

جلسه ۱۲ (الف) علوم شناخة و سیستمهای دینامیکی

Cognitive Science and Dynamical Systems

کاظم فولادی قلعه دانشکده مهندسی ، دانشکدگان فارابی دانشگاه تهران

http://courses.fouladi.ir/cogsci

PART 2: MODELS AND TOOLS

Chapter 6: Applying Dynamical Systems Theory to Model the Mind

Chapter 6.1: Cognitive science and dynamical systems

Traditional CogSci

• Basic principles

- Cognition is a form of information-processing
- Information-processing involves manipulating representations
- PSSH and artificial neural networks incorporate different models of information-processing (mental architectures)

Dynamical systems hypothesis

- cognitive scientists should understand cognitive agents as dynamical systems embedded in their environment
- cognition is a process that evolves through time, but does not necessarily involve computation or representations
 - at least not as standardly understood

CAMBRIDGE

DSH sometimes offered as alternative both to PSSH and to ANNs

Dynamical systems

- 1) A dynamical system is any system that evolves over time
 - \Rightarrow trivial that cognitive agents are dynamical systems
 - \Rightarrow DST requires a richer notion
- 2) A dynamical system is a system that can be studied using the tools of dynamical modeling

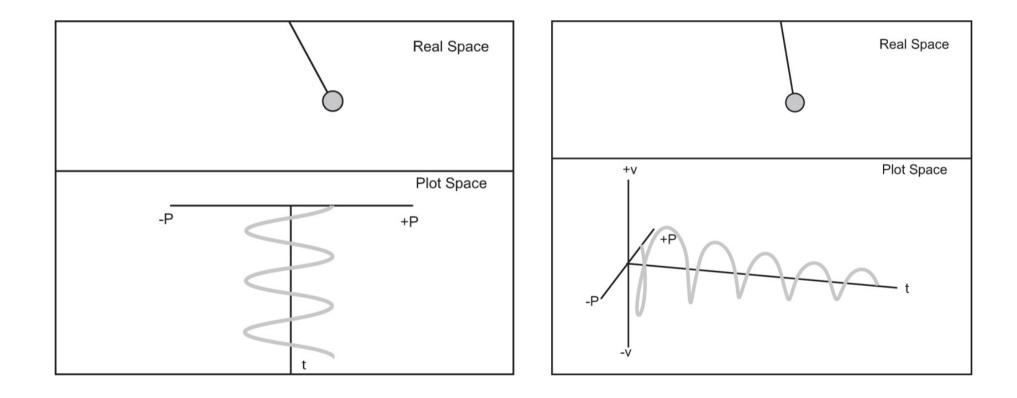
Dynamical models

Typically use calculus to track the evolving relationship between a small number of variables over time

- difference equations (for modeling discrete time series)
- differential equations (form modeling continuous time series)

State space

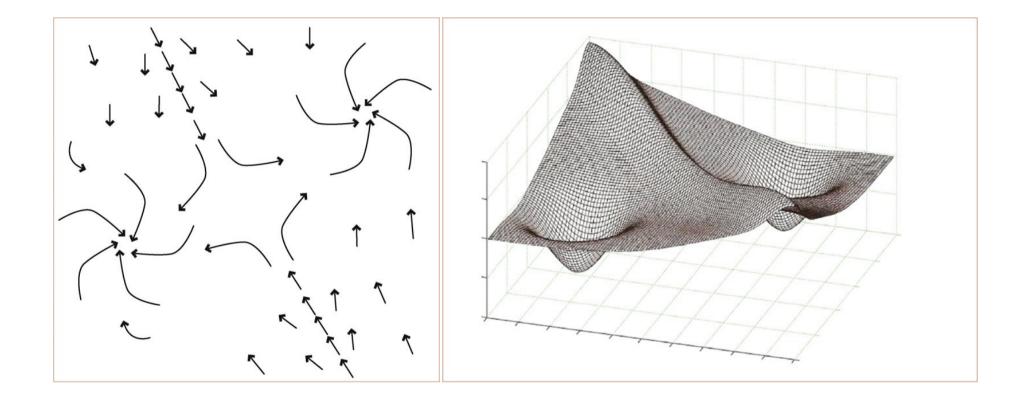
- The state space of a dynamical system is a geometric way of thinking about all the possible states the system can be in
 - As many different dimensions as it has quantities that vary independently of each other
- The state of a system at a time can be identified with a particular set of coordinates in its state space
- The evolution of a system is its trajectory through state space from a set of initial conditions



 CAMBRIDGE
 PART 2: MODELS AND TOOLS

 Chapter 6: Applying Dynamical Systems Theory to Model the Mind

 Chapter 6.1: Cognitive science and dynamical systems


State space of swinging pendulum

CAMBRIDGE PART 2: MODELS AND TOOLS Chapter 6: Applying Dynamical Systems Theory to Model the Mind Chapter 6.1: Cognitive science and dynamical systems

Basins of attraction in state space

Cognitive Science © **José Luis Bermúdez / Cambridge University Press 2020** Edited and Completed by Kazim Fouladi (kfouladi@ut.ac.ir), Fall 2021

