

هوش مصنوعی پیشرفته

فصل ۱۶

اتخاذ تصميمهاي ساده

Making Simple Decisions

کاظم فولادی دانشکده مهندسی برق و کامپیوتر دانشگاه تهران

http://courses.fouladi.ir/aai

عاملهای نظریه تصمیمی

DECISION-THEORETIC AGENTS

عامل نظريه تصميمي

Decision-Theoretic Agents

عاملی که تصمیمهای رسیونال را بر اساس باورها و خواستههایش اتخاذ میکند.

متغیرهای تصمیمگیری

خواستههای عامل

What agent wants

باورهای عامل

What agent believes

شرایط تصمیمگیری

هدفهاي متناقض

Conflicting goals

عدم اطمينان

Uncertainty

انواع تصميم

انواع تصميم		
تصمیم پیچیده	تصمیم ساده	
Complex Decision	Simple Decision	
تصمیمهای چندمرحلهای	تصمیمهای تکضرب	
Multi-Stage	One-Shot	
تصمیم بر روی یک دنباله از کنشها	تصمیم بر روی یک کنش	

نظریهی تصمیم

نظریهی عمومی تصمیمهای رسیونال

DECISION THEORY

یک عامل رسیونال است اگر و فقط اگر

كنشى با بالاترين سودمندى مورد انتظار را انتخاب كند.

(متوسط آماری) میانگین روی همهی برآمدهای ممکن آن کنش

اصل حداكثر اميد سودمندى

Maximum Expected Utility (MEU)

موش مصنوعي

اتخاذ تصميمهاي ساده

1

تركيب باورها و مطلوبيتها تحت عدماطمينان

Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

انواع تصمیم تصمیمهای ساده

انواع تصميم		
Obișiul piiniil	تصمیم ساده	
Complex Decisien	Simple Decision	
تمسیمهای چشمر ملهای	تصمیمهای تکضرب	
Alulti-Stage	One-Shot	
قمسمیم بر روی یک دنیاله از کنگیشا	تصمیم بر روی یک کنش	

سودمندي

تابع سودمندى

UTILITY

ترجیح های عامل بین حالتهای دنیا، توسط مفهوم سودمندی مشخص میشود. preferences

تابع سودمندى

حالت (دنبالهی حالتهای محیط) را به یک عدد حقیقی نگاشت میدهد.

$$U:\mathcal{S}^* \to \mathbb{R}$$

$$s \mapsto U(s)$$

. عدد سودمندی، میزان مطلوبیت یک حالت را بیان میکند U(s) desirability

epared by Kazim Fouladi | Spring 2017 | 3rd Editic

امید سودمندی

سودمندی مورد انتظار

EXPECTED UTILITY

 $Result_i(A)$: یک کنش غیرقطعی که حالتهای برآمد آن عبارت است از A

شاهد موجود عامل دربارهی دنیا E

گزارهی: «کنش A در حالت فعلی اجرا میشود.» Do(A)

امید سودمندی کنش به شرط شاهد دادهشده EU(Aert E)

سودمندی مورد انتظار

$$EU(A|E) = \sum_{i} P(Result_{i}(A)|Do(A), E)U(Result_{i}(A))$$

ماكزيمم اميد سودمندى

اصل حداكثر اميد سودمندى

maximum expected utility (MEU)

یک عامل رسیونال باید کنشی را انتخاب کند که امید سودمندی آن را ماکزیمم نماید.

$action = \arg\max_{a} EU(a|e)$

اصل MEU: کنشی را انتخاب کنید که امید سودمندی را ماکزیمم میکند

نکته: یک عامل می تواند کاملاً رسیونال باشد (سازگار با MEU)، حتی بدون یک بازنمایی یا کار با سودمندی ها و احتمالات (مثلاً با استفاده از جدول مراجعه برای بازی TicTacToe)

موش مصنوعي

اتخاذ تصميمهاي ساده

پایههای نظریهی سودمندی

نظریهی سودمندی

UTILITY THEORY

نظریهای برای بازنمایی و استدلال در مورد ترجیحها

نظریهی سودمندی
Utility Theory

این نظریه بیان میکند که هر حالت برای یک عامل درجهای از سودمندی را دارد و عامل حالتی که سودمندی بیشتری دارد را ترجیح میدهد.

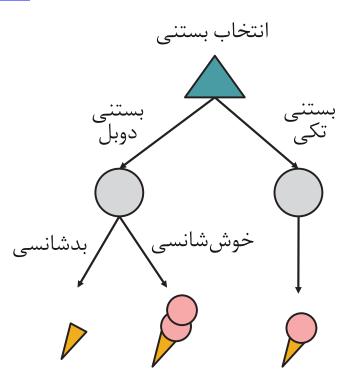
عامل باید بین برآمدهای ممکن مختلف پلانهای گوناگون، ترجیحهایی داشته باشد.

preferences outcome

تابع سودمندى

برآمدهای نامطمئن: مثال

UNCERTAIN OUTCOMES



نظریهی سودمندی

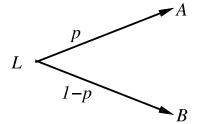
ترجيحها

PREFERENCES

یک عامل می خواهد بین جایزهها (A, B, \ldots) در یک لاتاری انتخاب کند.

