {n,, n,}.
Now let us consider I(n,). By step (1), 1, 1s in I(n,). However, we cannot
add n, to I(n,), since n, may be entered via n; (as well as »,) and #, is not in
I(n,). No other nodes can be added to f(n;), and so I{n,) = {n,}.
Continuing in this fashion, we can partition this flow graph into the fol-
lowing intervals:

I(HJ) = {nla nz}

I(ny) = {n,}
I(n,) = {n,, ns, ng}
I(ny) = {ny, ng, 1} O

We shall provide an algorithm for selecting interval headers and construct-
ing the associated intervals so that a flow graph is partitioned into dis-
joint intervals. However, we shall first make three observations concerning
intervals.

TreOreM 11.12

{1} The header h dominates every other node in J(h) [although not every
node dominated by A need be in I{#)].

(2) For each node /1 of a flow graph F, the interval I(%) is unique and
independent of the order in which candidates for » in step (2) of the defini-
tion of interval are chosen,

(3} Every cycle in an interval I(h) includes the interval header 4.

Proof. We shall leave (1} and (2) for the Exercises and prove (3). Suppose
that I{h) has a cycle n,, . . ., n, which excludes 4. That is, there is an edge
from n, to n,,,, 1 < i<k, and an edge from n, to n,;. Let n, be the first of
My, ..., 0, added to J(h). Then n,_, (or n,, if { = 1) must have been in I(k)
at that time, in contradiction. [

One of the interesting aspecis of interval analysis is that flow graphs
can be partitioned uniquely into intervals, and the intervals of one flow
graph can be considered to be the nodes of another flow graph, in which
an edge is drawn from interval 7, to a distinct interval I, if there is any edge
from a node of I, to the header of I,. (There clearly cannot be an edge from
I, to a node of I, other than the header.} This new graph can then be broken
into intervals in the same way, and this process can be continned. For this
reason, we shall subsequently consider a flow graph to be composed of nodes
of unspecified type, rather than blocks. The nodes may thus represent struc-
tures of arbitrary complexity.

We shall now give the algorithm that partitions a flow graph into a set of
disjoint intervals,
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ALGORITHM 11.6
Partitioning a flow graph into disjoint intervals.
Input. A flow graph F.
Owutput. A set of disjoint intervals whose union is all the nodes of F.
Method.

{1} We shall associate with each node of F two parameters, a count and
a reach, The count of a node » is 2 number which is initially the number of
edges entering n. While executing the algorithm, the count of # is the number
of these edges which have not yet been traversed. The reach of » is either
undefined or some node of F. Initially, the reach of each node is undefined,
except for the begin node, whose reach is itself. Eventually, the reach of a
node n will be the first interval header / found such that there is an edge
from some node in I(k) to n.

(2) We create a list of nodes called the Aeader list. Initially, the header
list contains only the begin node of F.

(3) If the header list is empty, halt. Otherwise, let n be the next node on
the header list. Remove »n from the header list.

(4) Then use steps (5)-(7) to construct the interval I(n). In these steps
the direct successors of I{n) are added to the header list.

(5) I(#) is constructed as a list of nodes. Initially, (#) contains only node
n and n is “unmarked.”

(6) Select an unmarked node »' on f{r), mark #', and for each node
n'’ such that there is an edge from #' to #” perform the following operations:

{a) Decrease the count of #” by 1.

{b) () If the reach of n" is undefined, set it to # and do the follow-
ing, If the count of # is now 0 (having been 1), then add »”
to £ (n) and go to step (7); otherwise, add n” to the header list
if not already there and go to step (7).

(i) If the reach of n'' is n and the count of »” 13 0, add #" to
I(n) and remove n'' from the header list, if it is there. Go to
step (7).
If neither () nor (ii) applies, do nothing in part(b).
(7) If an unmarked node remains in I(n), return to step {6). Otherwise,
I{m) is complete, and we return to step (3). [

DEFINITION

From the intervals of a flow graph F, we can construct another flow
graph I(F) which we call the derived graph of F. I(F) is defined as follows:

(1) I(F) has one node for each interval constructed in Algorithm 11.6.

(2) The begin node of I(F) is the interval containing the begin node of F.

(3) There is an edge from interval 7 to interval J if and only if I+ J
and there is an edge from a node of I to the header of J.
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I(F), the derived graph of a flow graph F, shows the flow of control among
the intervals of F. Since I(F) is a flow graph itself, we can also construct
I(I(F)), the derived graph of I(F). Thus, given a flow graph F, we can con-
struct a sequence of flow graphs F,, F,, ..., F,, which we call the derived
sequence of F, in which F, ., is the derived graph of F,, for 0 <{7 << n, and F,
is its own derived graph [i.e., I(F,) = F,|. We say that F, is the ith derived
graph of F,. Fis called the limit of F,. It is not hard to show that F, always
exists and is unique.

If F, is a single node, then F is said to be reducible.

It is interesting to note that if Fy is constructed from an actual pro-
gram, there is a high probability that F, wilt be reducible. In Section 11.4.3,
we shall discuss a node-splitting technique whereby every irreducible flow
graph can be transformed into one that is reducible.

Example 11.40

Let us use Algorithm 11.6 to construct the intervals for the flow graph of
Fig. 11.38.

The begin node is #,. Initially, the header list contains only #;. To con-
struet I(n,), we add n, to f(n,) as an unmarked node. We make n, marked by
considering #,, the direct successor of #,. In doing so, we decrease the count
of n, from its initial value of 2 to 1, set the reach of n, to »,, and add »,
to the header list. At this point no unmarked nodes remain in f{n,), so
I(n,) = {n,} is complete.

The header list now contains n,, the suceessor of I{n,). To compute {{n,),
we add n, to I(n,) and then consider n,, whose count is 2. We decrease the
count of n,; by 1, set the reach of n, to n,, and add »n, to the header list. Thus,
we find that I(n,) = {n,}.

The header list now contains n,, the successor of f(n,). To compute I(n,),
we begin by placing n, in I(n;). We then consider nodes n, and n,, decreasing
their counts from | to 0, making their reach n,, and adding both #, and »;
as unmarked nodes to /(n,). We mark », by decreasing the count of n, from
its Initial value of 2 to 1, making n, the reach of n, and adding r, to the
header list. When we mark #, on I(n,), we change the count of ng from 1 to 0,
rereove i, from the header list, and add n, to I(n,).

To'mark ng; on I(n,), we make the count of n, 0, set the reach of n, to n,
and add n, to I{n,). Node n, is considered next, since there is an edge from
ne to ny. Since its reach is #,, #, does not affect I(m,)} or the header list at
this point. To mark n,, we make the count of #n; 0, set the reach of »n; to
#,, and add ng to I{n,). Node n, is also a successor of #,, but since the reach
of n, is n,, n, is not added to I{n,) or the header list. Finally, to mark n,,
no operations are needed, since n; has no successors. At this point no un-
marked nodes remain in f(n,), and so I{n,) = {n,, n,, n;, #, 1y, g}

The header list is now empty, and so the algorithm terminates, In sum-
mary, we have partitioned the flow graph into three disjoint intervals:
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Fig. 11.38 Flow graph,

1 (nt) = {nl}

I(nz) = {nz}

I{n;) = {ng, ny, 15, ng, Ny, 4}
From these intervals we can construct the first derived flow graph F,. We can
then apply Algorithm 11.6 to F, to obtain its intervals. Repeating this entire
process, we construct the sequence of derived flow graphs shown in Fig.
11.39. [
Example 11.41

Congider the flow graph Fin Fig. 11.40. The intervals for F are

I(n,) = {n,}
1(n;) = {n.}
I(n;) = {n;}
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é i} g O g}
{7300} |

Fy Fy F,

Fig. 11.39 Sequence of flow graphs.

Fig. 11.40 Flow graph F.

