[t HINLE

o f 2 & *
€3 J LS €Y J.:\A S Lﬂ &.\.w:\m
Fuzzy Expert Systems
PR RERALS
FoelS 5 3o (puige 8uS B3
Qb.@:s NN

http://courses.fouladi.ir/aai






oy (sdatii

OJ.;&Q ‘a.u.o.a.f.w
Expert System
.A..SU.AJJ.A |JL,;sLud|6a):x$

I BH g (G (e
Knowledge-based System

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P



Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P

i
Laddl 30
Do (e
Expert System
gl 59590 2bls ol
Inference Engine Knowledge Base
(IE) (KB)

!

2bla Ll Lacuadl s «S (glousslo
Laas po cdille KB a0 9 50
B3 us 50 (s B uiS o S 5
JMJAA[AM‘

:

S o3 (bl sl ol

L) el




‘55L§ SOy ‘SLAP:\-U.I:\M

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P

‘5‘}@ SO e:t.w:\.w
Fuzzy Expert System

gl 59590 2bls ol
Inference Engine Knowledge Base
(IE) (KB)

I I

! ;

3 gl G 534 el




SO sousld

Fuzzy RULE
taml 55 QB o g s gtlea S5O (soueB S
IF zis A THEN yis B
X b slaalle T P xnelie Ae F(X) oL slas

Y| (ol snulie) B e F(Y) (58 (sl eiie)

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P



SO sousld
JBe 55l ael 58 5 SuudS uel 3 G o lss
Fuzzy RULE
FaiiS o suliul 5059 Ghaie 5 SuwIS ael o8

Rule: 1 Rule: 2

IF speed 1s > 100 IF speed 1s <40

THEN stopping_distance is long THEN stopping_distance is short
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Rule: 1 Rule: 2

IF speed is fast IF speed is slow

THEN stopping_distance is long THEN stopping_distance is short
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IF height 1s tall
THEN weight is heavy
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IF height 1s tall
THEN weight is heavy
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IF project_duration is long
AND project staffing is large
AND project _funding is inadequate
THEN risk is high

IF service is excellent
OR food is delicious
THEN tip is generous
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IF temperature is hot
THEN hot water is reduced;
cold water is increased
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1975, Professor Ebrahim Mamdani of London University

il SEIBI oS! e Golus iU e
Fuzzification Rule Evaluation Aggregation Defuzzification
ERLMERIE oL aelss obis)l N B olwsolsue

S9508 LAt acl 58 sl acl 53 8150 =W 2o



\¥

53\5 GL\.\.\M’"" f

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P

JGa

«saels dy J-ALAJJ «L;?JJ.A ‘5‘3-64\9)\9\9‘3”64“:"““‘5‘3

Rule:

IF
OR
THEN

Rule:

IF
AND
THEN

Rule:

IF
THEN

N X W N XN N X K

is
is
is

is
is
is

is
is

A3
Bl
1

A2
B2
c2

Al
a3

Rule: 1
IF project_funding is adequate
OR project_staffing is small
THEN risk is low

Rule: 2
IF project_funding is marginal
AND project_staffing is Llarge
THEN risk is normal

Rule: 3
IF project_funding is inadequate
THEN risk is high
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Mamdani Fuzzy Inference Method
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Rule Evaluation

0

0.0

x1

X

> 0 yl

Rule 1: TF x is A3 (0.0) OR yis B1 (0.1) THEN zis C1(0.1)
1 A 1 0.7 . 1

0.2 AND \ 0.2

4 \ (min)
0 x1 X 0 yl Y
Rule 2: IF x is A2 (0.2) AND yis B2 (0.7) THEN zis C2(0.2)
1 \
0.5

0 x1 X
Rule 3: TF x is A1 (0.5) THEN zis C3 (0.5)
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Sugeno-Style Fuzzy Rule

IF X is A A€ f(X)
AND y is B B e F(Y)
THEN z is  f(x,y)
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Zero-Order Sugeno-Style Fuzzy Rule

