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PREFERENCES
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RATIONAL PREFERENCES
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RATIONAL PREFERENCES
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If B = C, then an agent who has ' = A
would pay (say) 1 cent to get B Ie Ie
If A > B, then an agent who has B
would pay (say) 1 cent to get A 4
B\ C

If C' = A, then an agent who has A
g N

would pay (say) 1 cent to get C' 7o
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MULTIATTRIBUTE UTILITY FUNCTION

How can we handle utility functions of many variables X, ... X7
E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

|dea 1: identify conditions under which decisions can be made without com-
plete identification of U(xy, ..., z,)

|dea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(zq, ..., x,)
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STRICT DOMINANCE

Typically define attributes such that [/ is monotonic in each

Strict dominance: choice B strictly dominates choice A iff

Vi X;(B) > X;,(A) (and hence U(B) > U(A))

X2 XZ
A | This region A |
: dominates A I
| €
|
Cod B d o ___lC___.
|
Ab———m—————- A
o |
D |
|
»Xl »Xl
(a) (b)
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STRICT DOMINANCE
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b 1 0.8 | :
0.8 .
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2 2 04t 52 :
04 r .
02 L 1 02 r 1
0 1 e i S O 1 1 //’// 1 1 1 1 1 1
-6 55 -5 45 4 35 -3 25 -2 -6 55 -5 45 -4 35 -3 25 -2
Negative cost Negative cost

Distribution p; stochastically dominates distribution p- iff
Vi [ pi@)de < [0 pa(t)dt

If U is monotonic in x, then A; with outcome distribution p;
stochastically dominates A, with outcome distribution p-:

2o m(@)U(x)de > [7 po(x)U(z)dx

Multiattribute case: stochastic dominance on all attributes =- optimal
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STRICT DOMINANCE

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S is closer to the city than 55
= 5] stochastically dominates S, on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X 5 Y (X positively influences Y') means that
For every value z of Y''s other parents Z
Vi, w9 11 > 19 = P(Y |21, z) stochastically dominates P (Y |z5, z)
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PREFERENCE STRUCTURE: DETERMINISTIC

X1 and X, preferentially independent of X3 iff
preference between (11, 1o, x3) and (&), ), x3)
does not depend on 13

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its com-
plement, then every subset of attributes is P.I of its complement: mutual
P.I..

Theorem (Debreu, 1960): mutual P.I. = 7 additive value function:
V(8) = LiVi(Xi(9))

Hence assess n single-attribute functions; often a good approximation
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PREFERENCE STRUCTURE: STOCHASTIC

Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries in X do not depend on y

Mutual U.l.: each subset is U.|l of its complement
= multiplicative utility function:
U = klUl + kQUQ + ngg
+ kleUlUQ + /{2/{3UQU3 + kg/ﬁUgUl
+ k1koksU,UsUs

Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions
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VALUE OF INFORMATION

|dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is £ /2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of “buy A" given “oil in A"
+ 0.5 x value of "buy B" given “no oil in A"]
-0
= (05X k/2)+ (0.5 x k/2) —0=Fk/2
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VALUE OF INFORMATION
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Current evidence F, current best action «
Possible action outcomes 5;, potential new evidence £

FEU(a|F) = maale- U(S;) P(S;|E,a)
Suppose we knew £ = ¢, then we would choose e, St
EU(Oéejk‘E, Ej — ij;) — mgx Z, U(SZ) P(SL|E, a, Ej — ij)

E;j is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIg(E;) = (3 P(E;=e|E)EU(a.,|E, E;=ej)) — EU(o|E)

(VPI = value of perfect information)
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VALUE OF INFORMATION

Nonnegative—in expectation, not post hoc
Vi, E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £; twice
VPIp(E;, Ey) # VPI(E;)+V PIp(Ey)
Order-independent
VPIg(E;, Ey) = VPIg(E;) + VPIgp(Ey) =V PIg(Ey) + VPl g(E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
= evidence-gathering becomes a sequential decision problem
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P(UIE;) P(UIE;) P(UIE;) A
A A A

T T U
U2 U1 U2 Ul U2 Ul

() (b) (c)

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little
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DECISION-THEORETIC EXPERT SYSTEMS

Postcoarctectomy
Syndrome
Paradoxical
Hypertension
Aortic
Aneurysm
Paraplegia

Tachycardia

Failure
To Thrive
Intercostal
Recession

Tachypnea

Treatment Intermediate Late
reatmen Result Result
CVA
Pulmonary Aortic
Crepitations Dissection
. Myocardial
Cardiomegaly lqu}arction
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Artificial Intelligence: A Modern Approach,
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Chapter 16
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MAKING SIMPLE DECISIONS

In which we see how an agent should make decisions so that it gets what it wanes in an
unceriain world—at least as much as possible and on average.

In this chapter, we fill in the details of how utility theory combines with probability theory to
yield a decision-theoretic agent—an agent that can make rational decisions based on what it
believes and what it wants. Such an agent can make decisions in contexts in which uncertainty
and conflicting goals leave a logical agent with no way to decide. A goal-based agent has a
binary distinction between good (goal) and bad (non-goal) states, while a decision-theoretic
agent assigns a continuous range of values to states, and thus can more easily choose a better
state even when no best state is available.

Section 16.1 introduces the basic principle of decision theory: the maximization of ex-
pected utility. Section 16.2 shows that the behavior of a rational agent can be modeled by
maximizing a utility function. Section 16.3 discusses the nature of utility functions in more
detail, and in particular their relation to individual quantities such as money. Section 16.4
shows how to handle utility functions that depend on several quantities. In Section 16.5,
we describe the implementation of decision-making systems. In particular, we introduce a
formalism called a decision network (also known as an influence diagram) that extends
Bayesian networks by incorporating actions and utilities. Section 16.6 hows how a decision-
theoretic agent can calculate the value of acquiring new information to improve its decisions.

While Sections 16.1-16.6 assume that the agent operates with a given, known utility
function, Section 16.7 relaxes this assumption. We discuss the consequences of preference
uncertainty on the part of the machine—the most important of which is deference to humans.

16.1 Combining Beliefs and Desires under Uncertainty

We begin with an agent that, like all agents, has to make a decision. It has available some
actions a. There may be uncertainty about the current state, so we’ll assume that the agent
assigns a probability P(s) to each possible current state 5. There may also be uncertainty
about the action outcomes; the transition model is given by P(s'|s,a), the probability that
action a in state s reaches state 5. Because we're primarily interested in the outcome s', we'll
also use the abbreviated notation P(RESULT(a) =5}, the probability of reaching 5" by doing
a in the current state, whatever that is. The two are related as follows:

P(RESULT(a) =5') =} P(s)P(s'|s.a).

Decision theory, in its simplest form, deals with choosing among actions based on the desir-
ability of their immediare outcomes; that is, the environment is assumed to be episodic in the