لاتارى = وضعیتی با جایزههای نامطمئن

Lottery L = [p, A; (1 - p), B]



نمادگذاری

. به B ترجیح داده میشود A

 $A \succ B$ A preferred to B

باB بغاوتی ندارد. indifference between A and B

. به A ترجیح داده نمی شود B

 $A \gtrsim B$ B not preferred to A

نظریهی سودمندی

ترجيحهاي رسيونال

RATIONAL PREFERENCES

ترجیحها در یک عامل رسیونال باید از قیدهایی تبعیت کند. ترجیحهای رسیونال \Rightarrow رفتار قابل توصیف به عنوان ماکزیممسازی امید سودمندی

قیدهای ترجیحهای رسیونال

Orderability

ترتيبپذيري

$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

Transitivity

تراگذري

$$\overline{(A \succ B)} \land (B \succ C) \Rightarrow (A \succ C)$$

Continuity

پیوستگی

$$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1 - p, C] \sim B$$

Substitutability

جانشانی پذیری

$$A \sim B \implies [p, A; 1 - p, C] \sim [p, B; 1 - p, C]$$

Monotonicity

يكنوايي

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succsim [q, A; 1-q, B])$$

نظریهی سودمندی

ترجيحهاي رسيونال: نتيجهي نقض قيدها: مثال

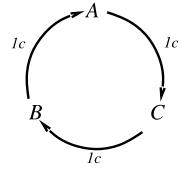
RATIONAL PREFERENCES

مثال: عاملی که ترجیحهای غیرتراگذری دارد، میتواند وادار شود که همهی پولش را دور بریزد!

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C



نظریهی سودمندی

قضیهی وجود تابع سودمندی برای ترجیحهای رسیونال

قضيه

(Ramsey, 1931; von Neumann and Morgenstern, 1944)

با داشتن ترجیحهایی که قیدهای رسیونالیته را ارضا میکنند، تابع حقیقی-مقدار U وجود دارد دارد که

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

هوش مصنوعی

اتخاذ تصميمهاي ساده

تابعهای سودمندی

مقادير سودمندى

UTILITIES

مقادیر سودمندی، حالتها را به اعداد حقیقی نگاشت میدهند: کدام اعداد؟

$$U:\mathcal{S}^* \to \mathbb{R}$$

$$s \mapsto U(s)$$

مقادير سودمندى

روی کرد استاندارد برای سنجش سودمندی های بشری

STANDARD APPROACH TO ASSESSMENT OF HUMAN UTILITIES

حالت داده شدهی A را با یک لاتاری استاندارد L_p مقایسه کنید که دارای مشخصهی زیر است:

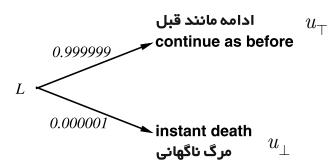
pبا احتمال	$igg u_{ op}igg $	بهترین جایزهی ممکن Best Possible Prize
1-pبا احتمال	$oxed{u_{\perp}}$	بدترین فاجعهی ممکن Worst Possible Catastrophe

$$L = [p, u_\top; 1 - p, u_\perp]$$

احتمال لاتاری p را تنظیم کنید تا

$$A \sim L_p$$

پرداخت م 930 pay \$30 ~



مقیاسهای سودمندی

UTILITY SCALES

کالی QALY: quality adjusted life year	میکرومورت Micromort	سودمندی نرمالشده Normalized Utilitie
تعداد سالهای زندگی با کیفیت (یک سال در سلامتی کامل بدون هیچ ناتوانی)	شانس مرگ یک در میلیون	$u_{\mathrm{T}}=1.0$, $u_{\mathrm{\perp}}=0.0$
کاربرد: تصمیمگیریهای پزشکی شامل ریسک اساسی	کاربرد : پرداخت برای کاهش ریسکهای تولید، …	

مقیاسهای سودمندی

تبدیل روی تابع سودمندی

UTILITY SCALES

رفتار عامل با اعمال یک تبدیل خطی مثبت روی تابع سودمندی ، بدون تغییر باقی میماند.

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

در صورتی که فقط جایزه های قطعی موجود باشند (نبود گزینه های لاتاری)، فقط سودمندی ترتیبی (ordinal utility) قابل تعیین است \equiv ترتیب کلی روی جایزه ها ψ رفتار عامل با اعمال هر تبدیل یکنوا روی تابع سودمندی، بدون تغییر باقی می ماند.