We find that I(F) = F. Thus, Fis not a reducible flow graph. []

THEOREM 11.13

Algorithm 11.6 constructs a set of disjoint intervals whose union is the
entire graph.

Proof. Disjointness is obvious. If a node is added to an interval in step
(6bi) of Algorithm 11.6, that node will not be added to the header list. If
a node is added to an interval in step (6bii), that node is removed from the
header list. Likewise, it is easy to show that the union of all I(») constructed
is the set of nodes of F. Assuming that Fis a flow graph, every node is acces-
sible from the begin node of F and so is placed either on the header list or
in an interval. Unless a node is added to an interval, it will become the header
of its own interval.
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Finally, we must show that each I(n) constructed is an interval. In step
(6), v’ 1s added to I(n) if and only if its reach is £ and its count has been
reduced to 0. Thus, every edge entering '’ comes from a node already in I(n),
and n” can be added to /(n) according to the definition of an interval. [ ]

We observe that Algorithm 11.6 can be executed in time proportional
to the number of edges in the flow graph on a random access computer.
Since a flow graph whose nodes are blocks of a program has no more than
two edges leaving any node, this is tantamount to saying that Algorithm
11.6 is lincar in the number of blocks in the program. It is left for the Exer-
cises to show that each derived graph constructed from a program of »
blocks by repeated application of Algorithm 11.6 has no more than 2 edges.

11.4.2. Data Fliow Analysis Using Intervals

We shall show how interval analysis can be used to determine the data
flow within a reducible graph. The particular problem that we shall discuss is
that of determining for each block ® and for each variable 4 of a reducible
flow graph at which statements of the program A could have last been defined
when control reaches ®. Subsequently, we shall extend the basic interval
analysis algorithm to irreducible flow graphs.

It is worthwhile pointing out that part of the meritin the interval approach
to data flow analysis lies in treating sets as packed bit vectors. The logical
AND, OR, and NOT operations on bit vectors serve to compute set inter-
sections, unions, and complements in a way that is quite efficient on most
computers.

We shall now construct tables that give, for cach block ® in a program,
all locations / at which a given variable 4 is defined, such that there is a
path from / to ® along which A4 is not redefined. This information can be
used to determine the possible values of 4 upon entering ®.

We begin by defining four set-valued functions on blocks.

DEFINITION

A computation path from statement s, lo statement s, 15 a sequence of
statements beginning with s, and ending with s, that may be executed in
that order during the execution of a program.

Let & be a block of P. We define four sets of definition statements as
follows:

(1) IN(®) = {d in P|there is a computation path from definition state-
ment d to the first statement of ®, such that no statement in this path, except
possibly the first statement of &, redefines the variable defined by 4}.

(2) OUT(®) = {d in P|thers is a computation path from 4 to the last
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statement of &, such that no statement in this path redefines the variable
defined by 41.

(3) TRANS(®) = {d in P|the variable defined by 4 is not defined by any
statement in &},

(4) GEN(®) = {d in @&|the variable defined by d is not subsequently
defined in &)

Informalily, IN(®) contains those definitions that can be active going into
®. OUT(®) contains those definitions that can be active coming out of ®,
TRANS(®) contains the definitions (ransmitted through ® without redefini-
tion in ®. GEN(®) contains those definitions generated in & that are active
on leaving ®. It is easy to show that

OUT(®) = (IN(®) N TRANS(®)) U GEN(®)

Example 11.42
Consider the following program:

S1: Te1

§2: J+«—0

S3: Je—JF 1

54: read !

§5; if { < 100 goto 58
86: write J

S7: halt

S8 I«—1Ix1

S§9: poto 53

We have [abeled each statement for convenience. The flow graph for this
program is shown in Fig. 11.41. Each block has been explicitly labeled.
Let us determine IN, OUT, TRANS, and GEN for block ®,,.

Statement S1 defines £, and S1, §2, 83 is a computation path that does
not define 7 (except at S1). Since this path goes from S1 to the first statement
of ®,, we sec that S1 ¢ IN{®,). In this manner we can show that

IN(®,) = {S1, 52, §3, §8]

Note that S4 is not in IN(®,), because there is no computation path from
S4 to §3 that does not redefine I after S4.

OUT(®,) does not include S|, since all computation paths from S1 to S5
redefine I. The reader should verify that
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S1: 7+1
§2: J«0

S3: 7S+
S4 . read
85 :if 1 <100 goto $8

@3 By
S8 I+ rsf 86 : write J
59 : goto §3 §7: halt

Fig. 11.41 Flow graph.

OUT(®,) = {53, 54}
TRANS(®,) = &
GEN(®,) = {53, $4] M

The remainder of this section is concerned with the development of an
algorithm to compute IN(®) for all blocks of a program. Suppose that
®,,...,®, are all the direct predecessors of a block & in P. (One of these
direct predecessors may be @® itself.) Clearly,

IN®) =) OUT(®)
— Q [(IN@®) N TRANS(®,)) U GEN(®)]

To compute IN(®), we could write this set equation for each block in the
program along with IN(®,) = &, where ®, is the begin block, and then
attempt to solve the collection of simultaneous equations.t However, we
shall give an alternative method of solution that takes advantage of the
interval structure of flow graphs, We first define what we mean by an en-
trance and exit of an interval.

fAs with the regular expression equations of Section 2.2, the solution may not be
unigue. Tere we want the smallest solution,
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DEFINITION

Let P be a program and F, its flow graph. let F, F,,..., F, be the
derived sequence of F,. Each node in F,, i > 1, is an interval of F,_, and is
called an interval of order i.

The entrance of an interval of order 1 is the interval header. {Note that
this header is a block of the program.) The enrrance of an interval of order
i = 1 is the entrance of the header of that interval. Thus, the entrance of
any interval is a basic block of the underlying program P.

An exit of I(n), an interval of order I, is the last statement of a block ®
in J(#) such that ® has a direct descendant which is either the interval header
n or a block not in I(n). An exif of an interval F(n) of order i > 1 is the last
statement of a block ® contained within J(m)t such that there is an edge in
F, from & either to the header of interval n or to a block outside I(n).

Note that each interval has one entrance and zero or more exits,

Example 11.43
Let F, be the flow graph in Fig. 11.41. Using Algorithm 11.6, we obtain

I =I®) =[®]
1, =I(®,) = (®,, ®;, B,
as the partition of F, into intervals. From these intervals we can construct

the first derived graph ¥, shown in Fig. 11.42. From F, we can construct its
intervals (there is only one),

[3 :I(Il) = {rbfz} = {(Bl’(BJ_’ (B;: &4}

and obtain the limit flow graph F,, also shown in Fig. 11.42.

0
O,
()

Fy F, Fig. 11.42 Derived sequence of Fi.

iStrictly speaking, an interval 7 of order ¢ > 1 has intervals of order i — 1 as members.
We shall informally say that a block & is in [ if it (s in one of I"s members. Thus, the set
of blocks comprising an interval of arbitrary order is defined as we would intuitively expect.



948 CODE OPTIMIZATION CHAP. 11

I, and J, are intervals of order [, The entrance of [, is ®,. The entrance
of 1, is ®,. The only exit of I, is statement S2. The only exit of I, is statement
S59. I, is an interval of order 2 with entrance ®,. 7, has no exits. [ |

We now extend the functions IN, OQUT, TRANS, and GEN to intervals.
Let F,, F,, ..., F, be the derived sequence of F,, where F, is the flow graph
of a program P. Let & be a block of P and I an interval of some F,, i >» 1.
We make the following recursive definitions:

(1) IN() = {IN(CB) if 7is of order 1 and @ is the header of 1.
— |IN(I') if Jis of order i >> 1 and I’ is the header of /.

