59

13 Self organization of color vectors

Ordered 2D projection of random 3D color vectors
Objective:

In this second example we demonstrate how we can map (project) 3D
color vectors onto a 2D plane in an orderly fashion by the SOM algo-
rithm. The color vectors are miztures of red, green and blue colors in
which the color components vary. These colors become topographically
ordered on a 2D plane with respect to both intensity and hue to produce
the so-called chromaticity diagram that occurs in human color vision.

13.1 Different nature of items and their attributes

Although we shall be dealing with physical attributes in this example, too,
nonetheless the nature of the problem is completely different from the first case.
First of all we do not have a finite set of concrete objects like the metals in the
first example; each input item is only a color shade, and there exists an indefinite
number of them in practice. On the other hand, each shade is represented only
by three attributes, namely, the intensities of the three components of the basic
colors, which are red, green, and blue. Nonetheless, although the mathematical
representation of the input items is different from that in the previous example,
the self-organization of the colors occurs formally in a similar way.

13.2 Color vectors

A three-dimensional RGB (red-green-blue) color vector is a digital code for any
mixtures of shades and intensities of visible colors. In digital representation, the
intensities of the three basic color components (R, G, B) are given as real scalars
in the range [0, 1].

Our aim is to show that if the input data represent quite random color
vectors, the SOM algorithm is able to produce a representation of colors such
that their distribution remains the same, but the colors become spatially ordered
on the SOM array such that both the hue and the intensity in neighboring
models change gradually; it is said that a topographic order of the colors has
ensued. Because we can understand the relations between colors intuitively, we
use this color example as an abstract model for more general topographic self
organization.

With a proper scaling of the input vectors, an SOM can be produced that
represents the generally known chromaticity diagram or CIE diagram, where the
hue and the saturation of color become represented in polar coordinates like in
the human vision.



60

Consider a MATLAB variable C(a,b,c), which represents a three-dimensional
table. The parameters a and b are the indices of a row and a column in the ta-
ble, and c is a vector that has three elements: its first element represents the
intensity of pure red, the second element represents the intensity of pure green,
and the third component is the intensity of pure blue, respectively.

Let us exemplify the digital coloring by the following concrete example. The
MATLAB function image(C) defines the coloring of the square (a,b) by that
pure color component, the intensity of which is defined by the vector c. If one
needs mized colors, the same location (a,b) must be painted separately by the
intensities of the elements of c; in other words, the mixed colors are defined
digitally by superimposing basic color components.

However, unlike in wet painting, where the mixture of blue and yellow pro-
duces the green color, in digital color definition the mixture of red and green
produces the yellow color. Therefore yellow in the area (a,b) is produced by
the combination of the functions C(a,b,1) and C(a,b,2). Consider the follow-
ing MATLAB commands:

C = zeros(1,4,3); % 1 by 4 table, three color components
c(1,1,1) = 1; % leftmost (1,1) area is pure red C(:,:,1)
C(1,2,2) = 1; % second (1,2) area is pure green C(:,:,2)
c(1,3,3) = 1; % third (1,3) area is pure blue C(:,:,3)

Cc(1,4,1) = 1; C(1,4,2) = 1; Y% fourth area is painted pure yellow:
% combination of pure red = C(:,:,1)
% and pure green = C(:,:,2)

image (C) % painting

These commands produce the color picture in Fig. 16.

Fig. 16. Coloring example.

Another picture, in which a 25 by 25 array is colored by random colors, is
shown in Fig. 17.



61

E] 10 15 20 5

Fig. 17. Coloring of a 25 by 25 array by random color vectors.

13.3 The SOM script for the self organization of colors

In this subsection we initialize the SOM by the function som_lininit,
and continue with the training function som_batchtrain, which con-
structs the SOM of color vectors.

As the input data we use 10°000 random color vectors, which constitute the
10000 by 3 input data matriz X. The SOM algorithm computes the data matrix
M, which is a 625 by 3 matrix. It is to be denoted that in the SOM algorithm, for
mathematical reasons, all of the model vectors are concatenated into a wvertical
array that has as many rows as there are nodes in the SOM array. It is not until
we display the SOM array that we reshape the vertical array as a rectangular
array, in this case 25 by 25.

Training parameters. The definition of the training parameters of the SOM
is made first. We may decide to use a square SOM array (lattice) of the size 25 by
25 nodes, which is defined by the vector msize =[25 25]. In this simple example
we define the SOM array as rectangular, lattice = ’rect’. We may prefer to
use the Gaussian neighborhood function. Its definition ’gaussian’ follows the
’neigh’ parameter name in the function som_batchtrain defined below. Other
parameters are the average radius of the neighborhood function, which decreases
linearly with the coarse training cycles. In this self-organization example we have
found it proper to use the initial value of 10 and the final value of 7, and during
the fine training cycles let the radius decrease from 7 to 5, respectively. In other
words, we did not make use of any stopping rule. The number of training cycles
in both coarse and fine training shall tentatively be 50.



