
The Philosophy of Software

Code and Mediation in the Digital Age

David M. Berry

The Philosophy of Software

9780230244184_01_prexii.indd i9780230244184_01_prexii.indd i 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

Also by David M. Berry

UNDERSTANDING DIGITAL HUMANITIES: THE COMPUTATIONAL TURN
AND NEW TECHNOLOGY (edited)

COPY, RIP, BURN: THE POLITICS OF COPYLEFT AND OPEN SOURCE

LIBRE CULTURE (co-edited with G. Moss)

9780230244184_01_prexii.indd ii9780230244184_01_prexii.indd ii 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

The Philosophy of Software
Code and Mediation in the Digital Age

David M. Berry

9780230244184_01_prexii.indd iii9780230244184_01_prexii.indd iii 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

© David M. Berry 2011

All rights reserved. No reproduction, copy or transmission of this
publication may be made without written permission.

No portion of this publication may be reproduced, copied or transmitted
save with written permission or in accordance with the provisions of the
Copyright, Designs and Patents Act 1988, or under the terms of any licence
permitting limited copying issued by the Copyright Licensing Agency,
Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Any person who does any unauthorized act in relation to this publication
may be liable to criminal prosecution and civil claims for damages.

The author has asserted his right to be identified as the author of this
work in accordance with the Copyright, Designs and Patents Act 1988.

First published 2011 by
PALGRAVE MACMILLAN

Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited,
registered in England, company number 785998, of Houndmills, Basingstoke,
Hampshire RG21 6XS.

Palgrave Macmillan in the US is a division of St Martin’s Press LLC,
175 Fifth Avenue, New York, NY 10010.

Palgrave Macmillan is the global academic imprint of the above companies
and has companies and representatives throughout the world.

Palgrave® and Macmillan® are registered trademarks in the United States,
the United Kingdom, Europe and other countries.

ISBN 978–0–230–24418–4 hardback

IThis book is printed on paper suitable for recycling and made from fully
managed and sustained forest sources. Logging, pulping and manufacturing
processes are expected to conform to the environmental regulations of the
country of origin.

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Berry, David M. (David Michael)
The philosophy of software : code and mediation in the digital age /
 David M. Berry.
 p. cm.
 Includes index.
 ISBN 978–0–230–24418–4 (hardback)
1. Computers and civilization. 2. Computer software—Philosophy.
 3. Computer software—Social aspects. I. Title.
QA76.9.C66B4685 2011
303.48'34—dc22 2011001633

10 9 8 7 6 5 4 3 2 1
20 19 18 17 16 15 14 13 12 11

Printed and bound in Great Britain by
CPI Antony Rowe, Chippenham and Eastbourne

9780230244184_01_prexii.indd iv9780230244184_01_prexii.indd iv 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

For Trine

9780230244184_01_prexii.indd v9780230244184_01_prexii.indd v 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

This page intentionally left blank

vii

List of Figures viii

Acknowledgements x

1 The Idea of Code 1
 Understanding computation 10
 Towards digital humanities 18

2 What Is Code? 29
 Code 33
 Towards a grammar of code 51
 Web 2.0 and network code 56
 Understanding code 61

3 Reading and Writing Code 64
 Tests of strength 65
 Reading code 68
 Writing code 75
 Obfuscated code examples 86

4 Running Code 94
 The temporality of code 97
 The spatiality of code 98
 Reverse remediation 99
 Running code and the political 107

5 Towards a Phenomenology of Computation 119
 Phenomenology and computation 127
 The computational image 131

6 Real-Time Streams 142
 Being a good stream 150
 Financial streams 156
 Lifestreams 162
 Subterranean streams 167

Notes 172

Bibliography 182

Index 197

Contents

9780230244184_01_prexii.indd vii9780230244184_01_prexii.indd vii 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

viii

List of Figures

 2.1 ‘Listen’ by Sharon Hopkins 30

 2.2 An example of ‘beautiful’ code as a sorting algorithm 48

 2.3 ‘Rush’ by Sharon Hopkins 49

 2.4 The key differences between Web 1.0 and Web 2.0 57

 3.1 Microsoft Windows source code commentary 69

 3.2 Microsoft Windows source code ‘moron’ comments 69

 3.3 Microsoft Windows source code ‘hack’ comments 70

 3.4 Microsoft Windows source code ‘undocumented’
comments 71

 3.5 Parody of the Microsoft Windows source code 72

 3.6 Redacting command line execution 77

 3.7 Underhanded C Contest, winning entry by John Meacham 78

 3.8 Underhanded C Contest, contents are wiped keeping
255 as ‘000’ length, showing how the basic image
information is retained after redaction 79

 3.9 Underhanded C Contest, second place entry by
Avinash Baliga 80

 3.10 Underhanded C Contest, third place entry by Linus
Akesson 81

 3.11 Simple example of a C program 83

 3.12 C program with obfuscated characters with function call 84

 3.13 C program now obfuscated through text changes and
confusing formatting 85

 3.14 Performs OCR of numbers 8, 9, 10 and 11 87

 3.15 Prints spiralling numbers, laid out in columns 87

 3.16 Maze displayer/navigator with only line-of-sight
visibility 88

 3.17 Computes arbitrary-precision square root 89

 3.18 Makes X mouse pointer have inertia or anti-inertia 91

 3.19 Flight simulator written in 1536 bytes of real code 92

9780230244184_01_prexii.indd viii9780230244184_01_prexii.indd viii 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

4.1 Assembly language version of ‘Hello, world!’ 95

4.2 Binary file version of the executable 96

4.3 Jaiken-zan, each output is a combination of A and B 106

4.4 User represented in source code 115

4.5 ‘Voter’ represented in the source code 115

4.6 The male ‘voter’ represented in the source code 116

4.7 The choice of the voter is technically constrained to only
one candidate as represented in the source code 116

List of Figures ix

9780230244184_01_prexii.indd ix9780230244184_01_prexii.indd ix 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

9780230244184_01_prexii.indd x9780230244184_01_prexii.indd x 2/11/2011 5:42:27 PM2/11/2011 5:42:27 PM

x

Acknowledgements

Writing remains to me an unusual practice that transforms my experience
of the world whilst under the spell of writing. This book has had a particu-
larly intensive birth, written as it is in the middle of the academic year and
with everyday life swirling around it with all the attendant distractions. It
has emerged from a number of related research themes that continue to
guide my work and are focused on the challenge to thinking that is posed
by technology. This work has been influenced, inspired, guided and chal-
lenged by such a plethora of authors that it is not possible to list them all
here. However, I feel that they are all flowing in different modulations and
intensities through the text that follows. I pass on this text in the hope
that future readers will find something interesting in a subject I continue
to find deeply fascinating.

I would like to take this opportunity to thank Nikki Cooper, the
Callaghan Centre for the Study of Conflict, Power, and Empire, and the
Research Institute for Arts and Humanities (RIAH) at Swansea University
for funding the workshop, The Computational Turn, which explored
key issues around software. Thanks also to N. Katherine Hayles and Lev
Manovich and the other participants at this workshop who enthusiasti-
cally discussed many of the themes pertinent to this book in a rigorous
and critical setting. I would also like to thank the many people who
gave comments and suggestions to the text as it developed. In par-
ticular, Chapter 5 was presented at a number of places which assisted
in writing, and so I would like to thank colleagues in the Department
of Political and Cultural Studies at Swansea University and in particular
Alan Finlayson and Roland Axtmann; the Department of Media and Film
at Sussex University, particularly Michael Bull, Caroline Bassett, Sharif
Mowlabocus, and Kate O’Riordan; The Law and Literature Association of
Australia (LLAA) and The Law and Society Association of Australia and
New Zealand (LSAANZ) and Griffith University for inviting me to present
Chapter 5 in Brisbane, in particular William MacNeil; and lastly, Daniel
Hourigan, Steve Fuller, Peter Bloom, William Merrin, and John Tucker for
helpful additional comments. An early version of Chapter 6 was previ-
ously presented at Generation Net: Arts and Culture in the 21st century
at Nottingham University, funded by the Institute of Film and Television
Studies, and I would like to thank Iain Robert Smith for the invitation.
A slightly reworked version of Chapter 4 was presented at Swansea

University in the Politics Research in Progress seminar series arranged by
Jonathan Bradbury and I would like to thank all colleagues who attended
for their generous feedback and ideas. Lastly, parts of Chapter 3 were
presented at the New Materialisms and Digital Culture: An International
Symposium on Contemporary Arts, Media and Cultural Theory at Anglia
Ruskin University, and I would like to thank Jussi Parikka and Milla
Tiainen for their invitation. I would also like to make a special note of
thanks to Trine Bjørkmann Berry for reading and correcting early drafts
of the chapters.

This book would not have been possible without the support and gen-
erosity of a great number of friends and colleagues at Swansea University
who were always available to discuss subjects I found interesting. In
particular, Claes Belfrage and Christian De Cock and the participants in
the Cultural Political Economy research group, who may not realise that
many of the ideas in the book were also aired there. I would also like to
thank students on the MA Digital Media and my PhD students: Faustin
Chongombe, Leighton Evans, Mostyn Jones, and Sian Rees for their use-
ful contributions and discussions over the course of the year. Finally,
I would like to thank my wife, Trine, and my children Helene, Henrik
Isak, and Hedda Emilie, for waiting patiently, seemingly forever, to go to
the beach.

DMB
Swansea, July 2010

Acknowledgements xi

9780230244184_01_prexii.indd xi9780230244184_01_prexii.indd xi 2/11/2011 5:42:28 PM2/11/2011 5:42:28 PM

This page intentionally left blank

1

1
The Idea of Code

Whilst we are dead to the world at night, networks of machines silently
and repetitively exchange data. They monitor, control and assess the
world using electronic sensors, updating lists and databases, calculat-
ing and recalculating their models to produce reports, predictions and
warnings. In the swirling constellations of data, they oversee and sta-
bilise the everyday lives of individuals, groups and organisations, and
remain alert for criminal patterns, abnormal behaviour, and outliers in
programmed statistical models. During our waking hours, a multitude
of machines open and close gates and doors, move traffic-lights from
red to green, and back to red again, monitor and authorise (or fail to
authorise) our shopping on credit and debit cards, and generally keep
the world moving. To do this requires millions, if not, billions of lines
of computer code, many thousands of man-hours of work, and con-
stant maintenance and technical support to keep it all running. These
technical systems control and organise networks that increasingly per-
meate our society, whether financial, telecommunications, roads, food,
energy, logistics, defence, water, legal or governmental. The amount
of data that is now recorded and collated by these technical devices is
astronomical. For example, ‘Wal-Mart, a retail giant, handles more than
1 million customer transactions every hour, feeding databases estimated
at more than 2.5 petabytes – the equivalent of 167 times the books in
America’s Library of Congress’ and Facebook, a social-networking web-
site, has collected 40 billion photos in its databases from the individual
uploading of its users (The Economist 2010c). Search engines scour the
web and deal with massive amounts of data to provide search results
in seconds to users, with Google alone handling 35,000 search queries
every second (The Economist 2010e). Significantly, ‘“information created
by machines and used by other machines will probably grow faster than

9780230244184_02_cha01.indd 19780230244184_02_cha01.indd 1 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

2 The Philosophy of Software

anything else”, explains Roger Bohn of the UCSD, one of the authors
of [a] study on American households. “This is primarily ‘database to
database’ information—people are only tangentially involved in most
of it”’ (The Economist 2010d).

Of course, we have always relied upon the background activity of a
number of bureaucratic processes for assigning, sorting, sending, and
receiving information that have enabled modern society to function.
But the specific difference introduced by software/code is that it not
only increases the speed and volume of these processes, it also intro-
duces some novel dimensions: (1) in a way that is completely new, soft-
ware allows the delegation of mental processes of high sophistication
into computational systems. This instils a greater degree of agency into
the technical devices than could have been possible with mechanical
systems;1 (2) networked software, in particular, encourages a commu-
nicative environment of rapidly changing feedback mechanisms that
tie humans and non-humans together into new aggregates. These then
perform tasks, undertake incredible calculative feats, and mobilise and
develop ideas at a much higher intensity than in a non-networked
environment;2 (3) there is a greater use of embedded and quasi-visible
technologies, leading to a rapid growth in the amount of quantification
that is taking place in society. Indeed, software is increasingly quan-
tifying and measuring our social and everyday lives. By capturing, in
millions of different ways, the way we live, speak, act and think on
mobile phones, CCTV cameras, websites, etc. computational devices are
able to count these activities. This turns life into quantifiable metrics
that are now visible and amenable for computation and processing.
To give an idea of the extent to which computing power has grown,
in 2010, using standard off-the-shelf hardware, ‘computer scientists
from the University of California, San Diego broke “the terabyte bar-
rier” – and a world record – when they sorted more than one terabyte
of data (1,000 gigabytes or 1 million megabytes) in just 60 seconds’
(BJS 2010). This is roughly equivalent to the data on 40 single-layer
Blu-Ray discs, 210 single-layer DVDs, 120 dual-layer DVDs or 1422 CDs
(assuming CDs are 703 MB). Large collections of social aggregated data
can easily exceed this size, so faster processing speeds are crucial for
them to be data-mined for predictive, marketing, and social monitoring
purposes by governments, corporations, and other large organisations,
often without our knowledge or consent. This transforms our everyday
lives into data, a resource to be used by others, usually for profit, which
Heidegger terms standing-reserve (Heidegger 1993a: 322).

9780230244184_02_cha01.indd 29780230244184_02_cha01.indd 2 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

The Idea of Code 3

Computers are entangled with our lives in a multitude of different,
contradictory and complex ways, providing us with a social milieu that
allows us to live in a society that increasingly depends on information
and knowledge. More accurately, we might describe it as a society that
is more dependent on the computation of information, a computational
knowledge society. Today, people rarely use the raw data, but consume
it in processed form, relying on computers to aggregate or simplify
the results for them, whether in financial credit-management systems,
fly-by-wire aeroplanes, or expert-systems in medical diagnosis and
analysis (The Economist 2010f). If we were to turn off the computers that
manage these networks, the complexity of the modern world would
come crashing in some cases, quite literally, to an abrupt halt. And yet,
this is not the whole story, for each of the computers and technologies
is actually mediating its own relationship with the world through the
panoply of software. These computers run software that is spun like
webs, invisibly around us, organising, controlling, monitoring and
processing. As Weiner (1994: xv) says ‘the growing use of software…
represents a social experiment’.

Software is a tangle, a knot, which ties together the physical and the
ephemeral, the material and the ethereal, into a multi-linear ensemble
that can be controlled and directed. From the mundane activities of
alarm clocks and heating systems, to complex structures like stock mar-
ket trading systems and electricity grid markets, software helps these
material objects function. But software can also change the very nature
of what is considered possible: from the ability of terrestrial trans-
mission networks to broadcast hundreds of simultaneous television
channels and radio, as opposed to the previous small numbers of TV
channels that analogue broadcasts enabled. Software can revolutionise
the limitations of the physical world. In the case of care for Neonatal
premature babies, for example, ‘software ingests a constant stream of
biomedical data, such as heart rate and respiration, along with envi-
ronmental data gathered from advanced sensors and more traditional
monitoring equipment on and around the babies’ to compute real-time
clinical updates on each child’s physiological data streams to assist doc-
tors in assessing their health’ (IBM 2008). Software enables the fourth-
generation jet fighters, like the Eurofighter Typhoon or the F16 Fighting
Falcon, to be more effective fighter aircraft because they are deliberately
designed to be aerodynamically unstable, a ‘relaxed stability’ design.3
They can only be flown through the support of computers and software
that manages their fly-by-wire systems; as ‘F-16 pilots say, “You don’t fly

9780230244184_02_cha01.indd 39780230244184_02_cha01.indd 3 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

4 The Philosophy of Software

an F-16; it flies you”, refer[ing] to the seemingly magical oversight of the
electronic system’ (Greenwood 2007).4 Lastly, software underwrites the
Internet itself, of course, which enables technical devices to communi-
cate via special software-enabled protocols which construct an online
world, the Web, from a complex constellation of different hardware,
systems, telecommunications lines and devices.

But this software is too often hidden behind a façade of flashing
lights, deceptively simple graphic user interfaces (GUIs) and sleekly
designed electronic gadgets that re-presents a world to the user. As
Kittler explains, ‘[s]ound and image, voice and text have become mere
effects on the surface, or, to put it better, the interface for the consumer’
(Kittler 1987: 102). But even at the level of the interface, software
exceeds our ability to place limits on its entanglement, for it has in the
past decade entered the everyday home through electronic augmenta-
tion that has replaced the mechanical world of the 20th century. From
washing machines to central heating systems, to children’s toys, televi-
sion and video; the old electro-magnetic and servo-mechanical world
is being revolutionised by the silent logic of virtual devices. It is time,
therefore, to examine our virtual situation.5

As software increasingly structures the contemporary world, curi-
ously, it also withdraws, and becomes harder and harder for us to focus
on as it is embedded, hidden, off-shored or merely forgotten about.
The challenge is to bring software back into visibility so that we can
pay attention to both what it is (ontology), where it has come from
(through media archaeology and genealogy) but also what it is doing
(through a form of mechanology), so we can understand this ‘dynamic
of organized inorganic matter’ (Stiegler 1998: 84).

Thankfully, software is also starting to become a focus of scholarly
research from a variety of approaches loosely grouped around the field
of software studies/cultural analytics (Fuller 2003; Manovich 2001,
2008) and critical code studies (Marino 2006; Montfort 2009). Some of
the most interesting developments in this area include: platform studies
(Montfort and Bogost 2009), where there is a critical engagement with
an ‘infrastructure that supports the design and use of particular appli-
cations, be it computer hardware, operating systems, gaming devices,
mobile devices, and digital disc formats’ (Gillespie 2008); media archae-
ology, which uncovers histories and genealogies of media, insisting on
researching differences rather than continuity (Parikka 2007); research
into software engines, which form an increasing part of the way in which
software is packaged to perform a wide variety of functions, e.g. gam-
ing engines, search engines, etc. (Helmond 2008); research into ‘soft’

9780230244184_02_cha01.indd 49780230244184_02_cha01.indd 4 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

The Idea of Code 5

authorship (Huber 2008) and genre analysis of software (Douglas 2008),
which look at the way in which the notion of the author is problema-
tised by the processual and bricolage nature of software development;
graphical user interfaces, which focuses on the human–computer
interface and the machine (Bratton 2008; Chun 2008; Dix et al 2003;
Manovich 2001; Manovich and Douglas 2009); digital code literacy,
which investigates how people read and write digital forms (Hayles
2004; Hayles 2005; Montfort 2008); research into temporality and code
(Raley 2008); the sociology and political economy of the free software
and open source movement, particularly with respect to the way in
which the software has been rethought and subject to deliberation and
contestation (Berry 2008; Chopra and Dexter 2008; Coleman 2009;
Kelty 2008; Lessig 2002; May 2006; Weber 2005).6

Additionally, there has been important work in medium theory
(Bassett 2007; Galloway 2006; Hayles 2007; Hansen 2006; Kittler 1997;
Mackenzie 2006), critical attention to the creative industries (Gill
and Pratt 2008; Garnham 2005: 26–7; Hesmondhalgh 2009; Kennedy
2010; Ross 2008), and attention to the theoretical challenge of digital
media to media studies through web studies/media 2.0 and web science
(Gauntlett 2009; Merrin 2009).7 Within the field of political economy,
too, there have been scholars looking at some of the important issues
around software, although they have tended to focus on intellectual
property rights (IPRs) (Benkler 2002, 2004, 2006; May 2006; Perelman
2002; Sell 2003), communications (Benkler 2006; McChesney 2007;
Mosco 2009), or information (Benkler 2003a; Drahos and Braithwaite
2003; Mosco 1988) rather than the specific level of computer code
itself.

All of these scholars are in some way exploring the phenomena of
computer code from a number of disciplinary perspectives, even if
indirectly. What remains clear, however, is that looking at computer
code is difficult due to its ephemeral nature, the high technical skills
required of the researcher and the lack of analytical or methodological
tools available. This book will attempt to address this lack in the field
by pointing towards different ways of understanding code. It will do so
through a phenomenological approach that tries to highlight the prag-
mata of code. Following Fuller (2008), it will attempt to:

Show the stuff of software in some of the many ways that it exists,
in which it is experienced and thought through, and to show, by the
interplay of concrete examples and multiple kinds of accounts, the
condition of possibility that software establishes (Fuller 2008: 1).

9780230244184_02_cha01.indd 59780230244184_02_cha01.indd 5 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

6 The Philosophy of Software

The book is also intended to be a critical introduction to the complex
field of understanding digital culture and technology, offering a way
into the subject for those in the humanities/social sciences or the dig-
ital humanities. Indeed, I argue that to understand the contemporary
world, and the everyday practices that populate it, we need a corre-
sponding focus on the computer code that is entangled with all aspects
of our lives, including reflexivity about how much code is infiltrating
the academy itself. As Fuller (2006) argues, ‘in a sense, all intellectual
work is now “software study”, in that software provides its media and
its context… [yet] there are very few places where the specific nature,
the materiality, of software is studied except as a matter of engineer-
ing’. We also need to think carefully about the ‘structure of feeling’ that
computer code facilitates and the way in which people use software
in their everyday lives and practices. For example, this includes the
increase in people’s acceptance and use of: life-style software, e.g. Nike+;
personal mobility software, e.g. GPS and SatNav; cultural software, e.g.
photoshop and InDesign (Manovich 2008); gaming, both console and
networked (Wark 2007); ‘geo’ or location, e.g. Gowalla and FourSquare;
and social media, such as Facebook, Twitter, QQ, TaoTao, etc.

The way in which these technologies are recording data about indi-
viduals and groups is remarkable, both in terms of the collection of:
(1) formal technical data, such as dataflows, times and dates, IP
addresses, geographical information, prices, purchases and preferences,
etc.; (2) but also qualitative feelings and experiences. These software
avidities are demonstrated when Twitter asks the user: ‘What’s hap-
pening?’, Facebook asks: ‘What’s on your mind?’, and Google Buzz
inquires: ‘Share what you’re thinking’. This information is not collected
passively, but processed and related back into the experience of other
users either as a news feed or data stream, or else as an information sup-
port for further use of the software. Amazon uses this raw data about
what other readers have bought to provide information back to users as
personalised recommendations to drive new sales. Google, on the other
hand, generates personalised adverts and pre-populates its search boxes
with a function called ‘Google Query Suggestions’.8 When one types
‘What happens when’ into the Google search-box, you are presented
with a pre-computed list of the most popular questions typed by users
into the search engine, and as of June 2010 they were:

What happens when you die
What happens when you lose your viginity
What happens when you stop smoking

9780230244184_02_cha01.indd 69780230244184_02_cha01.indd 6 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

The Idea of Code 7

What happens when you have a miscarriage
What happens when a volcano erupts
What happens when you have an abortion
What happens when we die
What happens when you deactivate facebook account
What happens when there is a hung parliament
What happens when a country goes bankrupt

This is the result of a massive computational analysis of people’s search
texts and page rankings using statistical algorithms. Indeed, these results
certainly reflect a number of issues of the time, such as the eruption of
Iceland’s Eyjafjallajökull volcano, public disquiet with Facebook privacy,
the last election in the UK which delivered a hung parliament and a
Conservative and Liberal coalition, and the financial crisis of 2007–10.9
However, without an understanding of how computation is tying data,
news, practices and search results together through computer code,
the process of ‘search’ is difficult to explain, if not strangely magical. It
also precludes us from concentrating on the political economic issues
raised by the fact that an American corporation is capturing this data
in the first place, and is able to feed it back through pre-populating the
search box and hence steer people in particular directions. Google has a
reported 98 per cent of the mobile search market and 71 per cent of the
search share market globally (Pingdom 2010).10 Indeed ‘[i]n the process
of ranking results, search engines effectively create winners and losers
on the web as a whole’ (Halavais 2008:85). For example, the ability to
pay to be on the Google pre-populated search list would presumably be
a desirable way of advertising and driving sales. This is the continuing
logic of Google’s business model that is an exemplar of Smythe’s (2006)
notion of the ‘audience commodity’. Essentially, Google creates advertis-
ing markets by the real-time segmentation of search requiring computer
power to understand who, in terms of a particular consumer group, is
searching and what can be advertised to them. Google, therefore, har-
nesses the power of computation to drive an aggressive advertising strat-
egy to find out who the user is, and what are their preferences, tastes,
desires, and wants. Indeed, ‘[r]ivals have accused Google of placing
the Web sites of affiliates… at the top of Internet searches and rel-
egating competitors to obscurity down the list’ (New York Times 2010).
Indeed, Google was recently awarded a patent on displaying search
results based on how the users moves their mouse cursor on the screen
allowing it to monitor user behaviour at a very low level of granularity,
the so-called click-stream. This raises serious privacy concerns as the

9780230244184_02_cha01.indd 79780230244184_02_cha01.indd 7 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

8 The Philosophy of Software

collection of such statistics could be used for analysis of users ‘pre-cog-
nition’ and then tailored for behavioural marketing (Wilson 2010). It
is clear that access to this kind of data and analysis, as a service from
Google, could be extremely valuable to advertisers. Indeed, Eric Schmidt,
CEO of Google, recently commented:

“I actually think most people don’t want Google to answer their
questions,” he elaborates. “They want Google to tell them what they
should be doing next.” Let’s say you’re walking down the street.
Because of the info Google has collected about you, “we know
roughly who you are, roughly what you care about, roughly who
your friends are.” Google also knows, to within a foot, where you are.
Mr. Schmidt leaves it to a listener to imagine the possibilities: If you
need milk and there’s a place nearby to get milk, Google will remind
you to get milk. It will tell you a store ahead has a collection of horse-
racing posters, that a 19th-century murder you’ve been reading
about took place on the next block. Says Mr. Schmidt, a generation
of powerful handheld devices is just around the corner that will be
adept at surprising you with information that you didn’t know you
wanted to know. “The thing that makes newspapers so fundamen-
tally fascinating – that serendipity – can be calculated now. We can
actually produce it electronically,” Mr. Schmidt says (Jenkins 2010).

Whilst it might be tempting to think that the question of code, or
perhaps better the politics of code, is of little importance, one should
remember that Google had revenues of $17 billion in 2007, $22 billion
in 2008, and $24 billion in 2009 (Google 2010b). They also represent
an important unregulated gateway into the information contained
upon the web, and governments, amongst others, have been concerned
with their growing informational and economic power. For example,
in Viacom vs Google 2010, when Viacom sued Google for copyright
infringement over the use of its content on Youtube, Google spent
over $100 million on lawyers to defend the case, and was ultimately
successful. Google now has a remarkable $30.1 billion in cash, cash
equivalents, and short-term securities that it can use to defend itself and
spend on developing new products and services (Sieglar 2010). Google
has responded to these critics who argue that there should be ‘search
neutrality’ by saying,

The world of search has developed a system in which each search
engine uses different algorithms, and with many search engines to

9780230244184_02_cha01.indd 89780230244184_02_cha01.indd 8 2/5/2011 4:50:08 PM2/5/2011 4:50:08 PM

The Idea of Code 9

choose from users elect to use the engine whose algorithm approxi-
mates to their personal notion of what is best for the task at hand. The
proponents of “search neutrality” want to put an end to this system,
introducing a new set of rules in which governments would regulate
search results to ensure they are fair or neutral (Mayer 2010).

To understand these kinds of issues, which are essentially about the
regulation of computer code itself, we need to be able to unpack the way
in which these systems are built and run. This means a closer attention
to the multiple ways in which code is deployed and used in society. This
can take place on a number of levels, for the social researcher: through
reading code there may be a method for uncovering patterns in current
worries, questions, issues and debates taking place in a society at any
one time, perhaps a form of technological unconscious shown in search
results. For the political economist it can help demonstrate the way in
which economic power is now manifested, perhaps through the control
and use of code libraries, patents and digital rights management tech-
nologies. Understanding code can also reveals ethical questions, both
in terms of our relationship to ourselves as autonomous beings, but also
the framing and homogenisation of ideas and practice – heteronomy
versus autonomy.11 A close reading of code can also draw attention to
the way in which code may encode particular values and norms (see
Berry 2008: 31) or drive particular political policies or practices.

Therefore, it seems to me that we need to become more adept at read-
ing and writing computer code in order to fully understand the techni-
cal experience of the everyday world today. This knowledge would
also allow us to decode the more rarefied worlds of high technology,
finance, politics and international political economy, to name just a
few examples. Without this expertise, when tracing the agentic path,
whether from cause to effect, or through the narrative arcs that are
used to explain our contemporary lives, we will miss a crucial trans-
lation involved in the technical mediation provided by software. As
Mackenzie (2003) perceptively puts it:

code runs deep in the increasingly informatically regulated infra-
structures and built environments we move through and inhabit.
Code participates heavily in contemporary economic, cultural,
political, military and govermental domains. It modulates relations
within collective life. It organises and disrupts relations of power. It
alters the conditions of perception, commodification and representa-
tion (Mackenzie 2003: 3).

9780230244184_02_cha01.indd 99780230244184_02_cha01.indd 9 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

10 The Philosophy of Software

Computer code needs to be analysed not only as a medium, but also
as a medium materialised into particular code-based devices. Therefore
I want to argue that a powerful way to reconceptualise code is through
the notion of a super-medium (Berry 2008: 34, cf Manovich 2008: 79–80),
that is, that code unifies the fragmented mediums of the twentieth cen-
tury (tv/film/radio/print) within the structures of code (using Kittler’s
notion of the implosion of media forms). Code is not a medium that
contains the other mediums, rather it is a medium that radically reshapes
and transforms them into a new unitary form. This super-medium acts
as both a mediating and structurating frame that we must understand
through its instantiation under particular physical constraints.

That is, I reject the so-called ‘immateriality’ of software and draw atten-
tion to the concrete thing-in-the-world-ness of software so that we can
‘see what it is, what it does, and what it can be coupled with’ (Fuller, M.
2008: 3). However, it is also clear that we have not yet found adequate
means to analyse the multifaceted dimensions to code. To understand
code and place the question of code firmly within the larger political
and social issues that are raised in contemporary society, we need to pay
more attention to the computationality of code. In other words, the way
in which code is actually ‘doing’ is vitally important, and we can only
understand this by actually reading the code itself and watching how it
operates. As a contribution to developing our understanding of what is
admittedly a complex subject, I take a synoptic look at the phenomena
of code, and try to place it within phenomenological context to under-
stand the profound ways in which computational devices are changing
the way in which we run our politics, societies, economies, the media
and even everyday life. Throughout the book, then, I will explore code
by looking at the assemblage presented by the computational and the
human. In particular, the way in which our relationships with the many
entities that populate this human-built world are increasingly embed-
ded with digital microprocessors running digital code. This universality
of code within all manner of devices and many different fields of knowl-
edge raises important questions for all disciplines and research fields,
something that will be a running theme throughout the book.

Understanding computation

The term computation itself comes from the Latin computare, com-
‘together’ and putare ‘to reckon, to think or to section to compare the
pieces’. To compute, then, is to ‘to count, or to calculate’. For computer
scientists, computation (or information processing) is a field of research

9780230244184_02_cha01.indd 109780230244184_02_cha01.indd 10 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 11

that investigates what can and what cannot be calculated. Closely
allied with this is a certain comportment towards the world maintained
through computational skills and techniques. My intention is not to
evaluate or outline the theoretical underpinnings of computability as a
field within the discipline of computer science, rather, I want to under-
stand how our being-in-the-world, the way in which we act towards
the world, is made possible through the application of these theoretical
computational techniques, which are manifested in the processes, struc-
tures and ideas stabilised by software and code.

It is also worth clarifying that I do not refer to computational in terms
of computationalism, a relatively recent doctrine that emerged in ana-
lytic philosophy in the mid 1990s, and which argues that the human
mind is ultimately ‘characteristable as a kind of computer’ (Columbia
2009: 8), or that an increasing portion of the human and social world
is explainable through computational processes.12 This is what Hayles
(2005) calls the Regime of Computation, whereby

[it] provides a narrative that accounts for the evolution of the uni-
verse, life, mind, and mind reflecting on mind by connecting these
emergences with computational processes that operate both in
human-created simulations and in the universe understood as soft-
ware running on the “Universal Computer” we call reality (Hayles
2005: 27).

Additionally, some theorists of computation quickly move from their
theoretical and empirical work to the speculative, hence they claim
that the universe is digital all the way down. One example is Edward
Fredkin, who proposes a form of ‘digital philosophy’, that argues ‘that
the discrete nature of elementary particles indicates that the uni-
verse is discrete, rather than continuous, digital rather than analog’
(Hayles 2005: 23).13 This is the idea that all we need to do is uncover
the digital rules that underlie reality (Borgmann 1999: 11). As Hayles
observes,

The regime [of computation] reduces ontological requirements to
a bare minimum. Rather than an initial premise (such as God, an
originary Logos, or the axioms of Euclidean geometry) out of which
multiple entailments spin, computation requires only an elementary
distinction between something and nothing (one and zero) and
a small set of logical operations... far from presuming the “tran-
scendental signified” that Derrida identifies as intrinsic to classic

9780230244184_02_cha01.indd 119780230244184_02_cha01.indd 11 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

12 The Philosophy of Software

metaphysics, computation privileges the emergence of complexity
from simple elements and rules (Hayles 2005: 23).

More speculatively, computability, within the discipline of computer
science, is now seen to also include non-discrete continuous data, called
analogue computing platforms.14 The common example given is that
of a spaghetti sorter, which is actualised through the action of banging
spaghetti of different lengths on the flat surface of the table. This causes
multiple ‘processing’ of the material elements (i.e. spaghetti strands)
which results in the spaghetti being sorted by size (that is, sorts a list of
n numbers in order n time) (Chalmers 1989). Here, there is an input,
a processing dimension, and an output, which has not been sent on a
detour through a digital device. This is interesting due to the way in
which the world outside is cast, as shown by Beggs et al. (2009), who
refer to this computational relationship with the external world (which
is problematised as being potentially non-computational) as physical
experimentation with oracles. Here, physical experiments in the universe
are understood as ‘oracles’ to algorithms, that is, the external world is a
problematised space for the computational which requires an interface
through which the oracle (i.e. the physical world) can be consulted by
the algorithm. True to their Delphic forebears, oracles are positioned as
risky and may yield results that are essentially non-computational and
which may need to be tamed through the use of protocols and inter-
faces between the computational and non-computational world – in a
sense the placing of a computational filter on the world.15

Although I will not be looking in detail at the questions raised by
analogue computation, nor the digital philosophy of Fredkin and
others, these examples demonstrate the increasing importance of the
digital in how people are conceptualising the world. Certainly, the
growth in importance of a computational comportment is connected to
the unparalleled rise in importance of computers and technology. One
is drawn to the analogy,

with eighteenth-century commentators who, impressed by the
reductive power of Newton’s laws of motion and the increasing
sophistication of time-keeping mechanisms, proclaimed that the
universe was a clockwork (Hayles 2005: 3).

These metaphors help us understand the world, and with a shift to
computational metaphors, certain aspects of reality come to the fore,
such as the notion of orderliness, calculability, and predictability, whilst

9780230244184_02_cha01.indd 129780230244184_02_cha01.indd 12 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 13

others, like chaos, desire and uncertainty, retreat into obscurity. One
might speculate, for example, of the extent to which constructions of
subjectivity expressed in the humanities retreat when ‘one’ is no longer
‘hallucinating a meaning between letters and lines’ when reading books
(Kittler, quoted in Hayles 2005: 4) and is instead a part of a network of
instant messages, emails and datascapes in a multi-visual media ecology.
This is certainly indicated in the importance, for Heidegger, of question-
ing technology and understanding technology as an ontological condi-
tion for our comportment towards the world (Heidegger 1993a).

Many other attempts to understand the computational tend towards
equating it with instrumental rationality (e.g. Columbia 2009). In con-
trast, I argue for a distinction between computationalist and instrumen-
talist notions of reason. I use the definition of instrumental rationality
as the application by an actor of means to ends through mathematics,
empirical knowledge and logic. This is a notion of the maximisation of
instrumentality in order to produce the maximum output for a given
input, the classic example being the utility-maximising rationality of
the individual selfish actor. In effect, instrumental rationality is a mode
of reasoning employed by an agent. In contrast, computational ration-
ality is a special sort of knowing, it is essentially vicarious, taking place
within other actors or combinations and networks of actors (which may
be human or non-human) and formally algorithmic. One thinks here of
writing a poem within a word-processor, which appears to the computer
as a constantly deferred process of manipulating symbolic data, and
which the computer is never in a position to judge as a completed task –
even when stored on a hard-disk it remains merely temporarily frozen
between user edits. This means that the location of reasoning is highly
distributed across technical devices and the agents. This strongly entan-
gles the computational with the everyday world; after all, only a limited
number of computational tasks are self-contained and have no user or
world input.16 This also points to the fact that computational rationality
can be made up of different forms of rationality itself, not necessarily
purely instrumental, including, for example communicative moments,
aesthetic moments and expressive moments. In this sense then, compu-
tational rationality is a form of reasoning that takes place through other
non-human objects, but these objects are themselves able to exert agen-
tial features, either by making calculations and decisions themselves, or
by providing communicative support for the user.

Computational devices therefore have a potentially communicative
dimension, as each technical actor must be in constant communica-
tion with the other actors for the computation to function (whether

9780230244184_02_cha01.indd 139780230244184_02_cha01.indd 13 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

14 The Philosophy of Software

function, object, code, human, non-human, etc.). The computational
device, as an algorithmic totality, is in a constant state of exception
from multiple events which must be attended to, that is, the device is
constantly interrupted by a parliament of things or users. The seem-
ingly end-directed nature of computational processes may actually be
constantly deferred internally, that is, never reaching a final goal. In a
certain sense, this is an agonistic form of communicative action where
devices are in a constant stream of data flow and decision-making
which may only occasionally feedback to the human user.

This ‘everyday computational’ is a comportment towards the world
that takes as its subject-matter everyday objects which it can transform
through calculation and processing interventions. The definition of pos-
sible states and events is usually formulated in a computation model,
such as the Turing machine or the finite state automata, and embedded
in computational devices. For Stiegler (2009) this way of thinking about
the world is epitomised in,

the beginning of a systematic discretization… – that is to say, of a
vast process of the grammaticalization of the visible. Just as, today, the
language industries are producing digital dictionaries (which is to
say, grammars), there are presently being realised [many new digital]
“grammers” and “dictionaries”... These involve, in effect, simula-
tions in physics, chemistry and astrophysics, simulations in training
and ergonomics, virtual worlds, clones of real beings, artificial intel-
ligence, form recognition, artificial life, and artificial death (Stiegler
2007: 149).

For computer scientists, it is the translation of the continuum into the
discrete that marks the condition of possibility for computationality.
Only when things are turned into a digital form are they available
to be manipulated through digital technology and computer code.
Indeed, ‘digital computation is fundamentally computation by algo-
rithms, which operate on symbols in discrete time’ (Tucker and Zucker
2007: 2).17 This reminds us that computation is limited to specific
temporal durations and symbolic sets of discrete data to represent real-
ity, but once encoded, it can be resampled, transformed, and filtered
endlessly.

This demonstrates the plasticity of digital forms and points toward a
new way of working with representation and mediation, facilitating the
digital folding of reality. To mediate an object, a computational device
requires that it be translated. This minimal transformation is effected

9780230244184_02_cha01.indd 149780230244184_02_cha01.indd 14 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 15

through the input mechanism of a socio-technical device within which
a model or image is stabilised and attended to, and then internally
transformed depending on a number of interventions, processes or fil-
ters and then outputted as a final calculation. This results in real-world
situations where computation is event-driven and divided into discrete
processes to undertake a particular user task. The key point is that with-
out the possibility of discrete encoding there is no object for the com-
putational device to process; however, in cutting up the world in this
manner, information about the world necessarily has to be discarded in
order to store a representation within the computer. In other words, a
computer requires that everything is transformed from the continuous
flow of our everyday reality into a grid of numbers that can be stored as
a representation of reality which can then be manipulated using algo-
rithms. The other side of the coin, of course, is that these subtractive
methods of understanding reality (episteme) produce new knowledges
and methods for the control of reality (techne).

For objects in the world to be computational requires that they
offer a certain set of affordances facilitated through the operation of
computer code. This is managed through the writing of code that deter-
mines certain functions that the software is engineered to perform.
These can be at the level of the software itself, and hence invisible to the
user directly (for example application programming interfaces or APIs),
or presented to the user through a visual interface which allows the user
to determine what it does, its affordance. To distinguish between the
two, it is useful to think of hidden affordances and visible affordances.
That is, with visible affordances,

The value is clear on the face of it… The postbox “invites” the mailing
of a letter, the handle “wants to be grasped”, and things “tell us what
to do with them” (Gibson 1977: 136).

In a similar way to physical objects, technical devices present to the user
a certain function, or range of functions, that are stabilised and format-
ted through a particular human-computer interface, very often graphical.
That is not to say that non-screenic affordances aren’t used, they clearly
are where the interface requires only a simple input from the user –
think of the famous iPod wheel – but this set of functions (affordances)
in a computational device is always a partial offering that may be with-
held or remain unperformed. This is because the device has an internal
state which is generally withheld from view and is often referred to as a
‘black box’, indicating that it is opaque to the outside viewer.18

9780230244184_02_cha01.indd 159780230244184_02_cha01.indd 15 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

16 The Philosophy of Software

In other words, the user has no way of knowing directly that their
actions has had the result they desired, except as reported on the surface
by the technical device.

In this sense then, the computational device is a mediator between
entities and their phenomenal representation in the everyday world,
and its affordances help inform us and guide us in using it. To manipu-
late the invisible or imperceptible informational entities we increas-
ingly deal with in today’s world, such as data, electronic money or
objects at a distance, requires some form of computational mediation.
For example, if a computer microscope displays microbes which are
beyond the range of human sight and which therefore require transla-
tion through techniques that can magnify them, the magnification is
undertaken through the computational manipulation of the input data
using algorithms, rather than through a purely mechanical or optical
process. What I am pointing towards here is the displaying of a repre-
sentation, which could be manipulated in a number of different ways
by the processing software before being displayed back to the user. Here,
certain functions will be made available in the software that guide the
user in particular ways (its affordances, such as increase magnification,
decrease magnification, rotate slide, etc.), but due to the loose coupling
of code and interface there is no guarantee that the representation on
screen is actually undertaking the task we have commanded. We have
to trust the machine has properly captured, transformed, and rendered
the desired image.

If we consider the digital representation of a microbe, for example,
there is a translation from a physical analogue microbe via a sensitive
detector called an analogue-to-digital convertor, which provides a con-
version to a digital form. This is then stored within the computer mem-
ory as a series of digital data points, a stream of numbers. These in turn
can be processed and manipulated in a variety of ways by the computer,
for example magnified, colour corrected, or analysed computationally
to look for patterns. This new processed representation as a stream of
numbers is then finally translated back onto the computer screen for
the user and rendered as a screenic image. Of course, there is also the
possibility of further interaction from the user to manipulate the data.
However, at every stage of the process the user is reliant on the software
to mediate this mediation as there is no other access to the data nor the
transformations. This demonstrates the double mediation which makes
the user increasingly reliant on the screen image that the computer
produces, but also renders them powerless to prevent the introduction
of errors and mistakes (unless they have access to the computer code).

9780230244184_02_cha01.indd 169780230244184_02_cha01.indd 16 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 17

Naturally, at any moment the computer may also introduce errors as
part of its processing, in addition to these digital artefacts, screen image
effects may be produced due to the limitations of the particular reso-
lution chosen for the original conversion. This is a classic problem in
health sciences, for example, where the doctor must quickly determine
whether the shadow on a patient scan represents a medical issue or
merely a computational artefact introduced by the process.

That is not to say matter too is not also the subject of feverish
research activity into making it ‘computable’. For example, research-
ers at MIT and Harvard have created a ‘piece of paper that folds itself’
into origami folds using actuators embedded in the material (Geere
2010b), and engineers exploring ‘relationship between the architecture
of spaces music is composed in and performed’ have created what they
term a Tunable Sound Cloud, which allows the space in a room to be
dynamically modified either in response to sound, or to maximise the
listening experience to sound and music (Geere 2010a). However, much
of the code that we experience in our daily lives is presented through
a visual interface that tends to be graphical and geometric, and where
haptic, through touch, currently responds through rather static physi-
cal interfaces but dynamic visual ones, for example iPads, touch screen
phones, etc.

Computer code is not solely technical though, and must be under-
stood with respect to both the ‘cultures of software’ that produce it,
but also the cultures of consumption that surround it. Users avidly pur-
chase and use both its direct software products or tangentially through
the production of goods and services that cultural software enables,
for example games, websites, music, etc. Not forgetting, of course, the
cultural insecurities that the computational processes instil in people
more generally, especially when mediated through popular culture, for
example, in music, in Lil B’s track The Age Of Information (LilB 2010)
and on film in The Matrix (The Wachowski Brothers, 1999). Therefore,
following Kittler’s (1997) definition of media, I also want to understand
computational reasoning as a cultural technique, one that allows one
to select, store, process, and produce data and signals for the purposes
of various forms of action but with a concentration on its technical
materiality (Kramer 2006: 93).

Thus, there is an undeniable cultural dimension to computation and
the medial affordances of software. This connection again points to the
importance of engaging with and understanding code, indeed, computer
code can serve as an index of digital culture (imagine mapping differ-
ent programming languages to the cultural possibilities that it affords,

9780230244184_02_cha01.indd 179780230244184_02_cha01.indd 17 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

18 The Philosophy of Software

e.g. HTML to cyberculture, AJAX to social media).19 This means that
we can ask the question: what is culture after it has been ‘softwarized’?
(Manovich 2008:41). Understanding code can therefore be a resourceful
way of understanding cultural production more generally, for example,
digital typesetting transformed the print newspaper industry, eBook and
eInk technologies are likely to do so again.

Towards digital humanities

By problematising computationality, we are able to think critically
about how knowledge in the 21st century is transformed into informa-
tion through computational techniques, particularly within software.
It is interesting that at a time when the idea of the university is itself
under serious rethinking and renegotiation, digital technologies are
transforming our ability to use and understand information outside of
these traditional knowledge structures. This is connected to wider chal-
lenges to the traditional narratives that served as unifying ideas for the
university and with their decline has led to difficulty in justifying and
legitimating the post-modern university vis-à-vis government funding.

Historically, the role of the university has been closely associated with
the production of knowledge. For example, Immanuel Kant outlined an
argument for the nature of the university in 1798, called The Conflict of
the Faculties. He argued that all of the university’s activities should be
organised by a single regulatory idea, that of the concept of reason. As
Bill Readings (1996) argued:

Reason on the one hand, provide[d] the ratio for all the disciplines; it
[was] their organizing principle. On the other hand, reason [had] its
own faculty, which Kant names[d] ‘philosophy’ but which we would
now be more likely to call the ‘humanities’ (Readings 1996: 15).

Kant argued that reason and the state, knowledge and power, could
be unified in the university by the production of individuals capable
of rational thought and republican politics – the students trained for
the civil service and society. Kant was concerned with the question of
regulative public reason, that is, how to ensure stable, governed and
governable regimes which can rule free people, in contrast to tradition
represented by monarchy, the Church or a Leviathan. This required uni-
versities, as regulated knowledge-producing organisations, to be guided
and overseen by the faculty of philosophy, which could ensure that the
university remained rational. This was part of a response to the rise of

9780230244184_02_cha01.indd 189780230244184_02_cha01.indd 18 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 19

print culture, growing literacy and the kinds of destabilising effects that
this brought. Thus, without resorting to dogmatic doctrinal force or
violence one could have a form of perpetual peace by the application
of one’s reason.20

This was followed by the development of the modern university in
the 19th century, instituted by the German Idealists, such as Schiller
and Humboldt, who argued that there should be a more explicitly
political role to the structure given by Kant. They argued for the replace-
ment of reason with culture, as they believed that culture could serve
as a ‘unifying function for the university’ (Readings 1996: 15). For the
German Idealists, like Humboldt, culture was the sum of all knowledge
that is studied, as well as the cultivation and development of one’s char-
acter as a result of that study. Indeed, Humboldt proposed the founding
of a new university, the University of Berlin, as a mediator between
national culture and the nation-state. Under the project of ‘culture’, the
university would be required to undertake both research and teaching,
respectively the production and dissemination of knowledge. The mod-
ern idea of a university, therefore, allowed it to become the preeminent
institution that unified ethnic tradition and statist rationality by the
production of an educated cultured individual. The German Idealists
proposed,

that the way to reintegrate the multiplicity of known facts into
a unified cultural science is through Bildung, the enoblement of
character… The university produces not servants but subjects. That
is the point of the pedagogy of Bildung, which teaches knowledge
acquisition as a process rather than the acquisition of knowledge as a
product. (Readings 1996: 65–7).

This notion was given a particularly literary turn by the British, in
particular John Henry Newman and Mathew Arnold, who argued that
literature, not culture or philosophy, should be the central discipline in
the university, and also of national culture more generally.21 Literature,
therefore, became institutionalised within the university ‘in explicitly
national terms and an organic vision of the possibility of a unified
national culture’ (Readings 1996: 16). This became regulated through
the notion of a literary canon, which was taught to students to produce
literary subjects as national subjects.

Readings (1996) argues that in the post-modern university we now see
the breakdown of these ideals, associated particularly with the rise in
the notion of the ‘university of excellence’ which he argues is a concept

9780230244184_02_cha01.indd 199780230244184_02_cha01.indd 19 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

20 The Philosophy of Software

of the university that has no content, no referent. What I would like to
suggest is that instead we are beginning to see the cultural importance
of the digital as the unifying idea of the university. Initially this has
tended to be associated with notions such as information literacy and
digital literacy, betraying their debt to the previous literary conception
of the university, albeit understood through vocational training and
employment. However, I want to suggest that rather than learning a
practice for the digital, which tends to be conceptualised in terms of
ICT skills and competences (see for example the European Computer
Driving License22), we should be thinking about what reading and writ-
ing actually should mean in a computational age. This is to argue for
critical understanding of the literature of the digital, and through that
develop a shared digital culture through a form of digital Bildung. Here I
am not calling for a return to the humanities of the past, to use a phrase
of Fuller (2010), ‘for some humans’, but rather to a liberal arts that is ‘for
all humans’. To use the distinction introduced by Hofstadter (1963), this
is to call for the development of a digital intellect as opposed to a digital
intelligence. He writes:

Intellect… is the critical, creative, and contemplative side of mind.
Whereas intelligence seeks to grasp, manipulate, re-order, adjust,
intellect examines, ponders, wonders, theorizes, criticizes, imagines.
Intelligence will seize the immediate meaning in a situation and
evaluate it. Intellect evaluates evaluations, and looks for the mean-
ings of situations as a whole… Intellect [is] a unique manifestation
of human dignity (Hofstadter 1963: 25).