IF x is A
AND y is B
THEN z  is k <— ool
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Rule2: TF x is A2 (0.2) AND yis B2 (0.7) THEN zis k2 (0.2)
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0 1 X 0 K3z
Rule 3: TF x is A1 (0.5) THEN zis k3 (0.5)
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L) slasaiie iad s e (Hlugaddine () K

tpaols el SL5 sadte Hlea Linguistic Variable: Mean Delay, m
L gie sl ey O Linguistic Value Notation Numerical Range (normalised)
M (Slse A1) Very Short VS [0, 0.3]
S o uias s g s olans O Shor.t S [0.1, 0.5]
D 3sas 5555500 5356 O Medium M [0.4,0.7]
n " labs u‘ S Linguistic Variable: Number of Servers, s
st gl Linguistic Value Notation Numerical Range (normalised)
Small S [0, 0.35]
Medium M [0.30, 0.70]
Large L [0.60, 1]
Linguistic Variable: Repair Utilisation Factor, p
< Linguistic Value Notation Numerical Range
z Low L [0, 0.6]
& Medium M [0.4, 0.8]
= High H [0.6, 1]
% Linguistic Variable: Number of Spares, n
@ Linguistic Value Notation Numerical Range (normalised)
. Very Small VS [0, 0.30]
3 Small S [0, 0.40]
5 Rather Small RS [0.25, 0.45]
= Medium M [0.30, 0.70]
8 Rather Large RL [0.55, 0.75]
3 Large L [0.60, 1]
p Very Large VL [0.70, 1]
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If (utilisation_factor is L) then (number_of spares is S)
If (utilisation_factor is M) then (number_of spares is M)
If (utilisation_factor is H) then (number_of spares is L)

If (mean_delay is VS) and (number_of servers is S) then (number_of spares is VL)
If (mean_delay is S) and (number_of servers is S) then (humber_of spares is L)
If (mean_delay is M) and (number_of_servers is S) then (humber_of_spares is M)

If (mean_delay is VS) and (number_of _servers is M) then (number_of_spares is RL)
If (mean_delay is S) and (number_of_servers is M) then (number_of_spares is RS)
If (mean_delay is M) and (number_of_servers is M) then (number_of_spares is S)

©CoeN o0k W~

10.1f (mean_delay is VS) and (number_of _servers is L) then (number_of spares is M)
11.1f (mean_delay is S) and (number_of servers is L) then (number_of spares is S)
12.1f (mean_delay is M) and (number_of servers is L) then (number_of spares is VS)
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Three-dimensional plots for Rule Base 1

number_of_spares
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Three-dimensional plots for Rule Base 1
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mean_delay 0 utilisation_factor
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Three-dimensional plots for Rule Base 2
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o
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Three-dimensional plots for Rule Base 2

number_of_spares

mean_delay

utilisation_factor
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Three-dimensional plots for Rule Base 2
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Three-dimensional plots for Rule Base 3
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ARTIFICIAL
INTELLIGENCE

UIDE TO INTELLIGENT il

Michael Negnevitsky,

Artificial Intelligence: A Guide to Intelligent Systems,
Pearson Education Canada, 2011.

Chapter 4
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Fuzzy expert systems 4

In which we present fuzzy set theory, consider how to build fuzy
expert systems and illustrate the theory through an example.

4.1 Introduction, or what is fuzzy thinking?

Experts usually rely on common sense when they solve problems. They also use
vague and ambiguous terms. For example, an expert might say, ‘Though the
power transformer is slightly overloaded, I can keep this load for a while'. Other
experts have no difficulties with understanding and Interpreting this statement
because they have the background to hearing problems described like this.
However, a knowledge engineer would have difficulties providing a computer
with the same level of understanding, How can we represent expert knowledge
that uses vague and ambiguous terms in a computer? Can it be done at all?

