
RETARGETABLE COMPILER TECHNOLOGY
FOR EMBEDDED SYSTEMS

Retargetable Compiler
Technology for Embedded
Systems
Tools and Applications

by

Rainer Leupers and Peter Marwedel
University of Dortmund

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4419-4928-8 ISBN 978-1-4757-6420-8 (eBook)
DOI 10.1007/978-1-4757-6420-8

Printed on acid-free paper

All Rights Reserved
© 2001 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers, Boston in 2001
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

To Carl and
Veronika, M alte,

Gesine, and Ronja

Contents

Preface ix

1. INTRODUCTION 1

1.1 Embedded systems and their characteristics 1

1.2 Efficient hardware 3

1.3 Efficient software 4
1.3.1 How to specify embedded system software? 4
1.3.2 Efficient compilers 5
1.3.3 Retargetable compilers 6

2. COMPILERS IN EMBEDDED SYSTEM DESIGN 9

2.1 Design flow and hardware/software codesign 9

2.2 Design space exploration 11
2.2.1 Levels in the design space 11
2.2.2 Algorithm selection 14
2.2.3 Options for implementing algorithms 15
2.2.4 Process mapping and HW /SW partitioning 15
2.2.5 Memory system design 17
2.2.6 Instruction set options 18
2.2.6.1 Design of VLIW machines 18
2.2.6.2 Design of non-VLIW machines 21
2.2.6.3 Word length optimization 21
2.2.6.4 Register file sizing 23
2.2.7 Micro-architectural options 24

2.3 Design verification 26

3. SOME COMPILER TECHNOLOGY BACKGROUND 27

3.1 Front end 28

3.2 Intermediate representation 34

3.3 Backend 40
3.3.1 Code selection 40

vii

viii RETARGETABLE COMPILER TECHNOLOGY

3.3.2 Scheduling 44
3.3.3 Register allocation 50
3.3.4 Address code optimization 53
3.3.5 Phase coupling issues 56
3.3.6 Peephole optimization 58

4. HISTORICAL OVERVIEW 59
4.1 Contributions from the compiler community 59

4.1.1 UN COL 59
4.1.2 Code generation for expressions 60

4.2 Contributions from microprogramming 61
4.2.1 Motivation 62
4.2.2 Early work 62
4.2.3 First retargetable microcode compilers 63
4.2.4 The MIMOLA project 64

5. RETARGETABLE COMPILER CASE STUDIES 67
5.1 Retargetable compilers for GPPs 68

5.1.1 GCC 68
5.1.2 LCC 71
5.1.3 Marion 75
5.1.4 PAGODE 76
5.1.5 SUIF /Machine SUIF 77
5.1.6 Zephyr/VPO 79
5.1.7 LANCE 81

5.2 Retargetable compilers for DSPs 84
5.2.1 CBC 84
5.2.2 RED ACO 87
5.2.3 CodeSyn/Flex Ware 89
5.2.4 SPAM 91
5.2.5 RECORD 95

5.3 Retarget able compilers for VLIW s 98
5.3.1 ROCKET 98
5.3.2 IMPACT 99
5.3.3 Trimaran 100
5.3.4 Trimedia 102
5.3.5 AVIV 103
5.3.6 Mescal 105

5.4 Retargetable compilers for ASIPs 105
5.4.1 MSSQ 105
5.4.2 PEAS 110
5.4.3 Valen-C 113
5.4.4 EXPRESS 114
5.4.5 BUILDABONG 116

5.5 Special retargetability techniques 118

Contents ix

5.5.1 Code generation methods 118
5.5.1.1 Balakrishnan's microcode compiler 118
5.5.1.2 Mavaddat's formal language approach 119
5.5.1.3 Langevin's automata theoretic approach 119
5.5.1.4 Romer's automata theoretic approach 120
5.5.1.5 Wilson's ILP based code generator 121
5.5.1.6 FACTS 122
5.5.1.7 Bashford's CLP based code generator 123
5.5.1.8 Yamaguchi's code generator 125
5.5.2 Retargetable compilers for microcontrollers 125
5.5.2.1 Krohm's compiler 125
5.5.2.2 SDCC 126
5.5.3 Code generator generators 126
5.5.3.1 IBURG 126
5.5.3.2 OLIVE 129
5.5.3.3 BEG 131
5.5.4 Assembly-level optimization 132
5.5.4.1 SALTO 132
5.5.4.2 PROPAN 132
5.5.5 LISA 134
5.5.6 Compilers for industrial reconfigurable cores 137
5.5. 7 Retarget able test program generation 138
5.5.8 Retargetable estimation 139
5.5.9 Miscellaneous 140

5.6 Commercial retargetable compilers 141
5.6.1 CoSy 141
5.6.2 CHESS 142
5.6.3 Archelon 145
5.6.4 ucc 147

6. SUMMARY AND OUTLOOK

Appendices
Tabular overview of compiler tools

References

About the authors

Index

149

152
153

155

171

173

Preface

Embedded systems are information processing systems embedded in
larger products. They have their own characteristics which make them
different from desktop systems. For example, they have to be imple­
mented efficiently, and the same holds for the increasing amount of em­
bedded software. Designing an efficient, software- and processor-based
system requires that optimized processors are used. Such an optimiza­
tion requires a careful analysis of the design space, including a study of
cost/performance tradeoffs. In order to avoid assembly language pro­
gramming for such studies, compilers are needed. For analyzing the
effect of design options on the performance, these compilers should be
capable of generating code for all potential hardware configurations.

This is possible with retargetable compilers. Such compilers can be
adapted to new hardware easily. Recently, many new approaches for
designing such compilers have been developed. This book presents an
overview and classification of these techniques. For each of the compilers,
we mention key features, limitations, as well as software availability. The
list of retargetable compilers covered has never been collected before.
We also introduce key terms and techniques for compiler construction,
explain where in the design flow retargetable compilers fit and present
a history of retargetability. For people starting work on compilers for
embedded systems, this book should save a significant time for finding
references.

The book is self-contained and requires only fundamental knowledge
in software design. It is intended to be a key reference for researchers
and designers working on embedded software, compilation, and processor
optimization. It can also be used by people who need to get an overview
quickly, such as consultants and advisors. Please enjoy reading this
book!

RAINER LEUPERS, PETER MARWEDEL

xi

Chapter 1

INTRODUCTION

Writing this book was motivated by the growing usage of a large vari­
ety of processors in embedded systems. This trend has to be reflected in
the corresponding development of still missing tools for the design of em­
bedded systems. In order to understand the requirements for such tools,
we will first of all have to look at the characteristics of the application
areas that we are considering.

1. Embedded systems and their characteristics

Embedded systems can be defined as information processing systems
which are integrated into larger systems. In such systems, information
processing is usually not directly visible to the user, and customers will
typically not buy a certain product -like a car or a mobile phone- be­
cause he or she is interested in the features of the information processing
equipment. For example, customers will not buy a certain model of a
mobile phone because of the brand name and the clock speed of the
processor contained in the phone. They buy it because of the function­
ality that it provides, regardless of the electronic system supplying part
of that function. The same applies to information processing in cars,
trains, airplanes and smart homes, to mention some other examples of
embedded systems.

In many cases, the customer does not even recognize that information
processing takes place, partly because the standard interfaces for PC-like
equipment -like mice, keyboards and screens- are typically not available
for embedded systems. Rather, push buttons and small displays are used
as user interfaces.

1

2 RETARGETABLE COMPILER TECHNOLOGY

Tools for the design of embedded systems are very much influenced by
the characteristics of embedded systems. What are those characteristics
? The following list contains some of the most relevant ones:

1 Embedded systems have to be efficient. One of the most notable
instances of this is the need for energy efficiency, which applies at
least to all portable embedded systems.

Mobile phones and personal digital assistants are a very good exam­
ple for this. They use orders of magnitude less energy than today's
desktop computers and battery lifetime is a key argument for selling
these systems.

Energy consumption has also to be considered in the case of cars.
Customers expect cars to be operational even after many weeks of
not using them. Hence, the energy consumption of parked cars has
to be extremely low.

Weight is another aspect of efficiency. From looking at the mobile
phone market (as well as at the laptop market) it becomes obvious
that customers prefer light-weight systems.

Silicon area is also very important, since many embedded systems
have to be small and have to be fabricated at competitive prices.

Many embedded systems -especially multimedia and communication
systems- have very high performance requirements. These require­
ments have to be met with the least amount of resources.

Progress in process technology might lead to less emphasis on the
efficient use of silicon area and processor performance. However,
progress in battery technology is expected to be slow. Hence, the
importance of low energy consumption can be expected to increase
in the foreseeable future.

2 Embedded systems are using an increasing amount of software.
Only some peripheral components are implemented with special pur­
pose hardware. The main reason for this is the flexibility of software,
enabling a short time to market, late design changes and easy pro­
duct upgrades. For most application areas, current processors are
fast enough to meet performance requirements. Also, customers ask
for more and more functions and these can be provided in software
much easier than in special purpose hardware.

As a result, it has been found that, for many application areas, the
amount of software in embedded systems is doubling every two years
[43].

Introduction 3

3 The need of providing instruction set compatibility, which is a
driving force in the PC-domain, exists only in cases in which a huge
amount of legacy assembly language programs exist (which is some­
times the case in the car industry) and in cases in which development
tools are difficult to change.

4 There is a huge variety of embedded systems. This is demonstrated
by using the following examples:

• Information processing systems in cars are assumed to be work­
ing after disconnecting and then reconnecting the car battery.
If this happens while the engine is running, there will be high­
voltage transients. All designs have to guarantee that the elec­
tronic equipment within a car is fully functional after such tran­
sients [13]. It is frequently too expensive to add power regulators
just for this purpose and the processors themselves have to with­
stand high voltages.

• Processor-based systems can be inserted into the veins of the hu­
man body in order to sense, analyze and store information about
the blood (22]. Obviously, such systems have to be extremely
small and power efficient. Processor performance can be low.

• For multimedia and consumer electronics applications, very high
processor performance is required.

5 Embedded systems have to be dependable. Customers expect em­
bedded systems to provide their functionality at all times. This is
especially true for safety-critical products, but for non-safety-critical
products, customer satisfaction is also a major concern.

6 The functionality of embedded systems is essentially known at
design time. The flexibility of later adding significantly different
applications, which is available for PCs, is not required. This has to
be exploited in order to design an efficient system.

Not every embedded system will have all the above characteristics.
However, we will assume that most of the characteristics discussed above
will be present for the types of systems that we will talk about.

There is one immediate consequence from characteristics 1 and 2:
embedded software and used processors must be efficient. In particular,
they must make efficient use of energy and area.

2. Efficient hardware
The need for providing efficient processor hardware, combined with

the huge variety of applications makes it impossible to work with just

4 RETARGETABLE COMPILER TECHNOLOGY

a small set of processors {there is no "one-size-fits-all" processor). As a
result, processors optimized for embedded systems are quite common in
such systems. In many cases, processors are optimized for certain appli­
cation areas (such as audio and video applications) or even for certain
applications. For most applications there is a matching processor.

Using this large variety of processors is possible because of the third
characteristic. The reduced importance of instruction set compatibility
is a pre-condition enabling the freedom of working with different opti­
mized processors.

The following is a list of key characteristics of embedded processors:

• Embedded processors use a large amount of their circuitry for per­
forming useful functions and hardly any amount for providing in­
struction set compatibility with earlier processors.

• Instruction sets are optimized for certain application domains. For
example, instruction sets of digital signal processors (DSPs) include
instructions that are optimized for digital signal processing. They
contain multiply/ accumulate instructions, modulo-addressing, paral­
lel operations and special arithmetic modes [103].

• Hardware, which improves only the average execution speed but does
not improve the worst case execution time (WCET) is frequently
omitted. The reason for this is that many embedded systems have to
guarantee meeting hard real-time constraints. Hence, many embed­
ded processors come without caches.

• Hardware isolating user programs from the operating system and
from other users can in many cases be omitted since the user is not
expected to do any programming anyway. Therefore, memory man­
agement units and memory protection are found in only few proces­
sors.

• Energy efficiency of embedded processors (computed in terms of op­
erations per Watt) significantly exceeds that of processors used in
PCs.

In summary, optimizing processors for embedded applications is an
area in which a major amount of money has been invested and in which
a large amount of progress has been made.

3. Efficient software
3.1. How to specify embedded system software?

This is largely different for embedded software. Designing software
for embedded systems is still not easy. Software generation techniques

Introduction 5

for embedded systems are still far from being satisfactory. Problems do
already start at the specification level. How do we specify an embedded
system? Many proposals have been made so far. Still, an ideal specifi­
cation language meeting all requirements does not yet exist. A number
of attempts for meeting the most important requirements are shown in
fig. 1.1.

Assembly
programs

Figure 1.1. Approaches for specifying embedded systems

Due to the increasing amount of embedded software and due to the
limited amount of trained embedded software engineers available, high
software productivity is required. High software productivity can be
obtained by specifying embedded software at a high level of abstraction,
using compact specifications. This is reflected in the proposals for a
real-time extension of the unified modeling language UML. At a slightly
lower level, StateCharts and SDL are being used, as well as real-time
extensions of Java. At still lower levels we find programs written in C,
VHDL and assembly languages. Note that Cis used as an intermediate
step for most translations from higher level descriptions into machine
languages. Hence, the efficient generation of machine programs from
higher level specifications requires that C compilers generating efficient
code for embedded processors are available.

3.2. Efficient compilers
These compilers have to meet the general goal of generating efficient

code. However, C compilers for embedded processors are notoriously
known for their poor code quality. Detailed studies of the code quality
of available compilers were made in the context of the DSPStone project
at the Technical University of Aachen [77]. In this project, manually
generated assembly language programs were compared with compiled
code. Some of the results are shown in fig. 1.2.

According to fig. 1.2, data memory overhead for compiled code can
almost reach a factor of 5. Even worse, cycle overhead can reach a factor

6 RETARGETABLE COMPILER TECHNOLOGY

Data mem:lfy overhead [• N)

5.0

4.5
4.0

3.5
3.0

2.5

2.0

1.5

1.0 TI-C51 ACI -2101
CSP56001

Cycle overhead [x n)

8.0

7.0

6.0

5.0

4.0

3 .0

2.0

1.0---
TI-C5bsP560~f1·2101

Figure 1.2. Overhead of compiled code for ADPCM algorithm

of 8. That means, up to ~ of the useful processor cycles are needed just
to compensate for the negative effect of the compiler. This is a serious
problem for battery-operated systems. As a result, many embedded
systems are still implemented in assembly languages, partially because
the energy consumption of compiled code would be unacceptable.

However, a number of researchers are trying to improve the quality of
the code generated by available compilers [196]. In some cases, zero or
negative overhead has been reported. Due to the progress made in this
context and due to the increasing number of processors on the market,
other properties of compilers are gaining interest.

3.3. Retargetable compilers
The property gaining the largest increase is retargetability, which can

be defined as the possibility of changing a compiler generating code for
target processor A such that it will generate the code for target processor
B. Obviously, this definition contains some vagueness. To some extent,
every compiler is retargetable since changing almost all the compiler code
can still be called a change of the original compiler. We call this a very
low level ofretargetability. At the other extreme, there are compilers
that can generate code for another processor after just setting some
switch. For currently available systems, the level of retargetability is
somewhere in between. Recently, a number of approaches for generating
retargetable compilers have been published. This led to the idea of
presenting in this book a survey of the approaches that exist at the
beginning of this century. Significant progress has been made since the
last comprehensive survey [15] was published.

Introduction 7

When comparing different approaches, we have to distinguish between
various kinds of retargetability.

One form of changing the target processor is by changing some proces­
sor parameters such as the number of registers by using command-line
arguments and simple configuration files. We will call this a parame­
terized compiler. Apart from a flexible number of registers, flexible
cost functions for instructions and possibly some other parameters, the
instruction set of parameterized compilers is essentially fixed. These
compilers are relatively easy to design.

A more complex situation appears when the instruction set can be
changed. Due to the availability of tools such as IBURG [195] and
OLIVE [132], changing some instructions is not a major problem any­
more as long as the overall structure of the instruction set, the register
architecture etc. remain unchanged.

A very serious problem is to provide good optimizations for all possible
targets. In general it can be stated that a price has to be paid for
retargetability: it is much more difficult to supply good optimization
techniques for a wide range of possible architectures than for a small
range.

Another distinction is that between user- and developer-retarget­
ability. For user-retargetability, changing the target processor is easy
enough to be done by compiler users. User retargetability is typically
restricted to very similar processors.

Why are people interested in retargetable compilers? There is a num­
ber of reasons for this interest:

• Due to the large variety of embedded processors, designing a new
compiler for each and every processor is too costly. Also, it would
frequently become available too late to be really used in the critical
phases of the design.

• Retargetable compilers help to understand the mutual dependencies
between computer architectures, instruction sets, compilers and the
resulting code.

• A retargetable compiler can always be used as a first step towards
a fully optimizing, target-specific compiler. Hence, it is useful even
if we do not achieve the required code quality with a retargetable
compiler.

• A very important application of retargetable compilers is design space

exploration. Details about this will be presented in chapter 2.

In chapter 3 we will introduce some common terms and techniques
of compiler construction. Some of the early work on retargetability will

8 RETARGETABLE COMPILER TECHNOLOGY

be presented in chapter 4. Possibly the most important chapter of this
book is chapter 5, comprising a comprehensive set of descriptions of the
major contributions in this area. Finally, chapter 6 provides a summary
and outlook. A tabular overview of important tools is given in appendix
A.

Chapter 2

COMPILERS IN EMBEDDED SYSTEM
DESIGN

1. Design flow and hardware/software codesign
Applications of retargetable compilers have to be seen in the context

of the overall design flow of embedded systems. Different design flows are
being used. Nevertheless, fig. 2.1 can serve as an example representing
a wide range of realistic design flows.

~
Feed-back loop9-,
design space '
exploration

Early decisions, algorithm selection ..

Operation to process mapping,

HW /SW-Partitioning

Figure 2.1. Possible design flow

9

10 RETARGETABLE COMPILER TECHNOLOGY

First of all, the embedded system is specified using the techniques
mentioned in the previous chapter. Next, we have to map operations
to threads of control, called tasks or processes. The processes then
have to be mapped to hardware components. Possible hardware com­
ponents include processors, custom application specific hardware com­
ponents (ASICs) and field programmable gate arrays (FPGAs). A key
advantage of custom application specific hardware is its speed and en­
ergy efficiency. In contrast, a key advantage of software is its flexibility,
but implementing the same functionality in software does not result in
the same level of performance and energy efficiency that can be obtained
with ASICs. Generally, designers try to use only the necessary amounts
of specialized hardware and to map as much functionality as possible
to software. FPGAs also provide flexibility. Up till now, they are not
power- and area-efficient and they are therefore not considered in this
book, even though the situation may soon change.

Will all embedded systems be totally implemented in software in the
future, due to increasing processor speeds? Certainly not, for a variety
of reasons:

• some specialized interfaces to I/0 devices are typically required for
embedded systems,

• in parallel to increasing processor performance, the applications are
also becoming more and more demanding, especially for multimedia
applications ("By the time MPEG-n can be implemented in software,
MPEG-n+1 will have been propose£!'),

• it may be necessary to use specialized hardware in order to reduce
the energy consumption.

Therefore, we have to assume that, in general, embedded system de­
sign involves both the design of specialized hardware and the design of a
processor- and software-based part of the system. Hence, partitioning of
operations into those that will be implemented in specialized hardware
and those that will be implemented in software is required.

Partitioning is based on estimating the cost and the performance of
implementing operations (or sets of these) either in hardware or in soft­
ware. Mathematical programming or iterative procedures can then be
used for partitioning. A closer look at different techniques for computing
the estimates reveals that compiling processes is a way of finding cost
and performance estimates for software (38]. This means that compilers
may already be needed for hardware/software partitioning.

Compilers in Embedded System Design 11

After partitioning, the design flows for hardware and for software are
to some extent independent (see fig. 2.1), apart from design validations
involving hardware and software.

In general, it is very difficult to predict the effect of early design
decisions on consequences for the resulting design models. Therefore,
it may be necessary to have design iterations. These design iterations
correspond to control flow and are indicated by dashed lines in fig. 2.1.

According to the design flow, compilers are needed in different phases
during the design of embedded systems:

• possibly already during hardware/software partitioning for comput­
ing cost/performance estimates,

• for code generation after hardware/software partitioning,

• as verification tools which check if certain operations can be imple­
mented on certain hardware configurations.

In general, compilers are included in control flow loops for design
space exploration and therefore they also play an important role for this
design phase.

Standard, non-retargetable compilers can be used for all applications
just mentioned. However, traversing a large design space requires ei­
ther hundreds of compilers for all possible processor architectures or a
retargetable compiler which can be configured to generate code for the
currently considered target architecture.

Due to the importance of retargetable compilers for design space ex­
ploration (DSE), we will cover DSE in more detail in the following.

2. Design space exploration
2.1. Levels in the design space

The design space of embedded systems is typically quite large: numer­
ous options exist for the choice of the algorithms, processors, memory
systems, packages etc. There are also less legacy problems caused by
code compatability requirements. Since embedded systems have to be
efficient, this freedom has to be exploited in order to generate very effi­
cient designs. These can be found by traversing the design space. This
space is n-dimensional, where each dimension corresponds to a design
choice for which alternatives exist.

Fig. 2.2 shows a possible conceptual view of the design space [25]. At
the top level, we start with a specification of the design. This is fre­
quently called back-of-the-envelope (even though envelopes can hardly
be used to sketch all key ideas of the design, let alone a full specifica­
tion). Specifications originally only exist in people's minds. A subset of

12

High

Low

RETARGETABLE COMPILER TECHNOLOGY

back-of - the- envelope

Alternative realizations
Design space

Figure 2.2. Conceptual view of the design space

Low

High

these can be captured in the initial written specification. Unfortunately,
currently available specification techniques do not allow us to express ex­
actly what should be captured. Some properties cannot be specified in
formal languages (for example, how do you specify "user-friendliness"?).
In many cases, it is necessary to specify algorithms , even though many
different algorithms computing the same function exist. Due to these
reasons, we consider the specification to be the set of ideas about the
product that exist in the head of the person(s) specifying the embedded
system.

During the design process, many different design decisions can be
taken at all levels of abstraction. It is well-known that it is very expensive
to change a decision taken at a high level after discovering at a low level
that this decision should be revised.

In the context of this book, we distinguish between a certain number
of levels (there may be other levels in other contexts). These will be the
levels that we will consider:

1 The highest level, at which we will be considering alternatives, will be
the algorithm level. At this level, alternatives consist of different
options that exist for the essential algorithms of the embedded system
to be designed.

Compilers in Embedded System Design 13

Examples include different DCT or FFT algorithms, different algo­
rithms for character recognition, or different algorithms for data com­
pression.

2 At the next lower level, we consider different options for imple­
menting algorithms. These are options that are beyond the scope
of currently available compiler optimizations. For example, we may
find that only small regions of an array are needed at any given time
and we may hence decide to fold different regions, thereby possibly
saving a significant amount of memory space.

3 For software-based realizations, there are different alternatives for
mapping operations to processes. For the same type of realiza­
tions, the mapping of processes to processors has to be opti­
mized. This mapping is expected to become more important in the
future. Both mappings may be part of the partitioning between those
operations that will be implemented in hardware and those that will
be implemented in software (the so-called hardware/software par­
titioning). Both mappings can also be generated in an independent
design step.

4 For embedded systems, there may be a large amount of choices for
the peripheral components (displays, keys, disk drives) as well as
for the power supply subsystem. We will not consider these choices
in this book.

5 Due to the rapidly increasing processor speeds, the memory sub­
system is becoming extremely important and more options have to
be considered in order to design a high-speed, lower power memory
subsystem.

6 For the processors that are used, there are various options as far as
the instruction sets are concerned.

7 Finally, we mention several options that exist for the internal struc­
ture of processors (micro-architecture).

In the following, we will examine the usefulness of compilers (and of
retarget able compilers in particular) for exploring the design space. We
will present examples of applications of retargetable compilers. These
examples will show that the use of retargetable compilers for DSE is be­
coming a standard technique for medium and lower levels of the decision
tree.

14 RETARGETABLE COMPILER TECHNOLOGY

2.2. Algorithm selection
Automatically selecting the right algorithm has been a dream of many

researchers. In the digital signal processing (DSP) domain, there has
been the dream of automatically finding the right motion estimation
algorithm. In numerical mathematics, there has been the dream of au­
tomatically switching between sparse and dense representations of ma­
trices. After many years of research, some results are available. These
include the work in the SPIRAL project on the automatic transforma­
tion of algorithms, in particular DSP algorithms. The design flow in the
SPIRAL project is shown in fig. 2.3.

Algorithms in
algebraic notation

Benchmarking
tools

DSP transform/Algorithm

Formula generator

SPL

Formula translator

C/Fortran

C/Fortran compiler

Executable

Execution

Selection of next alternative

Intelligent

search

Platform adapted implementation

Figure 2.3. Selection of algorithms in the SPIRAL project

Different algorithms are generated from the same algebraic descrip­
tion of a certain DSP transform. Each algorithm is then compiled and
evaluated. The result of an evaluation controls the generation of the
next algorithm. Using clever search strategies [42], it has been possible
to try only certain design points and to focus on the promising parts of
the design space.

In the cited work, standard compilers are used within the feedback
loop. If retargetable compilers were used, it would be possible to analyze
dependencies between algorithms and processor architectures even for
architectures for which a standard compiler does not exist.

Compilers in Embedded System Design 15

2.3. Options for implementing algorithms
Design space exploration techniques at this level have be studied

at IMEC (Leuven, Belgium) in the context of their ATOMIUM and
ADOPT projects [12, 5, 11].

These projects focus mainly on multimedia applications. Such appli­
cations require very large amounts of data to be stored, transfered, and
processed. Consequently, very large data storage and transfer capacities
are needed, and the cost for these is one of the largest contributions to the
overall system cost. In order to reduce this cost, design transformations
designed in the ATOMIUM project aim at reducing these capacities. For
example, not all of the regions of an array may be needed at the same
time. Hence, these regions may be folded such that at any time, only a
small fraction of the array needs to be stored. Folding arrays reduces the
memory size requirements and consequently also the power consumption
and improves performance. A detailed analysis of the tradeoffs between
different techniques for implementing storage and transfer mechanisms
is the key feature of the ATOMIUM project.

Transformations such as array folding reduce the memory size, but
may increase the amount of necessary computations. For example, var­
ious if-statements may be required in order to distinguish between the
different regions of an array and complex modulo operations may be re­
quired for mapping index values to the small set of locations implement­
ing that array. Transformations developed in the ADdress OPTimization
project (ADOPT) project try to reduce the amount of necessary com­
putations and in particular try to remove the additional computations
inserted during the ATOMIUM transformations. The techniques are
based on the use of optimizing source code level transformations which
are organized in two stages: a processor target independent stage and a
processor (family) specific one.

The overall result is a modified algorithm which typically requires
smaller memories, less energy, less computations, and which consequently
shows better performance.

In the ADOPT and ATOMIUM projects, standard compilers are used
for evaluating the benefits of applied transformations. More advanced
compilers could integrate ATOMIUM and ADOPT techniques directly.
Retargetable compilers could be used for analyzing a larger design space.

2.4. Process mapping and HW /SW partitioning
For most of the approaches for specifying embedded systems, speci­

fications include concurrent processes. Partitioning of the specification
into processes is, first of all, a matter of convenience. Consider, for

16 RETARGETABLE COMPILER TECHNOLOGY

example, an answering machine. It it very convenient to describe the
monitoring of the incoming line and the keys as more or less indepen­
dent processes. It may be inefficient to implement a system using exactly
those processes that are described in the specification. Instead, Instead,
it may be more efficient to merge or to split processes used in the spec­
ifications:

• For example, if the execution of process A included in the specifica­
tion will always be followed by the execution of process B, it is very
wise to merge A and B in order to reduce context switching overhead.

• On the other hand, splitting a process into two may be very use­
ful if that process includes a wait-for-input operation. In that case,
all operations following that wait operation should be turned into a
separate process and that process should be triggered if the input
is available. This way, a blocking wait-for-input operation consum­
ing processor time can be turned into an event-controlled processor
scheduling requiring no active waiting.

Techniques for analyzing the design space in this context have been
described by Thoen [7].

Due to the increasing use of multiprocessor systems, finding a mapping
of processes to processors is also required. This mapping is very much
correlated to the process splitting and merging discussed above and can
hardly be done independently. Finding such a mapping is also very
much affected by decisions to map certain operations to hardware or to
software.

Taking such decisions is called hardware/software partitioning. In
hardware/software partitioning, we try to find a mix of hardware and
software such that costs are minimized while meeting all design con­
straints. A huge amount of techniques for hardware/software partition­
ing have been proposed. For example, we can map all operations to
hardware and then gradually move operations to software as long as
performance constraints are met. In another approach [38], a compre­
hensive mathematical model of the optimization problem is generated
and the cost function is minimized using mathematical programming
techniques. However, at the current state of the art, it is not feasible
to generate sufficiently good partitionings without using any feedback
loops. Rather, feedback loops are necessary to let results of one parti­
tioning step have an effect on the next partitioning (see dashed line in
fig. 2.1).

The effect of the options at this level can also be evaluated by means
of a compiler. Again, retargetable compilers can offer a wider choice of
processor architectures.

Compilers in Embedded System Design 17

2.5. Memory system design
Traditionally, the memory system was transparent to compilers, i.e.

the memory system was modeled as a single homogeneous array of stor­
age locations. Due to the larger access times and the increased en­
ergy consumption of smaller memories, it makes sense to design non­
homogeneous memory systems comprising a variety of memories, in­
cluding combinations of caches and memories mapped to parts of the
address space. In order to fully exploit the benefits of such memory
systems, compilers should be memory-aware.

Grun et al. designed a methodology for generating such compilers
from descriptions of the architecture [19]. Grun, Mishra et al. have
described how this methodology can be used for DSE [36]. In particular,
they analyzed the performance of six different memory configurations
attached to a TI 6211 processor. Table 2.1 contains these configurations.

Configu- L1 cache L2 cache SRAM stream DRAM
ration buffer
1 128B; 1=1; LRU 256; 1=4 1=20
2 128B; 1=1; LRU 2k; 1=1 1=20
3 128B; 1=1; FIFO 2k; 1=4; FIFO 1=20
4 128B; 1=1; LRU 2k; 1=4; LRU 1=20
5 128B; 1=1; FIFO 2k; 1=4; FIFO 1k; 1=1 1=20
6 8k; 1=1 1=20

Table 2.1. Size, latency and replacement policies for the six memory configurations

Options include two levels of caches, an SRAM mapped into the ad­
dress space (a so-called scratch-pad memory), and a stream buffer. In
addition, a DRAM background memory is assumed. Fig. 2.4 shows re­
sults of the DSE for the six configurations. Obviously, it is not a very
good idea not to use any cache (see configuration 6) for these applica­
tions.

Other key parameters of the memory system include the type and
number of memory ports, especially for VLIW (very long instruction
word) processors. These have a major influence on the overall system
structure. Jacome et al. explore these options of the design space. For
speed reasons, estimation techniques rather than retargetable compilers
are used [23].

18

80000-

60000-

40000-

20000-

2.6.
2.6.1

RETARGETABLE COMPILER TECHNOLOGY

Cycle count

Hydro ICCG Innerp Tridiag Stateeq Intergrate Benchmark

Figure 2.4. Cycle counts for the memory configurations of table 2.1.

Instruction set options
Design of VLIW machines

Due to the much reduced instruction set legacy problem in embedded
systems, instruction sets can be customized for certain applications.

One key opportunity resulting from this is the opportunity to use
VLIW instruction sets. With such instruction sets, several instructions
can be started at the same clock cycle. The corresponding increased
performance can be used for scaling down the supply voltage, resulting
in significant energy savings.

An example of a search for power-optimized instruction sets is de­
scribed by Kin et al. [26]. Kin analyzes the effect of architectural pa­
rameters such as the number of functional units, the issue width, cache
sizes etc. on the energy consumption during the execution of multimedia
benchmark programs. A framework for the selection of power-efficient
media processors is used. The IMPACT tool suite [152] (see section
5.3.2) is used to generate code for different architectures. Fig. 2.5 shows
one of the results. The figure shows that processors requiring a larger
chip area can be more energy efficient than smaller processors. The
main reason for this is that larger chip areas permit more parallelism
and hence the same deadline can be met with lower supply voltages.

The IMPACT tool suite can generate code for a wide range of VLIW
machines. For other machines it is less appropriate. Due to the difficulty

Compilers in Embedded System Design

G-mean of energy improvement

1.70-

1.0
100

Area constraint
[mm2]

200

Figure 2.5. DSE with a compiler, considering energy

19

of designing good retargetable compilers, researchers have tried to avoid
retargetable compilers and to find other ways of estimating the behavior
of hardware with respect to different evaluation metrics. Various re­
searchers have recently published papers in this direction [16, 20]. Good
retargetable compilers, however, can make separate estimation tools for
computing these metrics obsolete.

Some early high-level synthesis tools were also designed for instruction
set synthesis. The MIMOLA synthesis system (MSS) is an example of
this. Figure 2.6 shows a result from one the tools of the MSS, MSSH
[30].

4000

3000

2000

1000

of instructions executed

•

1
1
1

•

• •

1 1 2
1 2 2
2 2 2

• • •

3 3 4 Memory ports
3 4 4 lmmed. fields
4 4 4 ALUs

Figure 2. 6. DSE with synthesis tool MSSH

20 RETARGETABLE COMPILER TECHNOLOGY

MSSH considers constraints for the main resources: the number of
memory ports, the number and types of functional units (or ALUs) and
the number of immediate instruction fields. MSSH can therefore be used
for DSE. The VLIW instruction set is an implicit result of the synthesis
process focusing on the main resources.

Comprehensive DSE for VLIW machines containing clusters of junc­
tional units (adders, multipliers etc.) and associated memory ports has
been implemented by Lapinskii, Jacome et al. Fig. 2.7 shows the overall
approach [27].

Estimation of Physical
Figures of Merit:
Clock Rate, Power, Area

Register File Sizing
· · · ·. Detailed FU Selection

Port Sharing

Retargetable Compiler

~--~)
Binding/
Instruction Scheduling

Figure 2. 7. DSE in Lapinskii's approach

First of all, the memory subsystem is designed and a broad schedule of
memory operations is performed. Next, the fast DSE algorithm [23] just
mentioned is used to identify reasonable ranges for key design parameters
such as the maximum number of functional units per data path cluster
(Np), the number of clusters (Nc) and the number of busses (NB).

The kernel of the DSE (shown in bold face in fig. 2.7) consists of an
exploration of values of the triple (N F, N c, N B) providing good cost/ per­
formance tradeoffs. The types of functional units are considered to be of
secondary importance and decisions about these are postponed. Promis­
ing sections of the three-dimensional space are traversed. For each point
in the space, the instruction scheduling component of a retargetable com­
piler schedules operations and computes the resulting latency. Table 2.2
shows the type of results that can be generated this way.

An interesting observation is that some partitioned architectures ach­
ieve the same performance as very expensive centralized architectures.
For example, the architecture with Nc=3 clusters containing Np=3
functional units each and the architecture with Nc=l cluster and 8 func-

Compilers in Embedded System Design 21

NF
2 3 4 5 6 7 8 9 10 11 12

Nc
1 37 23 19 14 12 11 10 9 8 8 7
2 19 12 10 9 8 8 8 8 7
3 13 10 9 8
4 11

Table 2.2. Latency for algorithm DCT-DIT for NB=2 and bus latency= 1

tional units both achieve a latency of 10. The large number of ports of
the register file required for the cluster makes the latter very expensive.

This kernel of Lapinskii's DSE algorithm is followed by a detailed
design of functional units and sizing of register files. The generation of
instruction sets is implicit in Lapinskii's approach.

2.6.2 Design of non-VLIW machines

Focusing more on explictly modeling instruction sets, Huang et al. try
to synthesize instruction sets from algorithms using the ASIA framework
[21]. In ASIA, both the algorithm(s) and a generic micro-architecture are
given. ASIA includes a "retargetable mapper" which maps operations
to data path units. From this mapping, instruction sets are extracted.
The retargetable mapper is not a real retargetable compiler, but it is
quite similar.

Imai et al. have designed the PEAS design system, the currently avail­
able version being PEAS-III (see section 5.4.2). This system has been
used for designing ASIPs (Application Specific Instruction set Proces­
sors). Examples in experiments include a MIPS R3000 compatible pro­
cessor, DLX, a simple RISC controller, and the PEAS-I core. In the
experiments, the easiness of design and modification procedure with the
goal of improving design quality in terms of performance and hardware
cost has been proven: It has been confirmed that the design method used

in PEAS-III is effective to design space exploration for simple pipelined
processors [1].

2.6.3 Word length optimization

In embedded system design, standard data types of the C language are
insufficient to describe the word length that is actually required for the
variables. Accordingly, a number of extensions to C have been proposed
which allow the user to exactly specify the word length for the different
variables.

22 RETARGETABLE COMPILER TECHNOLOGY

One particular instance of this is the Valen-C language, designed by
Yasuura et al. [50]. Examples of variable definitions in Valen-C are
shown in fig. 2.8, left.

Yasuura et al. have designed a processor model called Soft-core. This
model includes generic parameters such as the word length for data.
This model is synthesizable for all reasonable values of these parame­
ters, resulting in the ability to automatically generate layout data. The
tool suite comes with a retargetable compiler which can map different
data types to the word length defined by the generic parameter. Two
examples can been seen in fig. 2.8, center and right .

inLI2 x;
inL20 y;
inL24 z;

2Q-biL processor

unused I X

y

unused \z
z

12-bil proce sor

X

unused I Y
y

z
z

Figure 2.8. Mapping of Valen-C data types to hardware-supported word lengths

Setting the generic word length parameter to different values, the
effect of this design parameter on the resulting speed, size and energy
consumption can be analyzed. Fig. 2.9 shows this effect.

length of #of
variables variables

4 257

8 257

14 3

39 258

160

140

120

100

/I

~ /
/

/ / '/" area[gates] ,.. /

80 /.

60

40

20

cycles[k]

0,_--,-------.-~~

10 18 26 34 bitwidth
data path

Figure 2.9. Effect of machine word length on some figures of merit

Compilers in Embedded System Design 23

It is obvious that this analysis requires a retargetable compiler. The
compiler designed by Yasuura et al. is discussed in more detail in section
5.4.3.

2.6.4 Register file sizing
The size of register files is another parameter that can be fixed during

the design. Traditionally, decisions concerning the size of the register
files were based on an empirical analysis. Most designers had no options
anyway, because they had to use existing processors. Embedded sys­
tem design opens new opportunities in this context, since application­
or domain-specific processors can be used. Also, it is important to pre­
cisely analyze figures of merit such as the delay time and the energy
consumption of register files of different sizes.

A detailed study concerning the code size, the number of clock cycles
and the energy consumption was done by Wehmeyer, Jain et al. [48).
All results are for an ARM-based processor executing the THUMB in­
struction set, for which the number of registers is considered a generic
variable. Fig. 2.10 shows an analysis of the effect of the register file size
on the power and energy consumption.

520

500

480

Average Power
Consumption [mW]

~~;:~=:=::~=~~~~:
' ' --------

0,05

0,03

0,01

3 4 5 6 7 8 #regs

Energy Consumption
[J] (scaled)

3 4 5 6 7 8 #regs

-- biquad
insertion_sort

bubble_sort -··-··-· matrix_mult

lattice_init heapsort

Figure 2.1 0. DSE of the register file size

An interesting observation is the fact that increasing the register file
size from 3 to 8 can reduce the energy consumption by a factor of about
5.

Again, it is obvious that this analysis requires a retargetable compiler.
In this particular case, the retargetability of the used compiler is lim­
ited and will not be discussed in more detail; it was just employed for
demonstrating possible applications of a retargetable compiler.

