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Preface

Computational intelligence is a well-established paradigm, where new
theories with a sound biological understanding have been evolving.
Defining computational intelligence is not an easy task. In a nutshell,
which becomes quite apparent in light of the current research pursuits,
the area is heterogeneous with a combination of such technologies as neu-
ral networks, fuzzy systems, rough set, evolutionary computation, swarm
intelligence, probabilistic reasoning, multi-agent systems, etc. Just like
people, neural networks learn from experience, not from programming.

Neural networks are good at pattern recognition, generalization, and
trend prediction. They are fast, tolerant of imperfect data, and do not
need formulas or rules. Fuzzy logic in the narrow sense is a promising new
chapter of formal logic whose basic ideas were formulated by Lotfi Zadeh.
The aim of this theory is to formalize the “approximate reasoning” we
use in everyday life, the object of investigation being the human aptitude
to manage vague properties. This work is intended to help, provide basic
information, and serve as a first step for individuals who are stranded in
the mind-boggling universe of evolutionary computation (EC). Over the
past years, global optimization algorithms imitating certain principles of
nature have proved their usefulness in various domains of applications.

About This Book

The aim of this book is to furnish some theoretical concepts and to
sketch a general framework for computational intelligence paradigms
such as artificial neural networks, fuzzy systems, evolutionary computa-
tion, genetic algorithms, genetic programming, and swarm intelligence.
The book includes a large number of intelligent computing methodolo-
gies and algorithms employed in computational intelligence research. The
book also offers a set of solved programming examples related to compu-
tational intelligence paradigms using MATLAB software. Additionally,
such examples can be repeated under the same conditions, using differ-
ent data sets. Researchers, academicians, and students in computational

xvii
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xviii

intelligence can use this book to verify their ideas related to evolution dy-
namics, self-organization, natural and artificial morphogenesis, emergent
collective behaviors, swarm intelligence, evolutionary strategies, genetic
programming, and evolution of social behaviors.

Salient Features

The salient features of this book include

• Detailed description on computational intelligence (CI) paradigms

• Worked out examples on neural networks, fuzzy systems, hy-
brid neuro fuzzy systems, evolutionary computation, genetic algo-
rithms, genetic programming, and swarm intelligence using MAT-
LAB software

• MATLAB toolboxes and their functions for neural networks, fuzzy
logic, genetic algorithms, genetic programming, evolutionary algo-
rithms, and swarm optimization

• Research projects, commercial emerging software packages, abbre-
viations and glossary of terms related to CI

Organization of the Book

Chapter 1 describes the paradigms of computational intelligence (CI),
problem classes of CI, and an introductory explanation of neural net-
works, fuzzy systems, evolutionary computing, and swarm intelligence.

Chapter 2 provides an understanding of the basic neural networks,
the historical overview of neural networks, the components of a neural
network, and implementation of an electronic neural network.

Chapter 3 outlines some of the most common artificial neural networks
based on their major class of application. The categories are not meant
to be exclusive, they are merely meant to separate out some of the
confusion over network architectures and their best matches to specific
applications.

Chapter 4 discusses the major class of neural network based on ap-
plications such as data classification, data association, and data concep-
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xix

tualization. Implementations of these networks using MATLAB Neural
Network Toolbox are also described.

Chapter 5 presents a set of common neural network real world ap-
plications. A few MATLAB simulated examples such as Coin detection,
Pattern Recall, Pattern Classification, and Simulink models using differ-
ent Neural Network architectures are illustrated in this chapter.

Chapter 6 discusses the basic fuzzy sets, operations on fuzzy sets,
relations between fuzzy sets, composition, and fuzzy arithmetic. A few
MATLAB programs are also illustrated on topics such as membership
functions, fuzzy operations, fuzzy arithmetic, relations, and composition.

Chapter 7 focuses on fuzzy rules such as Mamdani fuzzy rules and
Takagi-Sugeno fuzzy rules, expert system modeling, fuzzy controllers,
and implementation of fuzzy controllers in MATLAB.

Chapter 8 illustrates some applications of fuzzy systems such as Fuzzy
Washing Machine, Fuzzy Control System, and approximation of sinu-
soidal functions in MATLAB.

Chapter 9 concentrates on the different types of fused neuro-fuzzy
systems such as FALCON, ANFIS, GARIC, NEFCON, FINEST, FUN,
EFuNN, and SONFIN. A detailed description of ANFIS including its
architecture and learning algorithm are discussed. The implementation
detail of hybrid neuro-fuzzy model is also delineated. An explanation on
Classification and Regression trees with its computational issues, com-
putational details, computational formulas, advantages, and examples
is given in this chapter. The data clustering algorithms such as hard
c-means, Fuzzy c-means, and subtractive clustering are also described.

In Chapter 10, MATLAB illustrations are given on ANFIS, Classifi-
cation and Regression trees, Fuzzy c-means clustering algorithms, Fuzzy
ART Map, and Simulink models on Takagi-Sugeno inference systems.

Chapter 11 depicts a brief history of evolutionary computation (EC).
This chapter enlightens the paradigms of EC such as Evolutionary
Strategies and Evolutionary Programming. Genetic Algorithms and Ge-
netic Programming will be discussed elaborately in the next chapter.
This chapter also describes the advantages and disadvantages of EC.

Solved MATLAB programs are given in Chapter 12 to illustrate the
implementation of evolutionary computation in problems such as op-
timization, proportional-derivative controller, multiobjective optimiza-
tion, and minimization of functions.

Chapter 13 furnishes a detailed description of genetic algorithm, its
operators and parameters are discussed. Further, the schema theorem
and technical background along with the different types of GA are also
elaborated in detail. Finally MATLAB codes are given for applications
such as maximization of a given function, traveling sales man problem,
and economic dispatch problem using genetic algorithm.
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In Chapter 14, a brief history of genetic programming is discussed.
To get an idea about programming a basic introduction to Lisp Pro-
gramming Language is dealt. The basic operations of GP are discussed
along with illustrations and MATLAB routines. The steps of GP are also
explained along with a flow chart.

Chapter 15 gives the basic definition of swarms, followed by a de-
scription on Swarm Robots. The biological models, characterizations of
stability, and overview of stability analysis of Swarms are also elaborated
in this chapter. The chapter deals with the taxonomy, properties, stud-
ies, and applications of swarm intelligence. The variants of SI such as
Particle Swarm Optimization (PSO) and Ant Colony Algorithms for Op-
timization Problems are discussed. A few applications of Particle Swarm
Optimization such as Job Scheduling on Computational Grids and Data
Mining and a few applications of Ant Colony Optimization such as Trav-
eling Salesman Problem (TSP), Quadratic Assignment Problem (QAP)
and Data Mining and their implementation in MATLAB are explained
in this chapter.
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Chapter 1

Computational Intelligence

1.1 Introduction

Computational Intelligence (CI) is a successor of artificial intelligence.
CI relies on heuristic algorithms such as in fuzzy systems, neural net-
works, and evolutionary computation. In addition, computational intel-
ligence also embraces techniques that use Swarm intelligence, Fractals
and Chaos Theory, Artificial immune systems, Wavelets, etc. Compu-
tational intelligence is a combination of learning, adaptation, and evo-
lution used to intelligent and innovative applications. Computational
intelligence research does not reject statistical methods, but often gives
a complementary view of the implementation of these methods. Compu-
tational intelligence is closely associated with soft computing a combi-
nation of artificial neural networks, fuzzy logic and genetic algorithms,
connectionist systems such as artificial intelligence, and cybernetics.

CI experts mainly consider the biological inspirations from nature for
implementations, but even if biology is extended to include all psycho-
logical and evolutionary inspirations then CI includes only the neural,
fuzzy, and evolutionary algorithms. The Bayesian foundations of learn-
ing, probabilistic and possibilistic reasoning, Markovian chains, belief
networks, and graphical theory have no biological connections. There-
fore genetic algorithms is the only solution to solve optimization prob-
lems. CI studies problems for which there are no effective algorithms,
either because it is not possible to formulate them or because they are
complex and thus not effective in real life applications. Thus the broad
definition is given by: computational intelligence is a branch of computer
science studying problems for which there are no effective computational
algorithms. Biological organisms solve such problems every day: extract-
ing meaning from perception, understanding language, solving ill-defined
computational vision problems thanks to evolutionary adaptation of the
brain to the environment, surviving in a hostile environment. However,
such problems may be solved in different ways. Defining computational
intelligence by the problems that the field studies there is no need to

1
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2 Computational Intelligence Paradigms

restrict the types of methods used for solution.
The exploration of CI is concerned with subordinate cognitive func-

tions: perceptual experience, object identification, signal analysis, break-
through of structures in data, simple associations, and control. Solution
for this type of problems can be obtained using supervised and unsu-
pervised ascertaining, not only neural, fuzzy, and evolutionary overtures
but also probabilistic and statistical overtures, such as Bayesian elec-
tronic networks or kernel methods. These methods are used to solve the
same type of problems in various fields such as pattern recognition, signal
processing, classification and regression, data mining. Higher-level cogni-
tive functions are required to solve non-algorithmizable problems involv-
ing organized thinking, logical thinking, complex delegacy of knowledge,
episodic memory, projecting, realizing of symbolic knowledge.

These jobs are at present puzzled out by AI community using tech-
niques based on search, symbolic cognition representation, logical think-
ing with frame-based expert systems, machine learning in symbolic do-
mains, logics, and lingual methods. Although the jobs belong to the
class of non-algorithmic problems, there is a slight overlap between jobs
solved using low and high-level cognitive functions. From this aspect AI
is a part of CI concentrating on problems that require higher cognition
and at present are more comfortable to solve using symbolic knowledge
representation. It is possible that other CI methods will also find appli-
cations to these problems in the future. The main overlap areas between
low and high-level cognitive functions are in sequence learning, reinforce-
ment learning, machine learning, and distributed multi-agent systems.
All tasks that require rule based reasoning based on perceptions, such as
robotics and automation, machine-driven automobile, etc., require meth-
ods for solving both low and high-level cognitive problems and thus are
a raw meeting ground for AI experts with the rest of CI community.

“Symbol manipulation is the source for all intelligence” - this idea
was proposed by Newell and Simon and they declared that the theory of
intelligence was about physical symbols rather than symbolic variables.
Symbolic representation of physical are based on multi-dimensional ap-
proach patterns comprising states of the brain. Representative models of
brain processes do not offer precise approximation of any problem that
is described by continuous variables rather than symbolic variables. Es-
timations to brain processes should be done at a proper level to obtain
similar functions. Symbolic dynamics may provide useful information
on dynamical systems, and may be useful in modeling transition be-
tween low to high level processes. The division between low, and high
level cognitive functions is only a rough approximation to the processes
in the brain. Incarnated cognition has been intensively studied in the
last decade, and developmental estimates depicting how higher processes
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emerge for the lower ones have been adopted by robotics.
In philology it is admitted that real meaning of linguistic terms comes

from body-based metaphors and is equivalently true in mathematics
also. New CI methods that go beyond pattern identification and help
to solve AI problems may eventually be developed, starting from dis-
tributed knowledge representation, graphical methods, and activations
networks. The dynamics of such models will probably allow for reason-
able symbolic approximations. It is instructive to think about the spec-
trum of CI problems and various approximations needed to solve them.
Neural network models are inspired by brain processes and structures
at almost the lowest level, while symbolic AI models by processes at
the highest level. The brain has a very specific modular and hierarchical
structure, it is not a huge neural network. Perceptron model of a neuron
has only one internal parameter, the firing threshold, and a few synaptic
weights that determine neuron-neuron interactions. Individual neurons
credibly act upon brain information processing in an undistinguished
manner.

The basic processors used for neural network modelling include bigger
neural structures, such as microcircuits or neural cell gatherings. These
structures have more complex domestic states and more complex inter-
actions between elements. An electronic network from networks, hiding
the complexness of its processors in a hierarchical way, with different
aborning properties at each level, will get increasingly more inner knowl-
edge and additional complex interactions with other such systems. At the
highest-level models of whole brains with a countless number of potential
internal states and very complex interactions may be obtained. Compu-
tational intelligence is certainly more than just the study of the design
of intelligent agents; it includes also study of all non-algoritmizable pro-
cesses that humans (and sometimes animals) can solve with various de-
grees of competence. CI should not be dealt as a bag of tricks without
deeper basis. Challenges from good numerical approaches in various ap-
plications should be solicited, and knowledge and search-based methods
should complement the core CI techniques in problems involving intel-
ligence. Goldberg and Harik view computational intelligence more as a
way of thinking about problems, calling for a “broader view of the scope
of the discipline.”

They have examined the restrictions to build up computational design,
finding the exemplars of human behaviors to be most useful. Although
this is surely worthy delineating the problems that CI wants to solve and
welcoming all methods that can be used in such solutions, independent
of their inspirations, is even more important.

Arguably, CI comprises of those paradigms in AI that relate to some
kind of biological or naturally occurring system. General consensus sug-
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FIGURE 1.1: Computational Intelligence Paradigms

gests that these paradigms are neural networks, evolutionary comput-
ing, swarm intelligence, and fuzzy systems. Neural networks are based
on their biological counterparts in the human nervous system. Similarly,
evolutionary computing draws heavily on the principles of Darwinian
evolution observed in nature. Swarm intelligence, in turn, is modeled
on the social behavior of insects and the choreography of birds flocking.
Finally, human reasoning using imprecise, or fuzzy, linguistic terms is
approximated by fuzzy systems. This chapter describes these paradigms
of CI briefly. Following the discussion, other paradigms of CI such as
Granular Computing, Chaos Theory, and Artificial Immune Systems are
also dealt. Hybrid approaches of CI and the challenges that CI faces are
elaborated in this chapter.

Figure 1.1 shows these four primary branches of CI and illustrates that
hybrids between the various paradigms are possible. More precisely, CI
is described as the study of adaptive mechanisms to enable or facilitate
intelligent behavior in complex and changing environments. There are
also other AI approaches, that satisfy both this definition as well as the
requirement of modeling some naturally occurring phenomenon, that do
not fall neatly into one of the paradigms mentioned thus far. A more
pragmatic approach might be to specify the classes of problems that are
of interest without being too concerned about whether or not the solu-
tions to these problems satisfy any constraints implied by a particular
definition for CI.

The following section identifies and describes four primary problem
classes for CI techniques. A compendious overview of the main concepts
behind each of the widely recognized CI paradigms is presented in this
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chapter.

1.2 Primary Classes of Problems for CI Techniques

Optimization, defined in the following section is undoubtedly the most
important class of problem in CI research, since virtually any other class
of problem can be re-framed as an optimization problem. This transfor-
mation, particularly in a software context, may lead to a loss of infor-
mation inherent to the intrinsic form of the problem. The major classes
of problems in CI are grouped into five categories as Control Problems,
Optimization Problems, Classification Problems, Regression Problems,
and NP Complete Problems. In the following sections Optimization and
NP Complete Problems are discussed.

1.2.1 Optimization

An optimization problem can be represented in the following way

Given: a function f : A R from some set A to the real numbers

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A (“min-
imization”) or such that f(x0) ≥ f(x) for all x in A (“maximization”).

This conceptualization is addressed as an optimization problem or a
numerical programming problem. Several real life and theoretical prob-
lems perhaps may be modeled in this comprehensive framework. Prob-
lems phrased using this technique in the fields of physical science and
technology may refer to the technique as energy minimization, the func-
tion f as comprising the energy of the system being simulated. Typically,
A is some subset of the Euclidean space Rn, often specified by a set of
constraints, equalities or inequalities that the members of A have to sat-
isfy. The domain A of f is called the search space, while the elements
of A are called candidate solutions or feasible solutions. The function f
is called an objective function, or cost function. A feasible solution that
minimizes (or maximizes, if that is the goal) the objective function is
called an optimal solution.

Generally, when the feasible region or the objective function of the
problem does not present convexity, there may be several local minima
and maxima, where a local minimum x* is defined as a point for which
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there exists some δ > 0 so that for all x such that

|| x − x∗ ||≤ δ

the expression
f(x∗) ≤ f(x)

holds; that is to say, on some region around x* all of the function values
are greater than or equal to the value at that point. Local maxima are
also outlined similarly. An expectant routine of algorithms are nominated
for solving non-convex problems - including the majority of commercially
accessible solvers that are not capable of making a distinction between
local optimum results and stringent optimal solutions, and will treat
the former as actual solutions to the original problem. The branch of
applied mathematics and numerical analysis that is concerned with the
development of deterministic algorithms that are capable of guaranteeing
convergence in finite time to the actual optimal solution of a non-convex
problem is called global optimization.

1.2.2 NP-Complete Problems

Non-Deterministic Polynomial Time (NP) problems are one of the
most common underlying complexity assorts In computational theory.
Intuitively, NP contains all determination problems for which the solu-
tions have mere proofs of the fact that the answer is indeed ’yes’. More
precisely, these validations have to be confirmable in polynomial time by
a deterministic Turing machine. In an equivalent elegant definition, NP
is the set of determination problems solvable in polynomial time by a
non-deterministic Turing machine. The complexity class P is contained
in NP, but NP contains many important problems, called NP-complete
problems, for which no polynomial-time algorithms are known. The most
important open question in complexity theory, the P = NP problem, asks
whether such algorithms actually exist for NP-complete problems. It is
widely believed that this is not the case. Several biological computer
science problems are covered by the class NP. In specific, the decision
versions of many interesting search problems and optimization problems
are contained in NP.

Verifier-Based Definition

In order to explain the verifier-based definition of NP, let us consider
the subset sum problem: Assume that we are given some integers, such
as −7, −3, −2, 5, 8, and we wish to know whether some of these integers
sum up to zero. In this example, the answer is “yes”, since the subset
of integers −3, −2, 5 corresponds to the sum (−3) + (−2) + 5 = 0. The
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task of deciding whether such a subset with sum zero exists is called the
subset sum problem.

As the number of integers that we feed into the algorithm becomes
larger, the time needed to compute the answer to the subset sum problem
grows exponentially, and in fact the subset sum problem is NP-complete.
However, notice that, if we are given a particular subset (often called a
certificate,) we can easily check or verify whether the subset sum is zero,
by just summing up the integers of the subset. So if the sum is indeed
zero, that particular subset is the proof or witness for the fact that the
answer is “yes”. An algorithm that verifies whether a given subset has
sum zero is called verifier. A problem is said to be in NP if there exists a
verifier for the problem that executes in polynomial time. In case of the
subset sum problem, the verifier needs only polynomial time, for which
reason the subset sum problem is in NP.

The verifier-based definition of NP does not require an easy-to-verify
certificate for the “no”-answers. The class of problems with such certifi-
cates for the “no”-answers is called co-NP. In fact, it is an open question
whether all problems in NP also have certificates for the “no”-answers
and thus are in co-NP.

Machine Definition

Equivalent to the verifier-based definition is the following character-
ization: NP is the set of decision problems solvable in polynomial time
by a non-deterministic Turing machine.

A list of examples that are classified as NP complete are

• Integer factorization problem

• Graph isomorphism problem

• Traveling salesman problem

• Boolean satisfiability problem

1.3 Neural Networks

The term neural network refers to a network or circuit of biological
neurons. Nowadays, the modernization of the term neural network is
referred to as artificial neural network. The networks are composed of
artificial neurons or nodes. Biological neural networks are made up of
real biological neurons that are connected or functionally-related in the
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peripheral nervous system or the central nervous system. In the field of
neuroscience, they are often identified as groups of neurons that per-
form a specific physiological function in laboratory analysis. Artificial
neural networks are made up of interconnected artificial neurons (pro-
gramming constructs that mimic the properties of biological neurons).
Artificial neural networks may either be used to gain an understanding of
biological neural networks, or for solving artificial intelligence problems
without necessarily creating a model of a real biological system.

1.3.1 Feed Forward Neural Networks

An artificial neural network in which the connections between the
units do not form a directed cycle is referred to as a feedforward neu-
ral network. The feedforward neural network is the first and arguably
simplest type of artificial neural network organized. In this network, the
information moves in only one direction, forward, from the input nodes,
through the hidden nodes (if any) and to the output nodes. There are
no cycles or loops in the network.

Figure 1.2 illustrates a fully connected three layer network. The layers
consist of neurons, which compute a function of their inputs and pass
the result to the neurons in the next layer. In this manner, the input
signal is fed forward from one layer to the succeeding layer through the

FIGURE 1.2: Three Layer Feed Forward Neural Network
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network. The output of a given neuron is characterized by a nonlinear
activation function, a weighted combination of the incoming signals, and
a threshold value. The threshold can be replaced by augmenting the
weight vector to include the input from a constant bias unit. By varying
the weight values of the links, the overall function, which the network
realizes, can be altered.

There are other types of Neural networks based on both supervised and
unsupervised learning which are discussed in detail with their algorithms
in Chapter 2 of this book.

1.4 Fuzzy Systems

Fuzzy sets originated in the year 1965 and this concept was proposed
by Lofti A.Zadeh. Since then it has grown and is found in several appli-
cation areas. According to Zadeh, The notion of a fuzzy set provides a
convenient point of departure for the construction of a conceptual frame-
work which parallels in many respects of the framework used in the case
of ordinary sets, but is more general than the latter and potentially,
may prove to have a much wider scope of applicability, specifically in
the fields of pattern classification and information processing.” Fuzzy
logics are multi-valued logics that form a suitable basis for logical sys-
tems reasoning under uncertainty or vagueness that allows intermediate
values to be defined between conventional evaluations like true/false,
yes/no, high/low, etc. These evaluations can be formulated mathemati-
cally and processed by computers, in order to apply a more human-like
way of thinking in the programming of computers. Fuzzy logic provides
an inference morphology that enables approximate human reasoning ca-
pabilities to be applied to knowledge-based systems. The theory of fuzzy
logic provides a mathematical strength to capture the uncertainties asso-
ciated with human cognitive processes, such as thinking and reasoning.
Fuzzy systems are suitable for uncertain or approximate reasoning, es-
pecially for the system with a mathematical model that is difficult to
derive. Fuzzy logic allows decision making with estimated values under
incomplete or uncertain information.

1.4.1 Fuzzy Sets

The concept of a fuzzy set is an extension of the concept of a crisp
set. Similar to a crisp set a universe set U is defined by its membership
function from U to [0,1]. Consider U to be a non-empty set also known
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as the universal set or universe of discourse or domain. A fuzzy set on
U is defined as

µA(x) : U → [0, 1] (1.1)

Here µA is known as the membership function, and µA(x) is known
as the membership grade of x. Membership function is the degree of
truth or degree of compatibility. The membership function is the crucial
component of a fuzzy set. Therefore all the operations on fuzzy sets are
defined based on their membership functions. Table 1.1 defines fuzzy set
theoretic operators that are analogues for their traditional set counter-
parts.

TABLE 1.1: Fuzzy Set Theoretic Operators

Operator Definition
Intersection The membership function µC(x) of the inter-

section C = A ∩ B is defined by µC(x) =
min {µA(x), µB(x)} , x ∈ X

Union The membership function µC(x) of the union
C = A ∪ B is defined by µC(x) =
max {µA(x), µB(x)} , x ∈ X

Complement The membership function µC(x) of the comple-
ment of a normalized fuzzy set A is defined by
µC(x) = 1 − µA(x), x ∈ X

Fuzzy relations play a vital role in fuzzy logic and its applications.
Fuzzy relations are fuzzy subsets of X × Y defined as the mapping from
X −→ Y. If X ,Y ⊆ R are universal sets then the fuzzy relation is defined
as R̄{((x, y), µR̄(x, y)|(x, y)ǫX × Y } . These fuzzy relations in different
product spaces can be combined with each other through the operation
composition. There are two basic forms of composition, namely the min-
max and the max-product composition.

Min-Max Composition: Let R̄1ǫX × Y and R̄2ǫY × Z denote two
fuzzy relations, the min-max composition on these relations is defined
as R̄1 ◦ R̄2 = max{min{µR̄1

(x, y), µR̄2(y, z)}}xǫX, yǫY, zǫZ Max Prod-

uct Composition: Let R̄1ǫX × Y and R̄2ǫY × Z denote two fuzzy re-
lations, the max product composition on these relations is defined as
R̄1 ◦ R̄2 = max{min{µR̄1

(x, y) ∗ µR̄2(y, z)}}xǫX, yǫY, zǫZ The mem-

bership of a fuzzy set is described by this membership function µA(x) of
A, which associates to each element x◦ǫ X a grade of membership µA(x◦)
The notation for the membership function µA(x) of a fuzzy set A A :
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X −→[0,1]. Each fuzzy set is completely and uniquely defined by one
particular membership function. Consequently symbols of membership
functions are also used as labels of the associated fuzzy sets.

1.4.2 Fuzzy Controllers

Fuzzy logic controllers are based on the combination of Fuzzy set the-
ory and fuzzy logic. Systems are controlled by fuzzy logic controllers
based on rules instead of equations. This collection of rules is known as
the rule base usually in the form of IF-THEN-ELSE statements. Here
the IF part is known as the antecedent and the THEN part is the con-
sequent. The antecedents are connected with simple Boolean functions
like AND,OR, NOT etc., Figure 1.3 outlines a simple architecture for a
fuzzy logic controller.

The outputs from a system are converted into a suitable form by
the fuzzification block. Once all the rules have been defined based on
the application, the control process starts with the computation of the
rule consequences. The computation of the rule consequences takes place
within the computational unit. Finally, the fuzzy set is defuzzified into
one crisp control action using the defuzzification module. The decision
parameters of the fuzzy logic controller are as follows:

Input Unit : Factors to be considered are the number of input signals
and scaling of the input signal.

Fuzzification Unit: The number of membership functions, type of
membership functions are to be considered.

Rule Base: The total number of rules, type of rule structure (Mamdani
or Takagi), rule weights etc. are to be considered.

Defuzzification Unit: Type of defuzzification procedure is to be con-
sidered.

FIGURE 1.3: Fuzzy Controller Architecture

Some of the important characteristics of fuzzy logic controllers are
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• - User defined rules, which can be changed according to the ap-
plication. - Robust - Can be applied to control non linear systems
also - Simple design - Overall cost and complexity is low

• User defined rules, which can be changed according to the appli-
cation.

• Robust

• Can be applied to control non linear systems also

• Simple design

• Overall cost and complexity is low

1.5 Evolutionary Computing

Algorithms formed on the basis of evolution of biological life in the
natural world to solve several computational issues is termed as evolu-
tionary computation. Evolutionary Computing (EC) is strongly based
on the principles of natural evolution. A population of individuals is
initialized within the search space of an optimization problem so that P
(t) = {xi(t) S |1 ≤ i ≤ µ }. The search space S may be the genotype
or phenotype depending on the particular evolutionary approach being
utilized. The fitness function f, which is the function being optimised, is
used to evaluate the goodness individuals so that F (t) = {f(xi(t)) ǫ R |1
≤ i ≤ µ}. Obviously, the fitness function will also need to incorporate the
necessary phenotype mapping if the genotype space is being searched.
Searching involves performing recombination of individuals to form off-
spring, random mutations and selection of the following generation until
a solution emerges in the population. The parameters, pr, pm, and ps are
the probabilities of applying the recombination, mutation, and selection
operators respectively. Recombination involves mixing the characteris-
tics of two or more parents to form offspring in the hope that the best
qualities of the parents are preserved. Mutations, in turn, introduce vari-
ation into the population thereby widening the search. In general, the
recombination and mutation operators may be identity transforms so
that it is possible for individuals to survive into the following generation
unperturbed. Finally, the new or modified individuals are re-evaluated
before the selection operator is used to pare the population back down
to a size of . The selection operator provides evolutionary pressure such
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that the most fit individuals survive into the next generation. While se-
lection is largely based on the fitness of individuals, it is probabilistic to
prevent premature convergence of the population.

Three methodologies that have emerged in the last few decades such
as: “evolutionary programming (EP)” (L.J. Fogel, A.J. Owens, M.J.
Walsh Fogel, 1966), “evolution strategies (ES)” (I. Rechenberg and H.P.
Schwefel Rechenberg, 1973), and “genetic algorithms (GA)” (Holland,
1975) are discussed in this section. Although similar at the highest level,
each of these varieties implements an evolutionary algorithm in a differ-
ent manner. The differences touch upon almost all aspects of evolution-
ary algorithms, including the choices of representation for the individual
structures, types of selection mechanism used, forms of genetic opera-
tors, and measures of performance which are explained in Chapter 5 of
this book.

1.5.1 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms
introduced on the evolutionary themes of natural selection. The fun-
damental concept of the GA design is to model processes in a natural
system that is required for evolution, specifically those that follow the
principles posed by Charles Darwin to find the survival of the fittest.
GAs constitute an intelligent development of a random search within
a defined search space to solve a problem. GAs were first pioneered
by John Holland in the 1960s, and have been widely studied, experi-
mented, and applied in numerous engineering disciplines. Not only does
GA provide alternative methods to solving problems, it consistently out-
performs other traditional methods in most of the problem’s link. Many
of the real world problems involved finding optimal parameters, which
could prove difficult for traditional methods but ideal for GAs. In fact,
there are many ways to view genetic algorithms other than an optimiza-
tion tool. Perhaps most users concern GAs as a problem solver, but this
is a restrictive view.

GAs are used as problem solvers, as a challenging technical puzzle,
as a basis for competent machine learning, as a computational model of
innovation and creativity, as a computational model of other innovating
systems, and for guiding philosophy.

GAs were introduced as a computational analogy of adaptive systems.
They are modeled loosely on the principles of the evolution through
natural selection, employing a population of individuals that undergo
selection in the presence of variation-inducing operators such as mutation
and recombination (crossover). A fitness function is used to evaluate
individuals, and reproductive success varies with fitness.
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The Algorithm

1. Randomly generate an initial population

2. Compute and save the fitness for each individual in the current
population

3. Define selection probabilities for each individual in so that it is
proportional to the fitness

4. Generate the next population by probabilistically selecting indi-
viduals from current population to produce offspring via genetic
operators

5. Repeat step 2 until satisfying solution is obtained

The paradigm of GAs described above is usually the one applied to
solving most of the problems presented to GAs. Though it might not
find the best solution more often than not, it would come up with a
partially optimal solution.

1.5.2 Genetic Programming

In Genetic Programming programs are evolved to solve pre-described
problems from both of these domains. The term evolution refers to an
artificial process gleaned from the natural evolution of living organisms.
This process has been abstracted and stripped off of most of its intri-
cate details. It has been transferred to the world of algorithms where
it can serve the purpose of approximating solutions to given or even
changing problems (machine learning) or for inducing precise solutions
in the form of grammatically correct (language) structures (automatic
programming).

It has been realized that the representation of programs, or generally
structures, has a strong influence on the behavior and efficiency of the
resulting algorithm. As a consequence, many different approaches toward
choosing representations have been adopted in Genetic Programming.
The principles have been applied even to other problem domains such
as design of electronic circuits or art and musical composition.

Genetic Programming is also part of the growing set of Evolutionary
Algorithms which apply the search principles of natural evolution in a
variety of different problem domains, notably parameter optimization.
Evolutionary Algorithms, and Genetic Programming in particular, follow
Darwin’s principle of differential natural selection. This principle states
that the following preconditions must be fulfilled for evolution to occur
via (natural) selection
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• There are entities called individuals which form a population.
These entities can reproduce or can be reproduced.

• There is heredity in reproduction, that is to say that individuals
produce similar offspring.

• In the course of reproduction there is variety which affects the
likelihood of survival and therefore of reproducibility of individuals.

• There are finite resources which cause the individuals to compete.
Due to over reproduction of individuals not all can survive the
struggle for existence. Differential natural selections will exert a
continuous pressure toward improved individuals.

In the long run, genetic programming and its kin will revolutionize
program development. Present methods are not mature enough for de-
ployment as automatic programming systems. Nevertheless, GP has al-
ready made inroads into automatic programming and will continue to
do so in the foreseeable future. Likewise, the application of evolution in
machine-learning problems is one of the potentials that is to be exploited
over the coming decade.

1.5.3 Evolutionary Programming

Evolutionary programming is one of the four major evolutionary al-
gorithm paradigms. It was first used by Lawrence J. Fogel in 1960 in
order to use simulated evolution as a learning process aiming to gener-
ate artificial intelligence. Fogel used finite state machines as predictors
and evolved them. Currently evolutionary programming is a wide evolu-
tionary computing dialect with no fixed structure or representation, in
contrast with some of the other dialects. It is becoming harder to dis-
tinguish from evolutionary strategies. Some of its original variants are
quite similar to the later genetic programming, except that the program
structure is fixed and its numerical parameters are allowed to evolve.
Its main variation operator is mutation, members of the population are
viewed as part of a specific species rather than members of the same
species, therefore each parent generates an offspring, using a survivor
selection.

1.5.4 Evolutionary Strategies

Evolution Strategies (ESs) are in many ways very similar to Genetic
Algorithms (GAs). As their name implies, ESs too simulate natural evo-
lution. The differences between GAs and ESs arise primarily because the
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original applications for which the algorithms were developed are differ-
ent. While GAs were designed to solve discrete or integer optimization
problems, ESs were applied first to continuous parameter optimization
problems associated with laboratory experiments.

ESs differ from traditional optimization algorithms in some important
aspects like:

• They search between populations of solutions, rather than from
individual to individual.

• They use only objective function information, not derivatives.

• They use probabilistic transition rules.

The basic structure of an ES is very similar to that of a basic GA. One
minor change from the standard optimization routine flow diagram is the
use of the word ‘population’ rather than ‘solution’. A more major differ-
ence is that the usual operation of generating a new solution has been
replaced by three separate activities — population selection, recombina-
tion, and mutation. It is in the implementation of these operations that
the differences between ESs and GAs lie.

1.6 Swarm Intelligence

The collections of birds and animals, such as flocks, herds and schools,
move in a way that appears to be orchestrated. A flock of birds moves
like a well-choreographed dance troupe. They veer to the left in unison,
then suddenly they may all dart to the right and swoop down toward the
ground. How can they coordinate their actions so well? In 1987, Reynolds
created a “boid” model, which is a distributed behavioral model, to
simulate on a computer the motion of a flock of birds. Each boid is
implemented as an independent actor that navigates according to its
own perception of the dynamic environment. A boid must observe the
following rules. First, the “avoidance rule” says that a boid must move
away from boids that are too close, so as to reduce the chance of in-air
collisions. Second, the “copy rule” says a boid must fly in the general
direction that the flock is moving by averaging the other boids’ velocities
and directions. Third, the “center rule” says that a boid should minimize
exposure to the flock’s exterior by moving toward the perceived center
of the flock. Flake added a fourth rule, “view”, that indicates that a
boid should move laterally away from any boid the blocks its view. This
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boid model seems reasonable if we consider it from another point of
view that of it acting according to attraction and repulsion between
neighbors in a flock. The repulsion relationship results in the avoidance
of collisions and attraction makes the flock keep shape, i.e., copying
movements of neighbors can be seen as a kind of attraction. The center
rule plays a role in both attraction and repulsion. The swarm behavior of
the simulated flock is the result of the dense interaction of the relatively
simple behaviors of the individual boids.

The types of algorithms available to solve the collective behavior pat-
tern are Particle Swarm Optimization and Ant Colony Optimization,
respectively. Particle Swarm Optimization (PSO) is a swarm intelligence
based algorithm to find a solution to an optimization problem in a search
space, or model, and predict social behavior in the presence of objec-
tives. The Ant Colony Optimization algorithm (ACO), is a probabilistic
technique for solving computational problems which can be reduced to
finding good paths through graphs. They are inspired by the behavior of
ants in finding paths from the colony to food. Ant systems are also dis-
cussed further, where interaction between individuals occurs indirectly
by means of modifications to the environment in which they function. By
modeling these social interactions, useful algorithms have been devised
for solving numerous problems including optimization and clustering.

1.7 Other Paradigms

Some of the major paradigms of computational intelligence are gran-
ular computing, chaos theory, and artificial immune systems. Granular
computing is an emerging computing paradigm of information process-
ing. It concerns the processing of complex information entities called
information granules, which arise in the process of data abstraction and
derivation of knowledge from information. Chaos theory is a developing
scientific discipline, which is focused on the study of nonlinear systems.

The specific example of a relatively new CI paradigm is the Artificial
Immune System (AIS), which is a computational pattern recognition
technique, based on how white blood cells in the human immune system
detect pathogens that do not belong to the body. Instead of building
an explicit model of the available training data, AIS builds an implicit
classifier that models everything else but the training data, making it
suited to detecting anomalous behavior in systems. Thus, AIS is well
suited for applications in anti-virus software, intrusion detection systems,
and fraud detection in the financial sector.

© 2010 by Taylor and Francis Group, LLC



18 Computational Intelligence Paradigms

Further, fields such as Artificial Life (ALife), robotics (especially
multi-agent systems) and bioinformatics are application areas for CI
techniques. Alternatively, it can be argued that those fields are a breed-
ing ground for tomorrow’s CI ideas. For example, evolutionary com-
puting techniques have been successfully employed in bioinformatics to
decipher genetic sequences. Hand in hand with that comes a deeper
understanding of the biological evolutionary process and improved evo-
lutionary algorithms.

As another example, consider RoboCup, a project with a very ambi-
tious goal. The challenge is to produce a team of autonomous humanoid
robots that will be able to beat the human world championship team in
soccer by the year 2050. This is obviously an immense undertaking that
will require drawing on many disciplines. The mechanical engineering
aspects are only one of the challenges standing in the way of meeting
this goal. Controlling the robots is quite another. Swarm robotics, an ex-
tension of swarm intelligence into robotics, is a new paradigm in CI that
may hold some of the answers. In the mean time, simulated RoboCup
challenges, which are held annually, will have to suffice.

1.7.1 Granular Computing

Uncertainty processing paradigms can be considered as conceptual
frames. Information granule is a conceptual frame of fundamental enti-
ties considered to be of importance in a problem formulation. That con-
ceptual frame is a place where generic concepts, important for some ab-
straction level, processing, or transfer of results in outer environment, are
formulated. Information granule can be considered as knowledge repre-
sentation and knowledge processing components. Granularity level (size)
of information granules is important for a problem description and for
a problem-solving strategy. Soft computing can be viewed in the con-
text of computational frame based on information granules, and referred
to as granular computing. Essential common features of problems are
identified in granular computing, and those features are represented by
granularity.

Granular computing has the ability to process information granules,
and to interact with other granular or numerical world, eliciting needed
granular information and giving results of granular evaluations. Granu-
lar computing enables abstract formal theories of sets, probability, fuzzy
sets, rough sets, and maybe others, to be considered in the same context,
noticing basic common features of those formalisms, providing one more
computing level, higher from soft computing, through synergy of con-
sidered approaches. Since several computing processes can be present in
the same time, with possible mutual communication, a distributed pro-
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cessing model can be conceived. In that model every process, or agent,
Figure 1.4, is treated as a single entity.

FIGURE 1.4: An Agent

Every agent, as shown in Figure 1.5, acts in its own granular comput-
ing environment and communicates with other agents.

FIGURE 1.5: Granular computing implemented by agents

A formal concept of granular computing can be expressed by four-tuple
<X,F,A,C >, where: X - is universe of discourse, F - is formal granula-
tion frame, A - is a collection of generic information granules, and, C -
is a relevant communication mechanism. Granular computing becomes a
layer of computational intelligence, a level of abstraction above soft com-
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puting. Granular computing synergically complements different aspects
of representing, learning, and optimization. A role of granular comput-
ing in development of intelligent systems, and so of computing systems
can be significant, as in knowledge integration, and also in development
of computing systems more adapted to user, linguistic, and biologically
motivated.

1.7.2 Chaos Theory

Chaos Theory is amongst the youngest of the sciences, and has rock-
eted from its isolated roots in the seventies to become one of the most
captivating fields in existence. This theory is applied in the research on
several physical systems, and also implemented in areas such as image
compression, fluid dynamics, Chaos science assures to continue to yield
absorbing scientific information which may shape the face of science in
the future. The acceptable definition of chaos theory states, Chaos The-
ory is the qualitative study of unstable aperiodic behavior in determinis-
tic nonlinear systems. The behavior of chaos is complex, nonlinear, and
dynamic complex implies aperiodic (is simply the behavior that never re-
peats), nonlinear implies recursion and higher mathematical algorithms,
and dynamic implies non-constant and non-periodic (time variables).
Thus, Chaos Theory is the study of forever changing complex systems
based on mathematical concepts of recursion, whether in form of a recur-
sive process or a set of differential equations modeling a physical system.

Newhouse’s definition states, A bounded deterministic dynamical sys-
tem with at least one positive Liaponov exponent is a chaotic system;
a chaotic signal is an observation of a chaotic system. The presence of
a positive Liaponov exponent causes trajectories that are initially close
to each other to separate exponentially. This, in turn, implies sensitive
dependence of the dynamics on initial conditions, which is one of the
most important characteristics of chaotic systems. What is so incredible
about Chaos Theory is that unstable aperiodic behavior can be found
in mathematically simple systems. Lorenz proved that the complex, dy-
namical systems show order, but they never repeat. Our world is a best
example of chaos, since it is classified as a dynamical, complex system,
our lives, our weather, and our experiences never repeat; however, they
should form patterns.

Chaotic behavior has been observed in the laboratory in a variety
of systems including electrical and electronic circuits, lasers, oscillat-
ing chemical reactions, fluid dynamics, and mechanical and magneto-
mechanical devices. Observations of chaotic behavior in nature include
the dynamics of satellites in the solar system, the time evolution of the
magnetic field of celestial bodies, population growth in ecology, the dy-
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namics of the action potentials in neurons, and molecular vibrations. Ev-
eryday examples of chaotic systems include weather and climate. There
is some controversy over the existence of chaotic dynamics in the plate
tectonics and in economics.

Systems that exhibit mathematical chaos are settled and thus orderly
in some sense; this technical use of the word chaos is at odds with
common parlance, which suggests complete disorder. A related field of
physics called quantum chaos theory studies systems that follow the laws
of quantum mechanics. Recently, another field, called relativistic chaos,
has emerged to describe systems that follow the laws of general relativity.

As well as being orderly in the sense of being deterministic, chaotic
systems usually have well defined statistics. For example, the Lorenz
system pictured is chaotic, but has a clearly defined structure. Bounded
chaos is a useful term for describing models of disorder.

Chaos theory is applied in many scientific disciplines: mathematics,
biology, computer science, economics, engineering, finance, philosophy,
physics, politics, population dynamics, psychology, and robotics.

Chaos theory is also currently being applied to medical studies of
epilepsy, specifically to the prediction of seemingly random seizures by
observing initial conditions.

1.7.3 Artificial Immune Systems

The biological immune system is a highly parallel, distributed, and
adaptive system. It uses learning, memory, and associative retrieval to
solve recognition and classification tasks. In particular, it learns to rec-
ognize relevant patterns, remembers patterns that have been seen previ-
ously, and uses combinatorics to construct pattern detectors efficiently.
These remarkable information processing abilities of the immune system
provide important aspects in the field of computation. This emerging
field is sometimes referred to as Immunological Computation, Immuno-
computing, or Artificial Immune Systems (AIS). Although it is still rela-
tively new, AIS, having a strong relationship with other biology-inspired
computing models, and computational biology, is establishing its unique-
ness and effectiveness through the zealous efforts of researchers around
the world.

An artificial immune system (AIS) is a type of optimization algo-
rithm inspired by the principles and processes of the vertebrate immune
system. The algorithms typically exploit the immune system’s charac-
teristics of learning and memory to solve a problem. They are coupled
to artificial intelligence and closely related to genetic algorithms.

Processes simulated in AIS include pattern recognition, hypermuta-
tion and clonal selection for B cells, negative selection of T cells, affinity
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maturation, and immune network theory.

1.8 Hybrid Approaches

SC’s main characteristic is its intrinsic capability to create hybrid
systems that are based on an integration of the techniques to provide
complementary learning, reasoning and searching methods to combine
domain knowledge and empirical data to develop flexible computing
tools and solve complex problems. Several heuristic hybrid soft comput-
ing models have been developed for model expertise, decision support,
image and video segmentation techniques, process control, mechatron-
ics, robotics, and complicated control and automation tasks. Many of
these approaches use a combination of different knowledge representa-
tion schemes, decision making models, and learning strategies to solve a
computational task. This integration aims at overcoming the limitations
of individual techniques through hybridization or the fusion of various
soft computing techniques. These ideas have led to the growth of numer-
ous intelligent system architectures. It is very critical to develop and de-
sign hybrid intelligent systems to focus primarily on the integration and
interaction of different techniques rather than to merge different meth-
ods to create ever-new techniques. Techniques already well understood
should be applied to solve specific domain problems within the system.
Their weaknesses must be addressed by combining them with comple-
mentary methods. Nevertheless, developing hybrid intelligent systems is
an open-ended concept rather than restricting it to a few technologies.
That is, it is evolving those relevant techniques together with the im-
portant advances in other new computing methods. Some of the major
hybrid combinations are

• Neural Networks controlled by Fuzzy Logic

• Fuzzy logic controllers tuned by Neural Networks

• Neuro Fuzzy Systems

• Neural Networks generated by Genetic Algorithms

• Neural Networks tuned by Genetic Algorithms

• Genetic Algorithms controlled by Fuzzy Logic

• Fuzzy logic controllers tuned by Genetic Algorithms
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• Fuzzy logic controllers’ learning optimization and by Genetic Al-
gorithms

• Fuzzy Evolutionary Systems

• Fuzzy logic controllers generated by Genetic Algorithms

1.9 Relationship with Other Paradigms

Computational Intelligence is a very young discipline. Other disci-
plines as diverse as philosophy, neurobiology, evolutionary biology, psy-
chology, economics, political science, sociology, anthropology, control en-
gineering, and many more have been studying intelligence much longer.
We first discuss the relationship with philosophy, psychology, and other
disciplines which study intelligence; then we discuss the relationship with
computer science, which studies how to compute. The science of CI could
be described as “synthetic psychology,” “experimental philosophy,” or
“computational epistemology.” Epistemology is the study of knowledge.
It can be seen as a way to study the old problem of the nature of knowl-
edge and intelligence, but with a more powerful experimental tool than
was previously available. Instead of being able to observe only the exter-
nal behavior of intelligent systems, as philosophy, psychology, economics,
and sociology have traditionally been able to do, we are able to experi-
ment with executable models of intelligent behavior. Most importantly,
such models are open to inspection, redesign, and experiment in a com-
plete and rigorous way. In other words, you now have a way to construct
the models that philosophers could only theorize about.

Just as the goal of aerodynamics isn’t to synthesize birds, but to un-
derstand the phenomenon of flying by building flying machines, CI’s
ultimate goal isn’t necessarily the full-scale simulation of human intelli-
gence. The notion of psychological validity separates CI work into two
categories: that which is concerned with mimicking human intelligence-
often called cognitive modeling-and that which isn’t. To emphasize the
development of CI as a science of intelligence, we are concerned, in this
book at least, not with psychological validity but with the more practi-
cal desire to create programs that solve real problems. Sometimes it will
be important to have the computer to reason through a problem in a
human-like fashion. This is especially important when a human requires
an explanation of how the computer generated an answer. Some aspects
of human cognition you usually do not want to duplicate, such as the
human’s poor arithmetic skills and propensity for error. Computational
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intelligence is intimately linked with the discipline of computer science.
While there are many non-computer scientists who are researching CI,
much, if not most, CI (or AI) research is done within computer science
departments. We believe this is appropriate, as the study of computation
is central to CI. It is essential to understand algorithms, data structures,
and combinatorial complexity in order to build intelligent machines. It is
also surprising how much of computer science started as a spin off from
AI, from timesharing to computer algebra systems.

The interaction of computational intelligence techniques and hy-
bridization with other methods such as expert systems and local op-
timization techniques certainly opens a new direction of research toward
hybrid systems that exhibit problem solving capabilities approaching
those of naturally intelligent systems in the future. Evolutionary algo-
rithms, seen as a technique to evolve machine intelligence, are one of
the mandatory prerequisites for achieving this goal by means of algo-
rithmic principles that are already working quite successfully in natural
evolution. There exists a strong relationship between evolutionary com-
putation and some other techniques, e.g., fuzzy logic and neural net-
works, usually regarded as elements of artificial intelligence. Their main
common characteristic lies in their numerical knowledge representation,
which differentiates them from traditional symbolic artificial intelligence.
The term computational intelligence was suggested with the following
characteristics:

• numerical knowledge representation

• adaptability

• fault tolerance

• processing speed comparable to human cognition processes

• error rate optimality (e.g., with respect to a Bayesian estimate of
the probability of a certain error on future data)

Computational intelligence is considered as one of the most innova-
tive research directions in connection with evolutionary computation,
since we may expect that efficient, robust, and easy-to-use solutions to
complex real-world problems will be developed on the basis of these
complementary techniques.

There are other fields whose goal is to build machines that act in-
telligently. Two of these fields are control engineering and operations
research. These start from different points than CI, namely in the use
of continuous mathematics. As building real agents involves both con-
tinuous control and CI-type reasoning, these disciplines should be seen
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as symbiotic with CI. A student of either discipline should understand
the other. Moreover, the distinction between them is becoming less clear
with many new theories combining different areas. Unfortunately there
is too much material for this book to cover control engineering and oper-
ations research, even though many of the results, such as in search, have
been studied in both the operations research and CI areas. Finally, CI
can be seen under the umbrella of cognitive science. Cognitive science
links various disciplines that study cognition and reasoning, from psy-
chology to linguistics to anthropology to neuroscience. CI distinguishes
itself within cognitive science because it provides tools to build intel-
ligence rather than just studying the external behavior of intelligent
agents or dissecting the inner workings of intelligent systems.

1.10 Challenges To Computational Intelligence

A variety of challenges for AI have been formulated and these re-
quire a very-large knowledge base and efficient retrieval of structures.
The challenge is to present more efficient, knowledge base, knowledge
representation and retrieval structures, modeling human brain, using
different representations for various purposes. In recent years CI has
been extended by adding many other subdisciplines and it became quite
obvious that this new field also requires a series of challenging prob-
lems that will give it a sense of direction. Without setting up clear goals
and yardsticks to measure progress on the way many research efforts are
wasted.

Computational Intelligence (CI)-related techniques play an important
role in state-of-the-art components and novel devices and services in
science and engineering. Some of the major challenges of computational
intelligence are concerned with large knowledge bases, bootstraping on
the knowledge resources from the Internet etc.

The current state of computational intelligence research can be char-
acterized as in the following.

• The basic concepts of CI have been developed more than 35 years
ago, but it took almost two decades for their potential to be rec-
ognized by a larger audience.

• Application-oriented research is quite successful and almost dom-
inates the field. Only few potential application domains could be
identified, if any, where evolutionary algorithms have not been
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tested so far. In many cases they have been used to produce good,
if not superior, results.

• In contrast, the theoretical foundations are to some extent still
weak. To say it pithier: “We know that they work, but we do not
know why.” As a consequence, inexperienced users fall into the
same traps repeatedly, since there are only few rules of thumb for
the design and parameterization of evolutionary algorithms.

The challenge is at the meta-level, to find all interesting solutions
automatically, especially in difficult cases. Brains are flexible, and may
solve the same problem in many different ways. Different applications -
recognition of images, handwritten characters, faces, analysis of signals,
multimedia streams, texts, or various biomedical data - usually require
highly specialized methods to achieve top performance. This is a power-
ful force that leads to compartmentalization of different CI branches and
creation of meta-learning systems competitive with the best methods in
various applications will be a great challenge. If we acknowledge that CI
should be defined as the science of solving non-algorithmizable problems
the whole field will be firmly anchored in computer science and many
technical challenges may be formulated.

Summary

This chapter has presented a broad overview of the core computational
intelligence techniques, along with some simple examples, describing a
range of real world applications that have used these methods. Although
these techniques are becoming increasingly common and powerful tools
for designing intelligent controllers, there are a number of important
practical considerations to bear in mind:

• The ultimate aim is to solve practical problems in the design of
controllers, so the techniques considered need to be simple, robust,
and reliable.

• Different types of computational intelligence techniques will gen-
erally be required for different robot control problems, depending
on their different practical requirements.

• The application of a single computational intelligence technique
will often be insufficient on its own to provide solutions to all the
practical issues.
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• Traditional robot control approaches should not be abandoned -
they should be considered alongside the computational intelligence
techniques.

• Hybrid systems involving combinations of neural computation,
fuzzy logic, and evolutionary algorithms, as well as traditional tech-
niques, are a more promising approach for improving the perfor-
mance of robot controllers.

• A key idea behind computational intelligence is automated opti-
mization, and this can be applied to both the structure and pa-
rameters of robot control systems.

Neural network style learning is good for tuning parameters. Evolu-
tionary approaches can be applied to optimize virtually all aspects of
these systems. It is hoped that readers will now appreciate the power of
computational intelligence techniques for intelligent control, and will be
encouraged to explore further the possibility of using them to achieve
improved performance in their own applications.

Review Questions

1. Define computational intelligence.

2. Mention the different paradigms of computational intelligence.

3. Explain optimization with an example.

4. Mention a few examples of NP- Complete problems.

5. Differentiate supervised and unsupervised learning.

6. Represent a feed forward neural network diagrammatically.

7. What is the basic concept behind vector quantization?

8. What are fuzzy systems?

9. Mention the fuzzy set operators.

10. Draw the block diagram of a fuzzy controller and explain.

11. What is Evolutionary Computing?

12. Mention the different paradigms of Evolutionary Computing.
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13. Explain cultural and co-evolution.

14. Mention some of the best neighborhood topologies in Particle
Swarm Optimization.

15. What are Ant systems?

16. What do you mean by Granular computing and Chaos Theory?

17. Mention the challenges involved in computational intelligence.
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Chapter 2

Artificial Neural Networks with
MATLAB

2.1 Introduction

A neural network is basically a model structure and an algorithm for
fitting the model to some given data. The network approach to modeling
a plant uses a generic nonlinearity and allows all the parameters to be
adjusted. In this way it can deal with a wide range of nonlinearities.
Learning is the procedure of training a neural network to represent the
dynamics of a plant. The neural network is placed in parallel with the
plant and the error h between the output of the system and the net-
work outputs, the prediction error, is used as the training signal. Neural
networks have a potential for intelligent control systems because they
can learn and adapt, they can approximate nonlinear functions, they
are suited for parallel and distributed processing, and they naturally
model multivariable systems. If a physical model is unavailable or too
expensive to develop, a neural network model might be an alternative.
The sections in this chapter provide an understanding of the basic neural
networks, their history, and the components of a neural network.

2.2 A Brief History of Neural Networks

The study of the human brain started around thousands of years back.
With the advent of advanced electronics, it was only innate to try to
harness this thinking process. The first footmark toward artificial neural
networks came in 1943 when Warren McCulloch, a neuro-physiologist,
and a young mathematician, Walter Pitts, composed a theme on the
working of neurons. Initially electrical circuits were used to model simple
neural networks.

29
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Reinforcing the concept of neurons and its working was conceptualized
by Donald Hebb in his book “The Organization of Behavior” in 1949.
It remarked that neural pathways are toned up each time that they
are used. As computers upgraded into their infancy in the 1950s, it
became affirmable to begin to model the first principles of these theories
referring human thought. Nathanial Rochester from the IBM research
laboratories led the first effort to model a neural network. Though the
first trial failed, the future attempts were successful. It was during this
time that conventional computing began to blossom and, as it did, the
emphasis in computing left the neural research in the background.

During this period, counsellors of “thinking machines” continued to
argue their cases. In 1956 the Dartmouth Summer Research Project on
Artificial Intelligence provided a boost to both artificial intelligence and
neural networks. One of the major outcomes of this operation was to
provoke research in both the intelligent side, AI, as it is known through-
out the industry, and in the much lower level neural processing part of
the brain.

Later on during the years following the Dartmouth Project, John
von Neumann proposed simulating simple neuron functions by apply-
ing telegraphy relays or vacuum tubes. Also, Frank Rosenblatt, a neuro-
biologist of Cornell, began work on the Perceptron in 1958. He was fas-
cinated with the operation of the eye of a fly. The Perceptron, which
resulted from this research, was built in hardware and is the oldest neu-
ral network still in use today. A single-layer perceptron was found to
be useful in classifying a continuous-valued set of inputs into one of
two classes. The perceptron computes a weighted sum of the inputs,
subtracts a threshold, and passes one of two possible values out as the
result. Unfortunately, the perceptron is limited and was proven as such
during the “disillusioned years” in Marvin Minsky and Seymour Papert’s
book Perceptrons.

In 1959, Bernard Widrow and Marcian Hoff of Stanford formulated
models they called ADALINE and MADALINE. These models were
named for their use of Multiple ADAptive LINear Elements. MADA-
LINE was the first neural network to be applied to a real world prob-
lem. It is an adaptive filter, which eliminates echoes on phone lines. This
neural network is still in commercial use.

Alas, these earlier successes induced people to magnify the potential of
neural networks, particularly in light of the limitation in the electronics
then available. This excessive hype, which flowed out of the academic and
technological worlds, infected the general literature of the time. Also, a
dread harassed as writers began to ponder what effect “thinking ma-
chines” would have on man. Asimov’s series about robots discovered
the effects on man’s ethics and values when machines where capable of
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executing all of mankind’s work.
These dreads, fused with unfulfilled, immoderate claims, caused re-

spected voices to critique the neural network research. The result was to
halt much of the funding. This period of inferior growth lasted through
1981. In 1982 several events induced a revived interest. John Hopfield’s
overture was not to merely model brains but to produce useful devices.
With clarity and mathematical analysis, he showed how such networks
could work and what they could do. However, Hopfield’s biggest asset
was his personal appeal. He was articulate, likeable, and a champion of
a dormant technology.

At the same time, a conference was held in Kyoto, Japan. This confer-
ence was the U.S. - Japan Joint Conference on Cooperative/Competitive
Neural Networks. Japan subsequently announced their Fifth Generation
effort. U. S. periodicals picked up that story, generating a worry that
the U. S. could be left behind. Soon funding was flowing once again.
By 1985 the American Institute of Physics began an annual meeting
— Neural Networks for Computing. By 1987, the Institute of Electri-
cal and Electronic Engineer’s (IEEE) first International Conference on
Neural Networks drew more than 1,800 attendees.

In 1982, Hopfield showed the usage of “Ising spin glass” type of model
to store information in dynamically stable networks. His work paved way
for physicians to enter neural modeling. These nets are widely used as
associative memory nets and are found to be both continuous valued
and discrete valued.

Kohonen’s self organizing maps (SOM) evolved in 1972 were capable
of reproducing important aspects of the structure of biological neural
networks. They make use of data representation using topographic maps,
which are more common in nervous systems. SOM also has a wide range
of applications in recognition problems.

In 1988, Grossberg developed a learning rule similar to that of Koho-
nen’s SOM, which is widely used in the Counter Propagation Net. This
learning is also referred to as outstar learning.

Carpenter and Grossberg invented the Adaptive Resonance Theory
(ART) Net. This net was designed for both binary inputs and continuous
valued inputs. The most important feature of these nets is that inputs
can be presented in any random order.

Nowadays, neural networks discussions are going on everywhere in al-
most all the engineering disciplines. Their hope appears really brilliant,
as nature itself is the proof that this kind of thing works. However, its
future, indeed the very key to the whole engineering science, dwells in
hardware development. Presently most neural network growth is simply
proving that the principal works. This research is producing neural net-
works that, due to processing limitations, take weeks to learn. To take
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these prototypes out of the lab and put them into use requires special-
ized chips. Companies are working on three types of neuro chips - digital,
analog, and optical. A few companies are working on creating a “silicon
compiler” to render a neural network Application Specific Integrated
Circuit (ASIC). These ASICs and neuron-like digital chips appear to be
the wave of the near future. Finally, optical chips look very promising,
but it may be years before optical chips see the light of day in commercial
applications.

2.3 Artificial Neural Networks

Artificial Neural Networks are comparatively crude electronic models
based on the neural structure of the brain. The brain in essence acquires
knowlwdge from experience. It is natural proof that some problems that
are beyond the scope of current computers are indeed solvable by little
energy effective packages. This form of brain modeling anticipates a less
technical way to produce machine solutions. This new approach to com-
puting also provides a more graceful degradation during system overload
than its more orthodox counterparts.

These biologically revolutionized methods of computing are thought
to be the next leading progress in the computing industry. Even simple
animal brains are able of functions that are presently inconceivable for
computers. Computers perform operations, like keeping ledgers or per-
forming complex math. But computers have trouble acknowledging even
simple patterns much less generalizing those patterns of the past into
actions of the future.

Today, betterments in biological research assure an initial understand-
ing of the natural thinking and learning mechanism. Some of the pat-
terns obtained are very complicated and allow us the ability to recognize
individual faces from many different angles. This process of storing infor-
mation as patterns, utilizing those patterns, and then solving problems
encompasses a new field in computing. This field, as mentioned before,
does not utilize traditional programming but involves the creation of
massively parallel networks and the training of those networks to solve
specific problems. This field also utilizes words very different from tra-
ditional computing, words like behave, react, self-organize, learn, gener-
alize, and forget.
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2.3.1 Comparison of Neural Network to the Brain

The exact operational concepts of the human brain are still an enigma.
Only a few aspects of this awesome brain processor are known. In par-
ticular, the commonest element of the human brain is a peculiar type
of cell, which, unlike the rest of the body, doesn’t appear to regenerate.
Since this type of cell is the solitary part of the body that is not replaced,
it is assumed that these cells provide us with the abilities to remember,
think, and apply previous experiences to our every action.

These cells, all 100 billion of them, are known as neurons. Each of
these neurons can connect with up to 200,000 other neurons, although
1,000 to 10,000 are typical.

The major power of the human mind comes from the absolute numbers
of these basic cellular components and the multiple links between them.
It also comes from genetic programming and learning. The individual
neurons are perplexed and they have a infinite number of parts, sub-
systems, and control mechanisms. They carry information through a
host of electrochemical pathways. Based on the classificatiion, there are
over one hundred different classes of neurons. Collectively these neurons
and their links form a process, which is not binary, not stable, and not
synchronous. In short, it is nothing like the currently available electronic
computers, or even artificial neural networks.

These artificial neural networks try to duplicate only the most basic
elements of this complicated, versatile, and powerful organism. They do
it in a crude way. But for a technologist who is trying to solve problems,
neural computing was never about duplicating human brains. It is about
machines and a new way to solve problems.

2.3.2 Artificial Neurons

The fundamental processing element of a neural network is a neuron.
This building block of human awareness encompasses a few general capa-
bilities. Basically, a biological neuron receives inputs from other sources,
combines them in some way, performs a generally nonlinear operation
on the result, and then outputs the final result. Figure 2.1 shows the
relationship of these four parts.

Inside human brain there are many variations on this primary type of
neuron, further complicating man’s attempts at electrically replicating
the process of thinking. The x-like extensions of the soma, which act
like input channels receive their input through the synapses of other
neurons. The soma then processes these incoming signals over time. The
soma then turns that processed value into an output, which is sent out
to other neurons through the axon and the synapses.
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FIGURE 2.1: A Simple Neuron

The modern observational information has supplied additional evi-
dence that biological neurons are structurally more complex. They are
significantly more complex than the existing artificial neurons that are
built into today’s artificial neural networks. Since biological science fur-
nishes a finer understanding of neurons, and as engineering science ad-
vances, network architects can continue to improve their schemes by
building upon man’s understanding of the biological brain.

Presently, the goal of artificial neural networks is not the pretentious
recreation of the brain. Contrarily, neural network researchers are seek-
ing an understanding of nature’s capabilities for which people can en-
gineer solutions to problems that have not been solved by traditional
computing.Figure 2.2 shows a fundamental representation of an artifi-
cial neuron.

In Figure 2.2, several inputs to the network are represented by the
mathematical symbol, x(n). Each of these inputs are multiplied by a con-
nection weight represented by w(n). In the simplest case, these products
are simply added together, fed through a transfer function to generate an
output. This process lends itself to physical implementation on a large
scale in a small software package. This electronic implementation is still
possible with other network structures, which employ different summing
functions as well as different transfer functions.
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FIGURE 2.2: A Basic Artificial Neuron

A few applications require “monochrome,” or binary, answers. These
practical applications include the recognition of text, the identification of
speech, and the image decrypting of scenes. These practical applications
are required to turn real life inputs into discrete values. These potential
values are limited to some known set, like the ASCII characters. Due to
this limitation of output options, these applications do not, all of the
time, use networks framed of neurons that simply sum up, and thereby
smooth, inputs. These networks could utilize the binary properties of
ORing and ANDing of inputs. These functions, and many others, can
be built into the summation and transfer functions of a network.

Other networks work on problems where the resolutions are not just
one of several known values. These networks demand to be capable of an
infinite number of responses. Example applications of this case constitute
the intelligence behind robotic movements. This intelligence works on
inputs and then creates outputs, which in reality have a few devices
to move. This movement can brace an infinite number of very accurate
motions. These networks do indeed require to smooth their inputs which,
due to restrictions of sensors, come out as discontinuous bursts. To do
that, they might accept these inputs, sum that data, and then produce
an output by, for example, applying a hyperbolic tangent as a transfer
function. In this way, output values from the network are continuous and
satisfy more real life interfaces.

Some other applications might simply sum and compare to a thresh-
old, thereby producing one of two conceivable outputs, a zero or a one.
Some functions scale the outputs to match the application, such as the
values minus one and one. A few functions still integrate the input data
with respect to time, creating time-dependent networks.

2.3.3 Implementation of Artificial Neuron Electroni-
cally

Artificial neurons are known as “processing elements” in the presently
available software packages. They have many more capabilities than the
simple artificial neuron described above. Figure 2.3 is a more detailed
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schematic of this still simplistic artificial neuron.

FIGURE 2.3: A Model of a “Processing Element”

In Figure 2.3, inputs enter into the processing element from the upper
left. The initial step is to multiply each of the inputs with their corre-
sponding weighting factor (w(n)). Then these altered inputs are fed into
the summing function, which usually just sums these products. Eventu-
ally, several kinds of operations can be selected. These operations could
produce a number of different values, which are then propagated for-
ward; values such as the average, the largest, the smallest, the ORed
values, the ANDed values, etc. Moreover, most commercial development
products allow software engineers to create their own summing func-
tions through routines coded in a higher-level language. Occasionally
the summing function is further elaborated by the addition of an activa-
tion function which enables the summing function to operate in a time
sensitive manner.

Either way, the output of the summing function is then sent into a
transfer function. This function then turns this number into a real output
via some algorithm. It is this algorithm that takes the input and turns
it into a zero or a one, a minus one or a one, or some other number.
The transfer functions that are commonly supported are sigmoid, sine,
hyperbolic tangent, etc. This transfer function also can scale the output
or control its value via thresholds. The result of the transfer function is
usually the direct output of the processing element. An example of how
a transfer function works is shown in Figure 2.4.

This sigmoid transfer function takes the value from the summation
function, called sum in the Figure 2.4, and turns it into a value between
zero and one.

Finally, the processing element is ready to output the result of its
transfer function. This output is then input into other processing ele-
ments, or to an outside connection, as determined by the structure of
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FIGURE 2.4: Sigmoid Transfer Function

the network. All artificial neural networks are constructed from this ba-
sic building block - the processing element or the artificial neuron. It is
variety and the fundamental differences in these building blocks, which
partially cause the implementing of neural networks to be an “art.”

2.3.4 Operations of Artificial Neural Network

The “art” of applying neural networks focuses on the infinite number
of ways by which the individual neurons can be clustered together. This
clustering occurs in the human mind in such a manner that information
can be actioned in a dynamic, interactive, and self-organizing way. Bio-
logically, neural networks are constructed in a three-dimensional world
from microscopical constituents. These neurons seem capable of almost
unclassified interconnections which is not true of any proposed, or ex-
isting, man-made network. Integrated circuits, using present technology,
are two-dimensional devices with a restricted number of layers for in-
terconnection. This physical reality restrains the types, and scope, of
artificial neural networks that can be implemented in silicon.

Currently, neural networks are the simple clustering of the primitive
artificial neurons. This clustering occurs by creating layers, which are
then connected to one another. How these layers connect is the other
part of the “art” of engineering networks to resolve real world problems.

In essence, all artificial neural networks bear a similar structure or
topology as shown in Figure 2.5. In this structure some of the neurons
interface to the real world to receive its inputs and a few additional
neurons provide the real world with the network’s output. This output
might comprise the particular character that the network thinks that
it has scanned or the particular image it thinks is being viewed. The
remaining neurons are hidden from view.
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FIGURE 2.5: A Simple Neural Network Diagram

Many researchers in the early days tried to just connect neurons in a
random way, without more success. At present, it is known that even the
brains of snails are an organized entity. Among the easiest design tech-
niques to design a structure the most common one is to create layers of
elements. It is the grouping of these neurons into layers, the connections
between these layers, and the summation and transfer functions that
comprise a functioning neural network.

Though there are useful networks, which contain only one layer, or
even one element, most applications require networks that contain at
least the three normal types of layers - input, hidden, and output. The
layer of input neurons receives the data either from input files or directly
from electronic sensors in real-time applications. The output layer sends
information directly to the outside world, to a secondary computer pro-
cess, or to other devices such as a mechanical control system. There can
be any number of hidden layers between the input and the output layers.
These internal hidden layers contain a lot of the neurons in various in-
terconnected structures. The inputs and outputs of each of these hidden
neurons merely go away to other neurons.

In almost all networks each neuron in a hidden layer receives the
signals from all of the neurons in a layer above it, typically an input
layer. Once the neuron performs its function, it passes its output to
all of the neurons in the layer below it, providing a feed-forward path
to the output. These channels of communication from one neuron to
another are important aspects of neural networks. They are referred to
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as the glue to the system since they interconnect signals. They are the
connections, which provide a variable strength to an input. There are
two types of these connections. One causes the summing mechanism of
the next neuron to add while the other causes it to subtract. In more
human terms one excites while the other inhibits.

Some networks want a neuron to inhibit the other neurons in the same
layer. This is called lateral inhibition. The most common use of this is in
the output layer. For example in text recognition if the probability of a
character being a “P” is 0.85 and the probability of the character being
an “F” is 0.65, the network wants to choose the highest probability and
inhibit all the others. It can do that with lateral inhibition. This concept
is also called competition.

Another type of connection is feedback. This is where the output of
one layer routes back to a previous layer. An example of this is shown
in Figure 2.6.

FIGURE 2.6: Simple Network with Feedback and Competition

The way that the neurons are connected to each other has a significant
impact on the operation of the network. In the larger, more professional
software development packages the user is allowed to add, delete, and
control these connections at will. By “tweaking” parameters these con-
nections can be made to either excite or inhibit.
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2.3.5 Training an Artificial Neural Network

When a network has been organized and structured for a specific appli-
cation, it implies that the network is ready to be trained. This operation
begins by choosing the initial weights randomly.

Then, the training, or learning, begins. There are two approaches to
training - supervised and unsupervised. Supervised training involves a
mechanism of providing the network with the desired output either by
manually “grading” the network’s performance or by providing the de-
sired outputs with the inputs. Unsupervised training is where the net-
work has to make sense of the inputs without outside help.

Neuron connection weights cannot be updated within a single step.
The process by which neuron weights are modified occurs over iterations.
Training data are presented to the neural network and the results are
watched over. The connection weights have to be updated based on these
results for the network to learn. The accurate process by which this goes
on is influenced by the learning algorithm.

These learning algorithms, which are commonly called learning rules,
are almost always expressed as functions. Consider a weight matrix be-
tween four neurons, which is expressed as an array of doubles in Java as
follows: double weights[ ][ ] = new double[4][4];

This gives us the connection weights between four neurons. Since most
of the programming languages index arrays as beginning with zero we
shall refer to these neurons as neurons zero through three. Using the
above array, the weight between neuron two and neuron three would
be contained in the variable weights[2][3]. Therefore, we would like a
learning function that would return the new weight between neurons i
and j, such as weights[i][j] = weights[i][j] + learningRule(...)

The hypothetical method learningRule calculates the change (delta)
that must occur between the two neurons in order for learning to take
place. The previous weight value is not discarded altogether, rather a
delta value is computed which gives the difference between the weights
of the previous iteration and the present one thus modifying the original
weight. When the weight of the neural network has been updated the
network is presented with the training data again, and the process con-
tinues for several iterations. These iterations keep going until the neural
network’s error rate decreases to an acceptable level.

A common input to the learning rule is the error. The error is the
difference between the actual output of the neural network and the an-
ticipated output. If such an error is provided to the training function
then the method is called supervised training. In supervised training the
neural network is constantly adjusting the weights to attempt to better
line up with the anticipated outputs that were provided.
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An unsupervised training algorithm can be used when no error is
produced. In unsupervised training the neural network is not taught
what the “correct output” is. Unsupervised training leaves the neural
network to determine the output for itself. The neural network groups
the input data when unsupervised training is used. Moreover there is no
need for the programmer to have a knowledge of these groups.

Supervised Training

A neural network with supervised training is used when both the in-
puts and the outputs are provided. The network then processes the in-
puts and compares its resulting outputs against the desired outputs.
The errors produced while comparing, are propagated back through the
system, causing the system to adjust the weights, in order to control
the network. This process occurs over and over as the weights are con-
tinually tweaked. The set of data, which enables the training, is called
the “training set.” During the training process of a neural network the
same set of data is processed several times as the connection weights are
refined. The flowchart of supervised training is shown in Figure 2.7.

FIGURE 2.7: Flowchart for Supervised Training
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The present commercial network development software packages pro-
vide functions and methods to monitor the convergence of artificial neu-
ral network to predict the correct answer. These functions allow the
training process to go on for days; stopping only when the system reaches
some statistically desired point, or accuracy. However, some networks
never learn. This could be because the input data does not contain the
specific information from which the desired output is derived. Networks
also don’t converge if there is not enough data to enable complete learn-
ing. Ideally, there should be enough data so that part of the data can
be held back as a test. Several layered networks with multiple nodes
are capable of memorizing data. To monitor the network to determine
if the system is simply memorizing its data in some non-significant way,
supervised training needs to hold back a set of data to be used to test
the system after it has undergone its training.

If a network simply can’t solve the problem, the designer then has
to review the input and outputs, the number of layers, the number of
elements per layer, the connections between the layers, the summation,
transfer, and training functions, and even the initial weights themselves.
Those changes required to create a successful network constitute a pro-
cess wherein the “art” of neural networking occurs.

Another part of the designer’s creativity governs the rules of train-
ing. There are many laws (algorithms) used to implement the adaptive
feedback required to adjust the weights during training. The most com-
mon technique is backward-error propagation, more commonly known
as back-propagation. These various learning techniques are explored in
greater depth later in this book.

Eventually, training is not exactly a technique. It involves an experi-
ence and sensitive analysis, to insure that the network is not overtrained.
Initially, an artificial neural network configures itself with the general
statistical trends of the data. Later, it continues to “learn” about other
aspects of the data which may be spurious from a universal point of
view.

Finally when the system has been perfectly trained, and no further
learning is required, the weights can, be “frozen.” In some systems this
finalized network is then turned into hardware so that it can be fast.
Other systems don’t lock themselves in but continue to learn while in
production use.

Unsupervised or Adaptive Training

The other type of training is called unsupervised training. In unsuper-
vised training, the network is provided with inputs but not with desired
outputs. The system itself must then decide what features it will use to
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FIGURE 2.8: Flowchart for Unsupervised Training

group the input data. This is often referred to as self-organization or
adaptation. The flowchart for unsupervised training is shown in Figure
2.8.

Presently, unsupervised learning is not well understood. This adapta-
tion to the environment is the promise, which would enable science fiction
types of robots to continually learn on their own as they encounter new
situations and new environments where exact training sets do not exist.

One of the leading researchers into unsupervised learning is Tuevo
Kohonen, an electrical engineer at the Helsinki University of Technology.
He has developed a self-organizing network, sometimes called an auto-
associator, that learns without the benefit of knowing the right answer.
It is an unusual looking network in that it contains one single layer
with many connections. The weights for those connections have to be
initialized and the inputs have to be normalized. The neurons are set up
to compete in a winner-take-all fashion.

Kohonen concentrated mainly on the networks that are structured and
organized in a different manner compared to the fundamental feed for-
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ward networks. Kohonen’s research dealt with the clustering of neurons
into fields. Neurons within a field are “topologically ordered.” Topology
is a branch of mathematics that studies how to map from one space
to another without changing the geometric configuration. The three-
dimensional groupings often found in mammalian brains are an example
of topological ordering.

Kohonen has pointed out that the lack of topology in neural network
models make today’s neural networks just simple abstractions of the
real neural networks within the brain. As this research continues, more
powerful self learning networks may become possible. But currently, this
field remains one that is still in the laboratory.

2.3.6 Comparison between Neural Networks, Tradi-
tional Computing, and Expert Systems

Neural networks offer a different way to analyze data, and to recognize
patterns within that data, than traditional computing methods. How-
ever, they are not a solution for all computing problems. Traditional
computing methods work well for problems that can be well character-
ized. Balancing checkbooks, keeping ledgers, and keeping tabs of inven-
tory are well defined and do not require the special characteristics of
neural networks.

Conventional computing machines are perfect for several practical ap-
plications. They can process data, track inventories, network results, and
protect equipment. These practical applications do not need the special
characteristics of neural networks.

Expert systems are an extension of traditional computing and are
sometimes called the fifth generation of computing. The first generation
computing used switches and wires while the second generation passed
off because of the evolution of the transistor. The third generation in-
volved solid-state technology, the use of integrated circuits, and higher
level languages like COBOL, Fortran, and “C”. End user tools, “code
generators,” were the fourth generation computing tools. The fifth gen-
eration involves artificial intelligence.

Typically, an expert system consists of two parts, an inference en-
gine and a knowledge base. The inference engine is generic. It handles
the user interface, external files, program access, and scheduling. The
knowledge base contains the information that is specific to a particu-
lar problem. This knowledge base allows an expert to define the rules,
which govern a process. This expert does not have to understand tra-
ditional programming whereas the person has to understand both what
he wants a computer to do and how the mechanism of the expert system
shell works. The shell which is a part of the inference engine, exactly pro-
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vides knowledge to the computer regarding the implementation of the
expert’s needs. To implement this, the expert system itself generates a
computer program. The computer program is required in order to build
the basic rules for the kind of application. The process of building rules
is also complex and does need a person who has a detailed knowledge.

Efforts to make expert systems general have run into a number of
problems. As the complexity of the system increases, the system simply
demands too much computing resources and becomes too slow. Expert
systems have been found to be feasible only when narrowly confined.

Artificial neural networks propose an altogether contrary approach to
problem solving and they are sometimes called the sixth generation of
computing. These networks are capable of providing algorithms which
learn on their own. Neural networks are integrated to provide the ca-
pability to solve problems without the intereference of an expert and
without the need of complex programming.

Expert systems have enjoyed significant successes. However, artificial
intelligence has encountered problems in areas such as vision, continu-
ous speech recognition and synthesis, and machine learning. Artificial
intelligence is also a hostage to the speed of the processor that it runs
on. Ultimately, it is restricted to the theoretical limit of a single proces-
sor. Artificial intelligence is also burdened by the fact that experts don’t
always speak in rules.

In spite of the benefis of neural networks over both expert systems
and more traditional computing in these specific areas, neural nets are
not complete solutions. They offer a capability that is not unshakable,
such as a debugged accounting system. They learn, and as such, they do
continue to make “mistakes.” Moreover, whenever a network is developed
for a certain application, no method is available to ascertain that the
network is the best one to find the optimal solution. Neural systems do
precise on their own demands. They do expect their developer to meet
a number of conditions such as:

• A data set which includes the information which can characterize
the problem

• An adequately sized data set to both train and test the network

• An understanding of the basic nature of the problem to be solved so
that basic first-cut decisions on creating the network can be made.
These decisions include the activation and transfer functions, and
the learning methods

• An understanding of the development tools
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• Adequate processing power (some applications demand real-time
processing that exceeds what is available in the standard, sequen-
tial processing hardware. The development of hardware is the key
to the future of neural networks)

Once these conditions are met, neural networks offer the opportunity
of solving problems in an arena where traditional processors lack both
the processing power and a step-by-step methodology. A number of very
complicated problems cannot be solved in the traditional computing
environments. Without the massively paralleled processing power of a
neural network, spech recognition, image recognition etc., is virtually
impractical for a computer to analyze. A traditional computer might try
to compare the changing images to a number of very different stored
patterns, which is not the optimal solution.

This new way of computing requires skills beyond traditional com-
puting. It is a natural evolution. Initially, computing was only hardware
and engineers made it work. Then, there were software specialists - pro-
grammers, systems engineers, data base specialists, and designers. This
new professional needs to be skilled different than his predecessors of the
past. For instance, he will need to know statistics in order to choose and
evaluate training and testing situations. It is a stress for the software en-
gineers working to improvise on the skills of neural networks since neural
networks offer a distince way to solve problems with their own demands.
The greatest demand is that the process is not simply logic. The process
demands an empirical skill, an intuitive feel as to how a network might
be developed.

2.4 Neural Network Components

At present there has been a general understanding of artificial neural
networks among engineers, therefore it is advantageous to do research
on them. Merely starting into the several networks, further understand-
ing of the inner workings of a neural network is a major requirement.
It is understood that, artificial neural networks are a prominent class
of parallel processing architectures that are effective in particular types
of composite problems and applications. These architectures ought to
be confused with common parallel processing configurations that ap-
ply many sequential processing units to standard computing topologies.
Alternatively, neural networks are different when compared with con-
ventional Von Neumann computers in the aspect that they inexpertly
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imitate the underlying properties of a human brain.
As mentioned earlier, artificial neural networks are loosely based on

biology. Current research into the brain’s physiology has unlocked only
a limited understanding of how neurons work or even what constitutes
intelligence in general. Investigators and scientists working in biologi-
cal and engineering fields are focusing and investigating to decipher the
important mechanisms as to how a human being learns and reacts to
day-to-day experiences. A developed knowledge in neural actioning helps
these investigators to produce more effective and more compendious ar-
tificial networks. It likewise produces a profusion of modern, and always
germinating, architectures. Kunihiko Fukushima, a senior research sci-
entist in Japan, describes the give and take of building a neural network
model; “We try to follow physiological evidence as faithfully as possible.
For parts not yet clear, however, we construct a hypothesis and build a
model that follows that hypothesis. We then analyze or simulate the be-
havior of the model and compare it with that of the brain. If we find any
discrepancy in the behavior between the model and the brain, we change
the initial hypothesis and modify the model. We repeat this procedure
until the model behaves in the same way as the brain.” This common
process has created thousands of network topologies.

FIGURE 2.9: Processing Element

Neural computation comprises most machines, not human brains.
Neural computation is the process of attempting to build up processing
systems that attract the extremely flourishing designs that are happen-
ing in biology by nature. This linkage with biological science is the reason
that there is a common architectural thread throughout today’s artifi-
cial neural networks. Figure 2.9 shows a model of an artificial neuron,
or processing element, which incarnates a broad variety of network ar-
chitectures. This figure is adapted from NeuralWare’s simulation model
used in NeuralWorks Profession II/Plus.

Their processing element model shows that networks designed for pre-
diction can be very similar to networks designed for classification or any
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other network category. Prediction, classification, and other network cat-
egories will be discussed later. The point here is that all artificial neural
processing elements have common components.

This section describes the seven major components that make up an
artificial neuron. These components are valid whether the neuron is used
for input, output, or is in one of the hidden layers.

Component 1. Weighting Factors

An individual neuron usually incurs numerous simultaneous inputs.
Each input has its own relative weight that gives the input the energy
that it needs on the processing element’s summation function. All the
weight functions execute the same type of function similar to the varying
synaptic intensities of biological neurons. In both cases, a few inputs are
given more importance than others so that they have a greater effect on
the processing element as they aggregate to produce a neural response.

The weight functions are adaptive coefficients inside the network and
they determine the intensity of the input signal as registered by the ar-
tificial neuron. Weights are a measure of an input’s connection strength,
which can be changed in response to various training sets and according
to a network’s specific topology or through its learning rules.

Component 2. Summation Function

The initial step in the operation of a processing element of a neural
network is to compute the weighted sum of all of the inputs. Mathemat-
ically, the inputs and the corresponding weights are vectors which can
be represented as (i1, i2, . . . in) and (w1, w2, . . . wn). The total input
signal is the dot, or inner, product of these two vectors. This oversimpli-
fied summation function is determined by multiplying each component
of the ith vector by the corresponding component of the w vector and
then adding up all the products. Input1 = i1 * w1, input2 = i2 * w2,
etc., are added as input1 + input2 + . . . + inputn. The result is a single
number, not a multi-element vector.

The dot product of two vectors can be conceived geometrically as a
measure of their similarity. If the vectors point in the same direction,
the dot product is maximum; if the vectors point in opposite direction
(180 degrees out of phase), their dot product is minimum.

The summation function is more complex than just the simple input
and weight sum of products. The input and weighting coefficients can be
combined in several dissimilar manners before passing on to the transfer
function. Likewise a mere product summing, the summation function
can select the minimum, maximum, majority, product, or several nor-
malizing algorithms. The specific algorithm for combining neural inputs
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is determined by the chosen network architecture and paradigm.
Some summation functions have an additional process applied to the

result before it is passed on to the transfer function. This process is
sometimes called the activation function. The purpose of utilizing an ac-
tivation function is to allow the summation output to vary with respect
to time. Activation functions currently are pretty much confined to re-
search. Most of the current network implementations use an “identity”
activation function, which is equivalent to not having one. Additionally,
such a function is likely to be a component of the network as a whole
rather than of each individual processing element component.

Component 3. Transfer Function

The output of the summation function is the weighted sum, and this is
transformed to a working output through an algorithmic process known
as the transfer function. The transfer function compares the summation
total with a threshold function to determine the output of the nework.
If the sum is greater than the threshold value, the processing element
generates a signal. If the sum of the input and weight products is less
than the threshold, no signal (or some inhibitory signal) is generated.
Both cases of obtaining the outputs are substantial.

The threshold, or transfer function, is generally nonlinear. Linear
(straight-line) functions are limited because the output is simply pro-
portional to the input. Linear functions are not very useful. That was
the problem in the earliest network models as noted in Minsky and Pa-
pert’s book Perceptrons.

The transfer function is one in which the result of the summation
function may be positive or negative. The output of the network could
be zero and one (binary output), plus one and minus one (bipolar),
or any other most commonly used numeric combinations. The transfer
function that produces such kind of an output is a “hard limiter” or step
function. Figure 2.10 shows a few sample transfer functions.

Another type of transfer function, the threshold or ramping function,
could mirror the input within a given range and still act as a hard
limiter outside that range. It is a linear function that has been clipped to
minimum and maximum values, making it nonlinear. However a different
choice of a transfer function would be a sigmoid or S-shaped curve.
The S-shaped curve goes about a minimum and maximum value at the
asymptotes. This curve is termed as a sigmoid when it ranges between
0 and 1, and known as a hyperbolic tangent when it ranges between -1
and 1. Mathematically, the most important and exciting feature of these
curves is that both the function and its derivatives are continuous. This
option works fairly well and is often the transfer function of choice.
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FIGURE 2.10: Sample Transfer Functions (a) Hard Limit Transfer
Function (b) Linear Transfer Function (c) Log-Sigmoid Transfer Func-
tion

Before applying the transfer function, a uniformly distributed random
noise may be added. The origin and volume of this noise is determined
by the learning mode of a given network paradigm. This noise is nor-
mally referred to as “temperature” of the artificial neurons. The name,
temperature, is derived from the physical phenomenon that as people
become too hot or cold their ability to think is affected. Electronically,
this process is simulated by adding noise. Indeed, by adding different
levels of noise to the summation result, more brain-like transfer func-
tions are realized. Most of the researchers use a Gaussian noise source
in order to imitate nature’s behavior. Gaussian noise is similar to uni-
formly distributed noise except that the distribution of random numbers
within the temperature range is along a bell curve. The use of temper-
ature, that is the noise determined by the network during learning is
an ongoing research area and is not being applied to many engineering
applications.

Presently NASA is processing a network topology that uses a temper-
ature coefficient in a new feed-forward, back-propagation learning func-
tion. But this temperature coefficient is a global term, which is applied
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to the gain of the transfer function. This should not be confused with
the more common term, temperature, which is merely a noise added to
individual neurons. In contrast, the global temperature coefficient allows
the transfer function to have a learning variable much like the synap-
tic input weights. This concept is claimed to create a network that has
a significantly faster (by several order of magnitudes) learning rate and
provides more accurate results than other feedforward, back-propagation
networks.

Component 4. Scaling and Limiting

Once the transfer function operation is completed, the output obtained
after applying the transfer function is sent through additional processes
like scaling and limiting. Scaling just multiplies a scale factor times the
transfer function output, and then adds an offset to the result. Limiting
is the mechanism which insures that the scaled result does not exceed
an upper or lower bound. This limiting is in addition to the hard limits
that the original transfer function may have performed. These operations
of scaling and limiting are mainly used in topologies to test biological
neuron models.

Component 5. Output Function (Competition)

One output signal which is generated from a processing element is
taken as a signal to hundreds of other neurons. This process is simi-
lar to the biological neuron, where there are many inputs and only one
output action. Usually, the output is directly equivalent to the trans-
fer function’s output. A few network structures, however, modify the
transfer function’s output to integrate competition amid neighboring
processing elements. Neurons are allowed to compete with each other,
inhibiting processing elements unless they have great strength. Compe-
tition is usually implemented in one or two steps. First, competition
determines which artificial neuron will be active, or provides an output.
Second, competitive inputs help to determine which processing element
will participate in the learning or adaptation process.

Component 6. Error Function and Back-Propagated Value

Usually the difference between the current output and the desired
output is calculated in learning networks and is denoted as the error.
An error function is used to transform the error signal in order to match
a particular network architecture. Most of the fundamental networks use
this error function, but some square the error to find the mean squared
error retaining its sign, or some cube the error, or some paradigms modify
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the raw error to fit their specific purposes.
The artificial neuron’s error is then typically propagated into the learn-

ing function of another processing element. This error term is sometimes
called the current error. Usually the current error is propagated back-
ward to the previous layer. This back-propagated error value can be
either the current error, the current error scaled in some manner, or
some other desired output depending on the network type. Normally,
this back-propagated value, after being scaled by the learning function,
is multiplied against each of the incoming connection weights to modify
them before the next learning cycle.

Component 7. Learning Function

The aim of the learning function is to update the variable connection
weights on the inputs of each processing element based on neural based
algorithm. This process of changing the weights of the input connections
to achieve some desired result can also be called the adaptation function,
as well as the learning mode. There are two types of learning: supervised
and unsupervised. Supervised learning requires a teacher. The teacher
may be a training set of data or an observer who grades the performance
of the network results. Either way, having a teacher is learning by rein-
forcement. When there is no external teacher, the system must organize
itself by some internal criteria designed into the network. This is learning
by doing.

2.4.1 Teaching an Artificial Neural Network

Supervised Learning

Majority of artificial neural network solutions have been trained with
supervision that is with a teacher. In supervised learning, the actual
output of a neural network is compared with the desired output. Weights,
which are randomly set to begin with, are then adjusted by the network
so that the next iteration, or cycle, will produce a closer match between
the desired and the actual output. The learning method tries to minimize
the current errors of all processing elements. This global error reduction
is created over time by continuously modifying the input weights until
an acceptable network accuracy is reached.

With supervised learning, the artificial neural network must be trained
before it becomes useful. Training consists of presenting input and output
data to the network. This collection of data is often referred to as the
training set. A desired output or a target output is provided for every
input set of the system. In most applications, actual data must be used.
The training phase takes a very long time. In prototype systems, with
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inadequate processing power, learning can take weeks. This training is
considered complete when the neural network reaches a user defined
performance level. This level signifies that the network has achieved the
desired statistical accuracy as it produces the required outputs for a
given sequence of inputs. When no further learning is necessary, the
weights are typically frozen for the application. Some network types
allow continual training, at a much slower rate, while in operation. This
helps a network to adapt to gradually changing conditions.

The training sets should be as ample as possible such that they contain
all the necessary and sufficient information that are required for learning.
The training sessions should also include a broad variety of data. Instead
of learning individually, the system has to learn everything together, to
find the best weight settings for the total set of facts available in the
problem.

How the input and output data are represented, or encoded, is a ma-
jor component to successfully instructing a network. Artificial networks
only deal with numeric input data. Therefore, the raw data must often
be converted from the external environment. Usually it is necessary scale
or normalise the input data according to the network’s paradigm. This
pre-processing of real-world inputs into machine understandable format
is already a common work done for standard computers. A lot of training
techniques which directly apply to artificial neural network implementa-
tions are promptly available. The job of the network designer is only to
find the best data format and matching network architecture for a given
application by using the instant implementations.

Once a supervised network performs on the training data, it is crucial
to ascertain what the network can do with data that it has not seen
before. If a system does not produce reasonable outputs for this test set,
the training period is not over. Indeed, this testing is critical to insure
that the network has not simply memorized a given set of data but has
learned the general patterns involved within an application.

Unsupervised Learning

Unsupervised learning also known as clustering is the great promise
of the future since it forms natural groups or clusters of patterns. It
proves that computers could someday learn on their own in a true robotic
sense. Presently, this learning technique is limited to networks known as
self-organizing maps. Though these networks are not commonly applied,
they have proved that they can provide a solution in a few cases, proving
that their promise is not groundless. They have been proven to be more
effective than many algorithmic techniques for numerical calculations.
They are also being used in the lab where they are split into a front-end
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network that recognizes short, phoneme-like fragments of speech that
are then passed on to a back-end network. The second artificial network
recognizes these strings of fragments as words.

This promising field of unsupervised learning is sometimes called self-
supervised learning. These networks do not use any external tempts to
adjust their weights, instead, they internally monitor their performance.
These networks look for regular patterns in the input signals, and makes
adaptations according to the function of the network. Even without be-
ing told whether it’s right or wrong, the network still must have some
information about how to organize itself. This information is built into
the network topology and learning rules.

An unsupervised learning algorithm may stress cooperation among
clusters of processing elements. In such a case, the clusters would work
together. If some external input activated any node in the cluster, the
cluster’s activity as a whole could be increased which is exhibitory. Like-
wise, if external input to nodes in the cluster was decreased, that could
have an inhibitory effect on the entire cluster.

The competition between processing elements could also form a ba-
sis for learning. Training of competitive clusters could amplify the re-
sponses of specific groups to specific stimuli. As such, it would associate
those groups with each other and with a specific appropriate response.
Normally, when competition for learning is in effect, only the weights
belonging to the winning processing element will be updated.

At the present state of the art, unsupervised learning is not well un-
derstood and is still the subject of research. This research is currently of
interest to the government because military situations often do not have
a data set available to train a network until a conflict arises.

2.4.2 Learning Rates

The rate at which ANNs learn depends upon several controllable fac-
tors. Many trade-offs should be taken into account while selecting the
learning rates. Evidently, a slower learning rate means more time is spent
in accomplishing the off-line learning to produce an adequately trained
system. With the faster learning rates, however, the network may not be
able to make the fine discriminations possible with a system that learns
more slowly.

Commonly, several factors besides time have to be considered when
discussing the off-line training task. Some of the most common factors
that are to be considered are network complexity, network size, paradigm
selection, architecture, type of learning rule or rules employed, and de-
sired accuracy. All these factors play a substantial role in determining
the time taken to train a network. If any of these factors is modified then
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the training time may be extended to an excessive length or the output
may be unacceptable and inaccurate.

Almost all learning functions have some provision for a learning rate,
or learning constant. Usually this term is positive and between zero and
one. If the learning rate is greater than one, it is easy for the learning
algorithm to overshoot in correcting the weights, and the network will
oscillate. Small values of the learning rate will not correct the current
error as quickly, but if small steps are taken in correcting errors, there
is a good chance of arriving at the best minimum convergence.

2.4.3 Learning Laws

Numerous learning laws are used commonly to train the neural net-
works. Most of these laws use the oldest learning law, Hebb’s Rule, as the
fundamental base. Research into different learning functions keeps going
as new ideas routinely come out in commercial publications. The main
aim of some researchers and scientists is to model the biological learning.
A few other researchers are experimenting with adaptations of biological
perceptions to understand how nature handles learning. In both ways,
human’s understanding of how neural processing actually works is very
limited. Learning is surely more complex than the simplifications rep-
resented by the learning laws currently developed. A few of the major
laws are presented as follows:

Hebb’s Rule

The first, and undoubtedly the best-known learning rule was intro-
duced by Donald Hebb to assist with unsupervised training. The rule
states, “If a neuron receives an input from another neuron, and if both
are highly active (mathematically have the same sign), the weight be-
tween the neurons should be strengthened.”

Rules for training neural networks are almost always represented as
algebraic formulas. Hebb’s rule is expressed as:

△Wij = µaiaj

The above equation calculates the needed change (delta) in weights
from the connection from neuron i to neuron j. The Greek letter mu(µ)
represents the learning rate. The activation of each neuron, when pro-
vided with the training pattern, is given as ai and aj .

To understand the working of Hebb rule, consider a simple neural
network with only two neurons. In this neural network these two neurons
make up both the input and output layer. There is no hidden layer. Table
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TABLE 2.1: Using Hebb’s Rule

Neuron I Output Neuron J Output Hebb’s Rule Weight
(activation) (activation) (R*I*J) Modification

+1 −1 1*1*−1 −1
−1 +1 1*−1*1 −1
+1 +1 1*1*1 +1

2.1 summarizes some of the possible scenarios using Hebbian training.
Assume that the learning rate is one.

It is observed from the above table, that if the activations of neuron
1 was +1 and the activation of neuron J were -1 the neuron connection
weight between neuron I and neuron J would be decreased by one.

Hopfield Law

It is similar to Hebb’s rule with the exception that it specifies the
magnitude of the strengthening or weakening. It states, “if the desired
output and the input are both active or both inactive, increment the
connection weight by the learning rate, otherwise decrement the weight
by the learning rate.”

The Delta Rule

This rule is a further variation of Hebb’s Rule. It is one of the most
commonly used rule. This rule is based on the simple idea of contin-
uously modifying the strengths of the input connections to reduce the
difference (the delta) between the desired output value and the actual
output of a processing element. This rule changes the synaptic weights
in the way that minimizes the mean squared error of the network. This
rule is also referred to as the Widrow-Hoff Learning Rule and the Least
Mean Square (LMS) Learning Rule. Here since the anticipated output
is specified, using the delta rule is considered supervised training. The
algebraic expression of delta rule for a single output unit, for several
output units and the extended delta rule are illustrated below:

Delta Rule for Single Output Unit
The Delta rule changes the weight of the connections to minimize the

difference between the net input to the output unit, yin and the target
value t.

The Delta rule is given by,

△Wi = α(t − yin)xi
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where,
x is the vector activation of input units.
yin is the net input to output unit, −Σ x.w1

t is the target vector, α is the learning rate
The derivation is as follows,
The mean square error of a particular training pattern is E=ΣJ(tj- yin)2
The gradient of E is a vector consisting of a partial derivatives of E with
respect to each of the weights. The error can be reduced rapidly by
adjusting weight WIJ .

Taking partial derivation of E w.r.t. WIJ

∂E/∂WIJ = ∂Σi(tj − yinj)
2/∂WIJ

= ∂(tj − yinj)
2/∂WIJ

Since the weight WIJ influences the error only at the input unit yJ. Also,

yinJ = Σi = 1ton(tj − yinj)
2

we get,

∂E/∂WIJ = ∂E(tj − yinj)
2/∂WIJ

= 2(tj − yinj)(−1)∂(yinj)/∂W IJ

∂E/∂WIJ = −2(tj − yinj)∂(yinj)/∂WIJ

E/∂WIJ = −2(tj − yinj)x1

Thus the error will be reduced rapidly depending upon the given learning
by adjusting the weights according to the Delta rule given by,

△WIJ = α(tJ − yinJ)xI

Delta Rule for Several Output Units

The derivation of Delta Rule of several output units is similar to that
in the previous section. The weights are changed to reduce the difference
between net input and target.

The weight correction involving Delta Rule for adjusting the weight
from the Ith input unit to the Jth output unit is,

△WIJ = α(tJ − yinJ)xI

Extended Delta Rule

This can also be called a generalized Delta Rule. The update for the
weight from the Ith input unit to the Jth output unit is,

△WIJ = α(tJ − yinJ )xI .xIf
1(yin − J)
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The derivation is as follows.
The squared error for a particular training pattern is,

E = ΣJ (tj − yj)
2

where E is the function of all the weights.
The gradient of E is a vector consisting of the partial derivatives of E

with respect to each of the weights. The error can be reduced rapidly by
adjusting the weight WIJ in the direction of −∂E/∂ WIJ .

Differentiating E partially w.r.t. WIJ ,

∂E/∂WIJ = ∂ΣJ(tj − yj)
2/∂WIJ

∂E/∂WIJ = ∂ΣJ(tJ − yJ)2/∂WIJ

Since the weight WI J only influences the error at output unit YJ
Since

YinJ = Σi =1 xiwiJ

YJ = f(yin−J)

∂E/∂WIJ = 2(tJ − yJ)(−1)∂yj∂/wIJ

= 2(tJ − yJ)∂f(yinj)/∂wIJ

∂E/∂WIJ = 2(tJ − yJ)xf1(yinj)

Hence the error is reduced rapidly for a given learning rate α by adjusting
the weights according to the Delta Rule,

△WIJ = α(tJ − yJ)xIf
1(YinJ )

gives the extended Delta Rule.
When using the Delta Rule, it is important to ensure that the input

data set is well randomized. Well-ordered or structured presentation of
the training set can lead to a network which cannot converge to the de-
sired accuracy. If that happens, then the network is incapable of learning
the problem.

Competitive Learning Law or Kohonen’s Learning Law

This procedure, developed by Teuvo Kohonen, was inspired by learn-
ing in biological systems. In this procedure, the processing elements com-
pete for the opportunity to learn, or update their weights. The processing
element with the largest output is declared the winner and has the ca-
pability of inhibiting its competitors as well as exciting its neighbors.
Only the winner is permitted an output, and only the winner plus its
neighbors are allowed to adjust their connection weights.
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Further, the size of the neighborhood can vary during the training
period. The usual paradigm is to start with a larger definition of the
neighborhood, and narrow in as the training process proceeds. Because
the winning element is defined as the one that has the closest match
to the input pattern, Kohonen networks model the distribution of the
inputs. This is good for statistical or topological modeling of the data
and is sometimes referred to as self-organizing maps or self-organizing
topologies.

For a neuron P to be the winning neuron, its induced local field vp, for
a given particular input pattern must be largest among all the neurons
in the network. The output signal of winning neuron is set to one and
the signals that lose the competition are set to zero. Hence,

N =

{
1 ifvp>vpfor all q, p 6= q
0 otherwise

This rule is suited for unsupervised network training. The winner-
takes-all or the competitive learning is used for learning statistical prop-
erties of inputs. This uses the standard Kohonen learning rule.

Let wij denote the weight of input node j to neuron i. Suppose the
neuron has the fixed weight, which are disturbed among its input nodes;

∑

j

wij = 1foralli

A neuron then learns by shifting weights from its inactive to active in-
put modes. If a neuron does not respond to a particular input pattern,
no learning takes place in that neuron. If a particular neuron wins the
competition, its corresponding weights are adjusted.

Using standard competitive rule, the change wij is given as,

△wij =

{
α(xj − wij) if neuron i wins the competition

0 if neuron i loses the competition

where α is the learning rate. This rule has the effect of moving the
weight vector wi of winning neuron i toward the input pattern x. Through
competitive learning, the neural network can perform clustering.

This neighborhood is sometimes entered beyond the simple neuron
winner so that it includes the neighboring neurons. Weights are typically
initialized at random values and their lengths are normalized during
learning in this method. The winner-takes-all neuron is selected either
by the dot product or Euclidean norm. Euclidean norm is most widely
used because dot product may require normalization.
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Out Star Learning Law

Out star learning rule can be well explained when the neurons are ar-
ranged in a layer. This rule is designed to produce the desired response
t from the layer of n neurons. This type of learning is also called as
Grossberg learning. Out star learning occurs for all units in a particular
layer and no competition among these units are assumed. However the
forms of weight updates for Kohonen learning and Grossberg learning
are closely related. In the case of out star learning,

△wjk =

{
α(yk − wjk) if neuron j wins the competition

0 if neuron j loses the competition

The rule is used to provide learning of repetitive and characteristic
properties of input-output relationships. Though it is concerned with
supervised learning, it allows the network to extract statistical proper-
ties of the input and output signals. It ensures that the output pattern
becomes similar to the undistorted desired output after repetitively ap-
plying an distorted output versions. The weight change here will be a
times the error calculated.

Boltzmann Learning Law

The learning is a stochastic learning. A neural net designed based on
this learning is called Boltzmann learning. In this learning the neurons
constitute a recurrent structure and they work in binary form. This
learning is characterized by an energy function, E, the value of which is
determined by the particular states occupied by the individual neurons
of the machine given by,

E = −1

2

∑

i

∑

j

wijxjxii 6= j

where, xi is the state of neuron i to neuron j. The value i6=j means that
none of the neurons in the machine has self feedback. The operation of
machine is performed by choosing a neuron at random.

The neurons of this learning process are divided into two groups; vis-
ible and hidden. In visible neurons there is an interface between the
network and the environment in which it operates but in hidden neu-
rons, they operate independent of the environment. The visible neurons
might be clamped onto specific states determined by the environment,
called a clamped condition. On the other hand, there is free running
condition, in which all the neurons are allowed to operate freely.
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Memory Based Learning Law

In memory based learning, all the previous experiences are stored in
a large memory of correctly classified input-output examples:(xi,ti)

N
i−1

where xi is the input vector and tj is the desired response. The desired
response is a scalar.

The memory based algorithm involves two parts. They are:

• Criterion used for defining the local neighborhood of the test vector

• Learning rule applied to the training in the local neighborhood

One of the most widely used memory based learning is the nearest
neighbor rule, where the local neighborhood is defined as the training
example that lies in the immediate neighborhood of the test vector x.
The vector,

x1
n ∈ fx1 . . . xng

is said to be nearest neighbor of xt if, min d(xi, xt)=d(xn
1,xt).

Where d(xi, xt) is the Euclidean distance between the vectors xi and
xt.

A variant of nearest neighbor classifier is the K-nearest neighbor clas-
sifier, which is stated as,

• Identify the K-classified patterns that is nearest to test vector xt

for some integer K.

• Assign xt to the class that is most frequently represented in the
K-nearest neighbors to xt.

Hence K-nearest neighbor classifier acts like an averaging device. The
memory-based learning classifier can also be applied to radial basis func-
tion network.

2.4.4 MATLAB Implementation of Learning Rules

MATLAB Snippet to Implement Hebb Rule Syntax

[dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

where

learnh is the Hebb weight learning function

learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several

inputs

W -- S x R weight matrix (or S x 1 bias vector)

P -- R x Q input vectors (or ones(1,Q))

Z -- S x Q weighted input vectors
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N -- S x Q net input vectors

A -- S x Q output vectors

T -- S x Q layer target vectors

E -- S x Q layer error vectors

gW -- S x R gradient with respect to

performance

gA -- S x Q output gradient with respect to performance

D -- S x S neuron distances

LP -- Learning parameters

LS -- Learning state, initially should be = [ ]

dW -- S x R weight (or bias) change matrix

Learning occurs according to learnh’s learning parameter,

shown here with its default value.

LP.lr - 0.01 -- Learning rate.

For example, consider a random input P and output A for

a layer with a two-element input and three neurons with

a learning rate of 0.5.

p = rand(2,1)

a = rand(3,1)

lp.lr = 0.5

dW = learnh([ ],p,[ ],[ ],a,[ ],[ ],[ ],[ ],[ ],lp,[ ])

Output:

p =

0.9501

0.2311

a =

0.6068

0.4860

0.8913

lp =

lr: 0.5000

dW =

0.2883 0.0701

0.2309 0.0562

0.4234 0.1030

MATLAB Snippet to Implement Delta Rule

syntax
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[dW,LS]=learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS]=learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

learnwh is the delta learning function, and is also

known as the Widrow-Hoff weight/bias or least mean

squared (LMS)rule.learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

takes several inputs

W -- S x R weight matrix (or b, and S x 1 bias vector)

P -- R x Q input vectors (or ones(1,Q))

Z -- S x Q weighted input vectors

N -- S x Q net input vectors

A -- S x Q output vectors

T -- S x Q layer target vectors

E -- S x Q layer error vectors

gW -- S x R weight gradient with respect to performance

gA -- S x Q output gradient with respect to performance

D -- S x S neuron distances

LP -- Learning parameters

LS -- Learning state, initially should be=

[ ] and returns

dW -- S x R weight (or bias) change matrix

Consider a random input P and error E to a layer with

a two-element input and three neurons with a learning

rate of 0.5.

p = rand(2,1)

e = rand(3,1)

lp.lr = 0.5

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Output

p =

0.9501

0.2311

a =

0.6068

0.4860

0.8913

lp =

lr: 0.5000

dW =

0.3620 0.0881

0.2169 0.0528
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0.0088 0.0021

MATLAB Snippet to Implement Kohonen’s Learning Law

Syntax

[dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

learnsom is the self-organizing map weight learning

function

learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several

inputs

W -- S x R weight matrix (or S x 1 bias vector)

P -- R x Q input vectors (or ones(1,Q))

Z -- S x Q weighted input vectors

N -- S x Q net input vectors

A -- S x Q output vectors

T -- S x Q layer target vectors

E -- S x Q layer error vectors

gW -- S x R weight gradient with respect to

performance

gA -- S x Q output gradient with respect to

performance

D -- S x S neuron distances

LP -- Learning parameters

LS -- Learning state

dW -- S x R weight (or bias) change matrix

For example, consider a random input P, output A,

and weight matrix W, for a layer with a two-element

input and six neurons. The positions and distances

are calculated for the neurons, which are arranged

in a 2-by-3 hexagonal pattern. Four learning

parameters are defined.

p = rand(2,1)

a = rand(6,1)

w = rand(6,2)

pos = hextop(2,3)

d = linkdist(pos)

lp.order lr = 0.9

lp.order steps = 1000

lp.tune lr = 0.02

lp.tune nd = 1
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ls = [ ]

[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Output p =

0.8214

0.4447

a =

0.6154

0.7919

0.9218

0.7382

0.1763

0.4057

w =

0.9355 0.8132

0.9169 0.0099

0.4103 0.1389

0.8936 0.2028

0.0579 0.1987

0.3529 0.6038

pos =

0 1.0000 0.5000 1.5000 0 1.0000

0 0 0.8660 0.8660 1.7321 1.7321

d =

0 1 1 2 2 2

1 0 1 1 2 2

1 1 0 1 1 1

2 1 1 0 2 1

2 2 1 2 0 1

2 2 1 1 1 0

dW =

-0.2189 -0.7071

-0.1909 0.8691

0.8457 0.6291

-0.1426 0.4777

1.3144 0.4235

0.8550 -0.2903

MATLAB Snippet to Implement Outstar Learning Law

Syntax

© 2010 by Taylor and Francis Group, LLC



66 Computational Intelligence Paradigms

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several

inputs

W -- S x R weight matrix (or S x 1 bias vector)

P -- R x Q input vectors (or ones(1,Q))

Z -- S x Q weighted input vectors

N -- S x Q net input vectors

A -- S x Q output vectors

T -- S x Q layer target vectors

E -- S x Q layer error vectors

gW -- S x R weight gradient with respect to

performance

gA -- S x Q output gradient with respect to

performance

D -- S x S neuron distances

LP -- Learning parameters, none, LP = [ ]

LS -- Learning state, initially should be = [ ] and

returns

dW -- S x R weight (or bias) change matrix

For example consider a random input P, output A, and

weight matrix W for a layer with a two-element input

and three neurons with a learning rate of 0.5.

p = rand(2,1)

a = rand(3,1)

w = rand(3,2)

lp.lr = 0.5

dW = learnos(w,p,[ ],[ ],a,[ ],[ ],[ ],[ ],[ ],lp,[

])

Output

p =

0.6721

0.8381

a =

0.0196

0.6813

0.3795

w =

0.8318 0.4289

0.5028 0.3046

0.7095 0.1897
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lp =

lr: 0.5000

order lr: 0.9000

order steps: 1000

tune lr: 0.0200

tune nd: 1

dW =

-0.2729 -0.1715

0.0600 0.1578

-0.1109 0.0795

Summary

The design of artificial neural network involves the understanding of
the various network topologies, current hardware, current software tools,
the application to be solved, and a strategy to acquire the necessary
data to train the network. This process further involves the selection
of learning rules, transfer functions, summation functions, and how to
connect the neurons within the network. Thus this chapter provided an
understanding of neural networks, their history, the components such
as learning rates, learning laws, error functions, transfer functions etc.,
This chapter also provided the basic implementation of the learning rules
using the Neural Network Toolbox in MATLAB.

Review Questions

1. What are artificial neural networks?

2. Compare ANN with a human brain.

3. How are artificial neurons implemented electronically?

4. Explain supervised and unsupervised training.

5. Mention a few networks that belong to supervised training.

6. Compare Neural networks with traditional computing and expert
systems.
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7. Describe in detail the major components of a neural network.

8. Mention the different types of transfer function.

9. Define learning rate. What are the constraints on this parameter
while training a net?

10. State Hebb rule.

11. Differentiate Hebb and Hopfield learning laws.

12. Derive the algebraic expression of delta rule for single and several
outputs.

13. Give an expression to update weights using extended delta rule.

14. Explain competitive learning.

15. State Boltzmann learning law and memory based learning law.

16. Write a MATLAB code to implement the Bolizmann Learning law.

17. Develop a MATLAB code for competitive learning.
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Chapter 3

Artificial Neural Networks -
Architectures and Algorithms

3.1 Introduction

As stated in the previous chapter artificial neural networks are similar
to biological networks based on the concept of neurons, connections,
and transfer functions. The architectures of various types of networks
are more or less similar. Most of the majority variations prows from the
various learning rules like Hebb, Hopfield, Kohonen, etc., and the effect
of these rules on the network’s topology.

This chapter outlines some of the most common artificial neural net-
works based on their major class of application. These categories are not
meant to be exclusive, they are merely meant to separate out some of the
confusion over network architectures and their best matches to specific
applications. The single layer and multi layer networks are discussed in
this chapter along with the detailed architecture and algorithm of the
prediction networks. The chapter also delineates the basic methodology
to implement the prediction networks using MATLAB.

Basically, most applications of neural networks fall into the following
four categories:

1. Prediction

2. Classification

3. Data Association

4. Data Conceptualization

Table 3.1 shows the differences between these network categories and
shows which of the more common network topologies belong to which
primary category. A few of these networks grouped according to their
specific practical application are being used to solve numerous types of
problems. The feedforward back-propagation network is used to solve

69
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TABLE 3.1: Network Selector Table

Network
Category

Neural Network Applications

Prediction 1. Perceptron
2. Back Propagation
3. Delta Bar Delta
4. Extended Delta Bar
Delta
5. Directed Random search
6. Higher Order Neural Net-
works
7. Self-organizing map into
Backpropagation

Used to pick the best
stocks in the market,
predict weather, identify
people with cancer risks
etc.

Classification 1. Learning Vector Quanti-
zation
2. Counter-propagation
3. Probabilistic Neural Net-
works

Used to classify patterns

Data Associ-
ation

1. Hopfield
2. Boltzmann Machine
3. Hamming Network
4. Bi-directional associative
Memory

Used to classify data
and also recognizes
the data that contains
errors.

Data Con-
ceptualiza-
tion

1. Adaptive Resonance Net-
work
2. Self Organizing Map

Used to analyze the in-
puts so that grouping
relationships can be in-
ferred (e.g. extract from
a database the names of
those most likely to buy
a particular product)

almost all types of problems and indeed is the most popular for the first
four categories. Prior to dealing the network types in detail the basic
networks based on the number of layers are discussed in the following
section. Based on the number of layers artificial neural networks are
classified into single layer and multi-layer networks.
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3.2 Layered Architectures

Before dealing with the architecture and algorithms of the types of
neural networks, let us understand the basic architecture based on the
number of layers in the network. The network is classified into single
layer and multi layer based on the layers in the architecture.

3.2.1 Single-Layer Networks

A single-layer neural network consists of a set of units organized in a
layer. Each unit Ui receives a weighted input xj with weight wji. Figure
3.1 shows a single-layer linear model with m inputs and n outputs.

FIGURE 3.1: A Single-Layer Linear Model

Let ~X = (x1, x2, ... xm)be the input vector and let the activation
function be f, the activation value is just the net sum to a unit. The m
× n weight matrix is

W =








w11 w12... w1n

w21 w22... w2n

...

wm1 wm2... wmn








Thus the output yk at unit Uk is
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Yk = (w1k, w2k, ...., wmk)








x1

x2

...

xm








therefore the output vector ~Y =(Y1,Y2, ... Yn)T is given by

~Y = ~WT . ~X

A simple linear network, with its fixed weights, is limited in the range
of output vectors it can associate with input vectors. For example, con-
sider the set of input vectors (x1, x2), where each xi is either 0 or 1.
No simple linear network can produce outputs as shown in Table 3.2,
for which the output is the boolean exclusive-or (XOR) of the inputs.
It can be shown that the two weights w1 and w2 would have to satisfy
three inconsistent linear equations. Implementing the XOR function is a
classic problem in neural networks, as it is a subproblem of other more
complicated problems.

TABLE 3.2: Inputs and Outputs for a
Neural Network Implementing the XOR
Function

x1 x2 Output y
0 0 0
0 1 1
1 0 1
1 1 0

A single-layer model usually uses either the Hebb rule or the delta rule.
Refer to Chapter 2 for the algebraic formulas of Hebb and Delta rule. A
network using the Hebb rule is guaranteed to be able to learn associations
for which the set of input vectors are orthogonal. A disadvantage of
the Hebb rule is that if the input vectors are not mutually orthogonal,
interference may occur and the network may not be able to learn the
associations.

In order to overcome the disadvantages of Hebb rule, the delta rule was
proposed. The delta rule updates the weight vector such that the error
(difference between the desired and target output) is minimized. Delta
rule allows an absolute and accurate method to modify the initial weight
vector. The network can learn numerous associations using the delta rule
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as compared with the Hebb’s rule. It is proved that a network using
the delta rule can learn associations whenever the inputs are linearly
independent.

3.2.2 Multilayer Networks

A network with two or more layers is referred to as a multilayer net-
work. The output from one layer acts as input to the next subsequent
layer. The layers that are intermediate and have no external links are
referred to as hidden layers (Figure 3.2). Any multilayer system with
fixed weights that has a linear activation function is equivalent to a
single-layer linear system. Assume a two-layer linear system, in which
the input to the first layer is ~X, the output ~Y = W1

~X of the first layer
is given as input to the second layer, and the second layer produces
output ~Z = W2

~Y .

FIGURE 3.2: A Multilayer Network

Consequently, the system is equivalent to a single-layer network with
weight matrix W = W2W1. By induction, a linear system with any
number n of layers is equivalent to a single-layer linear system whose
weight matrix is the product of the n intermediate weight matrices.
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A nonlinear multilayer network is capable of providing more com-
putational potential compared to a single layer network. For example,
the difficulties found in the perceptron network can be overcome with
the addition of hidden layers; Figure 3.3 demonstrates a multilayer net-
work that symbolizes the XOR function. The threshold is set to zero,
and therefore a unit responds if its activation is greater than zero. The
weight matrices for the two layers are

W1 =

(
1 −1
−1 1

)

, W2 =

(
1
1

)

.

We thus get

WT
1

(
1
0

)

=

(
1
0

)

, WT
2

(
1
0

)

= 1,

WT
1

(
0
1

)

=

(
0
1

)

, WT
2

(
0
1

)

= 1,

WT
1

(
1
1

)

=

(
0
0

)

, WT
2

(
0
0

)

= 0,

WT
1

(
0
0

)

=

(
0
0

)

, WT
2

(
0
0

)

= 0.

With input vector (1,0) or (0,l), the output produced at the outer layer
is 1; otherwise it is 0.

FIGURE 3.3: A Multilayer System Representation of the XOR Func-
tion
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Multilayer networks have proven to be very powerful. In fact, any
boolean function can be implemented by such a network.

No learning algorithm had been available for multilayer networks until
Rumelhart, Hinton, and Williams introduced the generalized delta rule.
At the output layer, the output vector is compared to the expected
output.If the error, the difference between the output and the target
vector is zero, then no weights are updated. If the difference is non
zero, the error is computed from the delta rule and is propagated back
through the network. The idea, similar to that of the delta rule, is to
adjust the weights to minimize the difference between the real output and
the expected output. These networks can learn arbitrary associations by
applying differentiable activation functions.

3.3 Prediction Networks

Neural networks are capable of anticipating the most likely things that
are to happen. In that respect, there are numerous practical applications
in which anticipation or prediction can help in setting priorities. This is
the basic idea behind creation of a network group known as prediction
networks.

3.3.1 The Perceptron

The perceptron learning rule is a method for finding the weights in
a network for pattern classification. Basically the perceptron network
consists of a single neuron with a number of adjustable weights. The
original perceptron consisted of three units: sensory, associator, and the
response units as shown in Figure 3.4. The sensory and associator units
had binary activations and an activation of +1, 0 or -1 was used for the
response unit.

Architecture

The neuron is the fundamental processor of a neural network. It has
three basic elements:

1. A set of connecting links (or synapses); each link carries a weight
(or gain).

2. A summation (or adder) sums the input signals after they are
multiplied by their respective weights.
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FIGURE 3.4: Original Perceptron

3. An activation function f(x), limits the output of the neuron. Typ-
ically the output is limited to the interval [0,1] or alternatively
[−1,1].

The architecture of a single layer perceptron is shown in Figure 3.5.
The input to the response unit is the output from the associator unit,
which is a binary vector. Since the weight adjustment is done only be-
tween the associator and the response unit, the network is referred to
as a single layer network. The architecture shown consists of only the
associator and the response units. The input layer consists of neurons
X1...Xi...Xn which are connected with the output neurons with weighted
interconnections. There exists a common bias “1”.

Algorithm

The training and testing algorithm for a single layer perceptron is
shown below. The algorithm can be implemented in MATLAB.

Parameters

x: Input vector (x1, ... ,xi, ... xn)

t: Target vector

w: Weight vector for the output unit (w1, ... ,wj, ...

wj)

y: Activation function f(y in)

b: Bias value
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W1

Wi

Wn

b

1

X1

Xi

Xn

y

FIGURE 3.5: Architecture of Single layer Perceptron

θ: Threshold value

Training Algorithm

The pseudocode of the training algorithm for the single layer percep-
tron is given as follows

Initialize the weights (either to zero or to a small

random value)

Set Learning rate α (in the interval [0,1])

While not stopping condition do,
For each training pair s:t

Assign input unit activations xi = si

Compute the response of output unit:

y in=b+
∑

i

xiwi

y = f(y in) =







1, if y in > θ
0, if − θ ≤ y in ≤ θ
−1, if y in < − θ

Update weights and bias according to,
If y 6= t,

wi(new) = wi(old) + αtxi

b(new) = b(old) + αt
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else

wi(new) = wi(old)
b(new) = b(old)

End If

End For

End While

The stopping condition may be no change in weights.

Testing Algorithm

The pseudocode of the testing algorithm for the single layer perceptron
is given as follows

Set the weights from the training algorithm

For each input vector x

Compute the response of output unit:

y in=
∑

i

xiwi

y = f(y in) =







1, if y in > θ
0, if − θ ≤ y in ≤ θ
−1, if y in < − θ

End For

End

Perceptron Training Algorithm for Several Output Classes

The pseudocode of the training algorithm for the single layer percep-
tron with several output classes is given as follows

Initialize the weights (either to zero or to a small

random value)

Set Learning rate α (in the interval [0,1])

While not stopping condition do,

For each training pair

Assign input unit activations xi = si

Compute the response of output unit:

y inj=
∑

i

xiwi for j=1 ... m

yj = f(y inj) =







1, if y inj > θ
0, if − θ ≤ y inj ≤ θ
−1, if y inj < − θ

Update weights and bias according to,
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If yj 6= tj,

wij(new) = wij(old) + αtjxi

bj(new) = bj(old) + αtj

else

wi(new) = wi(old)

b(new) = b(old)

End If

End For

End While

Perceptron Testing Algorithm for several output classes

The pseudocode of the testing algorithm for the single layer perceptron
with several output classes is given as follows

Set the weights from the training algorithm

For each input vector x

Compute the response of output unit:

y inj=
∑

i

xiwi

y = f(y inj) =







1, if y inj > θ
0, if − θ ≤ y inj ≤ θ
−1, if y inj < − θ

End For

End

3.3.2 MATLAB Implementation of a Perceptron Net-
work

Consider a 4-input and 1-output problem, where the output should
be “one” if there are odd number of 1s in the input pattern and “zero”
otherwise.

Enter the input and the target vectors
clear

inp=[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1;0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1;...

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1;0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1];

out=[0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0];

Create a network using the newff function in MATLAB Neural Net-
work toolbox. The function newff creates a feedforward network. It re-
quires four inputs and returns the network object. The first input is an R
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by 2 matrix of minimum and maximum values for each of the R elements
of the input vector. The second input is an array containing the sizes of
each layer. The third input is a cell array containing the names of the
transfer functions to be used in each layer. The final input contains the
name of the training function to be used.

network=newff([0 1;0 1; 0 1; 0 1],[6 1],

’logsig’,’logsig’);

Before training a feedforward network, the weights and biases must be
initialized. The newff command will automatically initialize the weights,
but it may be required to reinitialize them. This can be done with the
command init.

network=init(network);

The function sim simulates a network. The function sim takes the net-
work input, and the network object net, and returns the network outputs.

y=sim(network,inp);

figure,plot(inp,out,inp,y,’o’),

title(’Before Training’);

axis([-5 5 -2.0 2.0]);

There are seven training parameters associated with traingd: epochs,
show, goal, time, min grad, max fail, and lr. Here the number of epochs
and the learning rate are defined as follows

network.trainParam.epochs = 500;

network.trainParam.lr = 0.05;

Training the network. Simulate the network and plot the results (Figure
3.6)

network=train(network,inp,out);

y=sim(network,inp);

figure,plot(inp,out,inp,y,’o’),

title(’After Training’);

axis([-5 5 -2.0 2.0]);

Updated weights and bias values

Layer1 Weights=network.iw1

Layer1 Bias=network.b1

© 2010 by Taylor and Francis Group, LLC



Artificial Neural Networks - Architectures and Algorithms 81

Layer2 Weights=network.lw2

Layer2 Bias=network.b2

Actual Desired=[y’ out’]

Output:
TRAINLM, Epoch 0/500, MSE 0.376806/0,

Gradient 0.527346/1e-010

TRAINLM, Epoch 25/500, MSE 5.86095e-005/0,

Gradient 0.0024019/1e-010

TRAINLM, Epoch 34/500, MSE 1.67761e-012/0,

Gradient 2.89689e-011/1e-010

TRAINLM, Minimum gradient reached, performance goal

was not met.

Layer1 Weights =

-9.5620 9.4191 6.5063 -11.2360

8.7636 10.0589 -10.4526 -8.9109

9.8375 -11.4056 14.3788 -5.5974

7.4334 10.0157 -13.7152 5.9788

-10.6286 14.6436 10.6738 -15.2093

8.7772 -6.0128 6.6699 9.0275

Layer1 Bias =

-11.8265

-5.8238

4.2346

-7.7644

-5.0030

-6.0732

Layer2 Weights =

-28.4686 17.7464 -10.1867 -26.2315 28.9088

27.1797

Layer2 Bias =

-4.4138
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FIGURE 3.6: Pattern before Training and after Training, Perfor-
mance and Goal at the end of 34 Epochs
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3.3.3 Feedforward Back-Propagation Network

The feed-forward, back-propagation architecture was developed in the
early 1970’s by Rumelhart, Hinton and Williams. Presently, the back-
propagation architecture is the commonest, most efficient, and easy
model for complex, multi-layered networks. The network is used in a wide
range of applications ranging from image processing, signal processing,
face recognition, speech recognition, etc. This network architecture has
bred a large class of network types with several different topologies and
various training methods. The major capability is to obtain nonlinear
solutions to undefined problems.

Architecture

The typical back-propagation network has an input layer, an output
layer, and at least one hidden layer. There is no theoretical limit on
the number of hidden layers but typically there is just one or two. Some
work has been done which indicates that a minimum of four layers (three
hidden layers plus an output layer) are required to solve problems of
any complexity. Each layer is fully connected to the succeeding layer, as
shown in Figure 3.7.

The in and out layers indicate the flow of information during recall.
Recall is the process of putting input data into a trained network and
receiving the answer. Back-propagation is not used during recall, but
only when the network is learning a training set.

The number of layers and the number of processing element per
layer are important decisions. These parameters to a feedforward, back-
propagation topology are also the most ethereal. There are only general
rules picked up over time and followed by most researchers and engineers
applying this architecture of their problems.

Rule A: The number of the processing elements in the hidden layer
should increase as the complexity in the input and output relationship
increases.

Rule B : If the process being modeled is separable into multiple stages,
then additional hidden layer(s) may be required. If the process is not
separable into stages, then additional layers may simply enable memo-
rization and not a true general solution.

Rule C : The amount of training data available sets an upper bound
for the number of processing elements in the hidden layers. To calcu-
late this upper bound, use the number of input output pair examples in
the training set and divide that number by the total number of input

© 2010 by Taylor and Francis Group, LLC



84 Computational Intelligence Paradigms

FIGURE 3.7: Back-Propagation Network

and output processing elements in the network. Then divide that result
again by a scaling factor between five and ten. Larger scaling factors are
used for relative noisy data. A highly noisy input data requires a factor
of twenty or fifty, while very non-noisy input data with an exact rela-
tionship to the output unit might drop the factor to approximately two.
Therefore it is necessary that the hidden layers possess a few processing
elements.

As soon as the network is created, the process of teaching commences.
This teaching makes use of a learning rule which is the variant of the
Delta Rule. The rule starts with determining the error which is the
difference between the actual outputs and the desired outputs. Based on
this error, the connection weights are increased in proportion to the error
times for global accuracy. While doing this for an individual node the
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inputs, the output, and the desired output should be present at the same
processing element. The composite section of this learning rule is for the
system to determine which input contributed the most to an incorrect
output and how does that element get changed to correct the error. An
inactive node would not contribute to the error and would have no need
to update its weights.