This chapter attempts to answer these questions by exploring the fuzzy set
theory (or fuzzy logic). We review the philosophical ideas behind fuzzy logic,
study its apparatus and then consider how fuzzy logic Is used in fuzzy expert
systems,

Let us begin with a trivial, but still basic and essential, statement: fuzzy logic is
not logic that is fuzzy, but logic that is used to describe fuzziness., Fuzzy logic
is the theory of fuzzy sets, sets that calibrate vagueness. Fuzzy logic is based on
the idea that all things admit of degrees. Temperature, height, speed, distance,
beauty - all come on a sliding scale. The motor is running really hot. Tom Is
a very tall guy. Electric cars are not very fast. High-performance drives require
very mpid dynamics and precise regulation. Hobart is quite a short distance
from Melbourne. Sydney is a beautiful city. Such a sliding scale often makes it
Impossible to distinguish members of a class from non-members. When does a
hill become a mountain?

Boolean or conventional logic uses sharp distinctions. It forces us to draw
lines between members of a class and non-members, It makes us draw lines in
the sand. For instance, we may say, ‘The maximum range of an electric vehicle is
short’, regarding a range of 300km or less as short, and a range greater than
300km as long. By this standard, any electric vehicle that can cover a distance of
301km (or 300km and 500m or even 300km and 1m) would be described as
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Computational
Intelligence

Symergpes of Fuzzy Loge. Newnl Netwarks
and Evolutionary Computing

Nazmul Siddique, Hojjat Adeli,

Computational Intelligence: Synergies of Fuzzy Logic,
Neural Networks and Evolutionary Computing,

John Wiley & Sons, 2013.

Chapter 2, 3
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Introduction to Fuzzy Logic

2.1 Introduction

In classical {Newtonian) mechanics, uncertainty was considered as undesirable and to be
avoided by any means. In the laie nineteenth century, researchers started to realize that no
physical system exists without a certain amount of uncertainty. This is a phenomenon without
which the description of a system or model is incomplete. A trend starled then in science
and engineering to incorporate uncertainty in system models. Al this stage uncertainty was
quantified with the help of probability theory. developed in the eighteenth century by Thomas
Bayes (Price, 1763). The expression of uncertainty using probability theory was first challenged
by Max Black (Black, 1937). He proposed a degree as a measure of vagueness. Vagueness can
be used to describe a certain kind of uncertainty. For example, John is young. The proposition
defined here is vague. He pointed out two main ideas: one is the nature and observability of
vagueness and the other is the relevance of vagueness for logic. Black proposed vague sets
defined by a membership curve. This was the first atiempt to give a precise mathematical
theory for sets where there is a membership curve.

There was another movement present in the philosophy. among logicians. The most basic
assumptions of classical (or two-valued) propositional as well as first-order logic are the
principles of bivalence and compositionality. The prineiple of bivalence is the assumption that
each sentence is either true or false under any one of the interpretations, i.e., has exactly one of
the truth values wsually denoted numerically by 1 and 0. The problem of future conlingencies
was a source of many unresolved debates during the middle ages, continuing until the revival
of the field of logic in the second half of the nineteenth century. In the second half of the
nineteenth century, dissatisfaction with the principle of bivalence appeared (Gottwald, 2001).
Charles Sanders Peirce laughed at the ‘sheep and goat separators” who split the world into
true and false. Around 1867, Peirce set up a triadic tricholomic semiolic as a new type of logic
of universal nature. It necessarily derives from a general philosophical system, the doctrine
of the continuum. All that exists is continuous and such a continuum governs knowledge and
implies generality (Eisele, 1979)

Following the doctrine of the continuum, new interest in multi-valued logic began in the
ewrly twentieth century. The real starting phase of many-valued logic began in the 1920s
and continued until 1930. The main driving force behind the development was the Polish

Compuiatisnal intelligence: Syaeries af Fuzzy Logic. Newral Networks and Evalationary Compating. First Edition
Nazmul Siddique and Hojjat Adeli
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