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Continuity S g
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If B > (', then an agent who has (
would pay (say) 1 cent to get B

If A = B, then an agent who has B
would pay (say) 1 cent to get A

If C' > A, then an agent who has A
would pay (say) 1 cent to get ('
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How can we handle utility functions of many variables X, ... X7
E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

|dea 1: identify conditions under which decisions can be made without com-
plete identification of U(z1, ..., x,)

|dea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(zy, ..., x,)
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STRICT DOMINANCE

Typically define attributes such that U/ is monotonic in each
Strict dominance: choice B strictly dominates choice A iff

Vi X;(B)> X;(A) (and hence U(B) > U(A))

This region A
dominates A

(a) (b)
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STOCHASTIC DOMINANCE
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-6 -55 -5 45 -4 35 -3 -25 -2 -6 -55 -5 45 -4 35 -3 -25 -2
Negative cost Negative cost

Distribution p; stochastically dominates distribution ps iff
Vi /joc pr(x)de < /joc po(t)dt

If U/ is monotonic in x, then A; with outcome distribution p;
stochastically dominates A, with outcome distribution p-:

[ pi(@)U(z)dz > [7 po(2)U (z)dz
Multiattribute case: stochastic dominance on all attributes =- optimal

Prepared by Kazim Fouladi | Spring 2017 |3 Edition

P




Sldaraisin (sutes g aal g3

STOCHASTIC DOMINANCE
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Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S is closer to the city than S5
= 5 stochastically dominates S, on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X =, Y (X positively influences Y) means that
For every value z of Y''s other parents Z
Vi, x9 11 > 19 = P(Y |21, 2) stochastically dominates P (Y | x5, z)



Prepared by Kazim Fouladi | Spring 2017 |3 Edition

AR

Sldaraisin (sutes g aal g3

STOCHASTIC DOMINANCE

(% 31V ) Js s s 5bupmi eSS sl

Ag

Cushioning

P

SocioEcon

\
v

(LiabilityCost

CropertyCol



Prepared by Kazim Fouladi | Spring 2017 |3 Edition

Y

Sldaraisin (sutes g aal g3

STOCHASTIC DOMINANCE

(5 3)Y) Js s s 5lupmi e S8 sl

SocioEcon

Ag

RiskA version

—{

GrivingShil

~ DrivingHist

DrivQuality

/

Cushioning

V

(3 >
GoodStuden »/A
Q>

MakeModel

A‘ Airbag ¢ CarValueC HomeBasel AniTheft )

(onrcn>  Comen

(CiabilityCost EropertyCosD

P

Rugged
el g, ‘
,"4



Prepared by Kazim Fouladi | Spring 2017 |3 Edition

Yy

Sldaraisin (sutes g aal g3

(7 51Y) Jie s g 5lwpad s 1 B gaule
STOCHASTIC DOMINANCE

SocioEcon

(3 >
GoodStuden »/A
Q>

G
ehicleYear
=/ @ehicleYear)

5 ~
GrivingSkill
~ DrivingHist
DrivQuality A‘ Airbag G CarValuel HomeBasel_AntiTheft )
[ 2 \
v" A @
L—></
B (OmerGo> COmmCost>

(CiabilityCost EropertyCosD

Ag

P



Prepared by Kazim Fouladi | Spring 2017 |3 Edition

Y

Sldaraisin (sutes g aal g3

(7 51F) Jie : g5 lpad s 1 B gale
STOCHASTIC DOMINANCE

SocioEcon

Age

‘l
&
GrivingSkil

~
~ DrivingHist

(7

Ruggedness @
— JA\
L=

GoodStuden »/A
Qe
v

‘
DrivQuality @

Cushioning P @
V @

(CiabilityCost @ropertyCosD

P



0 A s (o guitre0 Sugd

Sldaraisin (sutes g aal g3

(7 510) Jis : (g3 lwpad s 1 B gasle
STOCHASTIC DOMINANCE

SocioEcon

Age

GoodStuden »/A
RiskA version O
S -

ehicleYear
Gy ] |

~ DrivingHist

( A ‘
e
v l‘\
,"4‘

G G

Prepared by Kazim Fouladi | Spring 2017 |3 Edition

P



vF

Sldaraisin (sutes g aal g3

(% 3 7) Jbo : s 3luugpmi o - 3L sule

STOCHASTIC DOMINANCE

Prepared by Kazim Fouladi | Spring 2017 |3 Edition

edicalCost (LiabilityCost (PropertyCos

-
’”’;ﬁb/



yv

g 5 jbale

b3 slapa

PREFERENCE STRUCTURE: DETERMINISTIC
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X; and X, preferentially independent of X3 iff
preference between (1, 29, x3) and (), 2, x3)
does not depend on 3

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.l. of its com-
plement, then every subset of attributes is P.| of its complement: mutual

P.l.
Theorem (Debreu, 1960): mutual P.I. = 3 additive value function:
V(S) = LVi(Xi(S))

Hence assess n single-attribute functions; often a good approximation
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PREFERENCE STRUCTURE: STOCHASTIC

Need to consider preferences over lotteries:
X is utility-independent of Y iff
preferences over lotteries in X do not depend on y

Mutual U.l.: each subset is U.l of its complement
= multiplicative utility function:
U = kU + koUy + k3Us
+ k1koU Uy + koksUsUs + ksk,UsUq
+ k1koksU1UsUs

Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions
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DECISION NETWORKS
Umbrella = leave
Umbrella
EU(leave) ZP U(leave, w)

— 0.7 %100 + 0.3 % 0 = 70 0
Umbrella = take @

EU(take) Z P(w)U(take, w) /

=O.7><20+0.3><70= 35 A W U(A,W)

