
Reinforcement Learning

Chapter 21, Sections 1 – 4
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Outline

♦ Examples

♦ Learning a value function for a fixed policy
– temporal difference learning

♦ Q-learning

♦ Function approximation

♦ Exploration
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Reinforcement Learning

Agent is in an MDP or POMDP environment

Only feedback for learning is percept + reward

Agent must learn a policy in some form:
– transition model T (s, a, s′) plus value function U (s)
– Q(a, s) = expected utility if we do a in s and then act optimally
– policy π(s)
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Example: 4 × 3 world
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(1, 1)−.04→ (1, 2)−.04→ (1, 3)−.04→ (1, 2)−.04→ (1, 3)−.04→ · · · (4, 3)+1

(1, 1)−.04→ (1, 2)−.04→ (1, 3)−.04→ (2, 3)−.04→ (3, 3)−.04→ · · · (4, 3)+1

(1, 1)−.04→ (2, 1)−.04→ (3, 1)−.04→ (3, 2)−.04→ (4, 2)−1.
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Example: Backgammon
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Reward for win/loss only in terminal states, otherwise zero

TDGammon learns Û(s), represented as 3-layer neural network

Combined with depth 2 or 3 search, one of top three players in world
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Example: Animal learning

RL studied experimentally for more than 60 years in psychology

Rewards: food, pain, hunger, recreational pharmaceuticals, etc.

Example: bees learn near-optimal foraging plan in field of artificial flowers
with controlled nectar supplies

Bees have a direct neural connection from nectar intake measurement to
motor planning area
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Example: Autonomous helicopter

Reward = − squared deviation from desired state
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Temporal difference learning

Fix a policy π, execute it, learn Uπ(s)

Bellman equation:

Uπ(s) = R(s) + γ
∑

s′
T (s, π(s); s′)Uπ(s′)

TD update adjusts utility estimate to agree with Bellman equation:

Uπ(s)← Uπ(s) + α(R(s) + γUπ(s′)− Uπ(s))

Essentially using sampling from the environment instead of exact summation
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TD performance
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Q-learning

One drawback of learning U (s): still need T (s, a, s′) to make decisions

Q(a, s) = expected utility if we do a in s and then act optimally

Bellman equation:

Q(a, s) = R(s) + γ
∑

s′
T (s, π(s), s, ) max

a′
Q(a′, s′)

Q-learning update:

Q(a; s)← Q(a, s) + α(R(s) + max
a′

Q(a′, s′)−Q(a, s))

Q-learning is a model-free method for learning and decision making

Q-learning is a model-free method for learning and decision making

(so cannot use model to constrain Q-values, do mental simulation, etc.)
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Function approximation

For real problems, cannot represent U or Q as a table!!

Typically use linear function approximation:

Ûθ(s) = θ1f1(s) + θ2f2(s) + · · · + θnfn(s)

Use a gradient step to modify θ parameters:

θi ← θi + α[R(s) + γÛθ(s
′)− Ûθ(s)]

∂Ûθ(s)

∂θi

θi ← θi + α[R(s) + γ max
a′

Q̂θ(a
′, s′)− Q̂θ(a, s)]

∂Q̂θ(a, s)θ(s)

∂θi

Often very effective in practice, but convergence not guaranteed
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Exploration

How should the agent behave? Choose action with highest expected utility?

Exploration vs. exploitation: occasionally try ”suboptimal” actions!!

AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 21, Sections 1 – 4 12



Summary

Reinforcement learning methods find approximate solutions to MDPs

Work directly from experience in the environment

Need not be given transition model a priori

Q-learning is completely model-free

Function approximation (e.g., linear combination of features) helps RL scale
up to very large MDPs

Exploration is required for convergence to optimal solutions
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