In {2), (3}, and (4) below, s is an exit of L

(2) OUT(, s) = OUT(®) if s is the last statement in @ and ® is in L
(3) () TRANS(®, 5} = TRANS(®) if 5 is the last statement in @.
(by TRANS(Z, 5) is the set of statements ¢ in P such that there exists
acycle-free path 1., I,, . . ., I, consisting solely of nodes in I and
a sequence of exits s, ..., s, of I, ..., I, respectively, such that
(i) I, is the header of T.
(ii) In F,, s, is in a block that is a direct predecessor of the
entrance of 7,,, for 1 <{j < k.

(iii) dis in TRANS(f,, s} for I < j < k.
(iv) 5, = 5.
These conditions are illustrated in Fig. 11.43.

Interval 7 a
in £

Fig. 11.43 TRANS (J, 5).

Intervals in F;_



sec, 11.4 DATA FLOW ANALYSIS 949

(4) (a) GEN(®, 5) = GEN(®) if 5 is the last statement of ®.
(b) GEN(/, s) is the set of d in P such that there is a cycle-free path
I, ..., I consisting solely of nodes in [ and a sequence of exits
Sy e.-y8, of Iy ..., I, respectively, such that
() disin GEN(I,, 5,).
(ii) In F,, 5, is in a block that is a direct predecessor of the
entrance of 1,,,, 1 <j < k.
(iify dis in TRANS(,, s) for 2 <j < k.
(iv) 5, = 5.
Note that /, need not be the header of I here.
Thus, TRANS(Z, 5) is the set of definitions that can pass from the
entrance of I to exit 5 without being redefined in . GEN(/, ) is the set of
definitions in 7 which can reach s without being redefined.

Example 11.44

Let us consider ¥, of Fig. 11.41 and ¥, and F, of Fig. 11.42. In F, interval
I, i3 {®,, B,, ®,} and has exit §9. Thus, IN(J,) = IN(®,) = {51, §2, §3, 58},
and OUT(,, §9) = OUT(®,) = 53, S8}.

TRANS(I,, 89} = &, since TRANS(®,) = &.

GEN(I,, 59) contains S8, since there is a sequence of blocks consisting
of ®, alone, with S8 in GEN(®,, $9). Also, §3 is in GEN(J,, 59), because
of the sequence of blocks ®,, ®,, with exits §5 and §9. That 15, S3 is in
GEN(®,, §5), ®, is a direct predecessor of ®,, and 53 is in TRANS(®,, §9).

]

We shall now give an algorithm to compute IN(®) for all blocks of a pro-
gram P. The following algorithm works for only those programs that have
a reducible flow graph. Modifications necessary to do the computation for
irreducible flow graphs are given in the next section.

ALcoritaMm 11.7

Computation of the IN function.

Input. A reducible flow graph F, for a program P.

Output. IN(®) for each block ® of P.

Method.

(1) Let F,F,...,F, be the derived sequence of F,. Compute
TRANS(®) and GEN(®) for all blocks ®& of F,

(2) For i =1,...,k, in turn, compute TRANS(Z, s5) and GEN({, s)
for all intervals of order i and exits s of I. The recursive definition of these
functions assures that this can be done.

(3) Define IN{(J) = @&, where [ is the lone interval of order k. Set i = k.
(#) Do the following for all intervals of order 7. Let I = {7, ..., I} be
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an interval of order &, (I,,...,I, are intervals of order i — 1, or blocks,
if i = 1.) We may assume that the ordering of these subintervals is the order
in which they were added to I in Algorithm 11.6. That is, 7, is the header,
and for each j > 1, {Z,,...,I,_,} contains all nodes of F,_, that are direct
predecessors of 1. '
(2) Let s,,5,,...,s, bethe exits of Fsuch that each s, is in a block
of F, that is a direct predecessor of the entrance of I. Set

IN@,) = IN() U 'r’l GEN( s))

(b) For all exits s of I,,} set
OQUT(,, sy = (IN(I,) N TRANS(Z,, s}) U GEN({,, 5)

{c) Forj=2,...,n1lets,.,,5,,,...,5; betheexitsof I, 1 <Zr <,
such that each exit is in a block of F, that is a direct predecessor of
the entrance of I,. Set

IN(IJ‘ - U OUT(IH Srl)
i
OUT(,, 5) = (IN(I;) it TRANS(Z,, 5)) U GEN(I,, s)
for all exits 5 of I,.
(5) If i = 1, halt, Otherwise, decrease 7 by 1 and return to step (4). []
Example 11.45

Let us apply Algorithm 11.7 to the flow graph of Fig. 1141,
It is straightforward to compute GEN and TRANS for the four blocks of
F,. These results are summarized below:

Block GEN TRANS
®; {81, 52 o
®2 {53, 54} &
®3 (58} {82, 53
®s 3 £S1, §2, 53, 54, 58}

For example, since B, defines only the variable I, ®; “kills” the previous
definitions of [ but transmits the definitions of J, namely $2 and 53. Since
no block defines a variable twice, all definition statements within a block
are in GEN of that block.

We observe that 7,, consisting of &, alone, has one exit, the statement 52.

+1f an interval has two exits connecting to the same next interval, they can be “merged”
for efficiency of impiementation, The “merger” consists of taking the union of the GEN
and TRANS functions.
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Since paths in I, are trivial, GEN(f,, S2) = {51, 52} and TRANS(Z,, 52)
is the empfy set.

I, has exit §9. We saw in Example 11.44 that GEN(I,, S9) = {$3, S8}
and TRANS(L,, §9) = @.

We can thus begin to compute the IN function. As required, IN(Z,) = &.
Then we can apply step (4) of Algorithm 11.7 to the two subintervals of I,.
The only permissible order for these is I, I,. We compute in step (4a),
IN(I,) = IN(I,) = @&, and in step (4b),

OUT(,, $2) = (IN(,) " TRANS({,, §2)) U GEN(,, §2) = {51, $2}.

Then, in step (4c),
IN({,) = OUT({,, S2) = {51, §2}

Going to intervals of order 1, we must consider the constituents of I,
and I,. I, consists only of &, and so we compute IN(®,) = &. I, consists
of ®,, ®,, and B,, which we may consider in that order. In step (4a), we have
IN(®,) = IN(J,) U GEN(I,, $9) = {51, §2, §3, §8}. In step (4b)

QUT(®,, §5) = (IN{®,) N TRANS(®,, S5)) U GEN(®,, §5) = {53, 54}
Since S5 leads to ®,, we find that IN(®,) = OUT(®,, §5) = {53, $4}. Then,
since S5 also leads to ®,, we find that

IN(®,) = OUT(R,, §5) = {53, 54}

Summarizing, we have

IN@®,) = &

IN(®,) = {S1, §2, §3, 58}

IN(®,) = {$3, 54]

IN(®,) = {53, 54} []

We can prove by induction on the order of [ that:

(1) TRANS(Z, 5) is the set of definition statements 4 in P such that there
is a path from the first statement of the header of I up to s along which no
statement redefines the variable defined by d.

(2) GEN(/, s) is the set of definitions 4 such that there is a path from &
to s along which no statement redefines the variable defined by 4.

Then we can prove the following statement by induction on the number
of applications of step (4} of Algorithm 1.7,

(11.4.1) If step (4) is applied to compute IN({;), then IN(/) is the set of
definitions such that there is a path from 4 to the entrance of
1, along which no statement redefines the variable defined by d,
-and QUT(Z,, £) is the set of d such that there is a path from d to
s along which no statement redefines the variable defined by 4.
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The special case of (11.4.1), where I, is a block, is the following theorem.

THEOREM 11.14

In Algorithm 11.7, for all basic blocks ® in P, IN(®) is the set of defini-
tions 4 such that there is a path in F, from 4 to the first statement of & along
which no statement redefines the variable defined by 4. [ ]

11.4.3. Irreducible Flow Graphs

While not every flow graph is reducible, there is an additional concept,
called node splitting, which allows us to generalize Algorithm 11.7 to all
flow graphs. A node » with more than one edge entering is “split” into several
identical copies, one for each entering edge. Each copy of » thus has a single
edge entering and becomes part of the interval of the node from whence
this edge comes. Thus, an application of node splitting followed by interval
construction will reduce the number of nodes in the graph by at least 1.
Repeating this process if necessary, we can transform any irreducible flow
graph into a reducible one.