24 RETARGETABLE COMPILER TECHNOLOGY

The ARM processor issues at most one instruction per clock cycle.
For multiple-issue machines, such as VLIW processors, a larger set of
registers may be useful. An analysis of the effect of the number of
registers of different figures of merit for VLIW processors was done by
Valero et al. [8]. Fig. 2.11 shows the corresponding results. The large
number of registers that can be used at the same time is due to the
parallelism of the VLIW machines and due to algorithms that can be
parallelized.

10
%of time

80

60

40

20

8 16 32

J"r:-·
j I; . ,.

ror----.-~=-'-·

hardware configurations
with an increasing amount
of parallelism

64 128 registers

Figure 2.11. Number of concurrently used registers for VLIW machines

2. 7. Micro-architectural options
Various options also exist at the micro-architectural level. DSE at

this level does not require the availability of a retargetable compiler,
since these options, by definition, have no effect on the instruction set.
However, the cost functions used by the compiler could be affected by
decisions taken at this level. Hence, design space experiments at this
level can mostly be performed with a compiler for a fixed architecture
provided that this compiler can be configured using cost function defi­
nitions.

Examples of DSE at the micro-architectural level that do not require
retargetable compilers include

• an analysis of the tradeoff between in-order completion and out-of­
order completion in super-scalar pipelines [35],

• an analysis of the tradeoff between using a multiply unit and a mul­
tiply coprocessor [35].

Compilers in Embedded System Design 25

For these cases, cycle-true simulators have to reflect the details at the
micro-architectural level.

There is one exception, though, in which flexibility of the compiler
is required even for changes at the micro-architectural level: if features
are added at the micro-architectural level which require new compiler
optimizations to be exploited.

An example of this is the use of a scratch pad memory mapped into
the address space, which is not visible at the instruction set level. Typ­
ically, specific optimizations have to be added to the compiler to exploit
such a feature [45]. General optimization techniques for general mod­
els of memory hierarchies are normally not available in any retargetable
compiler, so far. Hence, they have to be hand-coded.

Up to a certain extent, DSE can be done with automatic synthesis
tools. Synthesis tools can typically accept certain design constraints, like
type and number of arithmetic/logic units (ALUs) and memory ports.
These constraints may be sufficient to analyze designs characterized by
these metrics.

For designers wanting to specify further levels of detail, just specifying
the type and the number of ports and ALUs is not enough. All the paths
may have to be specified in order to really study the effect of different
design options that exist. These options may include different ways of
implementing pipelines, like this was done by De Gloria and Faraboschi
[18]. Fig. 2.12 shows one of their results. Unfortunately, the authors
do not provide many details about the retargetable compiler which they
designed.

180 -
160 -
140 -
120 -
100 -

80 -
60-
40-

speed-up/cost

20- n
Architectures

Figure 2.12. DSE with a compiler, considering interconnect

26 RETARGETABLE COMPILER TECHNOLOGY

3. Design verification
For architectures with heterogenous register files, it is not easy to

always know the effect of deleting hardware resources during some opti­
mization step. It can easily happen that the designer deletes too many
resources. Compilation can be used to check if a certain hardware can ac­
tually perform a certain operation like a transfer between two specialized
registers. Retargetable compilers driven by some hardware description
which allows machine registers to be referred to can check this.

Takagi [46] described a method for checking if given register trans­
fer structures are able to execute certain register transfers. During this
checking, the ability to provide the required control code for all func­
tional units has to be guaranteed. This means that the functionality of
generating control code has to be implemented, even though Takagi's
tool does not really output control code.

In the context of the MIMOLA system, using a retargetable compiler
for design verification was described by Nowak [32]. Also, special re­
targetable compilers can be employed for generating test programs from
a description of test patterns to be applied to internal processor nodes
[216] (see also section 5.5.7).

We have now seen what retargetable compilers can be used for. In
the next chapter, we will discuss some fundamental techniques for imple­
menting compilers in general and retargetable compilers in particular.

Chapter 3

SOME COMPILER TECHNOLOGY
BACKGROUND

Since many approaches to retargetable compilation share some con­
cepts, e.g. concerning source language frontends, intermediate represen­
tations, and basic code generation techniques, in this chapter we give
some essential background information from a practical viewpoint. In
particular, we will not discuss detailed algorithms, but mainly focus on
the terminology. For more comprehensive "classical" compiler technol­
ogy background, several recent textbooks are available, such as [53, 54].

A general overview of compiler phases, as we discuss it here, is given
in fig. 3.1. However, it is important to mention that there is no unique
"one size fits all" compiler organization. Naturally, there are a lot of
trivial dependency constraints (e.g. IR optimization must follow source
code analysis, and register allocation must follow code selection). How­
ever, particularly the organization of optimizations at the intermediate
representation level as well as the detailed backend organization may
show significant variations in different compilers. This is due to the
fact that some target processors do not require certain optimizations,
the available compilation time may limit the amount of potential opti­
mizations, or certain passes are simply not available in a given compiler
infrastructure.

With respect to code optimization, which is particularly important
for embedded systems, the compiler's capabilities are limited anyway.
One can theoretically show that it is impossible to design a compiler
which generates optimal code for all input programs. This means that
we can just try to perform "as good as we can" within a reasonable
amount of compilation time, but there will always be some improvement
opportunities left (Appel [53] calls this the full employment theorem for
compiler writers).

27

28 RETARGETABLE COMPILER TECHNOLOGY

One key approach to obtain good code quality (since we generally
do not know the optimum, "good" mostly denotes code quality similar
to what we can achieve by hand-coding in assembly) is to study the
mutual dependence of compiler passes. Due to complexity1 and software
engineering reasons, a practical compiler may be subdivided into dozens
of separate phases, each of which may impose unnecessary restrictions
on subsequent phases. The phase coupling approach aims at eliminating
this problem by intermingling traditionally separate compiler phases,
so as to generate better code. We will address this issue later in this
chapter.

FRONTEND
I.e xi cal analysis
Syntax analysis

Semantic analysis
IR generation

IR OPriMIZATIONS
Constant folding

J urnp optimization

BACKEND
Code selection

Register olio cation
Sclltduling

Assembly emission

Figure 3.1. Coarse compiler phase organization

1. Frontend

Assembly
code

The task of the source language frontend is to analyze a given source
program, check for errors, and (in case of a correct input) generate an
intermediate representation (IR) for the subsequent compiler passes. A
frontend typically comprises the following three phases:

Lexical analysis. Initially, the input program is nothing but a string
of ASCII characters. Lexical analysis recognizes substrings from the
input stream and combines then into tokens. Each token denotes a
primitive element of the source language, e.g. a keyword, a number, an

1 Many subtasks in code generation, such as global register allocation, scheduling under re­
source constraints, and address code optimization, are known to be NP-hard. The set N P
includes all decision problems that can be solved in polynomial time by a nondetermin­
istic Thring machine, while P is the corresponding set for deterministic Thring machines.
A decision problem II is NP-complete, if II E NP, and II is "at least as difficult" as all
other problems in NP, which can be formally proven by constructing a polynomial-time
transformation between problems. Here, we usually have to deal with optimization prob­
lems. Optimization problems with cost functions, that can be computed in polynomial time,
can be solved in polynomial time, if their decision counterpart can be solved in polynomial
time. Optimization problems with an NP-complete decision counterpart are called NP-hard.
For the detailed theory cf. [192]. Exactly solving NP-hard and NP-complete problems most
likely requires exponential-time algorithms (unless P = N P, which is a major open problem
in complexity theory).

Some compiler technology background 29

identifier, or an operator symbol. While tokens for keywords or operators
are simply represented by integer numbers, identifier or number tokens
are attributed, e.g. with a string or a numerical value.

Most primitive language elements can be represented by regular ex­
pressions, which can be parsed by means of finite state machines (FSMs).
The FSM reads input characters and stores them in its internal states,
until some language element (e.g. a "while" keyword or a floating point
number) has been recognized. Then it emits the corresponding token,
and returns to its initial state to parse the next input word.

As a by-product, lexical analysis also suppresses white spaces, new­
lines, and tabs from the input. A special handling is usually required for
comments that show a "balanced parentheses" structure {like "/* ... * /"
in C or "(* ... *)" in PASCAL). These cannot be directly parsed with
FSMs due to their finite number of states, but can easily be handled
with special support functions.

Tools performing lexical analysis are called scanners. Scanners can
conveniently be built with the widespread UNIX tool LEX. LEX reads
a lexical specification in the form of a list of regular expressions and
generates C code for the corresponding FSM that recognizes these ex­
pressions. Fig. 3.2 shows a part of a LEX specification for the ANSI C
language. The interface to the FSM generated by LEX is the "yylex{)"
function. The syntax analyzer calls it each time it requires a new token.

Syntax analysis. While lexical analysis views the input program as
a string of regular expressions, the syntax analyzer, or parser, considers
it as a token string produced by the scanner. The parser analyzes the
syntactic structure of the token string w.r.t. an underlying context free
grammar

G = (T,N,R,S)

where T is a finite set of terminals {the set of possible tokens), N is a
finite set of nonterminals, and S E N is the start symbol. The rule set
R contains rewrite rules of the form

X---+ (TUN)*

i.e., X can be replaced by a string of symbols from T and N. The term
context free denotes that X has to be a member of set N. As a result,
the parser produces a parse tree, that represents a derivation of the input
program from G's start symbol.

Context free grammars cannot be parsed by FSMs but require stack
automata. One way to implement a stack automaton for grammar G
is to read one input token after another, in left-to-right order, from
the scanner, and in each step to perform one out of two possible actions:

30 RETARGETABLE COMPILER TECHNOLOGY

II declaration of some special regular expressions
D [0-9] II decimal digits
IS (uiUiliL)* II integer suffixes

II C declaration part
%{
II token definitions
#define AUTO 290
#define REGISTER 291
#define CASE 292
#define CHAR 294
#define BREAK 319

%}

II regular expression list
%%
II C keywords
11 auto 11

"break"
11 case 11

11 char 11

"const"
"continue"

{ return(AUTO); }
{ return(BREAK); }
{ return(CASE); }
{ return(CHAR); }
{ return(CONST); }
{ return(CONTINUE); }

II integer constant is a string of decimal digits,
II followed by optional suffix
{D}+{IS}? { return(INT_CONSTANT); }
II C operators

11&::11

u-=n

"I="
">>"
"((II

{ return(AND_ASSIGN); }
{ return(XOR_ASSIGN); }
{ return(OR_ASSIGN); }
{ return(RIGHT_OP); }
{ return(LEFT_OP); }

Figure 3.2. Partial LEX specification for ANSI C

shift or reduce. "Shift" means the current input token is pushed onto the
stack for later use, while "reduce" denotes the application of a grammar
rule from R. Which action is to be taken can be determined from the
current stack contents, the current input token, and some lookahead on
the remaining token stream. For instance, consider the case that the
input character sequence is a C assignment like

X = X + 1;

for which the scanner would generate the token sequence
<id> <eql> <id> <plus> <canst> <semicolon>

Some compiler technology background 31

The parser reads the tokens and performs shift actions until the expres­
sion "x + 1" has been found, which can be reduced to an "<expr>"
nonterminal:

<id> <plus> <const> -+ <expr>
The "expr" nonterminal replaces the sequence "<id> <plus> <const>"
on the top of stack. Now, when reading the next token "<semicolon>"
the parser knows that a statement has been finished and reduces the
whole token sequence to an assignment nonterminal:

<id> <eql> <expr> <semicolon> -+ <asgn>
Writing parsers manually is a tedious job, but fortunately it can be

automated by LEX's sibling tool YACC [55] (or some more recent ex­
tensions like GNU's FLEX and BISON tools). YACC reads a context
free grammar specification and generates C code for a corresponding
shift-reduce parser. A example for an ANSI C parser is given in fig. 3.3.

The interface to the YACC-generated parser is the "yyparse()" func­
tion. After setting up the input file, a call to this function from the
compiler driver program generates the complete parse tree. In case a
syntax error is encountered during parsing, a user-defined "yyerror()"
function is called, which can be used to emit a detailed error message.
YACC also shows limited support for error recovery, which allows to
continue parsing even after an error has occurred, so as to accelerate the
usual edit-and-compile cycles during program development.

Semantic analysis. Programming languages like C are not completely
context free, but are actually context sensitive. However, parsing context
sensitive grammars is much more complicated, and the above approach
with context free grammars works well in practice if we perform addi­
tional analyses with special support functions. In an ANSI C compiler,
analysis tasks which are typically not part of the parser but are per­
formed afterwards within a dedicated semantic analysis phase include
the following:

• Book-keeping for symbol declarations, including data type, storage
model, and scope.

• Checking for correct operand type combinations in expressions.

• Checking whether an assignment has an "lvalue" on its left hand side,
e.g. assignments to constants, complete arrays, and functions are not
allowed in C.

• Checking whether target labels of "goto" statements are defined in
the current function.

32 RETARGETABLE COMPILER TECHNOLOGY

II token declarations, these are automatically converted
II into #defines for the LEX spec
%token IDENTIFIER CONSTANT STRING_LITERAL SIZEOF
%token PTR_OP INC_OP DEC_OP LEFT_OP RIGHT_OP LE_OP GE_OP EQ_OP NE_OP
%token AND_OP OR_OP MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN ADD_ASSIGN

II grammar rules, nonterminals are implicitly declared
%%
II primary expression
primary_expr

identifier
CONSTANT
STRING_LITERAL
' (' expr ')'

II expression with postfix operator
postfix_expr

primary_expr
postfix_expr '[' expr ']' II array access
postfix_expr ' (' ')' I I function call
postfix_expr '(' argument_expr_list ')' II function call
postfix_expr ' ' identifier II struct access
postfix_expr PTR_OP identifier II indir struct access
postfix_expr INC_OP II post-increment
postfix_expr DEC_OP II post-decrement

II unary operator with expression
unary_expr

postfix_expr
INC_OP unary_expr
DEC_OP unary_expr
unary_operator cast_expr

II pre-increment
II pre-decrement
II unary operation

Figure 3.3. Partial YACC specification for ANSI C

It is convenient to partially integrate semantic analysis into syntax
analysis by means of attribute grammars. An attribute grammar is con­
structed "on top" of a context-free grammar G = (T, N, R, S). In an
attribute grammar, all symbols s E T U N are annotated with an at­
tribute set A(s). An attribute a E A(s) can be considered as a container
for semantical information about a symbol, such as its type or scope.

The value of an attribute a E A(s) is determined by an attribute defi­
nition D(a), an equation attached to a grammar rule in which a occurs.
Attributes fall into two classes: synthesized and inherited attributes. An
attribute a E A(s) is called synthesized, if sis a nonterminal on the left
hand side of the rule, and its definition only depends on attributes of

Some compiler technology background 33

grammar symbols on the right hand side of the same rule. Conversely,
inherited attributes belong to symbols on the right hand side of a rule
r, and their value only depends on attribute values of r's left hand side.
As an example, consider the ANSI C grammar rule

jump_statement: BREAK';'

where "jump_statement" is a nonterminal and "BREAK" and ";" are
terminals, or tokens. One attribute we would typically like to add to
"jump_statement" is a flag "correct" that signals whether or not a
given jump statement is semantically correct, so that we can emit an
error message if required. In our little example, the jump statement is
obviously correct, if it is a correct "break" statement (this statement is
used in C for "unstructured" termination of loops). So, the attribute
"jump_statement. correct" has to be synthesized from BREAK's correct­
ness attribute, which leads to the attribute definition

jump_statement.correct = BREAK.correct

When is the "break" statement correct, though ? In case there is no
syntax error (which would cause an error message already in the parser),
it has to be ensured that the "break" is located inside of a loop. The
"break" statement itself does not know this, so we need to pass this
information by means of an inherited Boolean attribute, say "inloop",
which signals whether the jump statement is part of a loop (i.e. it is
contained in a FOR, WHILE, or DO compound statement):

BREAK.inloop = jump_statement.inloop

Now, we can easily give the attribute definition for the correctness of
"BREAK"

BREAK.correct = BREAK.inloop

which makes our attribute definitions complete.
Any useful attribute grammar for semantic analysis needs both syn­

thesized and inherited attributes. While YACC only provides some
support for synthesized attributes, there are several attribute grammar
processing tools available, that permit the automatic generation of in­
tegrated parsers and attribute evaluators. An example is OX [56], an
extension of LEX and YACC. From an attribute grammar specification,
OX generates normal LEX and YACC specifications while including C
code for attribute evaluation and hence semantic analysis. Amongst
others, OX has been used to develop the C frontend for the LANCE
compiler system (see section 5.1.7). More details can be found in [93].

34 RETARGETABLE COMPILER TECHNOLOGY

As the frontend is almost completely machine independent, it is ob­
viously perfectly retargetable to different processors. In order to gen­
erate an intermediate representation for a concrete machine, it merely
requires some parameters, like endianess, type bit widths, and memory
alignment.

2. Intermediate representation
After successful analysis, the output of the frontend is an intermediate

representation (IR) of the input source code. The IR can be generated
from the parse tree in a post-frontend pass or by means of synthesized
attributes when using the above attribute grammar approach.

The main purpose of the IR is to provide a clean and simple data
structure that supports IR optimization passes as well as code genera­
tion in the backend. Some important IR formats are described in the
following.

Three address code. While source programs written in languages
like C may show a very complex structure, three address code provides
a much simpler view of the program, where all statements (except for
function calls with multiple arguments) have at most three operands: up
to two arguments and one result. Any source program can be lowered
down to three address code by inserting auxiliary variables or tempo­
raries, that store intermediate results of complex computations. As an
example, consider the C assignment

x = a + b - c * d

which translates to three address code as follows:

t1 = a + b
t2 = c * d
X = t1 - t2

Three address code is convenient for implementing data flow analysis
and IR optimization tools. However, for certain purposes it is advanta­
geous to have a more high-level IR that retains control structures like
loops and conditionals, because otherwise these need to be reconstructed
from the three address code. A high-level IR facilitates loop transforma­
tions and control code optimizations. Muchnik [54] even proposes three
IR formats at different abstraction levels. The description of the SUIF
and LANCE compiler systems in chapter 5 provides examples for several
IR formats.

Some compiler technology background 35

Control/ data flow graphs. While three address code is essentially
just another textual representation of the source code, flow graphs pro­
vide more explicit information about the program semantics and hence
open more optimization opportunities. We can certainly generate ma­
chine code directly from three address code with a statement by state­
ment translation scheme, but the result would be very poor in terms of
code quality.

First of all, the control flow needs to be analyzed. Normally, this is
done on a function-by-function basis. TheIR of a function is split into
basic blocks. A basic block

B = (s1, ... ,sn)

is a sequence of IR statements of maximum length that meets two con­
ditions:

• B can only be entered at statement s1 , and

• B can only be left at statement Sn.

Thus, if statement s1 is executed, then it is guaranteed that all other
statements in Bare executed as well. This property is important, since it
allows to partially rearrange (e.g. during code selection or scheduling) the
computations in B without causing undesired side effects. Identifying
the basic blocks in a three address code IR of a function can be easily
done by looking for statements that have an impact on control flow, i.e.
labels, as well as goto and return statements.

The control flow graph (CFG) is a data structure that visualizes all
possible flows of control between the basic blocks of a function. For some
function F, the CFG is a directed graph GF = (V,E), where each node
bi E V represents one ofF's basic blocks, and each edge e = (bi, bj) E
E ~ V x V represents the fact that block bj might be executed directly
after block bi. The CFG can be constructed immediately once the basic
blocks have been identified. Fig. 3.4 shows a CFG for a sample function
visualized by means of the VCG graph display tool [57]. It contains 7
basic blocks, each of which is represented in the form of three address
code. Nodes with two outgoing edges represent blocks that end with a
conditional jump, while blocks with a fanout of one end with a "goto" or
just "fall through" into the next block. Finally, blocks without outgoing
edges have a "return" statement at the end. In case the CFG is not fully
connected, there is unreachable code, which can be eliminated without
changing the program behavior.

Within the scope of a single basic block, it is not useful to introduce
control flow dependencies, since this would restrict optimization oppor­
tunities. Instead, here we are more interested in the data dependencies

36 RETARGETABLE COMPILER TECHNOLOGY

(181SO) W.:Ul.J

~!=~ = ~ rf:'r:,~rort llj
~:=~ =; t: ~!~.
hGM) tot$ • """'\Still
UMII tr 4IAIPU ~TA-o I.Ll381

/ ~ /

Hil :=·~ :_-~ ..o'~ MOU11 fl'"..IJ·- ,1 , ~=t ::; n: ~:=,
I ft•t '"' :: "" .. W.J

"·
u .. , ... ~r ~

/

Figure 3.4- Sample control flow graph

between the statements, since these have a strong impact on code gen­
eration. For some block B = (s1, ... , sn) we say that statement Sj is
data dependent on statement Si, with i < j, if Si defines a value used in
Sj, so that Si needs to be executed before Sj in the machine code.

Data flow analysis (DFA) is the process of computing the data depen­
dencies. Local DFA (within the scope of basic blocks) is relatively easy
if we neglect load/store dependencies and function calls with potential
side effects and just focus on the local variables. Then the relation­
ship between value definitions and uses can be determined on the basis
of symbol names by tracing back each use to its last definition in the
current block. However, we must conservatively assume that each store
and each function call potentially manipulate all local variables whose

Some compiler technology background 37

Figure 3.5. DFG representation of a basic block

address is being computed (e.g. by the C operator "&"). Otherwise, a
more complex alias and interprocedural analysis is required.

The result of local DFA is a data flow graph (DFG). A DFG for a
basic block B is a directed acyclic graph G B = (V, E), where each node
v E V represents

1 a primary input (variable or constant), or

2 an operation, or

3 a primary output (variable).

An edge e = (Vi, Vj) E E C V x V represents the fact that the value
defined by Vi is used by Vj· Note that in the DFG model all temporary
variables from the three address code are transformed into graph edges.
Fig. 3.5 shows an example DFG for the following basic block (a, b, and
c are assumed to be global variables, read via LOAD operations).

t1 = a + b;

t2 = 3 * Cj

t3 = t1 - t2;
t4 = t3 > 10;
if (t4) goto L1;

In the special case that the DFG is connected and no node has a
fanout larger than one, we call it a data flow tree (DFT). DFTs are free
of common subexpressions, and they are the basic data structures for
many code selection techniques.

If the CFG and DFG data structures are mixed, so that each CFG
node represents a DFG instead of a basic block, the graph is called a
control/data flow graph (CDFG). Note that the use of the CDFG data

38 RETARGETABLE COMPILER TECHNOLOGY

structure is not necessarily limited to the IR level. It is frequently used
also for optimization at the assembly level in the backend. In this case,
the DFG nodes represent concrete machine instructions instead of ab­
stract machine independent operations.

Global data flow analysis. The local data flow analysis (DFA) men­
tioned above is insufficient for many purposes, particularly for several
important IR optimizations. Global DFA determines the data depen­
dencies within the scope of an entire function. Since within the CFG
control flow may join at certain blocks, in general there can be multiple
definitions reaching a certain use of a variable. In order to check, for
instance, whether a variable is guaranteed to be constant at a certain
program point, all its definitions, possibly contained in other blocks,
have to be investigated. Likewise, all potential uses of some definition
have to be known in order to identify redundant code.

One way to perform global DFA is to embed the local DFA into an
iterative work list algorithm that considers all basic blocks. At the be­
ginning, all blocks are inserted into the work list. For each block B, DFA
is performed for each control path into B found in the CFG. In case of a
cyclic CFG (containing loops), in general multiple DFA iterations over
the same block are required. Whenever a change in the previous data
flow information for some block has been detected, its CFG successors
are inserted into the work list again in order to propagate the new in­
formation. The process continues until the work list is empty and a fix
point has been reached. For more details and alternative methods for
global DFA, see e.g. [54, 58]

IR transformations and optimizations. There are many possible
compiler passes that transform the IR in a machine independent way.
Some transformations (which we call optimizations) result in shorter or
faster IR code, while others just rewrite the IR in order to generate opti­
mization opportunities for other passes or the backend. In the following
we mention some frequently used IR transformations.

Function inlining: Replacement of function calls by copies of the bod­
ies of the called functions. This reduces the calling overhead and per­
mits better optimization opportunities for further passes. However,
code size may increase significantly.

Static single assignment: In case theIR is in a form such that each
variable statically has a unique definition, it is said to be in static
single assignment (SSA) form. SSA form simplifies data flow analysis

Some compiler technology background 39

and may also be beneficial for reducing spill code during register
allocation.

Loop unrolling: Loops can present an obstacle to instruction sched­
ulers for instruction-level parallel processors. Partially duplicating,
or unrolling, the loop body can help, since it increases the basic block
size of loop bodies and exhibits more parallelism.

Loop invariant code motion: Moving loop invariant computations
outside of the loop. This can result in a significant performance
gain for loop intensive applications.

Induction variable elimination: Given some loop counter variable
i running from i1 to in during loop execution, any variable j that
shows a linear dependence on i of the form j = k · i + c, for constant
k and c, is called an induction variable. These frequently arise in the
IR from scaled indices in array accesses. The potentially expensive
multiplication can be eliminated by initializing j with k · i1 + c and
incrementing j by k in each iteration (assuming a step width of one
for variable i).

Constant folding: Compile-time constant expressions can be replaced
by the computed values. Care has to be taken to avoid undesired
side effects due to finite word length effects or arithmetic exceptions.

Constant propagation: Variables known to have a constant value at
a certain program point can be replaced by that constant. This might
give additional opportunities for constant folding.

Copy propagation: A copy operation is an assignment of the form
"a = b" for two variables a and b. Subsequent uses of a can thus be
replaced by uses of b, provided that a cannot get redefined in between.
Dead code elimination may later remove the copy operation.

Common sub expression elimination: Identical computations at dif­
ferent program points can be replaced by a single computation whose
result is stored in a temporary variable, so that it can be reused.
Care has to be taken for machines with few registers, since aggressive
common subexpression elimination can lead to a huge amount of spill
code.

Dead code elimination: Computations whose results are never needed
(and which do not show side effects) can be safely eliminated from
the program.

40 RETARGETABLE COMPILER TECHNOLOGY

Reassociation: Reordering of arithmetic expressions by application of
algebraic transformations, so as to enable better opportunities for
constant folding.

Jump optimization: Removal of jump chains, redundant jumps, min­
imization of unconditional jumps, and unreachable code elimination.

Clearly, many of the above transformations have an impact on each
other, and usually multiple iterations are required to achieve the best re­
sult. With respect to retargetability, there is usually some degree of mu­
tual dependence with the backend: Even though the IR itself is mostly
machine independent, different machines may benefit from different IR
transformation procedures.

3. Backend
3.1. Code selection

Once the compiler enters the backend, it starts dealing with machine
specific aspects. Code selection is typically the first backend phase and
maps machine independent IR statements and operations into machine
specific processor instructions. Several implementation choices are de­
scribed in the following.

Statement based code selection. The simplest way to perform code
selection is to start with three address IR code and to translate each
IR statement into equivalent assembly instructions step by step. This
is particularly easy to implement due to the simple structure of three
address code. However, this approach is not always likely to produce op­
timal results, since it might be possible to cover multiple IR statements
with a single instruction. A typical example is the multiply-accumulate
(MAC) instruction in DSPs, which performs a single-cycle multiply and
add operation in a chained fashion. On CISC processors, complex mem­
ory addressing modes, such as "base plus offset" can be exploited to
implement multiple IR statements with a single instruction.

Another problem arises if the target machine has special purpose reg­
isters. Since the machine instructions communicate via registers, it has
to be ensured that there is not too much overhead due to register-to­
register data move operations, but the statement based approach cannot
take this into account during code selection. For RISC targets with ho­
mogeneous register files, however, statement based code selection can
give satisfactory results, since there are hardly complex instructions,
and late improvement of the selected code is still possible by means of
peephole optimization.

Some compiler technology background 41

Tree based code selection. In case of target machines with complex
instructions and/or special purpose registers, a tree based approach to
code selection is more favorable, which works on data flow trees (DFTs)
as introduced in section 3.2. As exemplified in fig. 3.5, a DFT generally
represents a complex computation, that covers multiple IR statements at
a time. DFTs can be constructed either directly from three address code,
or by first constructing a data flow graph (DFG), followed by splitting
the DFG at its common subexpressions, which results in a forest of
DFTs.

Today's most common approach to code selection is tree parsing,
which can be efficiently implemented by tree pattern matching and dy­
namic programming [59, 60, 61]. The target instruction set is modeled
as a tree grammar

G = (T,N,R,S,w)

where T is a set of terminals, N is a set of nonterminals, R is a set of
rules, S E N is the start symbol, and w : R --+ R is a cost metric for
rules, which may reflect optimization goals like code size, performance,
or power consumption.

Intuitively speaking, the nonterminals in N are mostly used to model
hardware resources that can store data (registers, memories), while the
terminal set T is used to represent operators and constants in a DFT.
The grammar rules in R can be used to derive DFTs from the start
symbolS. Like for usual string grammars, a derivation step in G means
to replace the occurrence of a nonterminal n E N in a tree by another
tree T, which is possible if the rule n --+ T is in R. The tree language
L(G) generated by grammar G is equal to the set of all possible DFTs.

The rules p E R are generally used to model the behavior of an in­
struction in the form of a small tree pattern. For instance, for an ADD
instruction that computes the sum of two register contents and assigns
the result to another register, the rule

reg--+ PLUS(reg,reg)

would be used, where reg E N and PLUS E T. Concerning the language
generated by grammar G, this rule allows to derive a subtree with a root
labeled PLUS and two subtrees from reg. Conversely, if we talk about
tree parsing, the rule can be used to reduce a subtree rooted by PLUS
and two subtrees (that have already been reduced to reg) to nonterminal
reg. In any case, using the rule means to instantiate an ADD instruction
during code selection.

Since grammar rules essentially model instructions, the task of code
selection for a DFT T is equivalent to finding a derivation in G for T

42 RETARGETABLE COMPILER TECHNOLOGY

from the start symbol S. Since the rules in R are weighted by function
w, there are optimal derivations, i.e., derivations such that the sum over
the weights w(p) over all instances of rules p used in the derivation is
minimal.

Using tree parsing, an optimal derivation for a DFT T can be found
as follows: In a bottom-up traversal, all nodes x in T are labeled with a
set of triples (n,p, c), where n E N, p E R, and c E IR . These triples
represent the fact that node x can be reduced to nonterminal n at a total
cost of c with rule p. The rule p implicitly determines the nonterminals,
which the subtrees of node x (if any) must be reduced to in order to
make p applicable for x. In general, multiple triples are annotated to x,
which represent alternative derivations.

When the root of T has been reached, all alternative derivations po­
tentially leading to an optimum are known. One optimal derivation is
now explicitly constructed in a top-down traversal ofT. For the root
node, the triple (S,p, c) is selected (S is the start symbol), for which c
is minimal over all alternative triples at the root. In turn, rule p now
implies the optimal derivations for the subtrees at the next lower level
in T, since the nonterminals which they must be reduced to are iden­
tical to the nonterminals on the right hand side of p. This traversal is
recursively continued until the leaves of T have been reached and the
derivation has been completely emitted. An example for this process is
given in fig. 3.6.

Though tree parsing generally does not produce globally optimal so­
lutions, it shows a number of important advantages:

1 It requires only linear time in the DFT size.

2 It selects an optimal set of instruction pattern instances for each single
DFT.

3 It allows for modeling complex instructions and special purpose reg­
isters.

These characteristics make tree parsing a very popular technique for
code selection. In chapter 5 we will see that different variants have actu­
ally been used in many retargetable compilers. Moreover, we will present
some tools for automatic generation of tree parsing code selectors from
grammar specifications, which make tree parsing easily retargetable.

Graph based code selection. Code selection can result in better
solutions if it is generalized towards data flow graphs (DFGs) with com­
mon subexpressions (CSEs). The reason is that splitting DFGs at the
CSEs, so as to obtain DFTs, can impose unfavorable restrictions. An

Some compiler technology background

a)

terml111 .. : {MEM, *, +)

non-tennlnolo: {REOI, RE02, RE03}
start aymbol: RE01

ruleo: 'ADD' (ooot:2): RE01·>-t(RE01,RE02}
'MUL' (coot = 2} : RECU ·> '(REOI, RE02}
"MAC" (coot = 3} : REO I ·> -t('(REOI, RE02}, RE03}
"LOAD• (ooat •1): RECU .. > MEM
'MOV2' (coot •1}: RE02-> REOI
•Mov3u (coat •1): RE03 "'> RE01

AEOt: LOAD: 1 FIE01: LOAD: 1 RE01: LOAD: 1 RE01: LOAD: 1
FIEOZ:M0¥2:1+1=2 RE02:MOV2:1+1•2 RECU:MOV2:1+1=2
REGS: M0\13: 1 +1 =2 RE08: MOV3: 1 +1=2 REGS: MDVI: 1 +1•2

MEM

b)
REG1:MUL:1 +2+2=5

* RE02:MOV2:5+1•8
RE03:MOVI:S+1 =I

MEM

REOZ: MOY2: 1 + 1 = 2
REOS: MOV3: 1 + 1 s 2

MEM

RE01:MUL:1 +2+2•5
REO!: MOY2: 5 + 1 • 8
REGS: MDVI: 5+ 1•1

+ RE01:ADD:5+8+2=11
REOt: MAC:t +2+8+3= 12

43

c)

Figure 3.6. Example for tree parsing: a) Tree grammar specification, b) DFT with
annotated nonterminal/rulefcost triples. There are two alternatives, ADD and MAC,
for the root. MAC is selected, because it covers two operations at a time and therefore
results in a cheaper derivation with a cost of 12 instead of 13 for ADD. c) Optimum
derivation tree

example is given in fig. 3.7. Part a) shows a sample DFG with the mul­
tiply node being a CSE with two uses. In a tree based approach, the
DFG would be split into two DFTs, where the multiply DFT writes its
result into some storage resource (shaded box in part b), and the second
DFT with the two add operations reads that value twice. Suppose, the
target machine offers add, multiply, and MAC instructions with equal
costs. Then, three instructions (one multiply, two adds) are required to
implement the DFTs from fig. 3.7 b). However, as shown in fig. 3.7 c),
there is a cheaper solution that results from duplicating the CSE and
using two MACs for covering.

Another aspect of DFG based code selection is that it can lead to
a better exploitation of special purpose registers with fewer data move
instructions between the DFTs. While graph based code selection can
result in significantly better code for irregular target architectures like
DSPs, the computational complexity is unfortunately much higher than
in tree parsing. Generally, optimal DFG based code selection is an NP­
hard problem (58] and hence (most likely) requires exponential worst­
case runtime. However, sometimes heuristic search strategies can be

44

a)

RETARGETABLE COMPILER TECHNOLOGY

~ ~
,GJ'

Figure 3. 7. Code selection for DFGs: a) sample DFG, b) conventional splitting into
two DFTs, c) duplicating the CSE to exploit two MAC instructions

applied to guarantee a reasonable amount of runtime while still achieving
good results. Examples are given in [189, 62]. For a class of regular
target processors, even exact solutions can be computed efficiently by a
generalization of the tree parsing approach [63].

Global code selection. Naturally, the best results can be achieved
when performing code selection in a global context, i.e. within the scope
of an entire procedure or function. As illustrated in fig. 3. 7, for instance,
it can be favorable to duplicate CSEs. However, some CSE used in a
DFG could also be defined in a different basic block, which is not visible
when performing local code selection. Hence, there is a tight dependency
between code selection and global CSE elimination at the IR level.

Special care has to be taken in case of code selection across basic block
boundaries. As has been exemplified in the previous sections, machine
instructions may be selected that span multiple IR statements. Such a
selection is generally only valid within the scope of basic blocks. In case
of an instruction covering statements from different blocks, undesired
side effects may occur, since the dynamic control flow between blocks is
generally not known at compile time.

3.2. Scheduling
Code selection maps a program into assembly instructions but it does

not assign concrete execution times to instructions. This is the task of
instruction scheduling. However, the term scheduling is used in differ­
ent meanings, and many compilers in fact employ multiple scheduling
passes in the backend. We can coarsely distinguish scheduling tech­
niques that work on sequential code, while others deal with exploitation
of instruction level parallelism. Likewise, there is a distinction between

Some compiler technology background 45

local schedulers (working at the basic block level) and global schedulers
operating on a loop or even an entire function.

The most common data structure for local scheduling is a dependency
graph (DG), i.e. an edge-weighted directed acyclic graph G = (V, E, w).
Each member of the node set V represents an instance of some machine
instruction. The edges e = (vi,Vj) E E ~ V x V denote scheduling
dependencies, which exist in three forms:

Data dependence: Vi defines a value used by Vj. Therefore, Vi has to
be scheduled before Vj. Data dependence edges correspond to the
DFG edges described in section 3.2.

Anti-dependence: Vi writes to some storage resource R, and Vj reads
from R but uses a value defined by a different instruction. Therefore,
Vj must not be scheduled after Vi· In case the target processor permits
writing and reading a register within a single cycle, Vi and Vj may be
scheduled in the same cycle.

Output dependence: Vi and Vj write to the same storage resource R.
Then, the schedule must preserve the original ordering of Vi and Vj

imposed by the IR code.

A scheduler assigns a start time t(v) to each node v E V. Generally,
the goal is to construct a schedule with minimum total execution time.
Any DG edge e = (Vi, Vj) has a weight w(e) that denotes the minimum
start time difference between t(vj)- t(vi) in a valid schedule. Thus the
DG edges, together with the available amount of processor resources,
impose the constraints for the scheduler. The instruction I represented
by Vi may take multiple cycles to generate its result, sot(Vj)- t(vi) may
be an arbitrary integer number.

It might be the case that new instructions can be issued before I has
been completed. In this case, we say that I has delay slots, which should
be exploited during scheduling by filling them with useful instructions
instead of no-operations (NOPs). For instance, RISCs frequently have
jump instructions with delay slots, which arise from instruction pipelin­
ing. Jump delay slots can be represented in the DG by edges with a
negative weight.

Sequential scheduling:. In case of a target processor without in­
struction level parallelism, the task of the scheduler is to define a linear
ordering of instructions, based on a topological sort of the DG. As the
resource constrained scheduling problem is generally NP-hard [192], a
number of heuristics are in use [114).

46 RETARGETABLE COMPILER TECHNOLOGY

Perhaps the most popular one is list scheduling, an effective class of
scheduling algorithms with a worst case execution time quadratic in the
number of DG nodes. It is based on the notion of the ready set. This
set denotes all DG nodes ready to be scheduled at a certain point of
time, since all its DG predecessors have already finished execution. At
the beginning, the ready set consists of all primary DG inputs, and it
changes dynamically when removing DG nodes that have already been
scheduled. In each step, the list scheduler heuristically picks one of
the ready set members and appends it to the partial (initially empty)
schedule constructed so far. The ready set is updated accordingly, and
the process is iterated until all DG nodes have been scheduled. The
schedule quality critically depends on the heuristic for selecting one of
the ready nodes.

Another aspect of sequential scheduling is that the register alloca­
tion phase described in section 3.3.3 requires to know the live range of
values in a program, which depends on the linear order of instructions.
Even though scheduling is not necessarily to be fully performed before
register allocation, at least some form of sequential scheduling has to be
done before register allocation can take place. From a register allocation
viewpoint, this scheduling should be performed in such a way that value
life times are minimized.

Code compaction:. Local scheduling is frequently referred to as code
compaction, if the target processor is a VLIW -like machine showing in­
struction level parallelism. Furthermore, code compaction frequently as­
sumes that all required instructions, including spill code (section 3.3.3)
and address code (section 3.3.4), have already been generated, making
code compaction typically a late compiler pass.

Essentially the same techniques as for sequential scheduling can be
used, but the scheduler is also responsible for exploiting the parallel
functional units (FUs), so as to achieve the highest performance. In case
of alternative FUs, capable of implementing the same set of instructions,
FU assignment is a non-trivial task. A simple, yet effective, heuristic to
optimize FU utilization in this case is version shuffiing [114].