To figure out this problem, training inputs are put on to the input
layer of the network, and desired outputs are compared at the output
layer. During the learning process, a forward sweep is made through the
network, and the output of each element is computed layer by layer.
The difference between the actual output and the target output is back-
propagated to the previous layer(s), which is modified by the deriva-
tive of the transfer function, and the connection weights are normally
adjusted using the Delta Rule. This process proceeds for the previous
layer(s) until the input layer is reached.

There are many variations to the learning rules for back-propagation
network. Different error functions, transfer functions, and even the mod-
ifying method of the derivative of the transfer function can be used. The
concept of momentum error was introduced to allow for more prompt
learning while minimizing unstable behavior. Here, the error function, or
delta weight equation, is modified so that a portion of the previous delta
weight is fed through to the current delta weight. This acts, in engineer-
ing terms, as a low-pass filter on the delta weight terms since general
trends are reinforced whereas oscillatory behavior is canceled out. This
allows a low, normally slower, learning coefficient to be used, but creates
faster learning.

One more common technique that is used for the network to converge
is to only update the weights after many pairs of inputs and their desired
outputs are presented to the network, rather than after every presenta-
tion. This kind of network is referred to as cumulative back-propagation
because the delta weights are not accumulated until the complete set of
pairs is presented. The number of input-output pairs that are presented
during the accumulation is referred to as an epoch. This epoch may
correspond either to the complete set of training pairs or to a subset.

Algorithm of a Back Propagation Network

This section discusses the training and application algorithm of a feed
forward back propagation network.

Training Algorithm

The training algorithm of back propagation involves four stages
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1. Initialization of weights

2. Feed forward

3. Back propagation of errors

4. Updation of the weights and biases

During first stage, which is the initialization of weights, some small
random values are assigned.

During feed forward stage each input unit (Xi) receives an input signal
and transmits this signal to each of the hidden units z1 ... zp. Each hidden
units then calculates the activation function and sends its signal zj to
each output unit. The output unit calculates the activation function to
form the response of the net for the given input pattern.

During back propagation of errors, each output unit compares its com-
puted activation yk with its target value tk to determine the associated
error for that pattern with that unit. Based on the error, the factor
δk(k=1, ... m) is computed and is used to distribute the error at output
unit yk back to all units in the previous layer. Similarly the factor δj

(j=1 ... p) is computed for each hidden unit zj .
During final stage, the weight and biases are updated using the δ factor

and the activation.

Parameters

The various parameters used in the training algorithm is as follows:
x : Input training vector x= (x1, ... xi, ... xn)
t : Output target vector t= (t1, ... tk, ... tm)
δk= error of output unit yk

δj= error of output unit zj

α = learning rate
voj= bias on hidden unit j
zj = hidden unit j
woK=bias on output unit k
yk = output unit k

The pseudocode of the training algorithm of the back propagation
network is as follows. The algorithm is given with the various phases:

Initialization stage:

Initialize weights v and w to small random values

Initialize Learning rate

While not stopping condition for phase I Do

For each training pair
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Feed forward stage:

Each input unit receives the input signal

xi and transmits to all units in the hidden

layer

Each hidden unit (zj, j=1,...,p) sums its

weighted input signals

zinj=voj +

n∑

i=1

xivij

applying activation function

zj = f(zinj)

and sends this signal to all units.

Each output unit (yk, k=1,...,m) sums its

weighted input signals

yink=wok +

p
∑

j=1

zjWjk

applies its activation function to

calculate output signals

yk= f(yink)

Back propagation of errors:

Each output unit (yk, k=1,..., m) receives a target pattern
corresponding to an input pattern, error information term
is calculated as
δk = (tk − yk)f(yink)

Each hidden unit (zj, j=1,....,p) sums its

delta inputs from units in the layer above

δinj =

m∑

k−1

δjWjk

The error information is calculated as

δj = δinjf(zinj)

Updation of weights and biases:
Each output unit (yk, k=1,...,m) updates

its bias and weights (j=0,,p)

The weight correction term is given by

△Wjk = αδkzj

The bias correction term is given by

△Wok = αδk

Wjk(new) = Wjk(old) + △Wjk, Wok(new) = Wok(old) + △Wok

Each hidden unit (zj, j=1,...,p) updates

its bias and weights (i=0,...,n)
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The weight correction term

△Vij = αδjxi

The bias correction term

△Voj = αδj

Vij(new) = Vij(old) + △Vij , Voj(new) = Woj(old) + △Voj

End For

Test the stopping condition

End while

End

The stopping condition may be the minimization of the errors, number
of epochs etc.

Choice of Parameters

Parameters that are used for training should be selected such that the
network operates efficiently. The initial value assignments are discussed
in the following section.

Initial Weights : Initial weights determine whether the error gradient
reaches a global (or only a local) minima in order for the network to
converge. If the initial weight is too large, the initial input signals to
each hidden or output unit will fall in the saturation region where the
derivative of the sigmoid has a very small value (f(net)=0). If initial
weights are too small, the net input to a hidden or output unit will
approach zero, which then causes extremely slow learning. In,order to
obtain optimum results the initial weights and biases are set to random
numbers between -0.5 and 0.5 or between -1 and 1.

Selection of Learning Rate: A high learning rate leads to rapid learn-
ing but the weights may oscillate, while a lower learning rate leads to
slower learning. Methods suggested for adopting learning rate are as
follows:

• Start with a high learning rate and steadily decrease it. Changes
in the weight vector must be small in order to reduce oscillations
or any divergence.

• A simple suggestion is to increase the learning rate in order to
improve performance and to decrease the learning rate in order to
worsen the performance.

• Another method is to double the learning rate until the error value
worsens.

© 2010 by Taylor and Francis Group, LLC



Artificial Neural Networks - Architectures and Algorithms 89

Learning in Back Propagation

There are two types of learning.

i. Sequential learning or pre-pattern method

ii. Batch learning or pre-epoch method

In sequential learning a given input pattern is propagated forward, the
error is determined and back propagated, and the weights are updated.

In Batch learning the weights are updated only after the entire set of
training network has been presented to the network. Thus the weight
update is only performed after every epoch.

If p= patterns in one epoch, then

△w =
1

p

α∑

p−1

△wp

In some cases, it is advantageous to accumulate the weight correction
terms for several patterns and make a single weight adjustment (equal to
the average of the weight correction terms) for each weight rather than
updating the weights after each pattern is presented. This procedure
has a “smoothing effect”. In some cases the smoothing may increase the
chances of convergence to the local minimum.

Time taken to train a net

The need for applying back propagation network is to accomplish a
balance between memorization and generalization; it is not needfully
appropriate to proceed training until the error reaches minimum value.
The two disjoint sets of data used during training are:

• Set of training patterns

• Set of training - testing patterns.

Training patterns have a great influence on weight adjustments. As
the error in a neural network increases the network starts to store and
memorise the training patterns.

Number of Training Pairs

The number of training matches likewise plays a crucial part on train-
ing of the nets. A simple thumb rule is utilized to ascertain the number
of training pairs.

Consider a net trained to classify the fraction (1-e/2) of the trained
patterns correctly. This means it will also classify (1-e) of the testing
pattern correctly by using the following condition.
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If there are enough training patterns the net will be able top generalize
as desired. Enough training pattern is given by w/p=e, where

p=number of training patterns
and w=number of weights to be trained.

The value of e lies between 0 to 1/8. The necessary condition is given by
p>| w |/(1-a)
where a= expected accuracy for the test set.
Sufficient condition is given as
p>|w|/(1-a)log(n/(1-a))
where n= number of nodes.

Number of Hidden Units

In general, the choice of hidden units depends on many factors
such as:
- numbers of input and output units
- number of training patterns
- noise in the target vectors
- complexity of the function or classification to be learned
- architecture
- type of hidden unit activation function
- training algorithm
- regularization

In a number of situations, there is no specific way to determine the best
number of hidden units without training several networks and estimating
the generalization error of each. If there are a few hidden units, then the
training error and generalization error are very high due to underfitting
and there occurs high statistical bias. If there are too many hidden units,
then the training error is too low but still has high generalization error
due to overfitting and high variance.

Momentum Factor

The weight updation in a BPN is proceeded in a direction which is a
combination of present gradient and the former gradient. This kind of
an approach is advantageous while a few training data differ from a ma-
jority of the data. A low value of learning rate is applied to avoid great
disturbance in the direction of learning whenever identical and unusual
pair of training patterns is presented. The speed of convergence increases
as if the momentum factor is added to the weight updation rule. The
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weights from one or more former training patterns must be saved in or-
der to use momentum. For the BPN with momentum, the new weights
for training step t+2, is based on t and t+1. It is found that momen-
tum allows the net to perform large weight adjustments as long as the
correction proceeds in the same general direction for several patterns.
Hence applying momentum, the net does not go forward in the direction
of the gradient, just travels in the direction of the combination of the
present gradient and the former gradient for which the weight updation
is made. The main purpose of the momentum is to speed up the conver-
gence of error propagation algorithm. This method makes the current
weight adjustment with the fraction of the recent weight adjustment.

The weight updating formula for BPN with momentum is,

wjk(t + 1) = wjk(t) + αδkzj + µ[wjk(t) − Wjk(t − 1)]

vjk(t + 1) = vjk(t) + αδjxi + µ[vij(t) − vij(t − 1)]

µ is called the momentum factor. It ranges from 0<µ <1.

Application Algorithm

The application procedure for BPN is shown below:

Initialize weights from (training algorithm).

For each input vector

For i =1,...., n ;

set activation of input unit, xi;

End For

For j =1, ., p ;

Zinj = Vaj +

n∑

i−1

XiVij

End For

For k=1, ., m ;

Yinj = Wok +

p
∑

j−1

ZjWjk

End For

End For

End

3.3.4 Implementation of BPN Using MATLAB

MATLAB has a suite of inbuilt functions designed to build neural
networks, the Neural Networks Toolbox. Basically a programmer has to
go through three phases to implement neural networks: Design, Training,
and Testing.
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• Design phase:

- Define the number of nodes in each of the three layers (input,
hidden, output)

- Define the transfer functions

- Initialize the training routine that is to be used.

- Optional parts of the design: Error function (Mean Square
Error is the default), plot the progress of training, etc.

• Training phase:

- Once the network has been designed, the network is designed
by optimizing the error function

- This process determines the “best” set of weights and biases
for the users data set.

• Testing phase

- Test the network to see if it has found a good balance between
memorization (accuracy) and generalization

The BPN network can be implemented in MATLAB using the Neural
Network Toolbox as follows.

clc;

clear all;

close all;

The first step in training a feedforward network is to create the net-
work object. The function newff creates a feedforward network. It re-
quires four inputs and returns the network object. The first input is an
R by 2 matrix of minimum and maximum values for each of the R ele-
ments of the input vector. The second input is an array containing the
sizes of each layer. The third input is a cell array containing the names of
the transfer functions to be used in each layer. The final input contains
the name of the training function to be used.

% Creating a network

net=newff([-1 2; 0

5],[3,1],’tansig’,’purelin’,’traingd’);

Before training a feedforward network, the weights and biases must be
initialized. The newff command will automatically initialize the weights,
but it may be required to reinitialize them. This can be done with the
command init.
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Initialising weights

net = init(net);

The function sim simulates a network. The function sim takes the net-
work input p, and the network object net, and returns the network out-
puts a.

% Simulating the network

p = [1 2 3 4 5;6 7 8 9 0];

a = sim(net,p)

There are seven training parameters associated with traingd:
epochs, show, goal, time, min grad, max fail, and lr. The learning rate lr
is multiplied times the negative of the gradient to determine the changes
to the weights and biases. The larger the learning rate, the bigger the
step. If the learning rate is made too large, the algorithm becomes unsta-
ble. If the learning rate is set too small, the algorithm takes a long time
to converge. The training status is displayed for every show iteration
of the algorithm. (If show is set to NaN, then the training status never
displays.) The other parameters determine when the training stops. The
training stops if the number of iterations exceeds epochs, if the perfor-
mance function drops below goal, if the magnitude of the gradient is less
than mingrad, or if the training time is longer than time seconds.

% Parameter setting

net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-5;

Now the network is ready for the training phase

% Training the network

t = [1 -1 1 -1 1];

[net,tr]=train(net,p,t);

The output obtained is shown in Figure 3.8
The observations are shown below

TRAINGD, Epoch 0/300, MSE 1.27137/1e-005, Gradient

2.30384/1e-010

TRAINGD, Epoch 50/300, MSE 0.730344/1e-005, Gradient

0.17989/1e-010

TRAINGD, Epoch 100/300, MSE 0.684018/1e-005,

Gradient 0.0927535/1e-010
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FIGURE 3.8: Performance and Goal of BPN Network

TRAINGD, Epoch 150/300, MSE 0.671868/1e-005,

Gradient 0.0528921/1e-010

TRAINGD, Epoch 200/300, MSE 0.666293/1e-005,

Gradient 0.0428047/1e-010

TRAINGD, Epoch 250/300, MSE 1.0139/1e-005, Gradient

3.96228/1e-010

TRAINGD, Epoch 300/300, MSE 0.684285/1e-005,

Gradient 1.13772/1e-010

TRAINGD, Maximum epoch reached

Limitations of Back Propagation Network

A few limitations are also available while using the feedforward back-
propagation network. Back-propagation demands more of supervised
training, with numerous input-output examples. In addition, the inter-
nal mapping operations are not clear to understand, and also there is
no assurance that the system will meet to an acceptable solution. From
time to time, the learning process grinds to a halt in a local minima,
limiting the optimal solution.

This kind of stucking operation occurs when the network system finds
an error that is lower than the circumventing possibilities but does not
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finally get to the smallest possible error. Numerous learning applications
add a term to the computations to bump or jog the weights preceding
superficial barriers and find the actual minimum rather than a temporary
fault.

Applications

• speech synthesis from text

• robot arms

• evaluation of bank loans

• image processing

• knowledge representation

• forecasting and prediction

• multi-target tracking

3.3.5 Delta Bar Delta Network

The architecture of a delta bar delta network is similar to that of a
back-propagation network. The major difference between the two net-
works lie in the algorithmic method of learning. Delta bar delta was de-
veloped by Robert Jacobs in order to overcome the limitations of BPN by
improving the learning rate of standard feedforward, back-propagation
networks.

The back-propagation learning process is based on a steepest descent
method that minimizes the networks anticipation error during the pro-
cess where the connection weights to each artificial neuron are updated.
The momentum term is assigned initially and the learning rates are as-
signed on a layer-by-layer basis. The back-propagation approach allows
the learning rate to decrease step by step as more numbers of training
sets are presented to the network. Though this technique is eminent in
working out many practical applications, the convergence rate of the
procedure is too slow.

The learning method used in the delta bar delta network uses a weight
that has its own self-adapting coefficient. Here no momentum factor is
used. The persisting operations of the network, such as back propa-
gating the error to the previous layer etc., are identical to the normal
back-propagation architecture. Delta bar delta is a heuristic approach
to training artificial networks. Here the preceding error values can be
used to infer future calculated error values. A knowledge of the prob-
able errors enables the system to update the weights in an intelligent
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way. However, this approach is complicated in that empirical evidence
suggests that each weight may have quite different effects on the overall
error. Jacobs then suggested the common sense notion that the back-
propagation learning rules should account for these variations in the
effect on the overall error. To put differently, every connective weight
of a network should have its own learning rate. The claim is that the
step size appropriate for one connection weight may not be appropriate
for all weights in that layer. Additionally the learning rates ought to be
varied over time. By assigning a learning rate to each connection weight
and permitting this learning rate to change continuously over time, more
degrees of freedom are introduced to reduce the time to convergence.

Rules which directly apply to this algorithm are straight forward and
easy to implement. The learning rates are altered based on the present
error information found with standard back-propagation. During weight
updation, if the local error has the same sign for several consecutive
time steps, the learning rate for that connection is linearly increased.
Incrementing the learning rate linearly prevents the learning rates from
becoming too large. When the local error changes signs frequently, the
learning rate is decreased geometrically. Decrementing geometrically en-
sures that the connection learning rates are always positive. Further,
they can be decreased more rapidly in regions where the change in error
is large.

Learning Rule of the Delta Bar Delta Network

Depending upon the learning rate the following heuristics are followed
in order to train the network:

i. When the sign of the derivative of a weight is the same on sev-
eral consecutive steps, the corresponding learning rate should be
increased.

ii. When the sign of the derivative of a weight alternates on consecu-
tive steps, the corresponding learning rate should be decreased.

The delta bar delta rule is a variation of the generalized delta rule and
implements the heuristics mentioned above. In fact, it consists of two
rules: one for weight adjustment and the other for control of the learning
rates.

The weights are modified as:

~W (t + 1) = ~W (t) −
n∑

i=1

ηi(t)Ei,i ▽~w F (~w)

where ~W (t) is the weight vector’s value at time step t
ηi(t) is the learning rate at time step t
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Ei,i is an n x n matrix, with every component = 0,
except with the component with
row=column=i, which is =1, (1 ≤ i ≤ n)
F (~w) is the minimum of ~w
Every learning rate is adjusted according to

η(t + 1) = η(t) + △η(t)

where

η(t) =







k, if δ̄(t − 1)δ(t)>0
−φη(t), if δ̄(t − 1)δ(t)<0

0, else

where

δ(t) =
∂F (t)

∂W (t)
and δ̄(t) = (1 − θ)δ(t) + θδ̄(t − 1)

Here k > 0 ,φ ∈ [0,1] and θ ∈ [0,1] are constants.k, φ and are θ the same
for every learning rate. δ̄ is the exponential average of the current and
past derivatives of w.

By allowing different learning rates for each connection weight in a
network, there is no need for the steepest descent search that is to search
direction of the negative gradient. Therefore the connection weights are
updated by partially differentiating the error with respect to the weight
itself. The weight updations satisfy the locality constraint, that is, they
need data only from the processing elements to which they are connected.

3.3.6 Extended Delta Bar Delta

To overcome the limitations of delta bar delta network, Ali Minai
and Ron Williams developed the extended delta bar delta algorithm to
enhance the delta bar delta by applying an exponential decay to the
learning rate increase. As discussed in the section on back-propagation,
momentum is a factor used to smooth the learning rate. It is a term
added to the standard weight updation, which is proportional to the
previous weight change. In this way, by applying the momentum factor
good general trends are reinforced, and oscillations are dampened.

The learning rate and the momentum rate for each weight have sep-
arate constants controlling their increase and decrease. Once again, the
sign of the current error is used to indicate whether an increase or de-
crease is appropriate. As the learning rate and momentum rate increases,
they are modified as exponentially decreasing functions. Thus, greater
increases will be applied in areas of small slope or curvature than in areas
of high curvature. This is a partial answer to the jump and oscillation
problem of delta bar delta.
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Further to prevent the jumps and oscillations in the weights, ceilings
are placed on the individual connection learning rates and momentum
rates along with a memory with a recovery feature. As the training set
is presented in each epoch, the accumulated error is evaluated. If the
error is less than the previous minimum error, the weights are saved in
memory as the current best. Similarly, if the current error exceeds the
minimum previous error, modified by the tolerance parameter, than all
connection weight values return stochastically to the stored best set of
weights in memory. Furthermore, the learning and momentum rates are
decreased to begin the recovery process.

In order to overcome the shortcomings of the delta bar delta learning
algorithm, the Extended Delta-Bar-Delta (EDBD) algorithm was sug-
gested which was based on the following considerations:

1. Even when the direction of the slope is not changing, an increase
in steepness often signals the approach of a minimum. Since, for
steepest descent, q is a multiplicative factor and the actual step size
is proportional to the slope, so is the effect of any learning rate in-
crement. Using a constant learning rate increment thus means that
step size increases more rapidly on steep slopes than on shallow
ones. Clearly, this is the opposite of what is required. Intuitively,
the descent on steep slopes should be more careful lest the mini-
mum be overshot beyond recovery. At the very least, it should not
be any more reckless than it is in flat areas! Also, as pointed out
by Jacobs, the direction of steepest descent points toward the min-
imum only when the slope in all directions is equal. If slopes are
not equal, the orientation of the descent vector can be improved
(under certain topological assumptions) by taking disproportion-
ately large steps in flat directions and disproportionately smaller
steps in steep directions. However, this must not be overdone, or
most of the time will be spent spiraling instead of descending.

2. In DBD, momentum leads to divergence because it magnifies learn-
ing rate increments. Since the step size is largest on steep slopes
preceding a minimum, this is also precisely when momentum is at
its most dangerous, and should be kept in check. On flat areas,
however, it provides added speed-up and should be used to the
utmost.

3. Increasing learning rate (or momentum) without bound can lead
to divergence even with small increments, depending, of course,
upon the error surface. Thus, growth should be capped or tapered
off to preclude this event. Since such preclusion is impossible to
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guarantee for all situations, some sort of memory and recovery
should be included in the algorithm.

Based on these points, the following changes were made to the delta bar
delta learning algorithm:

1. The learning rate increase was made an exponentially decreasing
function of | δ̄(t) | instead of being a constant. This meant that
learning rate would increase faster on very flat areas than on areas
of greater slope. This allowed the use of fairly large increments
in flat areas without risking wild jumps from steep slopes. Also,
using an exponential ensured that deviations from the steepest
descent direction would be significant only when different slopes
were markedly disproportionate and compensating distortion was
needed.

2. Momentum was used as a standard part of the algorithm, but was
varied just like the learning rate. Thus, momentum was increased
on plateaus and decreased exponentially near minima. The DBD
criiterion was used for this purpose too, but the increment factor
was again a decreasing exponential function of | δ̄(t) |.

3. To prevent either the learning rate or momentum from becoming
too high, a ceiling was defined for both at which they were hard-
limited. This further facilitated the use of large increments, since
their effect was not unbounded.

4. Memory and recovery were incorporated into the algorithm. Thus,
the best result seen until the current time step was saved. A toler-
ance parameter ? was used to control recovery. If the error became
greater than ? times the lowest seen so far, the search was restarted
at the best point with attenuated learning rate and momentum.
To prevent thrashing, this was done stochastically, so there was a
small probability P that the search would restart at a totally new
point.

The equations for the EDBD algorithm can be written as follows:

△Wij(t) = −ηij(t)
∂E(t)

∂Wij
+ µij(t) △ Wij(t − 1)

ηij(t + 1) = IN [ηmax, ηij(t) + △ηij(t)]

µij(t + 1) = MIN [µmax, µij(t) + △µij(t)]
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where

△ηij(t) =







klexp(−γl | δ̄ij(t) |)
−φlηij(t)
0

△µij(t) =







kmexp(−γm | δ̄ij(t) |)
−φmηij(t)
0

if δ̄ij(t − 1)δij(t)>0
if δ̄ij(t − 1)δij(t)<0
otherwise

Overall, it appears that the EDBD algorithm in its current form is
quite successful, at least for networks learning in real-valued, contin-
uous problem domains. Success with small problems notwithstanding,
we think that EDBD should be evaluated separately for binary domain
learning, and experiments are underway in that direction. Also, since
learning rate variability and momentum confer an ability to escape local
minima, it might be worthwhile to investigate some sort of annealing pro-
cedure, whereby learning rate variability and/or momentum decreases
with time or decreasing error. This should make the search even more
robust and effective in terms of solution quality.

3.3.7 Directed Random Search Network

All the network architectures that were discussed in the previous sec-
tions were based on learning rules, or algorithmic paradigms. These al-
gorithms applied a gradient descent technique to update the weights.
Unlike thse networks, the directed random search makes use of a stan-
dard feedforward recall structure. The directed random search updates
the weights in a random manner. To regularize this random weight up-
dation, a direction component is added to insure that the weights tend
toward an antecedently successful search direction. Totally all the pro-
cessing elements available in the network are regulated individually.

The directed random search algorithm has numerous advantages. The
problem has to be well understood while using directed random search so
that the optimal results occur when the initial weights are within close
proximity to the best weights. The algorithm learns at a very fast rate
since the algorithm cycles through its training much more quickly than
calculus-bases techniques like the delta rule and its variations. No error
terms are computed for the intermediate processing elements and only
one output error is computed. The given problem should accumulate a
small network since the training becomes too long and complex if the
number of connections are large.

In order to maintain the weights within a compact region that is the
area in which the algorithm works best, an upper bound is required on
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the weight’s magnitude. Therefore, the weight’s bounds are set reason-
ably high, the network is still allowed to seek what is not exactly known -
the true global optimum. The second key parameter to this learning rule
involves the initial variance of the random distribution of the weights. In
most of the commercial packages there is a vendor recommended number
for this initial variance parameter. Yet, the setting of this number is not
all that important as the self-adjusting feature of the directed random
search has proven to be robust over a wide range of initial variances.

There are four key components to a random search network. They are
the random step, the reversal step, a directed component, and a self-
adjusting variance.

Random Step: A random value is added to each weight. Then, the
entire training set is run through the network, producing a “prediction
error.” If this new total training set error is less than the previous best
prediction error, the current weight values (which include the random
step) becomes the new set of “best” weights. The current anticipation
error is then saved as the new, best prediction error.

Reversal Step: If the random step’s results are worse than the pre-
vious best, then the same random value is subtracted from the original
weight value. A set of wieghts are produced such that they are in the
opposite direction when compared to the previous random step. If the
total “prediction error” is less than the previous best error, the current
weight values of the reversal step are stored as the best weights. The
current prediction error is also saved as the new, best prediction error. If
both the forward and reverse steps fail, a completely new set of random
values are added to the best weights and the process is then begun again.

Directed Component: In order to increase the speed of convergence,
a set of directed components are created, based on the outcomes of the
forward and reversal steps. These components speculate the history of
success or failure for the previous random steps. The directed compo-
nents, which are initialized to zero, are added to the random components
at each step in the procedure. Directed components provide a common
way for the network to train in the direction. Addition of directed com-
ponents provide a dramatic performance improvement to convergence.

Self-adjusting Variance: An initial variance parameter is specified to
control the initial size (or length) of the random steps which are added
to the weights. An adaptive mechanism changes the variance parameter
based on the current relative success rate or failure rate. The learning
rule assumes that the current size of the steps for the weights is in the
right direction if it records several consecutive successes, and it then
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expands to try even larger steps. Conversely, if it detects several consec-
utive failures it contracts the variance to reduce the step size.

Directed random search brings out good solutions for small and
medium sized networks in a reasonable amount of time. The training
is automatic, requiring little, user interaction. The number of connec-
tion weights imposes a practical limit on the size of a problem that this
learning algorithm can effectively solve. If a network has more than 200
connection weights, a directed random search can require a relatively
long training time and still end up yielding an acceptable solution.

3.3.8 Functional Link Artificial Neural Network (FLANN)
or Higher-Order Neural Network

The network can be called as functional link artificial neural network
or higher order artificial neural network. These neural networks, are
an extended version of the standard feedforward, back-propagation net-
work. Here the input layer processing elements include nodes to provide
the network with a more complete understanding of the input. Basically,
the inputs are transformed in a well-understood mathematical way so
that the network does not have to learn some basic math functions. These
functions do enhance the network’s understanding of a given problem.
These mathematical functions translate the inputs via higher-order func-
tions such as squares, cubes, or sines. It is from the very name of these
functions, higher-order or functionally linked mappings, that the two
names for this same concept were derived.

This method has been shown to dramatically improve the learning
rates of practical applications. An additional advantage to this extension
of back-propagation is that these higher order functions can be applied
to other derivations - delta bar delta, extended delta bar delta, or any
other enhanced feedforward, back-propagation networks.

There are two basic methods to add additional input nodes to the
input layer in FLANN.

- The cross-products of the input terms can be added into the model
and this method is called as the output product or tensor model,
where each component of the input pattern multiplies the entire
input pattern vector. A reasonable way to do this is to add all
interaction terms between input values. For example, for a back-
propagation network with three inputs (A, B, and C), the cross-
products would include: AA, BB, CC, AB, AC, and BC. This ex-
ample adds second-order terms to the input structure of the net-
work. Third-order terms, such as ABC, could also be added.

- The second method for adding additional input nodes is the func-
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tional expansion of the base inputs. Thus, a back-propagation
model with A, B, and C might be transformed into a higher-
order neural network model with inputs: A, B, C, SIN(A), COS(B),
LOG(C), MAX(A,B,C), etc. In this model, input variables are in-
dividually acted upon by appropriate functions. Many different
functions can be used. The overall effect is to provide the network
with an enhanced representation of the input. It is even possible
to combine the tensor and functional expansion models together.

No new information is added, but the representation of the inputs is
enhanced. Higher-order representation of the input data can make the
network easier to train. The joint or functional activations become in-
stantly available to the model. While adding nodes in some applications,
a hidden layer is no longer required. There are a few limitations to the
network model. Many more input nodes must be processed to use the
transformations of the original inputs. With higher-order systems, the
problem is worsened. Eventually, because of the finite processing time of
computers, it is important that the inputs are not expanded more than
required to get an accurate solution.

Pao draws a distinction between truly adding higher order terms in
the sense that some of these terms represent joint activations versus
functional expansion which increases the dimension of the representation
space without adding joint activations. While most developers recognize
the difference, researchers typically treat these two aspects in the same
way. Pao has been awarded a patent for the functional-link network, so
its commercial use may require royalty licensing.

Architecture

The function approximation capability of FLANNs can be understood
with an example as follows: Consider a MLP with d = 2 input units and
h = 3 sigmoidal hidden units in the lone hidden layer as an example.
The output function calculated for this neural network is

Yk = Gk

(
h∑

j=1

Wjk ∗ Φj(x)

)

where Wjk is the weight connecting hidden unit j with output unit k
and Gk the activation function employed by the output layer neurons.

The hidden layer units calculate a projection of original input space
into an intermediate one by means of hidden layer weights, Wij .

(X1, ..., Xi, ...Xd) −→ (Φ1(X), ..., Φj(x), ...Φh(x))
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Φj(x) = Gj

(
d∑

j=1

Wij ∗ xi

)

Gj is the activation function used at hidden layer neurons.

FIGURE 3.9: Architecture of FLANN

In this hidden space, linear discrimination, to be carried out by the
output weights becomes easier than in the original input space. By con-
trast, linear networks used in FLANN take hidden units to the input
layer and work with a single layer of weights. The output function is
modified as

Yk = Gk





d′

∑

j=1

Wik ∗ Ψi(x)





where d’ is the dimension of the new input space (Ψ(x), ...Ψi(x), ...Ψd′(x)).
The new units Ψi(x) instead of being learnable arbitrary functions of the
original attributes, are now fixed polynomial and trigonometric terms
constructed out of the original attributes.

The FLANN network architecture is shown in Figure 3.9. The corre-
sponding linear mapping in this polynomial space is, in fact, nonlinear
in the original input space. FLANNs do not have any hidden layer and
the computational cost, in fact, moves from the hidden layer to selection
of suitable expanded inputs for the input layer. The expanded inputs
are chosen using an evolutionary technique, which makes use of Genetic
Algorithms and gradually evolves inputs of the FLANN to achieve the
desired model.
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The order of the polynomial used to obtain expanded inputs can be
gradually increased so that minimum number of inputs is used and the
complexity of the neural network is minimized. The evolutionary algo-
rithm is reproduced below in brief:

1. The evolutionary algorithm begins from original input attributes.
This makes sense since some problems can be solved linearly, per-
haps after rejecting some noisy or irrelevant attributes.

2. Each input vector is encoded by means of a binary chromosome
of length equal to the number of available polynomial terms. A
bit 1 specifies that corresponding polynomial term is fed into the
network.

3. Instead of choosing initial random population, it starts from a pool
of single feature networks. For example if the system to be modeled
has five inputs, the following initial pool of chromosomes is taken:

[(10000), (01000), (00100), (00010)and(00001)].

4. Roulette-wheel selection and single-point crossover have been em-
ployed in the GA used. The crossover and mutation probability is
fixed at 0.9 and 0.05 respectively.

5. The maximum number of generations has been fixed at 50.

6. If the error reached by the best individual in the population on the
validation set is not satisfactory, then the order of the polynomial
terms is raised by one. For example, system having two attributes
x1 and x2 will yield five polynomials of degree two.

7. The number of terms grows very quickly with the degree of product
or trigonometric polynomial.

8. The process is repeated with increased number of polynomial
terms. The best individual obtained in previous evolution run is
also included in the new population. The algorithm is run till
the error goal is achieved or the degree of polynomial becomes
prohibitively high. As FLANNs do not require any hidden layer;
the architecture becomes simple and training does not involve full
backpropagation. Thus, nonlinear modeling can be accomplished,
by means of a linear learning rule, such as delta rule. The com-
putational complexity is also reduced and the neural net becomes
suitable for on-line applications. Further, it reaches its global min-
ima very easily. As FLANNs involve linear mapping in polynomial

© 2010 by Taylor and Francis Group, LLC



106 Computational Intelligence Paradigms

space, they can easily map linear and nonlinear terms. Notwith-
standing advantages accrued, unlike MLP, these networks lack uni-
versal approximation capability.

Summary

The design and development of an application based on neural network
requires a lot of hard work as data is fed into the system, performances
are monitored, processes tweaked, connections added, rules modified,
and so on until the network achieves the desired results. These desired
results are statistical in nature. The network is not always right. It is for
that reason that neural networks are finding themselves in applications
where humans are also unable to always be right. This chapter provides
an understanding about the single layer and multi layer networks along
with the detailed architecture and algorithm of the prediction networks.
The chapter also delineates the basic methodology to implement a few
the prediction networks using MATLAB.

Review Questions

1. Based on applications, how are neural networks categorized?

2. Differentiate single layer and multi layer neural networks.

3. Mention the networks related with data association.

4. Mention a few networks used for data conceptualization.

5. Explain the architecture and algorithm of back propagation net-
work.

6. How is the learning rate selected in BPN?

7. Mention the use of momentum factor in BPN.

8. Write a note on directed random search.

9. Write a MATLAB program to implement the back propagation
algorithm using the Neural Network Toolbox.
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10. What is the learning rate that should be used in the implementa-
tion of back propagation algorithm.

11. Mention the rule used in training a back propagation network.

12. State the perceptron algorithm for several output classes.

13. Differentiate bias and threshold value.

14. Mention the Neural Network Toolbox functions that are used to
implement perceptron algorithm.
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Chapter 4

Classification and Association
Neural Networks

4.1 Introduction

The previous chapter described networks that attempt to make pre-
dictions of the future. But understanding trends and impacts of those
trends might have is only one of several types of applications. This chap-
ter discusses the major class of neural network based on applications
such as data classification and data association. Another network type
described in this chapter is data conceptualization. Implementations of
these networks using MATLAB Neural Network Tool box are also dis-
cussed. Customers might exist within all classifications, yet they might
be concentrated within a certain age group and certain income levels. In
reality, additional data might stretch and twist the region, which com-
prises the majority of expected buyers. This process is known as data
conceptualization, which includes networks such as Adaptive Resonance
Theory network and Self Organizing Feature Maps.

4.2 Neural Networks Based on Classification

The second class of applications is classification. A network that can
classify could be used in the medical industry to process both lab re-
sults and doctor-recorded patience symptoms to determine the most
likely disease. Some of the network architectures used for data classi-
fication are Learning Vector Quantization (LVQ), Counter-propagation
Network (CPN), and Probabilistic Neural Network (PRNN). This sec-
tion discusses the architecture, algorithm, and implementation of these
networks.

109
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4.2.1 Learning Vector Quantization

The vector quantization technique was originally evoked by Tuevo
Kohonen in the mid 80’s. Both Vector quanization network and self-
organizing maps are based on the Kohonen layer, which is capable of
sorting items into appropriate categories of similar objects. Such kind of
networks find their application in classification and segmentation prob-
lems.

Topologically, the network contains an input layer, a single Kohonen
layer, and an output layer. An example network is shown in Figure 4.1.
The output layer has as many processing elements as there are distinct
categories, or classes. The Kohonen layer consists of a number of pro-
cessing elements classified for each of the defined classes. The number
of processing elements in each class depends upon the complexity of the
input-output relationship. Every class has the same number of elements
throughout the layer. It is the Kohonen layer that learns and performs
relational classifications with the aid of a training set. However, the rules
used to classify vary significantly from the back-propagation rules. To
optimize the learning and recall functions, the input layer should con-
tain only one processing element for each separable input parameter.
Higher-order input structures could also be used.

Learning Vector Quantization sorts its input data into groups that
it determines. Fundamentally, it maps an n-dimensional space into an
m-dimensional space. The meaning is that the network has n-inputs and
produces m-outputs. During training the inputs are classified without
disurbing the inherent topology of the training set. Generally, topology
preserving maps preserve nearest neighbor relationships in the training
set such that the input patterns which have not been previously learned
will be categorized by their nearest neighbors in the training data.

While training, the distance of the training vector to each processing
element is computed and while doing so, the processing element with
the shorter distance is declared the winner. Always, there is only one
winner for the entire layer. This winner fires only one output processing
element, which determines the class or category the input vector belongs
to. If the winning element is in the expected class of the training vector,
it is reinforced toward the training vector. If the winning element is not
in the class of the training vector, the connection weights entering the
processing element are moved away from the training vector. This later
operation is referred to as repulsion. On this training method, individual
processing elements allotted to a particular class migrate to the region
associated with their specific class.

During the recall mode, the distance of an input vector to each pro-
cessing element is computed and again the nearest element is declared
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FIGURE 4.1: An Example Learning Vector Quantization Network

the winner. That in turn generates one output, signifying a particular
class found by the network.

There are some limitations with the Learning Vector Quantization ar-
chitecture. Apparently, for complex classification problems with similar
objects or input vectors, the network requires a large Kohonen layer with
many processing elements per class. This can be overcome with better
choices, or higher-order representation for, the input parameters.

The learning mechanisms have some disadvantages which are ad-
dressed by variants to the paradigm. Usually these variants are applied
at different stages of the learning process. They pervade a conscience
mechanism, a boundary adaptation algorithm, and an attraction func-
tion at different points while training the network.

In the basic form of the Learning Vector Quantization network a few
processing elements tend to win too often while others, do nothing. Those
processing elements that are close tend to win and those that are far away
do not involve. To overcome this defect, a conscience mechanism is added
so that a processing element which wins too often develops a blameable
conscience and is penalized. The actual conscience mechanism is a dis-
tance bias which is added to each processing element. This distance bias
is proportional to the difference between the win frequency of an ele-
ment and the average processing element win frequency. As the network
progresses along its learning curve, this bias proportionality factor needs
to be decreased.

A boundary modification algorithm is used to refine a solution once a
relatively good solution has been found. This algorithm effects the cases
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when the winning processing element is in the wrong class and the second
best processing element is in the right class. A further limitation is that
the training vector must be near the midpoint of space joining these
two processing elements. The winning processing element is moved away
from the training vector and the second place element is moved toward
the training vector. This procedure refines the boundary between regions
where poor classifications commonly occur.

In the early training of the Learning Vector Quantization network, it
is sometimes desirable to turn off the repulsion. The winning processing
element is only moved toward the training vector if the training vector
and the winning processing element are in the same class. This option
is particularly helpful when a processing element must move across a
region having a different class in order to reach the region where it is
needed.

Architecture

The architecture of an LVQ neural net is shown in Figure 4.2.

FIGURE 4.2: Architecture of LVQ

The architecture is similar to the architecture of a Kohonen self orga-
nizing neural but without a topological structure assumed for the out-
put units, In LVQ net, each output unit has a known class, since it uses
supervised learning, thus differing from Kohonen SOM, which uses un-
supervised learning. The architecture may resemble competitive network
architecture, but this is a competitive net where the output is known;
hence it is a supervised learning network.
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Methods of initialization of reference networks

i. Take first ’m’ training vectors and use them as weight vectors; the
remaining vectors are used for training.

ii. Initialize the reference vectors randomly and assign the initial
weights and class randomly.

iiii. K-means clustering method can be adapted.

Training Algorithm

The algorithm for the LVQ net is to find the output unit that has
a matching pattern with the input vector. At the end of the process,
if x and w belong to the same class, weights are moved toward the
new input vector and if they belong to a different class, the weights are
moved away from the input vector. In this case also similar to Kohonen
self-organizing feature map, the winner unit is identified. The winner
unit index is compared with the target, and based upon the comparison
result, the weight updation is performed as shown in the algorithm given
below. The iterations are further continued by reducing the learning rate.

Parameters Used in the Pseudcode
The various parameters used in the training of the LVQ network is given
below.
x: Training vector (x1,...,xi,...,xn)
T: Category or class for the training vector
wj : Weight vector for the jth output unit (w1j ,...,wij ,...wnj)
Cj : Category or class represented by jth output unit
| | x-wj | |: Euclidean distance between input vector and weight vector
for the jth output unit

The pseudocode of the LVQ algorithm is as follows:

Initialize weights (reference) vectors.

Initialize learning rate

While not stopping condition do

For each training input vector x

Compute J using squared Euclidean distance

D(j)=
∑

(wij − xi)
2

Find j when D(j) is minimum

Update wJ as follows:

If T=CJ , then

wJ(new) = wJ(old)+ α (x-wJ(old)

If T6=CJ , then

wJ(new) = wJ(old)+ α (x-wJ(old)
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End For

Reduce the learning rate.

Test for the stopping condition.

End While

The stopping condition may be fixed number of iterations or the learn-
ing rate reaching a sufficiently small value.

Variants of LVQ

Kohonen developed two variant techniques, LVQ2 and LVQ3, which
are more complex than initial LVQ but allow for important performance
in classification. In the LVQ algorithm, only the reference vector that is
closest to the input vector is updated. In the LVQ2, LVQ3 algorithms,
two vectors learn if several conditions are satisfied. The vectors are win-
ner up and runner up. The technique followed is, if the input is approx-
imately the same distance from the winner up and runner up, then each
should learn.

LVQ2

In this case, the winner and runner up represent different classes. The
runner up class is the same as the input vector. The distances between
the input vector to the winner and the input vector to runner are ap-
proximately equal. The fundamental condition of LVQ2 is formed by a
window function. Here, x is current input vector, yc is reference vector
that is closest to x, yr is the reference vector that is next closest to x,
dc is distance from x to yc and dr is distance from x to yr. The window
is defined as : the input vector x falls in the window if,

(dc/dr) > (1 − ǫ) and (dc/dr) < (1 + ǫ)

where ǫ is the number of training samples (ǫ =0.35)
The updation formula is given by

yc(t + 1) = yc(t) + α(t)[x(t) − yc(t)]

yr(t + 1) = yr(t) + α(t)[x(t) − yr(t)]

LVQ3

The window is defined as

min(dc1/dc2, dc2/dc1) > (1 − ǫ)(1 + ǫ)(ǫ = 2)

Considering the two closest vectors yc1 and yc2 .
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LVQ3 extends the training algorithm to provide for training if x, yc1
and yc2 belong to the same class. The updates are given as

yc1(t + 1) = yc1(t) + β(t)[x(t) − yc1(t)]

yc2(t + 1) = yc2(t) + β(t)[x(t) − yc2(t)]

The value of β is a multiple of the learning rate α(t) that is used if yc1

and yc2 belong to different classes, i.e., β = m α(t); for 0.1 < m < 0.5.
This change in β indicates that the weights continue to approximate

class distributions and prevents codebook vectors from moving away
from their placement if the learning continues.

4.2.2 Implementation of LVQ in MATLAB

An LVQ network can be created with the function newlvq available
in MATLAB Neural Network tool box as follows:

net = newlvq(PR,S1,PC,LR,LF)

where: PR is an R-by-2 matrix of minimum and maximum values for
R input elements.

S1 is the number of first layer hidden neurons.
PC is an S2 element vector of typical class percentages.
LR is the learning rate (default 0.01).
LF is the learning function (default is learnlv1).

Example

Enter the input and the target vectors

clear all;

close all;

The input vectors P and target classes Tc below define a classification
problem to be solved by an LVQ network.

inp = [-3 -2 -2 0 0 0 0 +2 +2 +3;0 +1 -1 +2 +1 -1 -2

+1 -1 0];

target class = [1 1 1 2 2 2 2 1 1 1];

The target classes are converted to target vectors T. Then, an LVQ
network is created (with inputs ranges obtained from P, four hidden
neurons, and class percentages of 0.6 and 0.4) and is trained.

T = ind2vec(target class);
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The first-layer weights are initialized to the center of the input ranges
with the function midpoint. The second-layer weights have 60% (6 of the
10 in Tc above) of its columns with a 1 in the first row, (corresponding
to class 1), and 40% of its columns will have a 1 in the second row
(corresponding to class 2).

network = newlvq(minmax(inp),4,[.6 .4]);

network = train(network,inp,T);

To view the weight matrices

network.IW(1,1) ; % first layer weight matrix

The resulting network can be tested.

Y = sim(network,inp)

Yc = vec2ind(Y)

Output: The network has classified the inputs into two basic classes,
1 and 2.

Y =

1 1 1 0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0

Yc =

1 1 1 2 2 2 2 1 1 1 1

Weight matrix of layer 1

ans =

2.6384 -0.2459

-2.5838 0.5796

-0.0198 -0.3065

0.1439 0.4845

Thus the above code implements the learning vector quantization al-
gorithm to classify a given set of inputs into two classes.

4.2.3 Counter-Propagation Network

The Counter Propagation Network was proposed and developed by
Robert Hecht-Nielsen to synthesize complex classification problems in-
stead of reducing the number of processing elements and training time.
The learning process of Counter propagation is more or less similar to
LVQ with a small difference such that the middle Kohonen layer plays
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the role of a look-up table. This look-up table finds the closest fit to a
given input pattern and outputting its equivalent mapping.

The first counter-propagation network comprised of a bi-directional
mapping between the input and output layers. Essentially, while data is
presented to the input layer to generate a classification pattern on the
output layer, the output layer in turn would accept an additional in-
put vector and generate an output classification on the network’s input
layer. The network got its name from this counter-posing flow of infor-
mation through its structure. Most developers use a uni-flow variant of
this formal representation of counter-propagation. Counter propagation
networks have only one feedforward path from input layer to output
layer.

An example network is shown in Figure 4.3. The uni-directional
counter-propagation network has three layers. If the inputs are not al-
ready normalized before they enter the network, a fourth layer is some-
times required. The main layers include an input buffer layer, a self-
organizing Kohonen layer, and an output layer which uses the Delta
Rule also known as the Grossberg out star layer to modify its incoming
connection weights.

FIGURE 4.3: An Example Counter-Propagation Network
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Depending upon the parameters that define a problem the input
layer’s size varies. If the input layer has very few processing elements,
then the network may not generalize and if the input layer has a large
number of processing elements then the processing time is very high.

Generally for fine operation of a network, the input vector must be
normalized. Normalization refers to the process of adding that is for
every combination of input values, the total “length” of the input vec-
tor must add up to one. The normalization process can be done with a
preprocessor before presenting the data to the network. In specific appli-
cations, a normalization layer is added between the input and Kohonen
layers. The normalization layer requires one processing element for each
input, plus one more for a balancing element. This normalization layer
assures that all input sets sum up to the same total.

Normalization of the inputs is necessary to insure that the Kohonen
layer finds the correct class for the problem. Without normalization,
larger input vectors bias many of the Kohonen processing elements such
that weaker value input sets cannot be properly classified. Due to the
competitive nature of the Kohonen layer, the bigger value input vectors
overcome the smaller vectors. Counter-propagation uses a standard Ko-
honen layer which self-organizes the input sets into classification zones.
It follows the classical Kohonen learning law. This layer acts as a closest
neighbor classifier such that the processing elements in the competitive
layer autonomously update their connection weights to divide up the
input vector space in approximate correspondence to the frequency with
which the inputs occur. There should be as many processing elements
as possible in the Kohonen layer equivalent to the output classes. The
Kohonen layer generally has a lot more elements than classes simply be-
cause additional processing elements provide a finer resolution between
similar objects.

The output layer for counter-propagation fundamentally consists of
processing elements which learn to produce an output when a specific
input is applied. Because the Kohonen layer is a competitive layer, only
a single winning output is produced for a given input vector. This layer
renders a method of decoding the input to a purposeful output class.
The delta rule is used to back-propagate the error between the desired
output class and the actual output generated with the training set. The
weights in the output layer are alone updated while the Kohonen layer
is unaffected.

As only one output from the competitive Kohonen layer is active at
a time and all other elements are zero, the only weight adjusted for
the output processing elements are the ones connected to the winning
element in the competitive layer. In this way the output layer learns to
reproduce a definite pattern for each active processing element in the
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competitive layer. If numerous competitive elements belong to the same
class, then the output processing element will acquire weights in response
to those competitive processing elements and zero for all others.

The major limitation of this architecture is the competitive Kohonen
layer learns without any supervision. Therefore it cannot predict the type
of class it is reporting to. This infers that it is possible for a process-
ing element in the Kohonen layer to learn two or more training inputs,
which belong to different classes. During this process, the output of the
network will be multi-valued for any inputs. To overcome this difficulty,
the processing elements in the Kohonen layer can be pre-conditioned to
learn only about a specific class.

Counter propagation network is classified into two types. They are

1. Full counter propagation network

2. Forward only counter propagation network

In this section, the training algorithm and application procedure of
full CPN is described.

Training Phases of Full CPN

The full CPN is achieved in two phases.
The first phase of training is called as In star modeled train-

ing. The active units here are the units in the x-input (x =
x1, . . . , xi, . . . xn), z-cluster (z = z1, . . . , zj , . . . , zp) and y-input (y =
y1, . . . , yk, . . . , ym)layers.

Generally in CPN, the cluster unit does not assume any topology, but
the winning unit is allowed to learn. This winning unit uses our standard
Kohonen learning rule for its weight updation. The rule is given by

vij(new) = vij(old) + α(xi − vij(old))

= (1 − α)vij(old) + αxi; i = 1 to n

wjk(new) = wkj(old) + β(yk − wjk(old))

= (1 − β)wkj(old) + βyk; k = 1 to m

In the second phase, we can find only the J unit remaining active in
the cluster layer. The weights from the winning cluster unit J to the
output units are adjusted, so that vector of activation of units in the y
output layer, y*, is approximation of input vector x. This phase may be
called the out star modeled training. The weight updation is done by
the Grossberg learning rule, which is used only for out star learning. In
out star learning, no competition is assumed among the units, and the
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learning occurs for all units in a particular layer. The weight updation
rule is given as,

Uij(new) = ujk(old) + α(yk − ujk(old))

= (1 − a)αjk(old) + ayk; k = 1 to m

tji(new) = tji(old) + α(xi − tji(old))

= (1 − b)tji(old) + bxi; i = 1 to n

The weight change indicated is the learning rate times the error.

Training Algorithm

The parameters used are

x- Input training vector x=(x1, ...xi, ...xn)
y- target output vector Y=(y1,...yk,...ym)
zj- activation of cluster unit Zj

x*- approximation to vector x
y*- approximation to vector y
vij- weight from x input layer to Z-cluster layer
wjk- weight from x input layer to Z-cluster layer
tji- weight from x input layer to X-cluster layer
ujk- weight from x input layer to Y-cluster layer
α , β- learning rates during Kohonen learning
a, b- learning rates during Grossberg learning

The algorithm uses the Euclidean distance method or dot product
method for calculation of the winner unit. The winner unit is calcu-
lated during both first and second phase of training. In the first phase
of training for weight updation Kohonen learning rule is used and for
second phase of training Grossberg learning rule is used.

The pseudocode of the the full CPN is given by,

Initialize weights v and w

Initialize learning rates α and β
While not stopping condition for phase I Do

For each training input pair x:y

Assign X input layer activations to

vector x

Assign Y input layer activations to

vector y

Calculate winning cluster D(j)=
∑

i

(xi-vij)
2; i = 1 to n
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Update weights

vij(new)=vij(old)+ α(xi-vij(old)); i = 1 to

n

wjk(new)=wjk(old)+ β(yk-wjk(old)); k = 1

to m

End For

Reduce learning rates α and β
Test stopping condition for Phase I training

End while

While not stopping condition for phase II Do

For each training input pair x:y

Assign X input layer activations to

vector x

Assign Y input layer activations to

vector y

Calculate winning cluster D(j)=
∑

i

(xi-vij)
2; i = 1 to n

Update weights from unit zj to the output

layers

(α and β are constant in this phase)

Uij(new)= ujk(old)+ α (yk-ujk(old)); k=1 to m

tji(new) = tji(old)+ α (xi-tji(old)); i=1 to n

End For

Reduce learning rates α and β
Test for stopping condition for phase II

training

End while

The winning unit selection is done either by dot product or Euclidean
distance.

The dot product is obtained by calculating the net input.

Zinj

∑

i

xiuij +
∑

k

ykwkj

The cluster unit with the largest net input is winner. Here the vectors
should be normalized. In Euclidean distance,

Dj =
∑

i(xi − vij)
2

The square of whose distance from the input vector is smallest is the
winner.

In case of tie between the selections of the winning unit, the unit with
the smallest index is selected.
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The stopping condition may be the number of iteration or the reduc-
tion in the learning rate up to a certain level.

Application Procedure

In the training algorithm, if only one Kohonen neuron is activated
for each input vector, this is called the Accretive mode. If a group of
Kohonen neurons having the highest outputs is allowed to present its
outputs to the Grossberg layer, this is called the interpolative mode.
This mode is capable of representing more complex mappings and can
produce more accurate results.

The application procedure of the full CPN is

Initialize weights

For each input pair x:y

Assign X input layer activation to vector x;

Assign Y input layer activation to vector y;

Find the cluster unit ZJ close to the input

pair

Compute approximations to x and y:

xi∗ = tJi

yk∗ = uJk

End For

Initializing the Weight Vectors

All the network weights must be set to initial value before training
starts. It is a common practice with neural networks to randomize the
weights to small numbers. The weight vectors in CPN should be dis-
tributed according to the density of the input vectors that must be sep-
arated, thereby placing more weight vectors in the vicinity of the large
number of input vectors. This is obtained by several techniques.

One technique called, Convex combination method, sets all the weights
to the same value 1/

√
n , where n is the number of inputs and hence,

the number of components in each weight vector. This makes all the
weight vectors of unit length and coincident. This method operates well
but slows the training process, as the weight vectors have to adjust to a
moving target.

Another method adds noise to the input vectors. This causes them to
move randomly, eventually capturing a weight vector. This method also
works, but it is even slower than convex combination.

A third method starts with randomized weights but in the initial
stages of the training process adjusts all the weights, not just those asso-
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ciated with the winning Kohonen neuron. This moves the weight vectors
around, to the region of the input vectors. As training starts, weight
adjustments are restricted to those Kohonen neurons that are nearest
to the winner. This radius of adjustment is gradually decreased until
only those weights are adjusted that are associated with the winning
Kohonen neuron.

There is another method, which gives each Kohonen neuron a “con-
science”. If it has been winning more than its fair share of the time, say
1/k, where k is the number of Kohonen neurons, it raises the threshold
that reduces its chances of winning, thereby allowing the other neurons
an opportunity to be trained. Thus the weights may be initialized.

4.2.4 Probabilistic Neural Network

The developement of probabilistic neural network is based on Parzen’s
windows and these networks were designed by Donald Specht based on
his papers, Probabilistic Neural Networks for Classification, Mapping
or Associative Memory and Probabilistic Neural Networks, released in
1988 and 1990, respectively. Pattern classification is a major application
area of this network and the network is based on Bayes theory. Bayes
theory, developed in the 1950’s, allows the relative likelihood of events
and applies a priori information to ameliorate prediction. The probabil-
ity density functions required by the Bayes theory is constructed using
Parzen Windows.

The learning process of the probabilistic neural network is a supervised
learning and during this learning process distribution functions are de-
veloped within a pattern layer. The distribution functions are used to
estimate the likeliness of an input feature vector. The learned patterns
are grouped in a manner with the a priori probability, also called the
relative frequency, to determine the most likely class for a given input
vector. All the classes or categories are assumed to be equally likely if
the knowledge about the a priori probability is available. The feature
vectors determine the class based on the shortest Euclidean distance be-
tween the input feature vector and the distribution function of a class.

The basic straucture of a probabilistic neural network is shown in Fig-
ure 4.4. The fundamental architecture has three layers, an input layer, a
pattern layer, and an output layer. The input layer has many elements
since separable parameters are required to describe the objects to be
classified. The pattern layer organizes the training set in such a way
that every input vector is delineated by an independent processing ele-
ment. The output layer also called the summation layer has numerous
processing elements according to the classes that are to be recognized.
Each and every processing element in the summation layer combines
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with processing elements in the pattern layer, and if they are associated
to the same class then that category for output is developed. Based on
the application, occasionally a fourth layer is added to normalize the
input vector if the inputs are not already normalized before they enter
the network.

FIGURE 4.4: A Probabilistic Neural Network Example

The pattern layer constitutes a neural implementation of a Bayes clas-
sifier, where the class dependent Probability Density Functions (PDF)
are approximated using a Parzen estimator. By using the Parzen estima-
tor to determine the PDF the expected risk in classifying the training set
incorrectly is minimized. Using the Parzen estimator, the classification
gets closer to the true underlying class density functions as the number
of training samples increases, so long as the training set is an adequate
representation of the class distinctions.

The pattern layer consists of a processing element corresponding to
each input vector in the training set. Each output class should consist
of equal number of processing elements otherwise a few classes may be
inclined falsely leading to poor classification results. Each processing
element in the pattern layer is trained once. An element is trained to
return a high output value when an input vector matches the training
vector. In order to obtain more generalization a smoothing factor is
included while training the network. In such a case, it is not necessary for

© 2010 by Taylor and Francis Group, LLC



Classification and Association Neural Networks 125

the training vectors to be in any predefined order within the training set,
since the category of a particular vector is specified by the desired output
of the input. The learning function merely selects the first untrained
processing element in the correct output class and updates its weights
to match the training vector.

The pattern layer classifies the input vectors based on competition,
where only the highest match to an input vector wins and generates
an output. Hence only one classification category is generated for any
given input vector. If there is no relation between input patterns and the
patterns programmed into the pattern layer, then no output is generated.

In order to fine tune the classification of objects the Parzen estimator
is added. This process is carried out by adding the frequency of occur-
rence for each training pattern built into a processing element. Funda-
mentally, the probability distribution of happening for each example in
a class is multiplied into its respective training node. Similarly, a more
accurate expectation of an object is added to the features, which makes
it recognizable as a class member.

Compared to the feedforward back propagation network, training of
the probabilistic neural network is much more simpler. Anyway, the
pattern layer can be quite huge if the distinction between categories
is varied. There are many proponents for this type of network, since the
groundwork for optimization is founded in well known, classical mathe-
matics.

Since the probabilistic networks classify on the basis of Bayesian the-
ory, it is essential to classify the input vectors into one of the two classes
in a Bayesian optimal manner. This theory provides a cost function to
comprise the fact that it may be worse to misclassify a vector that is ac-
tually a member of class A than it is to misclassify a vector that belongs
to class B. The Bayes rule classifies an input vector belonging to class A
as,

PACAfA(x) > PBCBfB(x)

where, PA - Priori probability of occurrence of patterns in class A
CA - Cost associated with classifying vectors
fA(x) - Probability density function of class A

The PDF estimated using the Bayesian theory should be positive and
integratable over all x and the result must be 1.

The probabilistic neural net uses the following equation to estimate
the probability density function given by,

fA(x) =
1

(2Π)n/2σn

1

mn

mA∑

i=1

exp[−2
(x − xA)r(x − xAi)

σ2
]
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where xAi - ith training pattern from class A
n - Dimension of the input vectors
σ - Smoothing parameter (corresponds to standard deviations

of Guassian distribution)

The function fA (x) acts as an estimator as long as the parent density
is smooth and continuous. fA (x) approaches the parent density function
as the number of data points used for the estimation increases. The
function fA(x) is a sum of Guassian distributions. The disadvantage of
using this parent density function along with Bayes decision rule is that
the entire training set must be stored and the computation needed to
classify an unknown vector is proportional to the size of the training set.

Architecture

The architecture of probabilistic neural net is shown in the Figure 4.5.
The architecture is made up of four types of units.

• Input units

• Pattern units - Class A and Class B.

• Summation units

• Output units

The weights between the summation unit and the output unit are,

V A = 1

V B = −PBCBmA/PACAmB

Training Algorithm

The training algorithm for the probabilistic neural net is given as,

For each training input pattern, x (p), p=1,O,P

Create pattern unit Zp:

Weight vector for unit Zp: wp=x(p)

(unit Zp is either a ZA unit or ZB unit)

Connect the pattern unit to summation unit

If x(p) belongs to class A,

Then connect pattern unit Zp to summation

unit SA

Else

connect pattern unit Zp to summation unit SB

End If

End For
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FIGURE 4.5: Architecture of Probabilistic Neural Net

Application Algorithm

The pseodocode of the application algorithm for classifying is given
as,

Initialize weights from training algorithm.

For input pattern to be classified

Patterns units:

Calculate net input,

Zinj = x.wj = xT Wj

Calculate the output,

Z=exp [(zinj-1)/σ2]

Summation units:

The weights used by the summation unit for class

B is,

VB= -PB CB mA /PA CA mB

Output unit:

Sums the signals from fA and fB

Input vector is classified as class A if the

total input to decision unit is positive

End For

© 2010 by Taylor and Francis Group, LLC



128 Computational Intelligence Paradigms

4.2.5 Implementation of the Probabilistic Neural Net
Using MATLAB

The probabilistic neural net can be implemented in MATLAB using
the following function

net = newpnn(P, T, spread)

where,
P - matrix of Q input vectors
T - matrix of Q target class vectors
spread - Spread of radial basis functions, default = 0.1

The function returns a new probabilistic neural network. If spread
is near zero, the network will act as a nearest neighbor classifier. As
spread becomes larger, the designed network will take into account sev-
eral nearby design vectors.

Example

Enter the input and the target vectors

clear all;
close all;

The input vectors P and target classes Tc below define a classification
problem to be solved by an LVQ network.

inp = [1 2 3 4 5 6 7 8 9;9 8 7 6 5 4 3 2 1];
target class = [1 1 1 2 2 2 3 3 3];

The target classes are converted to target vectors T. Then, an LVQ
network is created (with input ranges obtained from P, four hidden neu-
rons, and class percentages of 0.6 and 0.4) and is trained.

T = ind2vec(target class);

The network is created and simulated, using the input to make sure
that it does produce the correct classifications. The function vec2ind is
used to convert the output Y into a row Yc to make the classifications
clear.

network = newpnn(inp,T);

Y = sim(network,inp)
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Yc = vec2ind(Y)

Output

Y =

(1,1) 1

(1,2) 1

(1,3) 1

(2,4) 1

(2,5) 1

(2,6) 1

(3,7) 1

(3,8) 1

(3,9) 1

(3,9) 1

Yc =

1 1 1 2 2 2 3 3 3

Thus the probabilistic neural net can be used for classification of pat-
tern, from each of the two classes that has been presented. This type
of probabilistic neural net can be used to classify electrocardiogram’s
output as normal or abnormal.

4.3 Data Association Networks

The classification networks discussed in the previous sections are re-
lated to data association networks. In data association, classification
is also done. For instance, a recognition unit can classify each of its
scanned inputs into several groups. Yet, some data with errors are also
available. The data association networks recognize these error occur-
rences as merely defective data and that this defective data can span all
classifications.
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4.3.1 Hopfield Network

The first data association network was proposed by John Hopfield
in 1982 at the National Academy of Sciences and it was named as the
Hopfield network. The network is conceived based on energy functions.
Here in Hopfield network, the processing elements update or change
their state only if the overall “energy” of the state space is minimized.
Basic applications for these kind of networks have included associative,
optimization problems, like the shortest path algorithm.

The Figure 4.6 shows the basic model of a Hopfield network. Earlier
the original network used processing elements in binary formats which
later on changed to bipolar format. Therefore the restriction in binary
processing elements was during the quantization, that is the output is
quantized to a zero or one.

FIGURE 4.6: A Hopfield Network Example

The basic model of Hopfield network includes three layers; an input
buffer layer, a middle Hopfield layer, and an output layer. All the layers
have equal number of processing elements. The inputs of the Hopfield
layer are connected to the outputs of the corresponding processing el-
ements in the input buffer layer through variable connection weights.
The outputs of the Hopfield layer are connected back to the inputs of
every other processing element except itself. While training, the network
applies the data from the input layer through the learned connection
weights to the Hopfield layer. The Hopfield layer takes some time to
saturate, and the current state of that layer is passed on to the output
layer. This state matches a pattern that is predefined and programmed
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into the network.
During learning the network requires the training pattern to be pre-

sented to the input and the output layer at the same time. The recursive
and oscillating nature of the Hopfield layer allows the network to ad-
just all connection weights. The learning rule is the Hopfield Law, which
states that “if the desired output and the input are both active or both
inactive, increment the connection weight by the learning rate, otherwise
decrement the weight by the learning rate”. Evidently, any non-binary
implementation of the network must have a threshold mechanism in the
transfer function, or matching input-output pairs could be too rare to
train the network properly.

The network can be used as a content addressable memory. While
applied as a content addressable memory, there are a few limitations
like

- The amount of patterns that can be stored and precisely recalled
is severely bounded. If too many patterns are stored, the network
may converge to a wrong pattern or may not converge at all. There-
fore the storage capacity should be limited to approximately fifteen
percent of the number of processing elements in the Hopfield layer.

- The Hopfield layer may become unstable if there are common pat-
terns. A pattern is considered unstable if it is applied at time zero
and the network converges to some other pattern from the training
set. This disadvantage is overcome by altering the pattern sets to
be orthogonal with each other.

Architecture

The architecture of the discrete Hopfield net is shown in the Figure 4.7.
It consists of “n” number of x input neurons and “y” output neurons.
It should noted that apart from receiving a signal from input, the y1
neuron receives signal from its other output neurons also. This is the
same for the all other output neurons. Thus, there exists a feedback
output being returned to each output neuron. That is why the Hopfield
network is called a feedback network.

Training Algorithm

Discrete Hopfield net is described for both binary as well as bipo-
lar vector patterns. The weight matrix to store the set of binary input
patterns s(p),p=1,...P, where

s(p)=(s1(p),...si (p),...sn(p))
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FIGURE 4.7: Architecture of Hopfield Net

can be determined with the help of Hebb rule as discussed earlier.
The weight matrix can be determined by the formula

Wij=
∑

p

(2si(p) − 1) for i 6= j and Wii=0

For bipolar input patterns, the weight matrix is given by,

Wij=
∑

p

si(p) for i 6= j and Wii=0

Application Algorithm

The weights to be used for the application algorithm are obtained from
the training algorithm. Then the activations are set for the input vectors.
The net input is calculated and applying the activations, the output is
calculated. This output is broadcasted to all other units. The process is
repeated until the convergence of the net is obtained. The pseudocode of
the application algorithm of a discrete Hopfield net is given as follows:

Initialize weights to store pattern (use Hebb rule)

While activations of the net are not converged do

For each input vector x

Assign initial activations to external input vector
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x, yi=xi (i=1,n)

For each unit yi

Compute the net input

Yinj=Xi +
∑

i

Yi Wji

Determine activation (output signal)

Yj =







1, if Yinj > θ
Yj , if Yinj = θ
1, if Yinj < θ

Broadcast the value of yi to all other units

End For

End For

Test for convergence

End While

The value of threshold θi is usually taken to be zero. The order of
update of the unit is random but each unit must be updated at the
same average rate.

4.3.2 Implementation of Hopfield Network in MATLAB

The following code stores the vector (1 1 1 0 1 1). Assume that there
are mistakes in the first and the second component of the stored vector
such that (0 0 1 0 1 1).

clc;

clear all;

The stored vector is

x=[1 1 1 0 1 1 ];

t=[0 1 1 0 0 1 ];

The weight matrix is determined by the formula

Wij=
∑

p

(2si(p) − 1)(2sj(p) − 1) for i 6= j and Wii=0

w=(2*x’-1)*(2*x-1);

for i=1:6

w(i,i)=0;

end

stop=1;

y=[ 0 1 1 0 0 1 ];

while stop
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update=[1 2 3 4 5 6 ];

for i=1:6

Compute the net input according to the formula

Yini=Xi+
∑

j

YiWji

yin(update(i))=t(update(i))+y*w(1:6,update(i));

if(yin(update(i))>0)
y(update(i))=1;

end

end

if y = = x

disp(’Convergence has reached);

stop=0;

disp(y)

end

end

Output

Convergence has reached

The converged output is

y = 1 1 1 0 1 1

4.3.3 Boltzmann Machine

Boltzmann machine is like the Hopfield network functionally and op-
eration wise. The only difference is that simulated annealing technique
is used in Boltzmann machine while finding the original pattern. Simu-
lated annealing is used to search the pattern layer’s state space to find a
global minimum. Therefore the machine is able to span to an improved
set of values over time as data iterates through the system.

The Boltzmann learning rule was first proposed by Ackley, Hinton, and
Sejnowski in 1985. Similar to Hopfield network, the Boltzmann machine
has an associated state space energy based upon the connection weights
in the pattern layer. The processes of learning a training set involve the
minimization of this state space energy.

The simulated annealing schedule is added to the learning process.
This technique is done similar to physical annealing, temperatures start
at higher values and decrease over time. This high value of temperature
adds a noise factor into each processing element in the pattern layer and
a low value of temperature tries to settle the oscillations of the network.
An optimal solution can be determined while adding more iterations at
lower temperatures.

Therefore the learning process at high temperatures is a random pro-
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FIGURE 4.8: Architecture of Boltzmann Machine

cess and at low temperatures is a deterministic process. During random
learning process, the processing elements tend to change its state thereby
increasing the overall energy of the system.

Architecture

The architecture of Boltzmann machine is shown in Figure 4.8.
The architecture of the Boltzmann machine looks like a two-

dimensional array. It consists of a set of units and a set of bidirectional
connections between a pair of units. The units in each row and column
are fully interconnected. The weights on each connection are -p and there
is also a self-connection with weight b. The units are labeled as V+i,j .

The objective of the neural network is to maximize the consensus
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function,

C =
∑

i

[∑

i

WijXiYj

]

The net finds the maximum by making each unit change its state.
The change in consensus if unit Xi were to change its state is given

by,

∆C(i) = [1 − 2xi][Wij +
∑

WijXj]

where xi is the current state.

(1 − 2xi) =

{
+1, ifxi −′ on′

−1, ifxi −′ off ′

The probability of the net accepting a change in state for unit Xi is,

A(i, t) =
1

1 + exp
(

−∆e(i)
T

)

To obtain the optimal solution, the parameter T is to be reduced grad-
ually. The weights -p indicate the penalties for violating the condition
that almost one unit be “on” in a row or column. The self-connection
weights b indicate the incentives or bonus to a unit to turn ‘on’, without
making more than one unit to be “on” in a row or column. The net will
function as desired if p > b.

Application Algorithm

The pseudocode of the application algorithm of the Boltzmann ma-
chine is as follows, here the weights between unit Vij and VI,J are de-
noted by W(i,j:I,J). Also,

W (i, j : I, J) =

{
−p, ifi = Iorj = J(notboth)

b, otherwise

Initialize weights, control parameters,

activation of units.

While not stopping condition do

For n2 times

Chose integers I and J at random between 1 n.

Compute the change in consensus:

∆ C= [1-2VI,J][W(i,j:I,J)+
∑

i,j

∑

I,J

W (i, j : I, J)UIJ]
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Compute the probability of acceptance of the

changes,

A(T)= 1
1+exp(−∆e/T )

Determination of whether or not to accept

the change.

If random number N between 0 to 1.

If N<A
change is accepted

VI,J=1-VI,J

Else If N ≥ A

change is rejected

End If

End For

Reduce the control parameter,

T(new)=0.95T(old)

Test for stopping condition.

End While

The stopping condition may be change of state for a specified number
of epochs or if T reached a specified value. Thus, Boltzmann machine
can be applied to the traveling salesman problem.

4.3.4 Hamming Network

The Hamming network was developed by Richard Lippman in the
mid 1980’s. The Hamming network is more or less similar to the Hop-
field network, the only difference is that the Hamming net implements
a maximum likehood classifier. The Hamming distance is defined as the
number of bits which differ between two corresponding, fixed-length in-
put vectors among which one input vector is the noiseless pattern and the
other input is the vector corrupted by real world noisy effects. Thus the
output categories are defined by a noiseless training set. During training
the input vectors are alloted to a class in which the Hamming distance
is minimum.

The basic model of the Hamming network is shown in Figure 4.9. The
network has three layers: input layer, a middle Hopfield layer, and an
output layer. The input layer has numerous nodes which are binary in
nature. The Hopfield layer also known as the category layer, has nodes
that are equivalent to the classes. The output layer matches the number
of nodes in the category layer.

The network is a simple feedforward architecture with the input layer
fully connected to the category layer. Each processing element in the
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category layer is connected back to every other element in that same
layer, as well as to a direct connection to the output processing element.
The output from the category layer to the output layer is done through
competition.

FIGURE 4.9: A Hamming Network

The learning of a Hamming network is similar to the Hopfield network.
The desired training pattern is presented to the input layer and the
desired class to which the input vector belongs to is presented to the
output layer. The connection weights are updated based on the recursive
behavior of the neural network.

The connection weights are first set in the input to category layer.
Matching scores are generated to determine the best match between
the desired input and the desired output. The category layer’s recursive
connection weights are trained in the same manner as in the Hopfield
network. In normal feedforward operation an input vector is applied to
the input layer and must be presented long enough to allow the matching
score outputs of the lower input to category subnet to settle. This will
initialize the input to the Hopfield function in the category layer and
allow that portion of the subnet to find the closest class to which the
input vector belongs. This layer is competitive, so only one output is
enabled at a time.
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Hamming Distance

The Hamming distance between two vectors is the number of compo-
nents in which the vectors differ. It can also be defined as the number of
differences between two binary or bipolar vectors (x,y). It can be denoted
as H(x,y). The average Hamming distance is given as,

=(1/n) H(x,y)

where n is the number of components in each vector.
In Hamming net, the measure of similarity between the input vector

and the stored exemplar is minus the Hamming distance between the
vectors.

Consider two bipolar vectors x and y,
If “a” - Number of components in which the vectors agree

and “d”- Number of components in which the vectors differ (hamming
distance)

Then, x,y=a-d
If “n” is the number of components, then,

n=a+d or d=n-a

As a result

x,y=a-d=a-(n-a)

x,y=2a-n (or) 2a=x.y+n

From the results it is understood that if the weights are set to one-
half of the exemplar vector and the bias to one half of the number of
components, the net will find the unit with the closest exemplar simply
by finding the unit with the largest net input.

Architecture

The architecture is show in Figure 4.10. Assuming input vectors with
4-tuples and the output to be classified to one of the two classes given.

The architecture consists of n-input modes in the lower net, with each
input node connected to the m-output nodes. These output nodes are
connected to the upper net (i.e., Max-Net-acting as subnet for Hamming
net) which calculates the best exemplar match to the input vector. The
’m’ in the output nodes represent the number of exemplar vectors stored
in the net. It is important to note that the input vector and the exemplar
vector are bipolar. For a given set of exemplar vectors, the Hamming net
finds the exemplar vector that is closest to the bipolar input vector x.
The number of components in which the input vector and the exemplar
vector agree is given by the net input.
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FIGURE 4.10: Architecture of Hamming Net

Application Procedure

The parameters used are,

n - number of input nodes (input vectors)

m - number of output nodes(exemplar vectors)

e(j)-jth exemplar vector

The pseudocode of the application procedure is as

follows:

Initialize weights for storing m exemplar vectors

wij=ei(j)/2, (i=1..n, j=1..m)

Initializing the bias

bj=n/2(j=1..m)

For each vector x

Compute the net input to each unit Yj

YinJ=bj+
∑

i

xiwij j=1..m

Initialize activations for Max Net

yj(0)=y-inj (j=1,..m)

Max net iterates to find the best match exemplar

End For

The Hamming network is more advantageous when compared with
the Hopfield network. Hamming applies the optimum minimum error
classifier to classify the input vectors when input bit errors are stochastic.
Hamming networks use a few processing elements when compared to
Hopfield network. The category layer needs only one element for the
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entire category instead of individual elements for each input node. The
Hamming network is faster and more accurate than the Hopfield network
since it takes less time to settle.

4.3.5 Bi-Directional Associative Memory

Bart Kosko developed a model to generalize the Hopfield model and
this termed as the bi-directional associative memory (BAM). In BAM,
the patterns are presented as a pair of bipolar vectors and when a noisy
input is presented the nearest pattern associated with the input pattern
is determined.

FIGURE 4.11: Bi-Directional Associative Memory Example

The basic model of bi-directional associative memory network is shown
in Figure 4.11. The BAM network has several inputs equal to the output
processing nodes. The hidden layers are made up of separate associated
memories and represent the size of the input vectors. The lengths of the
units need not be equal. The middle layers are fully connected to each
other. The input and output layers are for implementation purposes the
means to enter and retrieve information from the network. Kosko original
work targeted the bi-directional associative memory layers for optical
processing, which would not need formal input and output structures.

Vectors are stored as associated pairs in the middle layer. The middle
layers swing to and fro until a stable state is attained whenever noisy
patterns are presented. The stable state represents the nearest learned
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association and gives the best output similar to the input pattern pre-
sented initially. Similar to the Hopfield network, the bi-directional as-
sociative memory network is liable to incorrectly find a trained pattern
when complements of the training set are used as the unknown input
vector.

Architecture

The layers in BAM are referred as X-layer and Y-layer instead of
input and output layer, because the weights are bidirectional and the
algorithm alternates between updating the activations of each layer.

Three forms of BAM are

1. Binary

2. Bipolar

3. Continuous

But the architecture for the three types remains the same. The architec-
ture of BAM is shown in Figure 4.12.

FIGURE 4.12: Architecture of Bi-Directional Memory Network

The hetero associative BAM network has “n” units in X-layer and “m”
units in Y-layer. The connections between the layers are bi-directional,
i.e., if the weight matrix for signals sent from the X-layer to Y-layer is
W, then weight matrix for signals sent from Y-layer to X-layer is WT .
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The BAM architecture resembles a single layer feedforward network
which consists of only one layer of weighted interconnections. There ex-
ists “n” number of input neurons in the input layer and “m” number
of output neurons in the output layer. The training process is based on
the Hebb learning rule. This is a fully interconnected network, wherein
the inputs and outputs are different. The most important feature of a
bidirectional associative memory is that there exists weighted intercon-
nections from both X-layer to Y-layer and vice versa. The link between
one layer to another and its reciprocate is shown in Figure 4.12 by the
arrow pointing on both sides. The weights are adjusted between X-layer
to Y-layer and also from Y-layer to X-layer.

Types of Bi-Directional Associative Memory Net

There exists two types of BAM. They are

• Discrete BAM

• Continuous BAM

Discrete BAM

The training patterns can be either binary or bipolar. In both the
formats the weights are found from the sum of the Hebb outer product
of the bipolar form of the training vector pairs. Step activation function
with a threshold value is used as the activation function. Generally the
bipolar vectors improve the performance of the net.

The weight matrix to store the set of input and target vectors s (p): t
(p), p=1,. . .,P, where

s(p)=(s1(p),...si(p),...sn(p))

and can be determined with the help of Hebb rule.
For binary input vectors, weight matrix can be determined by the

formula.
Wij=

∑

p

(2si(p)-1)(2tj(p)-1)

For bipolar input vectors, the weight matrix is given by,

Wij=
∑

p

si(p)tj(p)

Activation Function

The activation function for discrete BAM depends on whether binary
or bipolar vectors are used. The activation function is the appropriate

© 2010 by Taylor and Francis Group, LLC



144 Computational Intelligence Paradigms

step function. For binary input vectors, the activation function for the
Y-layer is

yj =







1, if yinj > 0
yj , if yinj = 0
1, if yinj < 0

and the activation layer for the X-layer is

xi =







1, if xinj > 0
xj , if xinj = 0
1, if xinj < 0

For bipolar vector, the activation function for Y-layer is

yj =







1, if yinj > θj

xj , if yinj = θj

1, if yinj < θj

and the activation layer for the X-layer is

xj =







1, if xinj > θj

xj , if xinj = θj

1, if xinj < θj

If the net input is equal to the threshold value, the activation function
decides to leave the activation of that unit at its previous value. In the
above θi, indicates the threshold value.

Continuous BAM

The continuous BAM was introduced by Kosko in 1988. A continu-
ous bidirectional associative memory has the capability to transfer the
input smoothly and continuously into the respective output range be-
tween [0,1]. The continuous BAM uses logistic sigmoid function as the
activation function for all units.

For binary input vectors (s(p),t(p)),p=1,2,...P, the weights are deter-
mined by the formula.

Wij=
∑

p

(2si(p)-1)(2tj(p)-1)

Y-layer
The logistic sigmoid activation function is given by

f(yinj)=
1

1+exp(−yinj)

If bias is included in calculating
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yinj=bj+
∑

xiwij

X-layer
The logistic sigmoid activation function is given by

f(xinj)=
1

1+exp(−yinj)

If bias is included in calculating

xinj=bj+
∑

xiwij

The memory storage capacity of the BAM is min (n, m) where,

n is the number of units in x-layers
m is the number of units in y-layers
according to Haines and Hecht-Neilsen. It should be noted that this could
be extended to min (2n, 2m) if appropriate non-zero threshold value is
chosen for each unit.

Application Algorithm

From the training process, obtain the final weights. The input pat-
terns are presented to both X-layer and Y-layer. The net input and the
activations to the Y-layer are calculated. Then the signals are sent to
X-layer and here its net input and activations are found. In this manner,
the bi-directional associative memory is tested for its performance. The
pseudocode of the bi-directional memory net is given as follows:

Initialize the weight to store a set of P vectors
Initialize all activations to 0

For each testing input

Assign activation of X-layer to current pattern

Input pattern y is presented to the Y-layer

While activations are not converged do

Compute the net input yinj=
∑

i

wijxi

Compute activations. yi=f(y−inj)

Send signals to the X-layer

Compute the net input xini=
∑

i

wijY i

Compute the activations xi=f(x−ini)

Send signals to the Y-layer
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Test for convergence

End While

End For

The stopping condition may be that the activation vectors x and y
have reached equilibrium. The activation function applied in Steps 6
and 7 is based on the discussions made earlier.

4.4 Data Conceptualization Networks

In most of the neural network applications the data that is presented
as the training set seems to vary. A few applications require grouping
of data that may, or may not be, clearly definable. In such cases it is
required to identify a group as optimal as possible. Such kind of networks
are grouped as data conceptualization networks.

4.4.1 Adaptive Resonance Network

The last unsupervised learning network we discuss differs from the
previous networks in that it is recurrent; as with networks in the next
chapter, the data is not only fed forward but also back from output to
input units.

Background

In 1976, Grossberg introduced a model for explaining biological phe-
nomena. The model has three crucial properties:

1. a normalization of the total network activity. Biological systems
are usually very adaptive to large changes in their environment.
For example, the human eye can adapt itself to large variations in
light intensities.

2. contrast enhancement of input patterns. The awareness of subtle
differences in input patterns can mean a lot in terms of survival.
Distinguishing a hiding panther from a resting one makes all the
difference in the world. The mechanism used here is contrast en-
hancement.

3. short-term memory (STM) storage of the contrast-enhanced pat-
tern. Before the input pattern can be decoded, it must be stored
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in the short-term memory. The long-term memory (LTM) imple-
ments an arousal mechanism (i.e., the classification), whereas the
STM is used to cause gradual changes in the LTM.

The system consists of two layers, F1 and F2, which are connected
to each other via the LTM (Figure 4.13). The input pattern is received
at F1, whereas classification takes place in F2. As mentioned before,
the input is not directly classified. First a characterization takes place
by means of extracting features, giving rise to activation in the feature
representation field.

FIGURE 4.13: The ART Architecture

The expectations, residing in the LTM connections, translate the input
pattern to a categorization in the category representation field. The clas-
sification is compared to the expectation of the network, which resides
in the LTM weights from F2 to F1. If there is a match, the expectations
are strengthened, otherwise the classification is rejected

ART1: The Simplified Neural Network Model

The architecture of ART1 is a very simplified model and consists of
two layers of binary neurons (with values 1 and 0), called the comparison
layer denoted as F1 and the recognition layer denoted as F2 (Figure
4.14). Every individual neuron in the comparison layer is connected to all
neurons in the recognition layer through the continuous-valued forward
long term memory (LTM) Wf , and vice versa via the binary-valued
backward LTM Wb. A gain unit and a reset unit are also available.
There are two gain units and are denoted as G1 and G2. Every neuron
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in the F1 layer receives three inputs: a component of the input pattern,
a component of the feedback pattern, and a gain G1. The neuron fires if
and only if two-third of the input is high. The neurons in the recognition
layer each compute the inner product of their incoming (continuous-
valued) weights and the pattern sent over these connections. The winning
neuron then inhibits all the other neurons via lateral inhibition. Gain 2
is the logical “or” of all the elements in the input pattern x. Gain 1
equals gain 2, except when the feedback pattern from F2 contains any
1; then it is forced to zero. Finally, the reset signal is sent to the active
neuron in F2 if the input vector x and the output of F1 differ by more
than some vigilance level.

Architecture

The ART 1 has computational units and supplemental units. Its ar-
chitecture is shown in Figure 4.13.

Computational Units

The computational unit comprises of F1 and F2 units and the reset
unit. The F1(a) input unit is connected to the F2(b) interface unit. The
input and the interface units are connected to reset mechanism unit. By
means of top-down and bottom-up weights, the interface layer units are
connected to the cluster units and the reciprocity is also achieved.

Supplemental Units

There are a few limitations of the computational unit. All the units
of the computational unit are expected to react very often during the
learning process. Moreover the F2 unit is inhibited during some spe-
cific conditions and then again should be returned back when required.
Therefore, in order to overcome these limitations two gain control units
G1 and G2 act as supplemental units. These special units receive sig-
nals from and send their signal to, all the units present in occupational
structure. In Figure 4.14, the excitatory signals are indicated by “+”
and inhibitory signals by “−”. The signal may be sent, wherever any
unit in interface or cluster layer has three sources from which it can
receive a signal. Each of these units also receives two excitatory signals
in order to be “on”. Hence, due to this, the requirement is called the
two-thirds rule. This rule plays a role in the choice of parameters and
initial weights. The reset unit R also controls the vigilance matching.
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FIGURE 4.14: The ART1 Neural Network

Operation

The network starts by clamping the input at F1. Because the output
of F2 is zero, G1 and G2 are both on and the output of F1 matches its
input. The pattern is sent to F2, and in F2 one neuron becomes active.
This signal is then sent back over the backward LTM, which reproduces
a binary pattern at F1. Gain 1 is inhibited, and only the neurons in
F1 which receive a ’one’ from both x and F2 remain active. If there is
a substantial mismatch between the two patterns, the reset signal will
inhibit the neuron in F2 and the process is repeated.

Training Algorithm

The parameters used in the training algorithm are

n: Number of components in the input vector

m: Maximum number of clusters that can be formed

bij : bottom-up weights (from F1 (b) to F2 unit)

tij : top-bottom weights (from F2 to F1 (b) units)

ρ: vigilance parameter

s: binary input vector

x: activation vector for interface layer (F1 (b) layer (binary))

||x ||: norm of vector x (sum of the components xi)
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The binary input vector is presented to F1 (a) input layer and is then
received by F1(b), the interface layer. The F1(b) layer sends the acti-
vation signal to F2 layer over weighted interconnection path. Each F2

unit calculates the net input. The unit with the largest net input will
be the winner that will have the activation d=1. All the other units will
have the activation as zero. That winning unit alone will learn the cur-
rent input pattern. The signal sent from F2 to F1 (b) through weighted
interconnections is called as top-bottom weights. The “X” units remain
“on” only if they receive non-zero weights from both the F1 (a) to F2
units.

The norm of the vector ||x ||will give the number of components in
which top-bottom weight vector for the winning unit tji and the input
vector S are both ’1’. Depending upon the ratio of norm of x to norm
of S (||x ||/||S ||), the weights of the winning cluster unit are adjusted.
The whole process may be repeated until either a match is found or all
neurons are inhibited. The ratio (||x ||/||s ||) is called Match ratio.

At the end of each presentation of a pattern, all cluster units are
returned to inactive states but are available for further participation.

The pseudocode of the training algorithm of ART 1 network is as
follows.

Initialize parameters L >1 and 0 <¡ ρ ≤ 1
Initialize weights 0 <bij (0) < L

L−1+n <tji(0) = 1

While not stopping condition do
For each training input

Assign activations of all F2 units to zero
Assign activations of F1 (a) units to input vector s

Compute the norm of s: || s ||=
∑

i

Si

Send input signal from F1 (a) to F11(b) layer xi=si

For each F2 node that is not inhibited
If yJ 6= -1

yj =
∑

i bij xi

End If
While reset do

Find J such that yJ ≥ yj for all nodes j
If yj=-1

All nodes are inhibited
End If

Recompute activation x of F1(b) xi=sitJi

Compute the norm of vector x: || x ||=
∑

i

Xi

Test for reset
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If || x ||/|| s ||<ρ
yJ=-1, (inhibit node J)

End If
End While

End For
Update the weights for node J

bij (new) = Lxi

L−1+jj xjj

tji (new)= xi

End For
Test for stopping condition

End While

The stopping condition may be no weight changes, no units reset or
maximum number of epochs searched.

In winner selection, if there is a tie, take J to be the smallest such
index. Also tji is either 0 or 1, and once it is set to 0 during learning, it
can be never set back to 1, and once it is set to 0 during learning, it can
be never set back to 1 because of stable learning method.

The parameters used have the typical values as shown below.
Parameter Range Typical value

L L >1 2
ρ 0>ρ ≤ 1 0.9
bij 0<bij (0)<

(L/(L-1+n)) 1/(1+n)

(Bottom-up weights)
tji tji (0)=1(top down weights)1

4.4.2 Implementation of ART Algorithm in MATLAB

The top-down weights for an ART network after a few iterations are-
given as tji=[1 1 0 0;1 0 0 1;1 1 1 1] and the bottom up weights are
bij=[.57 0 .3;0 0 .3;0 .57 .3;0 .47 .3]. The following MATLAB code il-
lustrates the steps of ART algorithm to find the new weight after the
vector [1 0 1 1] is presented.

clc;

clear all;

% Step 1: Initialization

% The bottom up weights

b=[.57 0 .3;0 0 .3;0 .57 .3;0 .47 .3 ];
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% The top down weights

t=[1 1 0 0;1 0 0 1;1 1 1 1];

% Vigilance parameter (0<ρ ≤ 1) set to 0.9

p=0.9;

% Initialize L (L>1) to 2

L=2;

% Step 2: Start training

% Step 3: Present the new vector

x=[1 0 1 1];

% Step 4: Set the activations to the input vector

s=x;

% Step 5: Compute the norm of s according to the

formula || s ||=
∑

i

Si

norm s=sum(s);

% Step 6: Send input signal from

F1 (a) to F1(b) layer xi=si

% Step 7: Calculate the net input yj=
∑

i bij xi

y=x*b;

stop=1;

while stop

% Step 8: While reset do

for i=1:3

% Step 9: Find J such that yJ ≥ yj for

all nodes j

if y(i)==max(y)

J=i;

end

end

% Step 10: Recomputing activation x of F1(b)

xi=sitJ i
x=s.*t(J,:);

% Step 11: Compute the norm of vector
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x: || x ||=
∑

i

Xi

norm x=sum(x);

% Step 12: Test for reset

if norm x/norm s >= p

% Step 13: Updating the weights

b(:,J)=L*x(:)/(L-1+nx);

t(J,:)=x(1,:);

stop=0;

else

y(J)=-1;

stop=1;

end

if y+1 == 0

stop=0;

end

end

disp(’Top down weights’)

disp(t);

disp(’Bottom up weights’)

disp(b);

Output

The updated weights are:

Top down weights

1 1 0 0

1 0 0 1

1 0 1 1

Bottom up weights

0.5700 0 0.5000

0 0 0

0 0.5700 0.5000

0 0.4700 0.5000

4.4.3 Self-Organizing Map

The Kohonen network was developed by Teuvo Kohonen in the early
1980’s, based on clustering data. In this network if two input vectors are
close, they will be mapped to processing elements that are close together
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in the two-dimensional Kohonen layer that represents the features or
clusters of the input data. Here, the processing elements constitute a
two-dimensional map of the input data.

The basic use of the self-organizing map is to picture topologies
and hierarchical structures of multidimensional input spaces. The self-
organizing network has been used to create area-filled curves in two-
dimensional space created by the Kohonen layer. The Kohonen layer
can also be used for optimization problems by providing the connection
weights to settle out into a minimum energy pattern.

The major advantage of this network is that this network learns based
on unsupervision. When the topology is combined with other neural
layers for prediction or categorization, the network first learns in an
unsupervised manner and then switches to a supervised mode for the
trained network to which it is attached.

The basic architectural model of a self-organizing map network is
shown in Figure 4.15. The self-organizing map has typically two layers:
input layer and the Kohonen layer. The input layer is fully connected to
a two-dimensional Kohonen layer. The output layer shown here is used
in a categorization problem and represents three classes to which the in-

FIGURE 4.15: An Example Self-Organizing Map Network
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put vector can belong. This output layer typically learns using the delta
rule and is similar in operation to the counter-propagation paradigm.

The processing elements in the Kohonen layer measures the Euclidean
distance of the weights from the presented input patterns. During recall,
the Kohonen element with the minimum distance is the winner and
outputs a one to the output layer. Since this a competitive network,
once the winning unit is chosen all the other processing elements are
forced to zero. Hence the winning element is the nearest element to the
input value and this represents the input value in the two-dimensional
map.

During the training process, the Kohonen processing element with the
smallest distance adjusts its weight to be closer to the values of the input
data. The neighbors of the winning element also adjust their weights to
be closer to the same input data vector.

The processing elements naturally represent approximately equal in-
formation about the input data set. Where the input space has sparse
data, the representation is compacted in the Kohonen space, or map.
Where the input space has high density, the representative Kohonen
elements spread out to allow finer discrimination. In this way the Koho-
nen layer is thought to mimic the knowledge representation of biological
systems.

Self-Organized Maps allow a network to develop a feature map. Self-
Organized learning can be characterized as displaying “global order
emerging from local interactions”. One example of self-organized learn-
ing in a neural network is the SOM algorithm. There are three important
principles from which the SOM algorithm is derived:

1. Self-amplification

2. Competition

3. Co-operation

These principles are defined as follows:

1. Self-amplification: units, which are on together, tend to become
more strongly connected. Thus, positive connections tend to be
self-amplifying. This is the Hebbian learning principle.

2. Competition: Units enter into a competition according to which
one responds “best” to the input. The definition of “best” is typ-
ically according to either (i) the Euclidean distance between the
unit’s weight vector and the input, or (ii) the size of the dot prod-
uct between the unit’s weight vector and the input. Provided the
vectors are normalized, a minimum Euclidean distance is equiv-
alent to a maximum dot product so it doesn’t matter which you
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choose. The best-matching unit is deemed to be the winner of the
competition.

3. Co-operation: In the SOFM, each unit in the “competing layer”
is fully connected to the input layer. Further, each competing unit
is given a location on the map. Most often, a two dimensional map
is used so the units are assigned locations on a 2-D lattice. (maps
of one dimension or more than two dimensions are also possible).
Whenever a given unit wins the competition, its neighbors are also
given a chance to learn. The rule for deciding who are the neighbors
may be the “nearest neighbor” rule, i.e., only the four nearest
units in the lattice are considered to be in the neighborhood, or it
could be “two nearest neighbors”, or the neighborhood could be
defined as a shrinking function of the distance from each other unit
and the winner. Whatever the basis for determining neighborhood
membership, the winner and all its neighbors do some Hebbian
learning, while units not in the neighborhood do not learn for a
given pattern.

Architecture

The architecture of the Kohonen SOM is shown in Figure 4.16. All
the units in the neighborhood that receive positive feedback from the
winning unit participate in the learning process. Even if a neighboring
unit’s weight is orthogonal to the input vector, its weight vector will
still change in response to the input vector. This simple addition to the
competitive process is sufficient to account for the order mapping.

FIGURE 4.16: Architecture of Kohonen SOM
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Training Algorithm

The weights and the learning rate are set initially. The input vectors
to be clustered are presented to the network. When the input vectors
are presented, the winner unit is calculated either by Euclidean distance
method or sum of products method based on the initial weights. Based
on the winner unit selection, the weights are updated for that particular
winner unit using competitive learning rule as discussed earlier. An epoch
is said to be completed once all the input vectors are presented to the
network. By updating the learning rate, several epochs of training may
be performed.

The pseudocode of the training algorithm of the SOM network is
shown below:

Initialize topological neighborhood parameters

Initialize learning rate

Initialize weights

While not stopping condition do

For each input vector x

For each I, compute squared Euclidean

distance

D(j)=
∑

(wij-xi)
2, i=1 to n and j=1 to m

Find index J, when D (j) is minimum

For all units J, with specified neighborhood

of J,

and for all i,

update the weights as

wij(new) =wij(old) + α [xi-wij(old)]
End For

Update the learning rate

Reduce the radius of topological neighborhood

at specified times

Test the stopping condition

End While

End

The map function occurs in two phases:

• Initial formation of perfect (correct) order

• Final convergence

The second phase takes a longer duration than the first phase and re-
quires a small value of learning rate. The learning rate is a slowly de-
creasing function of time and the radius of the neighborhood around a
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cluster unit also decreases as the clustering process goes on. The initial
weights are assumed with random values. The learning rate is updated
by, α (t+1) =0.5 α (t).

4.5 Applications Areas of ANN

Artificial neural networks are going through the change that happens
once a concept departs the academic environment and is thrown into the
harsher world of users who merely wish to get a job arranged. Several
networks that are being designed recently are statistically quite exact
but they still leave a defective impression with users who anticipate
computers to solve their problems absolutely. These networks could be
85% to 90% accurate. Regrettably, a couple of applications tolerate that
level of error.

While researchers continue to work on improving the accuracy of their
“creations,” some explorers are finding uses for the current technology.

In reviewing this state of the art, it is hard not to be overcome by the
bright promises or tainted by the unachieved realities. Presently, neural
networks are not the user interface which translates spoken works into
instructions for a machine, but someday they will be. Someday, VCRs,
home security systems, CD players, and word processors will simply be
activated by voice. Touch screen and voice editing will replace the word
processors of today while bringing spreadsheets and data bases to a level
of usability pleasing to most everyone. But for now, neural networks are
simply entering the marketplace in niches where their statistical accuracy
is valuable as they await what will surely come.

Many of these niches indeed involve applications where answers are
nebulous. Loan approval is one. Financial institutions make more money
by having the lowest bad loan rate they can achieve. Systems that are
“90% accurate” might be an improvement over the current selection
process. Indeed, some banks have proven that the failure rate on loans
approved by neural networks is lower than those approved by some of
their best traditional methods. Also, some credit card companies are
using neural networks in their application screening process.

This latest method of looking into the future by examining past ex-
periences has rendered its own independant problems. One of the major
problems is to provide a reason behind the computer-generated answer,
such as to why a particular loan application was denied. As mentioned
throughout this chapter, the inner workings of neural networks are “black
boxes.” The explanation of a neural net and its learning has been diffi-
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cult. To alleviate this difficult process, a lot of neural net tool developers
have provided programs which explain which input through which node
dominates the decision making process. From that information, experts
in the application should be able to infer the reason that an exceptional
piece of data is crucial.

Besides this filling of niches, neural network work is progressing in
other more promising application areas. The following section of this
chapter goes through some of these areas and briefly details the current
work. This is done to help stimulate within the reader the various possi-
bilities where neural networks might offer solutions, possibilities such as
language processing, character recognition, image compression, pattern
recognition, among others.

4.5.1 Language Processing

Human language users perform differently from their linguistic com-
petence, that is from their knowledge of how to communicate correctly
using their language. Natural language processing is an application re-
inforced by the use of association of words and concepts, implemented
as a neural network. A single neural network architecture is capable of
processing a given sentence, and outputs a host of language processing
predictions: part-of-speech tags, chunks, named entity tags, semantic
roles, semantically similar words, and the likelihood that the sentence
makes sense grammatically and semantically using a language model.

Several researchers belonging to various universities are researching
how a computer could be programmed to respond to spoken commands
using the artificial neural networks. Natural language processing (NLP)
has become the main-stream of research with neural networks (NNs),
which are powerful parallel distributed learning/processing machines and
they play a major role in several areas of NLP.

Presently, as reported by the academic journals, most of the hearing-
capable neural networks are trained to only one talker. These one-talker,
isolated-word recognizers can recognize only a few hundred words. But
when there is a pause between each word, then the neural neworks can
recognize more number of words.

A few investigators are touting even bigger potentialities, but due to
the expected reward the true progress, and methods involved, are being
closely held. The most highly touted, and demonstrated, speech-parsing
system comes from the Apple Corporation. This network, according to
an April 1992 Wall Street Journal article, is capable of recognizing almost
any person’s speech through a limited vocabulary.
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4.5.2 Character Recognition

The recognition of optical characters is known to be one of the ear-
liest applications of Artificial Neural Networks, which partially emulate
human thinking in the domain of artificial intelligence. Recognition of
either handwritten or printed characters is a major area in which neu-
ral networks are providing optimal solutions. Multilayer neural networks
are used to recognize characters which is a vital application in areas like
banking, etc. The main issue in character recognition is the trade-off
between cost and benefits such as accuracy and speed. Neural networks
provide a method for combining independently trained characters to
achieve higher performance at relatively low cost.

The greatest amount of recent research in the domain of character
recognition is targeted at scanning oriental characters into a computer.
Presently, these characters require four or five keystrokes each. This com-
plicated process stretches the task of identifying a page of text into hours
of drudgery.

4.5.3 Data Compression

In neural networks, when the number of hidden units is less when
compared to he input and output units, then the neurons of the mid-
dle layer are capable of data compression. Researches have been proved
that neural networks can do real-time compression and decompression
of data. These networks are auto associative in that they can reduce
eight bits of data in the input layer to three in the hidden layer and then
reverse that process upon restructuring to eight bits again in the output
layer. While compressing there is no loss in the information. Some of the
major applications of data compression are multispectral lossless image
compression pattern recognition lossy or lossless compression video com-
pression handwritten numeral classification edge detection and magnetic
resonance image compression.

4.5.4 Pattern Recognition

Pattern recognition is a very old application of neural networks and it
has been studied in relation to many different (and mainly unrelated) ap-
plications, such as classifying patterns by shape, identifying fingerprints,
identifying tumors, handwriting recognition, face recognition, coin recog-
nition, etc. The majority of these applications are concerned with prob-
lems in pattern recognition, and make use of feed-forward network ar-
chitectures such as the multi-layer perceptron and the radial basis func-
tion network. According to the perspective of pattern recognition, neural
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networks can be looked upon as an extension of the several traditional
techniques which have been developed over several decades.

4.5.5 Signal Processing

The role of neural networks in signal processing is getting distributed,
with practical applications in areas such as filtering, parameter esti-
mation, signal detection, pattern identification, signal reconstruction,
system identification, signal compression, and signal transmission. The
signals concerned include audio, video, speech, image, communication,
geophysical, sonar, radar, medical, musical, and many others. The main
characteristics of neural networks applied to signal processing are their
asynchronous parallel and distributed processing, nonlinear dynamics,
global interconnection of network elements, self-organization, and high-
speed computational capability. Neural networks are capable of provid-
ing effective means for resolving several problems encountered in sig-
nal processing, especially, in nonlinear signal processing, real-time signal
processing, adaptive signal processing, and blind signal processing.

4.5.6 Financial

Earlier financial experts used charts as the main source to navigate
the large amount of financial data that was available. A few experts
study the long term investments of companies while a few others try to
anticipate the approaching economy or stock market in general. All these
processes involved a large amount of risk in the work. In order to aid
people in predicting particular markets,numerous computer programs
are available. Traditionally, these programs are expensive, need complex
programming, use surveys of financial experts to define the “game rules”,
and are still limited in their ability to think like people. Still, the task is
difficult even if the solution is obtained. In spite of the implications of the
effective market hypothesis, many traders continue to make, buy, and sell
decisions based on historical data. These decisions are made under the
premise that patterns exist in that data, and that these patterns provide
an indication of future movements. If such patterns exist, then it is
possible in principle to apply automated pattern recognition techniques
such as neural networks to the discovery of these patterns.

A neural network is a new kind of computing tool that is not limited
by equations or rules. Neural networks function by finding correlations
and patterns in the financial data provided by the user. These patterns
become a part of the network during training. A separate network is
needed for each problem you want to solve, but many networks follow
the same basic format.
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Summary

This chapter discusses the major class of neural network based on
applications such as data classification and data association. Another
network type described in this chapter is data conceptualization. Im-
plementations of these networks using MATLAB Neural Network Tool
box are also illustrated. The future of ANN holds even more promises.
Neural networks need faster hardware. They need to become part of hy-
brid systems, which also utilize fuzzy logic and expert systems. It is then
that these systems will be able to hear speech, read handwriting, and
formulate actions. They will be able to become the intelligence behind
robots that never tire nor become distracted. It is then that they will
become the leading edge in an age of “intelligent” machines.

Review Questions

1. Explain the architecture and algorithm of LVQ.

2. What are the variants of LVQ? How do they differ from LVQ?

3. Mention the different types of counter propagation network.

4. What are in star and out star models?

5. Explain the application procedure of CPN.

6. Describe the architecture and algorithm of probabilistic neural net-
work.

7. Explain the application procedure of Discrete Hopfield network.

8. Write a note on Boltzmann machine.

9. Derive an expression to determine the Hamming distance.

10. What are the different forms of BAM? How are BAM nets classi-
fied?

11. Describe the major application areas of ANN.

12. Write a MATLAB program to implement competitive learning
rule.
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13. Mention the functionality of supplemental and computational units
of the ART network.

14. Assume the stored pattern to be [1 1 1 1 0 1 1 1 1]. Let there be mis-
takes in the 2nd and 5th positions. Develop a Hopfield algorithm
in MATLAB and determine the converged output.

15. What is the MATLAB Neural Network toolbox function used to
find the weights in the layers of a LVQ network?
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Chapter 5

MATLAB Programs to
Implement Neural Networks

Neural network computations are naturally expressed in matrix nota-
tion, and there are several toolboxes in the matrix language MATLAB,
for example the commercial neural network toolbox, and a toolbox for
identification and control. In the wider perspective of supervisory con-
trol, there are other application areas, such as robotic vision, planning,
diagnosis, quality control, and data analysis (data mining). The strategy
in this chapter is to aim at all these application areas, but only present
the necessary and sufficient neural network material for understanding
the basics. A few MATLAB simulated examples such as Coin detec-
tion, Pattern Recall, Pattern Classification, and Simulink models using
different Neural Network architectures are illustrated in this chapter.

5.1 Illustration 1: Coin Detection Using Euclidean
Distance (Hamming Net)

A set of coins is taken as input image and they are detected using
Hamming Network. The edges are detected and the minimal distance to
non-white pixels are calculated using Euclidean distance formula.

% - - - - - - - - - - - - - - - - - - - - -

% Main Program

% - - - - - - - - - - - - - - - - - - - - -

close all;

clear all;

clc;

165
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I = imread(’Image1’,’jpeg’);

flg=isrgb(I);

if flg==1

I=rgb2gray(I);

end

[h,w]=size(I);

figure;imshow(I);

c = edge(I, ’canny’,0.3); % Mcanny edge

detection

figure; imshow(c); % binary edges

se = strel(’disk’,2); %

I2 = imdilate(c,se); %

imshow(I2); %

d2 = imfill(I2, ’holes’); %

figure, imshow(d2); %

Label=bwlabel(d2,4);

a1=(Label==1);

a2=(Label==2);

a3=(Label==3);

a4=(Label==4);

a5=(Label==5);

a6=(Label==6);

D1 = bwdist( a1); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D1,[]),

[xc1 yc1 r1]=merkz(D1);

f1=coindetect(r1)
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D2 = bwdist( a2); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D2,[]),

%[xc2 yc2 r2]=merkz(D2);

f2=coindetect(r2)

D3 = bwdist( a3); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D3,[]),

%[xc3 yc3 r3]=merkz(D3);

f3=coindetect(r3)

D4 = bwdist( a4); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D4,[]),

%[xc4 yc4 r4]=merkz(D4);

f4=coindetect(r4)

D5 = bwdist( a5); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D5,[]),

%[xc5 yc5 r5]=merkz(D5);

f5=coindetect(r5)

D6 = bwdist( a6); % computing minimal euclidean

% distance to non-white pixel

figure, imshow(D6,[]),

%[xc6 yc6 r6]=merkz(D6);

f6=coindetect(r6)

% - - - - - - - - - - - - - - - - - - - - -

% End of Main Program

% - - - - - - - - - - - - - - - - - - - - -
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% - - - - - - - - - - - - - - - - - - - - -

% Sub-Program Used

% - - - - - - - - - - - - - - - - - - - - -

function f=coindetect(rad);

if rad >100

f=1;

elseif (68<rad) & (rad<69)

f=5;

elseif (76<rad) & (rad<77)

f=10;

elseif (85<rad) & (rad<86)

f=25;

elseif (95<rad) & (rad<96)

f=50;

else

f=0;

end

function [centx,centy,r]=merkz(D);

[w h]=size(D’);

mx=max(max(D));

r=mx;

for i=1:h

for j=1:w

if D(i,j)==mx;

centx=j;

centy=i;

end

end

end
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FIGURE 5.1: Input Image

Observations

The input image shown in Figure 5.1 is converted to gray scale
(Figure 5.2) and the edges are detected (Figure 5.3). The holes of the
image are shown in Figure 5.4. The minimal distance to non-white pixels
are computed using Euclidean distance formula and shown in Figure 5.5.

FIGURE 5.2: Input Image in Gray Scale
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FIGURE 5.3: Edge Detection

FIGURE 5.4: Fill in the Holes of an Intensity Image
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FIGURE 5.5: Computation of Minimal Euclidean Distance to Non-
White Pixel

5.2 Illustration 2: Learning Vector Quantization -
Clustering Data Drawn from Different Regions

An LVQ net with two input units and four target classes is considered,
with 16 classification units and weights assigned in random. The learn-
ing rate is chosen between [0,1]. An input vector is drawn from different
regions and accordingly the class is assigned. The winning unit is found
based on competition. In this example the training vectors are drawn
from the following regions:
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Class 1 0.0 <=x1<0.5 0.0<=x2<0.5
Class 2 0.5 <=x1<1.0 0.0<=x2<0.5
Class 3 0.0 <=x1<0.5 0.5<=x2<1.0
Class 4 0.5 <=x1<1.0 0.5<=x2<1.0

Based on the input value given by the user the class is chosen. The
weight vectors are assigned as follows according to the class chosen from
the input vector,

Weight vector for Class 1 = [0.2 0.2 0.6 0.6;0.2 0.6 0.8 0.4]
Weight vector for Class 2 = [0.4 0.4 0.8 0.8;0.2 0.6 0.4 0.8]
Weight vector for Class 3 = [0.2 0.2 0.6 0.6;0.4 0.8 0.2 0.6]
Weight vector for Class 4 = [0.4 0.4 0.8 0.8;0.4 0.8 0.2 0.6]

% MATLAB CODE

% Training with inputs lying in the specified regions

% Different learning rates and different geometries for

input

clc;

n=2;

m=4;

p=1;

ep=1;

J=0;

prompt1={’ENTER LEARNING RATE’,’ENTER TRAINING INPUT x1’,

’ENTER TRAINING INPUT x2’};
dlgTitle1=’PATTERN CLUSTERING’;

answer1=inputdlg(prompt1);

disp(answer1);

learn rate=str2double(answer1(1));

disp(learn rate);

x1=str2double(answer1(2));

disp(x1);

x2=str2double(answer1(3));

disp(x2);

if((x1 <=0.0)&&(x1<0.5)&&(x2>=0.0)&&(x2<0.5))
T=1;

X=[x1 x2];

W=[0.2 0.2 0.6 0.6;0.2 0.6 0.8 0.4];

disp(’Class 1’);

elseif((x1>=0.5)&&(x1<1.0)&&(x2>=0.0)&&(x2<0.5))
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T=2;

X=[x1 x2];

W= [0.4 0.4 0.8 0.8;0.2 0.6 0.4 0.8];

disp(’Class 2’);

elseif((x1>=0.0)&&(x1<0.5)&&(x2>=0.5)&&(x2<1.0))
T=3;

X=[x1 x2];

W= [0.2 0.2 0.6 0.6;0.4 0.8 0.2 0.6];

disp(’Class 3’);

elseif((x1>=0.5)&&(x1<1.0)&&(x2>=0.5)&&(x2<1.0))
T=4;

X=[x1 x2];

W= [0.4 0.4 0.8 0.8;0.4 0.8 0.2 0.6];

disp(’Class 4’);

end

for c=1:p

fprintf(’Input\n’)
disp(X)

for j=1:m

D(j)=0;

for i=1:n

D(j)=D(j)+(X(c,i)-W(i,j)ˆ2);

disp(D(j));

end

fprintf(’Distance D(%g)’,j);

disp(D(j));

end

end

Temp=D(1)

disp(Temp);

J=1;

for j=2:m

if Temp>D(j);
Temp=D(j);

J=j;

end

end

disp(J);

if(J==T)

for i=1:n

W(i,J)=W(i,J)+learn rate*
(X(c,i)-W(i,j));

end

© 2010 by Taylor and Francis Group, LLC



174 Computational Intelligence Paradigms

else

for i=1:n

W(i,J)=W(i,J)+learn rate*
(X(c,i)-W(i,j));

end

end

disp(W);

prompt={’INDEX J’,’CLASS’,’UPDATED WEIGHTS

w11’,’w12’,’w13’,’w14’,’w21’,’w22’,’w23’,’w24’};
J1=num2str(J);

class1=num2str(J);

w11=num2str(W(1,1));

w12=num2str(W(1,2));

w13=num2str(W(1,3));

w14=num2str(W(1,4));

w21=num2str(W(2,1));

w22=num2str(W(2,2));

w23=num2str(W(2,3));

w24=num2str(W(2,4));

def=J1,class1,w11,w12,w13,w14,w21,w22,w23,w24;

dlgTitle=’Result of Training’

lineNo=1;

answer=inputdlg(prompt,dlgTitle,lineNo,def);

Observations:

The learning process performed by the LVQ is shown in Figure 5.6 and
5.7. From the output we find that the vectors are classified as belonging
to class 4.

5.3 Illustration 3: Character Recognition Using
Kohonen Som Network

The objective of this illustration is to identify each of a large number
of black-and-white rectangular pixel displays as one of the 26 capital
letters in the English alphabet. The character images were based on
20 different fonts and each letter within these 20 fonts was randomly
distorted to produce a file of 20,000 unique stimuli. Each stimulus was
converted into 16 primitive numerical attributes (statistical moments
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FIGURE 5.6: Input Format

and edge counts), which were then scaled to fit into a range of integer
values from 0 through 15. The first 16000 items were trained and the
resulting model is used to predict the letter category for the remaining
4000. Some of the parameters initialized in this program are follows:

The Number of Instances: 20000
Number of Attributes: 17 (Letter category and 16 numeric features)
Attribute Information:
1. lettr capital letter (26 values from A to Z)
2. position of box (integer)
3. y-box vertical position of box (integer)
4. width width of box (integer)
5. high height of box (integer)
6. onpix total # on pixels (integer)
7. x-bar mean x of on pixels in box (integer)
8. y-bar mean y of on pixels in box (integer)
9. x2bar mean x variance (integer)
10. y2bar mean y variance (integer)
11. xybar mean x y correlation (integer)
12. x2ybr mean of x * x * y (integer)
13. xy2br mean of x * y * y (integer)
14. x-ege mean edge count left to right (integer)
15. xegvy correlation of x-ege with y (integer)
16. y-ege mean edge count bottom to top (integer)
17. yegvx correlation of y-ege with x (integer)
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FIGURE 5.7: Output Format
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TABLE 5.1: Class Distribution

A B C D E F G H
789 766 736 805 768 775 773 734

I J K L M N O P
755 747 739 761 792 783 753 803

Q R S T U V W X
783 758 748 796 813 764 752 787

Y Z
786 734

Missing Attribute Values: None
Class Distribution:

% MATLAB CODE

% ANALOG DATA

clear all;

clc;

m1=26;

alpha = input(’Enter the value of alpha = ’);

per1 = input(’Enter the percentage of traing vectors ’);

per2 = input(’Enter the percentage of testing vectors ’);

x1 = load(’d:\finalpgm\data160rand.txt’);
[patt n] = size(x1);

x2=x1;

maxi=max(x1,[],1);

value= x2(:,1);

for j = 2:n

input(:,(j-1)) = x2(:,j)/maxi(j);

end

[pattern n] = size(input);

ci = 1;

for i = 1:m1

while (i ˜= value(ci));

ci = ci + 1;

if(ci>patt)
ci = 1;

end

end

w(i,:) = input(i,:);

ci = 1;

end
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countw = ones(1,m1);

alphacond = 0.000001*alpha;

ep = 0;

patterntrain = round(pattern*per1/100);

for i = 1:patterntrain

for j = 1:m1

if(value(i)==j)

countw(j) = countw(j)+1;

w(j,:) = ((countw(j)-1)*w(j,:)+

input(i,:))/countw(j);

end

end

end

tic;

while(alpha>alphacond)
clc;

ep = ep+1

for p = 1:patterntrain;

data = input(p,:);

for i = 1:m1

d(i) = sum(power((w(i,:)-

data(1,:)),2));

end

[mind mini] = min(d);

w(mini,:) = w(mini,:)+alpha*
(data(1,:)-w(mini,:));

end

alpha = alpha*0.9;

end

t = toc;

count = 0;

patterntest = round(pattern*per2/100);

for p = 1:patterntest

data = input(p,:);

for i = 1:m1

d(i) = sum(power((w(i,:)-

data(1,:)),2));

end

[mind mini] = min(d);

output(p) = mini;

if(mini==value(p))
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count = count+1;

end

end

fprintf(’\nPercentage of TRAING Vectors : % f’,per1);

fprintf(’\nPercentage of TESTING Vectors : % f’,per2);

fprintf(’\nTime Taken for TRANING : % f in secs’,t);

eff = count*100/patterntest;

fprintf(’\nEfficiency = % f’,eff);

% DIGITAL DATA

clear all;

clc;

m1=26;

alpha = input(’Enter the value of alpha = ’);

per1 = input(’Enter the percentage of traing vectors ’);

per2 = input(’Enter the percentage of testing vectors ’);

x1 = load(’d:\finalpgm\data160rand.txt’);
[patt n] =size(x1);

x2=x1;

maxi=max(x1,[],1);

value = x2(:,1);

for j = 2:n

input(:,(j-1)) = x2(:,j)/maxi(j);

end

[pattern n] = size(input);

for i = 1:pattern

for j = 1:16

if(input(i,j)>0.5)
input(i,j) = 1;

else

input(i,j) = 0;

end

end

end

ci = 1;

for i = 1:m1

while (i ˜= value(ci));

ci = ci + 1;

if(ci>patt)
ci = 1;
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end

end

w(i,:) = input(i,:);

ci = 1;

end

countw = ones(1,m1);

alphacond = 0.000001*alpha;

ep = 0;

patterntrain = round(pattern*per1/100);

for i = 1:patterntrain

for j = 1:m1

if(value(i)==j)

countw(j) = countw(j)+1;

w(j,:) = ((countw(j)-1)*w(j,:)+

input(i,:))/countw(j);

end

end

end

tic;

while(alpha>alphacond)
clc;

ep = ep+1

for p = 1:patterntrain;

data = input(p,:);

for i = 1:m1

d(i) = sum(power((w(i,:)-

data(1,:)),2));

end

[mind mini] = min(d);

w(mini,:) = w(mini,:)+alpha*
(data(1,:)-w(mini,:));

end

alpha = alpha*0.9;

end

t = toc;

count = 0;

patterntest = round(pattern*per2/100);

for p = 1:patterntest

data = input(p,:);
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TABLE 5.2: Results for Analog Data

Training Test Time Efficiency
Vectors Vectors (Secs) (%)

20 80 2.01 51.56
40 60 3.98 73.95
60 40 5.78 89.06
80 20 9.23 93.75
95 5 9.36 100

for i = 1:m1

d(i) = sum(power((w(i,:)-

data(1,:)),2));

end

[mind mini] = min(d);

output(p) = mini;

if(mini==value(p))

count = count+1;

end

end

% RESULTS:

fprintf(’\nPercentage of TRAING Vectors : % f’,per1);

fprintf(’\nPercentage of TESTING Vectors : % f’,per2);

fprintf(’\nTime Taken for TRANING : % f in secs’,t);

eff = count*100/patterntest;

fprintf(’\nEfficiency = % f’,eff);

Observations:

Tables 5.2 and 5.3 and show the results of KOHONEN for analog
and digital inputs with optimum efficiency. It can be inferred that the
efficiency increases with number of training vectors.

TABLE 5.3: Results for Digital Data

Training Test Time Efficiency
Vectors Vectors (Secs) (%)

20 80 1.98 70.31
40 60 3.87 79.16
60 40 6.03 82.81
80 20 7.76 84.37
95 5 9.29 100
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5.4 Illustration 4: The Hopfield Network
as an Associative Memory

This illustration demonstrates the implementation of the Hopfield net-
work, which acts as an associative memory for pattern classification.

% - - - - - - - - - - - - - - - - - - - - -

% Main Program

% - - - - - - - - - - - - - - - - - - - - -

clear all

% Load input data

X = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1

-1 -1 -1 1 1 -1

1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1

-1 -1 -1 1 1 -1 1 1 -1 -1

-1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

-1 -1 -1

-1 -1 -1 -1 -1 -1;

-1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1

-1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1

-1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1

1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1

-1 -1 -1;

-1 -1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1

1 1 1 1 1 -1;

-1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1

-1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1

1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1

1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1

-1;

1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1

-1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 1

-1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1

-1 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1];
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X = X([1 2 3 4 5],:);

numPatterns = size(X,1);

numInputs = size(X,2);

% Plot the fundamental memories.

figure

plotHopfieldData(X)

% STEP 1. Calculate the weight matrix using Hebb’s

postulate

W = (X’* X- numPattern)s*eye(numInputs)/numInputs;

% STEP 2. Set a probe vector using a predefined

noiselevel. The probe

% vector is a distortion of one of the fundamental

memories

noiseLevel = 1/3;

patInd = ceil(numPatterns*rand(1,1));

xold =

(2*(rand(numInputs,1)>noiseLevel)-1).*X(patInd,:)’;

% STEP 3. Asynchronous updates of the elements of the

% probe vector until it converges. To guarantee convergence,

% the algorithm performs at least numPatterns=81 iterations

% even though convergence generally occurs before this

figure

converged = 0;

x=xold;

while converged==0,

p=randperm(numInputs);

for n=1:numInputs

r = x(p(n));

x(p(n)) = hsign(W(p(n),:)*x, r);

plotHopfieldVector(x);

pause(0.01);

end

% STEP 4. Check for convergence

if (all(x==xold))

break;

end

xold = x;

end
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% - - - - - - - - - - - - - - - - - - - - -

% End of Main

% - - - - - - - - - - - - - - - - - - - - -

% - - - - - - - - - - - - - - - - - - - - -

% Subprograms used

% - - - - - - - - - - - - - - - - - - - - -

% Update the elements asynchronously.

function y = hsign(a, r)

y(a>0) = 1;

y(a==0) = r;

y(a<0) = -1;

% - - - - - - - - - - - - - - - - - - - - -

% End of hsign

% - - - - - - - - - - - - - - - - - - - - -

% Plot the fundamental memories.

function plotHopfieldData(X)

numPatterns = size(X,1);

numRows = ceil(sqrt(numPatterns));

numCols = ceil(numPatterns/numRows);

for i=1:numPatterns

subplot(numRows, numCols, i);

axis equal;

plotHopfieldVector(X(i,:))

end

% - - - - - - - - - - - - - - - - - - - - -

% End of plotHopfieldData

% - - - - - - - - - - - - - - - - - - - - -

% Plot the sequence of iterations for the probe vector.

function plotHopfieldVector(x)

cla;

numInputs = length(x);

numRows = ceil(sqrt(numInputs));

numCols = ceil(numInputs/numRows);

for m=1:numRows
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for n=1:numCols

xind = numRows*(m-1)+n;

if xind >numInputs
break;

elseif x(xind)==1

rectangle(’Position’, [n-1 numRows-m 1 1],

’FaceColor’, ’k’);

elseif x(xind)==-1

rectangle(’Position’, [n-1 numRows-m 1 1],

’FaceColor’, ’w’);

end

end

end

set(gca, ’XLim’, [0 numCols], ’XTick’, []);

set(gca, ’YLim’, [0 numRows], ’YTick’, []);

% - - - - - - - - - - - - - - - - - - - - -

% End of plotHopfieldVector

% - - - - - - - - - - - - - - - - - - - - -

Observations

Figure 5.8 shows the input patterns, of which “2” is selected for pat-
tern classification. A noisy pattern is introduced as shown in Figure 5.9.
The net was able to classify the correct pattern after 81 iterations as
shown in Figure 5.10.

FIGURE 5.8: Input Patterns
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FIGURE 5.9: Noisy Pattern

FIGURE 5.10: Network Converged after 81 Iterations
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5.5 Illustration 5: Generalized Delta Learning Rule
and Back-Propagation of Errors for a Multilayer
Network

This illustration shows the implementation of the generalized learning
rule and the back propagation of errors in a back propagation network.

% - - - - - - - - - - - - - - - - - - - - -

% Main Program

% - - - - - - - - - - - - - - - - - - - - -

% Load data

load housing.txt

X = housing(:,1:13);

t = housing(:,14);

% Scale to zero mean, unit variance and introduce

bias on input.

xmean = mean(X);

xstd = std(X);

X =

(X-ones(size(X,1),1)*xmean)./(ones(size(X,1),1)*xstd);

X = [ones(size(X,1),1) X];

tmean = mean(t);

tstd = std(t);

t = (t-tmean)/tstd;

% Iterate over a number of hidden nodes

maxHidden = 2;

for numHidden=1:maxHidden

% Initialise random weight vector.

% Wh are hidden weights, wo are output weights.

randn(’seed’, 123456);

Wh = 0.1*randn(size(X,2),numHidden);

wo = 0.1*randn(numHidden+1,1);

% Do numEpochs iterations of batch error back propagation.

numEpochs = 2000;

numPatterns = size(X,1);
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% Set eta.

eta = 0.05/numPatterns;

for i=1:numEpochs

% Calculate outputs, errors, and gradients.

phi = [ones(size(X,1),1) tanh(X*Wh)];

y = phi*wo;

err = y-t;

go = phi’*err;

Gh = X’*((1-phi(:,2:numHidden+1).2̂).*
(err*wo(2:numHidden+1)’));

% Perform gradient descent.

wo = wo - eta*go;

Wh = Wh - eta*Gh;

% Update performance statistics.

mse(i) = var(err);

end

plot(1:numEpochs, mse, ’-’)

hold on

end

fsize=15;

set(gca,’xtick’,[0:500:2000],’FontSize’,fsize)

set(gca,’ytick’,[0:0.5:1],’FontSize’,fsize)

xlabel(’Number of Epochs’,’FontSize’,fsize)

ylabel(’Mean Squared Error’,’FontSize’,fsize)

hold off

% - - - - - - - - - - - - - - - - - - - - -

% End of Main

% - - - - - - - - - - - - - - - - - - - - -

Observations

The performance statistics of the generalized delta learning rule and
backpropagation of errors for a multilayer network is shown in Figure
5.11. It is found that the Mean Squared Error decreases as the number
of epochs increases.
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FIGURE 5.11: Illustration of Generalized Delta Rule and Back Prop-
agation of Errors

5.6 Illustration 6: Classification of Heart Disease Us-
ing Learning Vector Quantization

The following program illustrates the use of MATLAB to classify a
normal person from a sick person using LVQ. This is supervised version
of Kohonen learning rule. The original data is available in 13 attributes
and a class attribute. Depending upon the value of attribute the network
will classify a normal person from a sick person.

The datasets chosen for the project are heart disease Cleveland
database. All attribute names and values of the attribute are given so
that the reader can understand the aim of the program.