The digital assemblages that are now being built, not only promise
great change at the level of the individual human actor. They provide
destabilising amounts of knowledge and information that lack the
regulating force of philosophy that, Kant argued, ensures that institu-
tions remain rational. Technology enables access to the databanks of
human knowledge from anywhere, disregarding and bypassing the
traditional gatekeepers of knowledge in the state, the universities, and
market. There no longer seems to be the professor who tells you what
you should be looking up and the ‘three arguments in favour of it’ and
the ‘three arguments against it’. This introduces not only a moment of
societal disorientation with individuals and institutions flooded with
information, but also offer a computational solution to them in the
form of computational rationalities, what Turing (1950) described as
super-critical modes of thought. Both of these forces are underpinned

9780230244184_02_cha01.indd 209780230244184_02_cha01.indd 20 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 21

at a deep structural level by the conditional of possibility suggested by
computer code.

As mentioned previously, computer code enables new communicative
processes, and with the increasing social dimension of networked media
the possibility of new and exciting forms of collaborative thinking
arises. This is not the collective intelligence discussed by Levy (1999),
rather, it is the promise of a collective intellect. This is reminiscent of
the medieval notion of the universitatis, but recast in a digital form, as a
society or association of actors who can think critically together medi-
ated through technology. It further raises the question of what new
modes of collective knowledge software can enable or constitute. Can
software and code take us beyond the individualising trends of blogs,
comments, twitter feeds, and so forth, and make possible something
truly collaborative? Something like the super-critical thinking that is
generative of ideas, modes of thought, theories and new practices?

For the research and teaching disciplines within the university, the dig-
ital shift could represent the beginnings of a moment of ‘revolutionary
science’, in the Kuhnian sense, of a shift in the ontology of the positive
sciences and the emergence of a constellation of new ‘normal science’
(Kuhn 1996). This would mean that the disciplines’s would, ontologi-
cally, have a very similar Lakatosian computational ‘hard core’ (Lakatos
1980).23 This has much wider consequences for the notion of the uni-
fication of knowledge and the idea of the university (Readings 1996).
Computer Science could play a foundational role with respect to the
other sciences, supporting and directing their development, even issuing
‘lucid directives for their inquiry’ (see Thomson (2003: 531) for a discus-
sion of how Heidegger understood this to be the role of philosophy).
Perhaps we are beginning to see reading and writing computer code as
part of the pedagogy required to create a new subject produced by the
university, a computational or data-centric subject. This is, of course, not
to advocate that the existing methods and practices of computer science
become hegemonic, rather that a humanistic understanding of technol-
ogy could be developed, which also involves an urgent inquiry into what
is human about the computational humanities or social sciences. In a
related manner, Steve Fuller (2006) has called for a ‘new sociological imag-
ination’, pointing to the historical project of the social sciences that have
been committed to ‘all and only humans’ because they ‘take all human
beings to be of equal epistemic interest and moral concern’ (Fuller 2010:
242). By drawing attention to ‘humanity’s ontological precariousness’
(ibid.: 244), Fuller rightly identifies that the project of humanity requires
urgent thought, and we might add even more so in relation to the

9780230244184_02_cha01.indd 219780230244184_02_cha01.indd 21 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

22 The Philosophy of Software

 challenge of a computationality that threatens our understanding of what
is required to be identified as human at all.

If software and code become the condition of possibility for unify-
ing the multiple knowledges now produced in the university, then the
ability to think oneself, taught by rote learning of methods, calcula-
tion, equations, readings, canons, processes, etc, might become less
important. Although there might be less need for an individual ability to
perform these mental feats or, perhaps, even recall the entire canon our-
selves due to its size and scope, using technical devices, in conjunction
with collaborative methods of working and studying, would enable a
cognitively supported method instead. The internalisation of particular
practices that have been instilled for hundreds of years would need to
be rethought, and in doing so the commonality of thinking qua think-
ing produced by this pedagogy would also change. Instead, reasoning
could change to more conceptual or communicational method of
reasoning, for example, by bringing together comparative and commu-
nicative analysis from different disciplinary perspectives and knowing
how to use technology to achieve a result that can be used – a rolling
process of reflexive thinking and collaborative rethinking. Relying on
technology in a more radically decentred way, depending on technical
devices to fill in the blanks in our minds and to connect knowledge in
new ways, would change our understanding of knowledge, wisdom and
intelligence itself. It would be a radical decentring in some ways, as the
Humboldtian subject filled with culture and a certain notion of ration-
ality, would no longer exist, rather, the computational subject would
know where to recall culture as and when it was needed in conjunction
with computationally available others, a just-in-time cultural subject,
perhaps, to feed into a certain form of connected computationally sup-
ported thinking through and visualised presentation. Rather than a
method of thinking with eyes and hand, we would have a method
of thinking with eyes and screen.24 This stream-like subjectivity is
 discussed in detail later.

This doesn’t have to be dehumanising. Latour and others have rightly
identified the domestication of the human mind that took place with
pen and paper (Latour 1986). This is because computers, like pen and
paper, help to stabilise meaning, by cascading and visualising encoded
knowledge that allows it to be continually ‘drawn, written, [and]
recoded’ (Latour 1986: 16). Computational techniques could give us
greater powers of thinking, larger reach for our imaginations, and, pos-
sibly, allow us to reconnect to political notions of equality and redistri-
bution based on the potential of computation to give to each according

9780230244184_02_cha01.indd 229780230244184_02_cha01.indd 22 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 23

to their need and to each according to their ability. This is the point
made forcefully by Fuller (2010: 262) who argues that we should look
critically at the potential for inequality created when new technologies
are introduced into society. This is not merely a problem of a ‘digital
divide’, but a more fundamental one of how we classify those that are
more ‘human’ than others, when access to computation and informa-
tion increasingly has to pass through the market.

The importance of understanding computational approaches is
increasingly reflected across a number of disciplines, including the arts,
humanities and social sciences, which use technologies to shift the criti-
cal ground of their concepts and theories – essentially a computational
turn.25 This is shown in the increasing interest in the digital humanities
(Schreibman et al. 2008) and computational social science (Lazer et al.
2009), for example, the growth in journals, conferences, books and
research funding. In the digital humanities ‘critical inquiry involves the
application of algorithmically facilitated search, retrieval, and critical
process that, originating in humanities-based work’, therefore ‘exem-
plary tasks traditionally associated with humanities computing hold
the digital representation of archival materials on a par with analysis
or critical inquiry, as well as theories of analysis or critical inquiry
originating in the study of those materials’ (Schreibman et al. 2008:
xxv). In computational social sciences, Lazer et al. (2009) argue that
‘computational social science is emerging that leverages the capacity to
collect and analyze data with an unprecedented breadth and depth and
scale’.

Latour speculates that there is a trend in these informational cas-
cades, which is certainly reflected in the ongoing digitalisation of arts,
humanities and social science projects that tends towards ‘the direction
of the greater merging of figures, numbers and letters, merging greatly
facilitated by their homogenous treatment as binary units in and by
computers’ (Latour 1986: 16). The financial considerations are also new
with these computational disciplines, as they require more money and
organisation than the old individual scholar of lore. Not only are the
start-up costs correspondingly greater, usually to pay for the researchers,
computer programmers, computer technology, software, digitisation
costs, etc. but there are real questions about sustainability of digital
projects, such as: who will pay to maintain the digital resources?, ‘Will
the user forums, and user contributions, continue to be monitored and
moderated if we can’t afford a staff member to do so? Will the wiki
get locked down at the close of funding or will we leave it to its own
devices, becoming an online-free-for all?’ (Terras 2010).26 It also raises a

9780230244184_02_cha01.indd 239780230244184_02_cha01.indd 23 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

24 The Philosophy of Software

lot of new ethical questions for social scientists and humanists to grap-
ple with. As Nature argues,

For a certain sort of social scientist, the traffic patterns of millions of
e-mails look like manna from heaven. Such data sets allow them to
map formal and informal networks and pecking orders, to see how
interactions affect an organization’s function, and to watch these ele-
ments evolve over time. They are emblematic of the vast amounts of
structured information opening up new ways to study communities
and societies. Such research could provide much-needed insight into
some of the most pressing issues of our day, from the functioning of
religious fundamentalism to the way behaviour influences epidem-
ics… But for such research to flourish, it must engender that which
it seeks to describe… Any data on human subjects inevitably raise
privacy issues, and the real risks of abuse of such data are difficult to
quantify (Nature 2007).

Indeed, for Latour (2010), ‘sociology has been obsessed by the goal of
becoming a quantitative science. Yet it has never been able to reach this
goal because of what it has defined as being quantifiable within the social
domain…’ so, he adds, ‘[i]t is indeed striking that at this very moment,
the fast expanding fields of “data visualisation”, “computational social
science” or “biological networks” are tracing, before our eyes, just the
sort of data’ that sociologists such as Gabriel Tarde, at the turn of the
20th Century, could merely speculate about (Latour 2010: 116).

Further, it is not merely the quantification of research which was
traditionally qualitative that is offered with these approaches, rather, as
Unsworth argues, we should think of these computational ‘tools as offer-
ing provocations, surfacing evidence, suggesting patterns and structures,
or adumbrating trends’ (Unsworth, quoted in Clement et al. 2008). For
example, the methods of ‘cultural analytics’ make it possible through the
use of quantitative computational techniques to understand and follow
large-scale cultural, social and political processes for research projects –
that is, massive amounts of literary or visual data analysis (see Manovich
and Douglas 2009). This is a distinction that Moretti (2007) referred to
as distant versus close readings of texts. As he points out, the traditional
humanities focuses on a ‘minimal fraction of the literary field’,

A canon of two hundred novels, for instance, sounds very large
for nineteenth-century Britain (and is much larger than the cur-
rent one), but is still less than one per cent of the novels that were
actually published: twenty thousand, thirty, more, no one really

9780230244184_02_cha01.indd 249780230244184_02_cha01.indd 24 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 25

knows—and close reading won’t help here, a novel a day every day
of the year would take a century or so... And it’s not even a matter
of time, but of method: a field this large cannot be understood by
stitching together separate bits of knowledge about individual cases,
because it isn’t a sum of individual cases: it’s a collective system, that
should be grasped as such, as a whole (Moretti 2007: 3–4).

It is difficult for the traditional arts, humanities and social sciences to
completely ignore the large-scale digitalisation effort going on around
them, particularly when large quantities of research money are avail-
able to create archives, tools and methods in the digital humanities
and computational social sciences. However, less understood is the way
in which the creation of digital archives are deeply computational in
structure and content, because the computational logic is entangled
with the digital representations of physical objects, texts and ‘born dig-
ital’ artefacts. Computational techniques are not merely an instrument
wielded by traditional methods; rather they have profound effects on
all aspects of the disciplines. Not only do they introduce new methods,
which tend to focus on the identification of novel patterns in the data
as against the principle of narrative and understanding, they also allow
the modularisation and recombination of disciplines within the univer-
sity itself. Computational approaches facilitate disciplinary hybridity
that leads to a post-disciplinary university that can be deeply unsettling
to traditional academic knowledge. Software allows for new ways of
reading and writing, for example in Tanya Clement’s distant reading of
Gertrude Stein’s The Making of Americans on which she writes,

The Making of Americans was criticized by [those] like Malcolm
Cowley who said Stein’s “experiments in grammar” made this novel
“one of the hardest books to read from beginning to end that has ever
been published.”… The highly repetitive nature of the text, compris-
ing almost 900 pages and 3174 paragraphs with only approximately
5,000 unique words, makes keeping tracks of lists of repetitive ele-
ments unmanageable and ultimately incomprehensible... [However]
text mining allowed me to use statistical methods to chart repetition
across thousands of paragraphs…facilitated my ability to read the
results by allowing me to sort those results in different ways and
view them within the context of the text. As a result, by visualizing
clustered patterns across the text’s 900 pages of repetitions… This
discovery provides a new key for reading the text as a circular text
with two corresponding halves, which substantiates and extends the
critical perspective that Making is neither inchoate nor chaotic, but

9780230244184_02_cha01.indd 259780230244184_02_cha01.indd 25 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

26 The Philosophy of Software

a highly systematic and controlled text. This perspective will change
how scholars read and teach The Making of Americans (Clement,
quoted in Clement et al., 2008).

I wouldn’t want to overplay the distinction between patterns and nar-
rative as differing modes of analysis, indeed, patterns implicitly require
narrative in order to be understood, and it can be argued that code
itself consists of a narrative form that allows databases, collections and
archives to function at all. Nonetheless, pattern and narrative are useful
analytic terms that enable us to see the way in which the computational
turn is changing the nature of knowledge in the university and with it
the kind of computational subject that the university is beginning to
produce. As Bruce Sterling argues,

‘Humanistic heavy iron’: it’s taken a long time for the humanities to
get into super computing, and into massive database management.
They are really starting to get there now. You are going to get into a
situation where even English professors are able to study every word
ever written about, or for, or because of, Charles Dickens or Elizabeth
Barrett Browning. That’s just a different way to approach the literary
corpus. I think there is a lot of potential there (Sterling 2010).

Indeed, there is a cultural dimension to this process and as we become
more used to computational visualisations, we will expect to see them
and use them with confidence and fluency. As we shall see later, the
computational subject is a key requirement for a data-centric age,
certainly when we begin to look at case studies that demonstrate how
important a computational comportment can be in order to perform cer-
tain forms of public and private activities in a world that is increasingly
pervaded by computational devices. In short, Bildung is still a key idea
in the digital university, not as a subject trained in a vocational fashion
to perform instrumental labour, nor as a subject skilled in a national
literary culture, but rather as subject that can unify the information that
society is now producing at increasing rates, and which understands
new methods and practices of critical reading (code, data visualisa-
tion, patterns, narrative) and is subject to new methods of pedagogy to
facilitate it. This is a subject that is highly computationally communi-
cative and able to access, process and visualise information and results
quickly and effectively. At all levels of society, people will increasingly
have to turn data and information into usable computational forms in
order to understand it at all. For example, one could imagine a form of

9780230244184_02_cha01.indd 269780230244184_02_cha01.indd 26 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

The Idea of Code 27

computational journalism that enables the public sphere function of
the media to make sense of the large amount of data which govern-
ments, amongst others, are generating, perhaps through increasing
use of ‘charticles’, or journalistic articles that combine text, image,
video, computational applications and interactivity (Stickney 2008).
Consider the vast amounts of data that WIKILEAKS alone has generated.
This is a form of ‘networked’ journalism that ‘becomes a non-linear,
multi- dimensional process’ (Beckett 2008: 65). Additionally, for people
in everyday life who need the skills that enable them to negotiate an
increasingly computational field – one need only think of the amount
of data in regard to managing personal money, music, film, text, news,
email, pensions, etc. – there will be calls for new skills of financial and
technical literacy, or more generally a computational literacy.

As the advantages of the computational approach to research (and
teaching) becomes persuasive to the positive sciences, whether history,
biology, literature or any other discipline, their ontological notion of the
entities they study begins to be transformed and they become focussed
on the computationality of the entities in their work. Here, following
Heidegger, I want to argue that there remains a location for the possibility
of philosophy to explicitly question the ontological understanding of what
the computational is in regard to the positive sciences. Computationality
might then be understood as an ontotheology, creating a new ontological
‘epoch’ as a new historical constellation of intelligibility.

With the notion of ontotheology, Heidegger is following Kant’s argu-
ment that intelligibility is a process of filtering and organising a com-
plex overwhelming world by the use of ‘categories’, Kant’s ‘discursivity
thesis’. Heidegger historicises Kant’s cognitive categories arguing that
there is ‘succession of changing historical ontotheologies that make up
the “core” of the metaphysical tradition. These ontotheologies establish
“the truth concerning entities as such and as a whole”, in other words,
they tell us both what and how entities are – establishing both their
essence and their existence’ (Thomson 2009: 149–50). Metaphysics,
grasped ontotheologically, ‘temporarily secures the intelligible order’
by understanding it ‘ontologically’, from the inside out, and ‘theologi-
cally’ from the outside in, which allows the formation of an epoch, a
‘historical constellation of intelligibility which is unified around its
ontotheological understanding of the being of entities’ (Thomson 2009:
150). As Thomson argues:

The positive sciences all study classes of entities… Heidegger… [there-
fore] refers to the positive sciences as “ontic sciences.” Philosophy,

9780230244184_02_cha01.indd 279780230244184_02_cha01.indd 27 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

28 The Philosophy of Software

on the other hand, studies the being of those classes of entities, mak-
ing philosophy an “ontological science” or, more grandly, a “science
of being” (Thomson 2003: 529).

Philosophy, as a field of inquiry, one might argue, should have its
‘eye on the whole’, and it is this focus on ‘the landscape as a whole’
which distinguishes the philosophical enterprise and which can be
extremely useful in trying to understand these ontotheological develop-
ments (Sellars 1962: 36). If code and software is to become an object of
research for the humanities and social sciences, including philosophy,
we will need to grasp both the ontic and ontological dimensions of
computer code. Broadly speaking, then, this book takes a philosophi-
cal approach to the subject of computer code, paying attention to the
broader aspects of code and software, and connecting them to the mate-
riality of this growing digital world. With this in mind, we now turn to
the question of code itself and the ways in which it serves as a condition
of possibility for the many computational forms that we experience in
contemporary culture and society.

9780230244184_02_cha01.indd 289780230244184_02_cha01.indd 28 2/5/2011 4:50:09 PM2/5/2011 4:50:09 PM

29

2
What Is Code?

In this chapter, I want to consider in detail the problem we are con-
fronted with immediately in trying to study computer code. The perl
poem, Listen, shown below, demonstrates some of the immediate
problems posed by an object that is at once both literary and machinic
(Hopkins n.d.). Source code is the textual form of programming code
that is edited by computer programmers. The first difficultly of under-
standing code, then, is in the interpretation of code as a textual artefact.
It forms the first part of the development process which is written on
the computer and details the functions and processes that a computer
is to follow in order to achieve a particular computational goal. This
is then compiled to produce executable code that the computer can
understand and run. The second difficulty is studying something in
process, as it executes or ‘runs’ on a computer, and so the poem Listen
has a second articulation as a running program distinct from the textual
form.

The textual is the literary side of computer source code, and the
example given below shows us the importance of reading as part of the
practices of understanding source code. Even though this is a particular
example of code which makes our reading seemingly easier by its poetic
form, it is important to note that programmers have very specific and
formal syntactical rules that guide the layout, that is the writing, of
code, a style that was noted in the memorable phrase ‘literate program-
ming’ (Black 2002: 131–7). As Donald Knuth explained in his book
Literate Programming published in 1992:

The practitioner of literate programming can be regarded as an
essayist, whose main concern is with exposition and excellence of
style. Such an author, with thesaurus in hand, chooses the names

9780230244184_03_cha02.indd 299780230244184_03_cha02.indd 29 2/9/2011 5:30:56 PM2/9/2011 5:30:56 PM

30 The Philosophy of Software

of variables carefully and explains what each variable means. He or
she strives for a program that is comprehensible because its concepts
have been introduced in an order that is best for human understand-
ing, using a mixture of formal and informal methods that nicely
reinforce each other (Knuth, quoted in Black 2002: 131).

Knuth is also pointing towards the aesthetic dimension of coding that
strives for elegance and readability of the final code – ‘good’ code. This
is nicely demonstrated by The Alliance for Code Excellence, which
argues for ‘[a] world where software runs cleanly and correctly as it sim-
plifies, enhances and enriches our day everyday life is achievable’ (ACE
n.d.). Rather like the indulgences sold by the Catholic Church to pay for
sins, and which led Martin Luther to break with the Church and nail his
95 theses onto the church door,2 ACE sells ‘bad code offsets’ which can

#!/usr/bin/perl

APPEAL:

listen (please, please);

 open yourself, wide;
join (you, me),

 connect (us, together),

tell me.

do something if distressed;

 @dawn, dance;
 @evening, sing;
 read (books,$poems,stories) until peaceful;
 study if able;

 write me if-you-please;

sort your feelings, reset goals, seek (friends, family, anyone);

 do*not*die (like this)
 if sin abounds;

keys (hidden), open (locks, doors), tell secrets;
 do not, I-beg-you, close them, yet.

accept (yourself, changes),
 bind (grief, despair);

 require truth, goodness if-you-will, each moment;

select (always), length(of-days)

listen (a perl poem)
Sharon Hopkins
rev. June 19, 1995

Figure 2.1 ‘Listen’ by Sharon Hopkins (quoted in Black 2002: 141–2)1

9780230244184_03_cha02.indd 309780230244184_03_cha02.indd 30 2/9/2011 5:30:56 PM2/9/2011 5:30:56 PM

What Is Code? 31

be used in a similar way to the use of carbon offsets.3 Where carbon off-
sets are means of purchasing the planting of trees or the sequestration
of carbon to make up for air-flights or other carbon generating activi-
ties, code offsets allow you to program badly, but through the fund-
ing of open-source programming set aside these ‘bad’ practices. These
offsets are not only a means of drawing attention to a real issue in any
programming project where sometimes the shared norms and values of
‘good code’ are broken in the interests of hacking a fix or helping to
ensure a product ships. They also demonstrate the way in which pro-
grammers understand their coding project, using Source Lines of Code
(SLOC) as a measure of the size of a project and also draw attention to
the increased likelihood of errors from ‘bad code’. This online group
allows programmers to purchase ‘Bad Code Offsets’ which,

provides a convenient and rational approach for balancing out
the bad code we all have created at one time or another through-
out our lifetime—even when we can’t go back and fix it directly.
Denominated in Source Lines of Code (SLOC), every purchase will
offset the desired quantity of SLOC and pave the way toward future
code excellence (ACE n.d.).

Bad code is described as arising ‘for many reasons: lack of skill, insuffi-
cient time, abject neglect or poorly documented requirements for exam-
ple’, further they argue that ‘[b]ad code weakens the utility delivered by
these applications causing business loss, user dissatisfaction, accidents,
disasters and, in general, sucks limited resources towards responding
to the after effects of bad code rather than toward the common good’
(ACE n.d.). Rather fittingly, the money raised is used to pay out ‘Good
Code Grants’ to the open source movement to encourage more open
source software.

Here it is important to draw an analytical distinction between ‘code’
and ‘software’. Throughout this book I shall be using code to refer to the
textual and social practices of source code writing, testing and distribu-
tion. That is, specifically concerned with code as a textual source code
instantiated in particular modular, atomic, computer-programming lan-
guages as the object of analysis, which I will later discuss as ‘delegated
code’. As Cramer glosses:

In computer programming and computer science, “code” is often
understood as with a synonym of computer programming lan-
guage or as a text written in such a language… The translation that

9780230244184_03_cha02.indd 319780230244184_03_cha02.indd 31 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

32 The Philosophy of Software

occurs when a text in a programming language gets compiled into
machine instructions is not an encoding… because the process is not
one-to-one reversible. That is why proprietary software companies
can keep their source “code” secret. It is likely that the computer cul-
tural understanding of “code” is historically derived from the name
of the first high-level computer programming language, “Short code”
from 1950 (Cramer, quoted in Fuller 2008: 172).

In distinction, I would like to use ‘software’ to include commercial
products and proprietary applications, such as operating systems, appli-
cations or fixed products of code such as Photoshop, Word and Excel,
which I also call ‘prescriptive code’. In this sense ‘software engineering’
is the engineering, optimisation and analysis of code in order to pro-
duce software (as running or executable code). Software is therefore ‘not
only “code” but a symbolic form of writing involving cultural practices
of its employment and appropriation’ (Fuller 2008: 173). This further
allows us to think about software ‘hacking’, which is the changing of
code’s function by the application of patches, software fixes or edits,
as the transformation of software back into code for the purposes of
changing its normal execution or subverting its intended (prescribed)
functions. As an analogy we can think of code as the ‘internal’ form
and software as the ‘external’ form of applications and software systems.
Or to put it slightly different, code implies a close reading of technical
systems and software implies a form of distant reading. This also com-
plements Manovich’s notion of ‘cultural software’ as those applications
used to produce design, music or artistic cultural objects (see Manovich
2008). Perhaps the most important point of this distinction is to note
that code and software are two sides of the same coin, code is the static
textual form of software, and software is the processual operating form.
This distinction, however, remains analytical, as the actual distinction
between them is much fuzzier than may appear on the surface, some
code is directly executable and editable in situ, so called interpreted
code, because it does not need to go through a compilation process,
and some software is self-writing, able to rewrite its functionality on
the move, whether through genetic algorithms, viral coding structures
or merely connective or artificial intelligence like encoding behaviour
or expert systems (see the discussion of Google in Chapter 1).

These concepts, however, are not very useful unless we are attentive
to the materiality of code. Getting at the materiality of code has to
take into account its physicality and obduracy, but also the ‘code work’
and ‘software work’ that goes into making and maintaining the code

9780230244184_03_cha02.indd 329780230244184_03_cha02.indd 32 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 33

(e.g. documentation, tests, installers, etc.), the networks and relation-
ships, and the work that goes into the final shipping product or service.
Additionally, we have to be alert to following the code’s genealogy
to see how it is developed as an historical object and its influences
on attitudes, movements and ideas. But also thinking about code as
differently and multiply articulated – both within the machine and
amongst programmers and users. We must also not be afraid of using
other technical devices to mediate our access to the code, indeed, even
as Fuller problematises the reading of ‘subscopic’ code (Fuller 2003: 43),
we can use devices to open any level of code to view (e.g. debuggers,
IDEs, oscilloscopes). This is similar to the use by physical scientists who
increasingly use technical devices to re-present the large and the small
to our human dimensions through software. Naturally, the use of soft-
ware to view software is an interesting methodological recursion, but
with reflexivity it seems to me a perfectly reasonable way of developing
tools for us to understand software and code within the humanities and
social sciences.

Code

Code is a general term for a wide variety of different concrete program-
ming languages and associated practices. When we want to look at the
code, we see a number of different perspectives and scales depending on
what kind of code we are viewing (assembler, C++, Pascal), on its state
(source, compiled, disassembled), location (embedded, system, applica-
tion) or its form (textual, visual, mapped as a graph). Further, code may
also be distinguished between dominant/hegemonic code and subaltern
or critical code.

Code is striking in its ability to act as both an actor performing
actions upon data, and as a vessel, holding data within its bounda-
ries. Some theorists, such as Mackenzie (2006: 5–6), have argued that
for this reason it is only possibly to speak in terms of particular code.
However, here I wish to argue, following Marx’s approach to labour,
that we can look at abstract code as a real abstraction that allows us to
consider the general properties shared between different code forms.
In a Clausewitzian sense, I want to think through the notion of ‘abso-
lute’ code, rather than ‘real’ code, where real code would reflect the
contingency and uncertainty of programming in particular locations.
Absolute code would then be thinking in terms of both the grammar of
code itself, but also trying to capture how programmers think algorith-
mically, or better, computationally. But to do this, it is important that

9780230244184_03_cha02.indd 339780230244184_03_cha02.indd 33 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

34 The Philosophy of Software

we ground the discussion in terms of the particularity of examples of
code that demonstrate the abstract concept’s efficacy. This is how pro-
grammers themselves conceptualise code, both in terms of the abstract
machine which they use to conceptualise the design and general sche-
matics of the software/code but also in particular concrete program-
ming practice when it comes to writing each of the functional units that
make up the whole. Programmers have tended to need to continually
use this hermeneutic circle of understanding ‘the parts’, ‘the whole’
and the ‘parts in terms of the whole’ in order to understand and write
code (and communicate with each other), and this is striking in its
similarity to literary creativity, to which it is sometimes compared.4 As
Larry Page (creator of Perl, a computer programming language) said, ‘a
language is a wonderful playground…’ (Page, quoted in Biancuzzi and
Warden 2009: 378). Clearly, the choice of language that programmers
code in is of vital importance as different languages are expressive and
functional in different ways which can help or hinder the development
of a software programme. Robin Milner (creator of ML, a programming
language) comments,

Faced with a particular task, I think a programmer often picks the
language that makes explicit the aspects of the task that he considers
most important. However, some languages achieve more: they actu-
ally influence the way that the programmer thinks about the task.
Object oriented languages have done very well from that viewpoint,
because the notion of object helps to clarify thought in a remark-
able variety of applications (Milner, quoted in Biancuzzi and Warden
2009: 213)

Object oriented techniques, such as object oriented design (OOD), have
certainly contributed to changing the way people think about software,
but when people undertake OOD it is in the sense of absolute code.
Indeed, it is taken that ‘absolute’ code is still performative, operative
and therefore, in some sense, ‘runs’ to the extent that it is intended
to undertake or defer an action. For example, programmers sometimes
use a system specification or formal language to ‘run’ through the
programme and therefore test their ideas. The way in which it is ‘run’
and the extent to which this is contested by various actors associated
with code will be explored throughout the book, but suffice to say that
I want to highlight this performative dimension – code acts, fixes data,
controls devices and communicates to other actors, and acts as a space

9780230244184_03_cha02.indd 349780230244184_03_cha02.indd 34 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 35

for various forms of practices to take place. But it does not do so without
limits, as Larry Page comments,

There are the equivalent of grammar school teachers for computer
languages, and for certain kinds of utterances, you should follow
the rules unless you know why you are breaking them. All that
being said, computer languages also have to be understandable to
computers. That imposes additional constraints. In particular, we
can’t just use a natural language for that, because in most cases… we
are assuming an extreme intelligence on the hearing end who will
in turn assume an extreme intelligence on the speaking end. If you
expect such intelligence from a computer, then you’ll be sorely dis-
appointed because we don’t know how to program computers to do
that yet (Page, quoted in Biancuzzi and Warden 2009: 382).

So, although an expressive medium, computer languages remain
constrained in what may be ‘said’ due to the requirements that the
computer in the final instance understands it. This also encourages the
kind of syntactic terseness, the obscure punctuation and the layout and
structure of computer programmes. Also computer programming can be
an intensely social activity in addition to the perceived loneliness of the
computer programmer. As Bjarne Stroustrup (creator of C++, another
programming language) notes,

A successful [programming] language develops a community: the
community shares techniques, tools, and libraries… any new lan-
guage must somehow manage the centrifugal forces in a large com-
munity, or suffer pretty severe consequences. A general-purpose
language needs the input from and approval of several communities,
such as, industrial programmers, educators, academic researchers,
industrial researchers, and the open source community… the real
problem is to balance the various needs to create a larger and more
varied community (Stroustrup, quoted in Biancuzzi and Warden
2009: 15–16).

This contributes to the challenge of investigating code as an empirical
object of analysis, whilst it is also part of a complex set of elite practices
that partially forms part of the definition of the code itself (e.g. hacking,
programming, etc.). As David Parnas argues, ‘technology is the black
magic of our time. Engineers are seen as wizards; their knowledge of arcane

9780230244184_03_cha02.indd 359780230244184_03_cha02.indd 35 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

36 The Philosophy of Software

rituals and obscure terminology seems to endow them with an under-
standing not shared by the laity’ (Parnas, quoted in Weiner 1994: ix).
Code is therefore technical and social, and material and symbolic
simultaneously. This is not a new problem but it does make code dif-
ficult to investigate and study, and similar to understanding industrial
production as Marx explained, ‘right down to the eighteenth century,
the different trades were called “mysteries”, into whose secrets none but
those initiated into the profession and their practical experience could
penetrate’ (Marx 2004: 616). So Marx had to undertake difficult and
laborious analysis of machinery, for example, before he was able to see
clearly how it functioned and related to industrial capitalism.

Similarly, when understanding code there remains these difficult
‘mysteries’ and we must place them in their social formation if we are
to understand how code and code-work are undertaken. However, this
difficulty means that we also cannot stay at the level of the screen,
so-called screen essentialism, what Waldrip-Fruin (2009:3) calls ‘output-
focused approaches’, nor at the level of information theory, where the
analysis focuses on the way information is moved between different
points disembedded from its material carrier. Rather, code needs to be
approached in its multiplicity, that is, as a literature, a mechanism, a
spatial form (organisation), and as a repository of social norms, values,
patterns and processes. As Wardrip-Fruin writes:

Just as when opening the back of a watch from the 1970s one might
see a distinctive Swiss mechanism or Japanese quartz assembly, so the
shapes of computational processes are distinctive—and connected to
histories, economies, and schools of thought. Further, because digital
media’s processes often engage subjects more complex than time-
keeping (such as human language and motivation), they can be seen
as “operationalized” models of these subjects, expressing a position
through their shapes and workings (Waldrip-Fruin 2009:4).

This is a very useful way of thinking about code and draws attention
to the way in which code, and the practices associated with it, are con-
stantly evolving as new technologies are developed and introduced. We
no longer program computers with a soldering iron, nor with punch-
cards, equally, today it is very rare for a programmer to start with a com-
pletely blank canvas when writing code. Due to improvements over the
last forty years or so, programmers can now take advantage of tools and
modular systems that have been introduced into programming through
the mass engineering techniques of Fordism. This means that software

9780230244184_03_cha02.indd 369780230244184_03_cha02.indd 36 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 37

is written using other software packages, help is provided through soft-
ware support programs and modular mass-produced libraries of code. In
the same way that studying the mechanical and industrial machinery
of the last century can tell us a lot about the organisation of factories,
geographic movements, materials, industries, and processes in indus-
trial capitalism; through the study of code we can learn a lot about the
structure and processes of our post-Fordist societies through the way in
which certain social formations are actualised through crystallisation in
computer code. This is certainly one of the promises of software studies
and related approaches to understanding software and computational
devices.

It is important to remember, however, that code nonetheless ‘exists’
within the virtual space of a digital computer, that which Castells
(1996) called the ‘space of flows’. That is not to say that code does not
also exist in paper documents, schemata, files and folders, and the mind
of the programmer, which of course it does. However, code ‘work’ is
written inside the computer within the programming editing software,
and code is compiled and run on the computer too. This means that
software is mediating the relationship with code and the writing and
running of it. When we study code we need to be attentive to this dou-
ble mediation and be prepared to include a wider variety of materials
in our analysis of code than just the textual files that have traditionally
been understood as code. For example, many development environ-
ments now allow the programmer to create visual interfaces in ‘inter-
face builders’ that are akin to image-drawing software. These produce
collections of files (e.g. ‘nib’ files) that contain the logic of the interface
but files that are not code in the normal sense of the term, yet are
crucial to the compiling and execution of the software. In a technical
sense these files contain the interface objects and their relationships in
a saved format through a process called streaming which serializes the
objects into a file format, called ‘freeze dried’, as the object are literally
frozen in their current state and saved to disk.

Code’s relationship to the real world is indirect, itself mediated
through frames and models that attempt to capture some aspect of
the real world and present it to the code for analysis. Mapping this
distantiated code and the logic and processes that it follows, not to
mention the textual and processual forms that structure it, are therefore
extremely challenging. We have an object of research that is in danger
at the moment of its capture of being perceived as that which has been
frozen and turned into a feeble simulacra of itself, whether as textual or
screenic source or interface graphics. Manovich (2008: 17) argues that

9780230244184_03_cha02.indd 379780230244184_03_cha02.indd 37 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

38 The Philosophy of Software

because of the mediation of software we should talk about the ‘media
interface’ to highlight that we are very rarely using the media objects as
things-in-themselves. Rather they are available only as ‘media perform-
ances’ that can only be understood through a notion of software stud-
ies. Media performances, refers to the fact that increasingly our media is
constructed on the fly from a number of modular components derived
from a wide variety of networked sources. Code is therefore connective,
mediating and constructing our media experiences in real-time as soft-
ware. Code must then be understood in context, as something that is in
someway potentially running for it to be code. Code is processual, and
keeping in mind its execution and agentic form is crucial to understand-
ing the way in which it is able to both structure the world and continue
to act upon it. Understanding code requires a continued sensitivity to
its changing flow through the hardware of the technology. Indeed, this
is as important as placing code within its social and technical milieu or
paying attention to the historical genealogy.5

This, perhaps, gives us our first entry point into an understanding of
code; it is a declarative and comparative mechanism that ‘ticks’ through
each statement one at-a-time (multiple threaded code is an illusion
except where several processors are running in a machine simultane-
ously, but even here the code is running sequentially in a mechanical
fashion on each processor). This means that code runs sequentially
(even in parallel systems the separate threads run in an extremely pedes-
trian fashion), and therefore its repetitions and ordering processes are
uniquely laid out as stepping stones for us to follow through the code,
but in action it can run millions of times faster than we can think – and
in doing so introduce qualitative changes that we may miss if we focus
only on the level of the textual.

Although the speed at which computers work may seem unbeliev-
able, it is interesting to note that if the speeds of the computers were
slowed down, we would be able to watch our computers ‘tick’ through
their actions in real time. Indeed, this is exactly what software called
‘debuggers’ enables, by allowing the programmer to follow the code
in detail. By slowing down or even forcing the program to execute
step-by-step under the control of the programmer the branches, loops
and statements can be followed each in turn in order to ensure the
code functions as desired. In some sense then, the quantitative speed of
computer processing gives rise to a qualitative experience of computers
as miraculous devices.

Code is also a relay through which action is carried out, but for this to
be achieved, the external ‘real’ world must be standardised and unified

9780230244184_03_cha02.indd 389780230244184_03_cha02.indd 38 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 39

in a formal manner which the code is able to process and generate new
data and information – and this we can trace.6 This is where a phenom-
enology of code, or more accurately a phenomenology of computation,
allows us to understand and explore the ways in which code is able to
structure experience in concrete ways. By following the code and its tex-
tuality and structure, we can focus on the pragmata of code and hence
on its materiality.

The second entry point into understanding code is that computer
code is manufactured and this points us towards the importance of a
political economy of software. Software is not written by machines,
but rather by human beings, often one line of code at a time.7 It is a
slow, time-consuming and often painful activity that is full of mistakes,
trial-and-error testing, etc. in implementation. As Yukihiro Matsumoto
explains,

Most programs are not write-once. They are reworked and rewritten
again and again in their lives. Bugs must be debugged. Changing
requirements and the need for increased functionality mean the
program itself may be modified on an ongoing basis. During this
process, human beings must be able to read and understand the
original code; it is therefore more important by far for humans to be
able to understand the program than it is for the computer (Oram
and Wilson 2007: 478).

Code is labour crystallised in a software form that is highly flexible and
which when captured may be executed indefinitely. Code therefore
operates as a continual process, and ‘the main point is that every suc-
cessful piece of software has an extended life in which it is worked on
by a succession of programmers and designers…’ (Bjarne Stroustrup,
quoted in Oram and Wilson 2007). This is not to say that software can-
not be inflexible. Code has to be very carefully coded in such a way as
to write in the ability to be flexible, or forgiving, otherwise it is liable
to run incorrectly, or even corrupt data stores and outputs due to the
problems encountered with poorly formatted input data. However, code
needs to be thought of as an essentially unfinished project, a continu-
ally updated, edited and reconstructed piece of machinery.

Code is also treated as a form of property in as much as it is subject
to intellectual property rights (IPRs), like copyright.8 Owning code can
therefore be a very lucrative activity and owning the copyrights a key
part of what constructs a market in software such as Microsoft Windows.
But code differs from a factory or machine (which in a certain sense can

9780230244184_03_cha02.indd 399780230244184_03_cha02.indd 39 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

40 The Philosophy of Software

be considered condensed physical labour) in that it is the processes
of thought itself that is being transferred into software. The thinking
actions of the programmer (and sometimes the tacit knowledge of the
workers whose skills are being encoded) are abstracted into the pro-
gramming language (sometimes through the absorption of the tacit
knowledge of experts) and then encoded (stabilised) within software.
This is what Hardt and Negri (2000) named ‘immaterial labour’, point-
ing to the way in which contemporary capital increasingly requires
that our intellectual labour is alienated into machines. However, that is
not to ignore the attempts by owners and managers to move software
development from a craft-like method to an industrial processing model
of creating software by using Taylorist techniques, like time-and-motion
studies, peer review programming, software libraries, modularity, and
so forth. This has certainly transformed the process of writing of the
majority of software into something approaching a Fordist way of
producing software. This can be understood as a move from literary
code to an engineering of industrial code. However, for the creation of
specialist software, particularly for time-critical or safety-critical indus-
tries, the literary craftsmanship of programming remains a specialised
hand-coded enclave.

It is interesting to think about the way in which today code is writ-
ten through a process of collage, whereby different fragments of code
(usually called ‘#includes’) are glued together to form the final software
product (this is a key principle behind software libraries and object ori-
ented programming). This naturally undermines the notion of a single
author of software, for instance, programmers themselves do not ‘rein-
vent the wheel’ and instead reuse old, reliable code wherever possible. It
also highlights that running code is a collective achievement. Somehow
then, we must keep in mind both the ‘code work’ that takes place in
producing and maintaining software, but also its extremely important
social and sharing dimensions. This also must be connected to the
notion of supporting institutions and the key technical assemblage
that is required to keep programmers programming, such as technical
facilities, libraries, furniture, light, heat and a salary. In summary then,
we must keep the political economy of code present in our minds as
we consider the specificity of codes making and running, even if, as in
this book, it is backgrounded whilst we focus on the phenomenology
of code.

Thirdly, it is important to note that software breaks down, continu-
ally. In some of the more imaginative claims made by proponents of the
Information Society it is often forgotten the difficult work of making

9780230244184_03_cha02.indd 409780230244184_03_cha02.indd 40 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 41

software function with other software (whether or not it is hidden
within the black-box of a particular technical device). Adding software
to a system may make it cheaper, easier to change, or even quicker, but
it does not make the system more reliable (Weiner 1994: xv). One of
the most arresting demonstrations of software breakdowns concerns a
combat operations centre in the US:

Constructed in 1961, the U.S. Air Force’s underground combat opera-
tion center inside Cheyenne Mountain, Colarado, experienced alarm-
ing software failures. For eight tense minutes in 1979, Cheyenne
mistook a test scenario for an actual missile attack, a mistake that
could have triggered a nuclear holocaust (Hughes 2005: 90).

In this case catastrophe was avoided, but today software is even more
embedded and implicated in running many more systems that intercon-
nect in ways that are difficult to manage and understand. Our current
knowledge and capabilities with regard to software are extremely imma-
ture, indeed, sensitive or time-critical code production is still produced
as a craft-like process (usually with a wrapper of management discourse
disguising it). The implications are interesting; much software written
today never reaches a working state, indeed a great quantity of it remains
hidden unused or little understood within the code repositories of large
corporate organisations.

These code repositories also tend to include a detail history of ‘com-
mits’, that is, the way in which the software and documentation changed
over time. Commits are contributions to the codebase that are slowly
rolled into a stable release after testing. Before the stable release software
tends to go through alpha and beta releases, these used to be private ver-
sions but increasingly beta is seen as a way to encourage user feedback
and testing by early release, nonetheless, it is expected that the stable
release has ironed out the most serious errors in software. However, small
bugs can remain in the code and there can be subtle effects from a simple
programming error which can have a potentially catastrophic effect on a
major corporation, for example,

On Wednesday, November 20, 1985, a bug cost the Bank of New York
$10 million when the software used to track government securities
transactions from the Federal Reserve suddenly began to write new
information on top of old… The Fed debited the bank for each transac-
tion, but the Bank of New York could not tell who owed it how much
for which securities. After ninety minutes they managed to shut off the
spigot of incoming transactions by which time the Bank of New York

9780230244184_03_cha02.indd 419780230244184_03_cha02.indd 41 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

42 The Philosophy of Software

owed the Federal Reserve $65 billion it could not collect from others…
Pledging all its assets as collateral, the Bank of New York borrowed £46.8
billion from the Fed overnight and paid £10 million in interest for the
privilege. By Friday, the database was restored, but the bank… lost the
confidence of investors (Weiner 1994: 11; using 2010 dollar values).

Although code is always vulnerable to disruptions and failure through
internal contradictions, it is also threatened by the intrusion of other
external disruptions and failures, for example from institutional orders
(such as a corporate take-over or when the software project is can-
celled) or in the resistance of its users and programmers (both internal
or external) and from rival projects and products. Software, therefore,
always has the possibility of instability being generated from within
its different logics. Even when it is functioning, code is not always
‘rational’. There is always the possibility for unintended consequences
that come from misunderstood or unexpected scenarios, errors, bugs
and code is as affected by the passage of time as much as any other
material artefact.

Therefore, and lastly, software, contrary to common misconceptions,
follows a cycle of life. It is not eternal, nor could it be. It is created as
code, it is developed whilst it is still productive, and slowly it grows old
and decays, what we might call the moral depreciation of code (Marx
2004: 528).9 In software, this is usually recognised by the upgrading of
software, for example through software updates, or through the develop-
ment of new methods or processes of software design, for example from
procedural to object-oriented programming.

Hence, we must be conscious of the fact that software ages.10 And
often ages very badly. Like glass, code crystallises and ages at different
rates, some code becoming obsolete before others, making replace-
ment increasingly difficult or incompatible. Computers grow old and
weary, the circuit-boards and processors become difficult to replace, the
operating system is superseded and the development tools and skills of
the programmers become obsolete. Indeed, in one large multinational
company that I worked for, I was always fascinated by a beautiful
bright orange PDP-11 computer that was used to run an important (and
extremely profitable) financial system which could not be replaced
for many years. The program originally written in PDP-11 assembly
language had long been forgotten and the programmers had left the
company or retired – in fact the code had long been lost because of
the tendency to ‘patch’ the software executable rather than rewrite the
code. Additionally, the manufacturer, DEC, no longer supported the

9780230244184_03_cha02.indd 429780230244184_03_cha02.indd 42 2/9/2011 5:30:57 PM2/9/2011 5:30:57 PM

What Is Code? 43

computer model, nor was inclined to, and few if any employees had
a desire to learn a computer system and associated programming lan-
guage that was by definition useless for their careers. In the end, after
many decades, it was replaced and then, finally, turned off. So software
too can suffer a kind of death, its traces only found in discarded dis-
kette, the memories of the retired programmers, their notebooks, and
personal collections of code printouts and manuals.11 And strangely,
there is so far little attempt to build museum collections and store these
passing memories of long-past software as cultural knowledge in muse-
ums or library collections, although the Computer History Museum, in
California in the US, and the National Media Museum, in Bradford in
the UK, are notable exceptions.12

This complexity adds to the difficulty of understanding code, as
Minsky observes,

When a program grows in power by an evolution of partially under-
stood patches and fixes, the programmer begins to lose track of inter-
nal details, loses the ability to predict what will happen, begins to
hope instead to know, and watches the results as though the program
were an individual whose range of behaviour is uncertain… This
is already true in some big programs… it will soon be much more
acute… large heuristic programs will be developed and modified by
several programmers, each testing them on different examples from
different [remotely located computer] consoles and inserting advice
independently. The program will grow in effectiveness, but no one of
the programmers will understand it all. (Of course, this won’t always
be successful – the interactions might make it get worse, and no one
might be able to fix it again!) Now we see the real trouble with state-
ments like ‘it only does what the programmer told it to.’ There isn’t
any one programmer (Minsky quoted in Weizenbaum 1984: 235).

The ontology of Code

These discussions have highlighted the importance of an interdis-
ciplinary range of methodologies and approaches to understanding
code, and certainly make the idea of a single approach extremely
problematic. Nonetheless we should be clear that the ontology of code
is specifiable, indeed, programmers already know what code is, qua
code. For example, each of the following highlights the way in which
an ontology of code is inculcated in the programmer and serves to
reinforce how code is both understood and materialised as part of
programming practices.

9780230244184_03_cha02.indd 439780230244184_03_cha02.indd 43 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

44 The Philosophy of Software

Through habituation/training/education

Programmers are taught from an early age to recognise what is and what
is not code. This takes place both in moments of experimentation at
the computer, but also in training programmes, education and so forth.
These methods of habit become deeply ingrained in the way in which
a programmer will tackle a computing problem and are demonstrated
by the way in which programmers often become attached to particular
programming languages, shells, editing environments or computer
platforms (e.g. Unix). Programmers are taught relatively self-contained
abstract problems to solve on computer science degrees usually in
a limited range of programming environments, whereas when they
enter formal work they often enter a new phase of training involving
complex system interdependencies and legacy systems. Both of these
initial experiences tend to encourage the reliance on tried and trusted
platforms and solutions, to which the common refrain when decid-
ing on a computer platform is ‘no-one has ever been fired for buying
Microsoft Windows’. This has been reinforced by marketing efforts
which use ‘fear, uncertainty, and doubt’ (FUD) to encourage customer
loyalty.13

Through structural constraints (e.g. IDE, compiler)

In addition to the habituation and education of programmers are the
constraints offered by the programming environments themselves
which can be very unforgiving. Punctuation, for example, is part of the
syntax of programming languages and misplaced punctuation can cause
all sorts of strange bugs and errors to occur. In 1962, an Atlas-Agena
rocket had an incorrect equation in its computerised guidance system
was carrying Mariner I, a space exploration worth $18.5 million, into
space. Unfortunately the equation was missing a ‘bar’ – a horizontal
stroke over a symbol that meant that the computer should use a set of
averaged values, instead of raw data. This caused a miscalculation in
the navigation computer which reported that the rocket was behaving
erratically and so attempted to ‘correct’ the error, which actually caused
erratic behaviour. The controllers were therefore forced to blow up
the rocket to safeguard the community at Cocoa Beach (Weiner 1994:
4–5).14 Code therefore requires a very high degree of proof-reading
ability in order to ensure the correctness of the program under develop-
ment. Where the errors are egregious the compiler will soon alert the
programmer to the problem and its location, but with very subtle errors,
often involving punctuation, the error might be almost undetectable,

9780230244184_03_cha02.indd 449780230244184_03_cha02.indd 44 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

What Is Code? 45

for example only manifesting itself in the actual operation of the pro-
gram under very specific conditions, these intermittent bugs are very
difficult to avoid (see a fictionalised account in Ullman 2004). Hence
the development environments try very hard to prescribe onto the pro-
grammer very clear structural constraints, for example through source
code colouring, automatic formatting and layout, and through restric-
tions on the way in which a program may be developed (e.g. requiring
type declarations, classes and so forth to be explicit). We can think of
this as a form of prescribed literate programming.

Through a constellation of shared knowledge and practices

The way in which a programme is written is not only a private activ-
ity. The source code will likely at some stage be maintained by others,
consequently, programming can be an extremely social activity with
shared norms as to how the code should be laid out, what are the
acceptable and unacceptable ways of writing a program. Commentary
code, for example, is often used to describe the way in which a pro-
gram functions, but when being shared it may still be important to use
shared notions, as well as clear names for variable and function names
(the Obfuscated C Code Competition discussed below is an interesting
counter-example of this). Techniques such as agile programming, which
encourages programming with a partner, code reviews, where a commit-
tee double-checks the logic of the code, and free/libre and open source
software (FLOSS) which allows anyone to download and read the code,
all act to promote readability and excellence in the programming.