سودمندی پول

UTILITY OF MONEY

پول به صورت یک تابع سودمندی رفتار نمی کند.

EMV(L) ، معمولاً در یک لاتاری L با «امید ارزش پولی» U(L) < U(EMV(L)) ، معمولاً یعنی مردم ریسکگریز (risk-averse) هستند .

سودمندی پول متناسب با لگاریتم مقدار پول است.

سودمندی پول

مثال

UTILITY OF MONEY

در یک مسابقه ی تلویزیونی ، بر دیگر رقبا پیروز شدهاید .

مجرى مسابقه به شما پیشنهاد انتخاب میدهد:

- مىتوانىد جايزەى \$1000000 (يك مىليون دلارى) را بگيرىد.
 - مىتوانىد با پرتاب سكه شرطبندى كنيد (لاتارى):
 - اگر سکه رو بیاید: هیچ جایزهای دریافت نمیکنید.
- اگر سکه پشت بیاید: جایزهی \$3000000 (سه میلیون دلاری) را میگیرید.

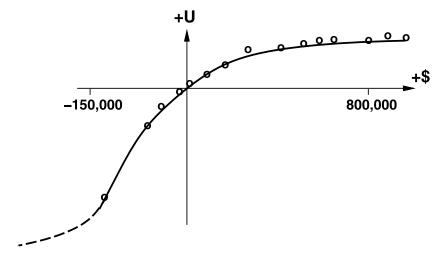
بیشتر مردم لاتاری را رد میکنند و همان جایزهی \$1000000 را میگیرند (زیرا اغلب مردم ریسکگریز هستند.)

سودمندی پول

منحنى سودمندى

UTILITY CURVE

برای چه مقداری از احتمال p تفاوتی بین جایزه ی x و لاتاری $[p,\,\$ M;\, (1-p),\,\$ 0]$ (برای x بزرگ) برای من وجود ندارد؟



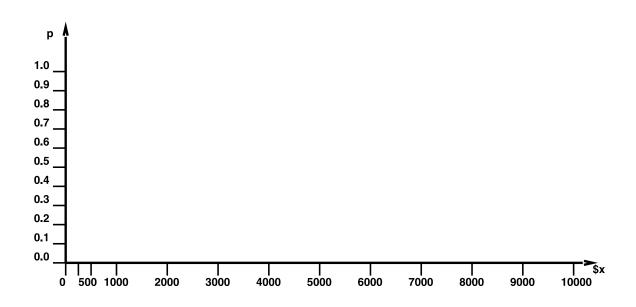
دادههای تجربی نوعی؛ برونیابی با رفتار ریسکپذیر (risk-prone)

nared by Kazim Fouladi | Spring 2017 | 3rd Edition

سودمندی پول

منحنى سودمندى براى گروه دانشجويان كلاس

UTILITY CURVE



هوش مصنوعی

اتخاذ تصميمهاي ساده

تابعهای سودمندی چندخصیصهای

Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

توابع سودمندي چندخصيصهاي

MULTIATTRIBUTE UTILITY FUNCTION

How can we handle utility functions of many variables $X_1 ... X_n$? E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from preference behaviour?

Idea 1: identify conditions under which decisions can be made without complete identification of $U(x_1, \ldots, x_n)$

Idea 2: identify various types of **independence** in preferences and derive consequent canonical forms for $U(x_1, \ldots, x_n)$

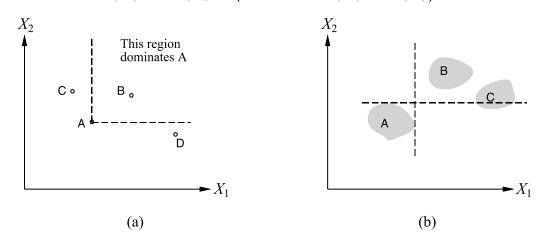
توابع سودمندى چندخصيصهاى

غلبهی اکید

STRICT DOMINANCE

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff $\forall i \ X_i(B) \geq X_i(A)$ (and hence $U(B) \geq U(A)$)

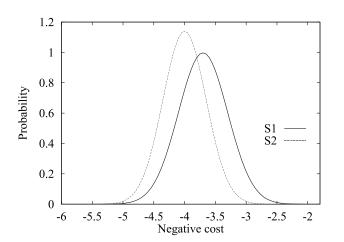


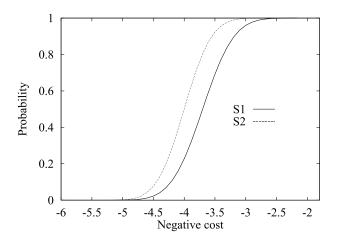
غلبهی اکید بهندرت در عمل برقرار است.