Similarities to ANNs

ANNs count as dynamical systems

- Dimensionality of the state space given by the number of unitsweight space
 - The process of training the network is a way of configuring the energy landscape
 - Information-processing in ANNs is a trajectory through unit space

Dissimilarities

CAMBRIDGE

 Dynamical systems theorists are typically interested in lower-dimensionality systems

i.e. fewer independently varying quantities

• The dimensions in ANNs often correspond to hidden features of the system, whereas dynamical systems theorists tend to study observable quantities

MBRIDGE

Van Gelder's steam engine analogy

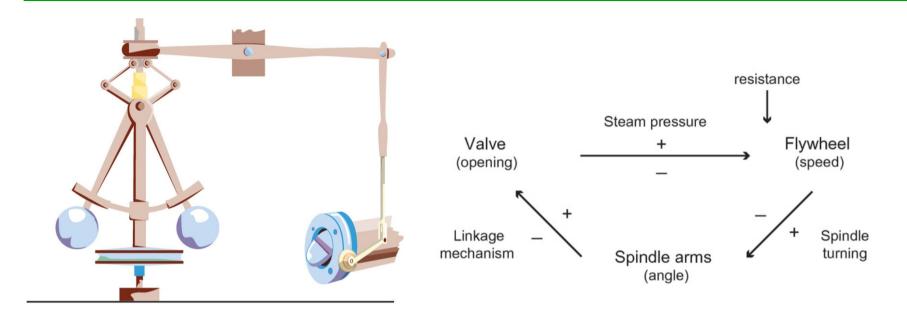
- James Watt designed a gearing system to allow steam engines to drive a flywheel and hence produce rotational power
- Typical applications required power source to be as even as possible
- Need for a governor to regulate the speed of the flywheel

The computational governor

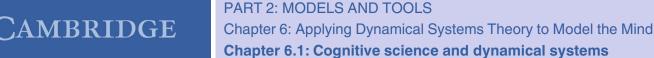
- 1. Measure the speed of the flywheel.
- 2. Compare the actual speed S_1 against the desired speed S_2
- 3. If $S_1 = S_2$, return to step 1
- 4. If $S_1 \neq S_2$ then

- (a) measure the current steam pressure
- (b) calculate the required alteration in steam pressure
- (c) calculate the throttle adjustment to achieve that alteration
- 5. Make the throttle adjustment
- 6. Return to step 1.

The computational governor


- 1) Representational
- 2) Computational
- 3) Sequential
- 4) Decomposable (homuncular)

CAMBRIDGE


PART 2: MODELS AND TOOLS Chapter 6: Applying Dynamical Systems Theory to Model the Mind Chapter 6.1: Cognitive science and dynamical systems

The Watt governor

The governor regulates speed by compensating almost instantaneously when the speed of the flywheel is overshooting or undershooting.

Features

Dynamical system [behavior characterized by differential equation with fixed parameters and a small number of variables]

Real-time functioning [instantaneous adjustment]

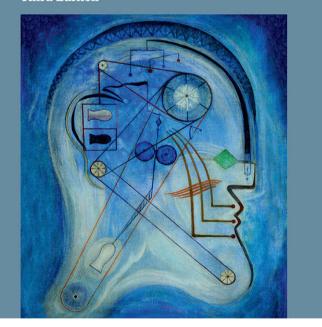
<u>Coupled system</u> [interdependence between arm angle, throttle valve, and speed of flywheel]

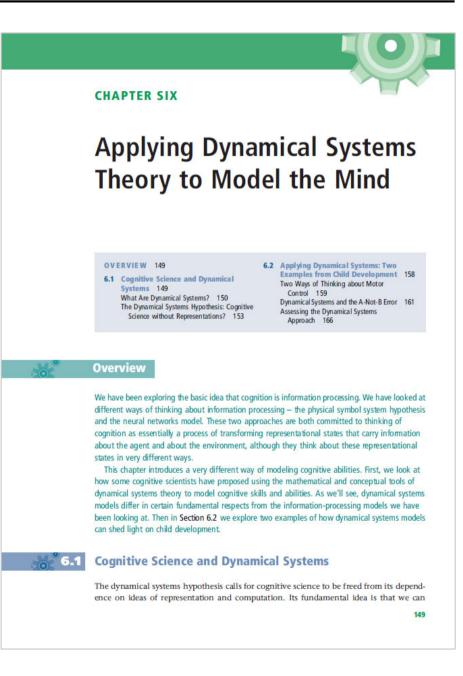
<u>Attractor dynamics</u> [for any given engine speed there is an equilibrium arm angle – a region in state-space to which many different trajectories converge]

The DST challenge

CAMBRIDGE

• Can the Watt governor analogy be extended to cognitive systems?


 Can we find cognitive systems which a dynamical systems model works better than a standard, computational account?


José Luis Bermúdez

Cognitive Science

An Introduction to the Science of the Mind Third Edition

José Luis Bermúdez, Cognitive Science: An Introduction to the Science of the Mind, 3rd ed., Cambridge University Press, 2020. Chapter 6 (Section 6.1)

