

جلسه ۱۹ (ج) یادگیری زبان در شبکههای عصبی

Language Learning in Neural Networks

کاظم فولادی قلعه دانشکده مهندسی ، دانشکدگان فارابی دانشگاه تهران

http://courses.fouladi.ir/cogsci

PART 3: APPLICATIONS

Chapter 10: Models of Language Learning

Chapter 10.3: Language learning in neural networks

Overview

CAMBRIDGE

- Introduce physical symbol model of past tense learning
- Introduce neural network models of past tense learning
- Compare Rumelhart and McClelland's neural network
 model to Plunkett and Marchman's

Language Learning and PSSH

• Language is rule-governed

CAMBRIDGE

• Physical symbol systems are also rule-governed

• But rule-governed phenomena need not come from rule-governed information processing structures

Two Features of Past Tense Learning

1. Follow rules (e.g., add "-ed")

CAMBRIDGE

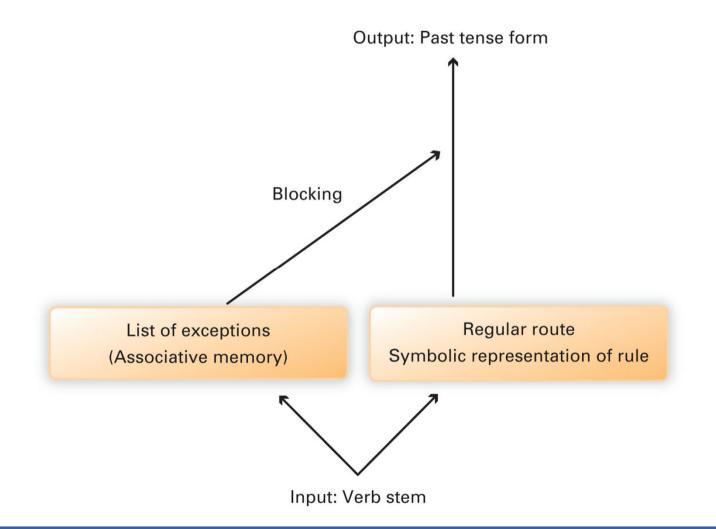
2. Learn exceptions to the rules (e.g., "give" to "gave")

Past Tense Learning

CAMBRIDGE

The stages of past tense learning according to verb type

	STAGE 1	STAGE 2	STAGE 3
Early verbs	Correct	Over-regularization errors	Correct
Regular verbs		Correct	Correct
Irregular verbs		Over-regularization errors	Improvement with time


Seems to confirm the symbolic, rule-following model of past tense learning.

PART 3: APPLICATIONS Chapter 10: Models of Language Learning Chapter 10.3: Language learning in neural networks

Pinker and Prince

CAMBRIDGE

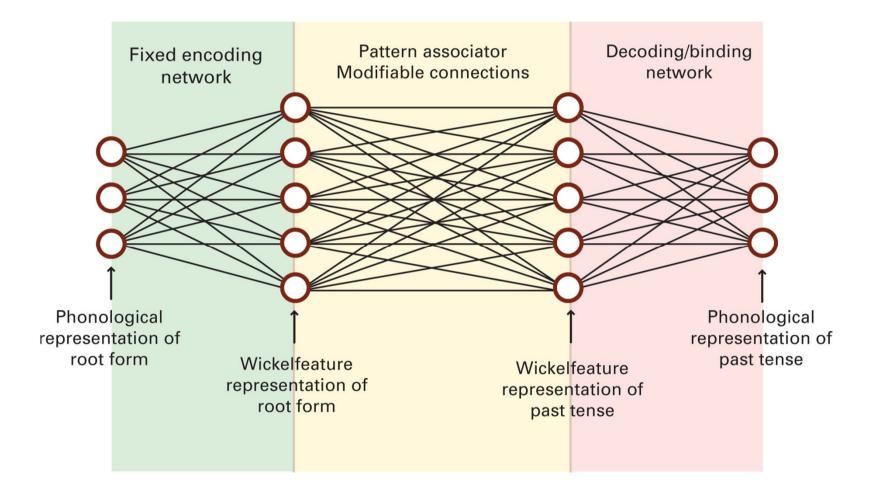
Cognitive Science © **José Luis Bermúdez / Cambridge University Press 2020** Edited and Completed by Kazim Fouladi (kfouladi@ut.ac.ir), Fall 2021