توابع سودمندى چندخصيصهاى

غلبهى اتفاقى

STOCHASTIC DOMINANCE





Distribution p_1 stochastically dominates distribution p_2 iff

$$\forall t \quad \int_{-\infty}^{t} p_1(x) dx \leq \int_{-\infty}^{t} p_2(t) dt$$

If U is monotonic in x, then A_1 with outcome distribution p_1 stochastically dominates A_2 with outcome distribution p_2 :

$$\int_{-\infty}^{\infty} p_1(x)U(x)dx \ge \int_{-\infty}^{\infty} p_2(x)U(x)dx$$

Multiattribute case: stochastic dominance on all attributes \Rightarrow optima

توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخص سازی

STOCHASTIC DOMINANCE

Stochastic dominance can often be determined without exact distributions using **qualitative** reasoning

E.g., construction cost increases with distance from city S_1 is closer to the city than S_2 \Rightarrow S_1 stochastically dominates S_2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:

 $X \xrightarrow{+} Y$ (X positively influences Y) means that

For every value z of Y's other parents Z

 $\forall x_1, x_2 \ x_1 \geq x_2 \Rightarrow \mathbf{P}(Y|x_1, \mathbf{z})$ stochastically dominates $\mathbf{P}(Y|x_2, \mathbf{z})$

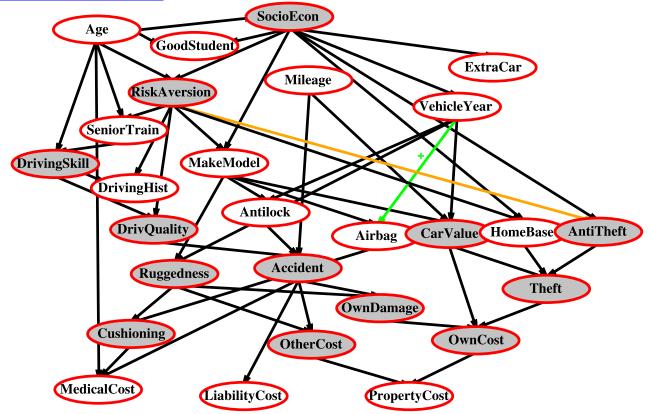
توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۱ از ۶)



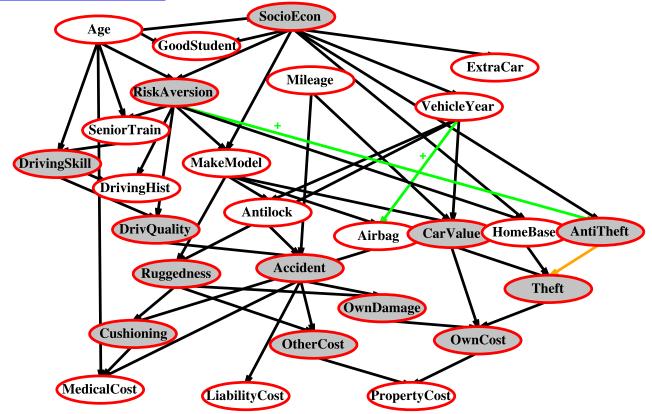
توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۲ از ۶)



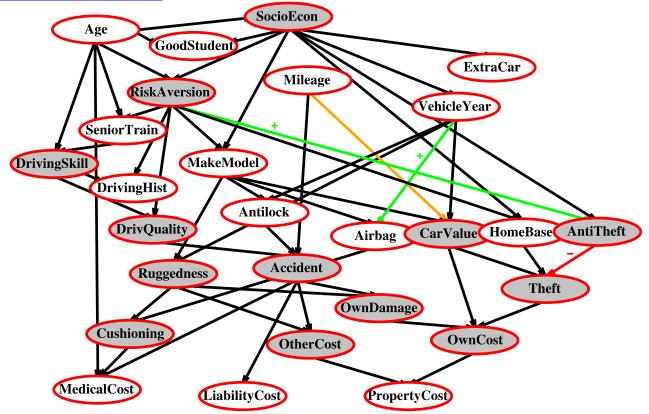
توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۳ از ۶)



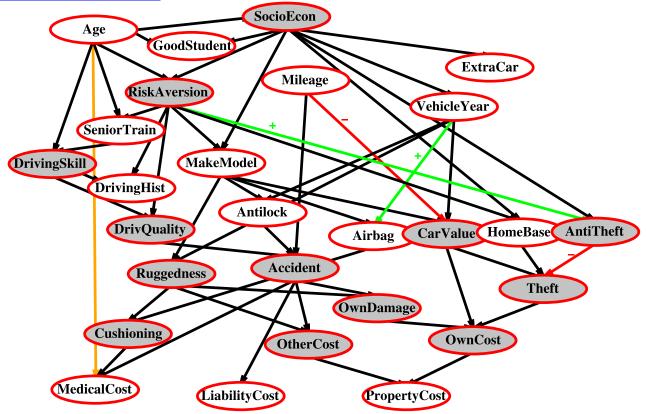
توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۴ از ۶)