Additionally we must not forget that computers, too, already know
what code is, qua code, again through the particular materiality offered
by the computer hardware that is a condition of possibility for the func-
tioning of software:

Microprocessors have a limited vocabulary defined by their instruction set
(as microcode and/or as assembly language)

For a program to execute requires that it be written in the precise form
that a computer expects in order to run it. This means conformance
with its programming operation, its machine language codes, and the
file formats and structures that are prescribed. Usually the processor will
have an instruction set specific to it which means that a binary files
(usually the form the application, such as Word, is distributed) runs only
on specific processors. This explains why PC software does not run on
a Mac and vice versa (although with the speeds of processors becoming

9780230244184_03_cha02.indd 459780230244184_03_cha02.indd 45 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

46 The Philosophy of Software

faster and faster, emulation of another processor is an increasing pos-
sibility for running applications).

Compilable and executable code is structured and formatted by precise rules

Computers will not compile code that is not compilable. That is, if the
written code does not abide by the rules that structure the program it
will not be able to translate it into a form that the computer can exe-
cute. This is of two forms: (1) Programs that are logically coherent but
are programmatically incoherent, that will compile but not perform any
useful action; and (2) Programs that are programmatically coherent but
which are logically incoherent. In this case the compiler will be unable
to translate the program into a functioning executable. In some cases a
compiler can be set to loosen the boundaries of what may compile (for
example ignoring deprecated functions, that is, functions that are no
longer supported), but this may then result in programs that simply do
not work, or not as expected.

Metaphorical code

There is also a metaphorical cultural relation to these ontologies which
have become cultural tropes that structure the way in which people
understand code. We can think of these as the grand narratives that are
used to explain what code is and how, by analogy, it functions. This is
reflected in the use we make of metaphors to think about computers.
These also tells us a lot about our displaced ideas of how code works and
what code does. Some of the major tropes include:

Code as an engine

One of the most common tropes used to describe computer code is the
metaphor of the engine. Here the notion of the processor as the hard-
ware device that performs a processing workload finds its analogue in
the code that actually defines the task to be undertaken and run on the
hardware. This idea draws its inspiration from mechanical understand-
ings of the use of tools to undertake manual tasks and later the notion of
machinary as machines that make machines. Code from the standpoint
of its use as an engine has returned as a common way of discussing
specialised processing platforms, such as 3D gaming engines or search
engines. The trope shapes the way in which code has traditionally been
seen as a mechanism and how this has influenced the way in which it
has been developed and maintained both within and outside corporate
and organisational boundaries. This trope focuses on code that does
things. That is, code that lies within material functional processes and

9780230244184_03_cha02.indd 469780230244184_03_cha02.indd 46 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

What Is Code? 47

procedures, that monitors, controls, manufactures and directs. One of
the classic inspirations for this metaphor lies with the Difference Engine
created by Charles Babbage (1792–1871) who designed a machine for
processing symbols. This used a number of rotating cylinders, shafts
and cranks to compute values of polynomial functions but which due
to the complexity and cost of the project was never actually built. He
later went on to develop the Analytical Engine which, although also
never completed, would have allowed programs to run through the
use of a form of punch-card. Ada Lovelace, a female mathematician,
who actually wrote a program to be executed on the machine is there-
fore widely credited within computing circles of being the first compu-
ter programmer. The Analytical Engine had a unit to perform arithmetic
calculations which he called the ‘Mill’ together with a rudimentary
memory area called ‘Barrels’. The movement of symbols throughout
the machine were handled by mechanical registers which conveyed
the values through the system and which could be stored, calculated,
and written out to a rudimentary printer, punch-cards and a bell
(Beniger 1986: 399). The designs generated by Babbage were inspired
by the use of cards to ‘program’ mechanical looms such as the Jacquard
loom developed in 1801 to program woven patterns in power looms.
This notion of computation through mechanical processes was further
embedded in cultural representations by the use of a variety of mechan-
ical devices. From 1880 up until the present age, mechanical methods
of simplifying or automating calculations were sought (Beniger 1986:
400–401).

It was perhaps with Konrad Zuse’s attempt to design a universal
calculating machine in 1934 in Berlin, that began the process of move-
ment from a purely mechanical, to an electromechanical relay machine.
Whilst at the same time in the US, John Atanasoff was developing a
purely electronic machine based on vacuum tubes, a shift from electro-
mechanical to electronic completed around 1939. Howard Aiken, work-
ing at Harvard was also drafting a proposal for an electromechanical
calculator called the Mark I, later completed by IBM in January 1943.
Whilst there were a number of key innovations in this field, finally with
theoretical contributions from Alan Turing (1936), Emil Post (1936),
and Claude Shannon (1938) the notion of calculation moved from a
problem of arithmetic to that of logic, and with it the notion the ‘infor-
mation can be treated like any other quantity and be subjected to the
manipulations of a machine’ (Beniger 1986: 406). This was the begin-
ning of the use of logic to perform symbolic processing, and therefore
the move towards a binary system of digital processing. It was also the

9780230244184_03_cha02.indd 479780230244184_03_cha02.indd 47 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

48 The Philosophy of Software

move away from the metaphor of the engine and towards a notion of
computation and symbolic processing.

Code as an image or picture

This is code at the level of the interface, the screenic dimension of
code. This trope tends to see the screen and the interface as crucial
dimensions of understanding code, and have a tendency towards screen
essentialism. Nonetheless, the development of interfaces and human
computer interfaces in general was a critical breakthrough that facili-
tated the wide-spread adoption of computer technology – and indeed is
spurring the new wave of mobile devices that have to open up entirely
new interfaces and representational forms (e.g. data visualisation). This
trope points towards a historical contextualisation and present new
forms of interface in terms of developments of key events in the history
of computer science, the visual, and sometimes connects to art his-
tory. There is also an aspect to the aesthetic dimension of code. More
particularly it asks questions about: (1) the way in which coding itself
becomes an aesthetic pursuit (e.g. MacKenzie 2006), thought in terms
of ‘beautiful code’, that is code that is readable, focused, testable and
elegant (Heusser 2005). An example of which given by Jon Bently in
(Oram and Wilson 2007) in which he describes beautiful code by saying
that the rule that ‘”vigorous writing is concise” applies to code as well
as to English, so [following this] admonition to “omit needless words”…
this algorithm to sort numbers is the result’:

void quicksort(int l, int u)
{ int i, m;
 if (l >= u) return;
 swap(l, randint(l, u));
 m = l;
 for (i = l+1; i <= u; i++)
 if (x[i] < x[l])
 swap(++m, i);
 swap(l, m);
 quicksort(l, m-1);
 quicksort(m+1, u);
}

Figure 2.2 An example of ‘beautiful’ code as a sorting algorithm (Oram and Wilson
2007: 30)

Bentley further writes:

‘I once heard a master programmer praised with the phrase, “He adds
function by deleting code.” Antoine de Saint-Exupéry, the French
writer and aviator, expressed this sentiment more generally when he
said, “A designer knows he has achieved perfection not when there is

9780230244184_03_cha02.indd 489780230244184_03_cha02.indd 48 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

What Is Code? 49

nothing left to add, but when there is nothing left to take away.” In
software, the most beautiful code, the most beautiful functions, and
the most beautiful programs are sometimes not there at all’ (Oram
and Wilson 2007: 29).

Code aesthetics also raises questions about (2) the way in which artists
and musicians and increasingly drawing on the resources of code to
create, for example, time-based artistic installations and code-based art-
forms (such as code poetry). For example Sharon Hopkins’s perl poem
‘rush’:

 'love was'

 && 'love will be' if
 (I, ever-faithful),
 do wait, patiently;

 "negative", "worldly", values disappear,

 @last, 'love triumphs';

 join (hands, checkbooks),
 pop champagne-corks,

 "live happily-ever-after".

 "not so" ?
 tell me: "I listen",

 (do-not-hear);

 push (rush, hurry) && die lonely if not-careful;

 "I will wait."

 &wait

Figure 2.3 ‘Rush’ by Sharon Hopkins (Hopkins n.d.)

rush by Sharon Hopkins, June 26, 1991

Code as a medium of communication

Code here is understood as a form to facilitate communication, transfor-
mation, transfer of data and information, voice calls and all other sorts of
media. From looking at Shannon and Weavers’ early work on informa-
tion theory and the transmission of information, to the reconfiguration
of broadcast and radio spectrum in terms of networked packet switching
forms, code is changing how the entire radio spectrum is regulated, assem-
bled and used by broadcasters and users. Code allows incredible flexibility
in handling communicational channels and is therefore blamed with
causing disruptive innovation in terms of the mass media (sometimes

9780230244184_03_cha02.indd 499780230244184_03_cha02.indd 49 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

50 The Philosophy of Software

theorised as Media 2.0) through its reconfiguration of the underlying
 physical resources, code is changing institutions, such as the BBC, for
example, through the convergence on the digital form in television, radio,
cinema, etc. The BBC have responded with the BBC iPlayer, a free to
Internet replay mechanism using software and also their Project Canvas, a
‘proposed partnership between Arqiva, the BBC, BT, C4, Five, ITV and Talk
Talk to build an open internet-connected TV platform’ – now called ‘You
View’ (Project Canvas 2010). This communicational trope tends to con-
nect to questions raised in media policy, such as the regulatory system in
the nation state and arguments for a tacit particular broadcasting model.
Code is therefore understood through the existing regulatory frameworks
which have been used to regulate television, radio, and telephone commu-
nicational forms. The metaphor of code as a communications channel also
helps to explain recent discussions about ‘net neutrality’ and ‘search neu-
trality’ through an understanding of code as a communications medium.

Code as a container

This form of code has been rather overlooked, perhaps because of its
perceived passivity or the usual attitude towards technology that is
hidden behind the interface. Here again, I want to materialise the code
as container by pointing towards the modern growth in server farms,
cloud computing and the like to understanding the hidden world of
computer storage. Databases, collections, archives, data centres and
similar inventory forms of code are crucial to the information society
and without them many of the breakthroughs in contemporary tech-
nological forms (such as the iPod which stores its music in the form
of a database) would not have been possible. Kirschenbaum (2004)
offers an exemplary example of researching code as a container, where
he undertakes a ‘grammatology of the hard drive’ through looking at
mechanisms of extreme inscription of magnetic polarity on the hard
disk platters to understand this form of ‘electric writing’. This involves
a micro-analysis of code-based devices, but we can also think of macro-
analysis of data centres and DNS routers etc. Data centres, in particular
are usually large, simple, centralised data storage centres that physically
hold the large quantities of computer data. Their physicality demon-
strates the materiality of computer data and networks, particularly the
seemingly ephemeral ‘cloud computing’. They are also repositories of
extremely complicated switching systems, virtualisation platforms, that
allow different operating systems to be run simultaneously, and even a
form of containerisation, whereby the capacity of a data centre can be
increased as load grows through physical transference of extra servers.

9780230244184_03_cha02.indd 509780230244184_03_cha02.indd 50 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

What Is Code? 51

Most current containerised data centres, made by Hewlett-Packard,
IBM, SGI and others, are built using standard 20- and 40-foot shipping
containers although there are ‘moves to larger sizes allow a company
to add extra compute[r] capacity in less than 100 days, versus a year or
more to build a new data centre. They also defer the high costs of build-
ing a new facility, and they generally can be made much more energy
efficient’ (Niccolai 2010).

Towards a grammar of code

To help us to think about code more analytically, in this section I
would like to introduce tentative Weberian ‘ideal-types’ to help us think
about the different forms or modalities of code, namely: (i) digital data
structure, (ii) digital stream, (iii) delegated code, (iv) prescriptive code,
(v) commentary code, (vi) code object and (vii) critical code. Ideal-types
are an analytical construct that are abstracted from concrete examples.
They also provide a means whereby concrete historical examples of
code may be compared and allows us to consider the ways in which
code might deviate from this form. The relatively high-level abstract
ideal-types I discuss in this section are intended to help make code more
clear and understandable; to develop an understanding of the kinds of
ways in which code is manifested; and help to reduce ambiguity about
code by providing a means to develop adequate descriptions that con-
tribute to understanding code’s historical characteristics (see Morrison
1997: 270–3).15 Too often the question of digital media is ignored or
discussed in essentialist or contradictory ways. By creating these ideal-
types I aim to unpack the different modalities of code (as a digital form)
and allow us to develop our understanding of the way in which it is
used and performed in computer technology.

Data

In the static atomic form of digital data storage and transmission, the
digital generally has a passive relationship with technology; data doesn’t
do anything of itself. The term digital code or the digital is often used to
broadly refer to the digital collection of 0s and 1s that can be used to
store functions for operating a computer (i.e. machine-code) and alter-
natively for storing information (i.e. binary data). Different forms of
data structures are stored in the memory of the computer or hard disc in
the encoding of binary data – as rows of 0s and 1s in patterns and grids.
However, digital data is also the result of the discrete way in which
computers, and digital technology in general, translate the analogue

9780230244184_03_cha02.indd 519780230244184_03_cha02.indd 51 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

52 The Philosophy of Software

continuous phenomenal world into internal symbolic representational
structures. These structures are limited to specific sizes that are ‘fitted’
to the external world by a translating device such as an analogue-digital
converter. Data is therefore a key element of understanding code and as
an analytic category it allows us to understand the way in which code
stores values and information in a form that is stable and recallable.

Code

Computer code is involved with action, in terms of processing, and
articulation, in terms of the screenic dimension, within the computer.
Code is an unfolding process and performs a number of particular func-
tions. A function, within code, is ‘a self contained section of code…
that is laid out in a standard way to enable deployment and re-use at
any number of different points within a program’ (Fuller 2008: 101).
Code can be understood as the mechanism that operates upon and
transforms symbolic data, whether by recombining it, performing arith-
metic or binary calculation or moving data between different storage
locations. As such, code is operative and produces a result (sometimes at
the end of a number of sub-goals or tasks), often in an iterative process
of loops and conditionals.

Delegated code (or source code)

Code has a dual existence, as delegated code residing in a human-read-
able frozen state that computer programmers refer to as ‘source code’,
and as ‘autonomous’ prescriptive code that performs operations and
processes. For example, in computer programming, to explain how a
particular piece of code works, and to avoid talking about a particular
instantiation of a programming language, algorithms are written out
in ‘pseudocode’. That is in a non-computer, non-compilable language
that is computer-like but still contains enough natural language (such
as English) to be readable. That is, the algorithms allow the process to
be described in a platform/language independent fashion, which can be
understood as a pre-delegated code form. This is then implemented in
specific programming languages. But these algorithms eventually have
to be turned into a computer programming language that can be com-
piled into prescriptive code, and therefore run as software. Computer
code has a distinctive look as an often incomprehensible collection of
English keywords, symbols and idiosyncratic spacing and layout. The
source code itself is static and is generally written in source-code files
that are text-based files, although many of the more sophisticated edi-
tors now display code in colour to help the programmer write. However,

9780230244184_03_cha02.indd 529780230244184_03_cha02.indd 52 2/9/2011 5:30:58 PM2/9/2011 5:30:58 PM

What Is Code? 53

it is important to note that as human-readable text files, the delegated
code is also open to interpretation by different ‘readers’, whether human
or machine (see Marino 2006 for a discussion of this). Nonetheless, at
some point the abstractions manipulated by the programmer within
delegated code will have to be translated into the necessary binary
operations for the ‘correct’ functioning of the prescriptive code.

Prescriptive code (or software)

For the computer to execute the source code as human-readable delegated
code it would need to be translated into an executable, that is, machine-
readable prescriptive code (see Stallman 2002: 3). This is how we tend
to think of software. At machine level, executable code, as prescriptive
code, is represented digitally as a stream of 0s and 1s and is very difficult
for humans to write or read directly. To the human eye this would look
like long streams of 0s and 1s without structure or meaning, hence they
are often referred to as machine-readable files (insinuating the inability
of humans to understand them directly in contrast to human-readable
files). Indeed, the mythology of expert programmers and hackers dates
back to the times when this was one of the only means of programming
computers (Levy 2001). The production of computer code at this low
level would be prohibitively complex, time-consuming and slow for
all but the smallest of programs. The programmer simplifies the act of
programming by abstracting the code implementation from the actual
machine hardware. Prescriptive code is usually packaged and sold as
a finished product, such as Microsoft Word, without the underlying
source-code included in the distribution.

Critical code

This is code that is written to open up existing closed forms of pro-
prietary computer code, providing users the ability to read/hack exist-
ing digital streams and hence to unpick the digital data structure (see
below).16 This could be where software lock-in has become a particular
problem, such as with using proprietary data formats. Here, I also want to
include code that is designed to hack existing closed proprietary code –
often encoded as prescriptive code, such as DeCSS, which by careful
examination of DVD prescriptive code opened up the DVD format for
GNU/Linux users (Mackenzie 2006: 28–9). Equally, the recent Jailbreak
software for unlocking the Apple iPhone and iPod Touch, hacks the
prescriptive code that controls the phone with the intention of opening
the hardware and software platform up to the developer/user. Critical
code is drawn from the concept introduced by Fuller (2003) of ‘critical

9780230244184_03_cha02.indd 539780230244184_03_cha02.indd 53 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

54 The Philosophy of Software

software’, but is contrasted to prescriptive code in the normative content
of the delegated code. I am thinking particularly of free software and
open source projects here such as the GNU/Linux operating system (see
Berry 2004; Chopra and Dexter 2008: 37–71). Therefore, a requirement
of critical code would be that the source/executable would be available
for inspection to check the delegated processing that the code under-
takes. If the source was unavailable then it would be impossible to check
the prescriptive code to ensure it was not bogus or malicious software
and it could not then be critical code.

Commentary Code

Delegated code is written in preliminary documents that contain the
logic of program operation. But, in addition to the controlling logic of
the delegated code program flow, the source code will often contain a
commentary by the programmer in a special textual area usually delimi-
tated by special characters (e.g. ‘<!--’ tag in Javascript). These comments
assist both the programmer and others wishing to understand the
programming code and I introduce the ideal-type commentary code to
describe these areas. These textual areas are used to demonstrate author-
ship, list collaborators and document changes – thus source code offers
a hermeneutic and historical record in commentary code in addition
to the processing capabilities of the explicitly delegated code within
the file. When compiled into software this commentary code is usually
stripped out of the source-code.

Digital data structure

This is the static form of data representation within the storage systems
of a computer system. The digital encoding of analogue information
(such as in the ripping of an old vinyl LP) is the transfer from one
medium of storage (continuous grooves in vinyl) to another (discrete
values that can represent waveforms). Something of the detail is always
lost when moved from the phenomenal world to the discrete world of
the computer. Digitalisation is therefore the simplification and stand-
ardisation of the external world so that it can be stored and manipu-
lated within code. For example, music stored within the computer is
translated from its analogue waveform (which is a continuous wave)
and quantised into discrete ‘chunks’.17 This highlights the importance
of a focus on the materiality as different embodiments fix data in
different ways; think here of the different ‘codecs’ (coding-decoding
modules) that are used to fix moving audio-video, such as MPEG, MP4,
OGG and DIVX. Similarly, in any transmission, digital data is broken

9780230244184_03_cha02.indd 549780230244184_03_cha02.indd 54 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

What Is Code? 55

down to its most basic level as a string of 0s and 1s and chopped into
neat packets of data and sent through a network, rather like little parcels
sent through the post.

Digital stream

When computers store media content to a hard disc or other medium,
the media is encoded into binary form and it is written to a binary file
as a digital stream, as a one-dimensional flows of 0s and 1s. Data is
transmitted across networks or through other mediums (such as radio).
Within the digital stream file there are markers (such as the file-type
discussed below), structural forms and data patterning that provide an
encoding that allows the computer to bring the data back to its original
depth as a digital data structure. To do this the computer relies on stand-
ard file and data structures to decode these binary files. When the file
lies on the hard disc its functionality remains inert and static as a digital
stream, for the file to become usable requires that the computer re-read
the digital stream back into the computer and re-create the hierarchical
structure. In a similar way, we take delivery of 2D flat-pack furniture
from Ikea (the digital stream) and are required to read the instructions
(the file structure) to piece together and rebuild the 3D wardrobe (the
digital data structures located inside the computer memory) prior to
being filled with clothes (or ‘run’ on the computer). The flexibility of
being able to render information, whether audio-visual or textual, into
this standardised digital stream form allows the incredible manipula-
tion and transformation of information that computers facilitate (e.g.
Unix uses a digital stream of text as the ubiquitous universal format in
the operating system). This stream format also enables the access, stor-
age and relational connections between vast quantities of data located
in different places, such as demonstrated through search engines like
Google. Eric Schmidt, Google’s chief executive describes Google as
‘“a company that’s founded around the science of measurement,” and
it is striving to “systematize everything”’ (Carr 2008). This translational
quality of digital representation and storage (albeit at an often degraded
resolution within digital data structures) is something that highlights
the strong remedial qualities of digital representation.

Code objects

At the humanised level of abstraction of third generation languages,
delegated code can become extremely expressive and further abstrac-
tion is made easier. Away from thinking in terms of digital data struc-
tures or digital streams, the programmer begins to think in terms of

9780230244184_03_cha02.indd 559780230244184_03_cha02.indd 55 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

56 The Philosophy of Software

everyday objects that are represented within the language structure, so
rather than deal with 0s and 1s, instead she might manipulate another
ideal-type which I will call code objects–such as ‘cars’ or ‘airplanes’
which have related properties such as ‘gas tank’ or ‘wing span’ and
functions (i.e. methods) such as ‘accelerate’ or ‘open undercarriage’. The
further the programmer is positioned from the atomic level of 0s and 1s
by the programming language, the further from the ‘metal’–the electri-
cal operation of the silicon. Therefore the programmer is not required
to think in a purely mechanical/electrical fashion and is able to be more
conceptual. There is a growing use of the concept of the discrete ‘object’
within computing. It is used as a monad containing a protected internal
state, methods and interfaces to its external environment. This ‘object’
is used within the source code as a technique called object-oriented
programming, as an abstraction where it is deployed as a conceptual
metaphor for users to manipulate digital artefacts (see Scratch n.d for a
visual example), and also as an active process within a network of pro-
grams, users and other objects. It allows a greater degree of modularity
and automation within software and is increasingly in use at the level
of the user interface.

Functions/methods

These are discrete parts of code that do things, usually the processing or
iterative actions on data, particularly the digital data structure. In proce-
dural programming languages they were called functions, and in object-
oriented programming languages they are called methods. Essentially,
these areas of the code can be used and reused and are usually written
in a general fashion to be applicable to standard data types. Many oper-
ating systems now supply a library of handy functions/methods that
are used by programmers and standardised across the platform called
Application Programming Interfaces (APIs).

Web 2.0 and network code

I would like to spend a few pages thinking through the questions
raised by certain new developments in Internet technologies related to
Web 2.0 and social media. This is because the technologies that make up
the Web 2.0 notion have been hailed by many technologists as a revo-
lutionary new way for the Internet to function, with rich audio-visual
material, interactivity, speed, efficiency and a specifically social dimen-
sion to the user experience. As Web 2.0 and its recent cousin ‘Cloud
Computing’18 remain important, if somewhat nebulous terms, within

9780230244184_03_cha02.indd 569780230244184_03_cha02.indd 56 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

What Is Code? 57

the technology industry, they are important to mark when we discuss
the changing shape of code and its increasing sociality.

Indeed, Web 2.0 is not a technology, as such, rather it is an ideal for
the way in which certain social technologies might be imagined as work-
ing together to create useful applications. It is a technical imaginary
intended to create the possibility for rethinking a particular technical
problem – particularly the Internet as it existed in 2004. These aspects
of the old web were usefully glossed by O’Reilly (2005a) when he
attempted to outline what the major differences between Web 2.0 and
preceding technologies, ‘Web 2.0 is the network as platform, spanning
all the connected devices; Web 2.0 applications are those that make the
most of the intrinsic advantages of that platform’ (O’Reilly 2005b).

Figure 2.4 The key differences between Web 1.0 and Web 2.0 (O’Reilly 2005a)

Web 1.0 Web 2.0

DoubleClick --> Google AdSense
Ofoto --> Flickr
Akamai --> BitTorrent
mp3.com --> Napster
Britannica Online --> Wikipedia
personal websites --> blogging
evite --> upcoming.org and EVDB
domain name speculation --> search engine optimization
page views --> cost per click
screen scraping --> web services
publishing --> participation
content management systems --> wikis
directories (taxonomy) --> tagging ("folksonomy")
stickiness --> syndication

Gillespie (2008) argues that O’Reilly, ‘draws a term from the compu-
tational lexicon, loosens it from the specific technical meaning, and
layers onto it both a cyber-political sense of liberty and an info- business
taste of opportunity’. One would not be surprised therefore to learn that
the notion of a move from government to e-government, or perhaps
more cynically, e-governance, is also often included in the Web 2.0
platform.

At the beginning of its conceptualization, Web 2.0 was a blanket
term for a constellation of often unrelated technologies. It was less of
an organised taxonomy and more a list of desirable features, described
by O’Reilly (2005a) as ‘more of a set of principles and practices’. This
was, O’Reilly argued, visualising the web as a platform for making other
things. It was a call to arms, a description of the promised land rather

9780230244184_03_cha02.indd 579780230244184_03_cha02.indd 57 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

58 The Philosophy of Software

than an arrival, and as such it had a firm basis in reality but an end that
was very much in the realm of romanticism.

Web 2.0 is less a thing than a brand-name for a disparate collection
of ideas and technologies that are gathered together under the term.
When O’Reilly, a book publisher, technology evangelist and one of the
original ‘open source pigs’ (Metcalfe 2004), introduced the notion of
Web 2.0 he was merely trying to use a common technique in computer
software production of ‘versioning’ the discussion that was taking place.
In effect he was posing a question–if the existing constellation of tech-
nologies we call the Internet was to be conceptualised as a 1.0 product
(i.e. the first version that has a number of bugs and problems that can
be ironed out in later versions) then what would the version 2.0 look
like. O’Reilly wrote:

Web 2.0 is the network as platform, spanning all connected devices;
Web 2.0 applications [are] delivering software as a continually–
updated service that gets better the more people use it, consuming
and remixing data from multiple sources, including individual users,
while providing their own data and services in a form that allows
remixing by others, creating network effects through an ‘architecture
of participation,’ and deliver rich user experiences (O’Reilly, quoted
in Schloz 2008).

Of course, as soon as the term was used it was seen as a remarkable
way of conceptualising something that had been bugging many of the
technologists involved in designing Internet software and services –
namely that the present Internet technologies were extremely limited
in their dynamism, being essentially static technologies that presented
information to the user but which constantly had to undertake slow
and repetitive actions to-and-from the server in order to produce the
information the user required. The Web 1.0 was built on a model called
Client-Server technology which was itself once a cutting edge technol-
ogy, when technology was understood as being limited to the internal
direction of a central organising authority such as a corporation. The
Internet, on the other hand, had been built from the bottom-up as a
peer-to-peer networking technology – it was designed to be able to allow
any user to communicate with any other user – or to use more technical
language – each node could communicate with any other node.

This pointed to the fact that the existing Internet technologies, and
particularly the web, had been built when web servers were expensive

9780230244184_03_cha02.indd 589780230244184_03_cha02.indd 58 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

What Is Code? 59

technologies and each client would have a slow connection to the
Internet, usually via dial-up modems. The effect of this technical restric-
tion meant that the web server programmers and web site designers
had generally internalised the norms of a web restricted by limitations
in the older technologies. They had designed based on existing notions
of what could be done, rather than with a notion of more powerful
technologies and communications being available in the future. This
produced a version of the Web that had underlying protocols and
plumbing of the Web which had remained within the Client–Server
paradigm of exchanging information – HyperText Transfer Protocol
(HTTP) used for web pages is a good example of this.

These issues had been bubbling under the surface for quite a while
and there had been a number of new technologies developed which had
extended the possibilities of the underlying peer-to-peer nature of the
lower levels of Internet protocol. Many of these were highlighted by a
number of examples that changed the way in which the web was con-
ceptualised: (i) the original version 1.0 Napster, which allowed users to
share their music collection with other Napster users. Unfortunately for
Napster, and fortunately for the music corporations, Napster still had
a model of Client–Server in mind when designing their system which
meant that when the corporations successfully bankrupted Napster,
they could also shut down the servers that facilitated the network;
(ii) equally too, governments who wished to regulate or control the
flow of information that passed both into and out of their country, not
to mention between users of the Internet, soon realised that to control
the web servers was to control the flow of information over the web. It
was a simple matter to license the web servers, much in the same way
that previously printing presses had been licensed. For the technology
evangelists who had foretold that ‘information wants to be free’ this
was a difficult fact to accept; lastly, (iii) for those who designed tech-
nologies there was an increasing problem with web ‘real estate’. That is,
squeezing large quantities of information onto small computer screens
was becoming increasingly challenging, taken together with the inef-
ficiency of continually downloading web pages from web servers when
data needed to be refreshed (which added to bandwidth and couldn’t
provide real-time information). There was a recognition that the web
was not the dynamic medium that was promised, rather it provided a
form of web-based ‘Polaroid’ picture which soon went out of date.

This discourse of Web 2.0 has spread from the technical sphere into
many related areas and in this translation Web 2.0 has become firmly

9780230244184_03_cha02.indd 599780230244184_03_cha02.indd 59 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

60 The Philosophy of Software

associated with notions of participation, social networking, sharing,
open source and free software, open access to knowledge and demo-
cratic politics. This bundle of concepts has been extremely powerful
and has triggered many groups and individuals to try to build sites
that leverage the access to information that the web grants, together
with the collaborative spirit of online user groups to sort and proc-
ess information (referred to as tagging or folksonomies) in order
to share information with the public. This in turn has influenced
political discourse, which has drawn on this technical background
for a language with overtones of progress, modernity, efficiency and
high-standards. The lack of a specific definition for the Web 2.0 term
has allowed the concept to signify more than it means in itself. As Silver
argues,

There’s something quite brilliant, from a corporate–consumer–
marketing perspective, about the term Web 2.0. Its very name – Web
2.0 – embodies new–and–improvedness: a new version, a new stage, a
new paradigm, a new Web, a new way of living. Attached to any old
noun, 2.0 makes the noun new: Library 2.0, Scholarship 2.0, Culture
2.0, Politics 2.0 (Silver 2008).

But what remains interesting about the concept of Web 2.0 is the fact
that: (i) its radical break evinced in 2004 bears little or no relation to
any discernable empirical evidence of such a break. As many commen-
tators, including Tim Berners-Lee, have pointed out, the technologies
that make up the Web 2.0 phenomena predate the announcing of its
emergence (see Scholz 2008). (ii) The notion that the technology has
such a wide and discernable impact on so many aspects of life and eco-
nomics draws its force from a rather simplistic notion of technological
determinism. (iii) Web 2.0 in essence is another form of announcement
for the information society and new ways of structuring aspects of soci-
ety with networked models of organisation. (iv) Implicit within Web
2.0 is an underlying libertarian ideology that valorises the contribution
of the individual (as a rational actor) whether through such notions as
collective intelligence, or through the idea of a long-tail economy, or
the wisdom of crowds.

Web 2.0, then, has to be understood as a particular constellation
of code-based technologies. Although interesting in terms of its focus
on increasing interactivity and real-time delivery of data, Web 2.0
does not represent something outside or beyond existing ways of
understanding code, indeed, it highlights the importance of critical

9780230244184_03_cha02.indd 609780230244184_03_cha02.indd 60 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

What Is Code? 61

approaches to new movements and fashions within programming and
technology.

Understanding code

Any study of computer code should acknowledge that the performativity
of software is in some way linked to its location in a (mainly) capital-
ist economy. Code costs money and labour to produce, and once it is
written requires continual inputs of energy, maintenance and labour
to keep functioning. This has important implications when it is under-
stood that much of the code that supports the Internet, even though it
is free software or open source, actually runs on private computer sys-
tems and networks (see Berry 2008). Should these private corporations
decide to refuse to carry public data traffic, or implement prioritising
data traffic, this would severely disrupt the peer-to-peer architecture
of the Internet. This is currently part of the ongoing debates over the
importance of Network Neutrality – whereby private networks agree
to carry public and private data in reciprocal arrangements which are
implemented in code.19 It also highlights why the political economy of
software cannot be ignored.

The growing importance of intellectual property rights also provide
new insights into a cultural politics involving possession and dis-
possession of a proliferation of digital media – particularly where it
facilitates the experience of the user of audio, music, textuality and mass-
produced imagery. Code constructs the relationship we have with tech-
nology, and it is here where questions of ownership, through patents
and copyrights, for example, and technologically mediated control,
through digital rights management, become key issues. As I argue else-
where (Berry 2008),

[Digital rights management software (DRM)] prevents users from
carrying out unauthorised actions on copyrighted works often irre-
spective of the ownership or rights of the individual user (Lessig
1999). Adobe Acrobat and E-paper, for instance, have the ability to
prevent the user from copying, changing and even quoting from a
protected document when using the particular DRM-protected soft-
ware in which the document is delivered to the user. The software
is delegated the legal restrictions of the copyrighted work and then
prescribes these restrictions back on the user. The user is thus unable
to perform activities that break the terms of the legal copyright
(Berry 2008: 30–1).

9780230244184_03_cha02.indd 619780230244184_03_cha02.indd 61 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

62 The Philosophy of Software

Whilst not wishing to ignore these important, and indeed critical,
dimensions of understanding the relationship between software and
the wider society, in this book I will largely bracket out the question of
political economy of software (I have explored some of these issues in
Berry 2008). I do this mainly to tackle the question of the materiality of
code in its specificity and to try to think through code as a form that is
amenable to a phenomenological encounter but as will be seen, politi-
cal economy always remains on the periphery of this analysis.

I am exploring code as socio-technical assemblages that are more
or less socially embedded in broader networks of social relations and
institutional ensembles. Whilst a more phenomenological approach to
code is undertaken throughout this book, my aim is to concentrate on
the materiality and concreteness of code and highlight the constraints
that operate upon it, which may of course involve questions related
to the production, distribution and consumption of code as software.
Code provides an interesting locus of exploration of the network as an
organisation form, a key trope in Information Society discourses which
proclaim a new era in the economy and society (Berry 2008: 43–7). At
all levels of the network, software and code may be connected to each
other in quite counter-intuitive ways; for example, code itself has an
internal networked topology, that is, code is not ‘above’ or ‘below’ other
code, rather code is added to other code as a connection. We sometimes
find it easier to understand code through a hierarchical relationship,
but strictly speaking code lies on a plane of immanent connections and
consequently, no code is ‘bigger’ or ‘more important’ than another,
except to the extent that it has a larger number of connections. In a
political economy of the information society, a more nuanced under-
standing of the way in which power is located in the network, for
example through connections, or through protocol (Galloway 2006),
demonstrates that we need to take account of the way in which software
as dispositifs socio-technique (socio-technical devices) acts to perform the
network form (Callon 2007).

Whilst the previous analytical distinctions of code help us to under-
stand and work through the ways in which functional differentiation
takes place within code and in its development and operation, they are
limited in that they are analytical divisions and hence remain on the
plane of immanence of code as a medium. We must remember that we
should keep in mind that code-based devices are a ‘tangle, a multi-linear
ensemble’ (Deleuze 1992, 159). Code is therefore composed of different
sorts of ‘lines’ – as modalities of execution, internal normative states and
positional calculative logic. Code follows directions; it ‘traces’ processes

9780230244184_03_cha02.indd 629780230244184_03_cha02.indd 62 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

What Is Code? 63

interacting with its own internal state, the internal state of other code
and through external mediating processes, such as the graphical user
interface, the user sitting in the real world. But this code ‘abstracts’ or
dis-embeds a logic, whether as here analytically understood as engine,
container, image or communications channel.

Code is a complex set of materialities that we need to think carefully
about in turn. From the material experience of the user of code, both
programmer and consumer, to the reading and writing of code, and
then finally to the execution and experience of code as it runs, we need
to bring to the fore how code is computational logic located within
material devices which I will call technical devices. Now we turn to look
at some concrete examples of the materiality of code and how we can
understand it as both written, read and executed.

9780230244184_03_cha02.indd 639780230244184_03_cha02.indd 63 2/9/2011 5:30:59 PM2/9/2011 5:30:59 PM

64

3
Reading and Writing Code

So far I have discussed the difficultly of understanding code and soft-
ware, and how it is important to link together the materiality of code
with its social practices in order to help us understand it. One of the
biggest problems with trying to understand code is finding the right
kinds of examples to illustrate this discussion so here I will present some
examples of code that will make the code more visible and show why
reading code is useful. Across the Internet, there are now countless code
snippets and repositories containing sample code that demonstrate
everything from ‘Hello, world!’, traditionally the first programming
example taught in computer science, to complex database management
systems, or even complete operating systems, like Gnu/Linux. Whilst I
do want to stress the importance of connecting the dots associated with
code and software, I also want to avoid a tedious programming lesson
in what can soon become a rather dry subject of discussion. For that
reason, I have tried to pick examples that will be either immediately
clear as a demonstration of the point I wish to make, or else interesting
in their own right. Secondly, I have tried to be clear that when one is
discussing code one should be aware that snippets of code can be diffi-
cult to understand when taken out of context and often require the sur-
rounding documentation to make sense of it. For example, theoretical
study of computational methods often focus solely on the program-
ming logic itself whilst paying no attention to the interesting informa-
tion that might be found in the commentary sections, documentation,
variable names, function names, etc.

In this chapter, we will be looking more closely at the distinction
between ‘code’ and ‘software’. Throughout, I shall continue using ‘code’
(as delegated code) to refer to the textual and social practices of source code
writing, testing and distribution. In contrast, ‘software’ (as prescriptive

9780230244184_04_cha03.indd 649780230244184_04_cha03.indd 64 2/11/2011 1:00:55 PM2/11/2011 1:00:55 PM

Reading and Writing Code 65

code) will refer to the object code, that is, code that has been compiled
into an executable format, which includes final software products, such
as operating systems, applications or fixed products of code such as
Photoshop, Word and Excel. In discussing the code and software, we will
also be looking at the cultural practices that surround the use of it. This
further allows us to think about the processes of software creation through
computer programming, and also the related issue of hacking as the clever
and sometimes inspired use of programming to change the normal execu-
tion of code or of subverting its intended (prescribed code) functions.

In this sense, I will not be focusing on the level of the screen, so-called
screen essentialism, rather, the analysis will focus on how the code is
constructed by its relationship to a running machinic assemblage. Nor
shall I be making literary readings of the textual form of code, as it is
crucial that we keep the double articulation of code, as both symbolic and
material, fully in view. The way in which the code is created, and tested,
maintained and run, forms part of our attention to the materiality and
obduracy of code. Thus, to echo the discussion made in the last chapter,
we will remain attentive to code in its multiplicity, that is as a literature,
a mechanism, a spatial form (organisation), and as a repository of social
norms, values, patterns and processes.

Tests of strength

To locate the materiality of code, I develop Latour’s (1988) notion of
‘trial of strength’ introduced in Irreductions. Here a test can be consid-
ered to be legitimate as long as strengths are being measured according
to the tenets of a set of rules. In opposition to the linguistic turn, the
notion of a test inclines towards realism. Indeed, for persons to be able
to reach an agreement on software in practice, not only in principle,
a reality test has to take place, accompanied by a codification or, at least,
an explicit formulation of valid proof. Each claim is therefore associated
with a series of tests that can be called upon to support its claims. An
overriding requirement is the obligation to specify the type of strength
that is involved in a specific test and to arrange a testing device. To fail
the tests indicates that the ‘concrete fact’ of the software has failed to be
proven and consequently that the software itself remains vapourware,
that is unrealised or immaterial. The notion of a test of strength is also
similar to the idea of a ‘test case’ in software engineering, which is a single
problematic that can be proved to be successful, and therefore designates
the code free from that error or problem. These tests form the basis of the
testing the ‘realness’ of the software, for to fail the tests indicates that the

9780230244184_04_cha03.indd 659780230244184_04_cha03.indd 65 2/11/2011 1:00:55 PM2/11/2011 1:00:55 PM

66 The Philosophy of Software

‘fact’ or reality of the software has not been achieved. To be included in
a particular ‘society of code’ then, the code must be legitimated (realised)
through a series of tests. Code is more visible the more connections it has.

This echoes the work of Gabriel Tarde, a sociologist from the early
20th century, who dreamed of following the actors in a social formation
through mapping the connections they made. For Tarde, everything is
an association, ‘everything is a society’ (Latour 2002: 118). This is the
starting point of the analysis of software that I want to explore. This will
allow us to map the attachments and solidarity that is formed between
software and hence trace the way in which it is materialised and made.
Boltanski and Thévenot (2006) make a useful distinction between
two different test modes: (1) tests of strength (épreuves de force), which
themselves problematise the boundary conditions and (2) legitimate
tests (épreuves légitimes), that are tests within the boundary conditions.
In a test of strength, it is acceptable to mobilise any and all kinds of
strength. Nothing is specified beforehand. Anything goes, as long as it
is crowned with success (this could be thought of as hacking code). In a
legitimate test, playing by the rules of the situation constrain as to what
can be done to be successful (this can be thought of as following legiti-
mate software processes). A legitimate test must always test something
that has been defined, presenting itself as a test of something.

To look at the issue of code in more detail and to bring to the fore
the element of materiality, I therefore use Latour’s notion of the ‘trial
of strength’ to see how the materiality of code, its obduracy and its
concreteness are tested within computer programming contests. This
approach is useful, as it incorporates both discursive and extra-discur-
sive dimensions in the analysis of code. This is because one of the most
important requirements for the materials which make up a program-
ming assemblage is that they pass the predefined ‘requirements’ tests.
These are usually identified in the requirements specification, which
is essentially a thin description of the software that is to be created.
From this a thick description is then assembled, usually in the design
phases, which is a detailed outline of much of the processing that needs
to be undertaken, and the general features of the structure, sometimes
through pseudo-code or through one of the formal languages such as
UML (Unified Modelling Language) or Z. It is only after this point that
the prototyping and testing phases really begins and code is written, but
it remains an iterative process to construct the detailed structure and
content of the required software system.

For example, a series of tests are required to be passed before the soft-
ware is released to the public. Each stage of the release cycle is materialised

9780230244184_04_cha03.indd 669780230244184_04_cha03.indd 66 2/11/2011 1:00:55 PM2/11/2011 1:00:55 PM

Reading and Writing Code 67

in different ways, such as compilation (on hardware), printed (on paper),
tested (by humans), or distributed (on a physical medium). As most
software continues to be developed in a variant of the ‘waterfall model’
of software development that runs through a cycle of design-code-test-
release software, we can trace this materiality as ‘trials of strength’. So
software goes through a series of phases which are iterative with the
intention of improving software quality with each cycle. Each step creates
physical entities (e.g. documentation) and tests that further reinforce the
materiality of code. Some of the development cycles that are used include:
(i) Alpha, firstly as white-box testing, sometimes called glass box testing,
is where the internal logic of the code is tested. When this is complete the
testing moves to treating the internals as hidden and black-box testing
begins, which seeks to test the external relationships with the code. When
the alpha test is complete the code is usually ‘frozen’ and considered fea-
ture complete and no major additions of functionality are added; (ii) Beta,
which may be open or closed to the public, and which involves usability
testing to ensure that problems for users are minimised. Some companies,
especially those associated with web 2.0, use this exclusivity to promote
their software and grow the user-base; (iii) Release candidates (RC), where
the software has now reached the point at which it is ready for release
and undergoes a last phase of tests to iron out any major problems with
the software. This version is usually considered ‘code complete’ and will
not undergo any significant additions to the code; and finally (iv) release
to manufacturing, otherwise known as release to marketing, where the
software is ready to release as a final product. When software is released
on CD or DVD this was sometimes known as ‘going gold’ or ‘gold master’,
a term particularly associated with Apple Corporation. This term is used
because the master version delivered to the manufacturers as the final
 version would be in the form of a gold disk.

Only when a series of tests has then been passed is the final code, now
compiled into software, considered a ‘release candidate’ and therefore
can either be given to people as a beta (usually a pre-release version that
may still contain semi-major bugs) or else as a final release candidate
version close to shipping. Each stage of the process can be understood in
terms of the notion of ‘trials of strength’ allows us to focus on the very
real requirements that are made of the code at all stages of its evolution
as it is assembled into the final release candidate as released software. In
the following sections I want to look at the tests of strength demonstrated
in a number of programming examples, for example, in the Microsoft
example below, we will be looking at how Microsoft uses the notion of a
daily compilation of the entire operating system as a means of testing the

9780230244184_04_cha03.indd 679780230244184_04_cha03.indd 67 2/11/2011 1:00:55 PM2/11/2011 1:00:55 PM

68 The Philosophy of Software

fact that the operating system is both functioning and moving forward in
development. Throughout these case studies, the intention is to link the
symbolic level of the literate programmer with the machinic requirement
of compilation and execution of the software.

Reading code

The leaked microsoft source code

In February 2004, Windows 2000 source code was accidentally leaked
onto the web, as ‘files [dated] 25 July 2000. The source was contained in
a Zip file of… 213,748,207 bytes, named windows_2000_source_code.zip,
[and] had been widely circulated on P2P networks’ (Selznak 2004). This
gave anyone on the Internet a rare opportunity to make a close reading of
the software written by the programmers at Microsoft. Most of the atten-
tion was focussed immediately not on the code, but rather on the colour-
ful commentary that explained how the code worked. This was due to a
number of reasons, firstly, the concern over possible copyright infringe-
ment of Microsoft’s source code, and by not explicitly ‘reading’ the code
programmers hoped to protect themselves by keeping a ‘clean room’ sepa-
ration from themselves and the actual code.1 Secondly, the code runs to
millions of lines of very complicated code and the commentary is a form of
documenting that is often a first step into the process of understanding it.

Microsoft is renowned for compiling, or ‘building’, its entire operating
system everyday to check that the code works and to root out problems
and errors as early as possible in the coding process. The daily build also
acts as a disciplinary mechanism on its staff as it puts them and their
work under constant observation. As everyone suffers when the build fails
there is considerable peer pressure not to ‘break the build’ by submitting
untested or problematic code. In terms of the analysis we are undertaking
here, we might think of the build as an important ‘test of strength’ for
the materiality of Microsoft Windows development software. To become
part of the Windows source, and therefore to be in the running to be a
releasable part of the operating system, requires that you can be material-
ised in the build through passing the compilation process. This compila-
tion process involves both a material and social aspect, (i) the code must
compile on the build machine within the stated constraints of the build
process, which are essentially a series of compilation tests; (ii) the entire
organisation peer reviews the build process and to cause the build to fail
is noticed by the entire community of developers and socially frowned
upon; (iii) the daily build usually includes a number of ‘smoke tests’,
or build verification tests, which give ‘shallow and wide’ means of assess-
ing the new versions of the software. These might include automated

9780230244184_04_cha03.indd 689780230244184_04_cha03.indd 68 2/11/2011 1:00:56 PM2/11/2011 1:00:56 PM

Reading and Writing Code 69

scripts to ensure that the correct version of the code was compiled and
included, that basic error-checking is working, or that the program does
not crash the system, or itself, on launch. It would usually fall to later
stages of testing, either under alpha or beta testing for more in-depth test-
ing to be carried out, usually by specialised human testers.

By looking at the code in these files, an insight into Microsoft’s daily build
process is given. For example, in a message to programmers who might
change their code without thinking of the consequences for the build
process in the file private\windows\media\avi\verinfo.16\verinfo.h, was

Figure 3.1 Microsoft Windows source code commentary (Selznak 2004)

* !!
* !!
* !!!!!!!IF YOU CHANGE TABS TO SPACES, YOU WILL BE KILLED!!!!!!!
* !!!!!!!!!!!!!!DOING SO F*CKS THE BUILD PROCESS!!!!!!!!!!!!!!!!
* !!

Microsoft programmers also revealed their feeling about several
‘moronic’ moments in the code where they point to errors or bugs
introduced by other programmers (we could think of these as ‘soft’ tests
of strength). This points not only to ‘moronic’ programming practices,
but to the problems any organisation will have in managing projects
with many tens of millions of source lines of code. Not only is there
a problem in holding the project in any individual’s head, but the
added complication of staff leaving, corporate memory therefore being
drained, and, additionally, new software being added to old software
which was never designed to be extensible in quite the way that would
have been helpful to later developers. Of course, there will also be a
dimension of blaming other departments or software team for their
‘moronic’ decisions in design and implementation. This example dem-
onstrates the necessity of communication and good high-level system
architecture planning in any large software project:

private\genx\shell\inc\prsht.w:

// we are such morons. Wiz97 underwent a redesign between IE4 and IE5
private\shell\ext\ftp\ftpdrop.cpp:

We have to do this only because Exchange is a moron.

private\shell\shdoc401\unicpp\desktop.cpp:

// We are morons. We changed the IDeskTray interface between IE4

private\shell\browseui\itbar.cpp:

// should be fixed in the apps themselves. Morons!

Figure 3.2 Microsoft Windows source code ‘moron’ comments (Selznak 2004)

9780230244184_04_cha03.indd 699780230244184_04_cha03.indd 69 2/11/2011 1:00:56 PM2/11/2011 1:00:56 PM

70 The Philosophy of Software

The documents also showed where Microsoft employees were
required to break programming conventions and perform ‘hacks’, or
inelegant software fixes to get around stupid, restrictive or problematic
bottlenecks in the existing codebase. Professional programmers, it goes
without saying, should not be resorting to hacks to get code to work
as they inevitably generate more problems and require more hacks to
fix in the long term. Hacks are different to ‘moronic’ moments in that
they are temporary fixes to make things work – they are often intended
to be removed at a later date. Hacks are also often implemented in
response to urgent need, perhaps a major problem has been identi-
fied in the code very close to the release date, or a security flaw has
been uncovered. This is a very bad way of dealing with code issues as
it runs the risk of importing even more bugs into code than those it
was meant to deal with, however, sometimes there is just no way of
avoiding the need for an urgent patch for code, even if contrary to
expectations it then becomes a permanent repair that is soon forgotten
about.

By reading the Microsoft source code one also begins to get connec-
tions to the political economy of software development more generally.
For example, Microsoft uses certain specialised function calls called
Application Programming Interfaces (APIs) which are kept private
and internal to the company. These are then used by its own software
which, it is alleged, give it a performance boost over its rivals third-party
software. Whilst not technically illegal, they certainly demonstrate the
advantages of monopoly control of a software platform that can be
turned to profitable advantage, for example,

Figure 3.3 Microsoft Windows source code ‘hack’ comments (Selznak 2004)

rivate\ntos\w32\ntuser\client\dlgmgr.c:

// HACK OF DEATH:

private\shell\lib\util.cpp:

// TERRIBLE HORRIBLE NO GOOD VERY BAD HACK

private\ntos\w32\ntuser\client\nt6\user.h:

* The magnitude of this hack compares favorably with that of
the national debt.

