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Preface 

Embedded systems are information processing systems embedded in 
larger products. They have their own characteristics which make them 
different from desktop systems. For example, they have to be imple­
mented efficiently, and the same holds for the increasing amount of em­
bedded software. Designing an efficient, software- and processor-based 
system requires that optimized processors are used. Such an optimiza­
tion requires a careful analysis of the design space, including a study of 
cost/performance tradeoffs. In order to avoid assembly language pro­
gramming for such studies, compilers are needed. For analyzing the 
effect of design options on the performance, these compilers should be 
capable of generating code for all potential hardware configurations. 

This is possible with retargetable compilers. Such compilers can be 
adapted to new hardware easily. Recently, many new approaches for 
designing such compilers have been developed. This book presents an 
overview and classification of these techniques. For each of the compilers, 
we mention key features, limitations, as well as software availability. The 
list of retargetable compilers covered has never been collected before. 
We also introduce key terms and techniques for compiler construction, 
explain where in the design flow retargetable compilers fit and present 
a history of retargetability. For people starting work on compilers for 
embedded systems, this book should save a significant time for finding 
references. 

The book is self-contained and requires only fundamental knowledge 
in software design. It is intended to be a key reference for researchers 
and designers working on embedded software, compilation, and processor 
optimization. It can also be used by people who need to get an overview 
quickly, such as consultants and advisors. Please enjoy reading this 
book! 

RAINER LEUPERS, PETER MARWEDEL 

xi 



Chapter 1 

INTRODUCTION 

Writing this book was motivated by the growing usage of a large vari­
ety of processors in embedded systems. This trend has to be reflected in 
the corresponding development of still missing tools for the design of em­
bedded systems. In order to understand the requirements for such tools, 
we will first of all have to look at the characteristics of the application 
areas that we are considering. 

1. Embedded systems and their characteristics 

Embedded systems can be defined as information processing systems 
which are integrated into larger systems. In such systems, information 
processing is usually not directly visible to the user, and customers will 
typically not buy a certain product -like a car or a mobile phone- be­
cause he or she is interested in the features of the information processing 
equipment. For example, customers will not buy a certain model of a 
mobile phone because of the brand name and the clock speed of the 
processor contained in the phone. They buy it because of the function­
ality that it provides, regardless of the electronic system supplying part 
of that function. The same applies to information processing in cars, 
trains, airplanes and smart homes, to mention some other examples of 
embedded systems. 

In many cases, the customer does not even recognize that information 
processing takes place, partly because the standard interfaces for PC-like 
equipment -like mice, keyboards and screens- are typically not available 
for embedded systems. Rather, push buttons and small displays are used 
as user interfaces. 

1 
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Tools for the design of embedded systems are very much influenced by 
the characteristics of embedded systems. What are those characteristics 
? The following list contains some of the most relevant ones: 

1 Embedded systems have to be efficient. One of the most notable 
instances of this is the need for energy efficiency, which applies at 
least to all portable embedded systems. 

Mobile phones and personal digital assistants are a very good exam­
ple for this. They use orders of magnitude less energy than today's 
desktop computers and battery lifetime is a key argument for selling 
these systems. 

Energy consumption has also to be considered in the case of cars. 
Customers expect cars to be operational even after many weeks of 
not using them. Hence, the energy consumption of parked cars has 
to be extremely low. 

Weight is another aspect of efficiency. From looking at the mobile 
phone market (as well as at the laptop market) it becomes obvious 
that customers prefer light-weight systems. 

Silicon area is also very important, since many embedded systems 
have to be small and have to be fabricated at competitive prices. 

Many embedded systems -especially multimedia and communication 
systems- have very high performance requirements. These require­
ments have to be met with the least amount of resources. 

Progress in process technology might lead to less emphasis on the 
efficient use of silicon area and processor performance. However, 
progress in battery technology is expected to be slow. Hence, the 
importance of low energy consumption can be expected to increase 
in the foreseeable future. 

2 Embedded systems are using an increasing amount of software. 
Only some peripheral components are implemented with special pur­
pose hardware. The main reason for this is the flexibility of software, 
enabling a short time to market, late design changes and easy pro­
duct upgrades. For most application areas, current processors are 
fast enough to meet performance requirements. Also, customers ask 
for more and more functions and these can be provided in software 
much easier than in special purpose hardware. 

As a result, it has been found that, for many application areas, the 
amount of software in embedded systems is doubling every two years 
[43]. 
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3 The need of providing instruction set compatibility, which is a 
driving force in the PC-domain, exists only in cases in which a huge 
amount of legacy assembly language programs exist (which is some­
times the case in the car industry) and in cases in which development 
tools are difficult to change. 

4 There is a huge variety of embedded systems. This is demonstrated 
by using the following examples: 

• Information processing systems in cars are assumed to be work­
ing after disconnecting and then reconnecting the car battery. 
If this happens while the engine is running, there will be high­
voltage transients. All designs have to guarantee that the elec­
tronic equipment within a car is fully functional after such tran­
sients [13]. It is frequently too expensive to add power regulators 
just for this purpose and the processors themselves have to with­
stand high voltages. 

• Processor-based systems can be inserted into the veins of the hu­
man body in order to sense, analyze and store information about 
the blood (22]. Obviously, such systems have to be extremely 
small and power efficient. Processor performance can be low. 

• For multimedia and consumer electronics applications, very high 
processor performance is required. 

5 Embedded systems have to be dependable. Customers expect em­
bedded systems to provide their functionality at all times. This is 
especially true for safety-critical products, but for non-safety-critical 
products, customer satisfaction is also a major concern. 

6 The functionality of embedded systems is essentially known at 
design time. The flexibility of later adding significantly different 
applications, which is available for PCs, is not required. This has to 
be exploited in order to design an efficient system. 

Not every embedded system will have all the above characteristics. 
However, we will assume that most of the characteristics discussed above 
will be present for the types of systems that we will talk about. 

There is one immediate consequence from characteristics 1 and 2: 
embedded software and used processors must be efficient. In particular, 
they must make efficient use of energy and area. 

2. Efficient hardware 
The need for providing efficient processor hardware, combined with 

the huge variety of applications makes it impossible to work with just 
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a small set of processors {there is no "one-size-fits-all" processor). As a 
result, processors optimized for embedded systems are quite common in 
such systems. In many cases, processors are optimized for certain appli­
cation areas (such as audio and video applications) or even for certain 
applications. For most applications there is a matching processor. 

Using this large variety of processors is possible because of the third 
characteristic. The reduced importance of instruction set compatibility 
is a pre-condition enabling the freedom of working with different opti­
mized processors. 

The following is a list of key characteristics of embedded processors: 

• Embedded processors use a large amount of their circuitry for per­
forming useful functions and hardly any amount for providing in­
struction set compatibility with earlier processors. 

• Instruction sets are optimized for certain application domains. For 
example, instruction sets of digital signal processors (DSPs) include 
instructions that are optimized for digital signal processing. They 
contain multiply/ accumulate instructions, modulo-addressing, paral­
lel operations and special arithmetic modes [103]. 

• Hardware, which improves only the average execution speed but does 
not improve the worst case execution time (WCET) is frequently 
omitted. The reason for this is that many embedded systems have to 
guarantee meeting hard real-time constraints. Hence, many embed­
ded processors come without caches. 

• Hardware isolating user programs from the operating system and 
from other users can in many cases be omitted since the user is not 
expected to do any programming anyway. Therefore, memory man­
agement units and memory protection are found in only few proces­
sors. 

• Energy efficiency of embedded processors (computed in terms of op­
erations per Watt) significantly exceeds that of processors used in 
PCs. 

In summary, optimizing processors for embedded applications is an 
area in which a major amount of money has been invested and in which 
a large amount of progress has been made. 

3. Efficient software 
3.1. How to specify embedded system software? 

This is largely different for embedded software. Designing software 
for embedded systems is still not easy. Software generation techniques 
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for embedded systems are still far from being satisfactory. Problems do 
already start at the specification level. How do we specify an embedded 
system? Many proposals have been made so far. Still, an ideal specifi­
cation language meeting all requirements does not yet exist. A number 
of attempts for meeting the most important requirements are shown in 
fig. 1.1. 

Assembly 
programs 

Figure 1.1. Approaches for specifying embedded systems 

Due to the increasing amount of embedded software and due to the 
limited amount of trained embedded software engineers available, high 
software productivity is required. High software productivity can be 
obtained by specifying embedded software at a high level of abstraction, 
using compact specifications. This is reflected in the proposals for a 
real-time extension of the unified modeling language UML. At a slightly 
lower level, StateCharts and SDL are being used, as well as real-time 
extensions of Java. At still lower levels we find programs written in C, 
VHDL and assembly languages. Note that Cis used as an intermediate 
step for most translations from higher level descriptions into machine 
languages. Hence, the efficient generation of machine programs from 
higher level specifications requires that C compilers generating efficient 
code for embedded processors are available. 

3.2. Efficient compilers 
These compilers have to meet the general goal of generating efficient 

code. However, C compilers for embedded processors are notoriously 
known for their poor code quality. Detailed studies of the code quality 
of available compilers were made in the context of the DSPStone project 
at the Technical University of Aachen [77]. In this project, manually 
generated assembly language programs were compared with compiled 
code. Some of the results are shown in fig. 1.2. 

According to fig. 1.2, data memory overhead for compiled code can 
almost reach a factor of 5. Even worse, cycle overhead can reach a factor 
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Figure 1.2. Overhead of compiled code for ADPCM algorithm 

of 8. That means, up to ~ of the useful processor cycles are needed just 
to compensate for the negative effect of the compiler. This is a serious 
problem for battery-operated systems. As a result, many embedded 
systems are still implemented in assembly languages, partially because 
the energy consumption of compiled code would be unacceptable. 

However, a number of researchers are trying to improve the quality of 
the code generated by available compilers [196]. In some cases, zero or 
negative overhead has been reported. Due to the progress made in this 
context and due to the increasing number of processors on the market, 
other properties of compilers are gaining interest. 

3.3. Retargetable compilers 
The property gaining the largest increase is retargetability, which can 

be defined as the possibility of changing a compiler generating code for 
target processor A such that it will generate the code for target processor 
B. Obviously, this definition contains some vagueness. To some extent, 
every compiler is retargetable since changing almost all the compiler code 
can still be called a change of the original compiler. We call this a very 
low level ofretargetability. At the other extreme, there are compilers 
that can generate code for another processor after just setting some 
switch. For currently available systems, the level of retargetability is 
somewhere in between. Recently, a number of approaches for generating 
retargetable compilers have been published. This led to the idea of 
presenting in this book a survey of the approaches that exist at the 
beginning of this century. Significant progress has been made since the 
last comprehensive survey [15] was published. 
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When comparing different approaches, we have to distinguish between 
various kinds of retargetability. 

One form of changing the target processor is by changing some proces­
sor parameters such as the number of registers by using command-line 
arguments and simple configuration files. We will call this a parame­
terized compiler. Apart from a flexible number of registers, flexible 
cost functions for instructions and possibly some other parameters, the 
instruction set of parameterized compilers is essentially fixed. These 
compilers are relatively easy to design. 

A more complex situation appears when the instruction set can be 
changed. Due to the availability of tools such as IBURG [195] and 
OLIVE [132], changing some instructions is not a major problem any­
more as long as the overall structure of the instruction set, the register 
architecture etc. remain unchanged. 

A very serious problem is to provide good optimizations for all possible 
targets. In general it can be stated that a price has to be paid for 
retargetability: it is much more difficult to supply good optimization 
techniques for a wide range of possible architectures than for a small 
range. 

Another distinction is that between user- and developer-retarget­
ability. For user-retargetability, changing the target processor is easy 
enough to be done by compiler users. User retargetability is typically 
restricted to very similar processors. 

Why are people interested in retargetable compilers? There is a num­
ber of reasons for this interest: 

• Due to the large variety of embedded processors, designing a new 
compiler for each and every processor is too costly. Also, it would 
frequently become available too late to be really used in the critical 
phases of the design. 

• Retargetable compilers help to understand the mutual dependencies 
between computer architectures, instruction sets, compilers and the 
resulting code. 

• A retargetable compiler can always be used as a first step towards 
a fully optimizing, target-specific compiler. Hence, it is useful even 
if we do not achieve the required code quality with a retargetable 
compiler. 

• A very important application of retargetable compilers is design space 

exploration. Details about this will be presented in chapter 2. 

In chapter 3 we will introduce some common terms and techniques 
of compiler construction. Some of the early work on retargetability will 
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be presented in chapter 4. Possibly the most important chapter of this 
book is chapter 5, comprising a comprehensive set of descriptions of the 
major contributions in this area. Finally, chapter 6 provides a summary 
and outlook. A tabular overview of important tools is given in appendix 
A. 



Chapter 2 

COMPILERS IN EMBEDDED SYSTEM 
DESIGN 

1. Design flow and hardware/software codesign 
Applications of retargetable compilers have to be seen in the context 

of the overall design flow of embedded systems. Different design flows are 
being used. Nevertheless, fig. 2.1 can serve as an example representing 
a wide range of realistic design flows. 

~ 
Feed-back loop9-, 
design space ' 
exploration 

Early decisions, algorithm selection .. 

Operation to process mapping, 

HW /SW-Partitioning 

Figure 2.1. Possible design flow 

9 



10 RETARGETABLE COMPILER TECHNOLOGY 

First of all, the embedded system is specified using the techniques 
mentioned in the previous chapter. Next, we have to map operations 
to threads of control, called tasks or processes. The processes then 
have to be mapped to hardware components. Possible hardware com­
ponents include processors, custom application specific hardware com­
ponents (ASICs) and field programmable gate arrays (FPGAs). A key 
advantage of custom application specific hardware is its speed and en­
ergy efficiency. In contrast, a key advantage of software is its flexibility, 
but implementing the same functionality in software does not result in 
the same level of performance and energy efficiency that can be obtained 
with ASICs. Generally, designers try to use only the necessary amounts 
of specialized hardware and to map as much functionality as possible 
to software. FPGAs also provide flexibility. Up till now, they are not 
power- and area-efficient and they are therefore not considered in this 
book, even though the situation may soon change. 

Will all embedded systems be totally implemented in software in the 
future, due to increasing processor speeds? Certainly not, for a variety 
of reasons: 

• some specialized interfaces to I/0 devices are typically required for 
embedded systems, 

• in parallel to increasing processor performance, the applications are 
also becoming more and more demanding, especially for multimedia 
applications ("By the time MPEG-n can be implemented in software, 
MPEG-n+1 will have been propose£!'), 

• it may be necessary to use specialized hardware in order to reduce 
the energy consumption. 

Therefore, we have to assume that, in general, embedded system de­
sign involves both the design of specialized hardware and the design of a 
processor- and software-based part of the system. Hence, partitioning of 
operations into those that will be implemented in specialized hardware 
and those that will be implemented in software is required. 

Partitioning is based on estimating the cost and the performance of 
implementing operations (or sets of these) either in hardware or in soft­
ware. Mathematical programming or iterative procedures can then be 
used for partitioning. A closer look at different techniques for computing 
the estimates reveals that compiling processes is a way of finding cost 
and performance estimates for software (38]. This means that compilers 
may already be needed for hardware/software partitioning. 
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After partitioning, the design flows for hardware and for software are 
to some extent independent (see fig. 2.1), apart from design validations 
involving hardware and software. 

In general, it is very difficult to predict the effect of early design 
decisions on consequences for the resulting design models. Therefore, 
it may be necessary to have design iterations. These design iterations 
correspond to control flow and are indicated by dashed lines in fig. 2.1. 

According to the design flow, compilers are needed in different phases 
during the design of embedded systems: 

• possibly already during hardware/software partitioning for comput­
ing cost/performance estimates, 

• for code generation after hardware/software partitioning, 

• as verification tools which check if certain operations can be imple­
mented on certain hardware configurations. 

In general, compilers are included in control flow loops for design 
space exploration and therefore they also play an important role for this 
design phase. 

Standard, non-retargetable compilers can be used for all applications 
just mentioned. However, traversing a large design space requires ei­
ther hundreds of compilers for all possible processor architectures or a 
retargetable compiler which can be configured to generate code for the 
currently considered target architecture. 

Due to the importance of retargetable compilers for design space ex­
ploration (DSE), we will cover DSE in more detail in the following. 

2. Design space exploration 
2.1. Levels in the design space 

The design space of embedded systems is typically quite large: numer­
ous options exist for the choice of the algorithms, processors, memory 
systems, packages etc. There are also less legacy problems caused by 
code compatability requirements. Since embedded systems have to be 
efficient, this freedom has to be exploited in order to generate very effi­
cient designs. These can be found by traversing the design space. This 
space is n-dimensional, where each dimension corresponds to a design 
choice for which alternatives exist. 

Fig. 2.2 shows a possible conceptual view of the design space [25]. At 
the top level, we start with a specification of the design. This is fre­
quently called back-of-the-envelope (even though envelopes can hardly 
be used to sketch all key ideas of the design, let alone a full specifica­
tion). Specifications originally only exist in people's minds. A subset of 
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Low 
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back-of - the- envelope 

Alternative realizations 
Design space 

Figure 2.2. Conceptual view of the design space 

Low 

High 

these can be captured in the initial written specification. Unfortunately, 
currently available specification techniques do not allow us to express ex­
actly what should be captured. Some properties cannot be specified in 
formal languages (for example, how do you specify "user-friendliness"?). 
In many cases, it is necessary to specify algorithms , even though many 
different algorithms computing the same function exist. Due to these 
reasons, we consider the specification to be the set of ideas about the 
product that exist in the head of the person(s) specifying the embedded 
system. 

During the design process, many different design decisions can be 
taken at all levels of abstraction. It is well-known that it is very expensive 
to change a decision taken at a high level after discovering at a low level 
that this decision should be revised. 

In the context of this book, we distinguish between a certain number 
of levels (there may be other levels in other contexts). These will be the 
levels that we will consider: 

1 The highest level, at which we will be considering alternatives, will be 
the algorithm level. At this level, alternatives consist of different 
options that exist for the essential algorithms of the embedded system 
to be designed. 
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Examples include different DCT or FFT algorithms, different algo­
rithms for character recognition, or different algorithms for data com­
pression. 

2 At the next lower level, we consider different options for imple­
menting algorithms. These are options that are beyond the scope 
of currently available compiler optimizations. For example, we may 
find that only small regions of an array are needed at any given time 
and we may hence decide to fold different regions, thereby possibly 
saving a significant amount of memory space. 

3 For software-based realizations, there are different alternatives for 
mapping operations to processes. For the same type of realiza­
tions, the mapping of processes to processors has to be opti­
mized. This mapping is expected to become more important in the 
future. Both mappings may be part of the partitioning between those 
operations that will be implemented in hardware and those that will 
be implemented in software (the so-called hardware/software par­
titioning). Both mappings can also be generated in an independent 
design step. 

4 For embedded systems, there may be a large amount of choices for 
the peripheral components (displays, keys, disk drives) as well as 
for the power supply subsystem. We will not consider these choices 
in this book. 

5 Due to the rapidly increasing processor speeds, the memory sub­
system is becoming extremely important and more options have to 
be considered in order to design a high-speed, lower power memory 
subsystem. 

6 For the processors that are used, there are various options as far as 
the instruction sets are concerned. 

7 Finally, we mention several options that exist for the internal struc­
ture of processors (micro-architecture). 

In the following, we will examine the usefulness of compilers (and of 
retarget able compilers in particular) for exploring the design space. We 
will present examples of applications of retargetable compilers. These 
examples will show that the use of retargetable compilers for DSE is be­
coming a standard technique for medium and lower levels of the decision 
tree. 
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2.2. Algorithm selection 
Automatically selecting the right algorithm has been a dream of many 

researchers. In the digital signal processing (DSP) domain, there has 
been the dream of automatically finding the right motion estimation 
algorithm. In numerical mathematics, there has been the dream of au­
tomatically switching between sparse and dense representations of ma­
trices. After many years of research, some results are available. These 
include the work in the SPIRAL project on the automatic transforma­
tion of algorithms, in particular DSP algorithms. The design flow in the 
SPIRAL project is shown in fig. 2.3. 

Algorithms in 
algebraic notation 

Benchmarking 
tools 

DSP transform/Algorithm 

Formula generator 

SPL 

Formula translator 

C/Fortran 

C/Fortran compiler 

Executable 

Execution 

Selection of next alternative 

Intelligent 

search 

Platform adapted implementation 

Figure 2.3. Selection of algorithms in the SPIRAL project 

Different algorithms are generated from the same algebraic descrip­
tion of a certain DSP transform. Each algorithm is then compiled and 
evaluated. The result of an evaluation controls the generation of the 
next algorithm. Using clever search strategies [42], it has been possible 
to try only certain design points and to focus on the promising parts of 
the design space. 

In the cited work, standard compilers are used within the feedback 
loop. If retargetable compilers were used, it would be possible to analyze 
dependencies between algorithms and processor architectures even for 
architectures for which a standard compiler does not exist. 
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2.3. Options for implementing algorithms 
Design space exploration techniques at this level have be studied 

at IMEC (Leuven, Belgium) in the context of their ATOMIUM and 
ADOPT projects [12, 5, 11]. 

These projects focus mainly on multimedia applications. Such appli­
cations require very large amounts of data to be stored, transfered, and 
processed. Consequently, very large data storage and transfer capacities 
are needed, and the cost for these is one of the largest contributions to the 
overall system cost. In order to reduce this cost, design transformations 
designed in the ATOMIUM project aim at reducing these capacities. For 
example, not all of the regions of an array may be needed at the same 
time. Hence, these regions may be folded such that at any time, only a 
small fraction of the array needs to be stored. Folding arrays reduces the 
memory size requirements and consequently also the power consumption 
and improves performance. A detailed analysis of the tradeoffs between 
different techniques for implementing storage and transfer mechanisms 
is the key feature of the ATOMIUM project. 

Transformations such as array folding reduce the memory size, but 
may increase the amount of necessary computations. For example, var­
ious if-statements may be required in order to distinguish between the 
different regions of an array and complex modulo operations may be re­
quired for mapping index values to the small set of locations implement­
ing that array. Transformations developed in the ADdress OPTimization 
project (ADOPT) project try to reduce the amount of necessary com­
putations and in particular try to remove the additional computations 
inserted during the ATOMIUM transformations. The techniques are 
based on the use of optimizing source code level transformations which 
are organized in two stages: a processor target independent stage and a 
processor (family) specific one. 

The overall result is a modified algorithm which typically requires 
smaller memories, less energy, less computations, and which consequently 
shows better performance. 

In the ADOPT and ATOMIUM projects, standard compilers are used 
for evaluating the benefits of applied transformations. More advanced 
compilers could integrate ATOMIUM and ADOPT techniques directly. 
Retargetable compilers could be used for analyzing a larger design space. 

2.4. Process mapping and HW /SW partitioning 
For most of the approaches for specifying embedded systems, speci­

fications include concurrent processes. Partitioning of the specification 
into processes is, first of all, a matter of convenience. Consider, for 
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example, an answering machine. It it very convenient to describe the 
monitoring of the incoming line and the keys as more or less indepen­
dent processes. It may be inefficient to implement a system using exactly 
those processes that are described in the specification. Instead, Instead, 
it may be more efficient to merge or to split processes used in the spec­
ifications: 

• For example, if the execution of process A included in the specifica­
tion will always be followed by the execution of process B, it is very 
wise to merge A and B in order to reduce context switching overhead. 

• On the other hand, splitting a process into two may be very use­
ful if that process includes a wait-for-input operation. In that case, 
all operations following that wait operation should be turned into a 
separate process and that process should be triggered if the input 
is available. This way, a blocking wait-for-input operation consum­
ing processor time can be turned into an event-controlled processor 
scheduling requiring no active waiting. 

Techniques for analyzing the design space in this context have been 
described by Thoen [7]. 

Due to the increasing use of multiprocessor systems, finding a mapping 
of processes to processors is also required. This mapping is very much 
correlated to the process splitting and merging discussed above and can 
hardly be done independently. Finding such a mapping is also very 
much affected by decisions to map certain operations to hardware or to 
software. 

Taking such decisions is called hardware/software partitioning. In 
hardware/software partitioning, we try to find a mix of hardware and 
software such that costs are minimized while meeting all design con­
straints. A huge amount of techniques for hardware/software partition­
ing have been proposed. For example, we can map all operations to 
hardware and then gradually move operations to software as long as 
performance constraints are met. In another approach [38], a compre­
hensive mathematical model of the optimization problem is generated 
and the cost function is minimized using mathematical programming 
techniques. However, at the current state of the art, it is not feasible 
to generate sufficiently good partitionings without using any feedback 
loops. Rather, feedback loops are necessary to let results of one parti­
tioning step have an effect on the next partitioning (see dashed line in 
fig. 2.1). 

The effect of the options at this level can also be evaluated by means 
of a compiler. Again, retargetable compilers can offer a wider choice of 
processor architectures. 
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2.5. Memory system design 
Traditionally, the memory system was transparent to compilers, i.e. 

the memory system was modeled as a single homogeneous array of stor­
age locations. Due to the larger access times and the increased en­
ergy consumption of smaller memories, it makes sense to design non­
homogeneous memory systems comprising a variety of memories, in­
cluding combinations of caches and memories mapped to parts of the 
address space. In order to fully exploit the benefits of such memory 
systems, compilers should be memory-aware. 

Grun et al. designed a methodology for generating such compilers 
from descriptions of the architecture [19]. Grun, Mishra et al. have 
described how this methodology can be used for DSE [36]. In particular, 
they analyzed the performance of six different memory configurations 
attached to a TI 6211 processor. Table 2.1 contains these configurations. 

Configu- L1 cache L2 cache SRAM stream DRAM 
ration buffer 
1 128B; 1=1; LRU 256; 1=4 1=20 
2 128B; 1=1; LRU 2k; 1=1 1=20 
3 128B; 1=1; FIFO 2k; 1=4; FIFO 1=20 
4 128B; 1=1; LRU 2k; 1=4; LRU 1=20 
5 128B; 1=1; FIFO 2k; 1=4; FIFO 1k; 1=1 1=20 
6 8k; 1=1 1=20 

Table 2.1. Size, latency and replacement policies for the six memory configurations 

Options include two levels of caches, an SRAM mapped into the ad­
dress space (a so-called scratch-pad memory), and a stream buffer. In 
addition, a DRAM background memory is assumed. Fig. 2.4 shows re­
sults of the DSE for the six configurations. Obviously, it is not a very 
good idea not to use any cache (see configuration 6) for these applica­
tions. 

Other key parameters of the memory system include the type and 
number of memory ports, especially for VLIW (very long instruction 
word) processors. These have a major influence on the overall system 
structure. Jacome et al. explore these options of the design space. For 
speed reasons, estimation techniques rather than retargetable compilers 
are used [23]. 
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Figure 2.4. Cycle counts for the memory configurations of table 2.1. 

Instruction set options 
Design of VLIW machines 

Due to the much reduced instruction set legacy problem in embedded 
systems, instruction sets can be customized for certain applications. 

One key opportunity resulting from this is the opportunity to use 
VLIW instruction sets. With such instruction sets, several instructions 
can be started at the same clock cycle. The corresponding increased 
performance can be used for scaling down the supply voltage, resulting 
in significant energy savings. 

An example of a search for power-optimized instruction sets is de­
scribed by Kin et al. [26]. Kin analyzes the effect of architectural pa­
rameters such as the number of functional units, the issue width, cache 
sizes etc. on the energy consumption during the execution of multimedia 
benchmark programs. A framework for the selection of power-efficient 
media processors is used. The IMPACT tool suite [152] (see section 
5.3.2) is used to generate code for different architectures. Fig. 2.5 shows 
one of the results. The figure shows that processors requiring a larger 
chip area can be more energy efficient than smaller processors. The 
main reason for this is that larger chip areas permit more parallelism 
and hence the same deadline can be met with lower supply voltages. 

The IMPACT tool suite can generate code for a wide range of VLIW 
machines. For other machines it is less appropriate. Due to the difficulty 
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of designing good retargetable compilers, researchers have tried to avoid 
retargetable compilers and to find other ways of estimating the behavior 
of hardware with respect to different evaluation metrics. Various re­
searchers have recently published papers in this direction [16, 20]. Good 
retargetable compilers, however, can make separate estimation tools for 
computing these metrics obsolete. 

Some early high-level synthesis tools were also designed for instruction 
set synthesis. The MIMOLA synthesis system (MSS) is an example of 
this. Figure 2.6 shows a result from one the tools of the MSS, MSSH 
[30]. 
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Figure 2. 6. DSE with synthesis tool MSSH 
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MSSH considers constraints for the main resources: the number of 
memory ports, the number and types of functional units (or ALUs) and 
the number of immediate instruction fields. MSSH can therefore be used 
for DSE. The VLIW instruction set is an implicit result of the synthesis 
process focusing on the main resources. 

Comprehensive DSE for VLIW machines containing clusters of junc­
tional units (adders, multipliers etc.) and associated memory ports has 
been implemented by Lapinskii, Jacome et al. Fig. 2.7 shows the overall 
approach [27]. 

Estimation of Physical 
Figures of Merit: 
Clock Rate, Power, Area 

Register File Sizing 
· · · ·. Detailed FU Selection 

Port Sharing 

Retargetable Compiler 

~--~) 
Binding/ 
Instruction Scheduling 

Figure 2. 7. DSE in Lapinskii's approach 

First of all, the memory subsystem is designed and a broad schedule of 
memory operations is performed. Next, the fast DSE algorithm [23] just 
mentioned is used to identify reasonable ranges for key design parameters 
such as the maximum number of functional units per data path cluster 
(Np), the number of clusters (Nc) and the number of busses (NB). 

The kernel of the DSE (shown in bold face in fig. 2.7) consists of an 
exploration of values of the triple ( N F, N c, N B) providing good cost/ per­
formance tradeoffs. The types of functional units are considered to be of 
secondary importance and decisions about these are postponed. Promis­
ing sections of the three-dimensional space are traversed. For each point 
in the space, the instruction scheduling component of a retargetable com­
piler schedules operations and computes the resulting latency. Table 2.2 
shows the type of results that can be generated this way. 

An interesting observation is that some partitioned architectures ach­
ieve the same performance as very expensive centralized architectures. 
For example, the architecture with Nc=3 clusters containing Np=3 
functional units each and the architecture with Nc=l cluster and 8 func-



Compilers in Embedded System Design 21 

NF 
2 3 4 5 6 7 8 9 10 11 12 

Nc 
1 37 23 19 14 12 11 10 9 8 8 7 
2 19 12 10 9 8 8 8 8 7 
3 13 10 9 8 
4 11 

Table 2.2. Latency for algorithm DCT-DIT for NB=2 and bus latency= 1 

tional units both achieve a latency of 10. The large number of ports of 
the register file required for the cluster makes the latter very expensive. 

This kernel of Lapinskii's DSE algorithm is followed by a detailed 
design of functional units and sizing of register files. The generation of 
instruction sets is implicit in Lapinskii's approach. 

2.6.2 Design of non-VLIW machines 

Focusing more on explictly modeling instruction sets, Huang et al. try 
to synthesize instruction sets from algorithms using the ASIA framework 
[21]. In ASIA, both the algorithm(s) and a generic micro-architecture are 
given. ASIA includes a "retargetable mapper" which maps operations 
to data path units. From this mapping, instruction sets are extracted. 
The retargetable mapper is not a real retargetable compiler, but it is 
quite similar. 

Imai et al. have designed the PEAS design system, the currently avail­
able version being PEAS-III (see section 5.4.2). This system has been 
used for designing ASIPs (Application Specific Instruction set Proces­
sors). Examples in experiments include a MIPS R3000 compatible pro­
cessor, DLX, a simple RISC controller, and the PEAS-I core. In the 
experiments, the easiness of design and modification procedure with the 
goal of improving design quality in terms of performance and hardware 
cost has been proven: It has been confirmed that the design method used 

in PEAS-III is effective to design space exploration for simple pipelined 
processors [1]. 

2.6.3 Word length optimization 

In embedded system design, standard data types of the C language are 
insufficient to describe the word length that is actually required for the 
variables. Accordingly, a number of extensions to C have been proposed 
which allow the user to exactly specify the word length for the different 
variables. 
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One particular instance of this is the Valen-C language, designed by 
Yasuura et al. [50]. Examples of variable definitions in Valen-C are 
shown in fig. 2.8, left. 

Yasuura et al. have designed a processor model called Soft-core. This 
model includes generic parameters such as the word length for data. 
This model is synthesizable for all reasonable values of these parame­
ters, resulting in the ability to automatically generate layout data. The 
tool suite comes with a retargetable compiler which can map different 
data types to the word length defined by the generic parameter. Two 
examples can been seen in fig. 2.8, center and right . 
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Figure 2.8. Mapping of Valen-C data types to hardware-supported word lengths 

Setting the generic word length parameter to different values, the 
effect of this design parameter on the resulting speed, size and energy 
consumption can be analyzed. Fig. 2.9 shows this effect. 
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It is obvious that this analysis requires a retargetable compiler. The 
compiler designed by Yasuura et al. is discussed in more detail in section 
5.4.3. 

2.6.4 Register file sizing 
The size of register files is another parameter that can be fixed during 

the design. Traditionally, decisions concerning the size of the register 
files were based on an empirical analysis. Most designers had no options 
anyway, because they had to use existing processors. Embedded sys­
tem design opens new opportunities in this context, since application­
or domain-specific processors can be used. Also, it is important to pre­
cisely analyze figures of merit such as the delay time and the energy 
consumption of register files of different sizes. 

A detailed study concerning the code size, the number of clock cycles 
and the energy consumption was done by Wehmeyer, Jain et al. [48). 
All results are for an ARM-based processor executing the THUMB in­
struction set, for which the number of registers is considered a generic 
variable. Fig. 2.10 shows an analysis of the effect of the register file size 
on the power and energy consumption. 
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Figure 2.1 0. DSE of the register file size 

An interesting observation is the fact that increasing the register file 
size from 3 to 8 can reduce the energy consumption by a factor of about 
5. 

Again, it is obvious that this analysis requires a retargetable compiler. 
In this particular case, the retargetability of the used compiler is lim­
ited and will not be discussed in more detail; it was just employed for 
demonstrating possible applications of a retargetable compiler. 
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The ARM processor issues at most one instruction per clock cycle. 
For multiple-issue machines, such as VLIW processors, a larger set of 
registers may be useful. An analysis of the effect of the number of 
registers of different figures of merit for VLIW processors was done by 
Valero et al. [8]. Fig. 2.11 shows the corresponding results. The large 
number of registers that can be used at the same time is due to the 
parallelism of the VLIW machines and due to algorithms that can be 
parallelized. 
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Figure 2.11. Number of concurrently used registers for VLIW machines 

2. 7. Micro-architectural options 
Various options also exist at the micro-architectural level. DSE at 

this level does not require the availability of a retargetable compiler, 
since these options, by definition, have no effect on the instruction set. 
However, the cost functions used by the compiler could be affected by 
decisions taken at this level. Hence, design space experiments at this 
level can mostly be performed with a compiler for a fixed architecture 
provided that this compiler can be configured using cost function defi­
nitions. 

Examples of DSE at the micro-architectural level that do not require 
retargetable compilers include 

• an analysis of the tradeoff between in-order completion and out-of­
order completion in super-scalar pipelines [35], 

• an analysis of the tradeoff between using a multiply unit and a mul­
tiply coprocessor [35]. 
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For these cases, cycle-true simulators have to reflect the details at the 
micro-architectural level. 

There is one exception, though, in which flexibility of the compiler 
is required even for changes at the micro-architectural level: if features 
are added at the micro-architectural level which require new compiler 
optimizations to be exploited. 

An example of this is the use of a scratch pad memory mapped into 
the address space, which is not visible at the instruction set level. Typ­
ically, specific optimizations have to be added to the compiler to exploit 
such a feature [45]. General optimization techniques for general mod­
els of memory hierarchies are normally not available in any retargetable 
compiler, so far. Hence, they have to be hand-coded. 

Up to a certain extent, DSE can be done with automatic synthesis 
tools. Synthesis tools can typically accept certain design constraints, like 
type and number of arithmetic/logic units (ALUs) and memory ports. 
These constraints may be sufficient to analyze designs characterized by 
these metrics. 

For designers wanting to specify further levels of detail, just specifying 
the type and the number of ports and ALUs is not enough. All the paths 
may have to be specified in order to really study the effect of different 
design options that exist. These options may include different ways of 
implementing pipelines, like this was done by De Gloria and Faraboschi 
[18]. Fig. 2.12 shows one of their results. Unfortunately, the authors 
do not provide many details about the retargetable compiler which they 
designed. 
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3. Design verification 
For architectures with heterogenous register files, it is not easy to 

always know the effect of deleting hardware resources during some opti­
mization step. It can easily happen that the designer deletes too many 
resources. Compilation can be used to check if a certain hardware can ac­
tually perform a certain operation like a transfer between two specialized 
registers. Retargetable compilers driven by some hardware description 
which allows machine registers to be referred to can check this. 

Takagi [46] described a method for checking if given register trans­
fer structures are able to execute certain register transfers. During this 
checking, the ability to provide the required control code for all func­
tional units has to be guaranteed. This means that the functionality of 
generating control code has to be implemented, even though Takagi's 
tool does not really output control code. 

In the context of the MIMOLA system, using a retargetable compiler 
for design verification was described by Nowak [32]. Also, special re­
targetable compilers can be employed for generating test programs from 
a description of test patterns to be applied to internal processor nodes 
[216] (see also section 5.5.7). 

We have now seen what retargetable compilers can be used for. In 
the next chapter, we will discuss some fundamental techniques for imple­
menting compilers in general and retargetable compilers in particular. 



Chapter 3 

SOME COMPILER TECHNOLOGY 
BACKGROUND 

Since many approaches to retargetable compilation share some con­
cepts, e.g. concerning source language frontends, intermediate represen­
tations, and basic code generation techniques, in this chapter we give 
some essential background information from a practical viewpoint. In 
particular, we will not discuss detailed algorithms, but mainly focus on 
the terminology. For more comprehensive "classical" compiler technol­
ogy background, several recent textbooks are available, such as [53, 54]. 

A general overview of compiler phases, as we discuss it here, is given 
in fig. 3.1. However, it is important to mention that there is no unique 
"one size fits all" compiler organization. Naturally, there are a lot of 
trivial dependency constraints (e.g. IR optimization must follow source 
code analysis, and register allocation must follow code selection). How­
ever, particularly the organization of optimizations at the intermediate 
representation level as well as the detailed backend organization may 
show significant variations in different compilers. This is due to the 
fact that some target processors do not require certain optimizations, 
the available compilation time may limit the amount of potential opti­
mizations, or certain passes are simply not available in a given compiler 
infrastructure. 

With respect to code optimization, which is particularly important 
for embedded systems, the compiler's capabilities are limited anyway. 
One can theoretically show that it is impossible to design a compiler 
which generates optimal code for all input programs. This means that 
we can just try to perform "as good as we can" within a reasonable 
amount of compilation time, but there will always be some improvement 
opportunities left (Appel [53] calls this the full employment theorem for 
compiler writers). 