% PROGRAM FOR DIGITAL(BIPOLAR) INPUT DATA

clc;

tic;

m=4;

x5=load(’heartdata00.txt’); % loading input datas from

the file c3=size(x5)*[1;0];% calculating size of matrix.

u=size(x5)*[0;1];
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prompt1={’Percentage of datas to be trained’,

’Percentage of datas to be tested’,

’Enter the value of learning rate’};
dlgTitle1=’HEART DISEASE DIAGNOSIS USING LEARNING VECTOR

QUANTISATION NETWORK’;

lineNo=1;

answer1=inputdlg(prompt1,dlgTitle1,lineNo);

per=str2double(answer1(1));

per1=str2double(answer1(2));

al=str2double(answer1(3));

pe=per/100;

v=round(pe*c3);

% Separating theinputattributes and the target from the

input file for s1=1:m

for i=1:c3

if(x5(i,u)==(s1-1))

for(j=1:u)

temp=x5(s1,j);

x5(s1,j)=x5(i,j);

x5(i,j)=temp;

end

end

end

end

for i=1:c3

for j=1:u

if((j==u))

t(i)=x5(i,j);

end

end

end

for i=1:c3

for j=1:u-1

x(i,j)=x5(i,j);

end

end

for i=1:c3

for j=1:u-1

if x(i,j)==0

x(i,j)=.05;

end

end

end
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% Normalizing the datas

q2=size(x)*[0;1];

p2=size(x)*[1;0];

y=max(x,[],1);

z=min(x,[],1);

for i=1:q2

if y(i)˜=z(i)

e(i)=y(i)-z(i);

else

e(i)=1;

z(i)=0;

end

end

for i=1:p2

for j=1:q2

x(i,j)=(x5(i,j)- z(j))/(e(j));

end

end

% Initialising the weight matrix

for i=1:u-1

for j=1:4

w(i,j)=x(j,i);

end

end

% Converting the normalized data into bipolar form

for i=1:p2

for j=1:q2

if x(i,j)>.3
x(i,j)=1;

else

x(i,j)=-1;

end

end

end

q=size(x)*[0;1];

p=size(x)*[1;0];

N=0;

% Stopping condition.

while (al>0.0000000001)
N=N+1;

% Calculating the distance by using Euclidean distance

method

for i=5:v
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for k=1:4

d(k)=0;

for j=1:u-1

d(k)=d(k)+[x(i,j)-w(j,k)]ˆ2;

end

end

b=min(d);

% Finding the winner

for l=1:4

if (d(l)==b)

J=l;

end

end

% Weight updation

for f=1:q

if(t(J)==t(i))

w(f,J)=w(f,J)+al*[x(i,f)-w(f,J)];

else

w(f,J)=w(f,J)-al*[x(i,f)-w(f,J)];

end

end

end

% Reducing the learning rate

al=al/2;

end

% LVQ Testing

pe1=per1/100;

v1=round(pe1*c3);

for i=1:v1

for j=1:u-1

x1(i,j)=x(i,j);

end

end

p1=size(x1)*[0;1];

q1=size(x1)*[1;0];

count=0;

if (x1(i,j)>.3)
x1(i,j)=1;

else

x1(i,j)=-1;

end

for i=1:v1

t1(i)=t(i);
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end

for i=1:q1

for k=1:m

d1(k)=0;

for j=1:p1

d1(k)=d1(k)+[(x1(i,j)-w(j,k))]ˆ2;

end

end

c1=min(d1);

for a=1:m

if(d1(a)==c1)

O1=a-1;

end

end

if (O1==t1(i))

count=count+1;

end

end

% calculting the efficiency.

eff=round(count*100/(v1));

sec=toc;

% Result display

clc;

prompt={’Total number of datas available ’,’

Number of training inputs presented’,

’Number of testing inputs presented’,

’Number of recognized datas’,

’Number of iterations performed’,

’Efficiency’,’Execution time’};
c31=num2str(c3) ;

v2=num2str(v) ;

vs=num2str(v1) ;

count1=num2str(count);

N1=num2str(N) ;

eff1=num2str(eff) ;

sec1=num2str(sec);

def=c31,v2,vs,count1,N1,eff1,sec1;

dlgTitle=’Result’;

lineNo=1;

answer=inputdlg(prompt,dlgTitle,lineNo,def);

% PROGRAM FOR ANALOG INPUT DATA

clc;
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tic;

m=4;

x5=load(’heartdata00.txt’);% loading input datas from

the file

c3=size(x5)*[1;0];% calculating size of matrix.

u=size(x5)*[0;1];

prompt1={’Percentage of datas to be trained’,

’Percentage of datas to be tested’,’Enter the value

of learning rate’};
dlgTitle1=’HEART DISEASE DIAGNOSIS USING

LEARNING VECTOR QUANTIZATION NETWORK’;

lineNo=1;

answer1=inputdlg(prompt1,dlgTitle1,lineNo);

per=str2double(answer1(1));

per1=str2double(answer1(2));

al=str2double(answer1(3));

pe=per/100;

v=round(pe*c3);

% Seperating the input attributes and the target from the

input file for s1=1:m

for i=1:c3

if(x5(i,u)==(s1-1))

for(j=1:u)

temp=x5(s1,j);

x5(s1,j)=x5(i,j);

x5(i,j)=temp;

end

end

end

end

for i=1:c3

for j=1:u

if((j==u))

t(i)=x5(i,j);

end

end

end

for i=1:c3

for j=1:u-1

x(i,j)=x5(i,j);

end

end

for i=1:c3
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for j=1:u-1

if x(i,j)==0

x(i,j)=.05;

end

end

end

% Normalizing the datas

q2=size(x)*[0;1];

p2=size(x)*[1;0];

y=max(x,[],1);

z=min(x,[],1);

for i=1:q2

if y(i)˜=z(i)

e(i)=y(i)-z(i);

else

e(i)=1;

z(i)=0;

end

end

for i=1:p2

for j=1:q2

x(i,j)=(x5(i,j)- z(j))/(e(j));

end

end

% Initialising then weight matrix

for i=1:u-1

for j=1:4

w(i,j)=x(j,i);

end

end

q=size(x)*[0;1];

p=size(x)*[1;0];

N=0;

% Stopping condition

while (al>0.0000000001)
N=N+1;

% Calculating the distance by using Euclidean distance

method

for i=5:v

for k=1:4

d(k)=0;

for j=1:u-1

d(k)=d(k)+[x(i,j)-w(j,k)]ˆ2;
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end

end

b=min(d);

% Finding the winner

for l=1:4

if (d(l)==b)

J=l;

end

endv % Weight updation

for f=1:q

if(t(J)==t(i))

w(f,J)=w(f,J)+al*[x(i,f)-w(f,J)];

else

w(f,J)=w(f,J)-al*[x(i,f)-w(f,J)];

end

end

end

% Reducing the learning rate

al=al/2;

end

% LVQ Testing

pe1=per1/100;

v1=round(pe1*c3);

for i=1:v1

for j=1:u-1

x1(i,j)=x(i,j);

end

end

p1=size(x1)*[0;1];

q1=size(x1)*[1;0];

count=0;

for i=1:v1

t1(i)=t(i);

end

for i=1:q1

for k=1:m

d1(k)=0;

for j=1:p1

d1(k)=d1(k)+[(x1(i,j)-w(j,k))]ˆ2;

end

end

c1=min(d1);

for a=1:m
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if(d1(a)==c1)

O1=a-1;

end

end

if (O1==t1(i))

count=count+1;

end

end

% calculting the efficiency.

eff=round(count*100/(v1));

sec=toc;

% Result display

clc;

prompt={’Total number of datas available ’,

’ Number of training inputs presented’,

’Number of testing inputs presented’,

’Number of recognized datas’,

’Number of iterations performed’,

’Efficiency’,’Execution time’};
c31=num2str(c3) ;

v2=num2str(v) ;

vs=num2str(v1) ;

count1=num2str(count);

N1=num2str(N) ;

eff1=num2str(eff) ;

sec1=num2str(sec);

def=c31,v2,vs,count1,N1,eff1,sec1;

dlgTitle=’Result’;

lineNo=1;

answer=inputdlg(prompt,dlgTitle,lineNo,def);

TABLE 5.4: Efficiency and Time for Analog Input

Training Test Time Recognised
Vectors Vectors (sec) Vectors Efficiency

83(20%) 331(80%) 0.141 271 81.87%
166(40%) 248(60%) 0.109 196 79.03%
248(60%) 166(40%) 0.078 144 86.747%
331(80%) 83(20%) 0.031 77 92.77%
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TABLE 5.5: Efficiency and Time for Digital Input

Training Test Time Recognised
Vectors Vectors (sec) Vectors Efficiency

83(20%) 331(80%) 0.141 282 85.19%
166(40%) 248(60%) 0.109 202 81.46%
248(60%) 166(40%) 0.062 154 92.77%
331(80%) 83(20%) 0.047 82 98.92%

Observations:

Tables 5.4 and 5.5 show the results of LVQ for analog and digital
inputs with optimum efficiency and time. The learning rate alpha was
varied from 0.1 to 0.9 and it was found that maximum efficiency was
obtained for alpha value 0.1. The following parameters were used in the
program:

Total number of instances : 414
Total number of attributes : 13
Number of classes : 4

The efficiency is higher with more number of training vectors and the
time taken for complete execution of the program is less if the number
of training vectors is more. The net identifies the pattern faster if the
numbers of training patterns are more.

5.7 Illustration 7: Neural Network Using
MATLAB Simulink

A system is described by a first order difference equation

y(k + 2) = 0.3y(k + 1) + 0.6y(k) + f(u(k))

where f(u(k)) = u3 + 0.3u2 − 0.4u and u(k) is random noise.
Generate data in appropriate range for f(u) and fit a neural network

on the data. Simulate the system response for exact f(u) and the neural
network approximation. Initial condition could be zero. Input can be
assumed to be noise. The Simulink model is shown in Figure 5.12.

The neural network approximation can be obtained in various ways,
using the following commands
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FIGURE 5.12: Simulink Model of the Function

% Generate parabolic data

u=-10:0.1:10; y=u.3̂+0.3*u.2̂-0.4*u;

P=u;T=y;

% Define network

net=newff([-10 10], [10,1],

’tansig’,’purelin’,’trainlm’);

% Define parameters

net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-3;

% Train network

net1 = train(net, P, T);

% Simulate result

a= sim(net1,P);

% Plot result

plot(P,T,P,a-T)

Title(’Cubic function: y=u3̂+0.3u2̂-0.4u’)

xlabel(’Input u’);ylabel(’Output y’)

Observations:

The given cubic function is simulated and plotted as shown in Fig-
ure 5.13.
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FIGURE 5.13: Result of Simulation

Summary

This chapter provided different MATLAB programs for the user to
understand and write programs according to the required applications.

Review Questions

1. Consider humps function in MATLAB. It is given by y = 1
(x−3)2 +

0.01 + 1
(x−0.9)2 + 0.04 − 6; Find a neural network to fit the data

generated by humps-function between [0,2] using MATLAB. Fit a
multilayer perceptron network on the data. Try different network
sizes and different teaching algorithms.

2. Consider a surface described by z = cos (x) sin (y) defined on a
square -2 ≤ x ≤ 2,-2 ≤ y ≤ 2. Plot the surface z as a function
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of x and y. Design a neural network, which will fit the data using
MATLAB.

3. Consider Bessel functions J α (t), which are solutions of the dif-
ferential equation t2y − ty + (t2 −α2)y = 0. Implement backprop-
agation network in MATLAB to approximate first order Bessel
function J1 , = α1, when t ǫ [0,20].

4. Analyze a biomedical data set (e.g., Iris data set, breast cancer
data set, etc.) using Kohonen SOM network. Read the data from
the ASCII file and normalize the data. Once the data is normalized
then train the feature map and analyze the data using MATLAB.

5. Write a MATLAB program to solve the Traveling Salesman Prob-
lem using Hopfield network.

6. Using the feedforward neural network simulate and analyze the
behavior of PID tuning in control systems in MATLAB.
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Chapter 6

MATLAB-Based Fuzzy Systems

6.1 Introduction

Fuzzy Logic was initiated in 1965 by Lotfi A. Zadeh, professor for
computer science at the University of California in Berkeley. Basically,
Fuzzy Logic (FL) is a multivalued logic that defines intermediate val-
ues between traditional evaluations like true/false, yes/no, high/low,
etc. These intermediate values can be formulated mathematically and
processed by computers, in order to apply a more human like way of
thinking. Based on Aristotle and other later mathematicians, the so
called “Laws of Thought” was posited. One of these, the “Law of the
Excluded Middle,” states that every proposition must either be True
or False. Even when Parminedes proposed the first version of this law
(around 400 B.C.) there were strong and immediate objections: for ex-
ample, Heraclitus proposed that things could be simultaneously True
and not True. It was Plato who laid the foundation for what would be-
come fuzzy logic, indicating that there was a third region (beyond True
and False) where these opposites “tumbled about.” Other, more modern
philosophers echoed his sentiments, notably Hegel, Marx, and Engels.
An alternative approach to the bivalued logic of Aristotle was proposed
by Lukasiewicz. Fuzzy Logic has been developed as a profitable tool for
the controlling and steering of systems and complex industrial processes,
as well as for household and entertainment electronics.

In viewing the evolution of fuzzy logic, three principal phases may
be discerned. The first phase, from 1965 to 1973, was concerned in the
main with fuzzification, that is, with generalization of the concept of a
set, with two-valued characteristic function generalized to a membership
function taking values in the unit interval or, more generally, in a lattice.
The basic issues and applications that were addressed were, for the most
part, set-theoretic in nature, and logic and reasoning were not at the
center of the stage. The second phase, 1973 to 1999, began with two key
concepts: (a) the concept of a linguistic variable; and (b) the concept of
a fuzzy if-then rule. Today, almost all applications of fuzzy set theory

203

© 2010 by Taylor and Francis Group, LLC



204 Computational Intelligence Paradigms

and fuzzy logic involve the use of these concepts. Nowadays, fuzzy logic
is applied in various applications in two different senses:

A narrow sense — In a narrow sense fuzzy logic, abbreviated as FL,
is a logical system which is a generalization of multivalued logic

A wide sense — In a wide sense fuzzy logic is abbreviated as FL, is
a union of FLn, fuzzy set theory, possibility theory, calculus of fuzzy
if-then rules, fuzzy arithmetic, calculus of fuzzy quantifiers, and related
concepts and calculi

The distinctive feature of FL is that in FL everything is, or is allowed
to be, a matter of degree. Possibly the most salient growth during the
second phase of the evolution was the rapid growth of fuzzy control,
alongside the boom in fuzzy logic applications, especially in Japan.

There were many other major developments in fuzzy-logic-related ba-
sic and applied theories, among them the genesis of possibility theory
and possibilistic logic, knowledge representation, decision analysis, clus-
ter analysis, pattern recognition, fuzzy arithmetic, fuzzy mathematical
programming, fuzzy topology and, more generally, fuzzy mathematics.
Fuzzy control applications proliferated but their dominance in the liter-
ature became less pronounced.

An important development making the beginning of the third phase
was “From Computing with Numbers to Computing with Words” in
1999. Basically, development of computing with words and perceptions
brings together earlier strands of fuzzy logic and suggests that scientific
theories should be based on fuzzy logic rather than on Aristotelian, bi-
valent logic, as they are at present. The concept of Precisiated Natural
Language (PNL) is the key constituent in the area of computing words.
PNL gives room to a major enlargement of the purpose of natural lan-
guages in technological hypotheses. It may well turn out to be the case
that, in coming years, one of the most important application-areas of
fuzzy logic, and especially PNL, will be the Internet, centering on the
conception and design of search engines and question-answering systems.

From its inception, fuzzy logic has been and to some degree still an
object of skepticism and controversy. The disbelief about fuzzy logic is a
manifestation of the reality that, in English, the term ’fuzzy’ is usually
used in a uncomplimentary sense. Merely, fuzzy logic is hard to accept
as abandoning bivalence breaks with centuries-old tradition of basing
scientific theories on bivalent logic.

It may take some time for this to happen, but eventually abandonment
of bivalence will be viewed as a logical development in the evolution of
science and human thought. This chapter will discuss the basic fuzzy
sets, operations on fuzzy sets, relations between fuzzy sets, composition,
and fuzzy arithmetic. A few MATLAB programs are also illustrated on
topics such as membership functions, fuzzy operations, fuzzy arithmetic,
relations, and composition.
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6.2 Imprecision and Uncertainty

Fuzziness should not be confused with other forms of imprecision and
uncertainty. There are several types of imprecision and uncertainty and
fuzziness is just one aspect of it. Imprecision and uncertainty may be
in the aspects of measurement, probability, or descriptions. Imprecision
in measurement is associated with a lack of precise knowledge. Some-
times there are measurements that are inaccurate, inexact, or of low
confidence.

Imprecision as a form of probability is associated with an uncertainty
about the future occurrence of events or phenomena. It concerns the like-
lihood of non-deterministic events (stochastic uncertainty). An example
is the statement “It might rain tomorrow” which exhibits a degree of
randomness.

Imprecision in description is the type of imprecision addressed by fuzzy
logic. It is the ambiguity, vagueness, qualitativeness, or subjectivity in
natural language (linguistic, lexical, or semantic uncertainty). It is the
ambiguity found in the definition of a concept or the meaning of terms
such as “tall building” or “low scores”. It is also the ambiguity in human
thinking, that is, perceptions and interpretations. Examples of state-
ments that are fuzzy in nature are “Hemoglobin count is very low.” and
“Teddy is rather heavy compared to Ike.”

The nature of fuzziness and randomness are therefore quite different.
They are different aspects of imprecision and uncertainty. The former
conveys subjective human thinking, feelings, or language, and the latter
indicates an objective statistic in the natural sciences.

Fuzzy models and statistical models also possess philosophically dif-
ferent kinds of information: fuzzy memberships comprise similarities of
objects to imprecisely defined properties, while probabilities convey in-
formation about relative frequencies. Thus, fuzziness deals with deter-
ministic plausability and not non-deterministic probability.

6.3 Crisp and Fuzzy Logic

Fuzzy logic forms a bridge between the two areas of qualitative and
quantitative modeling. Although the input-output mapping of such a
model is integrated into a system as a quantitative map, internally it can
be considered as a set of qualitative linguistic rules. Since the pioneering
work of Zadeh in 1965 and Mamdani in 1975, the models formed by fuzzy
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logic have been applied to many varied types of information processing
including control systems.

The term Fuzzy Logic implies that in some manner the methodological
analysis is vague or ill-defined. The basic idea behind the development of
fuzzy logic rose from the requirement to design the type of vague or ill-
defined systems. These ill-defined systems cannot operate on traditional
binary valued logic therefore the fuzzy methodological analysis is used
based on mathematical theory.

The commonest binary valued logic and set theory is defined as “an
element belongs to a set of all possible elements and given any specific
subset, whether that element is or is not a member of it.” For instance, a
tiger belongs to the set of all animals. Human reasoning can be enhanced
in this way. Likewise many occurrences can be described with different
types of sets. Consider, the basic statement

IF a fruit is red AND mature THEN the fruit is ripe

applies to many people across the world with complete precision. The
above rule is formed using operators such as intersection operator AND,
which manipulates the sets.

Eventually, not all parameters can be described using binary valued
sets. For instance, classifications of a person into males and females are
easy, but it is problematic to classify them as being tall or not tall. The
set of tall people is far more difficult to define, since there is no exact
precise value to define tall. Such a kind of problem is frequently twisted
so that it can be delineated using the well-known existing technique. The
heights, e.g., 1.80 m, can be defined as tall, as shown in Figure 6.1 (a).
This kind of crisp reasoning would not produce smooth results, since
a person of height 1.79 m or a person of height 1.8 m would produce
different results.

Fuzzy logic was suggested by Zadeh as a method for mimicking the
ability of human reasoning using a small number of rules and still pro-
ducing a smooth output via a process of interpolation. It forms rules
that are based upon multi-valued logic and so introduced the concept
of set membership. Using fuzzy logic a component can be as decided as
belonging to a set, this kind of allotment is carried out by membership
functions. For example, a person of height 1.79 m would belong to both
tall and not tall sets with a particular degree of membership. Equally the
membership grade increases or decreases proportionate with the height
of a person, as shown in Figure 6.1 (b). The output of a fuzzy logi-
cal thinking system would produce like results for similar inputs. The
fuzzy logic theory is just a prolongation of traditional logic where partial
set membership could exist, rule conditions could be satisfied partially,
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FIGURE 6.1: The Difference between the Grade of Truth in (a) Bi-
nary Valued Logic 0,1 and (b) Fuzzy Logic [0,1]

and system outputs are calculated by interpolation. Hence, the output
is smooth over the equivalent binary-valued rule base. This property is
especially crucial to control system applications.

A fuzzy logic control system is one that has at least one system com-
ponent that uses fuzzy logic for its internal knowledge representation.
Although it is possible for fuzzy systems to communicate information us-
ing fuzzy sets, most applications have a single fuzzy system component
communicating with conventional system components via deterministic
values. In this case, and also in this chapter, fuzzy logic is used purely
for internal knowledge representation and, externally, can be considered
as any other system component.

6.4 Fuzzy Sets

Mathematical theory of sets have been extended to create fuzzy sets.
Set theory was first proposed by a German mathematician, Georg Can-
tor (1845 to 1918). His hypothesis of sets encountered more opposition
during his lifetime, but later most mathematicians considered that it is
possible to express almost all concepts of mathematics in the language
of set theory.

Conventional Sets - A set comprises some collection of objects, which
can be handled at large as a whole component. According to Cantor a
set is an item from a given universe. The terms set, collection, and class
are synonyms, just as the terms item, element, and member. Nearly
anything called a set in ordinary conversation is an acceptable set in the
mathematical sense, as explained in the following example.
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Illustration 1 (sets):

The following are well-defined lists or collections of objects, and therefore
entitled to be called sets:
(a) The set of non-negative integers less than 4. This is a finite set with
four members: 0, 1, 2, and 3.
(b) The set of live dinosaurs in the basement of a British museum. This
set has no members and is called an empty set.
(c) The set of measurements greater than 10V even though this set is
infinite, it is possible to determine whether a given measurement is a
member or not.

A set can be specified by its members, they characterize a set completely.
The list of members A=0,1,2,3 specifies a finite set. It is not possible to
list all elements of an infinite set; we must instead state some property
which characterizes the elements in the set, for instance the predicate
x >10. That set is defined by the elements of the universe of discourse,
which make the predicate true. So there are two ways to describe a set:
explicitly in a list or implicitly with a predicate. In the classical set
theory a set can be represented by enumerating all its elements using

A = fa1, a2 . . . , ang

The grade of membership for all its members thus describes a fuzzy set.
An item’s grade of membership is normally a real number between 0
and 1, often denoted by the Greek letter µ. The higher the number,
the higher the membership. Zadeh regards Cantor’s set as a special case
where elements have full membership, i.e., µ = 1. If the elements of the
above equation ai (i=1, ... ,n) of A are together a subset of the universal
base set X, the set A can be represented for all elements xǫ X by its
characteristic function

µA(x)

{

1 if xǫ A

0 otherwise
(6.1)

In classical set theory µA(x) has only values 0 (“false”) and 1 (“true”),
so two values of truth. Such sets are also called crisp sets.

Non-crisp sets are called fuzzy sets, for which a characteristic function
can also be defined. This function is a generalization of Equation (6.1)
and called a membership function. The membership of a fuzzy set is
described by this membership function µA(x) of A, which associates to
each element xoǫXa grade of membership µA(xo) . In contrast to classical
set theory a membership function µA(x) of a fuzzy set can have in the
normalized closed interval [0,1] an arbitrary grade of truth. Therefore,
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FIGURE 6.2: Membership Functions of a Crisp Set C and a Fuzzy
Set F

each membership function maps elements of a given universal base set
X, which is itself a crisp set, into real numbers in [0,1]. The notation for
the membership function µA(x) of a fuzzy set A

A : X −→ [0,1] (6.2)

is used. Each fuzzy set is completely and uniquely defined by one partic-
ular membership function. Consequently symbols of membership func-
tions are also used as labels of the associated fuzzy sets. That is, every
fuzzy set and its membership function are referred by the same capital
letter. Since crisp sets and the associated characteristic functions may
be viewed, respectively, as special cases of fuzzy sets and membership
functions, the same notation is used for crisp sets as well, as shown in
Figure 6.2

The base set X is introduced as a universal set. In practical applica-
tions, physical or similar quantities are considered that are defined in
some interval. When such quantities are described by sets, a base set
can be generalized seamless to a crisp base set X that exists in a defined
interval. This is a generalization of fuzzy sets. Base sets are not always
crisp sets. Another generalization is that the base set is itself a fuzzy set.

6.5 Universe

The constituents of a fuzzy set are acquired from a universe of dis-
course also referred to as universe. The universe comprises the complete
elements that can inherit consideration. The following example delin-
eates the application of universe.
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FIGURE 6.3: The sets very short, medium, and very tall are derived
from short and tall

Illustration 2: (Universe)

(a) The set of people could have all human beings in the world as its
universe. Alternatively it could be the numbers between 4 and 6 feet:
these would represent their height as shown in Figure 6.3.

In case we are dealing with a non-numerical quantity, for instance
taste, which cannot be measured against a numerical scale, we cannot
use a numerical universe. The elements are then said to be taken from a
psychological continum; an example of such a universe could be {bitter,
sweet, sour, salt, hot, ... }

6.6 Membership Functions

The membership function µA(x) describes the membership of the ele-
ments x of the base set X in the fuzzy set A, whereby for µA(x) a large
class of functions can be taken. Reasonable functions are often piecewise
linear functions, such as triangular or trapezoidal functions.

The grade of membership µA(xo) of a membership function µA(x)
describes for the special element x=xo, to which grade it belongs to
the fuzzy set A. This value is in the unit interval [0,1]. Of course, xo
can simultaneously belong to another fuzzy set B, such that µB(xo)
characterizes the grade of membership of xo to B. This case is shown in
Figure 6.4.
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FIGURE 6.4: Membership Grades of xo in the Sets A and B: µA(xo)
=0.75 and µB(xo) =0.25

The membership for a 50-year old in the set “young” depends on one’s
own view. The grade of membership is a precise, but subjective measure
that depends on the context. A fuzzy membership function is different
from a statistical probability distribution. This is illustrated following
egg-eating example.

Illustration 3: (Probability vs. Possibility)

Consider the statement “Hans ate X eggs for breakfast”, where X ǫ U =
{1,2,3, ... ,8}. We may associate a probability distribution p by observing
Hans eating breakfast for 100 days.

U=[ 1 2 3 4 5 6 7 8 ]
p=[ .1 .8 .1 0 0 0 0 0 ]

A fuzzy set expressing the grade of ease with which Hans can eat eggs
may be the following possibility distribution Π

U=[ 1 2 3 4 5 6 7 8 ]
p=[ 1 1 1 1 .8 .6 .4 .2 ]

Where the possibility for X = 3 is 1, the probability is only 0.1. The
example shows, that a possible event does not imply that it is probable.
However, if it is probable it must also be possible. You might view a
fuzzy membership function as the personal distribution, in contrast with
a statistical distribution based on observations.
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6.6.1 Types of Membership Functions

In principle any function of the form A:X−→[0,1] describes a mem-
bership function associated with a fuzzy set A that depends not only
on the concept to be represented, but also on the context in which
it is used. The graphs of the functions may have different shapes and
may have specific properties. Whether a particular shape is suitable can
be determined only in the application context. In certain cases, how-
ever, the meaning semantics captured by fuzzy sets is not too sensi-
tive to variations in the shape, and simple functions are convenient.
In many practical instances fuzzy sets can be represented explicitly
by families of parameterized functions, the most common being the
following:

1. Triangular Function

2. Γ -Function

3. S-Function

4. Trapezoidal Function

5. Gaussian Function

6. Exponential Function

The membership function definitions for the above mentioned common
membership functions are given in the following sections:

Triangular Function

The membership definition for a triangular function is given as:

A(x) =







0, if x ≤ a
x−a
b−a , if x ǫ[a, b]
c−x
c−b , if x ǫ[b, c]

0, if x ≥ a

(6.3)

where m is a modal value, and a and b denote the lower and upper
bounds, respectively, for nonzero values of A(x). Sometimes it is more
convenient to use the notation explicitly highlighting the membership
functions’ parameters; in this case,

A(x;a,m,b)= max{min[(x-a)/(m-a),(b-c)/(b-m)],0} (6.4)
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Γ Function

The membership definition for a -function is given as:

A(x) =

{

0, if x ≤ a

1 − e−k(x−a)2 if x<a
(6.5)

or

A(x) = 0

{
0, ifx ≤ a

k(x−a)2

1+k(x−a)2 , if x>a

where k>0.

S-Function

The membership definition for a S-function is given as:

A(x) =







0, ifx ≤ a

2(x−a
b−a )2, if x ǫ[a, m]

1-2(x−a
b−a )2, if x ǫ[m, b]

1, if x>b

(6.6)

The point m=a+b/2 is known as the crossover of the S-function.

Trapezoidal function

The membership definition for a trapezoidal function is given as:

A(x) =







0, ifx ≤ a
x−a
b−a , if x ǫ[a, b]

1, if x ǫ[b, c]

d−x
d−c , if x ǫ[c, d]

0, if x ≥ b

(6.7)

Using equivalent notation, we obtain

A(x;a,m,n,b)max{min[(x-a)/(m-a),1,(b-x)/(b-m)],0} (6.8)

Gaussian Function

The membership definition for a Gaussian function is given as:

A(x) = −e
(x−c)2

2σ2 , where 2σ2>0. (6.9)
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FIGURE 6.5: Membership Functions

Exponential Function

The membership definition for a exponential function is given as:

A(x) =
1

1 + (k − m)2
, k >1 (6.10)

or

A(x) =
(k − m)2

1 + (k − m)2
, k >0

Figure 6.5 shows a few membership functions.

6.6.2 Membership Functions in the MATLAB
Fuzzy Logic Toolbox

The only condition a membership function must really satisfy is that
it must vary between 0 and 1. The function itself can be an arbitrary
curve whose shape can be defined as a function that suits us from the
point of view of simplicity, convenience, speed, and efficiency. A classical
set might be expressed as

A = {xjx>6} (6.11)

A fuzzy set is an extension of a classical set. If X is the universe of
discourse and its elements are denoted by x, then a fuzzy set A in X is
defined as a set of ordered pairs.

X = {X, µX(X)jXǫX}
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µ A(x) is called the membership function (or MF) of x in A. The
membership function maps each element of X to a membership value
between 0 and 1.

The Fuzzy Logic Toolbox includes 11 built-in membership function
types as shown in Figure 6.6. These 11 functions are, in turn, built from
several basic functions: piecewise linear functions, the Gaussian distri-
bution function, the sigmoid curve, and quadratic and cubic polynomial
curves. By convention, all membership functions have the letters mf at
the end of their names. The simplest membership functions are formed
using straight lines. Of these, the simplest is the triangular membership
function, and it has the function name trimf, which is a collection of three
points forming a triangle. The trapezoidal membership function, trapmf,
has a flat top and is just a truncated triangle curve. These straight-line
membership functions have the advantage of simplicity.

Two membership functions are built on the Gaussian distribution
curve: a simple Gaussian curve and a two-sided composite of two dif-
ferent Gaussian curves. The two functions are gaussmf and gauss2mf.
The generalized bell membership function is specified by three parame-
ters and has the function name gbellmf. The bell membership function
has one more parameter than the Gaussian membership function, so it
can approach a non-fuzzy set if the free parameter is tuned. Because of
their smoothness and concise notation, Gaussian and bell membership
functions are popular methods for specifying fuzzy sets. Both Gaussian
and bell membership curves hold the advantage of representing a smooth
and nonzero output at all points. Though these curves attain smooth-
ness, they are incapable of specifying asymmetric membership functions,
which play a crucial role in certain essential applications.

The sigmoidal membership function is either open left or right. Asym-
metric and closed (i.e., not open to the left or right) membership func-
tions can be synthesized using two sigmoidal functions. In addition to
the basic sigmf, the difference between two sigmoidal functions, dsigmf,
and the product of two sigmoidal functions psigmf are also available.

Various membership functions are polynomial based curves in the
fuzzy logic toolbox. Three related membership functions are the Z, S,
and Pi curves, all named because of their shape. The function zmf is the
asymmetrical polynomial curve open to the left, smf is the mirror-image
function that opens to the right, and pimf is zero on both extremes with
a rise in the middle. In that respect, there is an absolute wide selection
to pick out the preferred membership function. A user can also create
his own membership functions using the fuzzy logic toolbox.
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(a) trimf                                                                 (b) trapmf 

(c) gaussmf                                 (d) gauss2mf                                  (e) gbellmf 

(f) sigmf                                     (g) dsigmf                                     (h) psigmf 

(i) zmf                                                  (j) pimf                                                      (k) smf 

FIGURE 6.6: Membership Functions in MATLAB Fuzzy Logic Tool-
box. (a) Triangular Membership Function (b) Trapezoidal Membership
Function (c) Simple Gaussian Membership Function (d) Two Sided Com-
posite Gaussian Membership Function (e) Generalised Bell Membership
Function (f) Sigmoidal Membership Function (g) Difference Sigmoidal
Membership Function (h) Product Sigmoidal Membership Function (i)
Z curve Membership Function (j) Pi Curve Membership Function (k) S
Curve Membership Function
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6.6.3 MATLAB Code to Simulate Membership
Functions

Triangular Membership Function

y = trimf(x,params)

y = trimf(x,[a b c])

The triangular curve is a function of a vector, x, and depends on three
scalar parameters a, b, and c, as given in Eq. (6.3) and more compactly,
by

f(x; a, b, c) = max
(
min

(
x−a
b−a , c−x

c−b ,
)
, 0
)

The parameters a and b locate the “feet” of the triangle and the
parameter c locates the peak.

Code

% Triangular membership function

x=0:0.1:10;

y=trimf(x,[3 6 8]);

plot(x,y);

xlabel(’trimf, P=[3 6 8]’);

title(’Triangular Membership Function’);

Output

The Triangular Membership Function plotted from the above code is
shown in Figure 6.7.

Trapezoidal Membership Function

Syntax

y = trapmf(x,[a b c d])

FIGURE 6.7: Triangular Membership Function
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FIGURE 6.8: Trapezoidal Membership Function

The trapezoidal curve is a function of a vector, x, and depends on
four scalar parameters a, b, c, and d, as given by Eq. (6.7) or, more
compactly, by

f(x; a, b, c, d) = max
(
min

(
x−a
b−a ,1, d−x

d−c ,
)
, 0
)

The parameters a and d locate the “feet” of the trapezoid and the
parameters b and c locate the “shoulders.”

Code

% Trapezoidal membership function

x=0:0.1:10;

y=trapmf(x,[1 3 5 9]);

plot(x,y)

xlabel(’trapmf, P=[1 3 5 9]’)

title(’Trapezoidal Membership Function’);

Output

The Trapezoidal Membership Function plotted from the above code
is shown in Figure 6.8

Gaussian Membership Function Syntax

y = gaussmf(x,[sig c])

The symmetric Gaussian function depends on two parameters ? and c
as given by Eq. (6.9). The parameters for gaussmf represent the param-
eters ? and c listed in order in the vector [sig c].

Code
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FIGURE 6.9: Gaussian Membership Function

% Gaussian membership function

x=0:0.1:10;

y=gaussmf(x,[1 6]);

plot(x,y)

xlabel(’gaussmf, P=[1 6]’)

title(’Gaussian Membership Function’);

Output

The Gaussian Membership Function plotted from the above code is
shown in Figure 6.9.

Generalized Bell Shaped Membership Function

Syntax

y = gbellmf(x,params)

The Generalized bell function depends on three parameters a, b, and
c as given by

f(x; a, b, c) =
(

1

1+| x−c
a

|2b

)

where the parameter b is usually positive. The parameter c locates the
center of the curve. The parameter vector params, the second argument
for gbellmf, is the vector whose entries are a, b, and c, respectively.

Code

% Generalized Bell Shaped membership function

x=0:0.1:10;

y=gbellmf(x,[1 3 7]);

plot(x,y)

xlabel(’gbellmf, P=[1 3 7]’)
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FIGURE 6.10: Generalized Bell Shaped Membership Function

title(’Generalized Bell Shaped Membership Function’);

Output

The Generalized Bell Shaped Membership Function plotted from the
above code is shown in Figure 6.10.

Sigmoidal Shaped Membership Function

Syntax

colorboxlightgray y = sigmf(x,[a c])

The sigmoidal function, sigmf(x,[a c]), as given below by, f(x,a,c) is a
mapping on a vector x, and depends on two parameters a and c.

f(x; a, c) =
1

1 + e−a(x−c)

Depending on the sign of the parameter a, the sigmoidal membership
function is inherently open to the right or to the left, and thus is ap-
propriate for representing concepts such as “very large” or “very low.”
Various traditional membership functions can be built by taking either
the product (psigmf) or difference (dsigmf) of two different sigmoidal
membership functions.

Code

% Sigmoidal Shaped membership function

x=0:0.1:10;

y=sigmf(x,[3 6]);

plot(x,y)

xlabel(’sigmf, P=[3 6]’)

title(’Sigmoidal Shaped Membership Function’);
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FIGURE 6.11: Sigmoidal Shaped Membership Function

Output
The Sigmoidal Shaped Membership Function plotted from the above

code is shown in Figure 6.11.

Z Curve Membership Function

Syntax

y = zmf(x,[a b])

The spline-based function of x is so named because of its Z-shape.
The parameters a and b locate the extremes of the sloped portion of the
curve as given by Eq. (6.6)

Code

% Z Curve membership function

x=0:0.1:10;

y=zmf(x,[3 6]);

plot(x,y)

xlabel(’zmf, P=[3 6]’)

title(’Z Curve Membership Function’);

Output

The Z Curve Membership Function plotted from the above code is
shown in Figure 6.12.

© 2010 by Taylor and Francis Group, LLC



222 Computational Intelligence Paradigms

FIGURE 6.12: Z Curve Membership Function

Pi Curve Membership Function

Syntax

y = pimf(x,[a b c d])

The spline-based curve given by Eq. (6.6) is so named because of its Π
shape. This membership function is evaluated at the points determined
by the vector x. The parameters a and d locate the “feet” of the curve,
while b and c locate its “shoulders.”

Code

% Pi Curve membership function

x=0:0.1:10;

y=pimf(x,[1 5 6 10]);

plot(x,y)

xlabel(’pimf, P=[1 5 6 10]’)

title(’Pi Curve Membership Function’);

Output

The Pi Curve Membership Function plotted from the above code is
shown in Figure 6.13.

S Curve Membership Function

Syntax

y = smf(x,[a b])

The spline-based curve given by Eq. (6.6) is a mapping on the vector
x, and is named because of its S-shape. The parameters a and b locate
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FIGURE 6.13: Pi Curve Membership Function

the extremes of the sloped portion of the curve.

Code
% S Curve membership function

x=0:0.1:10;

y=smf(x,[1 8]);

plot(x,y)

xlabel(’smf, P=[1 8]’)

title(’S Curve Membership Function’);

Output
The S Curve Membership Function plotted from the above code is

shown in Figure 6.14.

6.6.4 Translation of Parameters between Membership
Functions Using MATLAB

To translate parameters between membership functions a function
“mf2mf” is available in Matlab Fuzzy Logic Toolbox. The general syntax
of this function is

FIGURE 6.14: S Curve Membership Function
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FIGURE 6.15: Illustration of ’mf2mf’ Function

outParams = mf2mf (inParams, inType, outType)

where inParams - the parameters of the membership function to be trans-
formed inType - a string name for the type of membership function to
be transformed outType - a string name for the new membership func-
tion The following code translates the polynomial Z curve membership
function into triangular membership function.

x=0:0.1:5;

mfp1 = [1 2 3];

mfp2 = mf2mf(mfp1,’zmf’,’trimf’);

plot(x,zmf(x,mfp1),x,trimf(x,mfp2))

The resultant plot is shown in Figure 6.15.

6.7 Singletons

Strictly speaking, a fuzzy set D is a collection of ordered pairs

A={(x,µ(x))} (6.11)

Item x belongs to the universe and µ (x) is its grade of membership
in A. A single pair (x,µ (x)) is called a fuzzy singleton; therefore the
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entire set can be considered as the union of its constituent singletons. It
is often convenient to think of a set A just as a vector

a = (µ(x1), µ(x2), µ(x3), ., µ(xn)) (6.12)

It is understood then, that each position i (1,2,3,..,n) corresponds to
a point in the universe of n points.

6.8 Linguistic Variables

Just like an algebraic variable takes numbers as values, a linguistic
variable takes words or sentences as values. The set of values that it can
take is called its term set. Each value in the term set is a fuzzy variable
defined over a base variable. The base variable defines the universe of
discourse for all the fuzzy variables in the term set. In short, the hierar-
chy is as follows: linguistic variable −→ fuzzy variable −→ base variable.

Illustration 4 (term set)

Let x be a linguistic variable with the label “Age”. Terms of this
linguistic variable, which are fuzzy sets, could be “old”, “young”, “very
young” from the term set.

T = Old, Very Old, Not So Old, More or Less Young, Quite Young,
Very Young

Each term is a fuzzy variable defined on the base variable, which
might be the scale from 0 to 100 years.

6.9 Operations on Fuzzy Sets

Fuzzy set operations are a generalization of crisp set operations. There
is more than one possible generalization. The most widely used opera-
tions are called standard fuzzy set operations. Let U be a domain and
A,B be the fuzzy sets on U. There are three basic operations on fuzzy
sets:
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Standard Fuzzy Complement: defined as a fuzzy set on U for which A’(x)
= 1 - A(x) for every x in U.
Standard Fuzzy Intersection: defined as a fuzzy set on U for which (A
B)(x) = min [A(x), B(x)] for every x in U.
Standard Fuzzy Union: defined as a fuzzy set on U for which (A Y B)(x)
= max [A(x), B(x)] for every x in U.

Functions that meet the criteria of fuzzy intersections are known as
t-norms and those that meet the criteria of fuzzy unions are known as
t-conorms. A largest fuzzy set is obtained while performing standard
fuzzy intersection, while a smallest fuzzy set is formed while performing
standard fuzzy union operation.

x is within X where A(x) = A ˆ (x) are called “equilibrium points”of A.
Functions that qualify as fuzzy intersections and fuzzy unions are usually
referred to in the literature as “t-norms”and “t-conorms”, respectively.
The standard fuzzy intersection is the weakest fuzzy intersection (the
largest fuzzy set is produced), while the standard fuzzy union is the
strongest fuzzy union (the smallest fuzzy set is produced).

Fuzzy intersections and fuzzy unions do not cover all operations that
aggregate fuzzy sets, but they are the only ones that are associative.
The remaining aggregating operations must be defined as functions of
n arguments for each n >2. Aggregation operations that, for any given
membership grades a1, a2, ... , an, produce a membership grade that lies
between min(a1,a2, ... ,an) and max(a1,a2, ... ,an) are called “averaging
operations”. For an given fuzzy sets, each of the averaging operations
produces a fuzzy set that is larger than any fuzzy intersection and smaller
than any fuzzy union.

If each x in X has to be a member of A, B and/or C, we have

B = A I C

which means that if a person is not young and they are not old, they
must be middle aged.

Similarly,
A Y (A I B) = A

proof:

max[A,min(A,B)] = max[A,A] = A if A(x) ≤ B(x)
max[A,min(A,B)] = max[A,B] = A if A(x) >B(x)
so it is true for all x.

For any fuzzy set A defined on a finite universal set X, we define its
“scalar cardinality”, |A|, by the formula

|A|= sum (x) [A(x)] for all x in X
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Some authors refer to |A|as the “sigma count”of A.
For any pair of fuzzy sets defined on a finite universal set X, the

“degree of subset hood”, S(A,B), of A in B is defined by

S(A,B) = (|A|- sum(x) max[0,A(x)-B(x)])/|A|
= |A I B|/|A|

Properties: A and B are fuzzy sets. The following properties hold for
a,b in the range [0,1].

(i) a+A is a subset of aA

(ii) a ≤ b implies that bA is a subset of aA and b+A is a subset of
a+A

(iii) a(A I B) = aA I aB and a(AYB) = aA YaB

(iv) a+(A I B) = a+A I a+B and a+(A Y B) = a+A Y a+B

(v) a(Aˆ ) = (1-a)+Aˆ

This means that the alpha-cut of the compliment of A is the

(1-a) strong alpha-cut of A complimented.

a(Aˆ ) is not equal to aAˆ

a+(Aˆ ) is not equal to a+Aˆ

6.9.1 Fuzzy Complements

A(x) defines the degree to which x belongs to A. Let cA denote a fuzzy
complement of A of type c. cA(x) is the degree that x belongs to cA.
(A(x) is therefore the degree to which x does not belong to cA.)

c(A(x)) = cA(x)

Axioms for fuzzy complements

Axiom c1. c(0)=1 and c(1)=0 (boundary conditions)
Axiom c2. for all a,b in [0,1], if a<=b then c(a)>=c(b) (monotonicity)
Axiom c3. c is a continuous function (continuity)
Axiom c4. c is “involutive”, which means that c(c(a))=a for all a in [0,1]
(Involution)

These axioms are not independent since it can be shown that if a
complement function c obeys Axioms c2 and c4, then it also must obey
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c1 and c3. In addition, it must be a one-to-one function, which means
that the function is also “bijective”. It therefore follows that all involu-
tive complements for a special subclass of all continuous complements,
which in turn forms a special subclass of all fuzzy complements. The
Standard Fuzzy Complement is one type of involutive fuzzy complement.

Classes of Fuzzy complements:

1. “Sugeno class”defined by

c-lambda(a) = (1-a)/(1+lambda*a)
where lambda is in the range (-1,inf). When lambda=0, this becomes
the Standard Fuzzy Complement.

2. “Yager class ”defined by

c-w(a) = (1-a**w)**(1/w)
where w is in the range (0,inf). When w=1, we again have the Standard
Fuzzy Complement.

Theorems of Fuzzy Complements:

Theorem 6.2: Every fuzzy complement has at most one equilibrium.
This means that c(a)-a=0 for at most one a in [0,1]. (The fuzzy comple-
ments are assumed to obey all 4 axioms throughout.)

Theorem 6.3: Assume that a given fuzzy complement c has an equi-
librium e, which by Theorem 6.2 is unique. Then

a≤ c(a) if a ≤e

a ≥ c(a) if a ≥ e

Theorem 6.4: If c is a continuous fuzzy complement, then c has a unique
equilibrium. A dual point, da, with respect to a is defined by

c(da) - da = a - c(a)

Theorem 6.5: If a complement c has an equilibrium e, then the equilib-
rium is its own dual point

de = e

Theorem 6.6: For each a in [0,1], da = c(a) if c(c(a)) = a, that is, when
the complement is involutive.
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This means that if the complement is not involutive, whether the dual
point does not exist, or it does not coincide with the complement point.

Theorem 6.7 (First Characterization Theorem of Fuzzy Complements):
Let c be a function from [0,1] to [0,1]. Then, c is an involutive fuzzy
complement if there exists a continuous function g from [0,1] on R such
that g(0)=0, g is strictly increasing, and c(a) = g˜(g(1)-g(a)), g˜is the
inverse of g for all a in [0,1].

Functions g are usually called increasing generators. Each function
that qualifies as an increasing generator determines an involutive fuzzy
complement by the equation above.

For a Standard Fuzzy Complement, g(a)=a.
For the Sugeno class of complements,

g-lambda(a) = ln(1+lambda*a) /lambda (lambda >-1)

For the Yager class of complements, g-w(a) = a**w (w >0)

Combining to give

g-lambda,w(a) = ln(1+lambda*(a**w))/lambda (lambda >-1, w >0)

which yields

c-lambda,w(a) = ((1-a**w)/(1+lambda*(a**w)))**(1/w)

which contains the Sugeno class and the Yager class as special subclasses.
As one more example

g-gamma(a) = a/(gamma+(1-gamma)*a) (gamma > 0)

produces the class of involutive fuzzy complements

c-gamma(a) = ((gamma**2)*(1-a))/(a+(gamma**2)*(1-a))(gamma > 0)

Involutive fuzzy complements can also be produced by “decreasing gen-
erators”.

Theorem 6.8 (Second Characterization Theorem of Fuzzy Comple-
ments): Let c be a function form [0,1] to [0,1]. Then c is an involutive
fuzzy complement if there exists a continuous function f from [0,1] to R
such that f(1)=0, f is strictly decreasing, and c(a) = f˜(f(0)-f(a)), f˜is
the inverse of f for all a in [0,1].
For a Standard Fuzzy Complement, f(a) = -k*a + k for all k >0.
For the Yager class of complements, f-w(a) = 1-a**w (w >0).
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6.9.2 Fuzzy Intersections: t-norms

The intersection of two fuzzy sets, A and B, is specified by a binary
operation on the unit interval; that is, a function of the form

i: [0,1] × [0,1] −→ [0,1]

every element x in the universal set is assigned the membership grade
of x in the fuzzy sets A and B, and yields the membership grade of the
element in the set constituting the intersection of A and B.

(A I B)(x) = i[A(x),B(x)]

The operator, i, in the above equation obeys a few specific properties
in order to ensure that fuzzy sets produced by i are intuitively acceptable
as meaningful fuzzy intersections of a given pair of fuzzy sets. The class
of t-norms is now generally accepted as equivalent to the class of fuzzy
intersections. Therefore, “t-norms”and “fuzzy intersections”may be used
interchangably.

Note that the function i is independent of x; it depends only upon the
values if A(x) and B(x) (or a and b that are in [0,1], respectively).

A “fuzzy intersection/t-norm”i is a binary operation on the unit in-
terval that satisfies at least the following axioms for all a, b, and d in
the range [0,1].

Axioms for fuzzy intersections:

Axiom i1: i(a,1) = a (boundry condition)
Axiom i2: b <= d implies i(a,b) <= i(a,d) (monotonicity)
Axiom i3: i(a,b) = i(b,a) (commutativity)
Axiom i4: i(a,i(b,d)) = i(i(a,b),d) (associativity)

The above four axioms are called the “axiomatic skeleton for fuzzy
intersections/t-norms”.

It is often desirable to restrict the class of fuzzy intersections (t-norms)
by considering additional requirements. Three of the most important are:

Axiom i5: i is a continuous function (continuity)
Axiom i6: i(a,a) <a (subidempotency)
Axiom i7: a1 <a2 and b1 <b2 implies i(a1,b1) ¡ i(a2,b2) (strict mono-
tomicity)

Since the requirement in Axiom i6 is weaker than “idempotency”, the
requirement that i(a,a)=a, it is called “subidempotency”.
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A continuous t-norm that satisfies subidempotency is called an
“Archimedean t-norm”; if it also satisfies strict monotomicity, it is called
a “strict Archimedean t-norm”.

Theorem 6.9: The Standard Fuzzy Intersection is the only idempotent
t-norm.

The following are examples of some t-norms that are frequently used
as fuzzy intersections (each defined for all a,b in [0,1]).

Standard intersection: i(a,b) = min(a,b)

Algebraic product: i(a,b) = ab

Bounded difference: i(a,b) = max(0,a+b-1)

Drastic intersection: i(a,b) = a when b=1

b when a=1

0 otherwise

The drastic intersection is also denotes Imin(a,b). The full range of all
fuzzy intersections, i(a,b) is specified in the nest theorem.

Theorem 6.10: for all a,b in [0,1],

Imin(a,b) ≤ i(a,b) ≤ min(a,b)

As described above, a “decreasing generator”is a continuous and
strictly decreasing function f from [0,1] to R such that f(1)=0. The
pseudo-inverse of a decreasing generator f, denoted f(-1), is a function
from R to [0,1] given by

f(−1)(a) =







1, for a in (−inf, 0)
f ∼ (a), for a in[0, f (0)](f ∼ is the inverse)
0, for a in[f(0), inf ]

Some examples are

f1(a)=1-a**p(p>0) for any a in [0,1]

f1(−1)(a) =







1, for a in(−inf, 0)
(1 − a) ∗ ∗(1/p), for a in[0, 1]
0, for a in(1, inf)

and
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f2(a) = - ln(a) for any a in [0,1] with f2(0) = inf.

f2(−1)(a) =

{

1, for a in(−inf, 0)

exp(−a) for a in(0, inf)

A decreasing generator and its pseudo-inverse satisfy f(-1)(f(a))=a for
any a in [0,1] and

f(f(−1)(a)) =







0, for a in(−inf, 0)

a, for a in(0, f(0))

f(0) for a in(f(0), inf)

An “increasing generator”is a continuous and strictly increasing func-
tion g from [0,1] to R such that g(0)=0. The pseudo-inverse of an in-
creasing generator g, denoted g(-1), is a function from R to [0,1] defined
by

g(−1)(a) =







0, for a in (−inf, 0)
g ∼ (a), for a in[0, g (1)](g ∼ is the inverse of g)
1, for a in[g(1), inf ]

Some examples are

g1(a)=**p(p>0)for any a in [0,1]

g1(−1)(a) =







0, for a in(−inf, 0)
a ∗ ∗(1/p), for a in[0, 1]
1, for a in(1, inf)

and

g2(a) = -ln(1-a) for any a in [0,1] with g2(1)=inf

g2(−1)(a) =

{
0, for a in(−inf, 0)
1 − exp(−a) for a in(0, inf)

An increasing generator and its pseudo-inverse satisfy g(-1)(g(a))=a for
any a in [0,1] and

g(g(−1)(a)) =







0, for a in(−inf, 0)
a, for a in(0, g(1))
g(1) for a in(g(1), inf)

Lemma 6.1: Let f be a decreasing generator. Then a function g defined
by

g(a) = f(0) - f(a)
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for any a in [0,1] is an increasing generator with g(1)=f(0), and its
pseudo-inverse g(-1) is given by

g(-1)(a) = f(-1)(f(0)-a)

for any a in R.

Lemma 6.2: Let g be an increasing generator. Then a function f defined
by

f(a) = g(1) - g(a)

for any a in [0,1] is a decreasing generator with f(0)=g(1), and its pseudo
-inverse f(-1) is given by

f(-1)(a) = g(-1)(g(1)-a)

for any a in R.

Theorem 6.11 (Characterization Theorem of t-Norms): Let i be a binary
operation on the unit interval. Then, i is an Archimedean t-norm if there
exists a decreasing generator f such that

i(a,b) = f(-1)(f(a)+f(b)) for all a,b in [0,1].

The following theorem shows you how to generate new t-norms from
existing t-norms.

Theorem 6.13: Let i be a t−→ norm and let g : [0,1] [0,1] be a function
such that g is strictly increasing and continuous in (0,1) and g(0)=0,
g(1)=1. Then the function i-g defined by

i-g(a,b) = g(-1)(i(g(a),g(b))) for all a,b in [0,1], where g(-1) is the
pseudo-inverse of g, is also a t-norm.

There are other methods for obtaining t-norms from given t-norms,
which are based on various ways of combining several t-norms into one
t-norm.

6.9.3 Fuzzy Unions: t-conorms

The general fuzzy union of two fuzzy sets A and B is specified by a
function

Y : [0, 1]× [0, 1] −→ [0, 1]
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or
(AYB)(x) = Y[A(x), B(x)]

The union function satisfies exactly the same properties of functions
that are known in the literature as t-conorms.

A fuzzy union/t-conorm u is a binary operation on the unit interval
that satisfies at least the following axioms for all a,b,d in [0,1]:

Axioms for fuzzy union:

Axiom u1: Y (a,0) = a (boundary condition)
Axiom u2: b ≤ d implies Y (a,b) ≤ Y (a,d) (monotonicity)
Axiom u3: Y (a,b) = Y (b,a) (commutativity)
Axiom u4: Y (a, Y (b,d)) = Y (Y (a,b),d) (associativity)

These are called the “axiomatic skeleton for fuzzy unions/t-conorms”.
The most important additional requirements for fuzzy unions are ex-

pressed by the following axioms:

Axiom u5: Y is a continuous function (continuity)
Axiom u6: Y (a,a) >a (superidempotency)
Axiom u7: a1 <a2 amd b1 <b2 implies Y (a1,b1) <Y (a2,b2) (strict
monotonicity)

Any continuous and superidempotent t-conorm is called “Archimedean”;
if it is also strictly monotomic, it is called “strictly Archimedean”.

Theorem 6.14: The standard fuzzy union is the only idempotent t-
conorm. (i.e., it is the only one where u(a,a) = a).

Here are some examples to t-conorms that are frequently used as fuzzy
unions (each defined for all a and b in [0,1]):

Standard union: Y (a,b) = max(a,b)
Algebraic sum: Y (a,b) = a + b − ab
Bounded sum: Y (a,b) = min(1,a+b)
Drastic union: Y (a,b) = a when b=0, b when a=0, 1 otherwise

The full range of fuzzy unions is defined by the following theorem.

Theorem 6.15: For all a,b in [0,1]

max(a,b) ≤ (a,b) ≤ Umax(a,b)

where Umax denotes the drastic union.
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Theorem 6.16 (Characterization Theorem of t-Conorms):

Let u be a binary operation on the unit interval. Then, u is an
Archemedean t-cornom if there exists an increasing generator such that

Y (a,b) = g(-1)(g(a) + g(b) for all a,b in [0,1].

Theorem 6.17: Let u-w denote the class of Yager t-conorms. Then

max(a,b) ≤ u-w(a,b) ≤ Umax(a,b) for all a,b in [0,1] and all w >0.

New t-conorms can generated from existing t-conorms.

Theorem 6.18: Let u be a t-conorm and let g: [0,1] ->[0,1] be a function
such that g is strictly increasing and continuous on (0,1) and g(0)=0,
g(1)=1. Then, the function u-g defined by

As with t-norms, t-conorms can also be constructed by combining exist-
ing t-conorms.

6.9.4 Combinations of Operations

In classical set theory, the operations of intersection and union are
dual with respect to the complement in that they satisfy the De Morgan
laws:

• The complement of the intersection of A and B equals the union
of the complement of A and the complement of B.

• The complement of the union of A and B equals the intersection
of the complement of A and the complement of B.

Evidently, duality is gratified only by certain specific combinations
of t-norms, t-conorms, and fuzzy complements. The t-norm i and the
t-conorm u are “dual with respect to a fuzzy complement c” if

c(i(a, b)) = u(c(a), c(b))

and
c(u(a, b)) = i(c(a), c(b))

These equations define the De Morgan laws for fuzzy sets. Let the
triple (i,u,c) denote that i and u are dual with respect to c, and let any
such triple be called a “dual triple”.
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The following t-norms and t-conorms are dual with respect to the
Standard Fuzzy Complement cs (i.e., dual triples):

(min(a,b),max(a,b),cs)
(ab,a+b-ab,cs)
(max(0,a+b-1),min(1,a+b),cs
(Imin(a,b),Umax(a,b),cs)

Theorem 6.19: The triples (min,max,c) and (Imin,Umax,c) are dual with
respect to any fuzzy complement c.

Theorem 6.20: Given a t-norm i and an involutive fuzzy complement
c, the binary operation u on [0,1] defined by

u(a,b) = c(i(c(a),c(b)))

for all a,b in [0,1] is a t-conorm such that (i,u,c) is a dual triple.

Theorem 6.21: Given a t-conorm u and an involutive fuzzy complement
c, the binary operation i on [0,1] defined by

i(a,b) = c(u(c(a),c(b)))

for all a,b in [0,1] is a t-norm such that (i,u,c) is a dual triple.

Theorem 6.22: If an involutive fuzzy complement c and an increasing
generator g of c are known, then the t-norm and t-conorm generated by
g are dual with respect to c.

Theorem 6.23: Let (i,u,c) be a dual triple generated by Theorem 6.22.
Then, the fuzzy operations i, u, c satisfy the law of excluded middle
[u(a,c(a))=1] and the law of contradiction [i(a,c(a))=0]

Theorem 6.24: Let (i,u,c) be a dual triple that satisfies the law of ex-
cluded middle and the law of contradiction. Then (i,u,c) does not satisfy
the distributive laws. This means that

i(a,u(b,d)) is not equal to u(i(a,b),i(a,d)) for all a,b,d in [0,1]

6.9.5 MATLAB Codes for Implementation
of Fuzzy Operations

Complement

Two options are listed here to compute the standard complement us-
ing MATLAB. The first option is to compute the complement of the
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membership matrix A by subtracting A from the ones array (with all
elements equal 1) with the following syntax:

Acomp=ones(length(A(:,1)),length(A(1,:)))-A

A =

0 0.3000 0.4000

0.2000 0.5000 0.3000

0.8000 0 0

0.7000 1.0000 0.9000

>>Acomp=ones(length(A(:,1)),length(A(1,:)))-A

Acomp =

1.0000 0.7000 0.6000

0.8000 0.5000 0.7000

0.2000 1.0000 1.0000

0.3000 0 0.1000

Using the abilities of MATLAB this may be made

shorter using the syntax:

Acomp=1-A

A =

0 0.3000 0.4000

0.2000 0.5000 0.3000

0.8000 0 0

0.7000 1.0000 0.9000

>>Acomp=1-A

Acomp =

1.0000 0.7000 0.6000

0.8000 0.5000 0.7000

0.2000 1.0000 1.0000

0.3000 0 0.1000

Union

The standard fuzzy union of two membership matrices A and B is cal-
culated as described in Section 6.9.3. The function max(A,B) of MAT-
LAB returns an array of the same size as A and B by taking the maxima
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between two elements with the same indices. The fuzzy union of the ma-
trices A and B, is calculated using the following syntax:

un = max(A,B) , where un returns a matrix with the maximum of A
and B matrices

A =
0 0.3000 0.4000

0.2000 0.5000 0.3000

0.8000 0 0

0.7000 1.0000 0.9000

B =
1.0000 0.2000 0.2000

0.1000 0.4000 0.9000

0.1000 1.0000 0

0.7000 0.4000 0.3000

>>un=max(A,B)

un =

1.0000 0.3000 0.4000

0.2000 0.5000 0.9000

0.8000 1.0000 0

0.7000 1.0000 0.9000

Intersection

The standard fuzzy intersection of the matrices A and B is calculated
as described in Section 6.9.2. In MATLAB it is computed by using the
function min(A,B) taking the minima between the elements with the
same indices.

The fuzzy intersection of the matrices A and B, is calculated using
the following syntax:

in = min(A,B) , where in returns a matrix with

the minimum of A and B matrices

A =

0 0.3000 0.4000

0.2000 0.5000 0.3000

0.8000 0 0

0.7000 1.0000 0.9000
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B =

1.0000 0.2000 0.2000

0.1000 0.4000 0.9000

0.1000 1.0000 0

0.7000 0.4000 0.3000

>>in=min(A,B)
in =

0 0.2000 0.2000

0.1000 0.4000 0.3000

0.1000 0 0

0.7000 0.4000 0.3000

6.9.6 Aggregation Operations

Aggregation operations on fuzzy sets are operations by which several
fuzzy sets are aggregated in some standard manner to produce a single
fuzzy set. Formally, an “aggregation operation” on n fuzzy sets (n>=2)
is defined by a function

h: [0,1]**n −→ [0,1]

or
A(x) = h(A1(x),A2(x), ... ,An(x))

The following axioms should be satisfied in order to aggregate fuzzy
sets. These axioms express the essence of the notion of aggregation:

Axioms for aggregation operations:

Axiom h1: h(0,0, ... ,0)=0 and h(1,1, ... ,1)=1 (boundary conditions)

Axiom h2: For any pair (a1,a2, ... ,an) and (b1,b2, ... ,bn) of n-
tuples such that ai, bi are in [0,1] for all i, if ai ≤ bi for all i, then
h(a1,a2, ... ,an) ≤ h(b1,b2, ... ,bn) (i.e. h is monotonic increasing in all
its arguments).

Axiom h3: h is a continuous function.

Aggregation operations on fuzzy sets are usually expected to satisfy
two additional axiomatic requirements.
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Axiom h4: h is a “symmetric” function in all its arguments; that is
h(a1,a2, ... an) = h(a-p(1),a-p(2), ... ,a-p(n))
for any permutation p of the indices.
Axiom h5: h is an “idempotent” function; that is,
h(a,a, ... ,a) = a
for all a in [0,1].

Any aggregation operation h that satisfies Axioms h2 and h5 also satisfies
the inequalities

min(a1,a2, ... ,an) ≤ h(a1,a2, ... ,an) ≤ max(a1,a2, ... ,an)

for all n-tuples (a1,a2, ... ,an) in [0,1]**n. It is also true that any aggrega-
tion operation that satisfies the above inequalities also satisfies Axiom
h5. This means that all aggregation operations between the standard
fuzzy intersection and the standard fuzzy union are idempotent, and
they are the only ones that are idempotent. These aggregation opera-
tions are usually called “averaging operations”.

One class of averaging operations that covers the entire interval be-
tween the min and max operations consist of “generalized means”. They
are defined by the formula

h-x(a1,a2, ... ,an) = ((a1**x+a2**x+ ... +an**x)/n)**(1/x)

where x is any real number except 0 and all ai’s can’t be zero. If x = -1,
h is the harmonic mean, as x −→ 0, h approaches the geometric mean,
and for x = 1, h is the arithmetic mean.

Another class of aggregation operations that covers the entire inter-
val between the min and max operators is called the class of “ordered
weighted averaging operations”; the acronym OWA is often used in the
literature to refer to these operations. Let

w = (w1,w2,...,wn)

be a “weighting vector” such that wi is in [0,1] for all i and

sum(i=1,n)wi = 1.

Then, an OWA operation associated with w is the function

hw(a1,a2, ...,an) = w1b1 + w2b2 + ... + wnbn,

where bi for any i is the i-th largest element in a1,a2, ... ,an (the b vector
is a permutation of the a vector such that the elements are ordered from
largest to smallest).
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Theorem 6.25: Let h : [0,1]**n −→ R+ (positive reals) be a function
that satisfies Axioms h1 and h2 and the property

h(a1+b1,a2+b2, ... ,an+bn) = h(a1,a2, ... ,an)+h(b1,b2, ... ,bn)

where ai,bi,ai+bi are in [0,1] for all i, then

h(a1,a2, ... ,an) = sum(i=1,n)wi*ai

where wi >0 for all i.

Theorem 6.26: Let h: [0,1]**n −→ [0,1] be a function that satisfies Ax-
ioms h1 and h3 and the properties

h(max(a1,b1), ... ,max(an,bn))=max(h(a1, ... ,an),h(b1, ... ,bn))

hi(hi(ai))=hi(ai)

where hi(ai)=h(0, ... ,0,ai,0, ... ,0) for all i. Then,

h(a1, ... ,an)=max(min(w1,a1), ... ,min(wn,an))

where wi is in [0,1] for all i. (This is a “weighted quasi-average”, in which
the min and max operations replace, respectively, the arithmetic produce
and sum.)

Theorem 6.27: Let h: [0,1]**n −→ [0,1] be a function that satisfies Ax-
ioms h1 and h3 and the properties

h(min(a1,b1),...,min(an,bn))=min(h(a1, ... ,an),h(b1, ... ,bn))

hi(ab) = hi(a)*hi(b) and hi(0)=0

for all i, where hi(ai) = h(1,...,1,ai,1,...,1). Then, there exist

numbers x1,x2, ... ,xn in [0,1] such that

h(a1,a2, ... ,an) = min(a1**x1,a2**x2, ... ,an**xn)

A special kind of aggregation operations are binary operations h on
[0,1] that satisfy the properties of “monotonicity”, “commutativity” and
“associativity” of t-norms and t-conorms, but replace the boundary con-
ditions with weaker boundary conditions

h(0,0)=0 and h(1,1)=1.

These aggregation operations are called “norm operations”.
When a norm operation also has the property h(a,1)=a, it becomes a

t-norm; when it also has the property h(a,0)=a, it becomes a t-conorm.
Otherwise, it is an “associative averaging operation”. Hence, norm op-
erations cover the whole range of aggregating operations, from Imin to
Umax.
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6.10 Fuzzy Arithmetic

Fuzzy Numbers

To qualify as a “fuzzy number”, a fuzzy set A on R must possess at
least the following three properties:

(i) A must be a normal fuzzy set;

(ii) a (alpha-cut of A; {x |A(x) ≥ a} ) must be a closed interval for
every a in (0,1];

(iii) the support of A, 0+A (strong 0-cut of A; {x |A(x) >0 }), must
be bounded.

Therefore, every fuzzy number is a convex fuzzy set. Although trian-
gular and trapezoidal shapes of membership functions are most often
used for representing fuzzy numbers, other shapes may be preferable
in some applications, and they need not be symmetrical. This can in-
clude symmetric or asymmetric “bell-shaped” membership functions, or
strictly increasing or decreasing functions (e.g., sigmoids) that capture
the concept of a “large number” or a “small number”.

The following theorem shows that membership functions of fuzzy num-
bers may be, in general, piecewise-defined functions.

Theorem 4.1: Let A be a member of the fuzzy sets. Then, A is a fuzzy
number if there exists a closed interval [a,b], which is not empty, such
that

A(x) =







1, for x in[a, b]
l(x), for x in[−inf, a]
r(x) for x in[b, inf ]

where l is a function from (-inf,a) to [0,1] that is monotomic increasing,
continuous from the right, and such that l(x)=0 for x in (-inf,w1); r is
a function from (b,inf) to [0,1] that is monotonic decreasing, continuous
from the left, and such that r(x)=0 for x in (w2,inf)

This implies that every fuzzy number can be represented in the form
of Theorem 4.1. This form means that fuzzy numbers can be defined in
a piecewise manner. The sigmoid increasing or decreasing functions can
be defined in this form by extending the function to -infinity and infinity
by just setting l(x) and/or r(x) to 0.

Using fuzzy numbers, we can define the concept of a fuzzy cardinality
for fuzzy sets that are defined on finite universal sets. Given a fuzzy set
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A defined on a finite universal set X, its fuzzy cardinality, |A∼|, is a
fuzzy number defined by the formula

|A∼|(|aA|) = a

for all a in Lambda(A).

6.10.1 Arithmetic Operations on Intervals

Fuzzy arithmetic is based on two properties of fuzzy numbers:

1. Each fuzzy set, and thus each fuzzy number, can fully and uniquely
be represented by its alpha-cuts.

2. Alpha-cuts of each fuzzy number are closed intervals of real num-
bers for all alpha in [0,1]. Therefore, arithmetic operations on fuzzy
numbers can be defined in terms of arithmetic operations on their
alpha-cuts (i.e., arithmetic operations on closed intervals), which
is treated in the field of “interval analysis”.

Let # denote any of the four arithmetic operations on closed intervals:
“addition” +, “subtraction” −, “multiplication” *, and “division” /.
Then,

[a, b]#[d, e] = {f#gja ≤ f ≤ b, d ≤ g ≤ e}
is a general property of all arithmetic operations on closed intervals,
except [a,b]/[d,e] is not defined when 0 is in the interval [d,e]. Therefore,
the result of an arithmetic operation on closed intervals is again a closed
interval.

The four arithmetic operations on closed intervals are defined as fol-
lows:

[a,b] + [d,e] = [a+d,b+e]

[a,b] − [d,e] = [a-e,b-d]

[a,b] * [d,e] = [min(ad,ae,bd,be),max(ad,ae,bd,be)]

and, provided that 0 is not in [d,e]

[a,b] / [d,e] = [a,b] * [1/e,1/d]

= [min(a/d,a/e,b/d,b/e),max(a/d,a/e,b/d,b/e)]

Note that a real number r may also be regarded as a special (degerated)
interval [r,r]. When one of the intervals in the above equations is degener-
ated, we obtain special operations; when both of them are degenerated,
we obtain the standard arithmetic of real numbers.

Letting A=[a1,a2], B=[b1,b2], C=[c1,c2], 0=[0,0], 1=[1,1], useful prop-
erties of arithmetic operations are as follows:
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1. A+B = B+A; A*B = B*A (commutativity)

2. (A+B)+C = A+(B+C); (A*B)*C = A*(B*C) (associativity)

3. A = 0+A = A+0; A = 1*A = A*1 (identity)

4. A*(B+C) is a subset of A*B + A*C (subdistributivity)

5. If b*c >= 0 for every b in B and c in C, then A*(B+C) = A*B +
A*C (distributivity)
Furthermore, if A = [a,a], then a*(b+c) = a*B + a*C

6. 0 is a subset of A-A and 1 is a subset of A/A

7. If A is a subset of E and B is a subset of F, then

A+B is a subset of E+F

A-B is a subset of E-F

A*B is a subset of E*F

A/B is a subset of E/F (inclusion monotomicity)

6.10.2 Arithmetic Operations on Fuzzy Numbers

We assume in this section that fuzzy numbers are represented by con-
tinuous membership functions. If # is any of the four basic arithmetic
operations on the Fuzzy sets A and B, we define a fuzzy set A#B by
defining its alpha-cut, a(A#B), as

a(A#B) = aA # aB

for any a in (0,1]. Therefore,

A#B = Union(all a in [0,1]) a(A#B)

Since a(A#B) is a closed interval for each a in [0,1], and A and B are
fuzzy numbers, A#B is also a fuzzy number. As an example, consider
two triangular shaped fuzzy numbers A and B defined as follows:

A(x) =







0, for x ≤ -1 and x>3
(x + 1)/2, for -1<x ≤ 1
(3− x)/2 for 1< x ≤ 3

B(x) =







0, for x ≤ 1 and x>5
(x − 1)/2, for 1<x ≤ 3
(5 − x)/2 for 3< x ≤ 5
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their alpha-cuts are

aA = [2a-1,3-2a]

aB = [2a+1,5-2a]

Using the operations definitions, we obtain

a(A+B) = [4a,8-4a] for a in [0,1]

a(A-B) = [4a-6,2-4a] for a in [0,1]

a(A*B) = [-4*a* *2+12*a-5,4*a* *2-16*a+15] for a in [0,.5]

[4*a* *2-1,4*a* *2-16*a+15] for a in [.5,1]

a(A/B) = [(2a-1)/(2a+1),(3-2a)/(2a+1)] for a in [0,.5]

[(2a-1)/(5-2a),(3-2a)/(2a+1)] for a in [.5,1]

The resulting fuzzy numbers are then:

(A + B)(x) =







0, for x ≤ 0 and x>8
x/4, for 0< x ≤ 4
(8 − x)/4, for4 <x ≤ 8

(A − B)(x) =







0, for x ≤ −6 and x>2
(x + 6)/4, for − 6< x ≤ −2
(2 − x)/4, for − 2 <x ≤ 2

(A ∗ B)(x) =







0, for x< − 5 and x ≥ 2
[3 − sqrt(4 − x)]/2, for − 5 ≤ x< − 0
[sqrt(1 − x)/2], for 0 ≤ x<3
[4 − sqrt(1 + x)]/2, for 3 ≤ x<15

(A/B)(x) =







0, for x< − 1 and x ≥ 2
(x + 1)/(2 − 2x), for − 1 ≤ x<0
(5x + 1)/(2x + 2)], for 0 ≤ x<1/3
(3 − x)]/(2x + 2), for 1/3 ≤ x<3

Another technique for developing fuzzy arithmetic based on the exten-
sion principle is one in which standard arithmetic operations on real
numbers are extended to fuzzy number

(A#B)(z) = supremum(z=x#y) min[A(x),B(y)]

for all z in the set of real numbers. More specifically, we define for all z
in R:

(A+B)(z) = supremum(z=x+y) min[A(x),B(y)]
(A-B)(z) = supremum(z=x-y) min[A(x),B(y)]
(A*B)(z) = supremum(z=x*y) min[A(x),B(y)]
(A/B)(z) = supremum(z=x/y) min[A(x),B(y)]
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Theorem 4.2: Let # be an element of +,−,*,/, and let A,B denote con-
tinuous fuzzy numbers. Then, the fuzzy set A#B defined above is a
continuous fuzzy number.

6.10.3 Fuzzy Arithmetic Using MATLAB Fuzzy
Logic Toolbox

MATLAB Fuzzy Logic toolbox provides a function ’fuzarith’ to
perform fuzzy arithmetic. The general syntax of the function is

C = fuzarith (X, A, B, operator)

where A, B and X - vectors of same dimension operator - is one of
the following strings: “sum’, “sub’, “prod”, and “div” C - column vector
with the same length as X.

Illustration

The following program illustrates the fuzzy arithmetic operation im-
plemented in MATLAB. Here two membership functions triangular and
generalized bell shaped functions are considered and the four basic fuzzy
arithmetic operations are performed on them.

x=0:0.1:10;

A=trimf(x,[3 6 8]);

figure;

subplot(3,2,1);

plot(x,A);

title(’Triangular Membership Function’);

B=gbellmf(x,[1 3 7]);

subplot(3,2,2);

plot(x,B)

title(’Generalized Bell Shaped Membership Function’);

SUM = fuzarith(x, A, B, ’sum’);

subplot(3,2,3);

plot(x, SUM);

title(’Fuzzy addition A+B’);

DIFF = fuzarith(x, A, B, ’sub’);

subplot(3,2,4);

plot(x, DIFF);

title(’Fuzzy Difference A-B’);

PROD = fuzarith(x, A, B, ’prod’);

subplot(3,2,5);
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FIGURE 6.16: Illustration of Fuzzy Arithmetic

plot(x, PROD);

title(’Fuzzy Product A*B’);

DIV = fuzarith(x, A, B, ’div’);

subplot(3,2,6);

plot(x,DIV);

title(’Fuzzy Division A/B’);

The result of the above program is plotted in Figure 6.16.

6.11 Fuzzy Relations

Fuzzy relations are fuzzy subsets of X x Y , i.e., mapping from X
−→ Y . Relations map elements of one universe, X to those of another
universe, say Y , through the Cartesian product of the two universes.
This relation is expressed as

R= { ( (x,y),µR(x,y) )—(x,y)ǫ X x Y }
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The operations of fuzzy relations are similar to those of fuzzy sets and
are defined below.

Let R and S denote two fuzzy relations in the Cartesian space X x Y.

1. Union operation: The union of two fuzzy relations R and S in the
Cartesian space X x Y is defined as µRY S(x, y) = max(µR(x, y),
µs(x, y))

2. Intersection operation: The intersection of two fuzzy relations R
and S in the Cartesian space X x Y is defined as µRIS(x, y) =
max(µR(x, y), µs(x, y))

3. Complement operation: The complement operation of the fuzzy
relation R is defined as µR(x, y) = 1 − µR(x, y)

Let us describe the relationship between the type of dirt in the clothes
x and the washing time y.

The type of dirt is a linguistic variable characterized by a crisp set X
with three linguistic terms as

X = greasy, moderate greasy, not greasy

and similarly the washing time as

Y = high, medium, low

One knows that a crisp formulation of a relation X −→ Y between the
two crisp sets would look like Table 6.1.

The zeros and ones describe the grade of membership to this relation.
This relation is now a new kind of crisp set that is built from the two crisp
base sets X and Y. This new set is now called R and can be expressed
also by the rules:

(1) IF the type of dirt is greasy THEN the washing time is high.

(2) IF the type of dirt is moderate greasy THEN the washing time is
medium.

(3) IF the type of dirt is not greasy THEN the washing time is low.

TABLE 6.1: Relation between the two crisp sets

High Medium Low

Greasy 1 0 0
Moderate Greasy 0 1 0
Not Greasy 0 0 1
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TABLE 6.2: Modified form of the Table 6.1

High Medium Low

Greasy 1 0.5 0
Moderate Greasy 0.3 1 0.4
Not Greasy 0 0.2 1

As can be seen from this example, a relation, which is called a rule or
rule base, can be used to provide a model.

This crisp relation R represents the presence or absence of association,
interaction, or interconnection between the elements of these two sets.
This can be generalized to allow for various degrees of strength of as-
sociation or interaction between elements. Degrees of association can be
represented by membership grades in a fuzzy relation in the same way as
degrees of the set membership are represented in a fuzzy set. Applying
this to the above washing example, Table 6.1 can be modified as shown
in Table 6.2.

where there are now real numbers in [0,1]. This table represents a
fuzzy relation and models the connectives in a fuzzy rule base. It is a
two-dimensional fuzzy set and the question is, how this set can be de-
termined from its elements.

In the above example, the linguistic terms were treated as crisp terms.
For example, when one represents the type of dirt on a spectrum scale,
the type of dirt would be described by their spectral distribution curves
that can be interpreted as membership functions. The washing times can
also be treated as fuzzy terms, the above relation is a two-dimensional
fuzzy set over two fuzzy sets. For example, taking from the washing
machine example the relation between the linguistic terms greasy and
high, and represent them by the membership functions as shown in Fig-
ure 6.17a.

FIGURE 6.17a : Membership Functions
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FIGURE 6.17b : Membership Function of the Relation after Apply-
ing the min Operation

This expression can be re-written in mathematical form using elemen-
tary connective operators for the membership functions by

µR(x, y) = min{µA(x), µB(y)}

or
µR(x, y) = µA(x), µB(y) (6.13)

Figure 6.17b shows a 3-dimensional view of these two fuzzy terms and
Figure 6.17c the result of the connective operation according to Equation
(6.13). This result combines the two fuzzy sets by an operation that is
a Cartesian product

R: X x Y −→ [0,1] (6.14)

From this example it is obvious that the connective operation in a
rule for the operation is simply performed by a fuzzy intersection in two
dimensions.

Combining rules into a rule base the example from above may help
when it is rewritten as

1. IF the type of dirt is greasy THEN the washing time is high,

(OR)

2. IF the type of dirt is moderate greasy THEN the washing time is
medium,

(OR)

3. IF the type of dirt is not greasy THEN the washing time is low

which describes the union of three rules in a linguistic way. For the
complete rule base R one can combine the relations formed for each
individual rule with a fuzzy union operator, which is the fuzzy OR.
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According to the standard mathematical notation for IF-THEN and
AND

Ar1(x1)
A
r2(x2)

...Am(xn) −→ Br(u) (6.15)

Where x1,x2,.xn are the several input variables, r = 1, ... R is the rule
number, and Ari and Br are words from natural language.

Applying the union operator by writing the rule base with max/min
operators as follows:

µR(x1, x2, ...xn, u) = maxmin{µPr(x1, x2, ...xn), µBr(u)} (6.16)

where µPr(x1, x2, ...xn) is the premise of the rth rule. This representation
is the standard max/min representation of a rule base that is used for
fuzzy controllers. Instead of the max/min representation a so called max-
prod representation is also usual, where the algebraic product

µR(x1, x2, ...xn, u) = maxminµPr(x1, x2, ...xn), µBr(u) (6.17)

is used to build the relation between the premise and the conclusion.

6.12 Fuzzy Composition

Composition of fuzzy relations plays a crucial role in the study of
approximate reasoning. Composition is defined as the operation of com-
bining fuzzy relations in different product spaces with each other. This
allows the fuzzy relations to operate with a given fact to produce an
output that represents the decision in a fuzzy way, known as fuzzy rea-
soning, which is a special case of the more general operation called fuzzy
composition.

Two relations of the form given in Equation (6.15)

R: X x Y −→ [0,1]

S: Y x Z −→ [0,1]

can be composed to one relation

T : X x Z −→ [0,1]

using the max and min operators for union and intersection, one can
express the composition operation T = RoS by the corresponding mem-
bership functions. Based upon the mathematical properties, composition
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can be performed either by min-max composition or the max product
composition.

Min-Max Composition: Let R̄1ǫX × Y and R̄2ǫY × Z denote two
fuzzy relations, the min-max composition on these relations is defined
as R̄1 ◦ R̄2 = max{min{µR1(x, y), µR2(y, z)}}xǫX, yǫY, zǫZ

Max Product Composition: Let R1ǫX × Y and R2ǫY ×Z denote two
fuzzy relations, the max product composition on these relations is de-
fined as R1R2 = maxµR1(x, y) ∗ µR2(y, z)xǫX, yǫY, zǫZ

Consider R̄1ǫX × Y andR̄2ǫY × Z be defined as :

R̄1 =
1 0.4 0.5
0.3 0 0.7
0.2 .6 0.9

R̄2 =
0.1 0.4
0.9 0.4
0 0.8

The min-max composition cam be computed as

R̄1 ◦ R̄2(x1, z1) = max{min(1, 0.1), min(0.4, 0.9), min(0.5, 0)}
= max{0.1, 0.4, 0} = 0.4

R̄1 ◦ R̄2(x1, z2) = max{min(1, 0.5), min(0.4, 0.4), min(0.5, 0.8)}
= max{0.5, 0.4, 0.5} = 0.5

R̄1 ◦ R̄2(x2, z1) = max{min(0.3, 0.1), min(0, 0.9), min(0.7, 0)}
= max{0.1, 0.0} = 0.1

R̄1 ◦ R̄2(x2, z2) = max{min(0.3, 0.1), min(0, 0.9), min(0.7, 0)}
= max{0.1, 0.0} = 0.1

R̄1 ◦ R̄2(x3, z1) = max{min(0.2, 0.1), min(0.6, 0.9), min(0.9, 0)}
= max{0.1, 0.6, 0} = 0.6

R̄1 ◦ R̄2(x3, z2) = max{min(0.2, 0.5), min(0.6, 0.4), min(0.9, 0.8)}
= max{0.2, 0.4, 0.8} = 0.8

Therefore the result obtained by min-max composition is

R̄1oR̄2 =
0.4 0.5
0.1 0.1
0.6 0.8
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The max product composition can be computed as follows:

R̄1 ◦ R̄2(x1, z1) = max{(1 ∗ 0.1), (0.4 ∗ 0.9), (0.5 ∗ 0)}
= max{0.1, 0.36, 0} = 0.36

R̄1 ◦ R̄2(x1, z2) = max{(1 ∗ 0.5), (0.4 ∗ 0.4), (0.5 ∗ 0.16, 0.4)} = 0.5

R̄1 ◦ R̄2(x1, z2) = max{(1 ∗ 0.5), (0.4 ∗ 0.4), (0.5 ∗ 0.8)}
= max{0.5, 0.16, 0.4} = 0.5

R̄1 ◦ R̄2(x2, z1) = max{(0.3 ∗ 0.1), (0 ∗ 0.9), (0.7 ∗ 0)}
= max{0.03, 0, 0} = 0.03

R̄1 ◦ R̄2(x2, z2) = max{(0.3 ∗ 0.1), (0 ∗ 0.9), (0.7 ∗ 0)}
= max{0.03, 0, 0} = 0.03

R1R2(x3, z1) = max{(0.2 ∗ 0.1), (0.6 ∗ 0.9), (0.9 ∗ 0)}
= max{0.02, 0.54, 0} = 0.54

R̄1 ◦ R̄2(x3, z2) = max{(0.2 ∗ 0.5), (0.6 ∗ 0.9), (0.9 ∗ 0.8)}
= max{0.1, 0.24, 0.72} = 0.72

Therefore the result obtained by max-product composition is

R̄1 ◦ R̄2 =
0.36 0.5
0.03 0.03
0.54 0.72

In the same manner as relations can be composed, the one-dimensional
facts can be composed with the rule base to realize the reasoning oper-
ation. This can now be precisely re-formulated for the general case of a
rule base.

If for the rule base
R:X × Y −→ [0,1]

its membership function is described by Equations (6.16) or (6.17) and
if there is a fact described by the fuzzy set

A’:X −→ [0,1]

and its membership function µA′ the result

B’:A’oR:Y −→ [0,1]

of the fuzzy reasoning is represented by the membership function

µB(y) = max
xǫX

{min{µA′(x), µR(x, y)}} (6.18)
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6.12.1 MATLAB Code to Implement
Fuzzy Composition

Fuzzy composition is illustrated through a Matlab code as follows.
Here the relations

R:X × Y −→ [0,1]

S:Y × Z −→ [0,1]

are denoted as R and S respectively. The composed relation T:X × Z
−→ [0,1]

Illustration 1: Given R: x × y and S: × z as follows.

R =
0.1 0.3 0.5 0.6
0.3 0.5 0.8 1
0.2 0.9 0.7 0.1

and

S =

0 0.3
0.9 0.8
0.4 0.7
0.2 0.6

Compute the max min composition T: x × y using a MATLAB program.

% Max Min Composition

R=[.1 .3 .5 .6 ; .3 .5 .8 1; .2 .9 .7 .1]

S=[0 .3;0.9 0.8;0.4 0.7; 0.2 0.6]

[x,y]=size(R);

[y1,z]=size(S);

if y==y1

T=zeros(x,z);

for i=1:x,

for j=1:z,

T(i,j)=max(min([R(i,:); S(:,j)’]));

end

end

else

display(’Matrix dimension does not match’)

end
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Observations:

Max-Min composition

R =
0.1000 0.3000 0.5000 0.6000
0.3000 0.5000 0.8000 1.0000
0.2000 0.9000 0.7000 0.1000

S =

0 0.3000
0.9000 0.8000
0.4000 0.7000
0.2000 0.6000

T =
0.4000 0.6000
0.5000 0.7000
0.9000 0.8000

Illustration 2: Given R: x × y and S: y1 × z as follows.

R =
0.1 0.3 0.5 0.6
0.3 0.5 0.8 1
0.2 0.9 0.7 0.1

and

S =

0 0.3
0.9 0.8
0.4 0.7
0.2 0.6

Compute the max product composition T: x × y using a MATLAB
program.

% Max Product composition

R=[.1 .3 .5 .6 ; .3 .5 .8 1; .2 .9 .7 .1]

S=[0 .3;0.9 0.8;0.4 0.7; 0.2 0.6]

[x,y]=size(R);

[y1,z]=size(S);

if y==y1

T=zeros(x,z);

for i=1:x,

for j=1:z,

T(i,j)=max(R(i,:).*S(:,j)’);

end

end

else

display(’Matrix dimension does not match’)

end
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Observations

Max Product composition

R =
0.1000 0.3000 0.5000 0.6000
0.3000 0.5000 0.8000 1.0000
0.2000 0.9000 0.7000 0.1000

S =

0 0.3000
0.9000 0.8000
0.4000 0.7000
0.2000 0.6000

T =
0.2700 0.3600
0.4500 0.6000
0.8100 0.7200

Illustration 3: Given a fuzzy relation

0.1 0.8 0.5 0.6 0.7
0.8 1 0.4 0 0.2
0 0.1 1 0.5 0.2
0.7 0.5 0.2 1 0.3
0.2 0.9 0.5 0.3 1

Write a MATLAB program to compute R2 and R3.
Here we make use of the rule to compute Rn−1 = RoRoR........... R2

and R3.

% MATLAB code to compute R2 using max min composition

R=[0.1 0.8 0.5 0.6 0.7; 0.8 1 0.4 0 0.2; 0 0.1 1 0.5

0.2; 0.7 0.5 0.2 1 0.3; 0.2 0.9 0.5 0.3 1]

[x,y]=size(R);

R2=zeros(x,y);

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

R2(i,j)=max(min([R(i,:); R(:,j)’]));

end

end

Observations:
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Max-Min composition
Input relation:

R =

0.1000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0 0.2000

0 0.1000 1.0000 0.5000 0.2000

0.7000 0.5000 0.2000 1.0000 0.3000

0.2000 0.9000 0.5000 0.3000 1.0000

Output:

R2 =

0.8000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.5000 0.6000 0.7000

0.5000 0.5000 1.0000 0.5000 0.3000

0.7000 0.7000 0.5000 1.0000 0.7000

0.8000 0.9000 0.5000 0.5000 1.0000

% MATLAB code to compute R3 using max min composition
R=[0.1 0.8 0.5 0.6 0.7; 0.8 1 0.4 0 0.2; 0 0.1 1 0.5

0.2; 0.7 0.5 0.2 1 0.3; 0.2 0.9 0.5 0.3 1]

[x,y]=size(R);

R2=zeros(x,y);

R3=zeros(x,y);

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

R2(i,j)=max(min([R(i,:); R(:,j)’]));

end

end

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

R3(i,j)=max(min([R2(i,:); R(:,j)’]));

end

end

Observations: Max-Min composition
Input relation:
R =

0.1000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0 0.2000

0 0.1000 1.0000 0.5000 0.2000

0.7000 0.5000 0.2000 1.0000 0.3000

0.2000 0.9000 0.5000 0.3000 1.0000

Output:
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R3 =

0.8000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.5000 0.6000 0.7000

0.5000 0.5000 1.0000 0.5000 0.5000

0.7000 0.7000 0.5000 1.0000 0.7000

0.8000 0.9000 0.5000 0.6000 1.0000

% MATLAB code to compute R2 using max product composition
R=[0.1 0.8 0.5 0.6 0.7; 0.8 1 0.4 0 0.2; 0 0.1 1 0.5

0.2; 0.7 0.5 0.2 1 0.3; 0.2 0.9 0.5 0.3 1]

[x,y]=size(R);

R2=zeros(x,y);

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

% R2(i,j)=max(min([R(i,:); R(:,j)’]));

end

end

Observations:

Max-Product composition

Input relation:

R =

0.1000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0 0.2000

0 0.1000 1.0000 0.5000 0.2000

0.7000 0.5000 0.2000 1.0000 0.3000

0.2000 0.9000 0.5000 0.3000 1.0000

Output:

R2 =

0.6400 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0.4800 0.5600

0.3500 0.2500 1.0000 0.5000 0.2000

0.7000 0.5600 0.3500 1.0000 0.4900

0.7200 0.9000 0.5000 0.3000 1.0000
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% MATLAB code to compute R3 using max product composition

R=[0.1 0.8 0.5 0.6 0.7; 0.8 1 0.4 0 0.2;0 0.1 1 0.5

0.2;0.7 0.5 0.2 1

0.3; 0.2 0.9 0.5 0.3 1]

[x,y]=size(R);

R2=zeros(x,y); R3=zeros(x,y);

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

R2(i,j)=max(R(i,:).*R(:,j)’);

End

end

for i=1:x, % for each row of R matrix

for i=1:x, % for each row of R matrix

for j=1:y, % for each column of R matrix

R3(i,j)=max(R2(i,:).*R(:,j)’);

end

end

Observations:

Max-Product composition

Input relation:

R =

0.1000 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0 0.2000

0 0.1000 1.0000 0.5000 0.2000

0.7000 0.5000 0.2000 1.0000 0.3000

0.2000 0.9000 0.5000 0.3000 1.0000

Output:
R3 =

0.6400 0.8000 0.5000 0.6000 0.7000

0.8000 1.0000 0.4000 0.4800 0.5600

0.3500 0.2800 1.0000 0.5000 0.2450

0.7000 0.5600 0.3500 1.0000 0.4900

0.7200 0.9000 0.5000 0.4320 1.0000
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Summary

Fuzzy Logic provides a completely different, unorthodox way to ap-
proach a problem. This method focuses on what the system should do
rather than trying to understand how it works. This chapter discussed
the basic fuzzy sets, operations on fuzzy sets, relations between fuzzy
sets, composition and fuzzy arithmetic. A few MATLAB programs were
also illustrated on topics such as membership functions, fuzzy operations,
fuzzy arithmetic, relations, and composition.

Review Questions

1. State “Law of excluded middle”.

2. Differentiate crisp and fuzzy logic.

3. Give a few examples of sets.

4. Mention a few examples of crisp and fuzzy sets.

5. Define universe of discourse.

6. What is a membership function? State the different types of mem-
bership functions.

7. Define Singleton and Linguistic variables.

8. Define term set with an example.

9. What are the major operations performed by a fuzzy set?

10. State the axioms for fuzzy complement.

11. State the axioms for fuzzy intersection.

12. State the axioms for fuzzy union.

13. What are aggregation operators? State the axioms for aggregation
operations.

14. Mention the three properties to qualify a fuzzy set as a “fuzzy
number”.

15. Explain fuzzy composition with a suitable example.
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Chapter 7

Fuzzy Inference and Expert
Systems

7.1 Introduction

Fuzzy inference is the process of formulating the mapping from a given
input to an output using fuzzy logic. The mapping then provides a basis
from which decisions can be made, or patterns discerned. The process of
fuzzy inference involves all the topics such as fuzzification, defuzzifica-
tion, implication, and aggregation. Expert control/modeling knowledge,
experience, and linking the input variables of fuzzy controllers/models to
output variable (or variables) are mostly based on Fuzzy Rules. A fuzzy
expert system consists of four components namely, the fuzzifier, the in-
ference engine, and the defuzzifier, and a fuzzy rule base. This chapter
focuses on these rules, expert system modeling, fuzzy controllers, and
implementation of fuzzy controllers in MATLAB.

7.2 Fuzzy Rules

For any fuzzy logic operation, the output is obtained from the crisp
input by the process of fuzzification and defuzzification. These processes
involve the usage of rules, which form the basis to obtain the fuzzy out-
put. A fuzzy if-then rule is also known as fuzzy rule, or fuzzy conditional
statement or fuzzy implication. It is generally of the form

IF (x is A) AND (y is B) AND THEN (z is Z )

where x,y,z etc. represent the variables and A,B,Z are the linguistic val-
ues in the universe of discourse. Here the IF part is referred to as the
antecedent or premise and the THEN part is referred to as consequent
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or conclusion. AND is the Boolean operator which connects two or more
antecedents. These fuzzy rules are multi-valued.

An individual fuzzy rule-based can possess more than one rule. Based
on several set of rules an overall decision can be made from the individual
consequents. This process of obtaining the overall decision is known as
aggregation of rules.

Fuzzy rules are most commonly applied to control systems. The com-
mon types of fuzzy rules applied to control systems are the Mamdani
fuzzy rules and Takagi–Sugeno (TS) fuzzy rules.

7.2.1 Generation of Fuzzy Rules

The fuzzy rules are formed or generated in a canonical method. The
canonical rules can be formed by integrating the linguistic variables using
assignment, conditional, or unconditional statements. Assignment state-
ments assign a value to a particular variable in the universe. Conditional
statement, involve, set of IF-THEN rules. The unconditional statements
are of the form in which no condition is to be satisfied. The fuzzy rules
are generated based on conditional statements and are also referred to as
the canonical rule based system. The rules are usually formed as follows:

IF antecedent THEN consequent
A few examples of canonical rules are illustrated in the following:

IF temperature is hot
︸ ︷︷ ︸

antecedant

THEN pressure is medium
︸ ︷︷ ︸

consequent

IF height is tall
︸ ︷︷ ︸

antecedant

THEN weight is heavy
︸ ︷︷ ︸

consequent

7.2.2 Disintegration of Rules

Most of the practical applications do not involve rules like the above
mentioned with one antecedent part. These applications involve a com-
pound rule structure. Such rules can be disintegrated into smaller rules
and from which simple canonical rules can be formed. These rules have
more than one antecedent part connected by conjunction and disjunction
connectives. Conjunction connective uses intersection operation involv-
ing the “AND” connective as follows

IF antecedent1 AND antecedent2 AND ...

AND antecedentn THEN consequent
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Similarly the disjunction connective uses union operation involving
the “OR” connective as follows

IF antecedent1 OR antecedent2 OR ...

OR antecedentn THEN consequent

Likewise complex rules can be broken into simpler forms and con-
nected using the “AND” or “OR” connectives as shown in the following
rule.

IF type of dirt is High
︸ ︷︷ ︸

antecedant 1

AND
︸ ︷︷ ︸

connective

volume of clothes is Small
︸ ︷︷ ︸

antecedant 2

THEN washing T ime is medium
︸ ︷︷ ︸

consequent

IF type of dirt is High
︸ ︷︷ ︸

antecedant 1

AND
︸ ︷︷ ︸

connective

volume of clothes is Large
︸ ︷︷ ︸

antecedant 2

THEN washing T ime is High
︸ ︷︷ ︸

consequent

These rules can be decomposed to a set of relations.

7.2.3 Aggregation of Rules

The rule based system involves several rules and each rule provides
an output or consequent. The consequent part also known as conclusion
is unique for every rule that has been executed based on the input pa-
rameters. An overall conclusion has to be obtained from the individual
consequents. This method of obtaining the overall conclusion from the
set of rules is referred to as aggregation of rules.

Fuzzy rules can be aggregated by using the “AND” or “OR” connec-
tives. The process of aggregating the rules using “AND” connective is
known as conjunctive aggregation and the process of aggregating the
rules using “OR” connective is known as disjunctive aggregation.

Conjunctive aggregation:

Consequent = Consequent1 AND Consequent2 AND ... AND
Consequentr

Disjunctive aggregation:

Consequent = Consequent1 OR Consequent2 OR ... OR Consequentr
Using these operators a final decision is made on the output of the

fuzzy set.
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FIGURE 7.1: Fuzzy Expert System Model

7.3 Fuzzy Expert System Model

A fuzzy expert system shown in Figure 7.1 consists of four components
namely, the fuzzifier, the inference engine, the defuzzifier, and a fuzzy
rule base.

During fuzzification, crisp inputs are converted into linguistic values
and are related to the input linguistic variables. Subsequently as the
fuzzification process is completed, the inference engine refers to the fuzzy
rule base containing fuzzy IF-THEN rules to deduct the linguistic values
for the intermediate and output linguistic variables. When the output
linguistic measures are obtainable, the defuzzifier produces the final crisp
values from the output linguistic values.

7.3.1 Fuzzification

The process by which the input values from sensors are scaled and
mapped to the domain of fuzzy variables is known as fuzzification. The
fuzzy variables also known as linguistic variables are determined based
on intuition (from knowledge) or inference (known facts). These linguis-
tic variables can be either continuous or discrete theoretically, but in
practice it should be discrete. Fuzzification is a two step process: Assign
fuzzy labels and Assign numerical meaning to each label.

Assign fuzzy label:

Each crisp input is assigned a fuzzy label in the universe of discourse.
For example for the input parameter height fuzzy labels can be “tall”,
“short”, “Normal”, “Very Tall”, and “Very short”. Every crisp input
can be assigned multiple labels. As the number of labels increases the
resolution of the process is better. In some cases, assigning large number
of labels leads to a large computational time and thus making the fuzzy
system unstable. Therefore in general the number of labels for a system
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FIGURE 7.2: Sample fuzzification of crisp inputs

is limited to an odd number in the range [3, 9], such that the surface is
balanced and symmetric.

Assign numerical meaning:

Here membership functions are formed to assign a numerical meaning
to each label. The range of the input value that corresponds to a specific
label can be identified by the membership function. Though there are
different membership function shapes, triangular and trapezoidal mem-
bership functions are commonly used to avoid time and space complexity.

For each fuzzy set and for each linguistic variable, the grade of mem-
bership of a crisp measure in each fuzzy set is ascertained. As an example,
the numerical variable age which has a given value of 25.0 was fuzzified
using the triangular membership functions defined for each fuzzy set for
linguistic variable age. As a result of fuzzification (Figure 7.2), linguistic
variable age has linguistic values of “young”, “Little old” etc.

In a fuzzy expert system application, each input variable’s crisp value
is first fuzzified into linguistic values before the inference engine proceeds
in processing with the rule base.

7.3.2 Fuzzy Rule Base and Fuzzy IF-THEN Rules

Fuzzy expert systems use fuzzy IF-THEN rules. A fuzzy IF-THEN
rule is of the form

IF X1 = A1 and X2 = A2...and Xn = An THEN Y = B

where Xi and Y are linguistic variables and Ai and B are linguistic
terms. An example of a fuzzy IF-THEN rule is

IFpressure = “low”THENvolume = “big”
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In a fuzzy expert system, the fuzzy inference engine stores the set
of fuzzy IF-THEN rules and these rules are referred while processing
inputs.

7.3.3 Fuzzy Inference Machine

The fuzzy inference machine combines the facts obtained from the
fuzzification with the rule base and conducts the fuzzy reasoning process.
The fuzzy inference engine is the kernel of the fuzzy logic controller.
This reasoning mechanism infers the fuzzy control actions with the aid
of fuzzy implication and fuzzy logic rules. These fuzzy logic rules are in
the fuzzy rule base and the membership functions of the fuzzy sets that
are formed are contained in the data base. The rule base and the data
base together are referred to as the knowledge base.

The rule base represents the entire process in the form of a set of
production rules. It includes information such as

- process input and output variables

- contents of rule antecedent and rule consequent

- range of linguistic values

- derivation of the set of rules

The data base provides the necessary information for proper function-
ing of the fuzzy inference system. It includes information such as

- membership functions representing the meaning of the linguistic
values

The operation of the fuzzy inference engine is explained with the aid of
the following flowchart shown in Figure 7.3. The first step is the fuzzifi-
cation process in which the crisp values are converted to their equivalent
linguistic variables. The antecedent parts are combined to obtain the fir-
ing strength of each rule, based on which the consequents are generated.
Finally the consequents are aggregated to obtain an overall crisp output
from the individual consequents.

The most commonly used fuzzy inference methods are Mamdani’s
inference method, Takagi–Sugeno (TS) inference method and the
Tsukamoto inference method. All these methods are similar to each other
but differ only in their consequents. Mamdani fuzzy inference method
uses fuzzy sets as the rule consequent while TS method uses functions
of input variables as the rule consequent and the Tsukamoto inference
method uses fuzzy set with a monotonical membership function as the
rule consequent. These methods are discussed in detail in section 7.3.
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Fuzzification – Crisp input variables are assigned equivalent

linguistic labels based on the M Fs

Firing strength of rule – The M F values on the antecedent pa rt

are combined to obtain the firing s trength o f the rule

Generation of consequents  – The consequents are generated

based on the firing strength of the rule

Defuzzification – Aggregate a ll the consequents to obtain a crisp

output

FIGURE 7.3: Flowchart of the Fuzzy inference engine operation

7.3.4 Defuzzification

As a result of applying the previous steps, one obtains a fuzzy set
from the reasoning process that describes, for each possible value u, how
reasonable it is to use this particular value. In other words, for every
possible value u, one gets a grade of membership that describes to what
extent this value u is reasonable to use. Using a fuzzy system as a con-
troller, one wants to transform this fuzzy information into a single value
u’ that will actually be applied. This transformation from a fuzzy set to
a crisp number is called a defuzzification. The fuzzy results generated
cannot be used as such to the applications, hence it is necessary to con-
vert the fuzzy quantities into crisp quantities for further processing. This
can be achieved by using defuzzification process by using the methods
as follows:

Max-Membership principle

- The max membership principle method finds the defuzzified value
at which the membership function is a maximum

- This method of defuzzification is also referred to as the height
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FIGURE 7.4: Max membership principle

method.

- The defuzzified value can be determined from the following expres-
sion µAZ∗ ≥ µA(Z)

- Computes the defuzzified value at a very fast rate

- Very accurate only for peaked output membership functions

- Graphical representation of max-membership defuzzification
shown in Figure 7.4

Center of gravity method (COG)

- The COG method of defuzzification was developed by Sugeno in
1985

- This method is also known as center of area or centroid method

- Most commonly used method

- Defined as z* = where z*
R

µA(z)zdz
R

µA(z)zdz
is the defuzzified output, µA(z)

is the aggregated membership function and z is the output variable

- Capable of producing very accurate results
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FIGURE 7.5: Centroid defuzzification method

- Major disadvantage - computationally difficult for complex mem-
bership functions

- Graphical representation of COG method is shown in Figure 7.5

Weighted Average method

- In the weighted average method, the output is obtained by the
weighted average of the each membership function output of the
system

- This method can be applied only for symmetrical output member-
ship functions

- Each membership function is weighted by its largest membership

function- Defined as where z*
P

µA(z)z
P

µA(z) is the defuzzified output,

A(z) is the aggregated membership function z and is the weight
associated with the membership function

- The defuzzified value obtained in this method is very close to that
obtained by COG method

- Overcomes the disadvantage of COG method - Less computation-
ally intensive
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FIGURE 7.6: Weighted Average method

- Graphical representation of Weighted Average method is shown in
Figure 7.6

Mean Max membership

- The defuzzified result of the Mean max method represents the
mean value whose membership function is the maximum. (Mean
of the maximum membership function)

- This method is commonly referred to as middle of maxima method

- The maximum membership can be either a single point or a range
of values

- Defined as z* = a+b
2 where a and b denote the end points of the

maximum membership

- Graphical representation of Mean Max method is shown in
Figure 7.7

Center of sums

- Center of sums (COS) method computes the sum of the fuzzy sets

- This method is used to determine the defuzzified value by comput-
ing the algebraic sum of individual fuzzy sets
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FIGURE 7.7: Mean Max method

- More similar to the center of gravity method but COS involves
algebraic sum of individual output membership functions instead
of their union

- Faster compared to all other defuzzification methods

- The major drawback is that the intersecting areas are added twice

- Defined as where z*=

R

z

n∑

i=1

µAi
(z)dz

R

z

n∑

i=1

µAi
(z)dz

is the defuzzified output, µ

A(z) is the aggregated membership function and z is the output
variable

- Graphical representation of COS method is shown in Figure 7.8

Center of largest area

- Center of Largest area method of computing defuzzifciation is used
when the universe is non-convex and if it contains atleast two con-
vex fuzzy subsets
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FIGURE 7.8: Center of sums method

- The convex fuzzy subset with the largest area is chosen to deter-
mine the defuzzified value.

- Complex method since it involves finding convex regions and then
the areas

- Defined as z*=
R

µAm (z)z dz
R

µAm (z)z dz
where Am is the convex subregion that

has the largest area

- The major drawback is that if the largest membership functions
have equal areas, then there occurs an ambiguity in choosing the
defuzzified value

- Graphical representation of Center of largest area method is shown
in Figure 7.9

First or Last of maxima

- In first of maxima, the first value of the overall output membership
function with maximum degree is considered.

- First of maxima is defined as z∗ = inf
zǫZ

{zǫZ|µA(Z) = height(A)}
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FIGURE 7.9: Center of Largest area method

- In last of maxima, the last value of the overall output membership
function with maximum degree is considered.

- Last of maxima is defined as z∗ = sup
zǫZ

{zǫZ|µA(Z) = height(A)}

where height(A) = sup
zǫZ

µA(z)

7.3.5 Implementation of Defuzzification using MAT-
LAB Fuzzy Logic Toolbox

Syntax
out = defuzz(x,mf,type)

defuzz(x,mf,type) returns a defuzzified value out, of a membership
function mf positioned at associated variable value x, using one of several
defuzzification strategies, according to the argument, type. The variable
type can be one of the following:
centroid: centroid of area method
bisector: bisector of area method
mom: mean of maximum method
som: smallest of maximum method
lom: largest of maximum method

If type is not one of the above, it is assumed to be a user-defined
function. x and mf are passed to this function to generate the defuzzified
output.
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FIGURE 7.10: Region to be defuzzified

Illustration

Assume that the following region is to be defuzzified. This example il-
lustrates the methods of defuzzification and compares the different meth-
ods to find the best one.

x = -5:0.1:5;

m1 = trimf(x,[-5 -4 -2 3]);

m2 = trapmf(x,[-5 -3 2 5]);

m4 = max(0.5*m2,0.7*m1);

plot(x,m4,’Linewidth’,4);

set(gca,’YLim’,[-1 1],’YTick’,[0 .5 1])

Output

Figure 7.10 shows the plot of trapezoidal membership function (region
to be defuzzified).

Centroid method

Centroid defuzzification returns the center of area under the curve. If
the area is a plate of equal density, the centroid is the point along the x
axis about which this shape would balance. The following code returns
the centroid value as -0.5896 shown in Figure 7.11.
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FIGURE 7.11: Centroid defuzzification

x1 = defuzz(x,m4,’centroid’)

h1 = line([x1 x1],[-0.2 1.2],’Color’,’k’);

t1 = text(x1,-0.2,’ centroid’,’FontWeight’,’bold’);

Bisector method

The bisector is the vertical line that will divide the region into two
sub-regions of equal area. It is sometimes, but not always coincident with
the centroid line. Here the defuzzified value is -0.6000 as shown in Figure
7.12.

x2 = defuzz(x,m4,’bisector’)

h2 = line([x2 x2],[-0.4 1.2],’Color’,’k’);

t2 = text(x2,-0.4,’ bisector’,’FontWeight’,’bold’);

Mean of Maximum methods

MOM, SOM, and LOM stand for Middle, Smallest, and Largest of
Maximum, respectively. These three methods key off the maximum value
assumed by the aggregate membership function. The mean of maximum
method is used to compute the defuzzified value at -4 as shown in Fig-
ure 7.13.
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FIGURE 7.12: Bisector method

textttx3 = defuzz(x,mf1,‘mom’)
h3 = line([x3 x3],[-0.7 1.2],‘Color’,‘k’);
t3 = text(x3,-0.7,‘MOM’,‘FontWeight’,‘bold’);

Choosing the best method

From the figures above, the centroid method is the best method since
it is capable of producing best and accurate results. Thus the MATLAB
code was given to illustrate the methods of defuzzification.

7.4 Fuzzy Inference Methods

The design or modeling of a fuzzy inference method is based on two
different approaches.

- Composition based inference

- Individual rule based inference

In composition based inference all the rules are combined and fired
with the fuzzy value through composition operation. The fuzzy relations
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FIGURE 7.13: MOM methods

representing the meaning of each individual rule are aggregated into one
fuzzy relation describing the meaning of the overall set of rules. Then
the inference or firing operation is performed through fuzzy composition
between the fuzzified crisp input and the fuzzy relation representing the
meaning of the overall set of rules. As a result of composition the fuzzy
set describing the fuzzy value of the overall control output is obtained.

In the individual rule based inference each rule is fired individu-
ally with the crisp value to get “n” fuzzy sets which are combined over
an overall fuzzy set. Initially each single rule is fired. Firing refers to
computing the degree of match between the crisp input and the fuzzy
sets describing the meaning of the rule antecedent. Once the firing is
completed, clipping is performed. Clipping refers to cutting of the mem-
bership function at the point at which the degree to which the rule an-
tecedent has been matched by the crisp output. Finally the clipped values
are aggregated thus forming the value of the overall control output.

Among these two approaches, individual rule based inference method
is commonly used since it is computationally efficient and also saves
memory. The most commonly used fuzzy inference methods are Mam-
dani’s inference method, Takagi–Sugeno (TS) inference method and the
Tsukamoto inference method. All these methods are similar to each other
but differ only in their consequents. Mamdani fuzzy inference method
uses fuzzy sets as the rule consequent while TS method uses functions
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of input variables as the rule consequent and the Tsukamoto inference
method uses fuzzy set with a monotonical membership function as the
rule consequent.

7.4.1 Mamdani’s Fuzzy Inference Method

Among the above mentioned inference methods, the Mamdani model
is the commonly used method due to its simple min-max structure. The
model was proposed by Mamdani (1975) as an attempt to control a
steam engine and boiler combination by synthesizing a set of linguistic
control rules obtained from experienced human operators. An example
of a Mamdani inference system is shown in Figure 7.14. The following
flowchart in Figure 7.15 explains the operations involved in computing
the FIS using the Mamdani model.

The steps involved in the flowchart are explained below:
Generate Fuzzy Rules: The crisp values obtained from the physical world
are converted to its equivalent linguistic variables. A set of linguistic
statements form a fuzzy rule. The decision is made by the fuzzy inference
system using these fuzzy rules. The fuzzy rules are of the form

IF (input1 is Linguistic variable1) AND OR (input2 is Linguistic
variable2) AND OR ... THEN (output is Linguistic variablen)

FIGURE 7.14: The Scheme of Mamdani Fuzzy Inference
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FIGURE 7.15: Operations Involved in the Mamdani Inference
Method

The input and output variables are defined by means of membership
functions. The process of converting the crisp value obtained from the
external world with the aid of sensors to its equivalent fuzzy linguistic
value is referred to as fuzzification.

Fuzzification: The process of converting crisp values to fuzzy linguistic
variables is known as fuzzification. Fuzzification is a two step process as
discussed earlier involving steps such as assigning fuzzy labels and then
assigning a numerical meaning to each label.

Each crisp input is assigned a fuzzy label in the universe of discourse.
For example for the input parameter height fuzzy labels can be “tall”,
“short”, “Normal”, “very tall” and “very short”.

Membership functions are formed to assign a numerical meaning to
each label. The range of the input value that corresponds to a specific
label can be identified by the membership function. Though there are
different membership function shapes, triangular and trapezoidal mem-
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bership functions are commonly used to avoid time and space complexity.
Fuzzy combination:The Boolean operators such as “AND” and “OR”

are used as connectives in the fuzzy rules. These operators are known as
fuzzy combination operators since they are used to combine more than
one antecedent part.

The fuzzy AND is expressed as

µAIB = min(µA(x), µB(x))

Though the fuzzy AND is similar to the Boolean AND the difference
is that, the Boolean AND can perform with only 0 and 1, while the fuzzy
AND performs for the numbers between 0 and 1.

The fuzzy OR is expressed as

µAY B = max(µA(x), µB(x))

Though the fuzzy OR is similar to the Boolean OR the difference is
that, the Boolean OR can perform with only 0 and 1, while the fuzzy
OR performs for the numbers between 0 and 1.

Consequence: Using the combination operators AND/OR the fuzzified
inputs are combined and the rule strengths are determined. Then the
output membership functions are clipped at the rule strength to obtain
the consequence. The rule consequent is correlated with the truth value
of the antecedent by cutting the consequent membership function at the
level of the antecedent truth. This process is referred to as clipping or
alpha cut. The top most membership function is cut, therefore some
information loss occurs. In order to preserve the unique shape of the
membership function scaling is preferred over clipping. In scaling the
degree of the membership function of the rule consequent is multiplied by
the truth value of the antecedent, thus reducing the loss of information.

Aggregation of Outputs: The process of unification of the outputs of
all the rules is known as aggregation. The clipped or scaled membership
functions are combined into a single fuzzy set. Each individual fuzzy rule
yields a consequence, from which the overall output is to be computed.
All the consequences are aggregated by using the “AND” or “OR” con-
nectives. The process of aggregating the rules using “AND” connective
is known as conjunctive aggregation and the process of aggregating the
rules using “OR” connective is known as disjunctive aggregation.

Defuzzification: The final step in the Mamdani Inference method is
defuzzification. In order to obtain a crisp output number several defuzzif-
cation methods can be used. The aggregated output from the previous
step acts as the input to the defuzzification module and outputs a single
crisp number. Though there are several defuzzification methods such as
max membership principle, weighted average, centroid, center of sums,
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max mean, etc., and the most commonly used method is the centroid
method. This method computes a defuzzification value which slices the
aggregate set into two equal parts. Mathematically the defuzzified value
is computed as ∫

µA(z)zdz
∫

µA(z)zdz

where z* is the defuzzified output, µA(z) is the aggregated membership
function and z is the output variable.

7.4.2 Takagi–Sugeno Fuzzy Inference Method

The Takagi–Sugeno model also known as TS method was proposed
by Takagi and Michio Sugeno in 1985 in order to develop a systematic
approach to generate fuzzy rules. The Sugeno type fuzzy inference is
similar to the Mamdani inference, they differ from each other in their
rule consequent. The TS method was developed to function as an efficient
model for systems whose input output relations are well defined. In the
TS method also known as the parametric method the consequents are
linear parametric equations represented in terms of the inputs of the
system. The general form of a TS rule is

IF antecedent1 AND antecedent2 THEN output = f(x, y)
︸ ︷︷ ︸

consequent

Here output = f (x,y) is a crisp function in the consequent. This mathe-
matical function can either be linear or nonlinear. Most commonly linear
functions are used and adaptive techniques are used for nonlinear equa-
tions. The membership function of the rule consequent is a single spike
or a singleton in the TS method.

A few examples of the TS method of inference are

IF x is small THEN y = 3x−2

IF x is large THEN y = x + y + 5

A zero order Sugeno fuzzy model uses the rules of the form,

IF antecedent1 AND antecedent2 THEN output = k
︸ ︷︷ ︸

consequent

where k is a constant.
In such as case the output of each fuzzy rule will be a constant. The

evaluation of fuzzy rules using Sugeno method is shown in Figure 7.16.
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FIGURE 7.16: The Scheme of Sugeno Inference Method

In Sugeno method the operational steps are similar to the Mamdani
inference method. It goes through the same set of steps starting from
generation of fuzzy rules to aggregation of rules. The rule evaluation
varies when compared with the Mamdani method of inference. Since
each rule has a crisp output, the overall output is obtained by weighted
average method of defuzzification. Making use of the weighted average
method of defuzzification reduces the time consuming process of defuzzi-
fication performed in a Mamdani model. Moreover, since the only fuzzy
part of the Sugeno model is its antecedent, a clear distinction can be
made between the fuzzy and non-fuzzy part.

Sugeno method is computationally effective and is well suited for adap-
tive and optimization problems, making it more effective in the area of
control systems. Sugeno controllers usually have far more adjustable pa-
rameters in the rule consequent and the number of the parameters grows
exponentially with the increase of the number of input variables.

7.4.3 Tsukamoto Fuzzy Inference Method

In the Tsukamoto fuzzy model, the rule consequent is represented with
a monotonical membership function. The general form of a Tsukamoto
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FIGURE 7.17: The Scheme of Tsukamoto Inference Model

rule is

IF antecedent1 AND antecedent2 THEN output = membership function
︸ ︷︷ ︸

consequent

This method also differs from the Mamdani and Sugeno in terms of
its rule consequent. The Tsukamoto method of fuzzy inference in shown
in Figure 7.17.

The output of each rule is defined as a crisp value induced by the firing
strength of the rule. The Tsukamoto model also aggregates each of the
rule’s output using weighted average method of defuzzification thereby
reducing the time consumed for the process of defuzzification.

7.5 Fuzzy Inference Systems in MATLAB

The input crisp values can be mapped to the crisp output by means
of using fuzzy logic and this process is referred as fuzzy inference. This
mapping offers a foundation from which decisions are made. The fuzzy
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inference involves all processes membership functions, logical fuzzy op-
erations, and rule base. In that respect there are two types of fuzzy
inference systems that could be implemented in the MATLAB’s Fuzzy
Logic Toolbox: Mamdani-type and Sugeno-type. These inference types
have slight differences in the method of determining the output.

Fuzzy inference systems have been successfully applied in fields such as
automatic control, data classification, decision analysis, expert systems,
and computer vision. Due to its multidisciplinary nature, fuzzy inference
systems are related with a number of names, such as fuzzy-rule-based
systems, fuzzy expert systems, fuzzy modeling, fuzzy associative mem-
ory, fuzzy logic controllers, and just fuzzy systems.

The most commonly used inference type is the Mamdani’s fuzzy infer-
ence method. Mamdani’s technique was among the first control systems
built applying fuzzy set theory. This technique was proposed in 1975 by
Ebrahim Mamdani to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained from experienced
human operators. Mamdani’s effort was based on Lotfi Zadeh’s 1973
paper on fuzzy algorithms for complex systems and decision processes.

Mamdani-type inference, as defined for Fuzzy Logic Toolbox, antici-
pates the output membership functions to be fuzzy sets. After the aggre-
gation process, there is a fuzzy set for each output variable that needs
defuzzification. It is possible, and in many cases much more efficient,
to use a single spike as the output membership function rather than
a distributed fuzzy set. This type of output is sometimes known as a
singleton output membership function, and it can be thought of as a
pre-defuzzified fuzzy set. It enhances the efficiency of the defuzzifica-
tion process because it greatly simplifies the computation required by
the more general Mamdani method, which finds the centroid of a 2D
function. Rather than integrating across the two-dimensional function
to find the centroid, you use the weighted average of a few data points.
Sugeno-type systems support this type of model. In general, Sugeno-type
systems can be used to model any inference system in which the output
membership functions are either linear or constant.

There are five primary GUI tools shown in Figure 7.18 for building,
editing, and observing fuzzy inference systems in Fuzzy Logic Toolbox:

• Fuzzy Inference System (FIS) Editor

• Membership Function Editor

• Rule Editor

• Rule Viewer

• Surface Viewer
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a) FIS Editor b) MF Editor

c) Rule E ditor d) Ru le Viewer

e) Sur face Viewer

FIGURE 7.18: GUIs in Fuzzy Logic Toolbox
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These GUIs are dynamically linked, in that the changes made to the
FIS using one of them, can affect any of the other open GUIs.

The number of inputs, their names etc are handled by the FIS ed-
itor. The FIS editor window shown in Figure 7.18a can be opened by
entering “fuzzy” in the MATLAB command window. There is no limit
on the number of inputs. But, the number of inputs may be limited
by the available memory of the machine upon which the inference is
implemented.

The Membership Function Editor is used to define the shapes and type
of all the membership functions associated with each variable. The MF
editor window shown in Figure 7.18b can be opened from the FIS editor
window by selecting “Edit” and then choosing “Membership functions”
from the drop down menu.

The Rule Editor is used editing the list of rules based on the input and
output parameters and this rule base defines the behavior of the system.
The Rule editor window shown in Figure 7.18c can be opened from the
FIS editor window by selecting “Edit” and then choosing “Rules” from
the drop down menu.

A Rule Viewer and a Surface Viewer shown in Figure 7.18d and 7.18e
are used to view the status of the FIS editor and can be opened from the
Rule editor window by selecting “Edit” and then choosing “Rules” from
the drop down menu. The Rule Viewer is a MATLAB based display
of the fuzzy inference and is a read only tool. The rule base can be
diagnosed and the influence of membership functions on the output can
be studied using the rule viewer. The Surface Viewer is used to display
the dependency of one of the outputs on any one or two of the inputs-that
is, it generates and plots an output surface map for the system.

These five primary editors can interact and exchange information
among them. All these editors can exchange inputs and outputs with the
MATLAB workspace. Any changes in one specific editor are reflected in
the other editors also. For instance, if the names of the membership func-
tions are changed using the Membership Function Editor, those changes
are updated in the rules shown in the Rule Editor. The FIS Editor,
the Membership Function Editor, and the Rule Editor are all capable
of reading and modifying the FIS data, but the Rule Viewer and the
Surface Viewer do not modify the FIS data whereas they serve as read
only.

7.5.1 Mamdani-Type Fuzzy Inference

Consider a two input one output fuzzy washing machine with input
parameters “amount of dirt” and “type of dirt” and the output param-
eter “washing time”. The rules can be formed as follows:
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FIGURE 7.19: Basic Structure of the Three-rule Washing Machine

• IF amount of dirt is More AND type of dirt is Greasy THEN
washing time is Too Long
item IF amount of dirt is Medium AND type of dirt is Greasy
THEN washing time is Long

• IF amount of dirt is Less AND type of dirt is Greasy THEN wash-
ing time is Long

• IF amount of dirt is More AND type of dirt is Medium THEN
washing time is Long

• IF amount of dirt is Medium AND type of dirt is Medium THEN
washing time is Medium

• IF amount of dirt is Less AND type of dirt is Medium THEN
washing time is Medium

• IF amount of dirt is More AND type of dirt is Non Greasy THEN
washing time is Medium

• IF amount of dirt is Medium AND type of dirt is Non Greasy
THEN washing time is Short

• IF amount of dirt is Less AND type of dirt is Non Greasy THEN
washing time is Too Short

For simplicity we consider three rules and the basic structure of the
three-rule with two-input, one-output, is shown in Figure 7.19.

All the information streams from left to right, that is from two inputs
to a single output. The rules of fuzzy logic systems are parallel processed.
Rather than sharp flipping between manners based on breakpoints, we
will glide smoothly from areas where the system’s behavior is dominated
by either one rule or another.
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FIGURE 7.20: Qualifying Inputs through Membership Function

The fuzzy inference process is a five step process consisting of the steps
such as fuzzification of the input variables, application of the fuzzy op-
erator (AND or OR) in the antecedent, implication from the antecedent
to the consequent, aggregation of the consequents across the rules, and
defuzzification. These steps are elaborated more clearly in the following
sections.

Fuzzify Inputs

The initial step is to acquire the inputs and find the degree to which
they belong. This degree is determined to each of the appropriate fuzzy
sets via membership functions. The input is a crisp value that is limited
to the universe of discourse and the output is a fuzzy grade of member-
ship in the characterizing linguistic set which is always in the interval
[0,1].

The illustration used in this section is built based on three rules, and
each of the rules depends on concluding the inputs into a number of
different fuzzy linguistic sets like “amount of dirt is More”, “type of dirt
is Greasy”, etc. Prior to evaluating the rules, the inputs are fuzzified
according to each of these linguistic sets. Figure 7.20 shows how well
the input is qualified through its membership function, as the linguistic
variable “More” and “Less”.

In this manner, each input is fuzzified over all the qualifying member-
ship functions required by the rules.

Application of the Fuzzy Operator

After fuzzifying the input values, the degree to which each component
of the antecedent has been fulfilled for each rule is known. If the an-
tecedent of a given rule bears more than one part, the fuzzy operator is
employed to find one number that represents the result of the antecedent
for that rule. This number will then be applied to the output function.
The input to the fuzzy operator is two or more membership values from
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FIGURE 7.21: Fuzzy AND Operator “min”

fuzzified input variables and the output is a single truth-value.
In the MATLAB’s Fuzzy Logic Toolbox, two inbuilt AND methods

and two inbuilt OR methods are supported. The AND functions are
the min (minimum) and prod (product) functions. The OR methods
are the max (maximum), and the probabilistic OR method probor. The
probabilistic OR method (also known as the algebraic sum) is calculated
according to the equation

probor(a, b) = a + b − ab

Along with these inbuilt methods, the user can create his/her own meth-
ods for AND and OR by writing any function and setting that to be the
method of choice. Consider the rule of the washing machine example,
“IF amount of dirt is Less AND type of dirt is Greasy THEN washing
time is Too Long”. Here there are two parts in the antecedent section
of the rule in terms of amount of dirt and the type of dirt. These two
antecedents are connected by the fuzzy AND operator, whose operation
is shown in Figure 7.21. The fuzzy AND operator selects the minimum
of the two values, 0.3 and 0.8 and returns the minimum value 0.3.

Application of Implication

Prior to employing the implication technique, the rule’s weight must
be considered. All the rules have a weight (value between 0 and 1), which
is applied to the value given by the antecedent. Normally the weight value
is 1 and therefore it does not influence the implication process.

As soon as suitable weight has been designated to each rule, the im-
plication method is enforced. A consequent is a fuzzy set constituted
by a membership function and reshaped utilizing a function associated
with the antecedent as shown in Figure 7.22. The antecedant is a single
number which is presented as input for the implication process, and the
output of the implication process is a fuzzy set. The implication process
is implemented for each and every rule. The MATLAB’s fuzzy logic tool-
box supports two inbuilt methods, the AND method: min (minimum),
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FIGURE 7.22: Fuzzy AND Operator “min”

which truncates the output fuzzy set, and prod (product), which scales
the output fuzzy set produced by the implication process.

Aggregation of the Outputs

The decisions in fuzzy sets are based on testing of all of the rules in
an FIS editor, all the rules should be related some way so as to make a
decision. All the fuzzy sets that are responsible for generating the output
are combined into a single independant fuzzy set in the aggregation pro-
cess. Aggregation takes place only once for each output variable, exactly
before the last step, defuzzification. The input of the aggregation pro-
cess is the list of truncated output functions returned by the implication
process for each rule. The output of the aggregation process is one fuzzy
set for each output variable.

As long as the aggregation method is commutative, then the order in
which the rules are executed is insignificant. This step uses three inbuilt
methods of the MATLAB’s fuzzy logic toolbox such as: max (maximum),
probor (probabilistic OR), and sum (sum of each rule’s output set).

In Figure 7.23, all three rules have been placed collectively to demon-
strate the output of each rule is aggregated into a single fuzzy set whose
membership function assigns a weight value for every output value.

Defuzzify

The aggregate fuzzy output from the previous step is taken as input to
the defuzzification process and the output of the defuzzification process
is a single value. Since the aggregate of a fuzzy set from the previous step
comprehends a range of output values, it is necessary that the aggregate
output must be defuzzified in order to resolve a single output value from
the set (Figure 7.24).

The most common defuzzification method is the centroid method,
which returns the center of area under the curve. MATLAB’s fuzzy logic

© 2010 by Taylor and Francis Group, LLC



Fuzzy Inference and Expert Systems 291

FIGURE 7.23: Aggregation of the Output of Each Rule

toolbox supports five inbuilt methods such as centroid, bisector, middle
of maximum, largest of maximum, and smallest of maximum.

The Fuzzy Logic Toolbox aims to provide an open and easily modi-
fiable fuzzy inference system structure. Thus, the Fuzzy Logic Toolbox
is designed to be user friendly, to customize the fuzzy inference process
for the required application. For instance, the user could replace various
MATLAB functions for any of the default functions used in the five steps
elaborated above: membership functions, AND methods, OR methods,
implication methods, aggregation methods, and defuzzification methods.