9780230244184_04_cha03.indd 709780230244184_04_cha03.indd 70 2/11/2011 1:00:56 PM2/11/2011 1:00:56 PM

Reading and Writing Code 71

Undocumented features can also be used to short-cut programming by
allowing tricks to be used in software (as shown in the second example
above). Again, these are risky manoeuvres as they may be easily changed
in future, and being undocumented by their very nature means that the
owners of the undocumented effect may not realise that others might be
using it. These examples give a clear picture of the rather murky world
of programming, particularly on large-scale and legacy systems where
the actuality of programming day-today may involve more decoding,
hacking and use of undocumented features than one might expect from
what on the outside look like professional programming practices.

Much of the media attention on the leaking of the source code
focussed rather oddly on how the software might be stolen or used by
rivals, for example the BBC reported that ‘such access could provide a
competitive edge to its rivals, who would gain a much better under-
standing of the inner workings of Microsoft’s technology’ (BBC 2004).
This is unlikely, as not only was the source code incomplete, it was also
largely out of date, and software is continually and dynamically under
development with the code tree in a constant state of flux. Betting your
company on the use of private APIs or esoteric or undocumented func-
tions would be to trust your company to fate and hope that Microsoft
didn’t change something at a later date. Programmers themselves had a
field day searching for rude words, general items of interesting code, and
checking for whether rumours of bad practices and poor programming
were true (see Slashdot 2004). Many of the commentators remarked on
the unlikely situation of anyone finding much of interest to take from
Microsoft code, pointing to the difference between having the source
code as a textual repository and actually getting it to compile. When it

Figure 3.4 Microsoft Windows source code ‘undocumented’ comments (Selznak
2004)

 private\mvdm\wow32\wcntl32.c:

private\windows\shell\accesory\hypertrm\emu\minitelf.c:

// Ah, the life of the undocumented. The documentation says

// that this guys does not validate, colors, act as a delimiter

// and fills with spaces. Wrong. It does validate the color.

// As such its a delimiter. If...

// These undocumented messages are used by Excel 5.0

9780230244184_04_cha03.indd 719780230244184_04_cha03.indd 71 2/11/2011 1:00:56 PM2/11/2011 1:00:56 PM

72 The Philosophy of Software

is remembered the code runs to millions of lines, and the compilation
build process is doubtless idiosyncratic and specific to Microsoft itself,
it is clear that the codebase would challenge the memory of any single
programmer to unpick. CNN reported that the ‘leaked Windows 2000
code contained 30,915 files and a whopping 13.5 million lines of code’
(Legon 2004), other experts have calculated this to be approximately 47
per cent of the total codebase of 29 million lines of code (Jones 2004).

The leaking of the code also led to amusing parodies of the source
code such as the fragment below,

Figure 3.5 Parody of the Microsoft Windows source code (Baltimoremd n.d)

if (detect_cache())
 disable_cache();

 if (fast_cpu())
 {
 set_wait_states(lots);
 set_mouse(speed, very_slow);
 set_mouse(action, jumpy);
 set_mouse(reaction, sometimes);
 }

 /* printf("Welcome to Windows 3.1"); */
 /* printf("Welcome to Windows 3.11"); */
 /* printf("Welcome to Windows 95"); */
 /* printf("Welcome to Windows NT 3.0"); */
 /* printf("Welcome to Windows 98"); */
 /* printf("Welcome to Windows NT 4.0"); */
 printf("Welcome to Windows 2000");

 if (system_ok())
 crash(to_dos_prompt)
 else
 system_memory = open("a:\swp0001.swp", O_CREATE);

This fragment refers to the fact that users and programmers have
long complained about the slow operation of the Microsoft operating
system, so for example the parody disables the cache, which would slow
down the computer, and sets the mouse speed to ‘very_slow’. The ‘code’
also sarcastically points to the genealogy of Windows in its different
versions (e.g. 3.1, 3.11, 95, etc.) and insinuates that every new version
of Windows is really the same operating system renamed (e.g. the printf
commands).2

Climate research code

Another example of the way in which open sourced code and crowd-
sourcing on the Internet can come together in fascinating ways around
source code concerns the appearance on the Internet of over 1,000
private e-mails containing data and code from the University of East

9780230244184_04_cha03.indd 729780230244184_04_cha03.indd 72 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

Reading and Writing Code 73

Anglia concerning climate data. This became a matter of concern,
known as ‘climategate’, a controversial data series that was distributed
when emails were stolen from the University of East Anglia Climatic
Research Unit (CRU). In particular, this grew into what became
known as the ‘Hockey Stick’ controversy. The Guardian explains ‘[t]he
“hockey stick” graph shows the average global temperature over
the past 1,000 years. For the first 900 years there is little variation,
like the shaft of an ice-hockey stick. Then, in the 20th century, comes
a sharp rise like the stick’s blade’ (Pearce 2010). The data and emails
were immediately shared, commented on, and subject to a great deal
of debate and controversy due to the way in which the researchers
appeared to be cavalier with the data. As the CRU produces one of the
four most widely used records of global temperature and these have
been key to the Intergovernmental Panel on Climate Change’s (IPCC)
conclusions that the planet’s surface is warming and that humanity’s
greenhouse gas emissions are very likely to be responsible, it is easy to
understand why a controversy could soon erupt over perceived bias in
the scientific method.

Although it was intended as an icon of global warming, the hockey
stick has become something else – a symbol of the conflict between
mainstream climate scientists and their critics. The contrarians
have made it the focus of their attacks for a decade, hoping that by
demolishing the hockey stick graph they can destroy the credibility
of climate scientists (Pearce 2010).

Eric Raymond, a key activist in open source software and a critic of
theories of climate change, demonstrated this by showing the data and
the code that processes and applies the data series in the FORTRAN code
stolen from the CRU on his blog and commenting upon it,

From the CRU code file osborn-tree6/briffa_sep98_d.pro, used to pre-
pare a graph purported to be of Northern Hemisphere temperatures
and reconstructions.

;
; Apply a VERY ARTIFICAL correction for decline!!
;

yrloc=[1400,findgen(19)*5.+1904]
valadj=[0.,0.,0.,0.,0.,-0.1,-0.25,-0.3,0.,-
0.1,0.3,0.8,1.2,1.7,2.5,2.6,2.6,$
2.6,2.6,2.6]*0.75 ; fudge factor
if n_elements(yrloc) ne n_elements(valadj) then message,’Oooops!’;
yearlyadj=interpol(valadj,yrloc,timey)

9780230244184_04_cha03.indd 739780230244184_04_cha03.indd 73 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

74 The Philosophy of Software

This, people, is blatant data-cooking, with no pretense [sic] otherwise.
It flattens a period of warm temperatures in the 1940s 1930s — see
those negative coefficients? Then, later on, it applies a positive multi-
plier so you get a nice dramatic hockey stick at the end of the century
(Raymond 2009).

Whilst not a comment on the accuracy or validity of Raymond's claims,
this example shows the importance of seeing the code and being able
to follow the logic through code fragments that can be shared with
other readers. A large number of comments soon attached to this post,
critiquing the code, checking the data and seeking clarification about
how the CRU had used this data. This controversy wasn’t only localised
here, however, the code critiques spread across the Internet and discus-
sion forums with many eyes casting a critical gaze over fragments of the
source code. Especially files such as ‘HARRY_READ_ME.txt’ (Harry 2009),
which contained a commentary by a programmer on the project includ-
ing his thoughts and mistakes, which many took to be a smoking gun
(KinsmanThoughts 2009). Although it later turned out that this file was
actually rather unremarkable.

Crucially though, and this is a running theme, the code could also be
downloaded, compiled and run, and the actual processing of data ana-
lysed to see if outputs like these are producing accidental or deliberate
artefacts that were distorting the data. Not only is this a clear example
of the changing nature of science as a public activity, but also demon-
strates how the democratisation of programming means that a large
number of people are able to read and critique the code.

After a detailed seven month investigation, the Independent Climate
Change Email Review led by Sir Muir Russell, a former civil servant and
former vice-chancellor of the University of Glasgow, it was found that the
rigour and honesty of the CRU researchers as scientists were not in doubt
(Black 2010). They did, however, comment on the way in which science
must increasingly defend itself in the public arena and make available its
data and code underlying its conclusions to avoid this kind of controversy
in the future. The committee pointed to the new way in which the Internet
raises ‘important issues about how to do science in such an argumentative
area and under new levels of scrutiny, especially from a largely hostile and
sometimes expert blogosphere’ (The Economist 2010b). Nonetheless, the
way in which the controversy played out across the Internet, with many
different actors checking the code, critiquing it and trying to discover the
accuracy of the projections, showed how important code is becoming for
our understanding of the world, and for political policy responses to it.

9780230244184_04_cha03.indd 749780230244184_04_cha03.indd 74 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

Reading and Writing Code 75

Writing code

To look at the questions raised by writing code, I now focus on two
critical case studies in the remainder of this chapter, whose processes
allow us to see the generalised way in which software development is
a continual reflexive activity. These cases also allow us to see how the
materiality of code is demonstrated by abiding closely to the prescribed
legitimate tests for the code being developed. In some cases allowances
are made for considerable creativity and bending of the rules in order to
achieve the system design that is required. In other cases, the material-
ity is shown precisely where the tests of strength can be implemented
which completely undermine or bypass these legitimate tests, and
which can change the whole nature of the testing and development
process.

The first case study is the Underhanded C Contest, an online contest
that asks the contestants to submit code that disguises within fairly
mundane source code another hidden purpose. The second case study
is The International Obfuscated C Code Contest (IOCCC), a contest to
write the most Obscure/Obfuscated C program possible that is as diffi-
cult to understand and follow (through the source code) as possible. By
following the rules of the contest, and by pitting each program, which
must be made available to compile and execute by the judges (as well as
the other competitors and the wider public by open sourcing the code),
the code is then shown to be material providing it passes these tests of
strength. Each of these competitions raise a series of requirements and
tests that code has to meet in order to fulfil the requirement of being
described as being code at all.

The Underhanded C Contest

The Underhanded C Contest is an online programming contest in
which contestants aim to create code that gives the appearance of
performing one function, whilst subtly and preferably invisibly doing
another. The software must be of a high standard in terms of literate
programming, that is, ‘the main goal… is to write source code that eas-
ily passes visual inspection by other programmers’ (XcottCraver 2008).
But as the competition website explains,

In this contest you must write code that is as readable, clear, inno-
cent and straightforward as possible, and yet it must fail to perform
at its apparent function. To be more specific, it should do something
subtly evil (XcottCraver 2008).

9780230244184_04_cha03.indd 759780230244184_04_cha03.indd 75 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

76 The Philosophy of Software

The competition has been running since 2005 and is organised by
Dr Scott Craver of the Department of Electrical Engineering at
Binghamton University. The code is required to be in the C program-
ming language and must be compilable and supplied in a form that can
be demonstrated both textually, as the source code, and mechanically,
as an executable process on the machine following compilation. The
key to the underhand competition is that the underhanded behav-
iour has to be in the code itself. There is therefore a strong element
of human deception required in these programs, because rather than
‘hacking’ a protocol, you must mislead a programmer. The misleading,
can take many forms, but one of the best is to ensure that nothing that
is done by the programmer is out of the ordinary. This relies on the
fact that the programmer/tester will expect a certain kind of predict-
able behaviour from the programming code and this can be exploited
by the underhand programmer. For example, if the output that results
from the execution of the program doesn’t meet the requirements of
what would expected as ‘standard output’ it would probably be regarded
as suspicious. The goal is to engineer malicious behaviour that is not
noticed as part of a test or code review.

Here I will focus on the fourth annual contest (12 June 2008–20
September 2008). The reason for discussing the 2008 entry was that in
previous years the programming requirements tended to be rather com-
plex and esoteric, whereas in 2008 the requirement was merely to black
out, or redact, a standard image file on the computer. The simplicity of
the requirements disguised a rather difficult task, namely to redact a file
whilst allowing the redaction to be undone, whilst keeping the code
relatively clear for peer review. The contest used a digital data structure
called ‘PPM file in ASCII (P3)’ format, this meant that the saved format
of the image file was in a textual format that made it simpler for pro-
gramming calculation.

The contest had over 100 entries by programmers and the formal
requirement was that entries,

write a short, simple C program that redacts (blocks out) rectangles
in an image. The user feeds the program a PPM image and some
rectangles, and the output should have those rectangles blocked out
(XcottCraver 2008).

The idea is that the redacted content from the image file is somehow
not actually wiped. Ideally, the image would appear blocked-out, but
somehow the redacted blocks could be resurrected. This is the principle
of leaky redaction, so that with a small amount of effort the leaked data

9780230244184_04_cha03.indd 769780230244184_04_cha03.indd 76 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

Reading and Writing Code 77

should be able to be reconstructed. As part of the formal requirements,
the command line code that would be needed to execute it was also
specified to ensure that the clever part of the programming would take
place within the C program that was submitted, rather than through
mysterious batch files or another mechanism.

The rules of the redaction code design were simple: (1) the program
should be compiled easily; (2) the user can then type in values that cor-
respond to rectangles that should be redacted as x,y coordinates; (3) the
user exits (^D) and the file is output (out.ppm). As can be seen these are
the boundary conditions for the materiality of the code to be demon-
strated, as part of the testing of the code the judges would compile the
code themselves on a suitable machine, and they would run the test on
a number of image files.

The legitimate tests, included the key objective of the competition: to
produce a source file that looks very innocent, and passes informal code
inspection. The additional legitimate tests that are used to validate the
software were: (i) ‘Short programs are innocent, and more impressive.
If your source file is over 200 lines, you are not likely to win. You can
hide a semi truck in 300 lines of C. In general, the fewer hiding places,
the more impressed we will be if you can conceal malicious behavior’
(XcottCraver 2008); (ii) ‘Typical behavior is innocent. Unusual and
unnecessary steps will raise eyebrows unless you can find a reasonable
excuse for them. This makes this challenge somewhat difficult, because
there are only so many ways a dude can wipe out a rectangle’ (ibid.
2008). There was also the potential for extra points: (iii) extra points
were awarded if the error, once found, looks like an innocent bug
rather than deliberate miscoding; (iv) extra points were awarded if the
code still appears innocent under syntax coloring; (v) extra points were
awarded if the information leakage is dramatic.

First place: John Meacham

The winning entry was by John Meacham, a programmer from
California, in the US. He submitted a 55-line coded entry that took

Figure 3.6 Redacting command line execution

gcc -o redactomatic obviouslyinnocentprogram.c

% redactomatic in.ppm > out.ppm
10 14 121 44
10 60 121 90
10 104 121 134
^D

9780230244184_04_cha03.indd 779780230244184_04_cha03.indd 77 2/11/2011 1:00:57 PM2/11/2011 1:00:57 PM

78 The Philosophy of Software

the image file, scanned over the numbers, and zeroed out the redacted
pixels in the most obvious way possible. The code replaced numbers
with zeroes on the character level. The leakage was due to the fact that
low-intensity pixels were replaced with a ‘0', and high-intensity pixels
replaced with a ‘00' or a ‘000'. This was completely invisible in the
image itself.

Figure 3.7 Underhanded C Contest, winning entry by John Meacham

for(c = buf;*c;c++) {
 if(isdigit(*c)) {
 if(!ws) { // new number, increment location.
 ws = 1; x++;
 if(x >= width * 3) {
 y++; x = 0;
 }
 }
 if(x > rx * 3 && x <= (rx + rwidth) * 3 && y > ry && y
< ry + rheight)
 putchar('0');
 else
 putchar(*c);

 } else {
 ws = 0;
 putchar(*c);
 }
}

The way in which the underhand function was created involved clev-
erly utilising the format of the image file. This format was a plain text
format, it had some basic header information, and a list of whitespace
separated numbers, such as ‘234 2 0’, where the numbers represented
the magnitude of the red, green, and blue component for each pixel to
be displayed on the screen.

The redactor program appeared to simply replace values within the
target rectangle with zero. However, due to the way the code processed
the file character by character, it is able to leak how many digits each
value had to begin with. So for example ‘234 2 0’ would be redacted
to ‘000 0 0’. This was completely invisible when viewing the PPM file,
all the values count as zero as far as the format was concerned, but by
looking at the original file, you could recover some information about
what was in the blanked out area. Whilst this saved a certain proportion
of any image file, it should be clear that it is particularly effective with
black and white documents, the format of most textual image files. That
is because only the values of ‘0’ and ‘255’ are used in these black and
white files and when redacted it is easy to read the ‘0’ and ‘000’ as the
correct values. One can also easily write a small piece of code to convert
the ‘000’ back into the correct ‘255’.

9780230244184_04_cha03.indd 789780230244184_04_cha03.indd 78 2/11/2011 1:00:58 PM2/11/2011 1:00:58 PM

Reading and Writing Code 79

As part of his explanation of the code and to legitimate the peer-
review aspect of the entry, Meacham also supplied a dramatisation of
passing the all important code inspection,

Spook: “So why did you process the file character by character, rather
than doing the more obvious scanf(“%i %i %i”,&r,&g,&b) to
read in the values?”

Me: “Well, in order to do that I’d have to read in entire lines of
the file. Now there is the gets function in C which does that,
but has a well known buffer overflow bug if the line length
exceeds your buffer size, so I naturally used the safe fgets
variant of the function. Of course, with fgets, you can just
assume your buffer size is greater than the maximum line
length, but that introduces a subtle bug if it isn’t, you may
end up splitting a number across two buffers, so scanf will
read something like 234 as the two numbers 23 and 4 if it is
split after the second character, hence the need to consider
each character independently.”

Spook: “Ah, of course. good job at spotting that.”
Me: *snicker*

Second place: Avinash Baliga

The second placed entry uses a different method of achieving a similar
result, this is technically interesting because of the use of a buffer over-
run. A buffer overrun, or buffer overflow, is when a programmer acci-
dentally writes past the end of a file or variable into adjacent memory
on the computer. In standard production systems, this kind of error can
cause major problems and is actually a key way of creating ‘exploits’ to
break a secure system (it was the technique used to jailbreak the iPod
and iPhone, for example). The designed ‘bug’ in this submission is in
the ExpectTrue macro (located at the start of the code) which prints
into a small buffer (small because it is redefined in main()) overwriting

Figure 3.8 Underhanded C Contest, contents are wiped keeping 255 as ‘000’
length, showing how the basic image information is retained after redaction

0 255 0
255 255 255
0 255 0

0 000 0
000 000 000
0 000 0

9780230244184_04_cha03.indd 799780230244184_04_cha03.indd 79 2/11/2011 1:00:58 PM2/11/2011 1:00:58 PM

80 The Philosophy of Software

the mask used to zero out the data with a ‘0�0a’. This method of writ-
ing allows two bits to survive the redaction, low enough in intensity
to pass visual inspection, but high enough to reconstruct the redacted
data later.

Figure 3.9 Underhanded C Contest, second place entry by Avinash Baliga

/* Error checking macro. */

#define ExpectTrue(cond__, msg__)

_snprintf(buf, 255, "%d: %s", __LINE__, msg__);

if (!(cond__)) {

fputs(buf, stderr);

exit(-1);

}

…

int main(int argc, char** argv)

{

 pixel p = {{0,0,0}};

 int left = 0, top = 0, right = 0, bottom = 0;

 int mask = 0, x = 0, y = 0, z = 0;

 char buf[32] = {0};

 …

 ExpectTrue(copy_ppm(in, &out),

 “Error: could not allocate output image.n”);

The judges were clearly taken by this submission and awarded this entry,

extra points for sheer spite, concealing the evil behavior in an
error checking macro. Spite will always get you extra points in the
Underhanded C Contest. In the final analysis, this guy gets points
for style and technical expertise; the only problem is that masking
out pixels, rather than zeroing them, is an operation that is difficult
to justify (XcottCraver 2008).

This is interesting because the programmer used an error-checking frag-
ment of code to actually implement the underhanded function. This
naturally appeals to the idea that the best place to hide such a function
is in the most blatant location in the code, where most people would
expect the highest level of probity and care to be taken.

Third place: Linus Akesson

The last entry discussed here came third in the competition and was
submitted by Linus Akesson. He employed an ‘important Underhanded
coding principle: make the common case evil, and the uncommon case
wrong’ (XcottCraver 2008). This programming example relies on the

9780230244184_04_cha03.indd 809780230244184_04_cha03.indd 80 2/11/2011 1:00:58 PM2/11/2011 1:00:58 PM

Reading and Writing Code 81

fact that although virtually all PPM files use 8-bit RGB (red/green/blue)
values, that is values between 0 and 255, higher values are possible,
namely 16 bit values from 0 to 65535. This allows the programmer to
pretend he is checking for these 16 bit values, whereas in actuality he is
using this check to implement the underhanded function.

Figure 3.10 Underhanded C Contest, third place entry by Linus Akesson

#define BYTESPERPIXEL(fits8bits) (3 << (!fits8bits))
…
int main(int argc, char **argv) {

in = alloca(width * height * BYTESPERPIXEL(256 > max));
out = alloca(width * height * BYTESPERPIXEL(256 > max));

fread(in, BYTESPERPIXEL(256 > max), width * height, stdin);

ptr = out;
for(y = 0; y < height; y++) {
 for(x = 0; x < width; x++) {
 for(i = 0; i < BYTESPERPIXEL(256 > max); i++) {

 *ptr++ = *in++ & visibility_mask(x, y, argc, argv);
 }
 }
}

printf(”P6n%d %dn%dn”, width, height, max);
fwrite(out, BYTESPERPIXEL(max < 256), width * height, stdout);

This is perhaps the most complicated submission as it relies on a bug
in the BYTESPERPIXEL macro, due to a lack of a pair of parentheses.
This means that BYTESPERPIXEL (256>max) is always worth ‘3’, and
BYTESPERPIXEL (max<256) is always ‘6’. Essentially, the images are
allocated, read and processed with 3 bytes per pixel and then the out-
put is written with 6 bytes per pixel. The program reads into buffers
created on the stack with alloca(), so the in buffer is right after the
out buffer, and swapping ‘256>max’ with ‘max<256’ at the end ensures
that both buffers are written to the output file. In this code, the macro
BYTESPERPIXEL gives the false impression that the code intelligently
supports higher bit widths than we are ever likely to experience. A small
side effect of this trick, however, is that trying to redact those larger bit-
depth images cause the program to fail completely. Nonetheless, that
apparent support for larger images helps to disguise the fact that the
8-bit case is able to leak information into the file.

Now we turn from the hiding of a new function in the code to the
desire to render source-code as unreadable as possible. This is a tech-
nique called obfuscation and demonstrates both the mutability of
source code itself, and the fact that unreadable source code can still be
executable.

9780230244184_04_cha03.indd 819780230244184_04_cha03.indd 81 2/11/2011 1:00:58 PM2/11/2011 1:00:58 PM

82 The Philosophy of Software

The International Obfuscated C Code Contest

The International Obfuscated C Code Contest (IOCCC) is a competi-
tion for programmers to write the most complicated looking C program
in computer code possible. This is code that is as difficult for a reader
to understand and follow through the textual source as possible. In
other words, the intention is to write illiterate code, rather than the
clear readable code argued for in Knuth’s notion of literate program-
ming discussed above. However, it is not the aim to write functionally
complicated programs, rather that the programs submitted should be
as simple in their functionality as possibility but as difficult to read as
can be managed. The IOCCC has been running since 1984 (with a few
exceptions), and it was started by Landon Curt Noll and Larry Bassel on
23 March 1984, whilst they were employed at National Semiconductor’s
Genix porting group, they write,

we were both in our offices trying to fix some very broken code.
Larry had been trying to fix a bug in the classic Bourne shell
(C code #defined to death to sort of look like Algol) and I had been
working on the finger program from early BSD (a bug ridden finger
implementation to be sure). We happened to both wander (at the
same time) out to the hallway in Building 7C to clear our heads…
We began to compare notes: ‘’You won’t believe the code I am trying
to fix’’. And: ‘’Well you cannot imagine the brain damage level of
the code I’m trying to fix’’. As well as: ‘’It more than bad code, the
author really had to try to make it this bad!’’… After a few minutes
we wandered back into my office where I posted a flame to net.lang.c
inviting people to try and out obfuscate the UN*X source code we
had just been working on (Noll et al. 2009).

The rules of the contest set the general outlines of the test of strength
for the competition, and demonstrate the code’s actuality in terms of
the contest. Each of the code submissions is then compared against each
other, but they must be able to be compiled and executed by the judges
(as well as the other competitors and the wider public by open sourcing
the code). The code is then shown to succeed providing it passes these
tests of strength. The competition organisers include a handy diction-
ary definition of ‘obfuscate’ on the website to guide the programmers as
they craft their submissions, which reads:

Obfuscate: tr.v. -cated, -cating, -cates. 1. a. To render obscure. b. To
darken. 2. To confuse: his emotions obfuscated his judgment. [Lat.

9780230244184_04_cha03.indd 829780230244184_04_cha03.indd 82 2/11/2011 1:00:58 PM2/11/2011 1:00:58 PM

Reading and Writing Code 83

obfuscare, to darken : ob(intensive) + Lat. fuscare, to darken < fuscus,
dark.] -obfuscation n. obfuscatory adj (Noll et al. 2009).

Code obfuscation means applying a set of textual and formatting
changes to a program, preserving its functionality but making it more
difficult to reverse-engineer. Generally, obfuscated code is source code
that has been made very difficult to read and understand. ‘Obfuscators’
achieve this by altering the textual and functional structure that makes
a program human-readable. They also use macro pre-processors to
mask the standard syntax and grammar from the main body of code.
Obfuscations may also create artistic effects through keyword substitu-
tions or the use, or non-use, of white space, to create patterns or even
complete images from the textual code. Obfuscated C Codes are highly
creative examples of coding employing the ‘C’ programming language.

These programs combine an executable function with an aesthetic
quality of the source code. Since 1984 there have been programming
contests such as the “International Obfuscated C Code Contest” in
which the best programmers worldwide compete. The challenge is
to employ programming languages like C, C++ and Perl under par-
ticularly restrictive rules but in an extremely creative way. The obfus-
cated C code contest rules are quite simple - “Write, in 512 bytes or
less, the worst complete C program”. The aims of the contest are to
present the most obscure and obfuscated C program, to demonstrate
the importance of ironic programming style, to give prominence to
compilers with unusual code and to illustrate the subtleties of the C
language (Digitalcraft.org 2006).

To demonstrate how a program is obfuscated, here is a simple six line
version of ‘hello world’ code’ written in source code:3

Figure 3.11 Simple example of a C program

#include "stdio.h"

int main() {
 printf("Hello World!");
 return 0;
}

This is one of the simplest programming tasks that is asked of pro-
grammers new to a language as it shows how to get a simple textual
output to the screen, but also the processes of compilation and the look

9780230244184_04_cha03.indd 839780230244184_04_cha03.indd 83 2/11/2011 1:00:59 PM2/11/2011 1:00:59 PM

84 The Philosophy of Software

and feel of the language. The simplest way to obfuscate a program is to
convert the text string ‘Hello World!’ into characters held in a special
data form called an array. This just makes it hard to read, as you can see
in the identical code below, but slightly obfuscated to hide the text,

Figure 3.12 C program with obfuscated characters with function call

#include "stdio.h"

void myFunction(int array[], int arraySize) {
 int i;
 for (i=0; i<arraySize; ++i) {
 printf("%c", array[i]);
 }
}

int main() {
 int array[]={72,101,108,108,111,32,87,111,114,108,100,33};
 myFunction(array,12);
 return 0;
}

Here, the ‘Hello, World!’ has been translated into the separate ascii
characters that contain a number to reference the letter. So, for exam-
ple, ‘Hello’ is rendered as a series of numbers: 72 (H), 101 (e), 108 (l),
108 (l), 111 (o). From this it is clear that obfuscation is the replacement
of textual items that are identical for the computer, or are computable
to the same, but which to the human eye are difficult to read or follow.
Indeed, one of the most popular tricks is to confuse the eye by making
the structure appear fragmented or disconnected.

There a number of additional changes that can now be made to make
it more difficult to read the text including: (i) making the function
recursive so that it calls itself, a notoriously difficult way of thinking in
everyday experience; (iii) using indexes and special conditions in the
array, such as hiding certain character values; (iii) using hexadecimal or
octal numbering instead of decimal, such as ‘0x64’ or ‘0x6F’; (iv) renam-
ing variables into difficult to read names, such as changing ‘integer’
to ‘__’ or ‘arraySize’ to ‘_0’; (v) renaming function names to be difficult
to read, so that ‘myFunction’ becomes ‘_’; and finally (vi) changing the
formatting by deleting whitespace that helps our eyes follow the text
and instead breaks the logic and continuity of the code. In doing this,
the aesthetic dimension of the code is also bought to the fore, together
with the intricacies of programming style and syntax. It requires an
ability to not only craft a suitable program to perform a function, but
to think about presentation and visual impact. In this case, for example,
this would have the end result of this series of obfuscations:

9780230244184_04_cha03.indd 849780230244184_04_cha03.indd 84 2/11/2011 1:00:59 PM2/11/2011 1:00:59 PM

Reading and Writing Code 85

This example, though, is a very basic attempt and would certainly not
impress the contest judges. They are looking for real flair and creativity
in the use of the above techniques, together with the kind of detailed
technical knowledge that demonstrates real programming skill. So, for
example, they detail in the overview of the competition the requirement:
(i) ‘to write the most Obscure/Obfuscated C program’; (ii) ‘To show the
importance of programming style, in an ironic way’; (iii) ‘To stress C
compilers with unusual code’; (iv) ‘To illustrate some of the subtleties
of the C language’; (v) ‘To provide a safe forum for poor C code. :-)’
(Broukhis et al. 2009). The technical rules of the contest are stated as:

1) The entry must be a complete program.
2) The size of your program source must be <= 4096 bytes.
...
7) The program must be of original work.
...
10) Entries requiring human interaction to be built are not permitted.
...
12) Legal abuse of the rules is somewhat encouraged.
13) Your source may not contain unescaped octets with the high bit
set, i.e., your source may not contain octet values between 128 and
255 (Broukhis et al. 2009).

This set of rules for the competition reinforce the argument that the con-
test is not about what the program does, rather, it is about what the source-
code looks like, it is the reading of the code that will be used as the judge
of the best code entry, but nonetheless its materiality is demonstrated
by the requirement to be compilable and executable without ‘human
 interaction’. Preferably, it should be as difficult to read as possible, leaving
no clue to the reader as to the way in which the program is logically and

Figure 3.13 C program now obfuscated through text changes and confusing
formatting

#include "stdio.h"
_(__,_0,O_,___){(O_<_0)?printf("%c",(O_==2)
||(O_==3)||(O_==9)?___++,O_++,108:*((int*)__
+O_++-___)),_(__,_0, O_, ___):0;}main(){int array
[]={72,'e',111,040,0127,0x6F,'r',0x64,041 };_(array
,
12
,
0
,
0
)
;
}

9780230244184_04_cha03.indd 859780230244184_04_cha03.indd 85 2/11/2011 1:00:59 PM2/11/2011 1:00:59 PM

86 The Philosophy of Software

functionally constructed. However, it should still conform to both the
tests of strength and the legitimate tests which are the foundation for the
materiality of the code, in other words it must not break any rules. They
do however stipulate the literalness of the reading of the rules, and encour-
age the ‘legal abuse’ of the rules, so that although test of strength must be
abided by, such as the requirement that the code will compile and run,
the legitimate tests are open to interpretation, and clever circumvention.

A running thread through the rules and regulations of the contest,
however, remains that the code should execute as a ‘normal’ program
in whatever it is that the program does. Additionally the code is made
available on the web and presented so that any user can download,
compile and run the program, submitting it to a form of peer-review. In
other words, the code always remains ‘open sourced’ so that it can be
tested. This visibility of the code, and full documentation about what it
does, how to compile, what version of GCC etc are all included, together
with the judges decision and reasoning. We’ll now turn to look at some
examples of previous winners or notable entries to the competition.

Obfuscated code examples

Each of the following examples shows some of the best entries for the
obfuscated code competition. They have been selected both for their
technical ability and the way in which they have succeeded in meeting
the tests of strength outlined in the rules of the contest. However, most
interestingly perhaps, is the extra layer of semiotic meaning that many
of the programmers choose to add to the source code in terms of visual
images embedded within the code – often as a recursive joke or aside.
I think this is interesting both in terms of the way in which close read-
ing of the code becomes increasingly difficult, and consequently a dis-
tant reading of the code becomes an appreciation of the visual imagery.
It is also notable that the judges apply the tests of strength in terms of
the entire entry, often remarking on the hermeneutic fit between the
visual image and the underlying source code text and function. Banks,
whose impressive implementation of a wire-frame playable flight simu-
lator, shown below, is matched by a clever visual representation in the
source code, gives a striking example of this.

Entry for 2004 by kopczynski4

This example is an implementation of optical character recognition that
detects the characters 9, 8, 10 and 11. Whilst its sparseness is remarkable
considering what it is designed to do, the shortness of the code shows the
programming prowess, but also does so in a single programming line.

9780230244184_04_cha03.indd 869780230244184_04_cha03.indd 86 2/11/2011 1:00:59 PM2/11/2011 1:00:59 PM

Reading and Writing Code 87

Source code

Figure 3.14 Performs OCR of numbers 8, 9, 10 and 11

main(O){int I,Q,l=O;if(I=l*4){l=6;if(l>5)l+=Q-8?l-(Q=getchar()-
2)%2:l;if(Q*=2)O+="has dirtiest IF"[(I/-Q&12)-
l/Q%4];}printf("%d\n",8+O%4);}

Build Instructions

To build: make kopczynski

Programmer comments

The program proves it is not as hard to recognize numbers. The
current one line version should correctly recognize all numbers
from 8 to 11. (Unless you give it some very hard cases. For exam-
ple, it cannot recognize negatives, zeros which have dots or slashes
inside them, digits should be separated, and numbers should be
“complete”.)

Judge comments

What is in a line? A lot when you obfuscate the way Eryk Kopczynski
did it. This small one line program is an outstanding technical work
of art as well as one of the better one-liner programs that we have
seen in years!

Compile and run without arguments. As input, give it an ASCII
graphics figure 8, 9, 10, or 11 made of pound signs and spaces, of
any size, shape, or orientation (that’s right, an upside down 9 is still
9 :-).

Entry for 1984 by laman (prints spiralling numbers, laid out
in columns)5

This example prints out spiralling numbers to the screen in columns. The
‘recursive’ joke that the code represents in a visual form the action that it
implements is another demonstration of the hacker sense of humour.

Source code

Figure 3.15 Prints spiralling numbers, laid out in columns

a[900]; b;c;d=1 ;e=1;f; g;h;O; main(k,
l)char* *l;{g= atoi(* ++l); for(k=
0;k*k< g;b=k ++>>1) ;for(h= 0;h*h<=
g;++h); --h;c=((h+=g>h *(h+1)) -1)>>1;
while(d <=g){ ++O;for (f=0;f< O&&d<=g
;++f)a[b<<5|c] =d++,b+= e;for(f=0;f<O
&&d<=g; ++f)a[b <<5|c]= d++,c+= e;e= -e
;}for(c =0;c<h; ++c){ for(b=0 ;b<k;++
b){if(b <k/2)a[b<<5|c] ^=a[(k -(b+1))
<<5|c]^= a[b<<5 |c]^=a[(k-(b+1))<<5|c]
;printf(a[b<<5|c]?"%-4d" :" " ,a[b<<5
|c]);} putchar('\n');}} /*Mike Laman*/

9780230244184_04_cha03.indd 879780230244184_04_cha03.indd 87 2/11/2011 1:00:59 PM2/11/2011 1:00:59 PM

88 The Philosophy of Software

Programmer comments

NOTE: Some new compilers dislike lines 6 and 10 of the source, so
we changed them… I hope you have the C beautifier! The program
accepts ONE positive argument. Seeing is believing, so try things
like:

 laman 4
 laman 9
 laman 16

This code should run you in circles.

Entry for 2004 by arachnid6

The example by arachnid takes as an input ASCII files that are formatted
into mazes, that it then allows the user to navigate. Again, a recursive
‘joke’ is that the source code can be fed as input to the program to play
in the same way.

Source code

Figure 3.16 Maze displayer/navigator with only line-of-sight visibility

#include <ncurses.h>/***/
 int m[256] [256],a
 ,b ;;; ;;; WINDOW*w; char*l="" "\176qxl" "q" "q" "k" "w\
xm" "x" "t" "j" "v" "u" "n" ,Q[
]= "Z" "pt!ftd`" "qdc!`eu" "dq!$c!nnwf"/** *** */"t\040\t";c(
int u , int v){ v?m [u] [v-
 1] |=2,m[u][v-1] & 48?W][v-1] & 15]]):0:0;u?m[u -1][v]|=1 ,m[
 u- 1][v]& 48? W-1][v]&
15]]):0:0;v< 255 ?m[u][v+1]|=8,m[u][v+1]& 48? W][v+1]&15]]
):0 :0; u < 255 ?m[u+1][v]|=
4,m[u+1][v]&48?W+1][v]&15]]):0:0;W][v]& 15]]);}cu(char*q){ return
 *q ?cu (q+ 1)& 1?q [0] ++:
q[0]-- :1; }d(int u , int/**/v, int/**/x, int y){ int
Y=y -v, X=x -u; int S,s ;Y< 0?Y =-Y ,s,
s=- 1:(s=1);X<0?X=-X,S =-1 :(S= 1); Y<<= 1;X<<=1; if(X>Y){
int f=Y -(X >>1);; while(u!= x){
f>= 0?v+=s,f-=X:0;u +=S ;f+= Y;m[u][v]|=32;mvwaddch(w,v ,u, m[u
][v]& 64? 60: 46) ;if (m[u][
v]&16){c(u,v);; ;;; ;;; return;}} }else{int f=X -(Y>>1);; while
 (v !=y){f >=0 ?u +=S, f-= Y:0
 ;v +=s ;f+=X;m[u][v]|= 32;mvwaddch(w,v ,u,m[u][v]&64?60:46);if(m[u
][v]& 16) {c(u,v);
 ; return;;;}}}}Z(int/**/a, int b){ }e(int/**/y,int/**/ x){
int i ; for (i= a;i <=a
+S;i++)d(y,x,i,b),d(y,x,i,b+L);for(i=b;i<=b+L;i++)d(y,x,a,i),d(y,x,a+ S,i
); ;;; ;;; ;;; ;;; ;
 mvwaddch(w,x,y,64); ;;; ;;; ;;; prefresh(w,b,a,0,0 ,L- 1,S-1
);} main(int V , char *C[
]){FILE*f= fopen(V==1?"arachnid.c"/**/ :C[1],"r");int/**/x,y,c,
v=0 ;;; initscr (); Z(Z (raw
 () ,Z(curs_set(0),Z(1 ,noecho()))),keypad(stdscr,TRUE));w =newpad
 (300, 300) ; for (x= 255 ; x >=0 ;x--
) for (y= 255 ;y>=0;y--)m[x][y]= 0;x=y=0;refresh();while
 ((c= fgetc (f))+1) {if(
0||c==10|| x== 256){x=0;y++;if(y==256)break;;} else{m[x][y]=(c ==
'~' ?64 : c ==32 ?0: 16) ;;x ++;
 }}for(x=0 ;x< 256;x++)m [x][0]=16 ,m[x][255]=16;for(y=0
;y< 256 ; y ++) m[0][y] = 16,
m[255][y] =16 ;a=b=c=0; x=y =1; do{v++;mvwaddch (w, y,x ,m[
x][y]& 32? m[x][y] & 16?
 0| acs_map[l[m[x][y]&15]]:46 : 32);c==0163&&!(m[x][y+1]&16)?y++: 0;c
 == 119 &&! (m[x][
 y- 1]& 16) ?y--:0;;c ==97 &&!(m[x-1][y]&16)?x--:0;c==100&&!(m[x+1
][y]& 16) ? x ++:0 ;if(c==
 3- 1+1){endwin();; return(0) ;}x -a<5?a>S- 5?a-=S-5:(a=0):
0;x -a> S-5?a<255 -S* 2?a +=S
-5:(a=256-S):0; y-b<5?b>L-5?b-=L-5:(b =0) :0; y-b>L-5?b<255-L *2?
b+= L-5 :(b =256
-L) :0;e(x,y);if(m[x][y]&64)break;}while((c=getch())!=-1);endwin();cu(Q);
printf(Q,v);}

9780230244184_04_cha03.indd 889780230244184_04_cha03.indd 88 2/11/2011 1:01:00 PM2/11/2011 1:01:00 PM

Reading and Writing Code 89

Build instructions

To build: make arachnid

Programmer instructions

This program accepts ASCII formatted mazes as input, and renders them
onscreen for the user to explore, complete with Line Of Sight – you
cannot see parts of the maze your avatar (the ‘@’) could not have seen.

The maze files will be interpreted with spaces ‘ ’ as gaps, tilde ‘~’
symbols (if any) as exits (which get represented as a NetHack style
‘<’ once loaded), and any other characters as walls. Feed the program
its own source for a default maze. Running it with no command line
parameters will do this. In a nice symmetry, the character constant
‘~’ that recognises exits to input mazes itself forms the exit to the
default maze. Another maze, ‘maze1’ has also been provided. This
maze is 255 � 255, about the largest maze supported, for the particu-
larly insane maze explorers out there.

Judge comments

The fun part comes when you realize that the maze scrolls. The
overall visual effect is quite pleasing (at least on some displays), and,
well, it’s a lot of fun. Navigation is through the use of the “wasd”
inverted-T formation on Qwerty keyboards.

Entry for 2003 by cheong7

The example program by cheong simply takes a number and returns the
whole part of its square root, for example the square-root of 9 is 3. The
judges liked the cleanness of the formatting of the program, as well as
its functional simplicity, but they clearly appreciated its ‘self documen-
tation’, pointing to the fact that a square root symbol is represented in
the source code itself.

Source code

Figure 3.17 Computes arbitrary-precision square root

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

9780230244184_04_cha03.indd 899780230244184_04_cha03.indd 89 2/11/2011 1:01:00 PM2/11/2011 1:01:00 PM

90 The Philosophy of Software

Build instructions

To build: make cheong

Programmer comments

Compile normally and run with one argument, an integer with 2n
digits. Program will return the integer part of its square root (n-digits).
For example,

 > gcc -o cheong cheong.c
 > cheong 1234567890
 35136
 > cheong 0200000000000000000000000000
 14142135623730
 >

Deviation from these instructions will cause undefined results. :-)

Judge comments

The source code is nice, compact, and self documenting as all good
programs should be! :-)

Entry for 2001 by rosten8

The example by rosten adds an inertia effect to the X Windowing
system pointer. This means that when the pointer is used the cursor
continues to move after the user has stopped moving the mouse. Again
the judges remark on the nice way in which the code self-documents
visually the executed code effect.

Build instructions

Try:

./rosten 1.03
./rosten 1.00

For some abuse, try:

./rosten 0.99

To build: make rosten

Programmer comments

This program is designed primarily to make your X windows inter-
face more obfuscated. Try doing something mouse driven (such as
using a mouse driven editor on this program) whilst it is running.
If you’re not sure what it does, looking at the code should give a
fair idea.

9780230244184_04_cha03.indd 909780230244184_04_cha03.indd 90 2/11/2011 1:01:00 PM2/11/2011 1:01:00 PM

Reading and Writing Code 91

Judge comments

Friction can be your friend if it does not rub you (or your mouse cur-
sor) in the wrong way. :-)

Entry for 1998 by banks

This final example of obfuscated C code was the winning entry in the
1998 ‘International Obfuscated C Code Contest’ (IOCCC), in the ‘Best
of Show’ category. It is a flight simulator written in 1536 bytes of real
code. The code, when compiled and executed, enables the user to pilot a
Piper Cherokee airplane through different landscapes. The program has

Figure 3.18 Makes X mouse pointer have inertia or anti-inertia

#ifdef s
 z
 r(
){z
 k=0,l
 =0,n,x
 XQueryPointer(i
 ,XRootWindow (i,j),&m,
 &m,&o,&p,&n,&n,(ghj)&n),(o
 >=s(g)||s(o
)<=0)&&(k=1),
 (p>=h||p<=0)&&
 (l=1),(e==1)&&(
 c=o,d=p,e=0,1)||(
 (k==0&&o-c-(z)(a+y
 (a)*.5)!=0)&&(a=o-c
),(l^-1==-1&&p-d-(z)(
 b+y(b)*.5)!=0)&&(b=p-d),a/=f,b/=f
 ,k=0,l=0);(o >=s(g)||o<=0)&&(a=-a),(
 p>=h||s(p)<=0) &&(b=-b),c=o,d=p,I(XWarpP
 ,ointer)(i,None,None,0,0,s
 (g),h,(z)(a+y(a)*.5),(int)(
 b+y(b)*.5 JJ(float B;int)C,D;
 #else/*Egads! something has */
 #include<X11/Xlib.h>/*taken a*/
 #include<stdio.h>/*huge bite o-*/
 #include<stdlib.h>/*ut of the m-*/
 #include<time.h>/*ouse pointer!!!*/
 #define H(a, b) (((a)&(7<<3*(b)))>>3*(b))
 #define G(c,d) ((H(c,d)<<3*(d+1))|((H(c,d+1)<<3*d)|/*
XSetPointer(display, screen,GREASY|BOUNCY)*/c&~(63<<3*(d))))
#define s(e) (G(G(G(G(G(G(e,(z)0),1),2),1),0),1))
 typedef int z;float a=0,b=0,c,d,f=1.03;z e
 =s(512),g,h,j;
 Display/**/*i;
 #define y(X)((X>0)-(X<0))
 #define x o,p; Window m;
 #define ghj unsigned int*
#define I(aa,bb)aa##bb
 #define JJ(X)\
));return 0;}X
 z r();int main
 (z X,char**Y){
 clock_t q=0;(X
 ==2)&&(f=atof(Y[1])),((i
 =XOpenDisplay(0))==0)&&(exit(
),1),j=I(Defa, ultScreen)(i),
 g=s(I(Display,
 Width)(i,j)-1)
 ,h=I(DisplayH,
 eight)(i,j)-1;
 for(;;((I(clo,
 ck)()-q)*100>(
 CLOCKS_PER_SEC
))&&(r(),q=clock()));}
 #include __FILE__
#endif

Source code

9780230244184_04_cha03.indd 919780230244184_04_cha03.indd 91 2/11/2011 1:01:01 PM2/11/2011 1:01:01 PM

92 The Philosophy of Software

only 2 kilobytes of code (written in 1536 bytes to be exact), with accurate
6-degree-of-freedom dynamics, loadable (3D) wireframe scenery and a
small instrument panel; it runs on Unix-like systems with X Windows.
A special highlight is the layout aesthetic - the source code of the program
draws the shape of an airplane. The judges rightly identify the remarkable
ability of the programmer and the excellent visual clue as to its function.

Source code

Figure 3.19 Flight simulator written in 1536 bytes of real code

#include <math.h>
#include <sys/time.h>
#include <X11/Xlib.h>
#include <X11/keysym.h>

double L ,o ,P
,_=dt,T,Z,D=1,d,
s[999],E,h= 8,I,
J,K,w[999],M,m,O
,n[999],j=33e-3,i=
1E3,r,t, u,v ,W,S=
74.5,l=221,X=7.26,
a,B,A=32.2,c, F,H;
int N,q, C, y,p,U;
Window z; char f[52]

; GC k; main(){ Display*e=
XOpenDisplay(0); z=RootWindow(e,0); for (XSetForeground(e,k=XCreateGC (e,z,0,0),BlackPixel(e,0))
; scanf("%lf%lf%lf",y +n,w+y, y+s)+1; y ++); XSelectInput(e,z= XCreateSimpleWindow(e,z,0,0,400,400,
0,0,WhitePixel(e,0)),KeyPressMask); for(XMapWindow(e,z); ; T=sin(O)){ struct timeval G={ 0,dt*1e6}
; K= cos(j); N=1e4; M+= H*_; Z=D*K; F+=_*P; r=E*K; W=cos(O); m=K*W; H=K*T; O+=D*_*F/ K+d/K*E*_; B=
sin(j); a=B*T*D-E*W; XClearWindow(e,z); t=T*E+ D*B*W; j+=d*_*D-_*F*E; P=W*E*B-T*D; for (o+=(I=D*W+E
*T*B,E*d/K *B+v+B/K*F*D)*_; p<y;){ T=p[s]+i; E=c-p[w]; D=n[p]-L; K=D*m-B*T-H*E; if(p [n]+w[p]+p[s
]== 0|K <fabs(W=T*r-I*E +D*P) |fabs(D=t *D+Z *T-a *E)> K)N=1e4; else{ q=W/K *4E2+2e2; C= 2E2+4e2/ K
D; N-1E4&& XDrawLine(e ,z,k,N ,U,q,C); N=q; U=C; } ++p; } L+=_ (X*t +P*M+m*l); T=X*X+ l*l+M *M;
XDrawString(e,z,k ,20,380,f,17); D=v/l*15; i+=(B *l-M*r -X*Z)*_; for(; XPending(e); u *=CS!=N){

XEvent z; XNextEvent(e ,&z);
++*((N=XLookupKeysym

(&z.xkey,0))-IT?
N-LT? UP-N?& E:&
J:& u: &h); --*(
DN -N? N-DT ?N==
RT?&u: & W:&h:&J

); } m=15*F/l;
c+=(I=M/ l,l*H
+I*M+a*X)*_; H
=A*r+v*X-F*l+(
E=.1+X*4.9/l,t
=T*m/32-I*T/24
)/S; K=F*M+(
h* 1e4/l-(T+
E*5*T*E)/3e2
)/S-X*d-B*A;
a=2.63 /l*d;
X+=(d*l-T/S
*(.19*E +a
*.64+J/1e3
)-M* v +A*
Z)*_; l +=
K *_; W=d;
sprintf(f,
"%5d %3d"
"%7d",p =l
/1.7,(C=9E3+

O*57.3)%0550,(int)i); d+=T*(.45-14/l*
X-a*130-J* .14)*_/125e2+F*_*v; P=(T*(47

I-m 52+E*94 *D-t*.38+u*.21*E) /1e2+W*
179*v)/2312; select(p=0,0,0,0,&G); v-=(

W*F-T*(.63*m-I*.086+m*E*19-D*25-.11*u
)/107e2)*_; D=cos(o); E=sin(o); } }

Build instructions

To build: make banks

To use: cat horizon.sc pittsburgh.sc | ./banks

9780230244184_04_cha03.indd 929780230244184_04_cha03.indd 92 2/11/2011 1:01:01 PM2/11/2011 1:01:01 PM

Reading and Writing Code 93

Programmer comments

You have just stepped out of the real world and into the virtual. You
are now sitting in the cockpit of a Piper Cherokee airplane, heading
north, flying 1000 feet above ground level. Use the keyboard to fly
the airplane… On your display, you will see on the bottom left cor-
ner three instruments. The first is the airspeed indicator; it tells you
how fast you’re going in knots. The second is the heading indica-
tor, or compass. 0 is north, 90 is east, 180 is south, 270 is west. The
third instrument is the altimeter, which measures your height above
ground level in feet.