Neural network models

Attempt to replicate rule-governed linguistic behavior without the rules being explicitly taught

Rumelhart and McClelland

• Phoneme detection network


CAMBRIDGE

- Capable of comparing words according to their phonetic structure
- Trained on high- and medium-frequency verbs

CAMBRIDGE PART 3: APPLICATIONS Chapter 10: Models of Language Learning Chapter 10.3: Language learning in neural networks

Rumelhart and McClelland

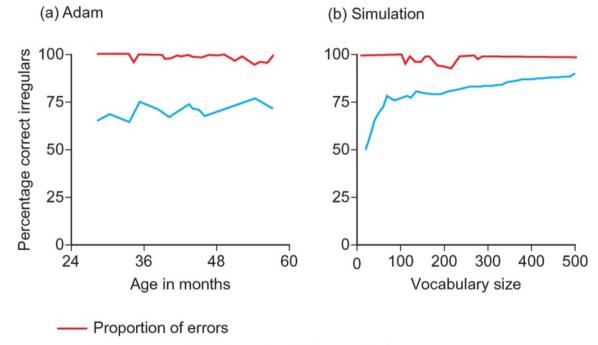
Cognitive Science © **José Luis Bermúdez / Cambridge University Press 2020** Edited and Completed by Kazim Fouladi (kfouladi@ut.ac.ir), Fall 2021

Plunkett and Marchman 1993

• Reproduced over-regularization error

CAMBRIDGE

- More regular than irregular verbs, just like real children
- Characteristic mistakes (e.g., adding "-ed" to every verb)
- Gradual change in performance, just like real children

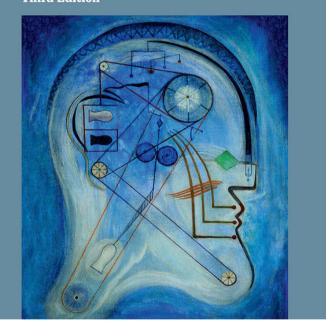

- Trained the network on both regular and irregular verbs
 - More like how real children learn verbs

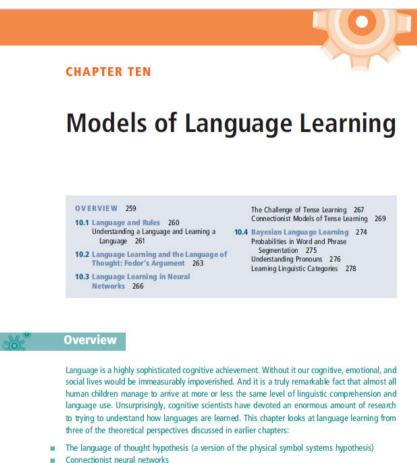
PART 3: APPLICATIONS Chapter 10: Models of Language Learning Chapter 10.3: Language learning in neural networks

CAMBRIDGE

Plunkett and Marchman 1993

— Percentage of regular verbs in the vocabulary


A comparison of the errors made by Adam, a child studied by the psychologist Gary Marcus, and the Plunkett–Marchman neural network model of tense learning. (Adapted from McLeod, Plunkett, and Rolls 1998)


José Luis Bermúdez

Cognitive Science

An Introduction to the Science of the Mind

José Luis Bermúdez, Cognitive Science: An Introduction to the Science of the Mind, 3rd ed., Cambridge University Press, 2020. Chapter 10 (Section 10.3)

Probabilistic Bayesian models

Section 10.1 introduces some of the basic theoretical challenges in explaining how we understand and leam languages. Since language is a paradigmatically rule-governed activity, it can seem very plausible to conceptualize linguistic understanding as a matter of deploying linguistic rules. This raises the question of where knowledge of the rules comes from. Answering that question is an important part of explaining how languages are learned.

We look at one answer to that question in Section 10.2. According to Jerry Fodor, young children learn linguistic rules by a process of hypothesis formation and testing. This process is itself a linguistic activity. According to Fodor, though, it cannot be carried out in a natural language. He