Software pipelining:. A major compiler problem with highly parallel
VLIW-like processors is to keep the large number of functional units
(FU s) busy, even though typical application programs do not show a
high degree of potential parallelism. Software pipelining [64] is a very
effective assembly-level loop scheduling technique that maximizes FU

Some compiler technology background 47

utilization for loop bodies. As an example, we consider the TI C6x, a
VLIW DSP with 8 parallel FUs, whose coarse data path is shown in fig.
3.8.

cluster A cluster B

A register file B register file

data bus

Figure 3.8. Data path of a TI C6x VLIW processor

Consider the following C function for dot product computation. Here, we
have unrolled the loop body once to exhibit some intra-loop parallelism.

int dotp(short a[], short b[])
{ int sumO, sum1, i;

}

sumO "' sum1 "' 0;
for (i "' 0; i < 100; i +"' 2)
{sumO+"' a[i] * b[i];

sum1 +"' a[i+1] * b[i+1]; }

return sumO + sum1;

A C6x assembly code for the dot product loop is shown below. Despite
the unrolling the FU utilization is still low, as only few operations are
executed in parallel (denoted by "II"). However, the code is in fact
performance-optimal for the given loop structure. It requires 9 cycles
per iteration, thus (for 50 iterations) a total of 450 cycles.

mnemonic FU operands

LDH .D2 *++B4(4),B6 II load 16 bit
II LDH .D1 *++A4(4),A5 II load 16 bit

LDH .D2 *+B4(2),B5 II load 16 bit
II LDH .D1 *+A4(2),A6 II load 16 bit

SUB .12 B0,1,BO II decrement loop counter

48 RETARGETABLE COMPILER TECHNOLOGY

[BO] B .S1 12 II branch if zero
NOP 1 II empty delay slot
MPY .M1X B6,A5,A5 II multiply
MPY .M1X B5,A6,A6 II multiply
NOP 1 II empty delay slot
ADD .11 A6,AO,AO II compute sumO

II ADD .S1 A5,A3,A3 II compute sum1

The weak FU utilization can be clearly seen when illustrating the
schedule by means of a simple reservation table that shows the FU oc­
cupation by the different instructions over the timeT (fig. 3.9).

FU/T 0 1 2 3 4 5 6 7 8
D1 LDH LDH
D2 LDH LDH
Ml MPY MPY
M2
Ll ADD
L2 SUB
Sl B ADD
82

Figure 3. 9. Reservation table for dot product loop body

Software pipelining optimizes FU utilization by initiating new loop
iterations before previous ones have been completed. In a software
pipelined loop, multiple iterations from the original source code are si­
multaneously active, each in a different stage of completion.

On the TI C6x, for instance, a LOAD instruction has a delay of 5
instruction cycles, a branch (B) takes 6 cycles, and a MPY needs 2
cycles before its result is valid. However, new instructions may be issued
earlier, since the FU executing an instruction is (virtually) occupied only
for a single cycle. Exploiting these delay slots, we can issue two LOADs
in each cycle, and a MPY each time a LOAD pair has been finished 5
cycles later. Then, we get a reservation table as shown in fig. 3.10.

As can be seen, the FU utilization gets higher, and from cycles 7
and 8 onwards, once the software pipeline is in a "steady state", the
schedule repeats periodically every two cycles. The code from cycles 0
to 6 needs to be executed once and is called the prologue. Likewise there
is an epilogue (not shown) for finally cleaning up the pipeline. The code
from cycles 7 and 8, however, becomes the new loop kernel, which thus
needs only two cycles per iteration. Including prologue and epilogue,
the dot product computation time is reduced to 106 cycles only, indeed
a significant improvement over the above version.

Some compiler technology background 49

FU/T 0 1 2 3 4 5 6 7 8
D1 LDH LDH LDH LDH LDH LDH LDH LDH LDH
D2 LDH LDH LDH LDH LDH LDH LDH LDH LDH
M1 MPY MPY
M2 MPY MPY
L1 ADD
L2 SUB SUB SUB ADD SUB
S1 B B B
S2

FU/T 9 10 11 12 13 14 15 16 17
D1 LDH LDH LDH LDH LDH LDH LDH LDH LDH
D2 LDH LDH LDH LDH LDH LDH LDH LDH LDH
M1 MPY MPY MPY MPY
M2 MPY MPY MPY MPY MPY
L1 ADD ADD ADD ADD
L2 ADD SUB ADD SUB ADD SUB ADD SUB ADD
Sl B B B B B
S2

Figure 3.10. Reservation table for software pipelined dot product loop body

The disadvantage of software pipelining is a potential increase in code
size, due to the prologue and epilogue code. Additionally, there is a
possible need to perform a run-time check whether there are enough
loop iterations to make the software pipeline applicable, or whether a
non-pipelined code version has to be used.

Global scheduling:. Local and loop scheduling techniques like soft­
ware pipelining do not help much in case of control-dominated code,
where the control flow graph (CFG) consists of a large number of small
basic blocks. Small blocks are very unlikely to exhibit enough paral­
lelism to ensure good resource utilization for a VLIW processor. Global
scheduling techniques, such as Trace Scheduling [65], aim at eliminating
this bottleneck by allowing instructions to be moved over basic block
boundaries.

This works roughly as follows: By means of profiling, one can identify
critical paths in the CFG. The sequence of basic blocks along such a
path is called a trace. Neglecting the block boundaries, Trace Schedul­
ing compacts a trace by means of a local scheduling algorithm, as if it
were a single large basic block. Generally, this will give a much denser
schedule for the trace than what would result from locally scheduling
the blocks one by one, so that the critical path is shortened. However, a

50 RETARGETABLE COMPILER TECHNOLOGY

lot of undesired side effects may be incurred by moving instructions out
of their original blocks. Therefore, compensation code has to be inserted
(e.g. by duplicating instructions) that "repairs" the side effects. This is
also the major disadvantage of '!race Scheduling, which tends to signif­
icantly increase code size. An alternative global scheduling technique,
Percolation Scheduling [66], reduces the code size overhead by avoiding
code duplication whenever possible.

3.3. Register allocation

For sake of simplicity, code selection and early scheduling frequently
abstract from the physical register resources of the target machine. In­
stead, it is assumed that the target has an infinite number of virtual
or symbolic registers. Each time the code selector needs a new storage
resource, it generously allocates a new unique virtual register. The task
of the register allocator is to finally assign virtual to physical registers
in such a way that the limits of the target machine are met.

The number of virtual registers used in early compiler phases may well
exceed the available number of physical registers. In case there are insuf­
ficient physical registers, the register allocator must generate spill code.
Spilling a register means temporarily storing its content to memory, and
reloading it when it is required again. Naturally, the optimization goal
of the register allocator is to minimize the amount of spill code.

In most cases, register allocation is based on the notion of live ranges.
The live range of a virtual register v starts right after the instruction
ID that defines it and extends over all instructions lying on a control
flow path leading to some instruction Iu that uses v. Thus, liveness
at a certain program point means that the register contents are still
required and should not be overwritten before their last use, after which
the virtual register eventually "dies".

The following two approaches are generally used for register alloca­
tion. They differ in complexity and efficacy, and the best choice also
strongly depends on the concrete target machine.

Local register allocation. Local register allocation works within the
scope of a single basic block. This approach is computationally efficient,
but shows a limited optimization effect, since many loads and stores
are generally required between the basic blocks. However, if the target
machine has only very few registers, then local register allocation is
a reasonable approach, since it is unlikely that values can be kept m
registers for a long time without spilling.

Some compiler technology background 51

The central data structure in most register allocation techniques is
the interference graph. This is an undirected graph G = (V, E), where
each node v E V represents a virtual register. The set E contains an
edge e = {Vi, Vj }, whenever the live ranges of Vi and Vj intersect. Hence,
edge e indicates that Vi and Vj should be mapped to different physical
registers. Otherwise, spill code has to be inserted.

As defined in section 3.2, a basic block is a straight line sequence
of statements. At the time of register allocation, these statements are
normally machine instructions instead of IR statements. In any case,
the basic block property implies that all live ranges of virtual registers
are intervals of program points (at least after having performed SSA
transformation). For instance, consider the following statement sequence
annotated with liveness information.

(1) b = 1; II live in: -
(2) c = 2; II live in: b
(3) a = b + c; II live in: b, c
(4) d = a * 2; II live in: b, a
(5) e = b I 3; II live in: b, d
(6) return e - d; II live in: d, e

Computing the live ranges leads to the following intervals:

1 2 3 4 5 6
a: [X]

b: [X X X X]
c: [X]

d: [X X)

e: [X)

If the interference graph is such that all live ranges are intervals, then
the so-called left edge algorithm [67] can be used for optimal register
allocation in approximately linear time. Given a set { R1, .•• , Rk} of
physical registers, the algorithm moves a scan line from left to right over
the intervals and assigns a free register ~ with minimum index i to each
new live range. Likewise, it frees the register allocated for each live range
that ends at the current scan line position. For the above example, two
registers are sufficient.

If there is a solution with at most k registers, the algorithm will find it.
Otherwise, if the number of live registers exceeds k, one register needs to
be selected for spilling, so as to break its live range into sub-intervals. In
this case it is favorable to select that register with the maximum forward
distance to its next use, since this will minimize the number of further
conflicts.

52 RETARGETABLE COMPILER TECHNOLOGY

Global register allocation. If the target machine has a large number
of registers, such as a RISC processor, then register allocation should be
generalized towards entire functions. Like in the case of local allocation,
we can build the interference graph to represent the live range conflicts.
However, in contrast to the local approach, the live ranges are generally
no intervals, and the left edge algorithm cannot be applied.

X= f(O); II live in: -
if (x<3) II live in: x
{

}

al = f(x);
bl = f(al);
cl = f (a1•b1);
x = al + bl • cl;

II live in: x
I I live in: al
II live in: al, bl
II live in : al, bl, cl

else c1 = 0; II live in : x

if (x<2)
{

II live in : cl, x

c2 = f(cl); II live in: cl
a2 = f(cl); II live in: cl, c2
b2 = f(a2•a2); II live in: a2, c2
x = c2 + f(a2•b2) ; II live in: a2, b2, c2

return x; II live in : x

Figure 3. 11. Multi-block code and variable liveness

Instead, global register allocation amounts to a general graph color­
ing problem. Given the interference graph G = (V, E) and k physical
registers {R1 , . . . ,Rk}, a "color" (i.e. a number in {l, ... ,k}) needs to
be assigned to each v E V, such that different colors are assigned to all
node pairs (vi,Vj) for which {vi,vj} E E. An example is given in figs.
3.11 and 3.12. In case that G is not k-colorable, no register allocation
without spill code exists.

Figure 3.1 2. Interference graph and its 3-coloring for the code from fig . 3.11

Like many other code optimization problems, general graph coloring
is NP-hard [192]. However, there are a number of effective heuristics.
One of the most popular ones is Brigg's algorithm [68]. Starting with
an interference graph G = (V, E), it is based on the observation that
any node v E V with less thank neighbors is non-critical w.r.t. coloring:

Some compiler technology background 53

If the graph G' that results from G by removing v and all its incident
edges is k-colorable, then also G is k-colorable, since a valid color for v
can always be found once the coloring of G' is known. Brigg's algorithm
iteratively removes such nodes, pushes them onto a stack, and tries to
color the remaining graph G'. Each time G' contains only nodes with
degree greater or equal to k, one node is selected for spilling and is
removed and pushed onto the stack as well.

When G' is empty, the original graph is reconstructed in reverse order
by iteratively popping nodes from the stack. In case a spill candidate is
popped, colorability is not guaranteed, and spill and reload instructions
are generated on demand. Since the addition of spill code modifies the
live ranges and their interference, the algorithm has to be repeated until
a fix point without further spill requirements has been obtained.

There are a number of refinements to this basic algorithm, includ­
ing coalescing to eliminate redundant move instructions and handling of
precolored nodes that a priori represent physical registers. Brigg's algo­
rithm optimistically assumes that all virtual registers might be mapped
to physical registers, and generates spill code only in case this assump­
tion is violated. Conversely, there are also pessimistic approaches [69],
which start from the assumption that all virtual registers must be stored
in memory, and afterwards aim at keeping as many as possible in regis­
ters.

The presented techniques are obviously retargetable w.r.t. the number
k of physical registers in a machine, since k is a parameter of the regis­
ter allocator. However, particularly for irregular architectures, standard
techniques like graph coloring should be extended by more sophisticated
algorithms, that explicitly take special purpose registers into account.

3.4. Address code optimization
Address code optimization is mainly useful for DSPs with a dedi­

cated address generation unit (AGU), as depicted in fig. 3.13. The AGU
generally comprises address registers (ARs) and modify registers (MRs).
All indirect addressing in such a DSP takes place via the ARs, and the
available memory addressing modes are very limited.

ARs can be updated in parallel to any load or store instruction by
adding or subtracting some constant c, provided that c either resides
in an MR, or cis contained in a machine specific (and typically small)
auto-increment range [-r,r]. Due to the instruction level parallelism, such
auto-increment operations can be considered to be of zero cost. On the
other hand, non-parallel address computations always require extra code.
Therefore, the compiler should aim at organizing address computations

54 RETARGETABLE COMPILER TECHNOLOGY

immediate constant c

ARpointerp MRpointerq

address modify

register register
~ ~

effective

address

Figure 3.13. Address generation unit (AGU) in DSPs

in such a way, that auto-increment addressing is applicable as often as
possible.

Offset assignment. First of all, this optimization can be done for the
scalar variables (and also spill locations) that reside in the machine's
runtime stack. The amount of potentially parallel address computations
mainly depends on how well the layout of variables in memory is adapted
to the given variable access sequence, which is exemplified in fig. 3.14.
Since scalar variables are located at some offset relative to the frame
pointer, the optimization problem of determining the best variable layout
is commonly known as the offset assignment problem.

Offset assignment is an effective optimization, and therefore it has
been implemented in several existing compilers. Due to NP-completeness
of the problem, exact solutions usually cannot be computed. Triggered
by work from Bartley and Liao [70, 115], today there are a large number
of good heuristics (see e.g. [93] for a detailed overview), many of which
are also capable of handling a wide variety of AGU configurations w.r.t.
the number of AR, MRs, and auto-increment ranges.

Array address code optimization. Offset assignment is based on
the fact that the compiler can freely arrange the layout of scalar vari­
ables. In contrast, array elements have to have a fixed layout w.r.t. each
other. Still, the auto-increment capabilities of AGUs can be exploited
for address code optimization. The main idea is to minimize the amount
of spill code for ARs, that are used for array accesses in loop bodies. As

Some compiler technology background 55

AR=1 b AR=3 b

Ml
AR+=2 d

M2
AR-- d

AR-=3 a AR-- a
AR+=2 c ·; AR-- c

T1J
AR++ d AR +=2 d

1 b AR -=3 a 1 a AR-- a
2 c AR+=2 c 2 d AR-- c
3 d AR-- b 3 b AR+=3 b

AR-- a AR-=2 a
AR+=3 d AR++ d

a) AR-=3 a b) AR-- a
AR+=2 c AR-- c
AR++ d AR+=2 d

Figure 3.14. Example for scalar address code optimization for an AGU with a
single AR and auto-increment range [-1,1]. The variable access sequence is S =
(b, d, a, c, d, a, c, b, a, d, a, c, d). a) Memory layout M1, where variables are assigned to
memory locations 0 ... 3 in alphabetical order. The sequence of address computa­
tions needed to generate the memory addresses corresponding to S is given in C-like
notation. Only 4 operations are auto-increment/decrement. b) Improved layout M2
with 8 auto-increment/decrement address computations.

an example, consider the following loop with 7 accesses to some array
A:

for (i = 2; i <= N; i++)
{

A [i +1] II a1
A[i] II a2
A [i+2] II a3
A [i -1] II a4
A [i +1] II a5
A [i] II a6
A [i-2] II a7

}

For the corresponding address computations, any number of ARs from
1 to 7 can potentially be allocated. Assuming an AGU with an auto­
increment range of [-1,1], using only a single AR results in poor code,
since then most address computations between neighboring array ac­
cesses in the loop (e.g. "-3" for a3 = A[i + 2] and a4 = A[i- 1]) cannot
be implemented by auto-increment. Conversely, if we used 7 ARs (one
for each access), only auto-increment would be required, but potentially
too many ARs would be in use to keep them in the physically available
resources.

The key idea in array address code optimization is to let array accesses
share ARs as much as possible (similar to general register allocation,
where virtual registers share physical registers), without introducing ex­
tra address code inside a loop body. Sharing is possible, whenever the

56 RETARGETABLE COMPILER TECHNOLOGY

address distance between neighboring array accesses falls into the auto­
increment range. For the above example, for instance, only 3 ARs are
required, while still using only auto-increment addressing:

AR1 = &:A [3] ;
AR2 = &:A[2];
AR3 = &:A [0] ;
for (i = 2; i <= N; i++)
{

•AR1-- II a1
•AR2-- II a2
•AR1-- II a3
•AR2++ II a4
•AR1++ II a5
•AR2++ II a6
•AR3++ II a7

}

Array address code optimization is a non-trivial task, especially when
inter-iteration constraints must be obeyed. Several heuristics and exact
techniques are available, including [122, 127, 71, 145, 72). Like in the
case of offset assignment, different AGU configurations can frequently be
handled, making the techniques applicable for retargetable compilation
for DSPs.

Address code optimization is typically one of the last compiler passes,
since it requires detailed knowledge about all memory accesses. How­
ever, it has to be followed by a post-scheduling or compaction pass,
that parallelizes address computations newly inserted into the assembly
program.

3.5. Phase coupling issues
Due to the huge overall complexity of the compilation problem, a

compiler is subdivided into numerous different phases. This is a simple
divide-and-conquer methodology, but it implies that all phases have to
be executed in a certain order. The non-trivial problem of determining
the best sequence of phases is known as the phase ordering problem.

Many phases may have an impact on the optimization opportunities of
subsequent phases. The IR optimization "constant propagation", for in­
stance, is usually intended to improve the efficacy of "constant folding",
which in turn can generate further constants for propagation. Therefore,
it is clear that these two optimizations should be applied iteratively until
no more optimization is possible.

Particularly in the backend, however, phase ordering is not as simple,
because some phases unnecessarily restrict the search space for subse-

Some compiler technology background 57

quent phases. Moreover, this type of phase interdependence is frequently
cyclic. We illustrate this problem by some examples:

Code selection and register allocation: Code selection maps the IR
into assembly instructions. Typically, this phase also decides which
values will reside in virtual registers. Moreover, in case of multiple
register files, code selection also decides which destination register
file will be chosen for a certain operation, since there is usually an
optimum w.r.t. the instruction cost metric. However, only during
register allocation it turns out whether the choice was optimal if the
required spill code is taken into account, too.

Register allocation and scheduling: Register allocation folds virtu­
al registers into physical registers. Typically, it will reuse a certain
physical register for multiple virtual registers. This can introduce
unnecessary false dependencies (or anti-dependencies) that obstruct
the scheduler. On the other hand, sequential scheduling determines
the detailed live ranges of virtual registers, and thus clearly has an
impact on the results of register allocation.

Scheduling and address code optimization: Address code optimi­
zation relies on the detailed memory access sequence produced by a
scheduler. The variable layout in memory and the amount of auto­
increment operations depend on the access sequence, and it might be
that a different, yet valid, alternative schedule would lead to lower
addressing costs. Since address code optimization inserts new in­
structions, it also has an impact on the results of code compaction.

The result of these mutual dependencies is that generally any particu-
lar phase ordering will produce some overhead in code quality for certain
input programs. The phase ordering problem is even more significant
for embedded processors with an irregular architecture like in DSPs.
Therefore, phase coupling approaches are used that lead to a tight phase
interaction in order to achieve better code quality.

The simplest way of phase coupling is the iterative execution of mul­
tiple phases, so as to revise potentially poor decisions based on back
annotation from subsequent phases. Other approaches try to estimate
the impact of some phase on subsequent phases at an early point of time.
The highest degree of phase coupling is achieved when multiple phases
are actually combined into a single one. However, the corresponding
algorithms are difficult to design, and this "ideal" phase coupling fre­
quently results in relatively high compilation times.

The case studies in chapter 5 give a number of examples how phase
coupling has been implemented in retargetable compilers.

58 RETARGETABLE COMPILER TECHNOLOGY

3.6. Peephole optimization
After all compilation phases have finished, it is frequently useful to

make one last quick run over the generated code in order to perform
some late local improvements. Even though each of the previous opti­
mization passes will have done a good job on its own, it might be that
their combination and/or ordering led to some "unbeautiful" instruction
sequences, which still could be easily improved.

j
ld [%12+%13], %ol
add %ol, %o0, %o0
st %o0, [%10+%11]
sethi %hi(u), %o0
or %o0, %1o(u), %10

ld [%fp-20], %o0 ld [%fp-20], %o0
ld [%fp-20], %ol - %o0, %ol mov

j
sll %ol, 2, %o0
1d [%fp-24], %ol
mov %ol, %o3
sll %o3,4, %o2
sub %o2, %ol, %o2

Figure 3.15. Example for peephole optimization (SPARC assembly code)

For this purpose, a small window is moved over the assembly code
step by step, and only that piece of code currently visible through this
"peephole" is considered for optimization (fig. 3.15). Typical peephole
optimizations include elimination of redundant loads, and substitution of
partial instruction sequences by cheaper ones w.r.t. a given cost metric.

Peephole optimization is frequently implemented in a retargetable
fashion by providing the compiler with a set of match/replace rules that
describe the candidate instruction sequences and their replacement. An
example for this methodology is the retargetable peephole optimizer PO
[73]. The more powerful the peephole optimizer, the less effort has to
be paid in early code optimization phases. In an extreme case, one can
simply generate some poor (yet valid) initial code and leave the whole
optimization job to the peephole optimizer. For instance, such an ap­
proach is used in Zephyr/VPO (section 5.1.6).

Before we describe existing compiler systems in more detail (chapter
5), the next chapter will summarize the historical development of retar­
getable compiler research.

Chapter 4

HISTORICAL OVERVIEW

1. Contributions from the compiler community
Contributions from the compiler domain that can be used for design­

ing retargetable compilers, include the following:

• methods for code generation,

• register allocation,

• front end generation, and

• intermediate language design.

A subset of these will be discussed in the next sections of this chapter.

1.1. UNCOL
Generating compilers for new target processors from existing compil­

ers easily has been a goal since many decades.
One of the first proposals consisted of a clear separation between com­

piler frontends and backends in the UNCOL project [6). The key idea
was the introduction of a common intermediate language for m differ­
ent source languages and n different target processors. Using such an
intermediate language, m frontends and n backends have to be written,
instead of the m x n compilers that were required if compilers translated
all source languages directly into all machine languages (see fig. 4.1).

Mixing different source languages, using a single library for all source
languages and a unified trace and debugging environment across all
source languages are welcome byproducts of this approach. It has been
used used by some companies in order to provide compilers for different

59

60 RETARGETABLE COMPILER TECHNOLOGY

Figure 4.1. UNCOL approach for reducing effort of writing compilers

source languages and target processors (including, for example, the first
workstation vendor Apollo Computers Inc.).

The UNCOL approach still requires manually written frontends and
backends. Generating frontends was very much simplified with the avail­
ability of tools like LEX and YACC and standard techniques such as re­
cursive descent [49]. Follow-up research also aimed at avoiding the work
of writing backends. We will present major contributions in this area,
covering contributions from microprogramming and standard compilers
separately.

1.2. Code generation for expressions
As mentioned in the previous chapter, one of the standard actions

performed within a compiler is code generation. Code generation is re­
sponsible for finding - for each operation of the source program - a
corresponding set of machine operations. The fact that this can be done
using term rewriting has been common knowledge for many years. It is
also common knowledge, that rewriting is ambiguous: there are many
sequences of machine instructions that implement a source program. A
key problem is to find an efficient sequence of machine operations. Dif­
ferent approaches have been used for this.

The approach of Granville and Graham [17] to code generation is
based on LR(l) parsing. This means that string parsing is used instead
of the tree parsing introduced in the previous chapter. For each target
architecture, an LR(l) parser is generated. Like other LR(l) parsers,

Historical overview 61

Glanville's parser performs shift, reduce, accept and error actions. The
shift action reads the next symbol from the intermediate representation.
The reduce action applies a rule, corresponding to the generation of an
instruction, and shortens the stack. The accept action is performed when
a program has been compiled and the error action corresponds to cases
in which the source program cannot be compiled. The parser is designed
such that it tries to exploit special purpose instructions. However, no
explicit cost model is used and hence, optimality cannot be guaranteed.

In order to generate low-cost instruction sequences, Cattell proposed
the so-called maximum munching method [4]. In this approach, the in­
struction pattern covering the largest segment of the IR representation
is always replaced first. Again, optimality cannot be guaranteed. A
survey on the start of the art in retargetable compilation in the early
eighties was published by Ganapathi [15].

BURS theory is a more recent special instance of a term-rewriting
approach [41]. BURS stands for bottom up rewrite systems. BURS
theory can be used to generate optimal code sequences, similar to tree
parsing techniques based on tools like IBURG and OLIVE. The relation
between tree parsing and tree automata is described by Wilhelm et al.
[14].

2. Contributions from microprogramming
Contributions from the microprogramming domain that can be used

for designing retargetable compilers, include the following:

• scheduling techniques,

• explicit target machine models, and

• explicit consideration of machine resources.

Work on microprogramming led to some important results on schedul­
ing and resource allocation which are beneficial for current compilers
which also have to consider hardware details and not just the instruc­
tion set. Programming contemporary VLIW processors requires the use
of scheduling techniques which initially were developed for applications
in microprogramming. The important effect of microprogramming on
future design technologies was phrased very nicely on a cover of ACM's
SIGMICRO Newsletter: Microprogramming is dead - long live micro­
programming! Hence, it is interesting to look at some of the origins of
these techniques in microprogramming. Scheduling was discussed in de­
tail in chapter 3. Therefore, we focus on the other contributions from
microprogramming in this section.

62 RETARGETABLE COMPILER TECHNOLOGY

2.1. Motivation
Following Maurice Wilkes, many of the early computers were imple­

mented using microprogramming. With this approach, machine instruc­
tions were interpreted by microinstructions. Microinstructions typically
reside in a small and fast microprogram memory and have full access
to all hardware blocks. Microprograms were almost always written at
the micro-assembly level, using specialized, machine-dependent micro­
assemblers.

Writing microprograms at the micro-assembly level was very time­
consuming, since many hardware details had to be taken care of. There­
fore, researchers started to look for ways of writing micrograms at a
higher level of abstraction and interest in microcode compilers started
to rise. It was immediately obvious that microcode compilers should
provide some level of target-independence. Reasons for this include the
following:

• There was a huge variety of microinstruction sets.

• Only Jew microprograms were written for each instruction set. This
and the huge variety of instruction sets made traditional compiler
development too costly.

• Microcode-compilers were needed in the very early phase of a proces­
sor design project and waiting for the completion of some slow com­
piler development project was impossible. Hence, traditional com­
piler development was too slow.

It was obvious that retargetable microcode compilers would solve the
problem.

2.2. Early work
Surveys of very early work on retargetable microcode generation were

published by Bushell [3] and Sint [44]. It seems like this work was not
very successful.

However, taking this work into account, Dasgupta concluded that
the design of a retargetable microcode compiler compiling from a sin­
gle high-level language initially was too difficult. Therefore, Dasgupta
proposed the use of a microprogramming language schema S* [10]. S*
represents a family of languages sharing the same high-level language
elements (including the elements describing control) but also including
some target-machine specific statements. S* was used to automatically
generate simulators in a "retargetable firmware development system" [9]
at the University of Aachen. Interestingly enough, researchers from the

Historical overview 63

same university have more recently designed a technique for the retar­
getable generation of very fast simulators [40].

2.3. First retargetable microcode compilers
The first microprogram compiler that received major attention was

the "machine-independent efficient microprogram generator" MPG by
Takanobou Baba and his co-workers [2]. The MPG system used a ma­
chine description section (MDS) and an algorithm description section
(ADS) as its input. The MDS consisted of a control section (describing
the controller) and a controlled section (describing the data path). ADS
is a relatively low-level programming language. In the ADS, assignments
can refer to all machine registers. Assignments are translated into sets of
operations available for a target machine, called micro-operations. Dur­
ing the translation, MPG tries to find efficient sets of micro-operations.
Emphasis of MPG, however is on allocating microinstructions- which
are composed of micro-operations - to the microprogram memory. Ad­
dressing microprogram memories typically is very complex. For example,
many machines used pairs of microinstructions and branches were only
allowed if the two possible branch destinations were from the same pair
of instructions. The authors of the MPG system focused on handling
such situations. Decomposition of large expressions, arrays, pointers,
procedures etc. were not considered. The MPG system was used for
generating microprograms for HITAC8350 and HP2100A processors, for
which a surprisingly low overhead of just 12 % respectively 6 % was
reported.

Vegdahl [47] -like Cattell being from CMU- tried to extend Cattell's
work to microprogramming. Cover generation was based on Cattell's
maximum munching technique. Other components of the backend, like
constant generation, had to be written manually.

One of the first commercial systems was the IDAS system from JRS
Research Labs. The input languages selected for IDAS suit the needs
of the US Department of Defense: ADA for algorithm description and
VHDL for hardware description. JRS specifically focused on using re­
targetable compilation for design space exploration: One can make a
change in the hardware (e.g., delete an ALU, add a Multiplier, reduce
the amount of power available} and directly measure the impact of the
change on the performance of the program [24]. Accordingly, JRS is one
of the tool providers in the RASSP (Rapid-Prototyping of Application
Specific Signal Processors) initiative. In addition to the support of ADA,
C was added as another language for describing algorithms. Focus was
very much on the commercial exploitation of the underlying technology
and hardly any detailed description of it is publicly available.

64 RETARGETABLE COMPILER TECHNOLOGY

Other contributions were made by Robert Mueller and his group.
Their Horizon compiler [37] also allowed compilation of low-level pro­
grams. A C-derivative called Micro-C was used as the language for
describing algorithms. In Micro-C, variables correspond to machine re­
sources. Language operators correspond to operators available in hard­
ware. Code-generation was based on finding paths in the micro-architec­
ture from sources to sinks. Target specific information about the paths
and functional units in the micro-architecture was encoded in PROLOG
and PROLOG was then used to find paths along which required data
moves could be implemented. An attempt was made to commercialize
Horizon through QTC Corp., Beaverton. Design space exploration was
clearly among the goals of QTC [51]. Later, QTC took the tools off the
market.

2.4. The MIMOLA project

Synthesizing application-specific micro-architectures from algorithmic
descriptions of the applications was the initial goal of the MIMOLA
project [52]. MIMOLA stands for machine-independent microprogram­
ming language. The MIMOLA project and a corresponding indepen­
dent project [39] at the Carnegie-Mellon-University were the first two
projects in high-level synthesis (even though that name was not used at
that time). The MIMOLA Software System (MSS) incorporated tools for
high-level synthesis, code generation, test generation, synthesis and sche­
matic generation in a consistent way [33]. For the MIMOLA project, it
was possible to start from an algorithm and a partial micro-architecture,
the latter describing some of the ideas of the designer about the target
hardware. A completely specified micro-architecture was included as a
special case of a partially specified architecture. The MIMOLA project
also assumed the availability of a program memory and was capable of
translating algorithms into binary machine instructions to be stored in
the program memory. Performing this translation for a fully specified
micro-architecture is equivalent to retargetable compilation. Accord­
ingly, work on retargetable compilers began in the late seventies. Focus
was on machines with very long instruction words, now called VLIW
machines, but then called horizontally microprogrammed machines. The
term microprogramming was used despite the fact that no machine-level
programming on top of the microprogramming level was assumed.

The MIMOLA language provides mechanisms for describing hardware
structures and algorithms. It is clearly oriented towards synthesis [34]
and - except for early versions - is based on PASCAL. The first ver­
sion of the retargetable compiler was called MSSV [28, 29] (the more

Historical overview 65

recent MSSQ is described in section 5.4.1). MSSV- just like Horizon
- performed code selection by trying to find paths form source to sink
resources in the micro-architecture. Merging of several micro-operations
(so-called bundling) was performed for inputs of n-ary hardware opera­
tors such as ALUs. In contrast to Horizon, several possible paths were
considered and forwarded to the scheduler MSSC. Just like in Horizon,
matching of algorithm and hardware was performed at a low level, with­
out trying to extract the instruction set from the description of the
micro-architecture. Increased interest in retargetable compilation led to
the publication of unpublished material in [31].

The brief description of the early work in the MIMOLA project con­
cludes our presentation of the roots of retargetability. In the next chap­
ter, we will present more recent approaches to retargetability.

Chapter 5

RETARGETABLE COMPILER CASE
STUDIES

This chapter describes a selection of retargetable compilers and code
generation techniques. We focus on a representative list of specific tools
and techniques. Due to the limited space, we naturally cannot cover
many interesting details, but these are mostly available in several pub­
lications anyway. Instead, our goal is to highlight their advantages, lim­
itations, and novel concepts, as well as to put the different approaches
into context. Additionally, we mention practical issues like availabil­
ity and licensing terms of software. Clearly, also many other compiler
techniques besides the ones mentioned here are retargetable in the sense
that they show a certain degree of machine independence. However, we
focus on tools and techniques that explicitly use some kind of machine
model in order to adapt the compiler to different targets. In addition,
we restrict our review to approaches that have at least some relation to
compilers for embedded systems.

The tool overview is mainly categorized by target processor classes.
First, we present retargetable compilers and compiler infrastructures
for general-purpose processors (GPPs). Then, we switch to domain or
application-specific machine classes like DSPs, VLIW s, and ASIPs. Im­
portant point solutions and techniques that do not well fit into this list of
categories are summarized separately in section 5. Finally, we describe a
set of commercial compiler systems that emphasize retargetability. Ap­
pendix A provides a chronological tabular overview of important tools
together with WWW links to their home pages and/or available soft­
ware.

67

68 RETARGETABLE COMPILER TECHNOLOGY

1. Retargetable compilers for G PPs
1.1. GCC

Among the most well-known and widespread retargetable compilers
is GCC, which is part of the GNU free software project. GCC mostly is
used as a C/C++ compiler, but it also comprises frontends for Fortran,
Java, and some exotic languages.

The GCC compiler for most platforms can be downloaded from [75].
The web site also provides documentation and background information.
Red Hat [76] provides an MS Windows port called "cygwin", which emu­
lates a Unix environment under MS Windows. The compiler falls under
the GNU public license, which mainly means that the software can be
freely used, modified, and distributed, provided that the corresponding
source code is still made freely available.

There are GCC backends for numerous OS platforms and target pro­
cessors, in most cases CISCs and RISCs (including Spare, MIPS, Alpha,
Intel x86, and M68000). However, GCC originally was not designed as
a "clean" retargetable compiler, but the target machine description ca­
pabilities have been extended on demand over the time. This is what
the manual says about GCC's portability:

"The main goal of GCC was to make a good, fast compiler for ma­
chines in the class that the GNU system aims to run on: 32-bit machines
that address 8-bit bytes and have several general registers. Elegance, the­
oretical power and simplicity are only secondary.

GCC gets most of the information about the target machine from a
machine description which gives an algebraic formula for each of the
machine's instructions. This is a very clean way to describe the target.
But when the compiler needs information that is difficult to express in
this fashion, I have not hesitated to define an ad-hoc parameter to the
machine description. The purpose of portability is to reduce the total
work needed on the compiler; it was not of interest for its own sake."

The code generation process in GCC consists of about 20 passes, that
revolve around an intermediate representation (IR) called RTL (register
transfer language). A nice feature is that the RTL code after each pass
can be dumped into a readable file to monitor the IR modifications.
The first pass is the frontend, which generates an initial RTL for a given
source program. In contrast to other IR formats, RTL already consists
of machine-specific instruction patterns. RTL generation takes place
on a simple statement-by-statement basis, modern techniques like tree
parsing are not applied.

Next, there are a number of standard optimization passes, e.g. jump
optimization, common subexpression elimination, and loop optimiza-

Retargetable compiler case studies 69

tion. Register allocation is split into a local and a global pass. Like­
wise, instruction scheduling is distributed over several passes. The first
scheduling pass aims at instruction reordering in order to avoid pipeline
stalls. The second scheduling pass essentially does the same, but also
takes the spill code resulting from register allocation into account. Yet
another scheduling pass is responsible for filling possible delay slots, and
finally assembly code is emitted for the optimized RTL code. Thus,
GCC's code generation process follows a quite conventional approach.
In particular, there is hardly any phase coupling, and there are no built­
in optimizations dedicated to embedded processors.

A target machine description for GCC typically comprises three files:
a machine description (MD) file, a C header file for macro definitions,
and a C source file with processor-specific support routines. GCC's
retargeting mechanism uses these files to reconfigure the compiler source
code, which afterwards can be compiled and linked to produce code for
the given machine.

The main purpose of the MD file is to inform the compiler about
the available instruction set and some specific optimizations. Mostly,
"definejnsn" constructs are used to define available instructions. Such
a construct generally specifies a name, an RTL template, an assembly
output template, and matching constraints. This is shown in the follow­
ing example:

(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" ""'f")

1111

(minus:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]

"subf\\t%0,%1,%2")

The name "subs£3" informs the compiler that the pattern describes
the subtraction of single precision floating point numbers, which can be
exploited in RTL generation. "match_operand" serves as a placeholder
for actual operands to be inserted during code generation. All three
operands in this example have a unique number (0,1,2) and are of type
"single float" (SF). The string "register_operand" is a predicate ensuring
that only registers can be used as operands of the instruction. The letter
"f" further restricts the operands to be floating point registers, where
"=f' denotes that operand 0 (the destination register) is write-only in
this context. Finally, an assembly output template is provided, which
emits a "subf" mnemonic, followed by the operand registers, in case the
"subs£3" pattern has been used for matching a C expression.

The MD file may also contain so-called expander definitions that in­
form the compiler about operations too complex to be handled with a

70 RETARGETABLE COMPILER TECHNOLOGY

single machine instruction. A "define_expand" construct therefore allows
to specify how operations can be implemented by sequences of RTL in­
structions. Finally, one can specify machine-specific peephole optimiza­
tion. A "define_peephole" construct in the MD file tells GCC how a
certain sequence of instructions can be replaced by a more cost-effective
sequence, possibly dependent on some matching conditions. The follow­
ing shows an example from a GCC port to the TI TMS320C25 DSP,
developed at the University of Toronto. There, a load from memory
and an addition are combined into a single instruction (LTA - load and
accumulate).

(define_peephole
[(set (reg: QI 2)
(set (reg: QI 0)

lilt

"LTA 'l.O")

(match_operand:QI 0 "memory_operand" "m"))
(plus:QI (reg:QI 0) (reg:QI 1)))]

The C header file with target-specific macros partially consist of purely
numerical parameters. An example is given in the following, where endi­
aness, the minimum addressable storage unit, and some type bit widths
are defined.

#define BYTES_BIG_ENDIAN 1
#define BITS_PER_UNIT 8
#define INT_TYPE_SIZE 32
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32

Many others of the huge amount of GCC's machine macros are more
complex and, for instance, specify the register names, register classes,
the syntax for assembler directives, and argument passing conventions,
just to name a few. Finally, the C file with support routines amongst
others typically defines highly machine-specific things like the assembly
code sequences to be emitted for function prologues and epilogues.

In total, one can say that the machine description required by GCC
is quite complex, and it certainly takes some time to be able to retarget
the compiler to a completely new processor. On the other hand, GCC's
description complexity can also be considered an advantage, since it al­
lows for a high degree of flexibility for handling special hardware details.
This explains why GCC is available for a significant number of different
GPPs, and is actually in intensive practical use.

When it comes to embedded systems, however, the applicability of
GCC strongly depends on the target processor. In the DSP area, for
instance, GCC has been ported to the Analog Devices 2101 and the
Motorola 56001. The DSPStone benchmark [77] showed that a perfor­
mance overhead of 400% or more of compiled code versus hand-written

Retargetable compiler case studies 71

assembly is not unusual. This indicates limitations of GCC w.r.t. irregu­
lar processor architectures. The compiler is hardly capable of exploiting
small heterogeneous register files, instruction-level parallelism, or multi­
ple memory banks. The report [78] describes a project where GCC has
been ported to Thor, a stack-oriented embedded RISC processor. The
authors show in detail the problems encountered when porting GCC to
an "unusual" architecture, and they describe some workarounds. Among
the main problems mentioned is GCC's need for a byte-addressable mem­
ory and the sparse documentation.