Advantages of the Mamdani Method

• It’s intuitive.
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FIGURE 7.24: Defuzzified Output Using Centroid Method

• It has widespread acceptance.

• It’s well-suited to human input.

7.5.2 Sugeno-Type Fuzzy Inference

The entire fuzzy inference process elaborated to in the previous sec-
tion is called Mamdani’s fuzzy inference method, which is one of the
primary methodology. In this section, the so-called Sugeno, or Takagi-
Sugeno-Kang (TS method) method of fuzzy inference is discussed. The
TS method was introduced in 1985, similar to the Mamdani method in
several aspects. The first steps of the fuzzy inference process, fuzzifying
the inputs and applying the fuzzy operator, are similar to that of Mam-
dani method. The main difference between Mamdani and Sugeno is that
the Sugeno output membership functions are either linear or constant.

The Takagi Sugeno fuzzy model has the rules in the form

If “x is X” and “y is Y”, then “z = g(z)”

For a zero-order Sugeno model, the output level z can be a constant or
a linear function. In this Sugeno type inference system the consequent
part is a crisply defined function. The output level z of each rule is
weighted by the firing strength w of the rule. The firing strength for a
two input system is given by

w = AndMethod (G1(x), G2(y))

where G1,2 (.) are the membership functions for Inputs 1 and 2. The
final output of the system is the weighted average of all rule outputs,
computed as

Final Output =
PN

i=1 WiZi
P

N
i=1 Wi

.
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FIGURE 7.25: Basic Operation of the Sugeno Rule

A Sugeno rule operates as shown in Figure 7.25
Figure 7.26 shows the Sugeno model for a two input one output fuzzy

washing machine with input parameters “amount of dirt” and “type of
dirt” and the output parameter “washing time”. The rules can be formed
as follows:

IF amount of dirt is More AND type of dirt is Greasy THEN
washing time is Too Long

IF amount of dirt is Medium AND type of dirt is Greasy THEN
washing time is Long

IF amount of dirt is Less AND type of dirt is Greasy THEN wash-
ing time is Long

IF amount of dirt is More AND type of dirt is Medium THEN
washing time is Long

IF amount of dirt is Medium AND type of dirt is Medium THEN
washing time is Medium

IF amount of dirt is Less AND type of dirt is Medium THEN
washing time is Medium

IF amount of dirt is More AND type of dirt is Non Greasy THEN
washing time is Medium

IF amount of dirt is Medium AND type of dirt is Non Greasy
THEN washing time is Short

IF amount of dirt is Less AND type of dirt is Non Greasy THEN
washing time is Too Short
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FIGURE 7.26: Sugeno Fuzzy Model

Three rules are illustrated in Figure 7.26. Each rule is considered
as defining the location of a moving singleton. To understand Sugeno
method, the singleton output spikes are capable of moving in a linear
fashion in the output space, depending on the input. Thus the system
notation is very compact and efficient. Higher order Sugeno fuzzy models
can be developed, but they introduce significant complexity with little
obvious merit. Sugeno fuzzy models whose output membership functions
are greater than first order are not supported by the Fuzzy Logic Tool-
box.

Due to the linear dependency of rule base on the input variables of
a system, the Sugeno method is perfect for serving as an interpolating
supervisor of multiple linear controllers to different operating conditions
of a dynamic nonlinear system. For instance, the operation of an aircraft
may change dramatically with altitude and Mach number. Though lin-
ear controllers are easy to compute and well-suited to any given flight
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condition, it must be updated regularly and smoothly to keep up with
the changing state of the flight vehicle. In such cases, a Sugeno fuzzy
inference system is extremely well suited to the task of smoothly inter-
polating the linear gains that would be applied across the input space;
it’s a natural and efficient gain scheduler. Similarly, a Sugeno system is
suited for modeling nonlinear systems by interpolating between multiple
linear models.

Advantages of the Sugeno Method

• It’s computationally efficient.

• It works well with linear techniques (e.g., PID control).

• It works well with optimization and adaptive techniques.

• It has guaranteed continuity of the output surface.

• It’s well-suited to mathematical analysis.

7.5.3 Conversion of Mamdani to Sugeno System

The MATLAB command-line function mam2sug can be used to con-
vert a Mamdani system into a Sugeno system (not necessarily with a
single output) with constant output membership functions. It uses the
centroid associated with all of the output membership functions of the
Mamdani system. The following Mamdani system mam21.fis is taken as
the input.

% mam21.fis $

[System]

Name = ’mam21’

Type = ’mamdani’

NumInputs = 2

NumOutputs = 1

NumRules = 4

AndMethod = ’min’

OrMethod = ’max’

ImpMethod = ’min’

AggMethod = ’max’

DefuzzMethod = ’centroid’

[Input1]

Name = ’angle’

Range = [-5 5]
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NumMFs = 2

MF1=’small’:’gbellmf’,[5 8 -5 0]

MF2=’big’:’gbellmf’,[5 8 5 0]

[Input2]

Name = ’velocity’

Range = [-5 5]

NumMFs = 2

MF1=’small’:’gbellmf’,[5 2 -5 0]

MF2=’big’:’gbellmf’,[5 2 5 0]

[Output1]

Name = ’force’

Range = [-5 5]

NumMFs = 4

MF1=’negBig’:’gbellmf’,[1.67 8 -5 0]

MF2=’negSmall’:’gbellmf’,[1.67 8 -1.67 0]

MF3=’posSmall’:’gbellmf’,[1.67 8 1.67 0]

MF4=’posBig’:’gbellmf’,[1.67 8 5 0]

[Rules]

1 1, 1 (1) : 1

1 2, 2 (1) : 1

2 1, 3 (1) : 1

2 2, 4 (1) : 1

The code implementing the mam2sug function is shown below:

mam fismat = readfis(’mam21.fis’);

sug fismat = mam2sug(mam fismat);

subplot(1,2,1);

gensurf(mam fismat, [1 2], 1);

title(’Mamdani system (Output)’);

subplot(1,2,2);

gensurf(sug fismat, [1 2], 1);

title(’Sugeno system (Output)’);

The output in graphical format is shown in Figure 7.27.
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FIGURE 7.27: Illustration of Mamdani to Sugeno Conversion

7.6 Fuzzy Automata and Languages

Due to their diverse behavior application as a discrete model, cellular
automata have created more interest in the implementation for several
processes. Wolfram’s discussion on universality and complexity in cellu-
lar automata described four classes of behavior for automata: class 1 for
homogeneous stable behavior, class 2 for simple periodic patterns, class
3 for chaotic aperiodic behavior, and class 4 for complex behavior which
generates local structures. Recent work by Cattaneo, Flocchini, Mauri,
Quaranta Vogliotti, and Santoro introduced an alternate classification
scheme that can be obtained by generalizing Boolean cellular automata
to a fuzzy automata and then observing the qualitative behavior of a
Boolean window embedded in a fuzzy domain. These automata can be
classified according to whether the Boolean behavior dominates, a mix-
ture of Boolean and Fuzzy behavior appears, or purely fuzzy behavior ap-
pears. The fuzzy behavior can further be divided into subclasses with ho-
mogeneous and non-homogeneous behavior. Classical cellular automata
consist of an array of states, typically selected from a finite set, along
with local rules for updating the array of states. Some of the simplest
automata are defined on a one dimensional lattice of cells, are Boolean
(two state), and base the future state of a cell upon the states in a 3-cell
neighborhood consisting of the cell and its left and right neighbors. Let
denote the value, 0 or 1, of the cell at position i at time t.

Table 7.1 shows the behavior of an example automation. It is called
Rule 17 since the list of results, , gives the binary digits of 17. Rule 17
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TABLE 7.1: The Definition of Rule 17

at
t−1 at

i at
t+1 at+1

i

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

can be readily transformed into disjunctive normal form by selecting a
variable or its negation for each of the three input states for each possible
1 output. Thus, we get

at+1
i = (a−t

i−1 ∧ a−t
i ∧ a−t

i+1) ∨ (a−t
i−1 ∧ a−t

i ∧ a−t
i+1)

where we denote logical “not” with an overbar. Note that we can capture
the essential details of this representation with the matrix

(
0 0 0
1 0 0

)

The rows of the matrix are the two input rows in Table 7.1 that have
output value 1.

This definition is then converted into a fuzzy rule by reinterpreting
the logical functions in this formula. In fuzzy automata 0 is imagined as
false or dead, and 1 is imagined as true or alive and therefore logical “not
x” is consistent with 1-x. The logical operation OR between variables
x and y (x OR y) can be expressed as min 1, x+y while the logical
AND operation (x AND y) is represented by multiplication: x * y. This
admits the users to view the disjunctive normal form for Rule 17 as a
formula where cells have values in the interval [0,1] that is consistent
with the Boolean interpretation on the endpoints 0 and 1. Thus, a fuzzy
automation is incurred.

7.7 Fuzzy Control

Most of the intelligent systems are compared with the analogy of bi-
ological systems. The intelligent systems perform operations similar to
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human beings like controlling tasks, recognizing patterns, or making de-
cisions. Though the machines are capable of performing human inelli-
gence, there exists a mismatch between humans and machines. Humans
reason facts in an uncertain, imprecise, and fuzzy way, whereas machine
reasoning are based on binary reasoning. Fuzzy logic is a means to cre-
ate machines to be more intelligent by encouraging them to reason in a
fuzzy manner like humans.

Controllers that combine intelligent and conventional techniques are
generally used in the intelligent control of complex dynamic systems.
Therefore, embedded fuzzy controllers automate the traditional human
control activity.

Traditional control approach requires modeling of the physical reality
which involves three basic models as follows:

Experimental Method

Based on the random experiments conducted on a process, an input-
output relation can be characterized in the form of an input-output
table. These input-output values can be plotted in a graphical manner
also. With a thorough knowledge of the input-output, a user can de-
sign a controller. While designing a controller in this method, there are
several disadvantages like the process equipment may not be available
for experimentation, the procedure would usually be very costly, and for
a large number of input values it is impractical to measure the output
and interpolation between measured outputs, etc. Users should be aware
while determining the expected ranges of inputs and outputs to ensure
that they fall within the range of the measuring instruments available.

Mathematical Modeling

Any controlled process can be expressed in terms of difference or differ-
ential equations. These equations are solved by applying Laplace trans-
forms and z-transforms. Usually to create simple mathematical models
the process is assumed to be linear and time invariant, which implies
that the input output relations are linear and the output does not vary
with time with respect to the input value. Linear processes are worth
while since they render an expert view of the process. Likewise, there
is no general theory to obtain analytic solution of nonlinear differential
equations and consequently no comprehensive analysis tools are available
for nonlinear dynamic systems.

Another assumption is that the process parameters do not change in
time (that is, the system is time-invariant) despite system component
deterioration and environmental changes. The following problems arise
in developing a meaningful and realistic mathematical description of an
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industrial process:

(1) Poorly understood phenomena

(2) Inaccurate values of various parameters

(3) Model complexity

Heuristics Method

Based on previously obtained knowledge a process is modeled and is
referred to as the heuristic method. A heuristic rule is a logical impli-
cation of the form: If ¡condition¿ Then ¡consequence¿, or in a typical
control situation: If ¡condition¿ Then ¡action¿. Rules associate conclu-
sions with conditions. More or less, the heuristic method is similar to the
experimental method of constructing a table of inputs and correspond-
ing output values where instead of having crisp numeric values of input
and output variables, one uses fuzzy values:

IF input voltage = Large

HEN output voltage = Medium.

The advantages of the heuristic method are that:

(1) There is no need to assume the system to be linear.

(2) Heuristic rules can be integrated to the control strategies of human
operators.

Fuzzy control schemes are based on experience and experiments rather
than from mathematical models and, therefore, linguistic implementa-
tions are implemented much faster. Fuzzy control schemes require a large
number of inputs, most of which are relevant only for some special con-
ditions. Such inputs are activated only when the related condition pre-
vails. By adding a few computational overheads to the fuzzy rules, the
rule base structure remains understandable, leading to efficient coding
and system documentation.

7.7.1 Fuzzy Controllers

Almost all commercial fuzzy products such as washing machines, dish-
washers, etc. are rule-based systems that get current information in the
feedback loop from the device as it operates and control the operation of
the device. A fuzzy logic system has four blocks as shown in Figure 7.28.
The crisp values are taken as input information from the device and they
are are converted into fuzzy values. Each input fuzzy set corresponds to a
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FIGURE 7.28: Fuzzy Controller Block Diagram

fuzzification block. The universe of discourse of the input variables deter-
mines the required grading for correct per-unit operation. The grading
is really very important since the fuzzy system can be retrofitted with
other devices or ranges of operation by just altering the grading of the
input and output. The decision-making-logic influences the performance
of the fuzzy logic operations, and determines the outputs of each fuzzy
rule with reference to the knowledge base. Those are combined and con-
verted to crispy values with the defuzzification block. The output crisp
value can be calculated by the center of gravity or the weighted average.

In order to process the input to get the output reasoning there are six
steps involved in the creation of a rule based fuzzy system:

1. Identify the inputs and their ranges and name them.

2. Identify the outputs and their ranges and name them.

3. Create the degree of fuzzy membership function for each input and
output.

4. Construct the rule base that the system will operate under.

5. Decide how the action will be executed by assigning strengths to
the rules.

6. Combine the rules and defuzzify the output.

Fuzzy systems are leading in the areas of consumer products, industrial
and commercial systems, and decision support systems. Rather than
applying complex mathematical equations, fuzzy logic applies linguistic
descriptions to delineate the relationship between the input data and the
output action. Fuzzy logic offers an accessible and user-friendly front-end
to develop control applications thereby helping designers to focus on the
functional objectives, and not on the mathematical theory involved.
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7.7.2 A Fuzzy Controller in MATLAB

This section illustrates the steps in implementing a fuzzy controller
using MATLAB. The standard Fuzzy Logic Controller routine with the
five parts such as membership functions, rule base, fuzzification, fuzzy
inference, and defuzzification is as follows:

function [u]=Standard FLC(ke,kec,ku,e,ec)

% Standard FLC function

% Inputs of this function:

% 1) [ke,kec] are scales of inputs of FLC

% 2) [ku] is output scale of FLC

% 3) e,ec are error and change in error

% 4) Rule Base is a matrix, it is a m file in

the

% Output of this function:

% 1) u is output of standard FLC

%

%e.g. standard FLC(1,1,1,3,5,Rule Base(’table’))

% Part I: Member-ship Functions

%% Creates a new Mamdani-style FIS structure

a=newfis(’ST FLC’);

%% to add input parameter of e into FIS

a=addvar(a,’input’,’e’,[-5 5]);

%%% fuzzify e to E

a=addmf(a,’input’,1,’NB’,’trapmf’,[-5 -5 -4

-2]);

a=addmf(a,’input’,1,’NS’,’trimf’,[-4 -2 0]);

a=addmf(a,’input’,1,’ZE’,’trimf’,[-2 0 2]);

a=addmf(a,’input’,1,’PS’,’trimf’,[0 2 4]);

a=addmf(a,’input’,1,’PB’,’trapmf’,[2 4 5 5]);

figure(1);

plotmf(a,’input’,1);

%%% to add input parameter of ec into FIS

a=addvar(a,’input’,’ec’,[-6.25 6.25]);

%%% fuzzify ec to EC

a=addmf(a,’input’,2,’NB’,’trapmf’,[-6.25 -6.25

-5 -2.5]);

a=addmf(a,’input’,2,’NS’,’trimf’,[-5 -2.5 0]);
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a=addmf(a,’input’,2,’ZE’,’trimf’,[-2.5 0 2.5]);

a=addmf(a,’input’,2,’PS’,’trimf’,[0 2.5 5]);

a=addmf(a,’input’,2,’PB’,’trapmf’,[2.5 5 6.25

6.25]);

figure(2);

plotmf(a,’input’,2);

%%% to add input parameter of u into FIS

a=addvar(a,’output’,’Fd’,[-1.165 1.165]);

%%% fuzzify u to U

a=addmf(a,’output’,1,’NB’,’trapmf’,[-2 -2 -1

-0.67]);

a=addmf(a,’output’,1,’NM’,’trimf’,[-1 -0.67

-0.33]);

a=addmf(a,’output’,1,’NS’,’trimf’,[-0.67 -0.33

0]);

a=addmf(a,’output’,1,’ZE’,’trimf’,[-0.33 0

0.33]);

a=addmf(a,’output’,1,’PS’,’trimf’,[0 0.33

0.67]);

a=addmf(a,’output’,1,’PM’,’trimf’,[0.33 0.67

1]);

a=addmf(a,’output’,1,’PB’,’trapmf’,[0.67 1 2

2]);

figure(3);

plotmf(a,’output’,1);

% Part II: Rule-bases

[Rule Base]=[ 1 1 7 1 1

1 2 6 1 1

1 3 5 1 1

1 4 4 1 1

1 5 4 1 1

2 1 6 1 1

2 2 5 1 1

2 3 4 1 1

2 4 4 1 1

2 5 4 1 1

3 1 5 1 1

3 2 4 1 1

3 3 4 1 1
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3 5 3 1 1

4 1 4 1 1

4 2 4 1 1

4 3 4 1 1

4 4 3 1 1

4 5 2 1 1

5 1 4 1 1

5 2 4 1 1

5 3 3 1 1

5 4 2 1 1

5 5 1 1 1

%%% add Rule base into FIS

a=addrule(a,Rule Base);

%

showfis(a);

showrule(a);

figure(8);

gensurf(a);

% Part III Fuzzify

%%% from e to E , ec to EC

E=ke*e;

EC=kec*ec;

%%% confine E

if E >4

E=4;

elseif E<-4

E=-4;

end

%%% confine EC

if EC >5

EC=5;

elseif EC<-5

EC=-5;

end

% Part IV Fuzzy Inference

FLC input=[E,EC];

U=evalfis(FLC input,a);

% Part V Defuzzify
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u=ku*U;

end

The above code can be used to create any application by modifying
the inputs and outputs according to the requirements of the application.

Summary

Fuzzy controllers are implemented in a more specialized way, but they
were originally developed from the concepts and definitions presented
in this chapter, especially inference and implication. In a fuzzy con-
troller the data passes through a preprocessing block, a controller, and
a postprocessing block. Preprocessing consists of a linear or nonlinear
scaling as well as a quantization in case the membership functions are
discretized (vectors); if not, the membership of the input can just be
looked up in an appropriate function. When designing the rule base, the
designer needs to consider the number of term sets, their shape, and
their overlap. The rules themselves must be determined by the designer,
unless more advanced means like self-organization or neural networks
are available. There is a choice between multiplication and minimum in
the activation. There is also a choice regarding defuzzification; center of
gravity is probably most widely used. A fuzzy expert system is an expert
system that uses fuzzy logic instead of Boolean logic. In other words, a
fuzzy expert system is a collection of membership functions and rules
that are used to reason about data. The collective rules are referred to
as knowledge base. This knowledge is applied to the input variables and
the outputs are determined, the process is known as inferencing. Infer-
ence goes through the steps starting from fuzzification to defuzzification
as discussed in this chapter. The chapter also described MATLAB im-
plementations based on fuzzy controllers and fuzzy inference.

Review Questions

1. Differentiate Mamdani and Takagi–Sugeno fuzzy rules.

2. Mention the components of a fuzzy expert system.

3. What is defuzzification? Explain the most important defuzzifica-
tion methods.
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4. Define Rule 17. How is it used in Fuzzy Automation?

5. What are the three methods used for a traditional control
approach?

6. Describe fuzzy controllers with suitable diagram.

7. Write a MATLAB code to implement the fuzzification process.

8. How will you convert Mamdani rule base into a Sugeno rule base
using MATLAB?

9. Mention a few advantages and disadvantages of Mamdani and
Sugeno methods.

10. What are fuzzy expert systems?

11. Define knowledge base.

12. Define inference and implication.
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Chapter 8

MATLAB Illustrations
on Fuzzy Systems

This chapter illustrates some applications of Fuzzy systems such as Fuzzy
Washing Machine, Fuzzy Control System, and approximation of sinu-
soidal functions in MATLAB.

8.1 Illustration 1: Application of Fuzzy Controller
Using MATLAB — Fuzzy Washing Machine

Today many household appliances have fuzzy logic built into them to
make their use easier. Fuzzy logic is found in shower heads, rice cookers,
vacuum cleaners, and just about everywhere. In this section we will look
at a simplified model of a fuzzy washing machine.

Like a real washing machine would, the model first tests how dirty the
laundry is. Once it knows how dirty the laundry is, it can easily calculate
how long it should wash it. To calculate this it uses the graph shown in
Figure 8.1:

First it always takes a base of 10 minutes. It does this so that people
are happy with its work even if they put completely clean laundry in to
wash. It then calculates to what degree it is dirty. If it is 100% dirty it
adds two minutes per piece of laundry. Of course a real washing machine
would just do these calculations in the end, but this model does it for
each individual piece so you can keep track of what is going on easier.

On the graph in Figure 8.1, the base of ten minutes is shown. The
point 0,0 is where the laundry is completely clean; non-dirty and non-
greasy. The point 0,1 is where the laundry is non-greasy, but dirty. The
point 1,0 is where it is greasy but not dirty and 1,1 is greasy and dirty.
The washing machine adds 2 minutes per piece for 100% dirty or 100 %
greasy and 4 minutes for 100% dirty and greasy.

There has been a boom for fuzzy machines in the last two decades.
This is not only because they can do things, which humans had to do

307
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FIGURE 8.1: Graphical Representation of the Time in a Fuzzy
Washing Machine

themselves until now, but also because they’re much cheaper to build
than normal binary machines.

MATLAB Code

function varargout = gui1(varargin)

% GUI1, by itself, creates a new GUI1 or raises the

existing

% singleton.

%

% H = GUI1 returns the handle to a new GUI1 or the

handle to

% the existing singleton.

%

% GUI1(’CALLBACK’,hObject,eventData,handles,...)

calls the local

% function named CALLBACK in GUI1.M with the given

input arguments.

%

% GUI1(’Property’,’Value’,...) creates a new GUI1 or

raises the

% existing singleton*. Starting from the left,

property value pairs are

% applied to the GUI before gui1 OpeningFunction

gets called. An

% unrecognized property name or invalid value makes

property application
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% stop. All inputs are passed to gui1 OpeningFcn via

varargin.

%

%

Initialization code

gui Singleton= 1;

gui State = struct(’gui Name’, mfilename, ...

’gui Singleton’, gui Singleton, ...

’gui OpeningFcn’, @gui1 OpeningFcn, ...

’gui OutputFcn’, @gui1 OutputFcn, ...

’gui LayoutFcn’, [ ] , ...

’gui Callback’, [ ]);

if nargin & & ischar(varargin1)

gui State.gui Callback = str2func(varargin1);

end

if nargout

[varargout1:nargout] = gui mainfcn(gui State,

varargin:);

else

gui mainfcn(gui State, varargin:);

end

% End of Initialization code

% - - - Executes just before gui1 is made visible

function gui1 OpeningFcn(hObject, eventdata,

handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)
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% varargin command line arguments to gui1 (see

VARARGIN)

% Choose default command line output for gui1

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes gui1 wait for user response (see

UIRESUME)

% uiwait(handles.figure1);

% - - - Outputs from this function are returned to

the command line.

function varargout = gui1 OutputFcn(hObject,

eventdata, handles)

% varargout cell array for returning output args

(see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Get default command line output from handles

structure

varargout1 = handles.output;

% - - - Executes on slider movement.

function slider1 Callback(hObject, eventdata,

handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)
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% Hints: get(hObject,’Value’) returns position of

slider

% get(hObject,’Min’) and get(hObject,’Max’) to

determine range of slider

x = get(handles.slider1,’Value’)

set(handles.text1,’String’,num2str(x))

% - - - Executes during object creation, after

setting all properties.

function slider1 CreateFcn(hObject, eventdata,

handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles empty - handles not created until after

all CreateFcns called

% Hint:slider controls usuallyhave a light gray background,

change

% ’usewhitebg’ to 0 to use default.

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,[.9 .9 .9]);

else

set(hObject,’BackgroundColor’,get(0,

’defaultUicontrolBackgroundColor’));

end

% - - - Executes during object creation, after

setting all properties.

function slider2 CreateFcn(hObject, eventdata,

handles) % hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

© 2010 by Taylor and Francis Group, LLC



312 Computational Intelligence Paradigms

% handles empty - handles not created until after

all CreateFcns called

% Hint: slider controls usually have a light gray

background,

change

% ’usewhitebg’ to 0 to use default.

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,[.9 .9 .9]);

else

set(hObject,’BackgroundColor’,get(0,’

defaultUicontrolBackgroundColor’));

end

% - - - Executes on button press in pushbutton1.

function pushbutton1 Callback(hObject, eventdata,

handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

p = get(handles.slider1,’Value’);

q = get(handles.slider2,’Value’);

a=newfis(’wash machine1’);

a = addvar(a,’input’,’x’,[0 100]);

a = addmf(a,’input’,1,’A1’,’trimf’,[0 0 50]);

a = addmf(a,’input’,1,’A2’,’trimf’,[0 50 100]);

a = addmf(a,’input’,1,’A3’,’trimf’,[50 100 100]);

a = addvar(a,’input’,’y’,[0 100]);

a = addmf(a,’input’,2,’B1’,’trimf’,[0 0 50]);

a = addmf(a,’input’,2,’B2’,’trimf’,[0 50 100]);

a = addmf(a,’input’,2,’B3’,’trimf’,[50 100 100]);

a = addvar(a,’output’,’z’,[0 60]);

a = addmf(a,’output’,1,’C1’,’trimf’,[0 8 12]);

a = addmf(a,’output’,1,’C2’,’trimf’,[8 12 20]);
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a = addmf(a,’output’,1,’C3’,’trimf’,[12 20 30]);

a = addmf(a,’output’,1,’C4’,’trimf’,[30 40 50]);

a = addmf(a,’output’,1,’C5’,’trimf’,[50 60 70]);

rulelist=[ ...

1 1 1 1 1

2 2 3 1 1

3 3 5 1 1

1 2 3 1 1

1 3 3 1 1

2 1 2 1 1

2 3 4 1 1

3 1 2 1 1

3 2 4 1 1 ];

a=addrule(a,rulelist);

z = evalfis([p q], a)

set(handles.text3,’String’,num2str(z))

set(handles.slider4,’Value’,z)

% --- Executes on slider movement.

function slider3 Callback(hObject, eventdata,

handles)

% hObject handle to slider3 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,’Value’) returns position of

slider

% get(hObject,’Min’) and get(hObject,’Max’) to

determine range of slider

% - - - Executes during object creation, after

setting all properties.

function slider3 CreateFcn(hObject, eventdata,

handles)

% hObject handle to slider3 (see GCBO)
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% eventdata reserved - to be defined in a future

version of MATLAB

% handles empty - handles not created until after

all CreateFcns called

% Hint: slider controls usually have a light gray

background, change

% ’usewhitebg’ to 0 to use default.

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,[.9 .9 .9]);

else

set(hObject,’BackgroundColor’,get(0,

’defaultUicontrolBackgroundColor’));

end

% - - - Executes on slider movement.

function slider4 Callback(hObject, eventdata,

handles)

% hObject handle to slider4 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% Hints: get(hObject,’Value’) returns position of

slider

% get(hObject,’Min’) and get(hObject,’Max’) to

determine range of slider

% - - - Executes during object creation, after

setting all properties.

function slider4 CreateFcn(hObject, eventdata,

handles)

% hObject handle to slider4 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB
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% handles empty - handles not created until after

all CreateFcns called

% Hint: slider controls usually have a light gray

background, change

% ’usewhitebg’ to 0 to use default.

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,[.9 .9 .9]);

else

set(hObject,’BackgroundColor’,get(0,

’defaultUicontrolBackgroundColor’));

end

Output

Figures 8.2 and 8.3 show the Graphical User Interface of the Fuzzy
Washing Machine when the dirtiness is 70.2041% and 22.449% respec-
tively.

Simulation Results

The inputs variables “x” and “y” denote the type of dirt and the
percentage of dirtiness respectively. The output variable “z” denotes the
time taken by the washing machine to remove the dirt. Some observations
are tabulated in Table 8.1

Thus the above section discussed the operation of a fuzzy washing
machine with the GUI and the fuzzy controller designed in MATLAB
along with some concluding observations.

TABLE 8.1: Observations of the Fuzzy Washing Machine

Type of Percentage of’ Washing
S No Dirt “x” Dirtiness “y” Time “y”

1 72.58 39.59 29.07
2 14.92 03.67 10.39
3 12.50 40.00 17.63
4 26.62 73.06 30.43
5 85.46 87.35 40.27
6 96.37 97.55 49.63
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FIGURE 8.2: GUI of the Fuzzy Washing machine when the dirtiness
is 70.2041%

FIGURE 8.3: GUI of the Fuzzy Washing machine when the dirtiness
is 22.449%
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8.2 Illustration 2 - Fuzzy Control System
for a Tanker Ship

This program simulates a fuzzy control system for a tanker ship. It
has a fuzzy controller with two inputs, the error in the ship heading (e)
and the change in that error (c). The output of the fuzzy controller is the
rudder input (delta). We want the tanker ship heading (psi) to track the
reference input heading (psi r). We simulate the tanker as a continuous
time system that is controlled by a fuzzy controller that is implemented
on a digital computer with a sampling interval of T.

This program can be used to illustrate:

i) Writing code a fuzzy controller (for two inputs and one output, il-
lustrating some approaches to simplify the computations, for trian-
gular membership functions, and either center-of-gravity or center-
average defuzzification).

ii) Tuning the input and output gains of a fuzzy controller.

iii) Effect of changes in plant conditions (“ballast” and “full”).

iv) How sensor noise (heading sensor noise), plant disturbances (wind
hitting the side of the ship), and plant operating conditions (ship
speed) can affect performance.

v) How improper choice of the scaling gains can result in oscillations
(limit cycles).

vi) How an improper choice of the scaling gains (or rule base) can
result in an unstable system.

vii) The shape of the nonlinearity implemented by the fuzzy controller
by plotting the input-output map of the fuzzy controller.

MATLAB Code

clear% Clear all variables in memory

% Initialize ship parameters

% (can test two conditions, ‘‘ballast" or ‘‘full"):

ell=350; % Length of the ship (in meters)
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u=5; % Nominal speed (in meters/sec)

% u=3; % A lower speed where the ship is more

difficult to control

abar=1; % Parameters for nonlinearity

bbar=1;

% The parameters for the tanker under ‘‘ballast" conditions

% (a heavy ship) are:

K 0=5.88;

tau 10=-16.91;

tau 20=0.45;

tau 30=1.43;

% The parameters for the tanker under ‘‘full"

conditions (a ship

% that weighs less than one under ‘‘ballast" conditions)

are:

% K 0=0.83;

% tau 10=-2.88;

% tau 20=0.38;

% tau 30=1.07;

% Some other parameters are:

K=K 0*(u/ell);

tau 1=tau 10*(ell/u);

tau 2=tau 20*(ell/u);

tau 3=tau 30*(ell/u);

% Initialize parameters for the fuzzy controller

nume=11; % Number of input membership functions for the e

% universe of discourse (can change this but must

also

% change some variables below if you make such

a change)

numc=11; % Number of input membership functions for the c

% universe of discourse (can change this but must

also

% change some variables below if you make such

a change)
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% Next, we define the scaling gains for tuning membership

functions for

% universes of discourse for e, change in e (what we

call c) and

% delta. These are g1, g2, and g0, respectively

% These can be tuned to try to improve the performance.

% First guess:

g1=1/pi;,g2=100;,g0=8*pi/18; % Chosen since:

% g1: The heading error is at most 180 deg (pi

rad)

% g2: Just a guess - that ship heading will

change at most

% by 0.01 rad/sec (0.57 deg/sec)

% g0: Since the rudder is constrained to move

between +-80 deg

% Tuning:

g1=1/pi;,g2=200;,g0=8*pi/18; % Try to reduce the overshoot

g1=2/pi;,g2=250;,g0=8*pi/18; % Try to speed up the response

% g1=2/pi;,g2=0.000001;,g0=2000*pi/18; % Values tuned to

get oscillation

% (limit cycle) for COG, ballast, and nominal speed with

no sensor

% noise or rudder disturbance):

% g1: Leave as before

% g2: Essentially turn off the derivative gain

% since this help induce an oscillation

% g0: Make this big to force the limit cycle

% In this case simulate for 16,000 sec.

% g1=2/pi;,g2=250;,g0=-8*pi/18; % Values tuned to get

an instability

% g0: Make this negative so that when there

% is an error the rudder will drive the

% heading in the direction to increase the error

% Next, define some parameters for the membership functions

we=0.2*(1/g1);

% we is half the width of the triangular input

membership

% function bases (note that if you change g0, the

base width

% will correspondingly change so that we always
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end

% up with uniformly distributed input membership

functions)

% Note that if you change nume you will need to

adjust the

% ‘‘0.2" factor if you want membership functions

that

% overlap in the same way.

wc=0.2*(1/g2);

% Similar to we but for the c universe of

discourse

base=0.4*g0;

% Base width of output membership fuctions of

the fuzzy

% controller

% Place centers of membership functions of the fuzzy

controller:

% Centers of input membership functions for the e

universe of

% discourse of fuzzy controller (a vector of centers)

ce=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/g1);

% Centers of input membership functions for the c

universe of

% discourse of fuzzy controller (a vector of centers)

cc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/g2);

% This next matrix specifies the rules of the fuzzy

controller.

% The entries are the centers of the output membership

functions.

% This choice represents just one guess on how to

synthesize

% the fuzzy controller. Notice the regularity

% of the pattern of rules. Notice that it is scaled by g0,

the

% output scaling factor, since it is a normalized rule

base.

% The rule base can be tuned to try to improve performance.
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rules=

[1 1 1 1 1 1 0.8 0.6 0.3 0.1 0;

1 1 1 1 1 0.8 0.6 0.3 0.1 0 -0.1;

1 1 1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3;

1 1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6;

1 1 0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8;

1 0.8 0.6 0.3 0.1 0 0.1 -0.3 -0.6 -0.8 -1;

0.8 0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1;

0.6 0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1;

0.3 0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1 -1;

0.1 0 -0.1 -0.3 -0.6 -0.8 -1 -1 -1 -1 -1;

0 -0.1 -0.3 -0.8 -1 -1 -1 -1 -1 -1]*g0;

% Now, you can proceed to do the simulation or simply view

the nonlinear

% surface generated by the fuzzy controller.

flag1=input(’\ n Do you want to simulate the \ n fuzzy

control system \ n for the

tanker? \ n (type 1 for yes and 0 for no) ’);

if flag1==1,

% Next, we initialize the simulation:

t=0; % Reset time to zero

index=1; % This is time’s index (not time, its index).

tstop=4000; % Stopping time for the simulation (in

% seconds)

step=1; % Integration step size

T=10;% The controller is implemented in discrete

% time and

% this is the sampling time for the

% controller.

% Note that the integration step size

% and the sampling

% time are not the same. In this way

% we seek to simulate

% the continuous time system via the

% Runge-Kutta method and

% the discrete time fuzzy controller as

% if it were
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% implemented by a digital computer.

% Hence, we sample

% the plant output every T seconds

% and at that time

% output a new value of the controller

% output.

counter=10; % This counter will be used to count the

% number of integration

% steps that have been taken in the current

% sampling interval.

% Set it to 10 to begin so that it will

% compute a fuzzy controller

% output at the first step.

% For our example, when 10 integration steps

% have been

% taken we will then we will sample the ship

% heading

% and the reference heading and compute a

% new output

% for the fuzzy controller.

eold=0; % Initialize the past value of the error (for

% use

% in computing the change of the error, c).

% Notice

% that this is somewhat of an arbitrary

% choice since

% there is no last time step. The same

% problem is

% encountered in implementation.

x=[0;0;0]; % First, set the state to be a vector

x(1)=0; % Set the initial heading to be zero

x(2)=0; % Set the initial heading rate to be zero.

% We would also like to set x(3) initially

% but this

% must be done after we have computed the

% output

% of the fuzzy controller. In this case,

% by

% choosing the reference trajectory to be

% zero at the beginning and the other

% initial conditions

% as they are, and the fuzzy controller as

% designed,
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% we will know that the output of the

% fuzzy controller

% will start out at zero so we could have

% set

% x(3)=0 here. To keep things more general,

% however,

% we set the intial condition immediately

% after

% we compute the first controller output

% in the

% loop below.

psi r old=0; % Initialize the reference trajectory

% Next, we start the simulation of the system.

% This is the main loop for the simulation of fuzzy

% control system.

while t <= tstop

% First, we define the reference input psi r (desired

% heading).

if t<100, psi r(index)=0; end

% Request heading of 0 deg

if t>=100, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>2000, psi r(index)=0; end

% Then request heading of 0 deg

% if t>4000, psi r(index)=45*(pi/180); end

% Then request heading of 45 deg

% if t>6000, psi r(index)=0; end

% Then request heading of 0 deg

% if t>8000, psi r(index)=45*(pi/180); end

% Then request heading of 45 deg

% if t>10000, psi r(index)=0; end

% Then request heading of 0 deg

% if t>12000, psi r(index)=45*(pi/180); end

% Then request heading of 45 deg

% Next, suppose that there is sensor noise for the

% heading sensor with that is additive, with a uniform

% distribution on [- 0.01,+0.01] deg.

% s(index)=0.01*(pi/180)*(2*rand-1);
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s(index)=0; % This allows us to remove the noise.

psi(index)=x(1)+s(index);

% Heading of the ship (possibly with sensor noise).

if counter == 10,

% When the counter reaches 10 then execute the

% fuzzy controller

counter=0; % First, reset the counter

% Fuzzy controller calculations:

% First, for the given fuzzy controller inputs we

% determine the extent at which the error membership

% functions of the fuzzy controller are on

% (this is the fuzzification part).

c count=0;,e count=0;

% These are used to count the

% number of non-zero mf

% certainities of e and c

e(index)=psi r(index)-psi(index);

% Calculates the error input for

% the fuzzy controller

c(index)=(e(index)-eold)/T; % Sets the value of c

eold=e(index); % Save the past value of e for

% use in the above computation the

% next time around the loop

% The following if-then structure fills the vector mfe

% with the certainty of each membership fucntion of e

% for the current input e. We use triangular

% membership functions.

if e(index)<=ce(1)
% Takes care of saturation of the left-most

% membership function

mfe=[1 0 0 0 0 0 0 0 0 0 0];

% i.e., the only one on is the

% left-most one

e count=e count+1;,e int=1;
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% One mf on, it is the

% left-most one.

elseif e(index) >=ce(nume)
% Takes care of saturation

% of the right-most mf

mfe=[0 0 0 0 0 0 0 0 0 0 1];

e count=e count+1;,e int=nume;

% One mf on, it is the

% right-most one

else

% In this case the input is on the middle

% part of the universe of discourse for e

% Next, we are going to cycle through the mfs

% to find all that are on

for i=1:nume

if e(index)<=ce(i)
mfe(i)=max([0 1+(e(index)-ce(i))/we]);

% In this case the input is to the

% left of the center ce(i) and we compute

% the value of the mf centered at ce(i)

% for this input e

if mfe(i)∼=0
% If the certainty is not equal to zero then say

% that have one mf on by incrementing our count

e count=e count+1;

e int=i; % This term holds the index last entry

% with a non-zero term

end

else

mfe(i)=max([0,1+(ce(i)-e(index))/we]);

% In this case the input is to the

% right of the center ce (i)

if mfe(i)∼=0
e count=e count+1;

e int=i; % This term holds the index of the

% last entry with a non-zero ter

end

end

end

end

% The following if-then structure fills the vector mfc

% with the certainty of each membership fucntion of the c
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% for its current value (to understand this part of the

% code see the above similar code for computing mfe).

% Clearly, it could be more efficient to make a subroutine

% that performs these computations for each of the fuzzy

% system inputs.

if c(index)<=cc(1)
% Takes care of saturation of left-most mf

mfc=[1 0 0 0 0 0 0 0 0 0 0];

c count=c count+1;

c int=1;

elseif c(index)>=cc(numc)
% Takes care of saturation of the right-most mf

mfc=[0 0 0 0 0 0 0 0 0 0 1];

c count=c count+1;

c int=numc;

else

for i=1:numc

if c(index)<=cc(i)
mfc(i)=max([0,1+(c(index)-cc(i))/wc]);

if mfc(i)∼ =0

c count=c count+1;

c int=i;

% This term holds last entry

% with a non-zero term

end

end

end

end

% The next two loops calculate the crisp output using

% only the non- zero premise of error,e, and c. This

% cuts down computation time since we will only compute

% the contribution from the rules that are on (i.e., a

% maximum of four rules for our case). The minimum

% is center-of-gravity used for the premise

% (and implication for the defuzzification case).

num=0;

den=0;

for k=(e int-e count+1):e int

% Scan over e indices of mfs that are on

for l=(c int-c count+1):c int
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% Scan over c indices of mfs that are on

prem=min([mfe(k) mfc(l)]);

% Value of premise membership function

% This next calculation of num adds up the numerator for

% the center of gravity defuzzification formula.

% rules(k,l) is the output center for the rule.

% base*(prem-(prem)ˆ 2/2) is the area of a symmetric

% triangle that peaks at one with base width ‘‘base"

% and that is chopped off at a height of prem (since

% we use minimum to represent the implication).

% Computation of den is similar but without rules(k,l).

num=num+rules(k,l)*base*(prem-(prem)ˆ 2/2);

den=den+base*(prem-(prem)ˆ 2/2);

% To do the same computations, but for center-average

% defuzzification, use the following lines of code rather

% than the two above (notice that in this case we did not

% use any information about the output membership function

% shapes, just their centers; also, note that the

% computations are slightly simpler for the center-average

% defuzzificaton):

% num=num+rules(k,l)*prem;

% den=den+prem;

end

end

delta(index)=num/den;

% Crisp output of fuzzy controller that is the input

% to the plant.

else

% This goes with the ‘‘if" statement to check if the

% counter=10 so the next lines up to the next ‘‘end"

% statement are executed whenever counter is not

% equal to 10

% Now, even though we do not compute the fuzzy

% controller at eachtime instant, we do want to

% save the data at its inputs and output at each time

% instant for the sake of plotting it. Hence, we need to

% compute these here (note that we simply hold the

% values constant):

e(index)=e(index-1);

c(index)=c(index-1);
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delta(index)=delta(index-1);

end

% This is the end statement for the ‘‘if counter=10"

statement

% Now, for the first step, we set the initial

% condition for the third state x(3).

if t==0, x(3)=-(K*tau 3/(tau 1*tau 2))*delta(index); end

% Next, the Runge-Kutta equations are used to find the

% next state. Clearly, it would be better to use a Matlab

% ‘‘function" for F (but here we do not, so we can have only

% one program).

time(index)=t;

% First, we define a wind disturbance against the body

% of the ship that has the effect of pressing water

% against the rudder

% w(index)=0.5*(pi/180)*sin(2*pi*0.001*t); % This is an

% additive sine disturbance to the rudder input. It

% is of amplitude of 0.5 deg. and its period is 1000sec.

% delta(index)=delta(index)+w(index);

% Next, implement the nonlinearity where the rudder angle

% is saturated at +-80 degrees

if delta(index) >= 80*(pi/180), delta(index)=80*(pi/180);

end

if delta(index) <= -80*(pi/180), delta(index)=-80*(pi/180);

end

% Next, we use the formulas to implement the Runge-Kutta

% method (note that here only an approximation to the

% method is implemented where we do not compute the

% function at multiple points in the integration step size).

F=[ x(2) ;

x(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(x(3)+ (K*tau 3/(tau 1*tau 2))

*delta(index))-...

(1/(tau 1*tau 2))*(abar*x(2)ˆ 3 + bbar*x(2)) +
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(K/(tau 1*tau 2))*delta(index) ];

k1=step*F;

xnew=x+k1/2;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)

+ (K*tau 3/(tau 1*tau 2)) *delta(index))-...

(1/(tau 1*tau 2))*(abar*xnew(2)ˆ 3 + bbar*xnew(2)) +

(K/(tau 1*tau 2))*delta(index) ];

k2=step*F;

xnew=x+k2/2;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)+

(K*tau 3/(tau 1*tau 2))*delta(index))-...

(1/(tau 1*tau 2))*(abar*xnew(2)ˆ 3 + bbar*xnew(2))

+ (K/(tau 1*tau 2))*delta(index) ];

k3=step*F;

xnew=x+k3;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)+

(K*tau 3/(tau 1*tau 2))*delta(index))-...

(1/(tau 1*tau 2))*(abar*xnew(2)ˆ 3 + bbar*xnew(2))

+ (K/(tau 1*tau 2))*delta(index) ];

k4=step*F;

x=x+(1/6)*(k1+2*k2+2*k3+k4); % Calculated next state

t=t+step; % Increments time

index=index+1; % Increments the indexing term so that

% index=1 corresponds to time t=0.

counter=counter+1; % Indicates that we computed one more

% integration step

end % This end statement goes with the first ‘‘while"

% statement in the program so when this is
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complete the simulation is done.

%

% Next, we provide plots of the input and output of the

% ship along with the reference heading that we want

%to track. Also, we plot the two inputs to the

% fuzzy controller.

%

% First, we convert from rad. to degrees

psi r=psi r*(180/pi);

psi=psi*(180/pi);

delta=delta*(180/pi);

e=e*(180/pi);

c=c*(180/pi);

% Next, we provide plots of data from the simulation

figure(1)

clf

subplot(211) plot(time,psi,’k-’,time,psi r,’k--’)

% grid on

xlabel(’Time (sec)’)

title(’Ship heading (solid) and desired ship heading

(dashed), deg.’)

subplot(212)

plot(time,delta,’k-’)

% grid on

xlabel(’Time (sec)’)

title(’Rudder angle (δ), deg.’)

zoom

figure(2)

clf

subplot(211)

plot(time,e,’k-’)

% grid on

xlabel(’Time (sec)’)

title(’Ship heading error between ship heading and

desired heading, deg.’)

subplot(212)

plot(time,c,’k-’)

% grid on
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xlabel(’Time (sec)’)

title(’Change in ship heading error, deg./sec’)

zoom

end % This ends the if statement (on flag1) on whether

% you want to do a simulation or just

% see the control surface

% % % % % % % % % % % % % % % % %

% Next, provide a plot of the fuzzy controller surface:

% % % % % % % % % % % % % % % % %

% Request input from the user to see if they want to

% see the controller mapping:

flag2=input(’\ n Do you want to see the nonlinear

\ n mapping implemented by the fuzzy \ n

controller? \ n (type 1 for yes and 0 for no) ’);

if flag2==1,

% First, compute vectors with points over the whole range

% of the fuzzy controller inputs plus 20% over the end of

% the range and put 100 points in each vector

e input=(-(1/g1)-0.2*(1/g1)):(1/100)*(((1/g1)+

0.2*(1/g1))-(-(1/g1)-...

0.2*(1/g1))):((1/g1)+0.2*(1/g1));

ce input=(-(1/g2)-0.2*(1/g2)):(1/100)*(((1/g2)+

0.2*(1/g2))-(-(1/g2)-...

0.2*(1/g2))):((1/g2)+0.2*(1/g2));

% Next, compute the fuzzy controller output for all

% these inputs

for jj=1:length(e input)

for ii=1:length(ce input)

c count=0;,e count=0; % These are used to count the

% number of non-zero mf certainities

of e and c

% The following if-then structure fills the vector mfe

% with the certainty of each membership fucntion of e
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% for the current input e. We use triangular

% membership functions.

if e input(jj)<=ce(1)
% Takes care of saturation of the left-most

% membership function

mfe=[1 0 0 0 0 0 0 0 0 0 0]; % i.e.,

the only one on is the

% left-most one

e count=e count+1;,e int=1; % One mf on, it is the

% left-most one.

elseif e input(jj)>=ce(nume)
% Takes care of saturation

% of the right-most mf

mfe=[0 0 0 0 0 0 0 0 0 0 1];

e count=e count+1;,e int=nume; % One mf on, it is the

% right-most one

else

% In this case the input is on the

% middle part of the universe of

% discourse for e Next, we are going to

% cycle through the mfs to find all

% that are on

for i=1:nume

if e input(jj)<=ce(i)
mfe(i)=max([0 1+(e input(jj)-ce(i))/we]);

% In this case the input is to the

% left of the center ce(i) and we compute

% the value of the mf centered at ce(i)

% for this input e

if mfe(i)∼ =0

% If the certainty is not equal to zero then say

% that have one mf on by incrementing our count

e count=e count+1;

e int=i;

% This term holds the index last entry

% with a non-zero term

end

else

mfe(i)=max([0,1+(ce(i)-e input(jj))/we]);

% In this case the input is to the

% right of the center ce(i)

if mfe(i)∼ =0
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e count=e count+1;

e int=i;

% This term holds the index of the

% last entry with a non-zero term

end

end

end

end

% The following if-then structure fills the vector mfc

% with the certainty of each membership fucntion of the c

% for its current value.

if ce input(ii)<=cc(1)
% Takes care of saturation of left-most mf

mfc=[1 0 0 0 0 0 0 0 0 0 0];

c count=c count+1;

c int=1;

elseif ce input(ii)>=cc(numc)
% Takes care of saturation of the right-most mf

mfc=[0 0 0 0 0 0 0 0 0 0 1];

c count=c count+1;

c int=numc;

else

for i=1:numc

if ce input(ii)<=cc(i)
mfc(i)=max([0,1+(ce input(ii)-cc(i))/wc]);

if mfc(i)∼=0
c count=c count+1;

c int=i; % This term holds last entry

% with a non-zero term

end

else

mfc(i)=max([0,1+(cc(i)-ce input(ii))/wc]);

if mfc(i)∼=0
c count=c count+1;

c int=i;% This term holds last entry

% with a non-zero term

end

end

end

end
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% The next loops calculate the crisp output using only

% the non-zero premise of error,e, and c.

num=0;

den=0;

for k=(e int-e count+1):e int

% Scan over e indices of mfs that are on

for l=(c int-c count+1):c int

% Scan over c indices of mfs that are on

prem=min([mfe(k) mfc(l)]);

% Value of premise membership function

% This next calculation of num adds up the numerator

% for the center of gravity defuzzification formula.

num=num+rules(k,l)*base*(prem-(prem)ˆ 2/2);

den=den+base*(prem-(prem)ˆ 2/2);

% To do the same computations, but for center-average

% defuzzification, use the following lines of code rather

% than the two above:

% num=num+rules(k,l)*prem;

% den=den+prem;

end

end

delta output(ii,jj)=num/den;

% Crisp output of fuzzy controller that is the input

% to the plant.

end

end

% Convert from radians to degrees:

delta output=delta output*(180/pi);

e input=e input*(180/pi);

ce input=ce input*(180/pi);

% Plot the controller map

figure(3)

clf

surf(e input,ce input,delta output);

view(145,30);

colormap(white);
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xlabel(’Heading error (e), deg.’);

ylabel(’Change in heading error (c), deg.’);

zlabel(’Fuzzy controller output (δ), deg.’);

title(’Fuzzy controller mapping between inputs

and output’);

end

% % % % % % % % % % % % % % % % % % % % % % % % % %

%

% End of program %

% % % % % % % % % % % % % % % % % % % % % % % % % % %

Output

Figure 8.4 shows the simulated output of the Fuzzy Control System
with the ship heading and the Rudder angle. The error and it derivative

FIGURE 8.4: Simulation of the Fuzzy Control System for the Tanker
Showing the Ship Heading, Desired Ship Heading and Rudder Angle
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FIGURE 8.5: Error and Change in Ship Heading Error

are plotted in Figure 8.5 and Figure 8.6 shows the nonlinearities between
the input and the output.

8.3 Illustration 3 - Approximation of Any Function
Using Fuzzy Logic

This section designs a fuzzy system to approximate a function which
may not be defined analytically, but the values of the function in n point
is defined as for example: g(x,z). The approximation is calculated from a
fuzzy set design. The fuzzy function implemented here approximates the
given function using Takagi-Sugeno approximation and compares with
linear, polynomial, and neural network (single and multi-layer Percep-
tron) approximation methods.

MATLAB Code
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FIGURE 8.6: Nonlinearity between Inputs and Output

clear

% For the M=7 case

x7=-6:2:6;

M=length(x7)

for i=1:M,

G7(i)=exp(-50*(x7(i)-1)ˆ 2)-0.5*exp(-100*(x7(i)-

1.2)ˆ 2)+atan(2*x7(i))+2.15+...

0.2*exp(-10*(x7(i)+1)ˆ 2)-0.25*
exp(-20*(x7(i)+1.5)ˆ 2)+0.1*exp(-

10* (x7(i)+2)ˆ 2) -0.2*exp(-10*(x7(i)+3)ˆ 2);

if x7(i) >= 0

G7(i)=G7(i)+0.1*(x7(i)-2)ˆ 2-0.4;

end

end

% For the M=121 case
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x121=-6:0.1:6;

M=length(x121)

for i=1:M,

z(i)=0.15*(rand-0.5)*2;

% Define the auxiliary variable

G121(i)=exp(-50*(x121(i)-1)ˆ 2)-0.5*exp(-100*
(x121(i)

-1.2)ˆ 2)+atan(2*x121(i))+2.15+...

0.2*exp(-10*(x121(i)+1)ˆ 2)-0.25*exp(-20*(x121(i)+

1.5)ˆ 2)+0.1*exp(-

10*(x121(i)+2)ˆ 2)-0.2*exp(-10*(x121(i)+3)ˆ 2);

if x121(i) >= 0

G121(i)=G121(i)+0.1*(x121(i)-2)ˆ 2-0.4;

end

G121n(i)=G121(i)+z(i);

% Adds in the influence of the auxiliary variable

% fpoly(i)=0.6+0.1*x(i);

end

% Next, plot the functions:

figure(1)

plot(x7,G7,’ko’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i))’)

title(’M=7’)

grid

axis([min(x7) max(x7) 0 max(G7)])

figure(2)

plot(x121,G121,’ko’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i))’)

title(’M=121’)

grid

axis([min(x121) max(x121) 0 max(G121)])

figure(3)

plot(x121,G121n,’ko’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i))’)
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title(’M=121’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% Next, plot some approximator fits to the function

% First, a line

for i=1:M,

Flinear(i)=((4.5-0.5)/(6-(-6)))*x121(i)+2.5;

end

figure(4)

plot(x121,G121n,’ko’,x121,Flinear,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)), and line’)

title(’Linear approximation’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% Next, a polynomial (parabola)

for i=1:M,

Fpoly(i)=0.6+0.035*(x121(i)+6)ˆ 2;

end

figure(5)

plot(x121,G121n,’ko’,x121,Fpoly,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)), and parabola’)

title(’Polynomial approximation’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% Next, a single hidden layer perceptron, n1=1

w1=[1.5]’;

b1=0;

w=[3]’;

b=0.6;

for i=1:M,

phi1=inv(1+exp(-b1-w1*x121(i)));
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phi=[phi1]’;

Fmlp(i)=b+w’*phi;

end

figure(6)

plot(x121,G121n,’ko’,x121,Fmlp,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)), and perceptron output’)

title(’Neural network approximation, one neuron’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% Next, a single hidden layer perceptron, n1=2

w1=[1.5]’;

b1=0;

w2=[1.25]’;

b2=-6;

w=[3 1]’;

b=0.6;

for i=1:M,

phi1=inv(1+exp(-b1-w1*x121(i)));

phi2=inv(1+exp(-b2-w2*x121(i)));

phi=[phi1 phi2]’;

Fmlp(i)=b+w’*phi;

end

figure(7)

plot(x121,G121n,’ko’,x121,Fmlp,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)), and perceptron output’)

title(’Neural network approximation, two neurons’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% Next, we plot the premise membership functions for

% a Takagi-Sugeno fuzzy system approximator

c11=-3.5;

sigma11=0.8;

c12=-0.25;

sigma12=0.6;
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c13=2;

sigma13=0.4;

c14=4.5;

sigma14=0.8;

for i=1:M,

mu1(i)=exp(-0.5*((x121(i)-c11)/sigma11)ˆ 2);

mu2(i)=exp(-0.5*((x121(i)-c12)/sigma12)ˆ 2);

mu3(i)=exp(-0.5*((x121(i)-c13)/sigma13)ˆ 2);

mu4(i)=exp(-0.5*((x121(i)-c14)/sigma14)ˆ 2);

denominator(i)=mu1(i)+mu2(i)+mu3(i)+mu4(i);

end

figure(8)

plot(x121,G121n,’ko’,x121,mu1,’k’,x121,mu2,’k’,

x121,mu3,’k’,x121,mu4,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)) and premise membership

function values’)

title(’Training data and premise membership functions’)

grid

% Next, we plot the basis functions for

% a Takagi-Sugeno fuzzy system approximator

for i=1:M,

xi1(i)=mu1(i)/denominator(i);

xi2(i)=mu2(i)/denominator(i);

xi3(i)=mu3(i)/denominator(i);

xi4(i)=mu4(i)/denominator(i);

end

figure(9)

plot(x121,G121n,’ko’,x121,xi1,’k’,x121,xi2,’k’,x121,xi3,

’k’,x121,xi4,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)) and basis function values’)

title(’Training data and basis functions’)

grid

% Next, we plot the Takagi-Sugeno fuzzy

system approximator
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a10=1;

a11=0.5/6;

a20=2.25;

a21=4.4/4;

a30=2.9;

a31=1/12;

a40=1.3;

a41=4.8/8;

for i=1:M,

g1(i)=a10+a11*x121(i);

g2(i)=a20+a21*x121(i);

g3(i)=a30+a31*x121(i);

g4(i)=a40+a41*x121(i);

numerator=g1(i)*mu1(i)+g2(i)*mu2(i)+g3(i)*
mu3(i)+g4(i)*mu4(i);

Fts(i)=numerator/(mu1(i)+mu2(i)+mu3(i)+mu4(i));

end

figure(10)

plot(x121,G121n,’ko’,x121,Fts,’k’)

xlabel(’x(i)’)

ylabel(’y(i)=G(x(i),z(i)), and fuzzy system output’)

title(’Takagi-Sugeno approximation’)

grid

axis([min(x121) max(x121) 0 max(G121)])

% % % % % % % % % % % % % % % % % % % % % % % % %

% % % %

% End of program %

% % % % % % % % % % % % % % % % % % % % % % % %

% % % % %

Output

An unknown function is approximated and its training pattern is shown
in Figure 8.7. The function was trained using different approximation
techniques such as Linear, Polynomial, Single and Multilayer Neural
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FIGURE 8.7: Training Data with Length = 121

networks. The best performance was obtained with Takagi-Sugeno ap-
proximation and the results are plotted in Figure 8.8.

Figure 8.9 shows the training data along with their membership func-
tions and basis functions for a Takagi-Sugeno fuzzy system approximator

8.4 Illustration 4 - Building Fuzzy Simulink Models

To build Simulink systems that use fuzzy logic, simply copy the Fuzzy
Logic Controller block out of sltank (or any of the other Simulink demo
systems available with the toolbox) and place it in the block diagram.
The Fuzzy Logic Controller block in the Fuzzy Logic Toolbox library, can
be opened either by selecting Fuzzy Logic Toolbox in the Simulink
Library Browser, or by typing fuzblock at the MATLAB prompt. The
following library (Figure 8.10) appears.

The Fuzzy Logic Toolbox library contains the Fuzzy Logic Controller
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FIGURE 8.8: Comparison of Approximation Methods
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FIGURE 8.9: Training Data with Membership Functions and Basis
Functions for a Takagi-Sugeno Fuzzy System Approximator

FIGURE 8.10: Fuzzy Library

© 2010 by Taylor and Francis Group, LLC



346 Computational Intelligence Paradigms

FIGURE 8.11: Fuzzy Logic Controller Block

and Fuzzy Logic Controller with Rule Viewer blocks. It also includes a
Membership Functions sub-library that contains Simulink blocks for the
built-in membership functions.

The Fuzzy Logic Controller with Rule Viewer block is an extension
of the Fuzzy Logic Controller block. It allows the user to visualize how
rules are fired during simulation (Figure 8.11). Double-click the Fuzzy
Controller with Rule Viewer block, and the following appears.

To initialize the Fuzzy Logic Controller blocks (with or without the
Rule Viewer), double-click on the block and enter the name of the struc-
ture variable describing the FIS. This variable must be located in the
MATLAB workspace.

Fuzzy Logic Controller Block

For most fuzzy inference systems, the Fuzzy Logic Controller block auto-
matically generates a hierarchical block diagram representation of your
FIS. This automatic model generation ability is called the Fuzzy Wizard.
The block diagram representation only uses built-in Simulink blocks and
therefore allows for efficient code generation.

The Fuzzy Wizard cannot handle FIS with custom membership func-
tions or with AND, OR, IMP, and AGG functions outside of the following
list:

orMethod: max
andMethod: min,prod
impMethod: min,prod
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FIGURE 8.12: FIS Model of the Cart and Pole Example

aggMethod: max
In these cases, the Fuzzy Logic Controller block uses the S-function sffis
to simulate the FIS.

Cart and Pole Simulation

The cart and pole simulation is an example of an FIS model auto-
generated by the Fuzzy Logic Controller block. Type slcp at the MAT-
LAB prompt to open the simulation. The model in Figure 8.12 appears.

Right-click on the Fuzzy Logic Controller block and select Look under
mask from the right-click menu. The subsystem shown in Figure 8.13
opens.

Follow the same procedure to look under the mask of the FIS Wiz-
ard subsystem to see the implementation of the FIS. The Fuzzy Logic
Controller block uses built-in Simulink blocks to implement the FIS. Al-
though the models can grow complex, this representation is better suited
than the S-function sffis for efficient code generation.

© 2010 by Taylor and Francis Group, LLC



348 Computational Intelligence Paradigms

FIGURE 8.13: Subsystem of the Fuzzy Logic Controller Block

Summary

According to literature the employment of fuzzy logic is not recom-
mendable, if the conventional approach yields a satisfying result, an eas-
ily solvable and adequate mathematical model already exists, or the
problem is not solvable. MATLAB examples are given for each of the
fuzzy concept so that the reader can implement theoretical concepts in
practice.

Review Questions

1. Let y = f(x) = -2x - x2.

(i) Form a fuzzy system using MATLAB, which approximates
function f, when x ǫ [-10,10] . Repeat the same by adding
random, normally distributed noise with zero mean and unit
variance.

(ii) Simulate the output when the input is sin(t). Observe what
happens to the signal shape at the output.
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2. Using MATLAB SIMULINK construct a fuzzy controller with
three inputs and one output. Consider both continuous and dis-
crete inputs and assume the output as singleton. Analyze the op-
erations of the controller.

3. Write a MATLAB program to construct the nonlinear model of an
inverted pendulum.

4. Construct a SIMULINK-based Vehicle control system using a sim-
ple generic Mamdani type controller.

5. Conduct a suitable experiment to control the speed of a DC motor.
Use SIMULINK to construct the model and plot the torque and
speed characteristics.

6. Write a MATLAB code for implementing the PID controller using
fuzzy logic and observe the results.
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Chapter 9

Neuro-Fuzzy Modeling
Using MATLAB

9.1 Introduction

The combination of Artificial Neural Networks (ANN) and Fuzzy In-
ference Systems (FIS) has drawn the attention of several researchers in
various scientific and engineering fields due to the rising needs of intelli-
gent systems to solve the real world complex problems. ANN learns the
presented inputs from the base by updating the interconnections between
layers. FIS is a most common computation model based on the concept
of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. There are
several advantages in the fusion of ANN and FIS. ANN and FIS can be
integrated in several methods depending upon the application. The in-
tegration of ANN and FIS can be classified into three categories namely
concurrent model, cooperative model, and fully fused model.

This chapter begins with a discussion of the features of each model
and generalizes the advantages and deficiencies of each model. The chap-
ter further focuses on the different types of fused neuro-fuzzy systems
such as such as FALCON, ANFIS, GARIC, NEFCON, FINEST, FUN,
EFuNN, and SONFIN and citing the advantages and disadvantages of
each model. A detailed description of ANFIS including its architecture
and learning algorithm are discussed. The implementation detail of hy-
brid neuro-fuzzy model is also delineated. An explanation on Classifica-
tion and Regression Trees with its computational issues, computational
details, computational formulas, advantages, and examples is given in
this chapter. The data clustering algorithms such as hard c-means, Fuzzy
c-means, and subtractive clustering are also described.

The combination of Neuro and Fuzzy for computing applications is a
popular model for solving complex problems. Whenever there is a knowl-
edge expressed in linguistic rules, an FIS can be modelled, and if infor-
mation is available, or if the parameters can be learned from a simulation
(training) then ANNs can be used. While building a FIS, the fuzzy sets,

351
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fuzzy operators, and the knowledge base are required to be specified. To
implement an ANN for a specific application the architecture and learn-
ing algorithm are required. The drawbacks in these approaches appear
complementary and consequently it is natural to consider implementing
an integrated system combining the neuro-fuzzy concepts.

9.2 Cooperative and Concurrent
Neuro-Fuzzy Systems

In the simplest way, a cooperative model can be considered as a pre-
processor wherein ANN learning mechanism determines the FIS mem-
bership functions or fuzzy rules from the training data. Once the FIS
parameters are determined, ANN goes to the background. The rules
are formed by a clustering approach or fuzzy clustering algorithms. The
fuzzy membership functions are approximated by neural network from
the training data. In a concurrent model, ANN assists the FIS con-
tinuously to determine the required parameters especially if the input
variables of the controller cannot be measured directly. In some cases
the FIS outputs might not be directly applicable to the process. In that
case ANN can act as a postprocessor of FIS outputs. Figures 9.1 and 9.2
depict the cooperative and concurrent NF models.

9.3 Fused Neuro-Fuzzy Systems

In the merged Neuro-Fuzzy (NF) architecture, the learning algorithms
are used to find out the parameters of FIS. The fused NF systems share

Input Output

Fuzzy Rules and Fuzzy 

Sets

ANN FIS

FIGURE 9.1: Cooperative NF Model
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Input Output

ANN assists the FIS 

continuously

ANN FIS

FIGURE 9.2: Concurrent NF Model

information structures and knowledge representations. Learning algo-
rithm can be applied to a fuzzy system by interpreting the fuzzy system
in an ANN like architecture. In general the traditional ANN learning
algorithms cannot be applied directly to the fuzzy systems since the
functions used in the inference process are normally nondifferentiable.

Some of the major works in this area are GARIC, FALCON, ANFIS,
NEFCON, FUN, SONFIN, FINEST, EFuNN, dmEFuNN, evolutionary
design of neuro fuzzy systems, and many others.

9.3.1 Fuzzy Adaptive Learning Control
Network (FALCON)

FALCON has a five-layered architecture as shown in Figure 9.3. There
are two linguistic nodes for each output variable among which one node
is for storing the training data and a second node for the target output
of FALCON. The first hidden layer is accountable for the fuzzification of
each input variable. Either a single node or multilayer nodes are used to
represent the membership functions. The prerequisites required for the
FIS are defined in the second hidden layer and the rule consequents are
in the third hidden layer. Unsupervised learning algorithm is applied to
the FALCON architecture to locate initial membership functions, rule
base, and a gradient descent learning to optimally update the parameters
of the MF to create the desired outputs.

9.3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS implements a Takagi–Sugeno FIS and has a five layered ar-
chitecture as shown in Figure 9.4. The input variables are fuzzified in
the first hidden layer and the fuzzy operators are applied in the second
hidden layer to compute the rule antecedent part. The fuzzy rule base
is normalized in the third hidden layer and the consequent parameters
of the rules are ascertained in the fourth hidden layer. The fifth out-
put layer computes the overall input as the summation of all incoming
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FIGURE 9.3: Architecture of FALCON

FIGURE 9.4: Structure of ANFIS
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FIGURE 9.5: Architecture of GARIC

signals. ANFIS uses backpropagation learning to determine the param-
eters related to membership functions and least mean square estimation
to determine the consequent parameters.

A step in the learning procedure has got two parts: In the first part
the input patterns are propagated, and the optimal consequent parame-
ters are estimated by an iterative least mean square procedure, while the
premise parameters are assumed to be fixed for the current cycle through
the training set. In the second part the patterns are propagated again,
and in this epoch, backpropagation is used to modify the premise pa-
rameters, while the consequent parameters remain fixed. This procedure
is then iterated.

9.3.3 Generalized Approximate Reasoning-Based
Intelligent Control (GARIC)

GARIC implements a neuro-fuzzy controller by using two neural net-
work modules, the ASN (Action Selection Network) and the AEN (Ac-
tion State Evaluation Network). The AEN assesses the activities of the
ASN. The part ASN of GARIC is a feedforward network with five layers
with no connection weights between the layers. Figure 9.5 illustrates the
structure of GARIC-ASN. The linguistic values are stored in the first
hidden layer and the input unit is connected to this unit. The fuzzy
rule base are stored in the second hidden layer. The third hidden layer
represents the linguistic values of the control output variable. The de-
fuzzification method used to compute the rule outputs in GARIC is the
mean of maximum method. A crisp output is taken from each rule, there-
fore the outputs must be defuzzified before they are accumulated to the
final output value of the controller. The learning method used in GARIC
is a combination of gradient descent and reinforcement learning.
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FIGURE 9.6: Architecture of NEFCON

9.3.4 Neuro-Fuzzy Control (NEFCON)

NEFCON is designed to implement Mamdani type FIS and is illus-
trated in Figure 9.6. The connections between the layers in NEFCON
are weighted with fuzzy sets and rules so-called shared weights. These
weighted connections assure the unity of the rule base. Among the three
layers in the NEFCON structure, the input units present the linguistic
values, and the output unit is the defuzzification interface. The interme-
diate hidden layer serves as the fuzzy inference. NEFCON model uses a
combination of reinforcement and backpropagation learning. NEFCON
is capable of learning an initial rule base, if no prior knowledge about
the system is available or even to optimize a manually defined rule base.
NEFCON has two variants: NEFPROX (for function approximation)
and NEFCLASS (for classification tasks).

NEFCON Learning Algorithm

The NEFCON rule base is learned using incremental rule learning or
decremental rule learning. Incremental rule learning is used in cases if
the correct output cannot be predicted and if the rules are created based
on the estimated output values. As the learning process proceeds more
number of rules are created. In decremental rule learning, initially rules

© 2010 by Taylor and Francis Group, LLC



Neuro-Fuzzy Modeling Using MATLAB 357

are created due to fuzzy partitions of process variables and unnecessary
rules are eliminated in the course of learning. Incremental rule learn-
ing is more efficient than the decremental approach. Assume a process
with n state variables, consisting of pi fuzzy sets, and a control variable
with q linguistic terms, at most N linguistic rules are created, where N
= qΠn

i−1pi. Therefore the rule base is inconsistent. The rules must be

consistent with k rules and the condition k≤ N
q must satisfy.

The learning algorithm is performed in stages as follows:

• First stage: Here all rule units are deleted which provide an output
value with a sign different from optimal output value.

• Second stage: In this stage, the subsets of rules with similar an-
tecedents taken and the rule which matches the current state is
chosen to contribute to the NEFCON output. At the end of this
stage, from each rule subset only the rule with the smallest error is
kept, and all the other rules are deleted from the NEFCON system.

Decremental Rule Learning

Let R denote the set of all rule units and Ant(Rr) denote the an-
tecedent and Con(Rr) the consequent of a fuzzy rule corresponding to
the rule unit Rr. Let S be a process with n state variables ξi ǫXi (i ǫ
{1, ... ,n}) which are portioned by pi fuzzy sets each and one control
variable η ǫ Y , portioned by q fuzzy sets. Let there also be initial rules
with

(∀R, R◦ǫR((Ant(R) = Ant(R◦) ∧ Con(R) = Con(R◦) ⇒ R = R◦))

1. For each rule unit Rr a counter Cr (initialized to zero is defined) rǫ
{1, ... ,N}. For a fixed number of iterations m1 the following steps
are carried out:

• Determine the current NEFCON output Oη using the current
state of S.

• For each rule Rr determine its contribution tr to the overall
output Oη , r ǫ 1, ... ,N.

• Determine sgn(ηopt) for the current input values.

• Delete each rule unit Rr with sgn(tr) 6= sgn(ηopt) and update
the value of N.

• Increment the counter Cr for all Rr with oRr >0.

• Apply Oη to S and determine the new input values.
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2. For each rule unit Rr a counter Zr (initialized to zero is defined).
For a fixed number of iterations m2 the following steps are carried
out:

• From all subsets, Rj = {Rr |Ant(Rr)}=Ant(R2)(r,s ǫ {1, ...
,N})}⊆ R, one rule unit Rrj is selected arbitrarily.

• Determine the current NEFCON output Oη using only the
units selected and the current state of S

• Apply Oη to S and determine the new input values.

• For each rule Rrj determine its contribution trj to the overall
output Oη, r ǫ {1, ... ,N}.

• Determine sgn(ηopt) for the current input values.

• Add|ORrj
|to the counter Zr of each selected unit Rrj .

• For all selected rule units Rrj with ORrj
>0, Crj is incre-

mented.

3. Delete all rule units Rsj for all subsets Rj from the network for
which there is a rule unit Rsj ǫ Rj with Zrj <Zsj , and delete all
rule units Rr with Cr <β .(m1+m2), 0 ≤ β <1, from the network
and update the value of N.

4. Apply appropriate FEBP algorithm to the NEFCON system with
k=N remaining rule units.

Incremental Rule Learning

In this learning process the rule base is developed from from scratch
by adding rule after rule. The rule bases developed by classifying an
input vector initially, i.e., finding the membership function corresponding
to each variable that generates the highest membership value for the
respective input value, thus forming a rule antecedant. The training
algorithm attempts to approximate the output value by deducing it from
the present fuzzy error. To commence the algorithm, an initial fuzzy
partition must be allotted to each variable.

Let S be a process with n state variables ξi ǫ Xi (i ǫ ( 1, ... , n)) which
are partitioned by pi fuzzy sets each and one control variable ηǫ [ymin,
ymax] partitioned by q fuzzy sets. Let there also be initial k predefined
rule units, where k may be zero. The following steps give the incremental
rule-learning algorithm.

1. For a fixed number m1 of iterations the following steps are carried
out.
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• For the current input vector (x1, ... ,xn) find those fuzzy sets

(µ̂(1), ...µ̂(n)) for which (∀i, j)(µ̂
(1)(xi) ≥ µ̂

(i)
j (xi)) holds.

• If there is no rule with the antecedent.
If ξi is µ̂(1) and ξn is µ̂(n) , then the fuzzy set v̂ such
that (∀j)(v̂(o) ≥ vj(o)) holds, where the heuristic out-
put value o is determined by

o =

{
m+ | E | .(ymax − m)ifE ≥ 0
m− | E | .(m − ymin)ifE<0

where m = ymax+ymin

2

• Enter the rule
If ξi is µ̂(1) and ξn is µ̂(n), then η is v̂; into the NEFCON
system

2. For a fixed number m2 iterations the following steps are carried
out

• Propagate the current input vector through the NEFCON
system and estimate for each rule Rr its contribution tr to
the overall output Oη . Compute the desired contribution to
the system output value by

t∗r = tr + σ.or .E

where E is the extended fuzzy error and σ >0 is the learning
rate.

• For each rule unit Rr, determine the new output membership
function vr such that (∀i(v̂r(t

∗
r) ≥ vj(t

∗
r))

• Delete all rules that have not been used in more than in p %
of all propagations.

• Apply appropriate FEBP algorithm to the NEFCON system.

Rule-learning algorithm is mainly applied to examine the present rules
and evaluate them. All the rule units undergo the test process and if
they do not pass this test they are eliminated from the network. Here
the algorithm has to choose the rule with the lowest error value from
each subset that consists of rules with identical antecedents, and delete
all other rules of each subset. The entire state space must be learned so
that a good rule base is produced. Since the incremental rule learning is
a complex process, it is optimal for larger systems, while the decremental
rule learning can be applied to smaller systems. In order to reduce the
cost of the learning procedure for decremental rule learning two criteria
are considered:
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• If the consequent corresponding to an antecedent is known, then
an equivalent rule unit is put into the NEFCON system, and the
rule is not deleted.

• For a few states only a subset of all possible rules are to be con-
sidered, in that case only these rules are put into the network.

A similar situation is applicable to incremental learning rule, whereby
if prior knowledge is available, then rule learning does not need to start
from scratch.

9.3.5 Fuzzy Inference and Neural Network
in Fuzzy Inference Software (FINEST)

FINEST is capable of two kinds of tuning process, the tuning of fuzzy
predicates, combination functions, and the tuning of an implication func-
tion. The generalized Modus Ponens is improved in the following four
ways

(1) Aggregation operators that have synergy and cancellation nature

(2) A parameterized implication function

(3) A combination function that can reduce fuzziness

(4) Backward chaining based on generalized Modus Ponens

FINEST Architecture and Training Algorithm

The parameter tuning in FINEST is done by the backpropagation al-
gorithm. Figure 9.7 shows the layered architecture of FINEST and the
calculation process of the fuzzy inference. FINEST provides a frame-
work to tune any parameter, which appears in the nodes of the network
representing the calculation process of the fuzzy data if the derivative
function with respect to the parameters is given.

In Figure 9.7, the input values (xi,) are the facts and the output value
(y) is the conclusion of the fuzzy inference.

Consider the following fuzzy rules and facts:

Rule i: If xi is Ai1 and xn is Ain then y is Bi

Fact j: xj is A◦
j (j = 1, ..., n, i = 1, ..., m)

The calculation procedure in each layer is as follows:

Layer 1: Converse truth value qualification for condition j of rule i,

τAij(aij) = sup µA
◦
j (xj)

µAij(xj) = aij

© 2010 by Taylor and Francis Group, LLC



Neuro-Fuzzy Modeling Using MATLAB 361

FIGURE 9.7: Architecture of FINEST

Layer 2: Aggregation of the truth values of the conditions of Rule i,

τAi(ai) = sup{τAi(ai1) ∧ ... ∧ τAm(ain)}

Layer 3: Deduction of the conclusion from Rule i,

µB
◦
j (y) = sup{τAi(ai) ∧ Ii(ai, µBj(y))}

Layer 4: Combination of the conclusions derived from all the rules,

µB
◦
j (y) = comb(µB

◦
1(y) ∧ ... ∧ µB

◦
m(y))

In the above equations τAij τAi B◦
i , respectively represent the truth

value of the condition “xi is Aij, ” of rule i, the truth value of the con-
dition part of rule i, and the conclusion derived from rule i. Besides, the
functions Ii and comb respectively represent the function characterizing
the implication function of rule i, and the global combination function.
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Back-propagation method is used to tune the network parameters. All
data inside the network are treated as fuzzy sets. The actual output of
the network B is given by

B◦ = b◦(1)/y(1) + ... + b◦(p)/y(p)

The teaching signal T is given by

T = t(1)/y(1) + ... + t(p)/y(p)

Error function E is expressed by

E =
1

2

p
∑

h=1

(t(h) − b(h))2

It is possible to tune any parameter, which appears in the nodes of
the network representing the calculation process of the fuzzy data if the
derivative function with respect to the parameters is given. So it is very
important to parameterize the inference procedure.

9.3.6 Fuzzy Net (FUN)

The architecture of FUN consists of three layers, the neurons in the
first hidden fuzzify the input variables and also contain the membership
functions. The fuzzy AND operations are performed in the second hid-
den layer. The membership functions of the output variables are stored
in the third hidden layer with activation function Fuzzy-OR. The output
neuron perfoms defuzzification by using an appropriate defuzzification
method. The network is initialized with a fuzzy rule base and the cor-
responding membership functions. The parameters of the membership
functions are altered by using a learning procedure. The learning process
is forced by a cost function, which is evaluated after the random alter-
ation of the membership function. Whenever the alteration resulted in
an improved performance the alteration is kept, otherwise it is ruined.

FUN Learning Strategies

The FUN learns rules by modifying the connections between the rules
and the fuzzy values. The membership functions are learned while the
data of the nodes in the first and three hidden layers are changed. FUN
can be trained with the standard neural network training strategies such
as reinforcement or supervised learning.

Learning of the rules: The rules in FUN are depicted in the net through
the connections between the layers. The learning process is carried out
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as a stochastic search in the rule space: an arbitrarily chosen connection
is modified and the new network performance is assessed with a cost
function. If the performance is good, the connection is maintained and
if the performance is worse the change is ruined. This process continues
until the desired output is achieved. Since the learning algorithm ought
to maintain the semantic of the rules, it has to be assured that no two
values of the same-variable appear in the same rule. This is accomplished
by switching connections between the values of the similar variable.

Learning of membership functions: The FUN architecture uses trian-
gular membership functions with three membership function descriptors
(MFDs). The membership functions are considered to be normalized,
i.e., they always have a constant height of 1. The learning algorithm is
based on a mixture of gradient descent and a stochastic search. A max-
imum change in a random direction is initially assigned to all MFDs. In
a stochastic manner one MFD from one linguistic variable is selected,
and the network functioning is tested with this MFD which is altered ac-
cording to the permissible change for this MFD. If the network performs
better according to the given cost function, the new value is accepted
and next time another change is tried in the same direction. Contrary if
the network performs worse, the change is reversed. To guarantee con-
vergence, the alterations are reduced after each training step and shrink
asymptotically toward zero according to the learning rate.

9.3.7 Evolving Fuzzy Neural Network (EFuNN)

In EFuNN all nodes are created during learning. The Architecture of
EFuNN is shown in Figure 9.8. The information is passed from the in-
put layer to the second layer where the fuzzy membership degrees are
calculated based on the input values as belonging to a predefined fuzzy
membership function. The fuzzy rulebase is present in the third layer
and these rules represent prototypes of input-output data. Connection
weights are used to describe rule nodes, and these rules are adjusted
through the hybrid learning technique. The fourth layer calculates the
degrees to which output membership functions are matched by the input
data, and the fifth layer does defuzzification and calculates exact val-
ues for the output variables. Dynamic Evolving Fuzzy Neural Network
(DmEFuNN) is a expanded version of EFuNN in which the winning rule
node’s activation is propagated and a group of rule nodes is dynamically
selected for every new input vector and their activation values are used
to compute the dynamical parameters of the output function. While
EFuNN implements fuzzy rules of Mamdani type, DmEFuNN estimates
the Takagi-Sugeno fuzzy rules based on a least squares algorithm.
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FIGURE 9.8: Architecture of EFuNN

9.3.8 Self–Constructing Neural Fuzzy Inference Net-
work (SONFIN)

SONFIN implements a modified Takagi-Sugeno FIS and is illustrated
in Figure 9.9. In the structure identification of the precondition part,
the input space is partitioned in a flexible way according to an aligned
clustering based algorithm.

To identify the consequent part, a singleton value is selected by a
clustering method and is assigned to each rule initially. Later on, a few
supplementary input variables are chosen through a projection-based
correlation measure for each rule and are added to the consequent part
forming a linear equation of input variables. For parameter identifica-
tion, the consequent parameters are tuned optimally by either least mean
squares or recursive least squares algorithms and the precondition pa-
rameters are tuned by backpropagation algorithm.

9.3.9 Evolutionary Design of Neuro-Fuzzy Systems

In the process of evolutionary design of neuro-fuzzy systems, the node
parameters, architecture, and learning parameters are adapted accord-
ing to a five-tier hierarchical evolutionary search procedure. This kind
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FIGURE 9.9: Six Layered Architecture of SONFIN

of an evolutionary model can use Mamdani or Takagi Sugeno type fuzzy
inference. The layers are depicted in the basic architecture as shown in
Figure 9.10. The evolutionary search process will resolve the best quan-
tity of nodes and connections between layers. The fuzzification layer and
the rule antecedent layer function similarly as that of other NF models.
The consequent part of rule will be found according to the inference sys-
tem depending on the problem type, which will be adapted accordingly
by the evolutionary search mechanism.

Defuzzification operators are adapted according to the FIS chosen by
the evolutionary algorithm. For every learning parameter and every in-
ference mechanism, there is the global search of inference mechanisms
that continues on a faster time scale in an environment decided by the
learning parameters (for inference mechanism only), inference system,
and the problem. Likewise, for every architecture, evolution of member-
ship function parameters proceeds at a faster time scale in an environ-
ment decided by the architecture, inference mechanism, learning rule,
type of inference system, and the problem. Hierarchy of the different
adaptation procedures will rely on the prior knowledge. For example, if
there is more prior knowledge about the architecture than the inference
mechanism then it is better to implement the architecture at a higher
level.

The cooperative and concurrent models that were discussed in the
beginning sections of this chapter are not fully interpretable due to the
presence of the black box concept. But a fused Neuro Fuzzy model is
interpretable and capable of learning in a supervised mode. The learning
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FIGURE 9.10: Architecture Design for Evolutionary Design of
Neuro-Fuzzy Systems

TABLE 9.1: Performance of NF
systems and ANN

System Epochs RMSE

ANFIS 75 0.0017
NEFPROX 216 0.0332
EFuNN 1 0.0140
DmEFuNN 1 0.0042
SONFIN — 0.0180

process of FALCON, GARIC, ANFIS, NEFCON, SONFIN, FINEST and
FUN are only concerned with parameter level adaptation within fixed
structures and hence it is suitable only for small problems. The learning
process and the determination of the rule base in large scale problems is
complicated. In such a case the systems expects the user to provide the
architecture details, type of fuzzy operators, etc. An important feature of
EFuNN and DmEFuNN is the one pass (epoch) training, which is highly
capable for online learning. As the problem becomes more complicated
manual definition of NF architecture/parameters becomes complicated.

More specifically, for processes that require an optimal NF system,
the evolutionary design approach seems to be the best solution. Table
9.1 provides a comparative performance of some Neuro-Fuzzy systems,
where training was performed on 500 data sets and NF models were
tested with another 500 data sets.
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In this section we have presented the state of art modeling of dif-
ferent neuro-fuzzy systems. Due to the lack of a common framework
it remains often difficult to compare the different neuro-fuzzy models
conceptually and evaluate their performance comparatively. In terms of
RMSE error, NF models using Takagi Sugeno FIS perform better than
Mamdani FIS even though it is computationally expensive. The following
section will discuss the ANFIS in detail. Some of the major requirements
for neuro fuzzy systems to be more intelligent are fast learning, on-line
adaptability (accommodating new features like inputs, outputs, nodes,
connections, etc.), achieve a global error rate, and computationally inex-
pensive. Most of the NF systems use gradient descent techniques to learn
the membership function parameters. In order to obtain faster learning
and convergence, more efficient neural network learning algorithms like
conjugate gradient search could be used.

9.4 Hybrid Neuro-Fuzzy Model — ANFIS

Several fuzzy inference systems have been described by different work-
ers but the most commonly-used are Mamdani type and Takagi-Sugeno
type, which is also known as Takagi-Sugeno-Kang type. In the case of a
Mamdani type fuzzy inference system, both premise (if) and consequent
(then) parts of a fuzzy if-then rule are fuzzy propositions. In the case of a
Takagi-Sugeno type fuzzy inference system, where the premise part of a
fuzzy rule is a fuzzy proposition, the consequent part is a mathematical
function, usually a zero or first degree polynomial function. In ANFIS, a
Sugeno type model, the parameters associated with a given membership
function are chosen so as to tailor the input/output data set.

9.4.1 Architecture of Adaptive Neuro-Fuzzy
Inference System

The basic architecture of an ANFIS and its learning algorithm for the
Sugeno fuzzy model is illustrated in this section. Assume that the fuzzy
inference system has two inputs m and n and one output y. For a first-
order Sugeno fuzzy model, a typical rule set with two fuzzy if-then rules
can be expressed as:

Rule 1: If(misA1)and(nisB1)then : y1 = α1m + β1n + γ1

Rule 2: If(misA2)and(nisB2)then : y2 = α2m + β2n + γ2
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where α1, β1, γ1, α2, β2, γ2, are linear parameters, and A1 , A2 , B1
and B2 are nonlinear parameters. The corresponding equivalent ANFIS
architecture is as shown in Figure 9.11. The entire system architecture
consists of five layers, namely, a fuzzy layer, a product layer, a normalized
layer, a defuzzy layer, and a total output layer. The functionality of each
of these layers is described in the following sections.

Layer 1 - Fuzzy Layer

• Let O1,i be the output of the ith node of the layer 1

• Every node i in this layer is an adaptive node with a node function
O1,i = µAi(x) for i = 1, 2; or O1,i = µBi(y) for i = 1, 2, where
x is the input to node i and Ai is the linguistic label (small, large,
etc.) associated with this node function. It other words, O1, i is
the membership function of Ai and it specifies the degree to which
the given x satisfies the quantifier Ai. The most commonly used
membership functions are Bell shaped and Gaussian membership
functions.

• The bell shaped membership function is given by

f(x,a,b,c)= 1

1+ x−c
a

2b

where the parameter b is usually positive. The parameter c locates
the center of the curve.

• The Gaussian membership function is given by

A(x) = e
(x−c)2

2a2 , where 2σ2> 0.

• The parameters in Layer I are referred to as the Premise parame-
ters.

Layer 2 - Product Layer

• Each node in this layer contains a prod t-norm operator as a node
function.

• This layer synthesizes information transmitted by Layer 1 and mul-
tiplies all the incoming signals and sends the product out.

• The output of the product layer is given by

O2,i = µAi(x)µBi(y) = Wi

• Each node in this layer serves as a measure of strength of the rule.

• The output of this layer acts as the weight functions.
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FIGURE 9.11: ANFIS Architecture

Layer 3 - Normalized Layer

• Each node in this layer normalizes the weight functions obtained
from the previous product layer.

• The normalized output is computed for the ith node as the ratio of
the ith rule’s firing strength to the sum of all rule’s firing strengths
as follows

O3,i =
Wi

w1 + w2

Layer 4 - Defuzzify Layer

• The nodes in this layer are adaptive in nature.

• The defuzzified output of this layer is computed according to the
formula

O4,i = O3,i(α4,i = O3, i(αix) + βiy + γi)

where αi, βi and γi are the linear or consequent parameters of the
corresponding node i.

Layer 5 - Total Output Layer

• The single node in this layer synthesizes information transmitted
by Layer 4 and returns the overall output using the following fixed
function

O5,i =

∑

wiyi
∑
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9.4.2 Hybrid Learning Algorithm

The hybrid learning algorithm of ANFIS proposed by Jang, Sun, and
Mizutani is a combination of Steepest Descent and Least Squares Esti-
mate Learning. Let the total set of parameters be S and let S1 denote
the premise parameters and S2 denote the consequent parameters. The
premise parameters are known as nonlinear parameters and the conse-
quent parameters are known as linear parameters. The ANFIS uses a
two pass learning algorithm: forward pass and backward pass. In for-
ward pass the premise parameters are not modified and the consequent
parameters are computed using the Least Squares Estimate Learning al-
gorithm. In backward pass, the consequent parameters are not modified
and the premise parameters are computed using the gradient descent
algorithm. Based on these two learning algorithms, ANFIS adapts the
parameters in the adaptive network. From the architecture, it is clear
that the overall output of the ANFIS can be represented as a linear
combination of the consequent parameters as

f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 = w̄1f1 + w̄2f2

In forward pass the signals move in forward direction till layer 4 and
the consequent parameters are computed while in the backward pass,
the error rates are propagated backward and the premise parameters
are updated by the gradient descent method.

Forward Pass: Least Squares Estimate Method

The least squares estimate method estimates the unknown values of
the parameters, α0, α1Λ from the regression function, f(x̄; ᾱ) by find-
ing numerical values for the parameters that minimize the sum of the
squared deviations between the observed responses and the functional
portion of the model. The mathematical expression to obtain the pa-
rameter estimates is

Q =
n∑

i=1

[yi − f(x̄; ᾱ)]2

Here α0, α1, ... are the variables to be optimized and x1, x2, ...are the
predictor variable values which are considered as coefficients. For linear
models, the least squares minimization is usually done analytically using
calculus. For nonlinear models, on the other hand, the minimization must
almost always be done using iterative numerical algorithms.

The steps to compute the consequent parameters by maintaining the
premise parameters fixed during the forward pass are:
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Step 1: Present the input vectors to the ANFIS model.

Step 2: Compute the node outputs of each layer.

Step 3: Repeat Step 2 for all the presented input signal.

Step 4: Compute the consequent parameters using the LSE algorithm.

Step 5: Compute the error measure for each training pair.

Backward Pass: Steepest Descent Method

Though the steepest descent method is one of the oldest methods, it is
best suitable for solving constrained as well as unconstrained problems.
This method is a most frequently used nonlinear optimization technique.

Let z = f(X̄) be a function of X̄ such that ∂f(X̄)
∂xk

exists for k = 1,2,

... ,n. The gradient of f(X̄), denoted by ∇f(X̄), is the vector ∇f(X̄) =
∂f(X̄)

∂x1
, ∂f(X̄)

∂x2
, ...∂f(X̄)

∂xn

The direction of the gradient points to the local steepest downhill
direction at the greatest rate of increase of rate of f(X̄). Therefore -
∇f(X̄) points in the direction of greatest decrease f(X̄). An iterative
search procedure is performed, starting from point P̄0 in the direction

S̄0 = −∇f(P̄0)
‖−∇f(P̄0)‖ . Upon this search a point P̄1 is obtained at which the

local minimum occurs according to the constraint X̄ = P̄ + vS̄0. This
search and minimization continues to produce a sequence of points with
the property f(P̄0) > f(P̄1) > ... > ...if lim

k→∞
P̄k = P, thenf(P̄ ) will be

a local minimum.
The basic algorithm of the steepest descent search method is given as

follows:

Step 1: Evaluate the gradient vector ∇f(P̄k).

Step 2: Calculate the direction of search S̄k = −∇f(P̄k)
‖−∇f(P̄k)‖ .

Step 3: Execute a single parameter minimization of ø(v) = f(P̄k +
vS̄k) on the interval [0,b]. Upon execution a value v = hmin
is produced at which the local minimum for ø(v) lies. The
relation ø(v) = f(P̄k +hminS̄k) shows that this is a minimum
for f(X̄)along the search line X̄ = P̄k + vS̄k.

Step 4: Search for the next point ¯Pk+1 = ¯Pk + hminS̄k.

Step 5: Test for termination condition.

Step 6: Repeat the entire process.
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The termination condition is obtained when the function values f(P̄k)
and f( ¯Pk+1) are sufficiently close enough to each other and such that

the distance ‖ ¯Pk+1 − ¯ ‖Pk is a minimum.

9.5 Classification and Regression Trees

9.5.1 CART — Introduction

Classification and Regression Trees also referred to as CART was first
proposed by Breiman et al. during 1984. CART are tree-structured, non-
parametric computationally intensive techniques that find their applica-
tion in various areas. Most commonly CART are used by technicians to
compute results at a faster rate. These trees are not only used to clas-
sify entities into a discrete number of groups, but also as an alternative
approach to regression analysis in which the value of a response (depen-
dent) variable is to be estimated, given the value of each variable in a
set of explanatory (independent) variables.

In a binary tree classifier a decision is made at each non-terminal node
of the tree based upon the value of the available attributes. A threshold
value is set and the attribute value is compared against the threshold.
If the attribute value is less than the threshold then the left branch of
the tree is selected, otherwise the right branch is selected. The classes to
which these attributes are to be classified may be the leaves, or terminal
nodes of the tree. Based upon these classes, the tree is known as either
a classification or regression tree. If the nature of the class is distinct
then the tree is known as a classification tree. If the nature of the class
is continuous then the tree is known as a regression tree.

Some of the features possesses by CART and made CART to be at-
tractive are

• Intuitive representation, the resulting model is easy to understand
and assimilate by humans.

• CART are nonparametric models, therefore they do not require
any user intervention and hence are used for exploratory knowledge
discovery.

• CART are scalable algorithms - their performance degrades grad-
ually as the size of the training data increases.

• These decision trees are more accurate when compared with other
higher models.
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While constructing trees the first issue that has to be considered is
to determine the binary splits of the parent node. The node splitting
criteria is used to determine the binary splits.

9.5.2 Node Splitting Criteria

The algorithm of finding splits of nodes to produce a purer descendant
is shown in Figure 9.12:

Let p denote the proportions of the class.
Let t be the root node.

Step 1: The node proportions are defines as p(j—t), where the pro-
portions are belonging to a class j.

Step 2: The node impurity measure of node t is defined as i(t) as a
nonnegative function φ.

Let ∆ denote the candidate split of a node t, such that the
split divides node t into tleft and tright . The measure of split
is now defined as ∆i (t) = i(t) - plefti(tleft) − prighti(tright).

Step 3: Define the set of binary splits such that the candidate split
sends all values in t having a “true value” to tleftand all values
in t having a “false value” to tright.

At each node CART solves the maximization problem given as
max[i(t) - plefti(tleft) − prighti(tright)].

FIGURE 9.12: Node Splitting Algorithm of CART
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The node impurity measure is defined using two basic impurity func-
tions Gini splitting rule and Twoing splitting rule.

Gini Splitting Rule: This rule is also known as Gini index and

defines the impurity function as i(t)
∑

i6=
p(i|t)p(j|t) where i and j denote

the class index. p(i|t) denotes the proportion of class i. Gini algorithm is
capable of searching the learning sample for the largest class and isolate
it from the rest of the data. Gini is best suited for applications with
noisy data.

Twoing Splitting rule: The Twoing Rule was first proposed by
Breiman during 1984. The value of the impurity measure to be computed
is defined as i(t) = pleftpright

∑ |p(j|tleft)−p(j|tright) The Twoing Value
is actually a goodness measure rather than an impurity measure.

9.5.3 Classification Trees

Construction of a classification tree is a process which requires two
phases. During the first phase, the growth phase, a very large classifica-
tion tree is constructed from the training data. During the second phase,
the pruning phase, the ultimate size of the tree T is determined. Most
classification tree construction algorithms grow the tree top-down in the
greedy way.

The pseudocode of the Classification Tree Algorithm:

Step 1: Split the root node in a binary fashion with response to the
query posed. Those attributes of the root node with the answer
“true” form the left node and those with the answer “false”
form the right node.

Step 2: Apply the node splitting criteria is applied to each of the
split point using the equation ∇i(t) = i(t) − plefti(tleft) −
prighti(tright).

Step 3: Determine the best split of the attribute which has high re-
duction in impurity.

Step 4: Repeat steps 1 to 3 for the remaining attributes at the root
node.

Step 5: From the set of chosen best splits, assign rank to the best
splits based on the reduction in impurity.

Step 6: Select the attribute and the corresponding split point that
have the least impurity of the root node.
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Step 7: Assign classes to the nodes based on the fact that minimizes
the misclassification costs. The misclassification cost can also
be defined by the user.

Step 8: Repeat steps 1 to 7 to each non terminal child node.

Step 9: Continue the splitting process until the stopping criteria is
met.

9.5.4 Regression Trees

Breiman proposed the regression tree for exploring multivariate data
sets. Initially the regression technique was applied to a data set consist-
ing of a continuous response variable y and a set of predictor variables
x1, x2, ..., xk which may be continuous or categorical. Regression trees
modeled the response y as a series of ‘if-then-else’ rules according to
the values of the predictors. The underlying concept behind building a
regression tree is more or less similar to that of creating or building a
classification tree. While creating regression trees, it is not necessary for
the user to indicate the misclassification cost. Since the dependant at-
tribute is continuous, the splitting criteria is employed within the node
sum of squares of the dependent attribute. The goodness measure of
a split is determined based on the reduction in the weighted sum of
squares. The pseudocode for constructing a regression tree is:

Step 1: Split the root node and apply a node impurity measure to
each split.

Step 2: Determine the reduction in impurity.

Step 3: Determine the best split of the attribute by using node split-
ting criteria and divide the parent node into right and left
child nodes.

Step 4: Repeat steps 1 to 3 until the largest possible tree is obtained.

Step 5: Apply pruning algorithm to the largest tree to produce a set
of subtrees and select the right-sized or optimal tree.

9.5.5 Computational Issues of CART

The computation of the best split conditions is quite complex in
CART. Tree optimization implies choosing the right size of tree - cutting
off insignificant nodes and even subtrees. Almost all the decision trees
undergo pruning in order to avoid overfitting of the data. The methodol-
ogy of removing leaves and branches in order to improve the performance
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of the decision tree is referred to as pruning. Pruning method allows the
tree to grow to a maximum size, and then finally removes all the smaller
branches that do not generalize.

Usually when the tree size is defined, a trade-off occurs between the
measure of tree impurity and complexity of the tree, which is defined
by total number of terminal nodes in the tree. Generally the impurity
measure is zero for a maximum tree. During this case, the number of
terminal nodes is always a maximum. To predict the optimal size of the
tree cross validation technique can be applied.

The procedure involved in building a tree based model can be validated
using an intensive method known as cross validation. In cross validation,
the tree computed from one set of observations referred to as learning
sample is compared with another completely independent set of observa-
tions referred to as the testing sample. The learning sample is randomly
split into N sections, such that there is even distribution of outcomes
in each of the N subsets of data. Among these subsets one is chosen
as the testing sample and the remaining N-1 subsets form the learning
samples. The model-building process is repeated N times therefore lead-
ing to N different models, each one of which can be tested against an
independent subset of the data. In CART, the entire tree building and
pruning sequence is conducted N times. Thus, there are N sequences of
trees produced. If most or all of the splits determined by the analysis of
the learning sample are essentially based on “random noise,” then the
prediction for the testing sample will be very poor. Hence one can infer
that the selected tree is not an efficient tree. Using this method, a mini-
mum cost occurs when the tree is complex enough to fit the information
in the learning dataset, but not so complex that “noise” in the data is fit.

V-fold cross validation is also used to determine the optimal tree size.
V-fold cross validation works by dividing the available data into equal-
sized segments and providing one segment at a time for test purposes.
If certain classes of the target variable have very small sample sizes it
may not be possible to subdivide each class into v subsets. This method
has proven to be more accurate since it does not require a separate and
independent testing sample. This procedure avoids the problem of over
fitting where the generated tree fits the training data well but does not
provide accurate predictions of new data.

9.5.6 Computational Steps

The process of computing classification and regression trees can be
characterized as involving four basic steps:

• Tree building

© 2010 by Taylor and Francis Group, LLC



Neuro-Fuzzy Modeling Using MATLAB 377

• Stopping splitting

• Tree pruning

• Selecting the “right-sized” tree

Tree Building

The initial process of the tree building step is partitioning a sample
or the root node into binary nodes based upon the condition “is X ¡ d?”
where X is a variable in the data set, and d is a real number. Based on
the condition, all observations are placed at the root node. In order to
find the best attribute, all possible splitting attributes (called splitters),
as well as all possible values of the attribute to be used to split the
node are determined. To choose the best splitter, the average “purity”
of the two child nodes is maximized. Several measures of purity also
known as splitting criteria or splitting functions can be chosen, but the
most common functions used in practice are the “Gini measure” and the
“Twoing measure.” Each node including the root node is assigned to a
predefined class. This assignment is based on probability of each class,
decision cost matrix, and the fraction of subjects with each outcome in
the learning sample. The assignment assures that the tree has a minimum
decision cost.

Stopping Splitting

If the splitting is not stopped then the entire process gets very com-
plex. The stopping condition for the tree building process or the splitting
process occurs if any of the following condition satisfies:

• If there exists only one observation in each of the child nodes.

• If all observations within each child node have the identical distri-
bution of predictor variables, making splitting impossible.

• If a threshold limit for the number of levels of the maximum tree
has been assigned by the user.
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Tree Pruning

Tree pruning improve the performance of the decision tree by avoiding
overfitting of data. Pruning method allows the tree to grow to a maxi-
mum size, and then finally removes all the smaller branches that do not
generalize. In minimum cost complexity pruning, a nested sequence of
subtrees of the initial large tree is created by weakest-link cutting. With
weakest-link cutting (pruning), all of the nodes that arise from a specific
non-terminal node are pruned off, and the specific node selected is the
one for which the corresponding pruned nodes provide the smallest per
node decrease in the resubstitution misclassification rate. If two or more
choices for a cut in the pruning process would produce the same per
node decrease in the resubstitution misclassification rate, then pruning
off the largest number of nodes is favored. A complexity parameter a
is used for pruning, as a is increased, more and more nodes are pruned
away, resulting in much simpler trees.

Selecting the Right Sized Tree

The maximal tree that has been built, may turn out to be of very
high complexity and consist of hundreds of levels. Hence it is required
to optimize this tree prior to be applied for the classification process.

The main objective in selecting the optimal tree, is to find the correct
complexity parameter a so that the information in the learning samples
is fit thereby avoiding overfitting.

The optimized maximal tree should obey a few properties as follows:

• The tree should be sufficiently complex to account for the known
facts, while at the same time it should be as simple as possible.

• It should exploit information that increases predictive accuracy
and ignore information that does not.

• It should, lead to greater understanding of the phenomena it de-
scribes.

Due to overfitting, the tree does not generalize well and when new
data are presented, the performance of the tree is sub-optimal. To avoid
the overfitting problem, stopping rules can be defined. This is based on
threshold, that is when the node purity exceeds a certain threshold, or
when the tree reaches a certain depth, the splitting process is stopped.
Stopping too early might fail to uncover splits in the child variables
with large decrease in node impurity had the tree been allowed to grow
further. Breiman pointed out that “looking for the right stopping rule
was the wrong way of looking at the problem.” They proposed that the
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FIGURE 9.13: Flowchart of Resubstitution Estimate

tree be allowed to be grown to its maximal size first, and then gradually
shrunk by pruning away branches that lead to the smallest decrease in
accuracy compared to pruning other branches. The search for the “right-
sized” tree starts by pruning or collapsing some of the branches of the
largest tree from the bottom up, using the cost complexity parameter and
cross validation or an independent test sample to measure the predictive
accuracy of the pruned tree.

9.5.7 Accuracy Estimation in CART

Almost all classification procedures produce errors, but accuracy is the
most important attribute in CART. Breiman proposed three procedures
for estimating the accuracy of tree-structured classifiers.

Resubstitution Estimate: The accuracy of the true misclassifica-
tion rate is estimated as shown in Figure 9.13. The disadvantage of this
misclassification estimate is that it is derived from the same data set
from which the tree is built; hence, it under estimates the true misclas-
sification rate. The error rate is always low in such cases.
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FIGURE 9.14: Flowchart of Test-Sample Estimate

Test-Sample Estimate: This estimate is used to determine the mis-
classification rate when the sample size is too large. The methodology
to determine the estimate the true misclassification rate is shown in
Figure 9.14.

K-Fold Cross-Validation. This estimate is usually best suited for
small sample sets. The procedure of computing the true misclassification
rate is shown in Figure 9.15. The output obtained from the Figure is a
series of test sample resubstitution estimates. These estimates are finally
summed up and their average is computed to be thetrue misclassification
rate.

9.5.8 Advantages of Classification and Regression Trees

Tree classification techniques have a number of advantages over many
of the alternative classification techniques.
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FIGURE 9.15: Flowchart of K-Fold Cross-Validation

• Simplicity of results — The interpretation of results in a tree is
really very simple. This simplicity is useful not only for purposes
of rapid classification of new observations, but can also frequently
generate a much simpler “model” for explaining the reason for
classifying or predicting observations in a particular manner.

• Is inherently non-parametric — no assumptions are made regard-
ing the underlying distribution of values of the predictor variables.

• The flexibility to handle a broad range of response types, including
numeric, categorical, ratings, and survival data.

• Invariance to monotonic transformations of the explanatory vari-
ables.

• It is a relatively automatic machine learning method.
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• Ease and robustness of construction.

• Ease of interpretation.

• The ability to handle missing values in both response and explana-
tory variables.

9.6 Data Clustering Algorithms

One of the basic issues in pattern recognition is clustering which is
the process of searching for structures in data. From a finite set of data
X, several cluster centers can be determined. Traditional cluster analysis
involves the process of forming a partition of X such that the degree of
association is strong for data within blocks of the partition and weak
for data in different blocks. However, this requirement is too strong in
many practical applications and it is thus desirable to replace it with
a weaker requirement. When the requirement of a crisp partition of X
is replaced with a weaker requirement of a fuzzy partition or a fuzzy
pseudo-partition on X, the emerging problem area is referred to as fuzzy
clustering. Fuzzy pseudo-partitions are often called fuzzy c-partitions,
where c designates the number of fuzzy classes in the partition. Some
of the basic methods of fuzzy clustering are fuzzy c-means clustering
method [FCM] and subtractive clustering.

9.6.1 System Identification Using Fuzzy Clustering

In general, the identification of the system involves structure identi-
fication and parameter identification. The structure is identified from a
rule which is formed by removing all the insignificant variables, in the
form of IF-THEN rules and their fuzzy sets. Parameter identification
includes consequent parameter identification based on certain objective
criteria. The model proposed by Takagi and Sugeno, which is called TS
fuzzy model, the consequent part is expressed as a linear combination
of antecedents. In TS model the system with N rules and m antecedents
can be expressed as

R1: IF x1 is A11 AND x2 is A21 AND ... AND xm is Am1

THEN y1=P01+P11x1+ ... +Pm1xm ... (9.39)

RN : IF x1 is A1
N AND x2 is A2

N AND ... AND xm is Am
N

THEN yN=P0
N+P1

Nx1+ ... +Pm
Nxm
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where xi is the ith antecedent (i=0,1, ... m)
Rj and yj respectively represent the jth rule and its consequent
(j=0,1, ... N)
P j

i are the consequent parameters.

When input-output data are available a priori, fuzzy clustering is a
technique that can be used for structure identification. Then, the con-
sequent parameters can be optimized by least square estimation (LSE)
given by Takagi and Sugeno. The identification of the system using fuzzy
clustering involves formation of clusters in the data space and transla-
tion of these clusters into TSK rules such that the model obtained is
close to the system being identified.

The fuzzy C-means (FCM) clustering algorithm, which has been
widely studied and applied, needs a priori knowledge of the number
of clusters. If FCM expects a desired number of clusters and if the posi-
tions for each cluster center can be guessed, then the output rules depend
strongly on the choice of initial values. The FCM algorithm forms a suit-
able cluster pattern in order to minimize an objective function dependent
of cluster locations through iteration. The number and initial location
of cluster centers can also be automatically determined through search
techniques which is available in the mountain clustering method. This
method considers each discrete grid point as a potential cluster center
by computing a search measure called the mountain function at each
grid point. It is a subtractive clustering method with improved com-
putational effort, in which the data points themselves are considered as
candidates for cluster centers instead of grid points. Through application
of this method, the computation is simply proportional to the number
of data points and independent of the dimension of the problem.

In this method too, a data point with highest potential which is a
function of the distance measure, is considered as a cluster center and
data points close to new cluster center are penalized in order to control
the emergence of new cluster centers.

The different types of clustering algorithms are discussed in the fol-
lowing:

9.6.2 Hard C-Means Clustering

The c-means algorithm tries to locate clusters in the multi-dimensional
feature space. The goal is to assign each point in the feature space to a
particular cluster. The basic approach is as follows:

Step 1: Seed the algorithm with c cluster centers manually, one for
each cluster. (This step requires the prior information regard-
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ing the number of clusters into which the points are to be
divided.)

Step 2: Assign each data point to the nearest cluster center.

Step 3: Compute a new cluster center for each class by taking the
mean values of the coordinates of the points assigned to it.

Step 4: If stopping criteria is not met then go to step 2.

Some additional rules can be added to remove the necessity of knowing
precisely how many clusters there are. The rules allow nearby clusters to
merge and clusters, which have large standard deviations in coordinate
to split. Generally speaking, the c-means algorithm is based on a c-
partition of the data space U into a family of clusters {Ci}, i=1,2 ... c,
where the following set-theoretic equations apply,

Y c
i=1Ci = U (9.40)

Ci I Cj = 0, i 6= j (9.41)

0 ⊂ Ci ⊂ U, all i (9.42)

The set U={u1, u2, ...uK} is a finite set of points in a space spanned by
the feature axes, and c is the number of clusters. Here 2 ≤ c ≤ K because
c=K clusters just places each data sample into its own cluster, and c=1
places all data samples into the same cluster. Equations (9.40) to (9.42)
show that the set of clusters evacuates the whole universe, that there is no
overlap between the clusters, and that a cluster can neither be empty nor
contain all data samples. The c-means algorithm finds a center in each
cluster thereby minimizing an objective function of a distance measure.
The objective function depends on the distances between vectors uk

and cluster centers ci , and when the Euclidean distance is chosen as a
distance function, the expression for the objective function is :

J =

c∑

i=1

Ji =

c∑

i=1

( ∑

k,ukǫCj

‖uk − Cj‖2
)

(9.43)

where Ji is the objective function within cluster i. The partitioned
clusters are typically defined by a cxK binary characteristic matrix M,
called the membership matrix, where each element mik is 1 if the kth

data point uk belongs to cluster i, and 0 otherwise. Since a data point
can only belong to one cluster, the membership matrix M has these
properties:

- the sum of each column is one
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- the sum of all elements is K

If the cluster centers ci are fixed, the mik that minimize Ji can be derived
as

mik

{
1 if‖uk − ci‖2 ≤ ‖uk − cj‖2for each j 6= i 0 otherwise (9.44)

That is uk belongs to cluster i if ci is the closest center among all cen-
ters. If, on the other hand mik is fixed, then the optimal center ci that
minimizes (5) is the mean of all vectors in cluster i:

ci =
1

| Ci |
∑

k,ukǫCi

uk (9.45)

where | Ci | is the number of objects in Ci , and the summation is an
element-by-element summation of vectors.

Algorithm

The hard c-means algorithm has five steps.

Step 1: Initialize the cluster centers ci (i=1,2 ... c) by randomly se-
lecting c points from the data points.

Step 2: Determine the membership matrix M by using equation
(9.44).

Step 3: Compute the objective function (9.43). Stop if either it is be-
low a certain threshold value, or its improvement over the
previous iteration is below a certain tolerance.

Step 4: Update the cluster centers according to (9.45).

Step 5: Go to step 2.

The algorithm is iterative, and there is no guarantee that it will con-
verge to an optimum solution. The performance depends on the ini-
tial positions of the cluster centers, and it is advisable to employ some
method to find good initial cluster centers. It is also possible to initial-
ize a random membership matrix M first and then follow the iterative
procedure. For example, we have the feature space with two clusters.

The plot of the clusters in Figure 9.16 suggests a relation between the
variable x on the horizontal axis and y on the vertical axis. For example,
the cluster in the upper right hand corner of the plot indicates, in very
loose terms, that whenever x is “high”, defined as near the right end of
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FIGURE 9.16: Example with Two Clusters. Cluster Centers are
Marked with Solid Circles

the horizontal axis, then y is also “high”, defined as near the top end of
the vertical axis. The relation can be described by the rule:

IF x is high THEN y is high (9.46)

It seems possible to make some intuitive definitions of the two instances
of the word ’high’ in the rule, based on the location of the cluster center.
The cluster in the lower left part of the figure, could be described as

IF x is low THEN y is low (9.47)

9.6.3 Fuzzy C-Means (FCM) Clustering

Occasionally the points between cluster centers can be assumed to
have a gradual membership of both clusters. Naturally this is accom-
modated by fuzzifying the definitions of “low” and “high” in (9.46) and
(9.47). The fuzzified c-means algorithm allows each data point to belong
to a cluster to a degree specified by a membership grade, and thus each
point may belong to several clusters.

The fuzzy c-means algorithm partitions a collection of K data points
specified by m-dimensional vectors uk (k=1,2 ... K) into c fuzzy clus-
ters, and finds a cluster center in each, minimizing an objective func-
tion. Fuzzy c-means is different from hard c-means, mainly because it
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employs fuzzy partitioning, where a point can belong to several clusters
with degrees of membership. To accommodate the fuzzy partitioning, the
membership matrix M is allowed to have elements in the range [0,1]. A
point’s total membership of all clusters, however, must always be equal
to unity to maintain the properties of the M matrix. The objective func-
tion is a generalization of equation (9.43),

J(M, c1, c2, ...) =

c∑

i=1

Ji =

c∑

i=1

K∑

k=1

mq
ikd2

ik (9.48)

where mik is a membership between 0 and 1, ci is the center of fuzzy
cluster i, dik=‖uk− ci‖ is the Euclidean distance between the ith cluster
center and kth point, ǫ [1,∞ ] is a weighting exponent.

There are two necessary conditions for J to reach a minimum:

ci =

∑K
k=1 mq

ikuk
∑K

k=1 mq
ik

(9.49)

and

mik =
1

∑c
j=1(

dik

djk
)2/(q−1)

(9.50)

Algorithm

The algorithm is simply an iteration through the preceding two con-
ditions. In a batch mode operation, the fuzzy c-means algorithm deter-
mines the cluster centers ci and the membership matrix M using the
following steps:

Step 1: Initialize the membership matrix M with random values be-
tween 0 and 1 within the constraints of (9.44).

Step 2: Calculate c cluster centers ci (i=1,2 ... c) using (9.49).

Step 3: Compute the objective function according to (9.48). Stop if
either it is below a certain threshold level or its improvement
over the previous iteration is below a certain tolerance.

Step 4: Compute a new M using (9.50).

Step 5: Go to step 2.

The cluster centers can alternatively be initialised first, before car-
rying out the iterative procedure. The algorithm may not converge to
an optimum solution and the performance depends on the initial cluster
centers, just as in the case of the hard c-means algorithm.
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9.6.4 Subtractive Clustering

Subtractive clustering is based on a measure of the density of data
points in the feature space. The theme behind subtractive clustering is
to determine regions in the feature space with high densities of data
points. The point with the maximum number of neighbors is selected as
center for a cluster. The data points within a prespecified, fuzzy radius
are subtracted, and the algorithm looks for a new point with the highest
number of neighbors. This process continues until all data points are
examined.

Consider a collection of K data points specified by m-dimensional
vectors uk, k=1,2 ... K. Without loss of generality, the data points are
assumed normalised. Since each data point is a candidate for a cluster
center, a density measure at data point uk is defined as:

Dk =

K∑

j=1

exp

(

−‖uk − uj‖
(ra/2)2

)

(9.51)

where ra is a positive constant. A data point will have a high-density
value if it has many neighboring data points. Only the fuzzy neighbor-
hood within the radius ra contributes to the density measure.

After calculating the density measure for each data point, the point
with the highest density is selected as the first cluster center. Let uc1

be the point selected and Dc1 its density measure. Next, the density
measure for each data point uk is revised by the formula:

D′
k = Dk − Dc1exp

(

−‖uk − uc1‖
(rb/2)2

)

(9.52)

where rb is a positive constant. Therefore, the data points near the first
cluster center uc1 will have significantly reduced density measures, mak-
ing the points unlikely to be selected as the next cluster center. The
constant rb defines a neighborhood to be reduced in density measure.
It is normally larger than ra to prevent closely spaced cluster centers;
typically rb = 1.5* ra. Once the density measure for each point is re-
vised, the next cluster center uc2 is selected and all the density measures
are revised again. The process is repeated until a sufficient number of
cluster centers are generated. When applying subtractive clustering to a
set of input-output data, each of the cluster centers represents a rule. To
generate rules, the cluster centers are used as the centers for the premise
sets in a single type of rule base or the radial basis functions in a radial
basis function neural network.
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TABLE 9.2: Training Set
X1 −1.31 −0.64 0.36 1.69 −0.98 0.02 0.36 −0.31 1.02 −0.31 1.36 -1.31
X2 −0.63 −0.21 -1.47 0.63 −0.63 1.47 0.21 0.21 −0.63 0.63 -0.63 1.89 -1.47 0.63

9.6.5 Experiments

The experiments illustrate the comparison between the fuzzy C-means
clustering algorithm and the subtractive clustering algorithm to deter-
mine the most optimal algorithm and apply to the RBF neural networks.

Two training sets have been selected for that purpose:

a) To obtain two clusters for this training set Table 9.2 is used:
By means of the Fuzzy C-Means clustering algorithm the following

cluster centers have been derived (Figure 9.17).
The initial cluster centers were generated arbitrarily, whereas the fi-

nal ones were formed as a result of the FCM algorithm execution. In
accordance with the algorithm, objective function values were computed
by formula (11) and membership matrix M was calculated by formula
(13). Membership function distribution for two clusters is shown in Fig-
ure 9.18.

In further experiments an attempt was made to enlarge the number
of clusters. The following objective function values were derived:
2 clusters - Objective function = 17.75 (2 iterations)
3 clusters - Objective function = 9.45 (2 iterations)

FIGURE 9.17: Initial (a) and Final (b) Cluster Centers
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FIGURE 9.18: Membership Function Distribution

4 clusters - Objective function = 4.84 (2 iterations).
The results are shown in Figures 9.19, 9.20, and 9.21.

b) With the help of the subtractive algorithm experiments with the
experimental dataset have been performed:

Figure 9.20 shows the results of the subtractive algorithm execution
with the experimental dataset. The experiments have shown that the
subtractive algorithm is hard to apply.

c) With the help of the FCM algorithm experiments with the SPIRAL
database have been performed:

Figures 9.21 and 9.22 shows the result of the FCM algorithm execution
with the SPIRAL database.

The experiments performed with the FCM method have shown that
the results of the FCM algorithm execution are close to those of the
K-means algorithm operation (in pattern recognition tasks).

In the given work the possibilities of fuzzy clustering algorithms was
described. Fuzzy c-means clustering is a clustering method where each
data point may partially belong to more than one cluster with a degree
specified by a membership function. FCM starts with an initial guess for
the cluster center locations and iteratively updates the cluster centers
and the membership grades for each data point based on minimizing a
cost function. Subtractive clustering method is a fast, one-pass algorithm
for estimating the number of clusters. It partitions the data into clusters
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FIGURE 9.19: FCM Algorithm Results: Two, Three and Four Clus-
ters

FIGURE 9.20: Subtractive Algorithm Results: Some Cluster Centers
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FIGURE 9.21: Final Cluster Centers (a) and Membership Functions
for Two Clusters (b)

and generates a FIS with the minimum numbers of rules required to
distinguish the fuzzy qualities associated with each of the clusters. The
main difference between fuzzy clustering and other clustering technique
is that it generates fuzzy partitions of the data instead of hard partitions.
Therefore, data patterns may belong to several clusters, having different
membership values in each cluster.

FIGURE 9.22: FCM Algorithm Results for SPIRAL Data: Two and
Three Clusters
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Summary

The hybrid neuro-fuzzy approach provides a strong modeling frame-
work for a consistent utilization of both conceptual and empirical com-
ponents of earth science information for mineral potential mapping. By
implementing a fuzzy inference system in the framework of an adap-
tive neural network, the hybrid neuro-fuzzy approach provides a robust
data-based method for estimating the parameters of the fuzzy inference
system. The output of a hybrid neuro-fuzzy model is not likely to be
affected by the conditional dependence among two or more predictor
maps. Moreover, multi-class predictor maps can be conveniently used
in a hybrid neuro-fuzzy model. In the hybrid neuro-fuzzy approach, the
problems related to dimensionality of input feature vectors can be ad-
dressed by using zero-order Takagi-Sugeno type fuzzy inference systems
and/or statistical methods like factor analysis. Similar hybrid neuro-
fuzzy inference system can be constructed and implemented for modeling
larger-scale evidential maps to demarcate specific prospects within the
predicted potentially-mineralized zones. The high performance levels of
the hybrid neuro-fuzzy and neural network models, described, indicate
that machine learning algorithms can efficiently recognize and account
for possible conditional dependencies among input predictor patterns.

Review Questions

1. Explain concurrent and cooperative neuro-fuzzy systems.

2. Describe FALCON architecture.

3. Explain briefly on GARIC and NEFCON.

4. Compare FUN and EfuNN.

5. Explain the theoretical background of ANFIS model.

6. In detail, explain the layered architecture and the hybrid learning
algorithm of ANFIS model.

7. Describe the different stages in implementing a hybrid neuro fuzzy
model.

8. What are classification and regression trees?
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9. Delineate on the General Computation Issues and Unique Solu-
tions of C&RT.

10. What are the three estimates of accuracy in classification prob-
lems?

11. Mention the advantages of classification and regression trees.

12. What are data clustering algorithms? What is the need for these
algorithms?

13. Explain hard c-means clustering algorithm.

14. Describe the Fuzzy C-means clustering algorithm in detail.

15. Differentiate Fuzzy C-means and subtractive clustering algorithm.

16. How is fuzziness incorporated in a neural net framework?
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Chapter 10

Neuro-Fuzzy Modeling
Using MATLAB

In this chapter, MATLAB illustrations are given on ANFIS, Classifica-
tion and Regression trees, Fuzzy c-means clustering algorithms, Fuzzy
ART Map, and Simulink models on Takagi–Sugeno inference systems.

10.1 Illustration 1 - Fuzzy Art Map

Simplified Fuzzy Art Map

%

% SFAM usage demo.

%

function sfam demo

% load data

load demodata

% create network

net = create network(size(data,2))

% change some parameters as you wish

% net.epochs = 1;

% train the network

tnet = train(data, labels, net, 100)

% test the network on the testdata

r = classify(testdata, tnet, testlabels, 10);

% compute classification performance

fprintf(1,’Hit rate: % f \ n’, sum(r’ ==

395
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testlabels)*100/size(testdata,1));

% - - - - - - - - - - - - - - - - - - - - - - - - - -

Subprograms used

function results = classify(data, net, labels, debug);

% CLASSIFY Classifies the given data using the given

% trained SFAM.

% RESULTS = CLASSIFY(DATA, NET, LABELS, DEBUG)

% DATA is an M-by-D matrix where M is the number of

% samples and D is the size of the feature

% space. NET is a previously trained SFAM network.

% LABELS is a M-vector containing the correct labels

% for the data.If you don’t have them, give it as an

% empty-vector [ ]. DEBUG is a scalar to control

% the verbosity of the program during training.If

% 0, nothing will be printed, otherwise every DEBUG

% iterations an informatory line will be printed.

%

results = [ ];

hits=0;

tic;

for s=1:size (data,1)

input = data(s,:);

% Complement code input

input = [input 1-input];

% Compute the activation values for each

% prototype.

activation = ones(1,length(net.weights));

for i=1:length(net.weights)

activation(i)=sum(min(input,net.weights{i}))/...
(net.alpha + sum(net.weightsi));

end

% Sort activation values

[sortedActivations, sortedIndices] =

sort(activation,’descend’);

% Iterate over the prototypes with decreasing

% activation-value results(s)=-1;

for p=sortedIndices

% Compute match of the current candidate

© 2010 by Taylor and Francis Group, LLC



Neuro-Fuzzy Modeling Using MATLAB 397

% prototype

match = sum(min(input,net.weightsp))/net.D;

% Check resonance

if match>=net.vigilance
results(s) = net.labels(p);

if ∼ isempty(labels)

if labels(s)==results(s),

hits = hits + 1; end;

end

break;

end

end

if mod(s,debug)==0

elapsed = toc;

fprintf(1,’Tested % 4dth sample. Hits so far:

% 3d which is %.3f%%. \ tElapsed

%.2f seconds.n’,s,hits,100*hits/s,elapsed);

tic;

end

end % samples loop

% - - - - - - - - - - - - - - - - - - - - - - - - -

function net = create network (num features, varargin)

% Network can be configured by giving parameters in

% the format: NET = CREATE NETWORK(NUM FEATURES,

% ’paramname1’, value1,’paramname2’, value2, ...)

% Valid parameters are:D, max categories, vigilance,

% alpha, epochs, beta, epsilon, singlePrecision

%

net = struct( ...

’D’ , num features ...

,’max categories’ , 100 ...

,’vigilance’ , 0.75 ...

,’alpha’ , 0.001 ...

,’epochs’ , 10 ...

,’beta’ , 1 ...

,’weights’ , cell(1) ...
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,’labels’ , [ ] ...

,’epsilon’ , 0.001 ...

,’singlePrecision’, false ...

);

for i=1:2:length(varargin)

net = setfield(net,varargini,varargini+1);

end

% - - - - - - - - - - - - - - - - - - - - - - - - - -

function net = train(data, labels, net,debug)

% dbstop in train at 18

for e=1:net.epochs

network changed = false;

tic;

for s=1:size(data,1)

if mod(s,debug)==0

elapsed = toc;

fprintf(1,’Training on % dth sample,

in % dth epoch. \5# of prototypes=

% 4d \ tElapsed seconds:

% f \ n’,s,e,length

(net.weights),elapsed);

tic;

end

input = data(s,:);

input label = labels(s);

% Complement code input

input = [input 1-input];

% Set vigilance

ro = net.vigilance;

% By default, create new prototype=true. Only

% if ’I’ resonates with one of the existing

% prototypes, a new prot.will not be created

% create new prototype = true;

% Compute the activation values for each
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% prototype.

activation = ones(1,length(net.weights));

for i=1:length(net.weights)

activation(i) =

sum(min(input,net.weights{i}))/...
(net.alpha + sum(net.weights{i}));

end

% Sort activation values

[sortedActivations, sortedIndices] =

sort(activation,’descend’);

% Iterate over the prototypes with decreasing

activation-value for p=sortedIndices

% Compute match of the current candidate

% prototype

match = sum(min(input,net.weights{p}))
/net.D; % see note [1]

% Check resonance

if match>=ro
% Check labels

if input label==net.labels(p)

% update the prototype

net.weightsp = net.beta*(min(input,

net.weights{p})) + ...

(1-net.beta)*net.weightsp;

network changed = true;

create new prototype = false;

break;

else

% Match-tracking begins.

% Increase vigilance

ro = sum(min(input,net.weights{p}))
/net.D + net.epsilon;

end

end

end

if create new prototype

new index = length(net.weights)+1;

if net.singlePrecision

net.weightsnew index =

ones(1,2*net.D,’single’);
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else

net.weightsnew index =

ones(1,2*net.D);

end

net.weightsnew index =

net.beta*(min(input,net.weights

{new index})) + ...

(1-net.beta)*net.weightsnew index;

net.labels(new index) = input label;

network changed = true;

end

end % samples loop

if ∼ network changed

fprintf(1,’Network trained in % d epochs.

