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Hybrid intelligent systems 8

In which we consider the combination of expert systems, fuzzy
logic, neural networks and evolutionary computation, and discuss
the emergence of hybrid intelligent systems.

8.1 Int ion, or how to bine G hanics with
Italian love

In previous chapters, we considered several intelligent technologies, including
probabilistic reasoning, fuzzy logic, neural networks and evolutionary computa-
tion. We discussed the strong and weak points of these technologies, and
naoticed that in many real-world applications we would need not only to acquire
knowledge from various sources, but also to combine different intelligent
technologies. The need for such a combination has led to the emergence of

hybrid intelligent systems.
A hybrid intelligent system is one that combines at least two intelligent

technologies. For example, combining a neural network with a fuzzy system

I N I E L I_ I ( E N ( E results in a hybrid neuro-fuzzy system.
The combination of probabilistic reasoning, fuzzy logic, neural networks and
E

| ~EN evolutionary computation forms the core of soft computing (SC), an emerging

UIDE TO INTELLIGENT T % approach to building hybrid intelligent systems capable of reasoning and
learning in an uncertain and imprecise environment.

The potential of soft computing was first realised by Lotfi Zadeh, the ‘father”

of fuzzy logic. In March 1991, he established the Berkeley Initiative in Soft

Michael Negnevitsky Computing. This group includes students, professors, employees of private and
4 government organisations, and other individuals interested in soft computing.
Artiﬁcial Intellige]’]ce: A Guide to Intelligent Systems, The rapid growth of the group suggests that the impact of soft computing on

ence and technology will be increasingly felt in coming years.

Pearson Education Canada, 2011.
What do we mean by ‘soft’ computing?
Chapter 8 (8'5) While traditional or ‘hard’ computing uses crisp values, or numbers, soft

computing deals with soft values, or fuzzy sets. Soft computing is capable of
operating with uncertain, imprecise and incomplete information in a manner
that reflects human thinking. In real life, humans normally use soft data
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Computational
Intelligence

Symergpes of Fuzzy Loge. Newnl Netwarks
and Evolutionary Computing

MWILEY

Nazmul Siddique, Hojjat Adeli,

Computational Intelligence: Synergies of Fuzzy Logic,
Neural Networks and Evolutionary Computing,

John Wiley & Sons, 2013.
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Evolutionary Neural Networks

9.1 Introduction

Layered feedforward neural networks have become very popular, for several reasons: they have
been found in practice (o generalize well and there are well-known training algorithms such
as Widrow—Hoff, backpropagation, Hebbean, winner-takes-all. Kohonen self-organizing map
which can often find a good set of weighls. Despile using minimal training sets, the learning
time very often increases exponentially and they often cannot be constructed (Muehlenbein,
1990). When global minima are hidden among the local minima, the backpropagation (BP)
algorithm can end up bouncing between local minima without much overall improvement,
which leads to very slow training. BP is a method requiring the computation of the gradient
of emror with respect to weights, which again needs differentiability. As a result, BP cannot
handle discontinuous optimality criteria or discontinuous node transfer functions. BP's speed
and robustness are sensitive to parameters such as learning rate, momentum and acceleration
constant, and the best parameters (o use seem (o vary from problem o problem (Badi and
Homik, 1995). A method called momentum decreases BP's sensitivily to small details in the
emor surface. This helps the network avoid getting stuck in shallow minima which would
prevent the network from finding a lower-emor solution (Vogt ef al., 1988).

The automatic design of artificial neural networks has two basic sides: parametric learning
and structural learning. In structural learning. both the architecture and parametric information
must be learned through the process of training. Basically, we can consider three models of
structural learning: constructive algorithms, destructive algorithms and evolutionary computa-
tion. Constructive algorithms (Gallant, 1993; Honavar and Uhr, 1993; Parekh et al_. 2000) start
with a small network (usually a single neuron). This network is trained until it is unable to con-
tinue learning. then new components are added to the network. This process is repeated until
a salisfactory salution is found. These methods are usually trapped in local minima (Angeline
et al., 1994) and tead to produce big networks. Destructive methods, also known as pruning
algorithms (Resd, 1993), start with a big network that is able to learn but usually ends in
over-fitling and try o remove the connections and nodes thal are not useful. A major problem
with pruning methods is the assignment of credit o structural components of the network in
order Lo decide whether a connection or node must be removed. Both methods, constructive

Compuiational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evelutionary Compating, First Edition
Nazmul Subfique and Hogiat Adeli
013 Jahn Wiley & Sons. Lid. Publishod 2013 by John Wiley & Sons. Lid