Example 11.46

Consider the irreducible flow graph in Fig, 11.40 (p. 943). We can split
node #, into two copies, ny and nf, to obtain the flow graph F', shown in
Fig. 11.44. The intervals for F' are

I = 1In,) ={n,ns}

1, = 1(n,) = {ry, 0y

Fig, 11.44 Split flow graph.

F1, the first derived graph of F’ will have two nodes, as shown in Fig. 11.45.
The second derived graph of F' consists of a single node. Thus by node split-
ting we have transformed F into a reducible flow graph F'. ]
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o Fig. 11.45 First derived graph.

We shall give a modified version of Algorithm 11.7 to take this new
technique into account. First, a simple observation is useful.

LemMmA 11.15

H ¢ is a flow graph and /() = G, then every node » other than the begin
node has at least two entering edges; neither edge comes from .

Proof. Bach edge from a node to itself disappears in an application of
the interval instruction. Thus, assume that node n has only one entering
edge, from another node m. Then # is in I(m). If I(G) = G, then node m
eventually appears on the header list in Algorithm 11.6. But then » is placed
in I(m), and so /(G) cannot be G. []

ALGORITHM 11.8
General computation of the IN function.
Input. An arbitrary flow graph F for a program P.
Output. IN(®), for each block ® of P,
Method.

(1) Compute GEN(®) and TRANS(®) for each block ® of F. Then
apply step (2) recursively to F. The {nput to step (2) is a flow graph G with
GEN(/, 5) and TRANS(Z, s) known for each node I of G and each exit s of 1.
The output of step (2) is IN(J) for each node I of G.

(2) (a) Let Gbetheinputto thisstepandlet G, G|, ..., G, be the derived
sequence of G. If G, is a single node, proceed exactly as in
Algorithm 11.7. If G, is not a single node, we may compute GEN -
and TRANS for all the nodes of &7, . . ., G, as in Algorithm 11.7.
Then, by Lemma 11.15, G, has some node other than the begin
node with more than one entering edge. Select one such node 1.
If 7 bas j entering edges, replace / by new nodes /,, ..., [, One
edge enters each of I, ..., I, each from a different node from
which an edge previously entered 7.

(b) For gach exit s of J, create an exit s, of I, 1 <{ 7 < j, and imagine
that in F there is an edge from each s, to the entrance of every
node to which s connected in &, Define GEN(Z,, &) = GEN(Z, )
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and TRANS(,, 5} = TRANS(Z, 5) for 1 < i < /. Call the resul-
ting graph G'.
{c) Apply step (2) to G’. Recursively, the IN function will be com-
puted for G’. Then, compute the IN function for the nodes of G,
by letting IN({7/) ={ JL, IN{{). No other changes to the IN
function are made.
(d) Compute IN for & from the IN function for G, asin Algorithm
11.7.
(3) After step (2) is complete, the IN function will have been computed
for each block of F. This information forms the output of the algorithm. [7]

Exampie 11.47

Consider the flow graph F, of Fig. 11.46(a). We can compute F, = I(F,),
which is shown in Fig. 11.46(b). However, I(F,) = F,, so we must apply the

(a)Fo (b)Fl

Fig. 11.46 Non-reducible flow graphs.

node splitting procedure of step (2). Let node {n,, ns} be I, and split Finto /,
and [,. The result is shown in Fig. 11.47. We have chosen to connect n, to [,
and {n,, n,} to I,. Edges from I, and /, to {n,, n,} have been drawn. Actually,
each exit of [ is duplicated, one for 7, and one for I,. Tt is the duplicated
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Fig. 11.47 Flow graph.

exits which connect to the entrance of {n,, n,}, & fact which is represented
by the two edges in Fig. 11.47. Note that the graph of Fig. 11.47 is reducible.

[

THEGREM 11.15
Algorithm 11.8 always terminates.

Proof. By Lemma 11.15, each call of step (2) is either on a reducible
graph, in which case the call surely terminates, or there is a node 7 which
can be split. We observe that each of I,, .. ., I, created in step (2) has a single
entering edge. Thus, when the interval construction is applied, they will
each find themselves in an interval with another node as header. We conclude
that the next call of step (2) will be on graphs with at least one fewer node,
so Algorithm 11.8 must terminate. ]

THEOREM 11.16
Algorithm [1.8 correctly computes the IN function.

Proof. It suifices to observe that GEN and TRANS for I, ..., ], in step
{2) are the same as for £, Moreover, IN({) is clearly (., IN{Z) and OUT({I)
is |_J{-; OUT(F). Since each I, connects wherever [ connects, the IN function
for nodes other than I'in G, is the same as in . Thus, a simple induction on
the number of calls of step (2) shows that IN is correctly computed. [

11.4.4. Chapter Summary

If we are going to construct an optimizing compiler, we must first decide
what optimizations are worthwhile, This decision should be based on the
characteristics of the class of programs the compiler is expected to compile,
Unfortunately, these characteristics are often hard to determine and little
has been published on this subject.
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In this chapter we have approached code optimization from a rather
general point of view and it would be wise to ask how the various aspects of
code optimization that we have discussed relate to each other.

The techniques of Section 11.2, on arithmetic expressions, can be used at
the time the final object program is constructed. However, some aspects of
the algorithms in Section 11.2 can also be incorporated into the generation
of intermediate code. That is, portions of the algorithms of that section can
be built into the output of the syntax analyzer, This will lead to straight-line
blocks that tend to make efficient use of registers.

At the code generation phase of the compiler, we have an intermediate
program which we may suppose looks something like the “programs” of
Section 11.3. Our first task is to construct the flow graph in the manner
described in that section, A possible next step is to perform loop optimiza-
tions as described in Section [1.3, starting with inner loops and proceeding
outward.

Having done this, we can compute global data flow information, e.g.,
as suggested by Algorithm 11.8 and/or Exercises 11.4.19 and 11.4.20. With
this information, we can perform the “global” optimizations of Section 11.3,
c.g., constant propagation and common subexpression elimination, At this
stage, however, we must be careful not to add steps to inner loops. To do
this, we could flag blocks in inner loops and in such blocks avoid an addi-
tional store of an expression, even if that expression were used later on in
a block outside the loop. If the machine for which we are generating code
has more than one register, we can use active variable determination (Exercise
11.4.20) to determine which variables should occupy registers on exit from
blocks.

Finally, we can treat the basic blocks by the methods of Section 11.1
or an analogous method, depending on the exact form of the intermediate
language. Also at this stage, we allocate registers within the block, subject
to the constraints imposed by the global register assignment mentioned above.
Some heuristic techniques are usually needed here.

EXERCISES

11.4,1. Construct the derived sequence of flow graphs for the flow graphs in
Fig. 11.32 (p. 931} and Fig. 11.36 {p. 934), Are the flow graphs reduci-
ble?

11.4.2. Give additional examples of irreducible flow graphs.

11.4,3, Prove Theorem 11,12(1) and (2).

*11.4.4. Show that Algorithm 11.6 can be implemented to run in time propor-
tional to the number of edges in flow graph F.



11.4.5.
11.4.6.
114.7.

11.4.8.

11.4.9.

11.4.10.

11.4.11.
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Prove Theorem 11.14,
Complete the proof of Theorem 11.16,

Use interval analysis (Algorithm 11.7) as the basis of an algorithm that
determines, given a statement which references variable A, whether 4
was explicitly defined to have the same constant value at each execu-
tion of the statement. Hint: It is necessary to determine which defini-
tion statements defining 4 could have been the previous definition of
A before the current execution of the statement in question. It is easy
to determine this if there is a previous statement defining 4 in the
block of the statement in question. If not, we need IN(®) for the block
of the statement. In the latter case, we say that 4 hag a constant value
if and only if all definition statements in IN(®) which define A4 give
A the same constant value.