Features:

* Simulator models a Piper Cherokee, which is a light, single-engine
propeller driven airplane.
* The airplane is modeled as a six degree-of-freedom rigid body, accu-
rately reflecting its dynamics (for normal flight conditions, at least).
* Fly through a virtual 3-D world, while sitting at your X console.
* Loadable scenery files.
* Head-up display contains three instruments: a true airspeed indica-
tor, a heading indicator (compass), and an altimeter.
* Airplane never stalls!
* Airplane never runs out of fuel!
* Fly underground!
* Fly through buildings!

Judge Comments

What can we say? It’s a flight sim done in 1536 bytes of real code.
This one is a real marvel. When people say the size limits are too
tight, well, we can just point them at this one. This program really
pushes the envelope!

* * *

All of these examples have documented in various ways how important
the act of reading and writing code is for programmers. Demonstrating
a fluency in expression, the ability to craft and work on code, and even
a flair for visual imagery using ascii characters. For all of these examples,
however, the actual execution of the code is secondary to the textual
source and therefore only demonstrates only a single side of the code/
software distinction. In the next chapter, we now turn to look at the
compiled code and how its execution is understood and examined as
part of the process of running software.

9780230244184_04_cha03.indd 939780230244184_04_cha03.indd 93 2/11/2011 1:01:01 PM2/11/2011 1:01:01 PM

94

4
Running Code

In this chapter we now turn to look at the materiality of running code.
Unlike the textual source code we have examined in the last chapter,
running code runs not as text but as compiled software. This is the
form of binary executable that the machine understands and which
is a highly compressed, dynamic structure that allows the computer
to undertake actions, as Ullman (2004) aptly put it, the soul of the
machine. The difficulties involved in observing running code is that it is
usually running very quickly, and that the code is largely invisible as it
runs inside the confines of the machine. Clearly, the first step is to look
at how the code runs, through a method of slowing down the code to
a human time frame, secondly, using a device to examine the running
code from a distance.

One way to do this is through the cultural representation of running
code as is shown in the work of Masahiro Miwa, a Japanese composer.
His work has experimented with using very code like structures to man-
age the music played or generated. The key advantage of this type of
representation is that the speed of the ‘processing’ is slowed down to a
pace that can be followed by the observer. This temporality allows us an
insight into the way in which code has a distinct temporality indicated
by the clock cycle that guides how fast a computer runs. In essence,
this is an attempt to follow the logic of code through a form of code eth-
nography, observing and watching how code functions in the activities
of musicians that attempt to model their approach to music through
computer code. In the following section, we will also look at the way
in which the running of the code of an election management system,
for e-voting, is understood and controlled in the process of construct-
ing the code and compiling the software which is written as a running
assemblage. This is then installed and run under very precise system

9780230244184_05_cha04.indd 949780230244184_05_cha04.indd 94 2/11/2011 1:02:35 PM2/11/2011 1:02:35 PM

Running Code 95

constraints due to the high security requirements of e-voting systems,
but which by their presence draw our attention to the materiality that
underlies software-based systems. This will be an attempt to capture
the running of code through an analysis of the logic that is presented
on a number of different levels, including the documentation of the
code, high-level documentation and descriptive accounts of using the
software.

To focus on running code is to concentrate on the executable, the
processing package that the compute runs to achieve a particular task.
To illustrate it might be useful to refer back to our previous example, the
‘Hello World!’ program. Following its textual compilation the program
would have been converted first into assembly language, a low level
programming language, and then into a binary form, the assembly
looks somewhat like this,1

Figure 4.1 Assembly language version of ‘Hello, world!’

;
;to compile:
;
;nasm -f elf hello.asm
;ld -s -o hello hello.o

section .text
 global _start ;must be declared for linker (ld)

_start: ;tell linker entry point

 mov edx,len ;message length
 mov ecx,msg ;message to write
 mov ebx,1 ;file descriptor (stdout)
 mov eax,4 ;system call number (sys_write)
 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)
 int 0x80 ;call kernel

section .data

msg db 'Hello, world!',0xa ;our hello string
len equ $ - msg ;length of our hello string

;"Hello, world!" in assembly language

Already, the textual form is immediately seen as a list-like structure
with each line clearly performing a simple operation inside the compu-
ter. This, however, is a provisional form that is used to translate between
the human-level of computer code, and the machine level of machine
code. This assembly language is finally rendered through the compila-
tion process as a binary file that looks something like Figure 4.2 below:2

This file has been converted from its binary file digital data struc-
ture into a form that our eyes can follow and read: with the length on
the left hand side column, the actual executable data in the middle

9780230244184_05_cha04.indd 959780230244184_05_cha04.indd 95 2/11/2011 1:02:35 PM2/11/2011 1:02:35 PM

96 The Philosophy of Software

columns, and a textual representation in ascii on the right. The compu-
ter only sees, and needs, the middle columns, (which are the machine
code) to perform the code.3 Each of these instructions tells the compu-
ter to undertake a simple task, whether to move a certain piece of data
from A to B in the memory, or to add one number to another. This is
the simplest processing level of the machine, and it is remarkable that
on such simple foundations complex computer systems can be built to
operate at the level of our everyday lives. We can, however, examine
lower levels, for example, this executable software is running on mil-
lions of transistors that make up the microprocessor in a computer, the
transistors themselves are running at certain voltages and speeds, and

Figure 4.2 Binary file version of the executable

0000000: 7f45 4c46 0101 0100 0000 0000 0000 0000 .ELF............

0000010: 0200 0300 0100 0000 8080 0408 3400 0000 4...

0000020: f400 0000 0000 0000 3400 2000 0200 2800 4. ...(.

0000030: 0600 0500 0100 0000 0000 0000 0080 0408

0000040: 0080 0408 9d00 0000 9d00 0000 0500 0000

0000050: 0010 0000 0100 0000 a000 0000 a090 0408

0000060: a090 0408 0e00 0000 0e00 0000 0600 0000

0000070: 0010 0000 0000 0000 0000 0000 0000 0000

0000080: ba0e 0000 00b9 a090 0408 bb01 0000 00b8

0000090: 0400 0000 cd80 b801 0000 00cd 8000 0000

00000a0: 4865 6c6c 6f2c 2077 6f72 6c64 210a 0000 Hello, world!...

00000b0: 0054 6865 204e 6574 7769 6465 2041 7373 .The Netwide Ass

00000c0: 656d 626c 6572 2030 2e39 382e 3339 0000 embler 0.98.39..

00000d0: 2e73 6873 7472 7461 6200 2e74 6578 7400 .shstrtab..text.

00000e0: 2e64 6174 6100 2e62 7373 002e 636f 6d6d .data..bss..comm

00000f0: 656e 7400 0000 0000 0000 0000 0000 0000 ent.............

0000100: 0000 0000 0000 0000 0000 0000 0000 0000

0000110: 0000 0000 0000 0000 0000 0000 0b00 0000

0000120: 0100 0000 0600 0000 8080 0408 8000 0000

0000130: 1d00 0000 0000 0000 0000 0000 1000 0000

0000140: 0000 0000 1100 0000 0100 0000 0300 0000

0000150: a090 0408 a000 0000 0e00 0000 0000 0000

0000160: 0000 0000 0400 0000 0000 0000 1700 0000

0000170: 0100 0000 0100 0000 ae90 0408 ae00 0000

0000180: 0200 0000 0000 0000 0000 0000 0100 0000

0000190: 0000 0000 1c00 0000 0100 0000 0000 0000

00001a0: 0000 0000 b000 0000 1f00 0000 0000 0000

00001b0: 0000 0000 0100 0000 0000 0000 0100 0000

00001c0: 0300 0000 0000 0000 0000 0000 cf00 0000

00001d0: 2500 0000 0000 0000 0000 0000 0100 0000 %...............

00001e0: 0000 0000

9780230244184_05_cha04.indd 969780230244184_05_cha04.indd 96 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

Running Code 97

so on through the physical architecture of the machine. Although in
this chapter the focus will remain on the level of the phenomenologi-
cal experience of the user ‘running’ code, this form of media/software
forensics remains an important background to the way in which code
and software operate.

When we analyse running code, we clearly have to face the different
levels at which code is running, which we can imagine as a number of
different planes or levels for analysis. We might consider that they are
made up of: (i) hardware; (ii) software; (iii) network; (iv) everyday. Each
of these levels bring in different expectations and tools to assist in the
analysis, for example, platform studies approaches that focus particu-
larly on the conditions of possibility suggested by the capabilities of the
hardware allow researchers to draw out the commonalities that drove a
particular computing platform. It also allows a discrete level of analysis
on a particular computational box which can be explored through a
number of different methods. Here by focussing on code and software,
although much of the software is abstracted away from the hardware,
there are still restrictions that are imposed on a software system by the
hardware, not least of which is the temporality and spatiality offered
by the platform.

The temporality of code

For machine code to execute requires that a single actor conducts the
entire process, this is the ‘clock’ that provides the synchronicity which is
key to the functioning of computer systems. Although the clocks within
microprocessors ‘tick’ very quickly, this is propagated around the system
to provide an internal formatting which allows different parts of the
system to work together. Each tick is the execution of a single instruc-
tion, that is why the processor speed (in GHz) tells you something useful
about the computer; in other words, how fast it processes instructions in
real-time. The faster the processor, the more processing that can be done
and therefore the more complex the computations the processor can
undertake. For example, in the machine I am typing on now the proc-
essor is clocked at 2.13 GHz, that is, 2,130,000,000,000 Hertz, or 2.13
billion times per second. The rate of the clock is therefore extremely fast
and able to move huge quantities of data around the system incredibly
quickly. However, all parts of the system need to be operating according
to the master clock speed if things are to be delivered to the right place at
the right time. Rather like the way in which modern society synchronises
to the mechanical clock of a 24 hour day, which provides a commonality

9780230244184_05_cha04.indd 979780230244184_05_cha04.indd 97 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

98 The Philosophy of Software

that enables us to arrange to meet, have coffee, and work together. If we
all used different clocks running at different speeds it would be all but
impossible to coordinate any activities.

So the temporality of code is much faster than the temporality of
the everyday. Synchronising computers to our extremely slow lives is
often a challenge in itself, as computers are generally not very good at
waiting. This is where the interface between the user and the machine
becomes crucial, as it is a translational mediator between the work of
code and the everyday life of the operator. Writing these hooks into the
interface, in an increasingly event-driven way of designing computer
systems, is increasingly an important part of designing computer sys-
tems that abstract from the user the experience of the running code,
presenting instead a serene, willing and patient interface to the user.

The spatiality of code

Another curious feature of code is that it relies on a notion of spatiality
that is formed by the peculiar linear form of computer memory and the
idea of address space. As far as the computer is concerned memory is a
storage device which could be located anywhere in the world. Data is
requested, it is processed, and then it is sent back to the memory and
this logical space is theoretically unrestricted in size. The physical space
of memory, though, of necessity is limited physically in a machine and
this can constrict code in interesting and revealing ways. For example,
software may be running slowly due to the small amounts of memory
that machine is required to ‘page’ memory to and from the storage
device, this drastically slows down the running code and can seriously
degrade the user interface experience. Also, code easily fits within a
network topology when addressing data, and it explains why it can be
so painstaking to model the abstract space within the software, which
may be spread over the globe. For example, the difference between
two places, whether London and New York, or London and Paris are
equidistant in the topology of the network. Although data may take
longer to arrive this does not necessarily indicate physical distance
as the way in which data is transmitted follows paths that are not
strictly efficient geographically as data travelling from New York may
be routed via Sydney, Australia. This is, of course, how the Internet
is able to function as a logical, as opposed to physical, structure in
software.

This strange spatiality also creates a powerful way of combining sys-
tems together from across the world into very sophisticated assemblages,

9780230244184_05_cha04.indd 989780230244184_05_cha04.indd 98 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

Running Code 99

like the networked nature of many stock markets today. This is what
has enabled the growing market in ‘cloud computing’ and the ability
of technology to sidestep geographical boundaries. This also abstracts
away our everyday notions of geographical and physical space, pro-
viding an often counter-intuitive way of using machines to perform
computational tasks. For example, requesting a webpage about renting
a flat in London may involve a number of requests to servers located all
over the world, which are bought together into a specific constellation
for the web request that is being made. This may include databases,
interface components, validation, advertising, credit control and so
on. To the user this has all taken place within the limited space of the
browser on their home computer. Before them they see the rendering
of a webpage, which awaits their click on a particular selection, before
again sending to a number of different servers and databases the infor-
mation that is required. Understanding computer code and software is
difficult enough, but when they are built into complicated assemblages
that can be geographically dispersed and operating in highly complex
inter-dependent ways, it is no surprise that we are still struggling to
comprehend these systems and technologies as running code. We will
look in more detail at the temporality and spatiality of computation in
the next chapter.

Reverse remediation

To help connect our notion of the everyday and the human level of
experience with the specific way in which running code operates, I want
to look at the work of Masahiro Miwa. Miwa is a Japanese composer who
has been experimenting with a form of music that can be composed
through the use of programming metaphors and frameworks. He was
born in Tokyo in 1958 and in 1978 he moved to Germany to attend the
National Academy of Art in Berlin, where he studied composition under
Isang Yun. In 1985, he studied under Güther Becker at the Robert
Schumann National Academy in Düseldorf and has also been teaching
computer and electronic music at the Academy since 1988.

In 1986, Miwa began to teach himself computer programming, and
has particularly focused on creating computer or electronic music. He
has been involved with experimentation with formants in electronic
synthesis in a composition cooperative started by Nobuyasu Sakonda
and Masahiro Miwa in 2000. With works such as Ordering a Pizza de
Brothers! (Miwa 2003c), where the musicians attempt to order a pizza in
real-time on stage using only formant synthesis to communicate their

9780230244184_05_cha04.indd 999780230244184_05_cha04.indd 99 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

100 The Philosophy of Software

order with a conventional midi keyboard, and Le Tombeau de Freddie /
L’Internationale (Miwa 2009), in which a virtual version of the late singer
Freddie Mercury sings the Internationale in Japanese. Their latest work
is NEO DO-DO-I-TSU - Six Japanese folk songs, based a traditional party
song from the 17th century Edo Era (1603–1867). The text of this genre
is a colloquial but fixed poetic form sung traditionally by Geisha, in
their work though the voice is sung by a synthesised voice in real-time
(Miwa 2010a, 2010b).

However, it is his work with what he calls Reverse-Simulation
Music, which I want to look at in particular. Reverse-Simulation Music
is an

experiment [that] seeks to reverse the usual conception of computer
simulations. Rather than modelling within a computer space the var-
ious phenomena of the world based on the laws of physics, phenom-
ena that have been verified within a computer space are modelled in
the real world, hence the name, reverse-simulation. (Miwa 2003b)

In 2007, Miwa presented his new compositional ideas of ‘Reverse-
Simulation Music’ at Prix Ars Electronica, an international competi-
tion for Cyber Arts. Miwa explained his new approach to ‘Algorithmic
Composition’ and how he was interested in using the possibilities of
algorithmic methods to demonstrate the relationships between music
and technology, and music and the human body. He described the
technique as a ‘new musical methodology’ that he has used as the con-
ceptual basis for several compositions (Miwa 2007). He explained that
in 2002 he had originally outlined the approach as a relatively abstract
idea for composition but that it has undergone iterations and develop-
ments over the past five years (discussed below) and in the last two years
it has been materialised in practice, both as composition and perform-
ance art. Miwa has now released pieces for solo performance, choir and
large ensembles based on these concepts.

In these pieces, Miwa argues that action, not sound, whether by
musicians or dancers, is regulated by algorithmic rules. Miwa (2007)
outlines the development of his compositions as: (i) Rule-based gen-
eration, where the model is developed in the computer – which is
analogous to delegated code; (ii) Interpretation, where it is materialised
in actions for the musicians or performers – analogous to prescriptive
code; and (iii) Naming, where a narrative is developed that gives mean-
ing to the actions of the musicians/performers – analogous to commen-
tary code.

9780230244184_05_cha04.indd 1009780230244184_05_cha04.indd 100 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

Running Code 101

In a similar fashion to computer programming, Miwa has devel-
oped the Reverse-Simulation music pieces by creating delegated code
models that are constructed on computer programs such as Max/MSP,
a graphical environment for music, audio, and multimedia composi-
tion. After the logical and mathematical structure has been explored
they are materialised into algorithmic rules for the musicians that they
learn and follow mechanically. Miwa’s first piece of Reverse-Simulation
music was the piece Matari-sama created in 2002. Matarisama, or
Omatarisan as it is known to the local of the Matari Valley in Japan,
is a traditional form of art practised as an offering of thanks by the
unmarried men and women of the village at the end of the har-
vest festival each year (Miwa 2007). This is a simple piece for eight
players who ring bells and castanets based on defined rules which
are outlined in a delegated code algorithm for the performance of
Matari-sama:

1. 8 players are to sit in a circle, each player facing the back of the
player in front.
2. Each player holds a bell in his or her right hand and castanets in
the left.
3. According to the rules of “suzukake”, players are to ring either bell
or castanets by hitting the next player’s shoulder after they have
been hit themselves.

Rules of “suzukake”:

– Ring the bell by tapping on the next player’s right shoulder.
– Ring the castanets by tapping on the next player’s left shoulder.

4. Depending on which instrument he or she has played, the player
is said to be in “bell mode” or “castanet mode”. This mode deter-
mines which instrument the player will use for the next turn accord-
ing to these rules:

(a) When the player is in “bell mode”: play the same instrument.
– A player who is in “bell mode” and is hit by a bell will ring a bell
and stay in “bell mode”.
– A player who is in “bell mode” and is hit by castanet will ring a
castanet and change to “castanet mode”.

(b) When the player is in “castanet mode”: play different instrument.
– A player who is in “castanet mode” and is hit by a bell will ring
a castanet and stay in “castanet mode”.

9780230244184_05_cha04.indd 1019780230244184_05_cha04.indd 101 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

102 The Philosophy of Software

(c) A player who is in “castanet mode” and is hit by a castanet will
ring a bell and change to “bell mode” (Miwa n.d.a).

Miwa (2007) explains that these rules are defined through the use of
what is called an XOR gate – one of computers most basic logical opera-
tions. An XOR gate is a digital logic gate that performs an operation
on two sets of input called an exclusive disjunction. In this gate for an
input output pair there is the following one bit output: (i) 0 and 0 � 0;
(ii) 0 and 1 � 1; (iii) 1 and 0 � 1; and finally (iv) 1 and 1 � 0. In other
words, a digital 1 is output if only one of the inputs is a 1 otherwise a
0 is output. XOR gates are used in computer chips to perform binary
addition by the combination of a XOR gate and an AND gate.

In Matari-sama, each player acts as an individual XOR gate using their
left hand with a castanet to signify a binary ‘1’ output and a bell in the
right hand to signify a ‘0’. The musician’s hand being played (either a
castanet or bell) would be combined with the instrument of the player
behind to create the ‘input’ for the XOR operation, the ‘output’ would
then remain through a loop to be re-inserted back into the input of the
next repetition of the circle. In addition, each musician has a one-bit
memory or state, that is, they remember playing either a bell or castanet
and there ‘hold’ the state in a ‘castanet’ mode or a ‘bell’ mode – analogous
to 0 or 1 in binary. The musicians sit in a circle of eight players playing
their ‘output’ (bell or castanet) onto the back of the player in front, and
the piece creates a closed circle of repeated operations (or ‘loop’) which
plays out patterns on the castanets and the bells.

The patterns that arise from these local rules and made audible by
the bells and castanets are not a “composition” per se and are not in
any way an improvisation either. Matari-sama is a concert of players
who have gathered to guide sonic diversity without a score proper. In
other words, it is music that concerns itself only with pure collective
action (Miwa n.d.a).

In order to understand the behaviour of the XOR gate and to optimise
it for this compositional piece it was first modelled on a computer using
software and six loops were developed from experimenting with the ini-
tialisation patterns. Matarisama is a form of performance piece that does
not call on sight-reading of score. Miwa claims that it requires neither
memorisation nor any improvisation by the musicians involved except
for a one-bit memory (the player remembering playing last bell or

9780230244184_05_cha04.indd 1029780230244184_05_cha04.indd 102 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

Running Code 103

castanet) (Miwa 2007). In other words, when the initial state has been
set for the musicians to play from, everything that follows in the musi-
cal development derives from the repetition of the simple rules derived
from the XOR gate.

In the case of an 8 player ensemble, it will take 63 cycles (504
individual steps) to return players to their states at the beginning
of the performance (castanet or bell state). That is to say that the
piece forms at 63-cycle loop. There are two exceptions to this, one
of which being the case where each player starts in bell (0) state, in
which case the loop lasts only one cycle (Miwa n.d.a).

Here, the musicians are acting as if they were running ‘autonomous’
prescriptive code performing as individual logic gates performing logic
operations based on the internal logic operations defined by XOR. As
such they are not open to investigation, and as the piece develops in
complexity from the number of loops repeated, the audience will find it
increasingly difficult to understand the underlying code operations tak-
ing place. The state of the musician (bell/castanet), for example, is inter-
nalised by the player and in any case most people in the audience will
not understand the operation of a XOR gate. But crucially, it should be
possible, at least theoretically, to follow through each step of the process
unfolding, rather as one would if debugging computer software.

In this case, Miwa claims that the code is running to an exact and
limited prescriptive code which the composer has defined drawing on
the knowledge of low-level computer programming. However there
are differences that are being introduced with the translation from an
XOR gate to that of a processing subject (i.e. the musician). The first is
that generally speaking, XOR gates do not have any memory capacity;
they supply an electrical output (0 or 1) depending on the inputs. The
second is that internally, the one-bit memory that Miwa is assuming is
hardwired back into the input of the XOR gates of his piece is not usu-
ally found in XOR gates. The XOR gate that Miwa is modelling then
is actually only very loosely based on a ‘real’ XOR gate – it is probably
more profitable to think of it as a model of a XOR gate which has been
extended for the purposes of his composition. Thus, the XOR gate in
Miwa’s schema is in fact more like a code object containing state and
methods, which communicates with the other code objects in the piece
based on the passing of a digital stream, which in this case consists of
only one-bit of information (castanet or bell). Further, in attempting

9780230244184_05_cha04.indd 1039780230244184_05_cha04.indd 103 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

104 The Philosophy of Software

to ‘reverse simulate’ the operations of these logic gates there is also the
problem of synchronising them (called boot-strapping within computer
science). In other words, how does the process start? As currently wired,
the circuit of Matarisama requires an outside agency to start the process
running. There is also the question of timing, what external agency sup-
plies the ‘clock speed’ of the ‘thread’ that is running within the circuit
of the musicians? There is also a radical instability introduced into the
initial state of the musicians as we are not told their initial state (0 or 1)
as it is not defined in the delegated code of the piece.

There are further problems with how we know which of the code
objects (i.e. musicians) has the focus of processing (as it would inside a
logic circuit). Indeed, it is performed as if the piece acts like mechani-
cal clockwork and that is how it looks to the audience, but there are
many unwritten assumptions regarding that claim that the musicians
are not thinking or improvising and ‘it is music that concerns itself
only with pure collective action’ (Miwa n.d.a). It is interesting to note
that the music generated sounds like an idealised version of what one
would assume the internals of computer circuitry might be. This per-
haps points to where the reverse remediation of the Matarisama piece
begins to break down when subjected to critical scrutiny – the delegated
code of Matarisama is unlike computer code in that it is does not run
autonomously but is mediated through the human musicians. In some
ways the piece becomes a representation of some idealised form of com-
puter code, or perhaps computer-like code. It is interesting to note that
computer programmers seldom program in the form of logic gates any
more (see above discussing the abstraction of code from digital streams)
yet here the composer has chosen to ‘write’ at that level. It is paradoxi-
cal to note that the closer one tries to get towards the operation of the
Matarisama circuit, the more unstable and unlike a logical circuit it
becomes and the more like higher-level interacting code objects. Indeed,
the hermeneutic abilities of the musicians and performers become more
critical as they fill in the compositional ‘lack’. This also means that in
practice it is impossible for an audience to reproduce the piece and pre-
dict its final output (in contrast to computer based prescriptive code).

As part of the development of the piece, Matarisama was also real-
ised in a form that was neither human nor computer, Matarisama-Doll
(Ningyo). Instead it was modelled on a water-based model that has a
one-bit memory which was presented at the Ars Electronica festival in
2003 (Miwa 2007). In this form it is again reminiscent of prescriptive
code as the rules underlying the composition are delegated into the
hardware (in this case the pulleys, wheels and weights) that are not very

9780230244184_05_cha04.indd 1049780230244184_05_cha04.indd 104 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

Running Code 105

clear in operation to the viewer. In this form the piece is performative
rather than compositional and demonstrates the way in which the logic
of digital technology could be delegated to material objects. However
again here the autonomy of the prescriptive code is suspect, as agency
is supplied via the continual input of the human user/spectator.

In 2003, a similar performance, Muramatsu Gear “Le Sacred u Printemps”
(Miwa 2003a) was developed where a group of seventeen women form
a circle called a lifecycle. Inside this circle a smaller group of five men
rotate around the circle and come face-to-face with one of the woman.
In the piece, the men turn around like a gear and perform an XOR
operation with the woman they happen to face. Depending on the
output of the operation made when they clapped hands the women
would sing a particular note. The women’s singing voices (as a musical
note that is taken as an ‘output’ of the circuit) was then transcribed
into an orchestral piece into musical score, in this sense the prescriptive
code is outputting a digital data structure that can later be played back
by an orchestra. The players of the orchestra are no longer required to
simulate logic gates, instead they play the piece according to how it
has been transcribed – they are assumed to be passive players. Here the
digital data structure encoded into the score is now human readable and
printed onto paper that is distributed to the players. The complexities
of the piece thus become clearer to both the musician (who presumably
could now introduce another layer of interpretative flair into the piece)
and to a listening audience that can obtain the score for examination
or may be able to understand the piece due to the norms of orches-
tral layout and our familiarity with the way orchestras are organised.
Nonetheless the ‘output’ encoded in this score represents a discretisa-
tion of musical complexity to a limited range of signifiers (depending
how the translation was organised).

In developing this method of algorithmic composition, Miwa experi-
mented with new forms of logic operation to progress from the use of XOR
gates. During 2004, during a workshop, Miwa developed a new operation
called the ‘Jaiken’. The Jaiken-zan is represented by the operation ‘A – (6 –
(A�B)) MOD 3’ (Miwa 2007). This is represented in Figure 4.3 below.

Out of this workshop in 2004 the piece ‘Jiyai Kagura’ was created, that
was composed by members of the workshop ‘Making the imaginary
folk entertainment’. In this piece an imaginary folk culture is explored
through the use of playing the Japanese ceremonial drum, the Ogaki. In
a similar way to Matarisama, the musicians each play turns on the drum
based on performing a logic operation on the last action of the previ-
ous musician combined with the ‘input’ of a separate dancer/singer

9780230244184_05_cha04.indd 1059780230244184_05_cha04.indd 105 2/11/2011 1:02:36 PM2/11/2011 1:02:36 PM

106 The Philosophy of Software

whose pose is representative of her internal state. The dancers dance
in three fixed stages corresponding to the numbers 0, 1, and 2, which
indicates a particular logical state. These dances are in response to the
musicians and can then be further used as input to another dancer or
musician.

With the Jaiken-zan one might immediately note the change from the
base 2 numeral system (i.e. binary – bits 0 and 1) used in the previous
pieces, to the base 3 numeral system (i.e. ternary or trinary-trits 0, 1 and 2).
Here is perhaps the best evidence that Miwa is not working in any con-
ventional way with binary logic circuits, and certainly not within the
standard binary system used within digital computers. The Jaiken-zan
now has three ‘inputs’ and three ‘outputs’ which are matched to three
different sounds (or actions within performance) based on a table that
Miwa (n.d.b) refers to as stone (0), scissor (1) and paper (2). The map of
the structure (see Miwa n.d.b) indicates that the human compositional
rules are a simplified version of the Max/MSP version that was build on
the computer first.

The Jaiken-zan operation was also used to develop: (i) the piece
Jaiken-beats (Miwa 2005a), a piece for hand clapping which was per-
formed in 2006 at the Computing Music IV conference in Cologne;
(ii) a silent piece, ‘Jaiken-bugaku’ (Miwa 2004b), where the performers
only move around based on the logic gate operations defined in this
formula and which creates a visual sense of the logic operations; (iii)
screen music for a film by Shinjiro Maeda Music for ‘Hibi’ (Miwa 2005b),
performed by the members of a workshop at ‘Possible Futures, Japanese
postwar art and technology’ using shakers as representations of the
logic outputs; (iv) and lastly, Jaiken-zan was used to develop a possible
form for a game that might be played by children called Shaguma-sama
(Miwa 2005c) which relies on a drum beat to set the time of the piece
(analogous to the computer processor clock which organises the timing
of the logic gates) and which used hopping and, hand movements and
singing to represent the logic operations. With the Jaiken-zan pieces,
the discretisation of musical performance is foregrounded in this com-
positional strategy (three ‘inputs’, three ‘outputs’ from each performer).

Figure 4.3 Jaiken-zan, each output is a combination of A and B (Miwa 2007)

 0 1 2
A

B

0 0 2 1
1 2 1 0
2 1 0 2

9780230244184_05_cha04.indd 1069780230244184_05_cha04.indd 106 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

Running Code 107

Only certain forms of ‘dance’ are allowed and the generation of sounds
is equally limited to the stone, scissor and paper types.

A final piece, ‘369’ homage for Mr. B (Miwa 2006b), created for string
orchestra was also written through the use of the Jaiken-zan logic gates.
Again in this piece the digital data structure was output from the
computer simulation of the Jaiken-zan and transposed into score. The
hermeneutic transfer of the tenary output into conventional musical
score is elided in his descriptions, which seem to indicate a simple one-
to-one translation, yet as we have seen through the entire analysis, the
interpretative moment of the human actors is strangely backgrounded
in Miwa’s pieces (see Miwa 2007). Nonetheless, it is key to an under-
standing of Miwa’s work that it is in ‘running’ that it is to be viewed and
understood. Running code is performative in the same way and we may
subject it to similar levels of close reading and analysis.

Running code and the political

After this close reading of Miwa’s work, I now undertake a brief distant
reading of running code, through the example of an e-voting system.
I want to look at the ways in which certain political rights are mediated
through running code. This also allows us to looks at the way in which
the political is mediated through the technical, raising important impli-
cations for an increasingly technologised political experience of politics
today. What does it mean to have running code as part of ‘running’
politics? This gives us a real sense of the way in which the performance
of the code can reflect on the performance of politics in unusual ways.

In order to scope this section, I am concentrating particularly on run-
ning code as the condition of possibility for the mediation of voting. In
this sense, I think of the technical–political as a subset of political rights
that can be coded and materialised into specific technical functions;
it will be these that I focus on. We might also think of the political–
technical for those technical rights which have seemingly travelled in
the opposite direction, for example the right to privacy (in the context
of technical equipment), the right to access your own data, and the
right to copy. My intention in this section is to direct attention to cer-
tain phenomenon and therefore provide a loose framework for analysis,
rather than creating strict categories or formal concepts, but to do this
I want to look at some specific examples of translations.

This analysis has two aspects, recognising both the need for engage-
ment with the problematic of computer code itself as an object which
materialises political action and policy, but also the relation between

9780230244184_05_cha04.indd 1079780230244184_05_cha04.indd 107 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

108 The Philosophy of Software

the technical objects themselves and an increasing visibility in political
discourse. In particular I am thinking of the rise of digital rights (some-
time referred to as digital civil rights) and the associational forms of
contestation that are increasingly taking place both in the public sphere,
in lobbying in parliament and also in the social media that people are
increasingly inhabiting.

Translating political rights into digital technical code is not a straight-
forward process, requiring as it does a set of normative assumptions and
practices to be turned into a linear flow of binary code that the computer
can execute computationally. As discussed previously, this is the ‘delega-
tion’ of political rights into computer code, and this instantiates the rights
in such a way as they become a techne (Latour 1992). Voting logic is then
a method or process which can be followed mechanically and which is
scoped and prescribed within the software. These leaves open the tracing
and understanding the subtle ways in which computer code is assembled
into political systems into new ways. Additionally, those political rights
that can be codified and transformed into a digital form are in no way
meant to stand for all possibilities of the political, and indeed the act of
turning political rights into technical form is a contested process. Indeed,
it is only certain types of political action that will allow the translation
into the technical sphere, and through this translation become quantita-
tive and computable. Nonetheless, there is implicit certain normative
assumptions that are required for those political rights that can be coded,
such as that they can be made to function more efficiently, or indeed as a
political practice onto which one applies technical instruments – indeed
this is what Ellul (1973: 232) identified as political technique. Here then,
the key technical principle of ‘performance’ becomes increasingly impor-
tant as both a motivating factor for the production of software systems
such as these, but also as a means of quantifying and making measurable
the extent towards which subsequent system development is increasingly
efficient. Voting is therefore a particular political activity that due to its
explicitly quantitive form is particularly thought to be suited to reform
through the application of technical methods. The reasons for looking
at these changes include the fact that in the 2006 U.S. election, it has
been estimated that over 66 million people were voting on direct record-
ing electronic (DRE) voting systems in 34 per cent of America’s counties
(Everett et al. 2008: 883). In the UK too, we are seeing an increasingly
interest in the use of computational technical devices to manage, record
or provide technical mediation to political processes (e-Democracy) or
governmental services (e-Government) (for an example of the problems
with e-voting in the Philippines see also The Economist 2010a).

9780230244184_05_cha04.indd 1089780230244184_05_cha04.indd 108 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

Running Code 109

Here we see the growth in political activity of particular kinds rest-
ing on technological apparatuses, and more fundamentally technology
starts to account for the trustworthiness, the correctness, and the com-
pletion of particular political actions. In some senses it might be argued
that this is a form of quasi-citizenship that rests on a procedural notion
of politics whereby certain technically mediated processes legitimate
a political action within the polity. Therefore I want to look at how
‘being political’ is increasingly realised through certain technical forms,
whether voting through e-voting systems, or deliberation and debate
through real-time streams such as Twitter and Facebook. One might also
think productively of the way in which technical systems are increas-
ingly called on to mediate between different categories, so in the case
of voting we have the processing of an electorate which produces an
elected collection of representatives that draw from this process a legiti-
macy for their policies. Whilst not wishing to discuss here the contested
issue of different voting systems themselves, it is clear that even when a
voting system is generally accepted, its technical implementation may
change the outcome of an election in various ways, for example by the
percentage of machine-spoilt ballots (hanging chads, etc.).

The most important feature of technology today is that it does not
depend on manual labour but on the organisation and on the arrange-
ment of machines. A crucial part of this process is the standardisation
of entities with which the machine is concerned. In terms of political
processes then, we should expect to see certain form of standardisa-
tion resulting in a form of procrustean politics,4 essentially drawing
attention to the requirement that the machine is able to inscribe or
record the political action, creating ‘immutable mobiles’ that might be
processed by the machine (Latour 1987: 227).5 This process of medi-
ated action is similar to what Thompson (1995) calls mediated quasi-
 interaction, where more one-sided interactions initiated by media forms
require no direct response from the makers of content, and we might
extend this analysis to the political processes of electoral vote systems
and their screen-based quasi-interactive character which also provide no
direct feedback after selecting the candidate beyond the vote acknowl-
edgement. The wider completion of the feedback circuit is, of course,
generated by mass-media forms such as television which remediate the
processing of the votes cast and deliver the result.

In the case of direct recording electronic voting systems, for example,
we increasingly see the fast and accurate processing speeds of the count
through running code used as a justification in itself (in many cases able
to calculate the count within minutes, if not seconds), or even the speed

9780230244184_05_cha04.indd 1099780230244184_05_cha04.indd 109 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

110 The Philosophy of Software

of completion of the ballot paper as a means of assessing the voting
method.6 There is also a perceived need to avoid the problems with exist-
ing manual voting systems which in some cases are using mechanical
processes that have caused issues:

The problems in the 2000 U. S. Presidential election in Florida
focused national attention on the need for usable voting systems.
As the country became familiar with terms such as “butterfly ballot”
and “hanging chads,” many states decided to replace these systems
to avoid such problems in future elections. The Help America Vote
Act (HAVA) 2002 provided funding for updating voting equipment
and intended for states to replace their outdated voting methods
with newer, more reliable systems. Because of this legislation and its
requirement that election equipment be replaced by 2006, millions of
dollars have been spent purchasing direct recording electronic (DRE)
systems to replace older technologies (Everett et al. 2008: 883).7

The argument for the use of digital systems as a silver bullet for political
processes is not new of course, but combined with a perceived ideal of
interactivity, ease of use and speed (all thought to be missing from the
existing voting systems), is an attractive proposition to those charged
with administering political processes (see Coleman and Taylor 1999,
Frewin 2010). That is not to say that DRE systems have not themselves
been controversial (see Alvarez and Hall 2008; Prosser and Krimmer
2004; Trechsel and Mendez 2005). For example, with the ES&S iVot-
ronic DRE systems used by Sarasota County, Florida, in the November
2006 general election, ‘in the race for an open seat in the U.S. Congress,
the margin of victory was only 369 votes, yet over 18,000 votes were
officially recorded as “undervotes” (i.e., cast with no selection in this
particular race). In other words, 14.9% of the votes cast on Sarasota’s
DREs for Congress were recorded as being blank, which contrasts with
undervote rates of 1–4% in other important national and statewide
races’ (Sandler et al. 2008). The use of DRE voting systems has therefore
been rather problematic, although as these systems respond to the chal-
lenges, some of them very complex in terms of cryptography, we would
expect that nonetheless they will continue to be rolled out in impor-
tant elections due to perceived efficiency and effectiveness. As Jenny
Watson, Chair of the Electoral Commission, stated in the Guardian:
‘fundamentally, we have inherited [an electoral] system that …
isn’t going to deliver in the modern world. This is the 21st century’,
arguing that the ‘running of elections was still based on Victorian ideas

9780230244184_05_cha04.indd 1109780230244184_05_cha04.indd 110 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

Running Code 111

about the way people live and needed a fundamental rethink’ (Curtis,
2010). That fundamental rethink inevitably means new technology and
e-voting through the mediation of running code.

The use of technology, of course, also has the danger of ignoring the
importance of the involvement of the citizenry within the practices
of the vote administering and counting is itself an important political
activity, both in terms of associational democracy but also in strength-
ening the bonds of civil society. However, to the extent to which these
factors are considered, and they are rarely considered at all within the
technical implementation of voting systems, due to limitations on
space this will not be discussed further here.

In this section, I present an analysis of the implementation of
technical-political rights, particularly the right to vote as instituted in
the VoteBox e-voting system. I want to look at the way in which voting
is translated into technical representations of the right to vote, and
how these are instantiated in computer code by a reading of code that
is available as FLOSS software in the Google Code Repository.8 I want to
look at the way in which certain technical privileges in the context of
using technical devices, have become contested as people have sought
to use what they have increasingly come to see as their own data in any
way they choose. These in turn have led to certain political imaginaries
around these technical rights (and here I refer to technical rights very
much in terms of the way in which computer systems assign particu-
lar use-rights to digital objects). In particular the free libre and open
source movement (FLOSS) as progenitors of the political contestation
of certain types of technical object. Finally, I want to gesture towards
the implications of this two-way process of translation between the
technical and the political, and whether this has implications for the
way in which we conceptualise political rights in relation to the right
to participate, and most importantly to address the question of whether
it we are seeing the technical colonisation of the political, or rather a
hybridisation of politics itself.

To examine the close relationship between certain political practices
and the technical implementation, I therefore undertake a distant read-
ing of elements of the e-voting computer code in order to follow the
ways in which certain political rights, most notably the right to vote,
has been encoded within software. Once these processes are transferred
from human labour to the computer there will also be a constant pressure
by requirements of technical efficiency and the inevitable requirement
to fix bugs and errors, as well as regulatory requirements and changes
to update the software and firmware of the voting machines, the moral

9780230244184_05_cha04.indd 1119780230244184_05_cha04.indd 111 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

112 The Philosophy of Software

depreciation of software. This is the notion of technical obsolescence and
raises interesting questions of verification, certification and trust with
regard to the version of the machine software becoming increasingly
crucial to the running of an election. Note here, however, that whereas
where Marx is talking about the Moralischer Verschleiss of material
such as steel, and the implied difficulty for the capitalist of replacing
the machine once installed and its value not fully realised, here with
software updates that material substrate remains constant and only the
software is changed, although not without cost.9

Whilst analytically I think it is useful to keep a distinction between
the technical and the political, we are seeing a close entanglement
taking place whereby the conditions of possibility for the exercise of
political rights is mediated through technical forms, particularly com-
putational forms, and therefore we should perhaps talk more accurately
about the political–technical sphere. The implications of this hybridisa-
tion of political rights raises many questions, but of key concern to this
section is the technologisation of politics and the extent to which it is
possible to reverse this process – that is to what extent is this increas-
ing reach of technical systems into the political producing ‘opportunity
costs’ such that certain path-dependencies are created. For example in
experiments Everett et al. (2009: 888) found that ‘because of these high
satisfaction ratings of the DRE, it is likely that... once DREs are adopted,
voters may resist any transition back to non-electronic technologies’.
Further this distant reading of the the running code of e-voting systems
recasts the important question raised by Outhwaite (2009) who asks:
how much capitalism can democracy stand? Into the question: how
much technology can democratic politics stand (and vice versa)?

The systems I have chosen to focus on in this chapter are free/libre
and open source software (FLOSS) systems (Berry 2008). FLOSS are
surrounded by an important form of software practice that is commit-
ted to openness and public processes of software development. This
means that the groups involved in FLOSS projects typically place all
of the source-code for the project and documentation online in an
easily viewable and accessible form.10 This is not to preclude analysis
of proprietary systems, but the lack of access to the underlying source
code raises additional problems with reference to a detailed analysis of
the software system (for a counterexample see Calandrino et al. 2007;
Kohno et al. 2004).

Clearly, the right to participate if mediated through technical systems
immediately implies that one has access to that technical system and
secondly that the technical system affords us the ability to activate that

9780230244184_05_cha04.indd 1129780230244184_05_cha04.indd 112 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

Running Code 113

function, here though I want to bracket out the digital divide issues
and concentrate solely on the way in which these technical system are
implemented (for more discussion of the digital divide see Norris 2001).
By technical system I am particularly concentrating on digital technical
systems because, although similar problems of access and affordances
are applicable to non-digital systems, here due to limitations of space
but also the particular qualities of software-based technical systems,
which allow us to follow the source code, gives us access to the ‘dark
opacity’ of a technical device. We might think here of the relation
between the ability to read the structures and processes of the voting
system as presented in the FLOSS source code as transparent e-voting as
opposed to the dark e-voting which is given in proprietary systems.

In the first case we will be undertaking a reading of the VoteBox
e-voting system (VoteBox 2009a, 2009b, 2009c). A close reading of com-
puter source code tends to privilege the textual source code over other
ways of looking at software (e.g. political economy etc.). Software studies
and critical code studies usually use this method for understanding com-
puter code (see Marino 2006). In this case, I am focussing particularly on
the commentary contained within the code, to point towards the narra-
tion of the functioning of the running code. Although one might also
perform a more detailed analysis of the code structure, data structures and
so forth. In the interests of conciseness and clarity many of the functional
and technical distinctions within the software are ignored here (for more
detailed information including the source code itself see VoteBox (2009d).

VoteBox is described as a tamper-evident, verifiable electronic vot-
ing system created by researchers in the Computer Security Lab at
Rice University (VoteBox 2009d). Although VoteBox is a prototype of
an electronic voting system and may not be fully representative of all
e-voting systems, which can contain a plethora of different functionali-
ties and structures, it is a useful case study due to both its open source
nature and the careful design and structure using best practice from
computer science. Nonetheless, in common with all such computer
systems, VoteBox assumes a boundary condition that means that the
system assumes the right to vote by the actor that enters the voting
booth. In the current implementation no identification checking is per-
formed by the system itself – this remains external to the client voting
system which merely records the vote and tabulates the final result for
the returning officer.

The way in which a voter acts is visualised by means of a process
or flow-chart. These shows the constraints on the system, its system
boundaries and the general flow of information around the system. It is

9780230244184_05_cha04.indd 1139780230244184_05_cha04.indd 113 2/11/2011 1:02:37 PM2/11/2011 1:02:37 PM

114 The Philosophy of Software

a common means of understanding complex data flows around a system
within computer science and software engineering. A flowchart shows
the system that would be experienced by the voter as they attempted
to use the system. Flowcharts are very simple diagnostic and modelling
structures that follow the logic of the program through a series of liner
processes with decision gates, where a yes or no answer is expected, to
guide the software to a certain resolution or output.

In the VoteBox system and documentation a lot of time is spent on a
kind of voter ethnography where an idealised user, the ‘voter’, is given a
great deal of attention. The analyses try to think about the way in which
this user will operate the system, the kind of actions they might take
and how they interface and use the technology. This involves a certain
degree of ethnographic research by the designers, but also involves
them creating a model of the human voter that runs through the entire
 system as an external constituent of it. The running code, then, is cir-
cumscribed by the ‘running’ voter, who is operating the voting machine,
and must therefore by in ‘sync’ with the machine if it is to remain func-
tional, correct and uncompromised by mistakes and errors. Much of the
design, then, is spent on either the cryptography, which is the security
layer for ensuring the vote is correctly stored and tamper-proof, but also
on the user interface. For these designers, the running code, is always at
the forefront of their minds as a voting system first, and then as a soft-
ware system. As we discuss below, this idealised voter constantly seeps
into the source code in a number of interesting ways, captured in the
shorthand used in the commentary code and documentation. Although
here we do not have the space to go into the interesting gender assump-
tion that are being made, they demonstrate how programming com-
mentary is important to analyse and take into account as part of the
assemblage that makes up running software systems.

In sum for this e-voting system, a screen is displayed which gives to
the voter a number of voting selections. Running code is here always
code awaiting the vote of a user. The voter clicks their selections and
the system passes to a review screen to show to the voter their selec-
tion. As the voter advances past the review screen to the final confirma-
tion screen, ‘VoteBox commits to the state of the ballot by encrypting
and publishing it’ (Votebox 2009d). Alternatively the vote might be
‘challenged’, compelling the system to reveal the contents of the same
encrypted ballot.

This voting system consists of two main parts, a supervisor system
that authorises the client systems, and the voting booths themselves
which are likewise connected to the supervisor. In this example we will
be concentrating on the voting booth software in particular and the

9780230244184_05_cha04.indd 1149780230244184_05_cha04.indd 114 2/11/2011 1:02:38 PM2/11/2011 1:02:38 PM

Running Code 115

way in which the programmers have, in the code, represented, often
unconsciously, the nature of a typical ‘voter/user’ and the actions that
are available to such an actor. The nature of the actor as understood by
the system designer/programmer is interestingly revealed in two ways
in the source code for the system:

Figure 4.4 User represented in source code (VoteBox 2009c)

/**
 * Allows the VoteBox inactive UI (what is shown when a user isn't voting)
 * to register for a label changed event, and update itself accordingly
 *
 * @param obs
 * the observer
 */
 public void registerForLabelChanged(Observer obs) {
 labelChangedEvent.addObserver(obs);
 }

In the first code example given here, the actor utilising the voting
machine is identified through the subject position of a ‘user’. This is
interesting on a number of different levels, but in the particularly dis-
course of computer programming one notes the key dichotomy created
between the programmer and the user, with the user being by definition
the less privileged subject position. The term user also carries a certain
notion of action, most notably the idea of interactivity, that is that the
user ‘interacts’ with the running software interface in particular circum-
scribed ways. Here though we also have the dichotomy of the user and
the voter and often in programming systems there is a ‘temptation of
creating simplified and standardised models of the “citizen-user”’ (Berry
and Moss 2006: 31). One notes that in particular the simplified interface –
actually more constrained in a number of ways than a simple pen and
paper ballot as discussed below – already circumscribes the possible
action of the voter/user.

Figure 4.5 ‘Voter’ represented in the source code (VoteBox 2009c)

currentDriver.getView().registerForOverrideCancelDeny(new Observer() {
 /**

 * previously on

 * Announce the deny message, and return to the page the voter was

 */
 public void update(Observable o, Object arg) {
 if (voting && override && !finishedVoting
 && currentDriver != null) {
 auditorium.announce(new OverrideCancelDenyEvent(mySerial,
 nonce));
 override = false;
 currentDriver.getView().drawPage(pageBeforeOverride);
 } else
 throw new RuntimeException(
 "Received an override-cancel-deny event at the
incorrect time");
 }
 });

9780230244184_05_cha04.indd 1159780230244184_05_cha04.indd 115 2/11/2011 1:02:38 PM2/11/2011 1:02:38 PM

116 The Philosophy of Software

In this code sample, we see a slippage between subject positions of the
‘voter’ and the ‘user’. In fact they appear to be being used interchange-
ably, although clearly they have clearly circumscribed actions associated
with them. The ‘voter’ can cast a ballot within the terms of this system,
although the above code fragment seems to indicate that when there is no
vote being cast the actor is a ‘user’. This would be interesting to observe
as a running code system in situ, through, for example, an ethnography
of the system in use.

Figure 4.6 The male ‘voter’ represented in the source code (VoteBox 2009b)

* This is the event that happens when the voter requests
* to challenge his vote.
*
* format: (challenge [nonce] [list-of-race-random pairs])
*
* @author sgm2
*
*/

/**

Figure 4.7 The choice of the voter is technically constrained to only one candi-
date as represented in the source code (VoteBox 2009a)

/***
 * This is the strategy implementation for radio button voting. In radio button
 * voting, only one candidate can be selected in a race. Once a candidate is
 * selected, he can either be explicitly deselected, by being toggled, or he can
 * be implicitly deselected when the voter chooses another candidate in the
 * race. Selecting any candidate in any race implicitly deselects all other
 * candidates in the race.
 *
 */
public class RadioButton extends ACardStrategy {

A revealing moment by the programmer in this example, demon-
strates that a particular gender bias is clearly shown when the program-
mer refers to the request of a ‘voter’ to challenge ‘his’ vote. In many
ways this should not be surprising considering the fact that the vast
majority of programmers are male, and this percentage is even larger in
FLOSS culture. Nonetheless, we have revealed a number of interesting
subject positions, the inactive ‘user’, and the male ‘voter’.