27 
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One key approach to obtain good code quality (since we generally 
do not know the optimum, "good" mostly denotes code quality similar 
to what we can achieve by hand-coding in assembly) is to study the 
mutual dependence of compiler passes. Due to complexity1 and software 
engineering reasons, a practical compiler may be subdivided into dozens 
of separate phases, each of which may impose unnecessary restrictions 
on subsequent phases. The phase coupling approach aims at eliminating 
this problem by intermingling traditionally separate compiler phases, 
so as to generate better code. We will address this issue later in this 
chapter. 
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Semantic analysis 
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Figure 3.1. Coarse compiler phase organization 

1. Frontend 

Assembly 
code 

The task of the source language frontend is to analyze a given source 
program, check for errors, and (in case of a correct input) generate an 
intermediate representation (IR) for the subsequent compiler passes. A 
frontend typically comprises the following three phases: 

Lexical analysis. Initially, the input program is nothing but a string 
of ASCII characters. Lexical analysis recognizes substrings from the 
input stream and combines then into tokens. Each token denotes a 
primitive element of the source language, e.g. a keyword, a number, an 

1 Many subtasks in code generation, such as global register allocation, scheduling under re­
source constraints, and address code optimization, are known to be NP-hard. The set N P 
includes all decision problems that can be solved in polynomial time by a nondetermin­
istic Thring machine, while P is the corresponding set for deterministic Thring machines. 
A decision problem II is NP-complete, if II E NP, and II is "at least as difficult" as all 
other problems in NP, which can be formally proven by constructing a polynomial-time 
transformation between problems. Here, we usually have to deal with optimization prob­
lems. Optimization problems with cost functions, that can be computed in polynomial time, 
can be solved in polynomial time, if their decision counterpart can be solved in polynomial 
time. Optimization problems with an NP-complete decision counterpart are called NP-hard. 
For the detailed theory cf. [192]. Exactly solving NP-hard and NP-complete problems most 
likely requires exponential-time algorithms (unless P = N P, which is a major open problem 
in complexity theory). 
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identifier, or an operator symbol. While tokens for keywords or operators 
are simply represented by integer numbers, identifier or number tokens 
are attributed, e.g. with a string or a numerical value. 

Most primitive language elements can be represented by regular ex­
pressions, which can be parsed by means of finite state machines (FSMs). 
The FSM reads input characters and stores them in its internal states, 
until some language element (e.g. a "while" keyword or a floating point 
number) has been recognized. Then it emits the corresponding token, 
and returns to its initial state to parse the next input word. 

As a by-product, lexical analysis also suppresses white spaces, new­
lines, and tabs from the input. A special handling is usually required for 
comments that show a "balanced parentheses" structure {like "/* ... * /" 
in C or "(* ... *)" in PASCAL). These cannot be directly parsed with 
FSMs due to their finite number of states, but can easily be handled 
with special support functions. 

Tools performing lexical analysis are called scanners. Scanners can 
conveniently be built with the widespread UNIX tool LEX. LEX reads 
a lexical specification in the form of a list of regular expressions and 
generates C code for the corresponding FSM that recognizes these ex­
pressions. Fig. 3.2 shows a part of a LEX specification for the ANSI C 
language. The interface to the FSM generated by LEX is the "yylex{)" 
function. The syntax analyzer calls it each time it requires a new token. 

Syntax analysis. While lexical analysis views the input program as 
a string of regular expressions, the syntax analyzer, or parser, considers 
it as a token string produced by the scanner. The parser analyzes the 
syntactic structure of the token string w.r.t. an underlying context free 
grammar 

G = (T,N,R,S) 

where T is a finite set of terminals {the set of possible tokens), N is a 
finite set of nonterminals, and S E N is the start symbol. The rule set 
R contains rewrite rules of the form 

X---+ (TUN)* 

i.e., X can be replaced by a string of symbols from T and N. The term 
context free denotes that X has to be a member of set N. As a result, 
the parser produces a parse tree, that represents a derivation of the input 
program from G's start symbol. 

Context free grammars cannot be parsed by FSMs but require stack 
automata. One way to implement a stack automaton for grammar G 
is to read one input token after another, in left-to-right order, from 
the scanner, and in each step to perform one out of two possible actions: 
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II declaration of some special regular expressions 
D [0-9] II decimal digits 
IS (uiUiliL)* II integer suffixes 

II C declaration part 
%{ 
II token definitions 
#define AUTO 290 
#define REGISTER 291 
#define CASE 292 
#define CHAR 294 
#define BREAK 319 

%} 

II regular expression list 
%% 
II C keywords 
11 auto 11 

"break" 
11 case 11 

11 char 11 

"const" 
"continue" 

{ return(AUTO); } 
{ return(BREAK); } 
{ return(CASE); } 
{ return(CHAR); } 
{ return(CONST); } 
{ return(CONTINUE); } 

II integer constant is a string of decimal digits, 
II followed by optional suffix 
{D}+{IS}? { return(INT_CONSTANT); } 
II C operators 

11&::11 

u-=n 

"I=" 
">>" 
"((II 

{ return(AND_ASSIGN); } 
{ return(XOR_ASSIGN); } 
{ return(OR_ASSIGN); } 
{ return(RIGHT_OP); } 
{ return(LEFT_OP); } 

Figure 3.2. Partial LEX specification for ANSI C 

shift or reduce. "Shift" means the current input token is pushed onto the 
stack for later use, while "reduce" denotes the application of a grammar 
rule from R. Which action is to be taken can be determined from the 
current stack contents, the current input token, and some lookahead on 
the remaining token stream. For instance, consider the case that the 
input character sequence is a C assignment like 

X = X + 1; 

for which the scanner would generate the token sequence 
<id> <eql> <id> <plus> <canst> <semicolon> 
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The parser reads the tokens and performs shift actions until the expres­
sion "x + 1" has been found, which can be reduced to an "<expr>" 
nonterminal: 

<id> <plus> <const> -+ <expr> 
The "expr" nonterminal replaces the sequence "<id> <plus> <const>" 
on the top of stack. Now, when reading the next token "<semicolon>" 
the parser knows that a statement has been finished and reduces the 
whole token sequence to an assignment nonterminal: 

<id> <eql> <expr> <semicolon> -+ <asgn> 
Writing parsers manually is a tedious job, but fortunately it can be 

automated by LEX's sibling tool YACC [55] (or some more recent ex­
tensions like GNU's FLEX and BISON tools). YACC reads a context 
free grammar specification and generates C code for a corresponding 
shift-reduce parser. A example for an ANSI C parser is given in fig. 3.3. 

The interface to the YACC-generated parser is the "yyparse()" func­
tion. After setting up the input file, a call to this function from the 
compiler driver program generates the complete parse tree. In case a 
syntax error is encountered during parsing, a user-defined "yyerror()" 
function is called, which can be used to emit a detailed error message. 
YACC also shows limited support for error recovery, which allows to 
continue parsing even after an error has occurred, so as to accelerate the 
usual edit-and-compile cycles during program development. 

Semantic analysis. Programming languages like C are not completely 
context free, but are actually context sensitive. However, parsing context 
sensitive grammars is much more complicated, and the above approach 
with context free grammars works well in practice if we perform addi­
tional analyses with special support functions. In an ANSI C compiler, 
analysis tasks which are typically not part of the parser but are per­
formed afterwards within a dedicated semantic analysis phase include 
the following: 

• Book-keeping for symbol declarations, including data type, storage 
model, and scope. 

• Checking for correct operand type combinations in expressions. 

• Checking whether an assignment has an "lvalue" on its left hand side, 
e.g. assignments to constants, complete arrays, and functions are not 
allowed in C. 

• Checking whether target labels of "goto" statements are defined in 
the current function. 
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II token declarations, these are automatically converted 
II into #defines for the LEX spec 
%token IDENTIFIER CONSTANT STRING_LITERAL SIZEOF 
%token PTR_OP INC_OP DEC_OP LEFT_OP RIGHT_OP LE_OP GE_OP EQ_OP NE_OP 
%token AND_OP OR_OP MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN ADD_ASSIGN 

II grammar rules, nonterminals are implicitly declared 
%% 
II primary expression 
primary_expr 

identifier 
CONSTANT 
STRING_LITERAL 
' (' expr ')' 

II expression with postfix operator 
postfix_expr 

primary_expr 
postfix_expr '[' expr ']' II array access 
postfix_expr ' (' ')' I I function call 
postfix_expr '(' argument_expr_list ')' II function call 
postfix_expr ' ' identifier II struct access 
postfix_expr PTR_OP identifier II indir struct access 
postfix_expr INC_OP II post-increment 
postfix_expr DEC_OP II post-decrement 

II unary operator with expression 
unary_expr 

postfix_expr 
INC_OP unary_expr 
DEC_OP unary_expr 
unary_operator cast_expr 

II pre-increment 
II pre-decrement 
II unary operation 

Figure 3.3. Partial YACC specification for ANSI C 

It is convenient to partially integrate semantic analysis into syntax 
analysis by means of attribute grammars. An attribute grammar is con­
structed "on top" of a context-free grammar G = (T, N, R, S). In an 
attribute grammar, all symbols s E T U N are annotated with an at­
tribute set A(s). An attribute a E A(s) can be considered as a container 
for semantical information about a symbol, such as its type or scope. 

The value of an attribute a E A(s) is determined by an attribute defi­
nition D(a), an equation attached to a grammar rule in which a occurs. 
Attributes fall into two classes: synthesized and inherited attributes. An 
attribute a E A(s) is called synthesized, if sis a nonterminal on the left 
hand side of the rule, and its definition only depends on attributes of 
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grammar symbols on the right hand side of the same rule. Conversely, 
inherited attributes belong to symbols on the right hand side of a rule 
r, and their value only depends on attribute values of r's left hand side. 
As an example, consider the ANSI C grammar rule 

jump_statement: BREAK';' 

where "jump_statement" is a nonterminal and "BREAK" and ";" are 
terminals, or tokens. One attribute we would typically like to add to 
"jump_statement" is a flag "correct" that signals whether or not a 
given jump statement is semantically correct, so that we can emit an 
error message if required. In our little example, the jump statement is 
obviously correct, if it is a correct "break" statement (this statement is 
used in C for "unstructured" termination of loops). So, the attribute 
"jump_statement. correct" has to be synthesized from BREAK's correct­
ness attribute, which leads to the attribute definition 

jump_statement.correct = BREAK.correct 

When is the "break" statement correct, though ? In case there is no 
syntax error (which would cause an error message already in the parser), 
it has to be ensured that the "break" is located inside of a loop. The 
"break" statement itself does not know this, so we need to pass this 
information by means of an inherited Boolean attribute, say "inloop", 
which signals whether the jump statement is part of a loop (i.e. it is 
contained in a FOR, WHILE, or DO compound statement): 

BREAK.inloop = jump_statement.inloop 

Now, we can easily give the attribute definition for the correctness of 
"BREAK" 

BREAK.correct = BREAK.inloop 

which makes our attribute definitions complete. 
Any useful attribute grammar for semantic analysis needs both syn­

thesized and inherited attributes. While YACC only provides some 
support for synthesized attributes, there are several attribute grammar 
processing tools available, that permit the automatic generation of in­
tegrated parsers and attribute evaluators. An example is OX [56], an 
extension of LEX and YACC. From an attribute grammar specification, 
OX generates normal LEX and YACC specifications while including C 
code for attribute evaluation and hence semantic analysis. Amongst 
others, OX has been used to develop the C frontend for the LANCE 
compiler system (see section 5.1.7). More details can be found in [93]. 
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As the frontend is almost completely machine independent, it is ob­
viously perfectly retargetable to different processors. In order to gen­
erate an intermediate representation for a concrete machine, it merely 
requires some parameters, like endianess, type bit widths, and memory 
alignment. 

2. Intermediate representation 
After successful analysis, the output of the frontend is an intermediate 

representation (IR) of the input source code. The IR can be generated 
from the parse tree in a post-frontend pass or by means of synthesized 
attributes when using the above attribute grammar approach. 

The main purpose of the IR is to provide a clean and simple data 
structure that supports IR optimization passes as well as code genera­
tion in the backend. Some important IR formats are described in the 
following. 

Three address code. While source programs written in languages 
like C may show a very complex structure, three address code provides 
a much simpler view of the program, where all statements (except for 
function calls with multiple arguments) have at most three operands: up 
to two arguments and one result. Any source program can be lowered 
down to three address code by inserting auxiliary variables or tempo­
raries, that store intermediate results of complex computations. As an 
example, consider the C assignment 

x = a + b - c * d 

which translates to three address code as follows: 

t1 = a + b 
t2 = c * d 
X = t1 - t2 

Three address code is convenient for implementing data flow analysis 
and IR optimization tools. However, for certain purposes it is advanta­
geous to have a more high-level IR that retains control structures like 
loops and conditionals, because otherwise these need to be reconstructed 
from the three address code. A high-level IR facilitates loop transforma­
tions and control code optimizations. Muchnik [54] even proposes three 
IR formats at different abstraction levels. The description of the SUIF 
and LANCE compiler systems in chapter 5 provides examples for several 
IR formats. 
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Control/ data flow graphs. While three address code is essentially 
just another textual representation of the source code, flow graphs pro­
vide more explicit information about the program semantics and hence 
open more optimization opportunities. We can certainly generate ma­
chine code directly from three address code with a statement by state­
ment translation scheme, but the result would be very poor in terms of 
code quality. 

First of all, the control flow needs to be analyzed. Normally, this is 
done on a function-by-function basis. TheIR of a function is split into 
basic blocks. A basic block 

B = (s1, ... ,sn) 

is a sequence of IR statements of maximum length that meets two con­
ditions: 

• B can only be entered at statement s1 , and 

• B can only be left at statement Sn. 

Thus, if statement s1 is executed, then it is guaranteed that all other 
statements in Bare executed as well. This property is important, since it 
allows to partially rearrange (e.g. during code selection or scheduling) the 
computations in B without causing undesired side effects. Identifying 
the basic blocks in a three address code IR of a function can be easily 
done by looking for statements that have an impact on control flow, i.e. 
labels, as well as goto and return statements. 

The control flow graph ( CFG) is a data structure that visualizes all 
possible flows of control between the basic blocks of a function. For some 
function F, the CFG is a directed graph GF = (V,E), where each node 
bi E V represents one ofF's basic blocks, and each edge e = (bi, bj) E 
E ~ V x V represents the fact that block bj might be executed directly 
after block bi. The CFG can be constructed immediately once the basic 
blocks have been identified. Fig. 3.4 shows a CFG for a sample function 
visualized by means of the VCG graph display tool [57]. It contains 7 
basic blocks, each of which is represented in the form of three address 
code. Nodes with two outgoing edges represent blocks that end with a 
conditional jump, while blocks with a fanout of one end with a "goto" or 
just "fall through" into the next block. Finally, blocks without outgoing 
edges have a "return" statement at the end. In case the CFG is not fully 
connected, there is unreachable code, which can be eliminated without 
changing the program behavior. 

Within the scope of a single basic block, it is not useful to introduce 
control flow dependencies, since this would restrict optimization oppor­
tunities. Instead, here we are more interested in the data dependencies 
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Figure 3.4- Sample control flow graph 

between the statements, since these have a strong impact on code gen­
eration. For some block B = (s1, ... , sn) we say that statement Sj is 
data dependent on statement Si, with i < j, if Si defines a value used in 
Sj, so that Si needs to be executed before Sj in the machine code. 

Data flow analysis (DFA) is the process of computing the data depen­
dencies. Local DFA (within the scope of basic blocks) is relatively easy 
if we neglect load/store dependencies and function calls with potential 
side effects and just focus on the local variables. Then the relation­
ship between value definitions and uses can be determined on the basis 
of symbol names by tracing back each use to its last definition in the 
current block. However, we must conservatively assume that each store 
and each function call potentially manipulate all local variables whose 
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Figure 3.5. DFG representation of a basic block 

address is being computed (e.g. by the C operator "&"). Otherwise, a 
more complex alias and interprocedural analysis is required. 

The result of local DFA is a data flow graph (DFG). A DFG for a 
basic block B is a directed acyclic graph G B = (V, E), where each node 
v E V represents 

1 a primary input (variable or constant), or 

2 an operation, or 

3 a primary output (variable). 

An edge e = (Vi, Vj) E E C V x V represents the fact that the value 
defined by Vi is used by Vj· Note that in the DFG model all temporary 
variables from the three address code are transformed into graph edges. 
Fig. 3.5 shows an example DFG for the following basic block (a, b, and 
c are assumed to be global variables, read via LOAD operations). 

t1 = a + b; 

t2 = 3 * Cj 

t3 = t1 - t2; 
t4 = t3 > 10; 
if (t4) goto L1; 

In the special case that the DFG is connected and no node has a 
fanout larger than one, we call it a data flow tree (DFT). DFTs are free 
of common subexpressions, and they are the basic data structures for 
many code selection techniques. 

If the CFG and DFG data structures are mixed, so that each CFG 
node represents a DFG instead of a basic block, the graph is called a 
control/data flow graph (CDFG). Note that the use of the CDFG data 
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structure is not necessarily limited to the IR level. It is frequently used 
also for optimization at the assembly level in the backend. In this case, 
the DFG nodes represent concrete machine instructions instead of ab­
stract machine independent operations. 

Global data flow analysis. The local data flow analysis (DFA) men­
tioned above is insufficient for many purposes, particularly for several 
important IR optimizations. Global DFA determines the data depen­
dencies within the scope of an entire function. Since within the CFG 
control flow may join at certain blocks, in general there can be multiple 
definitions reaching a certain use of a variable. In order to check, for 
instance, whether a variable is guaranteed to be constant at a certain 
program point, all its definitions, possibly contained in other blocks, 
have to be investigated. Likewise, all potential uses of some definition 
have to be known in order to identify redundant code. 

One way to perform global DFA is to embed the local DFA into an 
iterative work list algorithm that considers all basic blocks. At the be­
ginning, all blocks are inserted into the work list. For each block B, DFA 
is performed for each control path into B found in the CFG. In case of a 
cyclic CFG (containing loops), in general multiple DFA iterations over 
the same block are required. Whenever a change in the previous data 
flow information for some block has been detected, its CFG successors 
are inserted into the work list again in order to propagate the new in­
formation. The process continues until the work list is empty and a fix 
point has been reached. For more details and alternative methods for 
global DFA, see e.g. [54, 58] 

IR transformations and optimizations. There are many possible 
compiler passes that transform the IR in a machine independent way. 
Some transformations (which we call optimizations) result in shorter or 
faster IR code, while others just rewrite the IR in order to generate opti­
mization opportunities for other passes or the backend. In the following 
we mention some frequently used IR transformations. 

Function inlining: Replacement of function calls by copies of the bod­
ies of the called functions. This reduces the calling overhead and per­
mits better optimization opportunities for further passes. However, 
code size may increase significantly. 

Static single assignment: In case theIR is in a form such that each 
variable statically has a unique definition, it is said to be in static 
single assignment (SSA) form. SSA form simplifies data flow analysis 



Some compiler technology background 39 

and may also be beneficial for reducing spill code during register 
allocation. 

Loop unrolling: Loops can present an obstacle to instruction sched­
ulers for instruction-level parallel processors. Partially duplicating, 
or unrolling, the loop body can help, since it increases the basic block 
size of loop bodies and exhibits more parallelism. 

Loop invariant code motion: Moving loop invariant computations 
outside of the loop. This can result in a significant performance 
gain for loop intensive applications. 

Induction variable elimination: Given some loop counter variable 
i running from i1 to in during loop execution, any variable j that 
shows a linear dependence on i of the form j = k · i + c, for constant 
k and c, is called an induction variable. These frequently arise in the 
IR from scaled indices in array accesses. The potentially expensive 
multiplication can be eliminated by initializing j with k · i1 + c and 
incrementing j by k in each iteration (assuming a step width of one 
for variable i). 

Constant folding: Compile-time constant expressions can be replaced 
by the computed values. Care has to be taken to avoid undesired 
side effects due to finite word length effects or arithmetic exceptions. 

Constant propagation: Variables known to have a constant value at 
a certain program point can be replaced by that constant. This might 
give additional opportunities for constant folding. 

Copy propagation: A copy operation is an assignment of the form 
"a = b" for two variables a and b. Subsequent uses of a can thus be 
replaced by uses of b, provided that a cannot get redefined in between. 
Dead code elimination may later remove the copy operation. 

Common sub expression elimination: Identical computations at dif­
ferent program points can be replaced by a single computation whose 
result is stored in a temporary variable, so that it can be reused. 
Care has to be taken for machines with few registers, since aggressive 
common subexpression elimination can lead to a huge amount of spill 
code. 

Dead code elimination: Computations whose results are never needed 
(and which do not show side effects) can be safely eliminated from 
the program. 
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Reassociation: Reordering of arithmetic expressions by application of 
algebraic transformations, so as to enable better opportunities for 
constant folding. 

Jump optimization: Removal of jump chains, redundant jumps, min­
imization of unconditional jumps, and unreachable code elimination. 

Clearly, many of the above transformations have an impact on each 
other, and usually multiple iterations are required to achieve the best re­
sult. With respect to retargetability, there is usually some degree of mu­
tual dependence with the backend: Even though the IR itself is mostly 
machine independent, different machines may benefit from different IR 
transformation procedures. 

3. Backend 
3.1. Code selection 

Once the compiler enters the backend, it starts dealing with machine 
specific aspects. Code selection is typically the first backend phase and 
maps machine independent IR statements and operations into machine 
specific processor instructions. Several implementation choices are de­
scribed in the following. 

Statement based code selection. The simplest way to perform code 
selection is to start with three address IR code and to translate each 
IR statement into equivalent assembly instructions step by step. This 
is particularly easy to implement due to the simple structure of three 
address code. However, this approach is not always likely to produce op­
timal results, since it might be possible to cover multiple IR statements 
with a single instruction. A typical example is the multiply-accumulate 
(MAC) instruction in DSPs, which performs a single-cycle multiply and 
add operation in a chained fashion. On CISC processors, complex mem­
ory addressing modes, such as "base plus offset" can be exploited to 
implement multiple IR statements with a single instruction. 

Another problem arises if the target machine has special purpose reg­
isters. Since the machine instructions communicate via registers, it has 
to be ensured that there is not too much overhead due to register-to­
register data move operations, but the statement based approach cannot 
take this into account during code selection. For RISC targets with ho­
mogeneous register files, however, statement based code selection can 
give satisfactory results, since there are hardly complex instructions, 
and late improvement of the selected code is still possible by means of 
peephole optimization. 
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Tree based code selection. In case of target machines with complex 
instructions and/or special purpose registers, a tree based approach to 
code selection is more favorable, which works on data flow trees (DFTs) 
as introduced in section 3.2. As exemplified in fig. 3.5, a DFT generally 
represents a complex computation, that covers multiple IR statements at 
a time. DFTs can be constructed either directly from three address code, 
or by first constructing a data flow graph (DFG), followed by splitting 
the DFG at its common subexpressions, which results in a forest of 
DFTs. 

Today's most common approach to code selection is tree parsing, 
which can be efficiently implemented by tree pattern matching and dy­
namic programming [59, 60, 61]. The target instruction set is modeled 
as a tree grammar 

G = (T,N,R,S,w) 

where T is a set of terminals, N is a set of nonterminals, R is a set of 
rules, S E N is the start symbol, and w : R --+ R is a cost metric for 
rules, which may reflect optimization goals like code size, performance, 
or power consumption. 

Intuitively speaking, the nonterminals in N are mostly used to model 
hardware resources that can store data (registers, memories), while the 
terminal set T is used to represent operators and constants in a DFT. 
The grammar rules in R can be used to derive DFTs from the start 
symbolS. Like for usual string grammars, a derivation step in G means 
to replace the occurrence of a nonterminal n E N in a tree by another 
tree T, which is possible if the rule n --+ T is in R. The tree language 
L( G) generated by grammar G is equal to the set of all possible DFTs. 

The rules p E R are generally used to model the behavior of an in­
struction in the form of a small tree pattern. For instance, for an ADD 
instruction that computes the sum of two register contents and assigns 
the result to another register, the rule 

reg--+ PLUS(reg,reg) 

would be used, where reg E N and PLUS E T. Concerning the language 
generated by grammar G, this rule allows to derive a subtree with a root 
labeled PLUS and two subtrees from reg. Conversely, if we talk about 
tree parsing, the rule can be used to reduce a subtree rooted by PLUS 
and two subtrees (that have already been reduced to reg) to nonterminal 
reg. In any case, using the rule means to instantiate an ADD instruction 
during code selection. 

Since grammar rules essentially model instructions, the task of code 
selection for a DFT T is equivalent to finding a derivation in G for T 
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from the start symbol S. Since the rules in R are weighted by function 
w, there are optimal derivations, i.e., derivations such that the sum over 
the weights w(p) over all instances of rules p used in the derivation is 
minimal. 

Using tree parsing, an optimal derivation for a DFT T can be found 
as follows: In a bottom-up traversal, all nodes x in T are labeled with a 
set of triples (n,p, c), where n E N, p E R, and c E IR . These triples 
represent the fact that node x can be reduced to nonterminal n at a total 
cost of c with rule p. The rule p implicitly determines the nonterminals, 
which the subtrees of node x (if any) must be reduced to in order to 
make p applicable for x. In general, multiple triples are annotated to x, 
which represent alternative derivations. 

When the root of T has been reached, all alternative derivations po­
tentially leading to an optimum are known. One optimal derivation is 
now explicitly constructed in a top-down traversal ofT. For the root 
node, the triple (S,p, c) is selected (S is the start symbol), for which c 
is minimal over all alternative triples at the root. In turn, rule p now 
implies the optimal derivations for the subtrees at the next lower level 
in T, since the nonterminals which they must be reduced to are iden­
tical to the nonterminals on the right hand side of p. This traversal is 
recursively continued until the leaves of T have been reached and the 
derivation has been completely emitted. An example for this process is 
given in fig. 3.6. 

Though tree parsing generally does not produce globally optimal so­
lutions, it shows a number of important advantages: 

1 It requires only linear time in the DFT size. 

2 It selects an optimal set of instruction pattern instances for each single 
DFT. 

3 It allows for modeling complex instructions and special purpose reg­
isters. 

These characteristics make tree parsing a very popular technique for 
code selection. In chapter 5 we will see that different variants have actu­
ally been used in many retargetable compilers. Moreover, we will present 
some tools for automatic generation of tree parsing code selectors from 
grammar specifications, which make tree parsing easily retargetable. 

Graph based code selection. Code selection can result in better 
solutions if it is generalized towards data flow graphs (DFGs) with com­
mon subexpressions (CSEs). The reason is that splitting DFGs at the 
CSEs, so as to obtain DFTs, can impose unfavorable restrictions. An 
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Figure 3.6. Example for tree parsing: a) Tree grammar specification, b) DFT with 
annotated nonterminal/rulefcost triples. There are two alternatives, ADD and MAC, 
for the root. MAC is selected, because it covers two operations at a time and therefore 
results in a cheaper derivation with a cost of 12 instead of 13 for ADD. c) Optimum 
derivation tree 

example is given in fig. 3.7. Part a) shows a sample DFG with the mul­
tiply node being a CSE with two uses. In a tree based approach, the 
DFG would be split into two DFTs, where the multiply DFT writes its 
result into some storage resource (shaded box in part b), and the second 
DFT with the two add operations reads that value twice. Suppose, the 
target machine offers add, multiply, and MAC instructions with equal 
costs. Then, three instructions (one multiply, two adds) are required to 
implement the DFTs from fig. 3.7 b). However, as shown in fig. 3.7 c), 
there is a cheaper solution that results from duplicating the CSE and 
using two MACs for covering. 

Another aspect of DFG based code selection is that it can lead to 
a better exploitation of special purpose registers with fewer data move 
instructions between the DFTs. While graph based code selection can 
result in significantly better code for irregular target architectures like 
DSPs, the computational complexity is unfortunately much higher than 
in tree parsing. Generally, optimal DFG based code selection is an NP­
hard problem (58] and hence (most likely) requires exponential worst­
case runtime. However, sometimes heuristic search strategies can be 
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Figure 3. 7. Code selection for DFGs: a) sample DFG, b) conventional splitting into 
two DFTs, c) duplicating the CSE to exploit two MAC instructions 

applied to guarantee a reasonable amount of runtime while still achieving 
good results. Examples are given in [189, 62]. For a class of regular 
target processors, even exact solutions can be computed efficiently by a 
generalization of the tree parsing approach [63]. 

Global code selection. Naturally, the best results can be achieved 
when performing code selection in a global context, i.e. within the scope 
of an entire procedure or function. As illustrated in fig. 3. 7, for instance, 
it can be favorable to duplicate CSEs. However, some CSE used in a 
DFG could also be defined in a different basic block, which is not visible 
when performing local code selection. Hence, there is a tight dependency 
between code selection and global CSE elimination at the IR level. 

Special care has to be taken in case of code selection across basic block 
boundaries. As has been exemplified in the previous sections, machine 
instructions may be selected that span multiple IR statements. Such a 
selection is generally only valid within the scope of basic blocks. In case 
of an instruction covering statements from different blocks, undesired 
side effects may occur, since the dynamic control flow between blocks is 
generally not known at compile time. 

3.2. Scheduling 
Code selection maps a program into assembly instructions but it does 

not assign concrete execution times to instructions. This is the task of 
instruction scheduling. However, the term scheduling is used in differ­
ent meanings, and many compilers in fact employ multiple scheduling 
passes in the backend. We can coarsely distinguish scheduling tech­
niques that work on sequential code, while others deal with exploitation 
of instruction level parallelism. Likewise, there is a distinction between 
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local schedulers (working at the basic block level) and global schedulers 
operating on a loop or even an entire function. 

The most common data structure for local scheduling is a dependency 
graph (DG), i.e. an edge-weighted directed acyclic graph G = (V, E, w). 
Each member of the node set V represents an instance of some machine 
instruction. The edges e = (vi,Vj) E E ~ V x V denote scheduling 
dependencies, which exist in three forms: 

Data dependence: Vi defines a value used by Vj. Therefore, Vi has to 
be scheduled before Vj. Data dependence edges correspond to the 
DFG edges described in section 3.2. 

Anti-dependence: Vi writes to some storage resource R, and Vj reads 
from R but uses a value defined by a different instruction. Therefore, 
Vj must not be scheduled after Vi· In case the target processor permits 
writing and reading a register within a single cycle, Vi and Vj may be 
scheduled in the same cycle. 

Output dependence: Vi and Vj write to the same storage resource R. 
Then, the schedule must preserve the original ordering of Vi and Vj 

imposed by the IR code. 

A scheduler assigns a start time t( v) to each node v E V. Generally, 
the goal is to construct a schedule with minimum total execution time. 
Any DG edge e = (Vi, Vj) has a weight w( e) that denotes the minimum 
start time difference between t(vj)- t(vi) in a valid schedule. Thus the 
DG edges, together with the available amount of processor resources, 
impose the constraints for the scheduler. The instruction I represented 
by Vi may take multiple cycles to generate its result, sot( Vj)- t( vi) may 
be an arbitrary integer number. 

It might be the case that new instructions can be issued before I has 
been completed. In this case, we say that I has delay slots, which should 
be exploited during scheduling by filling them with useful instructions 
instead of no-operations (NOPs). For instance, RISCs frequently have 
jump instructions with delay slots, which arise from instruction pipelin­
ing. Jump delay slots can be represented in the DG by edges with a 
negative weight. 

Sequential scheduling:. In case of a target processor without in­
struction level parallelism, the task of the scheduler is to define a linear 
ordering of instructions, based on a topological sort of the DG. As the 
resource constrained scheduling problem is generally NP-hard [192], a 
number of heuristics are in use [114). 
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Perhaps the most popular one is list scheduling, an effective class of 
scheduling algorithms with a worst case execution time quadratic in the 
number of DG nodes. It is based on the notion of the ready set. This 
set denotes all DG nodes ready to be scheduled at a certain point of 
time, since all its DG predecessors have already finished execution. At 
the beginning, the ready set consists of all primary DG inputs, and it 
changes dynamically when removing DG nodes that have already been 
scheduled. In each step, the list scheduler heuristically picks one of 
the ready set members and appends it to the partial (initially empty) 
schedule constructed so far. The ready set is updated accordingly, and 
the process is iterated until all DG nodes have been scheduled. The 
schedule quality critically depends on the heuristic for selecting one of 
the ready nodes. 

Another aspect of sequential scheduling is that the register alloca­
tion phase described in section 3.3.3 requires to know the live range of 
values in a program, which depends on the linear order of instructions. 
Even though scheduling is not necessarily to be fully performed before 
register allocation, at least some form of sequential scheduling has to be 
done before register allocation can take place. From a register allocation 
viewpoint, this scheduling should be performed in such a way that value 
life times are minimized. 

Code compaction:. Local scheduling is frequently referred to as code 
compaction, if the target processor is a VLIW -like machine showing in­
struction level parallelism. Furthermore, code compaction frequently as­
sumes that all required instructions, including spill code (section 3.3.3) 
and address code (section 3.3.4), have already been generated, making 
code compaction typically a late compiler pass. 

Essentially the same techniques as for sequential scheduling can be 
used, but the scheduler is also responsible for exploiting the parallel 
functional units (FUs), so as to achieve the highest performance. In case 
of alternative FUs, capable of implementing the same set of instructions, 
FU assignment is a non-trivial task. A simple, yet effective, heuristic to 
optimize FU utilization in this case is version shuffiing [114]. 

Software pipelining:. A major compiler problem with highly parallel 
VLIW-like processors is to keep the large number of functional units 
(FU s) busy, even though typical application programs do not show a 
high degree of potential parallelism. Software pipelining [64] is a very 
effective assembly-level loop scheduling technique that maximizes FU 
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utilization for loop bodies. As an example, we consider the TI C6x, a 
VLIW DSP with 8 parallel FUs, whose coarse data path is shown in fig. 
3.8. 

cluster A cluster B 

A register file B register file 

data bus 

Figure 3.8. Data path of a TI C6x VLIW processor 

Consider the following C function for dot product computation. Here, we 
have unrolled the loop body once to exhibit some intra-loop parallelism. 

int dotp(short a[], short b[]) 
{ int sumO, sum1, i; 

} 

sumO "' sum1 "' 0; 
for (i "' 0; i < 100; i +"' 2) 
{sumO+"' a[i] * b[i]; 

sum1 +"' a[i+1] * b[i+1]; } 

return sumO + sum1; 

A C6x assembly code for the dot product loop is shown below. Despite 
the unrolling the FU utilization is still low, as only few operations are 
executed in parallel (denoted by "II"). However, the code is in fact 
performance-optimal for the given loop structure. It requires 9 cycles 
per iteration, thus (for 50 iterations) a total of 450 cycles. 

mnemonic FU operands 

LDH .D2 *++B4(4),B6 II load 16 bit 
II LDH .D1 *++A4(4),A5 II load 16 bit 

LDH .D2 *+B4(2),B5 II load 16 bit 
II LDH .D1 *+A4(2),A6 II load 16 bit 

SUB .12 B0,1,BO II decrement loop counter 
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[ BO] B .S1 12 II branch if zero 
NOP 1 II empty delay slot 
MPY .M1X B6,A5,A5 II multiply 
MPY .M1X B5,A6,A6 II multiply 
NOP 1 II empty delay slot 
ADD .11 A6,AO,AO II compute sumO 

II ADD .S1 A5,A3,A3 II compute sum1 

The weak FU utilization can be clearly seen when illustrating the 
schedule by means of a simple reservation table that shows the FU oc­
cupation by the different instructions over the timeT (fig. 3.9). 

FU/T 0 1 2 3 4 5 6 7 8 
D1 LDH LDH 
D2 LDH LDH 
Ml MPY MPY 
M2 
Ll ADD 
L2 SUB 
Sl B ADD 
82 

Figure 3. 9. Reservation table for dot product loop body 

Software pipelining optimizes FU utilization by initiating new loop 
iterations before previous ones have been completed. In a software 
pipelined loop, multiple iterations from the original source code are si­
multaneously active, each in a different stage of completion. 

On the TI C6x, for instance, a LOAD instruction has a delay of 5 
instruction cycles, a branch (B) takes 6 cycles, and a MPY needs 2 
cycles before its result is valid. However, new instructions may be issued 
earlier, since the FU executing an instruction is (virtually) occupied only 
for a single cycle. Exploiting these delay slots, we can issue two LOADs 
in each cycle, and a MPY each time a LOAD pair has been finished 5 
cycles later. Then, we get a reservation table as shown in fig. 3.10. 

As can be seen, the FU utilization gets higher, and from cycles 7 
and 8 onwards, once the software pipeline is in a "steady state", the 
schedule repeats periodically every two cycles. The code from cycles 0 
to 6 needs to be executed once and is called the prologue. Likewise there 
is an epilogue (not shown) for finally cleaning up the pipeline. The code 
from cycles 7 and 8, however, becomes the new loop kernel, which thus 
needs only two cycles per iteration. Including prologue and epilogue, 
the dot product computation time is reduced to 106 cycles only, indeed 
a significant improvement over the above version. 
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FU/T 0 1 2 3 4 5 6 7 8 
D1 LDH LDH LDH LDH LDH LDH LDH LDH LDH 
D2 LDH LDH LDH LDH LDH LDH LDH LDH LDH 
M1 MPY MPY 
M2 MPY MPY 
L1 ADD 
L2 SUB SUB SUB ADD SUB 
S1 B B B 
S2 

FU/T 9 10 11 12 13 14 15 16 17 
D1 LDH LDH LDH LDH LDH LDH LDH LDH LDH 
D2 LDH LDH LDH LDH LDH LDH LDH LDH LDH 
M1 MPY MPY MPY MPY 
M2 MPY MPY MPY MPY MPY 
L1 ADD ADD ADD ADD 
L2 ADD SUB ADD SUB ADD SUB ADD SUB ADD 
Sl B B B B B 
S2 

Figure 3.10. Reservation table for software pipelined dot product loop body 

The disadvantage of software pipelining is a potential increase in code 
size, due to the prologue and epilogue code. Additionally, there is a 
possible need to perform a run-time check whether there are enough 
loop iterations to make the software pipeline applicable, or whether a 
non-pipelined code version has to be used. 

Global scheduling:. Local and loop scheduling techniques like soft­
ware pipelining do not help much in case of control-dominated code, 
where the control flow graph (CFG) consists of a large number of small 
basic blocks. Small blocks are very unlikely to exhibit enough paral­
lelism to ensure good resource utilization for a VLIW processor. Global 
scheduling techniques, such as Trace Scheduling [65], aim at eliminating 
this bottleneck by allowing instructions to be moved over basic block 
boundaries. 

This works roughly as follows: By means of profiling, one can identify 
critical paths in the CFG. The sequence of basic blocks along such a 
path is called a trace. Neglecting the block boundaries, Trace Schedul­
ing compacts a trace by means of a local scheduling algorithm, as if it 
were a single large basic block. Generally, this will give a much denser 
schedule for the trace than what would result from locally scheduling 
the blocks one by one, so that the critical path is shortened. However, a 
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lot of undesired side effects may be incurred by moving instructions out 
of their original blocks. Therefore, compensation code has to be inserted 
(e.g. by duplicating instructions) that "repairs" the side effects. This is 
also the major disadvantage of '!race Scheduling, which tends to signif­
icantly increase code size. An alternative global scheduling technique, 
Percolation Scheduling [66], reduces the code size overhead by avoiding 
code duplication whenever possible. 