\ n’,e);

break

end

end % epochs loop

Observations:

tnet =

D: 2

max categories : 100

vigilance : 0.7500

alpha : 1.0000e-003

epochs : 10

beta : 1

weights : [ ]

labels : [ ]

epsilon : 1.0000e-003

singlePrecision : 0

tnet =

D : 2

max categories : 100

vigilance : 0.7500

alpha : 1.0000e-003

epochs : 1
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TABLE 10.1: Training Samples

Training No. of Elapsed Time
Sample Prototypes (seconds)

100 20 0.047000
200 27 0.047000
300 29 0.062000
400 29 0.047000
500 31 0.063000
600 33 0.062000
700 34 0.063000
800 35 0.062000
900 37 0.063000

1000 38 0.063000

beta : 1

weights : 1x38 cell

labels : [2 1 2 2 1 1 2 2 1 2 1 1 1 1 2 2 1 1 1 2

2 1 1 2 1 2 1 1 2 1 2 2 2 1 1 2 2 2]

epsilon : 1.0000e-003

singlePrecision : 0

Hit rate: 96.000000

TABLE 10.2: Testing Samples

Tested No. of Elapsed Time)
Sample Hits (seconds)

10 10 0.00
20 20 0.00
30 30 0.02
40 39 0.00
50 49 0.00
60 58 0.02
70 68 0.00
80 77 0.00
90 86 0.02

100 96 0.00
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10.2 Illustration 2: Fuzzy C-Means
Clustering - Comparative Case Study

Two levels of fuzzy c-means clustering are illustrated in this program.
FCM Clustering often works better than Otsu’s method which outputs
larger or smaller threshold on fluorescence images.

- - - - - - - - - - - - - - - - - - - - - - - - - -

% Main Program

- - - -- - -- -- - -- - - - - - - - - - - - - - - -

clear;close all;

im=imread(’cell.png’);

J = filter2(fspecial(’sobel’), im);

fim=mat2gray(J);

level=graythresh(fim);

bwfim=im2bw(fim,level);

[bwfim0,level0]=fcmthresh(fim,0);

[bwfim1,level1]=fcmthresh(fim,1);

subplot(2,2,1);

imshow(fim);title(’Original’);

subplot(2,2,2);

imshow(bwfim);title(sprintf(’Otsu,level=% f’,

level));

subplot(2,2,3);

imshow(bwfim0);title(sprintf(’FCM0,level=% f’,

level0));

subplot(2,2,4);

imshow(bwfim1);title(sprintf(’FCM1,level=% f’,

level1));

- - - - - - - - - - - - - - - - - - - - - - - - - - -

% Subprograms

- - - - - - - - - - - - - - - - - - - - - - - - - - -

function [bw,level]=fcmthresh(IM,sw)

% Thresholding by fuzzy c-means clustering

% [bw,level]=fcmthresh(IM,sw) outputs the binary

image bw and threshold level of

% image IM using a fuzzy c-means clustering.

% sw is 0 or 1, a switch of cut-off position.

% sw=0, cut between the small and middle class

% sw=1, cut between the middle and large class
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% check the parameters

if (nargin<1)
error(’You must provide an image.’);

elseif (nargin==1)

error(’You must provide an image.’);

elseif (nargin==1)

sw=0;

elseif (sw∼=0 && sw∼=1)
error(’sw must be 0 or 1.’);

end

data=reshape(IM,[],1);

[center,member]=fcm(data,3);

[center,cidx]=sort(center);

member=member’;

member=member(:,cidx);

[maxmember,label]=max(member,[],2);

if sw==0

level=(max(data(label==1))+min(data(label==2)))/2;

else

level=(max(data(label==2))+min(data(label==3)))/2;

end

bw=im2bw(IM,level);

Observations:

Figure 10.1 shows the original image and the clustered images. Fuzzy c
means clustering is compared with the Ostu’s method and it is seen that
FCM has better performance than the Ostu’s method. The threshold is
0 or 1, based on the switch cut-off position. If the threshold level is 0
then the cut is between the small and middle class, and if the threshold
level is 1 the cut is between the middle and large class.

10.3 Illustration 3 - Kmeans Clustering

This illustration shows the implementation of K-means algorithm us-
ing MATLAB to cluster a given image and form a re-clustered image.

% MATLAB Code

fprintf(’\n Execution Starts...’);
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FIGURE 10.1: Plot of clustering using Ostu’s method and FCM
method

clear;

close all;

% Size Of the Image

wd=256;

X=im2double((imread(’ALLPICDATA.bmp’)));

X=imresize(X,[wd wd]);

X=im2uint8(X);

X=double(X);

mean1 = mean(mean(X(:,:,1)));

mean2 = mean(mean(X(:,:,2)));

mean3 = mean(mean(X(:,:,3)));

mean mat = [mean1 mean2 mean3];

[dum,dom]=max(mean mat);

© 2010 by Taylor and Francis Group, LLC



Neuro-Fuzzy Modeling Using MATLAB 405

switch dom

case 1

plane1=2;

plane2=3;

case 2

plane1=1;

plane2=3;

case 3

plane1=1;

plane2=2;

end

PP=X(:,:,dom);

no of cluster = 5;

ipimage=PP;

e=0.03;

thrd=e*mean(mean(ipimage));

% Initial Centroids

miniv = min(min(ipimage));

maxiv = max(max(ipimage));

range = maxiv - miniv;

stepv = range/no of cluster;

incrval = stepv;

for i = 1:no of cluster

K(i).centroid = incrval;

incrval = incrval + stepv;

end

imax=size(ipimage,1);

jmax=size(ipimage,2);

% Initialization Starts...here...

for i=1:imax

for j=1:jmax

opimage(i,j).pixel=ipimage(i,j);

end

end

loop=1;

for ii=1:no of cluster

dist(ii)=K(ii).centroid;
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end

while dist>thrd
temp=K;

% Initial Clustering...

for i=1:imax

for j=1:jmax

for k=1:no of cluster

diff(k)=abs(ipimage(i,j)-K(k).centroid);

end

[y,ind]=min(diff);

opimage(i,j).index=ind;

end

end

% New Centroids...

summ=zeros(no of cluster,1);

count=zeros(no of cluster,1);

sum1 = zeros(no of cluster,1);

sum2 = zeros(no of cluster,1);

for i=1:imax

for j=1:jmax

for k=1:no of cluster

if(opimage(i,j).index==k)

summ(k)=summ(k)+opimage(i,j).pixel;

sum1(k)=sum1(k)+X(i,j,plane1);

sum2(k)=sum2(k)+X(i,j,plane2);

count(k)=count(k)+1;

end

end

end

end

% Update Centroids...

for k=1:no of cluster

K(k).centroid=summ(k)/count(k);

end

fprintf(’\nNew Loop...’);

loop=loop+1

clear dist;

% New distance...
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for ii=1:no of cluster

dist(ii)=abs(temp(ii).centroid-K(ii).centroid);

end

end

% End Of while Loop

for k=1:no of cluster

Other Plane1(k).centroid=sum1(k)/count(k);

Other Plane2(k).centroid=sum2(k)/count(k);

end

% Resultant Image

reimage=zeros(wd,wd,3);

for i=1:imax

for j=1:jmax

reimage(i,j,dom) = K(opimage(i,j).index).centroid;

reimage(i,j,plane1) = Other Plane2(opimage(i,j).

index).centroid;

reimage(i,j,plane1) = Other Plane2(opimage(i,j).

index).centroid;

end

end

% End Of K-Means Algorithm...

% Results...

for k=1:no of cluster

rimage =zeros(imax,jmax,3);

for i=1:imax

for j=1:jmax

if opimage(i,j).index==k

rimage(i,j,dom) = K(k).centroid;%

opimage(i,j).pixel;

rimage(i,j,plane1) = Other Plane1(k).centroid;

rimage(i,j,plane2) = Other Plane2(k).centroid;

end

end

end

strbuf = sprintf(’Cluster No % d ’,k);

figure,imshow(uint8(rimage));

title(strbuf);

end

figure;

© 2010 by Taylor and Francis Group, LLC



408 Computational Intelligence Paradigms

FIGURE 10.2: Input Image

imshow(uint8(reimage));title(’Re Clustured Image’);

fprintf(’\n Done...’);

Observations:

Figures 10.2 to 10.8 show the original image and the clustered images.

FIGURE 10.3: Clustered Image 1
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FIGURE 10.4: Clustered Image 2

FIGURE 10.5: Clustered Image 3
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FIGURE 10.6: Clustered Image 4

FIGURE 10.7: Clustered Image 5
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FIGURE 10.8: Clustered Image 6

10.4 Illustration 4 - Neuro-Fuzzy System
Using Simulink

The function y = f(x) = -2x - x2 is used to simulate the neuro fuzzy
system using SIMULINK. A Fuzzy System is formed to Approximate
Function f, when xǫ [-10,10]. The input output data is generated and
plotted as shown in Figure 10.9.

clc;

x=[-10:.5:10]’;

y=(-2*x)-(x.*x);

plot(x,y)

grid

xlabel(’x’);ylabel(’output’);title(’Nonlinear

characteristics’)

% The data is stored in appropriate form for genfis1

% and anfis and plotted as in Figure 10.10

data=[x y];

trndata=data(1:2:size(x),:);
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FIGURE 10.9: Plot of the Parabolic Function

chkdata=data(2:2:size(x),:);

plot(trndata(:,1),trndata(:,2),’o’,chkdata(:,1),

chkdata(:,2),’x’)

xlabel(’x’);ylabel(’output’);title(’Measurement

data’);grid

% The fuzzy system is initialized with the command

genfis1 nu=5; mftype=’gbellmf’; fismat=genfis1

(trndata, nu, mftype);

% The initial membership functions produced by genfis1

% are plotted in Figure 10.11

plotmf(fismat,’input’,1)

xlabel(’x’);ylabel(’output’);title(’Initial membership

functions’);

grid

% Next apply anfis-command to find the best FIS system

- max number of

% iterations = 100
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FIGURE 10.10: Training Data (o) and Checking Data (x) Generated
from the Parabolic Equation

numep=100;

[parab, trnerr, ss, parabcheck, chkerr] = anfis

(trndata, fismat, numep,

[],chkdata);

% The output of FIS system is evaluated using input x

and is plotted

% as shown in Figure 10.12

anfi=evalfis(x,parab);

plot(trndata(:,1),trndata(:,2),’o’,chkdata(:,1),

chkdata (:,2), ’x’,x,anfi,’-’)

grid

xlabel(’x’);ylabel(’output’);title(’Goodness of fit’)
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FIGURE 10.11: Initial Fuzzy System (fismat) for ANFIS

10.5 Illustration 5 - Neuro-Fuzzy System Using
Takagi–Sugeno and ANFIS GUI of MATLAB

Step 1: Choose a new Sugeno system from the Fuzzy Toolbox GUI
(Figure 10.13)

Step 2: Load the Training data from workspace into the ANFIS editor
(Figure 10.14)

Step 3: Generate the membership functions type (Figure 10.15). Here
5 gbellmf is selected with linear type.

Step 4: Train the network to see the performance. The error tolerance
is chosen to be 0.001 and number of epochs is limited to 100
(Figure 10.16).

Error converges at the end of 100 epochs. The editor can be used to
test the network using a testing pattern.
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FIGURE 10.12: Fitting the Trained Fuzzy System on Training Data

FIGURE 10.13: Display of New Sugeno-Type System
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FIGURE 10.14: Training Data from Workspace

FIGURE 10.15: Generate the Membership Function Types
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FIGURE 10.16: Error at the End of 71 Epochs

Summary

By implementing a fuzzy inference system in the framework of an
adaptive neural network, the hybrid neuro-fuzzy approach provides a
robust data-based method for estimating the parameters of the fuzzy
inference system. The output of a hybrid neuro-fuzzy model is not likely
to be affected by the conditional dependence among two or more pre-
dictor maps. Moreover, multi-class predictor maps can be conveniently
used in a hybrid neuro-fuzzy model. In the hybrid neuro-fuzzy approach,
the problems related to dimensionality of input feature vectors can
be addressed by using zero-order Takagi-Sugeno type fuzzy inference
systems and/or statistical methods like factor analysis. For the imple-
mentation of Neuro-Fuzzy systems a set of MATLAB illustrations were
given in this chapter, which the user can follow to construct their own
model.
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Review Questions

1. Implement the NEFCON learning rule in MATLAB and simulate
the CSTR with PID controller.

2. Compare the maps of Fuzzy c-means and Subtractive clustering
using MATLAB.

3. Write a MATLAB program to grow, prune, and plot a classification
tree.

4. Implement the ANFIS model in MATLAB with the aid of a suit-
able example.

5. Using the NEFCON learning rule write a MATLAB program to
control the speed of a DC motor.
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Chapter 11

Evolutionary Computation
Paradigms

11.1 Introduction

Evolutionary computation is a broad subfield of computational in-
telligence that requires combinatorial optimization problems. The evo-
lutionary computation algorithm is an iterative process like growth or
development in a population. The optimal solution is then obtained us-
ing parallel processing among the population. These procedures are fre-
quently inspired by biological mechanisms of evolution. A population of
individuals is exposed to an environment and responds with a collection
of behaviors.

Some of these behaviors are better suited to meet the demands of the
environment than are others. Selection tends to eliminate those individu-
als that demonstrate inappropriate behaviors. The survivors reproduce,
and the genetics underlying their behavioral traits are passed on to their
offspring. But this replication is never without error, nor can individual
genotypes remain free of random mutations. The introduction of random
genetic variation in turn leads to novel behavioral characteristics, and
the process of evolution iterates. Over successive generations, increas-
ingly appropriate behaviors accumulate within evolving phyletic lines.
Evolution optimizes behaviors (i.e., the phenotype), because selection
can act only in the face of phenotypic variation. The manner in which
functional adaptations are encoded in genetics is transparent to selec-
tion; only the realized behaviors resulting from the interaction of the
genotype with the environment can be assessed by competitive selec-
tion. Useful variations have the best chance of being preserved in the
struggle for life, leading to a process of continual improvement. Evolu-
tion may in fact create “organs of extreme perfection and complication”,
but must always act within the constraints of physical development and

419
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the historical accidents of life that precede the current population. Evo-
lution is entirely opportunistic, and can only work within the variation
present in extant individuals.

The evolutionary computation process can be modeled algorithmically
and simulated on a computer. The following difference equation gives a
basic overview of an evolutionary model:

x[t + 1] = s(v(x[t])) (11.1)

where the population at time t, x[t], is operated on by random variation,
v, and selection, s, to give rise to a new population x[t + 1]. The process
of natural evolution is continuous while the artificial evolution occurs in
discontinuous time intervals. Iterating variation and selection, an evolu-
tionary algorithm is able to reach an optimal population on a response
surface that represents the measurable worth of each feasible individ-
ual that may live in a population. Evolutionary computation is the field
that studies the properties of these algorithms and similar procedures
for simulating evolution on a computer.

The history of evolutionary computation spans nearly four decades.
Several autonomous attempts were made in order to simulate evolu-
tion on a computer during the 1950s and 1960s. There are a few basic
sub categories of evolutionary computation such as: evolution strategies,
evolutionary programming, and genetic algorithms. All the subcategories
begin with a population of contending trial solutions brought to a task
at hand. Further new solutions are created by arbitrarily altering the
existing solutions. A fitness measure is used to assess the performance
of each trial solution and a solution is used to determine the retained
parents. The deviations between the procedures are characterized by the
typical data representations, the types of variations that are imposed on
solutions to create offspring, and the methods employed for selecting
new parents.

In this chapter, a brief history of Evolutionary Computation (EC) is
discussed. This chapter enlightens the paradigms of EC such as Evolu-
tionary Strategies and Evolutionary Programming. Genetic Algorithms
and Genetic Programming will be discussed elaborately in the next chap-
ter. This chapter also describes the advantages and disadvantages of EC.

11.2 Evolutionary Computation

Evolutionary computation is the study of computational methods
based on analogy to natural evolution. Evolutionary computation is an
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example of biologically inspired computation. Other examples of biolog-
ically inspired computation include neural networks, which is computa-
tion based on analogy to animal nervous systems, artificial life, and ar-
tificial intelligence. During the evolutionary computation process a few
populations of individuals undergo simulated evolution. While solving
certain specific type of problems, these individuals generally comprise
potential solutions to the problem. These solutions are presented by a
kind of data structure. Selection mechanism is used by simulated evo-
lution in order to find the best fit individuals which survive. The simu-
lated evolution will include some variation-generating methods in which
individuals can generate new individuals which are different from exist-
ing structures. Mutation and recombination (simulated mating) are two
common variation-generating methods. Different evolutionary computa-
tion methods will differ in

• The data structure representation of individuals

• Variation producing mechanisms

• Parent selection methods

• Survival selection methods

• Population size

Following is a basic pseudo code for an evolutionary computation
algorithm:
Generate an initial population in a random manner

While no stopping condition do

Select parents based on fitness

Produce offspring with some variants of their

parents

Select a few individuals to die based on

fitness

End While

The fitness function of individuals is usually determined by the prob-
lem to be solved. Evolutionary computation is more commonly used in
the field of optimization, when a function with several parameters is
specified, and the aim is to find the parameter settings that give the
largest or optimal value of the function. EC does not assure to find the
optimal value of the function, EC merely attempts to find a parameter
setting that gives a “large” or “near optimal” function value. Hence,
ECs could be represented as “search algorithms” instead of “optimiza-
tion algorithms”. The function that is optimized does not need to be a
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mathematical function-it may be the result of a computer simulation or
a real-world experiment. For example, in genetic programming, the ob-
jective can be to find a formula or computer program that accomplishes
a certain task. The function that is optimized is the result of applying
the formula or program (represented as parse tree) to a number of test
cases.

11.3 Brief History of Evolutionary Computation

Several scientists and researchers proved that evolutionary computa-
tion can be used as a tool for solving optimization problems in engineer-
ing during the 1950s and 1960s. The basic idea was evolving a population
of candidate solutions to a given problem, using operators inspired by ge-
netic variation and natural selection. Many other researchers developed
evolutionary algorithms for optimization and machine learning prob-
lems. History itself is an evolutionary process, not just in the sense that
it changes over time but also in the more strict sense that it undergoes
mutation and selection.

The selection function is performed under the process of mutation.
The history of evolutionary computation is broadly related more with
science fiction than a factual record. The idea to use recombination in
population-based evolutionary simulations did not arise in a single major
innovation but in fact was commonly, if not routinely, applied in multiple
independent lines of investigation in the 1950s and 1960s. Population
geneticists and evolutionary biologists considered computers to study
“life-as-it-could-be” (i.e., artificial life) rather than “life-as-we-know-it”.

The idea to use Darwinian principles for automated problem solving
originated in the fifties, even before computers were used on a large
scale. Later in the sixties, three different interpretations of this idea
were developed: Evolutionary programming introduced by Lawrence J.
Fogel in the U.S.A., John Henry Holland introduced a method genetic
algorithm, and Ingo Rechenberg and Hans-Paul Schwefel of Germany in-
troduced evolution strategies. There was great development in all these
areas independantly until the early nineties. Since then these techniques
were combined as one technology, called evolutionary computing. During
this period, a fourth paradigm following the general ideas of evolution-
ary programming, genetic algorithm, and evolutionary strategies had
emerged and it was named genetic programming. These terminologies
denote the whole field by evolutionary computing and consider evolu-
tionary programming, evolution strategies, genetic algorithms, and ge-
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netic programming as sub-areas.

11.4 Biological and Artificial Evolution

The basic idea behind Evolutionary Computation (EC) lies under the
principles of biological evolution. A set of terminology and expressions
used by the EC community is illustrated in this section.

11.4.1 Expressions Used in Evolutionary Computation

The basis of EC technique is very simple, Darwin’s theory of evolu-
tion, and specifically survival of the fittest. Much of the terminology
is borrowed from biology. A set of chromosomes comprise a population
with each chromosome representing a possible solution. Every individ-
ual chromosome is made up of a collection of genes, these genes are the
variables to be optimized.

The process of evolutionary algorithm involves a sequence of opera-
tions: creating an initial population (a collection of chromosomes), eval-
uating this population, then evolving the population through multiple
generations. At the end of each generation the fittest chromosomes, i.e.,
those that represent the best solution, from the population are retained
and are allowed to crossover with other fit members. Crossover is per-
formed in order to create chromosomes that are more fit than both the
parents by taking the best characteristics from each of the parents. Thus
over a number of generations, the fitness of the chromosome population
will increase with the genes within the fittest chromosome representing
the optimal solution. The entire process of EC is similar to living species,
in which they evolve to match their changing environmental conditions.
Table 11.1 presents a brief overview of some of the terminology adopted
from biology and used in EC.

11.4.2 Biological Evolution Inspired by Nature

The process of evolution is the gradual development of living organ-
isms. Living organisms evolve through the interaction of competition,
selection, reproduction, and mutation processes. The evolution of a pop-
ulation of organisms highlights the differences between an organism’s
“genotype” and “phenotype.” The phenotype is the way in which re-
sponse is contained in the physiology, morphology and behavior of the
organism. The genotype is the organism’s underlying genetic coding
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TABLE 11.1: A Summary of the Basic Expressions Used
within EC

Biological
Expression EC Implication

Chromosome String of symbols
Population A set of chromosomes
Deme A local population of closely related chromosomes,

a subset of the total population
Gene A feature, character or detector
Allele Feature value
Locus A position in a chromosome
Genotype Structure
Phenotype A set of parameters, an alternative solution or a

decoded structure

(DNA).
Though the basic principles of evolution (natural selection and mu-

tation) are understood in ample, both population genetics and phyloge-
netics have been radically transformed by the recent availability of large
quantities of molecular data. For example, in population genetics (study
of mutations in populations), more molecular variability was found in
the 1960s than had been expected. Phylogenetics (study of evolution-
ary history of life) makes use of a variety of different kinds of data, of
which DNA sequences are the most important, as well as whole-genome,
metabolic, morphological, geographical, and geological data.

The basic concept of evolutionary biology shows that organisms share
a common origin and have diverged through time. The details and timing
of these divergences of an evolutionary history are important for both
intellectual and practical reasons, and phylogenies are central to virtually
all comparisons among species. The area of phylogenetics has helped
to trace routes to infectious disease transmission and to identify new
pathogens.

For instance, consider the problem of estimating large phylogenesis,
which is a central challenge in evolutionary biology. Assume that there
are three species X, Y, and Z. Three possible tree structures can be
formed from these three species: (X, (Y, Z)); (Y, (X, Z)); and (Z, (X,
Y)). Here (X, (Y, Z)) denotes X and Z share a common ancestor, and this
in turn shares a different common ancestor with X. Thus even if one picks
a tree in random, there is a one in three chance that the tree chosen will
be correct. But the number of possible trees grows very rapidly with the
number of species involved. For a small phylogenetic problem involving
10 species, there are 34,459,425 possible trees. For a problem involving
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22 species, the number of trees exceeds 1023. Today, most phylogenetic
problems involve more than 80 species and some datasets contain more
than 500 species.

With such large search spaces, it is clear that exhaustive search for
the single correct phylogenetic tree is not a feasible strategy, regardless
of how fast computers become in the foreseeable future. Researchers and
investigators have developed numerous methods for coping with the size
of these problems, but most of these methods have severe deficiencies.
Thus, the algorithmic of evolutionary biology is a fertile area for research.

A few features across the species can be compared. This comparative
method has furnished much of the evidence for natural selection and is
probably the most widely used statistical method in evolutionary biol-
ogy. Always comparative analysis must account for phylogenetic history,
since the similarity in features common to multiple species that origi-
nate in a common evolutionary history can inappropriately and seriously
bias the analyses. Numerous methods have been developed to accommo-
date phylogenics in comparative analysis, but most of these techniques
presume that the phylogeny is known without error. Yet, this is ap-
parently unrealistic, since almost all phylogenetics have a large degree
of uncertainity. An important question is therefore to understand how
comparative analysis can be performed that accommodates phylogenetic
history without depending on any single phylogeny being correct.

The genomic changes occur when an organism adapts to a new set of
selection pressures in a new environment. The genomic changes are an
interesting problem in evolutionary biology. Since the process of adap-
tive change is difficult to study directly, there are many important and
unanswered questions regarding the genetics of adaptation. For instance,
questions regarding the number of mutations involved in a given adap-
tive change, whether there is any change in this number when different
organisms or different environments are involved, whether distribution
of fitness changes during adaptation, etc. Though some of the questions
remain unanswered evolutionary trends are leading in almost all the re-
search areas.

11.4.3 Evolutionary Biology

In 1789, Thomas Malthus wrote his “Essay on the Principle of Popula-
tion”, in which he recognized that a) population growth rate is a function
of population size, and therefore b) left unchecked, a population will grow
exponentially. However, since environments have only finite resources, a
growing population will eventually reach a point, the Malthusian crunch,
at which organisms a) will have to compete for those resources, and b)
will produce more young than the environment can support. Crunch
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time was Darwin’s ground-breaking entry point into the discussion.
As many more individuals of each species are born than can possibly

survive; and as, consequently, there is a frequently recurring struggle for
existence, it follows that any being, if it varies however slightly in any
manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of surviving, and thus be
naturally selected.

In short, the combination of resource competition and heritable fitness
variation leads to evolution by natural selection. When the Malthusian
crunch comes, if
a) there is any variation in the population that is significant in the sense
that some individuals are better equipped for survival and reproduction
than others, and
b)those essential advantages can be passed on to offspring. Then the
population as a whole will gradually become better adapted to its envi-
ronment as more individuals are born with the desirable traits.

In short, the population will evolve. Of course, this assumes that pop-
ulations can change much faster than geographic factors. In addition
to

a) the pressure to favor certain traits over others (known as selection
pressure) that the Malthusian crunch creates and,

b) the desired traits enable the features of well-adapted individuals
to spread throughout and eventually dominate the population,

The concept of variation is also essential to evolution, not merely as
a precondition to population takeover by a dominant set of traits, but
as a perpetual process insuring that the population never completely
stagnates lest it falls out of step with an environment that, inevitably,
does change.

Thus, the three essential ingredients for an evolutionary process are:

1. Selection - some environmental factors must favor certain traits
over others.

2. Variation - individuals must consistently arise that are significantly
(although not necessarily considerably) different from their ances-
tors.

3. Heritability - children must, on average, inherit a good many traits
from their parents to insure that selected traits survive genera-
tional turnover.

These three factors are implicit in the basic evolutionary cycle de-
picted in Figure 11.1. Beginning in the lower left, a collection of genetic

© 2010 by Taylor and Francis Group, LLC



Evolutionary Computation Paradigms 427

blueprints (more accurately, recipes for growth) known as genotypes are
present in an environment. These might be (fertilized) fish eggs on the
bottom of a pond, or the collection of all 1-day-old embryos in the wombs
of a gazelle population. Each genotype goes through a developmental
process that produces a juvenile organism, a young phenotype. At the
phenotypic level, traits (such as long legs, coloration patterns, etc.) en-
coded by genotypes become explicit in the organism. In Figure 11.1,
selection pressure is present in all processes surrounded by solid-lined
pentagons. These represent the metaphorical sieve of selection through
which populations (of genotypes and phenotypes) must pass. Already
during development, this sieve may filter out genotypes that encode fa-
tal growth plans, e.g., those that may lead to miscarriages in mammals.

The sieve is persistent, therefore, even the genotypes that encode plans
for fit juveniles have little guarantee of proliferation. Juveniles must over-
come the the downpours of life while arising to maturity in order to enter
a new arena of competition, that is the right to produce offspring. Thus,
by the time organisms reach the upper right-hand corner, the mating
phenotypes, the genotypic pool has been narrowed considerably. Due to
lack of mate, individuals need not perish; a few can be reprocessed and
try on during the next mating season, as represented by the aging/death
filter above the adult phenotype collection. Heading down from the up-
per right corner of Figure 11.1, we return to the genotypic level via the
production of gametes. This occurs within each organism through mito-
sis (copying) and meiosis (crossover recombination), resulting in many
half-genotypes (in diploid organisms) that normally embody minor vari-
ations of the parent’s genes. On pairing, these half-genotypes pair up to
produce a complete genotype, but slightly different from that of each
parent. There is normally an overproduction of gametes; only a chosen
few become part of the new genotypes. Although pinpointing the exact
locations of variation and heritability are difficult, since genetic muta-
tions can occur to germ cells (i.e., future gametes) at any time during
life, it seems fair to say that the major sources of genetic variation are
the (imperfect) copying and recombination processes during mitosis and
meiosis, respectively. Inheritance is then located along the bottom path
from gametes to genotypes, since this is the point at which the parents
DNA (and the traits it encodes) officially make it into the next gener-
ation. Through repeated cycling through this loop, a population grad-
ually adapts to a (relatively static) environment. In engineering terms,
the population evolves such that its individuals become better designs
or better solutions to the challenges that the environment poses.
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FIGURE 11.1: The Basic cycle of Evolution. Clouds Represent Pop-
ulations of Genotypes (gtypes) or Phenotypes (ptypes), While Polygons
Denote Processes. Solid Pentagons Represent Processes that Filter the
Pool of Individuals, While the Dashed Pentagon for Mitosis and Meiosis
Indicates an Increase (in this Case, of Genetic Material).

11.5 Flow Diagram of a Typical
Evolutionary Algorithm

A population of structures is maintained in EC to evolve according to
rules of selection and other operators, such as recombination and muta-
tion. Each individual in the population receives a measure of its fitness
in the environment. During selection more attention is concentrated on
high fitness individuals, thus exploiting the available fitness information.
The processes of recombination and mutation disturb these individuals,
thereby providing general heuristics for exploration. Though simple from
a life scientist’s viewpoint, these algorithms are sufficiently composite to
provide robust and powerful adaptive search mechanisms. Figure 11.2
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Start

Initialize Population 

Evaluate Fitness function 

Select parent 

Create children through crossover 
and mutation 

Evaluate children 

Best fit children survives 

FIGURE 11.2: Flowchart of a Typical Evolutionary Algorithm

outlines a typical evolutionary algorithm (EA). The population is ini-
tialized as the initial step and then evolved from generation to generation
by repeated operations like evaluation, selection, recombination, and mu-
tation. The population size N is generally constant in an evolutionary
algorithm, although there is no a priori reason (other than convenience)
to make this assumption. An evolutionary algorithm typically initial-
izes its population randomly, although domain specific knowledge can
also be used to bias the search. The evaluation process measures the
fitness of each individual and may be as simple as computing a fitness
function or as complex as running an elaborate simulation. Selection is
often performed in two steps, parent selection and survival. Parent se-
lection decides who becomes parents and how many children the parents
have. Children are created via recombination, which exchanges informa-
tion between parents, and mutation, which further perturbs the children.
The children are then evaluated. Finally, the survival step decides who
survives in the population.
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11.6 Models of Evolutionary Computation

As discussed in the history of evolutionary computation, the origin
of evolutionary algorithms can be traced to at least the 1950’s (e.g.,
Fraser, 1957; Box, 1957). The methodologies that have emerged in the
last few decades such as: “evolutionary programming (EP)” (L.J. Fo-
gel, A.J. Owens, M.J. Walsh Fogel, 1966), “evolution strategies (ES)”
(I. Rechenberg and H.P. Schwefel Rechenberg, 1973), “genetic program-
ming (GP)” (de Garis and John Koza) and “genetic algorithms (GA)”
(Holland, 1975) are discussed in this section. Though these techniques
have similarities, each of these methods implements the algorithm in its
own unique manner. The key differences lie upon almost all aspects of
evolutionary algorithms, including the choices of representation for the
individual structures, types of selection mechanism used, forms of genetic
operators, and measures of performance. The important differences (and
similarities) are also illustrated in the following sections, by examining
some of the variety represented by the current family of evolutionary
algorithms.

These approaches in turn have inspired the development of addi-
tional evolutionary algorithms such as “classifier systems (CS)” (Hol-
land, 1986), the LS systems (Smith, 1983), “adaptive operator” sys-
tems (Davis, 1989), GENITOR (Whitley, 1989), SAMUEL (Grefen-
stette, 1989), “genetic programming (GP)” (de Garis, 1990; Koza, 1991),
“messy GAs” (Goldberg, 1991), and the CHC approach (Eshelman,
1991). This section will focus on the paradigms such as GA, GP, ES,
and EP shown in Table 11.2.

11.6.1 Genetic Algorithms (GA)

Genetic Algorithm (GA) is a basic model of machine learning, which
gains its behavior from a group of mechanisms of evolution in nature. The
process is done by creating an individual from a population of individuals
represented by chromosomes. The individuals in the population then

TABLE 11.2: Paradigms in Evolutionary Computation

Paradigm Created by

Genetic Algorithms J.H. Holland
Genetic Programming de Garis and John Koza
Evolutionary Programming L.J. Fogel, A.J. Owens, M.J. Walsh
Evolution Strategies I. Rechenberg and H.P. Schwefel
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go through a process of simulated “evolution”. Genetic algorithms are
applied in numerous application areas mainly for optimization. The most
common example that can be cited is the traveling sales man problem,
in which the best shortest route has to be determined by optimizing the
path.

Practically, the genetic model of computation can be implemented by
having arrays of bits or characters to represent the chromosomes. Simple
bit manipulation operations allow the implementation of crossover, mu-
tation and other operations. Though a substantial amount of research
has been performed on variable-length strings and other structures, the
majority of work with genetic algorithms is focused on fixed-length char-
acter strings. The users should focus on both this aspect of fixed-length
and the need to encode the representation of the solution being sought
as a character string. Since these are crucial aspects that distinguish
genetic programming, which does not have a fixed length representation
and there is typically no encoding of the problem.

The genetic algorithm is applied by evaluating the fitness of all of the
individuals in the population. Once the fitness function is evaluated, a
new population is created by performing operations such as crossover,
fitness-proportionate reproduction, and mutation on the individuals. Ev-
ery time the iteration is performed, the old population is rejected and
the iteration continues using the new population.

A single iteration of this cycle is referred to as a generation. Indeed,
behavior in populations in nature is not found as a whole, but it is a
convenient implementation model.

The first generation (generation 0) of this process operates on a pop-
ulation of randomly generated individuals. From there on, the genetic
operations, in concert with the fitness measure, operate to improve the
population. The flowchart of a typical genetic algorithm is given in Fig-
ure 11.2a.

11.6.2 Genetic Programming (GP)

The main idea behind the development of genetic programming (GP)
was to allow automatic programming and program induction. GP can be
considered as a specialized form of genetic algorithm, which manipulates
with variable length chromosomes using modified genetic operators. Ge-
netic programming is not capable of distinguishing between the search
space and the representation space. Yet, it is not difficult to introduce
genotype/phenotype mapping for any evolutionary algorithm formally
whereas it could be a one-to-one mapping instead.

The search space of GP includes the problem space as well as the space
of representation of the problem. The technical search space of genetic
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Start

Initialize a random population at time t=0 

Evaluate Fitness function 

Select a sub-population for offspring production

Recombining the genes of selected 
parents 

Termination 
Criteria ? 

Increase the time counter

Perturb the mated population through mutation

Evaluate new fitness 

Select the survivors from actual fitness 

Figure 11.2a : Flowchart of Genetic Algorithm
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programming is the search space of all possible recursive compositions
over a primitive set of symbols on which the programs are constructed.
The genetic programs are represented in a tree form or in a linear form.
The major operator for GP is crossover, and the operator interchanges
subtrees of the parent trees which are randomly chosen without the
syntax of the programs being interrupted. The mutation operator picks
a random sub-tree and replaces it by a randomly generated one.

Genetic programming traditionally develops symbolic expressions in
a functional language like LISP. An evolved program can contain code
segments which when removed from the program would not alter the
result produced by the program, i.e., semantically redundant code seg-
ments. Such segments are referred to as introns. The size of the evolved
program can also grow uncontrollably until it reaches the maximum tree
depth allowed while the fitness remains unchanged. This effect is known
as bloat. The bloat is a serious problem in genetic programming, since it
usually leads to time consuming fitness evaluation and reduction of the
effect of search operators. Once it occurs, the fitness nearly stagnates.

These programs are expressed in genetic programming as parse trees,
rather than as lines of code. Thus, for example, the simple program “a
+ b * c” would be represented as follows

+
/ \
a *

/ \
b c

or, to be precise, as suitable data structures linked together to achieve
this effect. Because this is a very simple thing to do in the program-
ming language Lisp, many GP users tend to use Lisp. However, this is
simply an implementation detail. There are straightforward methods to
implement GP using a non-Lisp programming environment.

GP operates on programs in the population, which are composed of
elements from the function set and the terminal set. These are fixed
sets of symbols from which the solution of problems are selected. Mostly
GP does not use mutation operator. Genetic programming is capable of
using numerous advanced genetic operators. For example, automatically
defined functions (ADF) allow the definition of subprograms that can
be called from the rest of the program. Then the evolution is to find the
solution as well as its decomposition into ADFs together. The fitness
function is either application specific for a given environment or it takes
the form of symbolic regression. Irrespective of the fitness function, the
evolved program must be executed in order to find out what it does. The
outputs of the program are usually compared with the desired outputs for
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Initialize a random population at time t=0 

Start

Evaluate Fitness function 

Parent selection 

Crossover 

Termination 
Criteria ? 

Increase the time counter

Mutation

Evaluate new fitness 

Select the survivors from actual fitness 

FIGURE 11.3: The GP Algorithm

given inputs. A terminating mechanism of the fitness evaluation process
must be introduced to stop the algorithm. Figure 11.3 outlines a typical
genetic programming (GP) algorithm.
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11.6.3 Evolutionary Programming (EP)

Evolutionary Programming (EP), a stochastic optimization strategy
originally developed by Lawrence J. Fogel in 1960. The operation of
EP is similar to genetic algorithms with the only difference in that EP
places an emphasis on the behavioral linkage between parents and their
offspring, rather than seeking to emulate specific genetic operators as
observed in nature. Evolutionary programming is similar to evolution
strategies, although the two methods were developed uniquely. Similar
to both ES and GAs, EP is an efficient method to solve optimization
problems compared to techniques such as gradient descent or direct,
analytical discovery are not possible. Optimization problems with com-
binatory and real-valued function optimization in which the optimiza-
tion surface or fitness landscape is “rugged”, are easily and efficiently
computed using evolutionary programming.

Like GAs, in EP the fitness landscape can be characterized in terms
of variables, and that there exists an optimum solution in terms of these
variables. For instance in a traveling sales man problem, each solution
is a path. The length of the route or path is a numerical value, which
acts as the fitness function. The fitness function is characterized as a
hyper surface proportional to the path lengths in a population space.
The objective is to find the shortest path in that space.

recursive until a threshold for iteration is exceeded or an adequate solu-
tion is obtained:
Step 1: Randomly choose an initial population of trial solutions. The
number of solutions in a population is closely related to the speed of op-
timization, but there is no answer to predict the number of appropriate
solutions (other than >1) and to predict the discarded solutions.
Step 2: Every solution that is produced is copied into a new popula-
tion. These offsprings are then mutated according to a distribution of
mutation types, ranging from minimum to a maximum with continuous
mutation types between. The severity of mutation is guessed on the basis
of the functional change enforced on the parents.
Step 3: Every offspring is evaluated by computing its fitness function.
Generally, a stochastic tournament selection is applied to determine N
solutions, which are held back for the population of solutions. There is
no constraint on the population size to be be held constant, or that only
a single offspring be generated from each parent. Normally EP does not
use any crossover as a genetic operator.
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Increase the time counter

Figure 11.3a : Flowchart of Evolutionary Programming

11.6.4 Evolutionary Strategies (ESs)

Evolutionary Strategies (ESs) were independently developed with op-
erators such as selection, mutation, and a population of size one. Schwefel
brought in recombination (crossover) and populations with more than
one individual. Since the initial applications of ES were in hydrodynamic
optimization problems, evolution strategies typically use real-valued vec-
tor representations.

Evolution Strategies were devised mainly to solve technical optimiza-
tion problems (TOPs), and until recent years, ES were exclusively rec-
ognized by civil engineers. Normally there is no closed form analytical
objective function for TOPs and therefore, no practical optimization
technique exists, except for the engineer’s intuition.
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In a two-membered ES, one parent generates one offspring per gen-
eration by applying normally distributed mutations, i.e., smaller steps
occur more likely than big ones, until a child performs better than its
ancestor and takes its place. Due to this simple structure, theoretical
results for step size control and convergence velocity could be derived.
The ratio between offsprings produced by successful mutations and off-
springs produced by all mutations should be 1/5: based on this property
the 1/5 success rule was invented. This initial algorithm, that applied
only mutation, was further extended to a (m+1) strategy, which incor-
porated recombination (crossover) due to several, i.e., m parents being
available. The mutation scheme and the exogenous step size control were
taken across unchanged from two-membered ESs.

Later on Schwefel extrapolated these strategies to the multi-membered
ES denoted by (m+l) (plus strategy) and (m,l) (comma strategy) which
imitates the following basic principles of organic evolution: a population,
leading to the possibility of recombination with random mating, muta-
tion, and selection. In the plus strategy, the parental generation is con-
sidered during selection, while in the comma strategy only the offspring
undergoes selection, and the parents die off. m (usually a lowercase m,
denotes the population size, and l, usually a lowercase lambda denotes
the number of offspring generated per generation). The algorithm of an
evolutionary strategy is as follows:

(define (Evolution-strategy population)

(if (terminate? population)

population

(evolution-strategy

(select

(cond (plus-strategy?

(union (mutate

(recombine population))

population))

(comma-strategy?

(mutate

(recombine population))))))))

Every individual of the ES’ population consists of the following geno-
type representing a point in the search space:

Object Variables

The real-valued x(i) variables should be evolved through recombina-
tion (crossover) and mutation such that the objective function reaches
its global optimum.
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Strategy Variables

The real-valued s(i) variables or mean step sizes determine the muta-
bility of the x(i). They represent the standard deviation (0, ... oi) of s(i))
gaussian distribution (GD) being added to each x(i) as an undirected
mutation. If the expectancy value is 0, then the parents will produce off-
spring similar to themselves. In order to make a doubling and a halving
of a step size equally probable, the s(i) mutate log-normally, distributed,
i.e., exp(GD), from generation to generation. These step sizes hide the
internal model the population has made of its environment, i.e., a self-
adaptation of the step sizes has replaced the exogenous control of the
(1+1) ES.

This concept works because selection sooner or later prefers those
individuals having built a good model of the objective function, thus
producing better offspring. Hence, learning takes place on two levels: (1)
at the genotypic, i.e., the object and strategy variable level and (2) at
the phenotypic level, i.e., the fitness level.

Depending on an individual’s x(i), the resulting objective function
value f(x), where x denotes the vector of objective variables, serves as the
phenotype (fitness) in the selection step. In a plus strategy, the m best
of all (m+l) individuals survive to become the parents of the next gener-
ation. Using the comma variant, selection takes place only among the l
offspring. The next strategy is more naturalistic and hence more eminent,
since no individual may survive evermore, which can be done by using the
plus variant. The comma strategy performs better vague conventional
optimization algorithms. An everlasting adaptation of the step sizes can
occur only if the highly fit individuals are forgotten. By this process long
stagnation phases due to misadapted sizes can be avoided. These indi-
viduals have established an internal model that is no more appropriate
for additional progress, and therefore it is better to be discarded.

The convergence of the evolutionary strategy can be obtained by
choosing a suitable ratio of m/l. For a faster convergence the preferred
ratio of m/l should be very small around (5,100). To find an optimal
solution usually the preferred ratio is chosen around (15,100).

The following agents greatly influence self-adaptation within ESs:

Randomness

Mutation cannot be designed as a pure random process since the child
would be completely independent of its parents.
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Population size

A sufficiently large population is the best choice to obtain optimal
solution. Instead of allowing only the current best solutions to reproduce,
the set of good individuals are also allowed to reproduce.

Cooperation

When the population m >1, the individuals should recombine their
knowledge there with others (cooperate) because one cannot expect the
knowledge to accumulate in the best individual only.

Deterioration

To obtain better progress in the future, one should assume deteriora-
tion from one generation to the next. A restrained life-span in nature
is not a sign of failure, but an important means of forbidding a species
from freezing genetically.

ESs have turned out to be successful when compared to other addi-
tional iterative methods. ESs are capable of adapting to all sorts of prob-
lems in optimization, since they require less data regarding the problem.
ESs are also capable of solving high dimensional, multimodal, nonlin-
ear problems subject to linear and/or nonlinear constraints. ESs have
been adapted to vector optimization problems, and they can also serve
as a heuristic for NP-complete combinatorial problems like the traveling
salesman problem or problems with a noisy or changing response sur-
face. A detailed description of Evolutionary Strategies is given in Section
11.9.

11.7 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search and optimiza-
tion heuristics derived from the classic evolution theory, which are im-
plemented on computers in the majority of cases. The basic idea is that
if only those individuals of a population reproduce, which meet a cer-
tain selection criteria, and the other individuals of the population die,
the population will converge to those individuals that best meet the se-
lection criteria. Figure 11.4 shows the structure of a simple evolutionary
algorithm.

In the initial stage of computation, a number of individuals (the pop-
ulation) are randomly initialized. The objective function or fitness func-
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FIGURE 11.4: Structure of a Single Population Evolutionary Algo-
rithm

tion is then evaluated for these individuals during which the first gen-
eration is produced. The individuals of a population have to represent
a possible solution of a given problem while solving optimization prob-
lems. The generations are created iteratively until the stopping criteria
are met. The individuals are selected according to their fitness for the
production of offspring. Parents are recombined to produce offspring
and all these offspring are mutated with a certain probability. Then the
offspring are evaluated for fitness. The offspring are inserted into the
population replacing the parents, producing a new generation.

The generations are produced until the optimization criteria are
reached. A single population evolutionary algorithm is more powerful
and performs well on a wide variety of optimization problems. But usu-
ally, better results can be obtained by introducing multiple subpopula-
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FIGURE 11.5: Structure of an Extended Multi-Population Evolu-
tionary Algorithm

tions. Every subpopulation evolves over a few generations similar to the
single population before one or more individuals are exchanged between
the subpopulation. The multi-population evolutionary algorithm models
the evolution of a species in a way more similar to nature than the sin-
gle population evolutionary algorithm. Figure 11.5 shows the structure
of such an extended multi-population evolutionary algorithm.
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11.7.1 Evolutionary Algorithms Parameters

The term evolutionary computation or evolutionary algorithms in-
clude the domains of genetic algorithms (GA), evolution strategies, evo-
lutionary programming, and genetic programming. Evolutionary algo-
rithms have a number of parameters, procedures or operators that must
be specified in order to define a particular EA. The most important
parameters of EA are

• Representation

• Fitness function

• Population

• Parent selection mechanism

• Variation operators, recombination and mutation

• Reproduction operator

The initialization procedure and a termination condition must be de-
fined along with the above parameters.

11.7.2 Solution Representation

The method of representing solutions/individuals in evolutionary com-
putation methods is known as representation. This can encode appear-
ance, behavior, and physical qualities of individuals. An expressive and
evolvable design of a representation is a hard problem in evolution-
ary computation. The conflict in genetic representations in one of the
major criteria drawing a line between known classes of evolutionary
computation.

Evolutionary algorithm more commonly uses linear binary represen-
tations among which the most typical representation is an array of bits.
Arrays of other types of data and structures can also be used in a similar
manner. The primary attribute that makes these genetic representations
favorable is that their sections are well co-ordinated due to their fixed
size. Due to this well co-ordinated arrangement simple crossover opera-
tion is easily facilitated. Evolutionary algorithms are capable of operat-
ing on variable length representations also, but crossover implementation
is more complex in this case.

Human-based genetic algorithm (HBGA) provides a mode to avoid
solving hard representation problems by outsourcing all genetic opera-
tors to outside agents (in this case, humans). In this case, the algorithm
need not be aware of a particular genetic representation used for any
solution. Some of the common genetic representations are
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• binary array

• genetic tree

• parse tree

• binary tree

• natural language

11.7.3 Fitness Function

A fitness function is a special type of objective function that measures
or evaluates the optimality of a solution in an evolutionary algorithm
so that a particular chromosome may be graded against all the other
chromosomes. Optimal chromosomes, or at least chromosomes which
are more optimal, are permitted to breed and integrate their datasets by
various methods, thereby creating a new generation that will (hopefully)
be still better.

Fitness functions can also be considered in terms of a fitness land-
scape, which shows the fitness for each possible chromosome. An ideal
fitness procedure correlates closely with the algorithm’s goal, and may
be computed quickly. The speed of execution is very important, as a typ-
ical genetic algorithm must be iterated several times in order to produce
a usable result for a non-trivial problem.

The definition of the fitness function is not straightforward in a few
cases and is often performed iteratively if the fittest solutions produced
by GA are not what are desired. In a few cases, it is very difficult or
impossible to derive or even guess what the fitness function definition
might be. Interactive genetic algorithms address this difficulty by out-
sourcing evaluation to external agents. When the genetic representation
has been outlined, the next step is to assign a value to each chromosome
corresponding to the fitness function. Generally there is no problem in
determining the fitness function. As a matter of fact, most of the time,
it is implicitly characterized by the problem that is to be optimized.
Specific attention should be taken while selection is performed accord-
ing to the fitness of individuals. The fitness function not only indicates
how good the solution is, but should also correspond to how close the
chromosome is to the optimal one.

The fitness function represents the chromosome in terms of physical
representation and evaluates its fitness based on traits of being desired
in the solution. The fitness function has a greater value when the fitness
characteristic of the chromosome is better than others. Additionally, the
fitness function inserts a criterion for selection of chromosomes.

© 2010 by Taylor and Francis Group, LLC



444 Computational Intelligence Paradigms

11.7.4 Initialization of Population Size

Generally, there are two effects to be considered for population initial-
ization of EA: the initial population size and the procedure to initialize
population.

The population size has to increase exponentially with the complexity
of the problem (i.e., the length of the chromosome) in order to generate
best solutions. New studies have shown that acceptable results can be
obtained with a much smaller population size. A large population is quite
useful, but it demands excessive costs in terms of both memory and time.
There are two methods to generate the initial population: heuristic ini-
tialization and random initialization. Heuristic initialization searches a
small part of the solution space and never finds global optimal solutions
because of the lack of diversity in the population. Therefore, random ini-
tialization is applied so that the initial population is generated with the
encoding method. The algorithm of population initialization is shown
below:

Procedure:population initialization

Begin

Select the first job into the first position

randomly;

For i=0 to code size(n) //n: length of chromosome

For j=0 to job size(m) //m:number of jobs

Insert job j that has not inserted into

the chromosome

temporarily;

Evaluate the fitness value of this

complete chromosome so far;

Keep the fitness value in memory;

End For

Evaluate the best fitness value from the memory

End For

11.7.5 Selection Mechanisms

Survival of the fittest or natural selection is the process by which
favorable genetic traits to a greater extent become common in succes-
sive generations of a population of reproducing organisms, and unfa-
vorable heritable traits become less common. Natural selection acts on
the phenotype, or the observable characteristics of an organism, such
that individuals with favorable phenotypes are more likely to survive
and reproduce than those with less favorable phenotypes. The pheno-
type’s genetic basis, genotype associated with the favorable phenotype,
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will grow in frequency over the following generations. Across time, this
process can lead to adaptations that differentiate organisms for specific
ecological niches and could finally result in the emergence of new species.
More generally, natural selection is the mechanism by which evolution
may occur in a population of a particular organism.

Parents are selected according to their fitness by means of one of the
following algorithms:

• roulette wheel selection

• stochastic universal sampling

• local selection

• truncation selection

• tournament selection

Roulette Wheel Selection

The fundamental idea behind this selection process is to stochastically
select from one generation and to create the basis of the next generation.
The fittest individuals have a greater chance of survival than weaker
ones. This replicates nature in that fitter individuals will tend to have a
better probability of survival and will go forward to form the mating pool
for the next generation. Naturally, such individuals may have genetic
coding that may prove useful to succeeding generations.

Illustration

The normal method used is the roulette wheel (as shown in Figure
11.6 ). Table 11.3 lists a sample population of 5 individuals (a typical
population of 400 would be difficult to illustrate).

These individuals consist of 10 bit chromosomes and are being used
to optimise a simple mathematical function (we can assume from this
example we are trying to find the maximum). If the input range for x is
between 0 and 10, then we can map the binary chromosomes to base 10
values and then to an input value between 0 and 10. The fitness values
are then taken as the function of x. From the table it is inferred that in-
dividual No. 3 is the fittest and No. 2 is the weakest. By summing these
fitness values the percentage total of fitness can be obtained. This gives
the strongest individual a value of 38% and the weakest 5%. These per-
centage fitness values can then be used to configure the roulette wheel.
Table 11.3 highlights that individual No. 3 has a segment equal to 38%
of the area. The number of times the roulette wheel is spun is equal to
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FIGURE 11.6: Roulette Wheel Selection - Operation

size of the population. As can be seen from the way the wheel is now
divided, each time the wheel stops this gives the fitter individuals the
greatest chance of being selected for the next generation and subsequent
mating pool. From this illustration it is known that as the generations
progress and the population gets fitter the gene pattern for individual
No. 3: 01000001012 will become more prevalent in the general popula-
tion because it is fitter, and more apt to the environment we have put
it in - in this case the function we are trying to optimize.

TABLE 11.3: Evaluation of the Fitness Function f(x) = x2 + 2x + 5

No. of Base 10 Fitness)
Population Chromosome Values X (X) Percentage

1 0001101011 107 1.05 6.82 31
2 1111011000 984 9.62 1.11 5
3 0100000101 261 2.55 8.48 38
4 1110100000 928 9.07 2057 12
5 1110001011 907 8087 3.08 14
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FIGURE 11.7: Stochastic Universal Sampling

Stochastic Universal Sampling

Stochastic universal sampling (SUS) is a single-phase sampling algo-
rithm with minimum spread and zero bias. SUS uses N equally spaced
pointers, instead of the single selection pointer as that used in roulette
wheel methods. Here N is the number of selections required. The popu-
lation is shuffled randomly and a single random number in the range [0
Sum/N] is generated, ptr. The N individuals are then chosen by generat-
ing the N pointers spaced by 1, [ptr, ptr+1, ... ,ptr+N-1], and selecting
the individuals whose fitnesses span the positions of the pointers. An
individual is thus guaranteed to be selected a minimum of times and
no more, thus achieving minimum spread. In addition, as individuals
are selected entirely on their position in the population, SUS has zero
bias. The roulette wheel selection methods can all be implemented as
O(NlogN) although SUS is a simpler algorithm and has time complexity
O(N).

For 7 individuals to be selected, the distance between the pointers is
1/7. Figure 11.7 shows the selection for the above example. For a sample
of 1 random number in the range [0, 1/7]:0.1.

Local Selection

Local selection (LS) is defined as a selection scheme that minimizes
interactions among individuals. Locality in selection schemes has been
a persistent theme in the evolutionary computation community. This
kind of a selection process leads to a more realistic reproduction scheme
in an evolutionary model of real populations of organisms. In such a
model, an agent’s fitness must result from individual interactions with
the environment, which contain shared resources along with other agents,
rather than from global interactions across the population.

In local selection each agent is considered as a candidate solution in
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the population and is first initialized with some random solution and an
initial reservoir of energy. If the algorithm is implemented sequentially,
parallel execution of agents can be simulated with randomization of call
order. In each iteration of the algorithm, an agent explores a candidate
solution (possibly including an action) similar to itself. The agent is
taxed with Ecost for this action and collects ∆ E from the environment.

While selecting the individuals, an agent compares its current energy
level with a threshold θ. If its energy is higher than θ, the agent re-
produces. This reproduced individual or the mutated individual is then
evaluated for its fitness and becomes a member of the population, with
half of its parent’s energy. The agent is killed if it runs out of energy.

Since the threshold θ is a constant value independent of the rest of
the population, the selection is local. Due to local selection the com-
munication among agent processes is minimized thereby leading to sev-
eral positive consequences. Initially, two agents compete for shared re-
sources only if they are situated in the same portion of the environ-
ment. The environment plays a major role in driving the competition
and the selective pressure. The lifetime of an agent is unpredicted,
and there is no decision to decide how often it reproduces or when
it dies. The search is influenced directly by the environment. The LS
mechanism is an implicitly niched scheme and therefore influences the
maintenance of population diversity naturally. This process makes the
search algorithm more amenable to cover and multi-modal optimiza-
tion than to standard convergence criteria. The bias is to exploit all
resources in the environment, rather than to locate the single best
resource.

Instead of determining the population size initially, the size of the
population emerges from the carrying capacity of the environment. This
is determined by factors like

• the costs incurred by any action

• the replenishment of resources

Both of these factors are independent of the population. Finally, the
removal of selection’s centralized bottleneck makes the algorithm paral-
lelizable and therefore amenable to distributed implementations.

Though local selection has a number of advantages, it also has a few
disadvantages and limitations as well. Local selection can guess a popu-
lation of agents who can execute code on remote servers in a distributed
environment, but have to look up data on a central machine for every
action they perform. An exemplary case of such a situation would be a
distributed information retrieval task in which agents share a centralized
page cache. Due to the communication overhead and synchronization

© 2010 by Taylor and Francis Group, LLC



Evolutionary Computation Paradigms 449

issues, the parallel speedup achievable in this case would be seriously
hindered. As this scenario indicates, the feasibility of distributed imple-
mentations of evolutionary algorithms based on local selection requires
that the environment can be used as a data structure. Similar to natural
organisms, agents must be able to mark the environment so that local
interactions can take advantage of previous experience.

Truncation Selection

In truncation selection the individuals’ quantitative expression of a
phenotype is more than or less than a certain value referred to as the
truncation point. Truncation selection or block selection is a peculiar
breeding technique which ranks all individuals according to their fitness
and selects the best ones as parents. In truncation selection a threshold
T is defined such that the T% best individuals are selected. Truncation
selection has been most commonly used in evolution strategies. It is also
often used in quantitative genetics where artificial selection performed
by breeders is studied. A specific genetic algorithm, the Breeder Genetic
Algorithm incorporates ideas from breeders to perform parameter opti-
mization tasks and the convergence model for the bit counting function.
Block selection is equivalent to truncation selection since for a given
population size n one simply gives s copies to the n/s best individuals.
Both implementations are identical when s =100/T.

If the fitness is normally distributed, quantitative genetics defines the
selection intensity i that expresses the selection differential S(t)= f̄(t∗)−
f̄(t) in the function of the standard deviation : σ (t)

S(t)= i σ (t)

The convergence model can be easily computed using the above defi-
nition as:

¯t + 1 − f̄(t) = iσ(t)

Since f(t) = lp(t) and σ2 = lp(t)(1-p(t)), therefore

p(t+1)-p(t)= i√
l

√

p(t)(1 − p(t))

Approximating the difference equation with the differential equation

dp(t)

dt
=

i√
l

√

p(t)(1 − p(t))

the solution becomes

p(t)=0.5

(

1 + sin

(
i√
l
t + arcsin(2p(0) − 1)

))
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For a randomly initialized population p(0) = 0.5

p(t)=0.5

(

1 + sin

(
i√
l
t

))

Tournament Selection

In tournament selection a set of individuals are chosen in a random
manner and the best solution for reproduction is picked out. The number
of individuals in the set is mostly equal to two but larger tournament
sizes can be used in order to increase the selection pressure. Here we
consider the case of optimizing the bit counting function with a tourna-
ment size s = 2. Under the assumption of a normally distributed function
the fitness difference between two randomly sampled individuals in each
tournament is also normally distributed with mean µ∆f (t) = 0 and vari-
ance σ2

∆f (t) = 2σ2(t) . Since the best of the two competing individuals
are only selected, only the absolute value of the fitness difference is con-
sidered. The average fitness difference between two randomly sampled
individuals is thus given by the mean value of those differences that are
greater than µ∆f , which is equivalent to the mean value of one half of the
normal distribution truncated at its mean value 0. The mean value of the
right half of a standard normal distribution is given by

√

2/π = 0.7979.
Tournament selection selects the best out of every random pair of in-

dividuals so the population average fitness increase from one generation
to the next is equal to half the mean value of the difference between two
randomly sampled individuals:

f̄(t + 1) − f̄(t) =
1

2
0.7979σ∆f(t) =

1

2
0.7979

√
2σ(t) =

1√
π

σ(t)

Since f(t)=lp(t) and σ2=lp(t)(1-p(t)), therefore

p(t + 1) − p(t) =

√

p(t)(1 − p(t))

πl

Approximating the difference equation with the differential equation

dp(t)

dt
=

√

p(t)(1 − p(t))

πl
the solution becomes

p(t) = 0.5

(

1 + sin

(
t√
πl

+ arcsin(2p(0) − 1)

))

For a randomly initialized population p(0) = 0.5, the convergence model
is

p(t) = 0.5

(

1 + sin

(
t√
πl

))
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MATLAB Code Snippet for Selection

The following subroutine shows the implementation of selection pro-
cess in MATLAB.

function result = select(popWithDistrib)

% Select some genotypes from the population,

% and possibly mutates them.

selector = rand;

total prob = 0;

% Default to last in case of rounding error

genotype = popWithDistrib(end,2:end);

for i = 1:size(popWithDistrib,1)

total prob = total prob + popWithDistrib(i,1);

if total prob >selector
genotype = popWithDistrib(i,2:end);

break;

end

end

result = mutate(genotype);

11.7.6 Crossover Technique

Crossover is a binary variation operator that combines information
from two parent genotypes into one or two offspring genotypes. Crossover
is also known as recombination. Recombination is a stochastic operator.
In recombination by mating two individuals with different but desirable
features, mating two individuals with different but desirable features
can produce an offspring that combines the features of both parents.
Numerous offsprings created by random recombination in the evolution-
ary algorithms, have more improved characteristics over their parents.
Depending on the representation of the variables of the individuals the
types of recombination can be applied:

• Discrete recombination

• Real valued recombination

• Binary valued recombination

• Other types of crossover

o Arithmetic crossover

o Heuristic crossover
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TABLE 11.4: Discrete Recombination

Individual 1 a b c d e f g h
Individual 2 A B C D E F G H

↓

Child a b C d E f g H

Discrete Recombination

Consider the following two individuals with 8 variables each:
Given two parents, Individual 1 and Individual 2, the child is created

by discrete recombination as shown in Table 11.4. Discrete recombina-
tion can be used with any kind of variables (binary, integer, real or
symbols).

Real Valued Recombination

This recombination technique is applied for the recombination of indi-
viduals with real valued variables. Consider the following two individuals
with 6 variables each, the child is created from the parents as shown in
Table 11.5.

Binary Valued Recombination (Crossover)

This crossover technique is applied for individuals with binary vari-
ables. The recombination is done by selecting two parents, then a
crossover point is selected, and then the parents mutually swap the infor-
mation with respect to the crossover point. Depending upon the number
of cross points binary valued crossover is divided into single point, two
point, and multi point crossover.

Single point crossover - one crossover point is selected, the best among

TABLE 11.5: Real Valued Recombination

Individual 1 a b c d e f
Individual 2 A B C D E F

↓

Child (a+A)/2 (b+B)/2 (c+C)/2 (d+D)/2 (e+E)/2 (f+F)/2 (g+G)/2 (h+H)/2
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TABLE 11.6: Single Point Crossover

the binary string of chromosomes along the crossover point between the
two parents is used to produce a new offspring as shown in Table 11.6.

Two point crossover - two crossover points are selected, from the bi-
nary string between the two crossover points the best chromosomes form
the new individual as in Table 11.7.

Uniform crossover - bits are randomly copied from the first or from
the second parent as shown in Table 11.8.

Arithmetic Crossover

A crossover operator that linearly combines two parent chromo-
some vectors to produce two new offspring according to the following
equations:

Offspring1 = a ∗ Parent1 + (1 − a) ∗ Parent2

Offspring2 = (1 − a) ∗ Parent1 + a ∗ Parent2

where a is a random weighting factor (chosen before each crossover oper-
ation). Consider the following 2 parents (each consisting of 4 float genes),

TABLE 11.7: Two Point Crossover

© 2010 by Taylor and Francis Group, LLC



454 Computational Intelligence Paradigms

TABLE 11.8: Uniform Crossover

which have been selected for crossover:

Parent 1: (0.3) (1.4) (0.2) (7.4)

Parent 2: (0.5) (4.5) (0.1) (11.6)

If a = 0.7, the following two offspring would be produced:

Offspring 1: (0.36) (2.33) (0.17) (6.86)

Offspring 2: (0.402) (2.981) (0.149) (6.842)

Heuristic Crossover

A crossover operator that uses the fitness values of the two parent
chromosomes to determine the direction of the search. The offspring are
created according to the following equations:

Offspring1 = BestParent + r ∗ (BestParent − WorstParent)

Offspring2 = BestParent

where r is a random number between 0 and 1.
It is possible that offspring1 will not be feasible. This can happen if r

is chosen such that one or more of its genes fall outside of the allowable
upper or lower bounds. For this reason, heuristic crossover has a user
settable parameter (n) for the number of times to try and find an r that
result in a feasible chromosome. If a feasible chromosome is not produced
after n tries, the WorstParent is returned as Offspring1.

Crossover Probability

This is simply the chance that two chromosomes will swap their bits. A
good value for crossover probability is around 0.7. Crossover is performed
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by selecting a random gene along the length of the chromosomes and
swapping all the genes after that point.

MATLAB Code Snippet for Crossover

function [x,y] = crossover(x,y)

% Possibly takes some information from one genotype and

% swaps it with information from another genotype

if rand <0.6
gene length = size(x,2);

% site is between 2 and gene length

site = ceil(rand * (gene length-1)) + 1;

tmp = x(site:gene length);

x(site:gene length) = y(site:gene length);

y(site:gene length) = tmp;

end

11.7.7 Mutation Operator

Mutation is a genetic operator applied among populations, that is they
are used to maintain genetic diversity between two succeeding population
of chromosomes. During mutation an arbitrary bit in a genetic sequence
will be changed from its original state. Mutation is implemented by
generating a random variable for each bit in a sequence. This random
variable gives information about the particular bit whether it is modified
or not.

The purpose of mutation in EAs is to allow the algorithm to avoid local
minima by preventing the population of chromosomes from becoming
too similar to each other, thus slowing or even stopping evolution. This
reasoning also explains the fact that most EA systems avoid only taking
the fittest of the population in generating the next but rather a random
(or semi-random) selection with a weighting toward those that are fitter.

Real Valued Mutation

In real valued mutation, randomly created values are added to the
variables with a low probability. Thus, the probability of mutating a
variable (mutation rate) and the size of the changes for each mutated
variable (mutation step) must be defined. An example for mutation is
given in Table 11.9.
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TABLE 11.9: Individual before and after Real Valued Mutation

Individual before mutation A B C D E F G H
Individual after mutation A B D E C F G H

Binary Mutation

In binary valued mutation, the variable values of the individuals are
flipped randomly, since every variable has only two states. Thus, the
size of the mutation step is always 1. Table 11.10 shows an example of
a binary mutation for an individual with 11 variables, where variable 6
is mutated.

Advanced Mutation

The methodology of producing better members from the existing
members is referred to as mutation. This process concentrates on the
similarities between the parents of a given child; the more similarities
there are the higher the chance for a mutation. This process cuts down
the probability of having premature convergence.

Reproduction, crossover, and mutation operators are the main com-
monly used operators in genetic algorithms among others. In the repro-
duction process, only superior strings survive by making several copies
of their genetic characteristics. In the crossover process, two cross sec-
tions of parent strings with good fitness values are exchanged to form
new chromosomes. Conversely, in the mutation process, only parts of a
given string are altered in the hope of obtaining genetically a better child.
These operators limit the chances of inferior strings to survive in the suc-
cessive generations. Moreover, if superior strings existed or are created
during the process, they will likely make it to the subsequent generations.

Other types of mutation

Flip Bit

This mutation operator, which can be applied only for binary string,
merely inverts the value of the chosen gene that is 0 is flipped to 1 and
1 is flipped to 0).

Boundary

TABLE 11.10: Individual before and after Binary Mutation

Individual before mutation 1 1 0 0 0 1 1 1
Individual after mutation 1 1 0 0 0 0 1 1
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Applicable for integer and float type string of chromosomes, this mu-
tation operator replaces the value of the chosen gene with either the
upper or lower bound for that gene. The upper bound or lower bound is
chosen randomly.

Non-Uniform

As the generations progress the non-uniform mutation operator in-
creases the mutation probability such that the amount of the mutation
is close to 0. This type of operator prevents the population from stag-
nating in the early stages of the evolution and then further allows the
genetic algorithm to fine tune the solution in the later stages of evo-
lution. This mutation operator is applicable only for integer and float
genes.

Uniform

The uniform mutation operator replaces the value of the chosen gene
with a uniform random value selected between the user-specified upper
and lower bounds for that gene. This mutation operator can only be
used for integer and float genes.

Gaussian

The Gaussian mutation operator applied a unit Gaussian distributed
random value to the chosen gene. The new gene value is clipped if it falls
outside of the user-specified lower or upper bounds for that gene. This
mutation operator can only be used for integer and float genes.

Mutation Probability

The probability of mutating a variable is related with the number
of variables. The lesser the number of variables, larger is the mutation
probability. Mutation Probability is the chance that a bit within a chro-
mosome will be flipped (0 becomes 1, 1 becomes 0). This is usually a
very low value for binary encoded genes, say 0.001.

MATLAB code snippet for mutation
function result = mutate(genotype)

% Possibly mutates a genotype

result = abs(genotype - (rand(size(genotype,1),

size(genotype,2))<0.03));
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11.7.8 Reproduction Operator

Reproduction operator is applied to select the individuals that possess
high quality solutions and that are capable of transmitting the informa-
tion to the next generation. Two basic operators such as crossover and
mutation are applied in this stage. The crossover operation is performed
on two parents to create a new individual by combining parts of the chro-
mosome from each of the parents. This offspring undergoes mutation,
a process which which produces some small changes in the individual
solution. Thus crossover exploits predetermined good solutions, while
mutation allows the EA to explore different parts of the search space.
Once the required number of offspring has been generated, some of these
individuals are selected to form the population in the next generation.

Usually the reproduction operator conserves the population size. The
most common techniques used to select good solutions for reproduction
are rank grouping, proportionate grouping, and tournament grouping.
This kind of selection process is performed to assign ranks thereby avoid-
ing faster convergence.

The individuals in the given population are arranged or placed based
on their expected value and fitness instead of the absolute fitness. This
process of positioning is referred to as rank selection. The fitness is not
scaled since very often the absolute fitness is masked. Excluding the
absolute fitness avoids convergence problems, which is an advantage in
the rank selection method. The difficulty in this method of selection is
the critical situation involved in indentifying that an individual is far
better than the closest competitor. In rank selection, the population is
ranked initially, based on which each of the chromosome will receive the
fitness. Each individual is assigned a selection probability based on the
individuals’ rank which in turn is based on the objective function values.

In fitness proportionate selection, each origination has two elapses.
The first elapse occurs when the expected value of the fitness is computed
for each individual. In addition, it lapses to perform the mean fitness.
The fitness proportionate technique is a time-consuming technique and
more similar to ranking. The advantage of using this technique is that
it is more effective in parallel implementation.

The tournament selection is more efficient than the ranking methods
since it does not consume much time. The pair of individuals for mating
are selected from the indiscriminate population. An unbiased number,
n is selected from population, such that n is in the range [0,1], and m
is a parameter. These two parameters should be chosen such that n ¡
m. If this condition does not agree then the two individuals are taken
back to the initial population for reselection. In tournament grouping,
two strings compete for a spot in the new generation and the winner
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string takes the spot. This process is recursive and the superior string
enters the competition twice to produce two spots. In the same man-
ner, the inferior string will also have the chance to compete and loose
twice. Therefore, every string will either have 0, 1, or 2 representations
in the new generation. It has been shown that tournament grouping for
replication (reproduction) operator conjoins at a highly rapid pace and
needs less processes than the other operator.

11.8 Evolutionary Programming

Evolutionary Programming, originally conceived by Lawrence J. Fo-
gel in 1960, is a stochastic optimization strategy similar to genetic algo-
rithms, but instead places emphasis on the behavioral linkage between
parents and their offspring, rather than seeking to emulate specific ge-
netic operators as observed in nature. Evolutionary programming is sim-
ilar to evolution strategies, although the two approaches developed in-
dependently.

Similar to both ES and GAs, EP is a useful method of optimiza-
tion when other techniques such as gradient descent or direct, analytical
discovery are not possible. In combinatoric and real-valued function op-
timization, the optimization surface or fitness landscape is “rugged”,
possessing many locally optimal solutions that are well suited for evolu-
tionary programming.

11.8.1 History

The 1966 book, Artificial Intelligence through Simulated Evolution by
Fogel, Owens and Walsh is the landmark publication for EP applications,
although many other papers appear earlier in the literature. In this book,
finite state automata were evolved to predict symbol strings generated
from Markov processes and non-stationary time series. Such evolutionary
prediction was motivated by a recognition that prediction is a keystone
to intelligent behavior (defined in terms of adaptive behavior, in that the
intelligent organism must anticipate events in order to adapt behavior
in light of a goal).

In 1992, the First Annual Conference on Evolutionary Programming
was held in La Jolla, California. Later on several other conferences were
also held. These conferences encourage the group of academic, commer-
cial, and researchers engaged in both developing the theory of the EP
technique and in applying EP to a wide range of optimization problems,
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both in engineering and biology.
Rather than list and analyze the sources in detail, several fundamental

sources are listed below which should serve as good pointers to the entire
body of work in the field.

11.8.2 Procedure of Evolutionary Programming

In EP, similar to GAs, there is an underlying assumption that a fitness
landscape can be characterized in terms of variables, and that there is an
optimum solution (or multiple such optima) in terms of those variables.
For instance, while finding the shortest path in a Traveling Salesman
Problem, each solution would be a path. The length of the path could
be expressed as a number, which would serve as the solution’s fitness.
The fitness landscape for this problem could be characterized as a hyper-
surface proportional to the path lengths in a space of possible paths. The
goal would be to find the globally shortest path in that space, or more
practically, to find very short tours very quickly.

The basic EP method involves 3 steps (Repeat until a threshold for
iteration is exceeded or an adequate solution is obtained).

Step 1: Randomly choose an initial population of trial solutions. The
number of solutions in a population is closely related to the speed of op-
timization, but there is no answer to predict the number of appropriate
solutions (other than >1) and to predict the discarded solutions.
Step 2: Every solution that is produced is copied into a new popula-
tion. These offsprings are then mutated according to a distribution of
mutation types, ranging from minimum to a maximum with continuous
mutation types between. The severity of mutation is guessed on the basis
of the functional change enforced on the parents.
Step 3: Every offspring is evaluated by computing its fitness function.
Generally, a stochastic tournament selection is applied to determine N
solutions, which are held back for the population of solutions. There is
no constraint on the population size to be be held constant, nor that only
a single offspring be generated from each parent. Normally EP does not
use any crossover as a genetic operator.

There is no requirement that the population size be held constant,
however, nor that only a single offspring be generated from each parent.
It should be pointed out that EP typically does not use any crossover as
a genetic operator.
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11.8.3 EPs and GAs

EPs and GAs are more or less similar in their functionality. Though
they are similar, there a few differences between the two techniques.
First, there is no constraint on the representation. In a GA approach
the problem solutions are encoded as a string of representative tokens,
the genome. In the EP technique, the representation follows from the
problem.

Another major difference is, the mutation operation simply changes as-
pects of the solution according to a statistical distribution which weights
minor variations in the behavior of the offspring as highly probable and
substantial variations as increasingly unlikely. Further, the severity of
mutations is often reduced as the global optimum is approached.

11.8.4 Algorithm of EP

The steps of the Evolutionary Programming Algorithm are

Step 1: Start with an initial time t=0
Step 2: Initialize a random population of individuals at t=0
Step 3: Evaluate fitness of all initial individuals of population
Step 4: Test for termination criterion (time, fitness, etc.). If a
termination criterion is reached go to Step 8.
Step 5: Perturb the whole population stochastically
Step 6: Evaluate its new fitness
Step 7: Select the survivors from actual fitness
Step 8: End

11.8.5 Flowchart

The following flowchart in Figure 11.8 outlines the steps involved in
using an Evolutionary Programming method to find a globally optimal
solution. While compared to the other optimization techniques, EP is
considered more as a method rather than an algorithm. There are many
parameters that need to be set to use this methodology in a particular
computer program. The following section explains the different steps in
the flowchart.

Choosing a Solution’s Coding Scheme

In all global optimization methods, some scheme needs to be used
to store a putative solution. In a Standard Genetic Algorithm, a bit-
string is used. Bit-string is not the best method to store a solution, since
it flatly does not work for some types of problems. The stored values
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FIGURE 11.8: Flowchart of EP

are quantized, and there is no computational advantage of using bit-
manipulation unless the user programs it in an assembler. Depending
upon the application the coding scheme can be chosen by the user.

The Traveling Salesman Problem Type

For the Traveling Salesman Problem (TSP) and its variants, a possible
solution can be uniquely described by an array of integers of fixed length.
For instance, the array (A,B,C,G,H) could mean that the salesman starts
at City A and then travels to Cities B, C, G and H before returning to
City A.
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The TSP differs from the others in the fact that the first city is known
ahead of time and is set to City A for convenience. Problems similar to
the TSP, have a solution that is an N-element array of integers from 1 to
N. Each integer represents a particular city; and each of these integers
must be present in the solution array exactly once. The object is to find
the best order of these known integers.

The (0,1)-Knapsack Problem Type

The problems in this category also have solutions that consist of an
array of integers of known length. In this type of problems, there is no
dependency between the integers in each position of the array, meaning
that the same integer can appear in more than one location.

The problem is to decide on the items from a large group to be placed
into a knapsack such that the knapsack is not over-filled and the value
of the items placed into it is a maximum. For instance, the solution
(0,1,0,0,1,1,0,1,1,0) states that Items 2, 5, 6, 8 and 9 will be placed into
the knapsack while the remaining will not be placed. The quality of this
solution is the profit the company receives from these items, minus any
penalty that is assessed for over-filling the container. For this problem,
all solutions are represented by an array of 10 integers, where the integers
are either 0 or 1, but the number of 1’s present in the optimal solution
is not known ahead of time.

A slightly different situation arises when the user tries to generate
Quantitative Structure/Activity Relationships (QSARs) and Quantita-
tive Structure/Property Relationships (QSPRs). In these cases, the user
can start with a dataset that contains the values of structure-based de-
scriptors for a set of related compounds and either their biological ac-
tivity or some physical property (such as their HPLC retention time).
The objective is to generate a numerical relationship that uses a small
number of the available descriptors and predicts the activity/property
as accurately as possible. For example, if 10 descriptors are present in
the data set and the goal is to generate a 3-descriptor relationship, the
solution array (0,1,0,0,0,1,1,0,0,0) means that the relationship has the
form

C0 + C1 ∗ D2 + C2 ∗ D6 + C3 ∗ D7

The coefficients, Ci, can be determined by performing least-squares fit to
some or all of the data using their known values of the activity/property
and Descriptors 2, 6 and 7. The quality of this solution (relationship) can
be either the RMS error of the fit or the error observed for other com-
pounds in the dataset that were not used to determine the coefficients.
For this type of problem, we not only know the length of the solution
array, but we also know the number of 1’s and 0’s that must be present.
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This coding scheme can be extended to use other integers, where in-
tegers other than 1 represent certain functions of the descriptors (such
as its square or natural logrithm). Here, we still know the total number
of nonzero elements in the solution array.

A slightly different coding scheme applies to Ordering Multiple Items
from Multiple Possible Suppliers. For example, if it is required to order
10 items, the solution array (1,3,2,2,3,1,1,3,2,1) means that Items 1, 6,
7 and 10 are ordered from Supplier 1, Items 3, 4, and 9 from Supplier
2, and Items 2, 5, and 8 from Supplier 3. The quality of this solution is
determined by calculating the total cost of obtaining these items from
these suppliers. This cost includes shipping and handling, and may be
affected by multiple-item discounts offered by a given supplier.

Though this may appear to be a different type of problem, all of these
problems have solution arrays of a known length and, most importantly,
the value of the array in one position does not exclude any value for the
array at another position (with the caveat that in QSAR/QSPR prob-
lems the total number of nonzero array elements is fixed).

The Autonomous Vehicle Routing Problem

The Autonomous Vehicle Routing (AVR) Problem consists of having
an unmanned vehicle travel from Point A to Point B using the least
amount of energy. This energy depends upon both the total length of
the trip and the topology of the ground covered (so a straight line is
usually not the best path). The total landscape is usually placed on a
grid and the vehicle moves from one grid area to an adjacent area.

The reason why this problem is different from the others mentioned
in this section is that the length of the optimal solution array is not
known. If the vehicle is not allowed to move diagonally, for example,
each element of the solution array can contain the numbers 1 through 4
representing the four Cardinal directions (N, E, S, and W). Therefore,
a route that starts with (1,2,2,3, ...) means that the vehicle moves one
space to the north, two spaces east, one space south, and so on. The
route continues until either Point B is reached, or a maximum number
of moves has been taken. The quality of this solution can then depend
upon several factors.

• The terrain cost of visiting each region on the route.

• A penalty for traveling outside an allowed region.

• A penalty for not reaching Point B in the maximum number of
steps.
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Again, the value of an element in the solution array does not exclude
any values for other array elements, but the total number of steps in the
optimal solution is not known at the start of the search.

Finally, diagonal moves can be allowed by letting each array element
be a number between 1 and 8.

The Location/Allocation Problem Type

In contrast to the other problem types described above, a solution
vector for the Location/Allocation problem and the Conformation of a
Molecule is a fixed length array of floating-point numbers, not integers.
In the Location/Allocation problem, a company has many customers
spread across a map and the object is to find the optimal location of a
fixed number of distribution centers. If the user wants to place two dis-
tribution centers, the solution vector contains the following four floating-
point numbers (X1,Y1,X2,Y2), where (X1,Y1) is the map coordinates of
the first distribution center and (X2,Y2) is the map coordinates of the
second. All customers would be serviced by the closest distribution cen-
ter, and the quality of the solution could be either an unweighted sum
of the distances to each customer, or a weighted sum of this distance so
that a customer with many deliveries per month should be closer to the
distribution center than one with few deliveries.

To determine the optimal conformation of a molecule, the molecule’s
geometry is uniquely determined by the values of the dihedral angle
for all “rotatable bonds”. Therefore, if a molecule contains 4 rotatable
bonds, a possible solution is described by an array of four floating-point
numbers which set the values of these four dihedral angles. The quality
of this solution is inversely proportional to the internal energy of this
geometry, and the object is to find the values of the dihedral angles that
yield the lowest internal energy.

Both of these problems have solutions that are fixed-length arrays of
floating-point numbers, and the value of an array element in one position
does not exclude any possible values at other positions in the array.

Extending the Coding Scheme

Up to this point, the coding scheme has only been used to store a
putative solution to the problem. There is no reason why this coding
can’t contain additional information.

Evolutionary Programming can use different mutation operators for a
particular coding scheme. If two such operators are available in a partic-
ular algorithm, there is a probability that one or the other will be used.
The value of this probability used to generate a putative solution can
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be stored in the coding scheme of that solution. This means that one
or more parameters describing how an offspring will be produced are
stored in the coding schemes of the parent(s). These parameters can be
mated/mutated to form a parameter set for the offspring, and they will
be produced using this set. This means that the optimization will try to
optimize both the quality of the solution and the genetic operators used
to produce offspring.

This storing of the offspring generation parameters in the coding
scheme is one of the ways that Evolutionary Programming and Evolu-
tionary Strategies differ. This overview is designed to be general enough
to encompass both methodologies.

Generating an Initial Population

After a coding Scheme for the particular problem is chosen, the user
needs to decide the number of putative solutions the program will store.
In the lingo of Genetic Methods this is called the population size, and will
be denoted by the parameter NPOP . Large values of NPOP are generally
good because this allows the population of solutions to span more of the
search space. The disadvantage of this is that the resulting program
will take significantly longer to converge as NPOP increases. Therefore,
factors which determine a good choice for NPOP include:

1. The complexity of the problem and its landscape.

2. The amount of memory available on the computer.

3. The amount of time available to solve the program.

The first factor is obviously unknown at the start of the solution
search, so it is best advised to run the search using different values of
NPOP and see if there is much variation in the final solution as NPOP

increases. If a large variation is found, NPOP should be further increased
until a consistent solution is found.

The second factor is important since the arrays holding the putative
solutions for both the current population and all generated offspring
should be held in the computer’s memory. If the solution array is very
large and NPOP is set to a very large value, the required storage may
exceed the available memory. This will either cause the job to halt or
will cause part of memory to be written to the hard disk. If the latter
occurs, the job will run very slowly.

The third factor generally asks whether it is better to have a pretty
good solution quickly or a very good solution slowly. When Evolution-
ary Programming methodology was used to solve different problems, it
was found that the goal of the search was different. In conformational
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searches using Genetic Methods, to accurately determine the global en-
ergy minimum structure of several flexible polypeptides, NPOP is set to
several hundred.

Once the value of NPOP for a particular simulation is determined, an
initial population must be generated that is consistent with the coding
scheme of the problem. In general, a random number generator is used
to build the initial population.

For example, in a 10-city Traveling Salesman Problem, all solutions
must contain the numbers 1 through 10 in different orders with the
caveat that 1 is always in the first position. To build the initial popula-
tion, a random number generator is used to fill an array RAN(I) with 10
floating-point numbers between 0.0 and 1.0. Set the first element of this
array to 1.5 since the user always starts at City 1, and find the element
of this array with the smallest value. The position of this element in
RAN(I) determines the second city to visit, and this element in RAN(I)
is changed to 1.5. This process is continued until the order for all 10
cities is determined. Calculate the total route length for this path and
store the result and its length in the initial population.

For a (1,0)-Knapsack problem that has a total of 10 items, look at 10
elements of RAN(I) and place a 0 in the solution array if that partic-
ular entry is less than a threshold value (say 0.5) and 1 otherwise. In
a QSAR/QPSR problem, only a small, fixed number of elements in the
solution array should have nonzero values. Here, the random number
array can be used to choose positions along the solution array to place
these nonzero values. The solution array and its quality are placed in
the initial population.

In an Autonomous Vehicle Routing Problem, the maximum possible
length of a solution needs to be chosen. For example, if the terrain is
divided into a 100x100 grid, the user may want to give the vehicle at most
300 steps to get from Point A to Point B. A random number generator
can be used to fill all of these positions with the allowed step directions
(either the integers 1 to 4 or 1 to 8). Starting at Point A, these steps
are used to move the vehicle across the terrain, and the user can store
a running total of the cost of this route as it is traversed. If at any time
Point B is reached, the vehicle is stopped and the “cost” of this path is
known. If Point B is not found in the 300 steps, a penalty is added that
depends on how far from B the final position is. This array of steps and
the final cost is stored in the initial population.

Finally, for a Location-Allocation Problem, and Conformational
Searches, the solution array consists of floating point numbers. The ran-
dom number generator can be used to pick random values in the allowed
region for each element. The quality of this solution and the solution ar-
ray are stored in the initial population. The procedure is repeated until
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NPOP solutions are stored in the initial population.
Instead of randomly generating the initial population, it is also pos-

sible to use the results of other optimization methods to generate the
initial population. For example in Theoretical Examinations of Polypep-
tide Folding when searched for the global optimum in the conformation
of a flexible polypeptide the user can use the results from an earlier
Simulated Annealing investigation as the initial population for a Ge-
netic Algorithm search.

Some care should be taken in doing this since having an initial pop-
ulation too close to suboptimal solutions may make it harder to find
the global optimum. Several tests were run using both a Genetic Al-
gorithm and Evolutionary programming to find the global minimum
(−16.1 kcal/mol) of a polypeptide. In each case several simulations were
run using different seeds to the random number generator to randomly
build initial conformations. In the first case, the initial conformation was
totally unrestricted and some of the initial energies were greater than
10000 kcal/mol. In the second case, all initial conformations (after local
minimization) must have energy below 1000 kcal/mol. In the third and
fourth cases, a putative solution is only added to the initial population if,
after local minimization, its energy was less than 20.0 and 0.0 kcal/mol,
respectively.

Each time these populations were run in a GA or EP simulation,
the second case produced the best results (usually the correct global
minimum). The first case was so laden with bad solutions that a very
good solution never emerged. The third and fourth cases contained ini-
tial solutions that were a little too good. If an offspring explored a new
area of search space, its energy was almost always larger than any of
the conformations in the initial population. Since a “survival of the
fittest” strategy is used in these methods, these “unfit” conformations
were never able to significantly contribute to the generation of new solu-
tions. Other areas of search space, including the one containing the global
minimum, were never sufficiently explored and this solution was never
found.

Therefore, it is required that the initial population has solutions that
are spread out across as much of the search space as possible, and to
not be of such poor quality that the resulting offspring are also very
unfit. Conversely, the initial population should not be too good since the
solutions may be clustered in regions of search space with suboptimal
solutions, but are good enough to have all other solutions die off due to
lack of fitness.
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The Current Population

The Current Population represents the set of NPOP solutions stored
by the program at any given time that is used to create new solutions. In
a generational algorithm where offspring are placed in a new population
(Evolutionary Programming and some Genetic Algorithms), the Current
Population remains constant for the entire generation. For nongenera-
tional Genetic Algorithms, the Current Population is changed each time
an offspring is produced. At the start of the search, the Current Popu-
lation is just the randomly generated Initial Population.

In a Genetic Algorithm program, there may be the option of choosing
parents directly from the Current Population, or use this population to
create a Mating Population from which parents are chosen. A Mating
Population should only be created if the user wants to use the same prob-
abilistic selection procedure for both parents. For example, if the user
decides to use a tournament selection procedure, then he can initially
run a large number of these tournaments (at least NPOP ) and place the
tournament winner in a Mating Population. To select two parents for
each mating, the user simply needs to randomly select two entries from
the Mating Population.

If different selection procedures will be used for each parent, such as
a tournament selection for one and a random for the other, there is no
advantage to building two Mating Populations (one for each parent), but
it can be done.

Finally, if a Mating Population is used in a generational Genetic Al-
gorithm, there is the option of merging either the Current Population
or the Mating Population with the new population before using a selec-
tion procedure to choose the Current Population for the next generation.
Current Population is recommended for the following reason. If the new
population is dominated by solutions that do not do a good job at solving
the problem (unfit or high-COST solutions), their solution arrays may
be missing a key component that is needed to find the global optimum.
This would suggest that this component is also either missing or under
represented in the Mating Population. If these two populations are com-
bined and a selection procedure is used to create the Current Population
for the next generation, the odds are high that this key component will
not be present. If this occurs, finding the global optimum will be very
unlikely. On the other hand, there is a chance that this key component
is present in members of the Current Population, but values of the other
array elements caused them to be unfit enough to warrant placement
in the mating Population. If the Current Population is merged with the
new population, there is a better chance that this key component can
find its way into the Current Population for the next generation.
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The other situation would be that the new population contains many
solutions that have a high fitness (low COST). Merging this population
with the Current Population will only increase the chance that the good,
new solutions will be transferred to the Current Population for the next
generation.

If the Mating Population is merged with the new population, many
copies of good solutions will be present in the merged population. This
means that the Current Population for the next generation has a high
probability of looking quite similar to the Mating Polulation of the previ-
ous generation. If this is done for several generations, all members of the
Current Population could be the same solution and the search effectively
stops.

Offspring Generation in Evolutionary Programming Methods

In all Evolutionary Programming methods, each member of the Cur-
rent Population is used to generate an offspring. Each offspring is placed
into a new population. When all offspring have been generated, the Cur-
rent Population is merged with the new population of offspring, and a
selection procedure is used to generate a Current Population for the next
generation.

This section describes some of the mutation operators that can be
used to create a new offspring from a single member of the Current
Population. This list is in no way complete, but gives the reader an idea
of some possible mutation operators. The type of operators that can
be used obviously depends upon the Coding Scheme, so one or more
example operators will be described for each scheme.

In addition, many animal populations nurture their new offspring and
allow them to mature before their fitness for survival is tested. Therefore,
though it is not used in any of the standard Evolutionary Programming
formalisms, it is found useful to employ a maturation operator in certain
circumstances. This operator performs a local optimization of the initial
solution of each offspring before its COST or fitness is determined. Some
examples of this operator will also be presented.

The Traveling Salesman Problem Type

All of these problems have a solution that is an array of integers from
1 to N. Each integer represents a particular city, item, task, or game;
and each of these integers must be present in the solution array exactly
once. Since the object is to find the best order of these known integers,
the mutation operator must simply reorder some of the elements. Two
possible mutation operators are pair switching and region inversion.
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In pair switching, two positions along the solution vector are randomly
selected and the cities in these positions are switched. This operation is
shown in the following 8-element example

(1,4,7,5,2,6,8,3) Parent solution

| | Selected solutions

(1,4,8,5,2,6,7,3) offspring solution

A region inversion is performed by cutting the solution array at two
random points (with more than one element between the cut points)
and inverting the array elements between the cuts. This is shown in the
following example.

(1,4,7,5,2,6,8,3) Parent solution

| | Cut solutions

(1,4,6,2,5,7,8,3) offspring solution

Either or both of these mutations may be performed one or more times
to generate a new solution.

If a maturation operator is used, it could be a simple pair-wise switch-
ing of adjacent elements in the array. In a Traveling Salesman Problem,
City 1 is always left in the first position, so this operation would start
with switching the cities in the second and third positions of the solu-
tion array. If this results in a shorter total path the switch is accepted;
otherwise the cities are returned to their original positions. The cities
in the third and fourth positions can then be switched and so on until
switching the last pair is tried. This procedure can be done as a single
pass down the route, or can be repeated a given number of times, or
until none of the switches results in a shorter path length.

The (0,1)-Knapsack Problem Type

Of the three types of problems placed into this group, the simple bin
packing is the easiest to treat. The coding scheme for a putative solution
consists of an array containing only 0’s and 1’s, with no constraints on
the number of each. An offspring can be created by making a copy of the
parent’s array, randomly selecting one or more elements and changing
the values of these elements. For example, if positions 3 and 5 are chosen
in an 8-object problem we would have

(1,0,0,1,1,0,1,1) Parent solution

| | Selected solutions

(1,0,1,1,0,0,1,1) offspring solution

This means that the new solution would try to place Items 1, 3, 4,
7, and 8 into the bin. The quality of this solution is determined by the
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profit to your company from shipping these items minus any penalty for
exceeding the capacity of this shipping bin.

If a maturation operator is used, its goal would be to either remove the
penalty or increase the profit of the goods. If the selected items exceed
the capacity of the bin, the maturation operator could simply look down
the list of items to be shipped in order of increasing profit, and remove
the first one that places the user under the limit. If no single item can be
found, remove the item that yields the least profit and check the others
again. If, on the other hand, the selected items to not completely fill the
bin, the maturation operator could look through the list of unselected
items in order of decreasing profit and add the first one that does not
cause the bin capacity to be exceeded. Once this item is added to the list
of packed items (the 0 at its position in the solution array is changed to
a 1), the remaining items can be checked to see if another can be added.

For the QSAR/QSPR problem type, it is generally desirable to keep
the number of nonzero elements in the solution array fixed to the num-
ber of descriptors required in the solution. This means that the user
can randomly choose a selected descriptor and a non-selected one and
change the values of the elements at these positions. This is shown in
the following example.

(1,0,0,0,1,0,1,0) Parent solution

| | Selected solutions

(1,0,1,0,0,0,1,0) offspring solution

An additional mutation operator can be used if the elements of the
solution array can have values different than 0 and 1 to represent dif-
ferent functional forms of the descriptors. For example, if the allowed
values range from 0 to 4, this mutation operator can randomly choose
a descriptor that is to be included and randomly change the value of its
array element to any allowed, nonzero value (1, 2, 3, or 4). Conversely,
a maturation operator can be employed that examines each selected de-
scriptor and sequentially uses all allowed, nonzero values while keeping
the other elements of the array fixed. The value of this element would
then be set to the value that yields the best result. Once this is done
for all chosen descriptors, this process can be repeated until no nonzero
element is changed.

Finally, in a QSPR examination it was found that if the COST of the
solution contained a term that added a penalty for having the wrong
number of descriptors, better results were obtained when an extra de-
scriptor is added first and then a descriptor is removed in a later gener-
ation. Care had to be taken during this study to ensure that the penalty
was not too large to prohibit any extra terms from being added, and
not too small to allow the program to use too many descriptors. The
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population of solutions was examined at the end of each generation, and
the value of the penalty was adjusted if either situation occurred. This
process may be equivalent to using a mutation operator to randomly
add a descriptor and then immediately employ a maturation operator
that sequentially removes each of the selected descriptors. In the above
example, one of the five positions containing a zero value would be ran-
domly chosen and replaced with a 1. The solution array now contains
four nonzero elements and the four possible solutions with three nonzero
elements would be examined. The one that produces the best solution
would represent this new offpsring.

For the problem of Ordering Multiple Supplies from Multiple Possible
Suppliers, the mutation operator would randomly select one or more of
the supplies and randomly pick a possible supplier that is different than
the one used by the parent solution. An example of this is as follows.

(3,2,3,4,1,5,1,2) Parent Solution

| Selected Position

1 Possible Suppliers Exculding Supplier 3

2

5

|
(3,2,5,4,1,5,1,2) offspring Solution

No simple maturation operator is available for this process, since it
would only result in using the mutation operator again and may result
in the offspring looking just like its parent.

The Autonomous Vehicle Routing Problem

For this problem, each solution vector consists of a maximum length
array containing integers describing the direction of the next step. The
mutation operator would be similar to the one used above in that one
or more positions along the array are chosen and the integer describing
the next step’s direction is changed to another allowed value.

For this problem, it is possible to use a maturation operator that en-
sures that no grid of the map is visited more than once. A second array
can be constructed that contains the grid number that the vehicle is cur-
rently occupying. If the same number appears more than once, the path
that formed this closed loop can be removed and random directions can
be added to the end of the path to fill in the array. Another maturation
operator could check the path and make sure that the vehicle does not
leave the allowed region. If this occurs, the direction of the next step at
the border point can be changed to ensure that the path is not retraced
and the vehicle stays in the allowed region. Both of these maturation
operators may be of great value in finding good routes for the vehicle.
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The Location/Allocation Problem Type

A solution vector for the Location/Allocation problem and the Confor-
mation of a Molecule is a fixed length array of floating-point numbers.
Therefore, the mutation operator simply adds or subtracts a random
amount to one or more of the elements in the solution array. For the Lo-
cation/Allocation problem, the program would first have to ensure that
the new coordinate lies on the map of the problem. If not, a different
random amount should be chosen.

In practice, a maximum step size (MXSTEP) can be set and the fol-
lowing quantity

(1.0-2.0*R)*MXSTEP

is added to an array element, where R is a random number in the range
(0.0,1.0).

In the Location/Allocation problem no maturation operator exists
that is different from a reapplication of the mutation operator. There-
fore, it may be advisable to reduce the size of MXSTEP at the end of
each generation, so that subsequent generation explores good regions of
solution space more carefully.

In the Conformation of a Molecule problem a maturation operator
exists, and it is simply finding a local minimum structure. Therefore
a mutation operator that completely randomizes one or more of the
dihedral angles along with this maturation operator is used, and does
not change the mutation operator throughout the search.

In some of the problem types presented above, it is possible to use more
than one maturation operator and/or use the same maturation operator
more than once. Therefore, an Evolutionary Programming program may
want to include probabilities of using a particular mutation operator or
using it more than once. These probabilities can be used for all offspring
generation and can stay constant or be changed from one generation to
the next. Conversely, as stated in Choosing a Solution’s Coding Scheme,
these probabilities can be stored in the solution array of each putative
solution. These particular probabilities can be mutated when they are
transferred to the offspring and then used to generate the offspring’s
solution.

The last point is that all standard applications of Evolutionary Pro-
gramming have each member of the Current Population generate a single
offspring which is added to a new population. It is also just as possible
to have each member generate multiple offspring, and only the most-fit
(lowest-COST) offspring would be placed in the new population. This
may significantly increase the computation time of the algorithm, but
may also improve the final results.
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Placing Offspring in a New Population

In all Evolutionary Programming algorithms and generational Genetic
Algorithms, selected offspring are placed into a new population. In Evo-
lutionary Programming algorithms, each of the NPOP solutions in the
Current Population is used to generate one or more offspring by using a
mutation operator and optionally a maturation operator. The most-fit
(lowest-COST) offspring is placed in the new population. In a genera-
tional Genetic Algorithm, pairs of parents are selected from either the
Current or Mating Population and use a mating operator to generate
either a single offspring, a complimentary pair of offspring, or multi-
ple offspring. The most-fit offspring, and optionally its compliment, are
placed in the new population. This continues until NPOP pairs of par-
ents have generated offspring.

The advantage of such a generational algorithm is that the Current/
Mating Population remains constant for the entire generation. This
means that the production of offspring can easily be distributed across
multiple CPUs of a network. If a maturation operator is employed, this
offspring generation is by far the most time consuming step, and dis-
tributing this workload results in a near-linear speedup.

Once the new population is constructed, it is merged with the Current
Population. From this merged population, a new Current Population is
selected for the next generation.

Merging the Populations

In all applications of Evolutionary Programming, and selected appli-
cations of a Genetic Algorithm, the offspring are placed in a new popula-
tion. In general, Evolutionary Programming methods have each member
of the Current Population generate a single offspring with the aid of one
or more mutation operators. This offspring is then placed in the new
population. It is also possible for each member of the current population
generate multiple offspring. In this case, the offspring with the lowest
COST (highest fitness) is placed in the new population. This continues
until all members of the Current Population have placed an offspring in
the new population.

In Genetic Algorithms, a mating operator is the major mechanism for
generating offspring from a pair of parents. Each mating can produce
either a single offspring or a complimentary pair of offspring. It is also
possible for a selected pair of parent solutions to generate multiple off-
spring or multiple pairs. In this case, the lowest COST offspring, and op-
tionally its compliment, are placed in the new population. If the number
of solutions in the Current Populations is NPOP, this process continues
until NPOP pairs of parents have been selected and have placed one or
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two offspring in the current population.
These procedures are called generational algorithms because the Cur-

rent Population does not change while the new population of offspring is
being generated. The advantage of this procedure is that the generation
of offspring can be performed in a distributed fashion across a network
of computers. The potential disadvantage of this method is that an off-
spring that does a very good job at solving the problem cannot be used
right away to generate new offspring, and this may slow the convergence
of the population to the global optimum. In addition, it is possible for
a relatively fit offspring to never be used as a parent in a generational
algorithm.

Once the new population of offspring has been generated, it is merged
with the Current Population. NPOP members of this merged population
are then chosen to become the Current Population of the next genera-
tion. This procedure is repeated for either a user-supplied number of
times (NGEN), or until a user-supplied convergence criteria has been
met. The Current Population at the end of the search represents the
final population of solutions.

In applications of a Genetic Algorithm, it is possible for certain mem-
bers of the Current Population to be selected using a fitness-based prob-
abilistic method and placed in a Mating Population. Though it is only
members of the Mating Population that are randomly chosen to become
parents and create offspring, it is my opinion that the Current Popu-
lation should be merged with the new population of offspring and not
the Mating Population. There may be values of certain elements of the
solution array that are needed to find the global optimum solution, but
members of the Current Population that possess these values may not
have been selected for the Mating Population. If the Mating Population
is merged with the new population, these required values will be lost.
In addition, the Mating Population probably has multiple copies of the
most-fit solutions from the current population. If they are merged with
the new population, the chances are good that most or all of them will be
selected for the Current Population of the next generation. Their num-
bers will again be amplified in the next Mating Population, and after only
a few generations the Current Population will be dominated by multiple
copies of a few solutions. Though this will increase the convergence rate
of the algorithm, the Current Population may become trapped in the
region of a suboptimal solution. Therefore, to maintain diversity in the
Current Population and increase the chances of finding the global mini-
mum, the Current Population and not the Mating Population should be
merged with the new population of offspring.
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Choosing a Current Population

In all Evolutionary Programming algorithms, each of the NPOP mem-
bers of the Current Population generate an offspring using a mutation
operator, and this offspring is placed in a new population. In a genera-
tional Genetic Algorithm, NPOP pairs of parents are chosen from either
the Current or Mating Population and use a mating operator to place
either a single offspring or a complimentary pair of offspring in the new
population.

Once the new population is constructed, it is merged with the Current
Population. From this merged population, NPOP members are selected
to form the Current Population for the next generation (or the final
set of solutions). Since similar methods are used to select parents for
each mating in a Genetic Algorithm, various selection procedures are
presented in a separate section.

Since a “survival of the fittest” criteria must be employed to ensure
that the best solutions to date survive to the next generation, a random
selection procedure should not be used here (though it can be used to
select one of the parents in a Genetic Algorithm). In other words, only
fitness-based selection procedures should be used to determine which
solutions in the merged population become members of the next gener-
ation’s Current Population.

A deterministic selection procedure is an obvious choice since the
NPOP most-fit (lowest-COST) members of the merged population sur-
vive. This procedure causes the fitness of the best solution to date and
the average fitness of the Current Population to never decline from gen-
eration to generation. It is also found to increase the convergence of
the population. A corollary to this is that the diversity of the solutions
is quickly reduced. This occurs because the Current Population soon
becomes one or more clusters of solutions around reasonably good solu-
tions. If one of these clusters is around the global optimum solution, it
will quickly be found. Conversely, if none of the clusters is around the
global optimum, chances increase that it may never be found. Therefore,
for certain types of problems, a probabilistic selection procedure may be
advisable.

Though several probabilistic selection procedures have been previously
presented, the diversity of the next generation’s Current Population can
be maximized if a Similarity-Based Selection Procedure is used. If each
parent or mating pair only places a single offspring in the new popula-
tion, the size of the merged population is 2*NPOP , and a tournament
size (NTRN ) of 2 should be used. Conversely, if a Genetic Algorithm
places a complimentary pair of offspring into the new population the
merged population has a size of 3*NPOP , and NTRN=3 should be used.
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This procedure simply searches through the list of available solutions
in the merged population and finds the member with the lowest COST
(highest fitness). This solution is added to the Current Population of
the next generation. The algorithm then looks at the other members of
the merged population and finds the NTRN -1 solution(s) that are most
similar to the selected one, and all NTRN solutions are removed from
further consideration. This procedure continues until only NTRN solu-
tions are left in the merged population, and the one with the lowest
COST is chosen as the final member of the next generation’s Current
Population. Basically, this is a tournament selection where all members
of the tournament are chosen based on similarity, and all solutions in
the tournament are excluded from further consideration. By basing the
similarity on the lowest COST solution available, the Current Popula-
tion in the next generation is guaranteed to have good solutions with
high diversity.

The actual complexity of the problem and/or the user’s requirement
of speed versus diversity will determine if a deterministic selection, one
of the probabilistic selections, or a similarity-based selection procedure
should be used.

11.9 Evolutionary Strategies

As discussed earlier, Evolution Strategies (ESs) were developed by
Rechenberg and Schwefel at the Technical University of Berlin and have
been extensively studied in Europe.

While EP has derived for pure scientific interest, motivation of this
topic is, from the beginning, to solve engineering design problems:
Rechenberg and Schwefel developed ESs in order to conduct successive
wing tunnel experiments for aerodynamic shape optimization. Their im-
portant features are threefold:

1. ESs use real-coding of design parameters since they model the
organic evolution at the level of individual’s phenotypes.

2. ESs depend on deterministic selection and mutation for its evolu-
tion.

3. ESs use strategic parameters such as on-line self-adaptation of mu-
tability parameters.

The representation used in evolutionary strategies is a fixed-length
real-valued vector. As with the bit-strings of genetic algorithms, each
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position in the vector corresponds to a feature of the individual. However,
the features are considered to be behavioral rather than structural.

Evolution Strategies (ESs) are in many ways very similar to Genetic
Algorithms (GAs). As their name implies, ESs too simulate natural evo-
lution. The differences between GAs and ESs arise primarily because the
original applications for which the algorithms were developed are differ-
ent. While GAs were designed to solve discrete or integer optimization
problems, ESs were applied first to continuous parameter optimization
problems associated with laboratory experiments. ESs differ from tradi-
tional optimization algorithms in a few aspects:

• ES search between populations, rather than between individuals.

• The objective function information is sufficient, derivatives are not
required.

• The transition rules used by ESs are probabilistic, not determinis-
tic.

The reproduction process in an ES is only by mutation. To apply
mutation, the Gaussian mutation operator is made use of. Sometimes
an intermediate recombination operator is used, in which the vectors of
two parents are averaged together, element by element, to form a new
offspring (see Figure 11.9).

These operators reflect the behavioral as opposed to structural inter-
pretation of the representation since knowledge of the values of vector
elements is used to derive new vector elements.

Compared to GA and GP, the selection of parents to form offspring
is less constrained, since the string representation is simple. Due to this
nature of the representation, it is easy to average vectors from many

FIGURE 11.9: Intermediate Recombination of Parents
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individuals to form a single offspring. In a typical evolutionary strategy,
N parents are selected uniformly randomly, more than N offspring are
generated through the use of recombination, and then N survivors are
selected deterministically. The survivors are chosen either from the best
N offspring (i.e., no parents survive) or from the best N parents and
offspring.

The basic structure of an ES is very similar to that of a basic GA.
The standard optimization routine makes use of the word “population”
rather than “solution”. A more major difference is that the usual oper-
ation of generating a new solution has been replaced by three separate
activities - population selection, recombination, and mutation. It is in the
implementation of these operations that the differences between ESs and
GAs lie. ESs, GAs, and associated algorithms are now known collectively
as evolutionary algorithms and their use as evolutionary computation.

11.9.1 Solution Representation

ESs is still primarily used to solve optimization problems with con-
tinuous control variables, and for applications of this sort the natural
representation of the control variables as an n-dimensional real-valued
vector x is entirely appropriate. In addition, the representation of a so-
lution may include (depending on the specific ES implementation being
employed) up to n different variances cii = σ2

i and up to n(n-1)/2 co-
variances cij of the generalized n-dimensional normal distribution with
zero means and a probability density function:

p(z) =

√

| A |
(2π)n

exp

(

−1

2
zT Az

)

(11.20)

where A-1 = {cij} is the covariance matrix and z the vector of random
variables. To ensure that the matrix A−1 is positive-definite, ES algo-
rithm implementations usually work in terms of the equivalent rotation
angles:

αij =
1

2
tan−1

(

2cij

σ2
i − σ2

j

)

(11.21)

These variances, co-variances, and rotation angles are known as strategy
parameters.

11.9.2 Mutation

In GA implementations mutation is usually a background operator,
with crossover (recombination) being the primary search mechanism. In
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ES implementations mutation takes a much more central role. In its most
general form the ES mutation operator works as follows:

• First, if they are used, the standard deviations and rotation angles
(strategy parameters) associated with the individual solution are
mutated:

σ′
i = σi exp(τ ′ × N + τ × N) (11.22)

α′
ij = αij + β × N (11.23)

where the N are (different) random numbers sampled from a nor-
mally distributed one-dimensional random variable with zero mean
and unity standard deviation, and τ , τ ′ and β are algorithm control
parameters for which Schwefel recommends the following values:

τ =
1√
2
√

n
, τ ′ =

1√
2n

, β = 0.0873 (11.24)

n being the number of control variables.

• Then the vector of control variables is mutated:

x’ = x + n (11.25)

where n is a vector of random numbers sampled from the n-dimensional
normal distribution with zero means and the probability density function
in equation (11.20).

11.9.3 Recombination

A variety of recombination operators have been used in ESs. Some,
like the GA crossover operator, combine components from two randomly
selected parents, while others allow components to be taken from any of
the solutions in the parent population. Recombination is applied not only
to the control variables but also the strategy parameters. Indeed, in some
ES implementations different recombination operators are applied to dif-
ferent components of the solution representation. The most commonly
used recombination operators are described in the following sections.

Discrete Recombination

In discrete recombination the offspring solution inherits its compo-
nents such as the control variables, strategy parameters, etc., from two
randomly selected parents.

© 2010 by Taylor and Francis Group, LLC



482 Computational Intelligence Paradigms

Global Discrete Recombination

In global discrete recombination the offspring solution inherits its com-
ponents from any member of the population, the parent to contribute
each component being chosen by “balanced roulette wheel selection”.
Thus, if there are µ members of the population, each has a 1/µ chance
of being selected to contribute each component of each offspring solution.

Intermediate Recombination

In intermediate recombination the offspring solution inherits compo-
nents which are a weighted average of the components from two ran-
domly selected parents:

c0 = ωc1 + (1 − ω)c2

where component c could be a control variable component xi, a standard
deviation σi, or a rotation angle αij , and weighting ω traditionally has
a value of 0.5, although some ES implementations allow ω to vary.

Global Intermediate Recombination

Global intermediate recombination is similar to intermediate recom-
bination in that the offspring solution inherits components which are a
weighted average of the components from two randomly selected parents,
but now new parents for each component of the offspring are chosen from
the population by “balanced roulette wheel selection”.

It has been found that in practice ESs tend to perform best if discrete
recombination is performed on the control variables and intermediate
recombination on the strategy parameters.

Selection

The best µ individuals from the population of λ offspring or from the
combination of the µ previous parents and their λ offspring are chosen
as parents for the next generation. The former scheme is known as (µ,
λ)-selection, the latter as (µ+ λ)-selection. Though (µ+ λ)-selection is
elitist, (µ, λ)-selection is, in general, preferred, because it is better able
to adapt to changing environments (a common feature of the param-
eter optimization problems for which ESs were originally developed).
Schwefel recommends a ratio of µ: λ as 1:7.

11.9.4 Population Assessment

An ES does not use derivative information, it just needs to be supplied
with an objective function value for each member of each population.
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Thus, the evaluation of the problem functions is essentially a “black box”
operation as far as the ES is concerned. Obviously, in the interests of
overall computational efficiency, the problem function evaluations should
be performed efficiently. As long as there are no equality constraints and
the feasible space is not disjoint, then infeasible solutions can simply be
“rejected”. In an ES this means ensuring that those particular solutions
are not selected as parents in the next generation.

If these conditions on the constraints are not met, then a penalty
function method should be used. A suitable form for an ES is:

fA(x) = f(x) + MkwT cV (x) (11.26)

where w is a vector of nonnegative weighting coefficients, the vector cV
quantifies the magnitudes of any constraint violations, M is the number
of the current generation, and k is a suitable exponent. The dependence
of the penalty on generation number biases the search increasingly heav-
ily toward feasible space as it progresses.

11.9.5 Convergence Criteria

Two standard convergence tests are used to terminate ES searches.
One is that the absolute difference in the objective function values of
the best and worst members of the post-selection population is less than
a user-specified limit, i.e.,

fw − fb ≤ ωc (11.27)

The other is that the relative difference in the objective function values
of the best and worst members of the post-selection population is less
than a user-specified limit, i.e.,

fw − fb ≤
εd

µ
|

µ
∑

i=1

fi |

Thus, absolutely or relatively, the objective function values of the
parents must lie close together before the algorithm is deemed to have
converged.

11.9.6 Computational Considerations

The procedures controlling the generation of new solutions are so sim-
ple that the computational cost of implementing an ES is usually dom-
inated by that associated with the evaluation of the problem functions.
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It is therefore important that these evaluations should be performed effi-
ciently and is essential if the optimization is to be performed on a serial
computer.

Like GAs, ESs are particularly well-suited to implementation on par-
allel computers. Evaluation of the objective function and constraints can
be done simultaneously for a whole population, by mutation and recom-
bination.

If it is possible to parallelize the evaluation of individual problem
functions effectively, some thought and, perhaps, experimentation will be
needed to determine the level at which multitasking should be performed.
This will depend on the number of processors available, the intended
population size and the potential speed-ups available. If the number of
processors exceeds the population size, multi-level parallelization may
be possible.

Pseudocode

The pseudocode of ES is shown below:

t=0

initialize(P(t=0)):

evaluate(P(t=0));

while is Not Terminated () do

Pp(t) = selectBest(µ,P(t));
Pc(t) = reproduce(λ,Pp);

mutate(Pc(t));

evaluate(Pc(t));

if (use Plus Strategy) then P(t+1) = Pc(t)∪ P(t);

else P(t+1) = Pc(t):

t = t +1;

end

11.9.7 Algorithm Performance

Figure 11.10 shows the progress of an ES on the two-dimensional
Rosenbrock function, f = (1 − x1)

2 + 100(x2 − x1
2)2. Each member

of the 1st, 10th, 20th, and 30th generations is shown (by a symbol),
although, in fact, most of the members of the 1st generation lie out-
side the bounds of the figure. The convergence of the population to the
neighborhood of the optimum at (1,1) is readily apparent. Notice how
the 20th generation appears to be converging on (0.75,0.7), but in the
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FIGURE 11.10: Progress of ES on Rosenbrock function

next 10 generations the search successfully progresses along the shallow
valley to the true optimum.

For this run a (20, 100)-ES was used. The two control variables were
subject to discrete recombination (of pairs of parents), while the strategy
parameters were subject to global intermediate recombination.

Figure 11.11 shows the progress in reducing the objective function
for the same search. Both the objective function of the best individual
within each population and the population average objective are shown
(note that the scales are different). These are the two standard measures
of progress in an ES run. The difference between these two measures is
indicative of the degree of convergence in the population.

11.10 Advantages and Disadvantages
of Evolutionary Computation

Evolutionary algorithm optimizers are global optimization methods
and scale well to higher dimensional problems. They are robust with
respect to noisy evaluation functions, and the handling of evaluation
functions which do not yield a sensible result in given period of time is
straightforward. Evolutionary computation algorithms are applicable to
a wide variety of optimization problems. The function to be optimized
can have continuous, discrete, or mixed parameters. There are no a pri-
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FIGURE 11.11: Progress in Reducing the Objective Function

ori assumptions about convexity, continuity, or differentiability. Thus, it
is relatively easy to apply a general purpose evolutionary computation
algorithm to a search or optimization problem. An objective function
is noisy if it can give different values for the same parameters. Many
real-world problems have this property. Evolutionary computation al-
gorithms are relatively insensitive to noise. Evolutionary algorithms are
easy to parallelize. There is a considerable body of research on differ-
ent methods to parallelize these algorithms. In many cases, they scale
too many processors. Evolutionary algorithms can be a natural way to
program or to enhance the programming of adaptive and distributed
agents.

On the other hand, the best algorithms for solving some particular
kind of problem will almost always utilize the characteristics of that
problem. In other words, it pays off to understand the problem and to
utilize this knowledge in the solution. Usually, the best algorithms to
solve specific class problems are not based on evolutionary computation,
although in some cases algorithms that combine some other technique
such as hill-climbing or local-search with evolutionary computation can
do very well. Evolutionary computation algorithms tend to be compu-
tation intensive. Further, it is generally impossible to guarantee a par-
ticular quality of solution using evolutionary computation. Thus, they
are usually not well-suited to real-time applications. There are a great
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many evolutionary computation algorithms, and these algorithms often
have many parameters. It can be difficult to choose an algorithm and
once an algorithm is chosen, it can be difficult to tune the parameters
of the algorithm.

An advantage as well as disadvantage of EAs lies in the flexibility of
design. It allows for adaptation to the problem under study. Algorith-
mic design of EAs can be achieved in a stepwise manner. This design
involves empirical testing of design options and a sound methodologi-
cal knowledge. Another disadvantage of EAs is that they generally offer
no guarantee to identify the a global minimum in a given amount of
time. In practical solutions, it is difficult to predict the solution quality
attainable within a limited time.

Summary

With a better understanding of the similarities and differences between
various implementations of EAs, the community has begun to concen-
trate on generalizing results initially shown only for specific EAs. For
example, Grefenstette and Baker illustrate that many features of EAs
do not change when certain properties of selection and scaling are as-
sumed. They also indicate when the features change, if the properties are
not met. Although this work is preliminary, it helps explain why a wide
variety of EAs have all met with success. As we understand better the
strengths and weaknesses of the current evolutionary models, it is also
important to revisit the biological and evolutionary literature for new
insights and inspirations for enhancements. Booker has recently pointed
out the connections with GA recombination theory to the more general
theory of population genetics recombination distributions. Muhlenbein
has concentrated on EAs that are modeled after breeding practices. In
the EP community, Atmar highlights some errors common to evolution-
ary theory and the EA community. Thus in this chapter, a brief overview
of the field of evolutionary computation was provided by describing the
different classes of evolutionary algorithms which have served to define
and shape the field. By highlighting their similarities and differences, we
have identified a number of important issues that suggest directions for
future research.
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Review Questions

1. Briefly explain the basic template for an evolutionary computation
algorithm.

2. Mention the major parameters in which EC methods differ?

3. Define Gene, Allele, Genotype and Phenotype.

4. What are phylogenetic problems? Explain with an illustration.

5. Mention the three essential ingredients for an evolutionary process.

6. Write a brief note on Darwinian Evolution.

7. Explain natural selection.

8. What are the five key observations and inferences of Darwin’s the-
ory of evolution?

9. State the paradigms of EC.

10. Explain the algorithm of GA, GP, ES, and EP.

11. What are the components of EC? Explain them in detail.

12. Explain roulette-wheel selection with an example.

13. What are the major differences between truncation and tourna-
ment selection?

14. Explain the different types of recombination with suitable exam-
ples.

15. What is the difference between shuffle crossover and heuristic
crossover?

16. Mention the different types of mutation.

17. Define Flip Bit, Boundary, Non-Uniform, Uniform, and Gaussian
type of mutation operators.

18. Differentiate Local and Global reinsertion.

19. Differentiate EPs and GAs.

20. Explain the steps involved in using an Evolutionary Programming
with the aid of a flowchart.
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21. Briefly explain mutation and recombination in ES.

22. What is the convergence criteria in an ES search?

23. Differentiate EPs and ESs.

24. Mention a few advantages and disadvantages of EC.
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Chapter 12

Evolutionary Algorithms
Implemented Using MATLAB

Solved MATLAB programs are given in this chapter to illustrate the
implementation of Evolutionary Computation in problems such as op-
timization, proportional-derivative controller, multiobjective optimiza-
tion, and minimization of functions.

12.1 Illustration 1: Differential Evolution Optimizer

%***********************************************************
% Script file for the initialization and run of the differential
% evolution optimizer
%***********************************************************

% F VTR "Value To Reach" (stop when ofunc <F VTR)

F VTR = -10;

% I D number of parameters of the objective

function

I D = 2;

% FVr minbound,FVr maxbound vector of lower

and bounds of initial population

% the algorithm seems to work especially

well if [FVr minbound,FVr maxbound]

% covers the region where the global minimum is

expected

%*** note: these are no bound constraints!! ***
FVr minbound = -3*ones(1,I D);

FVr maxbound = 3*ones(1,I D);

I bnd constr = 0; % 1: use bounds as bound

% constraints, 0: no bound constraints

491
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% I NP number of population members

I NP = 15; % pretty high number -

needed for demo purposes only

% I itermax maximum number of iterations(generations)

I itermax = 50;

% F weight DE-stepsize F weight ex [0, 2]

F weight = 0.85;

% F CR crossover probabililty constant ex [0, 1]

F CR = 1;

% I strategy 1 - ->DE/rand/1:
% the classical version of DE.
% 2 - ->DE/local-to-best/1:
% a version which has been used by quite a number
% of scientists. Attempts a balance between robustness
% and fast convergence.
% 3 - ->DE/best/1 with jitter:
% taylored for small population sizes and fast convergence.
% Dimensionality should not be too high.
% 4 - ->DE/rand/1 with per-vector-dither:
% Classical DE with dither to become even more robust.
% 5 - ->DE/rand/1 with per-generation-dither:
% Classical DE with dither to become even more robust.
% Choosing F weight = 0.3 is a good start here.
% 6 - ->DE/rand/1 either-or-algorithm:
% Alternates between differential mutation and three-point-
% recombination.

I strategy = 3

% I refresh intermediate output will be produced after

% "I refresh" iterations. No intermediate

% output will be produced if I refresh is <1
I refresh = 1;

% I plotting Will use plotting if set to 1. Will

skip plotting otherwise.

I plotting = 1;

%--Problem dependent constant values for plotting--
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if (I plotting == 1)

FVc xx = [-3:0.25:3]’;

FVc yy = [-3:0.25:3]’;

[FVr x,FM y]=meshgrid(FVc xx’,FVc yy’) ;

FM meshd = peaks(FVr x,FM y);

S struct.FVc xx = FVc xx;

S struct.FVc yy = FVc yy;

S struct.FM meshd = FM meshd;

end

S struct.I NP = I NP;

S struct.F weight = F weight;

S struct.F CR = F CR;

S struct.I D = I D;

S struct.FVr minbound = FVr minbound;

S struct.FVr maxbound = FVr maxbound;

S struct.I bnd constr = I bnd constr;

S struct.I itermax = I itermax;

S struct.F VTR = F VTR;

S struct.I strategy = I strategy;

S struct.I refresh = I refresh;

S struct.I plotting = I plotting;

%***********************************************************
% Start of optimization

%***********************************************************

[FVr x,S y,I nf] = deopt(’objfun’,S struct)

Subfunctions Used

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Minimization of a user-supplied function with respect

to x(1:I D),

% using the differential evolution (DE) algorithm.

% DE works best if [FVr minbound,FVr maxbound] covers

the region where the

% global minimum is expected. DE is also somewhat

sensitive to

% the choice of the stepsize F weight. A good initial

guess is to

% choose F weight from interval [0.5, 1], e.g. 0.8.

F CR, the crossover
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% probability constant from interval [0, 1] helps to

maintain

% the diversity of the population but should be close to

1 for most.

% practical cases.Only separable problems do better with

CR close to 0

% If the parameters are correlated, high values of F CR

work better.

% The reverse is true for no correlation.

% The number of population members I NP is also not very

critical. A

% good initial guess is 10*I D. Depending on the

difficulty of the

% problem I NP can be lower than 10*I D or must be higher

than

% 10*I D to achieve convergence.

%

% deopt is a vectorized variant of DE which, however,

has a

% property which differs from the original version of DE:

% The random selection of vectors is performed by

shuffling the

% population array. Hence a certain vector can’t be

chosen twice

% in the same term of the perturbation expression.

% Due to the vectorized expressions deopt executes

fairly fast

% in MATLAB’s interpreter environment.

%

% Parameters: fname (I) String naming a function f(x,y)

to minimize.

% S struct (I) Problem data vector (must remain

fixed during the

% minimization ).