In summary, GCC is generally a good choice when the target proces­
sor is a GPP for which a compiler port already exists, or which is at least
compatible to GCC's intended target machine class. In this case a big
plus for GCC is that it comes with a comprehensive set of support soft­
ware, such as assembler, linker, debugger, and standard C/C++ headers
and libraries. Additionally, GCC is a very stable compiler. These are
probably the reasons why processor core vendors like ARC [79] and Ten­
silica [80] have chosen GCC as a primary development platform.

In case the target machine does not really fit into the GCC concept,
porting gets very difficult, since the GCC source code is somewhat hard
to patch, and the resulting code quality may be expected to be poor.

1.2. LCC
The "little C compiler" LCC has been developed at Princeton Uni­

versity. The current version V4.1 can be downloaded together with its
source code from [81]. The compiler is easy to install for Unix and Linux
machines, and there is a special development branch called LCC-Win32
for PC /Windows platforms [82].

In contrast to GCC, LCC is actually a lightweight C compiler. The
total source code has a size of only about 13,000 lines. Nevertheless, it
is a complete and retargetable ANSI C compiler. Due to its small size,
it is possible to study LCC's anatomy in detail. A big advantage in this
context is that the source code is well documented in the form of a book
[83]. The standard LCC distribution comes with built-in backends for
MIPS, Alpha, Spare, and Intel x86 target processors. Also the design
of the backends is documented in the LCC book, which provides a good
insight into LCC's retargeting capabilities.

Similar to GCC, retargetability has not been a design goal for LCC
right from the beginning. Instead, it evolved into its current state over
the years. This is what the documentation says:

"There was no separate design phase for LCC. It began as a compiler
for a subset of C, so its initial design goals were modest and focused on
its use in teaching about compiler implementation in general and about

72 RETARGETABLE COMPILER TECHNOLOGY

code generation in particular. Even as LCC evolved into a compiler for

ANSI C that suits production use, the design goals changed little. "
Now LCC can be considered a stable C compiler, even though it is not

as widespread as GCC in the Unix world. For PC/Windows platforms,
however, LCC is frequently preferred over GCC, since the LCC-Win32
version comes with a relatively comfortable graphical development envi­
ronment.

The LCC copyright permits the free use of the software for research
and education, as well as redistribution. In contrast to the GNU public
license, there is no need to publish the source code as well. Building
commercial products on top of LCC, however, is more problematic, since
the copyright is with a publisher. Again, this situation is different for
the LCC-Win32 version, for which professional support is also available.

Being a lightweight compiler, LCC's code optimization capabilities
are certainly limited. There are no global optimizations, even no global
register allocation, and local optimizations are limited to simple passes
like constant folding and common subexpression elimination. As a con­
sequence, the code quality may be expected to be somewhat lower than
GCC's in general. On the other hand, LCC is extremely fast, but this
is usually not too important in the context of embedded system design.

The code generation procedure works roughly as follows. The ANSI C
frontend translates a given C source into data flow graphs (DFGs). The
DFG operators essentially correspond to the C language operators, but
they also carry type and size information. Therefore, the DFG operators
are machine-dependent. Fig. 5.1 shows an example with a piece of C code
and the DFG format dumped by LCC.

int a;
int f(int* p)
{ return a+ *P + 1; }

5. ADDRGP2 a II address of global var "a"
4. INDIRI2 #5 II load a
8. ADDRFP2 p II address of parameter "pll

7. INDIRP2 #8 II load p
6. INDIRI2 #7 II load *P
3. ADDI2 #4 #6 II integer add
9. CNSTI2 1 II constant "1"
2. ADDI2 #3 #9 II integer add
1. RETI2 #2 II integer return

Figure 5.1. C code and LCC's intermediate representation

Retargetable compiler case studies 73

Code selection is performed by tree parsing, based on a tree grammar
specification of the target instruction set. The code selector itself is
generated by means of the LBURG tool, a variant of IBURG [74]. The
resulting symbolic machine code is linearized and passed to the register
allocator. The register allocator performs local allocation of registers,
i.e. in a basic block oriented fashion. Finally, assembly code is emitted.

Similar to GCC, the target processor for LCC is modeled in the form
of a machine description file. In contrast to GCC, however, there is
usually only a single, quite compact, MD file. The MD file contains two
main parts: a target instruction set description and a set of C support
functions.

The instruction set is described as a tree grammar, very similar to the
notation used for IBURG/OLIVE (sections 5.5.3.1 and 5.5.3.2). First,
the grammar terminals are defined. As mentioned above, LCC's terminal
symbols are machine specific to a certain extent. This is exemplified in
the following, where some terminals used in LCC's x86 backend are
shown:

%term ADDF4=4401
%term ADDF8=8497
%term ADDI4=4405
%term ADDI8=8501
%term ADDP4=4407
%term ADDP8=8503
%term ADDU4=4406
%term ADDU8=8502

All symbols refer to an ADD operation, where the fourth letter de­
notes the type (F = float, I = integer, P = pointer, U = unsigned).
Finally, a number is used to inform the compiler about the type size in
bytes (e.g. 4 for a float, 8 for a double).

Next, the actual instruction patterns are described in the form of
tree grammar rules, together with some corresponding output assembly
template and an optional pattern cost value. Again we illustrate this by
an example. The rule

reg: ADDI4(reg,mrc) "?mov %c,%0\nadd %c,%1\n" 1

describes a 4-byte integer ADD operation, where reg is a nonterminal
denoting a general-purpose register, and mrc1 is another nonterminal
that may match a memory, register, or constant operand. Following the
rule, a string specifies the assembly instruction (or instruction sequence)
to be emitted in case the rule has been selected. In this case, there is
a "mov" followed by an "add" instruction. The symbols with a "%"
prefix serve as placeholders for the actual values of the nonterminals to

74 RETARGETABLE COMPILER TECHNOLOGY

be inserted later. Here, "%c" denotes the symbol on the left hand side of
the rule (which is going to be a physical register afterwards), while "%0"
and "%1" refer to the argument nonterminals. The special character "?"
at the beginning of the assembly template tells LCC's code generator
to suppress emission of the first assembly instruction ("mov") in case
it turns out to be redundant. Finally, a cost value can be specified. In
the above example, this is a constant "1", but also C functions may
optionally be called for more complex cost computations.

In case the required assembly output for some rule cannot be specified
with a simple assembly template as above, LCC offers an escape mech­
anism. If the template starts with a "#" character, the code generator
calls a special C support function in order to emit code for the respective
rule.

The remainder of the MD file specifies a fixed set of about 20 target­
specific C support functions. There is a dedicated initialization function
used to inform the compiler about available registers and register classes.
Other functions are used, for instance, to emit function prologues and
epilogues, and to guide the emission of assembler directives and segmen­
tation information.

In order to handle special register constraints, there are also functions
that permit to bind certain operations to specific registers. The following
code fragment is taken from LCC's x86 backend.

static void target(Node p) {
switch (specific(p->op)) {

}

case MUL+U:
setreg(p, quo);
rtarget(p, 0, intreg[EAX]);
break;

The support function target generally has the form of a switch state­
ment that selects over the different DFG operators. The above specifi­
cation defines that for unsigned multiplication the destination has to be
a register class called "quo", while the left argument has to be allocated
in register EAX.

Like GCC, the LCC compiler certainly has a preference for more or
less regular RISC/CISC processor architectures with a byte-addressable
memory. Modeling irregular DSP data paths is more difficult, since the
built-in register allocator might need to be bypassed. Nevertheless, the
existing backends indicate that LCC is surprisingly flexible. Due to the
rather concise code generation interface, retargeting LCC will generally
be simpler than in the case of GCC. On the other hand, code quality

Retargetable compiler case studies 75

may be expected to be lower due to the missing standard optimizations
and the local register allocator. In addition, LCC does not comprise
an instruction scheduler, which has to be implemented as a postpass
optimization if required.

1.3. Marion
Marion [84, 85] is a retargetable compiler designed for RISC archi­

tectures. Target processors handled by Marion include Motorola 88k,
Intel i860, and MIPS R2000. Special emphasis is put on effective re­
targetable instruction scheduling and the coupling of the traditionally
separated scheduling and register allocation phases in order to maximize
code quality. It is assumed that the target machine has a load-store ar­
chitecture with a general purpose register file, and that the functional
unit usage by each instruction is known at compile time.

Marion uses LCC's C frontend for generating an intermediate program
representation. The target machine is described in a language called
Maril. A target model in Maril consists of three sections: a resource
declaration, a runtime model, as well as an instruction set description.

The resource section declares processor entities like registers, memo­
ries, functional units, and pipeline stages. The runtime model mainly
defines compiler properties like calling conventions, stack frame layout,
and the use of certain registers for special purposes (e.g. registers avail­
able for general allocation and the frame and stack pointer registers).

Finally, the instruction section models the available machine instruc­
tions in detail. This includes the assembly syntax, as well as the instruc­
tion behavior in terms of a C expression. Instructions with side effects
(such as auto- increment) cannot be modeled, though. Additionally, an
instruction specification describes its resource usage on a cycle-by-cycle
basis (similar to a reservation table), a cost value, the instruction la­
tency, and the number of delay slots. The following example taken from
[85] illustrates this concept with the example of a load instruction:

'l.instr ld r,r,#const16
{ $1 = m[$2+$3]; }
[IF;ID;IE;IA;IW;]
(1,3,0)

II assembly syntax
II behavior
II used pipe stages
II cost, latency, delay slots

The code generator first maps the IR into the described assembly in­
struction set by a tree-based greedy heuristic. In case that IR constructs
have no direct correspondence to assembly instructions, the mapping has
to be described manually, either by rewrite rules or by special C support
functions. Next, global register allocation and instruction scheduling
are performed. Both phases rely on standard techniques each (graph

76 RETARGETABLE COMPILER TECHNOLOGY

coloring and list scheduling, respectively), but a heuristic phase cou­
pling is provided in order to partially eliminate the well-known phase
ordering problem: doing register allocation first may restrict the sched­
uler's instruction reordering opportunities, while performing scheduling
first may lead to superfluous spill code.

Experimental results for the targets mentioned above indicate that the
retargetable phase coupling approach between register allocation and
scheduling works and produces good code. The Marion system is ac­
tually a good example for the fact that retargetability and high code
quality are not necessarily contrary goals, provided that only a certain
processor class is targeted. Another strength is its capability of code
generator generation from quite concise machine models. Limitations of
Marion concern the expressiveness of the Maril modeling language, low
compilation speed and robustness, and the lack of global IR optimiza­
tions and a more powerful code selector.

1.4. PAGODE
PAGODE is a backend generator for RISC targets [90, 91] that has

been developed within the European research project COMPARE [92].
It reads a target machine specification in the SCALA language and gen­
erates code selector, register allocator, scheduler, and assembly code
emitter for the given target. A SCALA description captures all target
machine characteristics required for generating these tools: instruction
templates with semantics, assembly format, cost metrics, and pipelining
restrictions, as well as available storages and registers.

Compilers generated with PAGODE require some source language
frontend that generates a machine-independent intermediate represen­
tation (IR). For this purpose, a coupling to the CoSy (section 5.6.1)
frontends has been implemented. The code selector uses tree parsing
to map the IR into a common machine-dependent low-level IR (LIR),
which the remaining code generation phases operate on. After code se­
lection, register allocation via graph coloring is performed. Finally, a
list scheduler is applied to each basic block, so as to minimize pipeline
hazards, and assembly code is emitted.

PAGODE has been used to generate a Spare backend, but results on
code quality have not been published. The system emphasizes modular­
ity and extensibility of generated backends. On the other hand, there
is no phase coupling between code selection, register allocation, and
scheduling, but only standard techniques are used for code generation.
Hence, the code quality may be expected to be lower in general than
e.g. in the Marion system, and retargeting to embedded processors with
irregular architectures is obviously not supported.

Retargetable compiler case studies 77

1.5. SUIF /Machine SUIF
Stanford University's SUIF system is actually more an optimizing

frontend rather than a retargetable compiler. The software can be down­
loaded in two versions from [86].

The original version SUIFl comprises an ANSI C frontend built on
LCC's frontend and also provides Fortran entry capabilities via a For­
tran to C translator. On the backend side, a MIPS code generator
is provided. According to the licensing information, the software may
be freely used, modified, and redistributed for any commercial or non­
commercial purpose. SUIF has been designed primarily as a compiler
research framework, and for this purpose it is widely used.

The optimization focus of SUIF is on parallelizing transformations,
but also classical scalar optimizations like constant folding and propaga­
tion are included. The compilation and optimization process is intended
to be very transparent and extensible by using a file exchange format
between all compiler phases. In this way, new optimizations can be in­
serted at any time in a "plug-and-play" fashion. Naturally, this makes
SUIF somewhat slower than usual compilers.

SUIFl has no particular support for retargeting to different proces­
sors, but it is possible to dump the intermediate representation in C
syntax at any time, so that an existing C compiler may serve as a "back­
end".

SUIF's machine-independent IR can retain high-level C constructs
like loops, conditionals, and array accesses, a feature that facilitates
the intended complex program transformations. Alternatively, a "low­
SUIF" IR may be used, where all high-level constructs are lowered down
to assembly-like, yet machine-independent, code. Optimization passes
will generally require either the high or the low IR format, however.
IR access and manipulation are possible via a C++ class library. We
illustrate the different IR-levels with a small C example:

int A[10];

void main(int a,int b,int i)
{

A[i] = a < b ? 10 : 20;
}

The high-SUIF IR for this example (exported in C syntax) looks as
follows. As can be seen, the conditional expression is still visible in its
original form.

78 RETARGETABLE COMPILER TECHNOLOGY

void main(int a, int b, int i)
{

}

int suif_tmpO;

if (a < b)
{

suif_tmpO = 10;
}

else
{

suif_tmpO = 20;
}

A[i] = suif_tmpO;
return;

In contrast, in the low-SUIF format the conditional is replaced by
jumps and labels, and also the array access is converted into a pointer
access:

void main(int a, int b, int i)
{

int suif_tmpO;

if (a >= b)

goto 11;
suif_tmpO = 10;
goto __ done2;

11:
suif_tmpO = 20;

__ done2:
*(int *)((char *)A+ i * 4) = suif_tmpO;
return;

}

The new version SUIF2 represents a complete revision of SUIF, and is
currently in a beta release stage. There are, however, conversion utilities
for backward compatibility to SUIFl. The IR has been redesigned to be
more modular and extensible. The terms of use are similar to SUIFl,
except for the C frontend. SUIF2 is based on EDG's commercial C++
frontend [87], therefore only the binaries are available, and free use is
restricted to research purposes.

Just like SUIFl, also the new version does not directly support retar­
geting to different processors. However, the Machine SUIF project at
Harvard University [88] aims at filling this gap. It complements SUIF
with a low-level but still partially machine-independent IR, that shows
a one-to-one correspondence to assembly instructions. The low-level IR
is generated from the normal SUIF IR by a dedicated lowering pass.

Retargetable compiler case studies 79

The goal is to keep most of the source code required for low-level opti­
mizations and code generation (e.g. register allocation and instruction
scheduling) machine independent and thus reusable, while encapsulating
the machine-specific details in a target library. In this way, backends for
Alpha and x86 targets have been constructed with Machine SUIF. How­
ever, it still has to be investigated whether the low-level IRis expressive
enough to handle more typical cases of embedded processors.

In summary, the SUIF /Machine SUIF packages are certainly a good
starting point for research on retargetable code generation, since they
provide a large part of the required compiler infrastructure for free. On
the other hand, SUIF has so far hardly been applied to code generation
for embedded application-specific processors. An exception is the SPAM
compiler described in section 5.2.4.

1.6. Zephyr /VPO
The Zephyr compiler infrastructure has been designed by the U ni­

versity of Virginia in cooperation with Princeton University. Together
with the SUIF system, it forms a main component of the U.S. National
Compiler Infrastructure project. While SUIF focuses on high-level code
transformations, Zephyr emphasizes the machine-dependent code opti­
mizations. It supports different language frontends, such as EDG's C++
frontend and LCC's C frontend. Alternatively, the required intermedi­
ate representation (IR) can be generated via SUIF (which gives access to
further frontends) and be converted into Zephyr's internal format. The
Zephyr software, including source code, can be downloaded from [89]. It
is copyrighted by the University of Virginia.

Zephyr supports both different IRs and different target machines. The
IRis described in the machine-independent Abstract Syntax Desciption
Lang~age (ASDL), a language that supports file exchange of tree-like
IR data structures between compiler components, possibly written in
different programming languages. Information about the target ma­
chine is captured in a language family called CSDL (Computer Systems
Description Languages). Different CSDL dialects are responsible for
describing different aspects of the target machine, e.g. there are CSDL
sub-languages for describing assembly and binary formats of machine in­
structions, instruction semantics, calling conventions, and pipeline struc­
ture. Even though this approach results in a rather heterogeneous ma­
chine model, all CSDL models for a given target share the same data
structures for instructions and their respective impact on the processor
state.

A main idea in Zephyr is that the IR in a first step is mapped to
a naive assembly code implementation without particular optimization

80 RETARGETABLE COMPILER TECHNOLOGY

effort. The unoptimized assembly is afterwards optimized by the VPO
(Very Portable Optimizer) tool. VPO has its origins in the retarget able
peephole optimizer PO [73], which also influenced GCC.

The mapping from the IR to unoptimized assembly takes place via a
code expander. There has to be one dedicated code expander for each
combination of IRs and target models. The code expander describes
the mapping of each IR construct into an equivalent sequence of RTL
assignments. In order to save development time, it is recommended
to keep new code expanders extremely simple. Generation of correct
machine code is sufficient in this step, since VPO will later take care of
the optimization process (fig. 5.2).

Assembly

Figure 5.2. Compilation flow in Zephyr/VPO

On the unoptimized code VPO iteratively applies optimizations until
some fix point is reached, at which no further optimization seems possi­
ble. Available optimizations include common subexpression elimination,
loop unrolling, code motion, function inlining, and strength reduction.
A key idea is that all these optimizations are machine-independent, and
hence reusable, even though they are performed on machine-dependent
code. Machine-independence is achieved by performing only such trans­
formations that do not alter the predefined RTL semantics of the as­
sembly code. On the other hand, machine-dependence is preserved by
a special VPO module that checks whether the modified assembly still
obeys a machine invariant, in the sense that all RTL assignments still

Retargetable compiler case studies 81

correspond to exactly one instruction on the target machine. Transfor­
mations not satisfying this invariant are rejected.

After the code optimization process has terminated, register alloca­
tion by graph coloring is performed, since all transformations take place
on RTL code with virtual registers. Afterwards, the assembly syntax de­
scription part of the CSDL machine model can be used to emit valid as­
sembly code. A retargetable postpass instruction scheduler is obviously
not included in VPO but has to be developed separately if required.

With respect to retargetable compilation the major advantages of the
Zephyr /VPO approach are twofold: Retargeting is comparatively easy,
since it is not required to specify target-dependent optimizations, as
these are left to VPO. Moreover, all code optimizations once imple­
mented in VPO in principle can be reused for all target machines, even
though not all optimizations might be effective for each target.

The main limitations of Zephyr are the strict decoupling of code se­
lection, optimization, and register allocation, as well as the requirement
of a one-to-one mapping between RTL assignments and assembly in­
structions, which restricts its use mostly to clean RISC and CISC ma­
chines. Irregular architectures frequently found in embedded processors,
including special-purpose registers, complex instructions, and limited
parallelism are not directly supported, but require machine-specific ex­
tensions of VPO.

1.7. LANCE
The LANCE C compiler system, developed at the University of Dort­

mund [93], comprises an ANSI C frontend, a C++ API for accessing the
intermediate representation, a set of standard IR optimizations, as well
as a backend interface. The C frontend can be downloaded from [94],
while the complete V2.0 system can be licensed for research purposes on
request. Supported platforms are Unix, Linux, and MS Windows.

The LANCE system is not as easily retargetable as GCC or LCC,
since it does not include a complete backend generation module. Roever,
design of target-specific code generators is supported by the backend
interface. LANCE is almost completely machine-independent and has no
implicit preference for a certain target processor class. Thus, backends
can be designed actually for almost any target. The system covers several
compiler passes, from C source analysis over IR optimizations, down to
generation and visualization of control and data flow graphs.

LANCE combines ideas from SUIF and LCC. Similar to SUIF, the
different compiler and optimization passes operate on a common IR and
communicate via file exchange. This makes LANCE comparatively slow,
but it enables the same "plug-and-play" extensibility concept as in SUIF:

82 RETARGETABLE COMPILER TECHNOLOGY

IR optimizations can be inserted (or omitted) at any point of time.
TheIR format, however, is kept in the form of pure assembly-like three
address code. While a high-level IR as in SUIF better supports certain
optimizations, the LANCE IR has intentionally been chosen as a very
simple format, so as to make it easily understandable when writing new
optimization passes.

Similar to LCC, LANCE can generate data flow graphs that can be di­
rectly fed into code selectors generated by tools like IBURG or OLIVE.
In contrast to LCC, however, the DFG operators (or the tree gram­
mar terminals, respectively) are machine-independent. This reduces the
number of operators (the total number .happens to be 42, as opposed
to more than 200 in a typical LCC model) and thereby the number of
required tree grammar rules, at the expense of more complicated code
generator action functions.

We exemplify the LANCE compilation procedure with the same small
piece of C code as in our above SUIF example:

void main(int a,int b,int i)
{

A[i] = a < b ? 10 : 20;
}

The C frontend translates this into the following IR file:

void main(int a_3,int b_4,int i_5)
{

}

int t1;
int t2;
char •t3;
int t4;
char •t5;
int •t6;

LL1:

LL2:

t1 = a_3 < b_4;
if (t1) goto LL1;
t2 = 20;
goto LL2;

t2 = 10;

t5 = (char •)A;
t4 = i_5 * 4;
t3 = t5 + t4;
t6 = (int *)t3;
•t6 = t2;
return;

Retargetable compiler case studies 83

The frontend assigns a unique numerical suffix to all local identifiers,
so as to flatten the possibly nested local scopes in a C function. Ad­
ditionally, it inserts auxiliary variables ("t" prefix) in order to break
complex expressions. All high-level language constructs are tranformed
into conditional jump/label constructs, and all implicit type casts as
well as pointer and array index scaling are made explicit in the IR.
The latter naturally requires machine-dependent type size information.
This is passed to the frontend through a small configuration file, which
also contains the type alignment information required e.g. for computing
structure component offsets.

Similar to SUIF's C export facility for the low-SUIF IR, the IR gen­
erated by LANCE is still a valid (but even lower-level) C program. In
fact it is pure, flattened three address code in C syntax. This means
that the IR can be compiled and executed on a host just like the origi­
nal C source. This feature is exploited for validation of the C frontend,
the IR optimization tools, as well as the backend interface. Based on
this methodology and a large suite of heterogeneous C test programs, a
reasonably good stability of the LANCE system has been achieved, and
any newly designed IR optimization pass can be easily validated without
the need for a backend or simulator in the same way.

The next step in the compilation procedure is normally the iterative
application of IR optimizations like constant folding, dead code elim­
ination, or loop-invariant code motion. However, in our above simple
example there is not much to optimize. The final step, therefore, is the
translation of the IR into the data flow tree format required for code
selection. For our example this looks as follows:

* Function 'main'
* Basic block 1:
* Tree 1:

(cs_CJUMP [IR stm 2: 'if (t1) goto LL1;']
(cs_LESS [IR exp 8: 'a_3 < b_4' C type: int

(cs_READARG [IR exp 6: 'a_3' C type: int] arg no 1)
(cs_READARG [IR exp 7: 'b_4' C type: int] arg no 2)))

* Basic block 2:
* Tree 1:

(cs_WRITE [IR stm 3: 't2 = 20; ']
(cs_INTCONST [IR exp 2: '20' C type: int]))

• Tree 2:
(cs_JUMP [IR stm 4: 'goto LL2;'])

• Basic block 3:
* Tree 1:

(cs_LABEL [IR stm 5: 'LL1:'])
* Tree 2:

(cs_WRITE [IR stm 6: 't2 = 10; ']

84 RETARGETABLE COMPILER TECHNOLOGY

(cs_INTCONST [IR exp 3: '10' C type: int]))
• Basic block 4:
• Tree 1:

(cs_LABEL [IR stm 7: 'LL2: '])
• Tree 2:

(cs_STORE [IR stm 12: '•t6 = t2;']
(cs_CAST [IR exp 24: '(int •)t3' C type: int •]

(cs_PLUS [IR exp 21: 't5 + t4' C type: char *]
(cs_CAST [IR exp 14: '(char •)A' C type: char •]

(cs_GLOBALSYM [IR exp 13: 'A' C type: int •]))
(cs_MULT [IR exp 17: 'i_5 • 4' C type: int]

(cs_READARG [IR exp 16: 'i_5' C type: int] arg no 3)
(cs_INTCONST [IR exp 4: '4' C type: int]))))

(cs_READ [IR exp 27: 't2' C type: int]))
• Tree 3:

(cs_VOIDRETURN [IR stm 13: 'return;'])

Function main is subdivided into four basic blocks, each of which
comprises one or more trees. The trees are shown in a textual format,
where in each line the operator ("cs_" prefix, followed by an identifier
in capital letters) is followed by some debug and type information. For
validation purposes, also C syntax export is possible. The indentation
indicates the parent/child relationships between the tree nodes. For
instance, tree 1 in block 1 denotes a conditional jump dependent on a
"less" comparison of function arguments a and b. The LANCE C++
library provides macros and functions that make the generated data
flow trees directly accessible to code selectors generated with tools like
IBURG and OLIVE.

Retargeting LANCE requires more compiler know-how and backend
design effort than systems like GCC or LCC. However, the system is
fairly easy to use or to extend due to its clean software architecture
and simple IR. It has been applied in a number of prototype compilers
for embedded processors. Among others, there is a power-optimizing
backend for the ARM7 Thumb RISC instruction set (95]. LANCE also
serves as the primary compiler infrastructure at the technology transfer
company lCD (98], where commercial C compilers for lnfineon's Network
Processor architecture (96, 97] and Systemonic's (99] HiperSonic DSP
have been developed.

2. Retargetable compilers for DSPs
2.1. CBC

The CBC compiler designed at the TU Berlin [100, 101, 102, 104] is
part of a larger DSP tool design effort that also includes retargetable

Retargetable compiler case studies 85

instruction set simulation. CBC is a retargetable compiler for DSPs.
It comes without a C frontend, but generates its intermediate program
representation directly from a flow graph description of the application.

The target processor is described in nML ("not a Machine Language")
[105], which provides a behavioral, instruction-oriented model to the
compiler. Similar to other languages, e.g. Maril, an nML description
starts with a resource specification in terms of available registers and
memories. Functional units are not explicitly captured. A typical re­
source declaration in nML is shown in the following, which declares a
1024 x 16-bit memory.

mem the_memory[1024,int(16)]

Available types in resource declarations also include unsigned, floating
point, fixed point, and Boolean numbers. However, it is not clear why
the resources are typed, and not the operations as one might expect.

The instruction set itself is described in a hierarchical fashion, in the
form of an attribute grammar. In this way, nML exploits the tree­
like structure of many instruction sets, which in turn permits a concise
factored description, as opposed to a lengthy flat list. The basic modeling
entity in nML is an operation, that includes a certain behavior, assembly
syntax, and a binary encoding. An example is:

opn add()
action = { reg1 = reg2 + reg3; }
syntax = format ("ADD")
image = format("010")

Each operation typically comes with three attributes: The action part
describes the instruction behavior in the form of C-like assignments,
where the operands are declared resources or constants. The syntax
attribute accounts for the assembly syntax to be emitted by the compiler,
where the "format" construct is used for formatted output similar to the
"print£" function in C. Finally, the image attribute specifies a partial
binary encoding that belongs to the operation.

A special type of operation refers to sub-instructions that merely serve
for operand computation. In nML, such an operation is called a mode.
A mode has syntax and image attributes like a normal operation, but
no action attribute. Typical applications are specification of addressing
modes or indexed access to a register file.

nML allows to factor operations by means of so-called OR-rules. Such
a rule defines a name for a set of alternative operations. For instance, if
we had defined another operation "sub" analogous to the above "add",
then the 0 R-rule

86 RETARGETABLE COMPILER TECHNOLOGY

opn alu_op = add I sub

allows to refer to either "add" or "sub" by a single identifier "alu_op".
More complex operations employing "add" or "sub" as subroutines can
now be described concisely by referring to the attributes of "alu_op"
instead of explicitly enumerating the suboperations. For instance, if we
want to describe a predicated instruction dependent on some flag, we
could use the following construct:

opn conditional(ins: alu_op)
action= { if FLAG== 1 then ins.action;

else "NDP"; endif; }
image= format("11 %s",ins.image)
syntax= format("FLAG? %s",ins.syntax)

Here, a sub-instruction of type "alu_op" is passed as a parameter to
operation "conditional", which uses all attributes of "alu_op" to describe
a full (predicated) instruction.

The CBC compiler reads the nML target model and generates ei­
ther assembly or binary machine code for the input flow graph. First, a
lowering pass maps the abstract flow graph operations into equivalent se­
quences of machine instructions. The actual code selection is performed
by a tree parsing technique [106]. The required tree grammar rules are
automatically generated by flattening the nML model, but according to
[101] still some manual work is required to make the code selector fully
operational.

A special feature of CBC's code generator is a combined register al­
location and scheduling technique called data routing [107]. This aims
at efficient handling of irregular data paths as frequently encountered
for DSPs, where tight coupling of code generation phases is a must. A
similar approach has also been developed by Rimey and Hilfinger [108].
The CBC data router is driven by a list scheduler and tries to avoid ex­
pensive spilling of special-purpose registers on the fly. A problem with
this approach is that scheduling deadlocks may result, which have to be
avoided by a dedicated and potentially very time-consuming algorithm.

Together with the corresponding instruction set simulator, the design
of CBC showed that generation of different development tools from a
single target model is possible. However, both tools are obviously no
longer in use, and results on code quality for realistic targets have never
been reported according to our knowledge.

Still, the introduction of the nML modeling language had quite some
impact on further projects. Examples include the CHESS compiler (sec­
tion 5.6.2), which is based on nML, and the LISA processor modeling
language (section 5.5.5), which was strongly inspired by nML. A project

Retargetable compiler case studies 87

at liT Kanpur [109] dealt with automatically generating LCC machine
descriptions from nML models. A demonstrator model has been devel­
oped for the PowerPC. However, fully automatic retargetability has not
been achieved, since important MD sections like register classification
and C support routines were not extractable from nML models.

2.2. REDACO

Similar to CBC, the REDACO compiler designed at TU Vienna [110,
111, 112] does not include a programming language frontend, but it
starts from a data flow graph (DFG) description of the application pro­
gram. It targets fixed-point DSPs with irregular data paths.

REDACO takes its machine-dependent information from a target ar­
chitecture description file (TADF). The TADF uses a relatively straight­
forward syntax to specify available machine registers as well as instruc­
tion patterns together with possible argument and result registers. Ad­
ditionally, the TADF captures combinations of instructions that qualify
for parallel execution under certain constraints.

The code generation procedure revolves around a Trellis Diagram data
structure (fig. 5.3). This data structure is used to cope with the special­
purpose register architecture of typical target processors. There is one
Thellis Diagram for each of the available machine instructions (e.g. an
ADD or a register-to-register transfer). Each diagram is a graph rep­
resentation of a machine instruction and its permissible combination of
operand and destination registers. Graph nodes represent registers or
register sets, while cost-weighted edges represent instructions. Thus, any
path in a Thellis Diagram denotes an instance of the underlying machine
instruction for a particular combination of operand and destination reg­
isters. This information is used by the code generator to ensure that
only valid instruction/register combinations are generated.

REDACO comprises a Thellis Diagram generator that extracts all re­
quired diagrams from a given TADF. Naturally, this task needs to be
performed just once per target machine. Also the program intermediate
representation (IR) is converted into a Thellis Diagram format. Some
expansion step may be required to ensure that there is a one-to-one cor­
respondence between IR operations and machine instructions. The code
generator picks one data flow tree after another from the IR and replaces
its internal operators by the corresponding Thellis Diagram. The result­
ing diagrams are connected to each other by insertion of dedicated data
transfer Thellis Diagrams that represent possibly required loads, stores,

88 RETARGETABLE COMPILER TECHNOLOGY

~SAVE w.WAD
M 1 2) M 1 2)

: 111 NEG

m 1 2 l

• M 1 2) M 1 2)

M • ') '
M 1 ') ,

Figure 5.3. Trellis Diagrams for different machine instructions (taken from [113])

or register-to-register moves. In this way, the data flow tree is eventually
converted into a Trellis Tree.

This Trellis Tree implicitly represents all its possible implementations
by machine instructions and also the respective register usage. A dy­
namic programming algorithm is used to detect the minimum cost paths
from the tree leaves to the root, so that finally a minimum cost code se­
lection is found. Roughly, this corresponds to the tree parsing approach
used in other compilers. However, REDACO uses a slightly generalized
notion of constrained data flow trees. These may also incorporate com­
mon subexpressions (which are normally represented by separate t rees)
and thus have to be attributed with a partial evaluation order. In addi­
tion, the compiler keeps alternative optimal solutions to achieve higher
optimization freedom in the subsequent phases.

Retargetable compiler case studies 89

The selected code tree is linearized and passed to the register allocator
and compactor. The register allocator, which is based on an interference
graph and is coupled to the compactor, exploits the register assignment
choices remaining after the Trellis Tree traversal, e.g. for efficiently com­
municating values between data flow trees and minimizing spill code.
The compactor is based on the critical path heuristic [114] and aims
at optimum local parallelization of generated instructions in accordance
with the constraints in the TADF description. One of the last optimiza­
tion phases in REDACO is offset assignment (section 3.3.4), aiming at a
high utilization of auto-increment capabilities of the address generation
unit for efficient access to local variables.

REDACO has been retargeted to different fixed-point DSPs, including
TI C25, ADSP-210x, and Motorola 56k. For some small input DFGs it
has been capable of generating code whose quality comes close to hand­
written assembly. These results show that good code quality can be
achieved even for irregular target machines such as DSPs when using
advanced code generation techniques. The main limitations of RED ACO
are its focus on a narrow class of targets and the missing frontend for
a programming language like C. Since the tool only compiles DFGs,
function calls, aggregate data structures, and control flow are obviously
not supported.

2.3. CodeSyn/FlexWare
The FlexWare system from STMicroelectronics performs semi-auto­

matic generation of different software development tools from machine
descriptions, including compiler, simulator, debugger, and profiler [118,
119, 120, 121, 122].

The first approach to retargetable compilation within the FlexWare
project was the model-based CodeSyn compiler. The target model in
CodeSyn is described in three parts. First, there is a set of available
instruction templates, each specified as a small tree-shaped pattern that
represents a piece of computation (e.g. an ADD or a conditional jump)
performed by a certain target instruction. This format strongly resem­
bles the one used in tree parsing based approaches to code generation.
Additionally, assembly syntax and opcode information is annotated to
the templates.

The second part is a structural connectivity graph that reflects the
interconnections between processor resources like registers, ALUs, and
memory. The graph model mainly serves to inform the compiler about
possible ways of data transportation within the data path. Finally, there
is a resource classification section in the target model that accounts for
available physical registers, register classes, and functional units. The

90 RETARGETABLE COMPILER TECHNOLOGY

register classification refers to the inputs/ outputs of the instruction tem­
plates. Additionally, a mapping of instruction templates to the func­
tional units has to be specified.

The compiler first translates a given input C program into an inter­
nal control/data flow graph (CDFG) model. Similar to CBC, abstract
CDFG operations are lowered down to machine operations in a rewriting
phase. On the lowered CDFG, pattern matching is applied w.r.t. to the
specified instruction template set, so as to find an optimum covering of
subgraphs by machine instructions. As opposed to many other compil­
ers, CodeSyn uses a custom code selection technique based on a so-called
prune tree data structure that implicitly enumerates all possible covers.
Eventually, however, the covers are selected by means of dynamic pro­
gramming, so that the results should be very similar to the tree parsing
technique in general.

Following code selection, greedy register allocation is performed. Spe­
cial focus is on handling of irregular register architectures. Each virtual
register is characterized by a set of candidate physical registers, and reg­
ister allocation heuristically starts with assigning those virtual registers
with the lowest number of candidates. Potentially required register-to­
register moves and spills are generated on-the-fly. Remaining freedom
in register allocation is finally exploited via a left edge algorithm that
locally aims at spill code minimization.

The last step in CodeSyn is an instruction scheduling pass. This is
implemented as a code compaction algorithm that, based on the speci­
fied resource occupation of instructions, aims at parallelizing generated
instructions under the given constraints by means of a list scheduling
approach.

CodeSyn has been retargeted to a DSP-like Nortel ASIP, which also
has been the driver for the development of the compiler. The compiler
has been applied to some very small C programs, for which an average
code size overhead of 19 % over hand-written assembly was found.

Further evaluation of CodeSyn showed that the approach is some­
what restricted concerning the class of possible target processors. As a
consequence, a new generation of retargetable compilers called FlexCC
has been developed. In contrast to CodeSyn, FlexCC is rule-driven.
This means that the entire code generation process is steered by manu­
ally specified, machine-dependent translation rules. The required rules
mainly fall into two classes. The first set of rules describes the map­
ping of C code constructs into instructions of a virtual machine. This
machine is functionally similar to the intended target, but provides no
instruction-level parallelism.

Retargetable compiler case studies 91

This "virtual" code selection step also comprises register allocation,
based on local graph coloring like in CodeSyn. The second rule set refers
to assembly-level peephole optimizations. These are used in a compila­
tion phase called target machine mapping, where (similar to the approach
in GCC) partial instruction sequences can be refined to exploit highly
target-specific instructions and to accommodate restrictions. Also, func­
tion calls and control statements are handled during this phase. As in
CodeSyn, the final phase in FlexCC is code compaction for exploitation
of parallism, followed by assembly code emission.

In summary, FlexCC is a very pragmatic approach to retargetable
compilation, not necessarily restricted to DSPs. The main advantage is
high flexibility, since the rule concept allows to capture almost arbitrary
idiosyncrasies in the target architecture. Unfortunately, the expressive­
ness of the rules used in FlexCC is not fully clear from the publications.
Generally, it may be expected that the retargeting effort is compara­
tively high, and that the code quality heavily depends on the suitable
specification of machine-dependent code generation rules, since there is
not much optimization performed automatically by the compiler kernel.

FlexCC has been retargeted to a microcontroller used in a video tele­
phone chip at SGS Thomson. For some medium size C programs, the
compiler generated code of 1 % less size on average compared to the
hand-written reference code. Another target for FlexCC was an SGS
Thomson fixed-point DSP. For two medium size C inputs, the observed
compiler overhead ranged between 0 and 26 %, dependent on the C pro­
gramming style. The total retargeting effort, including validation and
integration, was about 8 person months.

An interesting feature of the Flex Ware system is that is also com­
prises further software development tools beyond the compiler. With
this extensive tool support, retargetable compiler technology well sup­
ports design space exploration. The system is in in-house use for different
processors at STMicroelectronics [123] and is not publicly available. An
ongoing project deals with retargeting FlexWare to a new class of net­
work processors. Currently, there is also a shift towards a new FlexCC
version, based on ACE's CoSy system described in section 5.6.1.

2.4. SPAM

SPAM is a joint project ("Synopsys, Princeton, Aachen, MIT") fo­
cused on retargetable compilers for fixed-point DSPs [124, 129, 131, 127,
130, 125, 128, 126]. It builds on the SUIF compiler {section 5.1.5). The
source code can be downloaded for research and development purposes

92 RETARGETABLE COMPILER TECHNOLOGY

from [132]. The distribution comprises demonstrator backends for the
TI C25 and Motorola 56k DSPs.

While SUIF performs C source code analysis and machine-independent
IR optimizations, SPAM's retargetable backend library called TWIF is
responsible for assembly code generation. TWIF consists of a set of
C++ data structures and algorithms that are customizable or parame­
terizable and hence are capable of generating code for different targets.
Among others, TWIF contains the main backend data structures like
call graphs, control flow graphs, and data flow graphs for basic blocks,
as well as an intermediate format for assembly code.