3.3. Register allocation 

For sake of simplicity, code selection and early scheduling frequently 
abstract from the physical register resources of the target machine. In­
stead, it is assumed that the target has an infinite number of virtual 
or symbolic registers. Each time the code selector needs a new storage 
resource, it generously allocates a new unique virtual register. The task 
of the register allocator is to finally assign virtual to physical registers 
in such a way that the limits of the target machine are met. 

The number of virtual registers used in early compiler phases may well 
exceed the available number of physical registers. In case there are insuf­
ficient physical registers, the register allocator must generate spill code. 
Spilling a register means temporarily storing its content to memory, and 
reloading it when it is required again. Naturally, the optimization goal 
of the register allocator is to minimize the amount of spill code. 

In most cases, register allocation is based on the notion of live ranges. 
The live range of a virtual register v starts right after the instruction 
ID that defines it and extends over all instructions lying on a control 
flow path leading to some instruction Iu that uses v. Thus, liveness 
at a certain program point means that the register contents are still 
required and should not be overwritten before their last use, after which 
the virtual register eventually "dies". 

The following two approaches are generally used for register alloca­
tion. They differ in complexity and efficacy, and the best choice also 
strongly depends on the concrete target machine. 

Local register allocation. Local register allocation works within the 
scope of a single basic block. This approach is computationally efficient, 
but shows a limited optimization effect, since many loads and stores 
are generally required between the basic blocks. However, if the target 
machine has only very few registers, then local register allocation is 
a reasonable approach, since it is unlikely that values can be kept m 
registers for a long time without spilling. 
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The central data structure in most register allocation techniques is 
the interference graph. This is an undirected graph G = (V, E), where 
each node v E V represents a virtual register. The set E contains an 
edge e = {Vi, Vj }, whenever the live ranges of Vi and Vj intersect. Hence, 
edge e indicates that Vi and Vj should be mapped to different physical 
registers. Otherwise, spill code has to be inserted. 

As defined in section 3.2, a basic block is a straight line sequence 
of statements. At the time of register allocation, these statements are 
normally machine instructions instead of IR statements. In any case, 
the basic block property implies that all live ranges of virtual registers 
are intervals of program points (at least after having performed SSA 
transformation). For instance, consider the following statement sequence 
annotated with liveness information. 

(1) b = 1; II live in: -
(2) c = 2; II live in: b 
(3) a = b + c; II live in: b, c 
(4) d = a * 2; II live in: b, a 
(5) e = b I 3; II live in: b, d 
(6) return e - d; II live in: d, e 

Computing the live ranges leads to the following intervals: 

1 2 3 4 5 6 
a: [ X ] 

b: [ X X X X ] 
c: [ X ] 

d: [ X X ) 

e: [ X ) 

If the interference graph is such that all live ranges are intervals, then 
the so-called left edge algorithm [67] can be used for optimal register 
allocation in approximately linear time. Given a set { R1, .•• , Rk} of 
physical registers, the algorithm moves a scan line from left to right over 
the intervals and assigns a free register ~ with minimum index i to each 
new live range. Likewise, it frees the register allocated for each live range 
that ends at the current scan line position. For the above example, two 
registers are sufficient. 

If there is a solution with at most k registers, the algorithm will find it. 
Otherwise, if the number of live registers exceeds k, one register needs to 
be selected for spilling, so as to break its live range into sub-intervals. In 
this case it is favorable to select that register with the maximum forward 
distance to its next use, since this will minimize the number of further 
conflicts. 
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Global register allocation. If the target machine has a large number 
of registers, such as a RISC processor, then register allocation should be 
generalized towards entire functions. Like in the case of local allocation, 
we can build the interference graph to represent the live range conflicts. 
However, in contrast to the local approach, the live ranges are generally 
no intervals, and the left edge algorithm cannot be applied. 

X= f(O); II live in: -
if (x<3) II live in: x 
{ 

} 

al = f(x); 
bl = f(al); 
cl = f (a1•b1); 
x = al + bl • cl; 

II live in: x 
I I live in: al 
II live in: al, bl 
II live in : al, bl, cl 

else c1 = 0; II live in : x 

if (x<2) 
{ 

II live in : cl, x 

c2 = f(cl); II live in: cl 
a2 = f(cl); II live in: cl, c2 
b2 = f(a2•a2); II live in: a2, c2 
x = c2 + f(a2•b2) ; II live in: a2, b2, c2 

return x; II live in : x 

Figure 3. 11. Multi-block code and variable liveness 

Instead, global register allocation amounts to a general graph color­
ing problem. Given the interference graph G = (V, E) and k physical 
registers {R1 , . . . ,Rk}, a "color" (i.e. a number in {l, ... ,k}) needs to 
be assigned to each v E V, such that different colors are assigned to all 
node pairs (vi,Vj) for which {vi,vj} E E. An example is given in figs. 
3.11 and 3.12. In case that G is not k-colorable, no register allocation 
without spill code exists. 

Figure 3.1 2. Interference graph and its 3-coloring for the code from fig . 3.11 

Like many other code optimization problems, general graph coloring 
is NP-hard [192]. However, there are a number of effective heuristics. 
One of the most popular ones is Brigg's algorithm [68]. Starting with 
an interference graph G = (V, E), it is based on the observation that 
any node v E V with less thank neighbors is non-critical w.r.t. coloring: 
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If the graph G' that results from G by removing v and all its incident 
edges is k-colorable, then also G is k-colorable, since a valid color for v 
can always be found once the coloring of G' is known. Brigg's algorithm 
iteratively removes such nodes, pushes them onto a stack, and tries to 
color the remaining graph G'. Each time G' contains only nodes with 
degree greater or equal to k, one node is selected for spilling and is 
removed and pushed onto the stack as well. 

When G' is empty, the original graph is reconstructed in reverse order 
by iteratively popping nodes from the stack. In case a spill candidate is 
popped, colorability is not guaranteed, and spill and reload instructions 
are generated on demand. Since the addition of spill code modifies the 
live ranges and their interference, the algorithm has to be repeated until 
a fix point without further spill requirements has been obtained. 

There are a number of refinements to this basic algorithm, includ­
ing coalescing to eliminate redundant move instructions and handling of 
precolored nodes that a priori represent physical registers. Brigg's algo­
rithm optimistically assumes that all virtual registers might be mapped 
to physical registers, and generates spill code only in case this assump­
tion is violated. Conversely, there are also pessimistic approaches [69], 
which start from the assumption that all virtual registers must be stored 
in memory, and afterwards aim at keeping as many as possible in regis­
ters. 

The presented techniques are obviously retargetable w.r.t. the number 
k of physical registers in a machine, since k is a parameter of the regis­
ter allocator. However, particularly for irregular architectures, standard 
techniques like graph coloring should be extended by more sophisticated 
algorithms, that explicitly take special purpose registers into account. 

3.4. Address code optimization 
Address code optimization is mainly useful for DSPs with a dedi­

cated address generation unit (AGU), as depicted in fig. 3.13. The AGU 
generally comprises address registers (ARs) and modify registers (MRs). 
All indirect addressing in such a DSP takes place via the ARs, and the 
available memory addressing modes are very limited. 

ARs can be updated in parallel to any load or store instruction by 
adding or subtracting some constant c, provided that c either resides 
in an MR, or cis contained in a machine specific (and typically small) 
auto-increment range [-r,r]. Due to the instruction level parallelism, such 
auto-increment operations can be considered to be of zero cost. On the 
other hand, non-parallel address computations always require extra code. 
Therefore, the compiler should aim at organizing address computations 
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immediate constant c 

ARpointerp MRpointerq 

address modify 

register register 
~ ~ 

effective 

address 

Figure 3.13. Address generation unit (AGU) in DSPs 

in such a way, that auto-increment addressing is applicable as often as 
possible. 

Offset assignment. First of all, this optimization can be done for the 
scalar variables (and also spill locations) that reside in the machine's 
runtime stack. The amount of potentially parallel address computations 
mainly depends on how well the layout of variables in memory is adapted 
to the given variable access sequence, which is exemplified in fig. 3.14. 
Since scalar variables are located at some offset relative to the frame 
pointer, the optimization problem of determining the best variable layout 
is commonly known as the offset assignment problem. 

Offset assignment is an effective optimization, and therefore it has 
been implemented in several existing compilers. Due to NP-completeness 
of the problem, exact solutions usually cannot be computed. Triggered 
by work from Bartley and Liao [70, 115], today there are a large number 
of good heuristics (see e.g. [93] for a detailed overview), many of which 
are also capable of handling a wide variety of AGU configurations w.r.t. 
the number of AR, MRs, and auto-increment ranges. 

Array address code optimization. Offset assignment is based on 
the fact that the compiler can freely arrange the layout of scalar vari­
ables. In contrast, array elements have to have a fixed layout w.r.t. each 
other. Still, the auto-increment capabilities of AGUs can be exploited 
for address code optimization. The main idea is to minimize the amount 
of spill code for ARs, that are used for array accesses in loop bodies. As 



Some compiler technology background 55 

AR=1 b AR=3 b 

Ml 
AR+=2 d 

M2 
AR-- d 

AR-=3 a AR-- a 
AR+=2 c ·; AR-- c 

T1J 
AR++ d AR +=2 d 

1 b AR -=3 a 1 a AR-- a 
2 c AR+=2 c 2 d AR-- c 
3 d AR-- b 3 b AR+=3 b 

AR-- a AR-=2 a 
AR+=3 d AR++ d 

a) AR-=3 a b) AR-- a 
AR+=2 c AR-- c 
AR++ d AR+=2 d 

Figure 3.14. Example for scalar address code optimization for an AGU with a 
single AR and auto-increment range [-1,1]. The variable access sequence is S = 
(b, d, a, c, d, a, c, b, a, d, a, c, d). a) Memory layout M1, where variables are assigned to 
memory locations 0 ... 3 in alphabetical order. The sequence of address computa­
tions needed to generate the memory addresses corresponding to S is given in C-like 
notation. Only 4 operations are auto-increment/decrement. b) Improved layout M2 
with 8 auto-increment/decrement address computations. 

an example, consider the following loop with 7 accesses to some array 
A: 

for (i = 2; i <= N; i++) 
{ 

A [i +1] II a1 
A[i] II a2 
A [i+2] II a3 
A [i -1] II a4 
A [i +1] II a5 
A [i] II a6 
A [i-2] II a7 

} 

For the corresponding address computations, any number of ARs from 
1 to 7 can potentially be allocated. Assuming an AGU with an auto­
increment range of [-1,1], using only a single AR results in poor code, 
since then most address computations between neighboring array ac­
cesses in the loop (e.g. "-3" for a3 = A[i + 2] and a4 = A[i- 1]) cannot 
be implemented by auto-increment. Conversely, if we used 7 ARs (one 
for each access), only auto-increment would be required, but potentially 
too many ARs would be in use to keep them in the physically available 
resources. 

The key idea in array address code optimization is to let array accesses 
share ARs as much as possible (similar to general register allocation, 
where virtual registers share physical registers), without introducing ex­
tra address code inside a loop body. Sharing is possible, whenever the 
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address distance between neighboring array accesses falls into the auto­
increment range. For the above example, for instance, only 3 ARs are 
required, while still using only auto-increment addressing: 

AR1 = &:A [3] ; 
AR2 = &:A[2]; 
AR3 = &:A [0] ; 
for (i = 2; i <= N; i++) 
{ 

•AR1-- II a1 
•AR2-- II a2 
•AR1-- II a3 
•AR2++ II a4 
•AR1++ II a5 
•AR2++ II a6 
•AR3++ II a7 

} 

Array address code optimization is a non-trivial task, especially when 
inter-iteration constraints must be obeyed. Several heuristics and exact 
techniques are available, including [122, 127, 71, 145, 72). Like in the 
case of offset assignment, different AGU configurations can frequently be 
handled, making the techniques applicable for retargetable compilation 
for DSPs. 

Address code optimization is typically one of the last compiler passes, 
since it requires detailed knowledge about all memory accesses. How­
ever, it has to be followed by a post-scheduling or compaction pass, 
that parallelizes address computations newly inserted into the assembly 
program. 

3.5. Phase coupling issues 
Due to the huge overall complexity of the compilation problem, a 

compiler is subdivided into numerous different phases. This is a simple 
divide-and-conquer methodology, but it implies that all phases have to 
be executed in a certain order. The non-trivial problem of determining 
the best sequence of phases is known as the phase ordering problem. 

Many phases may have an impact on the optimization opportunities of 
subsequent phases. The IR optimization "constant propagation", for in­
stance, is usually intended to improve the efficacy of "constant folding", 
which in turn can generate further constants for propagation. Therefore, 
it is clear that these two optimizations should be applied iteratively until 
no more optimization is possible. 

Particularly in the backend, however, phase ordering is not as simple, 
because some phases unnecessarily restrict the search space for subse-
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quent phases. Moreover, this type of phase interdependence is frequently 
cyclic. We illustrate this problem by some examples: 

Code selection and register allocation: Code selection maps the IR 
into assembly instructions. Typically, this phase also decides which 
values will reside in virtual registers. Moreover, in case of multiple 
register files, code selection also decides which destination register 
file will be chosen for a certain operation, since there is usually an 
optimum w.r.t. the instruction cost metric. However, only during 
register allocation it turns out whether the choice was optimal if the 
required spill code is taken into account, too. 

Register allocation and scheduling: Register allocation folds virtu­
al registers into physical registers. Typically, it will reuse a certain 
physical register for multiple virtual registers. This can introduce 
unnecessary false dependencies (or anti-dependencies) that obstruct 
the scheduler. On the other hand, sequential scheduling determines 
the detailed live ranges of virtual registers, and thus clearly has an 
impact on the results of register allocation. 

Scheduling and address code optimization: Address code optimi­
zation relies on the detailed memory access sequence produced by a 
scheduler. The variable layout in memory and the amount of auto­
increment operations depend on the access sequence, and it might be 
that a different, yet valid, alternative schedule would lead to lower 
addressing costs. Since address code optimization inserts new in­
structions, it also has an impact on the results of code compaction. 

The result of these mutual dependencies is that generally any particu-
lar phase ordering will produce some overhead in code quality for certain 
input programs. The phase ordering problem is even more significant 
for embedded processors with an irregular architecture like in DSPs. 
Therefore, phase coupling approaches are used that lead to a tight phase 
interaction in order to achieve better code quality. 

The simplest way of phase coupling is the iterative execution of mul­
tiple phases, so as to revise potentially poor decisions based on back 
annotation from subsequent phases. Other approaches try to estimate 
the impact of some phase on subsequent phases at an early point of time. 
The highest degree of phase coupling is achieved when multiple phases 
are actually combined into a single one. However, the corresponding 
algorithms are difficult to design, and this "ideal" phase coupling fre­
quently results in relatively high compilation times. 

The case studies in chapter 5 give a number of examples how phase 
coupling has been implemented in retargetable compilers. 
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3.6. Peephole optimization 
After all compilation phases have finished, it is frequently useful to 

make one last quick run over the generated code in order to perform 
some late local improvements. Even though each of the previous opti­
mization passes will have done a good job on its own, it might be that 
their combination and/or ordering led to some "unbeautiful" instruction 
sequences, which still could be easily improved. 

j 
ld [%12+%13], %ol 
add %ol, %o0, %o0 
st %o0, [%10+%11] 
sethi %hi(u), %o0 
or %o0, %1o(u), %10 

ld [%fp-20], %o0 ld [%fp-20], %o0 
ld [%fp-20], %ol - %o0, %ol mov 

j 
sll %ol, 2, %o0 
1d [%fp-24], %ol 
mov %ol, %o3 
sll %o3,4, %o2 
sub %o2, %ol, %o2 

Figure 3.15. Example for peephole optimization (SPARC assembly code) 

For this purpose, a small window is moved over the assembly code 
step by step, and only that piece of code currently visible through this 
"peephole" is considered for optimization (fig. 3.15). Typical peephole 
optimizations include elimination of redundant loads, and substitution of 
partial instruction sequences by cheaper ones w.r.t. a given cost metric. 

Peephole optimization is frequently implemented in a retargetable 
fashion by providing the compiler with a set of match/replace rules that 
describe the candidate instruction sequences and their replacement. An 
example for this methodology is the retargetable peephole optimizer PO 
[73]. The more powerful the peephole optimizer, the less effort has to 
be paid in early code optimization phases. In an extreme case, one can 
simply generate some poor (yet valid) initial code and leave the whole 
optimization job to the peephole optimizer. For instance, such an ap­
proach is used in Zephyr/VPO (section 5.1.6). 

Before we describe existing compiler systems in more detail (chapter 
5), the next chapter will summarize the historical development of retar­
getable compiler research. 



Chapter 4 

HISTORICAL OVERVIEW 

1. Contributions from the compiler community 
Contributions from the compiler domain that can be used for design­

ing retargetable compilers, include the following: 

• methods for code generation, 

• register allocation, 

• front end generation, and 

• intermediate language design. 

A subset of these will be discussed in the next sections of this chapter. 

1.1. UNCOL 
Generating compilers for new target processors from existing compil­

ers easily has been a goal since many decades. 
One of the first proposals consisted of a clear separation between com­

piler frontends and backends in the UNCOL project [6). The key idea 
was the introduction of a common intermediate language for m differ­
ent source languages and n different target processors. Using such an 
intermediate language, m frontends and n backends have to be written, 
instead of the m x n compilers that were required if compilers translated 
all source languages directly into all machine languages (see fig. 4.1). 

Mixing different source languages, using a single library for all source 
languages and a unified trace and debugging environment across all 
source languages are welcome byproducts of this approach. It has been 
used used by some companies in order to provide compilers for different 
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Figure 4.1. UNCOL approach for reducing effort of writing compilers 

source languages and target processors (including, for example, the first 
workstation vendor Apollo Computers Inc.). 

The UNCOL approach still requires manually written frontends and 
backends. Generating frontends was very much simplified with the avail­
ability of tools like LEX and YACC and standard techniques such as re­
cursive descent [49]. Follow-up research also aimed at avoiding the work 
of writing backends. We will present major contributions in this area, 
covering contributions from microprogramming and standard compilers 
separately. 

1.2. Code generation for expressions 
As mentioned in the previous chapter, one of the standard actions 

performed within a compiler is code generation. Code generation is re­
sponsible for finding - for each operation of the source program - a 
corresponding set of machine operations. The fact that this can be done 
using term rewriting has been common knowledge for many years. It is 
also common knowledge, that rewriting is ambiguous: there are many 
sequences of machine instructions that implement a source program. A 
key problem is to find an efficient sequence of machine operations. Dif­
ferent approaches have been used for this. 

The approach of Granville and Graham [17] to code generation is 
based on LR(l) parsing. This means that string parsing is used instead 
of the tree parsing introduced in the previous chapter. For each target 
architecture, an LR(l) parser is generated. Like other LR(l) parsers, 
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Glanville's parser performs shift, reduce, accept and error actions. The 
shift action reads the next symbol from the intermediate representation. 
The reduce action applies a rule, corresponding to the generation of an 
instruction, and shortens the stack. The accept action is performed when 
a program has been compiled and the error action corresponds to cases 
in which the source program cannot be compiled. The parser is designed 
such that it tries to exploit special purpose instructions. However, no 
explicit cost model is used and hence, optimality cannot be guaranteed. 

In order to generate low-cost instruction sequences, Cattell proposed 
the so-called maximum munching method [4]. In this approach, the in­
struction pattern covering the largest segment of the IR representation 
is always replaced first. Again, optimality cannot be guaranteed. A 
survey on the start of the art in retargetable compilation in the early 
eighties was published by Ganapathi [15]. 

BURS theory is a more recent special instance of a term-rewriting 
approach [41]. BURS stands for bottom up rewrite systems. BURS 
theory can be used to generate optimal code sequences, similar to tree 
parsing techniques based on tools like IBURG and OLIVE. The relation 
between tree parsing and tree automata is described by Wilhelm et al. 
[14]. 

2. Contributions from microprogramming 
Contributions from the microprogramming domain that can be used 

for designing retargetable compilers, include the following: 

• scheduling techniques, 

• explicit target machine models, and 

• explicit consideration of machine resources. 

Work on microprogramming led to some important results on schedul­
ing and resource allocation which are beneficial for current compilers 
which also have to consider hardware details and not just the instruc­
tion set. Programming contemporary VLIW processors requires the use 
of scheduling techniques which initially were developed for applications 
in microprogramming. The important effect of microprogramming on 
future design technologies was phrased very nicely on a cover of ACM's 
SIGMICRO Newsletter: Microprogramming is dead - long live micro­
programming! Hence, it is interesting to look at some of the origins of 
these techniques in microprogramming. Scheduling was discussed in de­
tail in chapter 3. Therefore, we focus on the other contributions from 
microprogramming in this section. 
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2.1. Motivation 
Following Maurice Wilkes, many of the early computers were imple­

mented using microprogramming. With this approach, machine instruc­
tions were interpreted by microinstructions. Microinstructions typically 
reside in a small and fast microprogram memory and have full access 
to all hardware blocks. Microprograms were almost always written at 
the micro-assembly level, using specialized, machine-dependent micro­
assemblers. 

Writing microprograms at the micro-assembly level was very time­
consuming, since many hardware details had to be taken care of. There­
fore, researchers started to look for ways of writing micrograms at a 
higher level of abstraction and interest in microcode compilers started 
to rise. It was immediately obvious that microcode compilers should 
provide some level of target-independence. Reasons for this include the 
following: 

• There was a huge variety of microinstruction sets. 

• Only Jew microprograms were written for each instruction set. This 
and the huge variety of instruction sets made traditional compiler 
development too costly. 

• Microcode-compilers were needed in the very early phase of a proces­
sor design project and waiting for the completion of some slow com­
piler development project was impossible. Hence, traditional com­
piler development was too slow. 

It was obvious that retargetable microcode compilers would solve the 
problem. 

2.2. Early work 
Surveys of very early work on retargetable microcode generation were 

published by Bushell [3] and Sint [44]. It seems like this work was not 
very successful. 

However, taking this work into account, Dasgupta concluded that 
the design of a retargetable microcode compiler compiling from a sin­
gle high-level language initially was too difficult. Therefore, Dasgupta 
proposed the use of a microprogramming language schema S* [10]. S* 
represents a family of languages sharing the same high-level language 
elements (including the elements describing control) but also including 
some target-machine specific statements. S* was used to automatically 
generate simulators in a "retargetable firmware development system" [9] 
at the University of Aachen. Interestingly enough, researchers from the 
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same university have more recently designed a technique for the retar­
getable generation of very fast simulators [40]. 

2.3. First retargetable microcode compilers 
The first microprogram compiler that received major attention was 

the "machine-independent efficient microprogram generator" MPG by 
Takanobou Baba and his co-workers [2]. The MPG system used a ma­
chine description section (MDS) and an algorithm description section 
(ADS) as its input. The MDS consisted of a control section (describing 
the controller) and a controlled section (describing the data path). ADS 
is a relatively low-level programming language. In the ADS, assignments 
can refer to all machine registers. Assignments are translated into sets of 
operations available for a target machine, called micro-operations. Dur­
ing the translation, MPG tries to find efficient sets of micro-operations. 
Emphasis of MPG, however is on allocating microinstructions- which 
are composed of micro-operations - to the microprogram memory. Ad­
dressing microprogram memories typically is very complex. For example, 
many machines used pairs of microinstructions and branches were only 
allowed if the two possible branch destinations were from the same pair 
of instructions. The authors of the MPG system focused on handling 
such situations. Decomposition of large expressions, arrays, pointers, 
procedures etc. were not considered. The MPG system was used for 
generating microprograms for HITAC8350 and HP2100A processors, for 
which a surprisingly low overhead of just 12 % respectively 6 % was 
reported. 

Vegdahl [47] -like Cattell being from CMU- tried to extend Cattell's 
work to microprogramming. Cover generation was based on Cattell's 
maximum munching technique. Other components of the backend, like 
constant generation, had to be written manually. 

One of the first commercial systems was the IDAS system from JRS 
Research Labs. The input languages selected for IDAS suit the needs 
of the US Department of Defense: ADA for algorithm description and 
VHDL for hardware description. JRS specifically focused on using re­
targetable compilation for design space exploration: One can make a 
change in the hardware (e.g., delete an ALU, add a Multiplier, reduce 
the amount of power available} and directly measure the impact of the 
change on the performance of the program [24]. Accordingly, JRS is one 
of the tool providers in the RASSP (Rapid-Prototyping of Application 
Specific Signal Processors) initiative. In addition to the support of ADA, 
C was added as another language for describing algorithms. Focus was 
very much on the commercial exploitation of the underlying technology 
and hardly any detailed description of it is publicly available. 
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Other contributions were made by Robert Mueller and his group. 
Their Horizon compiler [37] also allowed compilation of low-level pro­
grams. A C-derivative called Micro-C was used as the language for 
describing algorithms. In Micro-C, variables correspond to machine re­
sources. Language operators correspond to operators available in hard­
ware. Code-generation was based on finding paths in the micro-architec­
ture from sources to sinks. Target specific information about the paths 
and functional units in the micro-architecture was encoded in PROLOG 
and PROLOG was then used to find paths along which required data 
moves could be implemented. An attempt was made to commercialize 
Horizon through QTC Corp., Beaverton. Design space exploration was 
clearly among the goals of QTC [51]. Later, QTC took the tools off the 
market. 

2.4. The MIMOLA project 

Synthesizing application-specific micro-architectures from algorithmic 
descriptions of the applications was the initial goal of the MIMOLA 
project [52]. MIMOLA stands for machine-independent microprogram­
ming language. The MIMOLA project and a corresponding indepen­
dent project [39] at the Carnegie-Mellon-University were the first two 
projects in high-level synthesis (even though that name was not used at 
that time). The MIMOLA Software System (MSS) incorporated tools for 
high-level synthesis, code generation, test generation, synthesis and sche­
matic generation in a consistent way [33]. For the MIMOLA project, it 
was possible to start from an algorithm and a partial micro-architecture, 
the latter describing some of the ideas of the designer about the target 
hardware. A completely specified micro-architecture was included as a 
special case of a partially specified architecture. The MIMOLA project 
also assumed the availability of a program memory and was capable of 
translating algorithms into binary machine instructions to be stored in 
the program memory. Performing this translation for a fully specified 
micro-architecture is equivalent to retargetable compilation. Accord­
ingly, work on retargetable compilers began in the late seventies. Focus 
was on machines with very long instruction words, now called VLIW 
machines, but then called horizontally microprogrammed machines. The 
term microprogramming was used despite the fact that no machine-level 
programming on top of the microprogramming level was assumed. 

The MIMOLA language provides mechanisms for describing hardware 
structures and algorithms. It is clearly oriented towards synthesis [34] 
and - except for early versions - is based on PASCAL. The first ver­
sion of the retargetable compiler was called MSSV [28, 29] (the more 
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recent MSSQ is described in section 5.4.1). MSSV- just like Horizon 
- performed code selection by trying to find paths form source to sink 
resources in the micro-architecture. Merging of several micro-operations 
(so-called bundling) was performed for inputs of n-ary hardware opera­
tors such as ALUs. In contrast to Horizon, several possible paths were 
considered and forwarded to the scheduler MSSC. Just like in Horizon, 
matching of algorithm and hardware was performed at a low level, with­
out trying to extract the instruction set from the description of the 
micro-architecture. Increased interest in retargetable compilation led to 
the publication of unpublished material in [31]. 

The brief description of the early work in the MIMOLA project con­
cludes our presentation of the roots of retargetability. In the next chap­
ter, we will present more recent approaches to retargetability. 



Chapter 5 

RETARGETABLE COMPILER CASE 
STUDIES 

This chapter describes a selection of retargetable compilers and code 
generation techniques. We focus on a representative list of specific tools 
and techniques. Due to the limited space, we naturally cannot cover 
many interesting details, but these are mostly available in several pub­
lications anyway. Instead, our goal is to highlight their advantages, lim­
itations, and novel concepts, as well as to put the different approaches 
into context. Additionally, we mention practical issues like availabil­
ity and licensing terms of software. Clearly, also many other compiler 
techniques besides the ones mentioned here are retargetable in the sense 
that they show a certain degree of machine independence. However, we 
focus on tools and techniques that explicitly use some kind of machine 
model in order to adapt the compiler to different targets. In addition, 
we restrict our review to approaches that have at least some relation to 
compilers for embedded systems. 

The tool overview is mainly categorized by target processor classes. 
First, we present retargetable compilers and compiler infrastructures 
for general-purpose processors (GPPs). Then, we switch to domain or 
application-specific machine classes like DSPs, VLIW s, and ASIPs. Im­
portant point solutions and techniques that do not well fit into this list of 
categories are summarized separately in section 5. Finally, we describe a 
set of commercial compiler systems that emphasize retargetability. Ap­
pendix A provides a chronological tabular overview of important tools 
together with WWW links to their home pages and/or available soft­
ware. 

67 
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1. Retargetable compilers for G PPs 
1.1. GCC 

Among the most well-known and widespread retargetable compilers 
is GCC, which is part of the GNU free software project. GCC mostly is 
used as a C/C++ compiler, but it also comprises frontends for Fortran, 
Java, and some exotic languages. 

The GCC compiler for most platforms can be downloaded from [75]. 
The web site also provides documentation and background information. 
Red Hat [76] provides an MS Windows port called "cygwin", which emu­
lates a Unix environment under MS Windows. The compiler falls under 
the GNU public license, which mainly means that the software can be 
freely used, modified, and distributed, provided that the corresponding 
source code is still made freely available. 

There are GCC backends for numerous OS platforms and target pro­
cessors, in most cases CISCs and RISCs (including Spare, MIPS, Alpha, 
Intel x86, and M68000). However, GCC originally was not designed as 
a "clean" retargetable compiler, but the target machine description ca­
pabilities have been extended on demand over the time. This is what 
the manual says about GCC's portability: 

"The main goal of GCC was to make a good, fast compiler for ma­
chines in the class that the GNU system aims to run on: 32-bit machines 
that address 8-bit bytes and have several general registers. Elegance, the­
oretical power and simplicity are only secondary. 

GCC gets most of the information about the target machine from a 
machine description which gives an algebraic formula for each of the 
machine's instructions. This is a very clean way to describe the target. 
But when the compiler needs information that is difficult to express in 
this fashion, I have not hesitated to define an ad-hoc parameter to the 
machine description. The purpose of portability is to reduce the total 
work needed on the compiler; it was not of interest for its own sake." 

The code generation process in GCC consists of about 20 passes, that 
revolve around an intermediate representation (IR) called RTL (register 
transfer language). A nice feature is that the RTL code after each pass 
can be dumped into a readable file to monitor the IR modifications. 
The first pass is the frontend, which generates an initial RTL for a given 
source program. In contrast to other IR formats, RTL already consists 
of machine-specific instruction patterns. RTL generation takes place 
on a simple statement-by-statement basis, modern techniques like tree 
parsing are not applied. 

Next, there are a number of standard optimization passes, e.g. jump 
optimization, common subexpression elimination, and loop optimiza-
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tion. Register allocation is split into a local and a global pass. Like­
wise, instruction scheduling is distributed over several passes. The first 
scheduling pass aims at instruction reordering in order to avoid pipeline 
stalls. The second scheduling pass essentially does the same, but also 
takes the spill code resulting from register allocation into account. Yet 
another scheduling pass is responsible for filling possible delay slots, and 
finally assembly code is emitted for the optimized RTL code. Thus, 
GCC's code generation process follows a quite conventional approach. 
In particular, there is hardly any phase coupling, and there are no built­
in optimizations dedicated to embedded processors. 

A target machine description for GCC typically comprises three files: 
a machine description (MD) file, a C header file for macro definitions, 
and a C source file with processor-specific support routines. GCC's 
retargeting mechanism uses these files to reconfigure the compiler source 
code, which afterwards can be compiled and linked to produce code for 
the given machine. 

The main purpose of the MD file is to inform the compiler about 
the available instruction set and some specific optimizations. Mostly, 
"definejnsn" constructs are used to define available instructions. Such 
a construct generally specifies a name, an RTL template, an assembly 
output template, and matching constraints. This is shown in the follow­
ing example: 

(define_insn "subsf3" 
[(set (match_operand:SF 0 "register_operand" ""'f") 

1111 

(minus:SF (match_operand:SF 1 "register_operand" "f") 
(match_operand:SF 2 "register_operand" "f")))] 

"subf\\t%0,%1,%2") 

The name "subs£3" informs the compiler that the pattern describes 
the subtraction of single precision floating point numbers, which can be 
exploited in RTL generation. "match_operand" serves as a placeholder 
for actual operands to be inserted during code generation. All three 
operands in this example have a unique number (0,1,2) and are of type 
"single float" (SF). The string "register_operand" is a predicate ensuring 
that only registers can be used as operands of the instruction. The letter 
"f" further restricts the operands to be floating point registers, where 
"=f' denotes that operand 0 (the destination register) is write-only in 
this context. Finally, an assembly output template is provided, which 
emits a "subf" mnemonic, followed by the operand registers, in case the 
"subs£3" pattern has been used for matching a C expression. 

The MD file may also contain so-called expander definitions that in­
form the compiler about operations too complex to be handled with a 
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single machine instruction. A "define_expand" construct therefore allows 
to specify how operations can be implemented by sequences of RTL in­
structions. Finally, one can specify machine-specific peephole optimiza­
tion. A "define_peephole" construct in the MD file tells GCC how a 
certain sequence of instructions can be replaced by a more cost-effective 
sequence, possibly dependent on some matching conditions. The follow­
ing shows an example from a GCC port to the TI TMS320C25 DSP, 
developed at the University of Toronto. There, a load from memory 
and an addition are combined into a single instruction (LTA - load and 
accumulate). 

(define_peephole 
[(set (reg: QI 2) 
(set (reg: QI 0) 

lilt 

"LTA 'l.O") 

(match_operand:QI 0 "memory_operand" "m")) 
(plus:QI (reg:QI 0) (reg:QI 1)))] 

The C header file with target-specific macros partially consist of purely 
numerical parameters. An example is given in the following, where endi­
aness, the minimum addressable storage unit, and some type bit widths 
are defined. 

#define BYTES_BIG_ENDIAN 1 
#define BITS_PER_UNIT 8 
#define INT_TYPE_SIZE 32 
#define SHORT_TYPE_SIZE 16 
#define LONG_TYPE_SIZE 32 

Many others of the huge amount of GCC's machine macros are more 
complex and, for instance, specify the register names, register classes, 
the syntax for assembler directives, and argument passing conventions, 
just to name a few. Finally, the C file with support routines amongst 
others typically defines highly machine-specific things like the assembly 
code sequences to be emitted for function prologues and epilogues. 

In total, one can say that the machine description required by GCC 
is quite complex, and it certainly takes some time to be able to retarget 
the compiler to a completely new processor. On the other hand, GCC's 
description complexity can also be considered an advantage, since it al­
lows for a high degree of flexibility for handling special hardware details. 
This explains why GCC is available for a significant number of different 
GPPs, and is actually in intensive practical use. 

When it comes to embedded systems, however, the applicability of 
GCC strongly depends on the target processor. In the DSP area, for 
instance, GCC has been ported to the Analog Devices 2101 and the 
Motorola 56001. The DSPStone benchmark [77] showed that a perfor­
mance overhead of 400% or more of compiled code versus hand-written 
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assembly is not unusual. This indicates limitations of GCC w.r.t. irregu­
lar processor architectures. The compiler is hardly capable of exploiting 
small heterogeneous register files, instruction-level parallelism, or multi­
ple memory banks. The report [78] describes a project where GCC has 
been ported to Thor, a stack-oriented embedded RISC processor. The 
authors show in detail the problems encountered when porting GCC to 
an "unusual" architecture, and they describe some workarounds. Among 
the main problems mentioned is GCC's need for a byte-addressable mem­
ory and the sparse documentation. 

In summary, GCC is generally a good choice when the target proces­
sor is a GPP for which a compiler port already exists, or which is at least 
compatible to GCC's intended target machine class. In this case a big 
plus for GCC is that it comes with a comprehensive set of support soft­
ware, such as assembler, linker, debugger, and standard C/C++ headers 
and libraries. Additionally, GCC is a very stable compiler. These are 
probably the reasons why processor core vendors like ARC [79] and Ten­
silica [80] have chosen GCC as a primary development platform. 

In case the target machine does not really fit into the GCC concept, 
porting gets very difficult, since the GCC source code is somewhat hard 
to patch, and the resulting code quality may be expected to be poor. 

1.2. LCC 
The "little C compiler" LCC has been developed at Princeton Uni­

versity. The current version V4.1 can be downloaded together with its 
source code from [81]. The compiler is easy to install for Unix and Linux 
machines, and there is a special development branch called LCC-Win32 
for PC /Windows platforms [82]. 

In contrast to GCC, LCC is actually a lightweight C compiler. The 
total source code has a size of only about 13,000 lines. Nevertheless, it 
is a complete and retargetable ANSI C compiler. Due to its small size, 
it is possible to study LCC's anatomy in detail. A big advantage in this 
context is that the source code is well documented in the form of a book 
[83]. The standard LCC distribution comes with built-in backends for 
MIPS, Alpha, Spare, and Intel x86 target processors. Also the design 
of the backends is documented in the LCC book, which provides a good 
insight into LCC's retargeting capabilities. 

Similar to GCC, retargetability has not been a design goal for LCC 
right from the beginning. Instead, it evolved into its current state over 
the years. This is what the documentation says: 

"There was no separate design phase for LCC. It began as a compiler 
for a subset of C, so its initial design goals were modest and focused on 
its use in teaching about compiler implementation in general and about 
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code generation in particular. Even as LCC evolved into a compiler for 

ANSI C that suits production use, the design goals changed little. " 
Now LCC can be considered a stable C compiler, even though it is not 

as widespread as GCC in the Unix world. For PC/Windows platforms, 
however, LCC is frequently preferred over GCC, since the LCC-Win32 
version comes with a relatively comfortable graphical development envi­
ronment. 

The LCC copyright permits the free use of the software for research 
and education, as well as redistribution. In contrast to the GNU public 
license, there is no need to publish the source code as well. Building 
commercial products on top of LCC, however, is more problematic, since 
the copyright is with a publisher. Again, this situation is different for 
the LCC-Win32 version, for which professional support is also available. 

Being a lightweight compiler, LCC's code optimization capabilities 
are certainly limited. There are no global optimizations, even no global 
register allocation, and local optimizations are limited to simple passes 
like constant folding and common subexpression elimination. As a con­
sequence, the code quality may be expected to be somewhat lower than 
GCC's in general. On the other hand, LCC is extremely fast, but this 
is usually not too important in the context of embedded system design. 