I NP = S struct.I NP;

F weight = S struct.F weight;

F CR = S struct.F CR;

I D = S struct.I D;

FVr minbound = S struct.FVr minbound;

FVr maxbound = S struct.FVr maxbound;

I bnd constr = S struct.I bnd constr;

I itermax = S struct.I itermax;
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F VTR = S struct.F VTR;

I strategy = S struct.I strategy;

I refresh = S struct.I refresh;

I plotting = S struct.I plotting;

% - - - - - Check input variables - - - - - - - - -

if (I NP <5)
I NP=5;

fprintf(1,’ I NP increased to minimal value 5\n’);
end if ((F CR <0) | (F CR >1))

F CR=0.5;

fprintf(1,’F CR should be from interval [0,1];

set to default value 0.5\n’);
end if (I itermax <= 0)

I itermax = 200;

fprintf(1,’I itermax should be >0; set to default

value 200\n’);
end

I refresh = floor(I refresh);

% - - - - - Check input variables - - - - - - - - -

FM pop = zeros(I NP,I D); % initialize FM pop to gain

speed

% - - FM pop is a matrix of size I NPx(I D+1).It will

be initialized - - -

% - - - with random values between the min and max

values of the - - -

% - - - - - parameters - - - - - - - - - - - - - - -

fork=1:I NP

FM pop(k,:) = FVr minbound + rand(1,I D).* (FVr

maxbound - FVr minbound);

end

FM popold = zeros (size(FM pop)); % toggle

population

FVr bestmem = zeros(1,I D); % best population member

ever

FVr bestmemit = zeros (1,I D); % best population

member in iteration

I nfeval = 0; % number of function evaluations
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% ---Evaluate the best member after initialization----

I best index = 1; % start with first

% population member

S val(1) = feval(fname,FM pop(I best index,:),

S struct);

S bestval = S val(1); % best objective

% function value so far

I nfeval = I nfeval + 1;

for k=2:I NP % check the remaining

% members

S val(k) = feval(fname,FM pop(k,:),S struct);

I nfeval = I nfeval + 1;

if (left win (S val(k),S bestval) == 1)

I best index = k; % save its

% location

S bestval = S val(k);

end

end

FVr bestmemit = FM pop(I best index,:); % best

% member of current iteration

S bestvalit = S bestval; % best

% value of current iteration

FVr bestmem = FVr bestmemit; % best

% member ever

% ----- DE-Minimization ----------------------

% -- FM popold is the population which has to

compete. It is -----

% ----- static through one iteration. FM pop

is the newly ------

% ----- emerging population. -----------------

FM pm1 = zeros(I NP,I D); % initialize population

% matrix 1

FM pm2 = zeros(I NP,I D); % initialize population

% matrix 2

FM pm3 = zeros(I NP,I D); % initialize population

% matrix 3

FM pm4 = zeros(I NP,I D); % initialize population

% matrix 4

FM pm5 = zeros(I NP,I D); % initialize population
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% matrix 5

FM bm = zeros(I NP,I D); % initialize FVr

bestmember matrix

FM ui = zeros(I NP,I D); % intermediate population

of perturbed vectors

FM mui = zeros(I NP,I D); % mask for intermediate

population

FM mpo = zeros(I NP,I D); % mask for old population

FVr rot = (0:1:I NP-1); % rotating index array

(size I NP)

FVr rotd = (0:1:I D-1); % rotating index array

(size I D)

FVr rt = zeros(I NP); % another rotating index

array

FVr rtd = zeros(I D); % rotating index array for

exponential crossover

FVr a1 = zeros(I NP); % index array

FVr a2 = zeros(I NP); % index array

FVr a3 = zeros(I NP); % index array

FVr a4 = zeros(I NP); % index array

FVr a5 = zeros(I NP); % index array

FVr ind = zeros(4);

FM meanv = ones(I NP,I D);

I iter = 1;

while ((I iter <I itermax) & (S bestval.FVr oa(1)

>F VTR))

FM popold = FM pop; % save the old

% population

S struct.FM pop = FM pop;

S struct.FVr bestmem = FVr bestmem;

FVr ind = randperm(4); % index

% pointer array

FVr a1 = randperm(I NP); % shuffle

% locations of vectors

FVr rt = rem(FVr rot+FVr ind(1),I NP); % rotate

% indices by ind(1) positions

FVr a2 = FVr a1(FVr rt+1); % rotate vector

locations

FVr rt = rem(FVr rot+FVr ind(2),I NP);
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FVr a3 = FVr a2(FVr rt+1);

FVr rt = rem(FVr rot+FVr ind(3),I NP);

FVr a4 = FVr a3(FVr rt+1);

FVr rt = rem(FVr rot+FVr ind(4),I NP);

FVr a5 = FVr a4(FVr rt+1);

FM pm1 = FM popold(FVr a1,:); % shuffled

% population 1

FM pm2 = FM popold(FVr a2,:); % shuffled

% population 2

FM pm3 = FM popold(FVr a3,:); % shuffled

% population 3

FM pm4 = FM popold(FVr a4,:); % shuffled

% population 4

FM pm5 = FM popold(FVr a5,:); % shuffled

% population 5

for k=1:I NP % population filled with

% the best member

FM bm(k,:) = FVr bestmemit; % of the last

% iteration

end

FM mui = rand(I NP,I D) <F CR; % all random

<numbers F CR are 1, 0 otherwise

% ---- Insert this if you want exponential

crossover.--------

% FM mui = sort(FM mui’); % transpose, collect

1’s in each column

% for k = 1:I NP

% n = floor(rand*I D);

% if (n >0)
% FVr rtd = rem(FVr rotd+n,I D);

% FM mui(:,k) = FM mui(FVr rtd+1,k); % rotate

column k by n

% end

% end

% FM mui = FM mui’; % transpose back

% ---- End: exponential crossover ------------

FM mpo = FM mui <0.5; % inverse mask to FM mui
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if (I strategy == 1) % DE/rand/1

FM ui = FM pm3 + F weight*(FM pm1 - FM pm2); % dif

% -derential variation

FM ui = FM popold.*FM mpo + FM ui.*FM mui;% crossover

% FM origin = FM pm3;

elseif (I strategy == 2) % DE/local-to-best/1

% FM ui = FM popold + F weight*(FM bm-FM popold)

% +F weight*(FM pm1 - FM pm2);

FM ui = FM popold.*FM mpo + FM ui.*FM mui;

FM origin = FM popold;

elseif (I strategy == 3) % DE/best/1 with jitter

FM ui = FM bm + (FM pm1 - FM pm2).*((1-0.9999)*
rand (I NP,I D)+ F weight);

FM ui = FM popold.*FM mpo + FM ui.*FM mui;

FM origin = FM bm;

elseif(I strategy == 4) % DE/rand/1 with per-

vector-dither

f1 = ((1-F weight)*rand(I NP,1)+F weight);

for k=1:I D

FM pm5(:,k)=f1;

end

FM ui = FM pm3 + (FM pm1 - FM pm2).*FM pm5;

% differential variation

FM origin = FM pm3;

FM ui = FM popold.*FM mpo + FM ui.*FM mui;

% crossover

elseif (I strategy == 5) % DE/rand/1 with

% per-vector-dither

f1 = ((1-F weight)*rand+F weight);

FM ui = FM pm3 + (FM pm1 - FM pm2)*f1;% dif-

ferential variation

FM origin = FM pm3;

FM ui = FM popold.*FM mpo + FM ui.*FM mui;

% crossover

else % either-or-algorithm

if (rand <0.5); % Pmu = 0.5

FM ui = FM pm3 + F weight*(FM pm1 - FM pm2);

% differential variation

FM origin = FM pm3;

else % use F-K-Rule: K = 0.5(F+1)

FM ui = FM pm3 + 0.5*(F weight+1.0)*
(FM pm1 + FM pm2 - 2*FM pm3);
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end

FM ui = FM popold.*FM mpo + FM ui.*FM mui;

% crossover

end

% ----- Optional parent+child selection --------

% -------Select which vectors are allowed to enter

the new population---------

for k=1:I NP

% ===== Only use this if boundary constraints

are needed =====

if (I bnd constr == 1)

for j=1:I D %----boundary constraints via

bounce back----

if (FM ui(k,j) >FVr maxbound(j))

FM ui(k,j) = FVr maxbound(j) + rand*
(FM origin(k,j) FVr maxbound(j));

end

if (FM ui(k,j) <FVr minbound(j))

FM ui(k,j) = FVr minbound(j) + rand*
(FM origin(k,j) FVr minbound(j));

end

end

end

%=========== End boundary constraints ========

S tempval = feval(fname,FM ui(k,:),S struct);% check

cost of competitor

I nfeval = I nfeval + 1;

if (left win(S tempval,S val(k)) == 1)

FM pop(k,:) = FM ui(k,:);% replace old

vector with new one (for new iteration)

S val(k) = S tempval; % save value

in "cost array"

% --------we update S bestval only in case

of success to save time -------

if (left win(S tempval,S bestval) == 1)

S bestval = S tempval; % new best value

FVr bestmem = FM ui(k,:); % new best parameter

vector ever

end

end
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end % for k = 1:NP

FVr bestmemit = FVr bestmem; % freeze the best

member of this iteration for the coming iteration.

% This is needed for some of the strategies.

% ---- Output section ----------------------

if (I refresh >0)
if ((rem(I iter,I refresh) == 0) | I iter == 1)

fprintf(1,’Iteration: % d, Best:

% f, F weight: % f, F CR: % f, I NP: % d \n’,
I iter,S bestval.FVr oa(1),F weight,F CR,I NP);

% var(FM pop)

format long e;

for n=1:I D

fprintf(1,’best(% d) = % g \n’,n,FVr
bestmem(n));

end

if (I plotting == 1)

PlotIt(FVr bestmem,I iter,S struct);

end

end

end

I iter = I iter + 1;

end %---end while ((I iter <I itermax) ...

Observations

Crossover Probability F CR = 1.0
Differential evolution step size F weight = 0.850000
Number of population members I NP = 15

From Table 12.1, it can be concluded that the Mean squared error is
constant from iteration 25 onwards and converges at 49th iteration. The
vector distribution values are found to be clustered at the center of the
four quadrants as shown in Figure 12.1.
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(a)                                                                             (b) 

(c) (d)

(d) (f)

FIGURE 12.1: Differential Evolution Output (a) after 4 Iterations,
(b) after 15 Iterations, (c) after 25 Iterations, (d) after 35 Iterations, (e)
after 45 Iterations, (f) after 49 Iterations

12.2 Illustration 2: Design of a Proportional-
Derivative Controller Using Evolutionary Al-
gorithm for Tanker Ship Heading Regulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Stochastic Optimization for Design of a Proportional-Derivative
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TABLE 12.1: MSE and Vector Values for Different Iterations

Best Fit Value New Best parameter
Iteration of MSE vector (best(1),best(2))

4 -2.724569 best(1) = -1.56597 best(2) = 0.247177
15 -6.550189 best(1) = 0.236808 best(2) = -1.62016
25 -6.551131 best(1) = 0.22782 best(2) = -1.62551
35 -6.551131 best(1) = 0.228336 best(2) = -1.62551
45 -6.551131 best(1) = 0.228277 best(2) = -1.62554
49 -6.551131 best(1) = 0.228274 best(2) = -1.62555

% Controller for Tanker Ship Heading Regulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear % Clear all variables in memory

% Initialize ship parameters

% (can test two conditions, "ballast" or "full"):

ell=350; % Length of the ship (in meters)

u=5; % Nominal speed (in meters/sec)

abar=1; % Parameters for nonlinearity

bbar=1;

% Define the reference model (we use a first order

transfer function

% k r/(s+a r)):

a r=1/150;

k r=1/150;

% Number of evolution steps

Nevsteps=40;

% Size of population

S=4;

% Prop and derivative gains

% Kp=-1.5; Some reasonable size gains - found manually

% Kd=-250;

Kpmin=-5;

Kpmax=0; % Program below assumes this
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Kdmin=-500;

Kdmax=-0; % Program below assumes this

KpKd=0*ones(2,S,Nevsteps);

for ss=1:S

KpKd(1,ss,1)=Kpmin*rand; % Generates a random

proportional gain in range

KpKd(2,ss,1)=Kdmin*rand; % Generates a random

proportional gain in range

end

% Store performance measure for evaluating closed

-loop performance

Jcl=0*ones(S,Nevsteps); % Allocate memory

% Define scale parameters for performance measure

w1=1;

w2=0.01;

% Set parameters that determine size of cloud of

design points about best one

beta1=0.5;

beta2=50;

% Set the probability that a mutation will occur

(only one can mutate per % generation as is)

pm=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start evolutionary design loop

for k=1:Nevsteps+1

% Loop for evolution (note that add one

% simply to show the best controller up to

% the last one and so that 0 in the plots

% corresponds to the initial condition)

for ss=1:S

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulate the controller regulating the ship heading
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% Next, we initialize the simulation:

t=0; % Reset time to zero

index=1; % This is time’s index (not time, its

index).

tstop=1200; % Stopping time for the simulation (in

seconds)

step=1; % - normally 20000 Integration step

size

T=10; % The controller is implemented in

% discrete time and this is the

sampling

% time for the controller.

% Note that the integration step size

and

% the sampling time are not the same.

% In this way we seek to simulate

% the continuous time system via the

Runge-

% Kutta method and the discrete time

% controller as if it were

% implemented by a digital computer.

% Hence, we sample the plant output

every

% T seconds and at that time output

a new

% value of the controller output.

counter=10; % This counter will be used to count

the

% number of integration steps that

have been

% taken in the current sampling

interval.

% Set it to 10 to begin so that it

will

% compute a controller output at the

first

% step. For our example, when 10

integration

% steps have been taken we will then

we will

% sample the ship heading and the
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reference

% heading and compute a new output

for the

% controller.

eold=0; % Initialize the past value of the error

(for use

% in computing the change of the error, c).

% Notice

% that this is somewhat of an arbitrary

% choice since

% there is no last time step. The same

% problem is

% encountered in implementation.

cold=0; % Need this to initialize phiold below

psi r old=0; % Initialize the reference trajectory

ymold=0; % Initial condition for the first order

% reference model

x=[0;0;0]; % First, set the state to be a vector

x(1)=0; % Set the initial heading to be zero

x(2)=0; % Set the initial heading rate to be

% zero.

% We would also like to set x(3)

% initially

% but this must be done after we have

% computed the output of the

% controller.

% In this case, bychoosing the

% reference

% trajectory to be zero at the

% beginning

% and the other initial conditions

% as they are, and the controller as

% designed,we will know that the

% output

% of the controller will start out

% at zero

% so we could have set x(3)=0 here.

% To keep things more general, however,

% we set the intial condition

% immediately

% after we compute the first
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% controller

% output in the loop below.

% Next, we start the simulation of the system.

% This is

% the main loop for the simulation of the control

% system.

psi r=0*ones(1,tstop+1);

psi=0*ones(1,tstop+1);

e=0*ones(1,tstop+1);

c=0*ones(1,tstop+1);

s=0*ones(1,tstop+1);

w=0*ones(1,tstop+1);

delta=0*ones(1,tstop+1);

ym=0*ones(1,tstop+1);

while t <= tstop

% First, we define the reference input psi r

%(desired heading).

if t>=0, psi r(index)=0; end

% Request heading of 0 deg

if t>=100, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=1500, psi r(index)=0; end

% Request heading of 0 deg

if t>=3000, psi r(index)=45*(pi/180); end

% Request heading of -45 deg

if t>=4500, psi r(index)=0; end

% Request heading of 0 deg

if t>=6000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=7500, psi r(index)=0; end

% Request heading of 0 deg

if t>=9000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=10500, psi r(index)=0; end

% Request heading of 0 deg

if t>=12000, psi r(index)=45*(pi/180); end

% Request heading of -45 deg

if t>=13500, psi r(index)=0; end
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% Request heading of 0 deg

if t>=15000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=16500, psi r(index)=0; end

% Request heading of 0 deg

if t>=18000, psi r(index)=45*(pi/180); end

Request heading of 45 deg

if t>=19500, psi r(index)=0; end

% Request heading of 0 deg

% Next, suppose that there is sensor noise for the

% heading sensor with that on [- 0.01,+0.01] deg.

% is additive, with a uniform distribution if flag==0,

% s(index)=0.01*(pi/180)*(2*rand-1); else s(index)=0;

% This allows us to remove the noise.

% end

psi(index)=x(1)+s(index); % Heading of the ship

(possibly with sensor noise).

if counter == 10, % When the counter reaches 10 then

execute the controller

counter=0; % First, reset the counter

% Reference model calculations:

% The reference model is part of the controller

% and to simulate it we take the discrete

% equivalent of the reference model to compute

% psi m from psi r

%

% For the reference model we use a first order

% transfer function k r/(s+a r) but we use the

% bilinear transformation where we replace s

% by (2/step)(z-1)/(z+1), then find the z-domain

% representation of the reference model,

% then convert this to a difference equation:

% ym(index)=(1/(2+a r*T))*((2-a r*T)*ymold+...

k r*T*(psi r(index)+psi r old));

ymold=ym(index);

psi r old=psi r(index);
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% This saves the past value of the ym and psi r

% so that we can use it the next time around the loop

% Controller calculations:

e(index)=psi r(index)-psi(index); % Computes error

(first layer of perceptron)

c(index)=(e(index)-eold)/T; % Sets the value of c

eold=e(index);% Save the past value of e for use in

% the above

% computation the next time around

% the loop

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% A proportional-derivative controller:

delta(index)=KpKd(1,ss,k)*e(index)+KpKd(2,ss,k)*c

(index);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

else % This goes with the "if" statement to check if the

% counter=10 so the next lines up to the next "end"

% statement are executed whenever counter is not

% equal to 10

% Now, even though we do not compute the controller at

% each time instant, we do want to save the data at its

% inputs and output at each time instant for the sake of

% plotting it. Hence, we need to compute these here

% (note that we simply hold the values constant):

e(index)=e(index-1);

c(index)=c(index-1);

delta(index)=delta(index-1);

ym(index)=ym(index-1);

end % This is the end statement for the "if

% counter=10"

% statement
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% Next, the Runge-Kutta equations are used to find

% the next state. Clearly, it would be better to

% use a Matlab "function" for F (but here we do

% not, so we can have only one program).

time(index)=t;

% First, we define a wind disturbance against the

% body of the ship that has the effect of pressing

% water against the rudder

% if flag==0, w(index)=0.5*(pi/180)*sin(2*pi*0.001*t);

% This is an additive sine disturbance to

% the rudder input. It is of amplitude of

% 0.5 deg. and its period is 1000sec.

% delta(index)=delta(index)+w(index);

% end

% Next, implement the nonlinearity where the rudder

% angle is saturated at +-80 degrees

if delta(index) >= 80*(pi/180), delta(index)=80*

(pi/180); end

if delta(index) <= -80*(pi/180), delta(index)=-80*

(pi/180); end

% The next line is used in place of the line

% following it to change the speed of the ship

% if flag==0,

%% if t>=1000000,

%% if t>=9000, % This switches the ship

speed (unrealistically fast)

% u=3; % A lower speed

% else

u=5;

% end

% Next, we change the parameters of the ship to tanker

% to reflect changing loading conditions (note that we

% simulate as if the ship is loaded while moving,but we

% only change the parameters while the heading is zero

% so that it is then similar to re-running the
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% simulation, i.e., starting the tanker operation at

% different times after loading/unloading has occurred).

% The next line is used in place of the line following

% it to keep "ballast" conditions throughout the

% simulation

if flag==0,

% t>=1000000,

% if t>=0, % This switches the parameters,

% possibly in the middle of the

% simulation

K 0=0.83; % These are the parameters under

% "full" conditions

tau 10=-2.88;

tau 20=0.38;

tau 30=1.07;

else

K 0=5.88; % These are the parameters under

% "ballast" conditions

tau 10=-16.91;

tau 20=0.45;

tau 30=1.43;

end

% The following parameters are used in the definition of

% the tanker model:

K=K 0*(u/ell);

tau 1=tau 10*(ell/u);

tau 2=tau 20*(ell/u);

tau 3=tau 30*(ell/u);

% Next, comes the plant:

% Now, for the first step, we set the initial condition

% for the third state x(3).

if t==0, x(3)=-(K*tau 3/(tau 1*tau 2))*delta(index); end

% Next, we use the formulas to implement the Runge-

% Kutta method (note that here only an approximation
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% to the method is implemented where we do not compute

% the function at multiple points in the integration

% step size).

F=[ x(2) ;

x(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(x(3)+ (K*tau 3/

(tau 1*tau 2))*delta(index))-

...(1/(tau 1*tau 2))*(abar*x(2)ˆ3 + bbar*x(2)) +

(K/(tau 1*tau 2))*delta(index) ];

k1=step*F;

xnew=x+k1/2;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)+

(K*tau 3/(tau 1*tau 2))*delta(index))-

_..(1/(tau 1*tau 2))*(abar*xnew(2)ˆ3 + bbar*xnew(2))

+ (K/(tau 1*tau 2))*delta(index) ];

k2=step*F;

xnew=x+k2/2;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)+

(K*tau 3/(tau 1*tau 2))*delta(index))-

... (1/(tau 1*tau 2))*(abar*xnew(2)ˆ3 + bbar*xnew(2))

+ (K/(tau 1*tau 2))*delta(index) ];

k3=step*F;

xnew=x+k3;

F=[ xnew(2) ;

xnew(3)+ (K*tau 3/(tau 1*tau 2))*delta(index) ;

-((1/tau 1)+(1/tau 2))*(xnew(3)+

(K*tau 3/(tau 1*tau 2))*delta(index))-...

(1/(tau 1*tau 2))*(abar*xnew(2)ˆ3 + bbar*xnew(2))

+ (K/(tau 1*tau 2))*delta(index) ];

k4=step*F;

x=x+(1/6)*(k1+2*k2+2*k3+k4); % Calculated next state
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t=t+step; % Increments time

index=index+1; % Increments the indexing

% term so that index=1

% corresponds to time t=0.

counter=counter+1;% Indicates that we computed

% one more integration step

end % This end statement goes with the first "while"

% statement

% in the program so when this is complete the

% simulation is done.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute how well the controller did in terms of

% deviation

% from the reference model and the control energy

Jcl(ss,k)=w1*(psi-ym)*(psi-ym)’+w2*delta*delta’;

end % End evaluation of each controller in the population

[Jbest(k),bestone(k)]=min(Jcl(:,k)); % Store the best

controller for plotting

Kpbest(k)=KpKd(1,bestone(k),k);

Kdbest(k)=KpKd(2,bestone(k),k);

% Generate next generation of gains:

KpKd(:,bestone(k),k+1)=KpKd(:,bestone(k),k);

% Use elitism - keep the best one

% Create a cloud of points around the best one

for ss=1:S

if ss ˜= bestone(k)

KpKd(:,ss,k+1)=KpKd(:,bestone(k),k+1)+

[beta1*randn; beta2*randn];

% Perturb random

% points about the best one

if KpKd(1,ss,k+1)<Kpmin,KpKd(1,ss,k+1)=Kpmin; end

% Fix gains if perturbed out of range

if KpKd(1,ss,k+1)>Kpmax, KpKd(1,ss,k+1)=Kpmax; end

if KpKd(2,ss,k+1)<Kdmin, KpKd(2,ss,k+1)=Kdmin; end
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if KpKd(2,ss,k+1)>Kdmax, KpKd(2,ss,k+1)=Kdmax; end

end

end

% Next place a mutant, do not mutate the best one

if pm>rand, % Replace either the first or last

% member, provided not the best one

if bestone(k) ˜= 1

KpKd(1,1,k+1)=Kpmin*rand; % Generates

% a random proportional gain in range

KpKd(2,1,k+1)=Kdmin*rand; % Generates

% a random derivative gain in range

else

% So, the bestone is the first one so

% replace the last

KpKd(1,S,k+1)=Kpmin*rand;

KpKd(2,S,k+1)=Kdmin*rand;

end

end

end % End evolutionary design loop (iterate in k)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Next, we provide plots of the input and output

% of the ship along with the reference heading

% that we want to track for the last best

% design.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Take easy approach of simply choosing the best

% gains from the last step of the evolutionary process

% and simulating the control system for those to

% show the final performance

flag=0; % Test under off-nominal conditions

% flag=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulate the controller regulating the ship heading

% Next, we initialize the simulation:
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t=0; % Reset time to zero

index=1; % This is time’s index (not time,

% its index).

tstop=1200; % Stopping time for the simulation

(in seconds)- normally 20000

step=1; % Integration step size

T=10; % The controller is implemented in

% discrete time and this is the

% sampling

% ime for the controller. Note

% that the

% integration step size and the

% sampling

% time are not the same. In this

% way we

% seek to simulate the continuous

% time

% system via the Runge-Kutta

% method and

% the discrete time controller as

% if it

% were implemented by a digital

% computer.

% Hence, we sample the plant output

% every

% T seconds and at that time output

% a new

% value of the controller output.

counter=10; % This counter will be used to

% count the

% number of integration steps

% that have

% been taken in the current

% sampling

% interval. Set it to 10 to

% begin so

% that it will compute a

% controller

% output at the first step.

% For our

% example, when 10 integration

% steps

% have been taken we will then we
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% will

% sample the ship heading and

% the

% reference heading and compute

% a new

% output for the controller.

eold=0; % Initialize the past value of

% the error

% (for use in computing the change of

% the error,

% c). Notice that this is somewhat

% of an arbitrary

% choice since there is no last time

% step.

% The same

% problem is encountered in

% implementation.

cold=0; % Need this to initialize phiold below

psi r old=0; % Initialize the reference trajectory

ymold=0; % Initial condition for the first

% order reference model

x=[0;0;0]; % First, set the state to be a vector

x(1)=0; % Set the initial heading to be zero

x(2)=0; % Set the initial heading rate to

% be zero.

% We would also like to set x(3)

% initially

% but this must be done after we have

% computed

% the output of the controller. In

% this case, by

% choosing the reference trajectory

% to be

% zero at the beginning and the other

% initial

% conditions as they are, and the

% controller as

% designed, we will know that the

% output of the

% controller will start out at zero

% so we could
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% have set x(3)=0 here. To keep

% things more

% general, however, we set the intial

% condition

% immediately after we compute the

% first

% controller output in the loop below.

% Next, we start the simulation of the system.

% This

% is the main loop for the simulation of the

% control system.

psi r=0*ones(1,tstop+1);

psi=0*ones(1,tstop+1);

e=0*ones(1,tstop+1);

c=0*ones(1,tstop+1);

s=0*ones(1,tstop+1);

w=0*ones(1,tstop+1);

delta=0*ones(1,tstop+1);

ym=0*ones(1,tstop+1);

while t <= tstop

% First, we define the reference input psi r

%(desired heading).

if t>=0, psi r(index)=0; end

% Request heading of 0 deg

if t>=100, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=1500, psi r(index)=0; end

% Request heading of 0 deg

if t>=3000, psi r(index)=45*(pi/180); end

% Request heading of -45 deg

if t>=4500, psi r(index)=0; end

% Request heading of 0 deg

if t>=6000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=7500, psi r(index)=0; end

% Request heading of 0 deg

if t>=9000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg
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if t>=10500, psi r(index)=0; end

% Request heading of 0 deg

if t>=12000, psi r(index)=45*(pi/180); end

% Request heading of -45 deg

if t>=13500, psi r(index)=0; end

% Request heading of 0 deg

if t>=15000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=16500, psi r(index)=0; end

% Request heading of 0 deg

if t>=18000, psi r(index)=45*(pi/180); end

% Request heading of 45 deg

if t>=19500, psi r(index)=0; end

% Request heading of 0 deg

% Next, suppose that there is sensor noise for

% the heading

% sensor with that is additive, with a uniform

% distribution

% on [- 0.01,+0.01] deg.

% if flag==0, s(index)=0.01*(pi/180)*(2*rand-1);

else

s(index)=0; % This allows us to remove the noise.

% end

psi(index)=x(1)+s(index);% Heading of the ship

% (possibly with sensor noise).

if counter == 10, % When the counter

% reaches 10

% then execute the controller

counter=0; % First, reset the counter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Next, we provide plots of data from the simulation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% First, we convert from rad. to degrees

psi r=psi r*(180/pi);

psi=psi*(180/pi);

delta=delta*(180/pi);

e=e*(180/pi);

c=c*(180/pi);
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ym=ym*(180/pi);

% Next, we provide plots

figure(1)

clf

subplot(211)

plot(time,psi,’k-’,time,ym,’k--’,time,psi r,’k-.’)

zoom

grid on

title(’Ship heading (solid) and desired ship heading

(dashed), deg.’)

xlabel(’Time in sec’);

ylabel(’Heading in deg’);

subplot(212)

plot(time,delta,’k-’)

zoom

grid on

title(’Rudder angle, output of controller (input to the

ship), deg.’)

xlabel(’Time in sec’);

ylabel(’Rudder angle in deg’);

figure(2)

clf

plot(time,psi-ym,’k-’)

zoom

grid on

title(’Ship heading error between ship heading and

reference model heading, deg.’)

xlabel(’Time in sec’);

ylabel(’Ship Heading Error in deg’);

figure(3)

clf

plot(0:Nevsteps,Jbest,’k-’)

zoom

grid on

title(’Performance measure J c l for best controller’)

xlabel(’Generation’);

ylabel(’Closed loop performance ’);

figure(4)
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clf

plot(0:Nevsteps,Kpbest,’k-’)

zoom

grid on

title(’K p gain’);

xlabel(’Generation’);

ylabel(’Gain’);

figure(5)

clf

plot(0:Nevsteps,Kdbest,’k-’)

zoom

grid on

title(’K d gain’); xlabel(’Generation’);

ylabel(’Gain’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End of program %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Observations

The output angle is converted from radians to degrees and the graphs
are plotted. Figure 12.2 shows the ship heading and the rudder angle.
The error between the ship heading and the reference model heading is

FIGURE 12.2: Plots of Ship Heading and Rudder Angle
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FIGURE 12.3: Plot of the Error between Ship Heading and Reference
Model Heading

plotted in Figure 12.3. The closed loop performance measure, propor-
tional gain, and the derivative gain are plotted in Figures 12.4, 12.5 and
12.6 respectively.

FIGURE 12.4: Performance Measure for the Best Controller
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FIGURE 12.5: Proportional Gain

FIGURE 12.6: Derivative Gain
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12.3 Illustration 3: Maximizing the Given
One-Dimensional Function with the Bound-
aries
Using Evolutionary Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Main Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% boundaries

bounds = [-10 10];

% pop size

n = 10;

% number of iterations

numits = 100;

% numer of mutations per it
nummut = 1;

f = @multipeak;

blength = bounds(2)-bounds(1);

% initial population

pop = rand(1,n)* blength + bounds(1);

for it=1:numits

% fitness eval

for i=1:n, fpop(i) = feval(f, pop(i)); end

maxf(it) = max(fpop);

meanf(it) = mean(fpop);

% subtract lowest fitness in order to normalize

m=min(fpop);

fpop=fpop-m;

cpop(1) = fpop(1);

for i=2:n, cpop(i) = cpop(i-1) + fpop(i); end

% SELECTION

total fitness = cpop(n);
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% use roulette selection (-> need pos. fitness!)

for i=1:n

p=rand*total fitness;

% now find first index

j=find(cpop-p>0);

if isempty(j)

j=n;

else

j=j(1);

end

parent(i)=pop(j);

end

% pop, fpop, parent, pause

% REPRODUCTION

% parents 2i-1 and 2i make two new children 2i-1

% and 2i

% crossover

% use arithmetic crossover

for i=1:2:n

r=rand;

pop(i) = r*parent(i) + (1-r)*parent(i+1);

pop(i+1) = (1-r)*parent(i) + r*parent(i+1);

end

% mutation

% use uniform mutation

for i=1:nummut

pop(ceil(rand*n)) = bounds(1) + rand*blength;

end

end

pop

for i=1:n, fpop(i) = feval(f, pop(i)); end

fpop

close all

ezplot(@multipeak,[-10 10])

hold on

[y,xind]=max(fpop);

plot(pop(xind),y,’ro’)

title(’Multipeak at (6.4488,44.3352)’)

xlabel(’Population’)

ylabel(’Variable y’)
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figure, plot(maxf), hold on, plot(meanf,’r-’);

title(’Maximum and Mean of the 1-D function’);

xlabel(’Population’)

ylabel(’Variable y’)

%%%%%%%%%%%%% End of Main %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Subprogram used

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = multipeak(x)

% Demonstration evaluation function

% f(x)=x+10sin(5x)+7cos(4x) + 25

y = x + 10*sin(5*x)+7*cos(4*x) + 25;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Observations

Figure 12.7 shows the multi-peak of the given function which occurs at
(6.4488, 44.3352) and Figure 12.8 shows the maximum and mean value
of the given function.

FIGURE 12.7: Multi-Peak for the Given Function
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FIGURE 12.8: Maximum and Mean of the Given Function

12.4 Illustration 4: Multiobjective Optimization
Using Evolutionary Algorithm (MOEA)

This problem is to find the global optimal space solution for a discon-
tinuous function given by

f1(x) = 1 − e−4x1 sin6(6π x1)

f2(x) = g(x)

(

1 −
(

f1(x)

g(x)

2
))

where g(x) = 1 + 9
(
∑6

i=1
xi

4

)0.25

subject to 0 ≤xi ≤1

% Main program to run the MOEA

%% Initialize the variables

% Declare the variables and initialize

their values

% pop - population

% gen - generations

% pro - problem number

pop = 200;

gen = 1000;

pro = 1;
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switch pro

case 1

% M is the number of objectives.

M = 2;

% V is the number of decision variables.

% In this case it is

% difficult to visualize the decision

% variables space while the

% objective space is just two dimensional.

V = 6;

case 2

M = 3;

V = 12;

end

% Initialize the population

chromosome = initialize variables(pop,pro);

%% Sort the initialized population

% Sort the population using non-domination-sort.

This returns two columns

% for each individual which are the rank and the

crowding distance

% corresponding to their position in the front they

belong.

chromosome = non domination sort mod

%% Start the evolution process

% The following are performed in each generation

% Select the parents

% Perfrom crossover and Mutation operator

% Perform Selection

for i = 1 : gen

% Select the parents

% Parents are selected for reproduction to

generate offspring by

% tournament selection The arguments are

pool - size of the mating pool. It is common to

have this to be half

% the population size.

% tour - Tournament size.

pool = round(pop/2);

tour = 2;

© 2010 by Taylor and Francis Group, LLC



528 Computational Intelligence Paradigms

parent chromosome =

tournament selection(chromosomeP,pool,tour);

% Perform crossover and Mutation operator

% Crossover probability pc = 0.9 and mutation

% probability is pm = 1/n, where n is the number

of decision variables.

% Both real-coded GA and binary-coded GA are

implemented in the original

% algorithm, while in this program only the

real-coded GA is considered.

% The distribution indices for crossover and

mutation operators

% as mu = 20

% and mum = 20 respectively.

mu = 20;

mum = 20;

offspring chromosome =

genetic operator(parent chromosome,pro,mu,mum);

% Intermediate population

% Intermediate population is the combined

population of parents and

% offsprings of the current generation.

% The population size is almost 1 and

% half times the initial population.

[main pop,temp] = size(chromosome);

[offspring pop,temp] = size(offspring chromosome);

intermediate chromosome(main pop + 1 : main pop +

offspring pop,1 : M + V) = ...

offspring chromosome;

% Non-domination-sort of intermediate population

% The intermediate population is sorted again

based on non-domination sort

% before the replacement operator is performed on

the intermediate

% population.

intermediate chromosome = ...

non domination sort mod(intermediate chromosome,pro);

% Perform Selection

% Once the intermediate population is sorted only the

best solution is

% selected based on it rank and crowding distance. Each

front is filled in
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% ascending order until the addition of population size

is reached. The

% last front is included in the population based on the

individuals with

% least crowding distance

chromosome = replace chromosome(intermediate

chromosome,pro,pop;)

if mod(i,10)

fprintf(’% d\n’,i);
end

end

%% Result

% Save the result in ASCII text format.

save solution.txt chromosome -ASCII

%% Visualize

% The following is used to visualize the result for the

given problem.

switch pro case 1

plot(chromosome(:,V + 1),chromosome(:,V +

2),’*’);

xlabel(’f(x 1)’);

ylabel(’f(x 2)’);

case 2

plot3(chromosome(:,V + 1),chromosome(:,V +

2),chromosome(:,V + 3),’*’);

xlabel(’f(x 1)’);

ylabel(’f(x 2)’);

zlabel(’f(x 3)’);

end

%%%%%%%% End of Main Program %%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Subprograms

%%%%%%%%%%%%%%%%%%%%%%%%%

function f = initialize variables(N,problem)
% function f = initialize variables(N,problem)

% N - Population size

% problem - takes integer values 1 and 2 where,

% ’1’ for MOP1

% ’2’ for MOP2
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%

% This function initializes the population with N

% individuals and each

% individual having M decision variables based on

%the selected problem.

% M = 6 for problem MOP1 and M = 12 for problem

MOP2.

% The objective space

% for MOP1 is 2 dimensional while for MOP2 is 3

% dimensional.

% Both the MOP’s has 0 to 1 as its range for all the

% decision variables.

min = 0;

max = 1;

switch problem case 1

M = 6;

K = 8;

case 2

M = 12;

K = 15;

end
for i = 1 : N

% Initialize the decision variables

for j = 1 : M

f(i,j) = rand(1); % i.e f(i,j) = min + (max -

min)*rand(1);

end

% Evaluate the objective function

f(i,M + 1: K) = evaluate objective(f(i,:),problem);

end

%%%%%%%%% End of initialize variables %%%%%%%%%

%% Non-Donimation Sort

% This function sort the current popultion based on

non-domination. All the

% individuals in the first front are given a rank of

1, the second front

% individuals are assigned rank 2 and so on. After

assigning the rank the

% crowding in each front is calculated.
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function f = non domination sort mod(x,problem)

[N,M] = size(x);

switch problem case 1

M = 2;

V = 6;

case 2

M = 3;

V = 12;

end

front = 1;

% There is nothing to this assignment, used only to

manipulate easily in

% MATLAB. F(front).f = [];

individual = [];

for i = 1 : N % Number of individuals that

dominate this individual

% Individuals which this individual dominate

individual(i).p = [];

for j = 1 : N

dom less = 0;

dom equal = 0;

dom more = 0;

for k = 1 : M

if (x(i,V + k) < x(j,V + k))

dom less = dom less + 1;

elseif (x(i,V + k) == x(j,V + k))

dom equal = dom equal + 1;

else

dom more = dom more + 1;

end

if dom less == 0 & dom equal = M
individual(i).n = individual(i).n + 1;

elseif dom more == 0 & dom equal = M

individual(i).p = [individual(i).p j];

end

end

if individual(i).n == 0

x(i,M + V + 1) = 1;

F(front).f = [F(front).f i];

end
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end

% Find the subsequent fronts

while isempty(F(front).f)

Q = [];

for i = 1 : length(F(front).f)

if isempty(individual(F(front).f(i)).p)

for j = 1 : length(individual(F(front).f(i)).p)

individual(individual(F(front).f(i)).p(j)).n =

...

individual(individual(F(front).f(i)).p(j)).n -

1;

if individual(individual(F(front).f(i)).p(j)).n

== 0

x(individual(F(front).f(i)).p(j),M + V + 1)

= ...

front + 1;

Q = [Q individual(F(front).f(i)).p(j)];

end

end

end

end

front = front + 1;

F(front).f = Q;

end [temp,index of fronts] = sort(x(:,M + V + 1));

for i = 1 : length(index of fronts)

sorted based on front(i,:) =

x(index of fronts(i),:);

end

current index = 0;

% Find the crowding distance for each individual in

each front

for front = 1 : (length(F) - 1) objective = [];

distance = 0;

y = [];

previous index = current index + 1;

for i = 1 : length(F(front).f)

y(i,:) = sorted based on front(current index +

i,:);

end

current index = current index + i;

% Sort each individual based on the objective

sorted based on objective = [];
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for i = 1 : M

[sorted based on objective, index of objectives]

= ...

sort(y(:,V + i));

sorted based on objective = [];

for j = 1 : length(index of objectives)

sorted based on objective(j,:) =

y(index of objectives(j),:);

end

f max = ...

sorted based on objective(length(index of objectives),

V + i);

f min = sorted based on objective(1, V + i);

y(index of objectives(length(index of objectives)),M

+ V + 1 + i)... = Inf;

for j = 2 : length(index of objectives) - 1

next obj = sorted based n objective(j + 1,V + i);

previous obj = sorted based on objective(j - 1,V + i);

if (f max - f min == 0)

y(index of objectives(j),M + V + 1 + i) = Inf;

else

y(index of objectives(j),M + V + 1 + i) = ...

(next obj - previous obj)/(f max - f min);

end

end

end

distance = [];

distance(:,1) = zeros(length(F(front).f),1);

for i = 1 : M

distance(:,1) = distance(:,1) + y(:,M + V + 1 + i); end

y(:,M + V + 2) = distance;

y = y(:,1 : M + V + 2);

z(previous index:current index,:) = y;;

end

f = z();

%%%%%%%% End of non domination sort mod %%%%%%%

function f = selection individuals(chromosome,

% pool size,tour size)

% function selection individuals(chromosome

%,pool size,tour size) is the

% selection policy for selecting the individuals

% for the mating pool. The
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% selection is based on tournament selection.

% Argument ’chromosome’ is the

% current generation population from which the

% individuals are selected to

% form a mating pool of size ’pool size’

% after performing tournament

% selection, with size of the tournament being

% ’tour size’. By varying the

% tournament size the selection pressure

% can be adjusted.

[pop,variables] = size(chromosome);

rank = variables - 1;

distance = variables;

for i = 1 : pool size

for j = 1 : tour size

candidate(j) = round(pop*rand(1));

if candidate(j) == 0

candidate(j) = 1; end

if j > 1

while isempty(find(candidate(1 : j - 1) ==

candidate(j)))

candidate(j) = round(pop*rand(1));

if candidate(j) == 0

candidate(j) = 1;

end

end

end

end

for j = 1 : tour size

c obj rank(j) = chromosome(candidate(j),rank);

c obj distance(j) =

chromosome(candidate(j),distance);

end

min candidate = ...

find(c obj rank == min(c obj rank));

if length(min candidate) = 1

max candidate = ...

find(c obj distance(min candidate) ==

max(c obj distance(min candidate)));

if length(max candidate) = 1
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max candidate = max candidate(1);

end

f(i,:) =

chromosome(candidate(min candidate(max candidate)),:);

else

f(i,:) = chromosome(candidate(min candidate(1)),:);

end

%%%%%%%%% End of selection individuals %%%%%%%%%

function f = genetic operator(parent chromosome

,pro,mu,mum);

% This function is utilized to produce offsprings

% from parent chromosomes.

% The genetic operators corssover and mutation which

% are carried out with

% slight modifications from the original design.

% For more information read

% the document enclosed.

[N,M] = size(parent chromosome);

switch pro

case 1

M = 2;

V = 6;

case 2

M = 3;

V = 12;

end

p = 1;

was crossover = 0;

was mutation = 0;

l limit = 0;

u limit = 1;

for i = 1 : N

if rand(1) < 0.9

child 1 = [];

child 2 = [];

parent 1 = round(N*rand(1));

if parent 1 < 1

parent 1 = 1;

end

parent 2 = round(N*rand(1));

if parent 2 < 1

parent 2 = 1;
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end

while

isequal(parent chromosome(parent 1,:),parent chromosome

(parent 2,:))

parent 2 = round(N*rand(1));

if parent 2 < 1

parent 2 = 1;

end

end

parent 1 = parent chromosome(parent 1,:);

parent 2 = parent chromosome(parent 2,:);

for j = 1 : V

% SBX (Simulated Binary Crossover)

% Generate a random number

u(j) = rand(1);

if u(j) <= 0.5

bq(j) = (2*u(j))(̂1/(mu+1));

else

bq(j) = (1/(2*(1 - u(j))))(̂1/(mu+1));
end

child 1(j) = ...

0.5*(((1 + bq(j))*parent 1(j)) + (1 -

bq(j))*parent 2(j));

child 2(j) = ...

0.5*(((1 - bq(j))*parent 1(j)) + (1 +

bq(j))*parent 2(j));

if child 1(j) > u limit child 1(j) = u limit;

elseif child 1(j) < l limit

child 1(j) = l limit;

end

if child 2(j) > u limit

child 2(j) = u limit;

elseif child 2(j) < l limit

child 2(j) = l limit;

end

end

child 1(:,V + 1: M + V) =

evaluate objective(child 1,pro);

child 2(:,V + 1: M + V) =

evaluate objective(child 2,pro);

was crossover = 1;

was mutation = 0;

else

parent 3 = round(N*rand(1));
if parent 3 < 1

parent 3 = 1;
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end

% Make sure that the mutation does not result in

variables out of

% the search space. For both the MOP’s the range

for decision space

% is [0,1]. In case different variables have

different decision

% space each variable can be assigned a range.

child 3 = parent chromosome(parent 3,:);

for j = 1 : V

r(j) = rand(1);

if r(j) < 0.5

delta(j) = (2*r(j))(̂1/(mum+1)) - 1;

else

delta(j) = 1 - (2*(1 - r(j)))(̂1/(mum+1));

end

child 3(j) = child 3(j) + delta(j);

if child 3(j) > u limit

child 3(j) = u limit;
elseif child 3(j) < l limit

child 3(j) = l limit;

end

end

child 3(:,V + 1: M + V) =

evaluate objective(child 3,pro);

was mutation = 1;

was crossover = 0;

end

if was crossover

child(p,:) = child 1;

child(p+1,:) = child 2;

was cossover = 0;

p = p + 2;

elseif was mutation

child(p,:) = child 3(1,1 : M + V);

was mutation = 0;

p = p + 1;

end

end

f = child;

%%%%%%%%%%%%%%%%% End of genetic operator %%%%%%%%%%%%%%%%

function f = replace chromosome(intermediate

% chromosome,pro,pop)

%% replace chromosome(intermediate chromosome,pro,pop)

% This function replaces the chromosomes based

% on rank and crowding
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% distance. Initially until the population size is

% reached each front is

% added one by one until addition of a complete

% front which results in

% exceeding the population size. At this point

% the chromosomes in that

% front is added subsequently to the population

% based on crowding distance.

[N,V] = size(intermediate chromosome);

switch pro

case 1

M = 2;

V = 6;

case 2

M = 3;

V = 12;

end

% Get the index for the population sort based on the rank

[temp,index] = sort(intermediate chromosome(:,M + V + 1));

% Now sort the individuals based on the index

for i = 1 : N

sorted chromosome(i,:) =

intermediate chromosome(index(i),:);

end

% Find the maximum rank in the current population

max rank = max(intermediate chromosome(:,M + V + 1));

% Start adding each front based on rank and crowing

% distance until the

% whole population is filled.

previous index = 0;

for i = 1 : max rank

current index = max(find(sorted chromosome(:,M + V + 1) ==

i));

if current index > pop

remaining = pop - previous index;

temp pop = ...

sorted chromosome(previous index + 1 : current index,

:);
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[temp sort,temp sort index] = ...

sort(temp pop(:, M + V + 2),’descend’);

for j = 1 : remaining

f(previous index + j,:) =

temp pop(temp sort index(j),:);

end

return;

elseif current index < pop

f(previous index + 1 : current index, :) = ...

sorted chromosome(previous index + 1 : current index,

:);

else

f(previous index + 1 : current index, :) = ...

sorted chromosome(previous index + 1 : current index,

:);

return;

end

previous index = current index;

end %%%%%%%%%%%% End of replace chromosome %%%%%%%%%%%%

function f = evaluate objective(x,problem)

% Function to evaluate the objective functions for the

% given input vector

% x. x has the decision variables

switch problem

case 1

f = [];

%% Objective function one

f(1) = 1 - exp(-4*x(1))*(sin(6*pi*x(1)))6̂;

sum = 0;

for i = 2 : 6

sum = sum + x(i)/4;

end

%% Intermediate function

g x = 1 + 9*(sum)(̂0.25);

%% Objective function one

f(2) = g x*(1 - ((f(1))/(g x))2̂);

case 2

f = [];

%% Intermediate function

g x = 0;

for i = 3 : 12

g x = g x + (x(i) - 0.5)2̂;

end

%% Objective function one
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TABLE 12.2: Parameters Used to Optimize the Function

Distribution Distribution
Pool Tour index for index for

Population Generations size size crossover ηc mutation ηm

200 1000 100 2 20 20

f(1) = (1 + g x)*cos(0.5*pi*x(1))*cos(0.5*pi*x(2));

%% Objective function two

f(2) = (1 + g x)*cos(0.5*pi*x(1))*sin(0.5*pi*x(2));

%% Objective function three

f(3) = (1 + g x)*sin(0.5*pi*x(1));

end

%%%%%%%%%% End of evaluate objective %%%%%%%%%%%

Observations

The parameters use to optimize the function are given in Table 12.2.
The set of objective functions resulted in the solution as shown in Figure
12.9.

FIGURE 12.9: Optimal Objective Space Solution
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12.5 Illustration 5: Evolutionary Strategy
for Nonlinear Function Minimization

The function to be minimized is given as a subprogram in this section.
The user may change the function according to the requirements.

% - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% Main program

% - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% - - - - - - - - - - - Initialization - - - - - - - - - -

% User defined input parameters (need to be edited)

% User defined input parameters (need to be edited)

strfitnessfct = ’testfunc’; % name of objective/fitness

% function

N = 10; % number of objective variables/problem dimension

xmean = rand(N,1); % objective variables initial point

sigma = 0.5; % coordinate wise standard deviation

% (step size)

stopfitness = 1e-10; % stop if fitness <stopfitness

% (minimization)

stopeval = 1e3*N2̂; % stop after stopeval number of

% function evaluations

% Strategy parameter setting: Selection

lambda = 4+floor(3*log(N)); % population size,

% offspring number

mu = floor(lambda/2); % number of parents/points

% for recombination

weights = log(mu+1)-log(1:mu)’; % muXone array for

% weighted recombination

% lambda=12; mu=3; weights = ones(mu,1); % uncomment

% for (3 I,12)-ES

weights = weights/sum(weights); % normalize recombination

% weights array

mueff=sum(weights)2̂/sum(weights.2̂); % variance-effective

% size of mu

% Strategy parameter setting: Adaptation

cc = 4/(N+4); % time constant for cumulation for

% covariance matrix

cs = (mueff+2)/(N+mueff+3); % t-const for cumulation

% for sigma control
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mucov = mueff; % size of mu used for calculating

% learning rate ccov

ccov = (1/mucov) * 2/(N+1.4)2̂ + (1-1/mucov) * ...

% learning rate for ((2*mueff-1)/((N+2)2̂+2*mueff));

% covariance matrix

damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs;

% damping for sigma

% usually close to

% former damp == damps/cs

% Initialize dynamic (internal) strategy parameters and

% constants

pc = zeros(N,1); ps = zeros(N,1); % evolution paths

% for C and sigma

B = eye(N,N); % B defines the coordinate system

D = eye(N,N); % diagonal matrix D defines the scaling

C = B*D*(B*D)’; % covariance matrix

chiN=N0̂.5*(1-1/(4*N)+1/(21*N2̂)); % expectation of

% ||N(0,I)|| == norm(randn(N,1))

% - - - - - - - - - Generation Loop - - - - - - - - - -

counteval = 0; % the next 40 lines contain the 20 lines

of interesting code

while counteval < stopeval

% Generate and evaluate lambda offspring

arz = randn(N,lambda); % array of normally distributed

mutation vectors

for k=1:lambda,

arx(:,k) = xmean + sigma * (B*D * arz(:,k)); % add

mutation % Eq. (1)

arfitness(k) = feval(strfitnessfct, arx(:,k)); %

objective function call

counteval = counteval+1;

end

% Sort by fitness and compute weighted mean into xmean

[arfitness, arindex] = sort(arfitness); % minimization

xmean = arx(:,arindex(1:mu))*weights; % recombination,

new mean value

zmean = arz(:,arindex(1:mu))*weights; % ==

sigma-̂1*D-̂1*B’*(xmean-xold)

% Cumulation: Update evolution paths

ps = (1-cs)*ps + sqrt(cs*(2-cs)*mueff) * (B * zmean); %

Eq. (4)
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hsig = norm(ps)/sqrt(1-(1-cs)(̂2*counteval/lambda))/chiN

< 1.4 + 2/(N+1);

pc = (1-cc)*pc ...

+ hsig * sqrt(cc*(2-cc)*mueff) * (B * D * zmean); %

Eq. (2)

% Adapt covariance matrix C

C = (1-ccov) * C ... % regard old matrix % Eq. (3)
+ ccov * (1/mucov) * (pc*pc’ ... % plus rank one update

+ (1-hsig) * cc*(2-cc) * C) ...
+ ccov * (1-1/mucov) ... % plus rank mu update

* (B*D*arz(:,arindex(1:mu))) ...

* diag(weights) * (B*D*rz(:,arindex(1:mu)))’;
% Adapt step size sigma

sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1)); %

Eq. (5)

% Update B and D from C

% This is O(N3̂). When strategy internal CPU-time is

critical, the

% next three lines should be executed only every

(alpha/ccov/N)-th

% iteration, where alpha is e.g. between 0.1 and 10

C=triu(C)+triu(C,1)’; % enforce symmetry

[B,D] = eig(C); % eigen decomposition, B==normalized

eigenvectors

D = diag(sqrt(diag(D))); % D contains standard

deviations now

% Break, if fitness is good enough

if arfitness(1) <= stopfitness

break;

end

disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

end % while, end generation loop

% - - - - - - - - - - Ending Message - - - - - - - -

disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

xmin = arx(:, arindex(1)); % Return best point

% of last generation.

% Notice that xmean is expected to be even

% better.

% - - - - - - - - - - - - - - - - - - - - - - - - - -

% - - - - - - - - - - - - - - - - - - - - - - - - - -

% Test function used in the main program

% - - - - - - - - - - - - - - -

function f=testfunc(x)

N = size(x,1); if N < 2 error(’dimension must

be greater one’); end
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f=1e4.(̂(0:N-1)/(N-1)) * x.2̂;

% - - - - - - - - - - - - - - -

Observations

The number of generations and the corresponding fitness value is
shown in Table 12.3. The best value was reached at the end of 6620
generations.

TABLE 12.3: Fitness Value Corresponding to the Generations

Generations Fitness Generations Fitness

100 25145.3466 3500 3.5216
200 8264.9339 3600 3.2085
300 11418.9724 3700 2.4869
400 6593.6342 3800 1.6749
500 2795.3487 3900 1.2039
600 2623.5998 4000 0.76946
700 1973.3535 4100 0.41446
800 1412.9365 4200 0.18765
900 1090.126 4300 0.13595

1000 799.1704 4400 0.11234
1100 572.8327 4500 0.10385
1200 428.8273 4600 0.093081
1300 289.5838 4700 0.087091
1400 157.6233 4800 0.081874
1500 45.9125 4900 0.073765
1600 45.5945 5000 0.062782
1700 36.5345 5100 0.048267
1800 30.4814 5200 0.034492
1900 26.6116 5300 0.01582
2000 21.8548 5400 0.0036852
2100 18.9982 5500 0.0029413
2200 17.2331 5600 0.00083211
2300 15.0744 5700 0.00013754
2400 12.4608 5800 5.154e-005
2500 9.9533 5900 1.2286e-005
2600 9.3563 6000 5.2099e-006
2700 6.835 6100 1.157e-006
2800 6.0509 6200 1.7217e-007
2900 4.7504 6300 2.835e-008
3000 4.438 6400 1.3613e-008
3100 4.3084 6500 1.6395e-009
3200 4.2513 6600 3.0056e-010
3300 4.0217 6610 3.2443e-010
3400 3.8919 6620 8.7214e-011
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Summary

A set of MATLAB programs were included in this chapter for the
reader to implement and simulate EAs. With the rapid growth of the
field, there is a particularly pressing need to extend existing and develop-
ing new analysis tools which allow us to better understand and evaluate
the emerging varieties of EAs and their applications.

Review Questions

1. Write a MATLAB program to tune a PI controller using Evolu-
tionary Strategy.

2. Minimize the Griewank function

f(x) = sum((x-100).2̂,2)./4000 - prod(cos((x-100)./(sqrt(repmat([1:N],
length (x(:,1),1)))),2)+1 using Evolutionary Algorithm

3. Write a MATLAB code on Stochastic Ranking for Constrained
Evolutionary Optimization for the following fitness function and
its constraints:

% fitness function

f = sum(x(:,1:3),2) ;

% constraints g<=0

g(:,1) = -1+0.0025*(x(:,4)+x(:,6)) ;

g(:,2) = -1+0.0025*(x(:,5)+x(:,7)-x(:,4)) ;

g(:,3) = -1+0.01*(x(:,8)-x(:,5)) ;

g(:,4) =

-x(:,1).*x(:,6)+833.33252*x(:,4)+100*x(:,1)-83333.333

;

g(:,5) =

-x(:,2).*x(:,7)+1250*x(:,5)+x(:,2).*x(:,4)-1250*x(:,4)

;

g(:,6) =

-x(:,3).*x(:,8)+1250000+x(:,3).*x(:,5)-2500*x(:,5) ;

4. Write a MATLAB program to design a Proportional Integral-
Derivative Controller using Evolutionary Algorithm.
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5. Write a MATLAB program to minimize the Rosenbrock function
using Evolutionary Algorithm.
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Chapter 13

MATLAB-Based Genetic
Algorithm

13.1 Introduction

A few researchers and creationists stated that evolution is not use-
ful as a scientific theory since it produces no practical advantages and
that it has no significance to daily life. But with the evidence of biol-
ogy this statement can be claimed false. Various developments in the
natural phenomena through evolution give sound theoretical knowledge
about several practical applications. For instance, the observed devel-
opment of resistance — to insecticides in crop pests, to antibiotics in
bacteria, to chemotherapy in cancer cells, and to anti-retroviral drugs in
viruses such as HIV — these instances are consequences of the laws of
mutation and selection. Having a thorough knowledge of evolution has
lead researchers to design and develop strategies for dealing with these
harmful organisms. The evolutionary postulate of common descent has
aided the development of new medical drugs and techniques by giving
researchers a good idea of which organisms they should experiment on
to obtain results that are most likely to be relevant to humans. Based on
the principle of selective breeding, people were able to create customized
organisms found in nature for their own benefit. The canonical example,
of course, is the many varieties of domesticated dogs, but less well-known
examples include cultivated maize (very different from its wild relatives,
none of which have the familiar “ears” of human-grown corn), goldfish
(like dogs, we have bred varieties that look dramatically different from
the wild type), and dairy cows (with immense udders far larger than
would be required just for nourishing offspring).

A few critics might charge that creationists can work on these things
without recourse to evolution. For instance, creationists often explain the
development of resistance to antibiotic agents in bacteria, or the changes
wrought in domesticated animals by artificial selection, by presuming
that God decided to create organisms in fixed groups, called “kinds”

547
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or baramin. Natural evolution or artificial selection can evolve differ-
ent varieties within the originally created groups such as “dog-kind,” or
“cow-kind,” or “bacteria-kind”.

In the last few decades, the continuing advance of modern technol-
ogy has brought about something new. Evolution is capable of produc-
ing practical benefits in almost every field, and at the same time, the
creationists cannot claim that their explanation fits the facts just as
well. The major field of evolution is computer science, and the bene-
fits come from a programming methodology called genetic algorithms.
In this chapter, a detailed description of genetic algorithm, its opera-
tors and parameters are discussed. Further, the schema theorem and
technical background along with the different types of GA are also elab-
orated in detail. Finally MATLAB codes are given for applications such
as maximization of a given function, traveling sales man problem, and
GA based PID parameter tuning.

13.2 Encoding and Optimization Problems

Generally there are two basic functions of genetic algorithm: problem
encoding and evaluation function, which are problem dependent. For
instance, consider a basic parameter optimization problem where a set
of variables should be optimized to either maximum or to a minimum.
Such kinds of problems can be viewed as a black box with a series of
control dials representing different optimization parameters. The result
of the black box is a value returned by an evaluation function that gives
a measure about the specific combination of parameter settings, which
solves the optimization problem. The goal is to optimize the output by
setting various parameters. In more traditional terms, to minimize or
maximize some function F (X1, X2, ..., XM ).

Generally nonlinear problems are chosen for optimization using genetic
algorithms. Therefore each parameter cannot be treated as an indepen-
dent variable. Usually the combined effects of the parameters must be
considered in order to maximize or minimize the output of the black box.
This interaction between the variables during combination is known as
epistasis among the genetic community. Generally the initial assumption
made is that the variables representing parameters can be represented
by bit strings. This means that the variables are discretized in an a pri-
ori fashion, and that the range of the discretization corresponds to some
power of 2. For instance, with 12 bits per parameter, we obtain a range
with 4096 discrete values.
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For continuous valued parameters discretization is not a specific prob-
lem. The discretization process provides enough resolution to make it
possible to adjust the output with the desired level of precision. It also
assumes that the discretization is in some sense representative of the
underlying function. If some parameter can only take on an exact finite
set of values then the coding issue becomes more difficult. For instance,
if there are exactly 1100 discrete values which can be assigned to some
variable Xi. We need at least 10 bits to cover this range, but this codes
for a total of 1024 discrete values. The 76 unnecessary bit patterns may
result in no evaluation, a default worst possible evaluation, or some pa-
rameter settings may be represented twice so that all binary strings
result in a legal set of parameter values. Solving such coding problems
is usually considered to be part of the design of the evaluation function.
Aside from the coding issue, the evaluation function is usually given as
part of the problem description. Sometimes, deciding and developing an
evaluation function can involve developing a simulation. In few other
cases, the evaluation may be based on performance and may represent
only an approximate or partial evaluation.

The evaluation or the fitness function must also be relatively fast to
measure the fitness of the problem. Since a genetic algorithm operates
on a population of potential solutions, it incurs the cost of evaluating
this population. Furthermore, the population is replaced (all or in part)
on a generational basis. The members of the population reproduce, and
their offspring must then be evaluated.

13.3 Historical Overview of Genetic Algorithm

The genetic algorithms were first developed during the late 1950s and
early 1960s and this technique was programmed on computers by evo-
lutionary engineers and biologists to model the aspects of natural evo-
lution. Evolutionary computation was definitely in the air in the forma-
tive days of the electronic computer. During 1962, researchers such as
G.E.P. Box, G.J. Friedman, W.W. Bledsoe, and H.J. Bremermann all
independently proposed and developed evolution-inspired algorithms for
function optimization and machine learning. But the work did not gain
much importance. Ingo Rechenberg introduced the evolutionary strategy
in 1965, which more resembled hill-climbers than genetic algorithms. In
this strategy, there was no population or crossover; one parent was mu-
tated to produce one offspring, and the better of the two was kept and
became the parent for the next round of mutation. The versions that
were introduced later used the idea of a population.
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The evolutionary programming technique came into existence during
1966 and was introduced by L.J. Fogel, A.J. Owens and M.J. Walsh in
America. In evolutionary programming the candidate solutions to opti-
mization problems were represented as simple finite-state machines; like
Rechenberg’s evolution strategy, their algorithm worked by randomly
mutating one of these simulated machines and keeping the better of the
two. Similar to evolution strategies, the wider formulation of the evolu-
tionary programming technique is still an area of ongoing research.

Based on the properties of natural evolution Genetic Algorithms (GA)
were invented to mimic the natural properties. The idea of GA is to use
the natural power of evolution to solve optimization problems. The father
of the original Genetic Algorithm was John Holland who invented it in
the early 1970’s. The initial intention of Holland was to was determine
exactly how adaptation occurs in nature and then develop ways that
natural adaptation might become a part of computer systems instead of
creating algorithms.

More interest was created toward evolutionary computation based on
the foundational algorithms. Initially genetic algorithms were being ap-
plied to a broad range of subjects, from abstract mathematical prob-
lems like bin-packing and graph coloring to tangible engineering issues
such as pipeline flow control, pattern recognition and classification, and
structural optimization. All these applications were mainly theoretical.
As research in this field increased, genetic algorithms migrated into the
commercial sector, their rise fueled by the exponential growth of com-
puting power and the development of the Internet. Today, evolutionary
computation is a thriving field, and genetic algorithms are “solving prob-
lems of everyday interest” in areas of study as diverse as stock market
prediction and portfolio planning, aerospace engineering, microchip de-
sign, biochemistry and molecular biology, and scheduling at airports and
assembly lines.

13.4 Genetic Algorithm Description

Genetic algorithms are developed on the basis of Darwin’s theory of
evolution. To obtain a solution to a problem through genetic algorithms,
the algorithm is started with a set of solutions (represented by chromo-
somes) termed as the population. Choosing random solutions of one pop-
ulation forms a new population. The new population is formed assuming
that the new one will be better than the old one. Parent solutions are
selected from the population to form new solutions (offspring) based on
their fitness measure. This process is repeated over several iterations or
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until some condition (for example, number of populations or improve-
ment of the best solution) is satisfied.

In Holland’s original work, GAs were proposed to understand adap-
tation phenomena in both natural and artificial systems and they have
three key features that distinguish themselves from other computational
methods modeled on natural evolution:

• The use of bit string for representation

• The use of crossover as the primary method for producing variants

• The use of proportional selection

Among the evolutionary computation paradigms, genetic algorithms
are one of the most common and popular techniques. The traditional
genetic algorithm represented the chromosomes using a fixed-length bit
string. Each position in the string is assumed to represent a particular
feature of an individual, and the value stored in that position represents
how that feature is expressed in the solution. Generally, the string is
“evaluated as a collection of structural features of a solution that have
little or no interactions”. The analogy may be drawn directly to genes in
biological organisms. Each gene represents an entity that is structurally
independent of other genes.

The more classical reproduction operator used is one point crossover,
in which two strings are used as parents and swapping a sub-sequence
between the two strings forms new individuals. Another popular opera-
tor is bit-flipping mutation, in which a single bit in the string is flipped
to form a new offspring string. A great variety of other crossover and mu-
tation operators have also been developed. The basic difference between
the various operators is whether or not they introduce any new informa-
tion into the population. For instance the genetic operator crossover does
not while mutation does. The strings are manipulated in a constrained
manner according to the string interpretation of the genes. Consider for
instance, any two genes at the same location on two strings may be
swapped between parents, but not combined based on their values.

A few individuals among the population of solutions are selected to
be parents probabilistically based upon their fitness values; the newly
created offspring replace the parents. This approach is used to solve
design optimization problems including discrete design parameters and
then real parameter optimization problems. Early applications of GAs
are optimization of gas pipeline control, structural design optimization,
aircraft landing strut weight optimization, keyboard configuration de-
sign, etc. It should be mentioned that GAs have contributed to establish
the schema theorem and recognize the role and importance of crossover
through attentive theoretical analysis.
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13.5 Role of Genetic Algorithms

The genetic algorithm is often cast as a function optimizer, manipu-
lating a population of solutions using recombination and mutation. This
formulation omits mechanisms present in many genetic algorithms. Here
we will be most concerned with the distinction between the space of geno-
types, in which genetic operators apply and the space of phenotypes, in
which individuals’ fitness are evaluated. Development is the process by
which genotypes are transformed to phenotypes, and this term is divided
into maturation and learning. Maturation refers to the process by which
a genotype is mapped into a phenotype and learning refers to phenotypic
plasticity remaining in the mature organism as evidenced by adaptive
responses to the environment.

The standard genetic algorithm proceeds as follows: an initial popula-
tion of individuals is generated at random or heuristically. Every evolu-
tionary step, known as a generation, the individuals in the current pop-
ulation are decoded and evaluated according to some predefined quality
criterion, referred to as the fitness, or fitness function. To create a new
population or the next generation, a few individuals are selected accord-
ing to their fitness and they are the parent solutions. Several selection
methods are currently in use, but one of the simplest is Holland’s orig-
inal fitness-proportionate selection, where individuals are selected with
a probability proportional to their relative fitness. The expected num-
ber of times an individual is chosen is approximately proportional to its
relative performance in the population. Therefore best fit or good indi-
viduals have a better chance of reproducing, while low-fitness ones are
more likely to disappear.

Selection is not the only process of choosing the best solution in the
population. Genetically inspired operators, crossover, and mutation cre-
ate the best-fit solutions. Crossover is performed between two selected
individuals (parents) by swapping the genomic parts to form new in-
dividuals (offspring) solutions with a crossover probability pcross (the
crossover probability or crossover rate); in its simplest form, substrings
are exchanged after a randomly selected crossover point. This opera-
tor tends to enable the evolutionary process to move toward promising
regions of the search space. The mutation operator is introduced to pre-
vent premature convergence to local optima by randomly sampling new
points in the search space. It is carried out by flipping bits at random,
with some (small) probability pmut. Genetic algorithms are stochastic
iterative processes that are not guaranteed to converge; the termination
condition may be specified as some fixed maximal number of generations
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or as the attainment of an acceptable fitness level. The pseudocode of
the standard genetic algorithm is shown below:

Initialize population of chromosomes P(g)

Evaluate the initialized population by computing

its fitness measure

While not termination criteria do

g:=g+1

Select P(g+1) from P(g)

Crossover P(g+1)

Mutate P(g+1)

Evaluate P(g+1)

End While

13.6 Solution Representation of Genetic Algorithms

Solutions and individuals can be represented using genetic representa-
tion to encode appearance, characteristics, behavior, and physical qual-
ities of individuals. The most demanding task in evolutionary computa-
tion is the genetic representation. The genetic representation is one of
the major criteria drawing a line between known classes of evolutionary
computation.

The most commonly used representation form in genetic algorithm is
binary representation. For more standard applications an array of bits
is used for representation. Due to the fixed size, the formats can be
easily aligned which makes GA more convenient for operation, leading
to flexible crossover operation. If the strings are of variable length, then
crossover operation becomes more complex.

The algorithm need not be aware of a particular genetic representation
used for any solution. Some of the common genetic representations are

• binary array

• genetic tree

• parse tree

• binary tree

• natural language

A problem dependant fitness function is defined over the genetic rep-
resentation to evaluate the quality of the represented solution.
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13.7 Parameters of Genetic Algorithm

Parameter tuning in GA involves the tuning of the parameters such as
the crossover probability and mutation probability. Several studies are
proposed by researchers and scientists in the field of GA to decide the
value of these probabilities. Based on various experiments conducted on
different experiments and according to DeJong, for a population size of
50, the crossover probability Px was best set to 0.6, and the mutation
probability Pm to 0.001, elitism to 2 without any windowing.

13.7.1 Standard Parameter Settings

The efficiency of a GA is greatly dependent on its tuning parameters.
Some of the major researchers have worked on the parameters of GA
and given a set of specifications as follows:

Dejong Settings

Dejong’s settings are the standard for most GAs. Dejong has shown
that this combination of parameters works better than many other pa-
rameter combinations for function optimization.

• Population size 50

• Number of generations 1,000

• Crossover type= typically two point

• Crossover rate of 0.6

• Mutation types= bit flip

• Mutation rate of 0.001

The crossover method is assumed to be one or two point crossover.
For more disruptive methods (such as uniform crossover), use a lower
crossover rate (say 0.50). The mutation rate given above is *per bit*,
whereas in many public domain codes, the mutation rate is input as a
*per chromosome* probability.

Grefenstette Settings

This is generally the second most popular set of parameter settings.
It is typically used when the computational expense of figuring the ob-
jective function forces you to have a smaller population.
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• Population size 30

• Number of generations not specified

• Crossover type= typically two point

• Crossover rate of 0.9

• Mutation types= bit flip

• Mutation rate of 0.01

The crossover method is again assumed to be one or two point crossover
and the mutation rate is also *per bit*.

MicroGA Settings

Though these settings are not widely employed presently, those who
have used them to optimize functions report as much as four-fold re-
ductions in the number of evaluations required to reach given levels of
performance.

• Population Size = 5

• Number of generations = 100

• Crossover type= uniform

• Crossover probability= 0.5

• Mutation types= jump and creep

• Mutation probabilities= 0.02 and 0.04

David’s code continuously restarts with random chromosomes when con-
vergence is detected.

13.8 Schema Theorem and Theoretical Background

A schema is a template that identifies a subset of strings with similar-
ities at certain string positions. Schemata are a special case of cylinder
sets; and so form a topological space.

Consider a binary string of length 6. The schema 10*0*1 describes the
set of all strings of length 6 with 1’s at positions 1 and 6 and a 0 at po-
sitions 2 and 4. The * is a wildcard symbol, which means that positions
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3 and 5 can have a value of either 1 or 0 similar to a tristate value. The
number of fixed positions in the schema is known as the order and the
distance between the first and last specific positions is the defining length
δ(H). The order of 10*0*1 is 4 and its defining length is 5. The fitness
of a schema is the average fitness of all strings matching the schema.
The fitness of a string is a measure of the value of the encoded problem
solution, as computed by a problem-specific evaluation function. With
the genetic operators as defined above, the schema theorem states that
short, low-order, schemata with above-average fitness increase exponen-
tially in successive generations. Expressed as an equation:

m(H, t + 1) ≥ m(H, t)f(H)

at
[1 − p]

Here m(H,t) is the number of strings belonging to schema H at generation
t, f(H) is the observed fitness of schema H and at is the observed average
fitness at generation t. The probability of disruption p is the probability
that crossover or mutation will destroy the schema H. It can be expressed
as

p =
δ(H)

l − 1
pc + o(H)pm

where o(H) is the number of fixed positions, l is the length of the code, pm

is the probability of mutation, and pc is the probability of crossover. So a
schema with a shorter defining length δ(H) is less likely to be disrupted.
The Schema Theorem is an inequality rather than an equality. This is
often a big question among investigators. The answer is in fact simple:
the Theorem neglects the small, yet non-zero probability, that a string
belonging to the schema h will be created “from scratch” by mutation
of a single string (or recombination of two strings) that did not belong
to h in the previous generation.

13.8.1 Building Block Hypothesis

Though genetic algorithms are relatively simple to implement, their
behavior seems to be difficult to understand. In practice it seems very
difficult to understand why they are often successful in generating so-
lutions of high fitness. The building block hypothesis (BBH) consists
of:

• A description of an abstract adaptive mechanism that performs
adaptation by recombining “building blocks”, i.e., low order, low
defining-length schemata with above average fitness.
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• A hypothesis that a genetic algorithm performs adaptation by im-
plicitly and efficiently implementing this abstract adaptive mech-
anism.

According to Goldberg the abstract adaptive mechanism is defined
as: “short, low order, and highly fit schemata are sampled, recombined
[crossed over], and resampled to form strings of potentially higher fitness.
In a way, by working with these particular schemata [the building blocks],
instead of building high-performance strings by trying every conceivable
combination, better and better strings can be contstructed from the best
partial solutions of past samplings”.

Just as a child creates magnificent fortresses through the arrangement
of simple blocks of wood (building blocks), so does a genetic algorithm
seek near optimal performance through the juxtaposition of short, low-
order, high-performance schemata, or building blocks.

13.8.2 The Dynamics of a Schema

The Schema Theorem only shows how schemas dynamically change,
and how short, low-order schemas whose fitness remain above the av-
erage mean receive exponentially growing increases in the number of
samples. It cannot make more direct predictions about the population
composition, distribution of fitness, and other statistics more directly
related to the genetic algorithm itself. The pseudocode of the general
algorithm is as follows:

Initialize population

While not end of population do

Calculate Fitness

Choose two parents selection methods

Choose one of the offspring by single

-point crossover

Mutate each bit with probability pm,

Place each bit in population.

End While

The method of approximating the dynamics can be calculated through
the following method. Let S be a schema with at least one instance
in the given population at the time t. Let the function û(S,t) be the
number of instances of S at time t, and let the function (S,t) be the
observed average of S at time t. Now, it is required to calculate the
expected number of instances of schema S during the next time interval.
Assuming that E(x) is the expected value of x, to determine E(n(S,t+1)),
the number of instances at t+1 is equivalent to the number of offspring
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produced. To proceed the calculation, the selection process that is to be
used has to be determined. If a fitness-proportionate selection method is
to be used, then the expected number of offspring is equal to the fitness
of the string over the average fitness of the generation or:

fitness-proportionate =
f(x)

f̂(t)
(13.3)

So, assuming that x ε S (x is a subset, or instance, of S), the equation
obtained is:

E(n(S, t + 1)) =
∑

xǫS

f(x)

f̂(t)
(13.4)

Now, using the definition of (S,t) the final equation is:

∑

xǫS

f(x)

n(S, t)
= û(S, t)

∴ E(n(S, t + 1)) =
û(S, t)

f̂(t)
n(S, t) (13.5)

Therefore the basic formula for tracking the dynamics of a schema in a
genetic algorithm is obtained. Genetic algorithms are simple, since they
also simulate the effects of mutation and crossovers. These two effects
have both constructive and destructive effects - here the destructive ef-
fects are considered.

Figure 13.1 summarizes the schema theorem.
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FIGURE 13.1: Derivation of the Schema Theorem
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13.8.3 Illustrations Based on Schema Theorem

Illustration 1:
1. Consider the following two schema
* * * * * 1 1 1 and 1 * * * * * 1*

(a) What is the defining length? What is the order?

(b) Let pm = 0.001 (probability of simple mutation). What is
the probability of survival of each schema?

(c) Let pc = 0.85 (probability of cross-over). Estimate the
probability of survival of each schema?

Solution:
(a). Order:

o(S1) = 3; o(S2) = 2;

Defining Length:
δ(S1) = 2; δ(S2) = 6;

(b). Given: pm = 0.001
Mutation:

pm(S) = (1 − pm)o(S)

pm(S1) = (1 − pm)o(S1) = (1 − 0.001)3 = 99.7%

pm(S2) = (1 − pm)o(S2) = (1 − 0.001)2 = 99.8%

(c). Given: pc = 0.85;
We know that m = 8;
Crossover:

pc(S) ≥ 1 − pc(
∗)

δ(S)

m − 1

pc(S1) = 1 − pc
∗ δ(S1)

m − 1
= 1 − 0.85∗

2

8 − 1
= 76%

pc(S2) = 1 − pc
∗ δ(S2)

m − 1
= 1 − 0.85∗

6

8 − 1
= 27%

Illustration 2:

A population contains the following strings and fitness values
at generation 0 (Table 13.1):

Calculate the expected number of strings covered by the
schema 1 * * * * in generation 1 if pm = 0.01 and pc = 1.0.
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TABLE 13.1: Strings and Fitness Value

S No String Fitness

1 10001 20
2 11100 10
3 00011 5
4 01110 15

Solution:

Schema Theorm:

E(n(S,t+1))≥ û(S, t)

f̂(t)
n(S, t)(1 − pc

d(S)

m − 1
)((1 − pm)o(S))

û(S, t) =
20 + 10

2
= 15

f̂(t) =
20 + 10 + 5 + 15

4
= 12.5

The number of strings covered by the given schema in generation 1 is:

E(n(S, t+1))=2∗ 15

12.5
∗
[

1−1.0 ∗ 0

4
− 0.01 ∗ 1

]

=2∗12∗(1−0−0.01) = 2.376

Illustration 3:
Suppose a schema S which, when present in a particular string,
causes the string to have a fitness 25% greater than the average
fitness of the current population. If the destruction probabili-
ties for this schema under mutation and crossover are negligi-
ble, and if a single representation of the schema is present at
generation 0, determine when the schema H will overtake the
populations of size n = 20; 50; 100; 200.

Solution:

û(S, t) ≥ û(S, t − 1) ∗ û(S, t − 1)

f̂(t − 1)
∗ 1

hatu(S, t− 2) ∗ 1.25 ∗ 1.25

M

û(S, 0) ∗ (1.25)t

(1.25)t
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Therefore

n ≤ (1.25)t

t ≥ log1.25(n)

≥ log(n)

log(1.25)

The schema will overtake the populations when,

n = 20 ⇒ t ≥ 14

n = 50 ⇒ t ≥ 18

n = 100 ⇒ t ≥ 21

n = 200 ⇒ t ≥ 24

Illustration 4:
Suppose a schema S which, when present in a particular string,
causes the string to have fitness 10% less than the average fit-
ness of the current population. Suppose that the schema theo-
rem is equality instead of an inequality and that the destruction
probabilities for this schema under mutation and crossover can
be ignored. If representatives of the schema are present in 60%
of the population at generation 0, calculate when schema H will
disappear from the population of size n = 20; 50; 100; 200.

Solution:

Ŝ, t = û(S, 0) ∗ (0.9)t

= 0.6 ∗ n ∗ (0.9)t

1

2
> 0.6 ∗ n ∗ (0.9)t

1

1.2 ∗ n
> (0.9)t

t > log0.9(
1

1.2 ∗ n
)

The given schema disappears when,

n = 20 ⇒ t ≥ 31

n = 50 ⇒ t ≥ 39

n = 100 ⇒ t ≥ 46

n = 200 ⇒ t ≥ 53
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Figure 13.1a : Representation of search space

Illustrations on Search Space, hypercubes, schemata and Gray
Codes

Illustration 5:
Suppose we deal with a ’Simple GA’ which uses bit-strings of
length L for chromosomes.

1. Why is the representation of the search space of size 2L by
a hypercube more appropriate than a ’linear representation’.

Linear Representation

00 ... 00|00 ... 01|00 ... 10| ... |01 ... 11|10 ... 00| ...

Solution:
Properties of hypercube:

(i) d-dimensional hypercube: 2 (d-1)-dimensional hypercubes

(ii) every node is connected to or has as neighbors all other nodes for
which the bit-representation differs at only 1 position. (Hamming
distance 1)
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So, neighboring genotypes are represented as neighbors.

13.9 Crossover Operators and Schemata

The basics about crossover and its types were already discussed in
Section 11.7.6 in Chapter 11 on evolutionary computation paradigms.
Hence this section will delineate the crossover operation with respect
to the hyperplanes. The observed representation of hyperplanes in the
schemata corresponds to the representation in the intermediate popu-
lation after selection but before crossover. During recombination, the
order-1 hyperplane samples are not affected by recombination, since the
single critical bit is always inherited by one of the offspring. The ob-
served distribution of potential samples from hyperplane partitions of
order-2 and higher can be affected by crossover. Further, all hyperplanes
of the same order are not necessarily affected with the same probability.

13.9.1 1-Point Crossover

Single point crossover, is relatively easy to quantify its effects on dif-
ferent schemata representing hyperplanes. Assume a string encoded with
just 12 bits. Now consider the following two schemata.

11********** and 1**********1

The probability that the bits in the first schema will be separated
during 1-point crossover is only 1/L-1, since in general there are L-1
crossover points in a string of length L. The probability that the bits in
the second rightmost schema are disrupted by 1-point crossover however
is (L-1)/(L-1) or 1.0 since each of the L-1 crossover points separates the
bits in the schema. This leads to a general observation: when using 1-
point crossover the positions of the bits in the schema are important in
determining the likelihood that those bits will remain together during
crossover.

13.9.2 2-Point Crossover

A 2-point crossover operator chooses two crossover points randomly.
The string segment between the two points are swapped. Ken DeJong
first observed that 2-point crossover treats strings and schemata as if
they form a ring, which can be illustrated as shown in Figure 13.2
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FIGURE 13.2: Ring Form

where b1 to b12 represents bits 1 to 12. When viewed in this way,
1-point crossover is a special case of 2-point crossover where one of the
crossover points always occurs at the wrap-around position between the
first and last bit. Maximum disruptions for order-1 schemata now occur
when the 2 bits are at complementary positions on this ring.

From both 1-point and 2-point crossover it is clear that schemata,
which have bits that are close together on the string encoding (or ring),
are less likely to be disrupted by crossover. More accurately, hyperplanes
represented by schemata with more compact representations should be
sampled at rates that are closer to those potential sampling distribution
targets achieved under selection alone. For current purposes a compact
representation with respect to schemata is one that minimizes the proba-
bility of disruption during crossover. Note that this definition is operator
dependent, since both of the two order-2 schemata are equally and max-
imally compact with respect to 2-point crossover, but are maximally
different with respect to 1-point crossover.

13.9.3 Linkage and Defining Length

In linkage a set of bits act as “coadapted alleles” that tend to be in-
herited together as a group. In this case an allele would correspond to a
particular bit value in a specific position on the chromosome. Of course,
linkage can be seen as a generalization of the notion of a compact repre-
sentation with respect to schema. Linkage under one point crossover is
often defined by physical adjacency of bits in a string encoding. Linkage
under 2-point crossover is different and must be defined with respect to
distance on the chromosome when treated as a ring. Nevertheless, link-
age usually is equated with physical adjacency on a string, as measured
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by defining length.
The defining length of a schemata is based on the distance between

the first and last bits in the schema with value either 0 or 1 (i.e., not a
* symbol). Given that each position in a schema can be 0, 1 or *, then
scanning left to right, if Ix is the index of the position of the rightmost
occurrence of either a 0 or 1 and Iy is the index of the leftmost occurrence
of either a 0 or 1, then the defining length is merely Ix - Iy. Thus, the
defining length of ****1**0**10** is 12-5=6. The defining length of a
schema representing a hyperplane H is denoted here by △ (H). The
defining length is a direct measure of how many possible crossover points
fall within the significant portion of a schemata. If 1-point crossover is
used, then △(H)/L-1 is also a direct measure of how likely crossover is
to fall within the significant portion of a schemata during crossover.

13.9.4 Linkage and Inversion

Not only mutation and crossover are genetic operators, inversion is
also considered to be a basic genetic operator. The linkage of bits on the
chromosomes can be changed such that bits with greater nonlinear in-
teractions can potentially be moved closer together on the chromosome.
Generally, inversion is implemented by reversing a random segment of
the chromosome. However, before one can start moving bits around on
the chromosome to improve linkage, the bits must have a position inde-
pendent decoding. A common error that some researchers make when
first implementing inversion is to reverse bit segments of a directly en-
coded chromosome. But just reversing some random segment of bits
is nothing more than large-scale mutation if the mapping from bits to
parameters is position dependent. A position independent encoding re-
quires that each bit be tagged in some way. For example, consider the
following encoding composed of pairs where the first number is a bit tag
which indexes the bit and the second represents the bit value.

((90)(60)(21)(71)(51)(81)(30)(10)(40))

Moving around the tag-bit pairs can now change the linkage, but the
string remains the same when decoded: 010010110. One must now also
consider how recombination is to be implemented.

© 2010 by Taylor and Francis Group, LLC



566 Computational Intelligence Paradigms

13.10 Genotype and Fitness

The initial step to solve a problem using GA is to get knowledge
about the kind of genotype required by the problem. The parameters of
the problem are mapped into a binary string or a fixed length string.
The user can decide on the mapping which implies that the user has
to choose the number of bits per parameter, the range of the decoded
binary-to-decimal parameter, if the strings have constant or changing
lengths during the GA operations, etc.

In most of the practical applications the strings use a binary alpha-
bet and the length is maintained constant during the evolution process.
All the parameters in GA decode to the same range of values within
the length and are allocated the same number of bits for the genes in
the string. Recently, this situation is modified in almost practical ap-
plications. As the complexity of a problem increases, the applications
also require dynamic length strings or else a different non-binary alpha-
bet. Generally integer or float genes are used in several domains such
as neural networks training, function optimization with a large number
of variables, reordering problems as the Traveling Salesperson Problem,
etc.

The binary strings were used in the concept of schema earlier since
the number of schemata sampled per string is maximized. Recently, the
schema concept is mainly interpreted to explain the usage of non-binary
genes. In this new form of interpretation the utilization of higher car-
dinality alphabets are considered due to their higher expression power.
The wildcard symbol (*) acts as an instantiation character for different
sets of symbols. More accurately, * is reinterpreted as a family of symbols
*x, where x can be any subset of symbols of the alphabet. For binary
strings these two interpretations are the same but for higher cardinality
alphabets they are not.

As far as the genotypes are considered, several other developments
have brought forward the utilization of non-string representations such
as trees of symbols which are much more appropriate and flexible for
a large number of applications. The genotypes are decoded to yield the
phenotype, which is, the string of problem parameters. The decoding
process is necessary since the user has to evaluate the string in order
to assign it a fitness value. Therefore the input to the fitness function
and the fitness value is the phenotype which assists the algorithm to
relatively rank the pool of strings in the population.

An appropriate fitness function that is to be created for every problem
has to be considered as very highly important for the correct function-
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ality of the GA. The fitness function is used to evaluate the problem en-
vironment, and find the best string that solves the problem well. While
contrasting the fitness function the following factors should be consid-
ered:

• Whether the criteria is to be maximize or minimize.

• Instead of computing the entire solution only approximations can
be computed when the fitness function is complex.

• Constraints should also be considered by the fitness function.

• If a fitness function incorporates other different sub-objectives,
such as multiobjective function then it presents non-conventional
problems.

• The fitness function acts as a black box for the GA. Phenotype
is fed as input to the fitness function to obtain the fitness value.
This process is achieved by a mathematical function. A complex
computer simulator program or a human used to decide how good
a string is.

13.11 Advanced Operators in GA

GA has a variety of operators other than the common crossover, mu-
tation, reproduction, etc., discussed in Chapter 5. Some of the advanced
operators are discussed in this section.

13.11.1 Inversion and Reordering

The position of the genes in a chromosome can be modified during the
GA run by using techniques like inversion and reordering. Inversion is the
process in which the order of genes are reversed between two randomly
chosen positions within the chromosome. Reordering does nothing to
lower epistasis, but greatly expands the search space. An example to
illustrate inversion is shown in Figure 13.3.

13.11.2 Epistasis

The independence of bits in a string or a population of strings is known
as epistasis. It is defined as the extent to which the “expression” of one
gene depends on the values of other genes. Every gene in a chromosome
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FIGURE 13.3: Example to Illustrate Inversion

has a different degree of interaction. Any slight modification made in
one gene affects the fitness to an extent. This resultant change may
vary according to the values of other genes. Certain allele values present
in particular bit positions have a strong influence on the fitness of the
string. According to Rawlins there exists two extreme cases of epistasis:
maximum epistasis and the zero epistasis. In maximum epistasis, it is
possible to find one or more bits whose value influences the contribution
of this bit to the fitness of a string. The second case is zero epistasis
where all bits are independent.

13.11.3 Deception

In a deceptive problem, the best low-order schemata contain a de-
ceptive attract or that is maximally distant from the global solution. A
deceptive ordering or permutation problem can be defined in the same
way by choosing a global and a deceptive attractor that are maximally
distant in some sense. Through the process of crossover, these optimal
schemata will come together, to form the globally optimum chromosome.
Sometimes the schemata which are not present in the global optimum
increase in frequency more rapidly than those which are present, thereby
misleading the GA away from the global optimum, instead of towards
it. This is known as deception. Deception is a special case of epistasis
and epistasis is necessary (but not sufficient) for deception. For a very
high epistasis GA will not be effective and for a very low epistasis GA
will be outperformed by simpler techniques, such as hill climbing.
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13.11.4 Mutation and Näıve Evolution

Selection and mutation are combined and termed as näıve evolution.
“Näıve evolution” performs a search technique similar to hill-climbing
and has been proved to be more powerful even without crossover. Since
mutation searches in between populations it is generally capable of find-
ing better solutions when compared to crossover. While the popula-
tion converges it can be found that mutation is more productive, while
crossover is less productive.

13.11.5 Niche and Speciation

Speciation is a useful technique to generate multiple species within the
population of evolutionary methods. There are several speciation algo-
rithms which restrict an individual to mate only with similar ones, while
others manipulate its fitness using niching pressure to control the selec-
tion. Especially the latter ones are naturally based on niching method. In
GA, niches are analogous to maxima in the fitness function. If GA is not
capable of converging the entire population to a single peak then the GA
suffers from genetic drift. The two basic techniques to solve this problem
are to maintain diversity, or to share the payoff associated with a niche.

13.11.6 Restricted Mating

Restricted mating or dynamic breeding is performed to prevent
crossover between members of different niches. During the restricted
mating process, the first parent is selected through tournament selection
based upon shared fitness values. The second parent is determined by
examining a pool of MF (Mating Factor) members selected randomly
without replacement from the population, and selecting the fittest indi-
vidual coming from the same niche as the first parent. If no such individ-
ual is found, then the parent is mated with the most similar individual
in the mating pool, which can create lethal offspring. Dynamic inbreed-
ing certainly offers an improvement over unrestricted mating or standard
mating. Both standard and dynamic sharing methods have the disadvan-
tage of giving preference to higher peaks because they use tournament
selection based on fitness which can cause the extinction of relatively
low peaks.

13.11.7 Diploidy and Dominance

Chromosomes that contain two sets of genes are referred as diploid
chromosomes. Most of the earlier work on GA on GAs concentrated
on haploid chromosomes. Though haploid chromosomes were used due
to their simple nature: diploid chromosomes have more benefits. Holl-
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stein modeled diploidy and dominance in genetic algorithms during 1971.
In his proposal the genotypes were considered to be diploid. Every in-
dividual in the population carried a pair of chromosomes. A diploid
chromosome pair can be mapped to a particular phenotype using the
dominance map and the phenotype is further used for fitness evaluation.
Goldberg and Smith concentrated on the role of dominance and diploidy
as abeyance structures (shielding information that may be useful when
situations change). In diploid chromosomes the presence of two genes
allows two different “solutions” to be remembered, and passed on to off-
spring. Among the two different solutions one will be dominant, while
the other will be recessive. As the environmental conditions are altered,
the dominance can shift, thereby making the other gene dominant. This
shift can take place much more quickly than would be possible if evo-
lutionary mechanisms had to alter the gene. This mechanism is ideal if
the environment regularly switches between two states.

13.12 GA Versus Traditional Search
and Optimization Methods

An efficient optimization algorithm must use two techniques to find
a global maximum: exploration and exploitation. Exploration is used
to investigate innovative and strange areas in the search space and ex-
ploitation is used to make use of the knowledge base from the points
found in the past up to that instant to find better points. These two
requirements are contradictory, and a good search algorithm must find
a tradeoff between the two. This section compares GA with other search
methods.

13.12.1 Neural Nets

Genetic Algorithms (GAs) and Neural Networks (NNs) in a broad
sense dwell in the class of evolutionary computing algorithms which at-
tempt to imitate natural evolution or data manipulation with respect to
day-to-day problems like forecasting the stock market, turnovers, or the
identification of credit bonus classes for banks. Both GAs as well as NNs
have gained more importance in modern days, particularly in reference
to micro-economic questions. In spite of their apparent design disputes,
they also share several features in common which are sufficiently interest-
ing for the innovation oriented applications. Due to the dynamics built-in
the evolution of both methodologies, they are somewhat isolated scien-

© 2010 by Taylor and Francis Group, LLC



MATLAB-Based Genetic Algorithm 571

tific professions that interact rarely. Both GAs and NNs are adaptive,
they learn, and can deal with highly nonlinear models and noisy data
and are robust, “weak” random search methods. They do not require
gradient information or smooth functions whereas they mostly concen-
trate on nonlinear functions. In both cases, the modelling and coding
ought to be executed carefully since they are complex. These algorithms
work best for real world applications. GAs can optimize parameters of
a neural net and GAs can also be used to fine tune the NN parameters.

13.12.2 Random Search

In random search, the search approach for complex functions is a ran-
dom, or an enumerated search. The points in the search space are selected
randomly, and their fitness is evaluated. Since this is not an efficient
strategy, it is seldom applied. GAs have proved to be more efficient than
random search. In cases where GAs cannot effectively solve problems in
which the fitness measure is only specified right/wrong, there is no way
for the GA to converge on the solution. In such cases, the random search
can be applied to find the solution as quickly as a GA.

13.12.3 Gradient Methods

Several methods have been developed for optimizing well-behaved con-
tinuous functions which depend on slope information of the function. The
gradient or slope of a function is used to guide the direction of search,
known as hill climbing. They perform well on single peak functions or
unimodal functions. With multimodal functions, they suffer from the
problem of genetic drift. Consequently gradient methods can be coordi-
nated with GAs. Genetic Algorithms are best applied in supervised learn-
ing applications when compared to gradient methods. Gradient methods
cannot be employed directly in weight optimization domains, in such
cases they are combined with GAs. In general gradient methods are ca-
pable of finding local optimal and global optimal solutions whereas GAs
have proven to find better solutions compared to the gradient methods.

13.12.4 Iterated Search

The combination of random search and gradient search leads to a tech-
nique known as the iterated hill climbing search. This method is very
simple and performs efficiently if the function does not have too many
local maxima. When the random search advances, it proceeds to allocate
its trials equally all over the search space. This implies that it will still
measure as many as possible points in the regions ascertained to be of
low fitness as in regions found to be of high fitness. A GA, commences
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with an initial random population, and allocates growing trials to regions
of the search space found to have high fitness. This is a disadvantage if
the maximum is in a small region, surrounded on all sides by regions of
low fitness. This kind of function is difficult to optimize by any method,
and here the simplicity of the iterated search usually wins.

13.12.5 Simulated Annealing

Since Genetic algorithms (GAs) are adaptive search techniques that
are configured to find best-optimal solutions of large scale optimization
problems with multiple local maxima, this is basically an altered vari-
ant of hill climbing. The terms like solutions, their costs, neighbors, and
moves are concerned with simulated annealing whereas terms such as
individuals (or chromosomes), their fitness, and selection, crossover and
mutation are related with genetic algorithms. The deviation in nomen-
clature naturally reflects the differences in emphasis, likewise serves to
obscure the similarities and the real differences between SA and GA.

Essentially, SA can be thought of as GA where the population size is
only one. The current solution is the only individual in the population.
As there is only one individual, there is no crossover, but only mutation.
As a matter of fact this is the primal difference between SA and GA. As
SA produces a new solution by changing only one solution with a local
move, GA also produces solutions by fusing two different solutions.

Both SA and GA share the basic assumption that best solutions are
more often found “near” already known good solutions than by randomly
selecting from the whole solution space. If this were not the case with
a particular problem or representation, they would perform no better
than random sampling.

Additional positive conclusions bearing on the use of the GA’s
crossover operation in recombining near-optimal solutions obtained by
other methods. Hybrid algorithms in which crossover is used to combine
subsections is more effective and efficient than SA or a GA individually.

13.13 Benefits of GA

Some of the advantages of GA are:

• Since the genetic algorithms have multiple offspring for large prob-
lems the time taken for evaluation of all the strings is too large,
therefore GAs are capable of parallel processing.

• A vast solution set can be scanned by a GA at a very fast rate.
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• GAs are well suited for complex, discontinuous, noisy fitness func-
tions.

• GAs do not require computation of partial derivatives and they
also do not require a problem to be linearised.

• Since GAs efficiently search the global space, they are capable of
converging to the local minima effectively.

13.14 MATLAB Programs on Genetic Algorithm

A set of MATLAB examples are worked out in this section for prac-
tical implementation of the GA functions, such as maximization and
minimization of given functions, and the traveling salesman problem

13.14.1 Illustration 1: Maximizing the Given One-
Dimensional Function within Given Boundaries

Maximize the function f(x) = x + sin(x)+cos(x)

Solution:
The basic genetic algorithm is used to maximize the given function. To
refresh, the algorithm is as follows:

Step 1. Create an initial population (usually a randomly generated
string).

Step 2. Evaluate all of the individuals (apply some function or formula
to the individuals).

Step 3. Select a new population from the old population based on the
fitness of the individuals as given by the evaluation function.

Step 4. Apply genetic operators (mutation and crossover) to members
of the population to create new solutions.

Step 5. Evaluate these newly created individuals.

Step 6. Repeat steps 3-6 (one generation) until the termination cri-
teria has been satisfied (usually perform for a certain fixed
number of generations.
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MATLAB Code

A genetic algorithm is set up to find the maximum of this problem.
% boundaries

bounds = [-10 10];

% pop size

n = 10;

% number of iterations

numits = 100;

% numer of mutations per it

nummut = 1;

f = @multipeak;

% ezplot(f,[-10 10])

% pause

blength = bounds(2)-bounds(1);

% initial population

pop = rand(1,n)*blength + bounds(1);

for it=1:numits

% fitness eval

for i=1:n, fpop(i) = feval(f, pop(i)); end

maxf(it) = max(fpop);

meanf(it) = mean(fpop);

% subtract lowest fitness in order to normalize

m=min(fpop);

fpop=fpop-m;

cpop(1) = fpop(1);

for i=2:n, cpop(i) = cpop(i-1) + fpop(i); end

% SELECTION

total fitness = cpop(n);

% use roulette selection (-> need pos. fitness!)

for i=1:n

p=rand*total fitness;

% now find first index

j=find(cpop-p>0);

if isempty(j)

j=n;

else

j=j(1);
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end

parent(i)=pop(j);

end

% pop, fpop, parent, pause

% REPRODUCTION

% parents 2i-1 and 2i make two new children

% 2i-1 and 2i crossover

% use arithmetic crossover

for i=1:2:n

r=rand;

pop(i) = r*parent(i) + (1-r)*parent(i+1);

pop(i+1) = (1-r)*parent(i) + r*parent(i+1);

end

% mutation

% use uniform mutation

for i=1:nummut

pop(ceil(rand*n)) = bounds(1) + rand*blength;

end

end

pop

for i=1:n, fpop(i) = feval(f, pop(i)); end

fpop

close all

ezplot(@multipeak,[-10 10])

hold on

[y,xind]=max(fpop);

plot(pop(xind),y,’ro’)

figure, plot(maxf), hold on, plot(meanf,’g’);

xlabel(’Variable x’);

ylabel(’Max and Mean of the function’);

Plotting the given function:

function y = multipeak(x)

% Evaluation function

y = x + sin(x)+cos(x);
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FIGURE 13.4: Maximum and the Mean of the Given Function

Observations:

Figures 13.4 and 13.5 show the maximum and the best fit of the given
function.

13.14.2 Illustration 2: Solving Economic Dispatch Prob-
lem Using Genetic Algorithm

This program solves the economic dispatch problem by Genetic Algo-
rithm toolbox of MATLAB. The data matrix should have 5 columns of
fuel cost coefficients and plant limits.

--------------------Main Program--------------------

clear;

clc;

tic;

global data B Pd

data=[0.007 7 240 100 500
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FIGURE 13.5: Plot of the Given Function and the Best Fit

0.0095 10 200 50 200

0.009 8.5 220 80 300

0.009 11 200 50 150

0.008 10.5 220 50 200

0.0075 12 120 50 120];

% Loss coefficients it should be square matrix of

% size nXn where n is the no of plants

B=1e-4*[0.14 0.17 0.15 0.19 0.26 0.22

0.17 0.6 0.13 0.16 0.15 0.2

0.15 0.13 0.65 0.17 0.24 0.19

0.19 0.16 0.17 0.71 0.3 0.25

0.26 0.15 0.24 0.3 0.69 0.32

0.22 0.2 0.19 0.25 0.32 0.85

];

% Demand (MW)

Pd=700;

% setting the genetic algorithm parameters.

© 2010 by Taylor and Francis Group, LLC



578 Computational Intelligence Paradigms

options = gaoptimset;

options = gaoptimset(’PopulationSize’,50,’Generations’,

500,’TimeLimit’,200,’StallTimeLimit’, 100,’PlotFcns’,

@gaplotbestf,@gaplotbestindiv);

[x ff]=ga(@eldga,5,options);

[ F P1 Pl]=eldga(x)

tic;

----------------------------------------------------

Subprogram

----------------------------------------------------

function[ F P1 Pl]=eldga(x)

global data B Pd

x=abs(x);

n=length(data(:,1));

for i=1:n-1

if x(i)>1;

x(i)=1;

else

end

P(i)=data(i+1,4)+x(i)*(data(i+1,5)-data(i+1,4));

end

B11=B(1,1);

B1n=B(1,2:n);

Bnn=B(2:n,2:n);

A=B11;

BB1=2*B1n*P’;

B1=BB1-1;

C1=P*Bnn*P’;

C=Pd-sum(P)+C1;

x1=roots([A B1 C]);

% x=.5*(-B1-sqrt(B1ˆ2-4*A*C))/A

x=abs(min(x1));

if x>data(1,5)
x=data(1,5);

else

end

if x<data(1,4)

x=data(1,4);

else

end

P1=[x P];
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FIGURE 13.6: Best Values of Economic Dispatch Problem

for i=1:n

F1(i)=data(i,1)* P1(i)ˆ2+data(i,2)*P1(i)+data(i,3);

end

Pl=P1*B*P1’;

lam=abs(sum(P1)-Pd-P1*B*P1’);

F=sum(F1)+1000*lam;

-----------------End of subprogram------------------

Observations:

Figure 13.6 shows the best and mean value of fitness evaluated for
solving the economic dispatch problem using genetic algorithms. The
total fuel cost at the end of 233 generations was found to be 8.3532x103.
The transmission losses involved were 10.7272.
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13.14.3 Illustration 3: Traveling Salesman Problem

To find an optimal solution to the Traveling Salesman Problem by us-
ing GA to determine the shortest path that is required to travel between
cities.

Solution:

The MATLAB function tsp ga takes input argument as the number of
cities. Then the distance matrix is constructed and plotted. The shortest
path is then obtained using GA as an optimization tool.

MATLAB Code:

The MATLAB code used to implement the traveling sales man prob-
lem is shown below:

function varargout = tsp ga(varargin)

% the function tsp ga finds a (near) optimal

% solution to the Traveling Salesman Problem

% by setting up a Genetic Algorithm (GA) to

% search for the shortest path (least distance

% needed to travel to each city exactly once)

The input argument to the MATLAB function tsp ga can be any one of
the following:

• tsp ga(NUM CITIES) where NUM CITIES is an integer represent-
ing the number of cities (default = 50) For example tsp ga(25)
solves the TSP for 25 random cities

• tsp ga(CITIES) where CITIES is an Nx2 matrix representing the
X/Y coordinates of user specified cities For example tsp ga (10
* RAND (30,2)) solves the TSP for the 30 random cities in the
10*RAND(30,2)) matrix

• tsp ga(OPTIONS) or tsp ga(OPTIONS) where OPTIONS include
one or more of the following in any order:

• ’-NOPLOT’ turns off the plot showing the progress of the GA

• -RESULTS’ turns on the plot showing the final results as well as
the following parameter pairs:
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• ’POPSIZE’, VAL sets the number of citizens in the GA population
VAL should be a positive integer (divisible by 4) – default = 100

• ’MRATE’, VAL sets the mutation rate for the GA. VAL should be
a float between 0 and 1, inclusive – default = 0.85

• ’NUMITER’, VAL sets the number of iterations (generations) for
the GA VAL should be a positive integer – default = 500

• For example, the following code solves the TSP for 20 random
cities using a population size of 60, a 75% mutation rate, and 250
GA iterations

tsp ga(20, ’popsize’, 60, ’mrate’, 0.75, ’numiter’,

250);

The following code solves the TSP for 30 random cities without the
progress plot
[sorted cities, best route, distance] = tsp ga(30,

’-noplot’);

The following code solves the TSP for 40 random cities using 1000 GA
iterations and plots the results
cities = 10*rand(40, 2);

[sorted cities] = tsp ga(cities, ’numiter’, 1000,

’-results’);

Declare the parameters used in TSP

error(nargchk(0, 9, nargin));

num cities = 50;

cities = 10*rand(num cities, 2);

pop size = 100;

num iter = 500;

mutate rate = 0.85;

show progress = 1;

show results = 0;

Declarethe Pxrocess Inputs

cities flag = 0;

option flag = 0;

for var = varargin

if option flag

if ˜isfloat(var1), error([’Invalid value for

option’upper(option)]);

end

switch option
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case ’popsize’,pop size =

4*ceil(real(var1(1))/4);

option flag = 0;

case ’mrate’, mutate rate =

min(abs(real(var1(1))), 1);

option flag = 0;

case ’numiter’, num iter =

round(real(var1(1)));

option flag = 0;

otherwise, error([’Invalid option ’

upper(option)])

end

elseif ischar(var1)

switch lower(var1)

case ’-noplot’, show progress = 0;

case ’-results’, show results = 1;

otherwise, option = lower(var1);

option flag = 1;

end

elseif isfloat(var1)

if cities flag, error(’CITIES or NUM CITIES

may be specified, but not both’);

end

if length(var1) == 1

num cities = round(real(var1));

if num cities < 2, error(’NUM CITIES must be

an integer greater than 1’);

end

cities = 10*rand(num cities, 2);

cities flag = 1;

else

cities = real(var1);

[num cities, nc] = size(cities);

cities flag = 1;

if or(num cities < 2, nc ˆ= 2)

error(’CITIES must be an Nx2 matrix of

floats, with N > 1’)

end

end

else

error(’Invalid input argument.’)

end

end
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Construction of the Distance Matrix by using Distance

measurement formula dist matx = zeros(num cities);

for ii = 2:num cities

for jj = 1:ii-1

dist matx(ii, jj) =

sqrt(sum((cities(ii, :)-cities(jj, :)).ˆ2));

dist matx(jj, ii) = dist matx(ii, jj);

end

end

The cities and the distance matrix are plotted.

The plot is shown in Figure 13.7.

if show progress

figure(1)

subplot(2, 2, 1)

plot(cities(:,1), cities(:,2), ’b.’)

if num cities < 75

for c = 1:num cities

text(cities(c, 1),cities(c, 2),[’ ’ num2str(c)],

’Color’, ’k’, ’FontWeight’, ’b’)

end

end

title([num2str(num cities) ’ Cities’])

subplot(2, 2, 2)

imagesc(dist matx)

title(’Distance Matrix’)

colormap(flipud(gray))

end

Initialize Population in a random manner

pop = zeros(pop size, num cities);

pop(1, :) = (1:num cities);

for k = 2:pop size

pop(k, :) = randperm(num cities);

end

Calculation of the best route

if num cities < 25, display rate = 1;

else

display rate = 10; end

fitness = zeros(1, pop size);

best fitness = zeros(1, num iter);
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for iter = 1:num iter

for p = 1:pop size

d = dist matx(pop(p, 1),pop(p,num cities));

for city = 2:num cities

d = d + dist matx(pop(p, city-1), pop(p, city));

end

fitness(p) = d;

end

[best fitness(iter) index] = min(fitness);

best route = pop(index, :);

The best GA route gcalculated from the previous step

is computed and plotted.

if and(show progress, ˜mod(iter, display rate))

figure(1)

subplot(2, 2, 3)

route = cities([best route best route(1)], :);

plot(route(:, 1), route(:, 2)’, ’b.-’)

title([’Best GA Route (dist = ’ num2str

(best fitness(iter)) ’)’]) subplot(2, 2, 4)

plot(best fitness(1:iter), ’r’, ’LineWidth’, 2)

axis([1 max(2, iter) 0 max(best fitness)*1.1])

end

% Genetic Algorithm Search

pop = iteretic algorithm(pop, fitness, mutate rate);

end

% Plotting the best fitness. The plot is shown in

Figure 13.7 if show progress

figure(1)

subplot(2, 2, 3)

route = cities([best route best route(1)], :);

plot(route(:, 1), route(:, 2)’, ’b.-’)

title([’Best GA Route (dist = ’ num2str(best fitness

(iter)) ’)’])

subplot(2, 2, 4)

plot(best fitness(1:iter), ’r’, ’LineWidth’, 2)

title(’Best Fitness’)

xlabel(’Generation’)

ylabel(’Distance’)

axis([1 max(2, iter) 0 max(best fitness)*1.1])

end
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if show results

figure(2)

imagesc(dist matx)

title(’Distance Matrix’)

colormap(flipud(gray))

figure(3)

plot(best fitness(1:iter), ’r’, ’LineWidth’, 2)

title(’Best Fitness’)

xlabel(’Generation’)

ylabel(’Distance’)

axis([1 max(2, iter) 0 max(best fitness)*1.1])

figure(4)

route = cities([best route best route(1)], :);

plot(route(:, 1), route(:, 2)’, ’b.-’)

for c = 1:num cities

text(cities(c, 1),cities(c, 2),[’ ’ num2str(c)],

’Color’, ’k’,’FontWeight’, ’b’)

end

title([’Best GA Route (dist =

’ num2str(best fitness(iter)) ’)’])

end

[not used indx] = min(best route);

best ga route =

[best route(indx:num cities) best route(1:indx-1)];

if best ga route(2) > best ga route(num cities)

best ga route(2:num cities) = fliplr(best ga route

(2:num cities));

end

varargout1 = cities(best ga route, :);

varargout2 = best ga route;

varargout3 = best fitness(iter);

The genetic algorithm search function is implemented

using the MATLAB Code shown below:

function new pop =

iteretic algorithm(pop, fitness, mutate rate)

[p, n] = size(pop);

Tournament Selection - Round One

new pop = zeros(p, n);
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ts r1 = randperm(p);

winners r1 = zeros(p/2, n);

tmp fitness = zeros(1, p/2);

for i = 2:2:p

if fitness(ts r1(i-1)) > fitness(ts r1(i))

winners r1(i/2, :) = pop(ts r1(i), :);

tmp fitness(i/2) = fitness(ts r1(i));

else

winners r1(i/2, :) = pop(ts r1(i-1), :);

tmp fitness(i/2) = fitness(ts r1(i-1));

end

end

Tournament Selection - Round Two

ts r2 = randperm(p/2);

winners = zeros(p/4, n);

for i = 2:2:p/2

if tmp fitness(ts r2(i-1)) > tmp fitness(ts r2(i))

winners(i/2, :) = winners r1(ts r2(i), :);

else

winners(i/2, :) = winners r1(ts r2(i-1), :);

end

end

new pop(1:p/4, :) = winners;

new pop(p/2+1:3*p/4, :) = winners;

Crossover

crossover = randperm(p/2);

children = zeros(p/4, n);

for i = 2:2:p/2

parent1 = winners r1(crossover(i-1), :);

parent2 = winners r1(crossover(i), :);

child = parent2;

ndx = ceil(n*sort(rand(1, 2)));

while ndx(1) == ndx(2)

ndx = ceil(n*sort(rand(1, 2)));

end

tmp = parent1(ndx(1):ndx(2));

for j = 1:length(tmp)

child(find(child == tmp(j))) = 0;

end

child = [child(1:ndx(1)) tmp child(ndx(1)+1:n)];

child = nonzeros(child)’;

children(i/2, :) = child;
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end

new pop(p/4+1:p/2, :) = children;

new pop(3*p/4+1:p, :) = children;

Mutate

mutate = randperm(p/2);

num mutate = round(mutate rate*p/2);

for i = 1:num mutate

ndx = ceil(n*sort(rand(1, 2)));

while ndx(1) == ndx(2)

ndx = ceil(n*sort(rand(1, 2)));

end

new pop(p/2+mutate(i), ndx(1):ndx(2)) = ...

fliplr(new pop(p/2+mutate(i), ndx(1):ndx(2)));

end

Output:

Thus the traveling salesman problem was executed in MATLAB and
the results are plotted indicating the number of cities, Distance Matrix,
the best GA route, and the best fitness.

Summary

Thus it is observed that genetic algorithms are robust, useful, and
are the most powerful apparatus in detecting problems in an array of
fields. In addition, genetic algorithms unravel and resolve an assortment
of complex problems. Moreover, they are capable of providing motiva-
tion for their design and foresee broad propensity of the innate systems.
Further, the reason for these ideal representations is to provide thoughts
on the exact problem at hand and to examine their plausibility.

Threfore they are employed as a computer encode and identify how
the propensities are affected from the transformations with regards to
the model. Without genetic algorithms, it is not possible to solve real
world issues. The genetic algorithm methods may permit researchers to
carry out research, which was not perceivable during this evolutionary
technological era. Therefore, one is able to replicate this phenomenon,
which would have been virtually impossible to obtain or analyze through
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FIGURE 13.7: Plot of Cities, Distance Matrix, Best GA Route and
Best Fitness for Traveling Salesman Problem

traditional methods or through the analysis of certain equations. Because
GAs form a subset field of evolutionary computation, optimization algo-
rithms are inspired by biological and evolutionary systems and provide
an approach to learning that is based on simulated evolution.

Review Questions

1. What do you mean by Calculus-based schemes and Enumerative-
based optimization schemes?

2. Define Genetic Algorithm.

3. Explain the functionality of GA with a suitable flowchart.
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4. Mention some of the common genetic representations.

5. State Schema Theorem.

6. Derive schema theorem using the mathematical model.

7. How are the destructive effects of schema theorem compensated?
Explain in terms of crossover and mutation.

8. Mention the considerations while constructing a fitness function.

9. Explain inversion and reordering.

10. Write a note on epistatis.

11. Define deception.

12. What do you mean by näıve evolution?

13. Define the process speciation.

14. Explain briefly on restricted mating, diploidy, and dominance.

15. What are the important issues that are considered while imple-
menting a GA?

16. Compare GA with Neural Nets, Random Search, and Simulated
Annealing.

17. Mention the advantages of GA.

18. Mention a few application areas of GA.
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Chapter 14

Genetic Programming

14.1 Introduction

Genetic programming is a predefined and systematic method to ob-
tain a solution to a problem automatically using computers. Genetic
Programming (GP) is a member of evolutionary computation or evolu-
tionary algorithms and this method also follows Darwin’s theory of evo-
lution the “survival of the fittest”. A set of computer programs are cho-
sen as population of individuals and these individuals reproduce among
themselves. As this process increases, the best individuals will survive
and seem to be successful in evolving well in the given environment.

GP definition - “Genetic programming is an automated method for cre-
ating a working computer program from a high-level problem statement of
a problem. Genetic programming does this by genetically breeding a pop-
ulation of computer programs using the principles of Darwinian natural
selection and biologically inspired operations.”

Practically, the genetic programming model can be implemented with
arrays of bits or characters to represent the chromosomes. The genetic
operations such as crossover, mutation, etc., can be performed using
simple bit manipulations. Genetic Programming is the extension of the
genetic model of learning into the space of programs. The components
that represent the population are not fixed-length character strings and
they encode possible solutions to the given problem. These components
in the population are programs and when they are executed, they are
the candidate solutions to the problem. These programs are expressed
in genetic programming as parse trees, rather than as lines of code.

Genetic Programming generates programs by following an evolution-
ary approach. The process is as follows: The task or the problem that
is to be solved should be specified by the user along with the evalua-
tion function. The user has to specify the kind of operation that is to
be performed by the programs. Once the specifications are provided, an
initial population of programs is randomly generated. Each and every
program undergoes a translation, compilation, and execution process.

591
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The performance of these tasks depends on the problem assessed. This
process enables the calculation of a fitness value for each of the pro-
grams, and the best of them are chosen for reproduction. The chosen
programs undergo a mutation operation and the offspring produced are
added to the next generation of programs. This process repeats until
a termination condition is attained. In this section, a brief history of
genetic programming is discussed. To get an idea about programming
a basic introduction to Lisp Programming Language is dealt. The basic
operations of GP are discussed along with an illustration.

The programs in GP are evolved to solve pre-defined problems. The
term evolution refers to an artificial process modeled from natural evolu-
tion of living organisms. This process has been abstracted and stripped
off of most of its intricate details. It has been transferred to the world of
algorithms where it can serve the purpose of approximating solutions to
given or even changing problems (machine learning) or for inducing pre-
cise solutions in the form of grammatically correct (language) structures
(automatic programming).

Genetic programming is a domain-independent method that genet-
ically breeds a population of computer programs to solve a problem.
Moreover, genetic programming transforms a population of computer
programs into a new generation of programs by applying analogs of nat-
urally occurring genetic operations iteratively. This process is illustrated
in Figure 14.1.

The genetic operations include crossover (sexual recombination), mu-
tation, reproduction, gene duplication, and gene deletion. Analogs of
developmental processes are sometimes used to transform an embryo
into a fully developed structure. Genetic programming is an extension
of the genetic algorithm in which the structures in the population are
not fixed-length character strings that encode candidate solutions to a
problem, but programs that, when executed, are the candidate solutions
to the problem.

The programs are represented in a tree form in GP, which is the most
common form, and the tree is called program tree (or parse tree or syn-
tax tree). Some alternative program representations include finite au-
tomata (evolutionary programming) and grammars (grammatical evolu-
tion). For example, the simple expression min(x/y*5, x+y)is represented
as shown in Figure 14.2. The tree includes nodes (which are also called
points) and links. The nodes indicate the instructions to execute. The
links indicate the arguments for each instruction. In the following, the
internal nodes in a tree will be called functions, while the tree’s leaves
will be called terminals.

The trees and their expressions in genetic programming can be repre-
sented using prefix notation (e.g., as Lisp S-expressions). A basic idea of

© 2010 by Taylor and Francis Group, LLC



Genetic Programming 593

Generate Population of 

Random programs 

Evaluate Fitness 

Darwinian Selection 

Genetic operations 

Best Solution 

FIGURE 14.1: Main Loop of Genetic Programming

FIGURE 14.2: Basic Tree-Like Program Representation Used in Ge-
netic Programming
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lisp programs is required to understand the representations and program-
ming of genetic programming. A brief description about Lisp program-
ming is discussed in Section 14.3. In prefix notation, functions always
precede their arguments. In this notation, it is easy to see the corre-
spondence between expressions and their syntax trees. Simple recursive
procedures can convert prefix-notation expressions into infix-notation
expressions and vice versa.

14.2 Growth of Genetic Programming

The emergence of Genetic Programming started with the utilization of
evolutionary algorithms by Nils Aall Barricelli in 1954. The application
demanded evolutionary simulations and evolutionary algorithms which
were widely accepted as standard optimization methods with reference
to the work of Ingo Rechenberg in the 1960s and early 1970s. His team
was capable of solving complex engineering problems through evolution
strategies. In addition to Rechenberg’s work, John Holland’s work was
the extremely influential one during the early 1970s.

The introductory results on the GP methodology were described by
Stephen F. Smith in 1980. Later during 1981 Forsyth reported the evo-
lution of small programs in forensic science for the UK police. The initial
statement of modern Genetic Programming stating that, “GP are proce-
dural languages coordinated in tree-based structures and functioned by
suitably defined GA-operators”, was contributed by Nichael L. Cramer in
1985, and independently by Jrgen Schmidhuber in 1987. Based on these
works, John R. Koza, a primary proponent of GP initiated the practi-
cal application of genetic programming in several complex optimization
and search problems. It ought to be noted that Koza states GP as a
generalization of genetic algorithms rather than a specialization.

GP is computationally more intensive and therefore in the 1990s it
was primarily employed to work out fundamental elementary problems.
Recently due to the exponential growth in CPU power, GP has pro-
duced numerous novel and more prominent results in fields such as quan-
tum computing, electronic design, game playing, sorting, searching, and
many others. These consequences admit the replication or growth of sev-
eral post-year-2000 inventions. GP has also been employed to evolvable
hardware in addition to computer programs. Initially, formulating a hy-
pothesis for GP has been really difficult and so in the 1990s GP was
considered a sort of outcast among search techniques. Just afterwards,
a series of breakthroughs occurred in the early 2000s, the theory of GP
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has had a impressive and fast development, therefore it has been feasible
to build precise probabilistic models of GP.

14.3 The Lisp Programming Language

During the late 1950s, a family of programming languages named as
Lisp was framed by John McCarthy. The basic computation mechanism
of Lisp programs is recursion. The language is implemented to support
a wide range of platforms. Based on the computer available the user
can execute Lisp in several methods. Likewise there are a few minimal
modifications between the LISP interpreters. The two basic types of
data structures available in Lisp are the atom and the list. Atoms can
be either symbols or numbers. Lists are linked lists where the elements
of the list are either atoms or other lists. Lists of atoms are written as
follows:

(1 B D 5)

Nested list structures (lists with lists as elements) are written as follows:

(A (1 2) D (4 (6 G)))

This example is a list of four elements. The first is the atom A; the
second is the sublist (1 2); the third is the atom D, and the fourth is the
sublist (4 (6 G)). Internally, lists are usually represented as single-linked
lists. Each node of the list consists of two pointers. The first pointer
points either to the corresponding atom or to the corresponding sublist.
The second pointer points to the next node in the list.

Pure Lisp is a functional programming language. A functional program
is computed by application of functions to arguments. Parameters such
as symbols, numbers, or other function calls can be used as arguments.
There is no need of assignment statements or variables for computation.
Thus, a Lisp program is just a collection of functions that can call each
other. Functions in Lisp are represented in the same way as data, namely
as nested list structures. Here is a function that squares its argument x:

(defun square (x)(* x x))

The defun can be thought of as a key word that indicates that a
function definition follows. The name of the function is square. Then
follows a list of arguments (dummy parameters). Finally is the body of
the function. The function returns the value resulting from multiplying
x times x.
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Hereis a slightly more complex example that

uses the function square:

(defun hypotenuse(a b))

(sqrt (+ (square a) (square b))))

The function to find the length is defined

as (defun list-length(x)

(if (null x)

0

(+ 1 (length(rest x)))))

If the list is null(i. e., empty), then the length is 0. Otherwise, the
length is 1 plus the length of the list with the first element removed.
Since Lisp functions are stored as data, it is very easy to write func-
tions that define and manipulate other functions. This is exactly what
genetic programming does. It is relatively easy to write a simple genetic
programming package in Lisp.

14.4 Functionality of Genetic Programming

The operational steps such as creating an individual, creating a ran-
dom population, fitness test, functions and terminals, the genetic oper-
ations, selection functions, crossover operation, mutation and user de-
cisions of a typical genetic programming are described in this section
(Figure 14.3).

14.4.1 Generation of an Individual and Population

The basic elements of an individual are its genes. These genes are
combined together to form a program. An individual’s program is a
tree-like structure and as such there are two types of genes: functions
and terminals.

Terminals are defined as leaves or nodes without branches and func-
tions are defined as the nodes with children. The node’s children provide
the arguments for the function. In the example (Figure 14.4) there are
three functions (−, + and /) and four terminals (x, 3, y and 6). The /
(division) function requires two arguments: the return value of “−” and
the return value of the subtree whose root is “+”. The − (subtraction)
function takes two arguments which are provided by x and 3. The + (ad-
dition) function also takes two arguments which are provided by y and 6.
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Generation of an Individual  
and population 

Functions and Terminals 

Creating a Random Population 

Fitness Test 

Best Fit 
Solution

Stop

Genetic Operations 

Selection Crossover Mutation

FIGURE 14.3: Functionality of Genetic Programming

The example may be interpreted as (x−3)/(y+6). The genes that will
be available to the GP system must be selected or created by the user.
This is an important decision as poor selection may well render the
system incapable of evolving a solution.

14.4.2 Creating a Random Population

Once the genes are chosen a random population is created. To create
random population there are three basic techniques such as grow, full,
and ramped-half-and-half:
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/

- +

y 6x 3

FIGURE 14.4: A Typical Simple Individual That Returns( x-
3)/(y+6)

Grow

In the grow technique the whole population is created, and the individ-
uals are created one at a time. The individual created with this technique
is a tree of any depth up to a specified maximum, m. The nodes which
are created are either terminal or functional nodes. If the node is a ter-
minal, a random terminal is chosen. If the node is a functional node, a
random function is chosen, and that node is given a number of children
equal to the number of arguments of the function. The algorithm starts
for every function nodes’ children, and proceeds until the child depth is
m. This method does not guarantee individuals of a certain depth (al-
though they will be no deeper than m). Instead it provides a range of
structures throughout the population. This technique tends to produce
individuals containing only one (terminal) node. Such individuals are
quickly bred out if the problem is non-trivial, and therefore not really
valuable.

Full

This technique overcomes the limitation of the grow method. In the
full method the terminals are guaranteed to be a certain depth. This
guarantee does not specify the number of nodes in an individual. This
method requires a final depth, d.

1. Every node, starting from the root, with a depth less than d, is
made a randomly selected function. If the node has a depth equal
to d, the node is made a randomly selected terminal.
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2. All functions have a number (equal to the arity of the function) of
child nodes appended, and the algorithm starts again. Thus, only
if d is specified as one, could this method produce a one-node tree.

Ramped-half-and-half

This technique was used by Koza, To increase the variation in struc-
ture both grow and full methods can be used in creating the population-
this technique, ramped-half-and-half, is the sole method. Only a maxi-
mum depth, md, is specified but the method generates a population with
a good range of randomly sized and randomly structured individuals.

1. The population is evenly divided into parts: a total of md-1.

2. One half of the population is produced by the grow method and the
other half is produced using the full method. For the first part, the
argument for the grow method, m, and the argument for the full
method, is d. This continues to part md-1, where the number md
is used. Thus a population is created with good variation, utilizing
both grow and full methods.

14.4.3 Fitness Test

After the initial random population has been created, the individuals
are required to be evaluated for their fitness. Evaluating the fitness func-
tion of a program requires how well a program performs into a numerical
value. Generally, this requires executing the program several times with
different parameters, and evaluating the output each time.

14.4.4 Functions and Terminals

The most important components of genetic programming are the ter-
minal and function sets. All the variables and constants defined by the
user are contained in the terminal set while all the functions, subroutines
are in the function set. The functions can be any mathematical functions,
such as addition, subtraction, division, multiplication, and other more
complex functions.

14.4.5 The Genetic Operations

The evolutionary process starts, as soon as the fitness test to all the in-
dividuals in the initial random population is completed. The individuals
in the new population are formed by genetic operators like reproduction,
crossover, and selection. Whenever a new population is created the old
population is destroyed.
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14.4.6 Selection Functions

Various selection functions can be used depending upon the applica-
tion, among which fitness proportionate selection, greedy over-selection,
and tournament selection are the most common.

Fitness-Proportionate Selection

In this method, the individuals are selected depending on their ability
by comparing them with the entire population. Due to this comparison,
the best individual of a population is likely to be selected more frequently
than the worst. The selection probability is computed with the following
algorithm:

1. The raw fitness is restated in terms of standardized fitness. A lower
standardized fitness value implies a better individual. If the raw
fitness increases as an individual improves then an individual’s
standardized fitness is the maximum raw fitness (i.e., the fitness
of the best individual in the population) minus the individual’s
raw fitness. If the raw fitness decreases as an individual improves,
standardized fitness for an individual is equal to the individual’s
raw fitness.

2. Standardized fitness is then restated as adjusted fitness, where a
higher value implies better fitness. The formula used for this is:

adj(i) =
1

1 + std(i)
(14.1)

where adj(i) is the adjusted fitness and std(i) is the standardized
fitness for individual i. The use of this adjustment is beneficial for
separation of individuals with standardized fitness values that ap-
proach zero.

3. Normalized fitness is the form used by both selection methods. It
is calculated from adjusted fitness in the following manner:

norm(i) =
adj(i)

∑M
k=1 adj(k)

(14.2)

where norm(i) is the normalized fitness for individual i, and M is
the number of individuals in the population.

4. The probability of selection (sp) is:

sp(i) =
norm(i)

∑M
k=1 norm(k)

(14.3)
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This can be implemented by:

(a) Order the individuals in a population by their normalized fitness
(best at the top of the list).

(b) Chose a random number, r, from zero to one.

(c) From the top of the list, loop through every individual keeping
a total of their normalized fitness values. As soon as this total
exceeds r stop the loop and select the current individual.

Greedy Over-Selection

Greedy over-selection is mainly applied to reduce the number of gen-
erations required for a GP run. The individuals are selected based on
their performance but this method biases selection toward the highest
performers. The normalized fitness is calculated for every individual.

1. Using the normalized fitness values, the population is divided into
two groups. Group I includes the top 20% of individuals while
Group II contains the remaining 80%.

2. Individuals are selected from Group I 50% of the time. The selec-
tion method inside a group is fitness-proportionate.

Tournament Selection

In this method, pairs of individuals are chosen at random and the
most fit one of the two is chosen for reproduction. If two unfit individu-
als are paired against each other, one of them is guaranteed to reproduce.
Sometimes individuals are chosen by assigning a rank using the evalua-
tion function and the ones at the top of the ranking are chosen, which
implies that only the best will be chosen for reproduction. As with most
AI applications, it’s a question of trying out different approaches to see
which works for a particular problem.

14.4.7 MATLAB Routine for Selection

function selm = gpols selection(popu,gap,pc,pm,tsels);

% Selection operator, mix the new generation

% selm = gpols selection(popu,ggap,pc,pm,tsles)

% selm <- matrix (n x 3)

% popu - >population
% ggap - >generation gap (0-1)

% pc - >crossover probability (0-1)
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% pm - >mutation probability (0-1)

% tsels - >selection (integer)

%

% Remark:

% if tsels = 0 - >roulette wheel selection

% if tsels = 1 - >total random selection

% if tsels >= 2 - >tournament selection, tsels = tournament

% size Example values: ggap = 0.8, pc = 0.7, pm = 0.3,

% tsels = 2 Columns of selm:

% 1: index of individual (first parent)

% 2: index of second ind. (second parent) (if crossover)

% 3: 0: direct rep., 1: crossover, 2: mutation

%

% Begin

popun = popu.size;

selm = zeros(popun,3);

% Fitness values and sort fit = zeros(1,popun);

for i = 1:popun,

fit(i) = popu.chromi.fitness;

end

if ˜isempty(find(fit<0)),s

end

[fitsort,sortix] = sort(-fit);

fitsort = -fitsort./sum(-fitsort);

fitsum = cumsum(fitsort);

fitsum(end) = 1; % avoid ˜1E-16 error from representation

% Copy elite indv.s

i = floor((1-gap)*popun);

if i>=1 & i<=popun,

selm(1:i,1) = sortix(1:i)’;

i = i+1;

else

i = 1;

end

nn = i-1;

% New individuals

while nn<popun,

if tsels > 0,
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j1 = tournament(fit,tsels);

else

j1 = roulette(fitsum,sortix);

end

% Select a method

r = rand;

if r<pc,

% Crossover

if tsels > 0,

j2 = tournament(fit,tsels);

else

j2 = roulette(fitsum,sortix)

end

selm(i,1) = j1;

selm(i,2) = j2;

selm(i,3) = 1;

i = i+1;

nn = nn+2;

elseif r<pc+pm,

% Mutation

selm(i,1) = j1;

selm(i,3) = 2;

i = i+1;

nn = nn+1;

else

% Direct copy

selm(i,1) = j1;

selm(i,3) = 0;

i = i+1;

nn = nn+1;

end

end

selm = selm(1:i-1,:);

%-------------------------------------------------

function j = tournament(fit,tsels);

n = length(fit);

jj = floor(rand(tsels,1)*n)+1;

[fitmax,maxix] = max(fit(jj));

j = jj(maxix);

%-------------------------------------------------

function j = roulette(fitsum,sortix);
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v = find(fitsum >= rand(1,1));

j = sortix(v(1));

14.4.8 Crossover Operation

The structures in genetic programming are altered using two primary
genetic operators, crossover and mutation. In the crossover operation,
two parent solutions are sexually combined to form two new offspring
solutions. The fitness function is evaluated and the parents are chosen.
There are three methods for selecting the solutions for the crossover
operation. The first method is based on the fitness probability of the
solution. If f(sj(t)) is the fitness of the solution si and

∑M
j=1 f(sj(t)) is

the total sum of all the members of the population, then the probability
that the solution si will be copied to the next generation is:

f(si(t))
∑M

j=1 f(sj(t))
(14.4)

The second method for selecting the solution is tournament selection.
The genetic program selects two random solutions among which the
solution with the higher fitness wins. This technique simulates biological
mating patterns where two members of the same sex compete to mate
with a third one of a different sex.