62

msize = [25 25];
lattice = ’rect’;
radius_coarse = [10 7];
radius_fine = [7 5];
trainlen_coarse = 50;
trainlen_fine = 50;

Training functions. Next we define the SOM Toolbox functions som_1ininit
and som_batchtrain. The former carries out the linear initialization of the SOM.
The som_batchtrain function is then applied twice: first for coarse training, and
then for fine training. The last parameters ’shape’,’sheet’ in som lininit
mean that the topology of the SOM array is a plane.

For the training inputs X we use random values of the color vectors: X =
rand (10000, 3).

The following commands, which form the MATLAB SOM Toolbox script,
may now be self-explanatory. These instructions form the complete script or
program which computes the SOM array of self-organized colors.

X = rand(10000,3); % random input (training) vectors to the SOM
smI = som_lininit(X,’msize’,msize,’lattice’,lattice,’shape’,
’sheet’);

smC = som_batchtrain(smI,X,’radius’,radius_coarse,’trainlen’,
trainlen_coarse, ’neigh’,’gaussian’);

sm = som_batchtrain(smC,X,’radius’,radius_fine,’trainlen’,
trainlen_fine, ’neigh’,’gaussian’);

Display of the SOM. This time we do not need the SOM graphic function,
since we are not calibrating the SOM array in the usual way. The matrix values
M represent color shades, which can displayed directly by the image function.
The result is shown in Fig. 18.

M = sm.codebook;
C = zeros(25,25,3);

for i = 1:25
for j = 1:256
p = 25%x(i-1) + j;

c(i,j,1) = M(p,1); C(i,j,2) = M(p,2); C(i,j,3) = M(p,3);
end
end
image (C)



63

Fig. 18. Self organization of random colors in the SOM.

Computation of the chromaticity diagram. Another experiment, in
which the square root of the previous color vectors was used as input data matrix
X, is shown in Fig. 19.

Fig. 19 resembles the chromaticity diagram, which is a representation of in-
tensity and hue of colors in two-dimensional polar coordinates. This diagram,
also called the CIE diagram, is experimentally verified to exist in the human
brain, in the visual cortex.

Like in the CIE diagram of colors, the pale area in Fig. 19 is also in the middle,
and we have an ordered representation of intensity and hue of and mixed colors.
There is no black area in this illustration like in Fig. 18. Obviously the square
root emphasizes light colors to produce this result.

The square root resembles the logarithm, and it is known that in the bio-
logical sensory systems the subjectively experienced signal intensities are often
logarithmically related. This might explain why Fig. 19 resembles the experi-
mentally constructed CIE diagram. However, we cannot use logarithmic scales
in digital signal processing, because small signals are transformed into very large
negative logarithmic values.

Discussion. This example showed how a three-dimensional color solid was
projected onto a two-dimensional plane. The plot includes areas where also the
intensities of colors vary: for example, in Fig. 8 there is a pale area in the upper
left corner, as well as a dark area on the right side. In the former, all of the
numerical values of color components are close to unity, while in the latter, the
numerical values of all of the components of the color vectors are low.



64

Fig. 19. Another self organization of random colors by the SOM, when the square root
of the color vectors was used as input data to the SOM. This image resembles the
chromaticity diagram or the CIE color diagram of the human color vision.

The somewhat more realistic color diagram in Fig. 19 was constructed using
color vectors with an enhanced distribution of whiter shades.

Certainly this projection is nonlinear. One may imagine that the nodes of the
SOM array form a flexible two-dimensional network that is trying to approximate
the three-dimensional color solid. Like the fractal surfaces, also called space-
filling surfaces, this ”flexible” SOM network behaves somewhat in the same way.
It is trying to approximate the higher-dimensional structures, but is succeeding
only partly. The SOM network is more or less ”stiff,” depending on the width of
the neighborhood function, and its ability of approximating higher-dimensional
structures depends on the choice of this neighborhood function. In this example
the final width of the neighborhood function was equal to 5, which is a rather
large value compared with what is normally used. On the other hand, with this
value the color maps shown in Figs.18 and Fig. 19 have become globally ordered,
i. e., they do not contain partially disorganized areas.

One may also understand that while the SOM network is a projection surface
onto which the higher-dimensional data distribution is projected nonlinearly, this
projection surface, in the two-dimensional display, is straightened up.

This example also shows that although the SOM projection is able to illus-
trate higher-dimensional distributions, it is not always unique. Especially de-
pending on the choice of the neighborhood function, but also on the scaling of
the input data and different random-number sequences, the detailed projections
may vary from one mapping to another. The topographic relations between the
items, however, tend to be preserved.