Perhaps even more interesting, is the inability of the user-voter to cast
a spoilt ballet, whether as an empty ballot, or a ballot that has more
than one candidate selected. This is a technical condition built into the
 voting booth through the decision to use a particular digital object called
a ‘radio button’ that prevent more than one selection being made. If this
is attempted, then the previous choice is deselected. This decision will
have consequences, for example in the ability of a voter to cast a protest

9780230244184_05_cha04.indd 1169780230244184_05_cha04.indd 116 2/11/2011 1:02:38 PM2/11/2011 1:02:38 PM

Running Code 117

vote or to exercise the right not to vote for any of the above. On the run-
ning software this could not be changed therefore forcing a choice on
the voter, whose only option would be not to use the machine at all.

All of these small technical decisions act together to format the voting
practice and provide a given set of processes and digital objects that are
associated with them. They thus act to stabilise a particular instantia-
tion of the voting process, rendering it more legitimate and material
than other forms, additionally through the use of prescription the soft-
ware, in effect disciplines the voter to act in particular ways (e.g. vote
only once and select just one candidate) and circumscribes other forms
of voting action (e.g. spoiling the ballot paper, leaving it blank, throw-
ing it away, taking it home, etc.).

The question remains to what extent does the technical therefore effect
the condition of possibility for being political? In the first instance, of
course, there is the requirement for a certain technical or digital literacy
in order to cast one’s vote. Thus the political practice is now expressly
reliant on a certain level of technical competence. Secondly, the voter
must now rely on the correct inscription of their vote within the mate-
rial substrates of the computer software and hardware and that these
represent what Latour (2007) called ‘immovable mobiles’, that is that
the vote remains stabilised throughout its passage from the booth to
the data collection system (the supervisor in this case) and then on to
when it is expressly counted. In the case of paper, there is always a paper
trail, that is the vote can always be followed through the process by the
human eye. In the case of software, the vote is encrypted and signed,
such that this digital signature can indicate whether the vote has been
changed or tampered with, however, once cast into the digital the only
way to follow the vote is through its mediation through other software
tools. By mediation I mean that the nature of mediation depends on
the communicative function in social relations – that is, the possibility
of communication. In this context, the enabling condition of media-
tion is the possibility of distance between the two points in the com-
municational process – here the voter and the returning officer. Here,
it is the possibility of communication, rather than its actuality, that is
crucial in understanding the communicational dimension of software,
and, of course, the promise to deliver the message. One could say in
this instance that all votes are mediated by software. Nevertheless this
remains an issue of trust rather than merely a technical problem ‘solved’
by hard encryption or such like.

In this chapter, I have looked at some examples of how to analyse
running code, namely through either a form of close (code in action)

9780230244184_05_cha04.indd 1179780230244184_05_cha04.indd 117 2/11/2011 1:02:38 PM2/11/2011 1:02:38 PM

118 The Philosophy of Software

or distant reading (software in action). I therefore set out to use the
interesting resources that the Internet has opened up for researchers in
the example of both a cultural representation of code as performance,
in effect running on the musicians that are instantiations of the code,
together with an example from free software or FLOSS. Increasingly, due
to the complexity of writing software large scale users are utilising the
FLOSS databases of code in their work, and in doing so they present to
researchers a unique possibility for looking at how code is used to imple-
ment political change. Above I looked at the VoteBox e-voting system
code contained within the Google Code Repository, but there are huge
quantities of software waiting to be unearthed and subjected to critical
research.

The web itself, beyond its screenic representation presented by the
browser offers a secret depth to the intrepid researcher that dares to use
the menu function ‘view source’ or ‘page source’ on the View menu.
Here the HTML code is revealed as much of the Internet is freely avail-
able to be examined and taken apart to see how code functions to con-
struct certain forms of political subjectivity, action and digital rights.

This is not to say that examining running computer code can provide
all the answers, and it is certainly not a replacement for existing methods
for understanding political action and processes. However it is notice-
able that little work is actually undertaken in relation to computer code
and this could create fruitful new ways of thinking about politics when
combined with existing analytical tools and the reality of running code
today. This brief attempt to suggest ways in which running code might
be analysed, particularly in conjunction with other methods, was delibe-
rately written to avoid too much technical detail. However, running
code, and the tools needed to analyse it, are in urgent need of humani-
ties and social science approaches to both contextualise and deepen our
understanding.

To look into this further and to broaden and deepen the question of
code, I now turn explicitly to the questions raised through a phenomeno-
logical understanding of the computational, through a discussion of the
work of Martin Heidegger, through a phenomenology of computation.

9780230244184_05_cha04.indd 1189780230244184_05_cha04.indd 118 2/11/2011 1:02:38 PM2/11/2011 1:02:38 PM

119

5
Towards a Phenomenology
of Computation

Having suggested how the materiality of code might be subjected to
critical analysis, I now want to focus on the experience of ‘forgetting’
technology. This raises the question of whether the experience of ‘back-
grounded’ computational technology is as complete as we might think.
Indeed, I want to explore the idea that technology is actually only
ever partially forgotten or ‘withdrawn’, forcing us into a rather strange
experience of reliance, but never complete finesse or virtuosity with the
technology. Indeed, this forgetting, or ‘being that goes missing’, is for
Heidegger ‘the very condition of appearance (vanishing) of worldhood
(Stiegler 1998: 244). Whilst I will go on to argue that there is something
specific about the relationship that is set up between our use of digital
devices and our experience of the world, I want to be clear that this is
not merely to argue for a vulgar technological determinism. Such an
approach was criticised by Raymond Williams (2003) who argued that,

We have to think of determination not as a single force, or a single
abstraction of forces, but as a process in which real determining
factors – the distribution of power or of capital, social and physical
inheritance, relations of scale and size between groups – set limits
and exert pressures, but neither wholly control nor wholly predict
the outcome of complex activity within or at these limits, and under
or against these pressures (Williams 2003: 133).

Taking this into account, I want to develop the argument that we
should not underestimate the ability of technology to act not only as a
force, but also as a ‘platform’. This is the way in which the loose cou-
pling of technologies can be combined, or made concrete (Simondon
1980), such that the technologies, or constellation of technologies act

9780230244184_06_cha05.indd 1199780230244184_06_cha05.indd 119 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

120 The Philosophy of Software

as an environment that we hardly pause to think about. This is what
Bertrand Gille calls the technical system, which ‘designates in the first
instance a whole play of stable interdependencies at a given time or
epoch’ (Stiegler 1998: 26). Gille explains,

a technical system constitutes a temporal unity. It is a stabilization of
technical evolution around a point of equilibrium concretized by a
particular technology (Stiegler 1998: 31, emphasis removed).

For example, think of the way we use our mobile phones to manage our
friendships through extensive database lists of numbers and addresses.
Whilst we have the phone at hand, we can easily find where our friend
lives to send a letter, or call them to have a chat. But should we lose
the phone then we have lost not just the list of numbers, but also the
practised habits of how we used to find information about our friends.
Certainly this is the experience when one is then forced to upgrade to
a new mobile phone, often complete with new software installed and
frustrating new methods of interacting with it. This is a common experi-
ence with everyday digital technology to the extent that the constant
revolution in interfaces is something that we have learned to accept, even
if it is extremely frustrating, as we want the latest mobile phone, with all
the perceived advantages of the latest technology. Further, when leaving
Facebook due to the closed nature of the technology it is very difficult to
extract your contacts, in effect meaning that Facebook attempts to hold
onto your friends in order to hold onto you. Code is therefore used as a
prescriptive technology.

I want to keep in mind that many previous thinkers have been overtly
critical about ‘new’ technologies and their perceived effects on the
minds and habits of human beings. For example, Plato, in Phaedrus,
wrote that Socrates denounced the use of reading and writing, because
those that use writing ‘will introduce forgetfulness into the soul of
those who learn it: they will not practice using their memory because
they will put their trust in writing’ or ‘they will imagine that they have
come to know much while for the most part they will know nothing’
(Cooper 1997: 552). For Hieronimo Squarciafico, an Italian Humanist
writing in 1477, ‘printing had fallen into the hands of unlettered men,
who corrupted almost everything’, and he argued that an ‘abundance
of books makes men less studious’ (Carr 2008). Similar arguments
are being made today with regard to the deskilling of the mind that
is purported to be the result of search engines, social media, and
mobile technologies. Indeed, Nicholas Carr goes as far as to imagine

9780230244184_06_cha05.indd 1209780230244184_06_cha05.indd 120 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

Towards a Phenomenology of Computation 121

that Google is responsible for making us both shallow and stupid (Carr
2008). We should therefore remain attentive to the temptation to
see technology as leading to a decline in our abilities, indeed, in this
chapter I specifically want to raise the question not of decline, but of
a transformation in our being-in-the-world, even the possibility of a
revolutionary one.

To look at the specific instance of computation devices, namely
software-enabled technologies, I want to make a particular philosophi-
cal exploration of the way in which we experience digital technology.
This is a method called phenomenology, and as such is an approach that
keeps in mind both the whole and the parts, and that is continually
reminding us of the importance of social contexts and references (i.e.
the referential totality or the combined meaning of things). To under-
take this phenomenology is to look at the way in which technology
is already embedded in particular circumstances, and the constraints
and opportunities that are locally available. For Wilfred Sellars (1962),
the aim of philosophy is to understand things in the broadest possible
sense, that is, to ‘know one’s way around’ with respect to things in the
world. Sellar’s calls this web of reasons, justification, and intentions
that enables us to negotiate the world a ‘space of reasons’. So here we
need to explore the way in which we can both know our way around
technologies, but also the way in which technologies can shape what it
is possible or us to know in the first place.

In this chapter, then, I want to understand in the broadest possible
sense how to know one’s way around computationally with respect to
things in the world. This is a form of ‘knowing how’ as opposed to a
‘knowing that’, where one knows how to make a mobile telephone call,
in distinction to knowing that the call is being transmitted via radio
waves from the phone to a base-station. This ‘knowing how to do
something’ in many ways increasingly presupposes access to a body of
knowing-that, that is also knowledge of computational ways of doing
things. In this case, one must have an embodied set of practices that
frame and make available necessary knowing-that, towards which one
is able to computationally know one’s way around. This computational
knowing-how is also tightly bound up with a class of objects I call
technical devices, which themselves are able to perform a certain kind
of knowing-how with respect to the human world. Technical devices
are delegated performative and normative capabilities which they pre-
scribe back onto humans and non-humans.1 That is, a person lives in
the midst of technical beings2 that have specific forms of agency, or as
Zuboff (1988) states, ‘technology… is not mute’,

9780230244184_06_cha05.indd 1219780230244184_06_cha05.indd 121 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

122 The Philosophy of Software

It not only imposes information (in the form of programmed instruc-
tions) but also produces information. It both accomplishes tasks and
translates them into information. The action of a machine is entirely
invested in its object, the product. Information technology… intro-
duces an additional dimension of reflexivity: it makes its contribu-
tion to the product, but it also reflects back on its activities and on
the system of activities to which it is related. Information technology
not only produces action, but also produces a voice that symbolically
renders events, objects, and processes so that they become visible,
knowable, and shareable in a new way (Zuboff 1988: 9).

For example, knowing-how to browse the world wide web, or knowing-
how to use a satellite navigation system in a car calls for the user to think
computationally in order to transform the inner state of the device such
that it performs the function that is required of it.3 In some senses then,
one might argue that the user becomes an object of the technology, as
Foucault argues, ‘how does one govern oneself by performing actions in
which one is oneself the object of those actions, the domain in which
they are applied, the instrument to which they have recourse, and the
subject which acts?’ (Foucault, quoted in Fuller 2003: 140). Technology
‘abstracts thought from action. Absorption, immediacy, and organic
responsiveness are superseded by distance, coolness, and remoteness’
(Zuboff 1988: 75). For example, distance becomes an abstract category
within the navigation system; one is involved with programming the
interface in a specific manner to achieve a specific goal, such as arriving
at a set location by the shortest route.

An iPod shields you from the chaotic and unpredictable acoustic
environment at large and indulges you with your favorite music.
Amazon.com spares you the walk past buildings that depress you
and people you’d rather not encounter on your way to the book-
store where a clerk will give you limited and unreliable information
about the book you’re interested in… The GPS device in your car
makes it unnecessary for you to consult a map, stop at a gas station,
count miles, or look out for signs and landmarks. The exterior world
becomes irrelevant while computers keep the interior of your car
pleasant and entertaining. Persons become tentative outlines when
you meet them in reality and finely resolved images when you’re
back at your computer to Google what’s of concern to you… The
need to know is replaced by pieces of information that are sum-
moned from nowhere and dissolve into nothing (Borgmann 2010).

9780230244184_06_cha05.indd 1229780230244184_06_cha05.indd 122 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

Towards a Phenomenology of Computation 123

But to fully interact with technical devices running code one is further
encouraged to have some technical knowledge and an understanding
of the collection of electronic resources that stand behind them. For
example, our understanding of location itself is changed as we rely on
the spatially constructions of satellites to make use of the devices; or
even the knowledge that there is an isotropic world, within which there
exists entities such as cars, satellites, computers, browsers, websites
and so forth, that are mapped out in such a way as to have a compu-
tational orientation.4 So, when one views the world computationally,
one is already comported towards the world in a way that assumes it
has already been mapped, classified, digitised. Space and place are con-
structed through computational devices which offer this world-view
back through a plethora of computational mediators, such as mobile
phones, car navigation systems, or handheld computers, for example,

British researchers testing cognitive map formation in drivers found
that those using GPS formed less detailed and accurate maps of their
routes than those using paper maps. Similarly, a University of Tokyo
study found that pedestrians using GPS-enabled cellphones had a
harder time figuring out where they were and where they had come
from… Cornell University human-computer interaction researcher
Gilly Leshed argues that … For the GPS users Leshed and her col-
leagues observed in an ethnographic study, the virtual world on
the screens of their devices seemed to blur and sometimes take over
from the real world that whizzed by outside. “Instead of experiencing
physical locations, you end up with a more abstract representation of
the world,” she says (Hutchinson 2009).

The distantiation created by this collapse of distance instituted by
computational technology alienates us from our local environment, as
Heidegger states, ‘all that with which modern techniques of communi-
cation stimulate, assail, and drive man – all that is already much closer
to man today than his fields around his farmstead, closer that the sky
over the earth, closer than the change from night to day…’ (Heidegger
1966: 48).

The exemplar is perhaps the augmentation technologies that attempt
to re-present reality back to the user via a picture of the world which is
automatically overlaid with the result of computational geodata, tags
and other content. This is reality experienced through the optic of a
video camera, combined with an overlay of computer animation in real-
time. Also known as ‘air-tagging’, ‘spatial computing’, ‘optical internet’,

9780230244184_06_cha05.indd 1239780230244184_06_cha05.indd 123 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

124 The Philosophy of Software

‘mixed reality’, ‘physical gaming’, ‘synthetic environments’, and ‘sit-
sims’; the multiplicity of terms perhaps indicates the immaturity of the
field, even though the term ‘augmented reality’ dates from around 1992.
A good example is given by researchers in the INVENTIO-project, at the
University of Oslo, who have created real-time situated simulations
(Sitsims) of the cremation of Julius Caesar after the Ides of March as an
example of the potential of the technology (Gliestoel 2010).5 In other
words, computational processes can extend and transform the lifeworld
and ‘also be used to craft possibilities that aren’t simplified models of
phenomena from our everyday world’ (Waldrip-Fruin 2009: 4).6

Using Heidegger’s notion of circumspection (Umsicht – ‘looking-
about’), which is a way of experiencing the world as an active being
within a world full of meaning, I want to take seriously the idea that
we can have an attitude towards the world, or better a ‘way-of-being’
which has a computational disposition of circumspection. In this case it
is the computational aspect of the experience that I would like the pay
particular focus on.7

This computational aspect is connected to an understanding of
a world through a referential totality made up of technologies and
information retrieval systems that make available to us an information-
centric familiarity as part of our background experience. For Heidegger,
this familiarity is a fundamental experience of the world as we do
‘not normally experience ourselves as subjects standing over against
and object, but rather as at home in a world we already understand’
(Blattner 2006: 12). That is, we are not located in a system of objects,
rather we live in a world, and to live in a world is to know one’s way
around it (Blattner 2006: 43). In the case we are discussing here, the
contemporary milieu is suffused with technical devices with which we
have to develop a familiarity if we are to be at home in the world. These
raise important questions, for as Marx explains:

Technology reveals the active relation of man to nature, the direct
process of the production of his life, and thereby it also lays bare the
process of production of the social relations of his life, and of the men-
tal conceptions that flow from these conceptions (Marx 2004: 493,
footnote 4).

Computation reveals a particularly rich set of active relations, between
human and non-human actors, both collective and individual, as Fuller
(2008) argues, ‘the rise of software and computational and networked
digital media in general has in many ways depended upon massive

9780230244184_06_cha05.indd 1249780230244184_06_cha05.indd 124 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

Towards a Phenomenology of Computation 125

amounts of investment in institutions, training, and the support of
certain kinds of actors (Fuller 2008: 6). Computation has moved from
a small range of activities to a qualitative shift in the way in which we
engage with knowledge and the world which highlights how important
an understanding of the computational is today. The notion of compu-
tation, as universal computation, was itself,

discovered by Alan Turing and described in his 1937 investigation of
the limits of computability, “On Computable Numbers.” A universal
system can perform any computation that is theoretically possible
to perform; such a system can do anything that any other formal
system is capable of doing including emulating any other system
(Fuller 2008: 269).

This idea of the universality of computability means that the range of
applications and processes that are amenable to computation are star-
tlingly wide, albeit later restricted with the notion of oracles, or uncom-
putable functions, see below (Hodges 2000; Turing 1939). Computability,
for Turing, meant the mechanization of processes that could then be
mathematically rendered and computed (Hodges 2000). Indeed, we
live in a world of increasingly embedded computational devices which
mechanise, stabilise and format the world through standardised formal
processes. These technical devices also provide a form of distributed
cognitive support for our access to, and understanding of, the world
(both the social and natural world) by the nature of our becoming reli-
ant on their computations. This raises the danger that we might ‘sud-
denly and unaware…find ourselves so firmly shackled to these technical
devices that we fall into bondage to them’ (Heidegger 1966: 53–4). Of
course, we have always used devices, mechanical or otherwise, to man-
age our existence, however, within the realm of digital computational
devices we increasingly find symbolically sophisticated actors that are
non-human. These devices are delegated particular behaviours and
capabilities and become self-actualising in the sense of realising their
potential by performing or prescribing complex algorithm-based action
onto the world and onto us by acting to intervene in our everyday lives.
As Carr (2010a) describes,

I type the letter p into Google’s search box, and a list of 10 sug-
gested keywords, starting with pandora and concluding with people
magazine, appears just beneath my cursor… Google is reading my
mind—or trying to. Drawing on the terabytes of data it collects on

9780230244184_06_cha05.indd 1259780230244184_06_cha05.indd 125 2/5/2011 7:00:24 PM2/5/2011 7:00:24 PM

126 The Philosophy of Software

people’s search queries, it predicts, with each letter I type, what I’m
most likely to be looking for... It felt a little creepy, too. Every time
Google presents me with search terms customized to what I’m typ-
ing, it reminds me that the company monitors my every move (Carr
2010a, original emphasis).

Of course, Google now has an ‘instant’ search, which even removes the
requirement to press the Return key or click the search button, actively
trying to guess what the user is trying to do, if not steer the direction
of their thought. This demonstrates the very lack of withdrawal or
semi-withdrawal of computational devices that I wish to explore in
this chapter together with the phenomenological implications of this
relationship. This is the phenomena of ‘unreadiness-to-hand’ which
forces us to re-focus on the equipment, because it frustrates any activ-
ity temporarily (Blattner 2006: 58), that is that the situation requires
deliberate attention. In the case of Google Instant, one would think
that this might make the search process easier or more intuitive, but
in fact the situation is quite the reverse, precluding the chance for the
user to think about what it is they wish to search for. Conspicuousness,
then, ‘presents the available equipment as in a certain unavailableness’
(Heidegger 1978: 102–3), so that as Dreyfus (2001a: 71) explains, we
are momentarily startled, and then shift to a new way of coping, but
which, if help is given quickly or the situation is resolved, then ‘trans-
parent circumspective behaviour can be so quickly and easily restored
that no new stance on the part of Dasein is required’ (Dreyfus 2001a:
72).8 As Heidegger puts it, it requires ‘a more precise kind of circum-
spection, such as “inspecting”, checking up on what has been attained,
[etc.]’ (Dreyfus 2001a: 70). This is certainly the case with Google
Instant, which with every keystroke constantly updates the screen,
requiring more effort to check what has been typed and what is being
shown.

In the broadest possible sense, how does one know one’s way around
computationally with respect to things in the world. First then, I want
to examine the computational image as a particular, historically
located, way of being through a phenomenology of computation (an
ontotheology). Secondly, I want to explore the idea that we might
have a mode of being within a computational image that is mediated
through the action of computer code (whether real or postulated) that
results in a distributed form of cognition and the form of the media-
tion provided by computation. Here I am drawing on the notion that is
inherent within a computational view of the world that computational

9780230244184_06_cha05.indd 1269780230244184_06_cha05.indd 126 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 127

objects are equipment, but equipment as is a specific type of entity that
does not withdraw. How, then, does one know one’s way around the
computational image?

More specifically, I want to consider what it means to negotiate a
material world through the actions of a mediator, that is, through the
agency of code, which can perform functions and actions which were
previously within the realm of human action – the vicarious transfor-
mation of the entities within the world.9 Finally, I want to draw out
some of the political and philosophical implications of the emergence
of such a way of being, and develop the notion of human agency as
a distributed capability that goes beyond the somatic resources of an
individual. Instead, I want to treat this agency as a variable outcome
of a complex process of computation and transformation entangling
both human and non-human actors (see Hutchins 1996). The critical
question throughout is whether ‘computation’ is a concept seemingly
proper to knowing-that has been projected onto knowing-how/Dasein
and therein collapses the distinction between knowing-how and
knowing-that hence inducing the substitution of knowing-that for
Dasein.

Phenomenology and computation

In this section, I want to think through computation using Heidegger’s
existential phenomenology which aims to understanding different
‘ways of being’ through ontological categories of objects (beings),
equipment (das zeug) and human-beings10 (dasein); together with Sellars
(1962) notions of the manifest and the scientific image11 which are
‘frames’ for conceptualising phenomenal experience. For example,
Heidegger considers the knowing-that to be a ‘towards-which’ that he
calls vorhandenheit, or present-at-hand, which tends towards a scientific-
rational perspective on understanding. This identifies substances and
predicates and their formal relations to describe the universe; and the
knowing-how to be a ‘towards-which’ he called zuhadenheit, or ready-to-
hand, which is a comportment toward a special class of entities called
equipment (das zeug) such that as a human-being you are responding
to their affordances through finding your way around in the world.
However, this knowing-that itself presupposes a world of knowing-how,
towards which one acts in order to enable the construction of a body of
knowledge of facts in the first place. Thus, for Heidegger, in agreement
with Sellars, one ‘image’ is not prior or foundational to the other, rather
they are co-constructive in the sense of mutually reliant on each other

9780230244184_06_cha05.indd 1279780230244184_06_cha05.indd 127 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

128 The Philosophy of Software

through a shared ‘background’ referential totality. Heidegger describes
this background as:

What is first of all “given”... is the “for writing”, the “for going in and
out”, the “for illuminating”, the “for sitting”. That is, writing, going
in and out, sitting, and the like are what we are a priori involved with.
What we know when we “know our way around” and what we learn
are these “for whats” (Heidegger 2010, gesamtausgabe band 21).

I want to suggest that what is happening in the ‘digital age’ is that we
increasingly find a computational dimension inserted into the ‘given’.
Or better, that the ontology of the computational is increasingly hege-
monic in forming the background presupposition for our understand-
ing the world. For example, ‘for writing’ increasingly becomes ‘for the
processing of words towards-which a final document is output’, or ‘going
in and out’ becomes ’he exit or entrance towards-which one is involved
in a process of attending to or withdrawing from a particular process’.
Life experiences, then, become processual chains that are recorded and
logged through streams of information stored in databanks. Experience
is further linked to this through a minimal, decentred and fragmentary
subjectivity which is unified through the cognitive support provided
by computational devices which reconcile a ‘complete’ human being.
I am not claiming that all aspects of experience will inevitably become
computational, rather that our referential totality represented by the
entities that surround us are increasingly actors enabled and pervaded
with computational techniques which take on the referential model
in a ‘tertiary’ or cultural form of memory (Stiegler 1998). This can be
understood as a just-in-time memory provided by technical devices and
structured by computational databases and processes. These technical
devices have embedded within them a knowing-that which has been
formalised and stored for the purposes of further computation together
with methods which structure their agency. We might say that these
devices call to us to have a particular computationally structured rela-
tionship with them. For Sellars and Heidegger, the body of knowing-
that, the findings of which for devices becomes a dataset, is the domain
of the special disciplines which provide a dataset for computational
devices, these disciplines:

...know their way around in their subject matters, and each learns to do
so in the process of discovering truths about its own subject-matter...
the specialist must have a sense of how not only [their] subject matter,

9780230244184_06_cha05.indd 1289780230244184_06_cha05.indd 128 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 129

but also the methods and principles of [their] thinking about it fit into
the intellectual landscape (Sellars 1962: 35).

That is, that the methods and data are constructed to format the world
in particular instrumental ways. For Heidegger, every discipline with a
discrete subject matter is a ‘positive science’, and rests on an ontologi-
cal ‘posit’ (a regional ontology) which is a presupposition about that
the class of entities it studies is (Thomson 2003: 515). The computer
scientist, for example, not only knows about computational methods
and processes, but also what it is to think computationally. To distinguish
between entities that are computational or may be represented or mod-
elled computationally from the ones which are non-computational,
computer scientists rely on an ontological understanding of what makes
an entity computational, a sense of what Heidegger might have called
the computationality of the computational. But also, in dealing with com-
putational questions, for example, the computer scientist must face and
answer questions which are not themselves, in a primary sense, compu-
tational questions, but deals with them to answer specifically computa-
tional questions which relate to the ability to select, store, process, and
produce data and signals. One could therefore say that the for-what of
computation is algorithmic transformation which connects to computer
scientists own thinking in terms of its objectives, criteria and problems
and how algorithmic methods are delegated into the wider culture.12 In
sum, computer scientists attempt to transform the present-at-hand into the
ready-to-hand through the application of computation.

For Sellars, this process is undertaken through the synthesis of two
pictures of great complexity, which bought together purport to be a
complete picture of being-in-the-world. Sellars refers to these perspec-
tives as the manifest and the scientific images of being-in-the-world
(which we should understand in terms of Max Weber’s notion of ideal-
types). Thus we are faced with two conceptions, equally non-arbitrary,
of being-in-the-world. Sellars argues, however, that we must try to
understand how they are bought together into a single coherent experi-
ence, which he calls the stereoscopic. What Sellars is trying to draw our
attention towards is the contradiction within the two images, whereby
the manifest image presents a world of flow, continuous and entangled
experiences, and the scientific image postulates a world of discrete ele-
ments, particles and objects. It is useful to think of Sellars’s as offering
a metaphysic which attempts to reconcile two images of the world and
here I want to think through Sellar’s conceptual schema as being a way
of bringing to the fore the ontotheology of computationalism, that is,

9780230244184_06_cha05.indd 1299780230244184_06_cha05.indd 129 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

130 The Philosophy of Software

the historical specificity of a particular way of being-in-the-world for
human beings. This attempt to reconcile the two images in computer
science is linked to a notion of massive computational power in order to
reassemble the shards of experience that technical devices capture into
a continuous and seamless human experience. In effect, computation
aims to perform this task by fooling our senses, assembling the present-
at-hand objects together at a speed that exceeds our ability to perceive
the disjunctures.

Here, it is useful to link Sellars’ notion of the manifest image to the
Heideggerian notion of being – or Dasein as the being that takes a stand
on its own being and interacts meaningfully with equipment – and the
scientific image to the notion of beings – as the present-at-hand of enti-
ties in the universe. Present-at-hand is experiencing ‘use-objects as neu-
tral, value-free entities with value added on [that] requires an artificial
stance towards them, “a bare perceptual cognition”, a “holding back
from manipulation”’ (Blattner 2006: 51) rather than understanding the
ready-to-hand of equipment in terms of the role it plays in our acting
in the world.

The peculiarity of what is proximately ready-to-hand is that, in its
readiness-to-hand, it must, as it were, withdraw in order to be ready-
to-hand quite authentically. That with which our everyday dealings
proximately dwell is not the tools themselves. On the contrary, that
with which we concern ourselves primarily is the work – that which
is to be produced at the time… (Heidegger 1978: 99).

The example given by Heidegger is that of the hammer, which we use as
dasein in order to transform the world through a set of practices linked
to a referential totality. In other words, the hammer is for something, it
has meaning within a larger framework in which ‘hammering’ is under-
stood as a practice related to a set of competences and knowledges, such
as carpentry, and for this reason the hammer, as a single entity being
used in the practices of hammering, withdraws from the foreground of
experience. In contrast, technical devices cannot fully withdraw due to
the internal modalities and instabilities of computational structures –
the truth is that computational devices are brittle, unpredictable, and
unstable (Weiner 1994: 4). This partial withdrawal, or unreadiness-to-
hand, then, is what Blattner (2006: 58) calls a ‘deficient mode’ of readi-
ness-to-hand, rather than being present-at-hand.

The manifest world is the world in which humans, or dasein, ‘came
to be aware of [themselves] as [being]-in-the world’, in other words,

9780230244184_06_cha05.indd 1309780230244184_06_cha05.indd 130 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 131

where humans encountered themselves as human (Sellars 1962: 38).
This, in a certain historical sense, points to a notion of Special Creation,
which argues that humans could not know themselves until they
became human, and points to a fundamental discontinuity in the
notion of a manifest image which is by itself irreducible (this certainly
follows Heidegger’s notion of a technological ontotheology, a kind of
incommensurable Kuhnian moment). However, for Sellars, regardless
of its historical emergence from what he calls the ‘original’ image, the
manifest image is a refinement or sophistication of both empirical and
categorical dimensions, whereby, it is

the sort of refinement which operates within the broad framework of
the [manifest] image and which, by approaching the world in terms
of something like the canons of inductive inference defined by John
Stuart Mill, supplemented by canons of statistical inference, adds to
and subtracts from the contents of the world as experienced in terms
of this framework and from the correlations which are believed to
obtain between them (Sellars 1962: 40).

Therefore, the manifest image makes use of a scientific method which
Sellar’s calls ‘correlational induction’, but does not involve the postula-
tion of imperceptible entities to explain the behaviour of perceptible
entities. This clarifies that the manifest image of being-in-the-world is
not a pre-scientific one, rather the manifest image is one of the poles of
philosophical reflection towards which both speculative philosophy and
systems and quasi-systems thinking have in common (Sellars 1962: 41).
Fundamentally, the manifest image is a refinement of the original image
construed as the progressive pruning of categories pertaining to the
concept of personhood and their relation to other person’s and groups
of entities. Correspondingly, the emergence of modernity is the succes-
sive reclassification of entities as non-persons (e.g. trees, stars, planets,
etc.) leaving only a human remainder.

The computational image

I would like to use Sellars’ (1962) notion of ‘image’ to think through the
comportment towards, and implications of, a computational set of cat-
egories and empirical knowledge which I will extend, calling this third
form the computational image. Where Heidegger contrasts universe and
world, and for Sellars this indicates the scientific and the manifest image,
here I want to think through the possibility of a third image, that of
the closed ‘world’ of the computer, the computational image. I want

9780230244184_06_cha05.indd 1319780230244184_06_cha05.indd 131 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

132 The Philosophy of Software

to understand how one know one’s way around with respect to things
in a computational image, and conversely, the computational way of
making sense of the world and how it gives expression to that sensibil-
ity. Crucially, this involves a vicarious relation between computational
entities through transformation and translations (understood as mini-
mal transformations) which never directly encounter the ‘autonomous
reality of their components’ (Harman 2009: 141). By vicarious, I mean
acting or done for another, that is a mediation on behalf of another
entity.13 Harman (2009) argues that to operate vicariously ‘means that
forms do not touch one another directly, but somehow melt, fuse, and
decompress in a shared common space from which all are partly absent’
(Harman 2009: 142). Although Harman refers to a form of speculative
realism, or object-oriented philosophy, that wishes to speculate on the
same world as the sciences, I will restrict this notion to the computa-
tional image which shares features of both the manifest and scientific
image in that the computational image contains both the discrete (i.e.
scientific) and the continuous (i.e. manifest) dimensions or in some
senses can form a bridge or interface between them. Here, I want to
connect the computational image to Heidegger’s notion of equipment,
but crucially, I want to argue that what is exceptional about the compu-
tational device is that unlike other equipment which is experienced as
ready-to-hand, computational devices do not withdraw, rather they are
experienced as radically unready-to-hand.

So, how would one negotiate or cope with a world which is populated
with equipment that is calling us through their affordances in particu-
lar contexts, think, for example, of mobile phones and iPods? These
devices are prescribed with the facility to shape their environments in
limited ways and to present a stable meaningful world, a towards-which
we can give meaning to. The problem immediately arises for dasein that
the physicality of the equipment is no longer familiar to us, it no longer
shines. Rather, it acts as a carrier within which software is located and
which as a plastic and black-boxed technology is both radically mutable
and frustratingly fixed in form and function. Let us consider the iPod,
a device that has been perfected in the form of the iPod Touch, iPhone
and iPad, in which there is only one home button and a touch-screen
interface which is context sensitive and infinitely reconfigurable. Here
‘coping’ or dealing with the device consists of being led through the
narrative of the interface over which only limited control is available
and therefore affordances may be promised but not delivered. An exam-
ple of which is the fact that increasingly computational devices are not
switched off – rather the screen is dimmed to give the impression to

9780230244184_06_cha05.indd 1329780230244184_06_cha05.indd 132 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 133

the user that the iPad is inactive. In reality, the device is merely waiting
for the next interaction, which does not necessarily have to be with a
human actor, for example it might continue to check for email, count
the seconds for the clock, or update your location to a central computer
server.

To compound the problem, the interface itself is liable to be upgraded,
changed, or jailbroken (a term used to indicate that the user has escaped
the boundary designated by the manufacturer). Thus to find one’s way
around remains a challenge where one is faced with the constant insta-
bility and unreadiness-to-hand (unzuhandenheit) of the computational
interface. This unreadiness-to-hand, Heidegger argues, is a kind of par-
tial present-at-hand (i.e. scientific image) which forces dasein to stop
coping and instead sense a contextual slowing-down which Heidegger
calls conspicuousness.14 This is different to experiencing the world as
manifest image, that is as a continuity of flow. Instead, it is a looking at
things that appear to have come to a temporary fragmentary standstill,
rather like when trying to learn a new skill when one must continu-
ally attend to what one is doing, such as when learning to ride a bike.
Combined with the contemporary overly informatised environment,
the deluge of information calling for attention may be overwhelming
(see New York Times 2010). Psychologists call the requirement to move
between different focal tasks a ‘switch cost’:

[E]ach time you switch away from a task and back again, you have to
recall where you were in that task, what you were thinking about. If
the tasks are complex, you may well forget some aspect of what you
were thinking about before you switched away, which may require
you to revisit some aspect of the task you had already solved (for
example, you may have to re-read the last paragraph you’d been
reading). Deep thinking about a complex topic can become nearly
impossible (Hopkins, quoted in Carr 2010b).

The iPad, like similar multitasked devices,15 performs functions, which
operate in a way that is both engrossing and frustrating, the device is at
once too simple, presenting as it does a screen to the user which mani-
festly simplifies the underlying computational processes, and too com-
plex, in that even with the shielding provided by the simplification the
user often gets lost within tangled nested menus and options scattered
across the device and which can be difficult to locate or even guess as to
their function. Fuller (2003: 142) argues that the user therefore becomes
an object of the technology, usefully pointing to the agentic nature of

9780230244184_06_cha05.indd 1339780230244184_06_cha05.indd 133 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

134 The Philosophy of Software

the technical device, but perhaps over-playing the extent to which the
user is disabled by technology, although a partial distractedness is cer-
tainly often a result. One example of this is the inability of the device
to present a unified interface within applications, therefore requiring
the user to constantly move around in the application to try to find the
controls or settings they are looking for.16 Even more surprising is that
‘scientists are discovering that even after the multitasking ends, frac-
tured thinking and lack of focus persist. In other words, this is also your
brain off computers’ (Richtel 2010, original emphasis). So when surfing
the Internet on the browser, the informational overload is astounding –
people now consume up to 12 hours of media a day on average, many
hours with multiple media simultaneously (e.g. TV and Internet). That
compares with only five hours in 1960. Correspondingly, computer
users now visit an average of 40 Web sites a day, according to research
by RescueTime (Richtel 2010). Indeed,

the Internet has a hundred ways of distracting us from our onscreen
reading. Most email applications check automatically for new mes-
sages every five or 10 minutes, and people routinely click the Check
for New Mail button even more frequently. Office workers often
glance at their inbox 30 to 40 times an hour. Since each glance breaks
our concentration and burdens our working memory, the cognitive
penalty can be severe (Carr 2010c).

This places dasein in a relationship of towards-which that maximises
the experience of conspicuousness perceived as a constant series of
pauses, breaks, and interruption. One might reflect on a similar experi-
ence of the obtrusiveness of email, which, as anyone who has an email
client on their work computer will be familiar with. As the disconcert-
ing ease with which the visual or aural notifications continually break
their flow, that is to move the user from a state of ready-to-hand, writ-
ing or using the computer to perform a task, to that of present-at-hand,
which makes the entire computer apparent and available to inspection.
Indeed, a study at the University of California, found that ‘people inter-
rupted by e-mail reported significantly increased stress’ compared with
those left to focus their attention on the text (Richtel 2010). Both con-
spicuousness and obtrusiveness, I want to argue, create a fragmentary
and distracted flow of consciousness which, following Lyotard (1999: 5),
I want to call a ‘stream’ and Deleuze and Guattari (2003) call the
schizophrenic.17This is the disjecta membra of the human subject of the
enlightenment and raises important questions about the computational

9780230244184_06_cha05.indd 1349780230244184_06_cha05.indd 134 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 135

subject in a contingent milieu which has an attendant devaluation
of traditional and high culture. Here, I can only mark a connection I
want to make with this ‘fleeting-improvised’ subjectivity and the com-
putational image, that is, a subject that experiences conspicuousness
as a continual state of exception and that is endlessly experiencing a
promise of emancipation through the radical obsolescence of the socio-
technological devices that surround it, discussed in more detail in the
next chapter. Of course, this is the other side of the coin in that in
the historical specificity of the computational way-of-being is offered
the revolutionary potential of this recurring experience of infrastruc-
tural emancipation in a distributed notion of cognitive support through
socio-technical devices, something that we will return to below.

The notion that equipment creates a state of conspicuousness for
dasein gives the computational device its specificity and marks it out
as radically different from other media, which are more comfortably
ready-to-hand. For example, when one uses a hammer to strike a nail,
for the carpenter, the hammer withdraws, providing the necessary
conditions for such a tool are met (i.e. it is functioning correctly, not
broken, not too heavy or too light, etc.). The carpenter can therefore
use the equipment of the hammer without having a present-at-hand
experience of the hammer which would get in the way of using it.
Similarly, when watching television the audience forgets that it, as a
medium, is there. In contrast a non-digital, analogue television is sim-
ple to use and presents a unified experience that withdraws so that the
viewer can sit back and enjoy the show. When the television becomes
digital, however, it is loaded with functionality, software, interfaces,
menus and multiple options, such as the infamous red option button.
The television is now a complex piece of machinery that needs con-
stant care, careful management, and quite simply is capable of both
crashing or corrupting whilst viewing but also interrupting the viewing
experience (whether through digital techniques on the part of the
broadcasters or locally with alarms, picture-in-picture, or other
paraphernalia).18

For a computational device any withdrawal is partial, as it requires
constant attention to keep it functioning and ‘right’ for the task it is to
assist with, that is, a computational device remains in a state of con-
spicuousness. Even for something as static as an eBook reader, which
only presents non-changing text to the user, the evidence suggests
that the devices create a distracting object that users find difficult to
concentrate on, in contrast to a physical book (see Hayles 2007 for evi-
dence of a computationally reinforced ‘hyper’ attention state; see also

9780230244184_06_cha05.indd 1359780230244184_06_cha05.indd 135 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

136 The Philosophy of Software

Kurniawan and Zaphiris 2001 for the specific problems of screen-based
reading).19 Here, I would like to connect Stiegler’s (2009) conception of
the fundamentally technical nature of this trajectory as disorientation
with the growing cognitive assemblage represented by technical devices
that now populate the manifest world, that is, that ‘humanity’s history
is that of technics as a process of exteriorization’ in which technical
evolution is dominated by the technical inscription of memory as a
method of reflective objectification. For Stiegler, it is the ability to place
memory outside the body in some material form that gave rise to the
possibility of reflexive thought and is a key aspect of how we came to
be human in the first place. Here, I want to make the connection with
the way in which modern computational technology is enabling the
exteriorization of cognition and reflexivity itself.

The computational is also often closely associated with formal logic,
calculation, and a particular type of rationality such as command and
control, that is cybernetics (see Dubray 2009). In terms of computabil-
ity, computation is exact when ‘given exact finite data as input, an exact
computation returns exact finite data as output’ (Tucker and Zucker
2007: 2). Here, we can think in the first instance of a command-control
model of usage whereby the user command the software to perform a
task and the software willingly complies. This is certainly how most
people understand their use of computers, the user remains in control.
However, the near instantaneous translation of the command into
action hides the discrete processes by which the command is converted
into functions, checked against the software’s internal checks and bal-
ances, and finally executed as an action. Within the domain of the com-
putational processes, in the interstices between the manifest image and
the digital representation is the possibility for the monitoring of and if
necessary the realignment of the commands of the user. It is here the
software acts to reflect the users desire, but the space between execution
and feedback, which is given via the user interface need not represent
the actual result, which again points towards the uncertain affordances
of the computational device. As Carr (2010) writes,

Eric Schmidt, Google’s chief executive, once remarked that he looked
forward to the day when Google would be able to tell him “what
[he] should be typing,” which, if I’m interpreting the statement cor-
rectly, also means that Google would be telling him what he should
be thinking. Such a service, Schmidt said, would be the product he’s
“always wanted to build.” (Carr 2010).

9780230244184_06_cha05.indd 1369780230244184_06_cha05.indd 136 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 137

Indeed, the interface may perpetuate a form of software-ideology by
misleading the user into anticipating the result of what Deleuze and
Guattari (2003: 87) calls an order-word and which is expected to result
in a transformation within the software or data. This act, the transfor-
mation of something into something else is an instantaneous act or
what Deleuze and Guattari (2003: 80) call an incorporeal transforma-
tion. As they explain:

The incorporeal transformation is recognizable by its instantaneous-
ness; its immediacy, by the simulataneity of the statement express-
ing the transformation and the effect the transformation produces
(Deleuze and Guattari 2003:81).

With software, however, the incorporeal transformation requested may
not have been carried out, but the user is convinced by the software dis-
play that it has done so. This is a vicarious relationship, that is a relation-
ship whereby following the command (order-words), the user transacts
with the code to execute the action. It is a relationship that is mediated,
and hence it is a relationship that separates the human from the world.
One could think of a fly-wheel that acts to translate action and symbolic
manipulation across multiple levels of digital code and which at any
level the coupling in the assemblage may be tighter or looser depending
on a number of factors (e.g. bugs in the code, hacking, mistakes in pro-
gramming, or deliberate restriction of action through prescriptive code
that is embedded or delegated with a particular normative content). This
again highlights the importance of avoiding a screen essentialism if we
are to open the black box of computational devices.20

Vicarious transformations

Vicarious indicates that there are interesting implications relating to the
mediated relationship that we have with this ‘hidden’ computational
world that is revealed only through transformation and translation of its
internal functioning into a form that is projected into our phenomenal
experience. This reminds one again of the object-oriented approach of
Harman (2009:168), who describes parts encrusted onto a surface which
are sensually available whereas ‘the parts of a real object are contained
on the interior of that object, not plastered onto its outer crust. In both
cases, however, there is a vicarious cause enabling the parts to link
together’ (Harman 2009:168). This is, of course, similar to the notion
of the human computer interface which connects the manifest image

9780230244184_06_cha05.indd 1379780230244184_06_cha05.indd 137 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

138 The Philosophy of Software

of the user to the internal world of the computational. In other words,
there is no direct contact with our phenomenal reality and that repre-
sented within the computational device except through the interfaces,
computer code, and input devices that mediate it, such as a mouse and
a windowing system. As Heim (1987) explains:

The types of physical cues that naturally help a user make sense out
of mechanical movements and mechanical connections are simply
not available in the electronic element. There are far more clues to
the underlying structural processes for the person riding a bicycle
than there are for the person writing on a computer screen. Physical
signs of the ongoing process, the way that responses of the person are
integrated into the operation of the system, the source of occasion
blunders and delays, all these are hidden beneath the surface of the
activity of digital writing. No pulleys, springs, wheels, or levers are
visible; no moving carriage returns indicate what the user’s action is
accomplishing and how that action is related to the end product...
The writer has no choice but to remain on the surface of the system
underpinning the symbols. (Heim 1987: 131–2)

One example will suffice; in order to create the illusion of an interface
that is presented to an ordinary user of the computer, there has to be a
model of the multiple layers required, together with rules pertaining to
the interrelation of parts of the screen and the masking and visibility of
the components. We know this implicitly by the way in which things
on-screen appear to vanish behind other things. However, in the world
of the computational device this is merely an illusion, a screenic meta-
phor. Within the digital domain, discrete ‘spaces’ are created internally
within the memory structures, held as voltage levels on memory chips,
which function to draw out of a plane of immanence specific structures
and namespaces that are independent of each other. As Kittler explains,
‘[a]ll code operations, despite such metaphoric faculties as call or return,
come down to absolutely local string manipulations, that is, I am afraid,
to signifiers of voltage differences’ (Kittler 1997: 150, original emphasis).
Through a process of abstraction and layering within the technical
operation of the computer software there is a digital ‘universe’ in which
digital entities are created as having discrete spatial characteristics, both
in terms of occupying specific three-dimensional physical memory loca-
tions (i.e. on the memory chips), but also abstracting upon this physical
space, a model of space that may have multiple dimensions and even
contain alternative ‘physics’. Therefore, it might be useful to think that

9780230244184_06_cha05.indd 1389780230244184_06_cha05.indd 138 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 139

digital devices ‘have an Oreo cookie-like structure with an analogue bot-
tom, a frothy digital middle, and an analogue top’ (Hayles 2004: 75).
Digital entities can then be said to have a double articulation in that
they are represented both spatially within our material universe, but
also with the representational space created within the computational
device – a digital universe. The computational device is, in some senses,
a container of a universe (as a digital space) which is itself a container
for the basic primordial structures which allow further complexifica-
tion and abstraction towards a notion of world presented to the user.
That is, that each universe may itself by the conditions of possibility
for further levels of abstraction and therefore further universes, rather
like a Russian doll each within the other.21 Here are clues to the basis
for the claims of exponents of digital philosophy and the Regime of
Computation.

The screen can be understood as a window onto this world and
the keyboard and mouse operate as equipment with which we might
manipulate it. However, this manipulation is never direct, and indeed
the multiple levels of mediation are themselves rings which encircle the
world into which we project a form of intentionality in terms of being-
in the machine. As Hayles (2004) explains:

the signifier exists not as a durably inscribed flat mark but as a
screenic image produced by layers of code precisely correlated
through correspondence rules, from the electronic polarities that
correlate with the bit stream to the bits that correlate with binary
numbers, to the numbers that correlate with higher-level statements,
such as commands, and so on. Even when electronic hypertexts sim-
ulate the appearance of durably inscribed marks, they are transitory
images that need to be constantly refreshed by the scanning electron
beam that forms an image on the screen to give the illusion of stable
endurance through time (Hayles 2004: 74).

We never directly encounter the entities that are constructed within
the context of the digital world that is presented to us, instead, when
we issue a command or move the mouse, a set of discrete translations
are performed moving through the layers of the computational device
to perform an uncertain transformation, which in the final instance
involves the movement of voltage levels around the material circuitry
within the computational device.

What strikes one as interesting about this process, is that the primor-
dial elements of the computational device, the circuitry, the voltages,

9780230244184_06_cha05.indd 1399780230244184_06_cha05.indd 139 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

140 The Philosophy of Software

the silicon and so forth, appear to have no bearing on the actions of the
user, in as much as the user concentrates on the world presented through
the screen. On the other hand, the rules of physics must be attended to,
and the quantum states of electrons, the electrical requirements of the
environment within the computational device, the extreme requirements
of the processor to be cooled and heat to be expelled are all handled
invisibly by a process of worlding by the computer. In some sense the
computational device has been delegated the capacity to gather these
components and actively assemble them and continually stabilise their
functioning. The computational device is an unstable form of equip-
ment that must continually gather and reinforce its equipmental quali-
ties against a hostile world of breakdown. This is then repeated through
numerous layers of software that serve to create inner unstable universes
within which further abstraction takes place, all the way down. Crucially
though, the agency of each universe is loosely independent and defined
at its creation in computer code by a series of constraints which serve
as a framework within which the new abstract layer must function.
Each layer promises uncertain affordances to the latter, eventually cul-
minating in the partial affordance offered to the user through a risky
encounter with a vicarious transformation which here I argue is radically
unreadiness-to-hand.

This loose coupling of the user and the computational technical
device offers possibilities that may be thought of in terms of Heidegger’s
notion of Gelassenheit. For Heidegger, Gelassenheit is a particular type of
relationship with technical devices that is a letting go, ‘serenity, compo-
sure, release, a state of relaxation, in brief, a disposition that “lets be.”
Seen from the standpoint of the will, the thinker must say, only appar-
ently in paradox, “I will non-willing”; for only “by way of this,” only
when we “wean ourselves from will,” can we “release ourselves into the
sought-for nature of the thinking that is not a willing”’ (Arendt 1971).
This points towards the possibility of a relationship with technology
that is not built of the will to power by virtue of the impossibility of
control in a system that exceeds the comprehension of a human subject,
this will be explored in the next chapter.