The SPAM compiler has been designed as a developer retargetable
compiler. Thus, in contrast to tools like CBC (section 5.2.1) or RECORD
(section 5.2.5) there is no homogeneous processor model in some descrip­
tion language, from which the compiler derives the required information.
Instead, TWIF offers a suite of retargetable code generation and opti­
mization modules, from which the compiler developer can select the
required ones and adapt them to the new target. Hence, focus is on the
reuse of source code instead of automatic retargeting support. TWIF
contains a number of innovative DSP-specific code optimization tech­
niques, which include:

Code selection for irregular architectures: Like many other com­
pilers, SPAM makes uses of tree parsing for code selection. The
OLIVE tool (section 5.5.3.2) is used to generate the code selector
source code from a tree grammar specification. While tree parsing
originally was mainly intended for regular CISC-like target architec­
tures, it has been pointed out in [129] that an adaptation to irregular
machines is relatively easy, if special purpose registers are represented
by dedicated nonterminal symbols in the tree grammar. The TI C25
target, for instance, has three special purpose registers TR, PR, and
ACCU, and using one nonterminal for each register ensures that the
required register-to-register moves are automatically generated al­
ready during tree parsing. In this way, register allocation is partially
coupled with code selection. For a certain, yet narrow class of target
machines satisfying the so-called register transfer graph (RTG) cri­
terion is has been shown that even optimal, spill-free schedules can
be generated with this method. This is illustrated in fig. 5.4, which
shows a data flow tree with two subtrees TI and T2 rooted at nodes
VI and v2. Suppose that code selection is such that registers ri and
r2 are assigned to VI and v2, but also to two further nodes WI and
w2 within T1 and T2. In this case spill code cannot be avoided, since
neither TI nor T2 can be scheduled first without overwriting the op-

Retargetable compiler case studies 93

posite subtrees's destination register. The RTG criterion, together
with an appropriate scheduling algorithm, ensures that such dead­
lock situations cannot occur. However, optimality here is restricted
to the sequential assembly code, while exploiting instruction level
parallelism is postponed to a later code compaction step.

Figure 5.4. Potential register allocation deadlock

Exploitation of dual memory banks: A number of DSP architec­
tures like the Motorola 56k or the Analog Devices ADSP-210x show
dual (X/Y) memory banks for sake of an increased memory access
bandwidth (fig. 5.5). In order to utilize such an architecture within a
compiler, it is necessary to partition the program variables between
the X and Y memory banks. This is a difficult task, since the parti­
tioning problem in itself is complex, and numerous constraints w.r.t.
the register usage and the instruction encoding have to be met. As
a consequence, most existing compilers for dual memory bank DSPs
(such as the GCC port for the Motorola 56k) simply neglect one of
the two banks or leave the partitioning to the programmer by means
of compiler intrinsics. In contrast, SPAM comprises a variable par­
titioning module for X/Y memory banks. After a pre-compaction
step of the input program, given as symbolic assembly code, memory
bank allocation and register allocation take place in a single phase.
These problems are mapped to a constraint graph labeling problem.
The constraint graph nodes represent variables to be mapped to X/Y
memory banks or registers. The graph edges are used to reflect both
the costs associated with a certain labeling and the code generation
constraints imposed by the target DSP. The labeling is performed by
a simulated annealing optimization algorithm. A problem with this
approach is the sometimes huge runtime requirement. Alternative
variable partitioning techniques are described in [134, 135, 136].

94 RETARGETABLE COMPILER TECHNOLOGY

Figure 5.5. Coarse architecture of a dual memory bank DSP

Exploitation of address generation units: TWIF comprises mod­
ules for graph-based offset assignment for local variables (section
3.3.4), that can be fully parameterized by the number of available
address registers and the auto-increment range [115]. These tech­
niques can also be applied for partial design space exploration [130].
Additionally, the TWIF library offers algorithms for address regis­
ter allocation within loop bodies [127]. This work has recently been
extended towards handling of arbitrary control flow [133].

Besides the above techniques, TWIF offers reusable implementations
of several other analysis and optimization passes such as data flow analy­
sis on IR or assembly code, graph coloring register allocation, local code
compaction, and exploitation of zero-overhead loops.

The SPAM compiler has been retargeted to two standard DSPs (TI
C25 and Motorola 56k) and a custom DSP from Fujitsu. As mentioned
above, retargeting SPAM does not mean changing some target proces­
sor model, but adapting the SPAM backend to the new target, while
aiming at the highest possible reuse rate of the TWIF library functions.
Software reuse is facilitated by a clean C++ class implementation of the
optimization modules that make use of the virtual function concept in
C++. The developer can derive a new machine-specific class from one
of TWIF's optimization base classes, and provide the machine-specific
details to the base class methods via its virtual functions. In this way, a
relatively high degree of code sharing of about 60 % has been achieved
between the three different backends. However, the main limitation of
this library reuse approach to retargetability is that the reuse rate will
be much lower in case of a new target machine, whose architecture differs
significantly from SPAM's previous targets. This is due to the fact that

Retargetable compiler case studies 95

the development of the existing optimization modules has been largely
driven by architectural features of specific machines.

The quality of code generated by SPAM has been measured for several
small C programs, such as the DSPStone benchmarks [77]. The code
size overhead as compared to hand-written assembly typically ranges
between 0 and 70 %, which is quite good for a retargetable compiler.
The best results have been achieved for the Fujitsu target.

2.5. RECORD
RECORD ("Retargetable Compiler for DSPs") was developed at the

University of Dortmund [137, 138, 116, 139, 140] as a successor of the
MSSQ compiler described in section 5.4.1. Like CBC, REDACO, and
SPAM, it is a retargetable compiler for a class of fixed-point DSPs.
In contrast to other approaches, RECORD derives the required target
machine information solely from a hardware description language (HDL)
model.

Like MSSQ, RECORD uses the MIMOLA HDL (see also sections 2.2
and 5.4.1) [141 J for this purpose, a language that resembles structural
VHDL. A MIMOLA processor model essentially describes the target
machine by a hierarchical RT-level (RTL) netlist of components, where
leaf components are described behaviorally. Examples are given in figs.
5.6 and 5.7.

MODULE ALU (IN i1, i2: (15:0); OUT outp: (15:0); IN ctr: (1:0));
BEHAVIOR IS

BEGIN
outp <- CASE ctr OF

END;

0: i1 + i2;
1: i1 - i2;
2: i1 AND i2;
3: i1;

END;

Figure 5.6. MIMOLA model of an ALU

In contrast to its predecessor MSSQ, RECORD is not restricted to
pure RTL HDL models, but also accepts behavioral models and mixed­

style models. In a purely behavioral processor model, only the target
instruction set is described in the form of a single complex MIMOLA
component, while hiding the internal RT-structure [142].

The advantage of using an HDL for describing the target processor
model is twofold: The user has a high degree of freedom in modeling

96 RETARGETABLE COMPILER TECHNOLOGY

MODULE Reg16bit (IN inp:(15:0); OUT outp:(15:0); IN enable:Bit);
BEHAVIOR IS

VAR S: (15:0);
BEGIN

IF enable THEN S := inp;
outp <- S;

END;

Figure 5. 7. MIMOLA model of a 16-bit register

the target, due to the expressiveness of the HDL. Dependent on the
available documentation (instruction set, RT schematic, or something
in between), the most convenient modeling style can be chosen for each
target. Additionally, using real HDL models eliminates the need for
developing a number of different processor models, and the resulting
problems of model equivalence checking: The same HDL model may be
used for synthesis, simulation, and code generation.

However, HDL models are sometimes too low-level for retargetable
compilation, in particular when specified at the RTL. Therefore, the
RECORD compiler comprises an instruction set extractor, that converts
an arbitrary-style MIMOLA model into a flat list ofRT-level assignments
by enumerating all possible data transfer paths through the netlist. Si­
multaneously, the corresponding partial binary opcodes are extracted
for each RTL assignment. Internally, these opcodes are represented as
Boolean functions by means of Binary Decision Diagrams (BDDs) [143].
In this way, the instruction set extractor can efficiently determine the
subset of RTL assignments that are valid w.r.t. the instruction encoding
scheme, as well as the groups of RTL assignments that can be scheduled
in parallel without encoding or resource conflicts.

An example RT structure is given in fig. 5.8. For instance, computing
the sum of the contents of registers Rl and R3 and storing the result in
R5 requires a certain setting of specific instruction word bits I.(n) and
mode registers MRl and MR2. The instruction set extractor determines
the required control bit values and stores the corresponding opcodes or
mode register settings. In case alternative opcodes are found for the
same RTL assignment, all alternatives are kept, so as to obtain higher
freedom for the code compaction phase.

The input source language for RECORD is DFL, a data flow language
designed for DSPs [144]. DFL shows some resemblence to C, but it has
a data flow semantics and provides better support for describing DSP­
specific algorithms like filters. The DFL source code is first transformed
into an internal control/ data flow graph model and afterwards decom-

Retargetable compiler case studies

1.(2)

~~
~
~
1.(~

Figure 5.8. Partial RT-level hardware structure

97

posed into data flow trees. The RTL assignment list delivered by the
instruction set extractor is converted into a tree grammar specification
for the IBURG tool (section 5.5.3.1), which automatically generates a
target-specific code selector. This step has to be performed only once
per target architecture.

Like in the SPAM compiler [126], register-specific tree patterns are
used to partially integrate allocation of special-purpose registers into
the code selection phase. Once all program values have been assigned to
specific registers or register files, a local register allocator based on the
left edge algorithm [67] aims at spill code minimization in the generated
sequential assembly code.

RECORD comprises two further DSP-specific code optimization tech­
niques:

Address code optimization: It is assumed that the target proces­
sor comprises a parallel address generation unit (AGU) with auto­
increment support as explained in section 3.3.4. The AGU needs
to be part of the HDL model, and the detailed AGU configuration
(number of address registers, presence of modify registers, etc.) is
automatically extracted. Similar to SPAM, RECORD uses the avail­
able AGU operations for optimized address code generation for local
variables and array accesses. For this purpose, several improved op­
timization techniques have been developed [116, 145, 146]. Address
code optimization is applied to the previously generated sequential

98 RETARGETABLE COMPILER TECHNOLOGY

assembly code with symbolic memory accesses. Afterwards, the gen­
erated AGU operations are inserted into the sequential code at the
required positions.

Code compaction: RECORD uses a local code compaction technique
based on Integer Linear Programming [140]. This technique permits
optimal compaction of basic blocks, and it is also capable of meeting
timing constraints w.r.t. the schedule length. However, due to the
high runtime requirements the block size has to be restricted to about
50 assembly instructions. Excessively large blocks have to be split
into subblocks before compaction.

The RECORD compiler has been applied to the TI C25 DSP and to
several custom DSPs. The behavioral MIMOLA model for the C25 has a
size of approximately 900 lines of code. For the DSPStone benchmarks,
the code size overhead of compiled code versus hand-written assembly
is comparable to that of the SPAM compiler. This is presumably due to
the fact that the overall organization of the backend is very similar in
both compilers.

The main innovation of RECORD is the instruction set extraction
approach which allows to handle mixed-style HDL processor models.
Since the compiler can be retargeted very quickly, it allows to perform
a limited design space exploration for custom DSPs given as an RTL
netlist or an instruction set model, as has been demonstrated in [137].
The main limitations of RECORD are the missing C frontend (there
is hardly any DSP software written in DFL), the missing support for
multi-cycle instructions, and the lack of machine-independent standard
optimizations, which makes the tool less suitable for large programs.

3. Retargetable compilers for VLIW s
3.1. ROCKET

ROCKET is a retargetable compiler for microprogrammed, pipelined
architectures. It has been developed at Colorado State University [147,
148] and has its roots in the HORIZON compiler [149] (see also chapter
4). ROCKET has been targeted towards Alpha, i860, and RS/6000.
It reads C input programs based on the LCC frontend and first per­
forms several global standard optimizations, including common subex­
pression elimination, algebraic simplification, as well as constant folding
and propagation on an intermediate representation. Alternatively, also
a Fortran frontend is available.

After IR optimization, code selection takes place, and data flow graph
(DFG) representations for the basic blocks are built. Dependence anal-

Retargetable compiler case studies 99

ysis between the DFG nodes also includes memory disambiguation, in
order to exhibit more parallelism for the scheduling phase.

The code generator is driven by a machine description that consists
of four sections:

1 Resources annotated with timing information

2 Separation of VLIW instructions into distinct fields

3 Machine operations together with their activation patterns from the
instruction fields and output assembly syntax

4 A data path description for driving the code selector

As in the Marion compiler, special emphasis in ROCKET is on the
coupling of scheduling and register allocation in order to reduce the unfa­
vorable effects of the phase ordering problem ("early" vs. "late" register
allocation). In particular, detailed register assignment and spill code
insertion are executed only after a code compaction pass, which per­
forms local parallelization of the sequential code. The local scheduler is
embedded into a global scheduler that also supports software pipelining.

The core of the register allocator is implemented by a traditional
graph coloring approach. Since spill code insertion within compacted
code is quite difficult, a feedback loop between register allocation and
compaction is used. This avoids false dependencies that usually affect
compaction, at the expense of sometimes very high computation time
requirements. An alternative approach to phase coupling has been de­
scribed in [150], which toggles between early and later register assign­
ment dependent on the generated schedule lengths.

More recently, code generation techniques in ROCKET have been ex­
tended into different directions, e.g. handling of clustered VLIW archi­
tectures with multiple register files [151]. Reported experimental results,
however, mainly deal with hypothetical target machines. ROCKET is
more a research compiler than a robust tool. Software is available on
special request.

3.2. IMPACT
The IMPACT system [152] is mainly an optimizing C frontend, with

emphasis on instruction-level parallel (ILP) architectures. The C fran­
tend itself is built upon the EDG [87] frontend. IMPACT includes
classical "Dragon Book" [58] optimizations, as well as advanced ILP­
improving program tranformations. These include code layout for func­
tions, as well as superblock and hyperblock formation which increase the

100 RETARGETABLE COMPILER TECHNOLOGY

scheduling and optimization scope for backends via predicated execution
support.

There are two levels of program intermediate representation: Hcode
(which preserves high-level language constructs) and Lcode (a machine­
independent RISC assembly like format). Additionally, there is a more
machine-oriented low-level IR called Meade, which allows for annotating
machine-specific information like delay slots of instructions.

IMPACT provides additional support modules like control flow pro­
filing, C source file restructuring, function inlining, and emission of C
code as a "backend". There are also backends for real processors like
MIPS R2000/3000, Spare, x86, and i860, that reuse IMPACT's built-in
optimizations and whose code quality competes well with native compil­
ers. However, there is no dedicated retargeting formalism like in GCC
or LCC.

The IMPACT software can be downloaded from [153]. Supported
platforms are HP-UX, SunOSJSolaris, and Linux. The software is gen­
erally free for academic, research, and "internal business" purposes. Li­
censes for full commercial use can be negotiated. There are, however,
special terms for different sub-packages used in IMPACT (such as the
EDG C frontend source code, the GNU C preprocessor, and a BDD
package), which have their own license conditions.

3.3. Trimaran
The Trimaran system, mainly developed at HP Research Labs, is

an extensible compiler framework for research on code optimization
techniques, with a philosophy similar to SUIF. However, focus is on
instruction-level parallel (ILP), VLIW-like processors and backend opti­
mizations. The software, together with comprehensive documentation,
can be downloaded from [154] for HP-UX, Linux, and Solaris platforms.
The license terms are very similar to those of IMPACT.

A major part of Trimaran is a retargetable C compiler that makes use
of the IMPACT system as an optimizing frontend. Additionally, there
are simulation and profiling capabilities. The primary target processor
class is called HPL-PD, a parameterizable explicitly parallel instruction
computing (EPIC) meta-architecture (even though the Trimaran distri­
bution also comprises an ARM RISC backend called Triceps). EPIC
represents a generalization of VLIW, as for instance also the memory
hierarchy is made visible to the compiler.

One main purpose of Trimaran is architecture exploration within the
HPL-PD processor class. Therefore, the Trimaran backend ELCOR can
be configured in many ways via a machine description file. This includes
the specification of register files, number and types of functional units,

Retargetable compiler case studies 101

instruction word length, and instruction latencies. As 'frimaran's focus
is on ILP processors, dedicated architectural features like speculative
and predicated execution, software pipelining support, and the detailed
memory system can be varied by the user. Many other features, like
the available instruction set and the controller architecture are largely
predefined, though.

The target configuration takes place via a textual description of the
architecture parameters in MDES, a relatively complex database ori­
ented language. However, there is a clean procedural interface between
MDES and the compiler, and the 'frimaran distribution already comes
with several example processor models. Simple parameters like the num­
ber of registers or instruction latencies can be easily reconfigured via a
comfortable GUI (fig. 5.9). Generally, it is recommended to start with
modifying an existing machine model, instead of writing new ones from
scratch.

I floot_capp_,._lc 0 ~ SET AS DEFAULT

I floot_t"''p_exceptlon 0
I floot_CIIPP-latenc~ 1
I floot_CIIIf>p..reserve 0

~ compllatlon-scopo: SET AS DEFAULT

I Floot_oul tlpl~_sooplo 0
I FlootJOUI tlply_exceptlon 0
I floot_oul tlply_latent\j 1

~I SET AS DEFAULT I I floot_oul tlply_reoerve 0 a.rm.hmdesz

I float_dlvlde_SOIIPIO 0
I float_dlvlde_exoeptlon 0

~ NEW I I float_dlvlde_latenc~ 1 Pu a.me:ter - set: S£T ~S: DEFAULT
I float_dl vlde_reserve 0

! IO!Id_levell_s_le 0
Project-fllo:)C)0(-fl~ S:£T AS: OHAULT

IIO!Id_lovell_oxceptlon 0
lload..levelUatent\1 1
II oad..levell_reserve 0

0
con'l'lgurt sta..gt~ of compilation

0
1
0 RUN COMPilATION LOAD 0£rAULTS

Figure 5.9. Session with the Trimaran GUI

102 RETARGETABLE COMPILER TECHNOLOGY

The C source program is first compiled into a graph-based interme­
diate representation, with comprehensive visualization capabilities. EL­
COR's code generator is not completely predefined, but is actually struc­
tured as a toolbox of modules for control and data flow analysis, ILP­
improving transformations (e.g. if-conversion), acyclic and loop schedul­
ing, and finally register allocation. Partially, these transformations are
already performed by the IMPACT frontend. The desired organization
of compiler passes can be configured by means of a script. Similar to
SUIF and LANCE, this gives the user the opportunity to add custom
optimizations at any time.

Once the compiler has been retargeted, Trimaran's cycle-true simula­
tion and performance monitoring tools allow to estimate the quality of
the processor configuration for given application programs. The gener­
ated statistics include the cycle count, memory trace, profile information,
and resource utilization. The system includes a G UI with extensive vi­
sualization capabilities for the result data. In this way, the user gets
valuable feedback about the architectural decisions.

Trimaran has been validated with a large set of test programs, many
of which belong to the SPEC92/95 benchmark suite [155]. It is based on
more than 100 person years of R&D, and there are many installations
worldwide. In summary, Trimaran is a comprehensive software package
that can be considered an ideal platform for research on retargetable
ILP compilers. It benefits from the fact that it focuses on a relatively
narrow and parameterizable target architecture class, within which it is
easily retargetable and generates highly optimized code. On the other
hand, this is also Trimaran's main limitation. It will be very difficult to
retarget the tools to some irregular target architecture like a fixed point
DSP or a network processor.

3.4. Trimedia

The Trimedia is a fixed/floating point VLIW processor family, origi­
nally developed by Philips and since recently by the new company Trime­
dia Technologies [157]. It is mainly intended for multimedia applications
such as video conferencing.

Being a complex VLIW machine with 128 registers and 5 issue slots,
the Trimedia is explicitly intended to be programmed in a high-level lan­
guage. Therefore, the software development kit comes with a C/C++
compiler based on the EDG frontend [87]. The compiler comprises a set
of local and global optimizations like constant folding, common subex­
pression elimination, and tree height reduction (especially important for

Retargetable compiler case studies 103

VLIW). Also if-conversion is performed, as the instruction set is fully
predicated.

Since the different Trimedia CPU generations show few differences in
the overall instruction set architecture, the C/C++ has been designed
to be retargetable through a textual machine description file [158]. A
typical machine description file starts with a classification of instruction
names into functional groups like load, store, or binary and unary arith­
metic. The behavior of the instructions is obviously predefined, as it is
not explicitly specified in the MD file. Next, there is a mapping of in­
structions to the functional units, ordered by latency, which is required
for the scheduler. The MD is completed by the number of registers and
issue slots, a unit-to-slot mapping, and an enumeration of instruction
opcodes.

Being an industrial product, the Trimedia compiler is naturally ac­
companied by assembler, simulator, and profiler tools. It is a good ex­
ample of the fact that retargetable compilers are a reasonable approach
when different processor generations within a common class of archi­
tectures need to be supported, and that retargetability finds its way
into industrial practice. Naturally, the architectural scope of the Tri­
media compiler is quite limited as compared to research compilers like
Trimaran.

3.5. AVIV
AVIV from MIT is a retargetable code generator focused on VLIW

architectures [160]. It builds on the SUIF and SPAM compiler infra­
structures (sections 5.1.5 and 5.2.4). These frontends transform a given
C/C++ input program into a sequence of basic block data flow graphs
(DFGs) which form the main input for AVIV.

The target processor is described in the instruction set description
language ISDL [159], a language designed for modeling processors with
instruction level parallelism. An ISDL model comprises six sections:

Instruction format: Similar to the ROCKET compiler, it is assumed
that the instruction word is subdivided into several fields, each of
which controls a part of the VLIW data path.

Global definitions: In this section, symbolic names (tokens) related to
the target assembly syntax are defined, e.g. register names and con­
stants. For sake of more convenient use of tokens in the instruction
specification, factoring by means of nonterminals is also supported,
e.g. a set of alternative operands can be factored into a single non­
terminal. The nonterminals may also be attributed with action code,
similar to the UNIX tool YACC.

104 RETARGETABLE COMPILER TECHNOLOGY

Storage resources: This section caputures the available registers and
memories, together with their size and bit width. Distinct declara­
tions are used for memories, register files, single registers, control
registers, the stack, and the program counter.

Instruction set: Based on the declared instruction· format and the
storage resources, the behavior of instructions is described field by
field by means of an RTL assignment notation. Additionally, opera­
tion names and cost and timing information for each instruction are
captured.

Constraints: It is assumed that all VLIW instruction fields by default
can be activated in parallel. However, certain combinations of fields
may be excluded due to resource or encoding conflicts. These con­
flicts are explicitly modeled as Boolean constraints, so as to prevent
generation of invalid machine code.

Optional architectural details: This section can be used to capture
optional information for the compiler, e.g. concerning instructions
with delay slots.

Based on the ISDL target model, AVIV first converts each DFG into a
data structure called split-node DA G. This is an extension of the original
DFG that represents all possible alternatives of implementing the DFG
on the given target machine. This is achieved by incorporating two
additional node types (besides the given operator nodes) into the DFG:
split nodes and data transfer nodes. Split nodes arise from duplicating all
original DFG operator nodes for each functional unit that can implement
them. Data transfer nodes represent the possible need for inserting move
instructions to shuffie data between the units.

Naturally, the split-node DAG size can be huge for non-trivial basic
blocks. Therefore, AVIV uses a number of heuristics to prune the search
space. First of all, only a subset of possible DFG coverings is considered
in detail. This subset is determined heuristically by using the estimated
amount of instruction level parallelism and the required number of data
transfers. Then a clique covering of the split-node DAG is computed,
where each clique corresponds to a set of operations that can be covered
by a single VLIW instruction. During this step, illegal instructions that
violate the instruction format constraints are also eliminated. For the
selected covering, detailed register allocation is performed by graph col­
oring. The covering algorithm already ensures that no more spill code
will be inserted during this phase. On the other hand, superfluous spill
and reload instruction may still be present. Therefore, a final peephole

Retargetable compiler case studies 105

optimization is performed that eliminates redundant spills and partially
performs are-compaction of the code.

The main innovation of AVIV is the concept of phase-coupled code
generation based on the split-node DAG data structure that implicitly
enumerates all possible mappings to the target processor. This helps
to reduce the negative effects on code quality usually observed when
using strictly separated code generation phases. On the other hand, the
large number of heuristics used to prune the huge search space may still
compromise optimality. Experimental results have been reported for a
hypothetical VLIW architecture, for which good code quality has been
achieved within reasonable amounts of compilation time. However, it
is not clear how AVIV performs for real-life target processors, which
typically show more code generation constraints. Since ISDL requires
an explicit enumeration of such constraints, the processor models will
also tend to grow quite complex for such machines.

3.6. Mescal
Mescal is a new research project at the Gigascale Silicon Research

Center (GSRC) that deals with the development of a software and hard­
ware design environment for programmable processors. The system is
intended to support architecture exploration for a set of applications,
including network processing.

Emphasis in Mescal is also on representation and exploitation of con­
currency at different levels of abstraction. As a consequence, a VLIW
processor architecture has been chosen for the primitive processing ele­
ments. A retargetable compiler is being implemented that maps C pro­
grams onto configurable multi-processor VLIW architectures. Similar to
Trimaran, the IMPACT system has been selected as the infrastructure
for the C compiler.

The Mescal system is currently under development, and further pub­
lications or software are not yet available. A project overview and some
advance presentations can be found at [161].

4. Retargetable compilers for ASIPs
4.1. MSSQ

MSSQ [162, 163, 164] has been developed at the University of Kiel as
the successor of the MSSV compiler (see section 4.2). It is a retargetable
compiler for ASIPs modeled in MIMOLA, a hardware description lan­
guage that has already been exemplified in section 5.2.5. The HDL
model has to be given as an RT-level netlist comprising all controller
and data path components of the target machine. As an example, figs.

106 RETARGETABLE COMPILER TECHNOLOGY

5.10 and 5.11 show the schematic of a very simple target processor and
its complete MIMOLA model.

1.(20:0)

outp

Figure 5.10. Schematic of a simple 8-bit processor. "I" denotes the instruction word
(21 bits), whose fields are connected as control and data inputs to data path compo­
nents.

The user-editable MIMOLA model is internally represented as a con­
nection operation graph (COG). The COG nodes represent operators
available in the processor hardware, while its edges denote possible data
transfer paths via the connections (wires or buses). This COG structure,
which partially abstracts from the concrete external MIMOLA model,
is used by the MSSQ code generator to find a mapping of a given appli­
cation program to target machine code.

The source program to be compiled is specified in the MIMOLA pro­
gramming langage, a hardware-oriented superset of PASCAL. Extensions
to PASCAL include

• Predefined variable locations: The statement
VAR x : (15:0) AT Reg1;

declares a 16 bit variable x located at register Reg1.

• References to physical storages: Instead of using abstract vari­
ables, physical registers and memories can be directly referenced, e.g.
in an assignment to some accumulator register:

ACCU := ACCU + M[1];

• Bit-level addressing: Subranges of operands may be referenced by
appending a bit vector index range. The following assignment loads
variable x with the least significant 16 bits of register ACCU:

x := ACCU.(15:0);

Retargetable compiler case studies

MODULE SimpleProcessor (IN inp:(7:0); OUT outp:(7:0));
STRUCTURE IS
TYPE InstrFormat = FIELDS

imm:

PARTS

RAMadr:
RAMctr:
mux:
alu:

END;
Byte (7:0); Bit= (0);

-- 21-bit horizontal instruction word
(20:13);
(12:5);

(4);

(3: 2);
(1: 0);

scalar types

instantiate behavioral modules
IM: MODULE InstrROM (IN adr: Byte; OUT ins: InstrFormat);

VAR storage: ARRAY[0 .. 255] OF InstrFormat;
BEGIN ins<- storage[adr]; END;

PC, REG: MODULE Reg8bit (IN data: Byte; OUT outp: Byte);
VAR R: Byte;
BEGIN R := data; outp <- R; END;

PCincr: MODULE IncrementByte (IN data: Byte; OUT inc: Byte);
BEGIN outp <- INCR data; END;

RAM: MODULE Memory (IN data, adr: Byte; OUT outp: Byte; FCT c: Bit);
VAR storage: ARRAY[0 .. 255] OF Byte;
BEGIN

CASE c OF: 0: NOLOAD storage; 1: storage[adr] := data; END;
outp <- storage[adr];

END;
ALU: MODULE AddSub (IN dO, d1: Byte; OUT outp: Byte; FCT c: (1:0));

BEGIN -- "%" denotes binary numbers
outp <- CASE c OF %00: dO + d1; %01: dO - d1; %1x: dO; END;

END;
MUX: MODULE Mux3x8 (IN d0,d1,d2: Byte; OUT outp: Byte; FCT c: (1:0));

BEGIN outp <- CASE c OF 0: dO; 1: d1; ELSE: d2; END; END;

CONNECTIONS
-- controller:
PC.outp -> IM.adr;
PC.outp -> PCincr.data;
PCincr.outp -> PC.data;
IM.ins.RAMadr -> RAM.adr;
IM.ins.RAMctr -> RAM.c;
IM.ins.alu -> ALU.c;
IM.ins.mux -> MUX.c;

END; -- STRUCTURE
LOCATION_FOR_PROGRAMCOUNTER PC;
LOCATION_FOR_INSTRUCTIONS IM;
END; -- STRUCTURE

-- data path:
IM.ins.imm -> MUX.dO;
inp -> MUX.d1; primary input
RAM.outp -> MUX.d2;
MUX.outp -> ALU.d1;
ALU.outp -> REG.data;
REG.outp -> ALU.dO;
REG.outp -> outp; -- primary output

Figure 5.11. Complete MIMOLA description of the processor from fig. 5.10

107

• Module calls: Hardware components can be called like procedures
with parameters, so as to enforce execution of certain operations. For
instance, if the processor description contains a component named
AdderComp, this component can be "called" in an assignment:

x := AdderComp(y,z);

108 RETARGETABLE COMPILER TECHNOLOGY

• Operator binding: Operations can be bound to certain hardware
components, e.g. in the assignment

x := y +_AdderComp z;

the addition is bound to component AdderComp.

Since all these extensions are optional, the user can select from a
variety of "programming styles", either more abstract or more hardware­
specific. Pure PASCAL programs are possible as well as programs close
to the machine code level.

Before code generation takes place, the high-level source program is
lowered down to an RT -level program. All declared user variables are
bound to storage modules, and variable references are substituted by
references to the corresponding storages. The process of variable binding
may be steered through reservations provided by the user. Otherwise,
variables are bound to arbitrary storage modules of sufficient capacity.
Furthermore, all high-level control structures like FOR, WHILE, and
REPEAT loops are replaced by IF -constructs, with explicit reference to
the program counter register (PC). The following example shows a piece
of source code and the corresponding RTL program:

source code:

VAR x, y, z: integer;
REPEAT

y := y + z;
X := X - 4;

UNTIL x < 0;

RTL code: (let x, y, z be bound to Mem[O], Mem[1], Mem[2])

lab:
Mem[1] := Mem[1] + Mem[2];
Mem[O] := Mem[O] - 4;
PC :=(IF Mem[O] >= 0 THEN lab ELSE INCR PC);

The REPEAT /UNTIL loop is replaced by a conditional assignment
to the program counter PC. If Mem [0] >= 0 is true at the end of the
loop body, then the branch to label lab is taken. Otherwise, PC is incre­
mented so as to point to the next instruction after the loop. Replace­
ment rules for high-level control structures are contained in an external
library, which can be edited by the user. In this way, the most appro­
priate replacements can be defined for each particular target processor.
On a DSP for instance, it might be favorable to replace FOR-loops by
hardware loops.

During code generation, the RTL program is mapped to the COG
model of the target machine. This involves three main steps:

Retargetable compiler case studies 109

Code selection and temporary allocation: Each RTL assignment
is represented as a data flow tree T. If a subgraph within the COG
that matches T can be determined, then the assignment can be im­
plemented by a single instruction. In case the assignment is too
complex, it is split into a sequence of simpler assignments, while allo­
cating temporary registers on the fly. MSSQ uses no optimized code
selection technique such as tree parsing. However, it ensures by an
exhaustive search in the COG that additional cycles due to tempo­
rary allocation are only inserted into the generated code in case they
are actually required.

Checking for conflicts: It has to be ensured that the selected partial
instructions have no conflict w.r.t. resource usage and instruction
encoding. For this purpose, MSSQ maintains a data structure called
!-trees (instruction trees). An I-tree is a representation of alternative
partial instruction word settings, where each node represents one
partial instruction. All nodes in an !-tree that lie on the same path
are combined by AND, i.e. they have to be simultaneously set, while
nodes on different paths represent alternatives. Such alternatives
frequently arise from the fact that there may be multiple ways of
routing data through the data path (e.g. via multiplexers or buses).

The use of !-trees is exemplified in fig. 5.12. Part a) shows an RTL
assignment represented as a data flow tree. Fig. 5.12 b) shows two
alternative matching subgraphs in the COG, and part c) depicts the
corresponding I-tree. The left matching subgraph requires that the
two constants "00000001" and "10000000" are provided simultane­
ously at instruction word bits 13 down to 6, which naturally leads to
a conflict. On the other hand, the right subgraph causes no conflict
since one of the constants is provided by decoder DEC.

Encoding selection and compaction: The generated partial instruc­
tions are passed to a heuristic code compactor aiming at generation
of dense schedules in case the target machine shows instruction level
parallelism. Possible alternative instruction encodings found in the
previous phases are exploited here to select the ones that result in
the tightest schedule.

The main strength of MSSQ is that it derives all required target in­
formation solely from a homogeneous HDL model written in MIMOLA.
This has allowed to retarget the compiler to a large number of different
machines, including several ASIPs as well as some standard processors.
The large degrees of freedom both in processor modeling and source
program specification make MSSQ a powerful tool for design space ex-

110 RETARGETABLE COMPILER TECHNOLOGY

"00000001"

\
READ M[l "10000000"

~/

9
LOADR

' '
'

a) Assignment

13 .. 6 = "00000001"

1 = "0"

2 = "1"
CONFLICT!!

1 0 = "0"

13 .. 6 = "10000000"

b) Matching subgraphs

! 0= "1"

5 .. 3 = "110"

c) 1-tree

Figure 5.12. Alternative partial instructions and their !-tree representation

ploration during ASIP design, with some emphasis on instruction-level
parallelism.

Limitations of MSSQ mainly lie in the range of possible target pro­
cessors (only single-cycle instructions), sometimes poor code quality due
to a simple mapping approach and a missing global register allocator,
as well as high compilation times. However, many of these restriction
have been removed in MSSQ's successor, the RECORD compiler (sec­
tion 5.2.5), while retaining the advantages of the HDL model approach
to retargetability.

4.2. PEAS
PEAS is a hardware/software codesign project at Osaka University

[165]. The main idea is to automatically synthesize ASIPs together
with the required software development tools, based on knowledge about
applications and design constraints. An overview is given in fig. 5.13.

Retargetable compiler case studies

Jsenavtor l
I RT I
I Gate I
I Layout I

GUI

Software
development
environment
generator

111

Figure 5.13. PEAS system overview (PEAS-III version), @PEAS project, Osaka
University

Retargetable C compiler generation within the architectural scope of
PEAS target processors is also part of this project.

PEAS has evolved over three generations so far. For PEAS-I [166],
a RISC based processor kernel with one ALU and a general-purpose
register file has been defined, which can be tuned towards certain ap­
plications by adding custom functional units and modifying the number
of registers. Based on an application analyzer module, the processor
kernel's instruction set is customized so as to best fit the performance
requirements of the intended applications under given area and power
consumption constraints. For compiler generation, the GCC compiler
has been ported to the RISC kernel. The fine-tuning of the compiler
towards a certain ASIP configuration takes place via local modifications
in GCC's machine description files, so as to accommodate special in­
structions and register file sizes.

For the PEAS-II version [167], modifications have been made to the
processor kernel, which in this case shows a VLIW architectural style.
Still, the instruction set and the pipeline are largely fixed. The appli­
cation analyzer module uses a branch-and-bound technique to derive an

112 RETARGETABLE COMPILER TECHNOLOGY

optimum processor configuration w.r.t. the number and types of func­
tional units in the VLIW data path. Like in PEAS-I, the C compiler
is based on GCC, which has been enhanced by a dedicated instruction
scheduler in order to exploit the available parallelism. However, from
the publications it is not fully clear how the compiler supports custom
functional units and what the resulting code quality is.

In the most recent version, PEAS-III [168], two important changes
have been made. The target processor is no longer based on a kernel
with a fixed predefined instruction set, but it can be entirely specified via
a GUI in the form of a machine description. This gives more flexibility
as compared to earlier versions. The machine description contains the
following sections:

1 An architecture parameter specification that describes the general ar­
chitecture type (e.g. VLIW) and the detailed pipeline stages as well
as instruction delay slots.

2 A resource declaration for registers, ALUs, and their simulation and
timing models. Available resources are retrieved from a module li­
brary and are configured w.r.t. bit width and functionality.

3 An instruction set definition that captures instruction types, fields,
and opcodes in a hierarchical fashion.

4 A micro-operation description which defines the detailed behavior of
instructions, separated into the different pipeline stages.

In contrast to the earlier system versions, the compiler generator in
PEAS-III is based on ACE's CoSy system (section 5.6.1). This is possi­
bly due to the fact that dropping the concept of a fixed processor kernel
in favor of a more flexible approach complicates retargeting of GCC,
which inherently has a preference for RISC architectures. The PEAS­
III compiler generator transforms the above machine description format
into the backend specification required by CoSy. First, a set of map­
ping rules for the code selection pass is generated. This is performed by
converting the micro-operation description into an intermediate struc­
tural format. Resembling the instruction set extraction procedure in the
RECORD compiler, this structural model is then used to extract the fi­
nal instruction patterns. The information required for CoSy's register
allocation and instruction scheduling modules are more or less explicit
in the target processor model.

Similar to the Trimaran system, the idea of describing the target
processor "graphically" via a G UI instead of using a dedicated machine

Retargetable compiler case studies 113

description language certainly provides a comfortable retargeting mecha­
nism. However, so far no detailed results about the compiler generator's
target architecture range and the code quality are available. Experi­
ence from earlier projects (e.g. MSSQ and RECORD) shows that a very
large range of possible targets usually compromises code quality, and,
vice versa, high code quality can only be achieved by focusing the tar­
get domain. As the project is still under development, it is not obvious
which direction will finally be taken in PEAS-III.

4.3. Valen-C
Valen-C ("variable length C") is an extension to the C programming

language, dedicated to optimization of ASIP architectures. The corre­
sponding C compiler VCC has been developed mainly at Kyushu Univer­
sity [50]. The software can be downloaded from [169]. It is copyrighted
by a Japanese research agency, but it can be virtually freely used under
certain preconditions.

The target processor range for VCC is a relatively narrow class of
RISC machines. The detailed target instruction set, its register con­
figuration, stack usage, as well as type bit widths and alignment are
described in a configuration file.

The main motivation for Valen-C is the fact that in many embedded
system designs the processor word length might not be well adapted to
the word length required by some given application, which leads to a
waste of on-chip memory area. The normal C language does not address
this problem, since there are only a small number of type bit widths
available, typically 8, 16, or 32 bits. Therefore, the language extensions
made in Valen-C allow to specify the exact bit width of each program
variable, e.g. the type "int23" specifies a 23-bit integer variable. This
feature allows the programmer to perform a more detailed design space
exploration for ASIPs than possible with a regular C compiler. As the
target machine word length may differ from the application program
word lengths, the mapping of operations on variables specified with an
arbitrary exact bit width to the given target (e.g. 23-bit arithmetic on
an 11-bit machine) is a time-consuming task, and in fact it is the main
purpose of the vee compiler to perform this translation automatically.
By repeatedly recompiling and simulating some application for different
target word lengths, an ASIP can be tuned towards the application (fig.
5.14).

A given Valen-C program is first transformed into an equivalent ANSI
C program. Then the SUIF C frontend (section 5.1.5) is used for compi­
lation into the SUIF intermediate representation, and several machine­
independent optimizations are performed by means of the SUIF library.