Give an algorithm wusing interval analysis as a basis to defermine
whether a statement S is useless, i.e., whether there is some statement
which might use the value defined by S.

Let ® be a block of a flow graph with edges to ®, and ®,. Let 4 be
a definition statement in & whose value is not used by ®. If no block
accessible from (&, uses the value defined by d, then 4 may be moved
to ®&,. Use interval analysis as the basis of an algorithm to detect such
situations.

Compute TN for each‘block of the following program:

N2

Y. I«—2

W. ifI < Ngoto X
write N’

Z, N«——N+1
goto ¥

X: J<«— remainder(N, I)
ifJ = 0gotoZ
FT«—1TI+1
goto I

Compute IN for each block of the following program:

read [

if =1 goto X
Z: ifI> 10 goto ¥
X: J+«—1+3

write J
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W I+«—1T+4+1
goto Z

Y: T«—71—-1
if > 15 goto W
halt

*11.4.12, Let T, and T, be two transformations defined on flow graphs as
follows:

T, 1If node n has an edge to itself, remove that edge.

T,: If node n has a single entering edge, from node m, and # is
not the begin node, merge m and n by replacing the edge
from m to n by edges from m to each node »" which was
formerly entered by an edge from # Then delete n.

Show that if Ty and T, are applied to a flow graph F until they can
no longer be applied, then the result is the limit of F.

*11.4.13, Use the transformations 7; and 7, to give an alternative way of
computing the IN function without using interval analysis,

**11.4.14. Let G be a flow graph with initial node #,. Show that G is irreducible
if and only if it has nodes #;, n,, and n; such that there are paths
from #ny to my, from ny to 5, and n,, from », t0 73, and from #y to 1y
(See Fig. 11.48) which do not coincide except at their end points. All
of ng, ny, # and ny must be distinct, with the exception that #, may

be n,.

Fig. 11.48 Paitern in every irreducible
flow graph.

11.4.15. Show that every d-chart (See Section 1.3.2) is reducible. Hint: Use Exer-
cise 11.4.14.

11.4.16. Show that every FORTRAN program in which every transfer to a
previous statement of the program is caused by a DO loop has a
reducible flow graph.



**11.4.17.

*11.4.18.

*11.4.19.

*11.4.20.

11.4.21.

*11.4.22.

*11.4.23.

*11.4.24,

*11.4.25,

EXERCISES 959

Show that one can determine in time O(n log n) whether a program
flow graph is reducible. Hint: Use Exercise 11.4.12,

What is the relation between the concepts of intervals and single-entry
regions ?

Give an interval-based algerithm that determines for each expression
(say A4 -+ B) and each block & whether every execution of the program
must reach a statement which computes 4 + B (i.e., there is a state-
ment of the form C «— 4 4+ B) and which does not subsequently redefine
A or B. Hint: If B is not the begin block, let IN(®) = N, OUT(®)),
where the ®,’s are all the direct predecessors of ®. Lat OUT(®) be

(INBYN X)u Y

where X is the set of expressions “killed” in & (we “kill" 4 4+ Bby
redefining 4 or B) and Y is the set of expressions computed by the
block and not killed. For each interval [ of the various derived graphs
and each exit s of I, compuie GEN{/, 8} to be the set of expres-
sions which are computed and not subsequently killed in every path
from the entrance of I to exit 5. Also, compute TRANS(Z, 5) to be
the set of expressions which if killed, are subsequently generated in
every such path. Note that GEN'({, §) = TRANS' (/, 5).

Give an algorithm, based on interval analysis, that determines for
each variable 4 and each block ® whether there is an execution
which after passing through ® will reference A before redefining it.

Let F be an # node flow graph with e edges. Show that the ith-derived
graph of F has no more than e — 7 edges.

Give an example of an # node flow graph with 2x edges whose derived
sequence is of length ».

Show that Algorithm 11.7 and the algorithms of Exercises 11.4.19
and 11.4.20 take at most Q(n%) bit vector steps on flow graphs of n
nodes and at most 2# edges.

There is another approach to data flow analysis which is tabular
in nature. For example, in analogy with Algorithm 11.8, we could
compute a table IN(d, ®) which had value 1 if definition 4 was in
IN(®)and 0 otherwise. Initially, let IN(Z, ®) = 1 if and only if there is
a node ® with an edge to ® and o is in GEN(®"). For each 1 added
to the table, say at entry {d, ®), place a 1 in entry {d, ®") if there is
an edge from & to ® and ® does not kill 4.

Show that the above algorithm correctly computes IN(®) and that it
operates in time Q(n) on an » node flow graph with at most 2n edges
and m definitions.

Give algorithms similar to the above performing the tasks of Exercises
11.4.19 and 11.4.20. How fast do they run?
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**11.4.26. Give algorithms requiring 0(n log #) bit vector steps to compute the IN
functions of Algorithm 11.7 or Exercise 11.4.19 for flow graphs of n
nodes.

*#11.4.27. Show that a flow graph is reducible if and only if iis edge set can be
partitioned into two sets E; and E,, where (1) E; forms a dag, and
(2) If (m, 1) is in E,, then 7 = n, or » dominates m,

**11.4.28. Give an O(x log ») algorithm to compute direct dominators for an n
node reducible graph.

Research Problems

11.4.29. Suggest some additional data flow information (other than that men-
tioned in Algorithm 11.7 and Exercises 11.4.19 and 11.4.20) which
would be useful for code optimization purposes. Give algorithms to
compute these, both for reducible and for irreducible flow graphs.

11.4.30. Are there techniques to compute the IN function of Algorithm 11.8 or
other data flow functions that are superior to node splitting for irre-
ducible graphs? By “superior,” we are assuming that bit vector
operations are permissible, or else the algorithms of Exercises 11.4.24
and 11.4.25 are clearly optimal. '

BIBLIOGRAPHIC NOTES

The interval analysis approach to code optimization was developed by Cocke
[1970} and further elaborated by Cocke and Schwartz [1970] and Allen [1970].
Kennedy [1971] discusses a global algorithm that uses interval analysis to recognize
active variables in a program (Exercise 11.4.20).

The solutions to Exercises 11.4.12-11.4.16 can be found in Hecht and Ullman
[1972a). Exercise 11.4.17 is from Hopcroft and Ullman [1972b]. An answer to
Exercise 11.4.19 can be found in Cocke [1970] or Schaefer [1973]. Exercises 11.4.24
and 11.4.26 are from Ullman [1972b]. Exercise 11.4.27 is from Hecht and Ullman
[1972b]. Exercise 11.4.28 is from Aho, Hopcroft and Ullman [1972].

There are several papers that discuss the implementation of optimizing com-
pilers. Lowry and Medlock [1969] discuss some optimizations used in the OS/360
FORTRAN H compiler. Busam and Englund [1969] present techniques for the
recognition of common subexpressions, the removal of invariant computations
from loops, and register allocation in another FORTRAN compiler.