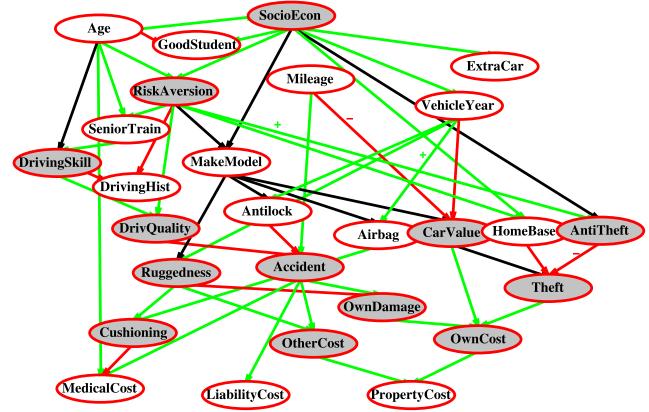
توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۵ از ۶)



توابع سودمندى چندخصيصهاى

غلبهی اتفاقی: مشخصسازی: مثال (۶ از ۶)



ساختار ترجیحها ترجیحهای قطعی

PREFERENCE STRUCTURE: DETERMINISTIC

 X_1 and X_2 preferentially independent of X_3 iff preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x_1', x_2', x_3 \rangle$ does not depend on x_3

E.g., $\langle Noise, Cost, Safety \rangle$: $\langle 20,000 \text{ suffer, } \$4.6 \text{ billion, } 0.06 \text{ deaths/mpm} \rangle \text{ vs.}$ $\langle 70,000 \text{ suffer, } \$4.2 \text{ billion, } 0.06 \text{ deaths/mpm} \rangle$

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I. $\Rightarrow \exists$ additive value function:

$$V(S) = \sum_{i} V_i(X_i(S))$$

Hence assess n single-attribute functions; often a good approximation

ساختار ترجیحها ترجیحها ترجیحهای اتفاقی

PREFERENCE STRUCTURE: STOCHASTIC

Need to consider preferences over lotteries:

X is utility-independent of Y iff preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement

 $\Rightarrow \exists$ multiplicative utility function:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 + k_1 k_2 k_3 U_1 U_2 U_3$$

Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

هوش مصنوعی

اتخاذ تصميمهاي ساده

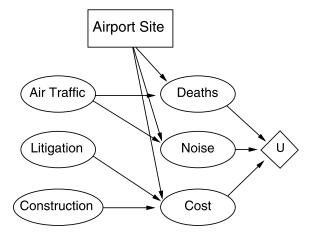
شبکههای تصمیم

Spring 2017 13rd

شبكههاى تصميم

DECISION NETWORKS

با اضافه کردن گرههای کنش و گرههای سودمندی به شبکههای بیزی برای ایجاد امکان تصمیمگیری رسیونال



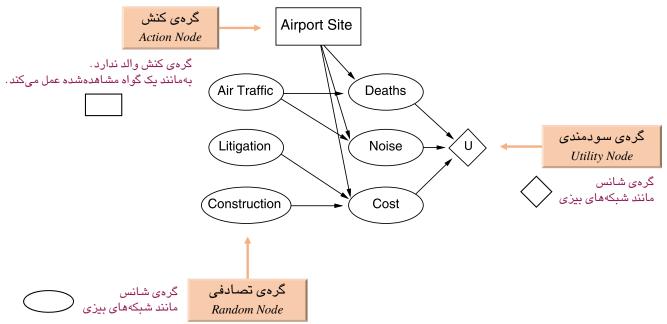
epared by Kazim Fouladi | Spring 2017 | 3rd Editio

شبكههاى تصميم

DECISION NETWORKS

با اضافه کردن گرههای کنش و گرههای سودمندی به شبکههای بیزی

برای ایجاد امکان تصمیمگیری رسیونال

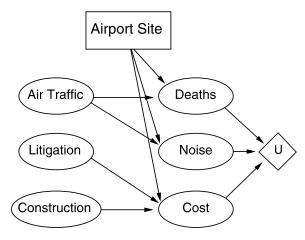


Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

شبكههاى تصميم

DECISION NETWORKS

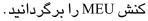
با اضافه کردن گرههای کنش و گرههای سودمندی به شبکههای بیزی برای ایجاد امکان تصمیمگیری رسیونال



الگوريتم:

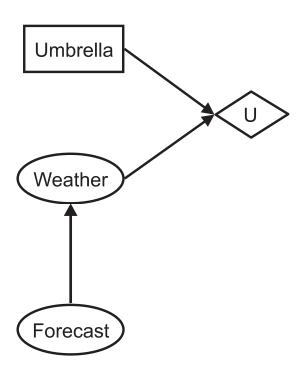
برای هر مقدار از گرهی کنش

مقدار امید گرهی سودمندی را به شرط داشتن کنش و شاهد محاسبه کنید.