The code generation procedure works roughly as follows. The ANSI C 
frontend translates a given C source into data flow graphs (DFGs). The 
DFG operators essentially correspond to the C language operators, but 
they also carry type and size information. Therefore, the DFG operators 
are machine-dependent. Fig. 5.1 shows an example with a piece of C code 
and the DFG format dumped by LCC. 

int a; 
int f(int* p) 
{ return a+ *P + 1; } 

5. ADDRGP2 a II address of global var "a" 
4. INDIRI2 #5 II load a 
8. ADDRFP2 p II address of parameter "pll 

7. INDIRP2 #8 II load p 
6. INDIRI2 #7 II load *P 
3. ADDI2 #4 #6 II integer add 
9. CNSTI2 1 II constant "1" 
2. ADDI2 #3 #9 II integer add 
1. RETI2 #2 II integer return 

Figure 5.1. C code and LCC's intermediate representation 
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Code selection is performed by tree parsing, based on a tree grammar 
specification of the target instruction set. The code selector itself is 
generated by means of the LBURG tool, a variant of IBURG [74]. The 
resulting symbolic machine code is linearized and passed to the register 
allocator. The register allocator performs local allocation of registers, 
i.e. in a basic block oriented fashion. Finally, assembly code is emitted. 

Similar to GCC, the target processor for LCC is modeled in the form 
of a machine description file. In contrast to GCC, however, there is 
usually only a single, quite compact, MD file. The MD file contains two 
main parts: a target instruction set description and a set of C support 
functions. 

The instruction set is described as a tree grammar, very similar to the 
notation used for IBURG/OLIVE (sections 5.5.3.1 and 5.5.3.2). First, 
the grammar terminals are defined. As mentioned above, LCC's terminal 
symbols are machine specific to a certain extent. This is exemplified in 
the following, where some terminals used in LCC's x86 backend are 
shown: 

%term ADDF4=4401 
%term ADDF8=8497 
%term ADDI4=4405 
%term ADDI8=8501 
%term ADDP4=4407 
%term ADDP8=8503 
%term ADDU4=4406 
%term ADDU8=8502 

All symbols refer to an ADD operation, where the fourth letter de­
notes the type (F = float, I = integer, P = pointer, U = unsigned). 
Finally, a number is used to inform the compiler about the type size in 
bytes (e.g. 4 for a float, 8 for a double). 

Next, the actual instruction patterns are described in the form of 
tree grammar rules, together with some corresponding output assembly 
template and an optional pattern cost value. Again we illustrate this by 
an example. The rule 

reg: ADDI4(reg,mrc) "?mov %c,%0\nadd %c,%1\n" 1 

describes a 4-byte integer ADD operation, where reg is a nonterminal 
denoting a general-purpose register, and mrc1 is another nonterminal 
that may match a memory, register, or constant operand. Following the 
rule, a string specifies the assembly instruction (or instruction sequence) 
to be emitted in case the rule has been selected. In this case, there is 
a "mov" followed by an "add" instruction. The symbols with a "%" 
prefix serve as placeholders for the actual values of the nonterminals to 
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be inserted later. Here, "%c" denotes the symbol on the left hand side of 
the rule (which is going to be a physical register afterwards), while "%0" 
and "%1" refer to the argument nonterminals. The special character "?" 
at the beginning of the assembly template tells LCC's code generator 
to suppress emission of the first assembly instruction ( "mov" ) in case 
it turns out to be redundant. Finally, a cost value can be specified. In 
the above example, this is a constant "1", but also C functions may 
optionally be called for more complex cost computations. 

In case the required assembly output for some rule cannot be specified 
with a simple assembly template as above, LCC offers an escape mech­
anism. If the template starts with a "#" character, the code generator 
calls a special C support function in order to emit code for the respective 
rule. 

The remainder of the MD file specifies a fixed set of about 20 target­
specific C support functions. There is a dedicated initialization function 
used to inform the compiler about available registers and register classes. 
Other functions are used, for instance, to emit function prologues and 
epilogues, and to guide the emission of assembler directives and segmen­
tation information. 

In order to handle special register constraints, there are also functions 
that permit to bind certain operations to specific registers. The following 
code fragment is taken from LCC's x86 backend. 

static void target(Node p) { 
switch (specific(p->op)) { 

} 

case MUL+U: 
setreg(p, quo); 
rtarget(p, 0, intreg[EAX]); 
break; 

The support function target generally has the form of a switch state­
ment that selects over the different DFG operators. The above specifi­
cation defines that for unsigned multiplication the destination has to be 
a register class called "quo", while the left argument has to be allocated 
in register EAX. 

Like GCC, the LCC compiler certainly has a preference for more or 
less regular RISC/CISC processor architectures with a byte-addressable 
memory. Modeling irregular DSP data paths is more difficult, since the 
built-in register allocator might need to be bypassed. Nevertheless, the 
existing backends indicate that LCC is surprisingly flexible. Due to the 
rather concise code generation interface, retargeting LCC will generally 
be simpler than in the case of GCC. On the other hand, code quality 
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may be expected to be lower due to the missing standard optimizations 
and the local register allocator. In addition, LCC does not comprise 
an instruction scheduler, which has to be implemented as a postpass 
optimization if required. 

1.3. Marion 
Marion [84, 85] is a retargetable compiler designed for RISC archi­

tectures. Target processors handled by Marion include Motorola 88k, 
Intel i860, and MIPS R2000. Special emphasis is put on effective re­
targetable instruction scheduling and the coupling of the traditionally 
separated scheduling and register allocation phases in order to maximize 
code quality. It is assumed that the target machine has a load-store ar­
chitecture with a general purpose register file, and that the functional 
unit usage by each instruction is known at compile time. 

Marion uses LCC's C frontend for generating an intermediate program 
representation. The target machine is described in a language called 
Maril. A target model in Maril consists of three sections: a resource 
declaration, a runtime model, as well as an instruction set description. 

The resource section declares processor entities like registers, memo­
ries, functional units, and pipeline stages. The runtime model mainly 
defines compiler properties like calling conventions, stack frame layout, 
and the use of certain registers for special purposes (e.g. registers avail­
able for general allocation and the frame and stack pointer registers). 

Finally, the instruction section models the available machine instruc­
tions in detail. This includes the assembly syntax, as well as the instruc­
tion behavior in terms of a C expression. Instructions with side effects 
(such as auto- increment) cannot be modeled, though. Additionally, an 
instruction specification describes its resource usage on a cycle-by-cycle 
basis (similar to a reservation table), a cost value, the instruction la­
tency, and the number of delay slots. The following example taken from 
[85] illustrates this concept with the example of a load instruction: 

'l.instr ld r,r,#const16 
{ $1 = m[$2+$3]; } 
[ IF;ID;IE;IA;IW; ] 
( 1,3,0 ) 

II assembly syntax 
II behavior 
II used pipe stages 
II cost, latency, delay slots 

The code generator first maps the IR into the described assembly in­
struction set by a tree-based greedy heuristic. In case that IR constructs 
have no direct correspondence to assembly instructions, the mapping has 
to be described manually, either by rewrite rules or by special C support 
functions. Next, global register allocation and instruction scheduling 
are performed. Both phases rely on standard techniques each (graph 
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coloring and list scheduling, respectively), but a heuristic phase cou­
pling is provided in order to partially eliminate the well-known phase 
ordering problem: doing register allocation first may restrict the sched­
uler's instruction reordering opportunities, while performing scheduling 
first may lead to superfluous spill code. 

Experimental results for the targets mentioned above indicate that the 
retargetable phase coupling approach between register allocation and 
scheduling works and produces good code. The Marion system is ac­
tually a good example for the fact that retargetability and high code 
quality are not necessarily contrary goals, provided that only a certain 
processor class is targeted. Another strength is its capability of code 
generator generation from quite concise machine models. Limitations of 
Marion concern the expressiveness of the Maril modeling language, low 
compilation speed and robustness, and the lack of global IR optimiza­
tions and a more powerful code selector. 

1.4. PAGODE 
PAGODE is a backend generator for RISC targets [90, 91] that has 

been developed within the European research project COMPARE [92]. 
It reads a target machine specification in the SCALA language and gen­
erates code selector, register allocator, scheduler, and assembly code 
emitter for the given target. A SCALA description captures all target 
machine characteristics required for generating these tools: instruction 
templates with semantics, assembly format, cost metrics, and pipelining 
restrictions, as well as available storages and registers. 

Compilers generated with PAGODE require some source language 
frontend that generates a machine-independent intermediate represen­
tation (IR). For this purpose, a coupling to the CoSy (section 5.6.1) 
frontends has been implemented. The code selector uses tree parsing 
to map the IR into a common machine-dependent low-level IR (LIR), 
which the remaining code generation phases operate on. After code se­
lection, register allocation via graph coloring is performed. Finally, a 
list scheduler is applied to each basic block, so as to minimize pipeline 
hazards, and assembly code is emitted. 

PAGODE has been used to generate a Spare backend, but results on 
code quality have not been published. The system emphasizes modular­
ity and extensibility of generated backends. On the other hand, there 
is no phase coupling between code selection, register allocation, and 
scheduling, but only standard techniques are used for code generation. 
Hence, the code quality may be expected to be lower in general than 
e.g. in the Marion system, and retargeting to embedded processors with 
irregular architectures is obviously not supported. 
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1.5. SUIF /Machine SUIF 
Stanford University's SUIF system is actually more an optimizing 

frontend rather than a retargetable compiler. The software can be down­
loaded in two versions from [86]. 

The original version SUIFl comprises an ANSI C frontend built on 
LCC's frontend and also provides Fortran entry capabilities via a For­
tran to C translator. On the backend side, a MIPS code generator 
is provided. According to the licensing information, the software may 
be freely used, modified, and redistributed for any commercial or non­
commercial purpose. SUIF has been designed primarily as a compiler 
research framework, and for this purpose it is widely used. 

The optimization focus of SUIF is on parallelizing transformations, 
but also classical scalar optimizations like constant folding and propaga­
tion are included. The compilation and optimization process is intended 
to be very transparent and extensible by using a file exchange format 
between all compiler phases. In this way, new optimizations can be in­
serted at any time in a "plug-and-play" fashion. Naturally, this makes 
SUIF somewhat slower than usual compilers. 

SUIFl has no particular support for retargeting to different proces­
sors, but it is possible to dump the intermediate representation in C 
syntax at any time, so that an existing C compiler may serve as a "back­
end". 

SUIF's machine-independent IR can retain high-level C constructs 
like loops, conditionals, and array accesses, a feature that facilitates 
the intended complex program transformations. Alternatively, a "low­
SUIF" IR may be used, where all high-level constructs are lowered down 
to assembly-like, yet machine-independent, code. Optimization passes 
will generally require either the high or the low IR format, however. 
IR access and manipulation are possible via a C++ class library. We 
illustrate the different IR-levels with a small C example: 

int A[10]; 

void main(int a,int b,int i) 
{ 

A[i] = a < b ? 10 : 20; 
} 

The high-SUIF IR for this example (exported in C syntax) looks as 
follows. As can be seen, the conditional expression is still visible in its 
original form. 
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void main(int a, int b, int i) 
{ 

} 

int suif_tmpO; 

if (a < b) 
{ 

suif_tmpO = 10; 
} 

else 
{ 

suif_tmpO = 20; 
} 

A[i] = suif_tmpO; 
return; 

In contrast, in the low-SUIF format the conditional is replaced by 
jumps and labels, and also the array access is converted into a pointer 
access: 

void main(int a, int b, int i) 
{ 

int suif_tmpO; 

if (a >= b) 

goto 11; 
suif_tmpO = 10; 
goto __ done2; 

11: 
suif_tmpO = 20; 

__ done2: 
*(int *)((char *)A+ i * 4) = suif_tmpO; 
return; 

} 

The new version SUIF2 represents a complete revision of SUIF, and is 
currently in a beta release stage. There are, however, conversion utilities 
for backward compatibility to SUIFl. The IR has been redesigned to be 
more modular and extensible. The terms of use are similar to SUIFl, 
except for the C frontend. SUIF2 is based on EDG's commercial C++ 
frontend [87], therefore only the binaries are available, and free use is 
restricted to research purposes. 

Just like SUIFl, also the new version does not directly support retar­
geting to different processors. However, the Machine SUIF project at 
Harvard University [88] aims at filling this gap. It complements SUIF 
with a low-level but still partially machine-independent IR, that shows 
a one-to-one correspondence to assembly instructions. The low-level IR 
is generated from the normal SUIF IR by a dedicated lowering pass. 
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The goal is to keep most of the source code required for low-level opti­
mizations and code generation (e.g. register allocation and instruction 
scheduling) machine independent and thus reusable, while encapsulating 
the machine-specific details in a target library. In this way, backends for 
Alpha and x86 targets have been constructed with Machine SUIF. How­
ever, it still has to be investigated whether the low-level IRis expressive 
enough to handle more typical cases of embedded processors. 

In summary, the SUIF /Machine SUIF packages are certainly a good 
starting point for research on retargetable code generation, since they 
provide a large part of the required compiler infrastructure for free. On 
the other hand, SUIF has so far hardly been applied to code generation 
for embedded application-specific processors. An exception is the SPAM 
compiler described in section 5.2.4. 

1.6. Zephyr /VPO 
The Zephyr compiler infrastructure has been designed by the U ni­

versity of Virginia in cooperation with Princeton University. Together 
with the SUIF system, it forms a main component of the U.S. National 
Compiler Infrastructure project. While SUIF focuses on high-level code 
transformations, Zephyr emphasizes the machine-dependent code opti­
mizations. It supports different language frontends, such as EDG's C++ 
frontend and LCC's C frontend. Alternatively, the required intermedi­
ate representation (IR) can be generated via SUIF (which gives access to 
further frontends) and be converted into Zephyr's internal format. The 
Zephyr software, including source code, can be downloaded from [89]. It 
is copyrighted by the University of Virginia. 

Zephyr supports both different IRs and different target machines. The 
IRis described in the machine-independent Abstract Syntax Desciption 
Lang~age (ASDL), a language that supports file exchange of tree-like 
IR data structures between compiler components, possibly written in 
different programming languages. Information about the target ma­
chine is captured in a language family called CSDL (Computer Systems 
Description Languages). Different CSDL dialects are responsible for 
describing different aspects of the target machine, e.g. there are CSDL 
sub-languages for describing assembly and binary formats of machine in­
structions, instruction semantics, calling conventions, and pipeline struc­
ture. Even though this approach results in a rather heterogeneous ma­
chine model, all CSDL models for a given target share the same data 
structures for instructions and their respective impact on the processor 
state. 

A main idea in Zephyr is that the IR in a first step is mapped to 
a naive assembly code implementation without particular optimization 
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effort. The unoptimized assembly is afterwards optimized by the VPO 
(Very Portable Optimizer) tool. VPO has its origins in the retarget able 
peephole optimizer PO [73], which also influenced GCC. 

The mapping from the IR to unoptimized assembly takes place via a 
code expander. There has to be one dedicated code expander for each 
combination of IRs and target models. The code expander describes 
the mapping of each IR construct into an equivalent sequence of RTL 
assignments. In order to save development time, it is recommended 
to keep new code expanders extremely simple. Generation of correct 
machine code is sufficient in this step, since VPO will later take care of 
the optimization process (fig. 5.2). 

Assembly 

Figure 5.2. Compilation flow in Zephyr/VPO 

On the unoptimized code VPO iteratively applies optimizations until 
some fix point is reached, at which no further optimization seems possi­
ble. Available optimizations include common subexpression elimination, 
loop unrolling, code motion, function inlining, and strength reduction. 
A key idea is that all these optimizations are machine-independent, and 
hence reusable, even though they are performed on machine-dependent 
code. Machine-independence is achieved by performing only such trans­
formations that do not alter the predefined RTL semantics of the as­
sembly code. On the other hand, machine-dependence is preserved by 
a special VPO module that checks whether the modified assembly still 
obeys a machine invariant, in the sense that all RTL assignments still 
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correspond to exactly one instruction on the target machine. Transfor­
mations not satisfying this invariant are rejected. 

After the code optimization process has terminated, register alloca­
tion by graph coloring is performed, since all transformations take place 
on RTL code with virtual registers. Afterwards, the assembly syntax de­
scription part of the CSDL machine model can be used to emit valid as­
sembly code. A retargetable postpass instruction scheduler is obviously 
not included in VPO but has to be developed separately if required. 

With respect to retargetable compilation the major advantages of the 
Zephyr /VPO approach are twofold: Retargeting is comparatively easy, 
since it is not required to specify target-dependent optimizations, as 
these are left to VPO. Moreover, all code optimizations once imple­
mented in VPO in principle can be reused for all target machines, even 
though not all optimizations might be effective for each target. 

The main limitations of Zephyr are the strict decoupling of code se­
lection, optimization, and register allocation, as well as the requirement 
of a one-to-one mapping between RTL assignments and assembly in­
structions, which restricts its use mostly to clean RISC and CISC ma­
chines. Irregular architectures frequently found in embedded processors, 
including special-purpose registers, complex instructions, and limited 
parallelism are not directly supported, but require machine-specific ex­
tensions of VPO. 

1.7. LANCE 
The LANCE C compiler system, developed at the University of Dort­

mund [93], comprises an ANSI C frontend, a C++ API for accessing the 
intermediate representation, a set of standard IR optimizations, as well 
as a backend interface. The C frontend can be downloaded from [94], 
while the complete V2.0 system can be licensed for research purposes on 
request. Supported platforms are Unix, Linux, and MS Windows. 

The LANCE system is not as easily retargetable as GCC or LCC, 
since it does not include a complete backend generation module. Roever, 
design of target-specific code generators is supported by the backend 
interface. LANCE is almost completely machine-independent and has no 
implicit preference for a certain target processor class. Thus, backends 
can be designed actually for almost any target. The system covers several 
compiler passes, from C source analysis over IR optimizations, down to 
generation and visualization of control and data flow graphs. 

LANCE combines ideas from SUIF and LCC. Similar to SUIF, the 
different compiler and optimization passes operate on a common IR and 
communicate via file exchange. This makes LANCE comparatively slow, 
but it enables the same "plug-and-play" extensibility concept as in SUIF: 
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IR optimizations can be inserted (or omitted) at any point of time. 
TheIR format, however, is kept in the form of pure assembly-like three 
address code. While a high-level IR as in SUIF better supports certain 
optimizations, the LANCE IR has intentionally been chosen as a very 
simple format, so as to make it easily understandable when writing new 
optimization passes. 

Similar to LCC, LANCE can generate data flow graphs that can be di­
rectly fed into code selectors generated by tools like IBURG or OLIVE. 
In contrast to LCC, however, the DFG operators (or the tree gram­
mar terminals, respectively) are machine-independent. This reduces the 
number of operators (the total number .happens to be 42, as opposed 
to more than 200 in a typical LCC model) and thereby the number of 
required tree grammar rules, at the expense of more complicated code 
generator action functions. 

We exemplify the LANCE compilation procedure with the same small 
piece of C code as in our above SUIF example: 

void main(int a,int b,int i) 
{ 

A[i] = a < b ? 10 : 20; 
} 

The C frontend translates this into the following IR file: 

void main(int a_3,int b_4,int i_5) 
{ 

} 

int t1; 
int t2; 
char •t3; 
int t4; 
char •t5; 
int •t6; 

LL1: 

LL2: 

t1 = a_3 < b_4; 
if (t1) goto LL1; 
t2 = 20; 
goto LL2; 

t2 = 10; 

t5 = (char •)A; 
t4 = i_5 * 4; 
t3 = t5 + t4; 
t6 = (int *)t3; 
•t6 = t2; 
return; 
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The frontend assigns a unique numerical suffix to all local identifiers, 
so as to flatten the possibly nested local scopes in a C function. Ad­
ditionally, it inserts auxiliary variables ("t" prefix) in order to break 
complex expressions. All high-level language constructs are tranformed 
into conditional jump/label constructs, and all implicit type casts as 
well as pointer and array index scaling are made explicit in the IR. 
The latter naturally requires machine-dependent type size information. 
This is passed to the frontend through a small configuration file, which 
also contains the type alignment information required e.g. for computing 
structure component offsets. 

Similar to SUIF's C export facility for the low-SUIF IR, the IR gen­
erated by LANCE is still a valid (but even lower-level) C program. In 
fact it is pure, flattened three address code in C syntax. This means 
that the IR can be compiled and executed on a host just like the origi­
nal C source. This feature is exploited for validation of the C frontend, 
the IR optimization tools, as well as the backend interface. Based on 
this methodology and a large suite of heterogeneous C test programs, a 
reasonably good stability of the LANCE system has been achieved, and 
any newly designed IR optimization pass can be easily validated without 
the need for a backend or simulator in the same way. 

The next step in the compilation procedure is normally the iterative 
application of IR optimizations like constant folding, dead code elim­
ination, or loop-invariant code motion. However, in our above simple 
example there is not much to optimize. The final step, therefore, is the 
translation of the IR into the data flow tree format required for code 
selection. For our example this looks as follows: 

* Function 'main' 
* Basic block 1: 
* Tree 1: 

(cs_CJUMP [IR stm 2: 'if (t1) goto LL1;'] 
(cs_LESS [IR exp 8: 'a_3 < b_4' C type: int 

(cs_READARG [IR exp 6: 'a_3' C type: int ] arg no 1) 
(cs_READARG [IR exp 7: 'b_4' C type: int ] arg no 2))) 

* Basic block 2: 
* Tree 1: 

(cs_WRITE [IR stm 3: 't2 = 20; '] 
(cs_INTCONST [IR exp 2: '20' C type: int ])) 

• Tree 2: 
(cs_JUMP [IR stm 4: 'goto LL2;']) 

• Basic block 3: 
* Tree 1: 

(cs_LABEL [IR stm 5: 'LL1:']) 
* Tree 2: 

(cs_WRITE [IR stm 6: 't2 = 10; '] 
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(cs_INTCONST [IR exp 3: '10' C type: int ])) 
• Basic block 4: 
• Tree 1: 

( cs_LABEL [IR stm 7: 'LL2: '] ) 
• Tree 2: 

(cs_STORE [IR stm 12: '•t6 = t2;'] 
(cs_CAST [IR exp 24: '(int •)t3' C type: int •] 

(cs_PLUS [IR exp 21: 't5 + t4' C type: char * ] 
(cs_CAST [IR exp 14: '(char •)A' C type: char •] 

(cs_GLOBALSYM [IR exp 13: 'A' C type: int • ])) 
(cs_MULT [IR exp 17: 'i_5 • 4' C type: int ] 

(cs_READARG [IR exp 16: 'i_5' C type: int ] arg no 3) 
(cs_INTCONST [IR exp 4: '4' C type: int ])))) 

(cs_READ [IR exp 27: 't2' C type: int ])) 
• Tree 3: 

(cs_VOIDRETURN [IR stm 13: 'return;']) 

Function main is subdivided into four basic blocks, each of which 
comprises one or more trees. The trees are shown in a textual format, 
where in each line the operator ( "cs_" prefix, followed by an identifier 
in capital letters) is followed by some debug and type information. For 
validation purposes, also C syntax export is possible. The indentation 
indicates the parent/child relationships between the tree nodes. For 
instance, tree 1 in block 1 denotes a conditional jump dependent on a 
"less" comparison of function arguments a and b. The LANCE C++ 
library provides macros and functions that make the generated data 
flow trees directly accessible to code selectors generated with tools like 
IBURG and OLIVE. 

Retargeting LANCE requires more compiler know-how and backend 
design effort than systems like GCC or LCC. However, the system is 
fairly easy to use or to extend due to its clean software architecture 
and simple IR. It has been applied in a number of prototype compilers 
for embedded processors. Among others, there is a power-optimizing 
backend for the ARM7 Thumb RISC instruction set (95]. LANCE also 
serves as the primary compiler infrastructure at the technology transfer 
company lCD (98], where commercial C compilers for lnfineon's Network 
Processor architecture (96, 97] and Systemonic's (99] HiperSonic DSP 
have been developed. 

2. Retargetable compilers for DSPs 
2.1. CBC 

The CBC compiler designed at the TU Berlin [100, 101, 102, 104] is 
part of a larger DSP tool design effort that also includes retargetable 



Retargetable compiler case studies 85 

instruction set simulation. CBC is a retargetable compiler for DSPs. 
It comes without a C frontend, but generates its intermediate program 
representation directly from a flow graph description of the application. 

The target processor is described in nML ("not a Machine Language") 
[105], which provides a behavioral, instruction-oriented model to the 
compiler. Similar to other languages, e.g. Maril, an nML description 
starts with a resource specification in terms of available registers and 
memories. Functional units are not explicitly captured. A typical re­
source declaration in nML is shown in the following, which declares a 
1024 x 16-bit memory. 

mem the_memory[1024,int(16)] 

Available types in resource declarations also include unsigned, floating 
point, fixed point, and Boolean numbers. However, it is not clear why 
the resources are typed, and not the operations as one might expect. 

The instruction set itself is described in a hierarchical fashion, in the 
form of an attribute grammar. In this way, nML exploits the tree­
like structure of many instruction sets, which in turn permits a concise 
factored description, as opposed to a lengthy flat list. The basic modeling 
entity in nML is an operation, that includes a certain behavior, assembly 
syntax, and a binary encoding. An example is: 

opn add() 
action = { reg1 = reg2 + reg3; } 
syntax = format ("ADD") 
image = format("010") 

Each operation typically comes with three attributes: The action part 
describes the instruction behavior in the form of C-like assignments, 
where the operands are declared resources or constants. The syntax 
attribute accounts for the assembly syntax to be emitted by the compiler, 
where the "format" construct is used for formatted output similar to the 
"print£" function in C. Finally, the image attribute specifies a partial 
binary encoding that belongs to the operation. 

A special type of operation refers to sub-instructions that merely serve 
for operand computation. In nML, such an operation is called a mode. 
A mode has syntax and image attributes like a normal operation, but 
no action attribute. Typical applications are specification of addressing 
modes or indexed access to a register file. 

nML allows to factor operations by means of so-called OR-rules. Such 
a rule defines a name for a set of alternative operations. For instance, if 
we had defined another operation "sub" analogous to the above "add", 
then the 0 R-rule 
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opn alu_op = add I sub 

allows to refer to either "add" or "sub" by a single identifier "alu_op". 
More complex operations employing "add" or "sub" as subroutines can 
now be described concisely by referring to the attributes of "alu_op" 
instead of explicitly enumerating the suboperations. For instance, if we 
want to describe a predicated instruction dependent on some flag, we 
could use the following construct: 

opn conditional(ins: alu_op) 
action= { if FLAG== 1 then ins.action; 

else "NDP"; endif; } 
image= format("11 %s",ins.image) 
syntax= format("FLAG? %s",ins.syntax) 

Here, a sub-instruction of type "alu_op" is passed as a parameter to 
operation "conditional", which uses all attributes of "alu_op" to describe 
a full (predicated) instruction. 

The CBC compiler reads the nML target model and generates ei­
ther assembly or binary machine code for the input flow graph. First, a 
lowering pass maps the abstract flow graph operations into equivalent se­
quences of machine instructions. The actual code selection is performed 
by a tree parsing technique [106]. The required tree grammar rules are 
automatically generated by flattening the nML model, but according to 
[101] still some manual work is required to make the code selector fully 
operational. 

A special feature of CBC's code generator is a combined register al­
location and scheduling technique called data routing [107]. This aims 
at efficient handling of irregular data paths as frequently encountered 
for DSPs, where tight coupling of code generation phases is a must. A 
similar approach has also been developed by Rimey and Hilfinger [108]. 
The CBC data router is driven by a list scheduler and tries to avoid ex­
pensive spilling of special-purpose registers on the fly. A problem with 
this approach is that scheduling deadlocks may result, which have to be 
avoided by a dedicated and potentially very time-consuming algorithm. 

Together with the corresponding instruction set simulator, the design 
of CBC showed that generation of different development tools from a 
single target model is possible. However, both tools are obviously no 
longer in use, and results on code quality for realistic targets have never 
been reported according to our knowledge. 

Still, the introduction of the nML modeling language had quite some 
impact on further projects. Examples include the CHESS compiler (sec­
tion 5.6.2), which is based on nML, and the LISA processor modeling 
language (section 5.5.5), which was strongly inspired by nML. A project 
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at liT Kanpur [109] dealt with automatically generating LCC machine 
descriptions from nML models. A demonstrator model has been devel­
oped for the PowerPC. However, fully automatic retargetability has not 
been achieved, since important MD sections like register classification 
and C support routines were not extractable from nML models. 

2.2. REDACO 

Similar to CBC, the REDACO compiler designed at TU Vienna [110, 
111, 112] does not include a programming language frontend, but it 
starts from a data flow graph (DFG) description of the application pro­
gram. It targets fixed-point DSPs with irregular data paths. 

REDACO takes its machine-dependent information from a target ar­
chitecture description file (TADF). The TADF uses a relatively straight­
forward syntax to specify available machine registers as well as instruc­
tion patterns together with possible argument and result registers. Ad­
ditionally, the TADF captures combinations of instructions that qualify 
for parallel execution under certain constraints. 

The code generation procedure revolves around a Trellis Diagram data 
structure (fig. 5.3). This data structure is used to cope with the special­
purpose register architecture of typical target processors. There is one 
Thellis Diagram for each of the available machine instructions (e.g. an 
ADD or a register-to-register transfer). Each diagram is a graph rep­
resentation of a machine instruction and its permissible combination of 
operand and destination registers. Graph nodes represent registers or 
register sets, while cost-weighted edges represent instructions. Thus, any 
path in a Thellis Diagram denotes an instance of the underlying machine 
instruction for a particular combination of operand and destination reg­
isters. This information is used by the code generator to ensure that 
only valid instruction/register combinations are generated. 

REDACO comprises a Thellis Diagram generator that extracts all re­
quired diagrams from a given TADF. Naturally, this task needs to be 
performed just once per target machine. Also the program intermediate 
representation (IR) is converted into a Thellis Diagram format. Some 
expansion step may be required to ensure that there is a one-to-one cor­
respondence between IR operations and machine instructions. The code 
generator picks one data flow tree after another from the IR and replaces 
its internal operators by the corresponding Thellis Diagram. The result­
ing diagrams are connected to each other by insertion of dedicated data 
transfer Thellis Diagrams that represent possibly required loads, stores, 
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Figure 5.3. Trellis Diagrams for different machine instructions (taken from [113]) 

or register-to-register moves. In this way, the data flow tree is eventually 
converted into a Trellis Tree. 

This Trellis Tree implicitly represents all its possible implementations 
by machine instructions and also the respective register usage. A dy­
namic programming algorithm is used to detect the minimum cost paths 
from the tree leaves to the root, so that finally a minimum cost code se­
lection is found. Roughly, this corresponds to the tree parsing approach 
used in other compilers. However, REDACO uses a slightly generalized 
notion of constrained data flow trees. These may also incorporate com­
mon subexpressions (which are normally represented by separate t rees) 
and thus have to be attributed with a partial evaluation order. In addi­
tion, the compiler keeps alternative optimal solutions to achieve higher 
optimization freedom in the subsequent phases. 
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The selected code tree is linearized and passed to the register allocator 
and compactor. The register allocator, which is based on an interference 
graph and is coupled to the compactor, exploits the register assignment 
choices remaining after the Trellis Tree traversal, e.g. for efficiently com­
municating values between data flow trees and minimizing spill code. 
The compactor is based on the critical path heuristic [114] and aims 
at optimum local parallelization of generated instructions in accordance 
with the constraints in the TADF description. One of the last optimiza­
tion phases in REDACO is offset assignment (section 3.3.4), aiming at a 
high utilization of auto-increment capabilities of the address generation 
unit for efficient access to local variables. 

REDACO has been retargeted to different fixed-point DSPs, including 
TI C25, ADSP-210x, and Motorola 56k. For some small input DFGs it 
has been capable of generating code whose quality comes close to hand­
written assembly. These results show that good code quality can be 
achieved even for irregular target machines such as DSPs when using 
advanced code generation techniques. The main limitations of RED ACO 
are its focus on a narrow class of targets and the missing frontend for 
a programming language like C. Since the tool only compiles DFGs, 
function calls, aggregate data structures, and control flow are obviously 
not supported. 

2.3. CodeSyn/FlexWare 
The FlexWare system from STMicroelectronics performs semi-auto­

matic generation of different software development tools from machine 
descriptions, including compiler, simulator, debugger, and profiler [118, 
119, 120, 121, 122]. 

The first approach to retargetable compilation within the FlexWare 
project was the model-based CodeSyn compiler. The target model in 
CodeSyn is described in three parts. First, there is a set of available 
instruction templates, each specified as a small tree-shaped pattern that 
represents a piece of computation (e.g. an ADD or a conditional jump) 
performed by a certain target instruction. This format strongly resem­
bles the one used in tree parsing based approaches to code generation. 
Additionally, assembly syntax and opcode information is annotated to 
the templates. 

The second part is a structural connectivity graph that reflects the 
interconnections between processor resources like registers, ALUs, and 
memory. The graph model mainly serves to inform the compiler about 
possible ways of data transportation within the data path. Finally, there 
is a resource classification section in the target model that accounts for 
available physical registers, register classes, and functional units. The 
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register classification refers to the inputs/ outputs of the instruction tem­
plates. Additionally, a mapping of instruction templates to the func­
tional units has to be specified. 

The compiler first translates a given input C program into an inter­
nal control/data flow graph (CDFG) model. Similar to CBC, abstract 
CDFG operations are lowered down to machine operations in a rewriting 
phase. On the lowered CDFG, pattern matching is applied w.r.t. to the 
specified instruction template set, so as to find an optimum covering of 
subgraphs by machine instructions. As opposed to many other compil­
ers, CodeSyn uses a custom code selection technique based on a so-called 
prune tree data structure that implicitly enumerates all possible covers. 
Eventually, however, the covers are selected by means of dynamic pro­
gramming, so that the results should be very similar to the tree parsing 
technique in general. 

Following code selection, greedy register allocation is performed. Spe­
cial focus is on handling of irregular register architectures. Each virtual 
register is characterized by a set of candidate physical registers, and reg­
ister allocation heuristically starts with assigning those virtual registers 
with the lowest number of candidates. Potentially required register-to­
register moves and spills are generated on-the-fly. Remaining freedom 
in register allocation is finally exploited via a left edge algorithm that 
locally aims at spill code minimization. 

The last step in CodeSyn is an instruction scheduling pass. This is 
implemented as a code compaction algorithm that, based on the speci­
fied resource occupation of instructions, aims at parallelizing generated 
instructions under the given constraints by means of a list scheduling 
approach. 

CodeSyn has been retargeted to a DSP-like Nortel ASIP, which also 
has been the driver for the development of the compiler. The compiler 
has been applied to some very small C programs, for which an average 
code size overhead of 19 % over hand-written assembly was found. 

Further evaluation of CodeSyn showed that the approach is some­
what restricted concerning the class of possible target processors. As a 
consequence, a new generation of retargetable compilers called FlexCC 
has been developed. In contrast to CodeSyn, FlexCC is rule-driven. 
This means that the entire code generation process is steered by manu­
ally specified, machine-dependent translation rules. The required rules 
mainly fall into two classes. The first set of rules describes the map­
ping of C code constructs into instructions of a virtual machine. This 
machine is functionally similar to the intended target, but provides no 
instruction-level parallelism. 



Retargetable compiler case studies 91 

This "virtual" code selection step also comprises register allocation, 
based on local graph coloring like in CodeSyn. The second rule set refers 
to assembly-level peephole optimizations. These are used in a compila­
tion phase called target machine mapping, where (similar to the approach 
in GCC) partial instruction sequences can be refined to exploit highly 
target-specific instructions and to accommodate restrictions. Also, func­
tion calls and control statements are handled during this phase. As in 
CodeSyn, the final phase in FlexCC is code compaction for exploitation 
of parallism, followed by assembly code emission. 

In summary, FlexCC is a very pragmatic approach to retargetable 
compilation, not necessarily restricted to DSPs. The main advantage is 
high flexibility, since the rule concept allows to capture almost arbitrary 
idiosyncrasies in the target architecture. Unfortunately, the expressive­
ness of the rules used in FlexCC is not fully clear from the publications. 
Generally, it may be expected that the retargeting effort is compara­
tively high, and that the code quality heavily depends on the suitable 
specification of machine-dependent code generation rules, since there is 
not much optimization performed automatically by the compiler kernel. 

FlexCC has been retargeted to a microcontroller used in a video tele­
phone chip at SGS Thomson. For some medium size C programs, the 
compiler generated code of 1 % less size on average compared to the 
hand-written reference code. Another target for FlexCC was an SGS 
Thomson fixed-point DSP. For two medium size C inputs, the observed 
compiler overhead ranged between 0 and 26 %, dependent on the C pro­
gramming style. The total retargeting effort, including validation and 
integration, was about 8 person months. 

An interesting feature of the Flex Ware system is that is also com­
prises further software development tools beyond the compiler. With 
this extensive tool support, retargetable compiler technology well sup­
ports design space exploration. The system is in in-house use for different 
processors at STMicroelectronics [123] and is not publicly available. An 
ongoing project deals with retargeting FlexWare to a new class of net­
work processors. Currently, there is also a shift towards a new FlexCC 
version, based on ACE's CoSy system described in section 5.6.1. 

2.4. SPAM 

SPAM is a joint project ("Synopsys, Princeton, Aachen, MIT") fo­
cused on retargetable compilers for fixed-point DSPs [124, 129, 131, 127, 
130, 125, 128, 126]. It builds on the SUIF compiler {section 5.1.5). The 
source code can be downloaded for research and development purposes 
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from [132]. The distribution comprises demonstrator backends for the 
TI C25 and Motorola 56k DSPs. 

While SUIF performs C source code analysis and machine-independent 
IR optimizations, SPAM's retargetable backend library called TWIF is 
responsible for assembly code generation. TWIF consists of a set of 
C++ data structures and algorithms that are customizable or parame­
terizable and hence are capable of generating code for different targets. 
Among others, TWIF contains the main backend data structures like 
call graphs, control flow graphs, and data flow graphs for basic blocks, 
as well as an intermediate format for assembly code. 

The SPAM compiler has been designed as a developer retargetable 
compiler. Thus, in contrast to tools like CBC (section 5.2.1) or RECORD 
(section 5.2.5) there is no homogeneous processor model in some descrip­
tion language, from which the compiler derives the required information. 
Instead, TWIF offers a suite of retargetable code generation and opti­
mization modules, from which the compiler developer can select the 
required ones and adapt them to the new target. Hence, focus is on the 
reuse of source code instead of automatic retargeting support. TWIF 
contains a number of innovative DSP-specific code optimization tech­
niques, which include: 

Code selection for irregular architectures: Like many other com­
pilers, SPAM makes uses of tree parsing for code selection. The 
OLIVE tool (section 5.5.3.2) is used to generate the code selector 
source code from a tree grammar specification. While tree parsing 
originally was mainly intended for regular CISC-like target architec­
tures, it has been pointed out in [129] that an adaptation to irregular 
machines is relatively easy, if special purpose registers are represented 
by dedicated nonterminal symbols in the tree grammar. The TI C25 
target, for instance, has three special purpose registers TR, PR, and 
ACCU, and using one nonterminal for each register ensures that the 
required register-to-register moves are automatically generated al­
ready during tree parsing. In this way, register allocation is partially 
coupled with code selection. For a certain, yet narrow class of target 
machines satisfying the so-called register transfer graph (RTG) cri­
terion is has been shown that even optimal, spill-free schedules can 
be generated with this method. This is illustrated in fig. 5.4, which 
shows a data flow tree with two subtrees TI and T2 rooted at nodes 
VI and v2. Suppose that code selection is such that registers ri and 
r2 are assigned to VI and v2, but also to two further nodes WI and 
w2 within T1 and T2. In this case spill code cannot be avoided, since 
neither TI nor T2 can be scheduled first without overwriting the op-
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posite subtrees's destination register. The RTG criterion, together 
with an appropriate scheduling algorithm, ensures that such dead­
lock situations cannot occur. However, optimality here is restricted 
to the sequential assembly code, while exploiting instruction level 
parallelism is postponed to a later code compaction step. 