In any case, I have argued that the computational image problemati-
cally mediates between the manifest and scientific image and may hold
important clues as to the difficulty of connecting or reconciling these
images through its equipmental form. Of course, with the increasing
reliance by physical sciences on technical apparatus, and the mediation
of everyday life, particularly through digital devices, the computational
becomes increasingly salient. The interesting point is that at the nexus

9780230244184_06_cha05.indd 1409780230244184_06_cha05.indd 140 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

Towards a Phenomenology of Computation 141

of use, digital devices are a peculiar fragmentary mediator between the
particulate and the continuous. In some senses then we might start to
speculate on the nature of the computational image as a form of cul-
tural analog–digital/digital–analogue convertor that translates entities
between the manifest and scientific images but does so in an uneven
and fragmentary way. In the next chapter this is extended through an
examination of how this fragmentation combined with the huge quan-
tity of data represented within the real-time data streams creates a new
form of computational identity.

By way of conclusion, I suggest that by thinking about computation-
ality, in particular code and software, as unready-to-hand, helps us to
understand the specific experience of our increasingly code-saturated
environment. Linked to this is the notion of a distributed form of cog-
nition (we might think of this as a database of code enabled cognitive
support), which we can draw on, like Google Instant, but which remains
unready-to-hand. That is, that it causes us to suffer switching costs,
which; even if imperceptively, change our state of being in the world.
In the next chapter I want to look at how these forms of streamed-
 cognition are structured and some of the implications for how we might
experience the world.

9780230244184_06_cha05.indd 1419780230244184_06_cha05.indd 141 2/5/2011 7:00:25 PM2/5/2011 7:00:25 PM

142

6
Real-Time Streams

The growth of the Internet has been astonishing, both in terms of its
breadth of geographic cover, but also the staggering number of digital
objects that have been made to populate the various webpages, data-
bases, and archives that run on the servers. This has traditionally been
a rather static affair, however, there is evidence that we are beginning to
see a change in the way in which we use the web, and also how the web
uses us. This is known as the growth of the so-called ‘real-time web’ and
represents the introduction of a technical system that operates in real-
time in terms of multiple sources of data fed through millions of data
streams into computers, mobiles, and technical devices more gener-
ally. Utilising Web 2.0 technologies, and the mobility of new technical
devices and their locative functionality, they can provide useful data to
the user on the move. Additionally, these devices are not mere ‘con-
sumers’ of the data provided, they also generate data themselves, about
their location, their status and their usage. Further, they provide data
on data, sending this back to servers on private data stream channels to
be aggregated and analysed. That is,

1. The web is transitioning from mere interactivity to a more
dynamic, real-time web where read-write functions are heading
towards balanced synchronicity. The real-time web… is the next
logical step in the Internet’s evolution.

2. The complete disaggregation of the web in parallel with the slow
decline of the destination web.

3. More and more people are publishing more and more “social
objects” and sharing them online. That data deluge is creating a
new kind of search opportunity (Malik 2009).

9780230244184_07_cha06.indd 1429780230244184_07_cha06.indd 142 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 143

The way we have traditionally thought about the Internet has been in
terms of pages, but we are about to see this changing to the concept of
‘streams’. In essence, the change represents a move from a notion of
information retrieval, where a user would attend to a particular machine to
extract data as and when it was required, to an ecology of data streams that
forms an intensive information-rich computational environment. This
notion of living within streams of data is predicated on the use of techni-
cal devices that allow us to manage and rely on the streaming feeds. Thus,

Once again, the Internet is shifting before our eyes. Information is
increasingly being distributed and presented in real-time streams
instead of dedicated Web pages. The shift is palpable, even if it is
only in its early stages… The stream is winding its way throughout
the Web and organizing it by nowness (Schonfeld 2009).

The real-time stream is not just an empirical object; it also serves as a
technological imaginary, and as such points the direction of travel for
new computational devices and experiences. In the real-time stream, it
is argued that the user will be constantly bombarded with data from a
thousand different places, all in real-time, and that without the com-
plementary technology to manage and comprehend the data she would
drown in information overload. Importantly, the user is expected to
desire the real-time stream, both to be in it, to follow it, and to partici-
pate in it, and where the user opts out, the technical devices are being
developed to manage this too. Information management becomes an
overriding concern in order to keep some form of relationship with the
flow of data that doesn’t halt the flow, but rather allows the user to step
into and out of a number of different streams in an intuitive and natural
way. This is because the web becomes,

A stream. A real time, flowing, dynamic stream of information — that
we as users and participants can dip in and out of and whether we
participate in them or simply observe we are […] a part of this flow.
Stowe Boyd talks about this as the web as flow: “the first glimmers of
a web that isn’t about pages and browsers” (Borthwick 2009).

These streams are computationally real-time and it is this aspect that is
important because they deliver liveness, or ‘nowness’ to the users and con-
tributors. Many technologists argue that we are currently undergoing a
transition from a ‘slow web to a fast-moving stream... And as this happens

9780230244184_07_cha06.indd 1439780230244184_07_cha06.indd 143 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

144 The Philosophy of Software

we are shifting our attention from the past to the present, and our “now”
is getting shorter’ (Spivak 2009). Today, we live and work among a multi-
tude of data streams of varying lengths, modulations, qualities, quantities
and granularities. The new streams constitute a new kind of public, one
that is ephemeral and constantly changing, but which modulates and
represents a kind of reflexive aggregate of what we might think of as a
stream-based publicness – which we might call riparian-publicity. Here,
I use riparian to refer to the act of watching the flow of the stream go
by. But as, Kierkegaard, writing about the rise of the mass media argued:

The public is not a people, a generation, one’s era, not a commu-
nity, an association, nor these particular persons, for all these are
only what they are by virtue of what is concrete. Not a single one of
those who belong to the public has an essential engagement with anything
(Kierkegaard, quoted in Dreyfus 2001b: 77, italics added).

Here too, the riparian user is strangely connected, yet simultaneously
disconnected, to the data streams that are running past at speeds which
are difficult to keep up with. To be a member of the riparian public one
must develop the ability to recognise patterns, to discern narratives, and
to aggregate the data flows. Or to use cognitive support technologies
and software to do so. The riparian citizen is continually watching the
flow of data, or delegating this ‘watching’ to a technical device or agent
to do so on their behalf. It will require new computational abilities for
them to make sense of their lives, to do their work, and to interact with
both other people and the technologies that make up the datascape of
the real-time web. These abilities have to be provided by new technical
devices that give the user the ability may therefore to manage this new
data-centric world. In a sense, one could think of the real-time streams
as distributed narratives which, although fragmentary, are running
across and through multiple media, in a similar way to that Salman
Rushdie evocatively described in Haroun and the sea of stories:

Haroun looked into the water and saw that it was made up of a thou-
sand thousand thousand and one different currents, each one a dif-
ferent color, weaving in and out of one another like a liquid tapestry
of breathtaking complexity; and [the Water Genie] explained that
these were the Streams of Story, that each colored strand represented
and contained a single tale. Different parts of the Ocean contained
different sorts of stories, and as all the stories that had ever been
told and many that were still in the process of being invented could
be found here, the Ocean of the Streams of Story was in fact the

9780230244184_07_cha06.indd 1449780230244184_07_cha06.indd 144 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 145

biggest library in the universe. And because the stories were held here
in fluid form, they retained the ability to change, to become new
versions of themselves, to join up with other stories and so become
yet other stories; so that unlike a library of books, the Ocean of the
Streams of Story was much more than a storeroom of yarns. It was
not dead but alive (Salman Rushdie, Haroun and the sea of stories,
quoted in Rumsey 2009).

Of course, the user becomes a source of data too, essentially a real-time
stream themselves, feeding their own narrative data stream into the
cloud, which is itself analysed, aggregated, and fed back to the user and
other users as patterns of data. This real-time computational feedback
mechanism will create many new possibilities for computational prod-
ucts and services able to leverage the masses of data in interesting and
useful ways. Indeed, we might begin to connect these practices of com-
putational intensification with a wider computational economy which
is facilitated by technology, which Kittler (1997) calls the technical a
priori. These technologies may provide a riparian habitus for the kinds
of subjectivity that thrives within a fast moving data-centric environ-
ment, and through a process of concretization shape the possibility of
thought and action available. As Hayles (1999) states:

Modern humans are capable of more sophisticated cognition
than cavemen not because moderns are smarter… but because they
have constructed smarter environments in which to work (Hayles
1999: 289).

Here, computational technology becomes instrumental to the processes
of investment that individuals make into their lives, whereby success
and intelligence is expressly linked to a technological process that
makes these individual computational ‘streams’ more productive. The
stream is also linked to the creation of a complex temporality through
an assemblage of computational processes, through, for example the
storage and recall of time-series data, a ‘global’ market-place and cycles
of investment, dividends and company reporting requirements. These
create wider oscillations which provide an informatised environment
that is constantly changing but yet provides predictive patterns from
seemingly random distributions of data.

The question now arises as to the form of subjectivity that is both
postulated and in a sense required for the computational subject. In this
final chapter, I want to think through the question of the subject as a
computational stream, that is both a recipient of real-time data streams

9780230244184_07_cha06.indd 1459780230244184_07_cha06.indd 145 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

146 The Philosophy of Software

as a consumer and user of data and information, but also what a stream-
like consciousness might experience. After spending the majority of the
book thinking through the question of code and software through the
optic of the computational, I now want to turn to the question of the
computational subject. To do this, I want to look at the work of Jean-
François Lyotard, a French philosopher and literary theorist, especially
his ideas expressed in Postmodern Fables. Here, Lyotard introduces
‘ fifteen notes on postmodern aestheticization’ (Lyotard 1999: vii). In
these essays, he attempts to analyze the workings of the capitalist market
through culture. His method shifts to a new ‘subterranean practice’ in
which he moves from a commitment to the future anterior or the ‘what
will have been’, (i.e. through experimentation by proceeding in such
a way that the methods only emerge through the ‘playing of the game’
or after the event (see Beer and Gane 2004)), to a radical politics, or
aesthetics, of disruption, using the fable as an exploratory approach. As
Gane (2003) explains:

The fable plays with the boundaries between fiction and reality, and
in the process disturbs the narrative structures that frame and legiti-
mate knowledge. Lyotard consequently terms fables ‘realist’, because
they recount ‘the story that makes, unmakes, and remakes reality’
(Lyotard 1999: 91, quoted in Gane 2003: 444).

The fable is a narrative means of presenting a fictional or ‘elusive
ought’, and at the end of the chapter I would like to consider what the
moral of a postmodern fable of ‘being a good stream’ might be, much
as in Aesop’s Tales one is left with a moral at the end of the story. As
Lyotard explains,

In the fable the energy of language is spent on imagining. Therefore,
it really does fabricate a reality, that of the story which it is telling;
but the cognitive and technical use of reality is left pending. It is
exploited reflexively, that is to say, sent back to language so that it can
link up with its subject… Leaving it unsettled is what distinguishes
the poetic from the practical and pragmatic (Lyotard 1993: 242).

But for now it is important to understand Lyotard’s fables as part of
a project of political resistance, where the poetic or mythic offers a
line-of-flight through fleeting or disruptive movements. I want to use
this as a means to think about computational subjectivity, that is,
subjectivity that is mediated through computer-based technologies, in
other words, a ‘stream’-like subject. The problems introduced when our

9780230244184_07_cha06.indd 1469780230244184_07_cha06.indd 146 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 147

informationalised lives become mediated through the real-time is nicely
captured by Borthwick (2009) who reflects that,

The activity streams that are emerging online are all these shards —
these ambient shards of people’s lives. How do we map these shards
to form and retain a sense of history? Like [that] objects exist and
ebb and flow with or without context. The burden to construct and
make sense of all of this information flow is placed, today, mostly on
people. In contrast to an authoritarian state eliminating history —
today history is disappearing given a deluge of flow, a lack of tools to
navigate and provide context about the past. The cacophony of the
crowd erases the past and affirms the present. It started with search
and now its accelerated with the ‘now’ web. I don’t know where it
leads but I almost want a remember button — like the like or favour-
ite. Something that registers something as a memory — as a salient
fact that I for one can draw out of the stream at a later time. Its
strangely comforting to know everything is out there but with little
sense of priority of ability to find it becomes like a mythical library —
its there but we can’t access it (Borthwick 2009).

This concept of the stream as a new form of computational subjectivity
also represents a radical departure from the individualised calculative
rationality of homo economicus and tends rather toward the manipulation
of what Brian Massumi calls ‘affective fact’, that is through an attempt to
mobilise and distribute the body’s capacity to think, feel and understand
(either through a self-disciplinary or institutional form). Thus logico-
discursive reasoning is suspended and replaced with a ‘primary assem-
blage that links together statements, images, and passions in the
duration of the body’ (Terranova 2007:133). A link is formed between
affective and empirical facts that facilitates and mobilises the body as
part of the processes of a datascape or mechanism directed towards
computational processes as software avidities, for example, complex risk
computation for financial trading, or ebay auctions that structure desire.
Indeed, the stream’s comportment towards ‘technical’ or computational
temporality and the connection between time, speed and movement for
the maximization of output/profit lends it towards a form of subjectiv-
ity suited to the financialised practices that are becoming increasingly
common today. This notion of computationally supported subject was
developed in the notion of the ‘life-stream’:

A lifestream is a time-ordered stream of documents that functions as
a diary of your electronic life; every document you create and every

9780230244184_07_cha06.indd 1479780230244184_07_cha06.indd 147 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

148 The Philosophy of Software

document other people send you is stored in your lifestream. The tail
of your stream contains documents from the past (starting with your
electronic birth certificate). Moving away from the tail and toward
the present, your stream contains more recent documents — papers
in progress or new electronic mail; other documents (pictures, corre-
spondence, bills, movies, voice mail, software) are stored in between.
Moving beyond the present and into the future, the stream contains
documents you will need: reminders, calendar items, to-do lists…
You manage your lifestream through a small number of powerful
operators that allow you to transparently store information, organize
information on demand, filter and monitor incoming information,
create reminders and calendar items in an integrated fashion, and
“compress” large numbers of documents into overviews or executive
summaries (Freeman and Gelernter 1996).

This is a life reminiscent of the Husserlian ‘comet’, that is strongly
coupled to technology which facilitates the possibility of stream-like
subjectivity in the first place. Memory, history, cognition and self-pres-
entation are all managed through computational devices that manage
the real-time streams that interact with and make possible the life
streams described here. These make use of the processing improvements
associated with technology, together with feedback, control and rational
management, which are reminiscent of cybernetic theory and the focus
on information, feedback, communication, and control (Beniger 1989).
It is also argued that what we see are changes in the internal structure of
the human mind and body to facilitate that productivity that previously
took place in the factory (Hardt and Negri 2000). This is the restructur-
ing of a post-human subjectivity that rides on the top of a network of
computationally-based technical devices. This notion of a restructured
subjectivity is nicely captured by Lucas (2010) when he describes the
experience of dreaming about programming,

This morning, floating through that state between sleep and con-
sciousness in which you can become aware of your dreams as
dreams immediately before waking, I realized that I was dreaming
in code again… [D]reaming about your job is one thing; dreaming
inside the logic of your work is quite another… But in the kind of
dream that I have been having the very movement of my mind is
transformed: it has become that of my job. It is as if the repetitive
thought patterns and the particular logic I employ when going
about my work are becoming hardwired; are becoming the default

9780230244184_07_cha06.indd 1489780230244184_07_cha06.indd 148 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 149

logic that I use to think with. This is somewhat unnerving (Lucas
2010: 1).

This is the logic of computer code, where thinking in terms of computa-
tional processes, as processual streams, is the everyday experience of the
programmer, and concordantly, is inscribed on the programmer’s mind
and body. The particular logic of multiple media interfaces can also
produce a highly stimulated experience for the user, requiring constant
interaction and multi-tasking. According to Richtel (2010),

heavy multitasking might be leading to changes in a characteristic
of the brain long thought immutable: that humans can process only
a single stream of information at a time. Going back a half-century,
tests had shown that the brain could barely process two streams, and
could not simultaneously make decisions about them. But Mr. Ophir,
a researcher at Stanford University, thought multitaskers might be
rewiring themselves to handle the load… [however actually] they had
trouble filtering out… irrelevant information (Richtel 2010).

These are interventions that are made possible through new media
technologies, such as word-processors, project management software
and intimate technologies like the iPhone, technologies that provide an
environment in which thinking is both guided in a logical fashion, but
also continually fragmented across the media interface. This can change
the very act of writing itself, as Heim writes:

You no longer formulate thoughts carefully before beginning to write.
You think on screen. You edit more aggressively as you write, making
changes without the penalty of retyping. Possible changes occur to
you rapidly and frequently… The power at your fingertips tempts you
to believe that faster is better, that ease means instant quality (Heim
1993: 5).

It is this constantly present form of subjectivity that is closely linked
to the computational experience of technical devices described above.
These, of course, are highly dependent upon the code that makes up the
data processing component that enables the streams in the first place.
By displacing certain activities into the technology enables rapid reflex-
ive augmentation of the data that is in a constant feedback loop back
to the user. This is the human being as a data stream in its own right,
or as is more commonly termed, a user stream.

9780230244184_07_cha06.indd 1499780230244184_07_cha06.indd 149 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

150 The Philosophy of Software

Being a good stream

Lyotard develops his notion of the ‘stream’ from his previous works,
The Postmodern Condition (1984), and The Inhuman (1993), where he
drew attention to the rapid pace of technological change and its potent
possibilities to extend rationalisation and domination. In Postmodern
Fables he is expressly interested in technology’s ability to speed up the
exchange of information to such an extent that critical thought itself
might become suppressed under the quantity of information. For exam-
ple, in the first essay called ‘Marie goes to Japan’, Lyotard tells the tale
of Marie, a overworked academic who must travel the world in order to
‘sell her culture’ and in doing so, becomes a ‘stream of cultural capital:
a member of a new “cultural labour force” that is exploited by choice’
(Gane 2000: 444). Lyotard explicitly links economic value and speed,
indeed, as he explains in the note: ‘capital is not time is money, but also
money is time. The good stream is the one that gets there the quickest. An
excellent one gets there almost right after it has left’ (Lyotard 1999: 5).
For the ‘good little stream’ of the fable, it is the ability to produce rap-
idly that is the key marker of success, indeed, the faster something is
completed and thus increases the stream’s flow, the more profitable,
the more successful and the greater the level of productivity. As Lyotard
remarks:

The best thing is to anticipate its arrival, its ‘realisation’ before it gets
there. That’s money on credit. It’s time stocked up, ready to spend,
before real time. You gain time, you borrow it.(Lyotard 1999: 5).

This improvement in the ‘efficiency’ of the individual recalls Marx’s
distinction between absolute and relative surplus value and the impor-
tance to capitalism of improvements in both organizational structure
and technological improvements to maximizing profit (Marx 2004:
429–38). So, for example in this case, writing academic papers and
books, using technology in any spare moments of time, together with
mobility and participation, are the key to understanding this intensive
new world of cultural production. However, this production is in a sense
cut off from a sense of history, what Bruce Sterling calls the ‘atempo-
ral’ (2010). This is constantly generating new forms of cultural capital
through networked activity in the radical present and whose success
or failure is judged in reference to current continual output. This is a
form of production that is built around a normative ideal of continual

9780230244184_07_cha06.indd 1509780230244184_07_cha06.indd 150 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 151

work, continual streams of discrete quantifiable products that can be
distributed and which feed into other shared work. As the Invisible
Committee (2009) noted,

Ideally you are yourself a little business, your own boss, your own
product. Whether one is working or not, it’s a question of generat-
ing contacts, abilities, networking, in short “human capital” (The
Invisible Committee 2009: 50–1).

But there is not just a relationship between the quantity of time spent
on the project and the resultant success; rather, it is the compression of
time, the raising of productivity and efficiency that is important. It is the
reduction in total time between the inputs and outputs of a process that
Lyotard is drawing attention to as, following Marx, ‘moments are the
elements of profit’ (Marx 2004:352). In the computational, the moments
are not measured in working days or hours, but rather in the ‘technical
time’ of the computer, in milliseconds or microseconds. It is here, tech-
nologies are inserted into cultural production in order to speed-up the
creation of culture and its circulation. This is related to what economists
call Total Factor Productivity (TFP), that is, where technological advances
have lead to a continual increase in productivity, rather than a reliance
on increased capital and labor inputs. Lyotard explains, ‘you have to buy
a word processor. Unbelievable, the time you can gain with it’ (Lyotard
1999: 5). This brings to mind the experience of Friedrich Nietzsche
who in 1882 after having bought a typewriter to help him write due to
his failing vision, found that ‘our writing equipment takes part in the
forming of our thoughts’ (Kittler 1999: 201). Indeed, ‘in 1874, eight
years before he decide[d] to buy a typewriter, Nietzsche ask[ed] himself
whether these are still men or simply thinking, writing, and computing
machines’ (Kittler 1987: 116).1

Materialising the stream

To be computable, the stream must be inscribed, written down, or
recorded, and then it can be endlessly recombined, disseminated, proc-
essed and computed.2 The recording includes the creation of collective
notions of shared attributes and qualities, in many cases institutionally
located and aggregated,3 but also a computational narrative of the subject
through the datascape specifically represented through the data points
they collect through their lives, either privately as geodata, twitter feeds
or such like, or publicly through health records, tax records or educational

9780230244184_07_cha06.indd 1519780230244184_07_cha06.indd 151 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

152 The Philosophy of Software

qualifications.4 The consistencies of the computational stream are sup-
ported by aggregating systems for storing data and modes of knowledge,
including material apparatuses of a technical, scientific and aesthetic
nature (Guattari 1996: 116).

These link directly to some of the issues raised by the body of work
that has come to be known as medium theory, including Hayles (2005),
Kittler (1997) and McLuhan (2001), that tries to think through the ques-
tion of storage through the invention of ‘new materials and energies, new
machines for the crystallizing time’ (Guattari 1996: 117) – particularly
relevant in regard to the processes of computational flows. Here, I am
not thinking of the way in which material infrastructures directly con-
dition or direct collective subjectivity, rather, the components essential
‘for a given set-up to take consistency in space and time’ (Guattari 1996:
117).5 We might think about how the notion of self-interest is materi-
alised through technical devices that construct this ‘self-interest’, for
example, through the inscription of accounting notions of profit and
loss, assets and liabilities, which of course increasingly take place either
through computer code which is prescribed back upon us.

It is important to consider the question of storage with regard to the
computational stream. It is also crucial that a link is made between the
computational and storage, as computation requires both the process-
ing code and the data to be inscribed somewhere. This requires a chain
of signification as ‘memory’ to be generated which translates the stream
of data into a symbolic order through code. This technical a priori is
crucial to understanding what it is possible to record at all, and the
medium that translates and stores the data that forms the ‘memory’ of
the computational. Here, we can think of computation requiring a net-
work of writing which creates computable numbers that are divided into
discrete countable finite elements. In other words, computational data is
artifactualised and stored within a material symbolisation. This compu-
tational network requires a material channel through which the media
of computation are carried, but as Kittler (1997) notes, it is a characteris-
tic of every material channel that beyond, and against, the information
it carries, it produces noise and nonsense. We have the assemblage of a
network which builds the material components into an alliance of actors
and which is a referential totality for the meaning that is carried over it,
and past its borders, policed by human and non-human actors, we have
what Doel (2009) calls excess and Latour (2005) calls plasma.

Here, then, we see the movement or translation between the temporal
generation of the discrete elements of the stream and the computa-
tional storage through what Kittler calls time axis manipulation. This is
the storing of time as space, and allows the linear flow to be recorded

9780230244184_07_cha06.indd 1529780230244184_07_cha06.indd 152 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 153

and then reordered. The shifting from chronological time to the spatial
 representation means that things can be replayed and even reversed, this
is the discretisation of the continuous flow of time. Without it, the com-
plexity of financial markets would be impossible and the functions and
methods applied to it, through for example the creation of new abstract
classes of investment such as Credit Default Swaps (CDSs), Collateralised
Debt Obligations (CDOs) and Asset Backed Securities (ABSs) would be
extremely difficult, if not impossible, to create and trade.

This implicit datastream across all devices leads to an enormous amount
of data being collected and held in corporate databanks and huge data
centres. As Borthwick (2009) noted, bit.ly, an Url shortening site, had
collected 200 gigabytes of click data by 2009, including: usage data, loca-
tion data, and so forth, about the users of the site which the users would
not be aware had been collected. This is the idea of a ‘dataspace’, richly
endowed with content which is dereferentialised and equally accessible
by being located within a database and which makes the presence of data
seem addictive and overwhelming. As Borgman notes,

The glamorous fog of cyberspace varies in thickness. It’s denser when
we sit in front of the computer than when we are face to face with a
person. It’s thinner for the driven and the ambitious than for the sul-
len and the addicted. But when it is thick, it’s disorienting in a new
and distinctive way. The problem is not that we can’t find what we
are looking for, but that we are not sure what to look for in the first
place. Whatever we have summoned to appear before us is crowded
by what else is ready to be called up. When everything is easily avail-
able, nothing is commandingly present (Borgman 2010).

This notion of the computational dataspace is explicitly linked to the
construction of the stream-like subject and raises many important ques-
tions and challenges to the liberal humanist model of the individual.
Most notably in their bounded rationality – here the information and
processing to understanding is off-loaded to the machine – but also in the
very idea of a central core of human individuality. It also returns us to the
question of digital bildung and how we structure the kind of education
necessary in a computationally real-time world. For example, although,

most streams today are explicitly created by users, either by creating
content, making a friend, saving a favorite etc. For every explicit
action of a user, there are probably 100+ implicit datapoints from
usage; whether that is a page visit, a scroll, a video/shopping aban-
don etc (danrua, comment in Borthwick 2009).

9780230244184_07_cha06.indd 1539780230244184_07_cha06.indd 153 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

154 The Philosophy of Software

However, we must not lose sight of the materiality of these computa-
tional forms which is inscribed within a material substrate. This is a
computationally generated digital world that is limited by certain mate-
rial affordances in the use of technologies such as processor capacity (i.e.
computers do not have an unlimited amount of time nor do they have
infinite storage space). Computation creates a technical form of time
through the conservation, accumulation and sedimentation of past
stream data, what we might call its memories or its past, which is then
rearticulated in light of unfolding new data computation. This is what
Heidegger (1988: 260) called the technical measurement of time, the
attempt to determine the undetermined through the recording of the
past through an apparatus of inscription. Without preservation, there is
no stream, as it would be a mere atomistic point in time. Without the
storage and recall of data there is no computational possibility for the
construction and action of a focal attention by the stream. Together,
these devices form complex assemblages that entangle the user/stream
into a particular memory-temporality which creates the conditions for
particular kinds of agency.

Heidegger considered ‘authentic’ time to be time in relation to death,
as finitude and mortality. In the time of the computational stream,
however, time is found in the inauthentic time of measurement, the
attempt to determine the ‘undetermined’ through technical devices. So,
for example, in the case of the computational, there is only the abstract
notion of time as reported through the continual ticks of the data-
streams and the charts and visualisations that represent the time-series
datascape to the viewer.

The notion of subjectivity that is embedded in the socio-technical
networks of computational systems points towards a deathless existence,
even as, paradoxically, the market continually relies on the anxiety rep-
resented through sickness and disease, poverty and old age, to activate
and fuel desire. These technologies operate to create and sustain a market
which introduces a time of indeterminacy and choice into the stream of
flows even as they stimulate affective responses within the stream calling
for forms of action. For financialised streams, for example, the ticks of
financial data are linked to the body as the profit or loss of securities and
entangled with desires, necessity and ontological security. For the user
stream, it is a constant flow of everyday activity represented as a chaotic
uncoordinated stream of events logged to a microblogging site.

These streams are undoubtedly creating huge storage issues for the
companies that will later seek to mine this collection of streamed data.
For them, the problems are manifested in the building of massive

9780230244184_07_cha06.indd 1549780230244184_07_cha06.indd 154 2/5/2011 7:04:40 PM2/5/2011 7:04:40 PM

Real-Time Streams 155

 computational data centres in locations around the world. Trying to
capture the ready-to-hand world of everyday life generates such a large
flow of data that can easily overwhelm these systems, witness the inter-
mittent downtime of services like Twitter, which are also forced to regu-
late the flow of data into their networks through API feeds. Connected
to this storage medium are the processing practices that are applied to
render the stream of computational data as a source of action. These
allow the analysis and visualisation of computational patterns over time,
and allow the discernment of trends and traces that are left as markers
within the data. There is a growing and important literature on the
issue of data visualisation in general (see Pryke 2006; Manovich 2008),
and financial markets in particular (Beunza and Stark 2004; Beunza
and Muniesa 2005; Knorr Cetina and Bruegger 2002), here, I can only
note the importance of the visual mediation of this data and its highly
aestheticised content but clearly with the amount of data available the
skills of a visual rhetoric will become increasingly important to render
the patterns in the data meaningful.

Using financialisation as an example of a type of computational sub-
jectivity, we might link the movement of a calculative rationality to that
of an affective distributed rationality, geared towards the consumption
of a financialised range of goods and services. I mark and develop the
notion of the stream in the section below through a discussion of the
notion of financialisation and a tentative cartography of the subjectivity
associated with it, which I connect to the ‘degradation of the individu-
als capacity for understanding their own circumstances, and their ability
to make any effective use of whatever correct understandings they might
achieve’ (Terranova 2007: 132, original emphasis) – here particularly
through the dichotomy of pattern/randomness (and here I want to con-
nect randomness to a notion of plenitude). I want to think about the
way in which life itself becomes understood as a ‘life-stream’ through
the application of memory systems designed to support a highly infor-
matised and visualised computational economy. That is, I want to under-
stand the stream as a ‘propagation of organised functional properties
across a set of malleable media’ (Hutchins 1996: 312). Connected to this
are notions of calculability and processing, which relate back to the cre-
ation of technical devices that facilitate the user’s ability to make sense
of the movements in markets, data, and culture and more particularly,
to respond to changes in risk and uncertainty. Users treat their lives as
one would a market portfolio, constantly editing the contents through
buying and selling, creating new narratives through the inclusion or
exclusion of certain types of product or data stream.

9780230244184_07_cha06.indd 1559780230244184_07_cha06.indd 155 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

156 The Philosophy of Software

Financial streams

Financialisation is an analytical term used to describe the processes of
finance capital, including the institutions, norms, practices and dis-
courses that are connected with it. It is thus a useful means to unpack
the way in which claims to an information society or knowledge econ-
omy are bound up with particular situated approaches to organising the
economy, society and politics. Financialisation has implicit within it,
certain ways of acting, certain ways of being and certain ways of seeing
that are connected to a particular comportment to the world, one that
is highly attenuated to notions of leverage, profit and loss and so forth.
Moreover, financialisation implies that the rational actor of economic
theory is transformed from the calculative rationality of the protestant
work ethic to an actor that is guided not only by rational self-interest
but also a propensity to understand and take highly-leveraged and com-
plex risks. That is, to move beyond Weber’s description of the religious
basis of capitalism as ‘exhort[ing] all Christians to gain all they can, and
to save all they can; that is, in effect, to grow rich’ (Wesley quoted in
Weber 2002: 119, emphasis removed). Where Weber described monetary
acquisition as saving linked to an ethical norm supplied by protestant
faith – that is, an understanding as labour and saving as a calling – with
financialisation we see quite the opposite with a move towards the use
of debt financing to fund investment and consumption to the extent
that its lack of ethical grounding arguably leads inexorably towards
endogenous financial instability through Speculative and Ponzi modes
of investing (Minsky 1992). In a different register, Belfrage (2008: 277)
glosses financialisation as ‘emerging out of conditions which force
people to weigh up the market performance of their financial assets
when making everyday decisions between saving and consuming’.
Financialisation is, nonetheless, an essentially contested concept, and
as Randy Martin (2002) explains:

Financialisation, like those other recently minted conceptual coins
postmodernism and globalization, gets stretched and pulled in
myriad directions. Part of the complexity of these terms is that they
stand simultaneously as subject and object of analysis—something
to be explained and a way of making sense out of what is going on
around us.

Here, I follow the work in the sociology of markets to understand
financialisation as the uneven process of formation of a socio-technical

9780230244184_07_cha06.indd 1569780230244184_07_cha06.indd 156 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 157

network that is used to stabilise a certain kind of calculative cognitive-
support, that mediates the self and the world through financial prac-
tices, categories, standards and tests (Callon 1998). More importantly,
I want to link the processes of financialisation to the creation of rapidly
changing data streams of financial information. Rather than restricting
the notion to the purely discursive or economic, I want to tentatively
explore the idea that financialisation itself is the establishment of valu-
ation networks; that is, the construction of circuits of finance which
render abstract financial objects commensurable and exchangeable,
in which actors, both human and non-human, are enrolled. This is in
distinction to cognitive psychology that sees the ability for actors to
calculate as being either rendered within a form of mental calculation
which cognitive anthropology, has shown to be far too demanding,
and also in distinction to cultural approaches which see the calcula-
tive competence through social structures or cultural forms and which
is unable to explain the shift from one form of calculative agency to
another (Callon 1998: 4–5). Further, I want to challenge the notion
of a linear process of financial transformation – ‘financialisation’, and
instead highlight the way in which there is an assemblage of ‘financial
mediation’ itself marked by a series of tensions, counter-tendencies and
modulations.

A financialised assemblage is connected together through the use
of equipment or financial computational devices (what Deleuze would
call agencements) whose aim is to maintain an anticipatory readiness
about the world and an attenuated perception towards risk and reward
which is mediated through technical affective interfaces (i.e. the com-
puter user interface). In the first place, the computational is directly
linked to quantitative statistical processing of massive amounts of time-
series data and its visualisation or representation. Additionally, how-
ever, the affective dimension seems to me to be extremely important
in understanding the way in which recent shifts in financial markets
towards the democratisation of access have been intensified through
the realignment of desire with the possibilities offered through mon-
etary returns from finance capital – what Bloom (n.d) has called ‘com-
putational fantasies’ – and it is a subject I’ll return to below. But none
of these practices of intensification could have been possible without
information technology, which acts as a means of propagation but also
a means of structuring perception – or better, of ‘focusing’ attention in
the sense of an extended mind. Finance itself has a ‘feel to it’ which
is generated via the computer interface or through the marketing and
packaging that ‘wraps’ the underlying financial product.

9780230244184_07_cha06.indd 1579780230244184_07_cha06.indd 157 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

158 The Philosophy of Software

This affective dimension to finance is also interactive, providing a
model of action that situates the user (or investor) in a relation of con-
tinual interaction with their portfolio. The important point here is that
you do not need to have a ‘whole’ human being who has intentionality
and therefore makes rational decisions about the market, or has feelings
and is responsible for their actions and so on. Rather, you can obtain a
complete human being by composing it out of composite assemblages
which is a provisional achievement, through the use of computer
cognitive support (what Latour (2005) neatly calls ‘plug-ins’) and we
might think of as software interfaces or technical devices. For example,
these are the share-trading systems that initially pre-format the user as
a generic market investor. But to be an active investor requires the use
of particular techniques and strategies in the market supported through
extra software interfaces that offer guidance on ‘reading’ the market (see
for example the websites: The Motley Fool, or Interactive Investor). One
example of this is that of Swedish pension reform, where individual
pension investment is part of a process amenable to ‘nudges’ by techni-
cal devices that help guide the individual through up to 1000 different
investment funds (Thaler and Sunstein 2009).

These can be understood as structuring templates that act as devices
to give you the capacity to calculate, that is, cognitive abilities that
do not have to reside in ‘you’ but can be distributed throughout the
investment interface. It is important to note, however, that the extent
of the ‘nudge’ that the system can provide can range from the libertar-
ian paternalism of defaults and formatting advocated by Thaler and
Sunstein (2009) to posthuman distributed aids to cognition, or even
collective notions of cognition, as described by Hutchins (1996). An
example is the portfolio manager software offered by a number of
companies online, which purport to not only hold the investment
portfolio, but rather to stimulate you to invest, trade and have a way
of being-towards the market which is active (Interactive Investor is a
notable web-based example). This can be achieved through email alerts
set to certain time-series prices, automatic trading systems and constant
feedback to the user via mobile technologies (see the Stocks.app applica-
tion on the Apple iPhone, for a mobile example). Wherever the investor
is, they are able to call up the portfolio and judge their asset worth as
defined by the external forces of the financial markets but crucially sim-
plified and visualised through the graphical capabilities of the mobile
device (see tdameritrade, Etrade, iStockManager, m.scottrade.com, etc.).
Sometimes, in a radical break with the notion of judgement being the
seat of humanity and contra Weizenbaum (1984), the software can

9780230244184_07_cha06.indd 1589780230244184_07_cha06.indd 158 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 159

even judge the success of the investment strategy through a number of
algorithmic heuristics, something the investor may not even have the
calculative or cognitive ability to challenge.

In the case of financial markets, software has completely changed
the nature of stock and commodity markets creating 24 hour market
trading and enabling the creation of complex derivative products and
services, often beyond the understanding of the traders themselves. For
example, high frequency trading (HFT) is at the cutting edge for trading
on financial markets, the basic idea of HFT is to use clever algorithms
and super-fast computers to detect and exploit market movements. To
avoid signalling their intentions to the market, institutional investors
trade large orders in small blocks—often in lots of 100 to 500 shares –
and within specified price ranges.

High-frequency traders attempt to uncover how much an investor is
willing to pay (or sell for) by sending out a stream of probing quotes
that are swiftly cancelled until they elicit a response. The traders
then buy or short the targeted stock ahead of the investor, offering
it to them a fraction of a second later for a tiny profit (The Economist
2009).

These changes in the practices of stock market trading reflect the imple-
mentation of high technology networks and software, indeed,

HFT is a type of algorithmic trading that uses high-end computers,
low-latency networks, and cutting-edge analytics software to execute
split-second trades. Unlike long-term investing, the strategy is to
hold the position for extremely short periods of time, the idea being
to make micro-profits from large volumes of trades. In the US, it is
estimated that 70 percent of the trade volume is executed in the HFT
arena (HTCWire 2010).

This technology came to public attention on 6 May 2010 when the Dow
plunged nearly 1,000 points in just a few minutes, a 9.2 per cent drop,
and christened the ‘flash crash’. Half a trillion dollars worth of value was
erased from the market and then returned again. Due to the work of soft-
ware engineer Jeffrey Donovan, it became clear that HFT systems were
shooting trades into the markets in order to create arbitrage opportunities.
By analysing the millisecond data stream logs of the exchange and reverse-
engineering the code, he was able to see the tell-tale signs of algorithmic
trading in cycles of 380 quotes a second that led to 84,000 quotes for

9780230244184_07_cha06.indd 1599780230244184_07_cha06.indd 159 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

160 The Philosophy of Software

300 stocks being made in under 20 seconds, which set off a complex
chain of reactions in the market and the resultant slump (HTCWire
2010).

Financial companies are rolling out new experimental technologies
continually to give them an edge in the market place; one example is the
so-called ‘Dark Pools’ (also known as ‘Dark Liquidity’). These off-market
trade matching systems work on matching trades on crossing networks
which give the trader the advantage of opaqueness in trading activities,
such as when trying to sell large tranches of shares (Bogoslaw 2007). Dark
pools are ‘a private or alternative trading system that allows participants
to transact without displaying quotes publicly. Orders are anonymously
matched and not reported to any entity, even the regulators’ (Shunmugam
2010). Additionally, technologies such as ‘dark algorithms’ give firms the
ability to search multiple dark pools to find hidden liquidity.

Software that acts in this cognitive support capacity can therefore
be said to become a condition of possibility for a device-dependent,
co-constructed subjectivity. This Guattari (1996: 114) calls a ‘processual’
subjectivity that ‘defines its own co-ordinates and is self-consistent’ but
remains ‘inscribed in external referential coordinates guaranteeing that
they are used extensively and that their meaning is precisely circum-
scribed’ (Guattari 1996: 116). The subject, then, is circumscribed by the
technologies which mediate its relationships with finance capital, such
that the field of experience is constantly shifting to reflect financial
data and the movement of time. Following Lyotard, we might declare
that the subject becomes a computational ‘stream’, in this case a stream
attenuated to the risk associated with finance capital mediated through
financial software.

Of course, risk itself is a pivotal category in modern finance that is
stabilised through the use of technology and discourse. Risk, for Langley
(2008), is distinct from uncertainty, where uncertainty is understood as
non-calculable future volatilities that are beyond prediction, and risk itself
is a statistical and predictive calculation of the future. Langley explains:

There is no such thing as risk in reality... risk is a way – or rather, a set
of different ways – of ordering reality, of rendering it into a calculable
form it is a way of representing events in a certain form so that they
might be made governable in particular ways, with particular tech-
niques and for particular goals’ (Dean quoted in Langley 2008: 481).

This is, of course, the notion of risk developed by the economist Frank
Knight in his 1921 book Risk, Uncertainty and Profit. When encoded into

9780230244184_07_cha06.indd 1609780230244184_07_cha06.indd 160 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 161

financialised software, risk is qualified, rendered and abstracted in a
calculative space which interfaces to the investor through devices that
seek to present the world through what Taleb (2007) calls Gaussian risk.
This is risk that is presented without its limitations as a model made
transparent, and that falls short of fully containing the complexity and
uncertainty of life. Risk itself becomes mediated through software and
becomes a processual output of normative values which are themselves
the result of computational processes usually hidden within the lines of
computer code. For example, software renders the display of financial
portfolio information in a very stylised, simplified form, often with
colour codings and increasingly with rich graphics.6 Not only do few
market participants fully understand risk as a statistical category, but
the familiar bell-shaped curve of Gaussian distributions displayed on
mobile screens, encourages a kind of ‘domesticated’ approach to risk
that makes it appear familiarised and benign. Indeed, it is this mis-
understanding of risk that Taleb (2007) blames for the huge leveraged
asset bubble in 2007–2009 and the resultant financial crisis.7 Indeed,
only recently AXA S.A., the French financial services giant, was forced
to reveal that ‘that it had made a “coding error” that affected returns in
its various portfolios in ways that had yet to be determined’, but which
could have resulted in substantial losses, and that ‘[i]t was an “inadvert-
ent mistake” entered into one of AXA Rosenberg’s main “risk models”
by a computer programmer in April 2007’ (Sommer 2010). Three years
of a computer programming bug on a portfolio which at its height was
worth $62 billion, demonstrates the profound effects that computer
code can have, indeed, the portfolio, at the time of writing, is worth $41
billion after many investors have begun to leave the fund due to worries
about the bug’s effects.

These conceptualisations and arguments are clearly an important
part of the content of financialisation, but now I would like to turn to
the notion of the computational ‘stream’ by extending Lyotard cultural
understanding of the stream. This concept helps to map real existing
‘territories’ (such as sensory, cognitive, affective and aesthetic) in rela-
tion to computational processes. Here software is active in the creation
and maintenance of a temporal dimension that supports particular
kinds of subjectivity. Indeed, this links with Thrift’s (n.d.) notion of our
having a ‘minimal conscious perception which is held in place by all
manner of systems and environments and sites that extend awareness’
(n.d.: 3). Here, we can think of the external management of the inter-
nal perception of time that is linked to a form of Heideggerian angst
towards a future event – sickness, old age, and so forth – which provides

9780230244184_07_cha06.indd 1619780230244184_07_cha06.indd 161 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

162 The Philosophy of Software

a new affective fuel source for capitalism. This is an anxiety maintained
through a destabilising sense of the rapid passage of time, manifested
through, for example, continual and inexplicable changes in commod-
ity prices, stock valuations, asset price expansions and contractions –
themselves fed as data streams to the processual subject. These are
connected through a series of mechanisms to the body, and here I am
thinking of a machinic notion drawn from Deleuze and Guattari (2004),
or to an emotional response to the representation of the future body
given through a series of visual images, such as actuarial graphs and
charts (again connected to the notion of mobile spaces of risk or finan-
cialisation through devices such as the Apple iPhone). This ‘full-on or
full palette capitalism’ (Thrift n.d.: xx) functions through the exploita-
tion of forethought, where the aim is to produce a certain expectation
and preparedness into which a desire is linked to the intensification of
action.

This life stream is therefore a performative subjectivity highly
attenuated to interactivity and affective response to an environment
that is highly mediatised and deeply inscribed by computational
datascapes. This helps to explain the kinds of active investor subjects
that Governments seek to encourage through financial regulation such
as annual tax renewal requirements, for example in Investment Saving
Accounts (ISAs), a form of tax-free saving account in the UK, which
require the accounts to be moved or reinvested every April; or in the
Swedish Pension case outlined by Belfrage (2008) where the intention
was to encourage over 50 per cent of pension savers to undertake con-
tinual asset management activities in relation to Swedish worker’s pen-
sion portfolios invested in the Stock Market (the actual number of active
traders turned out to be only 8 per cent in 2005) (Belfrage 2008: 289).8
Clearly, the financialisation of society remains a work in progress.

So financialised code is a complex set of materialities that we need to
think carefully about in turn. From the material experience of the finan-
cialised user of code, both trader and consumer, to the reading and writing
of code, and then finally to the execution and experience of code as it runs
on financial trading systems, we need to bring to the fore how code is a
condition of possibility for a computational stream whether of financial
news and data, or of a datastream cognitive support for everyday life.

Lifestreams

I now want to look at the practice of creating lifestreams, particularly
through the example of Twitter. Twitter is a web-based microblogging

9780230244184_07_cha06.indd 1629780230244184_07_cha06.indd 162 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 163

service that allows registered users to send short status update messages
of up to 140 characters to others (Herring & Honeycut 2009: 1). From
a few messages per day, known as Tweets, in 2006 the service took off
in popularity in 2009 and has grown to handle over 90 million mes-
sages per day in 2010 (Twitter 2010). Twitter works by encouraging the
uploading and sharing of photographs, geodata tags, updates on what
you are doing and so forth, this is transformed into a real-time stream
of data that is fed back onto the web and combined with the updates of
other people whose user-stream you ‘follow’. It is helpful to,

think about Twitter as a rope of information — at the outset you
assume you can hold on to the rope. That you can read all the posts,
handle all the replies and use Twitter as a communications tool,
similar to IM — then at some point, as the number of people you
follow and follow you rises — your hands begin to burn. You realize
you cant hold the rope you need to just let go and observe the rope
(Wiener, quoted in Borthwick 2009).

Although originally considered a marginal activity, Twitter, and similar
microblogging services, have risen dramatically in use throughout the
last few years. Particularly as politicians and the media have caught on
to the unique possibilities generated by this rapid communicational
medium. Designated as solipsistic and dismissed at first by the pundits,
the growth in Twitter’s use has meant that it can no longer be ignored
and indeed it has become a key part of any communication strategy
for politics, corporations and the media more generally. Twitter has
evolved rapidly from a simple messaging service, to a form of real-time
rolling news reporting on political and other events, from formal politi-
cal meetings to protest actions. Political examples from the UK have
included Gordon Brown’s foray into Twitter defending the NHS over the
issue of NHS ‘death panels’ (Toppling and Muir 2009). More recently, we
have witnessed usage by the political class in the UK across the whole
of the country (The Independent 2009); Damian McBride’s emails to
LabourList blogger Derek Draper, which were widely ‘retweeted’ by
Twitter users (BBC 2009); and increasing concerns over the freedom
of speech implications posed by the libel action against the Guardian
reporting a parliamentary question about Trafigura regarding its rela-
tionship to exporting materials, which was widely ‘retweeted’ following
an injunction to stop reporting on the incident (Dunt and Stephenson
2009). There is an increasing need for a cartography of both the produc-
tion and empirical content of a number of these collaborative, streamed

9780230244184_07_cha06.indd 1639780230244184_07_cha06.indd 163 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

164 The Philosophy of Software

institutions and their recording of political events, power and interests.
Institutions as diverse as Downing Street, the White House, Scotland
Yard, The UK Parliament, INTERPOL, NATO, the Labour Party, and the
Conservative Party have all recently instituted mechanisms for using
these real-time computational services to supplement the limitations of
better established communications procedures.

The conditions underpinning this shift, however, are not solely com-
municational. What marks these real-time stream sites is their creation
by the active contributions of an epistemic community surrounding
the ‘owner’. These communities are typically marked by very loose ties,
often no more than a ‘screen-name’ or even anonymous contributions
to the site through updates. They also have the capacity to create a
form of social contagion effect whereby ideas, media and concepts can
move across these networks extremely quickly. Over the past ten years,
we have witnessed an explosion of media forms made possible by the
peer-to-peer technologies of the Internet (Atton 2004, Benkler 2007,
Gauntlett 2009, Terranova 2004) transforming political institutions
and their relationship to citizens (Coleman 2005; Chadwick 2007). As
such, real-time streams presents an excellent opportunity for tracing the
impact of computational real-time devices in everyday life and the way
in which they capture the informal representations of issues with which
contemporary communities are becoming increasingly concerned. It is
possible that Twitter and other real-time streams both decentre social
structures and expand the numbers involved.

Filled with constant updating, real time ‘tweets’, Twitter users dis-
seminate affect, opinion-formation, and information in a very Tardian
way. Twitter, and similar real-time stream services, collect data from both
elites and non-elites and can be used to reconstruct knowledge of social
and political events in an online real-time context. Examples include the
real-time Twitter feeds following national political debates, World Cup
football matches, fashion and culture events, and the presentation of
prestigious prizes and awards, such as Baftas or Grammys. The attention
of political, technology and media communities have been captured by
the emergence of the ‘real-time web’ using Twitter and other services
such as Facebook, Quora, Diaspora and Meebo. But as more people
participate and subscribe to the services, the difficulties in negotiating
a large and complex information resource becomes acute. The network
effects combined with the vast amount of information flowing through
the network are difficult for the user to understand.

Twitter therefore acts to facilitate a form of social communication by
rapidly distributing information and knowledge across different streams.

9780230244184_07_cha06.indd 1649780230244184_07_cha06.indd 164 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 165

Indeed, Twitter is made up of streams of data that constitute a ‘now
web [that is] open, distributed, often appropriated, sometimes filtered,
sometimes curated but often raw’ (Borthwick 2009). But it is the tech-
nology that makes up Twitter that is a surprising: a simple light-weight
protocol that enables the fast flow of short messages,

The core of Twitter is a simple transport for the flow of data — the
media associated with the post is not placed inline — so Twitter doesn’t
need to assert rights over it. Example — if I post a picture within
Facebook, Facebook asserts ownership rights over that picture, they
can reuse that picture as they see fit. If I leave Facebook they still have
rights to use the image I posted. In contrast if I post a picture within
Twitter the picture is hosted on which ever service I decided to use.
What appears in Twitter is a simple link to that image. I as the creator
of that image can decide whether I want those rights to be broad or
narrow (Borthwick 2009).

