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UTILITY OF STATE SEQUENCES
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U([S(), S1, 52, .. D = R(S(]) + ’}“R(S]) —+ 72R(52) + -

where 7 is the discount factor wiss, <t
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Utility of States: Optimal policy when state penalty £(s) is —0.04:
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1 0.705 0.655 0.611 0.388 1 f - - -

1 2 3 4 1 2 3 4

* 0

7Y



Prepared by Kazim Fouladi | Fall 2022 | 4% Edition

A

Laadla (suion g

ALl e J gl JS e b sy 53 50

UTILITY OF STATES
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Problem: infinite lifetimes = additive utilities are infinite

1) Finite horizon: termination at a fixed time T’
= nonstationary policy: 7(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any 7
= expected utility of every state is finite

3) Discounting: assuming v < 1, R(s) < Ry,
U([S()v e 396]) - Ei()'}/fR(St) % Rmax/(l - 7)
Smaller v = shorter horizon

4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver's daily scheme cruising for passengers
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DYNAMIC PROGRAMMING: THE BELLMAN EQUATION
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Definition of utility of states leads to a simple relationship among utilities of

neighboring states:

expected sum of rewards
= current reward

+ v X expected sum of rewards after taking best action

Bellman equation (1957):
U(s) = R(s) + v max 2yU(s)T(s,a,s)

U(1,1) = —0.04
+ v max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1, 1),
0.9U(1,1) + 0.1U(1,2)
0.9U(1,1) + 0.1U(2,1)
0.8U(2,1) + 0.1U(1,2) + 0.1U(1, 1)}

One equation per state = n nonlinear equations in 7 unknowns

up
left

down
right




Y

oa ) ) sSS
S

VALUE ITERATION ALGORITHM

|dea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqgn.
Everywhere locally consistent = global optimality

Repeat for every s simultaneously until “no change”

U(s) — R(s) +v max 2gU(s")T(s,a,s)  forall s

1 4.3)
T (3.3)
- (2,3)
2 , (L1
B :, ’/1;‘:: _____________ e (I8 D
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2 0 5 10 15 20 25 30

Number of iterations
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VALUE ITERATION ALGORITHM: CONVERGENCE
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Define the max-norm ||U|| = max; |U(s)],
so ||[U — V|| = maximum difference between UU and V'

Let /" and U""! be successive approximations to the true utility I/
Theorem: For any two approximations /! and V"
U =V <A ||U* = V]

|.e., any distinct approximations must get closer to each other
so, in particular, any approximation must get closer to the true UU
and value iteration converges to a unique, stable, optimal solution

Theorem: if ||U — U!|| < ¢, then ||U™ — Ul| < 2ev/(1 — )
l.e., once the change in U’ becomes small, we are almost done.

MEU policy using UU" may be optimal long before convergence of values
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Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
7 «<— an arbitrary initial policy
repeat until no change in 7
compute utilities given 7
update 7 as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed 7 (value determination):
U(s) = R(s) +v2yU(sT(s,m(s),s")  foralls

i.e., n simultaneous linear equations in 7 unknowns, solve in O(n3)
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MODIFIED POLICY ITERATION ALGORITHM

Policy iteration often converges in few iterations, but each is expensive

|dea: use a few steps of value iteration (but with 7 fixed)
starting from the value function produced the last time
to produce an approximate value determination step.

Often converges much faster than pure VI or Pl

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates based
on the observed transitions made in an initially unknown environment
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POMDP has an observation model O(s, ¢) defining the probability that the
agent obtains evidence ¢ when in state s

Agent does not know which state it is in
= makes no sense to talk about policy 7(s)!!

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
7(b) where b is the belief state (probability distribution over states)

Can convert a POMDP into an MDP in belief-state space, where
T'(b,a,b) is the probability that the new belief state is 0/
given that the current belief state is b and the agent does a.
|.e., essentially a filtering update step
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Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector

= solving POMDPs is very (actually, PSPACE-) hard!
The real world is a POMDP (with initially unknown 7" and O)
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P Fourth Edition

Stuart Russell and Peter Norvig,
Artificial Intelligence: A Modern Approach,
4th Edition, Prentice Hall, 2020.
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MAKING COMPLEX DECISIONS

In which we examine methods for deciding what to do today, given that we may face another
decision tomorrow.

In this chapter, we address the computational issues involved in making decisions in a stochas-
tic environment. Whereas Chapter 16 was concerned with one-shot or episodic decision prob-
lems, in which the utility of each action’s outcome was well known, we are concerned here
with sequential decision problems, in which the agent's utility depends on a sequence of
decisions. Sequential decision problems incorporate utilities, uncertainty, and sensing, and
include search and planning problems as special cases. Section 17.1 explains how sequential
decision problems are defined, and Section 17.2 describes methods for solving them to pro-
duce behaviors that are appropriate for a stochastic environment. Section 17.3 covers multi-
armed bandit problems, a specific and fascinating class of sequential decision problems
that arise in many contexts. Section 17.4 explores decision problems in partially observable
environments and Section 17.5 describes how to solve them.

17.1 Sequential Decision Problems

Suppose that an agent is situated in the 4 x 3 environment shown in Figure 17.1{a). Beginning
in the start state, it must choose an action at each time step. The interaction with the environ-
ment terminates when the agent reaches one of the goal states, marked +1 or —1. Just as for
search problems, the actions available to the agent in each state are given by ACTIONS(s),
somelimes abbreviated to A(s): in the 4 x 3 environment, the actions in every state are Up,
Down, Left, and Righr. We assume for now that the environment is fully observable, so that
the agent always knows where it is.

If the environment were deterministic, a solution would be easy: [Up, Up, Right Right,
Right]. Unfortunately, the environment won’t always go along with this solution, because the
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated
in Figure 17.1(b). Each action achieves the intended effect with probability 0.8, but the rest
of the time, the action moves the agent at right angles to the intended direction. Furthermore,
if the agent bumps into a wall, it stays in the same square. For example, from the start square
(1.1), the action Up moves the agent to (1,2) with probability (1.8, but with probability 0.1, it
moves right to (2,1), and with probability 0.1, it moves left, bumps into the wall, and stays
in (1.1). In such an environment, the sequence Up, Up, Right, Right Right| goes up around
the barrier and reaches the goal state at (4,3) with probability 0.8 =0.32768. There is also a
small chance of accidentally reaching the goal by going the other way around with probability
0.1* =08, fora erand total of 0.32776. (See also Exercise 17.MDPX. )