Figure 5.4. Potential register allocation deadlock 

Exploitation of dual memory banks: A number of DSP architec­
tures like the Motorola 56k or the Analog Devices ADSP-210x show 
dual (X/Y) memory banks for sake of an increased memory access 
bandwidth (fig. 5.5). In order to utilize such an architecture within a 
compiler, it is necessary to partition the program variables between 
the X and Y memory banks. This is a difficult task, since the parti­
tioning problem in itself is complex, and numerous constraints w.r.t. 
the register usage and the instruction encoding have to be met. As 
a consequence, most existing compilers for dual memory bank DSPs 
(such as the GCC port for the Motorola 56k) simply neglect one of 
the two banks or leave the partitioning to the programmer by means 
of compiler intrinsics. In contrast, SPAM comprises a variable par­
titioning module for X/Y memory banks. After a pre-compaction 
step of the input program, given as symbolic assembly code, memory 
bank allocation and register allocation take place in a single phase. 
These problems are mapped to a constraint graph labeling problem. 
The constraint graph nodes represent variables to be mapped to X/Y 
memory banks or registers. The graph edges are used to reflect both 
the costs associated with a certain labeling and the code generation 
constraints imposed by the target DSP. The labeling is performed by 
a simulated annealing optimization algorithm. A problem with this 
approach is the sometimes huge runtime requirement. Alternative 
variable partitioning techniques are described in [134, 135, 136]. 
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Figure 5.5. Coarse architecture of a dual memory bank DSP 

Exploitation of address generation units: TWIF comprises mod­
ules for graph-based offset assignment for local variables (section 
3.3.4), that can be fully parameterized by the number of available 
address registers and the auto-increment range [115]. These tech­
niques can also be applied for partial design space exploration [130]. 
Additionally, the TWIF library offers algorithms for address regis­
ter allocation within loop bodies [127]. This work has recently been 
extended towards handling of arbitrary control flow [133]. 

Besides the above techniques, TWIF offers reusable implementations 
of several other analysis and optimization passes such as data flow analy­
sis on IR or assembly code, graph coloring register allocation, local code 
compaction, and exploitation of zero-overhead loops. 

The SPAM compiler has been retargeted to two standard DSPs (TI 
C25 and Motorola 56k) and a custom DSP from Fujitsu. As mentioned 
above, retargeting SPAM does not mean changing some target proces­
sor model, but adapting the SPAM backend to the new target, while 
aiming at the highest possible reuse rate of the TWIF library functions. 
Software reuse is facilitated by a clean C++ class implementation of the 
optimization modules that make use of the virtual function concept in 
C++. The developer can derive a new machine-specific class from one 
of TWIF's optimization base classes, and provide the machine-specific 
details to the base class methods via its virtual functions. In this way, a 
relatively high degree of code sharing of about 60 % has been achieved 
between the three different backends. However, the main limitation of 
this library reuse approach to retargetability is that the reuse rate will 
be much lower in case of a new target machine, whose architecture differs 
significantly from SPAM's previous targets. This is due to the fact that 
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the development of the existing optimization modules has been largely 
driven by architectural features of specific machines. 

The quality of code generated by SPAM has been measured for several 
small C programs, such as the DSPStone benchmarks [77]. The code 
size overhead as compared to hand-written assembly typically ranges 
between 0 and 70 %, which is quite good for a retargetable compiler. 
The best results have been achieved for the Fujitsu target. 

2.5. RECORD 
RECORD ("Retargetable Compiler for DSPs") was developed at the 

University of Dortmund [137, 138, 116, 139, 140] as a successor of the 
MSSQ compiler described in section 5.4.1. Like CBC, REDACO, and 
SPAM, it is a retargetable compiler for a class of fixed-point DSPs. 
In contrast to other approaches, RECORD derives the required target 
machine information solely from a hardware description language (HDL) 
model. 

Like MSSQ, RECORD uses the MIMOLA HDL (see also sections 2.2 
and 5.4.1) [141 J for this purpose, a language that resembles structural 
VHDL. A MIMOLA processor model essentially describes the target 
machine by a hierarchical RT-level (RTL) netlist of components, where 
leaf components are described behaviorally. Examples are given in figs. 
5.6 and 5.7. 

MODULE ALU (IN i1, i2: (15:0); OUT outp: (15:0); IN ctr: (1:0)); 
BEHAVIOR IS 

BEGIN 
outp <- CASE ctr OF 

END; 

0: i1 + i2; 
1: i1 - i2; 
2: i1 AND i2; 
3: i1; 

END; 

Figure 5.6. MIMOLA model of an ALU 

In contrast to its predecessor MSSQ, RECORD is not restricted to 
pure RTL HDL models, but also accepts behavioral models and mixed­

style models. In a purely behavioral processor model, only the target 
instruction set is described in the form of a single complex MIMOLA 
component, while hiding the internal RT-structure [142]. 

The advantage of using an HDL for describing the target processor 
model is twofold: The user has a high degree of freedom in modeling 
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MODULE Reg16bit (IN inp:(15:0); OUT outp:(15:0); IN enable:Bit); 
BEHAVIOR IS 

VAR S: (15:0); 
BEGIN 

IF enable THEN S := inp; 
outp <- S; 

END; 

Figure 5. 7. MIMOLA model of a 16-bit register 

the target, due to the expressiveness of the HDL. Dependent on the 
available documentation (instruction set, RT schematic, or something 
in between), the most convenient modeling style can be chosen for each 
target. Additionally, using real HDL models eliminates the need for 
developing a number of different processor models, and the resulting 
problems of model equivalence checking: The same HDL model may be 
used for synthesis, simulation, and code generation. 

However, HDL models are sometimes too low-level for retargetable 
compilation, in particular when specified at the RTL. Therefore, the 
RECORD compiler comprises an instruction set extractor, that converts 
an arbitrary-style MIMOLA model into a flat list ofRT-level assignments 
by enumerating all possible data transfer paths through the netlist. Si­
multaneously, the corresponding partial binary opcodes are extracted 
for each RTL assignment. Internally, these opcodes are represented as 
Boolean functions by means of Binary Decision Diagrams (BDDs) [143]. 
In this way, the instruction set extractor can efficiently determine the 
subset of RTL assignments that are valid w.r.t. the instruction encoding 
scheme, as well as the groups of RTL assignments that can be scheduled 
in parallel without encoding or resource conflicts. 

An example RT structure is given in fig. 5.8. For instance, computing 
the sum of the contents of registers Rl and R3 and storing the result in 
R5 requires a certain setting of specific instruction word bits I.(n) and 
mode registers MRl and MR2. The instruction set extractor determines 
the required control bit values and stores the corresponding opcodes or 
mode register settings. In case alternative opcodes are found for the 
same RTL assignment, all alternatives are kept, so as to obtain higher 
freedom for the code compaction phase. 

The input source language for RECORD is DFL, a data flow language 
designed for DSPs [144]. DFL shows some resemblence to C, but it has 
a data flow semantics and provides better support for describing DSP­
specific algorithms like filters. The DFL source code is first transformed 
into an internal control/ data flow graph model and afterwards decom-
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Figure 5.8. Partial RT-level hardware structure 
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posed into data flow trees. The RTL assignment list delivered by the 
instruction set extractor is converted into a tree grammar specification 
for the IBURG tool (section 5.5.3.1), which automatically generates a 
target-specific code selector. This step has to be performed only once 
per target architecture. 

Like in the SPAM compiler [126], register-specific tree patterns are 
used to partially integrate allocation of special-purpose registers into 
the code selection phase. Once all program values have been assigned to 
specific registers or register files, a local register allocator based on the 
left edge algorithm [67] aims at spill code minimization in the generated 
sequential assembly code. 

RECORD comprises two further DSP-specific code optimization tech­
niques: 

Address code optimization: It is assumed that the target proces­
sor comprises a parallel address generation unit (AGU) with auto­
increment support as explained in section 3.3.4. The AGU needs 
to be part of the HDL model, and the detailed AGU configuration 
(number of address registers, presence of modify registers, etc.) is 
automatically extracted. Similar to SPAM, RECORD uses the avail­
able AGU operations for optimized address code generation for local 
variables and array accesses. For this purpose, several improved op­
timization techniques have been developed [116, 145, 146]. Address 
code optimization is applied to the previously generated sequential 
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assembly code with symbolic memory accesses. Afterwards, the gen­
erated AGU operations are inserted into the sequential code at the 
required positions. 

Code compaction: RECORD uses a local code compaction technique 
based on Integer Linear Programming [140]. This technique permits 
optimal compaction of basic blocks, and it is also capable of meeting 
timing constraints w.r.t. the schedule length. However, due to the 
high runtime requirements the block size has to be restricted to about 
50 assembly instructions. Excessively large blocks have to be split 
into subblocks before compaction. 

The RECORD compiler has been applied to the TI C25 DSP and to 
several custom DSPs. The behavioral MIMOLA model for the C25 has a 
size of approximately 900 lines of code. For the DSPStone benchmarks, 
the code size overhead of compiled code versus hand-written assembly 
is comparable to that of the SPAM compiler. This is presumably due to 
the fact that the overall organization of the backend is very similar in 
both compilers. 

The main innovation of RECORD is the instruction set extraction 
approach which allows to handle mixed-style HDL processor models. 
Since the compiler can be retargeted very quickly, it allows to perform 
a limited design space exploration for custom DSPs given as an RTL 
netlist or an instruction set model, as has been demonstrated in [137]. 
The main limitations of RECORD are the missing C frontend (there 
is hardly any DSP software written in DFL), the missing support for 
multi-cycle instructions, and the lack of machine-independent standard 
optimizations, which makes the tool less suitable for large programs. 

3. Retargetable compilers for VLIW s 
3.1. ROCKET 

ROCKET is a retargetable compiler for microprogrammed, pipelined 
architectures. It has been developed at Colorado State University [147, 
148] and has its roots in the HORIZON compiler [149] (see also chapter 
4). ROCKET has been targeted towards Alpha, i860, and RS/6000. 
It reads C input programs based on the LCC frontend and first per­
forms several global standard optimizations, including common subex­
pression elimination, algebraic simplification, as well as constant folding 
and propagation on an intermediate representation. Alternatively, also 
a Fortran frontend is available. 

After IR optimization, code selection takes place, and data flow graph 
(DFG) representations for the basic blocks are built. Dependence anal-
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ysis between the DFG nodes also includes memory disambiguation, in 
order to exhibit more parallelism for the scheduling phase. 

The code generator is driven by a machine description that consists 
of four sections: 

1 Resources annotated with timing information 

2 Separation of VLIW instructions into distinct fields 

3 Machine operations together with their activation patterns from the 
instruction fields and output assembly syntax 

4 A data path description for driving the code selector 

As in the Marion compiler, special emphasis in ROCKET is on the 
coupling of scheduling and register allocation in order to reduce the unfa­
vorable effects of the phase ordering problem ("early" vs. "late" register 
allocation). In particular, detailed register assignment and spill code 
insertion are executed only after a code compaction pass, which per­
forms local parallelization of the sequential code. The local scheduler is 
embedded into a global scheduler that also supports software pipelining. 

The core of the register allocator is implemented by a traditional 
graph coloring approach. Since spill code insertion within compacted 
code is quite difficult, a feedback loop between register allocation and 
compaction is used. This avoids false dependencies that usually affect 
compaction, at the expense of sometimes very high computation time 
requirements. An alternative approach to phase coupling has been de­
scribed in [150], which toggles between early and later register assign­
ment dependent on the generated schedule lengths. 

More recently, code generation techniques in ROCKET have been ex­
tended into different directions, e.g. handling of clustered VLIW archi­
tectures with multiple register files [151]. Reported experimental results, 
however, mainly deal with hypothetical target machines. ROCKET is 
more a research compiler than a robust tool. Software is available on 
special request. 

3.2. IMPACT 
The IMPACT system [152] is mainly an optimizing C frontend, with 

emphasis on instruction-level parallel (ILP) architectures. The C fran­
tend itself is built upon the EDG [87] frontend. IMPACT includes 
classical "Dragon Book" [58] optimizations, as well as advanced ILP­
improving program tranformations. These include code layout for func­
tions, as well as superblock and hyperblock formation which increase the 
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scheduling and optimization scope for backends via predicated execution 
support. 

There are two levels of program intermediate representation: Hcode 
(which preserves high-level language constructs) and Lcode (a machine­
independent RISC assembly like format). Additionally, there is a more 
machine-oriented low-level IR called Meade, which allows for annotating 
machine-specific information like delay slots of instructions. 

IMPACT provides additional support modules like control flow pro­
filing, C source file restructuring, function inlining, and emission of C 
code as a "backend". There are also backends for real processors like 
MIPS R2000/3000, Spare, x86, and i860, that reuse IMPACT's built-in 
optimizations and whose code quality competes well with native compil­
ers. However, there is no dedicated retargeting formalism like in GCC 
or LCC. 

The IMPACT software can be downloaded from [153]. Supported 
platforms are HP-UX, SunOSJSolaris, and Linux. The software is gen­
erally free for academic, research, and "internal business" purposes. Li­
censes for full commercial use can be negotiated. There are, however, 
special terms for different sub-packages used in IMPACT (such as the 
EDG C frontend source code, the GNU C preprocessor, and a BDD 
package), which have their own license conditions. 

3.3. Trimaran 
The Trimaran system, mainly developed at HP Research Labs, is 

an extensible compiler framework for research on code optimization 
techniques, with a philosophy similar to SUIF. However, focus is on 
instruction-level parallel (ILP), VLIW-like processors and backend opti­
mizations. The software, together with comprehensive documentation, 
can be downloaded from [154] for HP-UX, Linux, and Solaris platforms. 
The license terms are very similar to those of IMPACT. 

A major part of Trimaran is a retargetable C compiler that makes use 
of the IMPACT system as an optimizing frontend. Additionally, there 
are simulation and profiling capabilities. The primary target processor 
class is called HPL-PD, a parameterizable explicitly parallel instruction 
computing (EPIC) meta-architecture (even though the Trimaran distri­
bution also comprises an ARM RISC backend called Triceps). EPIC 
represents a generalization of VLIW, as for instance also the memory 
hierarchy is made visible to the compiler. 

One main purpose of Trimaran is architecture exploration within the 
HPL-PD processor class. Therefore, the Trimaran backend ELCOR can 
be configured in many ways via a machine description file. This includes 
the specification of register files, number and types of functional units, 
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instruction word length, and instruction latencies. As 'frimaran's focus 
is on ILP processors, dedicated architectural features like speculative 
and predicated execution, software pipelining support, and the detailed 
memory system can be varied by the user. Many other features, like 
the available instruction set and the controller architecture are largely 
predefined, though. 

The target configuration takes place via a textual description of the 
architecture parameters in MDES, a relatively complex database ori­
ented language. However, there is a clean procedural interface between 
MDES and the compiler, and the 'frimaran distribution already comes 
with several example processor models. Simple parameters like the num­
ber of registers or instruction latencies can be easily reconfigured via a 
comfortable GUI (fig. 5.9). Generally, it is recommended to start with 
modifying an existing machine model, instead of writing new ones from 
scratch. 
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Figure 5.9. Session with the Trimaran GUI 
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The C source program is first compiled into a graph-based interme­
diate representation, with comprehensive visualization capabilities. EL­
COR's code generator is not completely predefined, but is actually struc­
tured as a toolbox of modules for control and data flow analysis, ILP­
improving transformations (e.g. if-conversion), acyclic and loop schedul­
ing, and finally register allocation. Partially, these transformations are 
already performed by the IMPACT frontend. The desired organization 
of compiler passes can be configured by means of a script. Similar to 
SUIF and LANCE, this gives the user the opportunity to add custom 
optimizations at any time. 

Once the compiler has been retargeted, Trimaran's cycle-true simula­
tion and performance monitoring tools allow to estimate the quality of 
the processor configuration for given application programs. The gener­
ated statistics include the cycle count, memory trace, profile information, 
and resource utilization. The system includes a G UI with extensive vi­
sualization capabilities for the result data. In this way, the user gets 
valuable feedback about the architectural decisions. 

Trimaran has been validated with a large set of test programs, many 
of which belong to the SPEC92/95 benchmark suite [155]. It is based on 
more than 100 person years of R&D, and there are many installations 
worldwide. In summary, Trimaran is a comprehensive software package 
that can be considered an ideal platform for research on retargetable 
ILP compilers. It benefits from the fact that it focuses on a relatively 
narrow and parameterizable target architecture class, within which it is 
easily retargetable and generates highly optimized code. On the other 
hand, this is also Trimaran's main limitation. It will be very difficult to 
retarget the tools to some irregular target architecture like a fixed point 
DSP or a network processor. 

3.4. Trimedia 

The Trimedia is a fixed/floating point VLIW processor family, origi­
nally developed by Philips and since recently by the new company Trime­
dia Technologies [157]. It is mainly intended for multimedia applications 
such as video conferencing. 

Being a complex VLIW machine with 128 registers and 5 issue slots, 
the Trimedia is explicitly intended to be programmed in a high-level lan­
guage. Therefore, the software development kit comes with a C/C++ 
compiler based on the EDG frontend [87]. The compiler comprises a set 
of local and global optimizations like constant folding, common subex­
pression elimination, and tree height reduction (especially important for 
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VLIW). Also if-conversion is performed, as the instruction set is fully 
predicated. 

Since the different Trimedia CPU generations show few differences in 
the overall instruction set architecture, the C/C++ has been designed 
to be retargetable through a textual machine description file [158]. A 
typical machine description file starts with a classification of instruction 
names into functional groups like load, store, or binary and unary arith­
metic. The behavior of the instructions is obviously predefined, as it is 
not explicitly specified in the MD file. Next, there is a mapping of in­
structions to the functional units, ordered by latency, which is required 
for the scheduler. The MD is completed by the number of registers and 
issue slots, a unit-to-slot mapping, and an enumeration of instruction 
opcodes. 

Being an industrial product, the Trimedia compiler is naturally ac­
companied by assembler, simulator, and profiler tools. It is a good ex­
ample of the fact that retargetable compilers are a reasonable approach 
when different processor generations within a common class of archi­
tectures need to be supported, and that retargetability finds its way 
into industrial practice. Naturally, the architectural scope of the Tri­
media compiler is quite limited as compared to research compilers like 
Trimaran. 

3.5. AVIV 
AVIV from MIT is a retargetable code generator focused on VLIW 

architectures [160]. It builds on the SUIF and SPAM compiler infra­
structures (sections 5.1.5 and 5.2.4). These frontends transform a given 
C/C++ input program into a sequence of basic block data flow graphs 
(DFGs) which form the main input for AVIV. 

The target processor is described in the instruction set description 
language ISDL [159], a language designed for modeling processors with 
instruction level parallelism. An ISDL model comprises six sections: 

Instruction format: Similar to the ROCKET compiler, it is assumed 
that the instruction word is subdivided into several fields, each of 
which controls a part of the VLIW data path. 

Global definitions: In this section, symbolic names (tokens) related to 
the target assembly syntax are defined, e.g. register names and con­
stants. For sake of more convenient use of tokens in the instruction 
specification, factoring by means of nonterminals is also supported, 
e.g. a set of alternative operands can be factored into a single non­
terminal. The nonterminals may also be attributed with action code, 
similar to the UNIX tool YACC. 
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Storage resources: This section caputures the available registers and 
memories, together with their size and bit width. Distinct declara­
tions are used for memories, register files, single registers, control 
registers, the stack, and the program counter. 

Instruction set: Based on the declared instruction· format and the 
storage resources, the behavior of instructions is described field by 
field by means of an RTL assignment notation. Additionally, opera­
tion names and cost and timing information for each instruction are 
captured. 

Constraints: It is assumed that all VLIW instruction fields by default 
can be activated in parallel. However, certain combinations of fields 
may be excluded due to resource or encoding conflicts. These con­
flicts are explicitly modeled as Boolean constraints, so as to prevent 
generation of invalid machine code. 

Optional architectural details: This section can be used to capture 
optional information for the compiler, e.g. concerning instructions 
with delay slots. 

Based on the ISDL target model, AVIV first converts each DFG into a 
data structure called split-node DA G. This is an extension of the original 
DFG that represents all possible alternatives of implementing the DFG 
on the given target machine. This is achieved by incorporating two 
additional node types (besides the given operator nodes) into the DFG: 
split nodes and data transfer nodes. Split nodes arise from duplicating all 
original DFG operator nodes for each functional unit that can implement 
them. Data transfer nodes represent the possible need for inserting move 
instructions to shuffie data between the units. 

Naturally, the split-node DAG size can be huge for non-trivial basic 
blocks. Therefore, AVIV uses a number of heuristics to prune the search 
space. First of all, only a subset of possible DFG coverings is considered 
in detail. This subset is determined heuristically by using the estimated 
amount of instruction level parallelism and the required number of data 
transfers. Then a clique covering of the split-node DAG is computed, 
where each clique corresponds to a set of operations that can be covered 
by a single VLIW instruction. During this step, illegal instructions that 
violate the instruction format constraints are also eliminated. For the 
selected covering, detailed register allocation is performed by graph col­
oring. The covering algorithm already ensures that no more spill code 
will be inserted during this phase. On the other hand, superfluous spill 
and reload instruction may still be present. Therefore, a final peephole 
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optimization is performed that eliminates redundant spills and partially 
performs are-compaction of the code. 

The main innovation of AVIV is the concept of phase-coupled code 
generation based on the split-node DAG data structure that implicitly 
enumerates all possible mappings to the target processor. This helps 
to reduce the negative effects on code quality usually observed when 
using strictly separated code generation phases. On the other hand, the 
large number of heuristics used to prune the huge search space may still 
compromise optimality. Experimental results have been reported for a 
hypothetical VLIW architecture, for which good code quality has been 
achieved within reasonable amounts of compilation time. However, it 
is not clear how AVIV performs for real-life target processors, which 
typically show more code generation constraints. Since ISDL requires 
an explicit enumeration of such constraints, the processor models will 
also tend to grow quite complex for such machines. 

3.6. Mescal 
Mescal is a new research project at the Gigascale Silicon Research 

Center ( GSRC) that deals with the development of a software and hard­
ware design environment for programmable processors. The system is 
intended to support architecture exploration for a set of applications, 
including network processing. 

Emphasis in Mescal is also on representation and exploitation of con­
currency at different levels of abstraction. As a consequence, a VLIW 
processor architecture has been chosen for the primitive processing ele­
ments. A retargetable compiler is being implemented that maps C pro­
grams onto configurable multi-processor VLIW architectures. Similar to 
Trimaran, the IMPACT system has been selected as the infrastructure 
for the C compiler. 

The Mescal system is currently under development, and further pub­
lications or software are not yet available. A project overview and some 
advance presentations can be found at [161]. 

4. Retargetable compilers for ASIPs 
4.1. MSSQ 

MSSQ [162, 163, 164] has been developed at the University of Kiel as 
the successor of the MSSV compiler (see section 4.2). It is a retargetable 
compiler for ASIPs modeled in MIMOLA, a hardware description lan­
guage that has already been exemplified in section 5.2.5. The HDL 
model has to be given as an RT-level netlist comprising all controller 
and data path components of the target machine. As an example, figs. 
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5.10 and 5.11 show the schematic of a very simple target processor and 
its complete MIMOLA model. 

1.(20:0) 

outp 

Figure 5.10. Schematic of a simple 8-bit processor. "I" denotes the instruction word 
(21 bits), whose fields are connected as control and data inputs to data path compo­
nents. 

The user-editable MIMOLA model is internally represented as a con­
nection operation graph (COG). The COG nodes represent operators 
available in the processor hardware, while its edges denote possible data 
transfer paths via the connections (wires or buses). This COG structure, 
which partially abstracts from the concrete external MIMOLA model, 
is used by the MSSQ code generator to find a mapping of a given appli­
cation program to target machine code. 

The source program to be compiled is specified in the MIMOLA pro­
gramming langage, a hardware-oriented superset of PASCAL. Extensions 
to PASCAL include 

• Predefined variable locations: The statement 
VAR x : (15:0) AT Reg1; 

declares a 16 bit variable x located at register Reg1. 

• References to physical storages: Instead of using abstract vari­
ables, physical registers and memories can be directly referenced, e.g. 
in an assignment to some accumulator register: 

ACCU := ACCU + M[1]; 

• Bit-level addressing: Subranges of operands may be referenced by 
appending a bit vector index range. The following assignment loads 
variable x with the least significant 16 bits of register ACCU: 

x := ACCU.(15:0); 
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MODULE SimpleProcessor (IN inp:(7:0); OUT outp:(7:0)); 
STRUCTURE IS 
TYPE InstrFormat = FIELDS 

imm: 

PARTS 

RAMadr: 
RAMctr: 
mux: 
alu: 

END; 
Byte (7:0); Bit= (0); 

-- 21-bit horizontal instruction word 
(20:13); 
(12:5); 

(4); 

(3: 2); 
(1: 0); 

scalar types 

instantiate behavioral modules 
IM: MODULE InstrROM (IN adr: Byte; OUT ins: InstrFormat); 

VAR storage: ARRAY[0 .. 255] OF InstrFormat; 
BEGIN ins<- storage[adr]; END; 

PC, REG: MODULE Reg8bit (IN data: Byte; OUT outp: Byte); 
VAR R: Byte; 
BEGIN R := data; outp <- R; END; 

PCincr: MODULE IncrementByte (IN data: Byte; OUT inc: Byte); 
BEGIN outp <- INCR data; END; 

RAM: MODULE Memory (IN data, adr: Byte; OUT outp: Byte; FCT c: Bit); 
VAR storage: ARRAY[0 .. 255] OF Byte; 
BEGIN 

CASE c OF: 0: NOLOAD storage; 1: storage[adr] := data; END; 
outp <- storage[adr]; 

END; 
ALU: MODULE AddSub (IN dO, d1: Byte; OUT outp: Byte; FCT c: (1:0)); 

BEGIN -- "%" denotes binary numbers 
outp <- CASE c OF %00: dO + d1; %01: dO - d1; %1x: dO; END; 

END; 
MUX: MODULE Mux3x8 (IN d0,d1,d2: Byte; OUT outp: Byte; FCT c: (1:0)); 

BEGIN outp <- CASE c OF 0: dO; 1: d1; ELSE: d2; END; END; 

CONNECTIONS 
-- controller: 
PC.outp -> IM.adr; 
PC.outp -> PCincr.data; 
PCincr.outp -> PC.data; 
IM.ins.RAMadr -> RAM.adr; 
IM.ins.RAMctr -> RAM.c; 
IM.ins.alu -> ALU.c; 
IM.ins.mux -> MUX.c; 

END; -- STRUCTURE 
LOCATION_FOR_PROGRAMCOUNTER PC; 
LOCATION_FOR_INSTRUCTIONS IM; 
END; -- STRUCTURE 

-- data path: 
IM.ins.imm -> MUX.dO; 
inp -> MUX.d1; primary input 
RAM.outp -> MUX.d2; 
MUX.outp -> ALU.d1; 
ALU.outp -> REG.data; 
REG.outp -> ALU.dO; 
REG.outp -> outp; -- primary output 

Figure 5.11. Complete MIMOLA description of the processor from fig. 5.10 
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• Module calls: Hardware components can be called like procedures 
with parameters, so as to enforce execution of certain operations. For 
instance, if the processor description contains a component named 
AdderComp, this component can be "called" in an assignment: 

x := AdderComp(y,z); 
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• Operator binding: Operations can be bound to certain hardware 
components, e.g. in the assignment 

x := y +_AdderComp z; 

the addition is bound to component AdderComp. 

Since all these extensions are optional, the user can select from a 
variety of "programming styles", either more abstract or more hardware­
specific. Pure PASCAL programs are possible as well as programs close 
to the machine code level. 

Before code generation takes place, the high-level source program is 
lowered down to an RT -level program. All declared user variables are 
bound to storage modules, and variable references are substituted by 
references to the corresponding storages. The process of variable binding 
may be steered through reservations provided by the user. Otherwise, 
variables are bound to arbitrary storage modules of sufficient capacity. 
Furthermore, all high-level control structures like FOR, WHILE, and 
REPEAT loops are replaced by IF -constructs, with explicit reference to 
the program counter register (PC). The following example shows a piece 
of source code and the corresponding RTL program: 

source code: 

VAR x, y, z: integer; 
REPEAT 

y := y + z; 
X := X - 4; 

UNTIL x < 0; 

RTL code: (let x, y, z be bound to Mem[O], Mem[1], Mem[2]) 

lab: 
Mem[1] := Mem[1] + Mem[2]; 
Mem[O] := Mem[O] - 4; 
PC :=(IF Mem[O] >= 0 THEN lab ELSE INCR PC); 

The REPEAT /UNTIL loop is replaced by a conditional assignment 
to the program counter PC. If Mem [0] >= 0 is true at the end of the 
loop body, then the branch to label lab is taken. Otherwise, PC is incre­
mented so as to point to the next instruction after the loop. Replace­
ment rules for high-level control structures are contained in an external 
library, which can be edited by the user. In this way, the most appro­
priate replacements can be defined for each particular target processor. 
On a DSP for instance, it might be favorable to replace FOR-loops by 
hardware loops. 

During code generation, the RTL program is mapped to the COG 
model of the target machine. This involves three main steps: 
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Code selection and temporary allocation: Each RTL assignment 
is represented as a data flow tree T. If a subgraph within the COG 
that matches T can be determined, then the assignment can be im­
plemented by a single instruction. In case the assignment is too 
complex, it is split into a sequence of simpler assignments, while allo­
cating temporary registers on the fly. MSSQ uses no optimized code 
selection technique such as tree parsing. However, it ensures by an 
exhaustive search in the COG that additional cycles due to tempo­
rary allocation are only inserted into the generated code in case they 
are actually required. 

Checking for conflicts: It has to be ensured that the selected partial 
instructions have no conflict w.r.t. resource usage and instruction 
encoding. For this purpose, MSSQ maintains a data structure called 
!-trees (instruction trees). An I-tree is a representation of alternative 
partial instruction word settings, where each node represents one 
partial instruction. All nodes in an !-tree that lie on the same path 
are combined by AND, i.e. they have to be simultaneously set, while 
nodes on different paths represent alternatives. Such alternatives 
frequently arise from the fact that there may be multiple ways of 
routing data through the data path (e.g. via multiplexers or buses). 

The use of !-trees is exemplified in fig. 5.12. Part a) shows an RTL 
assignment represented as a data flow tree. Fig. 5.12 b) shows two 
alternative matching subgraphs in the COG, and part c) depicts the 
corresponding I-tree. The left matching subgraph requires that the 
two constants "00000001" and "10000000" are provided simultane­
ously at instruction word bits 13 down to 6, which naturally leads to 
a conflict. On the other hand, the right subgraph causes no conflict 
since one of the constants is provided by decoder DEC. 

Encoding selection and compaction: The generated partial instruc­
tions are passed to a heuristic code compactor aiming at generation 
of dense schedules in case the target machine shows instruction level 
parallelism. Possible alternative instruction encodings found in the 
previous phases are exploited here to select the ones that result in 
the tightest schedule. 

The main strength of MSSQ is that it derives all required target in­
formation solely from a homogeneous HDL model written in MIMOLA. 
This has allowed to retarget the compiler to a large number of different 
machines, including several ASIPs as well as some standard processors. 
The large degrees of freedom both in processor modeling and source 
program specification make MSSQ a powerful tool for design space ex-
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Figure 5.12. Alternative partial instructions and their !-tree representation 

ploration during ASIP design, with some emphasis on instruction-level 
parallelism. 

Limitations of MSSQ mainly lie in the range of possible target pro­
cessors (only single-cycle instructions), sometimes poor code quality due 
to a simple mapping approach and a missing global register allocator, 
as well as high compilation times. However, many of these restriction 
have been removed in MSSQ's successor, the RECORD compiler (sec­
tion 5.2.5), while retaining the advantages of the HDL model approach 
to retargetability. 

4.2. PEAS 
PEAS is a hardware/software codesign project at Osaka University 

[165]. The main idea is to automatically synthesize ASIPs together 
with the required software development tools, based on knowledge about 
applications and design constraints. An overview is given in fig. 5.13. 
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Figure 5.13. PEAS system overview (PEAS-III version), @PEAS project, Osaka 
University 

Retargetable C compiler generation within the architectural scope of 
PEAS target processors is also part of this project. 

PEAS has evolved over three generations so far. For PEAS-I [166], 
a RISC based processor kernel with one ALU and a general-purpose 
register file has been defined, which can be tuned towards certain ap­
plications by adding custom functional units and modifying the number 
of registers. Based on an application analyzer module, the processor 
kernel's instruction set is customized so as to best fit the performance 
requirements of the intended applications under given area and power 
consumption constraints. For compiler generation, the GCC compiler 
has been ported to the RISC kernel. The fine-tuning of the compiler 
towards a certain ASIP configuration takes place via local modifications 
in GCC's machine description files, so as to accommodate special in­
structions and register file sizes. 

For the PEAS-II version [167], modifications have been made to the 
processor kernel, which in this case shows a VLIW architectural style. 
Still, the instruction set and the pipeline are largely fixed. The appli­
cation analyzer module uses a branch-and-bound technique to derive an 
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optimum processor configuration w.r.t. the number and types of func­
tional units in the VLIW data path. Like in PEAS-I, the C compiler 
is based on GCC, which has been enhanced by a dedicated instruction 
scheduler in order to exploit the available parallelism. However, from 
the publications it is not fully clear how the compiler supports custom 
functional units and what the resulting code quality is. 

In the most recent version, PEAS-III [168], two important changes 
have been made. The target processor is no longer based on a kernel 
with a fixed predefined instruction set, but it can be entirely specified via 
a GUI in the form of a machine description. This gives more flexibility 
as compared to earlier versions. The machine description contains the 
following sections: 

1 An architecture parameter specification that describes the general ar­
chitecture type (e.g. VLIW) and the detailed pipeline stages as well 
as instruction delay slots. 

2 A resource declaration for registers, ALUs, and their simulation and 
timing models. Available resources are retrieved from a module li­
brary and are configured w.r.t. bit width and functionality. 

3 An instruction set definition that captures instruction types, fields, 
and opcodes in a hierarchical fashion. 

4 A micro-operation description which defines the detailed behavior of 
instructions, separated into the different pipeline stages. 

In contrast to the earlier system versions, the compiler generator in 
PEAS-III is based on ACE's CoSy system (section 5.6.1). This is possi­
bly due to the fact that dropping the concept of a fixed processor kernel 
in favor of a more flexible approach complicates retargeting of GCC, 
which inherently has a preference for RISC architectures. The PEAS­
III compiler generator transforms the above machine description format 
into the backend specification required by CoSy. First, a set of map­
ping rules for the code selection pass is generated. This is performed by 
converting the micro-operation description into an intermediate struc­
tural format. Resembling the instruction set extraction procedure in the 
RECORD compiler, this structural model is then used to extract the fi­
nal instruction patterns. The information required for CoSy's register 
allocation and instruction scheduling modules are more or less explicit 
in the target processor model. 

Similar to the Trimaran system, the idea of describing the target 
processor "graphically" via a G UI instead of using a dedicated machine 
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description language certainly provides a comfortable retargeting mecha­
nism. However, so far no detailed results about the compiler generator's 
target architecture range and the code quality are available. Experi­
ence from earlier projects (e.g. MSSQ and RECORD) shows that a very 
large range of possible targets usually compromises code quality, and, 
vice versa, high code quality can only be achieved by focusing the tar­
get domain. As the project is still under development, it is not obvious 
which direction will finally be taken in PEAS-III. 

4.3. Valen-C 
Valen-C ("variable length C") is an extension to the C programming 

language, dedicated to optimization of ASIP architectures. The corre­
sponding C compiler VCC has been developed mainly at Kyushu Univer­
sity [50]. The software can be downloaded from [169]. It is copyrighted 
by a Japanese research agency, but it can be virtually freely used under 
certain preconditions. 

The target processor range for VCC is a relatively narrow class of 
RISC machines. The detailed target instruction set, its register con­
figuration, stack usage, as well as type bit widths and alignment are 
described in a configuration file. 

The main motivation for Valen-C is the fact that in many embedded 
system designs the processor word length might not be well adapted to 
the word length required by some given application, which leads to a 
waste of on-chip memory area. The normal C language does not address 
this problem, since there are only a small number of type bit widths 
available, typically 8, 16, or 32 bits. Therefore, the language extensions 
made in Valen-C allow to specify the exact bit width of each program 
variable, e.g. the type "int23" specifies a 23-bit integer variable. This 
feature allows the programmer to perform a more detailed design space 
exploration for ASIPs than possible with a regular C compiler. As the 
target machine word length may differ from the application program 
word lengths, the mapping of operations on variables specified with an 
arbitrary exact bit width to the given target (e.g. 23-bit arithmetic on 
an 11-bit machine) is a time-consuming task, and in fact it is the main 
purpose of the vee compiler to perform this translation automatically. 
By repeatedly recompiling and simulating some application for different 
target word lengths, an ASIP can be tuned towards the application (fig. 
5.14). 

A given Valen-C program is first transformed into an equivalent ANSI 
C program. Then the SUIF C frontend (section 5.1.5) is used for compi­
lation into the SUIF intermediate representation, and several machine­
independent optimizations are performed by means of the SUIF library. 
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Figure 5.14. Customizing the bit width of ASIP chip components with Valen-C, 
@Kyushu University 

Next, lowering phases take place during which operations on variables 
whose width exceeds the target word length are expanded into equivalent 
instruction sequences that can be executed on the target machine. These 
phases are followed by code selection, register allocation, and assembly 
code emission, which are rather straightforward due to the largely pre­
defined target architecture. An instruction scheduler is not included so 
far. 

Since there are already many retargetable RISe compilers such as 
Gee or LCC, the Valen-C compiler vee does not bring much inno­
vation from a pure retargetability viewpoint. Moreover, it has a quite 
limited architectural scope. However, vee is one of the few compilers 
that can automatically handle variables with arbitrary bit widths. Due 
to the automatic translation into assembly code via ANSI C and SUIF, 
a given Valen-C program can be easily remapped to different memory 
width configurations of a RISC-like ASIP, and in this way the memory 
width can be customized so as to minimize on-chip memory area con­
sumption. While reducing the RAM width generally reduces RAM area 
and the CPU core size, it tends to increase program ROM area, due to 
the fact that the expansion of instructions on "wide" variables requires 
more instructions, which in turn implies lower code density. Due to this 
tradeoff, there is usually some global optimum for total chip size, which 
VCC can help to determine. Results have been reported for an ADPCM 
decoder application, where the reduction of the original word length of 
32 bits to 18 bits led to a chip area reduction of about 50 %, together 
with a reduction in energy consumption of 35 % (for more results , see 
also section 2.2.5) . 