Knuth [1971] collected a large sample of FORTRAN programs and analyzed
some of their characteristics,
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8.4 680 93 736 11.13 943
8.5 683 94 742 11.14 952
8.6 684 9.5 746 11.15 955
8.7 688 9.6 752 11.16 955
8.8 688 9.7 764

987
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Lemma Lemma Lemma

Number Page Number Page Number Page
7.1 614 8.11 705 11.3 859
7.2 614 8.12 705 11.4 860
73 638 8.13 712 11.5 862
8.1 669 8.14 713 11.6 862
8.2 678 8.15 715 11.7 862
8.3 681 10.1 803 11.8 887
8.4 682 10.2 803 11.9 887
8.5 683 10.3 833 11.10 889
8.6 634 10.4 837 11.11 389
8.7 687 10.5 837 11.12 899
8.8 695 10.6 837 11.13 915
8.9 696 11.1 855 1i1.14 915
8.10 704 11.2 856 11.18 953

Algorithm Algorithm Algornithm

Number Page Number Page Number Page
7.1 547 8.1 674 10.2 795
7.2 567 82 678 10.3 827
73 572 8.3 682 10.4 832
7.4 574 8.4 698 10.5 834
7.5 584 8.5 702 11.1 882
7.6 589 8.6 T2 11.2 882
7.7 593 8.7 714 11.3 892
7.8 601 9.1 740 114 897
7.9 613 9.2 744 11.5 916
7.10 624 8.3 750 11.6 940
7.11 631 %.4 762 11.7 949
7.12 633 8.5 764 11.8 953

7.13 635 i0.1 793
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A

Azanderaa, 8. D., 34

Absolute machine code, 720-721

Acceptable property, 813

Acceptance, 96 (see also Final configura-
tion)

Accessible configuration, 583

Accessible state, 117, 125-126

Accumulator, 65

Ackley, 8. 1, 263

Action function, 374, 392

Active variable, 849, 937

Adjacency matrix, 47-51

Ahg, A. V., 102-103, 192, 251, 399, 426,
563, 621, 645, 665, 709, 757, 787,
878, 960

Algebraic law, 846, 867-873, 910-911

ALGOL, 198-199, 234, 281, 489.490,
501, 621

Algorithm, 27-36

Allard, R. W, 906

Allen, F. E., 936, 960

Alphabet, 15

Alternates (for a nonterminal), 285, 457

Ambiguous grammar, 143, 163, 202-207,
281, 489-490, &§62-663, 678, Ti1-
712 (see alse Unambiguous gram-
mar)

Ancestor, 39

989

Anderson, J. P, 906

Antisymmetric relation, 10

Arbib, M. A, 138

Arc (see Edge)

Arithmetic expression, 86, 768-773, 778—
781, 878-907

Arithmetic progression, 124, 209, 925
929

Assembler, 59, 74

Assembly language,
879-880

Assignment Staternent, 65~70

Associative law, 23, 617, 868-873, 8§74,
891, 894-903

Associative tree, 8959502

Asymmetric relation, 9

§5-70, 721, 863,

Atom, 1-2

Attribute (see Inherited attribute, Syn-
thesized  atfribute, ‘Translation
symbol)

Augmented grammar, 372-373, 427-428,
634

Automaton (see Recognizer, Transducer)
Available expression, 937
Axiom, 19-20

B

Backtrack parsing, 281-314, 456-500,

T46-753
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Backus, J. W,, 76

Backus—Naur form, 58 (see aiso Context-
free prammar)

Backwards determinism (see Unique in-
vertibility)

Baer, 1. L., 906

Bar-Hillel, Y, 82, 102, 211

Barnett, M. P,, 237

Base node, 39

Basic block (see Straight-line code)

Bauver, F. L., 455

Bauer, H,, 426

Beals, A. J.,, 578

Beatty, J. C., 906

Becker, S., 426

Begin block, 913, 938

Belady, L. A, 906

Bell, J. R., 563, 811

Berge, C., 52

Bijection, 10

Binary search tree, 792-793

Birman, A., 485

Blatiner, M., 211

Block (see Straight-line code)

Block-structured language, bookkeeping
for, 792, 812-813, 816-821

BNF (see Backus—Naur form)

Bobrow, D. GG, 82

Book, R. V., 103, 211

Boockkeeping, 59, 62-63, 74, 255, 722~
723, 781-782, 788-843

Boolean algebra, 23-24, 129

Booth, T. L., 138

Border (of a sentential form), 334, 369

Borodin, A., 36

Bottom-up parsing, 178-184, 268-271,
301307, 485-500, 661-662, 740~
742, 767, 816 {see also Bounded-
right-context grammar, Floyd-
Evans productions, LR(%) gram-
mar, Precedence grammar)

Bounded context grammar/language,
450452

Bounded-right-context (BRC) grammar/
language, 427-435, 448, 451-432,
666, 699-701, 708, 717 (see also
(1, 1)-BRC grammar, (1, 0)-
BRC grammar}

Bovet, D. P, 966

Bracha, N., 878

Brever, M. A., 878

Brooker, R. A, 77, 313
Bruno, J. L., 787
Brzozowski, J. A., 124, 138
Burkhard, W. A., 787
Busam, V. A, 936, 960

C

Canomical collection of sets of valid
items, 389-391, 616, 621
Canonical grammar, 692-697, 699700
Canonical LR (k) parser, 393-396
Canonical parsing automaton, 647-648,
657
Canonical set of LR{k) tables, 393-394,
584, 589-590, 625
Cantor, D. G., 211
Cardinality {(of a set), 11, 14
Cartesian product, 5
Catalan number, 165
Caviar, 667
Caviness, B. F., 878
CFG (see Context-free grammar)
CFL (see Context-free language)
Cheining, 808-809
Characteristic function, 34
Characteristic string (of a right senten-
tial form), 663
Characterizing language, 238-243, 251
Cheatham, T. E., 58, 77, 280, 314, 579
Chen, 8. C.,, 906
Chomsky, N., 29, 58, 82, 102, 124, 166,
192, 211
Chomsky grammar, 29 (see alse Gram-
mar)
Chomsky hierarchy, 92
Chomsky normal form, 150-1353, 243,
276-277, 280, 314, 362, 689, 708,
824
Christensen, C., 58
Church, A., 25, 29
Chureh—Turing thesis, 29
Circuit (see Cycle)
Circular translation scheme, 777-778
Clark, E. R,, 936
Closed portion (of a sentential form),
" 334-369
Closure
of a language, 17-18, 197
reflexive and transitive, 8-9
of a set of valid items, 386, 633



Closure (cont.)
transitive, 8-9, 47-50, 52

Cluster (of a syntax tree), 894895

CNF (see Chomsky normal form)

Cocke, 1., 76, 332, 936, 960

Cocke-Younger~-Kasami algorithm, 281,
314-320

Code generation, 59, 65-70, 72, 74, 728,
765-766, T81-782, 863867 (see
also Translation)

Code motion, 924-92§

Code optimization, 59, 70-72, 723-724,
726, 769-772, 844-960

Cohen, R. 8., 500

Collision (in a hash table), 795-796,
798-799

Colmerauer, A., 500

Colmeraver gramrmar, 492, 497-500

Colmerauer precedence relations, 490
500

Column merger {in LR{k} parser] 611-
612

Common subexpression (see Redundant
computation)

Commutative law, 23, 71, 867, 869-873,
876, 891-903

Compatible partition, 593-596, 601, 627

Compiler, 53-37 (see aiso Bookkeeping,
Code generation, Code optimiza-
tion, Error correction, Lexical
analysis, Parsing)

Compiler-compiler, 77

Compile time computation, 919-921

Complementation, 4, 189-190, 157, 208,

484, 689

Completely specified finite automaton,
117

Component grammar (sge Grammar
splitting)

Composition {of relations), 13, 250

Computational complexity, 27-28, 208,
210, 297-300, 316-320, 326-328,
356, 395-396, 473476, 736, 839-
840, 863, 874, 944, 958-955

Computation path, 914-915, 944

Computed goto (in Floyd—Evans produc-
tions), 564

Concatenation, 15, 17, 197, 208-210, 689

Configuration, 34, 95, 1i3-114, 168-169,
224, 228, 290, 303, 338, 477, 488,
582
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Conflict, precedence {see Precedence con-
flict)

Congruence relation, 134

Consistent set of items, 391

Constant, 254

Constant propagation (see Compile time
computation)

Context-free grammar/language, 57, 91—
93, 97, 99, 101, 138-211, 240-
242, 842

Context-sensitive grammar/language, 91--
93, 97, 99, 101, 208, 399

Continuing pushdown automaton, 188-
189

Conway, R. W., 77

Cook, 8. A, 34, 192

Core [of a set of LR(%) items], 626-627

Correspondence problem (see Post’s cor-
respondence praoblem)