114 RETARGETABLE COMPILER TECHNOLOGY

• •
20-bitCPlJ

. RAMi. ROM I
., ·,~· ··.: 110

Figure 5.14. Customizing the bit width of ASIP chip components with Valen-C,
@Kyushu University

Next, lowering phases take place during which operations on variables
whose width exceeds the target word length are expanded into equivalent
instruction sequences that can be executed on the target machine. These
phases are followed by code selection, register allocation, and assembly
code emission, which are rather straightforward due to the largely pre­
defined target architecture. An instruction scheduler is not included so
far.

Since there are already many retargetable RISe compilers such as
Gee or LCC, the Valen-C compiler vee does not bring much inno­
vation from a pure retargetability viewpoint. Moreover, it has a quite
limited architectural scope. However, vee is one of the few compilers
that can automatically handle variables with arbitrary bit widths. Due
to the automatic translation into assembly code via ANSI C and SUIF,
a given Valen-C program can be easily remapped to different memory
width configurations of a RISC-like ASIP, and in this way the memory
width can be customized so as to minimize on-chip memory area con­
sumption. While reducing the RAM width generally reduces RAM area
and the CPU core size, it tends to increase program ROM area, due to
the fact that the expansion of instructions on "wide" variables requires
more instructions, which in turn implies lower code density. Due to this
tradeoff, there is usually some global optimum for total chip size, which
VCC can help to determine. Results have been reported for an ADPCM
decoder application, where the reduction of the original word length of
32 bits to 18 bits led to a chip area reduction of about 50 %, together
with a reduction in energy consumption of 35 % (for more results , see
also section 2.2.5) .

4.4. EXPRESS
EXPRESS is an ongoing retargetable compiler project at UC Irvine.

It is part of a larger project on design space exploration for embedded

Retargetable compiler case studies 115

systems, which also includes design capture, simulation, and memory
hierarchy optimization. The tools revolve around the architecture de­
scription language EXPRESSION [170). EXPRESSION models can be
written manually, or can be generated from a schematic entry GUI called
V-SAT.

EXPRESSION processor models are given in a LISP-like notation
and show a mixed behavioral/structural style with the following overall
structure:

Operations specification: Opcodes, operands, and RTL behavior of
each available processor instruction. Concise descriptions are facili­
tated by factoring constructions for alternative operands.

Instruction description: This section describes the permissible group­
ing of operations to parallel VLIW instructions. Each instruction is
described by a set of issue slots, each of which in turn corresponds to
a functional unit.

Operation mappings: Rules in this section specify the mapping of
machine-independent operations into machine-specific assembly in­
structions. Also simple algebraic transformations can be captured.

Components specification: A list of RT-level components of the tar­
get processor, annotated with a list of executable operations and
timing information.

Pipeline and transfer paths: A specification of pipeline stages, the
binding of operations to stages, and an enumeration of valid transfer
paths between the RTL components.

Memory subsystem: Storage units like register files, memories, and
caches are described separately in this section.

While some concepts are adopted from other languages (e.g. nML and
MIMOLA), EXPRESSION innovates in the detailed pipeline and mem­
ory modeling. Reservation tables needed for instruction scheduling can
even be automatically extracted from the processor model (171], which
strongly simplifies frequent retargeting during design space exploration.

The EXPRESS compiler [172] itself, which is retargeted based on
the information in the EXPRESSION model, appears to be in an early
stage yet. An overview is given in fig. 5.15. EXPRESS uses the GCC C
frontend and performs different global optimizations like loop unrolling.
The backend is built on top of the Mutation Scheduling technique [173],
which aims at coupling the code selection and register allocation phases
with a global instruction scheduler by comparing several alternative ways
to map data flow graphs into machine code.

116 RETARGETABLE COMPILER TECHNOLOGY

GUI

Slmulotor

Figure 5.15. EXPRESS compiler overview, @Center for Embedded Computer Sys­
tems, UC Irvine

EXPRESS also emphasizes the phase ordering problem for different
code optimizations. It contains provisions for adaptive dynamic phase
ordering, as opposed to the static phase ordering in traditional com­
pilers. Naturally, this has to be paid with higher compilation times.
EXPRESSION models for compilation have been developed for the TI
C6x and Motorola 56k DSPs , but experimental results on code quality
for these targets have not yet been reported.

4.5. BUILDABONG
BUILDABONG [174, 175] is an ongoing project at the University

of Paderborn, aiming at ASIP optimization by architecture/compiler
codesign. It is conceptually somewhat similar to EXPRESS and uses an
Abstract State Machine (ASM) model of the target processor. BUILDA­
BONG comprises the description language XASM for ASM specification,
but XASM models can also be generated from a schematic entry tool.
The ASM model has been inspired by the internal processor model used
in the RECORD compiler (section 5.2.5). The target processor is con-

Retargetable compiler case studies 117

sidered as a machine which in each instruction cycle executes the same
set of parallel guarded RT operations of the form

if (condition) then <do register transfer>

The guard conditions are formed by binary opcodes, modify register
states or dynamic conditions (e.g. comparison results). While RECORD
extracts this notation from an HDL processor model, BUILDABONG
generates it from a schematic and uses an explicit notation of guarded
RT operations in the XASM language. The project comprises four main
phases:

Architecture description: The target processor architecture is cap­
tured as an RT-level structure via a graphical schematic entry tool
called ArchitectureComposer. This tool can be downloaded from
[176]. The ArchitectureComposer provides a library of parameteriz­
able RTL components like registers, memory, ALUs, and multiplexers
which can be instantiated and connected by the user to form an RTL
data path netlist (fig. 5.16). An equivalent XASM model can be
exported.

Archltec eco ser'-' .o

T6
<:; !j_'

'fg
..

1 .. ~
111
IT>
~ e ..

·-------..

Figure 5.16. ArchitectureComposer tool in BUILDABONG

118 RETARGETABLE COMPILER TECHNOLOGY

Simulator generation: The XASM model also forms the basis for gen­
erating a target-specific instruction set simulator. For this purpose,
the XASM model is translated into C code, which is compiled and
linked together with an arbitrary word length arithmetic package and
a graphical debugger interface. Also semi-automatic parser genera­
tion for assembly program inputs is supported, based on an instruc­
tion grammar specification. The debugger can be used to monitor
the simulation of guarded RT operations and it displays the current
machine state (e.g. register contents or pipeline states). It has been
applied to an XASM model of the TI C6x VLIW DSP. However, it is
not yet clear how the simulator performs as compared to other recent
compiled simulation approaches like [177, 178, 206].

Compiler generation: Generating target-specific compilers in BUILD­
ABONG is still in a research state. The RECORD project showed
that the guarded RT operation or ASM notation is suitable for retar­
getable code generation, and the BUILDABONG compiler is intended
to handle a larger scope of architectures, with emphasis on VLIW.
It is based on the LCC frontend and an intermediate language called
TIL. The target machine is described in MAML (Machine Markup
Language). There is also a special script language for specifying high­
level optimization strategies. Results on the exact architural scope
and code quality have not yet been reported.

Architecture exploration: Just like in related ASIP design and com­
piler systems like MSSQ, EXPRESS, or PEAS, the ultimate purpose
of the BUILDABONG project is to support architecture exploration
under certain constraints and optimization goals by means of the
generated compiler and simulator tools.

5. Special retargetability techniques
5.1. Code generation methods
5.1.1 Balakrishnan's microcode compiler

Balakrishnan and Bhatt [179] describe a simple retargetable microcode
generator. It reads source programs written in a register transfer level
(RTL) language and generates machine code for microprogrammed tar­
get architectures. Similar to the philosophy of the MSSQ compiler, tar­
get machines are supposed to be predefined or synthesized from a be­
havioral specification. The microoperation set of the target is described
in a special language, which permits the specification of resources, in­
struction fields, and the behavior of resources dependent on instruction
field opcodes. From this target model, the code generator first extracts

Retargetable compiler case studies 119

the set of feasible microoperations, which needs to be performed only
once per target (this inspired the instruction set extraction tool in the
RECORD compiler). As the source program is already given as RTL
code, the actual code generation procedure is rather straightforward:
The code generator simply scans the extracted feasible operation set
for a match against each RTL statement. This generates sequential mi­
crocode, which is later compacted with standard heuristics to exploit
the available parallelism. This approach clearly emphasizes the quick
translation of low-level source programs to a class of microprogrammed
targets, without particular efforts in code optimization.

5.1.2 Mavaddat's formal language approach

The formal language approach by Mavaddat et al. [181, 182] is based
on parsing of data flow graphs (DFGs) w.r.t. to a parallel rewrite system
(Lindenmayer system) that represents a target data path. This approach
can be considered as a generalization of the tree parsing approach de­
scribed in section 3.3.1. Register transfer operations are modeled as
grammar rules, and code generation means constructing a derivation
w.r.t. the given instruction set grammar. While tree parsing only works
for data flow trees, the main advantage of Mavaddat's approach is that a
complete DFG is compiled within a single phase, including register allo­
cation for common subexpressions and local exploitation of instruction­
level parallelism. Thus, it achieves a perfect phase coupling at the basic
block level and generates optimal code.

The major problem with this approach is that parsing for parallel
rewrite systems is much more complex than string or tree parsing. It re­
quires an exhaustive search that typically involves backtracking. Mavad­
dat presents a number of heuristics and pruning rules in order to reduce
the runtime requirements. With these techniques, small code generation
problems for simple target data paths can be solved within a few CPU
seconds. However, the techniques have mainly been designed for mi­
crocode generation for synthesized data paths. As a consequence, many
features found in realistic targets, such as multicycle instructions or
complex addressing modes, cannot be directly handled. Therefore, the
formal language approach to code generation is so far mainly of theoret­
ical interest, and results for realistic machines have not been reported
so far.

5.1.3 Langevin's automata theoretic approach

The code generation approach by Langevin at el. [183, 184] is concep­
tually close to Mavaddat 's. The target data path is considered as a finite
state machine (FSM). Its initial state represents the situation that all

120 RETARGETABLE COMPILER TECHNOLOGY

input registers have been loaded with arguments. Any RT operation (or
valid combination of parallel RTs) executed on the data path is equiv­
alent to a state transition in the FSM. Finally, the FSM has to be in a
goal state, where all results of some DFG computation are available in
the output registers.

Langevin's approach starts from the goal state and performs a back­
ward state traversal, so as to determine the smallest number of state
transitions in the FSM model that leads back to the start state. Ef­
fectively, this means to compute the shortest schedule for executing the
input DFG on the given data path.

Like in Mavaddat's technique, an ideal phase-coupled code genera­
tion is achieved with this method that allows for optimal code quality.
Again, the main problem is computation time. Since for each state po­
tentially all predecessor states have to be investigated (which may be
hundreds or thousands on non-trivial data paths), the search space gets
extremely large. In order to avoid exhaustive runtime requirements,
Langevin presents alternative state space exploration strategies, based
on mixed depth first/breadth first traversal. However, even though high
compilation speed is usually given low priority in embedded code gen­
eration, it may still be arguable whether compilation times in the order
of one CPU hour for a basic block is still acceptable. Similar to Mavad­
dat's work, the automata theoretic approach provides good insight into
phase-coupled code generation for DFGs, but applicability to realistic
code generation problems is still very limited.

5.1.4 Romer's automata theoretic approach
Romer proposes an alternative automata theoretic approach in [185,

186]. Like the above approaches, it deals with optimized phase-coupled
mapping of DFGs to irregular target data paths. The data path is con­
sidered as an FSM that performs state transitions by (potentially paral­
lel) RT operations, and the code generator aims at finding the shortest
state sequence that leads from an input state to a goal state where all
results are available.

Romer uses an efficient representation of FSM states by a bit matrix:
For a DFG with n nodes and a target machine with m registers, ma­
trix A contains n x (m + 2) bits. Any bit aij denotes that the result
of DFG node i is available in register j. Two extra columns are used
to represent the fact that some DFG node may be available as an im­
mediate constant or in memory instead of one of the m registers. This
representation shows the advantage that state transitions can be simu­
lated by simple Boolean operations, which can be efficiently executed by
word-level logical instructions on the compiler host.

Retargetable compiler case studies 121

Obviously, a shortest schedule is achieved by computing a shortest
path from the initial state to the goal state in the state diagram of the
underlying FSM. However, the complexity is exponential in the number
of DFG nodes, with large constant factors determined by the instruc­
tion set size and the number of registers. Therefore, Romer proposes a
heuristic solution, where in each step only theM best successor states of
a given state are investigated. For the special case M = 1, this heuristic
is virtually equivalent to the fast standard list scheduling approach. In
contrast, larger values of M lead to a more thorough search space ex­
ploration at the expense of higher runtimes. In this way, the user can
easily study the trade-off between compilation time and code quality.

Like related approaches on formal methods for code generation, the
approach is currently restricted to basic blocks. It has been implemented
in a C compiler based on the LANCE system (section 5.1.7) and has
been applied for mapping DSP routines into assembly code for the M3
DSP platform [187]. The results indicate that the technique works in
practice, but detailed results on the code quality /time trade-off (choice
of parameter M) still have to be reported.

5.1.5 Wilson's ILP based code generator

The Integer Linear Programming (ILP) approach by Wilson et al.
[190, 191] aims at phase-coupled code generation for irregular architec­
tures. The main idea is to transform the code generation problem as
a whole into some well-known optimization problem, ILP, for which ef­
ficient solvers already exist. This approach first of all avoids the need
to design specific optimization algorithms, and there is hope that by
exploiting efficient ILP solvers, small to medium size problems can still
be solved optimally.

ILP can be stated as the problem of maximizing a linear objective
function of the form

j(xl, ... , Xn) = Cl · Xl + ... + Cn · Xn

under the following system of constraints:

All values aij, ci, and bi are real constants, while the solution variables
x1, ... , Xn have to be integers. Like many important optimization prob­
lems, ILP is NP-hard [192], so that optimal solutions most likely require
exponential worst case runtime in the input size.

122 RETARGETABLE COMPILER TECHNOLOGY

An integrated ILP formulation must comprise solution variables, whose
values finally exactly determine the generated code, as well as all con­
straints, in the form of linear equations and inequations, imposed by the
target machine. In Wilson's code generator, the target specific informa­
tion is stored in a data base, and for each data flow graph (generated
by a C frontend) the corresponding ILP model is automatically gener­
ated. In more detail, the solution variables account for the control step
binding of DFG operations, the instruction pattern selected for each op­
eration, and the registers used for implementing DFG edges, i.e., data
transports. The constraints ensure that operations are covered by ex­
actly one pattern, the selection of valid operand and results registers,
the correct scheduling order of operations, and other validity conditions.
Finally, the objective function minimizes the total execution time of the
DFG implementation. The actual machine code can be determined by
solving the ILP with some external tool, and deriving the generated
instructions.

The ILP approach provides a theoretically elegant way to solve the
phase-coupling problem particularly for irregular target architectures.
In addition, it is relatively easy to retarget, since the target machine
features are captured only in the ILP constraints. However, the main
problem is the sometimes extremely high compilation time due to the
use of ILP solvers. Therefore, pure ILP approaches to code generation
cannot be expected to work for large programs within reasonable com­
pilation time. Consequently, Wilson's technique can only be applied
to small pieces of code. Obviously, it has not been integrated into a
complete compiler, and experimental results have not been published.
Nevertheless, ILP might be a good point solution for heavily optimizing
some small "hot spots" of an application program.

5.1.6 FACTS

Researchers at Philips and TU Eindhoven have focused on code gen­
eration for in-house DSPs and ASIPs under performance constraints
[210, 211]. As the target architecture and the timing of the application
are supposed to be given, the code generation problem is considered as
a pure constraint satisfaction problem. Recent efforts concentrate on
the FACTS system [212, 213, 214, 215], a retargetable constraint based
compiler project for a class of parameterizable VLIW DSPs. The target
machines show a clustered register file architecture with multi-casting
support for intermediate results, i.e., results can be written into multiple
register files in order to partially suppress costly data move operations.

Given some instance of the target processor class with certain re­
source constraints and an application with a performance constraint, a

Retargetable compiler case studies 123

phase-coupled code generation procedure is performed that consists of
the following steps:

Operation assignment: Operations of the input program (given as a
set of data flow graphs) are bound to sets of equivalent functional
units.

Lifetime serialization: Operations are partially ordered in such a way
that the register file capacity constraints are not violated.

Scheduling: Details assignment of operations to control steps.

Binding: Detailed selection of functional units and registers for inter­
mediate values.

These phases cooperate with a constraint analyzer: Each time an
assignment decision is made, the analyzer checks whether valid code can
still be generated under the given timing and resource constraints. In
case of a constraint violation, a backtracking step is initiated, and the
previous decision is revised. Internally, the constraint analyzer works
with graph models and coloring techniques.

The FACTS approach is particularly suitable for DSP applications
and architecture exploration. By exploiting knowledge about constraints
during code generation, reasonable runtimes (in the order of CPU min­
utes for large DFGs) are achieved, even though a phase-coupled approach
is used. Also the capability of handling multi-casting instructions is
very important for clustered VLIW processors. Reported experimental
results, however, are still few. It would be interesting to see how the
approach performs for standard processors such as the TI C6x VLIW
DSP.

5.1.7 Bashford's CLP based code generator
Bashford also considers the code generation problem for irregular tar­

get architectures as a constraint satisfaction problem. The approach is
somewhat related to the ILP techniques mentioned above, but Bashford
uses a PROLOG-like constraint logic programming (CLP) language for
problem modeling. CLP can be considered more powerful than ILP, since
solution variables may have arbitrary domains, and there is support by
a real programming language instead of just linear equations.

CLP is particularly suitable for describing code generation problems
for irregular targets, such as DSPs, where the instruction set frequently
shows special constraints that are not easily captured in some imperative
language algorithm. An example is an instruction template of the form

Xi := X2 + X3

124 RETARGETABLE COMPILER TECHNOLOGY

where X1, X2, and X3 represent certain register sets. However, it
is usually not possible to use the complete cross product of these sets
as argument and result registers in some instance of this instruction.
Instead, different constraints have to be obeyed. For instance, if X1
= {a1,a2}, X2 = {b1,b2}, and X3 = {c1,c2}, then the target typically
imposes constraints like "if X2 = b1 and X3 = c1 then X1 must be a2"
or "X1 = a1 is only valid if X3 = c2" and the like. To make things
even more complicated, valid register combinations may also depend
on other instructions issued in parallel. In Bashford's code generator
such instruction templates together with their constraints are concisely
represented as factored register transfers (FRTs).

The code generation process itself is considered as a labeling process,
during which solution variables are assigned members of their respective
domains, such that some objective function reflecting code quality is
optimized. The solution variables account for the FRT instances selected
for DFG nodes, the detailed register allocation, as well as scheduling. A
key point in this approach is that alternative solutions are kept as long as
possible, without unnecessarily restricting subsequent code generation
phases as in traditional approaches. Decisions are only made in case
they are really required, and the built-in constraint solving mechanism
ensures that all restrictions imposed by the target machine and the DFG
dependencies are met. In this way a high degree of phase coupling is
achieved, and heuristics are required only at a few places.

As a consequence, the CLP approach generates quite good code qual­
ity, and it can be applied to realistic machines. A CLP based C compiler
based on LANCE (section 5.1.7) has been implemented. An experimen­
tal evaluation for an ADSP-2100 DSP and some of the DSPStone bench­
marks [77] showed that the average performance overhead of compiled
code (vs. hand-written reference assembly code) is only 21 %, where the
GCC based native compiler produced an overhead of 245 %. Frequently,
the quality of hand-written code has been achieved and sometimes even
exceeded.

The main restrictions of the approach are its limitation towards basic
block level optimization, the somewhat unusual implementation method
CLP (which does not easily integrate with other compiler modules), and
the high runtimes requirements (up to several CPU minutes) for comput­
ing optimal solutions. However, Bashford also proposed a partitioning
heuristic for large input DFGs. In his experiments, this led to an average
reduction in runtime to less than one CPU second at the expense of only
a one percentage point loss in code quality.

Retargetable compiler case studies 125

5.1.8 Yamaguchi's code generator

Yamaguchi et al. [180] present an approach to handle a specific prob­
lem in retargetable code generation for irregular architectures: checking
for existence of data transfer paths. In irregular architectures like DSPs,
it is frequently the case that there is no direct route in the data path to
transfer a value from one location to another, and even if a route exists, it
may still be invalid due to instruction encoding constraints. Yamaguchi's
algorithm aims at finding valid mappings of data flow graphs {DFGs)
to the target architecture under such constraints. For this purpose, the
data path is modeled structurally as a netlist of RTL components and
their interconnect. Additionally, the model captures constraints on par­
allelism. Boolean functions are defined that indicate, e.g., whether two
operations cannot be executed in parallel since they share a resource.
The code generation procedure comprises three phases. First, alterna­
tive bindings of DFG operations to data path resources are computed.
All alternatives are implicitly enumerated by constructing a binary deci­
sion diagram (BDD [143]) representation of the binding constraints. The
second phase maps DFG edges onto possible data paths. Backtracking is
employed in case of constraint violations. Finally, the completely bound
DFG is scheduled via a list scheduling algorithm, and spill code is in­
serted in case of register capacity violations, which again might involve
some backtracking. In spite of the backtracking, the compilation times
are quite low. However, results have been published only for small exam­
ples, and it is not clear whether a full compiler has been implemented.

5.2. Retargetable compilers for microcontrollers
5.2.1 Krohm's compiler

A retargetable C compiler for a class of simple application specific mi­
crocontrollers is presented in [193]. Its backend has been implemented
based on the Graham/Granville string parsing approach {see chapter
4). The underlying instruction set grammar is automatically generated
from a machine description file, which captures registers, operators, ad­
dressing modes, and instruction patterns. Several transformations are
performed on the instruction set grammar, such as compaction and am­
biguity elimination.

The string parsing based code selection approach does not offer many
opportunities for code optimization. Instead, due to the orientation to­
wards control-dominated applications, Krohm's compiler primarily uses
a number of efficient control flow transformations to achieve good code
quality. These include standard techniques like unreachable code and
jump chain elimination, as well as optimized linear ordering of basic

126 RETARGETABLE COMPILER TECHNOLOGY

blocks and exploitation of short jump instructions. The efficacy of these
transformations has been demonstrated for several large C application
programs. Additionally, the compiler performs pattern-based peephole
optimizations and graph-coloring global register allocation.

Krohm's techniques have been implemented in a working compiler
system. It is interesting, since in contrast to most other systems it
represents a practical retargetable compiler approach explicitly tuned
towards microcontrollers. However, the underlying string parsing based
code selector is somewhat outdated due to the invention of tree pars­
ing, and code quality results for real machines have obviously not been
published.

5.2.2 SDCC

The small device C compiler is a partially retargetable compiler for
microcontrollers, where backends are currently available for Intel 8051
and Zilog Z80. The software, including sources, can be downloaded from
[194]. It runs under Linux and MS Windows and falls under the GNU
public license. The package also contains assembler, linker, simulator
and debugger software.

The SDCC compiler performs a number of standard machine indepen­
dent optimizations, including global common subexpression elimination,
loop optimizations, constant folding and propagation, copy propagation,
and dead code elimination. The backend comprises a global register al­
locator and supports inline assembly as well as compiler intrinsics.

There is no external machine description file in SDCC, but most
target-specific information is hard-coded in the compiler. Since the
source code is freely available, adaptions towards other microcontrollers
are certainly possible. However, the code selection and register alloca­
tion modules are rather machine-specific. Only the peephole optimizer
is fully retargetable, since it is based on an external description file with
simple replacement rules for instruction sequences.

SDCC is a quite comprehensive C compiler infrastructure for micro­
controllers, which provides a good starting point for constructing com­
pilers for new targets within its processor class. However, frequent re­
targeting or architecture exploration are not supported.

5.3.

5.3.1

Code generator generators
IBURG

IBURG [74] is an implementation of the tree parsing technique for
code selection presented in section 3.3.1. It reads a Backus-Naur speci-

Retargetable compiler case studies 127

fication (fig. 5.17) of a tree grammar for some target instruction set and
generates C source code for a target specific code selector.

<tree grammar>

<declaration>

<rule>

<tree>

<terminal>,
<non terminal>

<terminal no>,

::= {<declaration>} Y.Y. {<rule>}

::= Y.start <nonterminal>
Y.term { <terminal> = <terminal no> }

::= <nonterminal> : <tree>= <rule no> (<cost>);

::= <terminal> (<tree> <tree>)
<terminal> (<tree>
<terminal>
<non terminal>

::=<character string>

<rule no>, <cost> ::=<integer>

Figure 5.17. Meta-grammar for specification of tree grammars in IBURG

The tree grammar specification starts with a declaration of numbered
terminals and the grammar start symbol. The remaining nonterminals
need not to be declared explicitly, as they are implicit in the grammar
rules. The next section is an enumeration of all grammar rules, given
in a simple tree pattern form. Each rule has to have a unique number,
which can later be used to identify rules instantiated in a derivation of a
data flow tree (DFT) for assembly code emission. Optionally, each rule
can also be assigned an integer cost value. Like in LEX and YACC, also
regular C code can be included in the IBURG input file, but it must not
be interleaved with the actual grammar specification.

Fig. 5.18 shows a simple tree grammar for IBURG. There are 6 ter­
minals, 3 nonterminals ("reg" is the start symbol), and 7 rules. This
grammar allows code generation for simple DFTs consisting solely of
loads, stores, and some arithmetic operations and constants.

The C output generated by IBURG for this grammar comprises a
number of tables and functions. The tables store information like gram­
mar symbol numbers, target nonterminals of rules, operator arities, as
well as some optional debug information. The ma1n interface to the
compiler driver program is the generated "burmJabel" function, which
takes some DFT as an input parameter. The DFT data structure can
be defined nearly arbitrarily, as IBURG accesses all relevant information
via editable C macros.

128 RETARGETABLE COMPILER TECHNOLOGY

%start reg
Y.term Assign=! Constant=2 Fetch=3 Four=4 Mul=5 Plus=6
Y.Y.
con: Constant = 1 (0);
con: Four = 2 (0);
addr: con = 3 (0);
addr: Plus(con,reg) = 4 (0);
addr: Plus(con,Mul(Four,reg)) = 5 (0);
reg: Fetch(addr) = 6 (1);

reg: Assign(addr,reg) = 7 (1);

Figure 5.18. Sample IBURG tree grammar

switch (op) {

case 6: I* Plus *I
assert(l && r);

}

if (I• addr: Plus(con,Mul(Four,reg)) •I
r->op == 5 tt I• Mul •I

) {

}

r->left->op == 4 I* Four •I

c = 1->cost[burm_con_NT] + r->right->cost[burm_reg_NT] + 0;
if (c + 0 < p->cost[burm_addr_NT]) {

p->cost[burm_addr_NT] = c + 0;
p->rule.burm_addr = 3;

}

{ I* addr: Plus(con,reg) *I
c = 1->cost[burm_con_NT] + r->cost[burm_reg_NT] + 0;
if (c + 0 < p->cost[burm_addr_NT]) {

p->cost[burm_addr_NT] = c + 0;
p->rule.burm_addr = 2;

}
}

break;

Figure 5.19. C output fragment for sample grammar

Fig. 5.19 shows a fragment of the generated C code which is respon­
sible for matching any DFT T with a "Plus" terminal at its root. First
it is tested whether the "multiply-accumulate" rule (number 5 in fig.
5.18) can be applied by checking T's right kid. If the rule matches, then
the costs of rule 5 are summed up with the accumulated costs of T's
kids when reducing these to nonterminals "con" and "reg", respectively,

Retargetable compiler case studies 129

to form a new cost value c. If c turns out to be lower than the cur­
rent cost value for reducing T to the target nonterminal "addr" (stored
in "p->cost[burm_addr...NT]"), then cis recorded as the new minimum
cost. The remainder of the C code performs a similar processing for rule
number 4.

Normally, the user does not have to care about such details of the
generated code, except that debugging becomes necessary in case of
unexpected behavior of the code selector during the development phase.
The result of the code selection process is a derivation tree for the input
DFT, which can be traversed in a subsequent pass to emit assembly
code. However, this is not directly supported by IBURG.

IBURG is a very compact, efficient, and stable tool. It eliminates the
need to implement tree parsing based code selection from scratch and
it supports quick retargeting to different instruction sets. However, its
functionality is restricted to code selection only. Among others, IBURG
has been used in the RECORD compiler, where tree grammar specifica­
tions are automatically generated from hardware description language
models. The software including source code is available at [195]. Its use
is free for research purposes. The generated C output code may also be
used in products, provided that the code is delivered at no charge.

5.3.2 OLIVE

OLIVE is an improved version of IBURG. It has essentially the same
functionality but includes several important enhancements that make
code selector development more comfortable.

First, the cost attributes of grammar rules are no longer restricted
to integer constants, but arbitrary cost functions may be used instead.
While in many cases constant costs still suffice, there are special applica­
tions where cost functions are more powerful. One example is to dynam­
ically enable or disable certain rules during multi-pass code generation
[196]. Rules can be conditionally disabled by assigning an "infinite" cost
value, which inhibits the selection of a rule even though it matches some
DFT.

Another important improvement over IBURG is the introduction of
action functions in OLIVE. An action function is a piece of C code that
is executed each time some rule has been selected during tree parsing.
This works as follows: Normally, the code selector makes two passes
over a DFT. After computing the optimum DFT cover in the first pass
by means of the "burmJabel" function (as in IBURG), the second pass
is explicitly invoked by calling the action function for the start symbol.
Typically, this function will in turn contain calls to the action functions

130 RETARGETABLE COMPILER TECHNOLOGY

for the kids, and this process recursively continues until all DFT nodes
have been visited again.

The most important purpose of action functions is the emission of
assembly code, even though also other phases like local register alloca­
tion can be integrated here. In contrast to IBURG, which completely
decouples code emission from the parsing phase, this permits a cleaner,
syntax-driven code generation approach.

%term AND
%declare <char*> reg;

reg: AND(reg,reg)
{

$cost[O] = 1 + $cost[2] + $cost[3];
}

{

};

char* vregl, •vreg2, •vreg3;
vregl = $action[2]();
vreg2 = $action[3]();
vreg3 = NewVirtualRegister();
printf("AND %s,%s,%s",vreg1,vreg2,vreg3);
return vreg3;

Figure 5.20. Use of actions functions in OLIVE

Fig. 5.20 shows a tree grammar fragment that outlines the use of
action functions. Like in IBURG, all terminals have to be declared.
OLIVE additionally requires a declaration of nonterminals, where this
also implicitly declares the corresponding action function interface. In
the example, nonterminal "reg" is declared in such a way that its action
function is a parameterless C function returning a string. This string
is used to identify a virtual register name, so that different instances of
using nonterminal "reg" can be distinguished.

The sample grammar rule is used to match "AND" operations in
a DFT. The arguments must reside in registers, and also the result
will be written to a register. Similar to IBURG, the cost part sums
up the inherent rule cost {here 1) and the cost of the subtrees, so as
to induce a quality metric for the code selector. The action function
{following the "=" character) looks like a regular C function. It calls
the action functions of the subtrees to get the associated virtual register
names. Next, a new unique virtual register is allocated for the result,
and an assembly instruction is emitted. The name of the result register
is returned for subsequent use upwards in the DFT.

Retargetable compiler case studies 131

Like IBURG, OLIVE is a stable and efficient tool. Its extensions over
IBURG make the specification of code selectors quite comfortable. The
OLIVE tool including the source code is included in the distribution of
the SPAM compiler [132), of which it forms a central component. There
it has been used to develop several DSP backends. Also the LANCE
system provides an interface to OLIVE based code selectors. The license
conditions for OLIVE are the same as for IBURG.

5.3.3 BEG

BEG is a backend generator developed at the University of Karlsruhe
[197). It generates code selectors and register allocators for a target
machine modeled by a code generator description (CGD) file. Instruc­
tion scheduling is obviously not included. The backend source code is
emitted in Modula-2 or C.

Like IBURG and OLIVE, BEG generates a tree parser for the code
selector. A CGD therefore contains rules for tree pattern matching,
cost attributes, as well as assembly code templates to be emitted in
case of a match. Additionally, matching conditions can be specified,
e.g. the permissible range of integer constants as immediate operands of
instructions.

For the register allocation part, BEG first requires an enumeration
of all available registers. The set of admissible registers for instruction
operands and destinations can be annotated at each rule. In addition,
special rule attributes can be used to inform the register allocator that
some register besides the destination is changed as a side effect, in which
case that register gets spilled. BEG generates two alternative register
allocator variants: "general" and "on-the-fly". The general allocator is
slower but handles a wider range of target machines, while the faster
allocator may fail in case of too complex expressions due to restricted
spilling capabilities. Both register allocators are very local, as they pro­
cess only one data flow tree at a time.

The functionality of BEG somewhat resembles that of LCC, even
though many implementation details are different and BEG has its roots
in Modula-2 rather than C. Like LCC, BEG requires a number of hand­
written support routines for the backend. Unfortunately, BEG itself has
no source language frontend. On the other hand, BEG permits the spec­
ification of the intermediate representation as a part of the CGD, and
several things like constraining the valid register classes for instruction
patterns are certainly easier than in LCC.

BEG has been used in backend generation for MOCKA, a popular
compiler for Modula-2. Additionally, BEG has been the basis for the
backend generator of the CoSy system (section 5.6.1). The original ver-

132 RETARGETABLE COMPILER TECHNOLOGY

sion of BEG is copyrighted by GMD Karlsruhe, and binaries for Linux
are available at [198]. The package also contains example CGDs for IBM
370 and Motorola 68020 targets. However, it is not clear whether BEG
is still supported as a stand-alone tool.

5.4.
5.4.1

Assembly-level optimization
SAL TO

In contrast to most other systems presented here, the SALTO system
[199] developed at INRIA/France is focused on retargetable assembly­
level optimizations. It does not include a source language frontend nor
a built-in library of optimizations, but it offers the user a framework
for implementing his own machine-dependent code transformation and
optimization tools. The architectural scope of SALTO is mainly in the
area of VLIW processors.

Retargeting SALTO works via a LISP-like machine description lan­
guage, which has been inspired by GCC's machine description format.
It specifies the available resources (i.e. anything that has an impact on
scheduling), reservation tables for modeling pipeline behavior, and as­
sembly language syntax. As a demonstrator, a model for the 'Ifimedia
TM1000 VLIW DSP (section 5.3.4) has been developed.

From the machine specification, an assembly language parser can be
automatically generated. The parser generates an internal program rep­
resentation, which can be accessed via the SALTO API. The API gives
application programs access to data structures for control flow graphs,
basic blocks, and single instructions. The data structures can be at­
tributed with application-specific information.

SALTO has been used to implement some simple optimizations like
list scheduling. It also serves as a basis for research projects on the trade­
off between software pipelining and loop unrolling as well as general
phase coupling. Additionally, a compiled simulation generator based
on SALTO has been developed [200], which has been verified for the
TMlOOO and generally outperformed the native interpretive simulator.

The SALTO approach is interesting, since it allows to develop and
evaluate machine-specific optimizations and phase orderings at a re­
duced effort. However, for architecture exploration a compiler would
be required that at least generates valid, unoptimized assembly code
from a programming language like C.

5.4.2 PROP AN
Like SALTO, the PROPAN system from Saarland University [201,

202] is intended for retargetable assembly-level code optimization. How-

Retargetable compiler case studies 133

ever, PROPAN is more oriented towards DSP targets, and similar to
Wilson's approach mentioned in section 5.5.1.5 it comprises Integer Lin­
ear Programming (ILP) based optimization routines. There is also
some conceptual similarity to the Zephyr/VPO approach (section 1.6),
but PROPAN incorporates highly machine specific optimizations. An
overview is given in fig. 5.21.

TD!rspeoficabon of
the target machmc:

A rt:hitectun:: daaba-=
tirgct-speclfic data itnlctures
.rtd funcoons (ANSI-C)

/

Gc-ncnc computabon o[
progrGm repte-o~ons

Auembly
reconstruction

'""" ' \
Gener.ab.on ofmtegerlinwprogr~
lUppomng phase-coupled 1nstrucbon
schcduhng. n:tpsta- anagruncnt 8fld
Uncuonal unit blndmQ

./
ILP iOlYtr

(CPLEX)

I OptuTUZcd
Ananbly a.de

Figure 5.21. PROPAN overview (taken from [203))

One important motivation for moving retargetability from the com­
piler down to the assembly level is that existing (but possibly poor)
compilers can be reused, while focusing only on the machine-dependent
optimization problems. Moreover, several optimizations that normally
take place at the intermediate representation level should be repeated
at the assembly level anyway. A typical example is loop-invariant code
motion, which cannot be fully performed in a machine-independent fash­
ion.

In PROPAN, target machines are modeled in the target description
language TDL. This language permits modeling of resources like func­
tional units, registers, and memories, as well as a large range of possible

134 RETARGETABLE COMPILER TECHNOLOGY

assembly instruction formats, including assembler directives and com­
plex algebraic assembly notations. Additionally, TDL captures instruc­
tion behavior by means of a special RTL language as well as explicit con­
straints on instruction-level parallelism. From a TDL model, PROPAN
automatically generates an assembly language parser, as well as an ar­
chitecture data base that stores the target-dependent information.

The generated parser translates a given input program into an internal
control/ data flow graph structure, which forms the basis for optimiza­
tion routines. First of all, PROPAN is capable of register renaming to
remove false dependencies in the initial assembly code. The core opti­
mizations are based on two different ILP approaches for phase-coupled
code generation called SILP and OASIC. While other ILP approaches to
code optimization are mostly restricted to basic blocks, PROPAN per­
forms optimizations within superblocks than span multiple basic blocks.
This opens up higher optimization opportunities.

The system has been evaluated for two real-life targets: the Analog
Devices ADSP-2106x SHARC and the Philips Trimedia TMlOOO. Ad­
ditionally, PROPAN has served as a platform for an industrial postpass
optimizer for the Infineon C16x microcontroller. The results for the
ADSP-2106x and the TMlOOO show that the ILP approaches result in
lower code size than standard heuristics such as list scheduling. However,
the average improvement is moderate (less than 10 %), and the required
computation times are generally quite high, due to NP-completeness of
the ILP problem. Nevertheless, the additional computation time may
sometimes be justified for the critical loops of embedded applications.
Moreover, some reduction is possible by replacing the exact ILP solving
with approximation methods, which still yield optimal solutions in many
cases.

5.5. LISA
The LISA language [204, 205] developed at ISS, TU Aachen is a pro­

cessor description language mainly used for retargetable generation of
software development tools. LISA has been influenced by nML (section
5.2.1) but it provides some important improvements that enhance its
practical applicability. First of all, it allows for cycle-accurate modeling,
since the detailed pipeline behavior of the target processor is captured.
Secondly, it includes C elements, which facilitates the language use as
well as generation of fast compiled simulators [177, 206].

Similar to nML, a LISA model consists of resource descriptions and
a list of operations. The resource section is used to declare available
memories, registers, and auxiliary global variables used for sake of sim­
pler descriptions. Additionally, a detailed model of (possibly multiple)

Retargetable compiler case studies 135

pipelines is provided, including pipeline stages and registers. Any LISA
operation describes a primitive processor operation, e.g. a machine in­
struction at a certain pipeline stage. This includes instantiation of sub­
operations (with factoring capabilities like in nML), a description of the
assembly syntax, and the binary encoding. An operation is mostly also
attributed with a piece of behavior, which is modeled in regular C. Fig.
5.22 shows an example operation from a LISA model of the DLX RISC
processor.

II logical shift left bound to execute stage
II of the instruction pipeline

OPERATION SLL IN pipe.EX
{

}

II instantiation of sub-operations

DECLARE
{

GROUP rsl, rs2, rd = { reg32 };
INSTANCE r_ralu;

}

II binary encoding

CODING { r_ralu rsl rs2 rd Obx[5] Ob110010 }

II assembly syntax

SYNTAX { 11 SLL 11 rd 11 , 11 rsl 11 ," rs2}

II effect on machine state

BEHAVIOR
{

}

temp=(unsigned int)rsl;
rd =temp<< (rs2 t OxOOOOOOlf);
rsl=(int) temp;

Figure 5. 22. Sample LISA operation

Operations may be specified at the level of machine instructions. How­
ever, for pipelined processor models, typically a more fine-grained struc­
ture is used that e.g. subdivides instruction execution into fetch, decode,
execute, and write-back operations, each of which is explicitly bound to
one of the pipeline stages declared in the resource section. In order
to support such models in a simulator, LISA provides explicit pipeline
control commands, e.g. for flushing, shifting, or stalling some pipeline.