4.4. EXPRESS 
EXPRESS is an ongoing retargetable compiler project at UC Irvine. 

It is part of a larger project on design space exploration for embedded 



Retargetable compiler case studies 115 

systems, which also includes design capture, simulation, and memory 
hierarchy optimization. The tools revolve around the architecture de­
scription language EXPRESSION [170). EXPRESSION models can be 
written manually, or can be generated from a schematic entry GUI called 
V-SAT. 

EXPRESSION processor models are given in a LISP-like notation 
and show a mixed behavioral/structural style with the following overall 
structure: 

Operations specification: Opcodes, operands, and RTL behavior of 
each available processor instruction. Concise descriptions are facili­
tated by factoring constructions for alternative operands. 

Instruction description: This section describes the permissible group­
ing of operations to parallel VLIW instructions. Each instruction is 
described by a set of issue slots, each of which in turn corresponds to 
a functional unit. 

Operation mappings: Rules in this section specify the mapping of 
machine-independent operations into machine-specific assembly in­
structions. Also simple algebraic transformations can be captured. 

Components specification: A list of RT-level components of the tar­
get processor, annotated with a list of executable operations and 
timing information. 

Pipeline and transfer paths: A specification of pipeline stages, the 
binding of operations to stages, and an enumeration of valid transfer 
paths between the RTL components. 

Memory subsystem: Storage units like register files, memories, and 
caches are described separately in this section. 

While some concepts are adopted from other languages (e.g. nML and 
MIMOLA), EXPRESSION innovates in the detailed pipeline and mem­
ory modeling. Reservation tables needed for instruction scheduling can 
even be automatically extracted from the processor model (171], which 
strongly simplifies frequent retargeting during design space exploration. 

The EXPRESS compiler [172] itself, which is retargeted based on 
the information in the EXPRESSION model, appears to be in an early 
stage yet. An overview is given in fig. 5.15. EXPRESS uses the GCC C 
frontend and performs different global optimizations like loop unrolling. 
The backend is built on top of the Mutation Scheduling technique [173], 
which aims at coupling the code selection and register allocation phases 
with a global instruction scheduler by comparing several alternative ways 
to map data flow graphs into machine code. 



116 RETARGETABLE COMPILER TECHNOLOGY 

GUI 

Slmulotor 

Figure 5.15. EXPRESS compiler overview, @Center for Embedded Computer Sys­
tems, UC Irvine 

EXPRESS also emphasizes the phase ordering problem for different 
code optimizations. It contains provisions for adaptive dynamic phase 
ordering, as opposed to the static phase ordering in traditional com­
pilers. Naturally, this has to be paid with higher compilation times. 
EXPRESSION models for compilation have been developed for the TI 
C6x and Motorola 56k DSPs , but experimental results on code quality 
for these targets have not yet been reported. 

4.5. BUILDABONG 
BUILDABONG [174, 175] is an ongoing project at the University 

of Paderborn, aiming at ASIP optimization by architecture/compiler 
codesign. It is conceptually somewhat similar to EXPRESS and uses an 
Abstract State Machine (ASM) model of the target processor. BUILDA­
BONG comprises the description language XASM for ASM specification, 
but XASM models can also be generated from a schematic entry tool. 
The ASM model has been inspired by the internal processor model used 
in the RECORD compiler (section 5.2.5). The target processor is con-
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sidered as a machine which in each instruction cycle executes the same 
set of parallel guarded RT operations of the form 

if (condition) then <do register transfer> 

The guard conditions are formed by binary opcodes, modify register 
states or dynamic conditions (e.g. comparison results). While RECORD 
extracts this notation from an HDL processor model, BUILDABONG 
generates it from a schematic and uses an explicit notation of guarded 
RT operations in the XASM language. The project comprises four main 
phases: 

Architecture description: The target processor architecture is cap­
tured as an RT-level structure via a graphical schematic entry tool 
called ArchitectureComposer. This tool can be downloaded from 
[176]. The ArchitectureComposer provides a library of parameteriz­
able RTL components like registers, memory, ALUs, and multiplexers 
which can be instantiated and connected by the user to form an RTL 
data path netlist (fig. 5.16). An equivalent XASM model can be 
exported. 
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Figure 5.16. ArchitectureComposer tool in BUILDABONG 
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Simulator generation: The XASM model also forms the basis for gen­
erating a target-specific instruction set simulator. For this purpose, 
the XASM model is translated into C code, which is compiled and 
linked together with an arbitrary word length arithmetic package and 
a graphical debugger interface. Also semi-automatic parser genera­
tion for assembly program inputs is supported, based on an instruc­
tion grammar specification. The debugger can be used to monitor 
the simulation of guarded RT operations and it displays the current 
machine state (e.g. register contents or pipeline states). It has been 
applied to an XASM model of the TI C6x VLIW DSP. However, it is 
not yet clear how the simulator performs as compared to other recent 
compiled simulation approaches like [177, 178, 206]. 

Compiler generation: Generating target-specific compilers in BUILD­
ABONG is still in a research state. The RECORD project showed 
that the guarded RT operation or ASM notation is suitable for retar­
getable code generation, and the BUILDABONG compiler is intended 
to handle a larger scope of architectures, with emphasis on VLIW. 
It is based on the LCC frontend and an intermediate language called 
TIL. The target machine is described in MAML (Machine Markup 
Language). There is also a special script language for specifying high­
level optimization strategies. Results on the exact architural scope 
and code quality have not yet been reported. 

Architecture exploration: Just like in related ASIP design and com­
piler systems like MSSQ, EXPRESS, or PEAS, the ultimate purpose 
of the BUILDABONG project is to support architecture exploration 
under certain constraints and optimization goals by means of the 
generated compiler and simulator tools. 

5. Special retargetability techniques 
5.1. Code generation methods 
5.1.1 Balakrishnan's microcode compiler 

Balakrishnan and Bhatt [179] describe a simple retargetable microcode 
generator. It reads source programs written in a register transfer level 
(RTL) language and generates machine code for microprogrammed tar­
get architectures. Similar to the philosophy of the MSSQ compiler, tar­
get machines are supposed to be predefined or synthesized from a be­
havioral specification. The microoperation set of the target is described 
in a special language, which permits the specification of resources, in­
struction fields, and the behavior of resources dependent on instruction 
field opcodes. From this target model, the code generator first extracts 
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the set of feasible microoperations, which needs to be performed only 
once per target (this inspired the instruction set extraction tool in the 
RECORD compiler). As the source program is already given as RTL 
code, the actual code generation procedure is rather straightforward: 
The code generator simply scans the extracted feasible operation set 
for a match against each RTL statement. This generates sequential mi­
crocode, which is later compacted with standard heuristics to exploit 
the available parallelism. This approach clearly emphasizes the quick 
translation of low-level source programs to a class of microprogrammed 
targets, without particular efforts in code optimization. 

5.1.2 Mavaddat's formal language approach 

The formal language approach by Mavaddat et al. [181, 182] is based 
on parsing of data flow graphs (DFGs) w.r.t. to a parallel rewrite system 
(Lindenmayer system) that represents a target data path. This approach 
can be considered as a generalization of the tree parsing approach de­
scribed in section 3.3.1. Register transfer operations are modeled as 
grammar rules, and code generation means constructing a derivation 
w.r.t. the given instruction set grammar. While tree parsing only works 
for data flow trees, the main advantage of Mavaddat's approach is that a 
complete DFG is compiled within a single phase, including register allo­
cation for common subexpressions and local exploitation of instruction­
level parallelism. Thus, it achieves a perfect phase coupling at the basic 
block level and generates optimal code. 

The major problem with this approach is that parsing for parallel 
rewrite systems is much more complex than string or tree parsing. It re­
quires an exhaustive search that typically involves backtracking. Mavad­
dat presents a number of heuristics and pruning rules in order to reduce 
the runtime requirements. With these techniques, small code generation 
problems for simple target data paths can be solved within a few CPU 
seconds. However, the techniques have mainly been designed for mi­
crocode generation for synthesized data paths. As a consequence, many 
features found in realistic targets, such as multicycle instructions or 
complex addressing modes, cannot be directly handled. Therefore, the 
formal language approach to code generation is so far mainly of theoret­
ical interest, and results for realistic machines have not been reported 
so far. 

5.1.3 Langevin's automata theoretic approach 

The code generation approach by Langevin at el. [183, 184] is concep­
tually close to Mavaddat 's. The target data path is considered as a finite 
state machine (FSM). Its initial state represents the situation that all 
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input registers have been loaded with arguments. Any RT operation (or 
valid combination of parallel RTs) executed on the data path is equiv­
alent to a state transition in the FSM. Finally, the FSM has to be in a 
goal state, where all results of some DFG computation are available in 
the output registers. 

Langevin's approach starts from the goal state and performs a back­
ward state traversal, so as to determine the smallest number of state 
transitions in the FSM model that leads back to the start state. Ef­
fectively, this means to compute the shortest schedule for executing the 
input DFG on the given data path. 

Like in Mavaddat's technique, an ideal phase-coupled code genera­
tion is achieved with this method that allows for optimal code quality. 
Again, the main problem is computation time. Since for each state po­
tentially all predecessor states have to be investigated (which may be 
hundreds or thousands on non-trivial data paths), the search space gets 
extremely large. In order to avoid exhaustive runtime requirements, 
Langevin presents alternative state space exploration strategies, based 
on mixed depth first/breadth first traversal. However, even though high 
compilation speed is usually given low priority in embedded code gen­
eration, it may still be arguable whether compilation times in the order 
of one CPU hour for a basic block is still acceptable. Similar to Mavad­
dat's work, the automata theoretic approach provides good insight into 
phase-coupled code generation for DFGs, but applicability to realistic 
code generation problems is still very limited. 

5.1.4 Romer's automata theoretic approach 
Romer proposes an alternative automata theoretic approach in [185, 

186]. Like the above approaches, it deals with optimized phase-coupled 
mapping of DFGs to irregular target data paths. The data path is con­
sidered as an FSM that performs state transitions by (potentially paral­
lel) RT operations, and the code generator aims at finding the shortest 
state sequence that leads from an input state to a goal state where all 
results are available. 

Romer uses an efficient representation of FSM states by a bit matrix: 
For a DFG with n nodes and a target machine with m registers, ma­
trix A contains n x (m + 2) bits. Any bit aij denotes that the result 
of DFG node i is available in register j. Two extra columns are used 
to represent the fact that some DFG node may be available as an im­
mediate constant or in memory instead of one of the m registers. This 
representation shows the advantage that state transitions can be simu­
lated by simple Boolean operations, which can be efficiently executed by 
word-level logical instructions on the compiler host. 
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Obviously, a shortest schedule is achieved by computing a shortest 
path from the initial state to the goal state in the state diagram of the 
underlying FSM. However, the complexity is exponential in the number 
of DFG nodes, with large constant factors determined by the instruc­
tion set size and the number of registers. Therefore, Romer proposes a 
heuristic solution, where in each step only theM best successor states of 
a given state are investigated. For the special case M = 1, this heuristic 
is virtually equivalent to the fast standard list scheduling approach. In 
contrast, larger values of M lead to a more thorough search space ex­
ploration at the expense of higher runtimes. In this way, the user can 
easily study the trade-off between compilation time and code quality. 

Like related approaches on formal methods for code generation, the 
approach is currently restricted to basic blocks. It has been implemented 
in a C compiler based on the LANCE system (section 5.1.7) and has 
been applied for mapping DSP routines into assembly code for the M3 
DSP platform [187]. The results indicate that the technique works in 
practice, but detailed results on the code quality /time trade-off (choice 
of parameter M) still have to be reported. 

5.1.5 Wilson's ILP based code generator 

The Integer Linear Programming (ILP) approach by Wilson et al. 
[190, 191] aims at phase-coupled code generation for irregular architec­
tures. The main idea is to transform the code generation problem as 
a whole into some well-known optimization problem, ILP, for which ef­
ficient solvers already exist. This approach first of all avoids the need 
to design specific optimization algorithms, and there is hope that by 
exploiting efficient ILP solvers, small to medium size problems can still 
be solved optimally. 

ILP can be stated as the problem of maximizing a linear objective 
function of the form 

j(xl, ... , Xn) = Cl · Xl + ... + Cn · Xn 

under the following system of constraints: 

All values aij, ci, and bi are real constants, while the solution variables 
x1, ... , Xn have to be integers. Like many important optimization prob­
lems, ILP is NP-hard [192], so that optimal solutions most likely require 
exponential worst case runtime in the input size. 
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An integrated ILP formulation must comprise solution variables, whose 
values finally exactly determine the generated code, as well as all con­
straints, in the form of linear equations and inequations, imposed by the 
target machine. In Wilson's code generator, the target specific informa­
tion is stored in a data base, and for each data flow graph (generated 
by a C frontend) the corresponding ILP model is automatically gener­
ated. In more detail, the solution variables account for the control step 
binding of DFG operations, the instruction pattern selected for each op­
eration, and the registers used for implementing DFG edges, i.e., data 
transports. The constraints ensure that operations are covered by ex­
actly one pattern, the selection of valid operand and results registers, 
the correct scheduling order of operations, and other validity conditions. 
Finally, the objective function minimizes the total execution time of the 
DFG implementation. The actual machine code can be determined by 
solving the ILP with some external tool, and deriving the generated 
instructions. 

The ILP approach provides a theoretically elegant way to solve the 
phase-coupling problem particularly for irregular target architectures. 
In addition, it is relatively easy to retarget, since the target machine 
features are captured only in the ILP constraints. However, the main 
problem is the sometimes extremely high compilation time due to the 
use of ILP solvers. Therefore, pure ILP approaches to code generation 
cannot be expected to work for large programs within reasonable com­
pilation time. Consequently, Wilson's technique can only be applied 
to small pieces of code. Obviously, it has not been integrated into a 
complete compiler, and experimental results have not been published. 
Nevertheless, ILP might be a good point solution for heavily optimizing 
some small "hot spots" of an application program. 

5.1.6 FACTS 

Researchers at Philips and TU Eindhoven have focused on code gen­
eration for in-house DSPs and ASIPs under performance constraints 
[210, 211]. As the target architecture and the timing of the application 
are supposed to be given, the code generation problem is considered as 
a pure constraint satisfaction problem. Recent efforts concentrate on 
the FACTS system [212, 213, 214, 215], a retargetable constraint based 
compiler project for a class of parameterizable VLIW DSPs. The target 
machines show a clustered register file architecture with multi-casting 
support for intermediate results, i.e., results can be written into multiple 
register files in order to partially suppress costly data move operations. 

Given some instance of the target processor class with certain re­
source constraints and an application with a performance constraint, a 
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phase-coupled code generation procedure is performed that consists of 
the following steps: 

Operation assignment: Operations of the input program (given as a 
set of data flow graphs) are bound to sets of equivalent functional 
units. 

Lifetime serialization: Operations are partially ordered in such a way 
that the register file capacity constraints are not violated. 

Scheduling: Details assignment of operations to control steps. 

Binding: Detailed selection of functional units and registers for inter­
mediate values. 

These phases cooperate with a constraint analyzer: Each time an 
assignment decision is made, the analyzer checks whether valid code can 
still be generated under the given timing and resource constraints. In 
case of a constraint violation, a backtracking step is initiated, and the 
previous decision is revised. Internally, the constraint analyzer works 
with graph models and coloring techniques. 

The FACTS approach is particularly suitable for DSP applications 
and architecture exploration. By exploiting knowledge about constraints 
during code generation, reasonable runtimes (in the order of CPU min­
utes for large DFGs) are achieved, even though a phase-coupled approach 
is used. Also the capability of handling multi-casting instructions is 
very important for clustered VLIW processors. Reported experimental 
results, however, are still few. It would be interesting to see how the 
approach performs for standard processors such as the TI C6x VLIW 
DSP. 

5.1.7 Bashford's CLP based code generator 
Bashford also considers the code generation problem for irregular tar­

get architectures as a constraint satisfaction problem. The approach is 
somewhat related to the ILP techniques mentioned above, but Bashford 
uses a PROLOG-like constraint logic programming (CLP) language for 
problem modeling. CLP can be considered more powerful than ILP, since 
solution variables may have arbitrary domains, and there is support by 
a real programming language instead of just linear equations. 

CLP is particularly suitable for describing code generation problems 
for irregular targets, such as DSPs, where the instruction set frequently 
shows special constraints that are not easily captured in some imperative 
language algorithm. An example is an instruction template of the form 

Xi := X2 + X3 
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where X1, X2, and X3 represent certain register sets. However, it 
is usually not possible to use the complete cross product of these sets 
as argument and result registers in some instance of this instruction. 
Instead, different constraints have to be obeyed. For instance, if X1 
= {a1,a2}, X2 = {b1,b2}, and X3 = {c1,c2}, then the target typically 
imposes constraints like "if X2 = b1 and X3 = c1 then X1 must be a2" 
or "X1 = a1 is only valid if X3 = c2" and the like. To make things 
even more complicated, valid register combinations may also depend 
on other instructions issued in parallel. In Bashford's code generator 
such instruction templates together with their constraints are concisely 
represented as factored register transfers (FRTs). 

The code generation process itself is considered as a labeling process, 
during which solution variables are assigned members of their respective 
domains, such that some objective function reflecting code quality is 
optimized. The solution variables account for the FRT instances selected 
for DFG nodes, the detailed register allocation, as well as scheduling. A 
key point in this approach is that alternative solutions are kept as long as 
possible, without unnecessarily restricting subsequent code generation 
phases as in traditional approaches. Decisions are only made in case 
they are really required, and the built-in constraint solving mechanism 
ensures that all restrictions imposed by the target machine and the DFG 
dependencies are met. In this way a high degree of phase coupling is 
achieved, and heuristics are required only at a few places. 

As a consequence, the CLP approach generates quite good code qual­
ity, and it can be applied to realistic machines. A CLP based C compiler 
based on LANCE (section 5.1.7) has been implemented. An experimen­
tal evaluation for an ADSP-2100 DSP and some of the DSPStone bench­
marks [77] showed that the average performance overhead of compiled 
code (vs. hand-written reference assembly code) is only 21 %, where the 
GCC based native compiler produced an overhead of 245 %. Frequently, 
the quality of hand-written code has been achieved and sometimes even 
exceeded. 

The main restrictions of the approach are its limitation towards basic 
block level optimization, the somewhat unusual implementation method 
CLP (which does not easily integrate with other compiler modules), and 
the high runtimes requirements (up to several CPU minutes) for comput­
ing optimal solutions. However, Bashford also proposed a partitioning 
heuristic for large input DFGs. In his experiments, this led to an average 
reduction in runtime to less than one CPU second at the expense of only 
a one percentage point loss in code quality. 
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5.1.8 Yamaguchi's code generator 

Yamaguchi et al. [180] present an approach to handle a specific prob­
lem in retargetable code generation for irregular architectures: checking 
for existence of data transfer paths. In irregular architectures like DSPs, 
it is frequently the case that there is no direct route in the data path to 
transfer a value from one location to another, and even if a route exists, it 
may still be invalid due to instruction encoding constraints. Yamaguchi's 
algorithm aims at finding valid mappings of data flow graphs {DFGs) 
to the target architecture under such constraints. For this purpose, the 
data path is modeled structurally as a netlist of RTL components and 
their interconnect. Additionally, the model captures constraints on par­
allelism. Boolean functions are defined that indicate, e.g., whether two 
operations cannot be executed in parallel since they share a resource. 
The code generation procedure comprises three phases. First, alterna­
tive bindings of DFG operations to data path resources are computed. 
All alternatives are implicitly enumerated by constructing a binary deci­
sion diagram (BDD [143]) representation of the binding constraints. The 
second phase maps DFG edges onto possible data paths. Backtracking is 
employed in case of constraint violations. Finally, the completely bound 
DFG is scheduled via a list scheduling algorithm, and spill code is in­
serted in case of register capacity violations, which again might involve 
some backtracking. In spite of the backtracking, the compilation times 
are quite low. However, results have been published only for small exam­
ples, and it is not clear whether a full compiler has been implemented. 

5.2. Retargetable compilers for microcontrollers 
5.2.1 Krohm's compiler 

A retargetable C compiler for a class of simple application specific mi­
crocontrollers is presented in [193]. Its backend has been implemented 
based on the Graham/Granville string parsing approach {see chapter 
4). The underlying instruction set grammar is automatically generated 
from a machine description file, which captures registers, operators, ad­
dressing modes, and instruction patterns. Several transformations are 
performed on the instruction set grammar, such as compaction and am­
biguity elimination. 

The string parsing based code selection approach does not offer many 
opportunities for code optimization. Instead, due to the orientation to­
wards control-dominated applications, Krohm's compiler primarily uses 
a number of efficient control flow transformations to achieve good code 
quality. These include standard techniques like unreachable code and 
jump chain elimination, as well as optimized linear ordering of basic 
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blocks and exploitation of short jump instructions. The efficacy of these 
transformations has been demonstrated for several large C application 
programs. Additionally, the compiler performs pattern-based peephole 
optimizations and graph-coloring global register allocation. 

Krohm's techniques have been implemented in a working compiler 
system. It is interesting, since in contrast to most other systems it 
represents a practical retargetable compiler approach explicitly tuned 
towards microcontrollers. However, the underlying string parsing based 
code selector is somewhat outdated due to the invention of tree pars­
ing, and code quality results for real machines have obviously not been 
published. 

5.2.2 SDCC 

The small device C compiler is a partially retargetable compiler for 
microcontrollers, where backends are currently available for Intel 8051 
and Zilog Z80. The software, including sources, can be downloaded from 
[194]. It runs under Linux and MS Windows and falls under the GNU 
public license. The package also contains assembler, linker, simulator 
and debugger software. 

The SDCC compiler performs a number of standard machine indepen­
dent optimizations, including global common subexpression elimination, 
loop optimizations, constant folding and propagation, copy propagation, 
and dead code elimination. The backend comprises a global register al­
locator and supports inline assembly as well as compiler intrinsics. 

There is no external machine description file in SDCC, but most 
target-specific information is hard-coded in the compiler. Since the 
source code is freely available, adaptions towards other microcontrollers 
are certainly possible. However, the code selection and register alloca­
tion modules are rather machine-specific. Only the peephole optimizer 
is fully retargetable, since it is based on an external description file with 
simple replacement rules for instruction sequences. 

SDCC is a quite comprehensive C compiler infrastructure for micro­
controllers, which provides a good starting point for constructing com­
pilers for new targets within its processor class. However, frequent re­
targeting or architecture exploration are not supported. 

5.3. 

5.3.1 

Code generator generators 
IBURG 

IBURG [74] is an implementation of the tree parsing technique for 
code selection presented in section 3.3.1. It reads a Backus-Naur speci-
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fication (fig. 5.17) of a tree grammar for some target instruction set and 
generates C source code for a target specific code selector. 

<tree grammar> 

<declaration> 

<rule> 

<tree> 

<terminal>, 
<non terminal> 

<terminal no>, 

::= {<declaration>} Y.Y. {<rule>} 

::= Y.start <nonterminal> 
Y.term { <terminal> = <terminal no> } 

::= <nonterminal> : <tree>= <rule no> (<cost>); 

::= <terminal> (<tree> <tree>) 
<terminal> ( <tree> 
<terminal> 
<non terminal> 

::=<character string> 

<rule no>, <cost> ::=<integer> 

Figure 5.17. Meta-grammar for specification of tree grammars in IBURG 

The tree grammar specification starts with a declaration of numbered 
terminals and the grammar start symbol. The remaining nonterminals 
need not to be declared explicitly, as they are implicit in the grammar 
rules. The next section is an enumeration of all grammar rules, given 
in a simple tree pattern form. Each rule has to have a unique number, 
which can later be used to identify rules instantiated in a derivation of a 
data flow tree (DFT) for assembly code emission. Optionally, each rule 
can also be assigned an integer cost value. Like in LEX and YACC, also 
regular C code can be included in the IBURG input file, but it must not 
be interleaved with the actual grammar specification. 

Fig. 5.18 shows a simple tree grammar for IBURG. There are 6 ter­
minals, 3 nonterminals ("reg" is the start symbol), and 7 rules. This 
grammar allows code generation for simple DFTs consisting solely of 
loads, stores, and some arithmetic operations and constants. 

The C output generated by IBURG for this grammar comprises a 
number of tables and functions. The tables store information like gram­
mar symbol numbers, target nonterminals of rules, operator arities, as 
well as some optional debug information. The ma1n interface to the 
compiler driver program is the generated "burmJabel" function, which 
takes some DFT as an input parameter. The DFT data structure can 
be defined nearly arbitrarily, as IBURG accesses all relevant information 
via editable C macros. 
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%start reg 
Y.term Assign=! Constant=2 Fetch=3 Four=4 Mul=5 Plus=6 
Y.Y. 
con: Constant = 1 (0); 
con: Four = 2 (0); 
addr: con = 3 (0); 
addr: Plus(con,reg) = 4 (0); 
addr: Plus(con,Mul(Four,reg)) = 5 (0); 
reg: Fetch(addr) = 6 (1); 

reg: Assign(addr,reg) = 7 (1); 

Figure 5.18. Sample IBURG tree grammar 

switch (op) { 

case 6: I* Plus *I 
assert(l && r); 

} 

if ( I• addr: Plus(con,Mul(Four,reg)) •I 
r->op == 5 tt I• Mul •I 

) { 

} 

r->left->op == 4 I* Four •I 

c = 1->cost[burm_con_NT] + r->right->cost[burm_reg_NT] + 0; 
if (c + 0 < p->cost[burm_addr_NT]) { 

p->cost[burm_addr_NT] = c + 0; 
p->rule.burm_addr = 3; 

} 

{ I* addr: Plus(con,reg) *I 
c = 1->cost[burm_con_NT] + r->cost[burm_reg_NT] + 0; 
if (c + 0 < p->cost[burm_addr_NT]) { 

p->cost[burm_addr_NT] = c + 0; 
p->rule.burm_addr = 2; 

} 
} 

break; 

Figure 5.19. C output fragment for sample grammar 

Fig. 5.19 shows a fragment of the generated C code which is respon­
sible for matching any DFT T with a "Plus" terminal at its root. First 
it is tested whether the "multiply-accumulate" rule (number 5 in fig. 
5.18) can be applied by checking T's right kid. If the rule matches, then 
the costs of rule 5 are summed up with the accumulated costs of T's 
kids when reducing these to nonterminals "con" and "reg", respectively, 
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to form a new cost value c. If c turns out to be lower than the cur­
rent cost value for reducing T to the target nonterminal "addr" (stored 
in "p->cost[burm_addr...NT]"), then cis recorded as the new minimum 
cost. The remainder of the C code performs a similar processing for rule 
number 4. 

Normally, the user does not have to care about such details of the 
generated code, except that debugging becomes necessary in case of 
unexpected behavior of the code selector during the development phase. 
The result of the code selection process is a derivation tree for the input 
DFT, which can be traversed in a subsequent pass to emit assembly 
code. However, this is not directly supported by IBURG. 

IBURG is a very compact, efficient, and stable tool. It eliminates the 
need to implement tree parsing based code selection from scratch and 
it supports quick retargeting to different instruction sets. However, its 
functionality is restricted to code selection only. Among others, IBURG 
has been used in the RECORD compiler, where tree grammar specifica­
tions are automatically generated from hardware description language 
models. The software including source code is available at [195]. Its use 
is free for research purposes. The generated C output code may also be 
used in products, provided that the code is delivered at no charge. 

5.3.2 OLIVE 

OLIVE is an improved version of IBURG. It has essentially the same 
functionality but includes several important enhancements that make 
code selector development more comfortable. 

First, the cost attributes of grammar rules are no longer restricted 
to integer constants, but arbitrary cost functions may be used instead. 
While in many cases constant costs still suffice, there are special applica­
tions where cost functions are more powerful. One example is to dynam­
ically enable or disable certain rules during multi-pass code generation 
[196]. Rules can be conditionally disabled by assigning an "infinite" cost 
value, which inhibits the selection of a rule even though it matches some 
DFT. 

Another important improvement over IBURG is the introduction of 
action functions in OLIVE. An action function is a piece of C code that 
is executed each time some rule has been selected during tree parsing. 
This works as follows: Normally, the code selector makes two passes 
over a DFT. After computing the optimum DFT cover in the first pass 
by means of the "burmJabel" function (as in IBURG), the second pass 
is explicitly invoked by calling the action function for the start symbol. 
Typically, this function will in turn contain calls to the action functions 
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for the kids, and this process recursively continues until all DFT nodes 
have been visited again. 

The most important purpose of action functions is the emission of 
assembly code, even though also other phases like local register alloca­
tion can be integrated here. In contrast to IBURG, which completely 
decouples code emission from the parsing phase, this permits a cleaner, 
syntax-driven code generation approach. 

%term AND 
%declare <char*> reg; 

reg: AND(reg,reg) 
{ 

$cost[O] = 1 + $cost[2] + $cost[3]; 
} 

{ 

}; 

char* vregl, •vreg2, •vreg3; 
vregl = $action[2](); 
vreg2 = $action[3](); 
vreg3 = NewVirtualRegister(); 
printf("AND %s,%s,%s",vreg1,vreg2,vreg3); 
return vreg3; 

Figure 5.20. Use of actions functions in OLIVE 

Fig. 5.20 shows a tree grammar fragment that outlines the use of 
action functions. Like in IBURG, all terminals have to be declared. 
OLIVE additionally requires a declaration of nonterminals, where this 
also implicitly declares the corresponding action function interface. In 
the example, nonterminal "reg" is declared in such a way that its action 
function is a parameterless C function returning a string. This string 
is used to identify a virtual register name, so that different instances of 
using nonterminal "reg" can be distinguished. 

The sample grammar rule is used to match "AND" operations in 
a DFT. The arguments must reside in registers, and also the result 
will be written to a register. Similar to IBURG, the cost part sums 
up the inherent rule cost {here 1) and the cost of the subtrees, so as 
to induce a quality metric for the code selector. The action function 
{following the "=" character) looks like a regular C function. It calls 
the action functions of the subtrees to get the associated virtual register 
names. Next, a new unique virtual register is allocated for the result, 
and an assembly instruction is emitted. The name of the result register 
is returned for subsequent use upwards in the DFT. 
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Like IBURG, OLIVE is a stable and efficient tool. Its extensions over 
IBURG make the specification of code selectors quite comfortable. The 
OLIVE tool including the source code is included in the distribution of 
the SPAM compiler [132), of which it forms a central component. There 
it has been used to develop several DSP backends. Also the LANCE 
system provides an interface to OLIVE based code selectors. The license 
conditions for OLIVE are the same as for IBURG. 

5.3.3 BEG 

BEG is a backend generator developed at the University of Karlsruhe 
[197). It generates code selectors and register allocators for a target 
machine modeled by a code generator description (CGD) file. Instruc­
tion scheduling is obviously not included. The backend source code is 
emitted in Modula-2 or C. 

Like IBURG and OLIVE, BEG generates a tree parser for the code 
selector. A CGD therefore contains rules for tree pattern matching, 
cost attributes, as well as assembly code templates to be emitted in 
case of a match. Additionally, matching conditions can be specified, 
e.g. the permissible range of integer constants as immediate operands of 
instructions. 

For the register allocation part, BEG first requires an enumeration 
of all available registers. The set of admissible registers for instruction 
operands and destinations can be annotated at each rule. In addition, 
special rule attributes can be used to inform the register allocator that 
some register besides the destination is changed as a side effect, in which 
case that register gets spilled. BEG generates two alternative register 
allocator variants: "general" and "on-the-fly". The general allocator is 
slower but handles a wider range of target machines, while the faster 
allocator may fail in case of too complex expressions due to restricted 
spilling capabilities. Both register allocators are very local, as they pro­
cess only one data flow tree at a time. 

The functionality of BEG somewhat resembles that of LCC, even 
though many implementation details are different and BEG has its roots 
in Modula-2 rather than C. Like LCC, BEG requires a number of hand­
written support routines for the backend. Unfortunately, BEG itself has 
no source language frontend. On the other hand, BEG permits the spec­
ification of the intermediate representation as a part of the CGD, and 
several things like constraining the valid register classes for instruction 
patterns are certainly easier than in LCC. 

BEG has been used in backend generation for MOCKA, a popular 
compiler for Modula-2. Additionally, BEG has been the basis for the 
backend generator of the CoSy system (section 5.6.1). The original ver-
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sion of BEG is copyrighted by GMD Karlsruhe, and binaries for Linux 
are available at [198]. The package also contains example CGDs for IBM 
370 and Motorola 68020 targets. However, it is not clear whether BEG 
is still supported as a stand-alone tool. 

5.4. 
5.4.1 

Assembly-level optimization 
SAL TO 

In contrast to most other systems presented here, the SALTO system 
[199] developed at INRIA/France is focused on retargetable assembly­
level optimizations. It does not include a source language frontend nor 
a built-in library of optimizations, but it offers the user a framework 
for implementing his own machine-dependent code transformation and 
optimization tools. The architectural scope of SALTO is mainly in the 
area of VLIW processors. 

Retargeting SALTO works via a LISP-like machine description lan­
guage, which has been inspired by GCC's machine description format. 
It specifies the available resources (i.e. anything that has an impact on 
scheduling), reservation tables for modeling pipeline behavior, and as­
sembly language syntax. As a demonstrator, a model for the 'Ifimedia 
TM1000 VLIW DSP (section 5.3.4) has been developed. 

From the machine specification, an assembly language parser can be 
automatically generated. The parser generates an internal program rep­
resentation, which can be accessed via the SALTO API. The API gives 
application programs access to data structures for control flow graphs, 
basic blocks, and single instructions. The data structures can be at­
tributed with application-specific information. 

SALTO has been used to implement some simple optimizations like 
list scheduling. It also serves as a basis for research projects on the trade­
off between software pipelining and loop unrolling as well as general 
phase coupling. Additionally, a compiled simulation generator based 
on SALTO has been developed [200], which has been verified for the 
TMlOOO and generally outperformed the native interpretive simulator. 

The SALTO approach is interesting, since it allows to develop and 
evaluate machine-specific optimizations and phase orderings at a re­
duced effort. However, for architecture exploration a compiler would 
be required that at least generates valid, unoptimized assembly code 
from a programming language like C. 

5.4.2 PROP AN 
Like SALTO, the PROPAN system from Saarland University [201, 

202] is intended for retargetable assembly-level code optimization. How-
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ever, PROPAN is more oriented towards DSP targets, and similar to 
Wilson's approach mentioned in section 5.5.1.5 it comprises Integer Lin­
ear Programming (ILP) based optimization routines. There is also 
some conceptual similarity to the Zephyr/VPO approach (section 1.6), 
but PROPAN incorporates highly machine specific optimizations. An 
overview is given in fig. 5.21. 
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Figure 5.21. PROPAN overview (taken from [203)) 

One important motivation for moving retargetability from the com­
piler down to the assembly level is that existing (but possibly poor) 
compilers can be reused, while focusing only on the machine-dependent 
optimization problems. Moreover, several optimizations that normally 
take place at the intermediate representation level should be repeated 
at the assembly level anyway. A typical example is loop-invariant code 
motion, which cannot be fully performed in a machine-independent fash­
ion. 

In PROPAN, target machines are modeled in the target description 
language TDL. This language permits modeling of resources like func­
tional units, registers, and memories, as well as a large range of possible 
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assembly instruction formats, including assembler directives and com­
plex algebraic assembly notations. Additionally, TDL captures instruc­
tion behavior by means of a special RTL language as well as explicit con­
straints on instruction-level parallelism. From a TDL model, PROPAN 
automatically generates an assembly language parser, as well as an ar­
chitecture data base that stores the target-dependent information. 

The generated parser translates a given input program into an internal 
control/ data flow graph structure, which forms the basis for optimiza­
tion routines. First of all, PROPAN is capable of register renaming to 
remove false dependencies in the initial assembly code. The core opti­
mizations are based on two different ILP approaches for phase-coupled 
code generation called SILP and OASIC. While other ILP approaches to 
code optimization are mostly restricted to basic blocks, PROPAN per­
forms optimizations within superblocks than span multiple basic blocks. 
This opens up higher optimization opportunities. 

The system has been evaluated for two real-life targets: the Analog 
Devices ADSP-2106x SHARC and the Philips Trimedia TMlOOO. Ad­
ditionally, PROPAN has served as a platform for an industrial postpass 
optimizer for the Infineon C16x microcontroller. The results for the 
ADSP-2106x and the TMlOOO show that the ILP approaches result in 
lower code size than standard heuristics such as list scheduling. However, 
the average improvement is moderate (less than 10 %), and the required 
computation times are generally quite high, due to NP-completeness of 
the ILP problem. Nevertheless, the additional computation time may 
sometimes be justified for the critical loops of embedded applications. 
Moreover, some reduction is possible by replacing the exact ILP solving 
with approximation methods, which still yield optimal solutions in many 
cases. 

5.5. LISA 
The LISA language [204, 205] developed at ISS, TU Aachen is a pro­

cessor description language mainly used for retargetable generation of 
software development tools. LISA has been influenced by nML (section 
5.2.1) but it provides some important improvements that enhance its 
practical applicability. First of all, it allows for cycle-accurate modeling, 
since the detailed pipeline behavior of the target processor is captured. 
Secondly, it includes C elements, which facilitates the language use as 
well as generation of fast compiled simulators [177, 206]. 

Similar to nML, a LISA model consists of resource descriptions and 
a list of operations. The resource section is used to declare available 
memories, registers, and auxiliary global variables used for sake of sim­
pler descriptions. Additionally, a detailed model of (possibly multiple) 
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pipelines is provided, including pipeline stages and registers. Any LISA 
operation describes a primitive processor operation, e.g. a machine in­
struction at a certain pipeline stage. This includes instantiation of sub­
operations (with factoring capabilities like in nML), a description of the 
assembly syntax, and the binary encoding. An operation is mostly also 
attributed with a piece of behavior, which is modeled in regular C. Fig. 
5.22 shows an example operation from a LISA model of the DLX RISC 
processor. 

II logical shift left bound to execute stage 
II of the instruction pipeline 

OPERATION SLL IN pipe.EX 
{ 

} 

II instantiation of sub-operations 

DECLARE 
{ 

GROUP rsl, rs2, rd = { reg32 }; 
INSTANCE r_ralu; 

} 

II binary encoding 

CODING { r_ralu rsl rs2 rd Obx[5] Ob110010 } 

II assembly syntax 

SYNTAX { 11 SLL 11 rd 11 , 11 rsl 11 ," rs2} 

II effect on machine state 

BEHAVIOR 
{ 

} 

temp=(unsigned int)rsl; 
rd =temp<< ( rs2 t OxOOOOOOlf); 
rsl=(int) temp; 

Figure 5. 22. Sample LISA operation 

Operations may be specified at the level of machine instructions. How­
ever, for pipelined processor models, typically a more fine-grained struc­
ture is used that e.g. subdivides instruction execution into fetch, decode, 
execute, and write-back operations, each of which is explicitly bound to 
one of the pipeline stages declared in the resource section. In order 
to support such models in a simulator, LISA provides explicit pipeline 
control commands, e.g. for flushing, shifting, or stalling some pipeline. 

The LISA language is supported by a number of tools that take a given 
processor model as an input. First of all, there is a LISA model debugger, 
which helps to develop correct models for a given initial specification. 
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Once the model has been debugged, assembler, linker, and simulator 
tools are automatically generated. Generated simulators can be linked 
to a debugger GUI (fig. 5.23), which provides functionality like source­
level stepping, breakpoints, internal state monitoring, and profiling. 