شبكههاى تصميم

DECISION NETWORKS



epared by Kazim Fouladi | Spring 2017 | 3rd Editio

شبكههاى تصميم

مثال

Umbrella

Weather

DECISION NETWORKS

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$
$$= 0.7 \times 100 + 0.3 \times 0 = 70$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$
$$= 0.7 \times 20 + 0.3 \times 70 = 35$$

W	P(W)
sun	0.7
rain	0.3

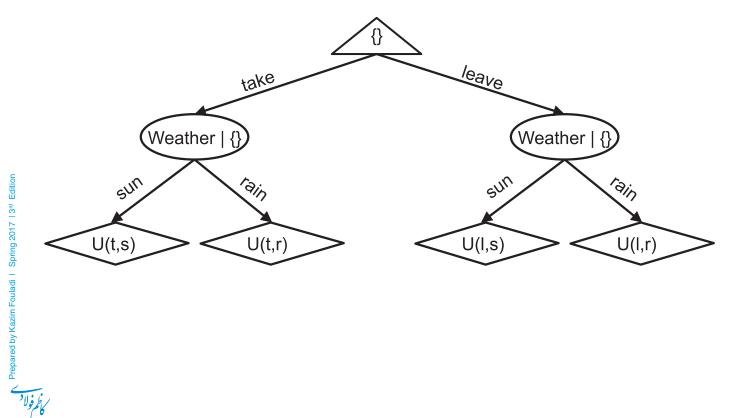
Optimal decision = leave

$$MEU(\varnothing) = \max EU(a) = 70$$

شبكههاى تصميم

مثال: درخت برآمدها برای تصمیمگیری

DECISION NETWORKS



repared by Kazim Fouladi | Spring 2017 | 3rd Edition

شبكههاى تصميم

مثال

DECISION NETWORKS

Umbrella = leave

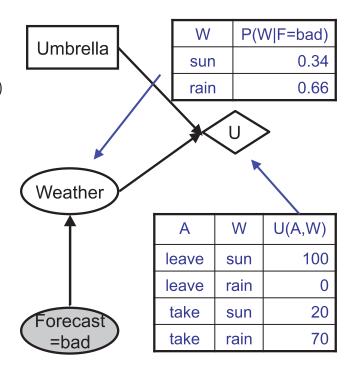
$$EU(leave \mid bad) = \sum_{w} P(w \mid bad)U(leave, w)$$
$$= 0.34 \times 100 + 0.66 \times 0 = 34$$

Umbrella = take

$$EU(take \mid bad) = \sum_{w} P(w \mid bad)U(take, w)$$
$$= 0.34 \times 20 + 0.66 \times 70 = 53$$

Optimal decision = take

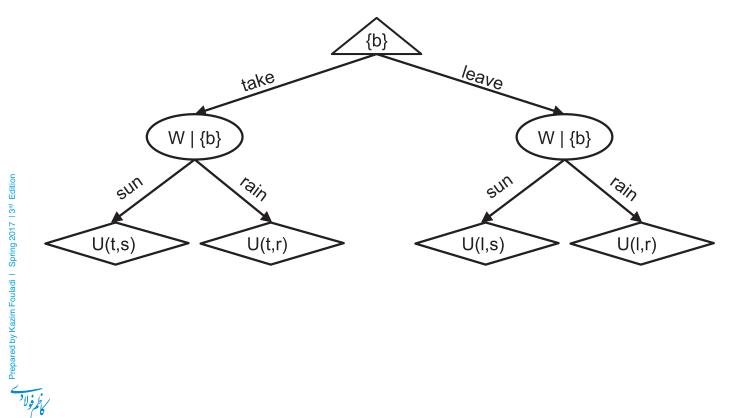
$$MEU(\{F = bad\}) = \max_{a} EU(a \mid bad) = 53$$



شبكههاى تصميم

مثال: درخت برآمدها برای تصمیمگیری

DECISION NETWORKS

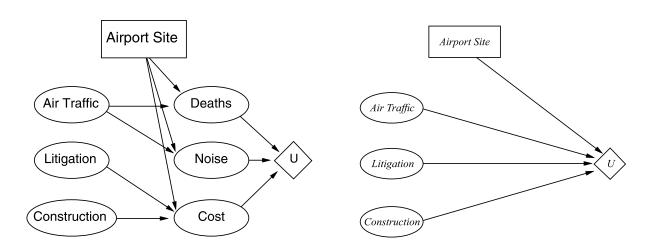


\ Prepared by Kazim Fouladi | Spring 2017 |3rd Edition

شبكههاى تصميم

DECISION NETWORKS

با اضافه کردن گرههای کنش و گرههای سودمندی به شبکههای بیزی برای ایجاد امکان تصمیمگیری رسیونال