Cost criterion, 844, 861863, 891

Couniable set, 11, 14

Cover, grammatical (see Left cover, Right
cOover)

CSG (see Context-sensitive grammar)

CSL {see Contexi-sensitive language)

Culik, K. II, 368, 500

Cut (of a parse tree), 140-141

Cycle, 39

Cycle-free grammar, 150, 280, 302-303,
307

D

Dag, 39-40, 42-45, 116, 547-549, 552,
763-765, 854-863, 865-866, 959

Dangling else, 202-204

Data flow, 237-960

Davis, M., 36

D-chart, 79-82, 958

De Bakker, J. W., 878

Debugging, 662

Decidable problem (see Problem)

Defining equations (for context-free lan-
guages), 159-163

Definition (statement of a program), 909

De Morgan's laws, 12

Denning, P. J., 426, 709

Depth {in a graph), 43

De Remer, F. L., 399, 512, 578, 645, 665

Derivation, &6, 98
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Derivation tree (sqe Parse tree)
Derivative {of a regular expression), 136
Derived graph, 940-941
Descendant, 39 ‘\,_
Deterministic finite automaton, 116, 255
(see alse Finite automaton}
Deterministic finite transducer, 226-227
(see also Finite transducer)
Deterministic language (see Determin-
istic pushdown automaton)
Deterministic pushdown automaton, 184—
192, 201-202, 208-210, 251, 344,
398, 446, 448, 466-469, 684636,
695, 701, 708-709, 711, 712, 717

Deterministic pushdown transducer, 229,
251, 271-275, 341, 395, 443, 446,
730-736, 756

Deterministic recognizer, 95 (see alse
Deterministic  finite automaton,
Deterministic pushdown automa-
ton, Deterministic two-stack
parser, Recognizer)

Deterministic two-stack parser, 488, 492—
493, 500

Dewar, R. B. K., 77

Diagnostics (see Error correction)

Difference (of sets), 4

Differentiation, 760763

Dijkstra, E. W., 79

Direct access table, 791-792

Direct chaining, 808

Direct dominator (see Dominator}

Direct lexical analysis, 61-62, 258-281

Directed acyclic graph. (see Dag)

Directed graph (see Graph, directed)

Disjoint sets, 4

Distance (in a graph}, 47-50

Distinguishable states, 124-128,
654-657

Distributive law, 23, 868

Domain, 6, 10

Domolki’s algorithm, 312-313, 452

Dominator, 915-917, 923-924, 934, 939,
959

Don’t care entry [in an LR(%) table],

581-582, 643 (see also @-inacces-

sible)

(see Deterministic pushdown

automaton )

DPDT (see Deterministic
transducer)

593,

DPDA

pushdown

Dyck language, 209

¢ {see Empty string)
Earley, J., 332, 578, 645
Earley's algorithm, 73, 281, 320-31, 397-
393
Edge, 37
e-free first (EFF), 381-382, 392, 398
e-free grammar, 147-149, 280, 302-303,
397
Bickel, J., 455
Eight queens problem, 309
Elementary operation, 317, 319, 326, 395
e-move, 168, 190
Emptiness probtem, 130-132, 144-145,
483
Empty set, 2
Empty string, 15
Endmarker, 94, 271, 341, 404, 469, 484,
698, 701, 707, 716
Engeler, E., 58
English, structure of, 55-56, 78
Englund, D. E., 936, 960
Entrance (of an interval), 947
Entry (of a block), 912
e-production, 92, 147--149, 362, 674-680,
686-688, 690
Equivalence
of LR(4) table sets, 585-588, 590-
596, 601, 617, 625, 652-683
of parsers, 560, 562-563, 580-581 (see
also Equivalence of LR(4) table
sets, Exact equivalence)
of programs, 909, 936
of straight-line blocks, 848, 891
topological  (see  Equivalence of
straight-line blocks)
under algebraic laws, 868-869
Equivalence class (see Equivalence re-
lation)
Equivalence problem, 130-132, 201, 237,
362, 684-686, T09, 936
Equivalence relation, 6-7, 12-13, 126,
133-134
Erase state, 691, 693, 708
Error correction/recovery, 59, 72-74, 77,
367, 394, 399, 426, 546, 586, 615,
644, 781, 937



Error indication, 583

Essential blank (of a precedence matrix),
556

Euclid’s algorithm, 26-27, 36, 910

Evans, A., 455, 512

Evey, R. J., 166, 192

Exact equivalence (of parsers), 555-559,
562, 585

Exit (of an intervai), 947

Extended precedence grammar, 410-415,

| 424-425, 429, 451, 717

Extended pushdown automaton, 173-175,
185-186

Extended pushdown transducer, 269

Extended regular expression, 253-258

Extensible language, 58, 501-504

Feldman, J. A, 77, 455

Fetch function {(of a recognizer), 94

FIN, 135, 207

Final configuration, 95, 113, 169, 175,
224, 228, 339, 583, 648

Final state, 113, 168, 224

Finite ambiguity, 332

Finite auwtomaton, 112-121, 124128,
255-261, 397 (see afso Canonical
parsing automaton)

Finite conirol, 95, 443 (see also State)

Finite set, 11, 14

Finite transducer, 223-227, 235, 237-
240, 242, 250, 252, 254-255, 258,
722

FIRST, 300, 335-336, 357-359

Fischer, M. 1., 102, 426, 719, 843

Fischer, P. C., 36

Flipping (of statements), 853-859, 861—
863

Flow chart, 79-82 (see also Flow graph}

Flow graph, 907, 913-914

Flovd, R. W., 52, 77, 166, 211, 314, 426,
455, 563, 878, 506

Floyd—Evans productions, 443448, 452,
564-579

FOLLOW, 343, 425, 616, 640

Formal Semantic Language, 455

FORTRAN, 252, 501, 912, 938

Frailey, D. 1., 906

Freeman, D. N., 77, 263
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Frequency profile, 912
Frontier {of a parse tree), 140
Function, 10, 14

Futrelle, R. P, 237

G

Galler, B. A., 58

Gear, C. W, 936

GEN, 945-955

Generalized syntax-directed translation
scheme, 758-765, 782-783

Generalized top-down parsing language,
469485, 748-753

Gentleman, W. M., 61

Gill, A., 138

Ginsburg, 8., 102-103, 138, 166, 211,
237

Ginzburg, A., 138

GNF (see Greibach normal form)

Gotlieb, C. C,, 314

GOTO, 386-390, 392, 598, 616

GOTO-1, 53%8-600

Goto function, 374, 392

GOTO graph, 599-600

Governing table, 581

Graham, R. L., 907

Graham, R. M., 455

Graham, S. L., 426, 709

Grammar (see Bounded-right-context
grammar, Colmerauer grammar,
Context-free grammar, Context-
sensitive grammar, Indexed gram-
mar, LC(k) grammar, LL{k}
grammar, LR(k) grammar, Op-
erator grammar, Precedence gram-
mar, Right-linear grammar, Web
grammar)

Grammar splitting, 631-645

Graph

directed, 37-52
undirected, 51

Graph grammar (see Web grammar)

Gray, . N,, 192, 280, 455, 500, 709

Greek letters, 214

Greibach, 8. A., 102-103, 166, 211

Greibach normal form, 153-162, 243,
280, 362, 668, 681684, 690, 708

Gries, D., 7677

Griffiths, T. V., 314

Griswold, R. E., 505
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Gross, M., 211
GTDPL (see (Generalized
parsing language)

top-down

H

Haines, L. H., 103

Halmoes, P. R, 3, 25

Halting (see Recursive set, Algorithm)

Halting probilem, 35

Halting pushdown automaton, 282-285

Handle (of a right-sentential form) 179--
180, 377, 379-380, 403-404, 486

Harary, F., 52

Harrison, M. A., 138, 192, 280, 455, 500,
709

Hartmanis, J., 36, 192

Hashing function, 794-795, 797-798 (seze
also Hashing on locations, Linear
hashing function, Random hash-
ing function, Uniform hashing
function)