Current R&D activities at TU Aachen aim at extending the LISA 
language applicability into further directions (fig. 5.24), including com­
piler generation, HDL model synthesis, and co-simulation. In this way, 
a complete high-level processor design and architecture exploration tool 
suite will be provided. Prototypes are already in industrial use, and tools 
will be productized by LISATek Inc. [208]. A different LISA dialect is 
also being used in automatic simulator and assembler generation tools 
at Axys Design Automation [207]. 

Even though compiler generation from LISA is so far not supported 
and certainly requires some language extensions, we find the language 
worth mentioning here due to its large practical impact. Besides its use 
in the Axys tools, LISA has been used to model a variety of real-life 
processors, including RISCs (e.g. ARM 7 TDMI, MIPS 4k), DSPs (e.g. 
TI C6x, C54x, Motorola 56k), and microcontrollers (e.g. Intel 8051) at 
different levels of accuracy, and software development tools, including 
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Figure 5.24- LISA development tools, @ISS, TU Aachen 

high-speed cycle-accurate simulators, have been automatically gener­
ated. This indicates that LISA is among the most flexible and mature 
processor description languages currently available. 

5.6. Compilers for industrial reconfigurable cores 
Retargetability can be put into practice quite easily in case of a very 

narrow target processor domain. More and more IP vendors selling 
reconfigurable processor cores realize that software development tools 
like compilers have to be flexible (or retargetable) enough to cope with 
different instances of a core, so as to give the highest benefit to the 
customer. 

While processor cores that are reconfigurable by some numerical pa­
rameters (register file size, bus width, etc.) have been available for some 
years, only recently IP vendors have started offering processor cores with 
a customizable instruction set. This concept permits the user to extend 
the standard core architecture, as it is shipped by the vendor, by new 
application specific instructions. Sometimes, such instructions are spec­
ified through a dedicated instruction modeling language, while in other 
cases templates are provided that at least facilitate the integration of 
new instructions into the compiler, simulator, and the underlying HDL 
synthesis model. 

Examples for cores with extensible instruction sets are Tensilica's 
Xtensa RISC core [80] 3DSP's SP-5 Flex DSP core [209], and ARC 
Cores' Tangent RISC core [79], all of which come with a retargetable C 
compiler (Tensilica's compiler is GCC based) . A still open problem is 
the automatic exploitation of new custom instructions in the compiler. 
Ideally, the compiler should recognize the semantics of new instructions 
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and optimally exploit them during code generation. However, currently 
available systems are not capable of this and rather use a pragmatic 
approach, where new instructions are made known to the compiler via 
compiler intrinsics. 

5. 7. Retargetable test program generation 
The RESTART system by Bieker [216] represents a very special type 

of a retargetable compiler: a retargetable self-test program generator. 
The system exploits the fact that programmable processors may per­
form self-tests for their RTL components when using appropriate test 
programs. RESTART generates binary test code for test programs spec­
ified in a high-level language. 

Like in the MSSQ and RECORD compilers (sections 5.4.1 and 5.2.5), 
the target processor is described in the MIMOLA hardware description 
language. The range of possible target processors is very similar to 
MSSQ. For the specification of test programs, RESTART uses a custom 
language called TCL (test code language). TCL comprises constructs for 
testing sequential components (e.g. to test whether a certain constant 
that has been written into a register has been correctly stored) and 
combinational components. For instance, the TCL statement 

TEST alu(%00,%0001,%0011); 

translates into machine code that supplies the binary inputs "%00", 
"%0001", and "%0011" to an RT component "alu" (specified in the 
MIMOLA model) and checks whether the expected output is computed. 
The expected output of "alu" is automatically determined by a built-in 
RTL simulator. In case of a test failure, a jump to a specified error 
label is performed, otherwise the program continues with the next test 
statement. 

For sake of more concise test program specifications, TCL also com­
prises FOR loops. For instance, the loop 

FORi := 1 TO 1000 DO TEST ram[i] := #ffff; 

will be compiled into test code that writes the hex value "#ffff" into 
the cells 1 to 1000 of memory component "ram" and tests (by means of 
a comparison instruction) whether the value has actually been stored. 

Although TCL is a quite simple programming language, the code 
generator is relatively complex. Since the TCL statements typically 
do not allow for a one to one mapping into machine instructions, code 
selection, register allocation, and scheduling have to be performed as in 
any other compiler. In addition to binary test programs, RESTART also 
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generates external stimuli files for values that cannot be provided by the 
processor hardware itself. 

The RESTART system has been implemented with constraint logic 
programming ( CLP, see section 5.5.1. 7). This resulted in a very com­
pact implementation (only about 25 % source code as compared to a 
traditional implementation in an imperative language). It has been in­
tegrated with logic synthesis, test pattern generation, and fault simula­
tion tools [217]. For several simple target processors, a fault coverage 
between 95 and 99 % has been observed. 

The main achievement of RESTART is that test program generation 
from a high-level language is largely automated. Due to the special 
application domain of test generation, there are only few relations to 
other retargetable compilers. However, self-test program generation is 
certainly an interesting niche application of retargetable compiler tech­
nology. The experimental results indicate that the technique works in 
practice and, in combination with complementary design and test tools, 
may lead to a good fault coverage for programmable processors. 

5.8. Retargetable estimation 
As outlined in chapter 2, one main application of retargetable com­

pilers is architecture exploration, so as to determine an optimum target 
processor architecture for a given set of applications. If the target pro­
cessor class is DSP, the design of efficient and retargetable compilers is 
a difficult problem, though. Ghazal et al. [218, 16] propose to circum­
vent this problem with a retargetable estimation methodology. They 
developed a tool suite, based on the SUIF frontend (section 5.1.5), for 
predicting the optimum performance of an application on a given target 
processor. The underlying processor description only comprises param­
eter tables instead of a detailed architectural model. These parameters 
include: 

• Functional units and restrictions on parallelism 

• Instruction set, incuding complex instruction like MAC 

• Memory data packing/unpacking support 

• Memory addressing support, like auto-increment 

• Control flow support, such as zero-overhead loops 

• Loop optimizations, like software pipelining 

The input source code is processed by SUIF, which also performs 
standard and loop-level optimization on the intermediate representa­
tion. The processor parameters are then used to compute the estimated 
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performance for a close-to-optimal (i.e. hand-written) mapping of the 
source code into machine code, based on static code analysis and profil­
ing. 

The retargetable estimation methodology has been applied to two 
DSPs (ZSP 16401 and TI C6201) and has been shown to achieve high 
accuracy (5 % error for DSP kernel routines and 16 % for a full appli­
cation). The results also show that the native C compilers for the two 
targets frequently produce a large overhead as compared to hand-written 
code, which confirms the findings of the DSPStone project [77). Hence, 
retargetable estimation might be a reasonable and fast alternative to re­
targetable compilation during architecture exploration. However, more 
experimental results would be required to confirm the estimation ac­
curacy and its retargetability, and an optimizing compiler will still be 
required once the target architecture has been fixed. 

5.9. Miscellaneous 
For sake of completeness, we briefly mention the following list of tools 

and WWW resources. Even though there is no direct relation to em­
bedded systems, these provide point solutions that may (or may not) be 
valuable resources in new retargetable compiler projects. 

TenDRA: A portable C/C++ compiler that generates intermediate 
code in the TDF j ANDF format [219). 

Eli: A compiler generation package for integration of compiler compo­
nents with custom 1/0 formats [220). 

VCODE: A portable dynamic code generator with extremely high com­
pilation efficiency by avoiding the step of intermediate code genera­
tion [221). 

New Jersey Machine Code Toolkit: Tools for encoding and decod­
ing binary machine code, supporting the implementation of tools like 
assemblers, disassemblers, linkers, and debuggers [222). 

Cocktail: Tools for scanner and parser generation, attribute grammar 
processing, as well as tree pattern matching [223). 

Gentle: A compiler construction toolbox, including parsing, source-to­
source translation, and code selector generation [224). 

SGI Pro64: C/C++ compiler development tools for Linux/IA-64 plat­
forms [225), based on the GCC frontend. 

PAG: Generator for static program analyzers, to be used in program 
transformation and optimization tools [226). 
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MLRISC: A retargetable optimizing backend for RISC processors, writ­
ten in ML [227] 

Comprehensive overviews of further compiler construction tools can 
be found at [228, 229, 230]. 

6. Commercial retargetable compilers 
6.1. CoSy 

CoSy is an extensible and retargetable compiler system with fran­
tends for C /C++ (optionally with special language extensions for DSPs), 
Fortran, and Java. It originated from the European research project 
COMPARE [92] and has later been commercialized by Associated Com­
piler Experts {ACE) [231]. The software is available for Unix, Linux, 
and MS Windows platforms. CoSy licenses typically include a royalty 
payment scheme for generated compilers. Research licenses are available 
for universities at a reduced fee. 

A basic concept in CoSy is the use of a common high-level interme­
diate representation {IR) that is generated by the different frontends. 
Like in SUIF, LANCE, or Trimaran this allows to enable or disable 
certain IR optimization engines at any time, which also can dynami­
cally interact with each other (fig. 5.25). CoSy already comes with a 
library of standard IR optimizations (including constant folding, dead 
code elimination, strength reduction, and loop unrolling), but it is ex­
plicitly designed to be extensible by custom IR optimization passes. 

While theIR optimizations are essentially machine-independent, there 
is also a backend generator based on which machine-specific code gen­
erators can be designed. The backend generator is an improved version 
of the BEG tool (section 5.5.3.3). First, the high-level IR is passed 
to a lowering engine for replacement of high-level language constructs 
by low-level statements. Then a tree parsing based code selector maps 
the lowered IR into sequential assembly code. Compared to tools like 
IBURG and OLIVE, CoSy uses a relatively comfortable specification 
mechanism for the underlying tree grammar, which permits the specifi­
cation of special matching conditions as well as operand and destination 
registers. 

Next, there is a sequential pre-pass scheduling phase, during which 
instructions are reordered, so as to optimize potential parallelism and 
minimize virtual register lifetimes. The mapping to physical registers 
afterwards takes place by a graph-coloring based (either local or global, 
dependent on runtime requirements) register allocator. In case the tar­
get processor shows VLIW-like instruction-level parallelism, a post-pass 
scheduler, or code compactor, can be called to pack potentially parallel 
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Figure 5.25. CoSy overview, @ACE- Associated Compiler Experts 

instructions into very long instruction words, based on a latency speci­
fication of instructions and functional units. 

The main advantages of CoSy are its modular extensibility and target­
independence, as well as the professional support as a commercial prod­
uct. The system is used by a number of companies (e.g. Ericsson, Philips, 
and STMicroelectronics). CoSy users generally find that it is a good 
platform for quickly designing operational and robust compilers for new 
targets. On the other hand, the code generation process in CoSy fol­
lows a rather classical approach, with few optimizations for irregular 
architectures and no phase coupling. For a heavily optimizing compiler, 
new target-specific techniques will generally be required, but integrating 
such techniques requires significantly more effort than adding new IR 
optimizations. 

6.2. CHESS 
Just like CoSy, the CHESS compiler [105, 232, 233] originated from 

European research projects, whose results have been productized by the 
startup company Target Compiler Technologies [234]. CHESS is a re­
targetable C compiler primarily for DSPs. It is supported by further 
retargetable tools like assembler, linker, and instruction set simulator, 
as well as VHDL generation from processor models. The tool suite is 
illustrated in fig. 5.26. Currently supported platforms are Unix and 
Linux. Licensing terms are. subject to negotiation. 
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CHESS borrows a number of concepts from the CBC and MSSQ com­
pilers (sections 5.2.1 and 5.4.1). Like the CBC compiler, CHESS uses 
the nML language for target processor modeling. In contrast to the orig­
inal approach in CBC, however, the action attributes of nML operations 
are specified by calls to primitive C library routines instead of using the 
built-in nML language elements for describing behavior. The advantage 
is that limitations of nML can be bypassed, and that a clear simulation 
semantics is provided by construction. The price for this is that the 
compiler cannot extract the instruction semantics solely from the nML 
model anymore, but needs additional mapping information between C 
library routines and machine instructions. 

Like most other compilers, CHESS first performs a set of standard 
machine-independent optimizations, including common subexpression 
elimination and induction variable analysis. Fig. 5.27 shows the code 
generator GUI in CHESS. The code generator uses a control/data flow 
graph (CDFG) model as an intermediate representation. Also for the 
target processor a graph model is constructed from the nML specifica­
tion. This instruction-set graph (235] is similar to the connection oper­
ation graph used in the MSSQ compiler, in the sense that it also rep­
resents hardware resources, interconnections, as well as functional unit 
operations together with the corresponding partial opcodes. Also the 
code selection pass resembles the approach taken in MSSQ, since partial 
opcodes are combined on-the-fly while checking for resource conflicts. 
The more recent tree parsing approach is not used, but there are provi-

RETARGET ABLE 
COMPILER 

CHESS 

BRIDGE 

Data path 

•. Instruction !rMT!Aw!oPo! 

set ;:;; ~: ~~ 

Processor model nML 

RETARGET ABLE 
INSTRUCTION SE'r 

SIMULATOR 
CHECKERS 
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Figure 5.27. CHESS compiler GUI, @Target Compiler Technologies 
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sions for crossing basic block boundaries during code selection in order 
to better accommodate common subexpressions in the CDFG. 

The register allocator in CHESS (similar to CBC) is implemented as 
a data router. This is especially suitable for irregular DSP architectures, 
since data routing explores different alternative routing paths within 
the data path, and therefore tends to minimize spill code for special 
purpose registers. Register allocation is followed by an offset assignment 
pass, during which local variables are assigned to specific stack frame 
locations in case the target machine contains an address generation unit 
as described in section 3.3.4. 

The final code generation phase is instruction scheduling, during which 
generated instructions are compacted, so as to exploit instruction-level 
parallelism. For this purpose, CHESS relies on a list scheduler, enhanced 
by global optimizations including software pipelining, delay slot filling, 
and code hoisting. 

The resulting assembly code can be fed into an assembler that is also 
generated from the nML model. Combined with the use of the retar­
getable instruction set simulator, the CHESS approach allows to perform 
architecture exploration for DSPs by iterative compilation and processor 
fine-tuning. Optionally, a synthesizable VHDL processor model can be 
generated for the final nML model, which establishes a path to hardware 
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synthesis. However, the generated VHDL model does not necessarily 
represent the most efficient processor hardware implementation. 

CHESS is another example of the fact that retargetable compilers are 
practical tools when focusing on a specific processor class. It also rep­
resents a quick flow of research results into an industrial product. Until 
recently, the main limitation of CHESS has been the lack of support for 
pipelined architectures, definitely a must for modern processor architec­
tures. The new version CHESS V2, however, has been announced to 
overcome this limitation by enabling more accurate modeling of pipeline 
stages in nML. CHESS has been applied to generate code for an Analog 
Devices ADSP-210x like architecture. Unfortunately, further informa­
tion about real-life targets and the code quality of CHESS is not publicly 
available. 

6.3. Archelon 
The Archelon tool suite [236] comprises a retargetable C compiler, 

assembler, and linker. The C compiler emits sequential code, which 
can be passed into further tools within the suite, including a peephole 
optimizer and a code compactor. The software is available for Unix, 
Linux, and most MS Windows versions. Pricing is quite low as compared 
to other commercial retargetable compilers (about US$ 5,000). 

The C compiler gets its machine-specific information from a compiler 
information file (CIF). The code compactor, which is separate from the 
actual compiler, is driven by another description file. The CIF contains 
all information required for assembly code generation. In contrast to 
several other compilers (e.g. RECORD) that generate and link compiler 
components from the target model, the CIF is read every time the com­
piler is called. This reduces retargeting time at the expense of higher 
compiler runtimes. 

First of all, the CIF file captures essential information like the bit 
width, signedness, and alignment of the C data types, as well as the 
machine word length and required assembly output syntax, including 
directives. Next, there is a description of available register files, their 
size, and a list of C types they may store. Special registers, like the stack 
pointer, are explicitly tagged. Further classifications concern scratch and 
argument registers, as well as registers available for general allocation. 
Another section in the CIF specifies the stack access and parameter 
passing conventions. Fig. 5.28 shows an excerpt from a sample CIF. 

The compiler performs some basic high-level optimizations like con­
stant folding and common subexpression elimination. Afterwards, as­
sembly code generation takes place in a tree-oriented fashion (from the 
documentation in [236] it is not fully clear, whether standard tree parsing 
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# R E G I S T E R S E T S 
mau := 8; I* byte addressable memory *I 
regset := R[32] width=32 

optype=int,ptr,ptr2,float,double,longdbl,codeptr 
regtype=char,short,int,ptr,ptr2,codeptr,long,float,double,longdbl; 

stkptr := R[31]; #define the stack pointer register 
scratch := R[24-27]; #reserve some scratch (global temporary) registers 
argreg := R[24-25]; #allow arguments to be passed in some registers 
color := R[0-29]; #define which registers will be controlled by 

# the register allocator. 

# 0 P E R A N D S 
operand code_addr codeptr; # pointer to code memory 
operand data_addr ptr; # pointer to data memory 
operand const16 sconst -32768 32767; # 16 bit signed constant 

# F 0 R M A T S 
format mem_load_ri src ri_addr 
format mem_store_dir src gp_reg 
format binary_rrr lsrc gp_reg 

# 0 P C 0 D E S 
opcode ldri 
opcode ld 
opcode st 
opcode add 

mem_load_ri; 
mem_load_dir; 
mem_store_dir; 
binary_rrr; 

# C 0 D E T A B L E S 

dest gp_reg; 
dest dir_addr; 
rsrc gp_reg dest 

code binary(opcode) # code table for add and subtract 

gp_reg; 

? matches( $right, const16 ) #predicate test: true if rhs is 16 bit constant 
{ 

} 
{ 

} 

opcodel"i" $left,$right,$dest; 

opcode $left,$right,$dest; 

oper ADD sshort binary( "add" ); 
oper SUB sshort binary( "sub" ); 

Figure 5.28. Partial Compiler Information File (CIF) for the Archelon compiler, 
@Archelon Inc. 

is used, but there are at least strong similarities). The available machine 
instructions are specified in a special formalism that is subdivided into 
four sections: operands, formats, opcodes, and code tables. Each entry 
in the code tables specifies the assembly code to be emitted for a certain 
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intermediate representation operator. Similar to GCC and LCC, there 
is a predefined set of operators that any machine description must cover 
so as to generate code for all possible C source programs. 

The Archelon compiler also supports some non-standard operators 
that e.g. allow handling of zero-overhead loops and interrupt functions. 
Additionally, the user may define additional operators that are available 
at the C level via compiler intrinsics. Another mechanism of compiler 
fine-tuning is offered by a tree rewrite formalism that allows to alter 
data flow trees before code selection takes place. 

After code selection a graph coloring register allocator is applied to 
map virtual to physical registers. The final output of the code genera­
tor is sequential assembly code. This code is typically passed to further 
optimization tools, including a peephole optimizer that performs some 
simplifications based on user-defined optimization rules. Additionally, 
there is a code compactor that performs instruction scheduling and par­
allelization of the sequential code, so as to avoid pipeline stalls and to 
exploit potential parallelism. 

Among others, the Archelon compiler has been applied to several DSP 
cores, e.g. from Clarkspur and 3DSP. This indicates that the compiler 
in principle can handle irregular architectures. However, due to a lack 
of DSP-specific optimizations, some code quality overhead as compared 
to hand-written code can certainly be expected. 

6.4. ucc 
Astrosoft [237] offers UCC, a portable C and C++ cross compiler. 

UCC follows a rather traditional compilation flow: source code anal­
ysis, machine-independent optimizations (including constant propaga­
tion, common subexpression elimination, loop invariant code motion, 
induction-variable strength reduction, and dead code elimination), and 
machine code generation. The target processor is described by means 
of code generation tables [238], which specify instruction patterns for 
certain IR constructs, as well as permissible operand and results reg­
isters. Dedicated optimizations for embedded processors are obviously 
not implemented. UCC also has support for inline assembly and Clan­
guage extensions. The compiler has been retargeted to the x86 processor 
family. Unfortunately, further results on code quality and the target pro­
cessor range have not been published. Whether or not UCC is suitable 
for embedded systems has yet to be demonstrated. 



Chapter 6 

SUMMARY AND OUTLOOK 

Motivation. Many of today's embedded systems are designed with 
programmable processor cores as their building blocks. As a consequence, 
software development for embedded processors nowadays plays a signif­
icant role in the design flow. Traditionally, most embedded software 
has been written in assembly languages. However, due to the numerous 
drawbacks of assembly-level programming and the increasing time-to­
market pressure, now there is a shift towards using high-level language 
compilers. 

Embedded systems generally require a different compiler technology 
than general purpose systems. There is a huge variety of domain or 
even application specific embedded processors, and we certainly cannot 
afford to write a new compiler for each new target machine. Therefore, 
retargetable compilers are required, that are capable of generating code 
at least for a certain class of different processors. Moreover, there is 
frequently a need for very high code efficiency in terms of performance, 
size, and/ or energy consumption. 

While work on retargetable compilers began long before embedded 
system design became a major issue, they now receive a renewed in­
terest due to the need to perform design space exploration. The main 
purpose of this book is threefold: (1) to provide the essential technical 
background information on retargetable compilers, (2) to outline the new 
paradigm of using retargetable compilers for design space exploration, 
and (3) to provide an up-to-date overview and classification of existing 
retargetable compiler systems and tools. We hope that this reduces the 
"entry barrier" to the area of retargetable compilation and stimulates 
further research projects. 
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State ofthe art. Retargetability is normally considered incompatible 
with the demand for high code quality. This is certainly true for a retar­
getable compiler without any focus on a specific processor class, since 
each such class requires its own special code optimization techniques. 
Therefore, a key to successful introduction of retargetable compilers in 
the system design tool chain is specialization towards a single processor 
class. 

For instance, in the domain of standard RISC and CISC processors, 
freely available compilers like GCC have been quite successfully used, 
while systems like SPAM, CHESS, and RECORD incorporate dedicated 
optimization techniques for DSPs. Likewise, there are retargetable com­
pilers tuned towards VLIW machines, e.g. Trimaran and ROCKET. 
Each of these systems has its limitations w.r.t. the concrete architec­
tural scope that can be handled, but they achieve reasonably good code 
quality by making a priori assumptions about the target machine. 

In case of a new target processor that does not well fit into a stan­
dard processor class, systems like SUIF, LANCE, or CoSy can be a good 
starting point. They incorporate mostly machine independent code op­
timizations, but they provide a relatively quick path towards generating 
an operational compiler for an "arbitrary" new target machine. Tools 
like IBURG and OLIVE may help to further reduce the backend design 
effort. 

Several compilers for ASIPs, e.g. MSSQ, PEAS, and EXPRESS, are 
explicitly intended for design space exploration. They provide com­
fortable processor modeling capabilities and also support retargetable 
simulation, which guarantees short turnaround times. 

As described in chapter 5, a huge variety of processor modeling for­
malisms for retargetable compilation are currently in use. These include 
custom description languages (e.g. CBC and AVIV), sometimes mixed 
with C source code (e.g. GCC and LCC), as well as parameterized mod­
els (e.g. Trimaran), HDL models (e.g. MSSQ and RECORD), or even 
finite state machine or integer linear programming models. They mainly 
differ in their modeling capabilities and abstraction level. 

Besides the huge amount of optimization techniques known from tra­
ditional compiler construction, a lot of research effort has been invested 
recently in code optimization for embedded processors. In particular, this 
holds for DSPs (e.g. code generation for irregular architectures and ad­
dress code optimization) and highly parallel machines (e.g. scheduling 
for clustered VLIW processors). Frequently, such techniques, many of 
which are beyond the scope of this book, work for a large range of ar­
chitectures. Hence, they can be integrated into retargetable compilers, 
in order to further reduce the overhead of compiled code. 
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Future directions. So far, "compiler-aided" design space exploration 
is only partially systematic, but frequently follows more a trial-and-error 
methodology: One can make changes to the target processor model, and 
compile, synthesize, and simulate in order to somehow converge to a 
good application-specific architecture, based on the designer's intuition. 
In contrast, a "clever" retargetable compiler would provide more detailed 
feedback to the processor designer than the plain machine code. For 
instance, the compiler could report bottlenecks during code selection, 
scheduling, or register allocation and give suggestions for architectural or 
even source code changes. In combination with a simulator and profiler, 
this would shorten the exploration phase and help to reach better design 
space points. 

Also the code quality of retargetable compilers needs to be continu­
ously improved, in order to keep pace with the advances in processor 
architecture. Currently, a trend towards "compiler-friendly" VLIW ar­
chitectures can be observed, but experience shows that, due to efficiency 
reasons, realistic machines are rarely clean enough, so that using only 
off-the-shelf code optimization techniques is sufficient. Therefore, the 
library of domain specific code optimization techniques should be con­
tinuously extended, driven by the newest processor generations. 

In this context, also novel approaches (such as assembly-level op­
timization or exact optimization based on formal methods instead of 
heuristics) should be further investigated. With few exceptions, so far 
there are no practical compilers that can switch to time-intensive heavy 
optimization of the "hot spots" in an application program, e.g. by em­
ploying a phase-coupling approach. This feature would largely improve 
applicability of compilers, since it is still common practice to hand­
optimize compiled code, e.g. in time-critical loops. 

With respect to processor modeling formalisms, each approach has 
its pros and cons, and we may expect even more modeling formalisms 
in the future. For narrow processor classes, the parameterized model 
approach is certainly a good solution. However, for a larger range of 
target machines, those modeling languages will find their way into prac­
tice that represent a good compromise between ease of use, modeling 
capabilities, and a seamless integration with other modeling languages 
used in embedded system design, such as SystemC or VHDL. 



Appendix A 
Tabular overview of compiler tools 

system year of preferred software influence 
publication processor freely or from 

or 1st version class commercially 
available 

WWW home page 
GCC 1987 RISC/CISC yes 

http:j jgcc.gnu.org 
MSSQ 1987 ASIP no MSSV 
BEG 1989 RISC/CISC yes 

http:/ jwww.first.gmd.de/beg 
ROCKET 1990 VLIW yes LCC 

http:/ jwww. cs. mtu. edu/-sweany/Rocket.html 
Archelon 1990 yes 

http:j jwww.archelon.com 
LCC 1991 RISC/CISC yes 

http:/ jwww.cs.princeton. edujsoftwarejlcc 
Marion 1991 RISC no LCC 
IMPACT 1991 VLIW yes EDG 

http:j /www. crhc. uiuc. edu/Impact 
PEAS 1991 ASIP no GCC, CoSy 

http:/ /vlsilab. ics. es. osaka-u. ac.jp 
IBURG 1992 yes 

http:/ jwww. cs. princeton. edujsoftwarejiburg 
CBC 1992 DSP DO 

ucc 1992 yes 
http :j / astrosoft-development. com/ english/ services /main. html 

PAGODE 1993 RISC DO 
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system 

SUIF 

Flex Ware 
CoSy 

CHESS 

RED ACO 

OLIVE 

Valen-C 

SPAM 

RECORD 
LANCE 

Trimaran 

Trimedia 

AVIV 
Zephyr 

EXPRESS 

RETARGETABLE COMPILER TECHNOLOGY 

year of 
publication 

or 1st version 

preferred 
processor 

class 

WWW home page 

software 
freely or 
commercially 
available 

1994 yes 
http:/ /sui[. stanford. edu 

1994 DSP no 
1995 yes 

http:/ jwww.ace.nl 
1995 DSP yes 

http:/ jwww.retarget.com 
1996 DSP no 

http:/ /swan. nt. tuwien. a c. at/ codegen 
1997 yes 

http://www. ee. princeton. edu/ spam 
1997 ASIP yes 

http:j jkasuga. csce.kyushu-u. ac.jpj~codesignjValen-C 
1997 DSP yes 

http:/ jwww. ee. princeton. edujspam 
1997 DSP no 
1997 yes 

http:/ /LS12-www.cs.uni-dortmund.de/~leupers 
1998 VLIW yes 

http:/ jwww. trimaran. org 
1998 VLIW yes 

http:/ jwww.semiconductors.philips. comjtrimedia 
1998 VLIW no 
1998 RISC/CISC yes 

http:/ jwww. cs. virginia. edujzephyr 

influence 
from 

LCC, EDG 

CoSy 
BEG, EDG 

MSSQ, CBC 

IBURG 

SUIF 

SUIF, OLIVE 

MSSQ, SPAM 
OLIVE 

IMPACT 

EDG 

SUIF, SPAM 
EDG, LCC 

1999 ASIP /VLIW no GCC, MSSQ 
http:/ jwww. cecs. uci. eduj~acesjprojMain.html#expression 

BUILDABONG 2000 ASIP yes RECORD 
http:/ jwww-date. uni-paderborn. dejRESEARCH/B UILDABONG 



References 

[1] A.Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, M. Imai: Effectiveness 
of the ASIP Design System PEAS-III in Design of Pipelined processors, Asian 
and South Pacific Design Automation Conference (ASP-DAC), pages 649-
654, 2001 

(2] T. Baba, H. Hagiwara: The MPG system: A machine-independent micropro­
gram generator, IEEE Trans. on Computers, Vol. 30, pages 373-395, 1981 

[3] R.G. Bushell: Higher level language for microprogramming, Euromicro jour­
nal, 4:67-75, 1978 

(4] R.G.G. Cattell: Formalization and automatic derivation of code generators, 
Technical report, PhD thesis, Carnegie-Mellon University, Pittsburgh, 1978 

(5] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A. Vande­
cappelle: Custom memory management methodology, Kluwer Academic Pub­
lishers, 1998 

(6] M.E. Conway: Proposal for an UN COL, Communications of the ACM, Vol. 
1, 1958 

(7] M. Cornero, F. Thoen, G. Goossens: Software synthesis for real-time infor­
mation processing systems, in (103], 1995 

(8] J.-L. Cruz, A. Gonzalez, M. Valero, N. P. Topham: Multiple-banked register 
file architectures, The 27th Annual International Symposium on Computer 
architecture, pages 316-325, 2000 

(9] W. Damm, G. Doehmen, K. Merkel, M. Sichelschmid: AADL/S* approach 
to firmware design verification, IEEE Software, 3:27-37, 1986 

(10] S. Dasgupta: Towards a microprogramming language schema, 11th Annual 
Microprogramming Workshop, pages 144-153, 1978 

(11] IMEC Desics group: Adopt, http:/ jwww.imec.be/desics 

(12] IMEC Desics group: Atomium, http:/ jwww.imec.be/atomium 

155 



156 RETARGETABLE COMPILER TECHNOLOGY 

[13) Personal communication, ELMOS, Dortmund, Germany 

[14) C. Ferdinand, H. Seidl, R. Wilhelm: TI-ee automata for code selection, Acta 
Informatica, pages 741-760, 1994 

[15) M. Ganapathi, C.N. Fisher, J.L. Hennessy: Retargetable compiler code gen­
eration, ACM Computing Surveys, Vol. 14, pages 573-593, 1982 

[16) N. Ghazal, R. Newton, J. Rabaey: Retargetable estimation scheme for DSP 
architecture selection, Proceedings of the Asia and South Pacific Design Au­
tomation Conference, pages 485-489, 2000 

[17) R.S. Glanville: A machine independent algorithm for code generation and 
its use in retargetable compilers, Technical report, PhD thesis, University of 
California at Berkeley, 1978 

[18) A. De Gloria, P. Faraboschi: An evaluation system for application specific ar­
chitectures, Proc. 23rd Ann. Workshop on Microprogramming and Microar­
chitecture, pages 80-89, 1990 

[19) P. Grun, N. Dutt, A. Nicolau: Memory aware compilation through accurate 
timing extraction, Proceedings of the 37th Design Automation Conference, 
2000 

[20) T.V.K. Gupta, P. Sharma, M. Balakrishnan, M. Malik: Processor evalua­
tion in an embedded systems design environment, Proceedings of Thirteenth 
International Conference on VLSI Design, pages 98-103, 2000 

[21) I.-J. Huang: A case study: Synthesis and exploration of instruction set design 
for application-specific symbolic computing, Journal of information Science 
and Engineering, 14:821-842, 1998 

[22) Personal communication, Institut fiir Mikroelektronische Systeme (IMS), 
Duisburg, Germany 

[23) M.F. Jacome, G. de Veciana, V. Lapinksi: Exploring performance tradeoffs for 
clustered VLIW ASIPs, International Conference on Computer-Aided Design 
(ICCAD), 2000 

[24) JRS: Integrated design automation system (idas), Sigmicro Newsletter, 
19(1):11-17, 1989 

[25) B. Kienhuis: Design space exploration of stream-based dataflow architectures, 
http:/ fwww.gigascale.org/systems/forum/5/kienhuis_dse.pdf, 1999 

[26) J. Kin, C. Lee, W.H. Mangione-Smith, M. Potkonjak: Power efficient media 
processors: design space exploration, Proceedings of the 36th Design Automa­
tion Conference, pages 321-326, 1999 

[27) V.S. Lapinskii, M. F. Jacome, G.A. de Veciana: Application-specific clustered 
VLIW datapaths: Early exploration on a parameterized design space, Techni­
cal Report UT-CERC-TR-MFJ/GDV-01-1, Computer Engineering Research 
Center, University of Texas at Austin, 2001 



REFERENCES 157 

[28] P. Marwedel: A retargetable microcode generation system for a high-level mi­
croprogramming language, ACM Sigmicro Newsletter, Vol. 12, pages 115-123, 
1981 

[29] P. Marwedel: A retargetable compiler for a high-level microprogramming lan­
guage, ACM Sigmicro Newsletter, Vol. 15, pages 267-274, 1984 

[30] P. Marwedel: A software-system for the synthesis of computer structures and 
of microcode (in German), Technical report, Habilitation thesis, Kiel, 1985; 
reprint: report no. 356, Computer Science Dept., Univ. of Dortmund 

(31) P. Marwedel: MSSV: Tree-based mapping of algorithms to predefined struc­
tures, Technical Report 431, Computer Science Dpt., University of Dort­
mund, 1993 

[32) P. Marwedel, L. Nowak: Verification of hardware descriptions by retargetable 
code generation, 26th Design Automation Conference, pages 441-447, 1989 

(33) P. Marwedel, W. Schenk: Cooperation of synthesis, retargetable code gener­
ation and testgeneration in the MSS, EDAC-EUROASIC'93, pages 63-69, 
1993 

[34) J. Mermet, P. Marwedel, F. J. Ramming, C. Newton, D. Borrione, C. Lefaou: 
Three decades of hardware description languages in Europe, Journal of Elec­
trical Engineering and Information Science, 3, 1998 

[35) P. Mishra, N. Dutt, A. Nicolau: Functional abstraction driven design space 
exploration of heterogenous programmable architectures, Int. Symp. on Sys­
tem Synthesis (ISSS), 2001. 

[36) P. Mishra, P. Grun, N. Dutt, A. Nicolau: Memory subsystem description in 
EXPRESSION, Technical Report #00-31, Dept. of Information and Com­
puter Science, Univ. California, Irvine, 2000 

[37) R.A. Mueller, J. Varghese, V.H. Allan: Global methods in the flow graph ap­
proach to retargetable microcode generation, 17th Annual Microprogramming 
Workshop, pages 275-284, 1984 

(38] R. Niemann, P. Marwedel: Hardware/software partitioning using integer pro­
gramming, European Design & Test Conference, 1996 

[39] A.C. Parker: Automated synthesis of digital systems, IEEE Design and Test 
of Computers, pages 763-776, 1984 

(40) S. Pees, A. Hoffmann, H. Meyr: Retargetable compiled simulation of embedded 
processors using a machine description language, IEEE Trans. on Design 
Automation for Embedded Systems, 2001 

(41) E. Pelegri-Lopart, S. Graham: Optimal code generation for expression trees: 
An application of BURS theory, Technical report, Computer Science Division, 
EECS Department, University of California, Berkeley, 1988 

(42) M. Piischel, B. Singer, M. Veloso, J.M.F. Moura: Fast automatic generation 
of DSP algorithms, Proc. ICCS 2001, Lecture Notes of Computer Science 
2073, Springer, pages 97-106, 1999 



158 RETARGETABLE COMPILER TECHNOLOGY 

[43) G. Rozenberg, F. Vaandrager (eds.): Lectures on embedded systems, Springer 
Lecture Notes on Computer Science, LNCS 1494, 1998 

[44) M. Sint: A survey of high level microprogramming languages, 13th Annual 
Microprogramming Workshop, pages 141-153, 1980 

(45) S. Steinke, C. Zobiegala, L. Wehmeyer, P. Marwedel: Moving program objects 
to scratch-pad memory for energy reduction, Technical report, University of 
Dortmund, Dept. of CS 12, 2001 

[46) S. Takagi: Rule based synthesis, verification and compensation of data paths, 
Proc. IEEE Conf.Comp.Design (ICCD'84), pages 133-138, 1984 

[47) S.R. Vegdahl: Local code generation and compaction in optimizing microcode 
compilers, PhD thesis and report CMUCS-82-153, Carnegie-Mellon Univer­
sity, Pittsburgh, 1982 

(48] L. Wehmeyer, M.K. Jain, S. Steinke, P. Marwedel, M. Balakrishnan: Analysis 
of the influence of register file size on the energy consumption, code size and 
execution time, IEEE Trans. on CAD, 2001 

(49) N. Wirth: Compilerbau, Teubner, 2nd edition, 1981 

(50] H. Yasuura, H. Tomiyama, A. Anoue, N. Eko Fajar: Embedded system design 
using soft-core processor and Valen-C, Journal of information Science and 
Engineering, 14:587-603, 1998 

(51) J. L. Young: The software foundry: almost too good to be true, Electronics, 
pages 47-51, 1988 

(52] G. Zimmermann: The MIMOLA design system: A computer aided digital 
processor design method, Proceedings of the 16th Design Automation Con­
ference, pages 53-58, 1979. 