با کنار گذاشتن گرههای تصادفی

هوش مصنوعی

اتخاذ تصميمهاي ساده

۶

ارزش اطلاعات

Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

ارزش اطلاعات

VALUE OF INFORMATION

Idea: compute value of acquiring each possible piece of evidence Can be done directly from decision network

Example: buying oil drilling rights

Two blocks A and B, exactly one has oil, worth k

Prior probabilities 0.5 each, mutually exclusive

Current price of each block is k/2

"Consultant" offers accurate survey of A. Fair price?

Solution: compute expected value of information

= expected value of best action given the information minus expected value of best action without information

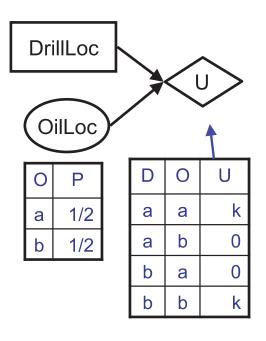
Survey may say "oil in A" or "no oil in A", prob. 0.5 each (given!)

$$= \begin{bmatrix} 0.5 \times \text{ value of "buy A" given "oil in A"} \\ + 0.5 \times \text{ value of "buy B" given "no oil in A"} \end{bmatrix}$$
$$- 0$$
$$= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$$

Spring 2017 13rd Edition

ارزش اطلاعات

VALUE OF INFORMATION



repared by Kazim Fouladi | Spring 2017 | 3rd Edition

ارزش اطلاعات

فرمول عمومى

VALUE OF INFORMATION

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is $\mathit{currently}$ unknown

⇒ must compute expected gain over all possible values:

$$VPI_E(E_j) = \left(\sum_k P(E_j = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_j = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Prepared by Kazim Fouladi | Spring 2017 | 3rd Editi

ارزش اطلاعات

ارزش اطلاعات كامل: مثال

VALUE OF PERFECT INFORMATION (VPI)

MEU with no evidence:

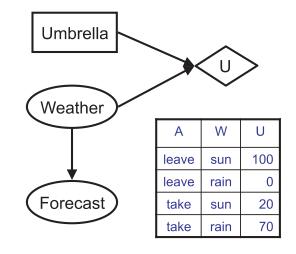
$$MEU(\varnothing) = \max_{a} EU(a) = 70$$

MEU if forecast is bad:

$$MEU(\{F = bad\}) = \max_{a} EU(a \mid bad) = 53$$

MEU if forecast is good:

$$MEU(\{F = good\}) = \max_{a} EU(a \mid good) = 95$$



F	P(F)
good	0.59
bad	0.41

$$0.59 \times 95 + 0.41 \times 53 - 70 = 77.8 - 70 = 7.8$$

$$VPI(E|e') = (\sum_{e'} P(e'|e)MEU(e,e')) - MEU(e)$$

Prepared by Kazim Fouladi | Spring 2017 13rd Edition

ارزش اطلاعات

ارزش اطلاعات كامل

VALUE OF PERFECT INFORMATION (VPI)

فرض میکنیم شاهد E=e را داریم. مقدار ارزش اگر هماکنون کنش کنیم:

$$MEU(e) = \max_{a} \sum_{s} P(s|e)U(s,a)$$

فرض میکنیم شاهد E'=e' را داریم. مقدار ارزش اگر هماکنون کنش کنیم:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e')U(s, a)$$

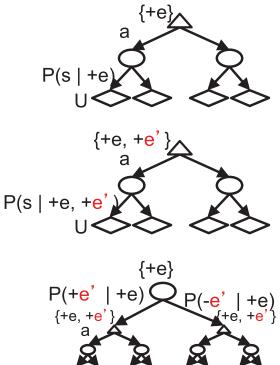
اما E' یک متغیر تصادفی است و که مقدار آن نامعلوم است، پس نمیتوانیم بدانیم e' چه خواهد بود، پس مقدار امید را محاسبه میکنیم:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

ارزش اطلاعات:

په قدر بالاتر میرود اگر ابتدا E' فاش شود و سپس کنش کنیم MEU

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$



Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

ارزش اطلاعات

خصوصيات ارزش اطلاعات كامل

VALUE OF PERFECT INFORMATION

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_i) \geq 0$$

Nonadditive—consider, e.g., obtaining E_j twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