W P(W) leave sun 100

sun 0.7 leave rain 0

Optimal decision = leave rain 0.3 take sun 20
MEU(2) = max EU(a) = 70 take rain 70

P
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DECISION NETWORKS
W | P(W|F=bad)
Umbrella = leave Umbrella sun 034
EU(leave | bad) = ZP(w | bad)U (leave, w) rain 0.66

= 0.34 X100 + 0.66 x 0 = 34

Umbrella = take
EU(take | bad) = > P(w | bad)U(take, w)

= 0.34 x 20 + 0.66 x 70 = 53

Optimal decision = take

MEU({F = bad}) = max EU(a | bad) = 53
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VALUE OF INFORMATION
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|dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is £ /2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of “buy A" given “oil in A"
+ 0.5 x value of “buy B" given “no oil in A”]
-0
= (0.5 % k/2) + (0.5 x k/2) — 0 = k/2
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VALUE OF INFORMATION

Current evidence I, current best action «v
Possible action outcomes S}, potential new evidence [;

EU(a|E) = max 2; U(S;) P(Si|E, a)
Suppose we knew [7; = ¢;;, then we would choose e,y St
EU(O@M\E, Ej=ej}) = max 2 U(S;) P(Si|E,a, Ej=¢jy)

E; is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIg(Ej) = (Xk P(Ej=e¢;t|E)EU(ac,|E, E;j=¢ji)) — EU(a|E)

(VPI = value of perfect information)
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VALUE OF PERFECT INFORMATION (VPI)

P

MEU with no evidence:
MEU (@) = m?xEU(a) =170
MEU if forecast is bad:
MEU({F = bad}) = m;axEU(a | bad) = 53

MEU if forecast is good:

leave
MEU({F = good}) = max EU(a | good) = 95 take

F P(F)
good 0.59
bad 0.41

VPI(E|e) = ZP

Umbrella

rain

sun

rain

[> 0.59 x 95 + 0.41x 53 — 70 = 77.8 — 70 = 7.8

e)MEU (e,e')) — MEU (e)
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VALUE OF PERFECT INFORMATION (VPI)
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MEU(e) = maXZP
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MEU e, €) maXZP (sle,eNU(s,a)
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MEU e ZP e)MEU e, ¢')
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VPI(E'|e) = MEU(e, E') — MEU (e)
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VALUE OF PERFECT INFORMATION

Nonnegative—in expectation, not post hoc
Vj,E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining F/; twice
VPIp(E;, Ey) # VPIg(E;)+ VPIp(Ey)
Order-independent
VPIp(E;j, Ey) = VPIp(E);) + VPIpp/(Ey) =V PIg(Ey) +V Plg g (E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
= evidence-gathering becomes a sequential decision problem
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QUALITATIVE BEHAVIORS

P(UIE;) P(UIE;) P(UIE;)

) A )
/I\/I\ . ) ) .
U, Uy U, Uy U, U;
(@) (b) (©

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little
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DECISION-THEORETIC EXPERT SYSTEMS

Sex

Tachypnea
Heart
Failure

Pulmonary

Crepitations

Cardiomegaly,

Tachycardia

Failure
To Thrive
Intercostal
Recession

Postcoarctectomy
Syndrome

Paradoxical
Hypertension

Aortic
Aneurysm

Paraplegia

Treatment

Late
Result

Intermediate
Result
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MAKING SIMPLE
DECISIONS

Inwhich we see how an agent should make decisions so that it gets what it wants—
on average, at least.

In this chapter, we fill in the details of how utility theory combines with probability theory to
yield a decision-theoretic agent—an agent that can make rational decisions based on what it
believes and what it wants. Such an agent can make decisions in contexts in which uncertainty
and conflicting goals leave a logical agent with no way to decide: a goal-based agent has a
binary distinction between good (goal) and bad (non-goal) states. while a decision-theoretic
agent has a continuous measure of outcome quality.

Section 16.1 introduces the basic principle of decision theory: the maximization of
expected utility. Section 16.2 shows that the behavior of any rational agent can be captured
by supposing a utility function that is being maximized. Section 16.3 discusses the nature of
utility functions in more detail, and in particular their relation to individual quantities such as

Stuart r«rl‘lficial In relllgel'lce money. Section 16.4 shows how to handle utility functions that depend on several quantities.
Russell [= In Section 16.5, we describe the implementation of decision-making systems. In particular,
(‘_ld ern f MOL 'L-.h we introduce a formalism called a decision network (also known as an influence diagram)
o i that extends Bayesian networks by incorporating actions and utilities. The remainder of the

J J F_l]ll fron chapter discusses issues that arise in applications of decision theory to expert systems.

16.1 COMBINING BELIEFS AND DESIRES UNDER UNCERTAINTY

Stuart Russeu and Peter NOng’ Decision theory, in its simplest form, deals with choosing among actions based on the desir-

1 1 i . ability of their immediate outcomes; that is, the environment is assumed to be episodic in the
ArtlﬁCIal Intelhgence' A MOdern ApproaCh’ sense defined on page 43. (This assumption is relaxed in Chapter 17.) In Chapter 3 we used
3rd Edition, Prentice Hall’ 20 1 0 the notation RESULT(sq, a) for the state that is the deterministic outcome of taking action a

in state #g. In this chapter we deal with nondeterministic partially observable environments.
Since the agent may not know the current state, we omit it and define RESULT (a) as a random
variable whose values are the possible outcome states. The probability of outcome &', given
Chapter 16 evidence observations e, is written
P(RESULT(a)=¢'|a.¢) ,
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