(53) A.W. Appel: Modern Compiler Implementation inC, Cambridge University 
Press, 1998 

(54) S.S. Muchnik: Advanced Compiler Design & Implementation, Morgan Kauf­
mann Publishers, 1997 

(55) T. Mason, D. Brown: lex & yacc, O'Reilly & Associates, 1991 

(56] K.M. Bischoff: Design, Implementation, Use, and Evaluation of Ox: An 
Attribute-Grammar Compiling System based on Yacc, Lex, and C, Techni­
cal Report 92-31, Dept. of Computer Science, Iowa State University, 1992 

(57] G. Sander: VCG- Visualization of Compiler Graphs, User Documentation V 
1.30, Technical Report, Dept. of Computer Science, University of Saarland, 
Germany, 1995, software available via ftp:/ /ftp.cs.uni-sb.de/pub/graphicsfvcg 

(58] A.V. Aho, R. Sethi, J.D. Ullman: Compilers - Principles, Techniques, and 
Tools, Addison-Wesley, 1986 



REFERENCES 159 

[59] A.V. Aho, M. Ganapathi, S.W.K Tjiang: Code Generation Using Tree Match­
ing and Dynamic Programming, ACM Trans. on Programming Languages 
and Systems 11, no. 4, 1989 

[60] A. Balachandran, D.M. Dhamdere, S. Biswas: Efficient Retargetable Code 
Generation Using Bottom- Up Tree Pattern Matching, Com put. Lang. vol. 
15, no. 3, 1990 

[61] R. Wilhelm, D. Maurer: Compiler Design, Addison-Wesley, 1995 

[62] B.Wess: Simulated Evolutionary Code Generation for Heterogeneous 
Memory-Register DSP Architectures, European Signal Processing Conference 
(EUSIPCO), 2000 

[63] M.A. Ertl: Optimal Code Selection in DAGs, ACM Symp. on Principles of 
Programming Languages (POPL), 1999 

[64] M. Lam: Software Pipelining: An Effective Scheduling Technique for VLIW 
machines, ACM SIGPLAN Conference on Programming Language Design 
and Implementation (PLDI), 1988 

[65] J.A. Fisher: Trace Scheduling: A Technique for Global Microcode Compaction, 
IEEE Trans. on Computers, vol. 30, no. 7, 1981 

[66] A. Aiken, A. Nicolau: A Development Environment for Horizontal Microcode, 
IEEE Trans. on Software Engineering, no. 14, 1988 

[67] F.J. Kurdahi, A.C. Parker: REAL: A Program for Register Allocation, 24th 
Design Automation Conference (DAC), 1987 

[68] P. Briggs: Register Allocation via Graph Coloring, Doctoral thesis, Dept. of 
Computer Science, Rice University, Houston/Texas, 1992 

[69] F. Chow, J. Hennessy: Register Allocation by Priority-Based Coloring, SIC­
PLAN Notices, vol. 19, no. 6, 1984 

[70] D.H. Bartley: Optimizing Stack Frame Accesses for Processors with Re­
stricted Addressing Modes, Software - Practice and Experience, vol. 22(2), 
1992 

[71] C. Gebotys: DSP Address Optimization Using a Minimum Cost Circulation 
Technique, Int. Conference on Computer-Aided Design (ICCAD), 1997 

[72] S. Udayanarayanan, C. Chakrabarti: Address Code Generation for Digital 
Signal Processors, 38th Design Automation Conference (DAC), 2001 

[73] J.W. Davidson, C.W. Fraser: The Design and Application of a Retargetable 
Peephole Optimizer, ACM Trans. on Programming Languages and Systems, 
vol. 2, no. 2, 1980 

[74] C.W. Fraser, D.R. Hanson, T.A. Proebsting: Engineering a Simple, Efficient 
Code Generator Generator, ACM Letters on Programming Languages and 
Systems, vol. 1, no. 3, 1992 

[75] Free Software Foundation/EGGS: http:/ /gcc.gnu.org 



160 RETARGETABLE COMPILER TECHNOLOGY 

[76] Red Hat Inc.: http:/ jwww.redhat.com 

[77] V. Zivojnovic, J.M. Velarde, C. Schlager, H. Meyr: DSPStone - A DSP­

oriented Benchmarking Methodology, Int. Conf. on Signal Processing Appli­
cations and Technology (ICSPAT), 1994 

[78] H. Gunnarson, T. Lundqvist: Porting the GNU C Compiler to the 

Thor Microprocessor, Master Thesis, Document No. TOR/TNT/0028/SE, 
http:/ /www.ce.ehalmers.se/ "'thomasl/publications/thesis95.html, Saab Erics­
son Space AB, 1995 

[79] ARC Cores: http:/ /www.arccores.com 

(80] Tensilica Inc.: http:/ jwww.tensilica.com 

[81] C.Fraser, D. Hanson: LCC home page, 
http:/ /www.cs.princeton.edu/software/lcc 

[82] J. Navia: LCC- Win32: a free compiler system for Windows, 
http:/ /www.cs.virginia.edu/ "'lcc-win32 

[83] C. Fraser, D. Hanson: A Retargetable C Compiler: Design And Implementa­
tion, Benjamin/Cummings, 1995 

[84] D. Bradlee, R. Henry, S. Eggers: The Marion system for retargetable instruc­

tion scheduling, ACM SIGPLAN Conference on Programming Language De­
sign and Implementaion (PLDI), 1991 

[85] D. Bradlee: Retargetable Instruction Scheduling for Pipeline Processors, PhD 
thesis, University of Washington, Technical report 91-08-07, Department of 
Computer Science and Engineering, 1991 

(86] The Stanford SUIF Compiler Group, http:/ /suif.stanford.edu 

[87] Edison Design Group: http:/ jwww.edg.com 

[88] Machine SUIF: http:/ /www.eecs.harvard.edu/ "'hube/research/machsuif.html 

[89] Zephyr home page: http:/ jwww.cs.virginia.edu/zephyr 

[90] P. Canalda, L. Cognard, A. Depland, M. Jourdan, M. Mazaud, D. Parigot, 
F. Thomasset: PAGODE: a Realistic Back-End Generator, Technical Report, 
INRIA Rocquencourt, France, 1995 

(91] P. Canalda, L. Cognard, A. Depland, M. Mazaud, F. Thomasset: IRs and 
their Specification in the PAGODE Back-End Generator, Technical Report, 
INRIA Rocquencourt, France, 1996 

(92] ESPRIT project COMPARE home page: 
http:/ /i44www. i nfo.u ni-karlsruhe.de/ "'Vollmer/ com pare.htm I 

[93] R. Leupers: Code Optimization Techniques for Embedded Processors, Kluwer 
Academic Publishers, 2000 

[94] The LANCE V2.0 system: http:/ /LS12-www.cs.uni-dortmund.de/lance 



REFERENCES 161 

[95] P. Marwedel, S. Steinke, L. Wehmeyer: Compilation techniques for energy-, 
code-size-, and run-time-efficient embedded software, Int. Workshop on Ad­
vanced Compiler Techniques for High Performance and Embedded Processors 
(IWACT), Bucharest, 2001 

[96] X. Nie, L. Gazsi, F. Engel, G. Fettweis: A New Network Processor Architec­
ture for High-Speed Communications, IEEE Workshop on Signal Processing 
Systems (SiPS), 1999 

[97] J. Wagner, R. Leupers: C Compiler Design for an Industrial Network Pro­
cessor, ACM SIGPLAN Workshop on Languages, Compilers, and Tools for 
Embedded Systems (LCTES), 2001 

[98] Informatik Centrum Dortmund (lCD): http:/www.icd.de 

[99] Systemonic AG, Dresden: http://www.systemonic.com 

[100] A. Fauth, A. Knoll: Translating Signal Flowcharts into Microcode for Custom 
Digital Signal Processors, Int. Conf. on Signal Processing (ICSP), 1993 

[101] A. Fauth, A. Knoll: Automated Generation of DSP Program Development 
Tools Using a Machine Description Formalism, Int. Conf. on Acoustics, 
Speech, and Signal Processing (ICASSP), 1993 

[102] A. Fauth, G. Hommel, A. Knoll, C. Miiller: Global Code Selection for Directed 
Acyclic Graphs, in: P.A. Fritzson (ed.): 5th Int. Conference on Compiler 
Construction (CC), 1994 

[103] P. Marwedel, G. Goossens (eds.): Code Generation for Embedded Processors, 
Kluwer Academic Publishers, 1995 

[104] A. Fauth: Beyond Tool-Specific Machine Descriptions, chapter 8 in [103], 
1995 

[105] A. Fauth, J. Van Praet, M. Freericks: Describing Instruction-Set Processors 
in nML, European Design and Test Conference (ED & TC), 1995 

[106] C.W. Fraser, R.R. Henry, T.A. Proebsting: BURG- Fast Optimal Instruction 
Selection and Tree Parsing, ACM SIGPLAN Notices 27 (4), 1992, pp. 68-76 

[107] R. Hartmann: Combined Scheduling and Data Routing for Programmable 
ASIC Systems, European Conference on Design Automation (EDAC), 1992 

[108] K. Rimey, P.N. Hilfinger: Lazy Data Routing and Greedy Scheduling for 
Application-Specific Signal Processors, 21st Annual Workshop on Micropro­
gramming and Microarchitecture (MICR0-21), 1988 

[109] S. Monda!: Compiler Back End Generation from nML Machine Description, 
Master Thesis, liT Kanpur, Dept. of Computer Science & Engineering, 1999 

(110] B. Wess: Code Generation based on Trellis Diagrams, chapter 11 in [103], 
1995 



162 RETARGETABLE COMPILER TECHNOLOGY 

[111] W. Kreuzer, M. Gotschlich, B. Wess: A Retargetargetable Optimizing Code 
Generator for Digital Signal Processors, Int. Symp. on Circuits and Systems 
(ISCAS), 1996 

[112] W. Kreuzer, M. Gotschlich, B. Wess: REDACO: A Retargetable Data Flow 
Graph Compiler for Digital Signal Processors, Int. Conf. on Signal Processing 
Applications and Technology (ICSPAT), 1996 · 

[113] A. Helm, B. Wess: Decomposition of Signal Flow Graphs for DSP Compilers 
Using Trellis Trees in Restricted Environments, Int. Conf. on Signal Process­
ing Applications and Technology (ICSPAT), 1994 

[114] S. Davidson, D. Landskov, B.D. Shriver, P.W. Mallett: Some Experiments 
in Local Microcode Compaction for Horizontal Machines, IEEE Trans. on 
Computers, vol. 30, no. 7, 1981 

[115] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage Assignment to 
Decrease Code Size, ACM SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI), 1995 

[116] R. Leupers, P. Marwedel: Algorithms for Address Assignment in DSP Code 
Generation, Int. Conference on Computer-Aided Design (ICCAD), 1996 

[117] B. Wess, M. Gotschlich: Optimal DSP Memory Layout Generation as a 
Quadratic Assignment Problem, Int. Symp. on Circuits and Systems (IS­
CAS), 1997 

[118] C. Liem: Retargetable Compilers for Embedded Core Processors, Kluwer Aca­
demic Publishers, 1997 

[119] C. Liem, T. May, P. Paulin: Instruction-Set Matching and Selection for DSP 
and ASIP Code Generation, European Design and Test Conference (ED & 
TC), 1994 

[120] C. Liem, T. May, P. Paulin: Register Assignment through Resource Classifica­
tion for ASIP Microcode Generation, Int. Con£. on Computer-Aided Design 
(ICCAD), 1994 

[121] C. Liem, P. Paulin, M. Cornero, A. Jerraya: Industrial Experience Using 
Rule-driven Retargetable Code Generation for Multimedia Applications, 8th 
Int. Symp. on System Synthesis (ISSS), 1995 

[122] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retargetable Com­
pilation and Exploration of Instruction-Set Architectures, 33rd Design Au­
tomation Conference (DAC), 1996 

[123] P. Paulin: Network Processors: A Perspective on Market Requirements, Pro­
cessors Architectures, and Embedded S/W Tools, Design Automation & Test 
in Europe (DATE), 2001 

[124] S. Liao: Code Generation and Optimization for Embedded Digital Signal Pro­
cessors, Ph.D. thesis, Dept. of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, 1996 



REFERENCES 163 

[125] A. Sudarsanam, S. Malik: Memory Bank and Register Allocation in Software 
Synthesis for ASIPs, Int. Conf. on Computer-Aided Design (ICCAD), 1995 

[126] G. Araujo, S. Malik: Optimal Code Generation for Embedded Memory Non­
Homogeneous Register Architectures, 8th Int. Symp. on System Synthesis 
(ISSS), 1995 

[127] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and Optimiza­
tions for Address Computation in DSP Architectures, 9th Int. Symp. on Sys­
tem Synthesis (ISSS), 1996 

[128] G. Araujo, S. Malik, M. Lee: Using Register Transfer Paths in Code Gen­
eration for Heterogeneous Memory-Register Architectures, 33rd Design Au­
tomation Conference (DAC), 1996 

[129] G. Araujo: Code Generation Algorithms for Digital Signal Processors, Ph.D. 
thesis, Princeton University, Department of Electrical Engineering, 1997 

(130] A. Sudarsanam, S. Liao, S. Devadas: Analysis and Evaluation of Address 
Arithmetic Capabilities in Custom DSP Architectures, Design Automation 
Conference (DAC), 1997 

[131] A. Sudarsanam: Code Optimization Libraries for Retargetable Compilation 
for Embedded Digital Signal Processors, Ph.D. thesis, Princeton University, 
Department of Electrical Engineering, 1998 

(132] SPAM compiler: http:/ fwww.ee.princeton.edu/spam 

[133] G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, S. Malik: Optimal Live Range 
Merge for Address Register Allocation in Embedded Programs, lOth Interna­
tional Conference on Compiler Construction (CC), 2001 

[134] D.B. Powell, E.A. Lee, W.C. Newman: Direct Synthesis of Optimized DSP 
Assembly Code from Signal Flow Block Diagrams, International Conference 
on Acoustics, Speech, and Signal Processing (ICASSP), 1992 

(135] M. Saghir, P. Chow, C. Lee: Exploiting Dual Data-Memory Banks in Digital 
Signal Processors, 7th International Conference on Architectural Support for 
Programming Languages and Operating Systems, 1996 

(136] R. Leupers, D. Kotte: Variable Partitioning for Dual Memory Bank DSPs, 
International Conference on Acoustics, Speech, and Signal Processing 
(ICASSP), 2001 

[137] R. Leupers: Retargetable Code Generation for Digital Signal Processors, 
Kluwer Academic Publishers, 1997 

[138] R. Leupers, P. Marwedel: A BDD-based Frontend for Retargetable Compilers, 
European Design & Test Conference (ED & TC), 1995 

[139] R. Leupers, P. Marwedel: Retargetable Generation of Code Selectors from 
HDL Processor Models, European Design & Test Conference (ED & TC), 
1997 



164 RETARGETABLE COMPILER TECHNOLOGY 

[140] R. Leupers, P. Marwedel: Time-Constrained Code Compaction for DSPs, 8th 
Int. System Synthesis Symposium (ISSS), 1995 

[141] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann, 
D. Voggenauer: The MIMOLA Language V4.1, Technical Report, University 
of Dortmund, Dept. of Computer Science, September 1994 

[142] R. Leupers: HDL-based Modeling of Embedded Processor Behavior for Retar­
getable Compilation, 11th Int. Symp. on System Synthesis (ISSS), 1998 

[143] R.E. Bryant: Symbolic Manipulation of Boolean Functions Using a Graphical 
Representation, 22nd Design Automation Conference (DAC), 1985 

[144] Mentor Graphics Corporation: DSP Architect DFL User's and Reference 
Manual, V 8.2_6, 1993 

[145] R. Leupers, A. Basu, P. Marwedel: Optimized Array Index Computation in 
DSP Programs, Asia South Pacific Design Automation Conference (ASP­
DAC), 1998 

[146] R. Leupers, F. David: A Uniform Optimization Technique for Offset Assign­
ment Problems, 11th Int. System Synthesis Symposium (ISSS), 1998 

[147] P. Sweany, S. Beaty: Post-Compaction Register Assignment in a Retargetable 
Compiler, 22nd Annual Workshop on Microprogramming and Microarchitec­
ture (MICR0-23), 1990 

[148] ROCKET compiler: http:/ /www.cs.mtu.edu/~sweany/Rocket.html 

[149] R.A. Mueller, M.R. Duda, P.H. Sweany, J.S. Walicki: Horizon: A Retargetable 
Compiler for Horizontal Microarchitectures, IEEE Trans. On Software Engi­
neering, 14 (5), 1988 

[150] T. Brasier, P. Sweany, S. Carr, S. Beaty: CRAIG: A Practical Framework 
for Combining Instruction Scheduling and Register Assignment, Int. Conf. 
on Parallel Architectures and Compilation Techniques (PACT), 1994 

[151] J. Hiser, S. Carr, P. Sweany: Global Register Partitioning, International Con­
ference on Parallel Architectures and Compilation Techniques, 2000 

[152] P. Chang, S. Mahlke, W. Chen, N. Warter, W. Hwu: Impact: An Architectural 
Framework for Multiple Instruction Issue Processors, 18th Int. Symp. on 
Computer Architecture, 1991 

[153] IMPACT home page: http:/ fwww.crhc.uiuc.edu/lmpact 

[154] Trimaran home page: http:/ fwww.trimaran.org 

[155] SPEC CPU95 Benchmarks: http:/ fopen.specbench.org/osgfcpu95 

[156] Philips Trimedia: http:/ /www.semiconductors.philips.com/trimedia 

[157] Trimedia Technologies: http:/ fwww.trimedia.com 



REFERENCES 165 

(158] K. Vissers, E.J. Pol: A Retargetable Compiler and Retargetable Simulator 
for Media Processors, Handouts 3rd Int. Workshop on Code Generation for 
Embedded Processors (SCOPES), 1998 

[159] G. Hadjiyiannis, S. Hanono, S. Devadas: ISDL: An Instruction-Set De­
scription Language for Retargetability, 34th Design Automation Conference 
(DAC), 1997 

[160] S. Hanono, S. Devadas: Instruction Selection, Resource Allocation, and 
Scheduling in the AVIV Retargetable Code Generator, 35th Design Automa­
tion Conference (DAC), 1998 

[161] Mescal home page: http:/ jwww.gigascale.orgjmescal 

[162] L. Nowak: Graph based Retargetable Microcode Compilation in the MIMOLA 
Design System, 20th Ann. Workshop on Microprogramming (MICR0-20), 
1987 

[163] P. Marwedel: Tree-based Mapping of Algorithms to Predefined Structures, Int. 
Conf. on Computer-Aided Design (ICCAD), 1993 

[164] R. Leupers, P. Marwedel: Retargetable Code Generation based on Structural 
Processor Descriptions, Design Automation for Embedded Systems, Vol. 3, 
No. 1, Kluwer Academic Publishers, 1998 

[165] PEAS project: http:/ jvlsilab.ics.es.osaka-u.ac.jp 

[166] A.Y. Alomary, T. Nakata, Y. Honma, J. Sato, N. Hikichi, and M. Imai: 
PEAS-I: A Hardware/Software Co-design System for ASIPs, European De­
sign Automation Conference (EURO-DAC), 1993 

[167] N. Ohtsuki, Y. Takeuchi, K. Hamaguchi, M. Imai, et a!.: Compiler Gener­
ation in PEAS-II, 3rd Int. Workshop on Code Generation for Embedded 
Processors, 1998 

[168] S. Kobayashi, Y. Takeuchi, A. Kitajima, M. Imai: Compiler Generation 
in PEAS-III: an ASIP Development System, Int. Workshop on Software 
and Compilers for Embedded Processors (SCOPES), 2001, http:/ /lsl2-
www.cs.uni-dortmund.de/scopes-01 

[169] Valen-C compiler home page, Kyushu University, Japan: 
http:/ /kasuga.csce.kyushu-u.ac.jpj~codesign/Valen-C 

(170] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt A. Nicolau: EXPRES­
SION: A Language for Architecture Exploration through Compiler/Simulator 
Retargetability, Design Automation & Test in Europe (DATE), 1999 

[171] P. Grun, A. Halambi, N. Dutt A. Nicolau: RTGEN: An Algorithm for Auto­
matic Generation of Reservation Tables from Architectural Descriptions, Int. 
Symp. on System Synthesis (ISSS), 1999 

[172] A. Halambi, A. Shrivastava, N. Dutt A. Nicolau: A Customizable Compiler 
Framework for Embedded Systems, Int. Workshop on Software and Com­
pilers for Embedded Processors (SCOPES), 2001, http:/ /lsl2-www.cs.uni­
dortm u nd .dejscopes-01 



166 RETARGETABLE COMPILER TECHNOLOGY 

[173) S. Novack, A. Nicolau, N. Dutt: A Unified Code Generation Approach using 

Mutation Scheduling, chapter 12 in [103), 1995 

[174) J. Teich, R. Weper, D. Fischer, S. Trinkert: BUILDABONG: A Rapid Pro­

totyping Environment for ASIPs, DSP Deutschland, 2000 

[175] D. Fischer, J. Teich, R. Weper: Modeling and Simulation of Embedded Pro­

cessors Using Abstract State Machines, Int. Workshop on Software and Com­
pilers for Embedded Processors (SCOPES), 2001, http://ls12-www.cs.uni­

dortmund.de/scopes-Ol 

[176] BUILDABONG project, University of Paderborn: http:/ jwww-date.uni­
paderborn.de/RESEARCH/BUILDABONG 

[177] V. Zivojnovic, S. Tjiang, H. Meyr: Compiled Simulation of Programmable 

DSP Architectures, IEEE Workshop on VLSI Signal Processing, 1995 

[178) J. Zhu, D. Gajski: A Retargetable Ultra-Fast Instruction Set Simulator, De­

sign, Automation and Test in Europe (DATE), 1999 

[179) M. Balakrishnan, P.C.P. Bhatt, B.B. Madan: An Efficient Retargetable Mi­

crocode Generator, 19th Ann. Workshop on Microprogramming (MICR0-19), 
1986 

[180) M. Yamaguchi, N. Ishiura, T. Kambe: Binding and Scheduling Algorithms 

for Highly Retargetable Compilation, Asia South Pacific Design Automation 

Conference (ASPDAC), 1998 

[181] M. Mahmood, F. Mavaddat, M.I. Elmasry: Experiments with an Efficient 

Heuristic Algorithm for Local Microcode Generation, Int. Conf. on Computer 
Design (ICCD), 1990 

[182) F. Mavaddat: On Transforming the Code Generation Problem to a Parsing 

Problem, chapter 9 in [103), 1995 

[183) M. Langevin, E. Cerny: An Automata-Theoretic Approach to Local Microcode 

Generation, European Conference on Design Automation (EDAC), 1993 

[184) M. Langevin, E. Cerny, J. Wilberg, H.-T. Vierhaus: Local Microcode Gener­

ation in System Design, chapter 10 in [103), 1995 

[185) A. Romer, G. Fettweis: Optimierte Parallele Codeerzeugung, DSP Deutsch­
land, Munich, 2000 

[186] A. Romer, G. Fettweis: Flow Graph Based Parallel Code Generation, Int. 
Workshop on Software and Compilers for Embedded Processors (SCOPES), 

1999, http://ls12-www.cs.uni-dortmund.de/scopes-99 

[187] G. Fettweis, M. Weiss, W. Drescher eta!.: Breaking New Grounds Over 3000 

M MAC/s: A Broadband Mobile Multimedia Modem DSP, DSP Deutschland, 
1998 

[188] S. Bashford, R. Leupers: Phase-Coupled Mapping of Data Flow Graphs to 

Irregular Data Paths, Design Automation for Embedded Systems, vol. 4, no. 

2/3, Kluwer Academic Publishers, 1999 



REFERENCES 167 

[189] S. Bashford, R. Leupers: Constraint Driven Code Selection for Fixed-Point 
DSPs, 36th Design Automation Conference (DAC), 1999 

[190] T. Wilson, G. Grewal, B. Halley, D. Banerji: An Integrated Approach to Re­
targetable Code Generation, 7th Int. Symp. on High-Level Synthesis (HLSS), 
1994 

[191] T. Wilson, G. Grewal, S. Henshall, D. Banerji: An ILP-based Approach to 
Code Generation, chapter 6 in [103], 1995 

[192] M.R. Gary, D.S. Johnson: Computers and Intractability - A Guide to the 
Theory of NP-Completeness, Freemann, 1979 

[193] F. Krohm: Bin retargierbarer Compiler fii.r anwendungsspezifische Mikrocon-
toller, VDI Verlag, ISBN 3-18-146920-3, 1992 

[194] Small Device C Compiler: http:/ fsdcc.sourceforge.net 

[195] IBURG home page: http:/ fwww.cs.princeton.edu/software/iburg 

[196] R. Leupers: Register Allocation for Common Subexpressions in DSP Data 
Paths, Asia South Pacific Design Automation Conference (ASPDAC), 2000 

[197] H. Emmelmann, F.W. Schroer, R. Landwehr: BEG - A Generator for Ef­
ficient Backends, ACM SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI), SIGPLAN Notices 24, no. 7, 1989 

[198] BEG home page: http:/ /www.first.gmd.de/beg 

[199] SALTO project, INRIA: http:/ /www.irisa.fr/capsfprojects/Salto 

[200] R. Amicel, F. Bodin: A New System for High-Performance Cycle-Accurate 
Compiled Simulation, Int. Workshop on Software and Compilers for Embed­
ded Processors (SCOPES), 2001, http:/ /ls12-www.cs.uni-dortmund.de/scopes-
01 

[201] D. Kastner: PROPAN: A Retargetable System for Postpass Optimizations 
and Analyses, ACM SIGPLAN Workshop on Languages, Compilers, and 
Tools for Embedded Systems (LCTES), 2000 

[202] D. Kastner: Retargetable Postpass Optimization by Integer Linear Program­
ming, Ph.D. Thesis, Saarland University, 2000 

[203] D. Kastner: Retargetable Code Optimization by Integer Linear Program­
ing, Int. Workshop on Software and Compilers for Embedded Processors 
(SCOPES), 2001, http:/ /ls12-www.cs.uni-dortmund.defscopes-Ol 

[204] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr: LISA- Machine Descrip­
tion Language for Cycle-Accurate Models of Programmable DSP Architec­
tures, 36th Design Automation Conference (DAC), 1999 

[205] A. Hoffmann, A. Noh!, G. Braun, H. Meyr: A Survey on Modeling Issues 
Using the Machine Description Language LISA, International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), 2001 



168 RETARGETABLE COMPILER TECHNOLOGY 

(206] A. Hoffman, A. Nohl, S. Pees, G. Braun, H. Meyr: Generating Production 
Quality Software Development Tools Using a Machine Description Language, 
Design, Automation & Test in Europe (DATE), 2001 

(207] Axys Design Automation: http:/ fwww.axysdesign.com 

[208] LISATek Inc.: http:/ /www.lisatek.com 

(209] 3DSP Corporation: http:/ fwww.3dsp.com 

(210] M. Strik, J. van Meerbergen, A. Timmer, J. Jess, S. Note: Efficient Code 
Generation for In-House DSP Cores, European Design and Test Conference 
(ED & TC), 1995 

(211] A. Timmer, M. Strik, J. van Meerbergen, J. Jess: Conflict Modelling and 
Instruction Scheduling in Code Generation for In-House DSP Cores, 32nd 
Design Automation Conference (DAC), 1995 

(212] B. Mesman, C. Alba Pinto, K. van Eijk: Efficient Scheduling of DSP Code 
on Processors with Distributed Register Files, 12th Int. Symp. on System 
Synthesis (ISSS), 1999 

(213] K. van Eijk, B. Mesman, C.A. Pinto, Q. Zhao, M. Bekooij, J. van Meerber­
gen, J. Jess: Constraint Analysis for Code Generation: Basic Techniques and 
Applications in FACTS, ACM TODAES, vol. 5, no. 4, Oct 2000 

(214] M. Bekooij, B. Mesman, J. van Meerbergen, J. Jess: Tightly Coupled Op­
eration Assignment and Scehduling for VLIW Processors with FACTS, Int. 
Workshop on Software and Compilers for Embedded Processors (SCOPES), 
2001, http:/ /ls12-www.cs.uni-dortmund.de/scopes-01 

(215] B. Mesman: Contraint Analysis for DSP Code Generation, Ph.D. thesis, TU 
Eindhoven, 2001 

(216] U. Bieker, P. Marwedel: Retargetable Self-Test Program Generation Using 
Constraint Logic Programming, 32nd Design Automation Conference (DAC), 
1995 

(217] U. Bieker, M. Kaibel, P. Marwedel, W. Geisselhardt: STAR-DUST: Hier­
archical Test of Embedded Processors by Self-Test Programs, European Test 
Workshop, 1999 

[218] N. Ghazal, R. Newton, J. Rabaey: Predicting Performance Potential of Mod-
ern DSPs, 37th Design Automation Conference (DAC), 2000 

(219] TenDRA: http:/ /www.cse.unsw.edu.au/"'patrykz/TenDRA 

(220] Eli: http:/ /www.cs.colorado.edu/"'eliuser 

(221] VCODE: http:/ /www.pdos.lcs.mit.edu/"'engler 

(222] New Jersey Machine Code Toolkit: 
http:/ /www.eecs.harvard.edu/"-'nr/toolkit 

[223] Cocktail: http:/ /cocolab.com/html/cocktail.html 



REFERENCES 

[224] Gentle: http:/ /www.first.gmd.de/gentle 

[225] SGI Pro64: http:/ joss.sgi.com/projects/Pro64 

[226] PAG, Abslnt GmbH: http:/ jwww.absint.com/pag 

[227] MLRISC: http:/ jwww.cs.nyu.edu/leungajwww/MLRISC/Doc/html 

[228] GMD catalog of compiler construction tools: 
http:/ /www.first.gmd.de/cogent/catalog 

[229] Catalog of free compilers and interpreters: 
http:/ /www.idiom.com/free-compilers 

[230] CBEL: http:/ /www.cbel.com/Compilers_Programming 

[231] Associated Compiler Experts: http:/ /www.ace.ni 

169 

[232] D. Lanneer, M. Cornero, G. Goossens, H. De Man: Data Routing: A Paradigm 
for Efficient Data-Path Synthesis and Code Generation, 7th Int. Symp. on 
High-Level Synthesis (HLSS), 1994 

[233] D. Lanneer, J. Van Praet, A. Kifl.i, K. Schoofs, W. Geurts, F. Thoen, G. 
Goossens: CHESS: Retargetable Code Generation for Embedded DSP Proces­
sors, chapter 5 in [103], 1995 

[234] Target Compiler Technologies: http:/ jwww.retarget.com 

[235] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, H. De Man: A Graph 
Based Processor Model for Retargetable Code Generation, European Design 
and Test Conference (ED & TC), 1996 

[236] Archelon Inc.: http:/ /www.archelon.com 

[237] Astrosoft: http:/ /astrosoft-development.com/english/services/main.html 

[238] V.S. Pavlov, S.A. Mironov: A Universal C Compiler, The Journal of CLan­
guage Translation, Dec 1992 



About the authors 

Rainer Leupers is a senior researcher at the Depart­
ment of Computer Science (Embedded Systems Group) 
of the University of Dortmund, Germany. His research 
and teaching activities mainly include software tools 
and design automation for embedded systems. In ad­
dition, he serves as a project manager for industrial 
tool development at the technology transfer company 
ICD. Dr. Leupers authored the books "Retargetable 

Code Generation for Digital Signal Processors" ( 1997) and "Code Op­
timization Techniques for Embedded Processors" (2000) , published by 
Kluwer. He obtained the Diploma and Ph.D. degrees in Computer Sci­
ence with distinction from the University of Dortmund in 1992 and 1997, 
and he received awards for outstanding theses as well as a Best Paper 
Award at DATE 2000. Email: leupers@icd.de. 

Peter Marwedel received his Ph.D. in Physics from 
the University of Kiel (Germany) in 1974. He worked 
at the Computer Science Department of that Univer­
sity from 1974 until1989. In 1987, he received the Dr. 

· .... habil. degree (a degree required for becoming a pro­
fessor) for his work on high-level synthesis and retar-

\ / 1 getable code generation based on the hardware descrip-
tion language MIMOLA. Since 1989 he is a professor 

at the Computer Science Department of the University of Dortmund 
(Germany). He served as the Dean of that Department between 1992 
and 1995. His current research areas include hardware/software code­
sign, high-level test generation, high-level synthesis, and code genera­
tion for embedded processors. He is a member of the IEEE Computer 
society, the ACM, and the Gesellschaft fur Informatik (GI) . Email: mar­
wedel@acm.org. 



Index 

Abstract State Machine, 116 
Action function, 82, 85, 103, 129, 143 
Address code optimization, 53 
Address generation unit, 53, 89, 94, 97 
ADOPT, 15 
ADSP-210x, 70, 89, 93, 124, 134, 145 
Algorithm level, 12 
Alpha, 68, 71, 79, 98 
ALU, 25 
Anti-dependence, 45 
Archelon, 145 
ARM, 23, 84, 136 
ASDL, 79 
ASIA, 21 
ASIP, 21 
Assembler directives, 70, 74, 134, 145 
ATOMIUM, 15 
Attribute grammar, 32, 85 
Auto-increment, 53 
Automata theoretic approach, 119-120 
AVIV, 103 
Basic block, 35 
BDD, 96, 125 
BEG, 131, 141 
BISON, 31 
BUILDABONG, 116 
BURS theory, 61 
Cache, 17 
CBC, 84, 90, 92, 95, 143 
CHESS, 86, 142 
Cocktail, 140 
Code compaction, 46 
Code selection, 40 
CodeSyn, 89 
Common subexpression elimination, 39 
COMPARE, 76, 141 
Connection operation graph, 106, 143 
Constant folding, 39 
Constant propagation, 39 
Constraint graph, 93 

Constraint logic programming, 123, 139 
Control flow graph, 35 
Control/data flow graph, 37 
Copy propagation, 39 
CoS~ 76, 91, 112, 131, 141 
CSDL, 79 
Cygwin, 68 
Data dependence, 36, 45 
Data flow graph, 37 
Data flow tree, 37 
Data routing, 86, 109, 144 
Dead code elimination, 39 
Debugger, 71, 89, 118, 126, 135, 140 
Delay slots, 45, 69, 75, 100, 104, 112, 144 
Dependency graph, 45 
Design flow, 9 
Design space exploration, 11 
DFL, 96 
DLX, 135 
DSE, 11, 20 
DSP, 4, 14 
DSPStone, 5, 70, 95, 98, 124, 140 
Dual memory banks, 93 
EDG, 78, 99, 102 
Efficiency of embedded systems, 2 
Efficient compilers, 5 
ELCOR, 100 
Eli, 140 
Embedded processor, 4 
Embedded software, 2 
Embedded systems, 1 
Energy consumption, 2 
Energy efficiency, 4 
EPIC, 100 
EXPRESS, 114, 118 
Expression, 60 
EXPRESSION, 115 
Factoring, 85, 103, l15, 124, 135 
FACTS, 122 

173 



174 RETARGETABLE COMPILER TECHNOLOGY 

FLEX, 31 
FlexWare, 89 
Formal language approach, 119 
Fortran, 68, 77, 98, 141 
Function inlining, 38 
GCC, 68, 80-81, 91, 100, 111, 115, 137 
Gentle, 140 
Glanville's parser, 61 
Global scheduling, 49 
GNU public license, 68, 72, 126 
Graph coloring, 52, 76, 81, 91, 94, 99, 104, 

147 
Guarded RT operation, 117 
GUI, 101, 112, 115, 136, 143 
Hardware/software codesign, 9 
HORIZON, 64, 98 
HPL-PD, 100 
I-trees, 109 
IBURG, 61, 73, 82, 84, 97, 126, 129, 131, 141 
IDAS, 63 
IMPACT, 18, 99-100, 105 
Induction variable elimination, 39 
Infineon C16x, 134 
Inline assembly, 126, 147 
Instruction set design, 18 
Instruction set extraction, 96, 112, 119 
Integer Linear Programming, 98, 121, 133 
Intel 8051, 126, 136 
Intel i860, 75, 98, 100 
Intel x86, 68, 71, 73, 79, 100, 147 
Interference graph, 51 
Intrinsics, 93, 126, 138, 147 
IR, 61 
ISDL, 103 
Java, 68, 141 
Jump optimization, 40 
LANCE, 81, 102, 121, 124, 131, 141 
LBURG, 73 
LCC, 71, 77, 79, 81, 87, 98, 100, 118, 131, 

147 
Left edge algorithm, 51, 90, 97 
LEX, 29 
Linker, 71, 126, 136, 140, 142, 145 
LISA, 86, 134 
List scheduling, 46 
Live range, 46, 50 
Local scheduling, 46 
Loop invariant code motion, 39 
Loop unrolling, 39 
LR(1), 60 
M68000, 68 
Machine description file, 69, 73, 83, 87, 100, 

103, 111, 113, 125-126, 145 
Machine SUIF, 78 
Maril, 75 
Marion, 75 
Maximum munching method, 61 

MDES, 101 
Memory subsystem, 13 
Memory system, 17 
Mescal, 105 
Micro-architecture, 24 
Microcode compiler, 63 
Microprogramming, 61 
MIMOLA, 26, 64, 95, 105, 115, 138 
MIPS, 68, 71, 75, 77, 100, 136 
Modula-2, 131 
Motorola 56k, 70, 89, 92-94, 116, 136 
Motorola 88k, 75 
MPG system, 63 
MSS, 19, 64 
MSSQ, 95, 105, 113, 118, 138, 143 
MSSV, 65 
Mutation scheduling, 115 
New Jersey Machine Code Toolkit, 140 
NML, 85, 115, 134, 143 
OLIVE, 7, 73, 82, 84, 92, 129, 131, 141 
Output dependence, 45 
ox, 33 
PAG, 140 
PAGODE, 76 
Parser, 29 
PASCAL, 106 
Pattern matching, 90, 131, 140 
PEAS, 21, 110, 118 
Peephole optimization, 40, 58, 70, 80, 91, 

105, 126, 145, 14 7 
Percolation scheduling, 50 
Phase coupling, 28, 56, 75, 86, 99, 115, 119, 

124, 132 
Pipelining, 69, 75-76, 79, 98, 111, 115, 118, 

132, 134, 145, 147 
PowerPC, 87 
Predicated instruction, 86, 100-101, 103 
Process mapping, 15 
PROPAN, 132 
Ready set, 46 
Reassociation, 40 
RECORD, 95 
REDACO, 87 
Register allocation, 50 
Register file size, 23 
Register transfer graph, 92 
Reservation table, 48, 75, 115, 132 
RESTART, 138 
Retargetability, 7 
Retargetable compilers, 6 
ROCKET, 98 
SALTO, 132 
SCALA, 76 
Scanner, 29 
Scheduling, 44 
SDCC, 126 
SGI Pro64, 140 



INDEX 

Simulation, 85, 89, 96, 100, 103, 112-113, 
115, 118, 126, 132, 134, 138, 142 

Software pipelining, 46, 99, 101, 139, 144 
SPAM, 79, 91, 97, 103, 131 
Spare, 68, 71, 76 
Specifications, 4, 11 
Spill code, 50 
SPIRAL, 14 
Split-node DAG, 104 
SRAM, 17 
Static single assignment, 38 
SUIF, 77, 79, 81, 91, 100, 103, 113, 139, 141 
TCL, 138 
TDL, 133 
TenDRA, 140 
Three address code, 34, 82 
TI C25, 89, 92, 94, 98 
TI C54x, 136 
TI C6x, 47, 116, 118, 123, 136, 140 
Token, 28 
Trace scheduling, 49 
Tree grammar, 41, 73, 82, 86, 92, 97, 127, 

130, 141 
Tree parsing, 41, 126, 129 

Trellis diagram, 87 
Trellis tree, 88 
Trimaran, 100, 141 
Trimedia, 102, 132, 134 
TWIF, 92 
ucc, 147 
UML, 5 
UNCOL, 59 
Valen-C, 22, 113 
VCC,l13 
VCODE, 140 
Verification, 26 
Version shuffling, 46 
VHDL, 95, 144 
Virtual register, 50 
VLIW, 17-18, 20, 61 
VPO, 80 
WCET, 4 
Word length, 21 
XASM, 117 
YACC, 31 
Zephyr, 79 
Zilog Z80, 126 
ZSP 16401, 140 

175 




