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States s € S, actions @ € A
Model T'(s,a,s’) = P(s'|s, a) = probability that a in s leads to &’
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MARKOV DECISION PROBLEMS (MDPS)
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MARKOV DECISION PROBLEMS (MDPS)
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SOLVING MDPSs
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UTILITY OF STATE SEQUENCES
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stationary preferences
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e s o 1) Additive utility function:
Ul([s0, 51,52, ...]) = R(sg) + R(s1) + R(s2) + - - -
Gibdaias guiessw 6 2) Discounted utility function:
L-“r({.‘i(;. S1, 89, .. D - R(.S()) + ",R(‘ﬂ) + ’7»'2}‘?(.8‘3) + e
where 7 is the discount factor wuass <t
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UTILITY OF STATES

Utility of States:

3 0.812 | 0.868 0.912

2 0.762 0.660 |Z]

1 0.705 0.655 0.611 0.388
1 2 3 4
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Optimal policy when state penalty F(s) is —0.04:
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Problem: infinite lifetimes = additive utilities are infinite

1) Finite horizon: termination at a fixed time T
=> nonstationary policy: 7(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any 7
= expected utility of every state is finite

3) Discounting: assuming v < 1, R(s) < Rpx,
U([0, .. - So0|) = Ligeg V' R(5t) € Ruax/(1 — )
Smaller v = shorter horizon

4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver's daily scheme cruising for passengers






Prepared by Kazim Fouladi | Fall2018 | 3 Edition

Yy g0 gD
L g2 s 33 y4els o

el ol
DYNAMIC PROGRAMMING: THE BELLMAN EQUATION

Definition of utility of states leads to a simple relationship among utilities of
neighboring states:

expected sum of rewards
= current reward
+ v x expected sum of rewards after taking best action

Bellman equation (1957):
U(s) = R(s) + v max YA 1T 8, 6,8)
U(l,1) = —-0.04

+ v 111(1\{ 0.8U(1,2) +0.1U(2,1) + 0.1U(1, 1), up
0.9U(1,1) +0.1U(1,2) left
0.9U(1,1) + 0.1U(2, 1) down
0.8U/(2,1) + 0.1U(1,2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in 7 unknowns

-
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VALUE ITERATION ALGORITHM

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn.
Everywhere locally consistent = global optimality

Repeat for every s simultaneously until “no change”

U(s) « R(s) +~y max 2yU(s")T(s,a,s') for all s

1 “3)
(3.3)
"""""""""""""""""""""" 23)
(1,1)
****************** 3.
05 .
e 4.1
8 ;
< J
£ i
8 0 ‘\; i 7
2 L
g
0.5 .
S e (42)
0 5 10 15 20 25 30

Number of iterations
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VALUE ITERATION ALGORITHM: CONVERGENCE
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Define the max-norm ||U|| = max, |U(s)],
so ||{U — V|| = maximum difference between U/ and 1/

Let [/" and UU'"!' be successive approximations to the true utility {/
Theorem: For any two approximations [/’ and 1"

HUHJ - ‘/-I—FJ | S : HU/ o XIH

l.e., any distinct approximations must get closer to each other
so, in particular, any approximation must get closer to the true UJ
and value iteration converges to a unique, stable, optimal solution

Theorem: if ||UH — U!|| < ¢, then ||U — Ul| < 2ev/(1 — )
|.e., once the change in U’ becomes small, we are almost done.

MEU policy using [/' may be optimal long before convergence of values






v LG gD

TRPS]

POLICY ITERATION ALGORITHM

Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
7 «— an arbitrary initial policy
repeat until no change in 7
compute utilities given 7
update 7 as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed 7 (value determination):
U(s) = R(s) + v 2L U(sT (s, 7(s), 5" for all s

i.e., n simultaneous linear equations in 7 unknowns, solve in O(n?)
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MODIFIED POLICY ITERATION ALGORITHM
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Policy iteration often converges in few iterations, but each is expensive

Idea: use a few steps of value iteration (but with 7 fixed)
starting from the value function produced the last time
to produce an approximate value determination step.

Often converges much faster than pure VI or Pl

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates based
on the observed transitions made in an initially unknown environment
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POMDP has an observation model O(s, ¢) defining the probability that the
agent obtains evidence ¢ when in state s

Agent does not know which state it is in
= makes no sense to talk about policy 7(s)!!

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
7(b) where b is the belief state (probability distribution over states)

Can convert a POMDP into an MDP in belief-state space, where
T(b,a,b) is the probability that the new belief state is &
given that the current belief state is b and the agent does a.
l.e., essentially a filtering update step
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Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector
= solving POMDPs is very (actually, PSPACE-) hard!

The real world is a POMDP (with initially unknown 7" and O)
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DECISIONS WITH MULTIPLE AGENTS: GAME THEORY
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MAKING COMPLEX
DECISIONS

In which we examine methods for deciding what to do today, given that we may
decide again tomorrow.

In this chapter. we address the computational issues involved in making decisions in a stochas-

tic environment. Whereas Chapter 16 was concemned with one-shot or episodic decision

problems, in which the ity of each action’s outcome was well known, we are concemed

S mey  here with sequential decision problems, in which the agent’s utility depends on a sequence

of decisions. Sequential decision problems incorporate utilities, uncertainty, and sensing.

and include search and planning problems as special cases. Section 17.1 explains how se-

quential decision problems are defined, and Sections 17.2 and 17.3 explain how they can

be solved to produce optimal behavior that balances the risks and rewards of acting in an

uncertain environment. Section 17.4 extends these ideas to the case of partially observahle

A P 1 environments, and Section 17.4.3 develops a complete design for decision-theoretic agents in

Stuart r«r[lfl(lﬂl Il'l teH lqence partially observable environments, combining dynamic Bayesian networks from Chapter 15
Russe" ~ with decision networks from Chapter 16.

v s 1'. "\ DPIro iL‘.h The second part of the chapter covers environments with multiple agents. In such en-

vironments, the notion of optimal behavior is complicated by the interactions among the

fron agents. Section 17.5 introduces the main ideas of game theory, including the idea that ra-

tional agents might need to behave randomly. Section 17.6 looks at how multiagent systems
can be designed so that multiple agents can achieve a common goal.

Stuart Russell and Peter NorVig, 17.1 SEQUENTIAL DECISION PROBLEMS

Artificial Intelligence: A Modern Approach, w s s oy o
- > Suppose that an agent is situated in the 4 x 3 environment shown in Figure 17.1(x). Beginning

3rd Edlthl‘l, Prentlce Hall, 20 1 0 in the start state, it must choose an action at each time step. The interaction with the environ-

ment terminates when the agent reaches one of the goal states, marked +1 or —1. Just as for
search problems, the actions available to the agent in each state are given by ACTIONS(g),
Chapter 17 sometimes abbre\'iraled to A(s): inthe 4 x 3 en\'imnmefﬂ, the actions in every state are Up,

Down, Left, and Right. We assume for now that the environment is fully observable, so that
the agent always knows where it is.

Prepared by Kazim Fouladi | Fall2018 | 3 Edition

-
,y};ﬁb/