The LISA language is supported by a number of tools that take a given
processor model as an input. First of all, there is a LISA model debugger,
which helps to develop correct models for a given initial specification.

136 RETARGETABLE COMPILER TECHNOLOGY

Ell 1~ CJ*N w.-....., .,..~, ~~P~M

CiXOOl-I!Hl ')otilll

[000='1 <111\'] u,.
lllW.Jl'f;:Jtj 11/'U.t

(CIC.00115"J .::~-,

(OOO!JL <II<:JiJ ·~.,,

(OIJI).Jt .,~] I ,.

IOOO~It i!I;J ::t i
(OOO.l~ iJd :'t'-1"'

!G'>~O~I ~• ;I <t; l•

{\lOOJH). I "'!Ou

o • o • t(l :j y

LD •UII(OxOti..OI, A

·~:- 0~~:000... J.

S1'1,. A, QxXIO•

LCI OxOOO• , J.

·-= 011&1e:b, ~Qo
:'lf . tii(I"'(!Oi), ill:

1-D o.aoo., A

'u1 •o~oo~. o . .a.. "
II:' 011l4"L AU:Q

'51 10•~05111, o .. oo.
INDIC. OxOOO.. 0,.:001\

, .. ;a,. - "";tll~tTAbte!<l.e.lt•J:

.: 1ar.c111 • • , -o,
::!' [1r.du 11' tt I ln<k1(• tfr
~t•H • ••-•~IIIO'Tm l •{lh<U III.

/ ' .Stt!i" ;;; • o>.>~pll\ ... atu• 01

It bJt~~r.s•ep 1 I
OUiUI'i~!IU:ttor • ,de lt • "''C 41 I O!i:tO; I.,,. I
' o:J~p• • • ICI•H• C l;l t ltJ ! g.,;~putbuU:etJ

'
~:~ .. r f~• J•e-r • 'DIItte.-,tep~

't(.o,.

l,(o)"~ t 01 ..

r H1 ">fft

,:cs ••
!"! '· >

'"

Figure 5.23. LISA debugger GUI, @ISS, TU Aachen

.... ,. r":"t.·~'~ : ~~·
-: .. ·

~OJ .. : ..
""" ...

' " "" ,.,..

Once the model has been debugged, assembler, linker, and simulator
tools are automatically generated. Generated simulators can be linked
to a debugger GUI (fig. 5.23), which provides functionality like source­
level stepping, breakpoints, internal state monitoring, and profiling.

Current R&D activities at TU Aachen aim at extending the LISA
language applicability into further directions (fig. 5.24), including com­
piler generation, HDL model synthesis, and co-simulation. In this way,
a complete high-level processor design and architecture exploration tool
suite will be provided. Prototypes are already in industrial use, and tools
will be productized by LISATek Inc. [208]. A different LISA dialect is
also being used in automatic simulator and assembler generation tools
at Axys Design Automation [207].

Even though compiler generation from LISA is so far not supported
and certainly requires some language extensions, we find the language
worth mentioning here due to its large practical impact. Besides its use
in the Axys tools, LISA has been used to model a variety of real-life
processors, including RISCs (e.g. ARM 7 TDMI, MIPS 4k), DSPs (e.g.
TI C6x, C54x, Motorola 56k), and microcontrollers (e.g. Intel 8051) at
different levels of accuracy, and software development tools, including

Retargetable compiler case studies 137

Figure 5.24- LISA development tools, @ISS, TU Aachen

high-speed cycle-accurate simulators, have been automatically gener­
ated. This indicates that LISA is among the most flexible and mature
processor description languages currently available.

5.6. Compilers for industrial reconfigurable cores
Retargetability can be put into practice quite easily in case of a very

narrow target processor domain. More and more IP vendors selling
reconfigurable processor cores realize that software development tools
like compilers have to be flexible (or retargetable) enough to cope with
different instances of a core, so as to give the highest benefit to the
customer.

While processor cores that are reconfigurable by some numerical pa­
rameters (register file size, bus width, etc.) have been available for some
years, only recently IP vendors have started offering processor cores with
a customizable instruction set. This concept permits the user to extend
the standard core architecture, as it is shipped by the vendor, by new
application specific instructions. Sometimes, such instructions are spec­
ified through a dedicated instruction modeling language, while in other
cases templates are provided that at least facilitate the integration of
new instructions into the compiler, simulator, and the underlying HDL
synthesis model.

Examples for cores with extensible instruction sets are Tensilica's
Xtensa RISC core [80] 3DSP's SP-5 Flex DSP core [209], and ARC
Cores' Tangent RISC core [79], all of which come with a retargetable C
compiler (Tensilica's compiler is GCC based) . A still open problem is
the automatic exploitation of new custom instructions in the compiler.
Ideally, the compiler should recognize the semantics of new instructions

138 RETARGETABLE COMPILER TECHNOLOGY

and optimally exploit them during code generation. However, currently
available systems are not capable of this and rather use a pragmatic
approach, where new instructions are made known to the compiler via
compiler intrinsics.

5. 7. Retargetable test program generation
The RESTART system by Bieker [216] represents a very special type

of a retargetable compiler: a retargetable self-test program generator.
The system exploits the fact that programmable processors may per­
form self-tests for their RTL components when using appropriate test
programs. RESTART generates binary test code for test programs spec­
ified in a high-level language.

Like in the MSSQ and RECORD compilers (sections 5.4.1 and 5.2.5),
the target processor is described in the MIMOLA hardware description
language. The range of possible target processors is very similar to
MSSQ. For the specification of test programs, RESTART uses a custom
language called TCL (test code language). TCL comprises constructs for
testing sequential components (e.g. to test whether a certain constant
that has been written into a register has been correctly stored) and
combinational components. For instance, the TCL statement

TEST alu(%00,%0001,%0011);

translates into machine code that supplies the binary inputs "%00",
"%0001", and "%0011" to an RT component "alu" (specified in the
MIMOLA model) and checks whether the expected output is computed.
The expected output of "alu" is automatically determined by a built-in
RTL simulator. In case of a test failure, a jump to a specified error
label is performed, otherwise the program continues with the next test
statement.

For sake of more concise test program specifications, TCL also com­
prises FOR loops. For instance, the loop

FORi := 1 TO 1000 DO TEST ram[i] := #ffff;

will be compiled into test code that writes the hex value "#ffff" into
the cells 1 to 1000 of memory component "ram" and tests (by means of
a comparison instruction) whether the value has actually been stored.

Although TCL is a quite simple programming language, the code
generator is relatively complex. Since the TCL statements typically
do not allow for a one to one mapping into machine instructions, code
selection, register allocation, and scheduling have to be performed as in
any other compiler. In addition to binary test programs, RESTART also

Retargetable compiler case studies 139

generates external stimuli files for values that cannot be provided by the
processor hardware itself.

The RESTART system has been implemented with constraint logic
programming (CLP, see section 5.5.1. 7). This resulted in a very com­
pact implementation (only about 25 % source code as compared to a
traditional implementation in an imperative language). It has been in­
tegrated with logic synthesis, test pattern generation, and fault simula­
tion tools [217]. For several simple target processors, a fault coverage
between 95 and 99 % has been observed.

The main achievement of RESTART is that test program generation
from a high-level language is largely automated. Due to the special
application domain of test generation, there are only few relations to
other retargetable compilers. However, self-test program generation is
certainly an interesting niche application of retargetable compiler tech­
nology. The experimental results indicate that the technique works in
practice and, in combination with complementary design and test tools,
may lead to a good fault coverage for programmable processors.

5.8. Retargetable estimation
As outlined in chapter 2, one main application of retargetable com­

pilers is architecture exploration, so as to determine an optimum target
processor architecture for a given set of applications. If the target pro­
cessor class is DSP, the design of efficient and retargetable compilers is
a difficult problem, though. Ghazal et al. [218, 16] propose to circum­
vent this problem with a retargetable estimation methodology. They
developed a tool suite, based on the SUIF frontend (section 5.1.5), for
predicting the optimum performance of an application on a given target
processor. The underlying processor description only comprises param­
eter tables instead of a detailed architectural model. These parameters
include:

• Functional units and restrictions on parallelism

• Instruction set, incuding complex instruction like MAC

• Memory data packing/unpacking support

• Memory addressing support, like auto-increment

• Control flow support, such as zero-overhead loops

• Loop optimizations, like software pipelining

The input source code is processed by SUIF, which also performs
standard and loop-level optimization on the intermediate representa­
tion. The processor parameters are then used to compute the estimated

140 RETARGETABLE COMPILER TECHNOLOGY

performance for a close-to-optimal (i.e. hand-written) mapping of the
source code into machine code, based on static code analysis and profil­
ing.

The retargetable estimation methodology has been applied to two
DSPs (ZSP 16401 and TI C6201) and has been shown to achieve high
accuracy (5 % error for DSP kernel routines and 16 % for a full appli­
cation). The results also show that the native C compilers for the two
targets frequently produce a large overhead as compared to hand-written
code, which confirms the findings of the DSPStone project [77). Hence,
retargetable estimation might be a reasonable and fast alternative to re­
targetable compilation during architecture exploration. However, more
experimental results would be required to confirm the estimation ac­
curacy and its retargetability, and an optimizing compiler will still be
required once the target architecture has been fixed.

5.9. Miscellaneous
For sake of completeness, we briefly mention the following list of tools

and WWW resources. Even though there is no direct relation to em­
bedded systems, these provide point solutions that may (or may not) be
valuable resources in new retargetable compiler projects.

TenDRA: A portable C/C++ compiler that generates intermediate
code in the TDF j ANDF format [219).

Eli: A compiler generation package for integration of compiler compo­
nents with custom 1/0 formats [220).

VCODE: A portable dynamic code generator with extremely high com­
pilation efficiency by avoiding the step of intermediate code genera­
tion [221).

New Jersey Machine Code Toolkit: Tools for encoding and decod­
ing binary machine code, supporting the implementation of tools like
assemblers, disassemblers, linkers, and debuggers [222).

Cocktail: Tools for scanner and parser generation, attribute grammar
processing, as well as tree pattern matching [223).

Gentle: A compiler construction toolbox, including parsing, source-to­
source translation, and code selector generation [224).

SGI Pro64: C/C++ compiler development tools for Linux/IA-64 plat­
forms [225), based on the GCC frontend.

PAG: Generator for static program analyzers, to be used in program
transformation and optimization tools [226).

Retargetable compiler case studies 141

MLRISC: A retargetable optimizing backend for RISC processors, writ­
ten in ML [227]

Comprehensive overviews of further compiler construction tools can
be found at [228, 229, 230].

6. Commercial retargetable compilers
6.1. CoSy

CoSy is an extensible and retargetable compiler system with fran­
tends for C /C++ (optionally with special language extensions for DSPs),
Fortran, and Java. It originated from the European research project
COMPARE [92] and has later been commercialized by Associated Com­
piler Experts {ACE) [231]. The software is available for Unix, Linux,
and MS Windows platforms. CoSy licenses typically include a royalty
payment scheme for generated compilers. Research licenses are available
for universities at a reduced fee.

A basic concept in CoSy is the use of a common high-level interme­
diate representation {IR) that is generated by the different frontends.
Like in SUIF, LANCE, or Trimaran this allows to enable or disable
certain IR optimization engines at any time, which also can dynami­
cally interact with each other (fig. 5.25). CoSy already comes with a
library of standard IR optimizations (including constant folding, dead
code elimination, strength reduction, and loop unrolling), but it is ex­
plicitly designed to be extensible by custom IR optimization passes.

While theIR optimizations are essentially machine-independent, there
is also a backend generator based on which machine-specific code gen­
erators can be designed. The backend generator is an improved version
of the BEG tool (section 5.5.3.3). First, the high-level IR is passed
to a lowering engine for replacement of high-level language constructs
by low-level statements. Then a tree parsing based code selector maps
the lowered IR into sequential assembly code. Compared to tools like
IBURG and OLIVE, CoSy uses a relatively comfortable specification
mechanism for the underlying tree grammar, which permits the specifi­
cation of special matching conditions as well as operand and destination
registers.

Next, there is a sequential pre-pass scheduling phase, during which
instructions are reordered, so as to optimize potential parallelism and
minimize virtual register lifetimes. The mapping to physical registers
afterwards takes place by a graph-coloring based (either local or global,
dependent on runtime requirements) register allocator. In case the tar­
get processor shows VLIW-like instruction-level parallelism, a post-pass
scheduler, or code compactor, can be called to pack potentially parallel

142 RETARGETABLE COMPILER TECHNOLOGY

Figure 5.25. CoSy overview, @ACE- Associated Compiler Experts

instructions into very long instruction words, based on a latency speci­
fication of instructions and functional units.

The main advantages of CoSy are its modular extensibility and target­
independence, as well as the professional support as a commercial prod­
uct. The system is used by a number of companies (e.g. Ericsson, Philips,
and STMicroelectronics). CoSy users generally find that it is a good
platform for quickly designing operational and robust compilers for new
targets. On the other hand, the code generation process in CoSy fol­
lows a rather classical approach, with few optimizations for irregular
architectures and no phase coupling. For a heavily optimizing compiler,
new target-specific techniques will generally be required, but integrating
such techniques requires significantly more effort than adding new IR
optimizations.

6.2. CHESS
Just like CoSy, the CHESS compiler [105, 232, 233] originated from

European research projects, whose results have been productized by the
startup company Target Compiler Technologies [234]. CHESS is a re­
targetable C compiler primarily for DSPs. It is supported by further
retargetable tools like assembler, linker, and instruction set simulator,
as well as VHDL generation from processor models. The tool suite is
illustrated in fig. 5.26. Currently supported platforms are Unix and
Linux. Licensing terms are. subject to negotiation.

Retargetable compiler case studies 143

CHESS borrows a number of concepts from the CBC and MSSQ com­
pilers (sections 5.2.1 and 5.4.1). Like the CBC compiler, CHESS uses
the nML language for target processor modeling. In contrast to the orig­
inal approach in CBC, however, the action attributes of nML operations
are specified by calls to primitive C library routines instead of using the
built-in nML language elements for describing behavior. The advantage
is that limitations of nML can be bypassed, and that a clear simulation
semantics is provided by construction. The price for this is that the
compiler cannot extract the instruction semantics solely from the nML
model anymore, but needs additional mapping information between C
library routines and machine instructions.

Like most other compilers, CHESS first performs a set of standard
machine-independent optimizations, including common subexpression
elimination and induction variable analysis. Fig. 5.27 shows the code
generator GUI in CHESS. The code generator uses a control/data flow
graph (CDFG) model as an intermediate representation. Also for the
target processor a graph model is constructed from the nML specifica­
tion. This instruction-set graph (235] is similar to the connection oper­
ation graph used in the MSSQ compiler, in the sense that it also rep­
resents hardware resources, interconnections, as well as functional unit
operations together with the corresponding partial opcodes. Also the
code selection pass resembles the approach taken in MSSQ, since partial
opcodes are combined on-the-fly while checking for resource conflicts.
The more recent tree parsing approach is not used, but there are provi-

RETARGET ABLE
COMPILER

CHESS

BRIDGE

Data path

•. Instruction !rMT!Aw!oPo!

set ;:;; ~: ~~

Processor model nML

RETARGET ABLE
INSTRUCTION SE'r

SIMULATOR
CHECKERS

Figure 5.26. Structure of Target Compiler Technologies' retargetable tool suite,
@Target Compiler Technologies

144

• ~.lif'~r·,. "".if1J'l

......m-, 'M"'VJ•-·t
~l_l ,., u ...

t•·---.t..•l
l_•• l_lfllll_•.,.l fl_~·-tl'f

~--,.,..

!.,., _, ... _
16..,...,._.,__,....1 ... IIUI'I!', ...

RETARGETABLE COMPILER TECHNOLOGY

1,,._ -·
0-.~-~~ - -· -~-.-,. k=::=::=::;.:;;;:;:;.:;;;:;:~~~~~~~

I' 1'11111XDl'I~'UIIIit'll'lll>~t:Jio ,

r !"H'Itll111l'lmH:..xr·r·lt.,._,<£~_'!"01U/d-l~·-'
~ l '11'DIQ,.. w:(.W''t ~ oJI'

·~c.IIIII<DID '....,._..,
• .-i .. ~ , ___ : · ,_,..._

'"

~1\'Zifll' ..
, .. ._,r»~l ._.,,·w-w

•..~~:~#.DI111t ~"""""""~""- a,rc w !il
.. _,..., ... \. ... ~~·-~'f:&ll lflr1ill
.. ..., ~Go••\'1¥~~-..r,·~ ·
..-.r.'IIJI•r1Art"rW!W,91S·,....._P_(JnU:JR;:ff,lr!O &.

r.:•n'l~.tr't";r~"ll'fo'K'·-- '•.loot&<
t • •r1,..,_,.,.J:tQl,

,. •·nmll11lllllttmtor'l o:P•--1,
r ,.,,,, l.t~l•l));t•r•t,.~"1C"!Cf'••l:

t t''MUi;JIIIDO'C~ 'l o\1,
r I 'lUI II ta~r·1 Je~:~a'"JIY .. -.1.
I' I '1°'01/IDD-II'CD'l r•1 ,I
r 1 'l~l..:IU'I'IIIIIl1X11,111r 'l t(.. ..__ £>1~,....;­

f 'I '11fLN11.11!1._.1.r'l tiM 'IH;ll()Hl~t;J- · •....1

' •I 11Ue!Oil001 n'ltr'l ~-«t•~·
r 1:'1:11)XIImi!'IIIJiiii-IIP"'It .. • 'l'•.....C."'t(f'JO"••l
I t'11111U.:J11'1011"'11r1W'I N..g,-(I;J~II!l,J

f 1.1 ' llK'I'tCI'It~'l)ll)j,rW'I lfC..:OC;
r ~ 'lltUmumttnm'lr"l 0"•·-l
f II 'OIIIIOII'IWI(ai!UQir •l -1.1~1.£1"•·1-

Figure 5.27. CHESS compiler GUI, @Target Compiler Technologies

-'•.

sions for crossing basic block boundaries during code selection in order
to better accommodate common subexpressions in the CDFG.

The register allocator in CHESS (similar to CBC) is implemented as
a data router. This is especially suitable for irregular DSP architectures,
since data routing explores different alternative routing paths within
the data path, and therefore tends to minimize spill code for special
purpose registers. Register allocation is followed by an offset assignment
pass, during which local variables are assigned to specific stack frame
locations in case the target machine contains an address generation unit
as described in section 3.3.4.

The final code generation phase is instruction scheduling, during which
generated instructions are compacted, so as to exploit instruction-level
parallelism. For this purpose, CHESS relies on a list scheduler, enhanced
by global optimizations including software pipelining, delay slot filling,
and code hoisting.

The resulting assembly code can be fed into an assembler that is also
generated from the nML model. Combined with the use of the retar­
getable instruction set simulator, the CHESS approach allows to perform
architecture exploration for DSPs by iterative compilation and processor
fine-tuning. Optionally, a synthesizable VHDL processor model can be
generated for the final nML model, which establishes a path to hardware

Retargetable compiler case studies 145

synthesis. However, the generated VHDL model does not necessarily
represent the most efficient processor hardware implementation.

CHESS is another example of the fact that retargetable compilers are
practical tools when focusing on a specific processor class. It also rep­
resents a quick flow of research results into an industrial product. Until
recently, the main limitation of CHESS has been the lack of support for
pipelined architectures, definitely a must for modern processor architec­
tures. The new version CHESS V2, however, has been announced to
overcome this limitation by enabling more accurate modeling of pipeline
stages in nML. CHESS has been applied to generate code for an Analog
Devices ADSP-210x like architecture. Unfortunately, further informa­
tion about real-life targets and the code quality of CHESS is not publicly
available.

6.3. Archelon
The Archelon tool suite [236] comprises a retargetable C compiler,

assembler, and linker. The C compiler emits sequential code, which
can be passed into further tools within the suite, including a peephole
optimizer and a code compactor. The software is available for Unix,
Linux, and most MS Windows versions. Pricing is quite low as compared
to other commercial retargetable compilers (about US$ 5,000).

The C compiler gets its machine-specific information from a compiler
information file (CIF). The code compactor, which is separate from the
actual compiler, is driven by another description file. The CIF contains
all information required for assembly code generation. In contrast to
several other compilers (e.g. RECORD) that generate and link compiler
components from the target model, the CIF is read every time the com­
piler is called. This reduces retargeting time at the expense of higher
compiler runtimes.

First of all, the CIF file captures essential information like the bit
width, signedness, and alignment of the C data types, as well as the
machine word length and required assembly output syntax, including
directives. Next, there is a description of available register files, their
size, and a list of C types they may store. Special registers, like the stack
pointer, are explicitly tagged. Further classifications concern scratch and
argument registers, as well as registers available for general allocation.
Another section in the CIF specifies the stack access and parameter
passing conventions. Fig. 5.28 shows an excerpt from a sample CIF.

The compiler performs some basic high-level optimizations like con­
stant folding and common subexpression elimination. Afterwards, as­
sembly code generation takes place in a tree-oriented fashion (from the
documentation in [236] it is not fully clear, whether standard tree parsing

146 RETARGETABLE COMPILER TECHNOLOGY

R E G I S T E R S E T S
mau := 8; I* byte addressable memory *I
regset := R[32] width=32

optype=int,ptr,ptr2,float,double,longdbl,codeptr
regtype=char,short,int,ptr,ptr2,codeptr,long,float,double,longdbl;

stkptr := R[31]; #define the stack pointer register
scratch := R[24-27]; #reserve some scratch (global temporary) registers
argreg := R[24-25]; #allow arguments to be passed in some registers
color := R[0-29]; #define which registers will be controlled by

the register allocator.

0 P E R A N D S
operand code_addr codeptr; # pointer to code memory
operand data_addr ptr; # pointer to data memory
operand const16 sconst -32768 32767; # 16 bit signed constant

F 0 R M A T S
format mem_load_ri src ri_addr
format mem_store_dir src gp_reg
format binary_rrr lsrc gp_reg

0 P C 0 D E S
opcode ldri
opcode ld
opcode st
opcode add

mem_load_ri;
mem_load_dir;
mem_store_dir;
binary_rrr;

C 0 D E T A B L E S

dest gp_reg;
dest dir_addr;
rsrc gp_reg dest

code binary(opcode) # code table for add and subtract

gp_reg;

? matches($right, const16) #predicate test: true if rhs is 16 bit constant
{

}
{

}

opcodel"i" $left,$right,$dest;

opcode $left,$right,$dest;

oper ADD sshort binary("add");
oper SUB sshort binary("sub");

Figure 5.28. Partial Compiler Information File (CIF) for the Archelon compiler,
@Archelon Inc.

is used, but there are at least strong similarities). The available machine
instructions are specified in a special formalism that is subdivided into
four sections: operands, formats, opcodes, and code tables. Each entry
in the code tables specifies the assembly code to be emitted for a certain

Retargetable compiler case studies 147

intermediate representation operator. Similar to GCC and LCC, there
is a predefined set of operators that any machine description must cover
so as to generate code for all possible C source programs.

The Archelon compiler also supports some non-standard operators
that e.g. allow handling of zero-overhead loops and interrupt functions.
Additionally, the user may define additional operators that are available
at the C level via compiler intrinsics. Another mechanism of compiler
fine-tuning is offered by a tree rewrite formalism that allows to alter
data flow trees before code selection takes place.

After code selection a graph coloring register allocator is applied to
map virtual to physical registers. The final output of the code genera­
tor is sequential assembly code. This code is typically passed to further
optimization tools, including a peephole optimizer that performs some
simplifications based on user-defined optimization rules. Additionally,
there is a code compactor that performs instruction scheduling and par­
allelization of the sequential code, so as to avoid pipeline stalls and to
exploit potential parallelism.

Among others, the Archelon compiler has been applied to several DSP
cores, e.g. from Clarkspur and 3DSP. This indicates that the compiler
in principle can handle irregular architectures. However, due to a lack
of DSP-specific optimizations, some code quality overhead as compared
to hand-written code can certainly be expected.

6.4. ucc
Astrosoft [237] offers UCC, a portable C and C++ cross compiler.

UCC follows a rather traditional compilation flow: source code anal­
ysis, machine-independent optimizations (including constant propaga­
tion, common subexpression elimination, loop invariant code motion,
induction-variable strength reduction, and dead code elimination), and
machine code generation. The target processor is described by means
of code generation tables [238], which specify instruction patterns for
certain IR constructs, as well as permissible operand and results reg­
isters. Dedicated optimizations for embedded processors are obviously
not implemented. UCC also has support for inline assembly and Clan­
guage extensions. The compiler has been retargeted to the x86 processor
family. Unfortunately, further results on code quality and the target pro­
cessor range have not been published. Whether or not UCC is suitable
for embedded systems has yet to be demonstrated.

Chapter 6

SUMMARY AND OUTLOOK

Motivation. Many of today's embedded systems are designed with
programmable processor cores as their building blocks. As a consequence,
software development for embedded processors nowadays plays a signif­
icant role in the design flow. Traditionally, most embedded software
has been written in assembly languages. However, due to the numerous
drawbacks of assembly-level programming and the increasing time-to­
market pressure, now there is a shift towards using high-level language
compilers.

Embedded systems generally require a different compiler technology
than general purpose systems. There is a huge variety of domain or
even application specific embedded processors, and we certainly cannot
afford to write a new compiler for each new target machine. Therefore,
retargetable compilers are required, that are capable of generating code
at least for a certain class of different processors. Moreover, there is
frequently a need for very high code efficiency in terms of performance,
size, and/ or energy consumption.

While work on retargetable compilers began long before embedded
system design became a major issue, they now receive a renewed in­
terest due to the need to perform design space exploration. The main
purpose of this book is threefold: (1) to provide the essential technical
background information on retargetable compilers, (2) to outline the new
paradigm of using retargetable compilers for design space exploration,
and (3) to provide an up-to-date overview and classification of existing
retargetable compiler systems and tools. We hope that this reduces the
"entry barrier" to the area of retargetable compilation and stimulates
further research projects.

149

150 RETARGETABLE COMPILER TECHNOLOGY

State ofthe art. Retargetability is normally considered incompatible
with the demand for high code quality. This is certainly true for a retar­
getable compiler without any focus on a specific processor class, since
each such class requires its own special code optimization techniques.
Therefore, a key to successful introduction of retargetable compilers in
the system design tool chain is specialization towards a single processor
class.

For instance, in the domain of standard RISC and CISC processors,
freely available compilers like GCC have been quite successfully used,
while systems like SPAM, CHESS, and RECORD incorporate dedicated
optimization techniques for DSPs. Likewise, there are retargetable com­
pilers tuned towards VLIW machines, e.g. Trimaran and ROCKET.
Each of these systems has its limitations w.r.t. the concrete architec­
tural scope that can be handled, but they achieve reasonably good code
quality by making a priori assumptions about the target machine.

In case of a new target processor that does not well fit into a stan­
dard processor class, systems like SUIF, LANCE, or CoSy can be a good
starting point. They incorporate mostly machine independent code op­
timizations, but they provide a relatively quick path towards generating
an operational compiler for an "arbitrary" new target machine. Tools
like IBURG and OLIVE may help to further reduce the backend design
effort.

Several compilers for ASIPs, e.g. MSSQ, PEAS, and EXPRESS, are
explicitly intended for design space exploration. They provide com­
fortable processor modeling capabilities and also support retargetable
simulation, which guarantees short turnaround times.

As described in chapter 5, a huge variety of processor modeling for­
malisms for retargetable compilation are currently in use. These include
custom description languages (e.g. CBC and AVIV), sometimes mixed
with C source code (e.g. GCC and LCC), as well as parameterized mod­
els (e.g. Trimaran), HDL models (e.g. MSSQ and RECORD), or even
finite state machine or integer linear programming models. They mainly
differ in their modeling capabilities and abstraction level.

Besides the huge amount of optimization techniques known from tra­
ditional compiler construction, a lot of research effort has been invested
recently in code optimization for embedded processors. In particular, this
holds for DSPs (e.g. code generation for irregular architectures and ad­
dress code optimization) and highly parallel machines (e.g. scheduling
for clustered VLIW processors). Frequently, such techniques, many of
which are beyond the scope of this book, work for a large range of ar­
chitectures. Hence, they can be integrated into retargetable compilers,
in order to further reduce the overhead of compiled code.

Summary and Outlook 151

Future directions. So far, "compiler-aided" design space exploration
is only partially systematic, but frequently follows more a trial-and-error
methodology: One can make changes to the target processor model, and
compile, synthesize, and simulate in order to somehow converge to a
good application-specific architecture, based on the designer's intuition.
In contrast, a "clever" retargetable compiler would provide more detailed
feedback to the processor designer than the plain machine code. For
instance, the compiler could report bottlenecks during code selection,
scheduling, or register allocation and give suggestions for architectural or
even source code changes. In combination with a simulator and profiler,
this would shorten the exploration phase and help to reach better design
space points.

Also the code quality of retargetable compilers needs to be continu­
ously improved, in order to keep pace with the advances in processor
architecture. Currently, a trend towards "compiler-friendly" VLIW ar­
chitectures can be observed, but experience shows that, due to efficiency
reasons, realistic machines are rarely clean enough, so that using only
off-the-shelf code optimization techniques is sufficient. Therefore, the
library of domain specific code optimization techniques should be con­
tinuously extended, driven by the newest processor generations.

In this context, also novel approaches (such as assembly-level op­
timization or exact optimization based on formal methods instead of
heuristics) should be further investigated. With few exceptions, so far
there are no practical compilers that can switch to time-intensive heavy
optimization of the "hot spots" in an application program, e.g. by em­
ploying a phase-coupling approach. This feature would largely improve
applicability of compilers, since it is still common practice to hand­
optimize compiled code, e.g. in time-critical loops.

With respect to processor modeling formalisms, each approach has
its pros and cons, and we may expect even more modeling formalisms
in the future. For narrow processor classes, the parameterized model
approach is certainly a good solution. However, for a larger range of
target machines, those modeling languages will find their way into prac­
tice that represent a good compromise between ease of use, modeling
capabilities, and a seamless integration with other modeling languages
used in embedded system design, such as SystemC or VHDL.

Appendix A
Tabular overview of compiler tools

system year of preferred software influence
publication processor freely or from

or 1st version class commercially
available

WWW home page
GCC 1987 RISC/CISC yes

http:j jgcc.gnu.org
MSSQ 1987 ASIP no MSSV
BEG 1989 RISC/CISC yes

http:/ jwww.first.gmd.de/beg
ROCKET 1990 VLIW yes LCC

http:/ jwww. cs. mtu. edu/-sweany/Rocket.html
Archelon 1990 yes

http:j jwww.archelon.com
LCC 1991 RISC/CISC yes

http:/ jwww.cs.princeton. edujsoftwarejlcc
Marion 1991 RISC no LCC
IMPACT 1991 VLIW yes EDG

http:j /www. crhc. uiuc. edu/Impact
PEAS 1991 ASIP no GCC, CoSy

http:/ /vlsilab. ics. es. osaka-u. ac.jp
IBURG 1992 yes

http:/ jwww. cs. princeton. edujsoftwarejiburg
CBC 1992 DSP DO

ucc 1992 yes
http :j / astrosoft-development. com/ english/ services /main. html

PAGODE 1993 RISC DO

153

154

system

SUIF

Flex Ware
CoSy

CHESS

RED ACO

OLIVE

Valen-C

SPAM

RECORD
LANCE

Trimaran

Trimedia

AVIV
Zephyr

EXPRESS

RETARGETABLE COMPILER TECHNOLOGY

year of
publication

or 1st version

preferred
processor

class

WWW home page

software
freely or
commercially
available

1994 yes
http:/ /sui[. stanford. edu

1994 DSP no
1995 yes

http:/ jwww.ace.nl
1995 DSP yes

http:/ jwww.retarget.com
1996 DSP no

http:/ /swan. nt. tuwien. a c. at/ codegen
1997 yes

http://www. ee. princeton. edu/ spam
1997 ASIP yes

http:j jkasuga. csce.kyushu-u. ac.jpj~codesignjValen-C
1997 DSP yes

http:/ jwww. ee. princeton. edujspam
1997 DSP no
1997 yes

http:/ /LS12-www.cs.uni-dortmund.de/~leupers
1998 VLIW yes

http:/ jwww. trimaran. org
1998 VLIW yes

http:/ jwww.semiconductors.philips. comjtrimedia
1998 VLIW no
1998 RISC/CISC yes

http:/ jwww. cs. virginia. edujzephyr

influence
from

LCC, EDG

CoSy
BEG, EDG

MSSQ, CBC

IBURG

SUIF

SUIF, OLIVE

MSSQ, SPAM
OLIVE

IMPACT

EDG

SUIF, SPAM
EDG, LCC

1999 ASIP /VLIW no GCC, MSSQ
http:/ jwww. cecs. uci. eduj~acesjprojMain.html#expression

BUILDABONG 2000 ASIP yes RECORD
http:/ jwww-date. uni-paderborn. dejRESEARCH/B UILDABONG

References

[1] A.Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, M. Imai: Effectiveness
of the ASIP Design System PEAS-III in Design of Pipelined processors, Asian
and South Pacific Design Automation Conference (ASP-DAC), pages 649-
654, 2001

(2] T. Baba, H. Hagiwara: The MPG system: A machine-independent micropro­
gram generator, IEEE Trans. on Computers, Vol. 30, pages 373-395, 1981

[3] R.G. Bushell: Higher level language for microprogramming, Euromicro jour­
nal, 4:67-75, 1978

(4] R.G.G. Cattell: Formalization and automatic derivation of code generators,
Technical report, PhD thesis, Carnegie-Mellon University, Pittsburgh, 1978

(5] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A. Vande­
cappelle: Custom memory management methodology, Kluwer Academic Pub­
lishers, 1998

(6] M.E. Conway: Proposal for an UN COL, Communications of the ACM, Vol.
1, 1958

(7] M. Cornero, F. Thoen, G. Goossens: Software synthesis for real-time infor­
mation processing systems, in (103], 1995

(8] J.-L. Cruz, A. Gonzalez, M. Valero, N. P. Topham: Multiple-banked register
file architectures, The 27th Annual International Symposium on Computer
architecture, pages 316-325, 2000

(9] W. Damm, G. Doehmen, K. Merkel, M. Sichelschmid: AADL/S* approach
to firmware design verification, IEEE Software, 3:27-37, 1986

(10] S. Dasgupta: Towards a microprogramming language schema, 11th Annual
Microprogramming Workshop, pages 144-153, 1978

(11] IMEC Desics group: Adopt, http:/ jwww.imec.be/desics

(12] IMEC Desics group: Atomium, http:/ jwww.imec.be/atomium

155

156 RETARGETABLE COMPILER TECHNOLOGY

[13) Personal communication, ELMOS, Dortmund, Germany

[14) C. Ferdinand, H. Seidl, R. Wilhelm: TI-ee automata for code selection, Acta
Informatica, pages 741-760, 1994

[15) M. Ganapathi, C.N. Fisher, J.L. Hennessy: Retargetable compiler code gen­
eration, ACM Computing Surveys, Vol. 14, pages 573-593, 1982

[16) N. Ghazal, R. Newton, J. Rabaey: Retargetable estimation scheme for DSP
architecture selection, Proceedings of the Asia and South Pacific Design Au­
tomation Conference, pages 485-489, 2000

[17) R.S. Glanville: A machine independent algorithm for code generation and
its use in retargetable compilers, Technical report, PhD thesis, University of
California at Berkeley, 1978

[18) A. De Gloria, P. Faraboschi: An evaluation system for application specific ar­
chitectures, Proc. 23rd Ann. Workshop on Microprogramming and Microar­
chitecture, pages 80-89, 1990

[19) P. Grun, N. Dutt, A. Nicolau: Memory aware compilation through accurate
timing extraction, Proceedings of the 37th Design Automation Conference,
2000

[20) T.V.K. Gupta, P. Sharma, M. Balakrishnan, M. Malik: Processor evalua­
tion in an embedded systems design environment, Proceedings of Thirteenth
International Conference on VLSI Design, pages 98-103, 2000

[21) I.-J. Huang: A case study: Synthesis and exploration of instruction set design
for application-specific symbolic computing, Journal of information Science
and Engineering, 14:821-842, 1998

[22) Personal communication, Institut fiir Mikroelektronische Systeme (IMS),
Duisburg, Germany

[23) M.F. Jacome, G. de Veciana, V. Lapinksi: Exploring performance tradeoffs for
clustered VLIW ASIPs, International Conference on Computer-Aided Design
(ICCAD), 2000

[24) JRS: Integrated design automation system (idas), Sigmicro Newsletter,
19(1):11-17, 1989

[25) B. Kienhuis: Design space exploration of stream-based dataflow architectures,
http:/ fwww.gigascale.org/systems/forum/5/kienhuis_dse.pdf, 1999

[26) J. Kin, C. Lee, W.H. Mangione-Smith, M. Potkonjak: Power efficient media
processors: design space exploration, Proceedings of the 36th Design Automa­
tion Conference, pages 321-326, 1999

[27) V.S. Lapinskii, M. F. Jacome, G.A. de Veciana: Application-specific clustered
VLIW datapaths: Early exploration on a parameterized design space, Techni­
cal Report UT-CERC-TR-MFJ/GDV-01-1, Computer Engineering Research
Center, University of Texas at Austin, 2001

REFERENCES 157

[28] P. Marwedel: A retargetable microcode generation system for a high-level mi­
croprogramming language, ACM Sigmicro Newsletter, Vol. 12, pages 115-123,
1981

[29] P. Marwedel: A retargetable compiler for a high-level microprogramming lan­
guage, ACM Sigmicro Newsletter, Vol. 15, pages 267-274, 1984

[30] P. Marwedel: A software-system for the synthesis of computer structures and
of microcode (in German), Technical report, Habilitation thesis, Kiel, 1985;
reprint: report no. 356, Computer Science Dept., Univ. of Dortmund

(31) P. Marwedel: MSSV: Tree-based mapping of algorithms to predefined struc­
tures, Technical Report 431, Computer Science Dpt., University of Dort­
mund, 1993

[32) P. Marwedel, L. Nowak: Verification of hardware descriptions by retargetable
code generation, 26th Design Automation Conference, pages 441-447, 1989

(33) P. Marwedel, W. Schenk: Cooperation of synthesis, retargetable code gener­
ation and testgeneration in the MSS, EDAC-EUROASIC'93, pages 63-69,
1993

[34) J. Mermet, P. Marwedel, F. J. Ramming, C. Newton, D. Borrione, C. Lefaou:
Three decades of hardware description languages in Europe, Journal of Elec­
trical Engineering and Information Science, 3, 1998

[35) P. Mishra, N. Dutt, A. Nicolau: Functional abstraction driven design space
exploration of heterogenous programmable architectures, Int. Symp. on Sys­
tem Synthesis (ISSS), 2001.