The last method is done by ranking the fitness function of the solution
of the population.

Offspring are created in crossover operation by deleting the crossover
fragment of the first parent and then inserting the crossover fragment of
the second parent. Similarly a second offspring is also created. Consider
the two expressions in Figure 14.5, where the expressions are represented
in a tree form.

Given a tree based GP the crossover operator works in the following
manner:

1. Select two individuals, based on the selection mechanism.

2. Select a random subtree in each parent.

3. Swap the two subtrees or sequences of instructions.

The crossover operator closely mimics the process of biological sex-
ual reproduction. With this biological process as a base, the crossover
operator has been used to claim that GP search is more efficient than
methods based solely on mutation.

Figure 14.5 illustrates one of the main advantages of genetic program-
ming over genetic algorithms. In genetic programming identical parents
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Crossover Operation with different parents 
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FIGURE 14.5: Crossover operation
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Crossover Operation with identical parents 

Parents 

Children
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FIGURE 14.5: (Continued)
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can yield different offspring, while in genetic algorithms identical parents
would yield identical offspring. The bold selections indicate the swapped
subtrees.

14.4.9 MATLAB Routine for Crossover

function [tree1,tree2] = recombinate trees

(treein1,treein2

% ,mode,symbols);

% Recombinates two trees

% [tree1,tree2] = recombinate trees(treein1,treein2,

mode,

% symbols)

% tree1,tree2 <- two childs

% treein1,treein2 -> two parents

% mode -> 1: one-point- 2: two-point crossover

% symbols -> cell arrays of operator and terminator

node

% strings

%

% Begin

tree1 = treein1;

tree2 = treein2;

nn = [length(symbols1), length(symbols2)];

% Calculate indexes

switch mode,

case 1,

[n,v1] = tree size(tree1);

[n,v2] = tree size(tree2);

n = max([tree1.maxsize, tree2.maxsize]);

dummy1 = zeros(n,1);

dummy2 = zeros(n,1);

dummy1(v1) = 1;

dummy2(v2) = 1;

v = find((dummy1+dummy2)==2);

ix1 = v(floor(rand*(length(v))+1));

ix2 = ix1;

case 2,

[n,v] = tree size(tree1);

ix1 = v(floor(rand*(length(v))+1));

[n,v] = tree size(tree2);

ix2 = v(floor(rand*(length(v))+1));
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otherwise,

return;

end

% Repleace subtrees (recombinate)

sub1 = tree getsubtree(treein1,ix1);

sub2 = tree getsubtree(treein2,ix2);

tree1 = tree inserttree(sub2,tree1,ix1,nn(2));

tree2 = tree inserttree(sub1,tree2,ix2,nn(2));

14.4.10 Mutation Operation

In genetic programming two kinds of mutations are possible. In the
first technique a function always replaces a function and a terminal re-
places a terminal only. Whereas in the second technique, the entire sub-
tree can replace another subtree. Figure 14.6 explains the concept of
mutation:

14.4.11 MATLAB Routine for Mutation

function tree = tree mutate(treein,symbols);

% Mutates a tree (mutates one randomly selected node)

% tree = tree mutate(treein,symbols)

% tree <- the output tree

% treein ->the input tree

% symbols ->cell arrays of operator and terminator

% node strings %

% Begin

tree = treein;

nn = [length(symbols1), length(symbols2)];

% Mutate one node

[n,v] = tree size(tree);

i = v(floor(rand*(length(v))+1));

if i<(tree.maxsize+1)/2 & rand<0.5,
[tree.nodetyp(i) tree.node(i)] = tree genrndsymb

((tree.nodetyp (i)==1),nn); else

while tree.node(i)==treein.node(i) & tree.nodetyp

(i)==treein.nodetyp(i),

[tree.nodetyp(i) tree.node(i)] =

tree genrndsymb((tree.nodetyp(i)˜=1),nn);

end

end

%------------------------------------------------------

function [nodetyp,node] = tree genrndsymb(p0,nn)
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% Generate a random symbol (terminate or operate)

% [nodetyp,node] = tree genrndsymb(p0,nn)

% nodetyp,node <- results

% p0 ->probability of terminate node

% nn ->vector [number of operators, variables]

%

if rand<p0,

nodetyp = 2;

else

nodetyp = 1;

end

node = floor(nn(nodetyp)*rand)+1;

14.5 Genetic Programming in Machine Learning

In several fields like artificial intelligence, machine learning, or sym-
bolic processing, several problems originate whose resolution can be con-
sidered as the search of a computer program, within a space of feasi-
ble programs that produce a few desired outputs from the inputs. This
search should be executed in such a way that the searched program is the
more capable for the problem that is considered. The genetic program-
ming (GP) paradigm furnishes the appropriate framework to implement
this type of search in an efficient and flexible mode, because it can adapt
to any problem type.

The paradigm of genetic programming is based on the principle of
survival of fittest (C. Darwin). Beginning from a randomly-generated
initial population, it acquires populations adopting this principle. The
new individuals are a product of genetic operations on the current pop-
ulation’s better individuals. In association with the genetic algorithms
(GAs), GP contributes the philosophy and the characteristics of being
heuristic and stochastic.

Within the area of the machine learning, various paradigms are con-
centrated toward the resolution of problems. In each paradigm the ap-
plied structures are different.

Connectionist Model

Here the value of the signal is amplified or diminished with strengths
known as weights which are real valued. The solution to the problem is

© 2010 by Taylor and Francis Group, LLC



Genetic Programming 611

given as a group of real-valued weights.
Application field: NEURAL NETWORKS

Evolutionary Model

In this model, the solutions are fixed-length strings. Each chromosome
represents a possible solution to the problem. A conventional genetic al-
gorithm is applied to obtain the best solution (or a good enough solution)
among all possible solutions.

Application field: GENETIC ALGORITHMS

Inductive Model

According to this paradigm the solutions to a certain problem are
given by decision trees. Each one of these trees classifies each instance
of the problem in classes, for which a possible solution exists.

Application field: CLASSIFIER SYSTEMS

All the above mentioned models can be more or less effective in solving
a certain problem type. The approach that is used to determine the
efficiency of a method is, in the first place, the flexibility to adapt to
several types of problems, and in second its easiness to represent the
solutions to this problem in a natural and comprehensible way for the
user. Computer programs offer flexibility:

• To perform operations with variables of different types.

• To carry out operations conditioned to the results obtained in in-
termediate points.

• To carry out iterations and recursions.

• To define routines that can be used later on.

Flexibility of a solution includes the concepts of flexibleness in the
size, the form, and the structural complexity of the solution. The user
should avoid expressing any kind of explanation or previous imposition
on the size or form of the result. The true ability of GP resides in its
capability of adaptating to the problem type, for what the conditions
on the size, the complexity, or the form of the result should come out
during its own resolution process. The importance of the representation
of the solutions dwells in that the genetic algorithms keep in line the
structure of the representation directly and not its own solution.

String-representations do not instantly provide the hierarchical data
structure of programs. Likewise, the adaptation of the form, size, and

© 2010 by Taylor and Francis Group, LLC



612 Computational Intelligence Paradigms

complexity of individuals gets really hard. Consequently, GP has ex-
tended toward more complex representations that contribute the neces-
sitous flexibility.

GP uses programs similar to individuals, but the variance of opinions
appears with its implementation. Cramer uses a parse-tree-like repre-
sentation of the code, and specifies suitable operations (for example,
exchange of subtrees for recombination). Fujiki and Dickinson have de-
veloped a system that is based on the generation of programs that use
simple conditional sentences of LISP (COND).

The resolution of numerous problems could be patterned as an evolu-
tionary process in which the fittest individual survives. The simulation
of this evolutionary process begins with the generation of an initial pop-
ulation, composed by computer programs that represent the individuals.
These programs are generated starting from the group of functions and
terminal elements that adapt better to the problem to solve. In most
cases, the election of the group of terminal and nonterminals (functions)
is critical to make the algorithm work properly.

For instance, to render complex mathematical functions it is interest-
ing to introduce in the group of non terminals such functions as sines,
cosines, and so on. For graphic applications, it is usually quite normal
to introduce primitive of the type Line, Circle, Torus that graphically
represent figures in diverse ways.

The appropriateness of each program is quantified in terms of how
of well it performs in the surroundings of the particular problem. This
measure is designated as the fitness function. A program is generally
measured in different representative cases, and the final measure of its
fitness will be an average of all the measures. Generally, the result of
the genetic algorithm is the best individual generated in generation n,
where n is the maximum number of generations.

14.6 Elementary Steps of Genetic Programming

The task to be solved is identified and a high-level statement of the
problem is formed. This statement is the input to the genetic program-
ming system. To map the high-level statement with the GP system,
several preparatory steps are required to be specified by the user. The
steps are:

(1) Set of terminals (e.g., the independent variables of the problem,
zero-argument functions, and random constants) for each branch
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of the to-be-evolved program

(2) Set of primitive functions for each branch of the to-be-evolved pro-
gram

(3) Fitness measure (for explicitly or implicitly measuring the fitness
of individuals in the population)

(4) Certain parameters for controlling the run

(5) Termination criterion and method for designating the result of the
run

14.6.1 The Terminal Set

All the variables and constants of the evolved programs are stored in
the terminal set. Whereas the function set consists of all the problem
specific details. Consider a scenario in which a robot is being controlled,
it may be that movement functions are parameterized by directions such
as left, right, forward, backward, which would form part of the terminal
set for that GP application. Likewise constants like pi etc., can be in
the terminal set. The terminal set is the terminal node, since in the tree
representations, the constants and variables are found at the end of the
branches.

14.6.2 The Function Set

Function set is a set of domain related functions used along with the
terminal set to construct effective solutions to a given problem. As with
the evaluation function, the set of functions will be hand-carved for the
particular task. For instance, while evolving a program to control the
movement of a washer it tries to use the functions will include things
like time taken to wash, dirtiness in the clothes, etc., The function set
also includes the set of programmatic functions such as if-then-else and
for-loops similar to the traditional “c” programming language.

14.6.3 The Fitness Function

The numeric value assigned to each member of a population to provide
a measure of the appropriateness of a solution to the problem in question
is known as fitness function.
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14.6.4 The Algorithm Control Parameters

The algorithm control parametric quantities include population size,
crossover, and mutation probabilities. There are a lot of possible actions
to predict the proceedings of the search, and therefore the user ought
to fine-tune several parameters to optimize the performance of the GP
system. The main consideration will be the size of the population, as this
will effect the performance of GP. Larger populations imply less number
of generations within the time available, but leads to larger diversity
within the population of programs. Another important parameter is the
length of the programs that are produced as the programs grow. A ma-
jor critique of GP approach is that the programs produced are too large
and elaborated to be understood, therefore, the length of the programs
should be kept relatively small. Other parameters will control various
probabilities, including the probability that each genetic operator is em-
ployed.

14.6.5 The Termination Criterion

The stopping conditions for the GP engine to stop are very similar to
that of Genetic Algorithms. The process is allowed to run for a certain
specified amount of time and then determine the best individual and
terminate the process. Another approach is to allow the process until it
has produced a certain number of generations, then the best individual
produced in any generation is chosen. Many GP implementations enable
the user to monitor the process and click on the stop button when it
appears that the fitness of the individuals has reached a plateau.

This is generally a predefined number of generations or an error tol-
erance on the fitness. It should be noted that the first 3 components
determine the algorithm search space, while the final 2 components af-
fect the quality and speed of search. In order to further illustrate the
coding procedure and the genetic operators used for GP, a symbolic re-
gression example will be used. Consider the problem of predicting the
numeric value of an output variable, y, from two input variables a and
b. One possible symbolic representation for y in terms of a and b would
be,

y = (a − b)/3

Figure 14.7 demonstrates how this expression may be represented as
a tree structure.

With this tree representation, the genetic operators of crossover and
mutation must be posed in a fashion that allows the syntax of resulting
expressions to be preserved. A valid crossover operation is shown where
the two parent expressions are given by:
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FIGURE 14.7: Representation of a Numeric Expression Using a Tree
Structure.

Parent 1: y = (a − b) / 3 (2)

Parent 2: y = (c − b) * (a + c) (3)

Parent 1 has input variables “a” and “b” and a constant “3” while
parent 2 has three input variables “a”, “b” and “c”.

Both expressions attempt to predict the process output, “y”.

If the “/” from parent 1 and the “*” from parent 2 are chosen as
the crossover points, then the two offspring are given by:

Offspring 1: y = (a − b) / (a + c) (4)

Offspring 2: y = (c − b)* 3 (5)

14.7 Flowchart of Genetic Programming

The most important dissimilarity between genetic programming and
genetic algorithms is based on the solution representation. Genetic pro-
gramming creates computer programs in the Lisp or scheme computer
languages as the solution. Genetic algorithms create a string of num-
bers that represent the solution. Genetic programming uses the basic
executional steps as follows to solve problems:

• Step 1: Generate a random initial population
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• Step 2: Assign a fitness value to each individual in the population

• Step 3: Create a new population

• Step 4: Choose the best existing solutions

• Step 5: Create new solutions by crossover and mutation

• Step 6: The best solution is chosen as the fittest solution.

The process of genetic programming starts with an initial population
of computer programs composed of functions and terminals appropriate
to the problem. These individual programs are usually generated by
recursively generating a rooted labeled program tree made up of random
choices of the primitive functions and terminals. The individuals are
generated with a maximum size, which is predefined. Each program in
the population has different size and is of different shape (shape of the
tree).

Every individual program present in the population is executed sepa-
rately. After which, each individual program in the population is evalu-
ated in order to understand the performance. This evaluation produces a
single explicit numerical value known as the fitness. In most of the prac-
tical applications, the measure of fitness is multiobjective which means
that it combines two or more different elements. The different elements
of the fitness measure are often in competition with one another to some
degree. For several practical problems, every individual in the population
is executed over a representative sample of different fitness cases. These
fitness cases may represent different values of the program’s input(s), dif-
ferent initial conditions of a system, different sensor inputs, or different
environments. Merely the fitness cases are implemented probabilistically.
The initial population is chosen in random, in the sense that the search is
a blind random search of the search space of the problem. Generally the
individuals in the first generation, generation 0, have very poor fitness.
The differences in fitness are then exploited by genetic programming.
Genetic programming applies Darwinian selection and the genetic oper-
ations to create a new population of offspring programs from the current
population.

The genetic operations include crossover (sexual recombination), mu-
tation, reproduction, and the structure-altering operations. Once the
individuals are selected from the population by the fitness measure, the
individuals undergo genetic operations such as crossover, mutation, etc.
During the probabilistic selection process of the individuals, better indi-
viduals are preferred over inferior individuals. This implies that the best
individual in the population is not necessarily selected and the worst
individual in the population is not necessarily passed over.
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FIGURE 14.8: Genetic Programming Flowchart

The genetic operations produce a population of new offspring from the
individuals of the current population. The fitness evaluation and the ge-
netic operations are performed iteratively over several generations. This
iterative process of measuring fitness and performing the genetic oper-
ations is repeated over many generations. The iterative process stops
when the termination criterion is satisfied. The best individual encoun-
tered during the iterative process is chosen as the best-fit solution.

There are numerous alternative implementations of genetic program-
ming that vary from the foregoing brief description. Figure 14.8 is a
flowchart showing the executional steps of a run of genetic programming.
The flowchart shows the genetic operations of crossover, reproduction,
and mutation as well as the structure-modifying operations.
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14.8 Benefits of Genetic Programming

A few advantages of genetic programming are:

1. Without any analytical knowledge accurate results are obtained.

2. If fuzzy sets are encoded in the genotype, new and more suited-
fuzzy sets are generated to describe precise and individual mem-
bership functions. This can be done by means of the intersection
and/or union of the existing fuzzy sets.

3. Every component of the resulting GP rule-base is relevant in some
way for the solution of the problem. Thus null operations that will
expend computational resources at runtime are not encoded.

4. This approach does scale with the problem size. Some other ap-
proaches to the cart-centering problem use a GA that encodes NxN
matrices of parameters. These solutions work badly as the problem
grows in size (i.e., as N, increases).

5. With GP no restrictions are imposed on how the structure of so-
lutions should be. Also the complexity or the number of rules of
the computed solution is not bounded.

14.9 MATLAB Examples Using Genetic Program-
ming

During the operation of GP, it generates a lot of potential solutions
in the form of a tree-structure. These trees may have better and worse
terms (subtrees) that contribute more or less to the accuracy of the
model represented by the tree. This section focuses on the MATLAB
coding to apply Orthogonal Least Squares (OLP) Method to estimate
the contribution of the branches of the tree to the accuracy of the model.
Illustration 1 discusses the GP-OLS model for a static function and
Illustration 2 discusses a dynamical model.

14.9.1 Illustration 1: Static Function Identification

This Genetic Programming code applies Orthogonal Least Squares
algorithm (OLS) to improve the search efficiency of GP. It can be used for
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static equation discovery or structure identification of simple dynamical
linear-in-parameters models. This section illustrates the implementation
of a static function identification of models.

% Static function identification

clear all

% Regression matrix

ndata = 100;

nvar = 3;

X = rand(ndata,nvar);

% Output vector (y = 10*x1*x2+5*x3)

Y = 10*X(:,1).*X(:,2) + 5*X(:,3);

Y = Y + randn(size(Y))*0.01;

% some ’measurement’ noise

% GP equation symbols

symbols1 = ’+’,’*’;

symbols2 = ’x1’,’x2’,’x3’;

% length(symbols2) = size(X,2) !

% Initial population

popusize = 40;

maxtreedepth = 5;

popu = gpols init(popusize,maxtreedepth,symbols);

% first evaluation

opt = [0.8 0.5 0.3 2 1 0.2 30 0.05 0 0];

popu = gpols evaluate(popu,[1:popusize],

X,Y,[],opt(6:9));

% info

disp(gpols result([],0));

disp(gpols result(popu,1));

% GP loops

for c = 2:20,

% iterate

popu = gpols mainloop(popu,X,Y,[],opt);

% info

disp(gpols result(popu,1));

end

% Result

[s,tree] = gpols result(popu,2);

disp(s);
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% ----------------------------------------------

% Subprograms

% ----------------------------------------------

function popu = gpols init(popusize,maxtreedepth

,symbols);

% Initializes population variable

% popu = gpols init(popusize,maxtreedepth,symbols)

% popu <- generated individuals (population

% variable) popusize ->number of

% individuals (size of population) maxtreedepth

% ->maximum tree depth symbols ->

% cell arrays of operator and terminator node

% strings. %

% E.g.

% symbols1 = (’+’,’*’);

% symbols2 = {’x1’,’x2’,’x3’};
% popu = gpols init(20,5,symbols);

%

popu.generation = 1;

popu.symbols = symbols;

popu.size = popusize;

for i = 1:popusize,

popu.chromi.fitness = 0;

popu.chromi.mse = 0;

popu.chromi.tree = tree genrnd(maxtreedepth,symbols);

end

% -------------- End of gpols init -------------------

function popu = gpn evaluate(popuin,ixs,X,Y,Q,optv);

% Evaluates individuals and identificates their linear

% parameters popu=gpols evaluate(popuin,ixs,X,Y,Q,optv)

% popu <- result (population)

% popuin ->input population

% ixs ->vector of indexes of individuals to evaluate

% X ->Regression matrix without bias (!)

% Y ->Output vector

% Q ->Weighting vector (set empty if not used)

% optv ->evaluation parameters (set empty for default)

% [optv(1)optv(2)]:a1,a2 tree-size penalty parameters

% (default: 0,0)

% optv(3): OLS treshold value,range: 0-1 (default:0)

% optv(4): if == 1 then polynomial evaluation else

% normal (default: 0)

%

% Output

popu = popuin;
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% Options and parameters

if isempty(optv),

optv = zeros(1,4);

end

a1 = optv(1);

a2 = optv(2);

olslimit = optv(3);

polye = optv(4);

% WLS matrices

if isempty(Q),

Q = ones(size(Y,1),1);

end

Q = diag(Q);

X = sqrt(Q)*X;

Y = sqrt(Q)*Y;

% Symbolum list

for i = 1:length(popu.symbols1),

s = popu.symbols1i(1);

if s==’*’ | s==’/’ | s==’ˆ’ | s==’\’,
symbols1i = strcat(’.’,popu.symbols1i);

else

symbols1i = popu.symbols1i;

end

end

for i = 1:size(X,2),

symbols2i = sprintf(’X(:,end

% MAIN loop

for j = ixs,

% Get the tree

tree = popu.chromj.tree;

% Exhange ’+’ ->’*’under non-’+’

% (polynom-operation) if (polye == 1),

tree = polytree(tree);

end

% Collect the ’+ parts’

[vv,fs,vvdel] = fsgen(tree,symbols);

% Prune redundant parts

tree = prunetree(vvdel,tree,symbols);
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% Collect the ’+ parts’

[vv,fs,vvdel] = fsgen(tree,symbols);

if ˜isempty(vvdel),

error(’Fatal error:redundant strings after

deleting’);

end

% OLSQ

[vfsdel,err] = gpols olsq(fs,X,Y,olslimit);

tree.err = err;

vvdel = vv(vfsdel);

% Prune redundant parts

tree = prunetree(vvdel,tree,symbols);

% Collect the ’+ parts’

[vv,fs,vvdel] = fsgen(tree,symbols);

if ˜isempty(vvdel),

error(’Fatal error:redundant strings after

deleting’);

end

% LSQ

[mse,cfsq,theta] = gpols lsq(fs,X,Y);

fit = cfsq;

% Tree-size penalty

if a1˜=0 & a2˜=0,

Sl = tree size(tree);

fit = fit / (1+exp(a1*(Sl-a2)));

end

% Chrom

popu.chromj.tree = tree; % write back the tree

popu.chromj.mse = mse;

popu.chromj.fitness = fit;

popu.chromj.tree.param(1:length(theta)) = theta;

popu.chromj.tree.paramn = length(theta);

end

%----------------------------------------------------

function [tree] = polytree(treein);

tree = treein;

v = [1];

vv = [];

i = 1;
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while i <= length(v),

ii = v(i);

if tree.nodetyp(ii)==1 & tree.node(ii)==1,

v = [v, ii*2, ii*2+1];

else

vv = [vv, ii];

end

i = i+1;

end

for ii = [vv],

v = [ii];

i = 1;

while i <= length(v),

if tree.nodetyp(v(i))==1,

if tree.node(v(i))==1,

tree.node(v(i)) = 2;

end

if v(i)*2+1 <= tree.maxsize,

v = [v, v(i)*2, v(i)*2+1];

end

end

i = i+1;

end

end

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function [vv,fs,vvdel] = fsgen(tree,symbols);

% Search the ’+ parts’

v = [1];

vv = [];

i = 1;

while i <= length(v),

ii = v(i);

if tree.nodetyp(ii)==1 & tree.node(ii)==1,

v = [v, ii*2, ii*2+1];

else

vv = [vv, ii];

end

i = i+1;

end

fs = [];

i = 1;

for ii = [vv],

fsi = strcat(’(’,tree stringrc(tree,ii,

symbols),’)’);

i = i+1;
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end

% Search the redundant ’+ parts’

vvdel = [];

vvv = [];

i = 1;

while i <= length(fs),

ok = 0;

ii = 1;

while ii<i & ok==0,

ok = strcmp(fsi,fsii);

ii = ii+1;

end

if ok==1,

vvdel = [vvdel, vv(i)];

else

vvv = [vvv, i];

end

i = i+1;

end

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function tree = prunetree(vvdel,treein,symbols);

% Delete subtrees

nn = [length(symbols1), length(symbols2)];

tree = treein;

n = floor(tree.maxsize/2);

tree.nodetyp(vvdel) = 0;

ok = 1;

while ok,

ok = 0;

i = 1;

while i<=n & ok==0,

if (tree.nodetyp(i)==1)&(tree.nodetyp(i*2)==0|

tree.nodetyp(i*2+1)==0),

ok = 1;

if tree.nodetyp(i*2)==0&tree.nodetyp(i*2+1)==0,

tree.nodetyp(i*2) = treein.nodetyp(i*2);

tree.nodetyp(i*2+1) = treein.nodetyp(i*2+1);

tree.nodetyp(i) = 0;

elseif tree.nodetyp(i*2)==0,

tree.nodetyp(i*2) = treein.nodetyp(i*2);

subtree = tree getsubtree(tree,i*2+1);

tree = tree inserttree(subtree,tree,i,nn(2));

else

tree.nodetyp(i*2+1) = treein.nodetyp(i*2+1);

subtree = tree getsubtree(tree,i*2);

tree = tree inserttree(subtree,tree,i,nn(2));

end
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elseif

(tree.nodetyp(i*2)==0 | tree.nodetyp(i*2+1)==0),

ok = 1;

if tree.nodetyp(i*2)==0,

tree.nodetyp(i*2) = treein.nodetyp(i*2);

end

if tree.nodetyp(i*2+1)==0,

tree.nodetyp(i*2+1) = treein.nodetyp(i*2+1);

end

end

i = i+1;

end

end

- - - -
function [popu,evnum]=gpols mainloop(popuin,X,Y,Q,opt);

% Run one evolutionary loop, makes the next generation

% [popu,evnum] = gpols mainloop(popuin,X,Y,Q,opt)

% popu <- next generation of the population

% evnum <- number of fun.evaulation (usually number

% of new individuals) popuin ->the population

% opt ->options vector, GPOLS-parameters

% X,Y,Q ->input, output and weighting matrices

(see gpols evaluate)

%

% Remark:

% opt(1): ggap, generation gap (0-1)

% opt(2): pc, probability of crossover (0-1)

% opt(3): pm, probability of mutation (0-1)

% opt(4): selection type(integer,see gpols selection)

% opt(5): rmode, mode of tree-recombination (1 or 2)

% opt(6): a1, first penalty parameter

% opt(7): a2, second penalty parameter (0 if there

% is not penalty)

% opt(8): OLS treshhold real 0-1 or integer >= 2

% opt(9): if == 1 ->polynomial evaluation

% opt(10):if == 1 ->evaluate all indv.s not only

% new offsprings

%

popun = popuin.size;

ggap = opt(1);

pc = opt(2);

pm = opt(3);

tsels = opt(4);

rmode = opt(5);

% Selection
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selm = gpols selection(popuin,ggap,pc,pm,tsels);

% New generation

popu = popuin;

newix = [];

nn = 1;

for i=1:size(selm,1),

m = selm(i,3);

%*** Crossover ***
if m==1,

p1 = selm(i,1);

p2 = selm(i,2);

popu.chrom{nn} = popuin.chromp1;

popu.chrom{nn}.fitness = -1;

if nn+1<popu.size,

popu.chrom{nn+1} = popuin.chrom{p2};
popu.chrom{nn+1}.fitness = -1;

end

% recombinate trees

tree1 = popuin.chrom{p1}.tree;
tree2 = popuin.chrom{p2}.tree;
[tree1,tree2] = tree crossover(tree1,tree2,rmode,

popu.symbols);

popu2.chrom{nn}.tree = tree1;

if nn+1<=popu.size,

popu.chrom{nn+1}.tree = tree2;

end

% remember the new individuals

newix = [newix nn];

nn = nn+1;

if nn<=popu.size,

newix = [newix nn];

nn = nn+1;

end

%*** Mutation ***
elseif m==2,

p1 = selm(i,1);

popu.chrom{nn} = popuin.chrom{p1};
popu.chrom{nn}.fitness = -1;

% muatate tree

tree1 = popu.chrom{p1}.tree;
tree1 = tree mutate(tree1,popu.symbols);

popu.chrom{nn}.tree = tree1;

% remember the new individual

newix = [newix nn];

nn = nn+1;

%*** Direct copy ***
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else

p1 = selm(i,1);

popu.chrom{nn} = popuin.chrom{p1};
nn = nn+1;

end

end

% if opt(10)==1 ->evaluate all indv.s

if length(opt)>9 & opt(10)==1,

newix = [1:popu.size];

end

function [sout,tree] = gpols result(popu,info)

% Gets information string about the best solution

% of a population

% [sout,tree] = gpols result(popu,info);

% sout <- text (string)

% tree <- the best solution

% popu ->population structure

% info ->info mode (1,2)

%

if info == 0,

sout = sprintf(’Iter \t Fitness \t Solution’);

return;

end

best = popu.chrom{1}.fitness;
bestix = 1;

for i = 1:popu.size,

if popu.chrom{i}.fitness >best,

best = popu.chrom{i}.fitness;
bestix = i;

end

end

tree = popu.chrom{bestix}.tree;
if info == 1,

sout=sprintf(’% 3i.\t% f’,popu.generation,best);

s = tree stringrc(tree,1,popu.symbols);

sout = sprintf(’% s \t % s’,sout,s);

return;

end

if info == 2,

sout = sprintf(’fitness:% f, mse:

% f’,best,popu.chrombestix.mse);

[vv,fs] = fsgen(tree,popu.symbols);

for i = 1:length(fs),

sout = sprintf(’% s \n % f * % s +’,sout,

tree.param(i),fsi);
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end

sout = sprintf(’% s \n % f’,sout,tree.param(i+1));

return;

end

sout = ’???’;

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function [vv,fs,vvdel] = fsgen(tree,symbols);

% Search the ’+ parts’

v = [1];

vv = [];

i = 1;

while i <= length(v),

ii = v(i);

if tree.nodetyp(ii)==1 & tree.node(ii)==1,

v = [v, ii*2, ii*2+1];

else

vv = [vv, ii];

end

i = i+1;

end

fs = [];

i = 1;

for ii = [vv],

fsi = strcat(’(’,tree stringrc(tree,ii,

symbols),’)’);

i = i+1;

end

% Search the redundant ’+ parts’

vvdel = [];

vvv = [];

i = 1;

while i <= length(fs),

ok = 0;

ii = 1;

while ii<i & ok==0,

ok = strcmp(fs{i},fs{ii});
ii = ii+1;

end

if ok==1,

vvdel = [vvdel, vv(i)];

else

vvv = [vvv, i];

end

i = i+1;

end
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Observations

Iter Fitness Solution
1. 0.900239 (((x1)*(x2))+(x3))+(((x3)+((x2)*(x3)))*(((x1)*(x2))+

((x1)+(x1))))
2. 0.916748 ((x1)*(x2))+(((x3)+((x2)*(x3)))*((x3)+((x1)+(x1))))
3. 0.993295 ((x1)*(x2))+(x3)
4. 0.993295 ((x1)*(x2))+(x3)
5. 0.993295 ((x1)*(x2))+(x3)
6. 0.993295 ((x1)*(x2))+(x3)
7. 0.993295 ((x1)*(x2))+(x3)
8. 0.993295 ((x1)*(x2))+(x3)
9. 0.993295 ((x1)*(x2))+(x3)
10. 0.993295 ((x1)*(x2))+(x3)
11. 0.993295 ((x1)*(x2))+(x3)
12. 0.993295 ((x1)*(x2))+(x3)
13. 0.993295 ((x1)*(x2))+(x3)
14. 0.993295 ((x1)*(x2))+(x3)
15. 0.993295 ((x1)*(x2))+(x3)
16. 0.993295 ((x1)*(x2))+(x3)
17. 0.993295 ((x1)*(x2))+(x3)
18. 0.993295 ((x1)*(x2))+(x3)
19. 0.993295 ((x1)*(x2))+(x3)
20. 0.993295 ((x1)*(x2))+(x3)

fitness: 0.993295, mse: 0.000087
10.000433 * ((x1)*(x2)) +
4.996494 * (x3) +
0.000405

14.9.2 Illustration 2: Dynamical Input-Output
Model Identification

The method illustrated in this code uses genetic programming to gen-
erate nonlinear input-output models of dynamical systems that are rep-
resented in a tree structure. The main idea of the tree is to apply the
orthogonal least squares (OLS) algorithm to estimate the contribution
of the branches of the tree to the accuracy of the model.

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Main Program , For Sub programs follow Illustration 1

% Dynamical input-output model identification

clear all

% Simulation of a dynamic system and generates input

% /output data

t = [0:0.2:20]’;
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u = sin(t/2)-0.5;

u = u + randn(size(u))*0.1;

y = zeros(size(u));

y(1) = 0;

y(2) = 0;

for k = 3:length(t),

dy = 0.7*u(k-1)*u(k-1) - 0.6*y(k-1) - 0.3*y(k-2) - 0.1;

y(k) = y(k-1) + dy;

end

% Adds some simulated ’measurement noise’ to the output

y = y + randn(size(y))*0.02;

% Select the maximum input and output order for

% identification

uorder = 2;

yorder = 2;

% Regressors and outputs for identification

tofs = max(uorder,yorder)+1;

Y = y(tofs:end) - y(tofs-1:end-1); % dy

X = [];

for i=1:yorder,

X = [X, y(tofs-i:end-i)];

end

for i=1:uorder,

X = [X, u(tofs-i:end-i)];

end

% GP equation symbols

symbols{1} = {’+’,’*’};
for i = 1:yorder,

symbols{2}{i} = sprintf(’y(k-% i)’,i);

end

for j = 1:uorder,

symbols{2}{i+j} = sprintf(’u(k-% i)’,j);

end

% Initial population

popusize = 40;

maxtreedepth = 5;

popu = gpols init(popusize,maxtreedepth,symbols);

% first evaluation

opt = [0.8 0.7 0.3 2 2 0.2 25 0.01 1 0];

popu = gpols evaluate(popu,[1:popusize],X,Y,[],

opt(6:9));
% info
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disp(gpols result([],0));

disp(gpols result(popu,1));

% GP loops

for c = 2:20,

% iterate

popu = gpols mainloop(popu,X,Y,[],opt);

% info

disp(gpols result(popu,1));

end

% Result

[s,tree] = gpols result(popu,2);

disp(s);

Iter Fitness Solution
1. 0.284622 (y(k-2))+((u(k-2))+(u(k-1)))
2. 0.284622 (y(k-2))+((u(k-2))+(u(k-1)))
3. 0.284622 (y(k-2))+((u(k-2))+(u(k-1)))
4. 0.683562 (y(k-2))+((u(k-1))*(u(k-1)))
5. 0.683562 (y(k-2))+((u(k-1))*(u(k-1)))
6. 0.894455 (y(k-1))+((u(k-1))*(u(k-1)))
7. 0.894455 (y(k-1))+((u(k-1))*(u(k-1)))
8. 0.894455 (y(k-1))+((u(k-1))*(u(k-1)))
9. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
10. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
11. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
12. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
13. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
14. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
15. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
16. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
17. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
18. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
19. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))
20. 0.903012 ((y(k-2))+((u(k-1))*(u(k-1))))+((u(k-1))*(u(k-2)))

fitness: 0.903012, mse: 0.001285
-0.777391 * ((u(k-1))*(u(k-2))) +
-0.370513 * (y(k-2)) +
1.059709 * ((u(k-1))*(u(k-1))) +
-0.047268

The GP-OLS algorithm generates linear in parameter models or poly-
nomials models, and the simulation results show that the proposed tool
provides an efficient and fast method for selecting input-output model
structure for nonlinear processes.
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14.9.3 Illustration 3 - Symbolic Regression Problem
Using Genetic Programming Toolbox

The following program runs a symbolic regression problem (the
quadratic polynomial) with 100 individuals for 25 generations, with au-
tomatic adaptation of operator probabilities, drawing several plots in
runtime, and finishing with two additional post-run plots.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Main Program

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
fprintf(’Running symbolic regression demo...’);

p=resetparams;

p=setoperators(p,’crossover’,2,2,’mutation’,1,1);

p.operatorprobstype=’variable’;

p.minprob=0;

p.datafilex=’quartic x.txt’;

p.datafiley=’quartic y.txt’;

p.usetestdata=1;

p.testdatafilex=’exp x.txt’;

p.testdatafiley=’exp y.txt’;

p.calcdiversity={’uniquegen’};
p.calccomplexity=1;

p.graphics={’plotfitness’,’plotdiversity’,’plotcomplexity’,
’plotoperators’};
p.depthnodes=’2’;

[v,b]=gplab(25,50,p);

desired obtained(v,[],1,0,[]);

accuracy complexity(v,[],0,[]);

figure

plotpareto(v);

drawtree(b.tree);

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Subprograms

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function params=setoperators(params,varargin)
%

% Input arguments:

% PARAMS - the algorithm running parameters (struct)
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% OPNAME - the name of the operator to use (string)

% NPARENTS - the number of parents required by the

% operator

% NCHILDREN - the number of children produced by

% the operator ...

% Output arguments:

% PARAMS - the updated algorithm running parameters

% (struct) %

params.operatornames={};
params.operatornparents=[];

params.operatornchildren=[];

params.initialfixedprobs=[];

params.initialvarprobs=[];

params=addoperators(params,varargin);

% - - - - - - - - - End of setoperators - - - - - - - - -

function [vars,best]=gplab(g,varargin) %
% Input arguments:

% NGENS - the number of generations to run

% the algorithm (integer)

% POPSIZE - the number of individuals in the

% population (integer)

% PARAMS - the algorithm running parameters (struct)

% VARS - the algorithm variables (struct)

% VARS.POP - the current population

% VARS.PARAMS - the algorithm running parameters =

% PARAMS

% VARS.STATE - the current state of the algorithm

% Output arguments:

% VARS - the algorithm variables (struct) - see Input

% arguments

% BEST - the best individual found in the run

(struct)

if (nargin<2) || (nargin>3)

error(’GPLAB: Wrong number of input arguments.

Use either gplab (ngens, vars) to continue a run,

or gplab (ngens, popsize, [optional params]) to

start a run’)

elseif isstruct(varargin1)

% argument 1:the number of additional generations
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to run

% argument 2:the algorithm variables

if ∼(isvalid(g,’posint’))
error(’GPLAB: The first argument must be an

integer greater than 0.’)

end

end

start=0;

continuing=1;

vars=varargin1;

n=vars.state.popsize;

level=vars.state.maxlevel;

ginic=vars.state.generation+1;

% start generation number

gend=ginic-1+g; % end generation number

else

% argument 1:the number of generations to run

% argument 2:the number of individuals in the population

% argument 3:(optional) the parameters of the algorithm

if ∼(isvalid(g,’special posint’) && isvalid(varargin1,

’posint’) && varargin1>=2)

error(’GPLAB:The first two arguments must be integers, and

the second >1’)

end

start=1;

continuing=0;

n=varargin1;

if nargin==3

vars.params=varargin2;

else

vars.params=[];

end

vars.state=[];

vars.data=[];

ginic=1; % start generation number

gend=g; % end generation number

end

% check parameter variables:

vars.params=checkvarsparams(start,continuing,

vars.params,n);

% check data variables:

[vars.data,vars.params]=checkvarsdata(start,
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continuing,vars .data,vars.params);

% check state variables:

[vars.state,vars.params]=checkvarsstate(start,

continuing,vars

.data,vars.params,vars.state,n,g);

% initialize random number generator (see help on

RAND):

rand(’state’,sum(100*clock));

fprintf(’\n Running algorithm...\n’);

% initiate graphics:

% (if we’re not going to run generations or draw

history,

% don’t initiate the graphics)

if ∼ isempty(vars.params.graphics) &&

(ginic<=gend ||

continuing) gfxState=graphicsinit(vars.params);

end

% initial generation:

if start

[vars.pop,vars.state]=genpop(vars.params,vars.

state,vars.data,n);

if strcmp(vars.params.savetofile,’firstlast’) ||

strcmp(vars.params.savetofile,’every10’) ||

strcmp(vars.params.savetofile,’every100’) ||

strcmp(vars.params.savetofile,’always’)

saveall(vars);

end

if ∼ strcmp(vars.params.output,’silent’)

fprintf(’ # Individuals:

% d\n’,vars.state.popsize);
if strcmp(vars.params.survival,’resources’)

fprintf(’MaxResources:

% d\n’,vars.state.maxresources);
end

fprintf(’UsedResources:

% d\n’,vars.state.usedresources);
fprintf(’Best so far:

% d\n’,vars.state.bestsofar.id);
fprintf(’Fitness:

% f\n’,vars.state.bestsofar.fitness);
if vars.params.usetestdata

fprintf(’ Test fitness:
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% f \n’,vars.state.bestsofar.testfitness);
end

fprintf(’ Depth:

% d \n’,vars.state.bestsofar.level);
fprintf(’ Nodes:

% d \n\n’,vars.state.bestsofar.nodes);
end

% (if we’re not going to run generations, don’t

start

% the graphics:)

if ∼ isempty(vars.params.graphics) && ginic<=gend

gfxState=graphicsstart(vars.params,vars.state,

gfxState);

end

end

if continuing

if ∼ isempty(vars.params.graphics)

gfxState=graphicscontinue(vars.params,vars.state,

gfxState);

end

end

sc=0;

% generations:

for i=ginic:gend

% stop condition?

sc=stopcondition(vars.params,vars.state,vars.data);

if sc

% unless the option is to never save,save

% the algorithm

variables now:

if (∼ strcmp(vars.params.savetofile,’never’))

saveall(vars);

end

break % if a stop condition has been reached,

% skip the for cycle

end

% new generation:

[vars.pop,vars.state]=generation(vars.pop,vars.params,

vars.state, vars.data);
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% save to file?

if (strcmp(vars.params.savetofile,’firstlast’)

&& i==g) ||

(strcmp(vars.params.savetofile,’every10’)

&& rem(i,10)==0) ||

(strcmp(vars.params.savetofile,’every100’)

&& rem(i,100)==0) ||

strcmp(vars.params.savetofile,’always’)

saveall(vars);

end

% textual output:

if ∼ strcmp(vars.params.output,’silent’)

fprintf(’# Individuals:

% d\n’,vars.state.popsize);
if strcmp(vars.params.survival,’resources’)

fprintf(’ MaxResources:

% d\n’,vars.state.maxresources);
end

fprintf(’UsedResources:

% d\n’,vars.state.usedresources);
fprintf(’Best so far:

% d\n’,vars.state.bestsofar.id);
fprintf(’Fitness:

% f\n’,vars.state.bestsofar.fitness);
if vars.params.usetestdata

fprintf(’ Test fitness:

% f \n’,vars.state.bestsofar.testfitness);
end

fprintf(’ Depth:

% d \n’,vars.state.bestsofar.level);
fprintf(’ Nodes:

% d \n\n’,vars.state.bestsofar.nodes);
end

% plots:

if ∼ isempty(vars.params.graphics)

gfxState=graphicsgenerations(vars.params,

vars.state,gfxState);

end

end % for i=ginic:gend

% messages regarding the stop condition reached:

if sc

if vars.state.generation==0

fprintf(’\n Stop condition #
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% d was reached after initial generation.\n’,sc);
else

fprintf(’\n Stop condition #

% d was reached after generation

% d.\n’,sc,vars.state.generation);
end

else

fprintf(’\n Maximum generation

% d was reached.\n’,vars.state.generation);
end

best=vars.state.bestsofar;

vars.state.keepevals=[];

% clear memory, we don’t want to save all this!

fprintf(’\nDone!\n \n’);

%- - - - - - - - - - End of gplab- - - - - - - - - -

function accuracy complexity(vars,offsets,bw,sizexy)

%

% Input arguments:

% VARS - all the variables of the algorithm (struct)

% OFFSETS - the offsets for each line,[] for no offset

% BLACKWHITE - the flag to draw a b&w or color plot

% (boolean)

% SIZEPLOT - the x and y size of plot,[] for default

% (1x2 matrix)

%

h=vars.state.bestsofarhistory;

if isempty(offsets)

fitoffset=0;

leveloffset=0;

nodesoffset=0;

else

fitoffset=offsets(1);

leveloffset=offsets(2);

nodesoffset=offsets(3);

end

if isempty(sizexy)

sizexy(1)=0;

sizexy(2)=0;

end

for i=1:size(h,1)

g(i)=hi,1;
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f(i)=hi,2.fitness;

l(i)=hi,2.level;

n(i)=hi,2.nodes;

% noruegueses fizeram

% n(i)=nodes(hi,2.tree);

end

g=g’;

f=f’+fitoffset;

l=l’+leveloffset;

n=n’+nodesoffset;

ff=figure;

set(ff,’Color’,[1 1 1]);

if sizexy(1)<=0 sizexy(1)=400; end if sizexy(2)<=0

sizexy(2)=350;

end

set(ff,’Position’,[200 250 sizexy(1) sizexy(2)])

hold on

title(’Accuracy versus Complexity’);

xlabel(’generation’);

if fitoffset∼=0
if fitoffset<0

ylab1=strcat(’fitness’,int2str(fitoffset));

else

ylab1=strcat(’fitness+’,int2str(fitoffset));

end

else

ylab1=’fitness’;

end

if leveloffset∼=0
if leveloffset<0

ylab2=strcat(’level’,int2str(leveloffset));

else

ylab2=strcat(’level+’,int2str(leveloffset));

end

else

ylab2=’level’;

end

if nodesoffset∼=0
if nodesoffset<0

ylab3=strcat(’nodes’,int2str(nodesoffset));

else

ylab3=strcat(’nodes+’,int2str(nodesoffset));
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end

else

ylab3=’nodes’;

end

ylaball=[ylab1 ’, ’ ylab2 ’, ’ ylab3];

ylabel(ylaball);

if bw

plot(g,f,’k.-’,g,l,’k*-’,g,n,’k+-’);

else

plot(g,[f,l,n],’.-’);

end legend(ylab1,ylab2,ylab3);

%- - - - - - End of accuracy complexity - - - - - -

function plotpareto(vars) %

% Input arguments:

% VARS - all the variables of the algorithm (struct)

% Output arguments:

% none

%

for i=1:length(vars.pop)

if isempty(vars.pop(i).nodes)

vars.pop(i).nodes=nodes(vars.pop(i).tree);

end

end

% build pareto front variable:

paretofront=[];

paretofront(1).fitness=[];

for solution=vars.pop

while length(paretofront)<solution.nodes

paretofront(end+1).ind=[];

end

if isempty(paretofront(solution.nodes).fitness)||

((vars.params.lowerisbetter&&

solution.fitness<paretofront(solution.nodes).fitness)||

(∼ vars.params.lowerisbetter&&

solution.fitness>paretofront(solution.nodes).fitness))

% cross validation

if vars.params.usetestdata

testindividual=calcfitness(solution,vars.params,vars

.data.test,vars.state,1);

% (1 = test data)

solution.testfitness=testindividual.fitness;

end

© 2010 by Taylor and Francis Group, LLC



Genetic Programming 641

paretofront(solution.nodes).fitness=solution.

fitness;

paretofront(solution.nodes).ind=solution;

if vars.params.usetestdata

paretofront(solution.nodes).testfitness=

solution.

testfitness;

end

end

end

% collect fitness and #nodes:

y=[paretofront.fitness];

x=[];

for i=1:size(paretofront,2)

if ∼ isempty(paretofront(i).ind)

x=[x i];

end

end

if length(y) =length(x)

error(’’,’internal error’);

end

% compute pareto front:

best=[];

bestind=[];

sofar=[];

for i=1:length(y)

if i==1 || y(i) >sofar

sofar=y(i);

best=[best sofar];

bestind=[bestind x(i)];

end

end

hold on

title(’Pareto front’);

xlabel(’nodes’);

ylabel(’fitness’);

% plot:

plot(x,y,’o-’,bestind,best,’ro-’);

plot([vars.pop.nodes],[vars.pop.fitness],’g*’);

if vars.params.usetestdata

plot(x,[paretofront.testfitness],’m-’);

legend(’best for #nodes’,’pareto front’,’current

population’,’test fitness’);

else

legend(’best for #nodes’,’pareto front’,’current

population’);
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end

hold off

%- - - - - - - - - End of plotpareto - - - - - - - -

function drawtree(tree,titletext)

%

% Input arguments:

% TREE - a GPLAB tree (struct)

% TITLE - title of the tree figure (optional,string)

% Output arguments:

% none

%

% Set tree titles

if nargin <2

titletext = ’Displaying GPLAB-tree found’;

end

% Using new figure to display tree

h=figure; % new figure for this particular tree

set(h,’name’,titletext);

% First, count nodes

[tree, count] = walkTreeDepthFirst(tree, ’countLeaves’,

[], 0, 0);

state.nodeCount = count;

state.yDist = -1;

% Position leaves (equally spaced)

[tree, state]=walkTreeDepthFirst(tree,’positionLeaves’,

[], 0, state);

% Position parents (midway between kids)

[tree, state] = walkTreeDepthFirst(tree,[],

’positionParents’,0,state);

% Draw tree

[tree,state]=walkTreeDepthFirst(tree,[],’drawNode’,0,0 );

axis(’off’)

function [tree, state] = walkTreeDepthFirst(tree, preDive,

postDive, initialDepth, state )

% Calls preDive(tree, depth, state), enters subnodes,

% calls postDive(tree,depth,state).Useful for walking

the tree.

if ∼ isempty(preDive)

[tree, state] = feval(preDive, tree, initialDepth,

state); end
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for i = 1:length(tree.kids)

[tree.kidsi, state] = walkTreeDepthFirst(tree.

kidsi, preDive,

postDive, initialDepth + 1, state);

end

if ∼ isempty(postDive)

[tree, state] = feval(postDive, tree, initialDepth,

state);

end

function [tree,count]=countLeaves(tree,depth,count)

if isempty(tree.kids)

tree.index = count;

count = count + 1;

end

function [tree,state]=positionLeaves(tree,depth,state)

if isempty(tree.kids)

if state.nodeCount <= 1

tree.X = 0;

else

tree.X = tree.index / (state.nodeCount - 1);

end

tree.Y = depth * state.yDist;

end

function [tree,state]=positionParents(tree,depth,state)

if ∼ isempty(tree.kids)

x = [];

for i = 1:length(tree.kids)

kid = tree.kids{i}; x = [x kid.X]; end

tree.X = mean(x);

tree.Y = depth * state.yDist;

end

function [tree, state] = drawNode(tree, depth, state)

if ∼ isempty(tree.kids)

for i = 1:length(tree.kids)

kid = tree.kids{i};
line([tree.X kid.X], [tree.Y kid.Y]);

end

line(tree.X, tree.Y, ’marker’, ’’̂, ’markersize’, 8)

opText = tree.op;

text(tree.X, tree.Y, [’ ’ opText], ’Horizontal

Alignment’,

’left’,’interpreter’, ’none’)

else
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opText = tree.op;

line(tree.X,tree.Y,’marker’,’.’,’markersize’, 8)

text(tree.X,tree.Y,opText,’HorizontalAlignment’,

’center’,’VerticalAlignment’,’top’,’interpreter’,

’none’)

end

%- - - - - - - - - - End of drawtree.m- - - - - - - - -

FIGURE 14.9: Observations of GP after 25 Generations. (a) Plot of
the Fitness (b) Plot of the Population Diversity (c) Structural Complex-
ity (d) Genetic Operators

Observations

The parameters after 25 generations are shown below
#Individuals: 50
UsedResources: 821
Best so far: 1019
Fitness: 6.057157
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FIGURE 14.10: Pareto Plot Showing the Best Nodes, Current Pop-
ulation and the Test Fitness

Test fitness: 15.218551
Depth: 8
Nodes: 12

Figure 14.9 shows the fitness, population diversity, Structural Com-
plexity, and the Genetic Operators of the symbolic regression problem
after 25 generations. The Pareto plot is also shown in Figure 14.10 indi-
cating the best nodes, current population, and the test fitness. The tree
found using GP is plotted and is shown in Figure 14.11.

Summary

From the sections discussed in this chapter it is inferred that Genetic
Programming (GP) is an automated method for creating a working com-
puter program from a high-level problem statement of a problem. Ge-
netic programming starts from a high-level statement of “what needs to
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FIGURE 14.11: Plot of the Tree Found Using GP

be done” and automatically creates a computer program to solve the
problem. The chapter provided a set of MATLAB illustrations on GA
and GP to provide a practical knowledge to the user.

The fact that genetic programming can evolve entities that are com-
petitive with human-produced results suggests that genetic program-
ming can be used as an automated invention machine to create new and
useful patentable inventions. In acting as an invention machine, evo-
lutionary methods, such as genetic programming, have the advantage
of not being encumbered by preconceptions that limit human problem-
solving to well-troden paths.

Review Questions

1. Define Genetic Programming.

2. Write a short note on Lisp programming language.
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3. Explain the basic operations of Genetic Programming.

4. Explain selection in Genetic Programming.

5. How does crossover and mutation occur in Genetic Programming?

6. Mention the paradigms of GA in machine learning and give one
example for each.

7. What are the five basic preparatory steps that should be specified
by the user in Genetic Programming?

8. Draw and explain the flowchart of Genetic Programming.

9. Mention a few advantages of Genetic Programming.

10. Write a MATLAB program to maximize one dimensional function
within the given boundaries using genetic algorithm. Consider the
function to be y = x + 10*sin(5*x)+7*cos(4*x) + 25; within the
bounds x ǫ[-10,10].

11. Using genetic algorithm, write a MATLAB program to tune a PI
controller.

12. Write a MATLAB program to find the shortest path using genetic
algorithm.

13. Write a MATLAB program to draw a tree.

14. Obtain the genetic programming selection, mutation, crossover,
and insertion in MATLAB.

15. Determine the size of a tree by writing a suitable MATLAB
program.

© 2010 by Taylor and Francis Group, LLC



Chapter 15

MATLAB-Based Swarm
Intelligence

15.1 Introduction to Swarms

The behaviors of a flock of birds, a group of ants, a school of fish, etc.,
were the field of study during earlier days. Such collective motion of in-
sects and birds is known to as “swarm behavior.” Later on biologists and
computer scientists in the field of artificial life studied the modeling of
biological swarms to analyze the interaction among the social animals,
to achieve goals, and to evolve them. Recently the interest of engineers
is increasing rapidly since the resulting swarm intelligence (SI) is ap-
plicable in optimization problems in various fields like telecommunicate
systems, robotics, electrical power systems, consumer appliances, traf-
fic patterns in transportation systems, military applications, and many
more. In swarm intelligence, N agents in the swarm or a social group are
coordinating to achieve a specific goal by their behavior. This kind of
collective intelligence arises from large groups of relatively simple agents.
The actions of the agents are governed by simple local rules. The intel-
ligent agent group achieves the goal through interactions of the entire
group. A type of “self-organization” emerges from the collection of ac-
tions of the group.

Swarm intelligence is the collective intelligence of groups of simple au-
tonomous agents. The autonomous agent is a subsystem that interacts
with its environment, which probably consists of other agents, but acts
relatively independently from all other agents. There is no global plan
or leader to control the entire group of autonomous agents. Consider for
example, the movement of a bird in a flock, the bird adjusts its move-
ments such that it coordinates with the movements of its neighboring
flock mates. The bird tries to move along with its flock maintaining
its movement along with the others and moves in such a way to avoid
collisions among them. There is no leader to assign the movements there-
fore the birds try to coordinate and move among themselves. Any bird

649
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can fly in the front, center, and back of the swarm. Swarm behavior
helps birds take advantage of several things including protection from
predators (especially for birds in the middle of the flock), and searching
for food (essentially each bird is exploiting the eyes of every other bird).

This chapter gives the basic definition of swarms, followed by a de-
scription on Swarm Robots. The Biological Models, Characterizations of
Stability, and Overview of Stability Analysis of Swarms are also elabo-
rated in this chapter. The chapter deals with the taxonomy of Swarm
Intelligence, properties of the Swarm Intelligence system, studies and
applications of swarm intelligence. The variants of SI such as Particle
Swarm Optimization (PSO) and Ant Colony Algorithms for Optimiza-
tion Problems are discussed. A few applications of Particle Swarm Op-
timization such as Job Scheduling on Computational Grids and Data
Mining and a few applications of Ant Colony Optimization such as Trav-
eling Salesman Problem (TSP), Quadratic Assignment Problem (QAP),
and Data Mining and their implementation in MATLAB are explained
in this chapter.

15.2 Biological Background

The collections of birds and other biological species, such as bird
flocks, sheep herds, and fish schools, move in an orchestrated manner.
The movement of a flock of birds resembles a well-choreographed dance
troupe. Similarly a swarm of ants or a school of fish follows the rest of
the group even if they are in the opposite direction to search for a desired
path. The movement of the birds appears the same either left in uniform
or suddenly they may all dart to the right and swoop down toward the
ground. This is really a very surprising feature as to know how the birds
can coordinate their actions so well. In 1987, a “boid” model was cre-
ated by Reynold. This boid is a distributed behavioral model, which is
used to simulate the motion of a flock of birds on a personal computer.
Each boid serves as an independent actor that navigates based on its
own perception of the dynamic environment. There are a certain set of
rules that are to be observed by the boid.

• The avoidance rule states that an individual boid must move away
from boids that are too close, so as to reduce the chance of in-air
collisions.

• The copy rule states that a boid must fly in the general direc-
tion along with the flock by considering the other boids’ average
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velocities and directions.

• The center rule states that a boid should minimize exposure to the
flock’s exterior by moving toward the perceived center of the flock.

• The view rule indicates that a boid should move laterally away
from any boid the blocks its view. This boid model seems reason-
able if we consider it from another point of view, that of it acting
according to attraction and repulsion between neighbors in a flock.

The repelling behavior of the flock leads to collision avoidance and
helps the flock to maintain its shape. The center rule plays a role in both
attraction and repulsion. The swarm behavior of the simulated flock is
the result of the dense interaction of the relatively simple behaviors of
the individual boids.

If social insects like ants find a prey, and if it cannot move that food
particle all alone, then it informs its nest mate by trail laying. After
which the group of insects collectively carry the large particle to their
nest. Though this concept appears simple, the underlying mechanisms
of such a cooperative transport are unclear. Inorder to model such a
kind of co-operative transport, Kube and Zhang introduced a simula-
tion model to recover stagnancy using the method of task modeling.
Resnick designed StarLogo (an object-oriented programming language
based on Logo, to do a series of microworld simulations). He success-
fully illustrated different self-organization and decentralization patterns
in the slime mold, artificial ants, traffic jams, termites, turtle and frogs
and so on.

Terzopooulos developed artificial fishes in a 3D virtual physical world.
They emulate the individual fish’s appearance, locomotion, and behav-
ior as an autonomous agent situated in its simulated physical domain.
The simulated fish can learn to control internal muscles to locomote hy-
drodynamically. They also emulated the complex group behaviors in a
certain physical domain. Millonas proposed a spatially extended model
of swarms in which organisms move probabilistically between local cells
in space, but with weights dependent on local morphgenetic substances,
or morphogens. The morphogens are in turn affected by the paths of
movements of an organism. The evolution of morphogens and the corre-
sponding flow of the organisms constitute the collective behavior of the
group. All living beings learn and evolve in their life span. In the field of
artificial life, a variety of species adaptation genetic algorithms are pro-
posed. Sims describes a lifelike system for the evolution and co-evolution
of virtual creatures. These virtual creatures perform a competition in
physically simulated 3D environments to seize a common resource. Dur-
ing this process, the winners are only capable of surviving and reproduc-
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ing. Their behavior is limited to physically plausible actions by realistic
dynamics, like gravity, friction and collisions. He structures the genotype
by the directed graphs of nodes and connections. These genotypes can
determine the neural systems for controlling muscle forces and the mor-
phology of these creatures. They simulate co-evolution by adapting the
morphology and behavior mutually during the evolution process. They
found interesting and diverse strategies and counter-strategies emerge
during the simulation with populations of competing creatures.

15.3 Swarm Robots

The major application area of swarm intelligence is swarm robotics.
Swarms are capable of providing enhanced task performance, high reli-
ability, low unit complexity and decreased cost over the existing tradi-
tional robotic systems. They are also capable of performing tasks that
are not possible for a single robot. These swarm robots find their ap-
plication in areas such as flexible manufacturing systems, spacecraft,
inspection/maintenance, construction, agriculture, and medicine work.
Several swarm models have been proposed and implemented. Cellular
robotic systems were introduced by Beni, consisting of a group of au-
tonomous, non-synchronized, non-intelligent robots coordinating on a fi-
nite n-dimensional cellular space under distributed control. These robots
operate independently and coordinate their behaviors according to the
other robots to attain the predefined global objective of the given task.
Hackwood and Beni proposed a model in which the robots operate on
the basis of signpost concept. These signposts are capable of modifying
the internal state of the swarm units as they move around. Due to these
signposts, the entire swarm acts as a collective unit to execute complex
behaviors. The self-organization behavior was realized in a general model
which had the cyclic boundary condition as the most restrictive assump-
tion. The model requires that sensing swarm “circulate” in a loop during
its sensing operation.

Based on the behavior, Brooks proposed a control strategy which was
more popular and gained its application to collections of simple inde-
pendent robots, usually for simple tasks. Ueyama proposed a technique
in which the complex robots are arranged in tree-like hierarchies with
communication between robots limited to the structure of the hierar-
chy. Mataric describes a set of experiments with a homogeneous pop-
ulation of robots acting under different communication conditions. As
the communication between the robots increases, the swarm robots are
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capable of solving a wide range of complex behaviors. Swarm robots
are more similar to networks of autonomous agents, they are potentially
reconfigurable networks of communicating agents capable of coordinated
sensing and interaction with the environment. Considering the variety
of possible design of groups such as mobile robots, Dudek presented
a swarm-robot taxonomy of the different ways in which such swarm
robots can be characterized. This proposal was very useful to clarify the
strengths, constraints and tradeoffs of various designs. The dimensions
of the taxonomic axes are swarm size, communication range, topology,
bandwidth, swarm reconfigurability, unit processing ability, and compo-
sition. For instance, swarm size includes the cases of single agent, pairs,
finite sets, and infinite numbers. Communication ranges include none,
close by neighbors, and complete where every agent communicates with
every other agent.

Swarm composition can be homogeneous or heterogeneous (i.e., with
all the same agents or a mix of different agents). For instance, Hackwood
and Beni’s model has multiple agents in its swarm, nearby communi-
cation range, broadcast communication topology, free communication
bandwidth, dynamic swarm reconfigurability, heterogeneous composi-
tion, and its agent processing is Turing machine equivalent. Due to the
research on decentralized autonomous robotics systems, various fields
have received great attention including modeling of swarms, agent plan-
ning or decision making and resulting group behavior, and the evolution
of group behavior. The decision-making is part of artificial intelligence
since several agents coordinate or cooperate to make decisions. Fukuda
introduced a distributed genetic algorithm to optimize the distributed
planning in a cellular robotics system. The concept of self-recognition
for the decision making was also proposed to prove the learning and
adaptation capability.

15.4 Stability of Swarms

The stability of a swarm is generally considered as cohesiveness. There
are several basic principles for swarm intelligence, such as the proxim-
ity, quality, response diversity, adaptability, and stability. The stability
of swarms is based upon the relative velocity and distance of adjacent
members in the group. To obtain stability, attractant and repellant pro-
files should exist in the environment such that the group moves toward
attractants avoiding repellants. Jin proposed the stability analysis of
synchronized distributed control of 1-D and 2-D swarm structures. He

© 2010 by Taylor and Francis Group, LLC



654 Computational Intelligence Paradigms

proves that synchronized swarm structures are stable in the sense of
Lyapunov with appropriate weights in the sum of adjacent errors if the
vertical disturbances vary sufficiently more slowly than the response time
of the servo systems of the agents.

Li W et al. proved that, if the topology of the underlying swarm is
strongly connected, the swarm is then stable in the sense that all agents
will globally and exponentially converge to a hyperellipsoid in finite time,
both in open space and profiles, whether the center of the hyperellipsoid
is moving or not. The swarm boundary and convergence rate are char-
acterized by the eigenparameters of the swarm, which reveals the quan-
titative relationship between the swarming behavior and characteristics
of the coupling topology.

Beni proposed a sufficient condition for the asynchronous convergence
of a linear swarm to a synchronously achievable configuration since a
large class of distributed robotic systems self-organizing tasks can be
mapped into reconfigurations of patterns in swarms. The model and
stability analysis is, however, quite similar to the model and proof of
stability for the load balancing problem in computer networks.

15.5 Swarm Intelligence

Gerardo Beni and Jing Wang introduced the term swarm intelli-
gence in a 1989 article. Swarm intelligence techniques are population-
based stochastic methods used in combinatorial optimization problems
in which the collective behavior of relatively simple individuals arises
from their local interactions with their environment to produce func-
tional global patterns. Swarm intelligence represents a metaheuristic ap-
proach to solving a variety of problems. Although there is typically no
centralized control dictating the behavior of the agents, local interactions
among the agents often cause a global pattern to emerge. Examples of
systems like this can be found in nature, including ant colonies, bird
flocking, animal herding, honey bees, bacteria, and many more. Swarm-
like algorithms, such as Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO), have already been applied successfully to
solve real world optimization problems in various engineering applica-
tions.

Particle Swarm Optimization (PSO) was proposed by James Kennedy
and R. C. Eberhart in 1995, inspired by social behavior of organisms such
as bird flocking and fish schooling. Beyond its application to solving op-
timization problems, PSO algorithm also serves as a tool for represent-
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ing sociocognition of human and artificial agents, based on principles of
social psychology. PSO as an optimization tool, provides a population-
based search procedure in which individuals called particles change their
position (state) with time. In a PSO system, particles fly around in a
multidimensional search space. During flight, each particle adjusts its po-
sition according to its own experience, and according to the experience
of a neighboring particle, making use of the best position encountered
by itself and its neighbor. Thus, as in modern GAs and memetic algo-
rithms, a PSO system combines local search methods with global search
methods, attempting to balance exploration and exploitation.

Ant Colony Optimization (ACO) is a class of algorithms, whose first
member, called Ant System, was initially proposed by Colorni, Dorigo
and Maniezzo. ACO algorithms inspired by the foraging behavior of
natural ant colonies, are applied to solve optimization problems. The es-
sential trait of ACO algorithms is the combination of a prior information
about the structure of a promising solution with a posteriori informa-
tion about the structure of previously obtained good solutions. A colony
of ants moves through states of the problem corresponding to partial
solutions of the problem to solve. They move by applying a stochastic
local decision policy based on two parameters, called trails and attrac-
tiveness. By moving, each ant incrementally constructs a solution to the
problem. When an ant completes a solution, or during the construction
phase, the ant evaluates the solution and modifies the trail value on the
components used in its solution. This pheromone information will direct
the search of the future ants.

15.5.1 Properties of a Swarm Intelligence System

The swarm as a whole is capable of presenting an intelligent be-
havior as a result of the interaction of neighbor individuals, based on
simple rules. A typical swarm intelligence system possess the following
properties:

• Unity: A swarm is a combination of several individuals.

• Fault tolerance: Swarm intelligent processes do not rely on a cen-
tralized control mechanism. Therefore the loss of a few nodes or
links does not result in catastrophic failure, but rather leads to
graceful, scalable degradation.

• Rule-based behavior: A certain set of rules are observed by the
individuals that exploit only local information that the individuals
exchange directly or through the environment.
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• Autonomy: The overall behavior of the swarm system is self-
organized, it does not depend on orders external to the system
itself. No human supervision is required.

• Scalability: Population of the agents can be adapted according to
the network size. Scalability is also promoted by local and dis-
tributed agent interactions.

• Adaptation: The individuals present in the ant system change, die
or reproduce, according to the entire network changes.

• Speed: The individuals in the group change their behavior rapidly,
according to the neighbors. The propagation is very fast.

• Modularity: The behavior of agents is independent of the others in
the group.

• Parallelism: The operations of the individuals are inherently par-
allel.

15.6 Particle Swarm Optimization (PSO)

In 1995, Dr. Eberhart and Dr. Kennedy developed PSO, a population
based on stochastic optimization strategy, inspired by social behavior of
flock of birds, school of fish, swarm of bees and even sometimes social
behaviour of human. Though PSO is similar to Genetic Algorithms (GA)
interms of population initialization with random solutions and search-
ing for global optima in successive generations, PSO does not undergo
crossover and mutation, whereas the particles move through the problem
space following the current optimum particles. The underlying concept
is that, for every time instant, the velocity of each particle also known
as the potential solution, changes between its pbest and lbest locations.
The particle associated with the best solution (fitness value) seems to be
the leader and each particle keeps track of its coordinates in the problem
space. This fitness value is stored which is referred to as pbest. Another
“best” value that is tracked by the particle swarm optimizer is the best
value, obtained so far by any particle in the neighbors of the particle.
This location is called lbest. when a particle takes all the population as
its topological neighbors, the best value is a global best and is called
gbest.
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The Canonical Model, Parameters of PSO, Performance Comparison
with Some Global Optimization Algorithms, Extended Models of PSO
for Discrete Problems and Binary PSO are discussed in this section.

15.6.1 Mathematical Model of PSO

The swarm of particles initialized with a population of random can-
didate solutions move move through the d-dimension problem space to
search the new solutions. The fitness, f, can be calculated as the cer-
tain qualities measure. Each particle has a position represented by a
position-vector presenti (i is the index of the particle), and a velocity
represented by a velocity-vector velocityi. After every iteration the best
position-vector among the swarm so is stored in a vector. The update of
the velocity from the previous velocity to the new velocity is determined
by Equation (15.1). The new position is then determined by the sum of
the previous position and the new velocity by Equation (15.2).

velocityij(new) = w ∗ velocityij(old) + c1rand1(pbestij(old))

− presentij(old) + c2rand2(gbestj(old)

− presentij(old)) (15.1)

presentij(new) = presentij(old) + velocityij(new) (15.2)

Here w is the inertia weight, rand1 andrand2 are the random numbers
usually chosen between [0,1]. c1 is a positive constant, called as coefficient
of the self-recognition component, c2 is a positive constant, called as
coefficient of the social component and the choice of value is c1 = c2 = 2
generally referred to as learning factors. From Equation (15.1), a particle
decides where to move next, considering its own experience, which is the
memory of its best past position, and the experience of its most successful
particle in the swarm. In the particle swarm model, the particle searches
the solutions in the problem space with a range [-s, s] (If the range is
not symmetrical, it can be translated to the corresponding symmetrical
range.) In order to guide the particles effectively in the search space,
the maximum moving distance during one iteration must be clamped
in between the maximum velocity [−velocitymax, velocitymax] given in
Equation (15.3):

velocityij = sign(velocityij)min(velocityij|velocitymax)

The value of vmax is p s, with 0.1 = p = 1.0 and is usually chosen
to be s, i.e. p = 1. The pseudo-code for particle swarm optimization
algorithm is illustrated as follows:
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15.6.2 Algorithm of PSO

The pseudocode of the Particle Swarm Optimization Algorithm is
shown below:

Initialize the size of the particle swarm n

Initialize the positions and the velocities for

all the particles randomly

While end criterion false do

t=t+1

Compute fitness value of each particle

x* = arg minn
t−1(f(x ∗ (t − 1)), f(x1(t)), f(x2(t)),

.......f(xt(t)), ......f(xn(t)));
For i=1 to n

x#
t (t) = argminn

t−1(f(x#
t (t − 1)), f(xt(t))

textbfFor j=1 to Dimension

Update the j-th dimension value of xt and vt

vij(t + 1) = wvij(t) + c1r1(x
∗
ij(t) − xij(t)) + c2r2(x

∗
j (t) − xij(t))

xij(t + 1) = xij(t) + vij(t + 1)
vij = sign(vij)min(|vij |, vmax)
End For

End For

End While

15.6.3 Parameters and Tuning of Parameters in PSO

PSO does not require a large number of parameters to be initialized.
The initialization process is quite simple. This section gives a list of
parameters and initialization process of PSO.

Number of particles: The number of particles is a very important factor
to be considered. For most of the practical applications a best choice
of the number of particles is typically in the range [20,40]. Usually 10
particles is a large number which is sufficient enough to get best results.
In case of difficult problems the choice can be 100 or 200 particles also.

Inertia Weight: The inertia weight plays a very important role in the
convergence behavior of the PSO algorithm. The inertia weight is em-
ployed to control the impact of the previous history of velocities on the
current one. Accordingly, the parameter w regulates the trade-off be-
tween the global (wide-ranging) and local (nearby) exploration abilities
of the swarm. Too large an inertia weight aids in global exploration
(searching wide ranging areas), while too small an inertia weight aids in
local exploration (searching within the nearby areas). To obtain a bal-
ance between the global and local exploration the number of iterations
required to locate the optimum solution are reduced. The inertia weight
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is set as a constant initially and in order to promote global exploration
of the search space, the parameter is gradually decreased to get more
optimal solutions. Usually the best choice of the inertia weight is around
1.2, and as the algorithm progresses this value is gradually decreased to
0.

Learning factors: The parameters c1 and c2, coefficient of self recog-
nition and social components, are not much critical for the convergence
of PSO. Fine-tuning of these learning vectors aids in faster convergence
and alleviation of local minima. Usually the choice for these parame-
ters is, c1 = c2 = 2, but some experiment results indicate that c1 = c2

= #1.49 might provide even better results. Recent papers report that
it might be even better to choose a larger self recognition component,
c1, than the social component, c2, such that it satisfies the condition
c1+c2 = 4.

Range and dimension of particles: The particle dimension and range
is determined based on the problem to be optimized. Various ranges can
be chosen for different dimension of particles.

V elocitymax : The maximum change one particle can take dur-
ing one iteration is defined as the maximum velocity and denoted as
V elocitymax. Usually the range of particles is set as the maximum ve-
locity. For instance, if a particle belongs to the range [-5, 5], then the
maximum velocity is 10.

Stopping condition: The stopping condition may be any one of the
following criteria:

• The process can be terminated after a fixed number of iterations
like 500, 1000 iterations etc.

• The process may be terminated when the error between the ob-
tained objective function value and the best fitness value is less
than a pre-fixed anticipated threshold.

15.6.4 Neighborhood Topologies

Various types of neighbourhood topologies are investigated based on
the behavioral movement of swarms The most common neighborhood
topologies are:

a. Star (or wheel) topology.

b. Ring (or circle) topology.

c. Von Neumann (or Square) topology.
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Star Topology

Similar to computer network topology, star Topology, which is also
known as gbest model, is a fully connected neighborhood relation. The
star topology is one of the most common network setups where all the
particles in the workspace connect to a specific particle selected as a
central hub. With this topology, the propagation is very fast, resulting
in premature convergence problem. Figure 15.1(a) illustrates the star
neighborhood topologies.

Ring Topology

In ring topology (Figure 15.1b), which is also known as lbest model,
each particle is connected on a single circle to its immediate neighbors.
Since there are no terminated ends, compared to the star topology the
flow of information in ring topology is very slow. However, using the ring
topology will slow down the convergence rate because the best solution
found has to propagate through several neighborhoods before affecting
all particles in the swarm. This slow propagation will enable the particles
to explore more areas in the search space and thus decrease the chance
of premature convergence.

Von Neumann Topology

Kennedy and Mendes studied the various population topologies on
the PSO performance and proposed the Von Neumann topology. Their
experiments showed that the topology can be observed as a spatial neigh-
borhood when it is determined by the Euclidean distance between the
positions of two particles, or as a sociometric neighborhood. Though Von
Neumann is a type of lbest model, in Von Neumann topology, particles
are connected using a grid network like a lattice structure where each

(a)          (b)         (c) 

FIGURE 15.1: Neighborhood Topologies a) Star, b) Ring, and c)
Von Neumann
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15.1(c). Similar to ring topology, using Von Newmann topology will slow
down the convergence rate. Slow propagation will enable the particles to
explore more areas in the search space and thus decrease the chance of
premature convergence.

15.7 Extended Models of PSO

15.7.1 PSO-I

The local is kept in the standard PSO, as the next position of each
particle is sampled from the global search range, sampling continues un-
til the next position of each particle is in the local range. The sampling
range is as follows:

If a ≥ 0 then R(global) = [0,2dmax] where dmax = max(d1, d2)

If a ≤ 0 and b ≥ 0 then R(global) = [dmin, 0]
⋃

[0, 2dmax]

where dmax = max(d1, d2) and dmin = min(d1, d2)

If b < 0 then R(global) = [2dmin, 0] where dmin = min(d1, d2)

15.7.2 PSO-II

In PSO-2, a particle close to the current best particle is randomly gen-
erated in every generation and each dimension with a threshold p which
is drawn in the interval [0,1]. The velocities of the particles are used in
the next generation. “s” is randomly drawn from an uniform distribution
over the interval [−r,r ], and r is the radius of the area around the global
best position xgB in the whole population. r is determined according
to the attributes of the test functions. If l < p, the actual position is
calculated and if l ≥ p, x (t+1) is computed which is the same as that
obtained from SPSO. The actual position is calculated as

x̄(t + 1) =

{
xgB + s, if l < p
x(t + 1), if l ≥ p
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15.7.3 PSO-III

The objective of PSO-III is to adjust the particles to search the solu-
tion space more appropriately. The probability of particles landing into
the range around xgB is increased, maintaining the probability of par-
ticles flying away from xgB , and the probability of particles wandering
around the small range containing xgB is increased. Thus the particles
are given only two choices, either landing very near xgB to enhance the
local search ability or landing far from xgB to keep the global search ca-
pability. Therefore PSO-III simply makes the particles search the space
more pertinently and efficiently.

In this PSO variant velocity affects the behaviors of the PSO. Here
a range [−r,r] is set around the best individual in each dimension for
every generation. As the particles in the swarm pass through the range
in the next generation, a magnifier operator is used to enlarge the range
without changing the velocity of particles. Thus, the particles would get
a better chance to land into the range, which is able to check the area
around the current best individual more precisely. On the other hand,
the velocity of the particles is maintained so that they are able to fly out
of the range in certain generations to maintain the global search ability.
The transition process of a particle x from the tth to t+1th generation
in each dimension can be schematically expressed as four situations as
the following respectively, and in each situation, the position after using
the magnifier operator in PSO-III will be calculated:

x̄(t+1) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x(t + 1) − (2 ∗ r/s − 2 ∗ r) if x(t)<L and x(t + 1)>R,

x(t + 1) + (2 ∗ r/s − 2 ∗ r) if x(t)>R and x(t + 1)<L,

x(t + 1) − [(R − x(t))/s − (R − x(t))] ifL<x(t)<R and x(t + 1)>R,

x(t + 1) + [(x − (t) − L)/s − (x(t) − L)] ifL<x(t)<R and x(t + 1)<R,

r is the radius of the interval with L and R be the left and right
boundary, and s is the scale which decides the multiple that enlarges
the range. s should not be too small, it should be decided such that the
particles do not fall into the range too easily and hard to fly out, which
lead to a prematurity. On the other hand, r should reduce along with
the growth of generations, because the best individual should converge
inside the range. So, an initial value should be fixed for r, from which r
reduces linearly to zero. The iterative equation of r is expressed by

r = r ∗ (1 − k/M)

where k is the current iteration number and M is the maximum iteration
number.
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15.7.4 PSO-IV

In PSO-4, two sub-swarms are used for the evolution. One sub-swarm
use the standard formula. The other sub-swarm with n particles using
the following formula

Vid(t + 1) = wVid(t) + (rc1(r1 − 0.5)+r/2)(PiBD(t)−Xid(t))

+ (rc2(r2 − 0.5) + r/2)(PgBd(t)−Xid(t))

where r is used to tune the sampling range of X and Y. The two sub-
swarms use different sampling range to evolve. So the performance of
the PSO should be changed.

15.8 Ant Colony Optimization

In nature, ants usually wander randomly, and upon finding food return
to their nest while laying down pheromone trails. The other ants find the
path (pheromone trail), and follow the trail, returning and reinforcing
it if they eventually find food. The pheromone starts to evaporate as
time passes. If the time taken for an ant to travel down the path and
back again to the nest, the pheromone evaporates thereby making the
path less prominent. A shorter path, in comparison will be visited by
more ants (can be described as a loop of positive feedback) and thus the
pheromone density remains high for a longer time. ACO is implemented
as a collective group of intelligent agents, which simulate the ants behav-
ior, walking around the graph representing the problem to solve using
mechanisms of cooperation and adaptation. ACO algorithm requires the
following definitions:

• The problem needs to be represented appropriately, which would
allow the ants to incrementally update the solutions through the
use of a probabilistic transition rules, based on the amount of
pheromone in the trail and other problem specific knowledge. It
is also important to enforce a strategy to construct only valid so-
lutions corresponding to the problem definition

• A problem-dependent heuristic function η that measures the qual-
ity of components that can be added to the current partial solution

• A rule set for pheromone updating, which specifies how to modify
the pheromone value τ

© 2010 by Taylor and Francis Group, LLC



664 Computational Intelligence Paradigms

• A probabilistic transition rule based on the value of the heuristic
function η and the pheromone value τ that is used to iteratively
construct a solution

15.8.1 Mathematical Model of ACO

ACO was first introduced using the Traveling Salesman Problem
(TSP). Starting from its start node, an ant iteratively moves from one
node to another. When being at a node, an ant chooses to go to a un-
visited node at time t with a probability given by

P k
i,j(t) =

[τi,j(t)]
α[ηi,j(t)]

β

∑

tǫNk
i
[τi,j(t)]α[ηi,j(t)]β

jǫNk
i (15.16)

where Nk
i is the feasible neighborhood of the antk, that is, the set of

cities which antk has not yet visited;τi,j(t) is the pheromone value on
the edge (i,j) at the time t, α is the weight of the pheromone; ηi,j(t) is a
priori available heuristic information on the edge (i,j) at the time t, β is
the weight of heuristic information. Two parameters α and β determine
the relative influence of pheromone trail and heuristic information. τi,j(t)
is determined by

taui,j(t) = ρτi,j(t − 1) +

n∑

k=1

△τi,j
k∀(i, j) (15.17)

△τi,j
k(t) =

{ Q
Lk(t) if the edge (i, j) chosen by antk
0 otherwise

(15.18)

where ρ is the pheromone trail evaporation rate (0<ρ<1), n is the num-
ber of ants, Q is a constant for pheromone updating. A generalized ver-
sion of the pseudo-code for the ACO algorithm is illustrated in the fol-
lowing section.

15.8.2 Ant Colony Optimization Algorithm

Initialize the number of ants n

While end criterion false do

t=t+1

For k=1 to n

antk is positioned on a starting node;

For m=2 to problem size

Choose the state according to the probabilistic

transition rules

Append the chosen move into tabuk(t) for the antk
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End For

Update the trail pheromone intensity for every edge (i,j)

τi,j(t) = ρτi,j(t − 1) +
n∑

k=1

△τi,j
k(t)∀(i, j)

△τi,j
k(t) =

{ Q
Lk(t) if the edge (i, j)chosen by antk
0 otherwise

Compare and update the best solution

End For

End While

15.9 Studies and Applications of Swarm Intelligence

In this section a few illustrations based on scientific and engineering
swarm intelligence studies are given.

15.9.1 Ant-based Routing

Dorigo et al. and Hewlett Packard during the mid-1990’s applied
Swarm Intelligence to the field of Telecommunication Networks and re-
ferred this as Ant Based Routing. The application involves a probabilis-
tic routing table rewarding or reinforcing the route successfully traversed
by each “ant” (a small control packet). Reinforcement of the route in
the forward, reverse direction and both simultaneously have been stud-
ied and analyzed in their research. A symmetric network is used for
backward reinforcement, which couples the network bidirectionally. The
forward reinforcement rewards a route before the outcome is known.

15.9.2 Clustering Behavior of Ants

The main idea of the clustering algorithm based on swarm intelligence
was proposed by Deneubourg. The process of clustering is defined in
three stages. In the first stage, the data objects are chosen at random
and are projected onto a low dimensional space. During the second phase,
simple agents perceive the swarm similarity of the current object with
the local region, and compute the probability of pick-up and drop. And
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finally during the third phase, the cluster centers are formed by the
simple agents based on collective behavior.

15.9.3 Graph Coloring

Graph coloring was used as a benchmark for solving distributed con-
straint satisfaction problems is offered. All the agents in the space cor-
respond one-to-one with the nodes of the proposed graph. The agents
whose nodes are directly connected are enemies; agents whose nodes are
at shortest graph distance are friends. Usually the agents are attracted
to friends while moving from one place to the other such as to avoid ene-
mies. The colors for the graph coloring correspond to specific attraction
spatial regions and the agents are attracted toward these regions. The
graph coloring solution is given by the distribution of the agents over the
color attraction regions. If all the agents are placed in one of the color
attraction space regions, the system configuration can be interpreted as
defining a complete coloration of the graph. If some agents are outside
these regions, the system configuration corresponds to a partial solution
to the coloration problem.

15.9.4 Machine Scheduling

Machine scheduling application is used to assign a set of machines
M1, M2, ...Mn to a set of jobs J1, J2, ..., Jm. Each job consists of a set
of operations Oj1, Oj2, ...Ojp and the machines are assigned jobs based
on certain constraints like

- A machine can perform only one operation at a time
- The operations on different jobs do not have any priority
- A running operation cannot be interrupted

Let T represent the time taken for a machine Mi to complete an opera-
tion Ojk. Let ΣTi denote the time taken by a machine Mi to complete all
the assigned jobs. Thus the objective of a machine scheduling problem is
to minimize the maximum completion time defined as max {

∑
Ti} and

to minimize the sum of completion times defined as
∑n

i=1 {ΣTi }

For machine scheduling problems the parameters of PSO algorithm are
initialized as follows:

Learning vectors c1 = c2 = 1.49
Inertia weight w = 0.9 initially and gradually decreased to 0.1
Particle size = 20
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The parameters used for machine scheduling problem by applying the
ACO algorithm are as follows:

Number of ants = 5
Weight of pheromone trail α = 1
Weight of heuristic information β = 5
Pheromone evaporation parameter ρ = 0.8
Constant for pheromone updating Q = 10

15.9.5 Quadratic Knapsack Problem

The 0-1 quadratic knapsack problem (QKP) is a hard computational
problem, which is a generalization of the knapsack problem (KP). This
problem was introduced by Gallo, which was used to choose elements
from n items for maximizing a quadratic profit objective function subject
to a linear capacity constraint. The problem is defined as follows:

Objective: To maximize f(x) =

n∑

i=1

pixi +

n−1∑

i=1

n∑

j=i+1

pijxixj

Subject to the constraint: g(x) =

n∑

i=1

wixi − C ≤ 0

where pi and pij are profit coefficients, wi is weight coefficient and c
denotes the capacity of the knapsack. All these coefficients are non-
negative integers. xi denotes the item that is to be selected.

The best choice of parameters used by PSO algorithm for solving the
QKP problem can be initialized as follows:

Learning vectors c1 = c2 = 1.49445
Inertia weight w = 0.729 initially and gradually decreased to 0.1
Particle size = 20
Range and dimension of particles = 2.8 x 109

The best choice of parameters used by ACO algorithm for solving the
QKP problem can be initialized as follows:

Number of ants = 30
Weight of pheromone trail α = 1
Weight of heuristic information β = 5
Pheromone evaporation parameter ρ = 0.01
Constant for pheromone updating Q = 10

© 2010 by Taylor and Francis Group, LLC



668 Computational Intelligence Paradigms

15.9.6 Traveling Salesman Problem

The objective of the traveling salesman problem is defined to visit a
number of cities, plan the trip such that every city is visited at-least
once and that the whole trip is as short as possible. The Traveling Sales-
man Problem (TSP) is a simple combinatorial problem in computational
mathematics. The salesman starts from a city and travels through n
number of cities cyclically. Once he has visited all the cities he finishes
up where he started. The constraint is to minimize the distance traveled
and such as to find a proper order of the cities to be traveled. More
formally, the TSP can be represented by a complete weighted graph G
= (N,A) where N denotes the set of nodes, representing the cities, and A
the set of arcs fully connecting the nodes N. Each arc is assigned a value
dij , which is the length of arc (i, j) ǫ A, that is, the distance between
cities i and j, with i, j ǫ N.

The best choice of parameters used by PSO algorithm for solving the TSP
problem can be initialized as follows:

Learning vectors c1 = c2 = 1
Inertia weight w = initially and gradually decreased to 0.1
Particle size = 20

The best choice of parameters used by ACO algorithm for solving the TSP
problem can be initialized as follows:

Number of ants = 25
Weight of pheromone trail α = 1
Weight of heuristic information β = 2
Pheromone evaporation parameter ρ = 0.2
Constant for pheromone updating Q = 20

15.10 MATLAB Examples of Swarm Intelligence

A few applications of Particle Swarm Optimization and Ant Colony
Optimization such as Traveling Salesman Problem (TSP), Quadratic As-
signment Problem (QAP), behavior and simulation of swarms in MAT-
LAB are explained in this section.
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15.10.1 Illustration 1: Simulation of the Movement of
Swarm to Minimize the Objective Function

%% Particle Swarm Optimization Simulation

% Simulates the movements of a swarm to minimize

% the objective function

% (x - 15)ˆ 2 + (y - 20)ˆ 2

% The swarm matrix is

%

% swarm(index, [location, velocity, best position,

best

% value], [x, y components or the value component])

%

%% Initialization

% Parameters

clear

clc

iterations = 30;

inertia = 1.0;

correction factor = 2.0;

swarm size = 49;

% - - - - initial swarm position - - - -

index = 1;

for i = 1 : 7

for j = 1 : 7

swarm(index, 1, 1) = i;

swarm(index, 1, 2) = j;

index = index + 1;

end

end

swarm(:, 4, 1) = 1000; % best value so far

swarm(:, 2, :) = 0; % initial velocity

%% Iterations

for iter = 1 : iterations

%- - evaluating position & quality - - -

for i = 1 : swarm size

swarm(i, 1, 1) = swarm(i, 1, 1) + swarm(i, 2, 1)/

1.3;

% update x position
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swarm(i, 1, 2) = swarm(i, 1, 2) + swarm(i, 2, 2)/

1.3;

% update y position

x = swarm(i, 1, 1);

y = swarm(i, 1, 2);

val = (x - 15)ˆ 2 + (y - 20)ˆ 2; % fitness evaluation

if val <swarm(i, 4, 1) % if new position is better

swarm(i, 3, 1) = swarm(i, 1, 1); % update best x,

swarm(i, 3, 2) = swarm(i, 1, 2);% best y postions

swarm(i, 4, 1) = val; % and best value

end

end

[temp, gbest] = min(swarm(:, 4, 1)); % global best

position

%--- updating velocity vectors

for i = 1 : swarm size

swarm(i, 2, 1) = rand*inertia*swarm(i, 2, 1) +

correction factor*rand*(swarm(i, 3, 1)

- swarm(i, 1, 1)) +

correction factor*rand*(swarm(gbest, 3, 1)

- swarm(i, 1, 1));

% x velocity component

swarm(i, 2, 2) = rand*inertia*swarm(i, 2, 2) +

correction factor*rand*(swarm(i, 3, 2)

- swarm(i, 1, 2)) +

correction factor*rand*(swarm(gbest, 3, 2)

- swarm(i, 1, 2));

% y velocity component

end

%% Plotting the swarm

clf

plot(swarm(:, 1, 1), swarm(:, 1, 2), ’x’) % drawing

% swarm

movements axis([-2 30 -2 30]);

title(’Swarm movements’)

xlabel(’Variable x’)
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ylabel(’Variable y’)

pause(5)

end

Observations

Figure 15.2 shows the movement of the swarms for the given objec-
tive function. The objective function can be changed according to the
requirement.

15.10.2 Illustration 2: Behavior of Particle Swarm Op-
timization

This section illustrates the MATLAB program used to minimize
or maximize a set of functions such as Ackley, Alpine, DeJong, Fox-
hole, Rosenbrock, etc. The observations are obtained by minimizing the
Rosenbrock function.

% The PSO tries to find the minimum of the

% Rosenbrock function,

% a standard benchmark

clear all

close all

clc

help demopsobehavior

warning off

functnames = {’ackley’,’alpine’,’DeJong f2’,’DeJong f3’,

’DeJong f4’,...

’Foxhole’,’Griewank’,’NDparabola’,...

’Rastrigin’,’Rosenbrock’,’f6’,’f6mod’,’tripod’,...

’f6 bubbles dyn’,’f6 linear dyn’,’f6 spiral dyn’};

disp(’Static test functions, minima don’’t change

w.r.t. time/iteration:’);

disp(’ 1) Ackley’);

disp(’ 2) Alpine’);

disp(’ 3) DeJong f2’);

disp(’ 4) DeJong f3’);

disp(’ 5) DeJong f4’);

disp(’ 6) Foxhole’);

disp(’ 7) Griewank’);

disp(’ 8) NDparabola (for this demo N = 2)’);

disp(’ 9) Rastrigin’);

disp(’10) Rosenbrock’);

disp(’11) Schaffer f6’);

disp(’12) Schaffer f6 modified (5 f6 functions translated

from each other)’);
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(a) Initial Swarm position                                (b) After 5 iterations

  
(c) After 12 iterations                                    (d) After 15 iterations

  
(e) After 18 iterations                                        (f) After 22 iterations

FIGURE 15.2: Movement of the Swarms - The Given Function
Reached Optimum Value at the End of 30 Iterations

disp(’13) Tripod’);

disp(’ ’);
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(g) After 27 iterations                                  (h) After 30 iterations

FIGURE 15.2: (Continued)

disp(’Dynamic test functions, minima/environment evolves

over time/iteration:’);

disp(’14) f6 bubbles dyn’);

disp(’15) f6 linear dyn’);

disp(’16) f6 spiral dyn’);

functchc=input(’Choose test function ? ’);

functname = functnames{functchc};

disp(’ ’);

disp(’1) Intense graphics, shows error topology and

surfing particles’);

disp(’2) Default PSO graphing, shows error trend and

particle dynamics’);

disp(’3) no plot, only final output shown, fastest’);

plotfcn=input(’Choose plotting function ? ’);

if plotfcn == 1

plotfcn = ’goplotpso4demo’;

shw = 1; % how often to update display

elseif plotfcn == 2

plotfcn = ’goplotpso’;

shw = 1; % how often to update display

else

plotfcn = ’goplotpso’;

shw = 0; % how often to update display

end

% set flag for ’dynamic function on’, only used at very

end for tracking plots

dyn on = 0;
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if functchc==15 | functchc == 16 | functchc == 17

dyn on = 1;

end

% xrng=input(’Input search range for X, e.g.

% [-10,10] ? ’);

% yrng=input(’Input search range for Y ? ’);

xrng=[-30,30];

yrng=[-40,40];

disp(’ ’);

% if =0 then we look for minimum, =1 then max

disp(’0) Minimize’)

disp(’1) Maximize’)

minmax=input(’Choose search goal ?’);

% minmax=0;

disp(’ ’);

mvden = input(’Max velocity divisor (2 is

a good choice) ? ’);

disp(’ ’);

ps = input(’How many particles (24 - 30 is common)? ’);

disp(’ ’);

disp(’0) Common PSO - with inertia’);

disp(’1) Trelea model 1’);

disp(’2) Trelea model 2’);

disp(’3) Clerc Type 1" - with constriction’);

modl = input(’Choose PSO model ? ’);

% note: if errgoal=NaN then unconstrained min or max

% is performed

if minmax==1

% errgoal=0.97643183; % max for f6 function (close

% enough for

termination)

errgoal=NaN;

else

% errgoal=0; errgoal=NaN;

end

minx = xrng(1);

maxx = xrng(2);

miny = yrng(1);

maxy = yrng(2);

%---------------------------------------------------

dims=2;

varrange=[];

mv=[];

for i=1:dims

varrange=[varrange;minx maxx];

mv=[mv;(varrange(i,2)-varrange(i,1))/mvden];
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end

ac = [2.1,2.1];% acceleration constants, only

used for modl=0

Iwt = [0.9,0.6]; % intertia weights, only used for

modl=0

epoch = 400; % max iterations

wt end = 100; % iterations it takes to go from Iwt(1)

to Iwt(2),

only for modl=0

errgrad = 1e-99; % lowest error gradient tolerance

errgraditer=100; % max # of epochs without error

change >= errgrad

PSOseed = 0; % if=1 then can input particle starting

positions,

if= 0 then all random

% starting particle positions (first 20 at zero, just

for an example)

PSOseedValue = repmat([0],ps-10,1);

psoparams=...

[shw epoch ps ac(1) ac(2) Iwt(1) Iwt(2) ...

wt end errgrad errgraditer errgoal modl PSOseed];

% run pso

% vectorized version

[pso out,tr,te]=pso Trelea vectorized(functname, dims,...

mv, varrange, minmax, psoparams,plotfcn,PSOseedValue);

%-------------------------------------------------

% display best params, this only makes sense for static

% functions, for dynamic you’d want to see a time history

% of expected versus optimized global best values.

disp(’ ’);

disp(’ ’);

disp([’Best fit parameters: ’]);

disp([’ cost = ’,functname,’( [ input1, input2 ] )’]);

disp([’---------------------------------’]);

disp([’ input1 = ’,num2str(pso out(1))]);

disp([’ input2 = ’,num2str(pso out(2))]);

disp([’ cost = ’,num2str(pso out(3))]);

disp([’ mean cost = ’,num2str(mean(te))]);

disp([’ # of epochs = ’,num2str(tr(end))]);

%% optional, save picture

% set(gcf,’InvertHardcopy’,’off’);

% print -dmeta

% print(’-djpeg’,[’demoPSOBehavior.jpg’]);
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-----------------------------------------------

% Sub Functions

-----------------------------------------------

% goplotpso.m

clf

set(gcf,’Position’,[651 31 626 474]); % this is the

computer dependent part

% set(gcf,’Position’,[743 33 853 492]);

set(gcf,’Doublebuffer’,’on’);

plot3(pos(:,1),pos(:,D),out,’b.’,’Markersize’,7)

hold on

plot3(pbest(:,1),pbest(:,D),pbestval,’g.’

,’Markersize’,7);

plot3(gbest(1),gbest(D),gbestval,’r.’,’Markersize’,25);

% crosshairs

offx = max(abs(min(min(pbest(:,1)),min(pos(:,1)))),...

abs(max(max(pbest(:,1)),max(pos(:,1)))));

offy = max(abs(min(min(pbest(:,D)),min(pos(:,D)))),...

abs(min(max(pbest(:,D)),max(pos(:,D)))));

plot3([gbest(1)-offx;gbest(1)+offx],...

[gbest(D);gbest(D)],...

[gbestval;gbestval],...

’r-.’);

plot3([gbest(1);gbest(1)],...

[gbest(D)-offy;gbest(D)+offy],...

[gbestval;gbestval],...

’r-.’);

hold off

xlabel(’Dimension 1’,’color’,’y’)

ylabel([’Dimension ’,num2str(D)],’color’,’y’)

zlabel(’Cost’,’color’,’y’)

title(’Particle Dynamics’,’color’,’w’,’fontweight’,

’bold’)

set(gca,’Xcolor’,’y’)

set(gca,’Ycolor’,’y’)

set(gca,’Zcolor’,’y’)

set(gca,’color’,’k’)

% camera control

view(2)

try
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axis([gbest(1)-offx,gbest(1)+offx,gbest(D)-offy,

gbest(D)+offy]);

catch

axis([VR(1,1),VR(1,2),VR(D,1),VR(D,2)]);

end

% error plot, left side

subplot(’position’,[0.1,0.1,.475,.825]);

semilogy(tr(find(˜isnan(tr))),’color’,’m’,’linewidth’,2)

% plot(tr(find(˜isnan(tr))),’color’,’m’,’linewidth’,2)

xlabel(’epoch’,’color’,’y’)

ylabel(’gbest val.’,’color’,’y’)

if D==1

titstr1=sprintf([’% 11.6g = % s( [ % 9.6g ] )’],...

gbestval,strrep(functname,’ ’,’\ ’),gbest(1));
elseif D==2

titstr1=sprintf([’% 11.6g = % s( [ % 9.6g, % 9.6g ]

)’],... gbestval,strrep(functname,’ ’,’\ ’),
gbest(1),gbest(2));

elseif D==3

titstr1=sprintf([’% 11.6g = % s( [ % 9.6g, % 9.6g,

% 9.6g ] )’],...

gbestval,strrep(functname,’ ’,’\ ’),gbest(1),gbest(2),
gbest(3));

else

titstr1=sprintf([’% 11.6g = % s( [ % g inputs ] )’],

... gbestval,strrep(functname,’ ’,’\ ’),D);
end

title(titstr1,’color’,’m’,’fontweight’,’bold’);

grid on

% axis tight

set(gca,’Xcolor’,’y’)

set(gca,’Ycolor’,’y’)

set(gca,’Zcolor’,’y’)

set(gca,’color’,’k’)

set(gca,’YMinorGrid’,’off’)

% text box in lower right

% doing it this way so I can format each line any

% way I want

subplot(’position’,[.62,.1,.29,.4]);

clear titstr

if trelea==0

PSOtype = ’Common PSO’;

© 2010 by Taylor and Francis Group, LLC



678 Computational Intelligence Paradigms

xtraname = ’Inertia Weight : ’;

xtraval = num2str(iwt(length(iwt)));

elseif trelea==2 |trelea==1

PSOtype = ([’Trelea Type ’,num2str(trelea)]);

xtraname = ’ ’;

xtraval = ’ ’;

elseif trelea==3

PSOtype = ([’Clerc Type 1"’]);

xtraname = ’\chi value : ’;

xtraval = num2str(chi);

end

if isnan(errgoal)

errgoalstr=’Unconstrained’;

else

errgoalstr=num2str(errgoal);

end

if minmax==1

minmaxstr = [’Maximize to : ’];

elseif minmax==0

minmaxstr = [’Minimize to : ’];

else

minmaxstr = [’Target to : ’];

end

if rstflg==1

rststat1 = ’Environment Change’;

rststat2 = ’ ’;

else

rststat1 = ’ ’;

rststat2 = ’ ’;

end

titstr={’PSO Model: ’ ,PSOtype;...

’Dimensions : ’ ,num2str(D);...

’# of particles : ’,num2str(ps);...

minmaxstr ,errgoalstr;...

’Function : ’ ,strrep(functname,’ ’,’\ ’);...
xtraname ,xtraval;...

rststat1 ,rststat2};

text(.1,1,[titstr{1,1},titstr{1,2}],’color’,’g’,
’fontweight’,’bold’);

hold on

text(.1,.9,[titstr{2,1},titstr{2,2}],’color’,’m’);
text(.1,.8,[titstr{3,1},titstr{3,2}],’color’,’m’);
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text(.1,.7,[titstr{4,1}],’color’,’w’);
text(.55,.7,[titstr{4,2}],’color’,’m’);
text(.1,.6,[titstr{5,1},titstr{5,2}],’color’,’m’);
text(.1,.5,[titstr{6,1},titstr{6,2}],’color’,’w’
,’fontweight’,’bold’);

text(.1,.4,[titstr{7,1},titstr{7,2}],’color’,’r’
,’fontweight’,’bold’);

% if we are training a neural net, show a few more

% parameters

if strcmp(’pso neteval’,functname)

% net is passed from trainpso to pso Trelea

% vectorized incase you are wondering where that

% structure comes from

hiddlyrstr = [];

for lyrcnt=1:length(net.layers)

TF{lyrcnt} = net.layers{lyrcnt}.transferFcn;
Sn(lyrcnt) = net.layers{lyrcnt}.dimensions;
hiddlyrstr = [hiddlyrstr,’, ’,TF{lyrcnt}];

end

hiddlyrstr = hiddlyrstr(3:end);

text(0.1,.35,[’#neur/lyr = [ ’,num2str(net.inputs1.

size),’ ’,... num2str(Sn),’ ]’],’color’,’c’,’

fontweight’,’normal’,... ’fontsize’,10);

text(0.1,.275,[’Lyr Fcn: ’,hiddlyrstr],...

’color’,’c’,’fontweight’,’normal’,’fontsize’,9);

end

legstr = {’Green = Personal Bests’;...

’Blue = Current Positions’;...

’Red = Global Best’};
text(.1,0.025,legstr{1},’color’,’g’);
text(.1,-.05,legstr{2},’color’,’b’);
text(.1,-.125,legstr{3},’color’,’r’);

hold off

set(gca,’color’,’k’);

set(gca,’visible’,’off’);

drawnow

-----------------------End of goplotpso.m------------

% function to force a vector to be a single column

function[out]=forcecol(in)

len=prod(size(in));
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out=reshape(in,[len,1]);

-----------------------End of forcecol.m--------------

% function to force a vector to be a single row

function[out]=forcerow(in)

len=prod(size(in));

out=reshape(in,[1,len]);

-----------------------End of forcerow.m-------------

% returns an offset that can be added to data that

% increases linearly with

% time, based on cputime, first time it is called

% is start time

% equation is: offset = (cputime - tnot)*scalefactor

% where tnot = cputime at the first call

% scalefactor = value that slows or speeds up

% linear movement

%

% usage: [offset] = linear dyn(scalefactor)

function out = linear dyn(sf)

% this keeps the same start time for each run of the

% calling function

% this will reset when any calling prog is re-saved

% or workspace is

% cleared

persistent tnot

% find starting time

if ˜exist(’tnot’) | length(tnot)==0

tnot = cputime;

end

out = (cputime-tnot)*sf;

return

-----------------------End of linear dyn.m-----------

% spiral dyn.m

% returns x,y position along an archimedean spiral of

% degree n

% based on cputime, first time it is called is start time

%

% based on: r = a*(thetaˆn)

%

% usage: [x cnt,y cnt] = spiral dyn(n,a)

% i.e.,

% n = 2 (Fermat)

% = 1 (Archimedes)

% = -1 (Hyberbolic)

% = -2 (Lituus)

function [x cnt,y cnt] = spiral dyn(n,a)
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% this keeps the same start time for each run of the

% calling function

% this will reset when any calling prog is re-saved or

% workspace is

% cleared

persistent tnot iter

% find starting time

if ˜exist(’tnot’) |length(tnot)==0
tnot = cputime;

% iter = 0;

end

% iter = iter+10 ;

theta = cputime-tnot;

% theta = iter/10000;

r = a*(theta.ˆn);

x cnt = r*cos(theta);

y cnt = r*sin(theta);

return

-----------------------End of spiral dyn.m------------

% Rosenbrock function

%

% used to test optimization/global minimization problems

%

% f(x) = sum([ 100*(x(i+1) - x(i)ˆ2)ˆ2 + (x(i) -1)ˆ2])

%

% x = N element row vector containing [x0, x1, ..., xN]

% each row is processed independently,

% you can feed in matrices of timeXN no prob

%

% example: cost = Rosenbrock([1,2;5,6;0,-50])

% note: known minimum =0 @ all x = 1

function [out]=Rosenbrock(in)

x0=in(:,1:end-1);

x1=in(:,2:end);

out = sum( (100*(x1-x0.ˆ2).ˆ2 + (x0-1).ˆ2) , 2);

-----------------------End of Rosenbrock.m--------------
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Observations

The observations were obtained by minimizing the Rosenbrock func-
tion. The parameters such as the dimensions, no. of particles, global
best, and the current positions are plotted during different iterations in
Figure 15.3.
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(a)After 16 iterations (b)After 34 iterations

  
(c)After 92 iterations (d)After 152 iterations

  
(e)After 216 iterations

  
(g)After 313 iterations

(f)After 287 iterations

(h)After 400 iterations

FIGURE 15.3: Performance of the Rosenbrock Function
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Best fit parameters:

cost = Rosenbrock( [ input1, input2 ] )

---------------------------------

input1 = 1

input2 = 1

cost = 7.0754e-012

mean cost = 348.636

# of epochs = 400

15.10.3 Illustration 3: Ant Colony Optimization to
Determine the Shortest Path

--------------------------------------------------------

%%%%%%%%% Main Program %%%%%%%%%%

--------------------------------------------------------

% getting information

[x,y,d,t,h,iter,alpha,beta,e,m,n,el]=ants information;

for i=1:iter

[app]=ants primaryplacing(m,n);

[at]=ants cycle(app,m,n,h,t,alpha,beta);

at=horzcat(at,at(:,1));

[cost,f]=ants cost(m,n,d,at,el);

[t]=ants traceupdating(m,n,t,at,f,e);

costoa(i)=mean(cost);

[mincost(i),number]=min(cost);besttour(i,:)=at

(number,:);

iteration(i)=i;

end

subplot(2,1,1);plot(iteration,costoa);

title(’average of cost (distance) versus number of

cycles’);

xlabel(’iteration’);

ylabel(’distance’);

[k,l]=min(mincost);

for i=1:n+1

X(i)=x(besttour(l,i));

Y(i)=y(besttour(l,i));

end

subplot(2,1,2);plot(X,Y,’--rs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,...

’MarkerSize’,10)

xlabel(’X’);ylabel(’y’);axis(’equal’);
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for i=1:n

text(X(i)+.5,Y(i),[’\leftarrow node ’,num2str

(besttour(l,i))]);

end

title([’optimum course by the length of ’,num2str(k)]);

------------------------------------------------------

% End of Main

------------------------------------------------------

Subprograms

% Ant information

function [x,y,d,t,h,iter,alpha,beta,e,m,n,el]=ants

information;

iter=100;% number of cycles.

m=200;% number of ants.

x=[8 0 -1 2 4 6 3 10 2.5 -5 7 9 11 13];

y=[2 4 6 -1 -2 0.5 0 3.7 1.8 1 0 4 3 2];% take care not

to enter iterative points.

n=length(x);% number of nodes.

for i=1:n % generating link length matrix.

for j=1:n

d(i,j)=sqrt((x(i)-x(j))ˆ2+(y(i)-y(j))ˆ2);

end

end

e=.1;% evaporation coefficient.

alpha=1;% order of effect of ants’ sight.

beta=5;% order of trace’s effect.

for i=1:n% generating sight matrix.

for j=1:n

if d(i,j)==0

h(i,j)=0;

else

h(i,j)=1/d(i,j);

end

end

end

t=0.0001*ones(n);% primary tracing.

el=.96;% coefficient of common cost elimination.

------------------End of ant information------------

function [cost,f]=ants cost(m,n,d,at,el);

for i=1:m

s=0;

for j=1:n

s=s+d(at(i,j),at(i,j+1));

end

f(i)=s;

end
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cost=f;

f=f-el*min(f);% elimination of common cost.

------------------ End of ants cost----------------

function [at]=ants cycle(app,m,n,h,t,alpha,beta);

for i=1:m

mh=h;

for j=1:n-1

c=app(i,j);

mh(:,c)=0;

temp=(t(c,:).ˆbeta).*(mh(c,:).ˆalpha);

s=(sum(temp));

p=(1/s).*temp;

r=rand;

s=0;

for k=1:n

s=s+p(k);

if r<=s

app(i,j+1)=k;

break

end

end

end

end

at=app;% generation of ants tour matrix during a cycle.

---------------- End of ants cycle -----------------

function [app]=ants primaryplacing(m,n);

rand(’state’,sum(100*clock));

for i=1:m

app(i,1)=fix(1+rand*(n-1));% ants primary placing.

End

-------------- End of ants primaryplacing ------------

function [t]=ants traceupdating(m,n,t,at,f,e);

for i=1:m

for j=1:n

dt=1/f(i);

t(at(i,j),at(i,j+1))=(1-e)*t(at(i,j),at(i,j+1))

+dt;% updating traces.

end

end

-------------- End of ants traceupdating --------------

Observations:

The average distance is plotted against the number of ant cycles. The
optimum distance was found to be 45.562 as shown in Figure 15.4.
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FIGURE 15.4: Plot of Distance and Optimum Length

15.10.4 Illustration 4: Ant Algorithm for the Quadratic
Assignment Problem (QAP)

The following MATLAB code implements the QAP to assign n de-
partments to n unique sites.

clc;

clear;

% THE DISTANCE/FLOW MATRIX

% UPPER HALF = DISTANCE, LOWER HALF = FLOW

DF = [NaN 1 2 3 1 2 3 4;

5 NaN 1 2 2 1 2 3;

2 3 NaN 1 3 2 1 2;

4 0 0 NaN 4 3 2 1;

1 2 0 5 NaN 1 2 3;

0 2 0 2 10 NaN 1 2;

0 2 0 2 0 5 NaN 1;

6 0 5 10 0 1 10 NaN];
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% PROBLEM SIZE (NUMBER OF SITES OR DEPTS)

pr size = size(DF, 1);

ants = 5; % NUMBER OF ANTS

max assigns = 100000; % NUMBER OF ASSIGNMENTS

% (WHEN TO STOP)

optimal = 107; % OPTIMAL SOLUTION

a = 1; % WEIGHT OF PHEROMONE

b = 5; % WEIGHT OF HEURISTIC INFO

lamda = 0.8; % EVAPORATION PARAMETER

Q = 10; % CONSTANT FOR PHEROMONE UPDATING

AM = ones(ants,pr size); % ASSIGNMENTS OF EACH ANT

min cost = -1;

% HEURISTIC INFO - SUM OF DISTANCES BETWEEN SITES

for i=1:pr size

D(i) =sum( DF(1:i-1,i))+sum(DF(i,i+1:pr size));

end

% START THE ALGORITHM

assign = 1;

while (assign <= max assigns) & ( (min cost > optimal) |

(min cost == -1) )

% =============== FIND PHEROMONE ===============

% AT FIRST LOOP, INITIALIZE PHEROMONE

if assign==1

% SET 1 AS INITIAL PHEROMONE

pher = ones(8);

% IN THE REST OF LOOPS, COMPUTE PHEROMONE

else

for i=1:pr size

for j=1:pr size

tmp = zeros(ants,pr size);

tmp( find(AM==j)) = 1;

tmp = tmp(:,i);

tmp = tmp .* costs’;

tmp( find(tmp==0) ) = [];

tmp = Q ./ tmp;

delta(i,j) = sum(tmp);

end

end

pher = lamda * pher + delta;

end

% ============ ASSIGN DEPTS TO SITES ============

% EACH ANT MAKES ASSIGNMENTS
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for ant=1:ants

% GET RANDOM DEPT ORDER

depts = rand(pr size, 2);

for i=1:pr size

depts(i,1) = i;

end

depts = sortrows(depts,2);

% KEEP AVAILABLE SITES IN A VECTOR

for i=1:pr size

free sites(i) = i;

end

pref = ones(pr size,1); % PREFERENCE FOR EACH SITE

prob=ones(pr size,1);% PROBABILITIES FOR EACH DEPT

for dept index=1:pr size

% GET SUM OF THE PREFERENCES

% AND THE PREFERENCE FOR EACH SITE

pref sum = 0;

for site index=1:size(free sites,2)

tmp pher=pher(depts(dept index),free sites

(site index));

pref(site index) = tmp pherˆa *
( 1/D(free sites(site index)) )ˆb;

pref sum = pref sum + pref(site index);

end

% GET PROBABILITIES OF ASSIGNING THE DEPT

% TO EACH FREE SITE

prob = free sites’;

prob(:,2) = pref / pref sum;

% GET THE SITE WHERE THE DEPT WILL BE ASSIGNED

prob = sortrows(prob,2);

AM(ant,dept index) = prob(1);

% ELIMINATE THE SELECTED SITE FROM THE

% FREE SITES

index = find(free sites==prob(1));

prob(1,:) = [];

free sites(index) = [];

pref(index) = [];

end

% GET THE COST OF THE ANT’S ASSIGNMENT

costs(ant) = 0;

for i=1:pr size

for j=1:i-1
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dept flow = DF(i,j);

site1 = AM(ant,i);

site2 = AM(ant,j);

if site1 \textless site2

sites distance = DF(site1, site2);

else

sites distance = DF(site2, site1);

end

costs(ant) = costs(ant) + dept flow *
sites distance;

end

end

if (costs(ant) \textless min cost)|(min cost==-1)

min cost = costs(ant);

ch assign = AM(ant,:);

end

if mod(assign,100) == 0

disp( sprintf(’Assignments so far : % d

Cheapest cost : % d’, assign,

min cost));

end

assign = assign + 1;

end

end

disp( sprintf(’Cheapest Cost : % d’, min cost));

disp( sprintf(’Assignments : % d’, assign-1));

disp(’ ’);

disp(’Assignment’);

disp(’----------’);

ant index = find(costs==min(costs));

for i=1:pr size

disp( sprintf(’Dept % d to Site % d’, i,

% ch assign(i)));

end

Output: Cheapest Cost : 107

Assignments : 4945

Assignment

----------

Dept 1 to Site 2

Dept 2 to Site 1

Dept 3 to Site 5

Dept 4 to Site 3

Dept 5 to Site 4

Dept 6 to Site 8
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Dept 7 to Site 7

Dept 8 to Site 6

Summary

This chapter introduced the theoretical foundations of swarm intel-
ligence with a focus on the implementation and illustration of particle
swarm optimization and ant colony optimization algorithms. We pro-
vided a few applications on Particle optimization problems and any
colony optimization for easy understanding of the optimization prob-
lems. A set of MATLAB programs were also given for implementation
of PSO and ACO. Results were analyzed, discussed, and their potentials
were illustrated.

Review Questions

1. Define swarm and swarm behavior.

2. Explain briefly on boid.

3. What are swarm robots?

4. Write a note on stability analysis of swarms.

5. Define Swarm Intelligence.

6. Explain the taxonomy of Swarm Intelligence.

7. Mention a few properties of swarm intelligence.

8. Explain briefly the applications of swarm intelligence.

9. Mention the usage of Particle Swarm Optimization and Ant Colony
Optimization.

10. Represent PSO in a canonical form.

11. Write the algorithm of PSO and explain the operational steps
briefly.
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12. Mention a few neighborhood topologies that influence the perfor-
mance of PSO.

13. Compare PSO with a few global optimization techniques.

14. State the functions used to test the performance of PSO.

15. Write short notes on Fuzzy PSO and Binary PSO.

16. Explain the Job Scheduling application using PSO.

17. Write a note on PSO for data mining.

18. Write the algorithm of ACO and explain the operational steps
briefly.

19. How the traveling sales man problem is optimized using ACO?

20. What do you mean by Quadratic assignment problems?

21. Write a note on ACO used in data mining.

22. Write a MATLAB program to implement the PSO algorithm and
analyze its performance on Job shop scheduling problem.

23. Optimize the path of a Traveling Salesman Problem using PSO
algorithm in MATLAB. Compare the results with ACO.

24. Find the minimum of a function using Hybrid PSO in MATLAB.

25. Write a MATLAB program using PSO to train a feed forward
neural network. Assume that the Neural network is approximating
a noisy sine function.

26. Implement the Quadratic Assignment Problem in MATLAB using
PSO and compare the results with QAP using ACO algorithm.
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Appendix A

Glossary of Terms

A
Action: Any process based on satisfied conditions or occurrence of a

situation.

Activation: The time-varying value that is the output of a neuron.

Activation Function: A function that translates a neuron’s net input
to an activation value. A mathematical function that maps the net
input of a neuron to its output. Commonly used activation func-
tions are: step, sign, linear, and sigmoid, also referred to as Transfer
function.

ADALINE: Acronym for a linear neuron: ADAptive LINear Element.

Adaptability: The ability of an organism to learn in response to
changes in its environment over the course of its lifetime. This allows
it to improve its fitness over that available from its initial phenotype.

Adaptive: Subject to adaptation; can change over time to improve fit-
ness or accuracy.

Adaptive Behavior: Underlying mechanisms that allow animals, and
potentially, robots to adapt and survive in uncertain environments.

Adaptive Learning Rate: A learning rate adjusted according to the
change of error during training. If the error at the current epoch
exceeds the previous value by more than a predefined ratio, the
learning rate is decreased. However, if the error is less than the
previous one, the learning rate is increased. The use of an adaptive
learning rate accelerates learning in a multilayer perceptron.

Adaptive Neuro-Fuzzy Inference System (ANFIS): A technique
for automatically tuning Sugeno-type inference systems based on
training data.

Aggregate Set: A fuzzy set obtained through aggregation.

693
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Aggregation: The combination of the consequents of each rule in a
Mamdani fuzzy inference system in preparation for defuzzification.

Algorithm: A detailed and unambiguous sequence of instructions that
describes how a computation is to proceed and can be implemented
as a program.

Allele: Alternative form of a gene; one of the different forms of a gene
that can exist at a single locus

Allele Loss: Allele loss is the natural loss of traits in the gene pool over
the generations of a run. Another term for allele loss is convergence.
Severe allele loss results in a population incapable of solving the
problem with the available gene pool.

Ant Colony Optimization (ACO): Heuristic search algorithm for
NP-hard optimization, inspired by the foraging behavior of real ant
colonies, experimentally showed that the foraging behavior can give
rise to the emergence of shortest path when employed by a colony
of ants

Antecedent: A conditional statement in the IF part of a rule, also
referred to as Premise.

Ants: Ants are social, colony-building insects who live in self-organized
groups. Their perceptive spectrum is limited to various smells and a
good sense of feel. The individual ants themselves are not capable of
complex thinking. There are also no superants who delegate knowl-
edge. The special role of the queen is limited to laying eggs. Why do
ant colonies act complexly and intelligently as a whole then? “Sin-
gle ants aren’t smart. Ant colonies are.” This effect is called “swarm
intelligence”: individuals follow simple rules to which complex be-
havior adds up. For example: there are two routes from the colony to
food, a long one and a short one. None of the ants know which way
is better and why, they choose the route by chance at first. The ants
who choose the shorter route, however, walk back and forth between
the colony and the food more often in the same period of time and
thus leave more pheromone traces on the shorter path. This scent
message signals to the other ants that this is the optimum route.

Approximate Reasoning: Reasoning that does not require a precise
matching between the IF part of a production rule with the data in
the database.

Artificial Neural Network (ANN): An information-processing paradigm
inspired by the structure and functions of the human brain. An ANN
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consists of a number of simple and highly interconnected processors,
called neurons, which are analogous to the biological neurons in the
brain. The neurons are connected by weighted links that pass signals
from one neuron to another. While in a biological neural network,
learning involves adjustments to the synapses, ANNs learn through
repeated adjustments of the weights. These weights store the knowl-
edge needed to solve specific problems.

Assertion: A fact derived during reasoning.

Associative Memories: Associative memories work by recalling infor-
mation in response to an information cue. Associative memories can
be auto-associative or hetero-associative. Auto-associative memories
recall the same information that is used as a cue, which can be use-
ful to complete a partial pattern. Hetero-associative memories are
useful as a memory. Human long-term memory is thought to be as-
sociative because of the way in which one thought retrieved from it
leads to another. When we want to store a new item of information
in long term memory it typically takes us 8 seconds to store an item
that can’t be associated with a pre-stored item, but only one or two
seconds, if there is an existing information structure with which to
associate the new item.

Attribute: A property of an object. For example, the object “com-
puter” might have such attributes as “model”, “processor”, “mem-
ory”, and “cost”.

Automatically Defined Function (ADF): Concept of modulariza-
tion aiming at an efficiency increase in GP. ADFs are sub-trees,
which can be used as functions in main trees. ADFs are varied in
the same manner as the main trees.

Axon: A single long branch of a biological neuron that carries the out-
put signal (action potential) from the cell. An axon may be as long
as a meter. In an ANN, an axon is modeled by the neuron’s output.

B
Backpropagation: An algorithm for efficiently calculating the error

gradient of a neural network, which can then be used as the ba-
sis of learning. Backpropagation is equivalent to the delta rule for
perceptrons, but can also calculate appropriate weight changes for
the hidden layer weights of a multilayer perceptron by generalizing
the notion of an error correction term. In the simplest case, back-
propagation is a type of steepest descent in the search space of the
network weights, and it will usually converge to a local minimum.
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Backpropagation Learning Rule: Learning rule in which weights
and biases are adjusted by error-derivative (delta) vectors backprop-
agated through the network. Backpropagation is commonly applied
to feedforward multilayer networks. Sometimes this rule is called the
generalized delta rule.

Backtracking Search: Linear search routine that begins with a step
multiplier of 1 and then backtracks until an acceptable reduction in
performance is obtained.

Baldwin Effect: If the ability to learn increases the fitness, survival,
of an individual, then its offspring will have a high probability of
having that ability to learn.

Batch: Matrix of input (or target) vectors applied to the network si-
multaneously. Changes to the network weights and biases are made
just once for the entire set of vectors in the input matrix. (The term
batch is being replaced by the more descriptive expression “concur-
rent vectors.”)

Bias: Neuron parameter that is summed with the neuron’s weighted
inputs and passed through the neuron’s transfer function to generate
the neuron’s output.

Bias Vector: Column vector of bias values for a layer of neurons.

Bi-directional Associative Memory (BAM): A class of neural
networks that emulates characteristics of associative memory; pro-
posed by Bart Kosko in the 1980s. The BAM associates patterns
from one set to patterns from another set, and vice versa. Its basic
architecture consists of two fully connected layers an input layer and
an output layer.

Bloat/Code Bloat: Phenomenon of uncontrolled genome growth in
GP individuals.

Block: Element of a tree-shaped GP individual. The block set consists
of the terminal set and the function set.

Boid: An autonomous agent that behaves like a simplified bird but will
display flocking patterns in the presence of other boids.

Boltzmann Selection: In Boltzmann selection, a method inspired by
the technique of simulated annealing, selection pressure is slowly
increased over evolutionary time to gradually focus the search. Given
a fitness of f, Boltzmann selection assigns a new fitness, f0, according
to a differentiable function.
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Branch: A connection between nodes in a decision tree.

Building Block: A pattern of genes in a contiguous section of a chro-
mosome, which, if present, confers a high fitness to the individual.
According to the building block hypothesis, a complete solution can
be constructed by crossover joining together in a single individual
with many building blocks, which were originally spread throughout
the population.

Building Block Hypothesis (BBH): It attempts to explain the
functioning of a (binary) GA based on the schema theorem. The
BBH is based on the assumption that beneficial properties of a par-
ent are aggregated in (relatively) small code blocks at several loca-
tions within the genome. In the offspring they can be merged by
crossover. Thus, the BBH suggests that the improved solution is
assembled from “partial solutions,” the so-called building blocks.

C
Case-Based Reasoning: Case-based reasoning (CBR) solves a cur-

rent problem by retrieving the solution to previous similar problems
and altering those solutions to meet the current needs. It is based
upon previous experiences and patterns of previous experiences. Hu-
mans with years of experience in a particular job and activity (e.g.,
a skilled paramedic arriving on an accident scene can often auto-
matically know the best procedure to deal with a patient) use this
technique to solve many of their problems. One advantage of CBR is
that inexperienced people can draw on the knowledge of experienced
colleagues, including ones who aren’t in the organization, to solve
their problems. Synonym: Reasoning by analogy.

Canonical GA: Causality property of a system, that small variations
in the cause only provoke small variations in the effect. In EAs vari-
ations of the cause correspond to changes of the genotype and vari-
ations of the effect to changes of the phenotype or of the respective
objective function value (fitness). Although strong causality remark-
ably increases the efficiency of EAs, it is not always a prerequisite
for their successful application.

CART (Classification and Regression Trees): A tool for data
mining that uses decision trees. CART provides a set of rules that
can be applied to a new data set for predicting outcomes. CART
segments data records by creating binary splits.

Cascade-Forward Network: Layered network in which each layer
only receives inputs from previous layers.
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Cellular Automata: A regular array of identical finite state automata
whose next state is determined solely by their current state and the
state of their neighbors. The most widely seen is the game of life in
which complex patterns emerge from a (supposedly infinite) square
lattice of simple two state (living and dead) automata whose next
state is determined solely by the current states of its four closest
neighbors and itself.

Certainty Factor: A number assigned to a fact or a rule to indicate
the certainty or confidence one has that this fact or rule is valid, also
referred to as Confidence factor.

Certainty Theory: A theory for managing uncertainties in expert sys-
tems based on inexact reasoning. It uses certainty factors to repre-
sent the level of belief in a hypothesis given that a particular event
has been observed.

Child: In a decision tree, a child is a node produced by splitting the
data of a node located at the preceding hierarchical level of the tree.
A child node holds a subset of the data contained in its parent.

Chromosome: Normally, in genetic algorithms chromosome is the bit
string, which represents the individual. In genetic programming the
individual and its representation are usually the same, both being
the program parse tree. In nature many species store their genetic
information on more than one chromosome.

Chromosome Mutation: Any type of change in the chromosome
structure or number

Class: A group of objects with common attributes. Animal, person, car,
and computer are all classes.

Class-Frame: A frame that represents a class.

Classification: Automated classification tools such as decision trees
have been shown to be very effective for distinguishing and charac-
terizing very large volumes of data. They assign items to one of a set
of predefined classes of objects based on a set of observed features.
For example, one might determine whether a particular mushroom
is “poisonous” or “edible” based on its color, size, and gill size. Clas-
sifiers can be learned automatically from a set of examples through
supervised learning. Classification rules are rules that discriminate
between different partitions of a database based on various attributes
within the database. The partitions of the database are based on an
attribute called the classification label (e.g., “faulty” and “good”).
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Classifier: A rule that is part of a classifier system and has a condition
that must be matched before its message (or action) can be posted
(or effected). The strength of a classifier determines the likelihood
that it can outbid other classifiers if more than one condition is
matched.

Classifier System: An adaptive system similar to a post production
system that contains many “if ... then” rules called classifiers. The
state of the environment is encoded as a message by a detector
and placed on the message list from which the condition portion of
the classifiers can be matched. “Winning” classifiers can then post
their own messages to the message list, ultimately forming a type of
computation that may result in a message being translated into an
action by an effector. The strengths of the classifiers are modified
by the bucket brigade algorithm, and new rules can be introduced
via a genetic algorithm.

Cluster Analysis: A method of data reduction that tries to group
given data into clusters; data of the same cluster should be similar
or homogenous, data of disjunct clusters should be maximally dif-
ferent; assigning each data point to exactly one cluster often causes
problems, because in real world problems a crisp separation of clus-
ters is rarely possible due to overlapping of classes; also there are
usually exceptions which cannot be suitably assigned to any cluster.

Clustering: Clustering is an approach to learning that seeks to place
objects into meaningful groups automatically based on their simi-
larity. Clustering, unlike classification, does not require the groups
to be predefined with the hope that the algorithm will determine
useful but hidden groupings of data points. The hope in applying
clustering algorithms is that they will discover useful but unknown
classes of items. A well-publicized success of a clustering system was
NASA’s discovery of a new class of stellar spectra.

Co-evolution: Evolution of species, not only with respect to their en-
vironment, but also as to how they relate to other species. This is a
more potent form of evolution to that normally considered, changing
the shape of the fitness landscape dynamically.

