
Solving Problems by Searching

AIMA2e Chapter 3, Sections 1–5
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Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

♦ Avoiding repeated States

♦ Searching with partial information
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Why Search?

• Implementation of goal-based agents program.

The program searches through agents action space to find the most ap-
propriate set of actions that leads agent to its goal by minimum cost
⇒ Problem-solving agent.

•We need to define Problem and Solution
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Search Types

• Uninformed:
The agent has no information about the underlying problem
other than its definition.

• Informed:
The agent have some idea of where to look for solutions
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Basic Definitions

• Goal formulation:
Defining the goal states along the performance measure.

• Problem formulation:
Deciding what actions and state to consider (level of abstraction).
It may vary during the problem-solving process from fine-to-coarse and
vise versa.
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Search and Solution

• Search: An agent with several immediate options of unknown values
can decide what to do by first examining different possible sequence of
actions that lead to states of known values, and then choosing the best
sequence.

• Solution: Selected sequence of actions

• Execution: Once a solution is found, the actions it recommends can be
carried out.

• Problem-solving:
Goal definition → Problem definition → Search → Solution
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Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search(problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
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Environment for problem-solving agents

♦ Static
♦ Observable
♦ Discrete
♦ Deterministic

Solutions are executed without paying attention to the percepts
⇒ open-loop system
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86
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Problem types

Deterministic, fully observable =⇒ single-state problem

Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem

Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem

percepts provide new information about current state
solution is a tree or policy

often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)
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Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8
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Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

Optimal solution has the lowest path cost among all solutions.
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Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Sample Problems

• Toy problems

• Real world problems
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Example: vacuum world state space graph
R

L
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R

states??
actions??
goal test??
path cost??
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Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)
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Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??
actions??
goal test??
path cost??
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Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of
robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute
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Other Real World Problems

• Route-finding problem

• Touring problems

Travelling salesperson problem (TSP)

• VLSI Layout

Cell layout
Channel routing

• Robot navigation

• Protein design

• Internet Searching
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Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end
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Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad
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Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara
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Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.
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Implementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes

successors← the empty set

for each action, result in Successor-Fn[problem](State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(node,action, s)

Depth[s]←Depth[node] + 1

add s to successors

return successors
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)
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Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 AIMA2e Chapter 3, Sections 1–5 36



Properties of breadth-first search

Complete??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 AIMA2e Chapter 3, Sections 1–5 38



Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if path cost is a non-decreasing function of node depth e.g.
cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB/sec
so 24hrs = 860GB.
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Uniform-cost search

Expand least-cost unexpanded node (a.k.a. Least-cost search)

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ǫ > 0

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ǫ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Properties of depth-first search

Complete??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No
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Backtracking search

A variant of depth-first search

Only one successor is generated at a time rather than all successors;

Each partially expanded node remembers which successor to generate next.

Required space: O(m) instead of O(bm)

AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 AIMA2e Chapter 3, Sections 1–5 60



Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff

cutoff-occurred?← false

if Goal-Test[problem](State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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Properties of Depth-limited search

Diameter of state space is a suitable choice for l limit.

Complete?? No: if l < d

Time?? O(bl)

Space?? O(bl), i.e., linear space!

Optimal?? No

Depth-first search is a special case of Depth-limited search for l =∞
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Iterative deepening search

It combines the benefits of breadth-first and depth-first search

function Iterative-Deepening-Search(problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end
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Iterative deepening search l = 0

Limit = 0 A A
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Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C
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Iterative deepening search l = 2

Limit = 2 A

B C

D E F G
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Iterative deepening search l = 3

Limit = 3
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Properties of iterative deepening search

Complete??
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Properties of iterative deepening search

Complete?? Yes

Time??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if path cost is a non-decreasing function of node depth
e.g. cost = 1 per step

Can be modified to explore uniform-cost tree : Iterative lengthening Search

Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100
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Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yesa Yesa,b No Yes, if l ≥ d Yesa

Time bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yesc Yes No No Yesc

b = branching factor
d = depth of the shallowest solution
l = depth limit
m = maximum depth of the search tree

a complete if b is finite
b complete if step cost ≥ ǫ for ǫ > 0
c optimal if path cost is a non-decreasing function of node depth (e.g. step
costs are all identical)
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Bidirectional Search

GoalStart

A big problem: finding predecessors of a state

Complete?? if both directions use breadth-first search and b is finite.

Time?? O(2bd/2) = O(bd/2)

Space?? O(2bd/2) = O(bd/2)

Optimal?? if both directions use breadth-first search and path cost is a
non-decreasing function of node depth
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Avoiding repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC

Solution: exploration of state space graph using closed list.
Closed list: a list of expanded node (can be implemented by hash table)

Required space is proportional to the size of state space: O(|S|) ≤ O(bd)
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Graph search

function Graph-Search(problem, fringe) returns a solution, or failure

closed← an empty set

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem](State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)

end
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Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms
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