[36) P. Mishra, P. Grun, N. Dutt, A. Nicolau: Memory subsystem description in
EXPRESSION, Technical Report #00-31, Dept. of Information and Com­
puter Science, Univ. California, Irvine, 2000

[37) R.A. Mueller, J. Varghese, V.H. Allan: Global methods in the flow graph ap­
proach to retargetable microcode generation, 17th Annual Microprogramming
Workshop, pages 275-284, 1984

(38] R. Niemann, P. Marwedel: Hardware/software partitioning using integer pro­
gramming, European Design & Test Conference, 1996

[39] A.C. Parker: Automated synthesis of digital systems, IEEE Design and Test
of Computers, pages 763-776, 1984

(40) S. Pees, A. Hoffmann, H. Meyr: Retargetable compiled simulation of embedded
processors using a machine description language, IEEE Trans. on Design
Automation for Embedded Systems, 2001

(41) E. Pelegri-Lopart, S. Graham: Optimal code generation for expression trees:
An application of BURS theory, Technical report, Computer Science Division,
EECS Department, University of California, Berkeley, 1988

(42) M. Piischel, B. Singer, M. Veloso, J.M.F. Moura: Fast automatic generation
of DSP algorithms, Proc. ICCS 2001, Lecture Notes of Computer Science
2073, Springer, pages 97-106, 1999

158 RETARGETABLE COMPILER TECHNOLOGY

[43) G. Rozenberg, F. Vaandrager (eds.): Lectures on embedded systems, Springer
Lecture Notes on Computer Science, LNCS 1494, 1998

[44) M. Sint: A survey of high level microprogramming languages, 13th Annual
Microprogramming Workshop, pages 141-153, 1980

(45) S. Steinke, C. Zobiegala, L. Wehmeyer, P. Marwedel: Moving program objects
to scratch-pad memory for energy reduction, Technical report, University of
Dortmund, Dept. of CS 12, 2001

[46) S. Takagi: Rule based synthesis, verification and compensation of data paths,
Proc. IEEE Conf.Comp.Design (ICCD'84), pages 133-138, 1984

[47) S.R. Vegdahl: Local code generation and compaction in optimizing microcode
compilers, PhD thesis and report CMUCS-82-153, Carnegie-Mellon Univer­
sity, Pittsburgh, 1982

(48] L. Wehmeyer, M.K. Jain, S. Steinke, P. Marwedel, M. Balakrishnan: Analysis
of the influence of register file size on the energy consumption, code size and
execution time, IEEE Trans. on CAD, 2001

(49) N. Wirth: Compilerbau, Teubner, 2nd edition, 1981

(50] H. Yasuura, H. Tomiyama, A. Anoue, N. Eko Fajar: Embedded system design
using soft-core processor and Valen-C, Journal of information Science and
Engineering, 14:587-603, 1998

(51) J. L. Young: The software foundry: almost too good to be true, Electronics,
pages 47-51, 1988

(52] G. Zimmermann: The MIMOLA design system: A computer aided digital
processor design method, Proceedings of the 16th Design Automation Con­
ference, pages 53-58, 1979.

(53) A.W. Appel: Modern Compiler Implementation inC, Cambridge University
Press, 1998

(54) S.S. Muchnik: Advanced Compiler Design & Implementation, Morgan Kauf­
mann Publishers, 1997

(55) T. Mason, D. Brown: lex & yacc, O'Reilly & Associates, 1991

(56] K.M. Bischoff: Design, Implementation, Use, and Evaluation of Ox: An
Attribute-Grammar Compiling System based on Yacc, Lex, and C, Techni­
cal Report 92-31, Dept. of Computer Science, Iowa State University, 1992

(57] G. Sander: VCG- Visualization of Compiler Graphs, User Documentation V
1.30, Technical Report, Dept. of Computer Science, University of Saarland,
Germany, 1995, software available via ftp:/ /ftp.cs.uni-sb.de/pub/graphicsfvcg

(58] A.V. Aho, R. Sethi, J.D. Ullman: Compilers - Principles, Techniques, and
Tools, Addison-Wesley, 1986

REFERENCES 159

[59] A.V. Aho, M. Ganapathi, S.W.K Tjiang: Code Generation Using Tree Match­
ing and Dynamic Programming, ACM Trans. on Programming Languages
and Systems 11, no. 4, 1989

[60] A. Balachandran, D.M. Dhamdere, S. Biswas: Efficient Retargetable Code
Generation Using Bottom- Up Tree Pattern Matching, Com put. Lang. vol.
15, no. 3, 1990

[61] R. Wilhelm, D. Maurer: Compiler Design, Addison-Wesley, 1995

[62] B.Wess: Simulated Evolutionary Code Generation for Heterogeneous
Memory-Register DSP Architectures, European Signal Processing Conference
(EUSIPCO), 2000

[63] M.A. Ertl: Optimal Code Selection in DAGs, ACM Symp. on Principles of
Programming Languages (POPL), 1999

[64] M. Lam: Software Pipelining: An Effective Scheduling Technique for VLIW
machines, ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 1988

[65] J.A. Fisher: Trace Scheduling: A Technique for Global Microcode Compaction,
IEEE Trans. on Computers, vol. 30, no. 7, 1981

[66] A. Aiken, A. Nicolau: A Development Environment for Horizontal Microcode,
IEEE Trans. on Software Engineering, no. 14, 1988

[67] F.J. Kurdahi, A.C. Parker: REAL: A Program for Register Allocation, 24th
Design Automation Conference (DAC), 1987

[68] P. Briggs: Register Allocation via Graph Coloring, Doctoral thesis, Dept. of
Computer Science, Rice University, Houston/Texas, 1992

[69] F. Chow, J. Hennessy: Register Allocation by Priority-Based Coloring, SIC­
PLAN Notices, vol. 19, no. 6, 1984

[70] D.H. Bartley: Optimizing Stack Frame Accesses for Processors with Re­
stricted Addressing Modes, Software - Practice and Experience, vol. 22(2),
1992

[71] C. Gebotys: DSP Address Optimization Using a Minimum Cost Circulation
Technique, Int. Conference on Computer-Aided Design (ICCAD), 1997

[72] S. Udayanarayanan, C. Chakrabarti: Address Code Generation for Digital
Signal Processors, 38th Design Automation Conference (DAC), 2001

[73] J.W. Davidson, C.W. Fraser: The Design and Application of a Retargetable
Peephole Optimizer, ACM Trans. on Programming Languages and Systems,
vol. 2, no. 2, 1980

[74] C.W. Fraser, D.R. Hanson, T.A. Proebsting: Engineering a Simple, Efficient
Code Generator Generator, ACM Letters on Programming Languages and
Systems, vol. 1, no. 3, 1992

[75] Free Software Foundation/EGGS: http:/ /gcc.gnu.org

160 RETARGETABLE COMPILER TECHNOLOGY

[76] Red Hat Inc.: http:/ jwww.redhat.com

[77] V. Zivojnovic, J.M. Velarde, C. Schlager, H. Meyr: DSPStone - A DSP­

oriented Benchmarking Methodology, Int. Conf. on Signal Processing Appli­
cations and Technology (ICSPAT), 1994

[78] H. Gunnarson, T. Lundqvist: Porting the GNU C Compiler to the

Thor Microprocessor, Master Thesis, Document No. TOR/TNT/0028/SE,
http:/ /www.ce.ehalmers.se/ "'thomasl/publications/thesis95.html, Saab Erics­
son Space AB, 1995

[79] ARC Cores: http:/ /www.arccores.com

(80] Tensilica Inc.: http:/ jwww.tensilica.com

[81] C.Fraser, D. Hanson: LCC home page,
http:/ /www.cs.princeton.edu/software/lcc

[82] J. Navia: LCC- Win32: a free compiler system for Windows,
http:/ /www.cs.virginia.edu/ "'lcc-win32

[83] C. Fraser, D. Hanson: A Retargetable C Compiler: Design And Implementa­
tion, Benjamin/Cummings, 1995

[84] D. Bradlee, R. Henry, S. Eggers: The Marion system for retargetable instruc­

tion scheduling, ACM SIGPLAN Conference on Programming Language De­
sign and Implementaion (PLDI), 1991

[85] D. Bradlee: Retargetable Instruction Scheduling for Pipeline Processors, PhD
thesis, University of Washington, Technical report 91-08-07, Department of
Computer Science and Engineering, 1991

(86] The Stanford SUIF Compiler Group, http:/ /suif.stanford.edu

[87] Edison Design Group: http:/ jwww.edg.com

[88] Machine SUIF: http:/ /www.eecs.harvard.edu/ "'hube/research/machsuif.html

[89] Zephyr home page: http:/ jwww.cs.virginia.edu/zephyr

[90] P. Canalda, L. Cognard, A. Depland, M. Jourdan, M. Mazaud, D. Parigot,
F. Thomasset: PAGODE: a Realistic Back-End Generator, Technical Report,
INRIA Rocquencourt, France, 1995

(91] P. Canalda, L. Cognard, A. Depland, M. Mazaud, F. Thomasset: IRs and
their Specification in the PAGODE Back-End Generator, Technical Report,
INRIA Rocquencourt, France, 1996

(92] ESPRIT project COMPARE home page:
http:/ /i44www. i nfo.u ni-karlsruhe.de/ "'Vollmer/ com pare.htm I

[93] R. Leupers: Code Optimization Techniques for Embedded Processors, Kluwer
Academic Publishers, 2000

[94] The LANCE V2.0 system: http:/ /LS12-www.cs.uni-dortmund.de/lance

REFERENCES 161

[95] P. Marwedel, S. Steinke, L. Wehmeyer: Compilation techniques for energy-,
code-size-, and run-time-efficient embedded software, Int. Workshop on Ad­
vanced Compiler Techniques for High Performance and Embedded Processors
(IWACT), Bucharest, 2001

[96] X. Nie, L. Gazsi, F. Engel, G. Fettweis: A New Network Processor Architec­
ture for High-Speed Communications, IEEE Workshop on Signal Processing
Systems (SiPS), 1999

[97] J. Wagner, R. Leupers: C Compiler Design for an Industrial Network Pro­
cessor, ACM SIGPLAN Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES), 2001

[98] Informatik Centrum Dortmund (lCD): http:/www.icd.de

[99] Systemonic AG, Dresden: http://www.systemonic.com

[100] A. Fauth, A. Knoll: Translating Signal Flowcharts into Microcode for Custom
Digital Signal Processors, Int. Conf. on Signal Processing (ICSP), 1993

[101] A. Fauth, A. Knoll: Automated Generation of DSP Program Development
Tools Using a Machine Description Formalism, Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), 1993

[102] A. Fauth, G. Hommel, A. Knoll, C. Miiller: Global Code Selection for Directed
Acyclic Graphs, in: P.A. Fritzson (ed.): 5th Int. Conference on Compiler
Construction (CC), 1994

[103] P. Marwedel, G. Goossens (eds.): Code Generation for Embedded Processors,
Kluwer Academic Publishers, 1995

[104] A. Fauth: Beyond Tool-Specific Machine Descriptions, chapter 8 in [103],
1995

[105] A. Fauth, J. Van Praet, M. Freericks: Describing Instruction-Set Processors
in nML, European Design and Test Conference (ED & TC), 1995

[106] C.W. Fraser, R.R. Henry, T.A. Proebsting: BURG- Fast Optimal Instruction
Selection and Tree Parsing, ACM SIGPLAN Notices 27 (4), 1992, pp. 68-76

[107] R. Hartmann: Combined Scheduling and Data Routing for Programmable
ASIC Systems, European Conference on Design Automation (EDAC), 1992

[108] K. Rimey, P.N. Hilfinger: Lazy Data Routing and Greedy Scheduling for
Application-Specific Signal Processors, 21st Annual Workshop on Micropro­
gramming and Microarchitecture (MICR0-21), 1988

[109] S. Monda!: Compiler Back End Generation from nML Machine Description,
Master Thesis, liT Kanpur, Dept. of Computer Science & Engineering, 1999

(110] B. Wess: Code Generation based on Trellis Diagrams, chapter 11 in [103],
1995

162 RETARGETABLE COMPILER TECHNOLOGY

[111] W. Kreuzer, M. Gotschlich, B. Wess: A Retargetargetable Optimizing Code
Generator for Digital Signal Processors, Int. Symp. on Circuits and Systems
(ISCAS), 1996

[112] W. Kreuzer, M. Gotschlich, B. Wess: REDACO: A Retargetable Data Flow
Graph Compiler for Digital Signal Processors, Int. Conf. on Signal Processing
Applications and Technology (ICSPAT), 1996 ·

[113] A. Helm, B. Wess: Decomposition of Signal Flow Graphs for DSP Compilers
Using Trellis Trees in Restricted Environments, Int. Conf. on Signal Process­
ing Applications and Technology (ICSPAT), 1994

[114] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett: Some Experiments
in Local Microcode Compaction for Horizontal Machines, IEEE Trans. on
Computers, vol. 30, no. 7, 1981

[115] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage Assignment to
Decrease Code Size, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1995

[116] R. Leupers, P. Marwedel: Algorithms for Address Assignment in DSP Code
Generation, Int. Conference on Computer-Aided Design (ICCAD), 1996

[117] B. Wess, M. Gotschlich: Optimal DSP Memory Layout Generation as a
Quadratic Assignment Problem, Int. Symp. on Circuits and Systems (IS­
CAS), 1997

[118] C. Liem: Retargetable Compilers for Embedded Core Processors, Kluwer Aca­
demic Publishers, 1997

[119] C. Liem, T. May, P. Paulin: Instruction-Set Matching and Selection for DSP
and ASIP Code Generation, European Design and Test Conference (ED &
TC), 1994

[120] C. Liem, T. May, P. Paulin: Register Assignment through Resource Classifica­
tion for ASIP Microcode Generation, Int. Con£. on Computer-Aided Design
(ICCAD), 1994

[121] C. Liem, P. Paulin, M. Cornero, A. Jerraya: Industrial Experience Using
Rule-driven Retargetable Code Generation for Multimedia Applications, 8th
Int. Symp. on System Synthesis (ISSS), 1995

[122] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retargetable Com­
pilation and Exploration of Instruction-Set Architectures, 33rd Design Au­
tomation Conference (DAC), 1996

[123] P. Paulin: Network Processors: A Perspective on Market Requirements, Pro­
cessors Architectures, and Embedded S/W Tools, Design Automation & Test
in Europe (DATE), 2001

[124] S. Liao: Code Generation and Optimization for Embedded Digital Signal Pro­
cessors, Ph.D. thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1996

REFERENCES 163

[125] A. Sudarsanam, S. Malik: Memory Bank and Register Allocation in Software
Synthesis for ASIPs, Int. Conf. on Computer-Aided Design (ICCAD), 1995

[126] G. Araujo, S. Malik: Optimal Code Generation for Embedded Memory Non­
Homogeneous Register Architectures, 8th Int. Symp. on System Synthesis
(ISSS), 1995

[127] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and Optimiza­
tions for Address Computation in DSP Architectures, 9th Int. Symp. on Sys­
tem Synthesis (ISSS), 1996

[128] G. Araujo, S. Malik, M. Lee: Using Register Transfer Paths in Code Gen­
eration for Heterogeneous Memory-Register Architectures, 33rd Design Au­
tomation Conference (DAC), 1996

[129] G. Araujo: Code Generation Algorithms for Digital Signal Processors, Ph.D.
thesis, Princeton University, Department of Electrical Engineering, 1997

(130] A. Sudarsanam, S. Liao, S. Devadas: Analysis and Evaluation of Address
Arithmetic Capabilities in Custom DSP Architectures, Design Automation
Conference (DAC), 1997

[131] A. Sudarsanam: Code Optimization Libraries for Retargetable Compilation
for Embedded Digital Signal Processors, Ph.D. thesis, Princeton University,
Department of Electrical Engineering, 1998

(132] SPAM compiler: http:/ fwww.ee.princeton.edu/spam

[133] G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, S. Malik: Optimal Live Range
Merge for Address Register Allocation in Embedded Programs, lOth Interna­
tional Conference on Compiler Construction (CC), 2001

[134] D.B. Powell, E.A. Lee, W.C. Newman: Direct Synthesis of Optimized DSP
Assembly Code from Signal Flow Block Diagrams, International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 1992

(135] M. Saghir, P. Chow, C. Lee: Exploiting Dual Data-Memory Banks in Digital
Signal Processors, 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996

(136] R. Leupers, D. Kotte: Variable Partitioning for Dual Memory Bank DSPs,
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2001

[137] R. Leupers: Retargetable Code Generation for Digital Signal Processors,
Kluwer Academic Publishers, 1997

[138] R. Leupers, P. Marwedel: A BDD-based Frontend for Retargetable Compilers,
European Design & Test Conference (ED & TC), 1995

[139] R. Leupers, P. Marwedel: Retargetable Generation of Code Selectors from
HDL Processor Models, European Design & Test Conference (ED & TC),
1997

164 RETARGETABLE COMPILER TECHNOLOGY

[140] R. Leupers, P. Marwedel: Time-Constrained Code Compaction for DSPs, 8th
Int. System Synthesis Symposium (ISSS), 1995

[141] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann,
D. Voggenauer: The MIMOLA Language V4.1, Technical Report, University
of Dortmund, Dept. of Computer Science, September 1994

[142] R. Leupers: HDL-based Modeling of Embedded Processor Behavior for Retar­
getable Compilation, 11th Int. Symp. on System Synthesis (ISSS), 1998

[143] R.E. Bryant: Symbolic Manipulation of Boolean Functions Using a Graphical
Representation, 22nd Design Automation Conference (DAC), 1985

[144] Mentor Graphics Corporation: DSP Architect DFL User's and Reference
Manual, V 8.2_6, 1993

[145] R. Leupers, A. Basu, P. Marwedel: Optimized Array Index Computation in
DSP Programs, Asia South Pacific Design Automation Conference (ASP­
DAC), 1998

[146] R. Leupers, F. David: A Uniform Optimization Technique for Offset Assign­
ment Problems, 11th Int. System Synthesis Symposium (ISSS), 1998

[147] P. Sweany, S. Beaty: Post-Compaction Register Assignment in a Retargetable
Compiler, 22nd Annual Workshop on Microprogramming and Microarchitec­
ture (MICR0-23), 1990

[148] ROCKET compiler: http:/ /www.cs.mtu.edu/~sweany/Rocket.html

[149] R.A. Mueller, M.R. Duda, P.H. Sweany, J.S. Walicki: Horizon: A Retargetable
Compiler for Horizontal Microarchitectures, IEEE Trans. On Software Engi­
neering, 14 (5), 1988

[150] T. Brasier, P. Sweany, S. Carr, S. Beaty: CRAIG: A Practical Framework
for Combining Instruction Scheduling and Register Assignment, Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT), 1994

[151] J. Hiser, S. Carr, P. Sweany: Global Register Partitioning, International Con­
ference on Parallel Architectures and Compilation Techniques, 2000

[152] P. Chang, S. Mahlke, W. Chen, N. Warter, W. Hwu: Impact: An Architectural
Framework for Multiple Instruction Issue Processors, 18th Int. Symp. on
Computer Architecture, 1991

[153] IMPACT home page: http:/ fwww.crhc.uiuc.edu/lmpact

[154] Trimaran home page: http:/ fwww.trimaran.org

[155] SPEC CPU95 Benchmarks: http:/ fopen.specbench.org/osgfcpu95

[156] Philips Trimedia: http:/ /www.semiconductors.philips.com/trimedia

[157] Trimedia Technologies: http:/ fwww.trimedia.com

REFERENCES 165

(158] K. Vissers, E.J. Pol: A Retargetable Compiler and Retargetable Simulator
for Media Processors, Handouts 3rd Int. Workshop on Code Generation for
Embedded Processors (SCOPES), 1998

[159] G. Hadjiyiannis, S. Hanono, S. Devadas: ISDL: An Instruction-Set De­
scription Language for Retargetability, 34th Design Automation Conference
(DAC), 1997

[160] S. Hanono, S. Devadas: Instruction Selection, Resource Allocation, and
Scheduling in the AVIV Retargetable Code Generator, 35th Design Automa­
tion Conference (DAC), 1998

[161] Mescal home page: http:/ jwww.gigascale.orgjmescal

[162] L. Nowak: Graph based Retargetable Microcode Compilation in the MIMOLA
Design System, 20th Ann. Workshop on Microprogramming (MICR0-20),
1987

[163] P. Marwedel: Tree-based Mapping of Algorithms to Predefined Structures, Int.
Conf. on Computer-Aided Design (ICCAD), 1993

[164] R. Leupers, P. Marwedel: Retargetable Code Generation based on Structural
Processor Descriptions, Design Automation for Embedded Systems, Vol. 3,
No. 1, Kluwer Academic Publishers, 1998

[165] PEAS project: http:/ jvlsilab.ics.es.osaka-u.ac.jp

[166] A.Y. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi, and M. Imai:
PEAS-I: A Hardware/Software Co-design System for ASIPs, European De­
sign Automation Conference (EURO-DAC), 1993

[167] N. Ohtsuki, Y. Takeuchi, K. Hamaguchi, M. Imai, et a!.: Compiler Gener­
ation in PEAS-II, 3rd Int. Workshop on Code Generation for Embedded
Processors, 1998

[168] S. Kobayashi, Y. Takeuchi, A. Kitajima, M. Imai: Compiler Generation
in PEAS-III: an ASIP Development System, Int. Workshop on Software
and Compilers for Embedded Processors (SCOPES), 2001, http:/ /lsl2-
www.cs.uni-dortmund.de/scopes-01

[169] Valen-C compiler home page, Kyushu University, Japan:
http:/ /kasuga.csce.kyushu-u.ac.jpj~codesign/Valen-C

(170] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt A. Nicolau: EXPRES­
SION: A Language for Architecture Exploration through Compiler/Simulator
Retargetability, Design Automation & Test in Europe (DATE), 1999

[171] P. Grun, A. Halambi, N. Dutt A. Nicolau: RTGEN: An Algorithm for Auto­
matic Generation of Reservation Tables from Architectural Descriptions, Int.
Symp. on System Synthesis (ISSS), 1999

[172] A. Halambi, A. Shrivastava, N. Dutt A. Nicolau: A Customizable Compiler
Framework for Embedded Systems, Int. Workshop on Software and Com­
pilers for Embedded Processors (SCOPES), 2001, http:/ /lsl2-www.cs.uni­
dortm u nd .dejscopes-01

166 RETARGETABLE COMPILER TECHNOLOGY

[173) S. Novack, A. Nicolau, N. Dutt: A Unified Code Generation Approach using

Mutation Scheduling, chapter 12 in [103), 1995

[174) J. Teich, R. Weper, D. Fischer, S. Trinkert: BUILDABONG: A Rapid Pro­

totyping Environment for ASIPs, DSP Deutschland, 2000

[175] D. Fischer, J. Teich, R. Weper: Modeling and Simulation of Embedded Pro­

cessors Using Abstract State Machines, Int. Workshop on Software and Com­
pilers for Embedded Processors (SCOPES), 2001, http://ls12-www.cs.uni­

dortmund.de/scopes-Ol

[176] BUILDABONG project, University of Paderborn: http:/ jwww-date.uni­
paderborn.de/RESEARCH/BUILDABONG

[177] V. Zivojnovic, S. Tjiang, H. Meyr: Compiled Simulation of Programmable

DSP Architectures, IEEE Workshop on VLSI Signal Processing, 1995

[178) J. Zhu, D. Gajski: A Retargetable Ultra-Fast Instruction Set Simulator, De­

sign, Automation and Test in Europe (DATE), 1999

[179) M. Balakrishnan, P.C.P. Bhatt, B.B. Madan: An Efficient Retargetable Mi­

crocode Generator, 19th Ann. Workshop on Microprogramming (MICR0-19),
1986

[180) M. Yamaguchi, N. Ishiura, T. Kambe: Binding and Scheduling Algorithms

for Highly Retargetable Compilation, Asia South Pacific Design Automation

Conference (ASPDAC), 1998

[181] M. Mahmood, F. Mavaddat, M.I. Elmasry: Experiments with an Efficient

Heuristic Algorithm for Local Microcode Generation, Int. Conf. on Computer
Design (ICCD), 1990

[182) F. Mavaddat: On Transforming the Code Generation Problem to a Parsing

Problem, chapter 9 in [103), 1995

[183) M. Langevin, E. Cerny: An Automata-Theoretic Approach to Local Microcode

Generation, European Conference on Design Automation (EDAC), 1993

[184) M. Langevin, E. Cerny, J. Wilberg, H.-T. Vierhaus: Local Microcode Gener­

ation in System Design, chapter 10 in [103), 1995

[185) A. Romer, G. Fettweis: Optimierte Parallele Codeerzeugung, DSP Deutsch­
land, Munich, 2000

[186] A. Romer, G. Fettweis: Flow Graph Based Parallel Code Generation, Int.
Workshop on Software and Compilers for Embedded Processors (SCOPES),

1999, http://ls12-www.cs.uni-dortmund.de/scopes-99

[187] G. Fettweis, M. Weiss, W. Drescher eta!.: Breaking New Grounds Over 3000

M MAC/s: A Broadband Mobile Multimedia Modem DSP, DSP Deutschland,
1998

[188] S. Bashford, R. Leupers: Phase-Coupled Mapping of Data Flow Graphs to

Irregular Data Paths, Design Automation for Embedded Systems, vol. 4, no.

2/3, Kluwer Academic Publishers, 1999

REFERENCES 167

[189] S. Bashford, R. Leupers: Constraint Driven Code Selection for Fixed-Point
DSPs, 36th Design Automation Conference (DAC), 1999

[190] T. Wilson, G. Grewal, B. Halley, D. Banerji: An Integrated Approach to Re­
targetable Code Generation, 7th Int. Symp. on High-Level Synthesis (HLSS),
1994

[191] T. Wilson, G. Grewal, S. Henshall, D. Banerji: An ILP-based Approach to
Code Generation, chapter 6 in [103], 1995

[192] M.R. Gary, D.S. Johnson: Computers and Intractability - A Guide to the
Theory of NP-Completeness, Freemann, 1979

[193] F. Krohm: Bin retargierbarer Compiler fii.r anwendungsspezifische Mikrocon-
toller, VDI Verlag, ISBN 3-18-146920-3, 1992

[194] Small Device C Compiler: http:/ fsdcc.sourceforge.net

[195] IBURG home page: http:/ fwww.cs.princeton.edu/software/iburg

[196] R. Leupers: Register Allocation for Common Subexpressions in DSP Data
Paths, Asia South Pacific Design Automation Conference (ASPDAC), 2000

[197] H. Emmelmann, F.W. Schroer, R. Landwehr: BEG - A Generator for Ef­
ficient Backends, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), SIGPLAN Notices 24, no. 7, 1989

[198] BEG home page: http:/ /www.first.gmd.de/beg

[199] SALTO project, INRIA: http:/ /www.irisa.fr/capsfprojects/Salto

[200] R. Amicel, F. Bodin: A New System for High-Performance Cycle-Accurate
Compiled Simulation, Int. Workshop on Software and Compilers for Embed­
ded Processors (SCOPES), 2001, http:/ /ls12-www.cs.uni-dortmund.de/scopes-
01

[201] D. Kastner: PROPAN: A Retargetable System for Postpass Optimizations
and Analyses, ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2000

[202] D. Kastner: Retargetable Postpass Optimization by Integer Linear Program­
ming, Ph.D. Thesis, Saarland University, 2000

[203] D. Kastner: Retargetable Code Optimization by Integer Linear Program­
ing, Int. Workshop on Software and Compilers for Embedded Processors
(SCOPES), 2001, http:/ /ls12-www.cs.uni-dortmund.defscopes-Ol

[204] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr: LISA- Machine Descrip­
tion Language for Cycle-Accurate Models of Programmable DSP Architec­
tures, 36th Design Automation Conference (DAC), 1999

[205] A. Hoffmann, A. Noh!, G. Braun, H. Meyr: A Survey on Modeling Issues
Using the Machine Description Language LISA, International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2001

168 RETARGETABLE COMPILER TECHNOLOGY

(206] A. Hoffman, A. Nohl, S. Pees, G. Braun, H. Meyr: Generating Production
Quality Software Development Tools Using a Machine Description Language,
Design, Automation & Test in Europe (DATE), 2001

(207] Axys Design Automation: http:/ fwww.axysdesign.com

[208] LISATek Inc.: http:/ /www.lisatek.com

(209] 3DSP Corporation: http:/ fwww.3dsp.com

(210] M. Strik, J. van Meerbergen, A. Timmer, J. Jess, S. Note: Efficient Code
Generation for In-House DSP Cores, European Design and Test Conference
(ED & TC), 1995

(211] A. Timmer, M. Strik, J. van Meerbergen, J. Jess: Conflict Modelling and
Instruction Scheduling in Code Generation for In-House DSP Cores, 32nd
Design Automation Conference (DAC), 1995

(212] B. Mesman, C. Alba Pinto, K. van Eijk: Efficient Scheduling of DSP Code
on Processors with Distributed Register Files, 12th Int. Symp. on System
Synthesis (ISSS), 1999

(213] K. van Eijk, B. Mesman, C.A. Pinto, Q. Zhao, M. Bekooij, J. van Meerber­
gen, J. Jess: Constraint Analysis for Code Generation: Basic Techniques and
Applications in FACTS, ACM TODAES, vol. 5, no. 4, Oct 2000

(214] M. Bekooij, B. Mesman, J. van Meerbergen, J. Jess: Tightly Coupled Op­
eration Assignment and Scehduling for VLIW Processors with FACTS, Int.
Workshop on Software and Compilers for Embedded Processors (SCOPES),
2001, http:/ /ls12-www.cs.uni-dortmund.de/scopes-01

(215] B. Mesman: Contraint Analysis for DSP Code Generation, Ph.D. thesis, TU
Eindhoven, 2001

(216] U. Bieker, P. Marwedel: Retargetable Self-Test Program Generation Using
Constraint Logic Programming, 32nd Design Automation Conference (DAC),
1995

(217] U. Bieker, M. Kaibel, P. Marwedel, W. Geisselhardt: STAR-DUST: Hier­
archical Test of Embedded Processors by Self-Test Programs, European Test
Workshop, 1999

[218] N. Ghazal, R. Newton, J. Rabaey: Predicting Performance Potential of Mod-
ern DSPs, 37th Design Automation Conference (DAC), 2000

(219] TenDRA: http:/ /www.cse.unsw.edu.au/"'patrykz/TenDRA

(220] Eli: http:/ /www.cs.colorado.edu/"'eliuser

(221] VCODE: http:/ /www.pdos.lcs.mit.edu/"'engler

(222] New Jersey Machine Code Toolkit:
http:/ /www.eecs.harvard.edu/"-'nr/toolkit

[223] Cocktail: http:/ /cocolab.com/html/cocktail.html

REFERENCES

[224] Gentle: http:/ /www.first.gmd.de/gentle

[225] SGI Pro64: http:/ joss.sgi.com/projects/Pro64

[226] PAG, Abslnt GmbH: http:/ jwww.absint.com/pag

[227] MLRISC: http:/ jwww.cs.nyu.edu/leungajwww/MLRISC/Doc/html

[228] GMD catalog of compiler construction tools:
http:/ /www.first.gmd.de/cogent/catalog

[229] Catalog of free compilers and interpreters:
http:/ /www.idiom.com/free-compilers

[230] CBEL: http:/ /www.cbel.com/Compilers_Programming

[231] Associated Compiler Experts: http:/ /www.ace.ni

169

[232] D. Lanneer, M. Cornero, G. Goossens, H. De Man: Data Routing: A Paradigm
for Efficient Data-Path Synthesis and Code Generation, 7th Int. Symp. on
High-Level Synthesis (HLSS), 1994

[233] D. Lanneer, J. Van Praet, A. Kifl.i, K. Schoofs, W. Geurts, F. Thoen, G.
Goossens: CHESS: Retargetable Code Generation for Embedded DSP Proces­
sors, chapter 5 in [103], 1995

[234] Target Compiler Technologies: http:/ jwww.retarget.com

[235] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man: A Graph
Based Processor Model for Retargetable Code Generation, European Design
and Test Conference (ED & TC), 1996

[236] Archelon Inc.: http:/ /www.archelon.com

[237] Astrosoft: http:/ /astrosoft-development.com/english/services/main.html

[238] V.S. Pavlov, S.A. Mironov: A Universal C Compiler, The Journal of CLan­
guage Translation, Dec 1992

About the authors

Rainer Leupers is a senior researcher at the Depart­
ment of Computer Science (Embedded Systems Group)
of the University of Dortmund, Germany. His research
and teaching activities mainly include software tools
and design automation for embedded systems. In ad­
dition, he serves as a project manager for industrial
tool development at the technology transfer company
ICD. Dr. Leupers authored the books "Retargetable

Code Generation for Digital Signal Processors" (1997) and "Code Op­
timization Techniques for Embedded Processors" (2000) , published by
Kluwer. He obtained the Diploma and Ph.D. degrees in Computer Sci­
ence with distinction from the University of Dortmund in 1992 and 1997,
and he received awards for outstanding theses as well as a Best Paper
Award at DATE 2000. Email: leupers@icd.de.

Peter Marwedel received his Ph.D. in Physics from
the University of Kiel (Germany) in 1974. He worked
at the Computer Science Department of that Univer­
sity from 1974 until1989. In 1987, he received the Dr.

· habil. degree (a degree required for becoming a pro­
fessor) for his work on high-level synthesis and retar-

\ / 1 getable code generation based on the hardware descrip-
tion language MIMOLA. Since 1989 he is a professor

at the Computer Science Department of the University of Dortmund
(Germany). He served as the Dean of that Department between 1992
and 1995. His current research areas include hardware/software code­
sign, high-level test generation, high-level synthesis, and code genera­
tion for embedded processors. He is a member of the IEEE Computer
society, the ACM, and the Gesellschaft fur Informatik (GI) . Email: mar­
wedel@acm.org.

Index

Abstract State Machine, 116
Action function, 82, 85, 103, 129, 143
Address code optimization, 53
Address generation unit, 53, 89, 94, 97
ADOPT, 15
ADSP-210x, 70, 89, 93, 124, 134, 145
Algorithm level, 12
Alpha, 68, 71, 79, 98
ALU, 25
Anti-dependence, 45
Archelon, 145
ARM, 23, 84, 136
ASDL, 79
ASIA, 21
ASIP, 21
Assembler directives, 70, 74, 134, 145
ATOMIUM, 15
Attribute grammar, 32, 85
Auto-increment, 53
Automata theoretic approach, 119-120
AVIV, 103
Basic block, 35
BDD, 96, 125
BEG, 131, 141
BISON, 31
BUILDABONG, 116
BURS theory, 61
Cache, 17
CBC, 84, 90, 92, 95, 143
CHESS, 86, 142
Cocktail, 140
Code compaction, 46
Code selection, 40
CodeSyn, 89
Common subexpression elimination, 39
COMPARE, 76, 141
Connection operation graph, 106, 143
Constant folding, 39
Constant propagation, 39
Constraint graph, 93

Constraint logic programming, 123, 139
Control flow graph, 35
Control/data flow graph, 37
Copy propagation, 39
CoS~ 76, 91, 112, 131, 141
CSDL, 79
Cygwin, 68
Data dependence, 36, 45
Data flow graph, 37
Data flow tree, 37
Data routing, 86, 109, 144
Dead code elimination, 39
Debugger, 71, 89, 118, 126, 135, 140
Delay slots, 45, 69, 75, 100, 104, 112, 144
Dependency graph, 45
Design flow, 9
Design space exploration, 11
DFL, 96
DLX, 135
DSE, 11, 20
DSP, 4, 14
DSPStone, 5, 70, 95, 98, 124, 140
Dual memory banks, 93
EDG, 78, 99, 102
Efficiency of embedded systems, 2
Efficient compilers, 5
ELCOR, 100
Eli, 140
Embedded processor, 4
Embedded software, 2
Embedded systems, 1
Energy consumption, 2
Energy efficiency, 4
EPIC, 100
EXPRESS, 114, 118
Expression, 60
EXPRESSION, 115
Factoring, 85, 103, l15, 124, 135
FACTS, 122

173

174 RETARGETABLE COMPILER TECHNOLOGY

FLEX, 31
FlexWare, 89
Formal language approach, 119
Fortran, 68, 77, 98, 141
Function inlining, 38
GCC, 68, 80-81, 91, 100, 111, 115, 137
Gentle, 140
Glanville's parser, 61
Global scheduling, 49
GNU public license, 68, 72, 126
Graph coloring, 52, 76, 81, 91, 94, 99, 104,

147
Guarded RT operation, 117
GUI, 101, 112, 115, 136, 143
Hardware/software codesign, 9
HORIZON, 64, 98
HPL-PD, 100
I-trees, 109
IBURG, 61, 73, 82, 84, 97, 126, 129, 131, 141
IDAS, 63
IMPACT, 18, 99-100, 105
Induction variable elimination, 39
Infineon C16x, 134
Inline assembly, 126, 147
Instruction set design, 18
Instruction set extraction, 96, 112, 119
Integer Linear Programming, 98, 121, 133
Intel 8051, 126, 136
Intel i860, 75, 98, 100
Intel x86, 68, 71, 73, 79, 100, 147
Interference graph, 51
Intrinsics, 93, 126, 138, 147
IR, 61
ISDL, 103
Java, 68, 141
Jump optimization, 40
LANCE, 81, 102, 121, 124, 131, 141
LBURG, 73
LCC, 71, 77, 79, 81, 87, 98, 100, 118, 131,

147
Left edge algorithm, 51, 90, 97
LEX, 29
Linker, 71, 126, 136, 140, 142, 145
LISA, 86, 134
List scheduling, 46
Live range, 46, 50
Local scheduling, 46
Loop invariant code motion, 39
Loop unrolling, 39
LR(1), 60
M68000, 68
Machine description file, 69, 73, 83, 87, 100,

103, 111, 113, 125-126, 145
Machine SUIF, 78
Maril, 75
Marion, 75
Maximum munching method, 61

MDES, 101
Memory subsystem, 13
Memory system, 17
Mescal, 105
Micro-architecture, 24
Microcode compiler, 63
Microprogramming, 61
MIMOLA, 26, 64, 95, 105, 115, 138
MIPS, 68, 71, 75, 77, 100, 136
Modula-2, 131
Motorola 56k, 70, 89, 92-94, 116, 136
Motorola 88k, 75
MPG system, 63
MSS, 19, 64
MSSQ, 95, 105, 113, 118, 138, 143
MSSV, 65
Mutation scheduling, 115
New Jersey Machine Code Toolkit, 140
NML, 85, 115, 134, 143
OLIVE, 7, 73, 82, 84, 92, 129, 131, 141
Output dependence, 45
ox, 33
PAG, 140
PAGODE, 76
Parser, 29
PASCAL, 106
Pattern matching, 90, 131, 140
PEAS, 21, 110, 118
Peephole optimization, 40, 58, 70, 80, 91,

105, 126, 145, 14 7
Percolation scheduling, 50
Phase coupling, 28, 56, 75, 86, 99, 115, 119,

124, 132
Pipelining, 69, 75-76, 79, 98, 111, 115, 118,

132, 134, 145, 147
PowerPC, 87
Predicated instruction, 86, 100-101, 103
Process mapping, 15
PROPAN, 132
Ready set, 46
Reassociation, 40
RECORD, 95
REDACO, 87
Register allocation, 50
Register file size, 23
Register transfer graph, 92
Reservation table, 48, 75, 115, 132
RESTART, 138
Retargetability, 7
Retargetable compilers, 6
ROCKET, 98
SALTO, 132
SCALA, 76
Scanner, 29
Scheduling, 44
SDCC, 126
SGI Pro64, 140

INDEX

Simulation, 85, 89, 96, 100, 103, 112-113,
115, 118, 126, 132, 134, 138, 142

Software pipelining, 46, 99, 101, 139, 144
SPAM, 79, 91, 97, 103, 131
Spare, 68, 71, 76
Specifications, 4, 11
Spill code, 50
SPIRAL, 14
Split-node DAG, 104
SRAM, 17
Static single assignment, 38
SUIF, 77, 79, 81, 91, 100, 103, 113, 139, 141
TCL, 138
TDL, 133
TenDRA, 140
Three address code, 34, 82
TI C25, 89, 92, 94, 98
TI C54x, 136
TI C6x, 47, 116, 118, 123, 136, 140
Token, 28
Trace scheduling, 49
Tree grammar, 41, 73, 82, 86, 92, 97, 127,

130, 141
Tree parsing, 41, 126, 129

Trellis diagram, 87
Trellis tree, 88
Trimaran, 100, 141
Trimedia, 102, 132, 134
TWIF, 92
ucc, 147
UML, 5
UNCOL, 59
Valen-C, 22, 113
VCC,l13
VCODE, 140
Verification, 26
Version shuffling, 46
VHDL, 95, 144
Virtual register, 50
VLIW, 17-18, 20, 61
VPO, 80
WCET, 4
Word length, 21
XASM, 117
YACC, 31
Zephyr, 79
Zilog Z80, 126
ZSP 16401, 140

175