Combinatorial Optimization: Some tasks involve combining a set
of entities in a specific way (e.g., the task of building a house).
A general combinatorial task involves deciding the specifications of
those entities (e.g., what size, shape, material to make the bricks
from), and the way in which those entities are brought together (e.g.,
the number of bricks, and their relative positions). If the resulting
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combination of entities can in some way be given a fitness score, then
combinatorial optimization is the task of designing a set of entities,
and deciding how they must be configured, so as to give maximum
fitness.

Competitive Learning: Unsupervised learning in which neurons com-
pete among themselves such that only one neuron will respond to a
particular input pattern. The neuron that wins the “competition” is
called the winner-takes-all neuron. Kohonen self-organizing feature
maps are an example of an ANN with competitive learning.

Computation: The realization of a program in a computer.

Computational Intelligence: An area in which the systems are deal-
ing only with numeric data, have pattern recognition capabilities,
do not use knowledge in the artificial sense.

Concurrent Input Vectors: Name given to a matrix of input vectors
that are to be presented to a network simultaneously. All the vectors
in the matrix are used in making just one set of changes in the
weights and biases.

Conditional Independence: Two propositions are independent if
they do not affect each other’s chance of being true. They are con-
ditionally independent if they are independent given certain condi-
tions. For example, high humidity in the air and a damp sidewalk
are not independent, but they are conditionally independent if we
know that it has just rained.

Conditional Probability: The probability of a proposition, A, being
true given that all we know is some evidence, B. This is expressed
as P (A — B).

Conditional Probability Table (CPT): A table of probability val-
ues for a node in the network. Each value corresponds to one condi-
tioning case.

Conditioning Case: A permutation of truth-values of all the parents
of a given node, listed in a CPT.

Connection: One-way link between neurons in a network.

Connection Strength: Strength of a link between two neurons in a
network. The strength, often called weight, determines the effect
that one neuron has on another.
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Connectionist System : A system characterized by explicit connec-
tions between the components resulting in a distributed data struc-
ture (as used in neural networks).

Connectivity: The relation of an agent to its neighbors, it can be
sparsely connected (only affected by a few neighbors), fully con-
nected (interfacing with every other agent in the system) or some
intermediate arrangement. This parameter critically affects the dy-
namics of the system.

Consequent: The Then part of a If-Then rule, or one clause or expres-
sion in this part of the rule.

Constraint: A force of some sort restricting the movement of a system.
In life studies the variations of form do not allow infinite variation,
something constrains the options available. Complexity studies seek
the laws that apply, if any, in these cases and similar areas.

Convergence: For computers, halting with an answer; for dynamical
systems, falling into an attractor; for searches (e.g., backpropagation
and genetic algorithms), finding a location that cannot be improved
upon; for infinite summations, approaching a definite value.

Cooperation: The behavior of two or more individuals acting to in-
crease the gains of all participating individuals.

Crossover: A reproduction operator which forms a new chromosome
by combining parts of each of the two “parent” chromosomes. The
simplest form is single-point crossover, in which an arbitrary point
in the chromosome is picked. All the information from parent A
is copied from the start up to the crossover point, then all the in-
formation from parent B is copied from the crossover point to the
end of the chromosome. The new chromosome thus gets the head of
one parent’s chromosome combined with the tail of the other. Vari-
ations use more than one crossover point, or combine information
from parents in other ways.

Crossover Point: Crossover point of a fuzzy set is the element in U at
which its membership function is 0.5.

Crossover Probability: A number between zero and one that indi-
cates the probability of two chromosomes crossing over.

Cycle: Single presentation of an input vector, calculation of output,
and new weights and biases.
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D
Darwinism: Theory of evolution, proposed by Darwin, that evolution

comes through random variation of heritable characteristics, coupled
with natural selection (survival of the fittest). A physical mecha-
nism for this, in terms of genes and chromosomes, was discovered
many years later. Darwinism was combined with the selectionism of
Weismann and the genetics of Mendel to form the Neo-Darwinian
Synthesis during the 1930s-1950s by T. Dobzhansky, E. Mayr, G.
Simpson, R. Fisher, S. Wright, and others.

Dead Neuron: Competitive layer neuron that never won any competi-
tion during training and so has not become a useful feature detector.
Dead neurons do not respond to any of the training vectors.

Decision Boundary: Line, determined by the weight and bias vectors,
for which the net input n is zero.

Decision Making: A process of deriving solution of a complex problem
using knowledge from the given domain and data relevant to the
problem

Decision Tree: A graphical representation of a data set that describes
the data by tree-like structures. A decision tree consists of nodes,
branches, and leaves. The tree always starts from the root node and
grows down by splitting the data at each level into new nodes. De-
cision trees are particularly good at solving classification problems.
Their main advantage is data visualization.

Defuzzification: The last step in fuzzy inference; the process of con-
verting a combined output of fuzzy rules into a crisp (numerical)
value. The input for the defuzzification process is the aggregate set
and the output is a single number.

Degree of Membership: A numerical value between 0 and 1 that rep-
resents the degree to which an element belongs to a particular set,
also referred to as Membership value.

Delta Rule: A procedure for updating weights in a perceptron during
training. The delta rule determines the weight correction by multi-
plying the neuron’s input with the error and the learning rate.

Dendrite: A branch of a biological neuron that transfers information
from one part of a cell to another. Dendrites typically serve an in-
put function for the cell, although many dendrites also have output
functions. In an ANN, dendrites are modeled by inputs to a neuron.
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Directed Acyclic Graph (DAG): A graph in which the nodes are
connected by arrows (directed), and in which there is no directed
path from a given node back to itself (acyclic).

Distance Function: A particular way of calculating distance, such as
the Euclidean distance between two vectors.

DNA: Deoxyribonucleic Acid, a double stranded macromolecule of he-
lical structure (comparable to a spiral staircase). Both single strands
are linear, unbranched nucleic acid molecules build up from alternat-
ing deoxyribose (sugar) and phosphate molecules. Each deoxyribose
part is coupled to a nucleotide base, which is responsible for estab-
lishing the connection to the other strand of the DNA. The four
nucleotide bases Adenine (A), Thymine (T), Cytosine (C) and Gua-
nine (G) are the alphabet of the genetic information. The sequences
of these bases in the DNA molecule determines the building plan of
any organism.

E
Early Stopping: Technique based on dividing the data into three sub-

sets. The first subset is the training set, used for computing the
gradient and updating the network weights and biases. The second
subset is the validation set. When the validation error increases for
a specified number of iterations, the training is stopped, and the
weights and biases at the minimum of the validation error are re-
turned. The third subset is the test set. It is used to verify the
network design.

Ecology: The study of the relationships and interactions between or-
ganisms and environments.

Ecosystem: A biological system consisting of many organisms from
different species.

Ecosystem: The relatively stable balance of different species within a
particular area. A food chain, usually cyclic and self-sustaining.

Eigenvalue: The change in length that occurs when the corresponding
eigenvector is multiplied by its matrix.

Eigenvector: A unit length vector that retains its direction when mul-
tiplied to the corresponding matrix. An (n * n) matrix can have
as many as n unique eigenvectors, each of which will have its own
eigenvalue.
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Elitism: Elitism (or an elitist strategy) is a mechanism which is em-
ployed in some EAs which ensures that the chromosomes of the
most highly fit member(s) of the population are passed on to the
next generation without being altered by Genetic Operators. Us-
ing elitism ensures that the minimum fitness of the population can
never reduce from one generation to the next. Elitism usually brings
about a more rapid convergence of the population. In some applica-
tions elitism improves the chances of locating an optimal individual,
while in others it reduces it.

Embedding: A method of taking a scalar time series and using delayed
snapshots of the values at fixed time intervals in the past so that the
dynamics of the underlying system can be observed as a function of
the previously observed states.

Emergence: Global behavior of a system is not evident from the lo-
cal behavior of its elements; a defining characteristic of a complex
dynamical system.

Entropy: A measure of a system’s degree of randomness or disorder.

Environment: Environment surrounds an organism. Can be “physical”
(abiotic), or biotic. In both, the organism occupies a niche which
influences its fitness within the total environment. A biotic envi-
ronment may present frequency-dependent fitness functions within
a population, that is, the fitness of an organism’s behavior may
depend upon how many others are also doing it. Over several gener-
ations, biotic environments may foster co-evolution, in which fitness
is determined with selection partly by other species.

Epigenesis: Lifetime learning.

Epistasis: A “masking” or “switching” effect among genes. A gene is
said to be epistatic when its presence suppresses the effect of a gene
at another locus. Epistatic genes are sometimes called inhibiting
genes because of their effect on other genes which are described
as hypostatic. Epistasis is referred to any kind of strong interaction
among genes, not just masking effects. A possible definition is: “Epis-
tasis is the interaction between different genes in a chromosome. It is
the extent to which the contribution to fitness of one gene depends
on the values of other genes.” Problems with little or no epistasis
are trivial to solve (hillclimbing is sufficient). But highly epistatic
problems are difficult to solve, even for GAs. High epistasis means
that building blocks cannot form, and there will be deception.
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Epoch: Presentation of the set of training (input and/or target) vectors
to a network and the calculation of new weights and biases. Note
that training vectors can be presented one at a time or all together
in a batch.

Equilibrium: The tendency of a system to settle down to a steady state
that isn’t easily disturbed, an attractor. Traditionally, equilibrium
systems in physics have no energy input and maximise entropy, usu-
ally involving an ergodic attractor, but dissipative systems maintain
steady states far-from-equilibrium (also non-equilibrium).

Error Jumping: Sudden increase in a network’s sum-squared error
during training. This is often due to too a large learning rate.

Error Ratio: Training parameter used with adaptive learning rate and
momentum training of backpropagation networks.

Error: The difference between the actual and desired outputs in an
ANN with supervised learning.

Error Vector: Difference between a network’s output vector in re-
sponse to an input vector and an associated target output vector.

Euclidean: Pertaining to standard geometry, i.e., points, lines, planes,
volumes, squares, cubes, triangles, etc.

Euler’s Method: The simplest method of obtaining a numerical so-
lution of a differential equation. There are many other numerical
techniques that are more accurate; however, an analytical solution
(i.e., a closed form of an integral) is always preferred but not always
possible.

Evolution: A process operating on populations that involves variation
among individuals, traits being inheritable, and a level of fitness for
individuals that is a function of the possessed traits. Over relatively
long periods of time, the distribution of inheritable traits will tend
to reflect the fitness that the traits convey to the individual; thus,
evolution acts as a filter that selects fitness-yielding traits over other
traits.

Evolution: This is a universal idea, generalized as “general selection
theory” to be the process of “variation, selection, retention” under-
lying all systemic improvement over time (including “trial and error”
learning). The term is often specifically applied however to genetic
evolution where some changes, by being more efficient in functional
ways, are preferred by natural selection.
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Evolution Strategy: A numerical optimization procedure similar to
a focused Monte Carlo search. Unlike genetic algorithms, evolu-
tion strategies use only a mutation operator, and do not require
a problem to be represented in a coded form. Evolution strategies
are used for solving technical optimization problems when no analyt-
ical objective function is available, and no conventional optimization
method exists.

Evolutionarily Stable Strategy: A strategy that performs well in a
population dominated by the same strategy. Or, in other words, an
“ESS” is a strategy such that, if all the members of a population
adopt it, no mutant strategy can invade.

Evolutionary Algorithm (EA): A collective term for all variants
of (probabilistic) optimization and approximation algorithms that
are inspired by Darwinian evolution. Optimal states are approxi-
mated by successive improvements based on the variation-selection-
paradigm. Thereby, the variation operators produce genetic diversity
and the selection directs the evolutionary search.

Evolutionary Computation (EC): Computation based on evolu-
tionary algorithms. EC encompasses methods of simulating evolu-
tion on a computer. The term is relatively new and represents an
effort to bring together researchers who have been working in closely
related fields but following different paradigms. The field is now seen
as including research in genetic algorithms, evolution strategies, evo-
lutionary programming, artificial life.

Evolutionary Computing: Using algorithms that mimic the genetic
and evolutionary processes of natural selection to produce software
programs or solve problems. The process of natural selection uses
many copies of a piece of code (which corresponds to a biological
species’ DNA), introduces random changes (mutations), allows the
best results to continue (survival of the fittest), mixes their traits
(reproduction), and repeats the cycle many times (evolution).

Evolutionary Programming (EP): It is a stochastic optimization
strategy, which is similar to Genetic Algorithms, but dispenses with
both “genomic” representations and with crossover as a reproduc-
tion operator. It is a variant of EA, which, like ES, operates on the
“natural” problem representation. Only mutation is used as the vari-
ation operator together with tournament selection; recombination is
not employed.
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Evolutionary Systems: A process or system which employs the evolu-
tionary dynamics of reproduction, mutation, competition, and selec-
tion. The specific forms of these processes are irrelevant to a system
being described as evolutionary.

Evolutionary Theory: The study of evolution based upon neo-
Darwinian ideas. Modern complexity science adds additional self-
organizational concepts to this theory to better explain organiza-
tional emergence.

Evolvable Hardware: Evolvable hardware includes special devices,
circuits, or machines, which allow an implementation of the Dar-
winian evolution paradigm at the material level.

Excitatory: Refers to a neural synapse or weight that is positive such
that activity in the source neuron encourages activity in the con-
nected neuron; the opposite of inhibitory.

Exhaustive Search: A problem-solving technique in which every pos-
sible solution is examined until an acceptable one is found.

Experimentation: One process by which scientists attempt to under-
stand nature. A phenomenon is observed and/or manipulated so
that changes in the phenomenon’s state can be seen. The resulting
data can be used to derive new models of a process or to confirm an
existing model. Experimentation is the complement of theorization.

F
Fuzzy Logic: Traditional Western logic systems assume that things are

either in one category or another. Yet in everyday life, we know this
is often not precisely so. People aren’t just short or tall, they can
be fairly short or fairly tall, and besides we differ in the opinions of
what height actually corresponds to tall, anyway. The ingredients
of a cake aren’t just not mixed or mixed, they can be moderately
well mixed. Fuzzy logic provides a way of taking our commonsense
knowledge that most things are a matter of degree into account when
a computer is automatically making a decision. For example, one rice
cooker uses fuzzy logic to cook rice perfectly even if the cook put in
too little water or too much water.

Feedback: A linking of the output of a system back to the input. Tra-
ditionally this can be negative, tending to return the system to a
wanted state, or positive tending to diverge from that state. Life
employs both methods.
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Feedback Network: Network with connections from a layer’s output
to that layer’s input. The feedback connection can be direct or pass
through several layers.

Feedforward Neural Network: A topology of an ANN in which neu-
rons in one layer are connected to the neurons in the next layer. The
input signals are propagated in a forward direction on a layer-by-
layer basis. An example of a feedforward network is a multilayer
perceptron.

Firing a Rule: The process of executing a production rule, or more
precisely, executing the THEN part of a rule when its IF part is
true.

Firing Strength: The degree to which the antecedent part of a fuzzy
rule is satisfied. The firing strength may be the result of an AND
or an OR operation, and it shapes the output function for the rule,
also known as degree of fulfillment.

Fitness: A value assigned to an individual which reflects how well the
individual solves the task in hand. A “fitness function” is used to
map a chromosome to a fitness value. A “fitness landscape” is the
hypersurface obtained by applying the fitness function to every point
in the search space.

Fitness Function: A process which evaluates a member of a popula-
tion and gives a score or fitness. In most cases the goal is to find an
individual with the maximum (or minimum) fitness.

Fitness Scaling: Fitness scaling converts the raw fitness scores that
are returned by the fitness function to values in a range that is
suitable for the selection function. The selection function uses the
scaled fitness values to select the parents of the next generation.
The selection function assigns a higher probability of selection to
individuals with higher scaled values.

Fixed Point: A point in a dynamical system’s state space that maps
back to itself, i.e., the system will stay at the fixed point if it does
not undergo a perturbation.

Flocking: The phenomenon of bird flocking can be explained by simple
rules telling an agent to stay a fixed distance from a neighbour. The
apparently intelligent behaviour of a flock navigating an obstacle
follows directly from the mindless application of these rules.

© 2010 by Taylor and Francis Group, LLC



Glossary of Terms 709

Frequency: Dependent fitness fitness differences whose intensity
changes with changes in the relative frequency of genotypes in the
population.

Frequency-Dependent Selection: Selection that involves frequency-
dependent fitness; selection of a genotype depending on its frequency
in the population.

Frequency-Interdependent Fitness: Fitness that is not dependent
upon interactions with other individuals of the same species.

Function: A mapping from one space to another. This is usually un-
derstood to be a relationship between numbers. Functions that are
computable can be calculated by a universal computer.

Function Approximation: The task of finding an instance from a
class of functions that is minimally different from an unknown func-
tion. This is a common task for neural networks.

Function Optimization: For a function which takes a set of N input
parameters, and returns a single output value, F, function optimiza-
tion is the task of finding the set(s) of parameters which produce
the maximum (or minimum) value of F. Function optimization is a
type of value-based problem.

Function Set: The set of operators used in GP. These functions label
the internal (non-leaf) points of the parse trees that represent the
programs in the population. An example function set might be +,
−, *.

Fuzzification: The first step in fuzzy inference; the process of mapping
crisp (numerical) inputs into degrees to which these inputs belong
to the respective fuzzy sets.

Fuzzy Cluster Analysis: Specifies a membership degree between 0
and 1 for each data sample to each cluster; most fuzzy cluster anal-
ysis methods optimize a subjective function that evaluates a given
fuzzy assignment of data to clusters; by suitable selection of param-
eters of the subjective function it is possible to search for clusters
of different forms: on the one side solid clusters in form of (hyper-
dimensional) solid spheres, elliptoids or planes, and on the other side
shells of geometrical contures like circles, lines, or hyperboles (shell
cluster); latter are especially suitable for image analysis; from the
result of a fuzzy cluster analysis a set of fuzzy rules can be obtained
to describe the underlying data; these rules can be used to build
fuzzy systems like fuzzy classifiers or fuzzy controllers, for example.
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Fuzzy C-Means Clustering: A data clustering technique wherein
each data point belongs to a cluster to a degree specified by a mem-
bership grade.

Fuzzy Inference: The process of reasoning based on fuzzy logic. Fuzzy
inference includes four steps: fuzzification of the input variables, rule
evaluation, aggregation of the rule outputs, and defuzzification.

Fuzzy Logic: A system of logic developed for representing conditions
that cannot be easily described by the binary terms “true” and
“false”. The concept was introduced by Lotfi Zadeh in 1965. Un-
like Boolean logic, fuzzy logic is multi-valued and handles the con-
cept of partial truth (truth values between “completely true” and
“completely false”).

Fuzzy Operators: AND, OR, and NOT operators. These are also
known as logical connectives.

Fuzzy Rule: A conditional statement in the form: IF x is A THEN y is
B, where x and y are linguistic variables, and A and B are linguistic
values determined by fuzzy sets.

Fuzzy Set: A fuzzy set is any set that allows its members to have dif-
ferent grades of membership (membership function) in the interval
[0,1].

Fuzzy Singleton: A fuzzy set with a membership function equal to
unity at a single point on the universe of discourse and zero every-
where else.

Fuzzy Variable: A quantity that can take on linguistic values. For ex-
ample, the fuzzy variable “temperature”, might have values such as
“hot”, “medium”, and “cold”.

Fuzzy Variables and Fuzzy Logic: Variables that take on multiple
values with various levels of certainty and the techniques for reason-
ing with such variables.

G
Genetic Algorithms: Search algorithms used in machine learning

which involve iteratively generating new candidate solutions by com-
bining two high scoring earlier (or parent) solutions in a search for
a better solution, so named because of its reliance on ideas drawn
from biological evolution.
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Gamete: Cells which carry genetic information from their parents for
the purpose of sexual reproduction. In animals, male gametes are
called sperm, female gametes are called ova. Gametes have a haploid
number of chromosomes.

Gaussian: Normally distributed (with a bell-shaped curve) and having
a mean at the center of the curve with tail widths proportional to
the standard deviation of the data about the mean.

Gene: A basic unit of a chromosome that controls the development of
a particular feature of a living organism. In Holland’s chromosome,
a gene is represented by either 0 or 1.

Gene Pool: The whole set of genes in a breeding population. The
metaphor on which the term is based de-emphasizes the undeniable
fact that genes actually go about in discrete bodies, and emphasizes
the idea of genes flowing about the world like a liquid.

Generalization: The ability of an ANN to produce correct results from
data on which it has not been trained.

Generalized Delta Rule: Another name for backpropagation.

Generalized Regression Network: Approximates a continuous func-
tion to an arbitrary accuracy, given a sufficient number of hidden
neurons.

Generation: An iteration of the measurement of fitness and the cre-
ation of a new population by means of reproduction operators.

Generation Equivalent: In a steady state GA, the time taken to cre-
ate as many new individuals as there is in the population.

Generation Gap: Concept for describing overlapping generations (sta-
tionary EA). The generation gap is defined as the ratio of the number
of offspring to the size of the parent population.

Generation: One iteration of a genetic algorithm.

Generational GP: Generational genetic programming is the process
of producing distinct generations in each iteration of the genetic
algorithm.

Genetic Algorithm (GA): Search technique used in computer sci-
ence to find approximate solutions to optimization and search prob-
lems. Genetic algorithms are a particular class of evolutionary al-
gorithms that use techniques inspired by evolutionary biology such
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as inheritance, mutation, natural selection, and recombination (or
crossover).

Genetic Drift: Term used in population genetics to refer to the sta-
tistical drift over time of allele frequencies in a finite population
due to random sampling effects in the formation of successive gen-
erations; in a narrower sense, genetic drift refers to the expected
population dynamics of neutral alleles (those defined as having no
positive or negative impact on fitness), which are predicted to even-
tually become fixed at zero or 100% frequency in the absence of
other mechanisms affecting allele distributions.

Genetic Fuzzy System: A system combining genetic and fuzzy prin-
ciples; most frequent approaches: genetic algorithms that adapt and
learn the knowledge base of a fuzzy-rule-based system; genetic tun-
ing of fuzzy systems; genetic learning processes in fuzzy systems;
hybrid genetic fuzzy systems such as genetic fuzzy clustering or ge-
netic neuro-fuzzy systems.

Genetic Operator: An operator in genetic algorithms or genetic pro-
gramming, which acts upon the chromosome in order to produce a
new individual. Genetic operators include crossover and mutation.

Genetic Program: A program produced by genetic programming.

Genetic Programming (GP): Technique popularized by John Koza,
in which computer programs, rather than function parameters, are
optimized; GP often uses tree-based internal data structures to rep-
resent the computer programs for adaptation instead of the list, or
array, structures typical of genetic algorithms.

Genetic Repair: Approach to explain the possible increase of perfor-
mance by recombination. Accordingly, the task of recombination is
to extract the genetic information common to the selected individ-
uals, as this information is likely responsible for fitness increase.
A perfect recombination operator should additionally reduce those
parts of the genome which are responsible for a decrease in fitness.
This is, e.g., statistically realized by ES recombination operators in
real-valued search spaces by (partially) averaging out the defective
components.

Genotype: The combination of genes that make up an organism. This
has no form itself but directs the creation of the phenotype follow-
ing the interaction of system, dynamics, and environment. Usually
regarded as comprising a number of alleles or bits (systems having
two states, 0 or 1, off or on).
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Genotype/Phenotype Distinction: The distinction between pheno-
type and genotype is fundamental to the understanding of heredity
and development of organisms. The genotype of an organism is the
class to which that organism belongs as determined by the descrip-
tion of the actual physical material made up of DNA that was passed
to the organism by its parents at the organism’s conception. For sex-
ually reproducing organisms that physical material consists of the
DNA contributed to the fertilized egg by the sperm and egg of its
two parents. For asexually reproducing organisms, for example bac-
teria, the inherited material is a direct copy of the DNA of its parent.
The phenotype of an organism is the class to which that organism
belongs as determined by the description of the physical and behav-
ioral characteristics of the organism, for example its size and shape,
its metabolic activities, and its pattern of movement.

Global Minimum (Maximum): In a search space, the lowest (or
highest) point of the surface, which usually represents the best pos-
sible solution in the space with respect to some problem.

Global Optimization: The process by which a search is made for the
extremum (or extrema) of a functional which, in evolutionary com-
putation, corresponds to the fitness or error function that is used to
assess the performance of any individual.

Goal: A hypothesis that an expert system attempts to prove.

Gradient: A vector of partial derivatives of a function that operates
on vectors. Intuitively, the gradient represents the slope of a high-
dimensional surface.

Gradient Descent: Process of making changes to weights and biases,
where the changes are proportional to the derivatives of network er-
ror with respect to those weights and biases. This is done to minimize
network error.

H
Heterogeneous Databases: Databases that contain different kinds of

data, e.g., text and numerical data.

Haploid: This refers to cell which contains a single chromosome or set
of chromosomes, each consisting of a single sequence of genes. An
example is a gamete. In EC, it is usual for individuals to be haploid.
The solution to GA is a single set of chromosomes (one individual).
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Hard Selection: Selection acts on competing individuals. When only
the best available individuals are retained for generating future
progeny, this is termed “hard selection.” In contrast, “soft selec-
tion” offers a probabilistic mechanism for maintaining individuals
to be parents of future progeny despite possessing relatively poorer
objective values.

Hebb’s Law: The learning law introduced by Donald Hebb in the late
1940s; it states that if neuron i is near enough to excite neuron j
and repeatedly participates in its activation, the synaptic connection
between these two neurons is strengthened and neuron j becomes
more sensitive to stimuli from neuron i. This law provides the basis
for unsupervised learning.

Hedge: A qualifier of a fuzzy set used to modify its shape. Hedges in-
clude adverbs such as “very”, “somewhat”, “quite”, “more or less”,
and “slightly”. They perform mathematical operations of concentra-
tion by reducing the degree of membership of fuzzy elements (e.g.,
very tall men), dilation by increasing the degree of membership (e.g.,
more or less tall men), and intensification by increasing the degree of
membership above 0.5 and decreasing those below 0.5 (e.g., indeed
tall men).

Heuristic: A strategy that can be applied to complex problems; it usu-
ally — but not always — yields a correct solution. Heuristics, which
are developed from years of experience, are often used to reduce com-
plex problem solving to more simple operations based on judgment.
Heuristics are often expressed as rules of thumb.

Heuristic Search: A search technique that applies heuristics to guide
the reasoning, and thus reduce the search space for a solution.

Hidden Layer: A layer of neurons between the input and output lay-
ers; called “hidden” because neurons in this layer cannot be observed
through the input/output behavior of the neural network. There is
no obvious way to know what the desired output of the hidden layer
should be.

Hidden Neuron: A neuron in the hidden layer.

Hierarchical: A treelike branching structure where each component
has only one owner or higher level component. A 1:N structure.

Hits: The number of hits an individual scores is the number of test
cases for which it returns the correct answer (or close enough to it).
This may or may not be a component of the fitness function. When
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an individual gains the maximum number of hits this may terminate
the run.

Hopfield Network: A single-layer feedback neural network. In the
Hopfield network, the output of each neuron is fed back to the inputs
of all other neurons (there is no self-feedback). The Hopfield network
usually uses McCulloch and Pitts neurons with the sign activation
function. The Hopfield network attempts to emulate characteristics
of the associative memory.

Hybrid Systems: Many of Stottler Henke’s artificial intelligence soft-
ware applications use multiple AI techniques in combination. For
example, case-based reasoning may be used in combination with
model-based reasoning in an automatic diagnostic system. Case-
based reasoning, which tends to be less expensive to develop and
faster to run, may draw on an historical databases of past equip-
ment failures, the diagnosis of those, and the repairs effected and
the outcomes achieved. So CBR may be used to make most failure
diagnoses. Model-based reasoning may be used to diagnose less com-
mon but expensive failures and also to make fine adjustments to the
repair procedures retrieved from similar cases in the case base by
CBR.

I
Inference Engine: The part of an expert system responsible for draw-

ing new conclusions from the current data and rules. The inference
engine is a portion of the reusable part of an expert system (along
with the user interface, a knowledge base editor, and an explanation
system) that will work with different sets of case-specific data and
knowledge bases.

Implicit Parallelism: The idea that genetic algorithms have an extra
built-in form of parallelism that is expressed when a GA searches
through a search space. Implicit parallelism depends on the simi-
larities and differences between individuals in the population. The
theory posits that GAs process more schemata than there are strings

Individual: A single member of a population. In EC, each individual
contains a chromosome (or, more generally, a genome) which repre-
sents a possible solution to the task being tackled, i.e., a single point
in the search space. Other information is usually also stored in each
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Inference Chain: The sequence of steps that indicates how an expert
system applies rules from the rule base to reach a conclusion.

Inference Engine: A basic component of an expert system that car-
ries out reasoning whereby the expert system reaches a solution. It
matches the rules provided in the rule base with the facts contained
in the database. Also referred to as Interpreter.

Inference Technique: The technique used by the inference engine to
direct search and reasoning in an expert system. There are two prin-
cipal techniques: forward chaining and backward chaining.

Inference: New knowledge inferred from existing facts.

Inheritance: The process by which all characteristics of a class-frame
are assumed by the instance-frame. Inheritance is an essential feature
of frame-based systems. A common use of inheritance is to impose
default features on all instance-frames.

Initialization: The first step of the training algorithm that sets weights
and thresholds to their initial values.

Input Layer: The first layer of neurons in an ANN. The input layer ac-
cepts input signals from the outside world and redistributes them to
neurons in the next layer. The input layer rarely includes computing
neurons and does not process input patterns.

Input Neuron: A neuron in the input layer.

Input Space: Range of all possible input vectors.

Input Vector: Vector presented to the network.

Input Weight Vector: Row vector of weights going to a neuron.

Input Weights: Weights connecting network inputs to layers.

Insect Models of Organization: Ethological research on the self-
organizing, collective resilience of ant and other insect societies has
led to research efforts seeking to emulate their successes.

Instance: A specific object from a class. For example, class “computer”
may have instances IBM Aptiva S35 and IBM Aptiva S9C. In frame-
based expert systems, all characteristics of a class are inherited by
its instances.

Instance-Frame: A frame that represents an instance.
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Intersection: In classical set theory, an intersection between two sets
contains elements shared by these sets. For example, the intersection
of tall men and fat men contains all men who are tall and fat. In
fuzzy set theory, an element may partly belong to both sets, and the
intersection is the lowest membership value of the element in both
sets.

Inversion: A reordering operator which works by selecting two cut
points in a chromosome, and reversing the order of all the genes
between those two points.

K
Kohonen Self-Organizing Feature Maps: A special class of ANNs

with competitive learning introduced by Teuvo Kohonen in the late
1980s. The Kohonen map consists of a single layer of computation
neurons with two types of connections: forward connections from the
neurons in the input layer to the neurons in the output layer, and
lateral connections between neurons in the output layer. The lat-
eral connections are used to create a competition between neurons.
A neuron learns by shifting its weights from inactive connections
to active ones. Only the winning neuron and its neighborhood are
allowed to learn.

L
LISP: LISP (short for list processing language), a computer language,

was invented by John McCarthy, one of the pioneers of artificial
intelligence. The language is ideal for representing knowledge (e.g.,
If a fire alarm is ringing, then there is a fire.) from which inferences
are to be drawn.

Lamarckism: A method of heredity that does not apply to genetics but
is applicable to social adaptation. Lamarckism posits that acquired
traits can be passed from parent to offspring.

Layer: A group of neurons that have a specific function and are pro-
cessed as a whole. For example, a multilayer perceptron has at least
three layers: an input layer, an output layer, and one or more hidden
layers.

Learning: The process of acquisition and extinction of modifications in
existing knowledge, skills, habits or action tendencies in a motivated
organism through experience, practice, or exercise; learning of living
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organisms is inspiration for machine learning; related topics: super-
vised learning, unsupervised learning, learning by example, learning
from experience, observational learning.

Learning Rate: A positive number less than unity that controls the
amount of changes to the weights in the ANN from one iteration
to the next. The learning rate directly affects the speed of network
training.

Learning Rule: Method of deriving the next changes that might be
made in a network or a procedure for modifying the weights and
biases of a network.

Linear: Having only a multiplicative factor. If f(x) is a linear function,
then f(a+b) = f(a) + f(b) and c f(x) = f(cx) must both be true for
all values of a, b, c, and x. Most things in nature are nonlinear.

Linear Activation Function: An activation function that produces
an output equal to the net input of a neuron. Neurons with the
linear activation function are often used for linear approximation.

Linear Transfer Function: Transfer function that produces its input
as its output.

Linearly (In) Separable: Two classes of points are linearly separable
if a linear function exists such that one class of points resides on
one side of the hyperplane (defined by the linear function), and all
points in the other class are on the other side. The XOR mapping
defines two sets of points that are linearly inseparable.

Linguistic Value: A language element that can be assumed by a fuzzy
variable. For example, the fuzzy variable “income” might assume
such linguistic values as “very low”, “low”, “medium”, “high” and
“very high”. Linguistic values are defined by membership functions.

Linguistic Variable: A variable that can have values that are language
elements, such as words and phrases. In fuzzy logic, terms linguistic
variable and fuzzy variable are synonyms.

Local Minimum (Maximum): The bottom of a valley or the top of a
peak; a point in a search space such that all nearby points are either
higher (for a minimum) or lower (for a maximum). In a continuous
search space, local minima and maxima have a 0 gradient vector.
Note that this particular valley (or peak) may not necessarily be the
lowest (or highest) location in the space, which is referred to as the
global minimum (maximum).
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Local Minimum: The minimum value of a function over a limited
range of its input parameters. If a local minimum is encountered dur-
ing training, the desired behavior of an ANN may never be achieved.
The usual method of getting out of a local minimum is to randomize
the weights and continue training.

Local Optimum: An easily found optimum in state space, but not
guaranteed to be the global optimum.

Local Search: Locating or approximating optimal states with varia-
tion operators or search strategies (not necessarily EAs), which ex-
plore only a limited part of the search space, the so-called (search)
neighborhood. Thus, in general, local optima are found.

M
Mamdani-Type Inference: A type of fuzzy inference in which the

fuzzy sets from the consequent of each rule are combined through
the aggregation operator and the resulting fuzzy set is defuzzified to
yield the output of the system.

Manhattan Distance: The Manhattan distance between two vectors
x and y is calculated as D = sum(abs(x-y)).

Map: A function that is usually understood to be iterated in discrete
time steps.

Mapping: Transforming a input to an output by following a rule or
look-up table. It is also referred to as the selective study of ’reality’.

Matrix: A rectangular two-dimensional array of numbers that can be
thought of as a linear operator on vectors. Matrix-vector multipli-
cation can be used to describe geometric transformations such as
scaling, rotation, reflection, and translation. They can also describe
the affine transformation used to construct IFS and MRCM fractals.

McCulloch and Pitts Neuron Model: A neuron model proposed
by Warren McCulloch and Walter Pitts in 1943, which is still the
basis for most artificial neural networks. The model consists of a lin-
ear combiner followed by a hard limiter. The net input is applied to
the hard limiter, which produces an output equal to +1 if its input
is positive and -1 if it is negative.

Mean: The arithmetical average of a collection of numbers; the center
of a Gaussian distribution.
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Membership function: A mathematical function that defines a fuzzy
set on the universe of discourse. Typical membership functions used
in fuzzy expert systems are triangles and trapezoids.

Meta-GA: If a GA is used to set parameters or discover optimal set-
tings for a second GA, the first one is known as a meta-GA.

Micro-GA: A micro-GA is a GA with a small population size (often
5) that has special reinitialization or mutation operators to increase
diversity and prevent the natural convergence associated with small
population sizes.

Migration: Migration is the exchange of individuals between subpop-
ulations. Migration is used in the regional population model. The
spread of information among subpopulations is influenced by the
migration topology (i.e., which subpopulations exchange individu-
als), the migration interval (i.e., how often does an exchange take
place), and the migration rate (i.e., number of individuals that are
exchanged). These parameters determine whether the subpopula-
tions evolve in a relatively independent way or rather behave like a
panmictic population.

Model: In the sciences, a model is an estimate of how something works.
A model will usually have inputs and outputs that correspond to its
real-world counterpart. An adaptive system also contains an implicit
model of its environment that allows it to change its behavior in
anticipation of what will happen in the environment.

Multi-Criteria Optimization: Optimization with regard to multiple
objective functions aiming at a simultaneous improvement of the ob-
jectives. The goals are usually conflicting so that an optimal solution
in the conventional sense does not exist. Instead one aims at, e.g.,
Pareto optimality, i.e., one has to find the Pareto set from which the
user can choose a qualified solution.

Multilayer Perceptron (MLP): A type of feedforward neural net-
work that is an extension of the perceptron in that it has at least
one hidden layer of neurons. Layers are updated by starting at the in-
puts and ending with the outputs. Each neuron computes a weighted
sum of the incoming signals, to yield a net input, and passes this
value through its sigmoidal activation function to yield the neuron’s
activation value. Unlike the perceptron, an MLP can solve linearly
inseparable problems.
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Multiobjective: The need to take into account many conflicting vari-
ables in order to obtain an optimum fitness. This is a problem due
to epistasis.

Mutation: A reproduction operator which forms a new chromosome by
making (usually small) alterations to the values of genes in a copy
of a single, parent chromosome.

Mutation Probability: A number between zero and one that indi-
cates the probability of mutation occurring in a single gene.

Mutation Rate: Mutation probability of a single gene/object param-
eter of an individual. With respect to binary representation, the
mutation rate is the probability of flipping a single bit position.

Mutation Strength: Usually the standard deviation of the normal dis-
tribution with which a single object parameter is mutated. Mutation
strength is also a measure for the realized (search) neighborhood size.

N
Natural Selection: The three stage process of variation, selection, re-

production (or persistance) that underlies evolution in all areas (in
biology the synthesis of Medelian genetics with natural selection
is called neo-Darwinism). It is combined within complex systems
thinking with self-organization.

Neighborhood: Group of neurons within a specified distance of a par-
ticular neuron. The neighborhood is specified by the indices for all
the neurons that lie within a radius d of the winning neuron i*
:Ni(d)={j,dij≤d}

Neo-Darwinism: A synthesis of Darwinism with the mechanisms of
genetics; the idea that adaptation equals a combination of variation,
heredity, and selection. See also evolution, inheritable, and natural
selection.

Net Input: The weighted sum of incoming signals into a neuron plus
a neuron’s threshold value.

Net Input Vector: Combination, in a layer, of all the layer’s weighted
input vectors with its bias.

Networks: Connected systems, the properties of which do not entirely
depend on the actual units involved but on the dynamics of the
interconnections.
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Neural Computing: A computational approach to modeling the hu-
man brain that relies on connecting a large number of simple pro-
cessors to produce complex behavior. Neural computing can be im-
plemented on specialized hardware or with software, called artificial
neural networks, that simulates the structure and functions of the
human brain on a conventional computer.

Neural Network (NN): A network of neurons that are connected
through synapses or weights. In this book, the term is used almost
exclusively to denote an artificial neural network and not the real
thing. Each neuron performs a simple calculation that is a function
of the activations of the neurons that are connected to it. Through
feedback mechanisms and/or the nonlinear output response of neu-
rons, the network as a whole is capable of performing extremely
complicated tasks, including universal computation and universal
approximation. Three different classes of neural networks are feed-
forward, feedback, and recurrent neural networks, which differ in the
degree and type of connectivity that they possess.

Neuro-Fuzzy System: Fuzzy system that uses a learning algorithm
derived from or inspired by neural network theory to determine its
parameters (fuzzy sets and fuzzy rules) by processing data sam-
ples; usually represented as special multilayer feedforward neural
networks.

Neuron: A simple computational unit that performs a weighted sum on
incoming signals, adds a threshold or bias term to this value to yield
a net input, and maps this last value through an activation function
to compute its own activation. Some neurons, such as those found in
feedback or Hopfield networks, will retain a portion of their previous
activation.

Niche: In EC, it is often required to maintain diversity in the popula-
tion. Sometimes a fitness function may be known to be multimodal,
and it may be required to locate all the peaks. In this case con-
sider each peak in the fitness function as analogous to a niche. By
applying techniques such as fitness sharing, the population can be
prevented from converging on a single peak, and instead stable sub-
populations form at each peak. This is analogous to different species
occupying different niches.

No Free Lunch (NFL): A theorem that states that in the worst case,
and averaged over an infinite number of search spaces, all search
methods perform equally well. More than being a condemnation
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of any search method, the NFL theorem actually hints that most
naturally occurring search spaces are, in fact, not random.

Node: A point in a graph, usually represented by an ellipse, which
represents a specific variable. Some types of nodes are as follows:

Child - A node which has an arrow coming into it, from its parent.

Deterministic - A node with a value completely specified by the
values of its parents, with no uncertainty.

Evidence - A node one knows the exact value of, when querying the
network for a probability.

Leak - A node used to represent miscellaneous causes, known or
otherwise.

Parent - A node which has an arrow leading out of it, to its child.

Query - A node for which one asks the network the probability, given
certain evidence.

Nonlinear: A function that is not linear. Most things in nature are
nonlinear. This means that in a very real way, the whole is at least
different from the sum of the parts.

Non-Terminal : Functions used to link parse tree together. This name
may be used to avoid confusion with functions with no parameters
which can only act as end points of the parse tree (i.e., leaves) and
are part of the terminal set.

Normally Distributed: A random variable is normally distributed if
its density function is described as f(x) = 1/sqrt(2*pi*sqr(sigma))
* exp(-0.5*(x-mu)*(x-mu)/sqr(sigma)) where mu is the mean of the
random variable x and sigma is the standard deviation.

NP-Complete: A problem type in which any instance of any other NP
class problem can be translated to in polynomial time. This means
that if a fast algorithm exists for an NP-complete problem, then any
problem that is in NP can be solved with the same algorithm.

O
Object: A concept, abstraction or thing that can be individually se-

lected and manipulated, and that has some meaning for the prob-
lem at hand. All objects have identity and are clearly distinguish-
able. Michael Black, Audi 5000 Turbo, IBM Aptiva S35 are ex-
amples of objects. In object-oriented programming, an object is a
self-contained entity that consists of both data and procedures to
manipulate the data.
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Object Variables: Parameters that are directly involved in assessing
the relative worth of an individual.

Objective Function/Quality Function: Also known as goal func-
tion is the function to be optimized, depending on the object pa-
rameters (also referred to as search space parameters or phenotype
parameters). The objective function constitutes the implementation
of the problem to be solved. The input parameters are the object
parameters. The output is the objective value representing the eval-
uation/quality of the individual/phenotype.

Object-Oriented Programming: A programming method that uses
objects as a basis for analysis, design, and implementation.

Offspring: An individual that was produced through reproduction, also
referred to as a Child.

OPS: A high-level programming language derived from LISP for devel-
oping rule-based expert systems.

Optimization: The search for the global optimum, or best overall com-
promise within a (typically) multivalued system. Where interactions
occur many optima are typically present (the fitness landscape is
“rugged”) and this situation has no analytical solution, generally
requiring adaptive solutions.

Order-Based Problem: A problem where the solution must be spec-
ified in terms of an arrangement (e.g., a linear ordering) of specific
items, e.g. Traveling Salesman Problem, computer process schedul-
ing. Order-based problems are a class of combinatorial optimization
problems in which the entities to be combined are already deter-
mined.

Ordering phase: Period of training during which neuron weights are
expected to order themselves in the input space consistent with the
associated neuron positions.

Outer Product: An operation on two vectors that yields a matrix.
Given two vectors with the same dimensionality, the outer product
is a square symmetric matrix that contains the product of all pairs
of elements from the two vectors, i.e., A[i,j] = x[i] y[j].

Output Layer: The last layer of neurons in an ANN. The output
layer produces the output pattern of the entire network.

Output Vector: Output of a neural network. Each element of the out-
put vector is the output of a neuron.
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Output Weight Vector: Column vector of weights coming from a
neuron or input.

Over-Fitting: A state in which an ANN has memorized all the training
examples, but cannot generalize. Overfitting may occur if the num-
ber of hidden neurons is too big. The practical approach to prevent-
ing overfitting is to choose the smallest number of hidden neurons
that yields good generalization, also referred to as Over-training.

Over-Training: See Over-Fitting.

P
Parallel Processing: A computational technique that carries out mul-

tiple tasks simultaneously. The human brain is an example of a par-
allel information-processing system: It stores and processes informa-
tion simultaneously throughout the whole biological neural network,
rather than at specific locations.

Parallel System: A computer that uses two to thousands of proces-
sors at once. Parallel Systems software assigns portions of individual
problems to each processor then combines the results. Problems that
can be broken into multiple parts, like analyzing large amounts of
scientific data, can be solved much faster by Parallel Systems than
by single processor systems.

Parallelism: Several agents acting at the same time independently, si-
multaneous computation similar to that which happens within living
systems.

Parent: In a decision tree, a parent node is a node that splits its data
between nodes at the next hierarchical level of the tree. The parent
node contains a complete data set, while child nodes hold subsets of
that set.

Pareto-Optimal: A set of equivalent optimised solutions that all have
the same global fitness but embody different compromises or niches
between the objectives.

Particle Swarm: A self-organizing system whose global dynamics
emerge from local rules.

Particle Swarm Optimization (PSO): Extension of cellular au-
tomata; utilizes a population of candidate solutions to evolve an
optimal or near-optimal solution to a problem; the degree of opti-
mality is measured by a fitness function defined by the user.

© 2010 by Taylor and Francis Group, LLC



726 Computational Intelligence Paradigms

Pattern: A vector.

Pattern Association: Task performed by a network trained to re-
spond with the correct output vector for each input vector presented.

Pattern Classification: A task that neural networks are often trained
to do. Given some input pattern, the task is to make an accurate
class assignment to the input. For example, classifying many images
of letters to one of the twenty-six letters of the alphabet is a pattern
classification task.

Pattern Recognition: Identification of visual or audio patterns by
computers. Pattern recognition involves converting patterns into dig-
ital signals and comparing them with patterns already stored in the
memory. Artificial neural networks are successfully applied to pat-
tern recognition, particularly in such areas as voice and character
recognition, radar target identification, and robotics.

Perceptron Learning Rule: Learning rule for training single-layer
hard-limit networks. It is guaranteed to result in a perfectly func-
tioning network in finite time, given that the network is capable of
doing so.

Perceptron: The simplest form of a neural network, suggested by
Frank Rosenblatt. The operation of the perceptron is based on the
McCulloch and Pitts neuron model. It consists of a single neuron
with adjustable synaptic weights and a hard limiter. The percep-
tron learns a task by making small adjustments in the weights to
reduce the difference between the actual and desired outputs. The
initial weights are randomly assigned and then updated to obtain
an output consistent with the training examples.

Phenotype: The form of the organism. A result of the combined in-
fluences of the genotype and the environment on the self-organizing
internal processes during development.

Phylogenesis: Refers to a population of organisms. The life span of a
population of organisms from pre-historic times until today.

Phylogeny: Evolution of species.

Population: A group of individuals which may interact together, for ex-
ample by mating, producing offspring, etc. Typical population sizes
in EC range from one (for certain evolution strategies) to many
thousands (for genetic programming).

Population Size: Number of individuals in a population.
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Premature Convergence: A state when a genetic algorithm’s pop-
ulation converges to something which is not the solution that is
required.

Preprocessing: Transformation of the input or target data before it is
presented to the neural network.

Q
Quasi-Newton Algorithm: Class of optimization algorithm based on

Newton’s method. An approximate Hessian matrix is computed at
each iteration of the algorithm based on the gradients.

R
Radial Basis Networks: Neural network that can be designed di-

rectly by fitting special response elements where they will do the
most good.

Radial Basis Transfer Function: The transfer function for a radial
basis neuron is radbas(n) = e−n2

.

Random/Randomness: Without cause; not compressible; obeying
the statistics of a fair coin toss.

Reasoning: The process of drawing conclusions or inferences from ob-
servations, facts, or assumptions.

Recombination: Recombination is also known as crossover.

Recurrent Neural Network: A network similar to a feedforward neu-
ral network except that there may be connections from an output or
hidden layer to the inputs. Recurrent neural networks are capable
of universal computation.

Recursive: Strictly speaking, a set or function is recursive if it is com-
putable; however, in the usual sense of the word, a function is said to
be recursive if its definition makes reference to itself. For example,
factorial can be defined as x! = x * (x - 1)! with the base case of 1!
equal to 1.

Recursively Enumerable (RE): A potentially infinite set whose
members can be enumerated by a universal computer; however, a
universal computer may not be able to determine that something
is not a member of a recursively enumerable set. The halting set is
recursively enumerable but not recursive.
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Reductionism: The idea that nature can be understood by dissection.
In other words, knowing the lowest-level details of how things work
(at, say, the level of subatomic physics) reveals how higher-level
phenomena come about. This is a bottom-up way of looking at the
universe, and is the exact opposite of holism.

Reproduction Operator: A mechanism which influences the way in
which genetic information is passed on from parent(s) to offspring
during reproduction. Operators fall into three broad categories:
crossover, mutation, and reordering operators.

Reproduction: The creation of a new individual from two parents (sex-
ual reproduction). Asexual reproduction is the creation of a new
individual from a single parent.

Roulette Wheel Selection: A method of selecting a particular indi-
vidual in the population to be a parent with a probability equal to
its fitness divided by the total fitness of the population.

Rule Base: The knowledge base that contains a set of production rules.

Rule Evaluation: The second step in fuzzy inference; the process of
applying the fuzzy inputs to the antecedents of fuzzy rules, and
determining the truth value for the antecedent of each rule. If a given
rule has multiple antecedents, the fuzzy operation of intersection or
union is carried out to obtain a single number that represents the
result of evaluating the antecedent.

Rule-Based Expert System: An expert system whose knowledge
base contains a set of production rules.

Rule-Based System: An expert system based on IF-THEN rules for
representing knowledge.

S
Schema: A pattern of gene values in a chromosome, which may include

“don’t care” states. Thus in a binary chromosome, each schema (plu-
ral schemata) can be specified by a string of the same length as the
chromosome, with each character one of 0, 1, #. A particular chro-
mosome is said to contain a particular schema if it matches the
schema (e.g., chromosome 01101 matches schema #1#0#). The or-
der of a schema is the number of non-don’t-care positions specified,
while the defining length is the distance between the furthest two
non-don’t-care positions. Thus # 1 # # 0 # is of order 2 and defin-
ing length 3.
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Schema Theorem: Theorem devised by Holland to explain the be-
havior of GAs. In essence, it says that a GA gives exponentially in-
creasing reproductive trials to above average schemata. Because each
chromosome contains a great many schemata, the rate of schema
processing in the population is very high, leading to a phenomenon
known as implicit parallelism. This gives a GA with a population
of size N a speedup by a factor of N cubed, compared to a random
search.

Schema/Schemata: A similarity template used to analyze genetic al-
gorithms. By using wild-card characters, a schema defines an entire
class of strings that may be found in a population.

Search Operators: Processes used to generate new individuals to be
evaluated. Search operators in genetic algorithms are typically based
on crossover and point mutation. Search operators in evolution
strategies and evolutionary programming typically follow from the
representation of a solution and often involve Gaussian or lognormal
perturbations when applied to real-valued vectors.

Search Space: If the solution to a task can be represented by a set of
N real-valued parameters, then the job of finding this solution can
be thought of as a search in an N-dimensional space. This is referred
to simply as the search space. More generally, if the solution to a
task can be represented using a representation scheme, R, then the
search space is the set of all possible configurations which may be
represented in R.

Selection: The process by which some individuals in a population are
chosen for reproduction, typically on the basis of favoring individuals
with higher fitness.

Self-Organization: A spontaneously formed higher-level pattern of
structure or function that is emergent through the interactions of
lower-level objects.

Set: A collection of things, usually numbers. Sets may be infinite in size.

Set Theory: The study of sets or classes of objects. The set is the basic
unit in mathematics. Classical set theory does not acknowledge the
fuzzy set, whose elements can belong to a number of sets to some
degree. Classical set theory is bivalent: the element either does or
does not belong to a particular set. That is, classical set theory gives
each member of the set the value of 1, and all members that are not
within the set a value of 0.

© 2010 by Taylor and Francis Group, LLC



730 Computational Intelligence Paradigms

Sigmoid Activation Function: An activation function that trans-
forms the input, which can have any value between plus and mi-
nus infinity, into a reasonable value in the range between 0 and 1.
Neurons with this function are used in a multilayer perceptron.

Simulate/Simulation: Experimentation in the space of theories, or a
combination of experimentation and theorization. Some numerical
simulations are programs that represent a model for how nature
works. Usually, the outcome of a simulation is as much a surprise as
the outcome of a natural event, due to the richness and uncertainty
of computation.

Simulated Annealing: Search technique where a single trial solution
is modified at random. An energy is defined which represents how
good the solution is. The goal is to find the best solution by mini-
mizing the energy. Changes which lead to a lower energy are always
accepted; an increase is probabilistically accepted. The probability
is given by exp(-∆E/kT), where ∆E is the change in energy, k is
a constant, and T is the Temperature. Initially the temperature is
high corresponding to a liquid or molten state where large changes
are possible and it is progressively reduced using a cooling sched-
ule so allowing smaller changes until the system solidifies at a low
energy solution.

Singleton Output Function: An output function that is given by a
spike at a single number rather than a continuous curve. In Fuzzy
Logic Toolbox, it is only supported as part of a zero-order Sugeno
model.

Species: In EC the definition of “species” is less clear, since generally
it is always possible for a pair of individuals to breed together. It is
probably safest to use this term only in the context of algorithms
which employ explicit speciation mechanisms.

Stability: Unchanging with time. This can be a static state (noth-
ing changes) or a steady state (resource flows occur). In complex
non-equilibrium systems we have multistable states, i.e., many semi-
stable positions possible within a single system.

State: The condition of a system at a particular point or span in time.
The concept of states is widely used in computer science and engi-
neering because it allows people to view complicated systems as sets
of smaller, simpler units.
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Step Activation Function: A hard limit activation function that pro-
duces an output equal to +1 if its input is positive and 0 if it is
negative.

Stochastic Universal Sampling: The individuals are mapped to con-
tiguous segments of a line, such that each individual’s segment is
equal in size to its fitness exactly as in roulette-wheel selection.
Here equally spaced pointers are placed over the line as many as
there are individuals to be selected. Consider NPointer the number
of individuals to be selected, then the distance between the pointers
are 1/NPointer and the position of the first pointer is given by a
randomly generated number in the range [0, 1/NPointer].

Strength: For a classifier system, a classifier’s relative ability to win a
bidding match for the right to post its message on the message list.

Sub-Population: A population may be sub-divided into groups, known
as sub-populations, where individuals may only mate with others in
the same group. (This technique might be chosen for parallel proces-
sors.) Such sub-divisions may markedly influence the evolutionary
dynamics of a population. Sub-populations may be defined by vari-
ous migration constraints: islands with limited arbitrary migration;
stepping-stones with migration to neighboring islands; isolation-by-
distance in which each individual mate only with near neighbors.

Subtractive Clustering: A technique for automatically generating
fuzzy inference systems by detecting clusters in input-output train-
ing data.

Sugeno-Type Inference: A type of fuzzy inference in which the con-
sequent of each rule is a linear combination of the inputs. The output
is a weighted linear combination of the consequents.

Sum-Squared Error: Sum of squared differences between the network
targets and actual outputs for a given input vector or set of vectors.

Supervised Learning: A type of learning that requires an external
teacher, who presents a sequence of training examples to the ANN.
Each example contains the input pattern and the desired output
pattern to be generated by the network. The network determines
its actual output and compares it with the desired output from the
training example. If the output from the network differs from the
desired output specified in the training example, the network weights
are modified. The most popular method of supervised learning is
back-propagation.
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Survival of the Fittest: The law according to which only individuals
with the highest fitness can survive to pass on their genes to the
next generation.

Swarm: Disorganized cluster of moving things, usually insects, mov-
ing irregularly, chaotically, somehow staying together even while all
of them move in apparently random directions; loosely structured
collection of interacting agents (elements).

Swarm Intelligence: A field which studies “the emergent collective
intelligence of groups of simple agents”. In groups of insects, which
live in colonies, such as ants and bees, an individual can only do
simple tasks on its own, while the colony’s cooperative work is the
main reason determining the intelligent behavior it shows. Swarm-
bot a very complex entity made of many highly sophisticated robot
units.

Synapse: A chemically mediated connection between two neurons in a
biological neural network, so that the state of the one cell affects the
state of the other. Synapses typically occur between an axon and a
dendrite, though there are many other arrangements.

T
Tan-Sigmoid Transfer Function: Squashing function of the form

shown below that maps the input to the interval (−1,1). The func-
tion is given by 1

1+e−n .

Target Vector: Desired output vector for a given input vector.

Terminal Set: A set from which all end (leaf) nodes in the parse trees
representing the programs must be drawn. A terminal might be a
variable, a constant or a function with no arguments.

Terminals: Terminals are the numeric values, (variables, constants, and
zero argument functions) in the parse tree and are always external
(leaf) nodes in the tree. The terminals act as arguments for the
operator (atom) that is their parent in the tree.

Termination Condition: The conditions which determine the termi-
nation of the evolutionary process (examples: number of objective
function evaluations, maximum run time, and convergence in the
fitness or search space).
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Test Set: A data set used for testing the ability of an ANN to general-
ize. The test data set is strictly independent of the training set, and
contains examples that the network has not previously seen. Once
training is complete, the network is validated with the test set.

Test Vectors: Set of input vectors (not used directly in training) that
is used to test the trained network.

Threshold: A specific value that must be exceeded before the output
of a neuron is generated. For example, in the McCulloch and Pitts
neuron model, if the net input is less than the threshold, the neuron
output is -1. But if the net input is greater than or equal to the
threshold, the neuron becomes activated and its output attains a
value +1, also referred to as Threshold value.

Threshold Value: see Threshold.

Topology: A structure of a neural network that refers to the number
of layers in the neural network, the number of neurons in each layer,
and connections between neurons, also referred to as Architecture.

Tournament Selection: A mechanism for choosing individuals from
a population. A group (typically between 2 and 7 individuals) is
selected at random from the population and the best (normally only
one, but possibly more) is chosen.

Training: Procedure whereby a network is adjusted to do a particular
job. Commonly viewed as an offline job, as opposed to an adjustment
made during each time interval, as is done in adaptive training.

Training Set: A data set used for training an ANN.

Training Vector: Input and/or target vector used to train a network.

Trajectory: The path through state space taken by a system. It is the
sequence of states or path plotted against time. Two general forms
affect fitness, positive-sum and negative-sum.

Traveling Salesman Problem: The traveling salesperson has the
task of visiting a number of clients, located in different cities. The
problem to solve is: in what order should the cities be visited in
order to minimize the total distance traveled (including returning
home)? This is a classical example of an order-based problem.

Truncation Selection: Truncation selection is selection with a deter-
ministic choice of the best µ individuals from the λ offspring (parents
are not considered), necessary condition: λ > µ.
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U
Union: In classical set theory, the union of two sets consists of every

element that falls into either set. For example, the union of tall men
and fat men contains all men who are either tall or fat. In fuzzy set
theory, the union is the reverse of the intersection, that is, the union
is the largest membership value of the element in either set.

Universal Approximation: Having the ability to approximate any
function to an arbitrary degree of accuracy. Neural networks are
universal approximators.

Universal Computation: Capable of computing anything that can in
principle be computed; being equivalent in computing power to a
Turing machine, the lambda calculus, or a post-production system.

Universal Constructor: A machine able to construct any other object
(including a copy of itself) given the appropriate instructions.

Universe of Discourse: The Universe of Discourse is the range of all
possible values for an input to a fuzzy system.

Unstable: Having a basin of attraction that is 0 in size; being such that
the slightest perturbation will forever change the state of a system.
A pencil balanced on its point is unstable.

Unsupervised Learning: A type of learning that does not require an
external teacher. During learning an ANN receives a number of dif-
ferent input patterns, discovers significant features in these patterns,
and learns how to classify input data into appropriate categories, also
referred to as Self-organized learning.

V
Validation Vectors: Set of input vectors (not used directly in training)

that is used to monitor training progress so as to keep the network
from overfitting.

Vector: A one-dimensional array of numbers that can be used to rep-
resent a point in a multidimensional space.

Vector Optimization: It is typically, an optimization problem
wherein multiple objectives must be satisfied. The goals are usu-
ally conflicting so that an optimal solution in the conventional sense
does not exist. Instead one aims at, e.g., Pareto optimality, i.e., one
has to find the Pareto set from which the user can choose a qualified
solution.
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W
Weight: In a neural network, the strength of a synapse (or connection)

between two neurons. Weights may be positive (excitatory) or neg-
ative (inhibitory). The thresholds of a neuron are also considered
weights, since they undergo adaptation by a learning algorithm.

Weight Function: Weight functions apply weights to an input to get
weighted inputs, as specified by a particular function.

Weight Matrix: Matrix containing connection strengths from a layer’s
inputs to its neurons. The element wij of a weight matrix W refers
to the connection strength from input j to neuron i.

Weighted Input Vector: Result of applying a weight to a layer’s in-
put, whether it is a network input or the output of another layer.

Widrow-Hoff Learning Rule: Learning rule used to train single-
layer linear networks. This rule is the predecessor of the backprop-
agation rule and is sometimes referred to as the delta rule.

X
XOR: The exclusive-or function; given two Boolean inputs, the output

of XOR is 1 if and only if the two inputs are different; otherwise,
the output is 0.
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List of Abbreviations

A list of abbreviations used in this book is given in this appendix.

ABC - Ant-Based Control
ACO - Ant Colony Optimization
AGA - Adaptive Genetic Algorithms
ANFIS - Adaptive Neuro-Fuzzy Inference System
ANN - Artificial Neural Networks
ART - Adaptive Resonance Theory
ASA - Adaptive Simulated Annealing
BBF - Building Block Filtering
BDN - Binary Decision Units
BP - Back Propagation
CA - Cellular Automata
CI - Computational Intelligence
CPD - Conditional Probability Distribution
CRG - Content Representation Graph
CS - Classifier Systems
DB - Data Base
DE - Differential Evolution
DEDP - Dynamic Economic Dispatch Problem
DFA - Deterministic Finite-State Automata
DM - Data Mining
dmEFuNN - Dynamic Evolving Fuzzy Neural Network
DNA - Deoxyribonucleic Acid
DP - Dynamic Programming
DPGA - Dynamic Parametric Genetic Algorithm
DPSO - Dissipative Particle Swarm Optimization
DRS - Discourse Representation Structure
EA - Evolutionary Algorithms
EC - Evolutionary Computation
EDA - Extended Dependency Analysis
EFuNN - Evolving Fuzzy Neural Network
EP - Evolutionary Programming
ES - Evolution Strategies

737

© 2010 by Taylor and Francis Group, LLC



738 Computational Intelligence Paradigms

FACS - Facial Action Coding System
FATPSO - Fuzzy Adaptive Turbulence in the Particle Swarm Optimization
FBM - Fitness-Blind Mutation
FCM - Fuzzy C-Means
FGCS - Fifth-Generation Computing Systems
FINEST - Fuzzy Inference and Neural Network in Fuzzy Inference Software
FIS - Fuzzy Inference Systems
FL - Fuzzy Logic
FLC - Fuzzy Logic Controllers
FUN - Fuzzy Net
FWR - Formal Word Representation
GA - Genetic Algorithm
GAM - Generalized Additive Models
GAP - Genetic Algorithm Percentage
GARIC - Generalized Approximate Reasoning-based Intelligent Control
GCPSO - Guaranteed Convergence Particle Swarm Optimization
GD - Gaussian Distribution
GDA - General Discriminant Function Analysis
GFRBS - Genetic Fuzzy Rule–Based Systems
GFS - Genetic Fuzzy Systems
GGA - Generational Genetic Algorithm
GLM - General Linear Model
GLM - Generalized Linear/Nonlinear Models
GP - Genetic Programming
GPEA - Geometrical Place Evolutionary Algorithms
GrC - Granular Computing
GRM - General Regression Models
GSF - Global Space Frame
GSO - Genetic Swarm Optimization
HBGA - Human-Based Genetic Algorithm
HC - Hybridization Coefficient
HGA - Hybrid Genetic Algorithm
HHC - Higher Harmonic Control
HPA - Heuristic Path Algorithm
IAGA - Integrated Adaptive Genetic Algorithm
ILP - Inductive Logic Programming
INPSO - Independent Neighborhoods Particle Swarm Optimization
IRL - Iterative Rule Learning
JPD - Joint Probability Distribution
LAN - Local-Area Network
LDS - Limited Discrepancy Search
LDS - Linear Dynamical Systems
LISP - LISt Processing
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LP - Linear Programming
LS - Local Search
LSD - Least Squared Deviation
LSE - Least Square Estimation
LVQ - Learning Vector Quantizer
MF - Membership Function
mGA - messy Genetic Algorithm
MI - Mutual Information
MIT - Massachusetts Institute of Technology
MOGA - Multiobjective Genetic Algorithms
MOP - Memory Organization Packets
NC - Neuro-Computing
NEAT - Neuro Evolution of Augmenting Topologies
NEFCON - Neuro-Fuzzy Control
NF - Neuro-Fuzzy
NFC - Neuro-Fuzzy Controller
NN - Neural Networks
OCL - Object Constraint Language
PGA - Parallel Genetic Algorithm
PLS - Penalized Least-Squares
PSO - Particle Swarm Optimization
QAP - Quadratic Assignment Problem
RA - Reconstructibility Analysis
RB - Rule Base
RBF - Radial Basis Function
RFHN - Rough-Fuzzy Hopfield Net
SA - Simulated Annealing
SC - Soft Computing
SI - Swarm Intelligence
SOFM - Self-Organizing Feature Map
SOM - Self-Organizing Maps
SSE - Sum-Squared Error
SSGA - Steady-State Genetic Algorithm
TPSO - Turbulence in the Particle Swarm Optimization
TSP - Traveling Salesman Problem
VFSR - Very Fast Simulated Reannealing
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MATLAB Toolboxes Based on CI

A few Computational Intelligence–based MATLAB Toolboxes that are
commonly used such as Genetic Algorithm and Direct Search Toolbox,
Genetic and Evolutionary Algorithm Toolbox, Genetic Algorithm Tool-
box, Genetic Programming Toolbox, Neural Net Toolbox, and Fuzzy
Logic Toolbox are discussed in this appendix.

C.1 Genetic Algorithm Toolbox for MATLAB

The Genetic Algorithm Toolbox is a module for use with MATLAB
that contains software routines for implementing genetic algorithms
(GAs) and other evolutionary computing techniques.

The Genetic Algorithm Toolbox was developed by Andrew Chipper-
field, Carlos Fonseca, Peter Fleming, and Hartmut Pohlheim, who are
internationally known for their research and applications in this area.
The toolbox is a collection of specialized MATLAB functions support-
ing the development and implementation of genetic and evolutionary
algorithms.

Its main features include:

• Support for binary, integer and real-valued representations.

• A wide range of genetic operators.

• High-level entry points to most low-level functions allowing the
user greater ease and flexibility in creating GA applications.

• Many variations on the standard GA.

• Support for virtual multiple subpopulations.

Consistent with the open-system approach of other MATLAB tool-
boxes, the Genetic Algorithm Toolbox is extensible to suit the user’s
needs. In combination with other MATLAB toolboxes and SIMULINK,
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the toolbox provides a versatile and powerful environment for exploring
and developing genetic algorithms.

The Genetic Algorithm Toolbox is available on an unsupported basis
for a modest charge. This includes documentation and allows an unlim-
ited number of users.

Functions of Genetic Algorithm Toolbox

Creating Populations

crtbase create a base vector
crtbp create a binary population
crtrp create a real valued population

Fitness Assignment

ranking Rank based fitness assignment
scaling proportional fitness scaling

Selection and Reinsertion

reins uniform random and fitness based rein-
sertion

rws roulette wheel selection
select High level selection routine
sus stochastic universal sampling

Mutation Operators

mut discrete mutation
mutate High level mutation function
mutbga Real value mutation

Crossover Operators

recdis discrete recombination
recint intermediate recombination
reclin line recombination
recmut line recombination with mutation features
recombin high level recombination function
xovdp double point crossover
xovdprs double point reduced surrogate crossover
xovmp general multi point crossover
xovsh shuffle crossover
xovshrs shuffle reduced surrogate crossover
xovsp single point crossover
xovsprs single point reduced surrogate crossover
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Subpopulation Support

migrate exchange individuals between subpopulations

Utility Functions

bs2rv binary string to real value conversion
rep matrix replication

Demonstration and Other Functions

mpga multi population genetic algorithm demonstration
objfun1 De Jongs first test function
objharv harvest function
resplot result plotting
sga simple genetic algorithm demonstration

C.2 Fuzzy Logic Toolbox 2.2.7

The Fuzzy Logic Toolbox extends the MATLAB technical computing
environment with tools for the design of systems based on fuzzy logic.
Graphical user interfaces (GUIs) guides the user through the steps of
fuzzy inference system design. Functions are provided for many common
fuzzy logic methods, including fuzzy clustering and adaptive neuro-fuzzy
learning.

The toolbox lets the user model complex system behaviors using sim-
ple logic rules and then implement these rules in a fuzzy inference system.
The user can use the toolbox as a stand-alone fuzzy inference engine.
Alternatively, fuzzy inference blocks can be used in Simulink to simulate
the fuzzy systems within a comprehensive model of the entire dynamic
system.

Like all MATLAB toolboxes, the Fuzzy Logic Toolbox can be cus-
tomized. The user can inspect algorithms, modify source code, and add
own membership functions or defuzzification techniques.

Key Features include

• Specialized GUIs for building fuzzy inference systems and viewing
and analyzing results

• Membership functions for creating fuzzy inference systems
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• Support for AND, OR, and NOT logic in user-defined rules

• Standard Mamdani and Sugeno-type fuzzy inference systems

• Automated membership function shaping through neuro-adaptive
and fuzzy clustering learning techniques

• Ability to embed a fuzzy inference system in a Simulink model

• Ability to generate embeddable C code or stand-alone executable
fuzzy inference engines

Functions of Fuzzy Logic Toolbox

GUI Tools and Plotting Functions

anfisedit Open ANFIS Editor GUI
findcluster Interactive clustering GUI for fuzzy c-means and

sub-clustering
fuzzy Open basic Fuzzy Inference System editor
mfedit Membership function editor
plotfis Plot Fuzzy Inference System
plotmf Plot all membership functions for given variable
ruleedit Rule editor and parser
ruleview Rule viewer and fuzzy inference diagram
surfview Open Output Surface Viewer

Membership Functions

dsigmf Built-in membership function composed of dif-
ference between two sigmoidal membership func-
tions

gauss2mf Gaussian combination membership function
gaussmf Gaussian curve built-in membership function
gbellmf Generalized bell-shaped built-in membership

function
pimf Π−shaped built-in membership function
psigmf Built-in membership function composed of prod-

uct of two sigmoidally shaped membership func-
tions

sigmf Sigmoidally shaped built-in membership function
smf S-shaped built-in membership function
trapmf Trapezoidal-shaped built-in membership func-

tion
trimf Triangular-shaped built-in membership function
zmf Z-shaped built-in membership function
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FIS Data Structure Management

addmf Add membership function to Fuzzy Inference
System

addrule Add rule to Fuzzy Inference System
addvar Add variable to Fuzzy Inference System
defuzz Defuzzify membership function
evalfis Perform fuzzy inference calculations
evalmf Generic membership function evaluation
gensurf Generate Fuzzy Inference System output surface
getfis Fuzzy system properties
mf2mf Translate parameters between membership func-

tions
newfis Create new Fuzzy Inference System
parsrule Parse fuzzy rules
readfis Load Fuzzy Inference System from file
rmmf Remove membership function from Fuzzy Infer-

ence System
rmvar Remove variables from Fuzzy Inference System
setfis Set fuzzy system properties
showfis Display annotated Fuzzy Inference System
showrule Display Fuzzy Inference System rules
writefis Save Fuzzy Inference System to file

Advanced Techniques

anfis Training routine for Sugeno-type Fuzzy Inference
System

fcm Fuzzy c-means clustering
genfis1 Generate Fuzzy Inference System structure from

data using grid partition
genfis2 Generate Fuzzy Inference System structure from

data using subtractive clustering
genfis3 Generate Fuzzy Inference System structure from

data using FCM clustering
subclust Find cluster centers with subtractive clustering

Working in Simulink Environment

fuzblock Simulink fuzzy logic library
sffis Fuzzy inference S-function for Simulink software
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C.3 Neural Network Toolbox 6.0

The Neural Network Toolbox extends MATLAB with tools for design-
ing, implementing, visualizing, and simulating neural networks. Neural
networks are invaluable for applications where formal analysis would
be difficult or impossible, such as pattern recognition, nonlinear sys-
tem identification, and control. The Neural Network Toolbox provides
comprehensive support for many proven network paradigms, as well as
graphical user interfaces (GUIs) that enable the user to design and man-
age the networks. The modular, open, and extensible design of the tool-
box simplifies the creation of customized functions and networks.

Key Features include:

• GUI and quick-start wizard for creating, training, and simulating
neural networks

• Support for the most commonly used supervised and unsupervised
network architectures

• Comprehensive set of training and learning functions

• Dynamic learning networks, including time delay, nonlinear au-
toregressive (NARX), layer-recurrent, and custom dynamic

• Simulink blocks for building neural networks and advanced blocks
for control systems applications

• Support for automatically generating Simulink blocks from neural
network objects

• Modular network representation, enabling an unlimited number of
input-setting layers and network interconnections

• Pre- and post-processing functions for improving network training
and assessing network performance

• Routines for improving generalization

• Visualization functions for viewing network performance

© 2010 by Taylor and Francis Group, LLC



MATLAB Toolboxes Based on CI 747

Functions of Neural Network Toolbox

Analysis Functions Analyze network properties
Distance Functions Compute distance between two vectors
Graphical Interface
Functions

Open GUIs for building neural networks

Layer Initialization
Functions

Initialize layer weights

Learning Functions Learning algorithms used to adapt networks
Line Search Functions Line-search algorithms
Net Input Functions Sum excitations of layer
Network Initialization
Function

Initialize network weights

New Networks Func-
tions

Create network architectures

Network Use Functions High-level functions to manipulate networks
Performance Functions Measure network performance
Plotting Functions Plot and analyze networks and network per-

formance
Processing Functions Preprocess and postprocess data
Simulink Support
Function

Generate Simulink block for network simu-
lation

Topology Functions Arrange neurons of layer according to spe-
cific topology

Training Functions Train networks
Transfer Functions Transform output of network layer
Utility Functions Internal utility functions
Vector Functions Internal functions for network computations
Weight and Bias Ini-
tialization Functions

Initialize weights and biases

Weight Functions Convolution, dot product, scalar product,
and distances weight functions

Analysis Functions

errsurf Error surface of single-input neuron
confusion Classification confusion matrix
maxlinlr Maximum learning rate for linear neuron
roc Receiver operating characteristic

Distance Functions

boxdist Distance between two position vectors
dist Euclidean distance weight function
linkdist Link distance function
mandist Manhattan distance weight function
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Graphical Interface Functions

nctool Neural network classification tool
nftool Open Neural Network Fitting Tool
nntool Open Network/Data Manager
nntraintool Neural network training tool
nprtool Neural network pattern recognition tool
view View a neural network

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function
initwb By-weight-and-bias layer initialization function

Learning Functions

learncon Conscience bias learning function
learngd Gradient descent weight/bias learning function
learngdm Gradient descent with momentum weight/bias

learning function
learnh Hebb weight learning function
learnhd Hebb with decay weight learning rule
learnis Instar weight learning function
learnk Kohonen weight learning function
learnlv1 LVQ1 weight learning function
learnlv2 LVQ2 weight learning function
learnos Outstar weight learning function
learnp Perceptron weight and bias learning function
learnpn Normalized perceptron weight and bias learning

function
learnsom Self-organizing map weight learning function
learnsomb Batch self-organizing map weight learning func-

tion
learnwh Widrow-Hoff weight and bias learning rule

Line Search Functions

srchbac 1-D minimization using backtracking search
srchbre 1-D interval location using Brent’s method
srchcha 1-D minimization using Charalambous’ method
srchgol 1-D minimization using golden section search
srchhyb 1-D minimization using hybrid bisection/cubic

search
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Net Input Functions

netprod Product net input function
netsum Sum net input function

Network Initialization Function

initlay Layer-by-layer network initialization function

Network-Use Functions

adapt Allow neural network to change weights and bi-
ases on inputs

disp Neural network’s properties
display Name and properties of neural network’s vari-

ables
init Initialize neural network
sim Simulate neural network
train Train neural network

New Networks Functions

network Create custom neural network
newc Create competitive layer
newcf Create cascade-forward backpropagation network
newdtdnn Create distributed time delay neural network
newelm Create Elman backpropagation network
newff Create feedforward backpropagation network
newfftd Create feedforward input-delay backpropagation net-

work
newfit Create a fitting network
newgrnn Design generalized regression neural network
newhop Create Hopfield recurrent network
newlin Create linear layer
newlind Design linear layer
newlrn Create layered-recurrent network
newlvq Create learning vector quantization network
newnarx Create feedforward backpropagation network with

feedback from output to input
newnarxsp Create NARX network in series-parallel arrangement
newp Create perceptron
newpnn Design probabilistic neural network
newpr Create a pattern recognition network
newrb Design radial basis network
newrbe Design exact radial basis network
newsom Create self-organizing map
sp2narx Convert series-parallel NARX network to parallel

(feedback) form
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Performance Functions

mae Mean absolute error performance function
mse Mean squared error performance function
msereg Mean squared error with regularization perfor-

mance function
mseregec Mean squared error with regularization and econo-

mization performance function
sse Sum squared error performance function

Plotting Functions

hintonw Hinton graph of weight matrix
hintonwb Hinton graph of weight matrix and bias vector
plotbr Plot network performance for Bayesian regularization

training
plotconfusion Plot classification confusion matrix
plotep Plot weight and bias position on error surface
plotes Plot error surface of single-input neuron
plotfit Plot function fit
plotpc Plot classification line on perceptron vector plot
plotperf Plot network performance
plotperform Plot network performance
plotpv Plot perceptron input target vectors
plotregression Plot linear regression
plotroc Plot receiver operating characteristic
plotsom Plot self-organizing map
plotsomhits Plot self-organizing map sample hits
plotsomnc Plot self-organizing map neighbor connections
plotsomnd Plot self-organizing map neighbor distances
plotsompos Plot self-organizing map weight positions
plotsomtop Plot self-organizing map topology
plottrainstate Plot training state values
plotv Plot vectors as lines from origin
plotvec Plot vectors with different colors
postreg Postprocess trained network response with linear re-

gression
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Processing Functions

fixunknowns Process data by marking rows with unknown
values

mapminmax Process matrices by mapping row minimum
and maximum values to [-1 1]

mapstd Process matrices by mapping each row’s means
to 0 and deviations to 1

processpca Process columns of matrix with principal com-
ponent analysis

removeconstantrows Process matrices by removing rows with con-
stant values

removerows Process matrices by removing rows with spec-
ified indices

Simulink Support Function

gensim Generate Simulink block for neural network simulation

Topology Functions

gridtop Gridtop layer topology function
hextop Hexagonal layer topology function
randtop Random layer topology function

Training Functions

trainb Batch training with weight and bias learning rules
trainbfg BFGS quasi-Newton backpropagation
trainbfgc BFGS quasi-Newton backpropagation for use with

NN model reference adaptive controller
trainbr Bayesian regularization
trainbuwb Batch unsupervised weight/bias training
trainc Cyclical order incremental update
traincgb Powell-Beale conjugate gradient backpropagation
traincgf Fletcher-Powell conjugate gradient backpropagation
traincgp Polak-Ribiére conjugate gradient backpropagation
traingd Gradient descent backpropagation
traingda Gradient descent with adaptive learning rule back-

propagation
traingdm Gradient descent with momentum backpropagation
traingdx Gradient descent with momentum and adaptive

learning rule backpropagation
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trainlm Levenberg-Marquardt backpropagation
trainoss One step secant backpropagation
trainr Random order incremental training with learning

functions
trainrp Resilient backpropagation (Rprop)
trains Sequential order incremental training with learning

functions
trainscg Scaled conjugate gradient backpropagation

Transfer Functions

compet Competitive transfer function

hardlim Hard limit transfer function

hardlims Symmetric hard limit transfer function

logsig Log-sigmoid transfer function

netinv Inverse transfer function

poslin Positive linear transfer function

purelin Linear transfer function

radbas Radial basis transfer function

satlin Saturating linear transfer function

satlins Symmetric saturating linear transfer function

softmax Softmax transfer function

tansig Hyperbolic tangent sigmoid transfer function

tribas Triangular basis transfer function
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Utility Functions

calcgx Calculate weight and bias performance gradient as
single vector

calcjejj Calculate Jacobian performance vector
calcjx Calculate weight and bias performance Jacobian as

single matrix
calcpd Calculate delayed network inputs
calcperf Calculate network outputs, signals, and performance
getx All network weight and bias values as single vector
setx Set all network weight and bias values with single

vector

Vector Functions

combvec Create all combinations of vectors
con2seq Convert concurrent vectors to sequential vectors
concur Create concurrent bias vectors
ind2vec Convert indices to vectors
minmax Ranges of matrix rows
normc Normalize columns of matrix
normr Normalize rows of matrix
pnormc Pseudonormalize columns of matrix
quant Discretize values as multiples of quantity
seq2con Convert sequential vectors to concurrent vectors
vec2ind Convert vectors to indices

Weight and Bias Initialization Functions

initcon Conscience bias initialization function
initsompc Initialize SOM weights with principal compo-

nents
initzero Zero weight and bias initialization function
midpoint Midpoint weight initialization function
randnc Normalized column weight initialization function
randnr Normalized row weight initialization function
rands Symmetric random weight/bias initialization

function
revert Change network weights and biases to previous

initialization values
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Weight Functions

convwf Convolution weight function
dist Euclidean distance weight function
dotprod Dot product weight function
mandist Manhattan distance weight function
negdist Negative distance weight function
normprod Normalized dot product weight function
scalprod Scalar product weight function

C.4 Genetic Algorithm and Direct
Search Toolbox 2.2

Genetic Algorithm and Direct Search Toolbox extends the optimiza-
tion capabilities in MATLAB and Optimization Toolbox with tools for
using genetic algorithms, simulated annealing, and direct search. These
algorithms are used for problems that are difficult to solve with tra-
ditional optimization techniques, including problems that are not well
defined or are difficult to model mathematically. The user can also use
them when computation of the objective function is discontinuous, highly
nonlinear, stochastic, or has unreliable or undefined derivatives.

Genetic Algorithm and Direct Search Toolbox complements other op-
timization methods to help the user find good starting points. Further
the user can then use traditional optimization techniques to refine the
solution.

Toolbox functions, accessible through a graphical user interface (GUI)
or the MATLAB command line, are written in the open MATLAB lan-
guage. This means that the user can inspect the algorithms, modify the
source code, and create own custom functions.

Key Features include

• Graphical user interfaces and command-line functions for quickly
setting up problems, setting algorithm options, and monitoring
progress

• Genetic algorithm tools with options for creating initial popula-
tion, fitness scaling, parent selection, crossover, and mutation

• Direct search tools that implement a pattern search method,
with options for defining mesh size, polling technique, and search
method
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• Simulated annealing and threshold acceptance tools that imple-
ment a random search method, with options for defining annealing
process, temperature schedule, and acceptance criteria

• Ability to solve optimization problems with nonlinear, linear, and
bound constraints

• Functions for integrating Optimization Toolbox and MATLAB
routines with the genetic or direct search algorithm

• Support for automatic M-code generation

Functions of Genetic Algorithm and Direct Search Toolbox

Genetic Algorithm

ga Find minimum of function using genetic algorithm
gamultiobj Find minima of multiple functions using genetic al-

gorithm
gaoptimget Obtain values of genetic algorithm options struc-

ture
gaoptimset Create genetic algorithm options structure

Direct Search

patternsearch Find minimum of function using pattern search
psoptimget Obtain values of pattern search options structure
psoptimset Create pattern search options structure

Simulated Annealing

saoptimget Values of simulated annealing or threshold ac-
ceptance algorithm options structure

saoptimset Create simulated annealing algorithm or thresh-
old acceptance options structure

simulannealbnd Find unconstrained or bound-constrained mini-
mum of function of several variables using simu-
lated annealing algorithm
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C.5 GPLAB - A Genetic Programming Toolbox for
MATLAB

GPLAB is a Genetic Programming toolbox for MATLAB. Most of its
functions are used as ”plug and play” devices, making it a versatile and
easily extendable tool, as long as the user has minimum knowledge of
the MATLAB programming environment.

Some of the features of GPLAB include:

• 3 modes of tree initialization (Full, Grow, Ramped Half-and-Half)
+ 3 variations on these

• several pre-made functions and terminals for building trees

• dynamic limits on tree depth or size (optional)

• resource-limited GP (variable size populations) (optional)

• dynamic populations (variable size populations) (optional)

• 4 genetic operators (crossover, mutation, swap mutation, shrink
mutation)

• configurable automatic adaptation of operator probabilities (op-
tional)

• steady-state + generational + batch modes, with fuzzy frontiers
between them

• 5 sampling methods (Roulette, SUS, Tournament, Lexicographic
Parsimony Pressure Tournament, Double Tournament)

• 3 modes of calculating the expected number of offspring (absolute
+ 2 ranking methods)

• 2 methods for reading input files and for calculating fitness (sym-
bolic regression and parity problems + artificial ant problems)

• runtime cross-validation of the best individual of the run (optional)

• offline cross-validation or prediction of results by any individual
(optional)

• 4 levels of elitism

• configurable stop conditions
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• saving of results to files (5 frequency modes, optional)

• 3 modes of runtime textual output

• runtime graphical output (4 plots, optional)

• offline graphical output (5 functions, optional)

• runtime measurement of population diversity (2 measures, op-
tional)

• runtime measurement of average tree level, number of nodes, num-
ber of introns, tree fill rate (optional)

• 4 demonstration functions (symbolic regression, parity, artificial
ant, multiplexer)

No matter how long this list could be, the best feature of GPLAB will
always be the ”plug and play” philosophy. Any alternative (or collective)
function built by the user will be readily accepted by the toolbox, as long
as it conforms to the rules pertaining the module in question. Also, there
are no incompatibilities between functions and parameters, meaning the
user can use any combination of them, even when the user uses their
own functions.

GPLAB does not implement:

• multiple subpopulations

• automatically-defined functions

Functions of Genetic Programming Toolbox

The more than one hundred functions provided in the toolbox GPLAB
can be divided into several different functional groups. Following is a list
of the functions included in each group. The same function may be listed
in more than one group.

Demonstration Functions

demo DEMO runs a symbolic regression problem
demoparity DEMO runs a parity -3 problem
demoant DEMO runs an ant

Running the Algorithm and Testing Result

gplab Runs the GPLAB genetic programming algorithm
testind Evaluates a GPLAB individual on a different data set
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Parameter and State Setting

setparams Sets the parameter variables for the GPLAB algo-
rithm

resetparams Resets the parameter variables for the GPLAB algo-
rithm

resetstate Resets the state variables for the GPLAB algorithm
setoperators Stores operators info as parameters for the GPLAB

algorithm
addoperators Stores additional operators info as parameters for

GPLAB
setfunctions Stores functions info as parameters for the GPLAB

algorithm
addfunctions Stores additional functions info as parameters for

GPLAB
setterminals Stores terminals info as parameters for the GPLAB

algorithm
addterminals Stores additional terminals info as parameters for

GPLAB

Automatic Variable Checking

checkvarsparams Initializes GPLAB algorithm parameter vari-
ables

checkvarsstate Initializes GPLAB algorithm state variables
checkvarsdata Fills the dataset variable for the GPLAB algo-

rithm

Description of Parameter and State Variables

availableparams Describes the GPLAB algorithm parameter vari-
ables

availablestate Describes the GPLAB algorithm state variables
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Creation of New Generations

genpop Creates the initial generation for the GPLAB algo-
rithm

generation Creates a new generation for the GPLAB algorithm
pickoperator Draws a genetic operator to apply in the GPLAB

algorithm
applyoperator Apply a genetic operator to create new GPLAB

individuals
pickparents Picks parents from pool for a GPLAB genetic op-

erator
applysurvival Choose new generation of individuals for GPLAB

algorithm
updatestate Updates the GPLAB algorithm state variables
stopcondition Checks which stop condition the GPLAB algorithm

verifies

Creation of New Individuals

initpop Creates a new population for the GPLAB algorithm
fullinit Creates a new GPLAB population with the full

method
growinit Creates a new GPLAB population with the grow

method
rampedinit Creates a new GPLAB population with ramped half-

and-half method
newind Creates a new individual for the GPLAB algorithm
maketree Creates representation tree for the GPLAB algorithm

Filtering of New Individuals

validateinds Applies validation procedures to new GPLAB in-
dividuals

strictdepth Applies strict depth filters to a new GPLAB in-
dividual

strictnodes Applies strict size filters to a new GPLAB indi-
vidual

dyndepth Applies dynamic depth filters to a new GPLAB
individual

dynnodes Applies dynamic size filters to a new GPLAB
individual

heavydyndepth Applies heavy dynamic depth filters to a new
GPLAB individual

heavydynnodes Applies heavy dynamic size filters to a new
GPLAB individual
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Protected and Logical Functions

mydivide MYDIVIDE(X1,X2) returns X1 if X2==0 and X1/X2
otherwise

mylog MYLOG(X) returns zero if X=0 and LOG(ABS(X))
otherwise

mylog2 MYLOG2(X) returns zero if X=0 and LOG2(ABS(X))
otherwise

mylog10 MYLOG10(X) returns zero if X=0 and
LOG10(ABS(X)) otherwise

mysqrt MYSQRT(X) returns zero if X¡=0 and SQRT(X) oth-
erwise

mypower MYPOWER(X1,X2) returns 0 if X1 X2 is Inf, or has
imaginary part, otherwise returns X1 X2

myif Calculates the result of an IF-THEN-ELSE statement
kozadivide KOZADIVIDE(X1,X2) returns 1 if X2==0 and X1/X2

otherwise
kozasqrt KOZASQRT(X) returns SQRT(ABS(X))
nand NAND(X1,X2) returns NOT(AND(X1,X2))
nor NAND(X1,X2) returns NOT(OR(X1,X2))

Artificial Ant Functions

demoant Demonstration function of the GPLAB toolbox
antmove Moves the GPLAB artificial ant forward one step
antleft Turns the GPLAB artificial ant to the left
antright Turns the GPLAB artificial ant to the right
antprogn2 Executes two actions of the GPLAB artificial ant
antprogn3 Executes three actions of the GPLAB artificial ant
antif Executes one or other action of the GPLAB artifi-

cial ant
antfoodahead Tests if there is food ahead of the GPLAB artificial

ant
antnewpos Calculates the new location of the GPLAB artificial

ant
anteval Evaluates the tree of a GPLAB artificial ant
antfitness Measures the fitness of a GPLAB artificial ant
antfitness lib Measures the fitness of a GPLAB artificial ant,

lower is better
anttrail Interprets a matrix as a food trail for a GPLAB

artificial ant
antsim Simulates the behaviour of the best GPLAB artifi-

cial ant
antpath Stores the path taken by the GPLAB artificial ant
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Tree Manipulation

maketree Creates representation tree for the GPLAB algo-
rithm

treelevel Counts the number of levels of a GPLAB algo-
rithm tree

nodes Counts the number of nodes of a GPLAB algo-
rithm tree

intronnodes Counts the number of intron nodes of a GPLAB
tree

tree2str Translates a GPLAB algorithm tree into a string
findnode Finds a node in a GPLAB algorithm tree
swapnodes Swaps nodes (subtrees) between two GPLAB

trees
updatenodeids Updates the node ids of a GPLAB tree

Data Manipulation

xy2inout Transforms matrices into a GPLAB algorithm
data set (input and output)

saveall Saves all the GPLAB algorithm variables to disk

Expected Number of Children

calcpopexpected Normalized expected number of offspring for
GPLAB

absolute Calculates expected number of offspring for the
GPLAB algorithm

rank85 Calculates expected number of offspring for the
GPLAB algorithm

rank89 Calculates expected number of offspring for the
GPLAB algorithm
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Sampling

sampling Draws individuals for parenthood in the GPLAB
algorithm

roulette Sampling of GPLAB individuals by the roulette
method

sus Sampling of GPLAB individuals by the SUS
method

wheel Sampling of GPLAB individuals by spinning a
wheel

tournament Sampling of GPLAB individuals by the tourna-
ment method

lexictour Sampling of GPLAB individuals by lexicographic
parsimony tournament

doubletour Sampling of GPLAB individuals by a double
tournament method

tourbest Tournament of GPLAB individuals by size or fit-
ness

Genetic Operators

crossover Creates new individuals for the GPLAB algo-
rithm by crossover

mutation Creates a new individual for GPLAB by muta-
tion

shrinkmutation Creates a new individual for GPLAB by shrink
mutation

swapmutation Creates a new individual for GPLAB by swap
mutation

Fitness

calcpopfitness Calculate fitness values for a GPLAB population
calcfitness Measures the fitness of a GPLAB individual
regfitness Measures the fitness of a GPLAB individual
evaluate tree Alternative to using ’eval’ in ’regfitness’ in

GPLAB
linearppp Applies linear parametric parsimony pressure to

a GPLAB individual
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Survival

applysurvival Choose new generation of individuals for GPLAB
algorithm

fixedpopsize Chooses fixed number of GPLAB individuals for
next generation

resources Chooses a number of GPLAB individuals for
next generation

pivotfixe Chooses a number of GPLAB individuals for
next generation

Limited Resources

low Applies restrictions to the size of a GPLAB population
steady Applies restrictions to the size of a GPLAB population
free Applies no restrictions to the size of a GPLAB population
normal Decides whether to accept a GPLAB individual into the

population
light Decides whether to accept a GPLAB individual into the

population

Dynamic Populations

ajout Adds a number of GPLAB individuals to the
population

suppression Removes a number of GPLAB individuals from
the population

Diversity measures

uniquegen Calculates genotype-based diversity of a GPLAB
population

hamming Calculates hamming diversity of a GPLAB pop-
ulation

Automatic Operator Probability Adaptation

isoperator True for GPLAB algorithm operator
setinitialprobs Sets the initial operator probabilities for

the GPLAB algorithm
automaticoperatorprobs Automatic operator probabilities proce-

dure for GPLAB
moveadaptwindow Shifts the GPLAB automatic operator

probabilities adaptation window
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addcredit Attributes credit to GPLAB individuals
in credit list

updateoperatorprobs Updates GPLAB genetic operator proba-
bilities

Runtime Graphical Output

graphicsinit Initializes graphics for the GPLAB algorithm
graphicsstart Initializes first drawing points in the GPLAB

graphics
graphicscontinue Draws past history lines in the GPLAB graphics
graphicsgenerations Draws data from new generations in the

GPLAB graphics

Offline Graphical Output

desired obtained Plots desired and obtained functions with
GPLAB

accuracy complexity Plots accuracy and complexity measures with
GPLAB

plotpareto Plots the pareto front in GPLAB
operator evolution Plots operator probabilities evolution with

GPLAB
drawtree Draws the GPLAB trees graphically

Utilitarian Functions

explode Splits string into pieces
implode Joins strings with delimiter in between
scale Maps numbers from one interval to another
normalize Normalizes vectors
shuffle Shuffles vectors or matrices
orderby Orders vectors and matrices according to a pre-

defined order
intrand Generates an integer random number inside an

interval
countfind Counts occurences of numbers
findfirstindex Finds the first occurences of numbers
isvalid Validates a value according to a domain
ranking Ranks the elements of a vector
fixdec Round towards zero with a specified number of

decimals
uniquenosort Eliminates duplicate rows without altering order
nansum Calculates mean along any dimension of the N-D

array X ignoring NaNs
nullexceeding Nulls numbers in list so that sum does not exceed

limit
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Emerging Software Packages

This appendix gives a list of all known commercial emerging software
packages related to Computational Intelligence that is available to the
users.

D.1 BUGS

BUGS (Better to Use Genetic Systems) is an interactive program for
demonstrating the genetic algorithm. The user can evolve lifelike organ-
isms (curves). Playing with BUGS is an easy way to get an understanding
of how and why the GA works. In addition to demonstrating the basic
genetic operators (selection, crossover, and mutation), it allows users to
easily see and understand phenomena such as genetic drift and prema-
ture convergence. BUGS is written in C and runs under Suntools and X
Windows.

Available at: ftp://www.aic.nrl.navy.mil/pub/galist/src/BUGS.tar.Z

D.2 ComputerAnts

ComputerAnts is a free Windows program that teaches principles of
genetic algorithms by breeding a colony of ants on the computer screen.
Users create ants, food, poison, and set crossover and mutation rates.
Then they watch the colony slowly evolve. Includes extensive on-line
help and tutorials on genetic algorithms.

Available at: http://www.bitstar.com
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D.3 DGenesis

DGenesis is a distributed implementation of a Parallel GA. It is based
on Genesis 5.0. It runs on a network of UNIX workstations. It has been
tested with DECstations, microVAXes, Sun Workstations, and PCs run-
ning 386BSD 0.1. Each subpopulation is handled by a UNIX process and
the communication between them is accomplished using Berkeley sock-
ets.

DGenesis allows the user to set the migration interval, the migration
rate, and the topology between the sub-populations. There has not been
much work investigating the effect of the topology on the performance of
the GA, DGenesis was written specifically to encourage experimentation
in this area. It still needs many refinements, but some may find it useful.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/dgenesis-
1.0.tar.Z

D.4 Ease

Ease - Evolutionary Algorithms Scripting Environment - is an exten-
sion to the Tcl scripting language, providing commands to create, mod-
ify, and evaluate populations of individuals represented by real number
vectors and/or bit strings. With Ease, a standard ES or GA can be writ-
ten in less than 20 lines of code. Ease is available as source code for Linux
and Solaris under the GNU Public License. Tcl version 8.0 or higher is
required.

Available at: http://www.sprave.com/Ease/Ease.html

D.5 Evolution Machine

The Evolution Machine (EM) is universally applicable to continuous
(real-coded) optimization problems. In the EM we have coded fundamen-
tal evolutionary algorithms (genetic algorithms and evolution strategies),
and added some of the approaches to evolutionary search.

The EM includes extensive menu techniques with:

• Default parameter setting for un-experienced users.

• Well-defined entries for EM-control by freaks of the EM, who want
to leave the standard process control.
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• Data processing for repeated runs (with or without change of the
strategy parameters).

• Graphical presentation of results: online presentation of the evolu-
tion progress, one-, two- and three-dimensional graphic output to
analyze the fitness function and the evolution process.

• Integration of calling MS-DOS utilities (Turbo C).

The EM-software is provided in object code, which can be run on PC’s
with MS-DOS and Turbo C, v2.0, resp. Turbo C++,v1.01. The Manual
to the EM is included in the distribution kit.

Available at: ftp://ftp-bionik.fb10.tu-berlin.de/pub/software/Evolution-
Machine/

D.6 Evolutionary Objects

EO (Evolutionary Objects) is a C++ library written and designed to
allow a variety of evolutionary algorithms to be constructed easily. It
is intended to be an “Open source” effort to create the definitive EC
library. It has: a mailing list, anon-CVS access, frequent snapshots, and
other features.

Available at: http://fast.to/EO

D.7 GAC, GAL

GAC and GAL are packages that have been used for the past few
years. GAC is a GA written in C. GAL is my Common Lisp version.
They are similar in spirit to John Grefenstette’s Genesis, but they don’t
have all the nice bells and whistles. Both versions currently run on Sun
workstations.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/GAC.shar.Z
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D.8 GAGA

GAGA (GA for General Application) is a self-contained, re-entrant
procedure, which is suitable for the minimization of many “difficult” cost
functions. Originally written in Pascal by Ian Poole, it was rewritten in
C by Jon Crowcroft.

Available at: ftp://ftp://cs.ucl.ac.uk/darpa/gaga.shar

D.9 GAGS

GAGS (Genetic Algorithms from Granada, Spain) is a library and
companion programs written and designed to take the heat out of design-
ing a genetic algorithm. It features a class library for genetic algorithm
programming, but, from the user point of view, is a genetic algorithm
application generator. If the function to be optimized is written, the
GAGS surrounds it with enough code to have a genetic algorithm up
and running, compiles it, and runs it. GAGS is written in C++, so that
it can be compiled in any platform running this GNU utility. It has been
tested on various machines.

GAGS includes:

• Steady-state, roulette-wheel, tournament, and elitist selection.

• Fitness evaluation using training files.

• Graphics output through gnuplot.

• Uniform and 2-point crossover, and bit-flip and gene-transposition
mutation.

• Variable length chromosomes and related operators.

The application generator gags.pl is written in perl, so this language
must also be installed before GAGS.

Available at: http://kal-el.ugr.es/GAGS

© 2010 by Taylor and Francis Group, LLC



Emerging Software Packages 769

D.10 GAlib

GAlib is a C++ library that provides the application programmer
with a set of genetic algorithm objects. With GAlib the user can add GA
optimization to the program using any data representation and standard
or custom selection, crossover, mutation, scaling, and replacement, and
termination methods.

GAlib requires a cfront 3.0 compatible C++ compiler. It has been used
on the following systems: SGI IRIX 4.0.x (Cfront); SGI IRIX 5.x (DCC
1.0, g++ 2.6.8, 2.7.0); IBM RSAIX 3.2 (g++ 2.6.8, 2.7.0); DEC MIPS
ultrix 4.2 (g++ 2.6.8, 2.7.0); SUN SOLARIS 5.3 (g++ 2.6.8, 2.7.0); HP-
UX (g++); MacOS (MetroWerks CodeWarrior 5); MacOS (Symantec
THINK C++ 7.0); DOS/Windows (Borland Turbo C++ 3.0).

Available at: ftp://lancet.mit.edu/pub/ga/

D.11 GALOPPS

GALOPPS (Genetic Algorithm Optimized for Portability and Paral-
lelism) is a general-purpose parallel genetic algorithm system, written in
“C”, organized like Goldberg’s “Simple Genetic Algorithm”. User defines
objective function (in template furnished) and any callback functions de-
sired (again, filling in template); can run one or many subpopulations,
on one or many PC’s, workstations, Mac’s, MPP. Runs interactively
(GUI or answering questions) or from files, makes file and/or graphical
output. Runs easily interrupted and restarted, and a PVM version for
Unix networks even moves processes automatically when workstations
become busy.

User may choose:

• problem type (permutation or value-type)

• field sizes (arbitrary, possibly unequal, heeded by crossover, muta-
tion)

• among 7 crossover types and 4 mutation types (or define own)

• among 6 selection types, including “automatic” option based on
Boltzmann scaling and Shapiro and Pruegel–Bennett statist. Me-
chanics stuff
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• operator probabilities, fitness scaling, amount of output, migration
frequency and patterns

• stopping criteria (using “standard” convergence statistics, etc.)

• the GGA (Grouping Genetic Algorithm) reproduction and opera-
tors of Falkenauer GALOPPS allows and supports:

• use of a different representation in each subpopulation, with
transformation of migrants

• inversion on level of subpopulations, with automatic handling of
differing field sizes, migrants

• control over replacement by offspring, including DeJong crowd-
ing or random replacement or SGA-like replacement of parents

• mate selection, using incest reduction

• migrant selection, using incest reduction, and/or DeJong crowd-
ing into receiving subpopulation

• optional elitism

Available at: http://GARAGe.cps.msu.edu/

D.12 GAMusic

GAMusic 1.0 is a user-friendly interactive demonstration of a simple
GA that evolves musical melodies. Here, the user is the fitness function.
Melodies from the population can be played and then assigned a fitness.
Iteration, recombination frequency, and mutation frequency are all con-
trolled by the user. This program is intended to provide an introduction
to GAs and may not be of interest to the experienced GA programmer.
GAMusic was programmed with Microsoft Visual Basic 3.0 for Windows
3.1x.

Available at: ftp://wuarchive.wustl.edu/pub/MSDOSUPLOADS/Gen
Algs/gamusic.zip
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D.13 GANNET

GANNET (Genetic Algorithm/Neural NETwork) is a software pack-
age written by Jason Spofford in 1990 which allows one to evolve binary
valued neural networks. It offers a variety of configuration options re-
lated to rates of the genetic operators. GANNET evolves nets based upon
three fitness functions: Input/Output Accuracy, Output “Stability”, and
Network Size.

The evolved neural network presently has a binary input and binary
output format, with neurons that have either 2 or 4 inputs and weights
ranging from −3 to +4. GANNET allows for up to 250 neurons in a net.
Research using GANNET is continuing.

The major enhancement of version 2.0 is the ability to recognize vari-
able length binary strings, such as those that would be generated by a
finite automaton. Included is code for calculating the Effective Measure
Complexity (EMC) of finite automata as well as code for generating test
data.

Available at: http://www.duane.com/ dduane/gannet

D.14 GA Workbench

A mouse-driven interactive GA demonstration program aimed at peo-
ple wishing to show GA in action on simple function optimizations and
to help newcomers understand how GA operates. Features include prob-
lem functions drawn on screen using mouse, run-time plots of GA pop-
ulation distribution, peak and average fitness. Useful population statis-
tics displayed numerically, GA configuration (population size, generation
gap, etc.) performed interactively with mouse. Requirements include MS-
DOS PC, mouse, EGA/VGA display.

Available at: ftp://wsmr-simtel20.army.mil/pub/msdos/neurlnet/
gaw110.zip

D.15 GECO

GECO (Genetic Evolution through Combination of Objects) is an ex-
tensible, object-oriented framework for prototyping genetic algorithms
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in Common Lisp. GECO makes extensive use of CLOS, the Common
Lisp Object System, to implement its functionality. The abstractions
provided by the classes have been chosen with the intent both of being
easily understandable to anyone familiar with the paradigm of genetic
algorithms, and of providing the algorithm developer with the ability to
customize all aspects of its operation. It comes with extensive documen-
tation, in the form of a PostScript file, and some simple examples are
also provided to illustrate its intended use.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/GECO-v2.0.
README

D.16 Genesis

Genesis is a generational GA system written in C by John Grefen-
stette. As the first widely available GA program Genesis has been very
influential in stimulating the use of GAs, and several other GA packages
are based on it. Genesis is available together with OOGA.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/genesis.tar.Z

D.17 GENEsYs

GENEsYs is a Genesis-based GA implementation which includes ex-
tensions and new features for experimental purposes, such as selection
schemes like linear ranking, Boltzmann, (mu, lambda)-selection, and
general extinctive selection variants, crossover operators like n-point and
uniform crossover as well as discrete and intermediate recombination.
Self-adaptation of mutation rates is also possible.

A set of objective functions is provided, including De Jong’s functions,
complicated continuous functions, a TSP-problem, binary functions, and
a fractal function. There are also additional data-monitoring facilities
such as recording average, variance and skew of object variables and
mutation rates, or creating bitmap-dumps of the population.

Available at: ftp://lumpi.informatik.uni-dortmund.de/pub/GA/src/
GENEsYs-1.0.tar.Z
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D.18 GenET

GenET is a “generic” GA package. It is generic in the sense that all
problem independent mechanisms have been implemented and can be
used regardless of application domain. Using the package forces con-
centration on the problem: the user has to suggest the best representa-
tion, and the best operators for such space that utilize problem-specific
knowledge. The package, in addition to allowing for fast implementation
of applications and being a natural tool for comparing different models
and strategies, is intended to become a depository of representations and
operators. Currently, only floating point representation is implemented
in the library with few operators.

The algorithm provides a wide selection of models and choices. For ex-
ample, population models range from generational GA, through steady-
state, to (n,m)-EP and (n,n+m)-EP models (for arbitrary problems, not
just parameter optimization). (Some are not finished at the moment).
Choices include automatic adaptation of operator probabilities and a
dynamic ranking mechanism, etc.

Available at: ftp://radom.umsl.edu/var/ftp/GenET.tar.Z

D.19 Genie

Genie is a GA-based modeling/forecasting system that is used for long-
term planning. One can construct a model of an environment and then
view the forecasts of how that environment will evolve into the future.
It is then possible to alter the future picture of the environment so as
to construct a picture of a desired future. The GA is then employed to
suggest changes to the existing environment so as to cause the desired
future to come about.

Available at: ftp://hiplab.newcastle.edu.au/pub/GenieCode.sea.Hqx

D.20 Genitor

Genitor is a modular GA package containing examples for floating-
point, integer, and binary representations. Its features include many
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sequencing operators as well as subpopulation modeling. The Genitor
Package has code for several order based crossover operators, as well as
example code for doing some small TSPs to optimality.

Available at: ftp://ftp.cs.colostate.edu/pub/GENITOR.tar

D.21 GENlib

GENlib is a library of functions for genetic algorithms. Included are
two applications of this library to the field of neural networks. The first
one called “cosine” uses a genetic algorithm to train a simple three layer
feed-forward network to work as a cosine-function. This task is very
difficult to train for a backprop algorithm while the genetic algorithm
produces good results. The second one called “vartop” is developing a
Neural Network to perform the XOR-function. This is done with two
genetic algorithms, the first one develops the topology of the network,
the second one adjusts the weights.

Available at: ftp://ftp.neuro.informatik.uni-kassel.de/pub/NeuralNets/
GA-and-NN/

D.22 GENOCOP

This is a GA-based optimization package that has been developed
by Zbigniew Michalewicz and is described in detail in his book Genetic
Algorithms + Data Structures = Evolution Programs. GENOCOP (Ge-
netic Algorithm for Numerical Optimization for COnstrained Problems)
optimizes a function with any number of linear constraints (equalities
and inequalities).

Available at: ftp://ftp.uncc.edu/coe/evol/genocop2.tar.Z

D.23 GPEIST

The genetic programming environment in Smalltalk (GPEIST) pro-
vides a framework for the investigation of Genetic Programming within
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a ParcPlace VisualWorks 2.0 development system. GPEIST provides
program, population, chart and report browsers and can be run on
HP/Sun/PC (OS/2 and Windows) machines. It is possible to distribute
the experiment across several workstations — with subpopulation ex-
change at intervals — in this release 4.0a. Experiments, populations and
individual genetic programs can be saved to disk for subsequent analy-
sis and experimental statistical measures exchanged with spreadsheets.
Postscript printing of charts, programs and animations is supported. An
implementation of the Ant Trail problem is provided as an example of
the use of the GPEIST environment.

Available at: ftp.cc.utexas.edu:/pub/genetic-programming/code/

D.24 Imogene

Imogene is a Windows 3.1 shareware program, which generates pretty
images using genetic programming. The program displays generations
of 9 images, each generated using a formula applied to each pixel. (The
formulae are initially randomly computed.) The user can then select
those images that are preferred. In the next generation, the nine images
are generated by combining and mutating the formulae for the most-
preferred images in the previous generation. The result is a simulation of
natural selection in which images evolve toward the aesthetic preferences.

Imogene supports different color maps, palette animation, saving im-
ages to .BMP files, changing the wallpaper to nice images, printing im-
ages, and several other features. Imogene works only in 256-color mode
and requires a floating point coprocessor and a 386 or better CPU.

Available at: http://www.aracnet.com/ wwir/software.html

D.25 JAG

This Java program implements a simple genetic algorithm where the
fitness function takes non-negative values only. It employs elitism. The
Java code was derived from the C code in the Appendix of Genetic
Algorithms + Data Structures = Evolution Programs, Other ideas and
code were drawn from GAC by Bill Spears. Four sample problems are
contained in the code: three with bit GENEs and one with double genes.

Available at: ftp://ftp.mcs.drexel.edu/pub/shartley/simpleGA.tar.gz.
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D.26 LibGA

LibGA is a library of routines written in C for developing genetic
algorithms. It is fairly simple to use, with many knobs to turn. Most GA
parameters can be set or changed via a configuration files, with no need
to recompile (e.g., operators, pool size and even the data type used in the
chromosome can be changed in the configuration file.) Function pointers
are used for the genetic operators, so they can easily be manipulated on
the fly. Several genetic operators are supplied and it is easy to add more.
LibGA runs on many systems/architectures. These include Unix, DOS,
NeXT, and Amiga.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/libga100.
tar.Z

D.27 mGA

mGA is an implementation of a messy GA. Messy GAs overcome
the linkage problem of simple genetic algorithms by combining variable-
length strings, gene expression, messy operators, and a non-homogeneous
phasing of evolutionary processing. Results on a number of difficult de-
ceptive test functions have been encouraging with the messy GA always
finding global optima in a polynomial number of function evaluations.

Available at: ftp://gal4.ge.uiuc.edu/pub/src/messyGA/C/

D.28 PGA

PGA is a simple testbed for basic explorations in genetic algorithms.
Command line arguments control a range of parameters, there are a
number of built-in problems for the GA to solve. The current set includes:

• maximize the number of bits set in a chromosome

• De Jong’s functions DJ1, DJ2, DJ3, DJ5

• binary F6, used by Schaffer et al.
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• a crude 1-d knapsack problem; when a target and a set of numbers
in an external file are specified, GA tries to find a subset that sums
as closely as possible to the target

• the “royal road” function(s); a chromosome is regarded as a set of
consecutive blocks of size K, and scores K for each block entirely
filled with 1s, etc.; a range of parameters

• max contiguous bits

• timetabling, with various smart mutation options; capable of solv-
ing a good many real-world timetabling problems

Lots of GA options: rank, roulette, tournament, marriage-tournament,
spatially-structured selection; one-point, two-point, uniform or no
crossover; fixed or adaptive mutation; one child or two; etc. Default
output is curses-based, with optional output to file; can be run non-
interactively too for batched series of experiments. Chromosomes are
represented as character arrays. PGA has been used for teaching for a
couple of years now, and has been used as a starting point by a fair
number of people for their own projects. So it’s reasonably reliable.

Available at: ftp://ftp.dai.ed.ac.uk/pub/pga/pga-3.1.tar.gz

D.29 PGAPack

PGAPack is a general-purpose, data-structure-neutral parallel genetic
algorithm library. It is intended to provide most capabilities desired in a
genetic algorithm library, in an integrated, seamless, and portable man-
ner.

Features include:

• Callable from Fortran or C

• Runs on uniprocessors, parallel computers, and workstation net-
works

• Binary-, integer-, real-, and character-valued native data types

• Full extensibility to support custom operators and new data types

• Easy-to-use interface for novice and application users.

• Multiple levels of access for expert users
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• Extensive debugging facilities

• Large set of example problems

• Detailed users guide

• Parameterized population replacement

• Multiple choices for selection, crossover, and mutation operators

• Easy integration of hill-climbing heuristics

Available at: ftp://info.mcs.anl.gov/pub/pgapack/pgapack.tar.Z

D.30 SGA-C, SGA-Cube

SGA-C is a C-language translation and extension of the original Pascal
SGA code presented in Goldberg’s book. It has some additional features,
but its operation is essentially the same as that of the Pascal version.
SGA-Cube is a C-language translation of Goldberg’s SGA code with
modifications to allow execution on the nCUBE 2 Hypercube Parallel
Computer. When run on the nCUBE 2, SGA-Cube can take advantage of
the hypercube architecture, and is scalable to any hypercube dimension.
The hypercube implementation is modular, so that the algorithm for
exploiting parallel processors can be easily modified.

In addition to its parallel capabilities, SGA-Cube can be compiled on
various serial computers via compile-time options. In fact, when com-
piled on a serial computer, SGA-Cube is essentially identical to SGA-C.
Each of these programs is distributed in the form of a Unix file.

Available at: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/ga/sga-c.tar.Z

D.31 Splicer

Splicer is a genetic algorithm tool created by the Software Tech-
nology Branch (STB) of the Information Systems Directorate at
NASA/Johnson Space Center with support from the MITRE Corpo-
ration. Splicer has well-defined interfaces between a GA kernel, repre-
sentation libraries, fitness modules, and user interface libraries.
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The representation libraries contain functions for defining, creating,
and decoding genetic strings, as well as multiple crossover and mutation
operators. Libraries supporting binary strings and permutations are pro-
vided, others can be created by the user.

Fitness modules are typically written by the user, although some sam-
ple applications are provided. The modules may contain a fitness func-
tion, initial values for various control parameters, and a function, which
graphically displays the best solutions.

Splicer provides event-driven graphic user interface libraries for the
Macintosh and the X11 window system (using the HP widget set); a
menu-driven ASCII interface is also available though not fully supported.
The extensive documentation includes a reference manual and a user’s
manual; an architecture manual and the advanced programmer’s manual
are currently being written.

Available if mailed to: ¡bayer@galileo.jsc.nasa.gov¿

D.32 Trans-Dimensional Learning

This is a Windows 3.1 artificial neural network and GA program
(shareware). TDL allows users to perform pattern recognition by uti-
lizing software that allows for fast, automatic construction of Neural
Networks, mostly alleviating the need for parameter tuning. Evolution-
ary processes combined with semi-weighted networks (hybrid cross be-
tween standard weighted neurons and weightless n-level threshold units)
generally yield very compact networks (i.e., reduced connections and
hidden units). By supporting multi-shot learning over standard one-shot
learning, multiple data sets (characterized by varying input and output
dimensions) can be learned incrementally, resulting in a single coherent
network. This can also lead to significant improvements in predictive ac-
curacy (Trans-dimensional generalization). Graphical support and sev-
eral data files are also provided.

Available at: http://pages.prodigy.com/upso

D.33 WOLF

This is a simulator for the G/SPLINES (genetic spline models) algo-
rithm, which builds spline-based functional models of experimental data,
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using crossover and mutation to evolve a population toward a better fit.
It is derived from Friedman’s MARS models. The original work was pre-
sented at ICGA-4, and further results including additional basis function
types such as B-splines have been presented at the NIPS-91 meeting.

Available at: ftp://riacs.edu/pub/wolf-4.0.tar.Z

D.34 XGenetic

XGenetic is an ActiveX control for the implementation of a genetic al-
gorithm in any language that accepts ActiveX interfaces. Such languages
include, but are not limited to: Visual Basic, Visual C++, Delphi, etc.
Written in Visual Basic 6.0, XGenetic is flexible in implementation to
allow the user to easily define the parameters for their particular sce-
nario, be it forecasting, scheduling, or the myriad of other uses for the
genetic algorithm.

Features:

• Data Types: Bit, Integer, Real

• Selection Operators: Roulette, Tournament, Stochastic Universal
Sampling, Truncation, Random

• Crossover Operators: N-Point (1 point, 2 point, 3 point, etc.,),
Uniform, Arithmetic

• Mutation Operators: Uniform, Boundary

There are two versions of the software available. The shareware version
of the product is available freely off the net (address below). It includes
the program file (xgen.ocx) and documentation (including a sample pro-
gram) in three formats.

Available at: http://www.winsite.com/info/pc/win95/demo/xgen-sw.
zip

D.35 XFUZZY: A Simulation Environment for
Fuzzy Logic Control Systems

XFUZZY is an X-Windows based simulation tool for fuzzy controllers
that runs on Sun workstations. The kernel of XFUZZY consists of the
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software implementation of a fuzzy inference engine. The modules defin-
ing the behavior of the controller (Fuzzifier, Rules Set, and Defuzzifier)
and the system being controlled (model) interact with this inference en-
gine. The environment is completed with a user interface, which, through
a group of menus, eases the tasks of editing the membership functions,
rules, and the system model, as well as the graphic presentation of the
simulation results.

The closing of the feedback loop of the complete system (controller
+ system under control) is accomplished by means of a program in C,
provided by the user according to the directions contained in a template
file supplied by the environment. This module is dynamically linked to
the inference engine, allowing the user to perform the whole tuning of
the controller without exiting the environment.

Available at: ftp.cnm.us.es:/pub/Xfuzzy11.tar.Z

D.36 ART*Enterprise

ART*Enterprise is the latest of the family of rule-based development
environments originating with ART in the mid-1980s. It is a develop-
ment environment for enterprise-wide applications, incorporating rules,
a full object system which includes features currently not present in
C++ or Smalltalk, and a large collection of object classes for UI de-
velopment across platforms (from Windows to OS/2 to Unix), access
to databases (SQL-based and ODBC-based), and multi-person devel-
opment. The ART*Enterprise environment provides a forward chaining
engine where backward chaining can be implemented, though it is not
supported directly. ART*Enterprise also provides a CBR kernel for those
who are interested in incorporating it into their applications.

Available at: http://www.brightware.com/

D.37 COMDALE/C, COMDALE/X,
and ProcessVision

COMDALE/C is a real-time expert system designed for industrial
process monitoring and control. COMDALE/C allows requests for jus-
tification of recommendations, conclusions, and control actions without
interrupting the decision making process. It can deal with uncertainty
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in knowledge and data, and has an open architecture and time-based
reasoning. Other features include:

• full object-oriented configuration

• full networking capabilities

• alarm processing

• an interrupt driven controller

• trending and historical data collection

• time-scheduled events

• a realtime database, and interfaces with DCSs, PLCs and other
I/O devices.

COMDALE/X is an off-line consultative expert system which queries
the user for information required to make its decisions. COMDALE/X
is included with COMDALE/C as the development tool for real-time ex-
pert systems. COMDALE/X has the capability to incorporate hypertext
documents with the reasoning abilities of the expert system to produce
expert hyper manuals which provide information and generate advice
through an easy to use interface.

ProcessVision is a real-time process monitoring and control software
package. Based on an open and modular architecture, ProcessVision
provides a graphical operator interface; intuitive object-oriented display
configuration, smart alarming, sensor validation, hot standby, and un-
limited connectivity to all the process instrumentation in one global
environment.

Available at: http://www.comdale.com/
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Research Projects

A brief description of research projects from various IEEE journals, Re-
search centers, and Universities are given in this appendix.

E.1 An Evolutionary Algorithm for Global Opti-
mization Based on Level-Set Evolution and
Latin Squares

In this project, the level-set evolution is exploited in the design of a
novel evolutionary algorithm (EA) for global optimization. An applica-
tion of Latin squares leads to a new and effective crossover operator.
This crossover operator can generate a set of uniformly scattered off-
spring around their parents, has the ability to search locally, and can
explore the search space efficiently. To compute a globally optimal so-
lution, the level set of the objective function is successively evolved by
crossover and mutation operators so that it gradually approaches the
globally optimal solution set. As a result, the level set can be efficiently
improved. Based on these skills, a new EA is developed to solve a global
optimization problem by successively evolving the level set of the ob-
jective function such that it becomes smaller and smaller until all of
its points are optimal solutions. Furthermore, it can be proved that the
proposed algorithm converges to a global optimizer with probability one.
Numerical simulations are conducted for 20 standard test functions. The
performance of the proposed algorithm is compared with that of eight
EAs that have been published recently and the Monte Carlo implemen-
tation of the mean-value-level-set method. The results indicate that the
proposed algorithm is effective and efficient.

783
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E.2 Evolving Problems to Learn about
Particle Swarm Optimizers
and Other Search Algorithms

Evolutionary computation (EC) is used to automatically find prob-
lems, which demonstrate the strength and weaknesses of modern search
heuristics. In particular, particle swarm optimization (PSO), differen-
tial evolution (DE), and covariance matrix adaptation-evolution strat-
egy (CMA-ES) are analyzed. Each evolutionary algorithm is contrasted
with the others and with a robust non-stochastic gradient follower (i.e., a
hill climber) based on Newton-Raphson. The evolved benchmark prob-
lems yield insights into the operation of PSOs, illustrate benefits and
drawbacks of different population sizes, velocity limits, and constriction
(friction) coefficients. The fitness landscapes made by genetic program-
ming reveal new swarm phenomena, such as deception, thereby explain-
ing how they work and allowing to devise better extended particle swarm
systems. The method could be applied to any type of optimizer.

E.3 Analog Genetic Encoding for the
Evolution of Circuits and Networks

This project describes a new kind of genetic representation called ana-
log genetic encoding (AGE). The representation is aimed at the evolu-
tionary synthesis and reverse engineering of circuits and networks such
as analog electronic circuits, neural networks, and genetic regulatory
networks. AGE permits the simultaneous evolution of the topology and
sizing of the networks. The establishment of the links between the devices
that form the network is based on an implicit definition of the interac-
tion between different parts of the genome. This reduces the amount
of information that must be carried by the genome, relatively to a di-
rect encoding of the links. The application of AGE is illustrated with
examples of analog electronic circuit and neural network synthesis. The
performance of the representation and the quality of the results obtained
with AGE are compared with those produced by genetic programming.
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E.4 A Runtime Analysis of Evolutionary Algorithms
for Constrained Optimization Problems

Although there are many evolutionary algorithms (EAs) for solving
constrained optimization problems, there are few rigorous theoretical
analyses. This project presents a time complexity analysis of EAs for
solving constrained optimization. It is shown when the penalty coef-
ficient is chosen properly, direct comparison between pairs of solutions
using penalty fitness function is equivalent to that using the criteria “su-
periority of feasible point” or “superiority of objective function value.”
This project analyzes the role of penalty coefficients in EAs in terms of
time complexity. The results show that in some examples, EAs benefit
greatly from higher penalty coefficients, while in other examples, EAs
benefit from lower penalty coefficients. This project also investigates the
runtime of EAs for solving the 0-1 knapsack problem and the results
indicate that the mean first hitting times ranges from a polynomial-time
to an exponential time when different penalty coefficients are used.

E.5 Solving the Register Allocation Problem
for Embedded Systems Using a
Hybrid Evolutionary Algorithm

Embedded systems are unique in the challenges they present to ap-
plication programmers, such as power and memory space constraints.
These characteristics make it imperative to design customized compiler
passes. One of the important factors that shape runtime performance
of a given embedded code is the register allocation phase of compila-
tion. It is crucial to provide aggressive and sophisticated register allo-
cators for embedded devices, where the excessive compilation time can
be tolerated due to high demand on code quality. Failing to do a good
job on allocating variables to registers (i.e., determining the set of vari-
ables to be stored in the limited number of registers) can have serious
power, performance, and code size consequences. This project explores
the possibility of employing a hybrid evolutionary algorithm for register
allocation problem in embedded systems. The proposed solution com-
bines genetic algorithms with a local search technique. The algorithm
exploits a novel, highly specialized crossover operator that takes into
account domain-specific information. The results from the implemen-
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tation based on synthetic benchmarks and routines that are extracted
from well-known benchmark suites clearly show that the proposed ap-
proach is very successful in allocating registers to variables. In addition,
the experimental evaluation also indicates that it outperforms a state-
of-the-art register allocation heuristic based on graph coloring for most
of the cases experimented.

E.6 Semantic Understanding of General Linguistic
Items by Means of Fuzzy Set Theory

Modern statistical techniques used in the field of natural language
processing are limited in their applications by the fact they suffer from
the loss of most of the semantic information contained in text docu-
ments. Fuzzy techniques have been proposed as a way to correct this
problem through the modeling of the relationships between words while
accommodating the ambiguities of natural languages. However, these
techniques are currently either restricted to modeling the effects of sim-
ple words or are specialized in a single domain. In this project, a novel
statistical-fuzzy methodology is proposed to represent the actions de-
scribed in a variety of text documents by modeling the relationships
between subject-verb-object triplets. The research will focus in the first
place on the technique used to accurately extract the triplets from the
text, on the necessary equations to compute the statistics of the subject-
verb and verb-object pairs, and on the formulas needed to interpolate the
fuzzy membership functions from these statistics and on those needed
to defuzzify the membership value of unseen triplets. Taken together,
these sets of equations constitute a comprehensive system that allows
the quantification and evaluation of the meaning of text documents,
while being general enough to be applied to any domain. In the second
phase, this project proceeds to experimentally demonstrate the validity
of the new methodology by applying it to the implementation of a fuzzy
classifier conceived especially for this research. This classifier is trained
using a section of the Brown Corpus, and its efficiency is tested with
a corpus of 20 unseen documents drawn from three different domains.
The positive results obtained from these experimental tests confirm the
soundness of the new approach and show that it is a promising avenue
of research.
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E.7 Fuzzy Evaluation of Heart Rate Signals
for Mental Stress Assessment

Mental stress is accompanied by dynamic changes in autonomic ner-
vous system (ANS) activity. Heart rate variability (HRV) analysis is a
popular tool for assessing the activities of autonomic nervous system.
This project presents a novel method of HRV analysis for mental stress
assessment using fuzzy clustering and robust identification techniques.
The approach consists of 1) online monitoring of heart rate signals, 2)
signal processing (e.g., using the continuous wavelet transform to ex-
tract the local features of HRV in time-frequency domain), 3) exploiting
fuzzy clustering and fuzzy identification techniques to render robustness
in HRV analysis against uncertainties due to individual variations, and
4) monitoring the functioning of autonomic nervous system under differ-
ent stress conditions. The experiments involved 38 physically fit subjects
(26 male, 12 female, aged 18-29 years) in air traffic control task simu-
lations. The subjective rating scores of mental workload were assessed
using NASA Task Load Index. Fuzzy clustering methods have been used
to model the experimental data. Further, a robust fuzzy identification
technique has been used to handle the uncertainties due to individual
variations for the assessment of mental stress.

E.8 An Ant Colony Optimization Approach to the
Probabilistic Traveling Salesman Problem

The Probabilistic Traveling Salesman Problem (PTSP) is a TSP prob-
lem where each customer has a given probability of requiring a visit. The
goal is to find an a priori tour of minimal expected length over all cus-
tomers, with the strategy of visiting a random subset of customers in
the same order as they appear in the a priori tour. The question of
whether and in which context an a priori tour found by a TSP heuristic
can also be a good solution for the PTSP is addressed. This question is
answered by testing the relative performance of two ant colony optimiza-
tion algorithms, Ant Colony System (ACS) introduced by Dorigo and
Gambardella for the TSP, and a variant of it probabilistic ACS (pACS)
which aims to minimize the PTSP objective function. It is found that
the probability configuration of customers pACS and ACS are promising
algorithms for the PTSP.
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E.9 Neural Processing of Symbolic Data

Connectionist systems constitute powerful adaptive machine learning
tools which are particularly suited for large scale and noisy learning
problems. One major problem, however, is given by the fact that typi-
cal neural system are restricted to flat vector representations such that
their applicability in domains with additional symbolic or structured
knowledge is limited. In various concrete projects, new models as well
as theoretical background have been developed which investigate neural
methods for non-Euclidian, symbolic, and structured data.
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