Hashing on locations, 804-807

Hash table, 63, 793-811

Haskell, R., 280

Haynes, H. R., 578

Hays, D. G, 332

Header (of an interval), 938-939

Hecht, M. 8., 960

Height

in a graph, 43
of an LR(k) table, 598

Hellermann, H., 906

Hext, J. B., 314

Hochsprung, R. R., 77

Homomorphism, 17-18, 197, 207, 209,
213, 689

Hopcroft, 1. E., 36, 102-163, 138, 192,
211, 368, 399, 690, 843, 960

Hopgood, F. R. A, 76, 455

Horning, J. Y., 76-77, 450, 465

Horwiiz, L. P., 906

Huffman, D. A, 138

Ianov, 1. 1., 937

Tharra, Q., 192

Ichbiah, J. D., 426, 579
Identifier, 60-63, 252, 254

Igarishi, §., 878

IN, 944-955, 959

Inaccessible state (see Accessible state)

Inaccessible symbol (of a context-free
grammar), 145-147

Inclusion (of sets), 3, 208

In-degree, 39

Independent nodes (of a dag), 552-555

Index (of an equivalence relation), 7

Indexed grammar, 100-101

Indirect chaining (see Chaining)

Indirect lexical analysis, 61-62, 254-258

Indistinguishable states (see Distinguish-
able states)

Induction (see Proof by induction}

Induction variable, 925-929

Infinite set, 11, 14

Infix expression, 214--213

Ingerman, P. Z., 77

Inherent ambiguity, 205-207, 209

Inherited attribute, 777-781, 784

INIT, 135, 207

Initial configuration, 95, 113, 169, 583,
648

Initial state, 113, 168, 224

Initial symbel {of a pushdown automa-
ton}, 168

Injection, 10

Jnput head, 94-96

Input symbol, 113, 168, 218, 224

Input tape, 93-96

Input variable, 845

Interior frontier, 140

Intermediate (of an indexed grammar},
100

Intermediate code, 59, 65-70, 722-727,
844-845, 908509

Interpreter, 55, 721, 725

Interrogation state, 650, 658

Intersection, 4, 197, 201, 208, 484, 689

Intersection list, 824-833, 839-840

Interval analysis, $37-960

Inverse (of a relation), 6, 10-11

Inverse finite transducer mapping, 227

Irland, M. I, 36

Irons, E. T., 77, 237, 314, 455

Irreducible flow graph, 953-955

hrreflexive relation, 9

[tem (Earley's algorithm), 320, 331, 397~
398

Item [LR(%}], 381 (see also Valid item)
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Johnson, 8. C., 665
Johnson, W. L., 263

K

Kameda, T., 138

Kaplan, D. M., 937

Karp, R. M., 806

Kasami, T., 332

Kennedy, K., 206, 960

Keyword, 59, 259

KGOTO, 636-637

Kleene, 8. C., 36, 124

Kleene closure (see Closure, of & lan-
guage)

Knuth, D. E., 36, 58, 368, 399, 485, 690,
709, 787, 811, 912, 960

Korenjak, A. J., 368, 399, 636, 645, 690

Kosaraju, S. R., 138

k-predictive parsing algorithm (see Pre-
dictive parsing algorithm}

k-uniform hashing function (see Uniform
hashing function}

Kuno, 8., 313

Kurki-Suonio, R., 368, 690

L

Labeled graph, 38, 42, 882, 896-897

L.a France, I. E., 578-579

Lalonde, W. R., 450

LALR(k} grammar (see
LR{k) grammar)

Lambda calculus, 29

Language, 16-17, 83-84, 86, 96, 114,
169, 816 (see also Recognizer,
Grammar)

LBA (see Linear bounded automaion)

LC(ky grammar/language, 362-367

Leaf, 39

Leavenworth, B. M., 58, 501

Lee, E. 8., 450

Lee, J. A. N, 76

Left-bracketed representation (for trees),
46

Left-corner parse,
362-367

Left-corner parser, 310-312

Lookahead

278-280, 310-312,

[NDEX TO VOLUMES I AND I 995

Left cover, 275-277, 280, 307, 690
Left factoring, 345
Left-linear grammar, 122
Leftmost derivation, 142-143, 204, 318-
320
Lefi-parsable gramanar, 271-275, 341,
672674
Left parse (see Leftmost derivation, Top-
down parsing)
Left parse language, 273, 277
Left parser, 266-268
Left recursion, 484 (see also Left-recur-
sive grammar)
Left-recursive grammar, 153-158, 287-
288, 294-29R, 344-345 681-682
Left-sentential form, 143
Leinius, R. P., 399, 426, 645
Length,
of a derivation, 86
of a string, 16
Lentin, A, 211
Lewis, P. M. II, 192, 237, 368, 621, 757,
843
Lexical analysis, 59-63, 72-74, 251-264,
721-722, 781, 789, 823
Lexicographic order, 13
Limit flow graph, 941
Linear bounded automaton, 100 (see also
Context-sensifive grammar)
grammar/language, 1635-170,
207-208, 237
Linear hashing function, 804-805
Linearization graph, 547-550
Linear order 10, 13-14, 43-45, 865
Linear precedence functions, 543-563
Linear set, 209-210
Link editor, 721
LL(k) grammar/language, 73, 333-368,
397-398, 448, 452, 579, 643, 664,
666-650, 709, 711, 716-717, 730-
732, 742-746
LL{%) table, 349~351, 354-355
LL(1) grammar, 342-349, 483, 662
LL(0) grammar, 688-689
Loader, 724
Load module, 721
Loeckx, J., 435
Logic, 19-25
Logical connective, 21-25
Lookahead, 300, 306, 331, 334-336, 363,
371

Linear
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Lookahead LR(k) grammar, 627-630,
642-643, 662

Looping (in a pushdown automaton),
186-189

Loops (in programs), 907-960

Loop unrolling, 930-932

Lowry, E. 8., 936, 960

LR (k) grammar/language, 73, 369, 371-
399, 402, 424, 428, 430, 448, 579—
665, 666674, 730, 732-736, 740—
742

LR(L) table, 374-376, 392-394, 398,
580-582

LR(1) grammar, 410, 448-450, 690, 70i

LR(0} grammar, 590, 642, 646-657, 690,
699, 701, 708

Lucas, P, 58

Luckham, D. C., 909, 937

Lukasiewicz, J., 214

M

Major node, 889890, 903
Manna, Z., 937

Mapping (see Function}

Marill, M., 936

Marked closure, 210

Marked concatenation, 210
Marked union, 210

Markov, A, A., 29

Markov algorithm, 29

Martin, D. F., 563

Maurer, W. D, 811

MAX, 135, 207, 209

Mazxwell, W. L., 77

McCarthy, 1., 77

McClure, R. M., 77, 485, 757
McCullough, W. 8., 103
Mcllroy, M. D., 58, 61, 757, 843
McKeeman, W. M,, 76-77, 426, 455, 936
MecNaughton, R., 124, 690
Medlock, C. W., 936, 960
Membership (reiation on sets), |
Membership problem, 130-132
Memory (of a recognizer), 93-96
Memory references, 903-904
Mendelson, E., 25

META, 485

Meyers, W. 1., 906

Miiler, G, A, 124

Miller, R. E., 906

Miller, W. F., 82

MIN, 135, 207, 209

Minimal fixed point, 108-110, 121-123,
160-161

Minor node, 889, 903

Minsky, M., 29, 36, 102, 138

Mixed strategy precedence grammar, 435,
437-439, 448, 452, 552

Modus ponens, 23

Montanari, U. G, 82

Moore, E. F., 103, 138

Morgan, H. L., 77, 263

Morris, D., 77, 313

Morris, R., 811, 843

Morse, S. P., 426, 579

Moulton, P. G, 77
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