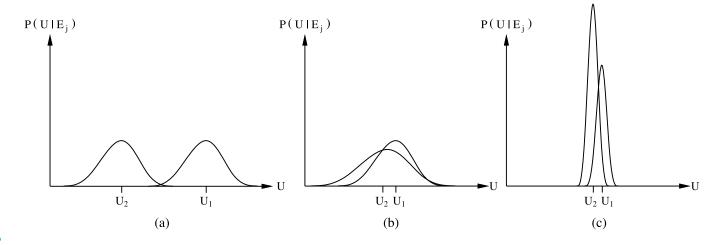
$$VPI_{E}(E_{j}, E_{k}) = VPI_{E}(E_{j}) + VPI_{E, E_{j}}(E_{k}) = VPI_{E}(E_{k}) + VPI_{E, E_{k}}(E_{j})$$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal \Rightarrow evidence-gathering becomes a sequential decision problem

Spring 2017 13rd Edition Prepared by Kazim Fouladi 1

ارزش اطلاعات رفتارهای کیفی

QUALITATIVE BEHAVIORS



- a) Choice is obvious, information worth little
- b) Choice is nonobvious, information worth a lot
- c) Choice is nonobvious, information worth little

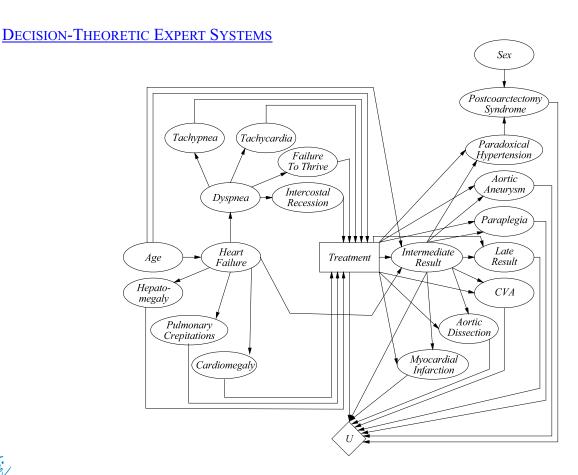
موش مصنوعي

اتخاذ تصميمهاي ساده

سیستمهای خبرهی نظریه تصمیمی

\Prepared by Kazim Fouladi | Spring 2017 |3rd Edition

سيستمهاى خبرهى نظريهتصميمي



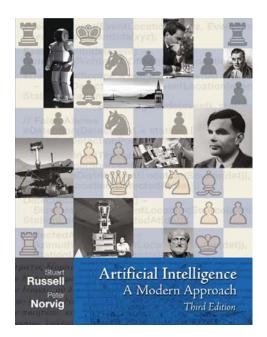
هوش مصنوعی

اتخاذ تصميمهاي ساده

منابع، مطالعه، تكليف

Prepared by Kazim Fouladi | Spring 2017 | 3rd Edition

منبع اصلي



Stuart Russell and Peter Norvig, **Artificial Intelligence: A Modern Approach**, 3rd Edition, Prentice Hall, 2010.

Chapter 16

16 MAKING SIMPLE DECISIONS

In which we see how an agent should make decisions so that it gets what it wants on average, at least.

In this chapter, we fill in the details of how utility theory combines with probability theory to yield a decision-theoretic agent—an agent that can make rational decisions based on what it believes and what it wants. Such an agent can make decisions in contexts in which uncertainty and conflicting goals leave a logical agent with no way to decide: a goal-based agent has a binary distinction between good (goal) and bad (non-goal) states, while a decision-theoretic agent has a continuous measure of outcome quality.

Section 16.1 introduces the basic principle of decision theory: the maximization of expected utility. Section 16.2 shows that the behavior of any rational agent can be captured by supposing a utility function that is being maximized. Section 16.3 discusses the nature of utility functions in more detail, and in particular their relation to individual quantities such as money. Section 16.4 shows how to handle utility functions that depend on several quantities. In Section 16.5, we describe the implementation of decision-making systems. In particular, we introduce a formalism called a decision network (also known as an influence diagram) that extends Bayesian networks by incorporating actions and utilities. The remainder of the chapter discusses issues that arise in applications of decision theory to expert systems.

16.1 COMBINING BELIEFS AND DESIRES UNDER UNCERTAINTY

Decision theory, in its simplest form, deals with choosing among actions based on the desirability of their immediate outcomes; that is, the environment is assumed to be episodic in the sense defined on page 43. (This assumption is relaxed in Chapter 17.) In Chapter 3 we used the notation RESULT(80, a) for the state that is the deterministic outcome of taking action a in state so. In this chapter we deal with nondeterministic partially observable environments. Since the agent may not know the current state, we omit it and define RESULT(a) as a random variable whose values are the possible outcome states. The probability of outcome s², given evidence observations e, is written

P(RESULT(a) = s' | a, e),

610