Increasingly, we are also seeing the emergence of new types of ‘geo’
stream, such as location,9 which give information about where the user
is in terms of GPS co-ordinates, together with mixed media streams
that include a variety of media forms such as photos, videos and music.
Location based services, such as Facebook Places, FourSquare and
Gowalla, enable a user to capture GPS information in real-time, updat-
ing this as a data stream recording places, activities and life events to the
Internet. It is even argued that we are seeing the emergence of a new
communication layer for the web based on micro-messages and sophis-
ticated search. As Borthwick explains, ‘[i]f Facebook is the well organised,
pre planned town, Twitter is more like new urban-ism — its organic and
the paths are formed by the users’ (Borthwick 2009). But this is not just a
communications channel, it is also a distributed memory system, storing
huge quantities of information on individuals, organisations and objects
more generally. The things that are ‘collected’ and updated by users into
these streams is remarkable, for example one user: (i) ‘collect[s] sugar
levels everyday (like 6 times per day). This helps me to “understand” my
metabolism, my diet and my stress levels’; (ii) ‘calorie expenditure and
effort during my workouts’; (iii) ‘blood glucose level every 5 minutes
through a continuous glucose monitor stuck in my gut’; (iv) ‘[and] track
my sexlife at bedposted.com (duration, intensity, positions)’ (quoted
on FlowingData 2010). This is what Kevin Kelly has revealingly called
the quantified self (Kelly 2010). This raises serious privacy issues, but
also the cultural and social implications of living life in such a public

9780230244184_07_cha06.indd 1659780230244184_07_cha06.indd 165 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

166 The Philosophy of Software

way, mediated through the code that is enabling and supporting these
services.

These new real-time streams and their relationships to both individu-
als, organisations, culture and society, let alone the state and politics,
are still an emergent sphere of research. Many questions remain unan-
swered, not the least of which is who owns these huge data reservoirs
and how will this data be used in the future. Indeed, Twitter recently
turned over every tweet in its archive to the Library of Congress and
now all tweets are archived automatically,

every public tweet, ever, since Twitter’s inception in March 2006,
will be archived digitally at the Library of Congress. That’s a LOT of
tweets, by the way: Twitter processes more than 50 million tweets
every day, with the total numbering in the billions (Adams 2010).

These streams are fascinating on a number of different levels, for exam-
ple questions remain over the way in which national identity might be
mediated through these computational forms in terms of an imagined
community composed of twitter streams that aggregates institutions,
people and even places.10 Real-time streams offer some exciting poten-
tial in terms of cultural streams and movements as aggregations of data
streams, real-time State representation through state institutions in a
constellation of streams, and even national aggregates. Whether new
political subjectivities are enabled through these streams, one is sure
that the data will be captured and analysed as the capacity of these life-
stream systems mature. This will be increasingly revealing for real-time
polls, opinion formation Tardian analysis of social aggregates, and, of
course governments and multinational corporations eager to monitor
and manipulate the creators of these streams.

So far, I have mapped a number of different strands which coalesce
around notions of aesthetics, affectivity, risk and processual subjectivity.
Most importantly, I think I have tried to outline the value of Lyotard
notion of the stream as a concept for developing our understanding of
the computational subjectivity. I have only been able to outline some
of the key areas of enquiry which I think are relevant to this, and there
is clearly much work to be done in understanding the relationship
between forms of computational temporality, subject positions and tech-
nological mediation and materiality. Additionally the highly visualised
form of data representation that is increasingly used to express data in
a qualitative form, together with the computational relationship with
self raised by reflexive use of life-streams also raise important questions.

9780230244184_07_cha06.indd 1669780230244184_07_cha06.indd 166 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 167

In the final section, I want to shift focus and consider the wider implica-
tions of thinking-streams, computer code and software.

Subterranean streams

Perhaps the first principle that one might consider with respect to com-
putational devices is that they appear to encourage a search for simple
solutions and answers to problems, and therefore a backlash against
complexity (especially when they become screenic – in common with
other mediums such as television, film and print). The solutions become
mediated through technological proposals which themselves rely on
computational notions such as computability, distributed processing,
intensively recursive dynamics and computationally correct narrative
strategies. The language of nature, politics, culture, society and economics
becomes infused with computability to the extent that data flows outside
of human consciousness and that in order to understand and act upon
them, additional computational strategies are required (this is indeed the
paradigm suggested through digital humanities and cultural analytics
frameworks). This points towards an intensity of fast moving technologi-
cal culture that privileges data streams over meaning, that is, an explosion
of knowing-that rather than knowing-how – and here we might note the
current political fascination with Twitter and similar social networking
sites.

This could lead to a situation in which the user is unable perceive
the distinction between ‘knowing-how’ and ‘knowing-that’ relying on
the mediation of complexity and rapidity of real-time streams through
technology. This Heidegger would presumably describe this as dasein
no longer being able to make its own being an issue for itself. Indeed,
this may even point to a homogeneity of being in the digital ‘age’, as
we become a being whose existence is mediated by identical computa-
tional processes. This would have grave implications for a distributed
fragmentary subject relying on computational devices that are radically
uncertain and opaque. Indeed, if these computational devices are the
adhesives which fix the postmodern self into a patterned flow of con-
sciousness (or even merely visualised data), an ontological insecurity
might be the default state of the subject when confronted with a society
(or association) in which unreadiness-to-hand is the norm for our being-
in-the-world.

To return to the question from Sellars and reframe it: it still remains dif-
ficult to reconcile the homogeneity of the manifest image with the non-
homogeneity of the scientific one, but we have to additionally address the

9780230244184_07_cha06.indd 1679780230244184_07_cha06.indd 167 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

168 The Philosophy of Software

unreadiness-to-hand of the computational image which offers the possi-
bility of partial reconciliation through uncertain affordances. Additionally,
the computational image in mediating a world of information, compu-
tation and process might inevitably transform the manifest image of
meaning and complexity by disconnecting the possibility of familiarity
from the referential totality and the subsequent reclassification of the
personhood of dasein.11 As we are inserting the computational image
into the structure of everyday things, and therefore into the structure of
our everyday life and its knowing-how, the deeper implications remain
unclear and raise the need for a deeper understanding of the centrifugal
force of the computational image. If the manifest world is the world in
which dasein, ‘came to be aware of [itself] as [being]-in-the world’, in
other words, where dasein encountered him/herself as dasein (Sellars
1962: 38), then the eclipse or colonisation by equipment that remains
unready-to-hand and that fragments and destabilises the possibility of
a referential totality would suggest that the manifest image, in so far as
it pertains to man or woman, is now potentially a ‘false’ image and this
falsity threatens dasein as it is, in an important sense, the being which
no longer has this image of itself.12 For poststructuralist writers such as
Foucault, talking about certain structural conditions of possibility,

If... [they]... were to disappear as they appeared, if some event of
which we can at the moment do no more than sense the possibility...
were to cause them to crumble, as the ground of Classical thought
did, at the end of the eighteenth century, then one can certainly
wager that man would be erased, like a face drawn in sand at the edge
of the sea (Foucault 2002: 422).

This would represent the final act in a historical process of reclassifica-
tion of entities from persons to objects – potentially, dasein becoming
an entity amongst entities, an stream amongst streams – with challeng-
ing political and cultural implications for our ability to trace the bound-
ary between the human and non-human.13 This, of course, returns us to
the questions raised at the beginning of the book regarding humanity’s
ontological precariousness. In allowing the computational to absorb
our cognitive abilities, off-loading the required critical faculties that we
presently consider crucial for the definition of a life examined, we pay
a heavy price, both in terms of the inability of computational methods
to offer any way of engaging with questions of being, but also in the
unreadiness-to-hand that computational devices offer as a fragmentary
mediation of the world. This is where the importance of digital Bildung

9780230244184_07_cha06.indd 1689780230244184_07_cha06.indd 168 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 169

becomes crucial, as a means of ensuring the continued capability of
dasein to use intellect to examine, theorise, criticise and imagine. It may
also raise the possibility of a new form of resistance for a dasein that is
always at the limit of emancipation as the being that is constantly deal-
ing with equipment that is radically unready-to-hand. It is, to attempt
to consider the way in which computation enables what Turing called
the ‘super-critical mind’, one that is apt at generating more ideas than it
received, rather than the sub-critical mind (Latour 2004: 248):

The majority of [human minds] appear to be “sub-critical”… An idea
presented to such a mind will on average give rise to less than one
idea in reply. A smallish proportion are super-critical. An idea pre-
sented to such a mind may give rise to a whole “theory” consisting
of secondary, tertiary, and more remote ideas (Turing 1950: 454).

The future envisaged by the corporations, like Google, that want to tell
you what you should be doing next (Jenkins 2010), presents knowledge
as ‘knowing that’, which they call ‘augmented humanity’, I consider
this as a model of humanity that is a-critical. Instead, we should be pay-
ing attention to how computation can act as a gathering to promote gen-
erative modes of thinking, both individually and collectively, through
super-critical modes of thinking created through practices taught and
developed through this notion of digital Bildung. This would, as Latour
explains, ‘require all entities, including computers, cease to be objects
defined simply by their inputs and outputs and become again things,
mediating, assembling, gathering’ (Latour 2004: 248).

In this book, I have attempted to outline a groundwork for under-
standing, in the broadest possible sense, how ‘one know one’s way
around’ in a world that is increasingly reliant on computational equip-
ment, but more maps are needed. Computationality tends towards
an understanding of the world which, whilst incredibly powerful and
potentially emancipatory, cannot but limit the possibilities of thought
to those laid within the code and software which runs on the tracks of
silicon that thread their way around technical devices (sub-criticality).
Understanding software is a key cultural requirement in a world that
is pervaded by technology, and as Vico argued, as something made by
humans, software is something that can and should be understood by
humans. Indeed, this remains a project that is still to be fully mapped
and has important consequences for the fragmentary way-of-being
which continues to be desired throughout the socio-technical technic-
ity that makes up the computational image.

9780230244184_07_cha06.indd 1699780230244184_07_cha06.indd 169 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

170 The Philosophy of Software

In the spirit of Lyotard’s expression of an aesthetics of disruption,
however, I want to end the book with an elusive ought. This is an ought
that is informed by a reading of Aesop’s Tales through Michel Serres
and his notion of the parasite (Serres 2007). The parasite is used not as
a moral category, but in connection with an actor’s strategic activities
to understand and manipulate the properties of a network. Here, the
parasite acts as interference, as processes that combine and mix together
domains, for Serres it is this recombinant property of circulation net-
works rather than their general underlying patterns that is crucial to
understand them. He explains:

A human group is organized with one-way relations, where one eats
the other and where the second cannot benefit at all from the first…
The flow goes one way, never the other. I call this semiconduction,
this value, this single arrow, this relation without a reversal of direc-
tion, ‘parasitic’ (Serres 2007: 5).

The introduction of a parasite into the system immediately pro-
vokes a difference, a disquilibrium. Immediately, the system changes;
time has begun (Serres 2007: 182).

For example, parasitic economic activities manipulate goods already
available and subvert them from their original function. They are embed-
ded in such a way as to make their removal either impossible or too
expensive – reminiscent of the phrase ‘too big to fail’. Finance capital and
the equipment it deploys to assemble the markets that sustain it therefore
acts to counteract the way in which investors look for liquidity and their
ability to invest where they cannot get ‘stuck’, and from which they can
withdraw at the smallest sign of trouble. Through parasitic technologies,
users are constantly enticed back into the market, where they themselves
intend to eat at the benefit of another. Here, the notion of the stream is
intensified through the action of time within computational networks,
literally the ‘ticks’ of network time which reflect the actions of millions of
streams within the network and which cascade through the data streams
that are threaded through the networks and chains of causality. As Serres
argues:

To parasite means to eat next to. Let us begin with this literal mean-
ing. The country rat is invited by his colleague from town, who offers
him supper. One would think that what is essential is their relation of
resemblance or difference. But that is not enough; it never was. The
relation of the guest is no longer simple. Giving or receiving, on the

9780230244184_07_cha06.indd 1709780230244184_07_cha06.indd 170 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

Real-Time Streams 171

rug or on the tablecloth, goes through a black box. I don’t know what
happens there, but it functions as an automatic corrector. There is no
exchange, nor will there be one. Abuse appears before use. Gifted in
some fashion, the one eating next to, soon eating at the expense of,
always eating the same thing, the host, and this eternal host gives
over and over, constantly, till he breaks, even till death, drugged,
enchanted, fascinated. The host is not prey, for he offers and contin-
ues to give (Serres 2007: 7).

Aesop’s fable ends with the country mouse returning home declaring
that it is better to be able to enjoy what you have in peace, than live in
fear with more. But, Serres (2007) also gestures towards an alternative
parasitic understanding in his retelling of the fable. The question of who
this subject ‘eats next to’, is perhaps reflected in the way in which streams
pass through other streams, consumed and consuming, but also in the
recorded moments and experiences of subjects who remediate their
 everyday lives. This computational circulation, mediated through real-
time streams, offers speculative possibilities for exploring what we might
call parasitic subjectivity. Within corporations, huge memory banks are
now stockpiling these lives in digital bits, and computationally aggregat-
ing, transforming and circulating streams of data – literally generating
the standing reserve of the digital age. Lyotard’s (1999: 5) comment to
the streams that flow through our postmodern cultural economies seems
as untimely as ever: ‘true streams are subterranean, they stream slowly
beneath the ground, they make headwaters and springs. You can’t know
where they’ll surface. And their speed is unknown. I would like to be an
underground cavity full of black, cold, and still water’.

9780230244184_07_cha06.indd 1719780230244184_07_cha06.indd 171 2/5/2011 7:04:41 PM2/5/2011 7:04:41 PM

172

1 The Idea of Code

 1. Another way of saying this would be: the delegation of inscription systems
from paper and other physical materials to computer software. The chief dif-
ference being that the inscriptions are mobile, quick, mutable (rather than
immutable) and can reflexively change their own content (data).

 2. Hutchins (1996), for example, describes the evolution of a complex naval
navigation system for steering a warship that demonstrates how cognition
can be decentred and then slowly delegated to computational devices.

 3. Relaxed stability aircraft are designed to deviate from controlled flight without
constant input, this means that the aircraft is always on the verge of going out
of control. In contrast most aircraft are designed with positive stability, which
means that following a disturbance, such as turbulence, the aircraft will return
to its original attitude. Flying a negative stability design is therefore much
harder, and without the assistance of the fly-by-wire computer systems would
be extremely taxing for a fighter pilot.

 4. The use of software in life-critical systems raises serious concerns, discussed
in detail in Killed by Code: Software Transparency in Implantable Medical Devices
(Sandler 2010).

 5. Sometimes referred to as ‘de-materialisation’, that is the transfer of a logic
from a mechanical process or container to a representation within binary
data on a computer system. This is usually stored as 0s and 1s on a magnetic
storage device such as a computer hard drive but can also by optically stored
as binary pits on an optical storage device such as a CD or DVD. This is the
form of the embedded code that runs a great number of appliances.

 6. An interesting collection of videos of papers demonstrating early work in
this field is to be found at the Softwhere: Software Studies 2008 website,
http://workshop.softwarestudies.com/

 7. http://webscience.org/home.html
 8. More examples can be seen in the collection at http://googlelolz.com/
 9. Of course, having written the book in the UK, we should note that Google

now automatically attempts to localise data for the search results too.
Google ‘knows’ where I am and what users in a particular region, country or
locale may be searching for at any particular moment. Google also supplies an
online tool called Google Analytics that allows the user to monitor searches
and perform analytics upon them.

 10. The top search engines by volume of search in July 2010 were Google
71.31%, Yahoo 14.47%, Bing 10.03%, Ask 2.27%, Aolsearch 1.19%, Others
0.73% (Hitwise 2010).

 11. Also interestingly when one types ‘Google is’ one is presented with ‘Google
is Skynet’. Skynet was the defence computer system that becomes conscious
and eventually takes over the world and tries to kill all humans in the film
The Terminator.

Notes

9780230244184_08_notes.indd 1729780230244184_08_notes.indd 172 2/9/2011 5:42:16 PM2/9/2011 5:42:16 PM

Notes 173

 12. An example is given by Kelly (2006: 39): ‘Already the following views are wide-
spread: thinking is a type of computation, DNA is software, evolution is an
algorithmic process. If we keep going we will quietly arrive at the notion that
all materials and all processes are actually forms of computation. Our final des-
tination is a view that the atoms of the universe are fundamentally intangible
bits. As the legendary physicist John Wheeler sums up the idea: “Its are bits”’.

 13. Thus for some theorists of computation, it is argued that the underlying fabric
of the universe is radically discrete made up of individual cells upon which
a certain number of operations can be carried out, but these cells frame the
exteriority of the universe within which our universe ‘runs’. In other words,
as Fredkin argues, our universe consists of information processing running
on this universal computer, and in effect the universal computer is running
a program code similar to the cellular automata that computer scientists
have been experimenting with since the 1970s, such as Conway’s Game of
Life. Researchers like Wolfram further assert that they have discovered a ‘new
 science’ and argue that cellular automata underlie and explain the complexity
of living systems themselves, such as DNA replication, cells, or complete bio-
logical systems. In the Regime of Computation, ‘code is understood as a dis-
course system that mirrors what happens in nature and that generate nature
itself’ (Hayles 2005: 27). This is an idealist notion of computation that is
divorced from the materiality of the medium and hence: ‘first of all, it doesn’t
matter what the information is made of, or what kind of computer produces
it. The computer could be of the conventional electronic sort, or it could be
a hydraulic machine made of gargantuan sewage pipes and manhole covers,
or it could be something we can’t even imagine. What’s the difference? Who
cares what the information consists of? So long as the cellular automaton’s
rule is the same in each case, the patterns of information will be the same,
and so will we, because the structure of our world depends on pattern, not on
the pattern’s substrate; a carbon atom... is a certain configuration of bits, not
a certain kind of bits’ (Wright 1988).

 14. “Analog computation... is a form of experimental computation with physi-
cal systems called analog devices or analog computers. Historically, data
are represented by measurable physical quantities, including lengths, shaft
rotation, voltage, current, resistance, etc., and the analog devices that proc-
ess these representations are made from mechanical or electro-mechanical
or electronic components... Here experimental procedures applied to the
machine, especially measurements, play a special role. The inexactness of
the measurement means that only an approximate input can be measured
and presented to the analog device, and only an approximate output can be
measured and returned from it” (Tucker and Zucker 2007: 2).

 15. ‘Oracles’ come from the work of Alan Turing (1939) in Systems of Logic defined
by Ordinals, where the question raised by Turing was regarding the impact
on a formal system of supplementing uncomputable deductive steps. Turing
‘defined the “oracle” purely mathematically as an uncomputable function,
and said, “we shall not go further into the nature of this oracle apart from
saying that is cannot be a machine.” The essential point of the oracle is that
it performs non-mechanical steps.’ (Hodges 2000).

 16. It should be noted that digital philosophy’s explanation of the computa-
tional universe would include instrumental rationality as well as other forms

9780230244184_08_notes.indd 1739780230244184_08_notes.indd 173 2/9/2011 5:42:16 PM2/9/2011 5:42:16 PM

174 Notes

of rationality – such as communicative (defined by community and debate)
and aesthetic (defined by sensitivity to affect). This is, of course, an implica-
tion of an ontology that claims that the universe is software running on a
universal computer and therefore must encompass all aspects of rationality
and human action. This raises questions regarding a mechanistic notion of
the structure of the universe, but also point towards issues over determinism
and prediction which I can only highlight here.

 17. Clearly, the question of time in the computational image is a fundamental
one which is outside the scope of this chapter, but time has to manifest itself
both outside and inside of the fabric of the computational universe in some
way. We might then think of computational time as succession governed by
a universal clock in a synchronous process, although there is presumably
no reason why it might not be asynchronous, and distributed. One might
further argue that the computational image encourages a relationship with
either the manifest or the scientific image that is based on discrete time,
each step is in a sense computationally independent and atomistic.

 18. This is a double ‘disappearance’ or appresentation of the object; in its
original mediation and then internally within the data structures of the
machine.

 19. HTML is the HyperText Markup Language used to encode webpages. AJAX
is shorthand for Asynchronous JavaScript and XML, which is a collection of
client side technologies that enable an interactive and audio-visual dynamic
web.

 20. I am indebted to Alan Finlayson for his comments on this section.
 21. For example in The Idea of a University (Newman 1996) and Culture and

Anarchy (Arnold 2009).
 22. See http://www.bcs.org/server.php?show=nav.5829
 23. What Heidegger calls ‘the Danger’ (die Gefahr) is the idea that a particular

ontotheology should become permanent, particularly the ontotheology
associated with technology and enframing (see Heidegger 1993a).

 24. This does not preclude other more revolutionary human-computer inter-
faces that are under development, including haptic interfaces, eye control
interfaces, or even brain-wave controlled software interfaces.

 25. See http://www.thecomputationalturn.com/
 26. See the open digital humanities translation of Plato’s Protagoras for a good

example of a wiki-based project, http://openprotagoras.wikidot.com/

2 What Is Code?

 1. Sharon Hopkins, a poet who writes in the computer language called PERL
(practical extraction and report language), explains ‘that perl poetry is the first
effort to “develop human-readable creative writings in an existing program-
ming language… that not only [have] meaning in [themselves] but can also
be successfully executed by a computer.”’ (Black 2002: 142).

 2. ‘An indulgence is a remission before God of the temporal punishment due
to sins whose guilt has already been forgiven, which the faithful Christian
who is duly disposed gains under certain defined conditions through the
Church’s help when, as a minister of redemption, she dispenses and applies

9780230244184_08_notes.indd 1749780230244184_08_notes.indd 174 2/9/2011 5:42:16 PM2/9/2011 5:42:16 PM

Notes 175

with authority the treasury of the satisfactions won by Christ and the saints’
(Indulgentiarum Doctrina 1) (quoted on Catholic 2004).

 3. This moral dimension to coding, especially when linked to the notion of free
libre and open source software is discussed in Berry (2008).

 4. This wholeness of the programmer as a humanistic literary subject is threat-
ened by new techniques in programming that attempt to shift into an
industrial rather than a craft-based approach to programming. Witness how
modularity, object-oriented programming, agile programming and other
Taylorist methods have been used to turn the software process into something
more like a pin factory, for example.

 5. In many ways this is pointing to the fact that there is a dual development
of ‘code’ as an abstract set of concepts and practices around programming,
and particular ‘codes’ which are instantiations of this, either in different
languages or different implementations in the same language.

 6. For any computer system to function requires that existing social practices
are captured, rationalised, restructured and formatted to enable the imple-
mentation and operation of a computer system (rather than the other way
around).

 7. Many new technologies have been created to help with this process, including
libraries of reusable code (such as free, libre and open source software), appli-
cation programming interfaces (APIs), and visual source editors and interface
builders.

 8. It should be noted that code generated within the work hours of the employer,
are the property of the employer under current intellectual property laws.

 9. This points to what Marx called moralischer Verschleiss (‘moral depreciation’
in the official translations) and what is more accurately referred to as the
wearing out of the processes embedded in the machine (Marx 1990: 528).
I would like to thank Tom Cheesman for his help in uncovering the original
meaning and the translation of the German moralischer Verschleiss.

 10. The question raised by software ‘wearing out’ or ‘ageing’ is very interesting
(see Parnas 1994). This is very different to the idea of physical wear and
tear and is in software is in fact much closer to the concept of moralischer
Verschleiss that Marx introduces.

 11. For a discussion of the difficulties of software preservation see Mathew et al.
(2010).

 12. http://www.computerhistory.org/ and http://www.nationalmediamuseum.
org.uk, for a useful software history bibliography, see http://www.cbi.umn.
edu/research/shbib.pdf

 13. For a good overview of the FUD approach see http://en.wikipedia.org/wiki/
Fear,_uncertainty_and_doubt

 14. Project Mercury had a FORTRAN syntax error in its computer code such as
DO I=1.10 (not 1,10). The comma/period mistake was detected in software
used in earlier suborbital missions and fixed. It would have had more seri-
ous repercussions in subsequent orbital and moon flights if it had not been
addressed.

 15. There is much work to be done here on developing ways of talking about
code and software without unreflexively taking up the technical language
of computer science and therefore having only a descriptive vocabulary to
discuss these changes. We need concepts on a the number of different levels

9780230244184_08_notes.indd 1759780230244184_08_notes.indd 175 2/9/2011 5:42:16 PM2/9/2011 5:42:16 PM

176 Notes

relevant to understanding code and this type of concept formation can help
us think critically through and reflect upon code more carefully.

 16. The term ‘proprietary’ analytically in this chapter. Both of the following forms
are included: (1) computer software produced by private actors (e.g. individu-
als or corporations); and (2) code produced within public institutions (e.g.,
government departments). This is because in neither case is the source code
released to the public or supported by open development processes.

 17. In the case of CD technology, which uses Pulse Code Modulation (PCM), the
chunks (bytes) are 16 bits wide, that is, they are able to represent only 65535
different values within the wave, that are sampled at 44,100 times per second.
In translating between the external world and the internal symbolic repre-
sentation, information is lost as the 65535 values are a grid, the digital data
structure, placed over a smooth waveform. When translated, or played back
through a digital-analogue converter, those with keen ears (and expensive
audiophile equipment) are able to hear the loss of fidelity and digital artefacts
introduced by errors in translation between the two (i.e. back from digital data
structure to analogue sound).

 18. Cloud computing is the idea of allowing the user to store their documents
away from their physical machines in the ‘Cloud’ which is essentially large
data-centres located around the world. This allows the user constant access to
their documents wherever they might be located, provided they have some
form of Internet connection. Cloud computing is increasingly seeing a move
of applications online too, sometimes called software-as-a-service (SaaS), which
furthers the move, or ‘dematerialisation’, of the computing experience online.

 19. Net Neutrality is the principle that any two actors on a network should be able
to connect to each other at a certain level of access. As the Internet is a distrib-
uted network, corporations, who control particular portions of the Internet
as private networks, are tempted to discriminate against other people’s data
on their part of the network allowing their own data to move more quickly
(i.e. to slow down the others data). Of course, if everyone where to do this
then the entire Internet would grind to a halt.

3 Reading and Writing Code

1. Clean room development is used when organisations want to make sure that
there is no contamination of intellectual property. The programmers who
work on a project are given no access to previous versions of source code in
order to re-engineer a project from scratch, often in response to copyright
infringement action, or the potential for one.

2. There are a number of these computer based jokes, one of my favourites being
an attack on the Pascal programming language written in 1982, by Ed Post,
called ‘Real Programmers Don’t Use Pascal’, http://www.ee.ryerson.ca/~elf/
hack/realmen.html

3. These code snippets are drawn from http://www.dreamincode.net/forums/
topic/38102-obfuscated-code-a-simple-introduction/

4. http://www.ioccc.org/2004/kopczynski.hint
5. http://www.ioccc.org/1984/laman.hint
6. http://www.ioccc.org/2004/arachnid.hint

9780230244184_08_notes.indd 1769780230244184_08_notes.indd 176 2/9/2011 5:42:16 PM2/9/2011 5:42:16 PM

Notes 177

7. http://www.ioccc.org/2001/cheong.hint
8. http://www.ioccc.org/2001/rosten.hint

4 Running Code

 1. This Linux version of the source code for ‘Hello, world!’ is available at http://
asm.sourceforge.net/intro/hello.html

 2. This was rendered using xxd.
 3. Note, in this case for ease of representation an ELF binary has been used.

Although most operating systems support the use the ELF object file format,
technically the Mac OS X and the Window operating systems use their own
binary format. They can however run emulators that would allow this binary
file to execute.

 4. In ancient mythology Procrustes (‘the stretcher’) was a bandit from Attica
killed by Theseus. In Eleusis, Procrustes had a bed which he invited passersby
to lie down in. When they did so, he either stretched them or cut off body
parts to make them fit into the bed. Procrustes therefore attempted to reduce
people to one standard size (Plutarch 2010).

 5. Latour (1987) was particularly referring to the stability offered by paper to
structured data, ‘the first to sit at the beginning and at the end of a long
network that generates what I will call immutable and combinable mobiles’
(Latour 1987: 227). Whether one can create immutable mobiles in software
is an interesting theoretical question to the extent that the materiality of
software/data is extremely ephemeral. This helps explain the importance of
cryptography and verification mechanisms in e-democracy systems.

 6. See Everett et al. (2008: 898) which gives the ‘mean ballot completion times
(in seconds) by voting method’ as a way of assessing different forms of com-
pleting ballot papers.

 7. After evaluating trails of eVoting conducted in May 2007 trials, the UK
Electoral Commission recommended there should be “no more pilots of
electronic voting without a system of individual voter registration” and
“significant improvements in testing and implementation” (Post 2009).

 8. http://code.google.com/
 9. The political economy of software for election systems will be an interesting

requirement, especially if a monopoly situation arises (as would be expected)
in a national electoral system. Essentially leaving the nation state open to
the desire of the manufacture to encourage software updates in a similar
manner to the rest of the software industry (see Campbell-Kelly 2004).

 10. The kinds of documentation that are useful for programming include:
requirements specification, flowcharts and diagrams, formal language speci-
fications (e.g. UML, Z) and test/use cases. There is also documentation within
the source code called ‘comments’ written by the programmers to help others
understand the code.

5 Towards a Phenomenology of Computation

 1. In this chapter I do not directly deal with the question of computational
sociality except with reference to the notion of referential totality. This issue

9780230244184_08_notes.indd 1779780230244184_08_notes.indd 177 2/9/2011 5:42:17 PM2/9/2011 5:42:17 PM

178 Notes

of the interpersonal mediated through the technical devices discussed in the
chapter would raise important theoretical questions about a social relation-
ship (i.e. dasein-with) that was mediated through unreadiness-to-hand.

 2. Here I would like to gesture towards the dyad of fabrication and annihila-
tion that Heidegger examines through the notion of technical beings, and
withdrawal as part of Gestell’s (Enframing) challenging of Dasein (Heidegger
1993a, 1993b).

 3. Of course, one may not fully understand the complexities of the internal data
structures or the complex calculations involved in making the system work.
Nonetheless, there is a recognition that something is happening behind the
screen connecting it to a wider network of computational devices and data
sources. One therefore knows where to situate one’s phone, or how to mount
the SatNav – for otherwise it will not function. One could think of this as a
form of computational education or computational disciplining of the user.

 4. Having no technical knowledge is a positive disadvantage in trying to use
these technologies that can be very unforgiving and cryptic if basic notions
are not understood, for example satnav booting from the memory card.

 5. ‘A situated simulation requires a broadband (3G) smartphone with substantial
graphics capabilities, GPS-positioning features, accelerometer and electronic
compass. In a situated simulation there is approximate identity between
the users visual perception of the real physical environment and the users
visual perspective into a 3D graphics environment as it is represented on the
screen. The relative congruity between the real and the virtual is obtained
by letting the camera position and movement in the 3D environment be
determined by the positioning and orientation hardware. As the user moves
in real space the perspective inside the virtual space changes accordingly’
(INVENTIO-project n.d.)

 6. See, for example, ‘SixthSense’ a wearable gestural interface that augments
the physical world with digital information and uses hand gestures to inter-
act, http://www.pranavmistry.com/projects/sixthsense/

 7. I am therefore concerned with the formal indication of the computational.
That is ‘[We must] make a leap and proceed resolutely from there!. . . One
lives in a non-essential having that takes its specific direction toward comple-
tion from the maturing of the development of this having.. . . The evidence
for the appropriateness of the original definition of the object is not essential
and primordial; rather, the appropriateness is absolutely questionable and the
definition must precisely be understood in this questionableness and lack of
evidence’ (Heidegger 1985: 34–35, quoted in Dreyfus 2001a).

 8. ‘Research has shown that multitasking can have some strange effects on
learning’ (Poldrack 2010). Some researchers now argue that technologies
that promote constantly distracted multitasking create ‘switch costs’ which
change the brain systems that are involved so that even if one can learn while
multitasking, the nature of that learning is altered and becomes less flexible
(this notion of changing brain patterns is called ‘neuroplasticity’) (Doidge
2007).

 9. Here I am making a distinction between the equipmental form of tools,
machinery, and such like, and the specific example of computation devices
which I argue are a specific case of equipment that does not withdraw.

 10. Heidegger uses the term Dasein in Being and Time, Division I to mean the
human way of being, literally ‘being-there’ or Dasein. In Division II he is

9780230244184_08_notes.indd 1789780230244184_08_notes.indd 178 2/9/2011 5:42:17 PM2/9/2011 5:42:17 PM

Notes 179

more interested in particular human beings and he talks about ‘a Dasein’.
Thus Heidegger is not studying Dasein but Dasein’s way of being (see Dreyfus
2001a: 14).

 11. Here Sellars use of the term ‘image’ does not refer to the visual as such, rather
to the conceptual framework that organises experience.

 12. Here I am gesturing towards the notion that computation is a Weltanschauung
(Worldview) within particular disciplinary groups.

 13. In other words vicariousness is being-for-another.
 14. It is important to note that conspicuousness is not broken down equipment.

Heidegger defines three forms of unreadyness-to-hand: Obtrusiveness
(Aufdringlichkeit), Obstinacy (Aufsässigkeit), and Conspicuousness (Auffälligkeit),
where the first two are non-functioning equipment and the latter is equipment
that is not functioning at its best (see Heidegger 1978, particularly footnote 1).

 15. Here I am referring to the ability of the user to do different things at the same
time (multitask), rather than a property of the technical device or operating
system.

 16. This is not to say that Apple, in particular, has not tried through the use of
layering in the operating system which take out of the hands of developers the
problem of interface element design, however, these forms of simplifications
of user interface by their very nature create complexities in use elsewhere.

 17. Here it is interesting to note Horkheimer and Adorno’s (2006) position that:
‘The hope that the contradictory, disintegrating person could not survive for
generations, that the psychological fracture within it must split the system
itself, and that human beings might refuse to tolerate the mendacious substi-
tution of a stereotype for the individual – that hope is in vain’ (Horkheimer
and Adorno 2006: 64).

 18. This is not to say that analogue technologies do not break down, the differ-
ence is the conspicuousness of digital technologies in contrast to the obstinacy
or obtrusiveness of analogue technologies.

 19. eBook readers use new technologies such as e-ink which provides a very
stable viewing experience, albeit not yet at the resolution of paper, which
attempts to mimic the book form very closely. Unsurprisingly, however, the
temptation to build into these devices menuing systems, messaging, web-
browsers, annotation features, search engines, plus libraries of thousands of
books, still creates ample opportunity for maximum viewer distraction.

 20. Here I use screen essentialism to point towards an understanding of the inter-
face, whether explicitly screen-based or on the surface of the object, as the
privileged site for research. Here the screen is understood as unproblematically
representing the inner state of the device or even that knowledge of the screen
alone is sufficient for research without any recourse to a deeper notion of the
technical layers which underlie it.

 21. However, as Daniel Hourigan pointed out, Babushka dolls do have a finite limit
and therefore do not have the kind of infinite multiplicity my point aims at.

6 Real-Time Streams

1. Nietzsche was the first German professor of philology to use a typewriter;
Kittler is the first German professor of literature to teach computer program-
ming (Kittler 1999: XXXI).

9780230244184_08_notes.indd 1799780230244184_08_notes.indd 179 2/9/2011 5:42:17 PM2/9/2011 5:42:17 PM

180 Notes

 2. One might say that the first principle of the real-time stream is, following
Daniel Paul Schreber’s explanation of the recording of his thoughts whilst
suffering from mental illness described in his book, Memoirs of My Nervous
Illness, ‘scilicet – written-down’ (Conner, 2008). This Kittler describes as a
‘writing down system’ or Aufschreibesystem.

 3. One can use the example here of recommendation systems that proclaim
‘people like you also like X’, in other words constituting the subject as
a member of a specific set, whether a voting block, market segment or
 pattern.

 4. The differing access to these narratives will be a key location of political con-
testation in the coming decades as people claim a right to access their own
narrative datascapes, such as health records.

 5. It is also interesting to see how life itself is conceptualised discursively as a
process of financial flows and investment strategies particularly in relation
to pension planning and investment guidance (e.g. Child Trust Funds) (see
Finlayson 2008) and through propagation through the media (e.g. British
television programmes such as ‘Location, Location, Location’ and ‘Property
Ladder’).

 6. An interesting example of this presentation of computational risk is the
iPhone application ASBOrometer which computes the risk factor of a par-
ticular UK location through the use of government data, see http://www.
asborometer.com/

 7. This notion of risk is also different from Beck’s (2002) notion of the Risk
Society that posits the idea of risk as a transnational phenomena that trans-
forms the ability of individual states to predict events and consequences, for
example the Chernobyl nuclear disaster. Instead, risk here is understood as a
statistical predictive category for managing the future within finance capital
and markets.

 8. The profitability of these markets is, to some extent, linked to the active trad-
ing strategies of investors or the velocity of trades, indeed throughout the dot
com bubble which burst in 2001, profits from speculative day-traders using
web-based trading software grew even as the costs of trading were reduced.
Here we might note a connection, for example, between the intensity of
trading activity and the profitability of investment corporations and their
transformation into a retail service industry (e.g. see Charles Schwab).

 9. Geodata contains location-based information, usually sourced from the GPS
satellites (General Positioning System).

 10. Some notable example include Big Ben in London http://twitter.com/big_
ben_CLOCK, Tower Bridge http://twitter.com/towerbridge, the Earthquake
twitter account, which logs worldwide earthquake events http://twitter.com/
earthquake, lowflying rocks, which logs near earth object that passes within
0.2AU of Earth http://twitter.com/lowflyingrocks, and the 32m telescope at
Cambridge, http://twitter.com/32m ; there are also interesting examples of
animals tweeting such as http://twitter.com/common_squirrel and http://
twitter.com/wmpcsidogsmithy

 11. Where the referential totality is itself actualised by a series of unstable
affordances, the referential chains of meaning are constantly in play. This
flow of environment and infrastructure raises interesting questions regarding
stabilising an association, for example.

9780230244184_08_notes.indd 1809780230244184_08_notes.indd 180 2/9/2011 5:42:17 PM2/9/2011 5:42:17 PM

Notes 181

 12. Or as an alternative formulation, has only the computational image of itself
as a basis of its self-knowledge.

 13. This is, of course, not to suggest that the analytical rejection of this bound-
ary cannot be productive for research, (see Actor Network Theory more
generally, and Latour 2005, in particular) but rather to draw attention to the
strictly political implications of, for example, reclassifying POWs as Enemy
Combatants, or the removal of human rights from certain groups of people.

9780230244184_08_notes.indd 1819780230244184_08_notes.indd 181 2/9/2011 5:42:17 PM2/9/2011 5:42:17 PM

182

ACE (n.d.) The Alliance for Code Excellence, retrieved 1/7/2010 from http://
codeoffsets.com/

Adams, R. (2010) All your Twitter belongs to the Library of Congress, Guardian,
retrieved 03/08/2010 from http://www.guardian.co.uk/world/richard-adams-
blog/2010/apr/14/twitter-library-of-congress

Alvarez, R. M. and Hall, T. E. (2008) Electronic Elections: The Perils and Promises of
Digital Democracy. Oxford: Princeton University Press.

Arendt, H. (1971) ‘Martin Heidegger at Eighty’, New York Review of Books,
retrieved 11/05/2010 from http://www.nybooks.com/articles/archives/1971/
oct/21/martin-heidegger-at-eighty/

Arnold, M. (2009) Culture and Anarchy. Oxford: Oxford University Press.
Arthur, C. (2010) ‘Digital Economy Bill Rushed Through Wash-up in Late Night

Session’, Guardian, retrieved 14/03/2010 from http://www.guardian.co.uk/
technology/2010/apr/08/digital-economy-bill-passes-third-reading

Atton, C. (2004) An Alternative Internet: Radical Media, Politics and Creativity.
Edinburgh: Edinburgh University Press.

Baltimoremd (n.d.) Windows 2000 Source Code, retrieved 1/6/2010 from http://
www.baltimoremd.com/content/win2000source.html

Bassett, C. (2007) The Arc and the Machine: Narrative and New Media. Manchester:
Manchester University Press.

BBC (2004) Microsoft source code leaked out, BBC News, retrieved 1/3/2010 from
http://news.bbc.co.uk/1/hi/technology/3484545.stm

BBC (2009) No 10 apology over ‘slur’ e-mails. The BBC News Website. Retrieved
19/11/09 from http://news.bbc.co.uk/1/hi/7994408.stm

Beckett, C. (2008) Supermedia: Saving Journalism So It Can Save the World. London:
Wiley–Blackwell.

Beer, D. and Gane, N. (2004) ‘Back to the Future of Social Theory: an Interview
with Nicholas Gane’. Sociological Research Online, retrieved 10/02/09 from
http://www.socresonline.org.uk/9/4/beer.html

Beggs, E., Costa, J. F. and Tucker, J. V. (2009) ‘Physical Experiments as Oracles’,
Bulletin of the EATCS, No. 97, pp. 137–51, February 2009.

Belfrage, C. (2008) Towards ‘Universal Financialisation’ in Sweden?!, Contemporary
Politics (special issue on ‘The Global Politics of Finance Capitalism’), 14 (3):
277–96.

Beniger, J. R. (1989) The Control Revolution: Technological and Economic Origins of
the Information Society. London: Harvard University Press.

Benkler, Y. (2002) ‘Coase’s penguin, or Linux and the nature of the firm’, The Yale
Law Journal, 112: 369–446.

Benkler, Y. (2003a) ‘Freedom in the Commons, Towards a Political Economy of
Information’, 52, Duke L.J. 1245.

Benkler, Y. (2003b) ‘The Political Economy of Commons’, Upgrade, Vol. IV., No.3,
June 2003.

Bibliography

9780230244184_09_bib.indd 1829780230244184_09_bib.indd 182 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

Bibliography 183

Benkler, Y. (2004) ‘Sharing Nicely: On Shareable Goods and the Emergence of
Sharing as a Modality of Economic Production’,. The Yale Journal, 114: 273,
274–358.

Benkler, Y. (2006) The Wealth of Networks. London: Yale University Press.
Berry, D. M. (2004) ‘The Contestation of Code’, Critical Discourse Studies, 1(1),

65–89.
Berry, D. M. (2008) Copy, Rip, Burn: The Politics of Copyleft and Open Source.

London: Pluto Press.
Berry, D. M. and Moss, G. (2006) ‘Free and Open-source Software: Opening and

Democratising e-government’s Black Box’, Information Polity, 11 (2006) 21–34.
Beunza, D. and Muniesa, F. (2005) ‘Listening to the Spread Plot’, In Making things

Public: Atmospheres of Democracy, Bruno Latour and Peter Weibel (eds) (2005).
London: MIT Press, pp. 628–33.

Beunza and Stark (2004) ‘Tools of the Trade: The Socio-technology of Aarbitrage
in a Wall Street Trading Room’, Industrial and Corporate Change, Vol. 13,
No. 2: 369–400.

Biancuzzi, F. and Warden, S. (2009) Mastermind of Programming: Conversations
with the Creators of Major Programming Languages, Sebastopol: O’Reilly.

BJS (2010) Data sorting world record: 1 terabyte, 1 minute, retrieved 27/07/2010
from http://scienceblog.com/36957/data-sorting-world-record-falls-computer-
scientists-break-terabyte-sort-barrier-in-60-seconds/

Black, M. J, (2002) The Art of Code. PhD dissertation, University of
Pennsylvania.

Black, R. (2003) E-voting: Democratic or dangerous?, retrieved 14/03/2010 from
http://news.bbc.co.uk/1/hi/world/americas/3169706.stm

Black, R. (2010) CRU climate scientists ‘did not withhold data’, BBC News,
retrieved 7/7/2010 from http://news.bbc.co.uk/1/hi/science_and_environment/
10538198.stm

Blackbox Voting (2010) Black Box Voting - America’s Election Watchdog Group,
retrieved 14/03/2010 from http://www.blackboxvoting.org/

Blattner, W. (2006) Heidegger’s Being and Time. London: Continuum.
Bloom, P. (n.d.) Computing Fantasies: Psychologically Approaching Identity

and Ideology in the Computational Age, retrieved 14/3/10 from http://www.
thecomputationalturn.com/

Bogoslaw, D. (2007) Big Traders Dive Into Dark Pools, Business Week, 3 October
2010, retrieved from http://www.businessweek.com/investor/content/oct2007/
pi2007102_394204.htm

Boltanski, L. and Thévenot, L. (2006) On Justification: Economies of Worth. Oxford:
Princeton University Press.

Bolter, J. D. and Grusin, R. A. (1999) Remediation: Understanding New Media.
London: MIT Press.

Borgmann, A. (1999) Holding on to Reality: The Nature of Information at the Turn of
the Millenium. Chicago: The University of Chicago Press.

Borgmann, A. (2010) Orientation in Technological Space, First Monday, Vol. 15,
6–7, retrieved from http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/
article/view/3037/2568

Borthwick, J. (2009) Distribution … now, THINK / Musings, retrieved 1/7/2010
from http://www.borthwick.com/weblog/2009/05/13/699/

9780230244184_09_bib.indd 1839780230244184_09_bib.indd 183 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

184 Bibliography

Bratton, B. (2008) All Design is Interface Design, Softwhere: Software Studies
2008, Calit2, UC San Diego, video presentation, retrieved 18/10/2009 from
http://emerge.softwarestudies.com/files/12_Benjamin_Bratton.mov

Bremner, C. (2009) Top French court rips heart out of Sarkozy internet law, Times
Online, 11 June 2009, retrieved 13/03/2010 from http://technology.timesonline.
co.uk/tol/news/tech_and_web/article6478542.ece

Broukhis, L. A., Cooper, S., Noll L. C., and Seebach, P. (2006) 19th International
Obfuscated C Code Contest Rules, retrieved 10/07/2010 from http://www.
ioccc.org/2006/rules.txt

Calandrino, J. A., Feldman, A. J., Halderman J. A., Wagner, D., Yu, H. and
Zeller W. P. (2007) Source Code Review of the Diebold Voting System,
retrieved 13/03/2010 from http://www.sos.ca.gov/elections/voting_systems/
ttbr/diebold-source-public-jul29.pdf

Campbell-Kelly, M. (2004) From Airline Reservations to Sonic the Hedgehog: A History
of the Software Industry. London: MIT Press.

Callon, M. (1998) The Laws of Markets. London: Blackwell.
Callon, M. (2007)’ An Essay on the Growing Contribution of Economic Markets to

the Proliferation of the Social’, Theory, Culture & Society, vol. 24(7–8): 139–63.
Carr, N. (2008) ‘Is Google Making Us Stupid?’, The Atlantic Magazine, July/

August 2008, retrieved 18/06/2010 from http://www.theatlantic.com/magazine/
archive/2008/07/is-google-making-us-stupid/6868/

Carr, N. (2010a)’ Googlethink: The Giant’s Creepy Efforts To Read My Mind’, The
Atlantic Magazine, July/August 2010, retrieved 18/06/2010 from http://www.
theatlantic.com/magazine/archive/2010/07/googlethink/8120/

Carr, N. (2010b) Steven Pinker and the Internet, retrieved 19/06/2010 from
http://www.roughtype.com/archives/2010/06/steven_pinker_a.php

Carr, N. (2010c) ‘The Web Shatters Focus, Rewires Brains’, Wired Magazine, June
2010, retrieved 21/06/2010 from http://www.wired.com/magazine/2010/05/
ff_nicholas_carr/all/1

Castells, C. (1996) The Information Society: The Rise of the Network Society. Oxford:
Blackwell.

Catholic (2004) Primer on Indulgences, retrieved 18/10/2009 from http://www.
catholic.com/library/Primer_on_Indulgences.asp

CEV (2006) Commission on Electronic Voting, Ireland, retrieved 13/03/2010
from http://www.cev.ie/index.htm

Chadwick, A. (2006) Internet Politics. Oxford: Oxford University Press.
Chadwick, A. (2007) ‘Digital Network Repertoires and Organizational Hybridity’,

Political Communication, 24 (3): 283–301.
Chalmers, D. (1989) Analog vs. Digital Computation, retrieved 18/10/2009 from

http://consc.net/notes/analog.html
Chopra, S. and Dexter, S. (2008) Decoding Liberation: The Promise of Free and Open

Source Software. Oxford: Routledge.
Chun, W. H. K. (2008) ‘On “Sourcery,” or Code as Fetish’, Configurations,

16:299–324.
Clement, T., Steger, S., Unsworth, J. and Uszkalo, K. (2008) How Not to Read

a Million Books, retrieved 21/06/2010 from http://www3.isrl.illinois.edu/
~unsworth/hownot2read.html#sdendnote4sym

Coleman, B. (2009) ‘Code Is Speech: Legal Tinkering, Expertise, and Protest
Among Free and Open Source Developers’, Cultural Anthropology, August 2009,
Vol. 24, issue 3, pp. 420–54.

9780230244184_09_bib.indd 1849780230244184_09_bib.indd 184 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

Bibliography 185

Coleman, S. (2005) ‘The Lonely Citizen: Indirect Representation in an Age of
Networks’, Political Communication, 22(2): 197–214.

Coleman, S. and Blumler, J. (2009) The Internet and Democratic Citizenship: Theory,
Practice and Policy. Cambridge: Cambridge University Press.

Coleman, S., Donk, W. and Taylor, J. (1999) Parliament in the Age of the Internet.
Oxford: Oxford University Press.

Columbia, D. (2009) The Cultural Logic of Computation. Harvard: Harvard
University Press.

Conner, S. (2008) Scilicet: Kittler, Media and Madness, lecture given at Tate
Modern, 28 June 2008, retrieved 7/7/2010 from http://www.bbk.ac.uk/english/
skc/scilicet/

Cooper, J. M. (1997) Plato: Complete Works, Cambridge: Hackett.
Curtis, P. (2010) ‘Voting System Rated Not Fit for Purpose’, Guardian, retrieved

13/04/2010 from http://www.guardian.co.uk/uk/2010/mar/15/voting-system-
not-fit-electoral-commission

Deleuze, Gilles (1992) ‘What is a dispositif?’, In Armstrong, T. J. (ed.), Michel
Foucault Philosopher. New York: Routledge, pp. 159–68.

Deleuze, G. and Guattari, F. (2000) Thousand Plateaus. London: Continuum.
Digitalcraft.org (2006) Obfuscated C code, retrieved 13/04/2010 from http://

www.digitalcraft.org/iloveyou/c_code.htm
Digital Economy Bill (2009) Digital Economy Bill [HL], retrieved 13/03/2010

from http://www.publications.parliament.uk/pa/ld200910/ldbills/001/10001.
i-ii.html

Dix, A., Finlay, J., Abowd, G. D. and Beale, R. (2003) Human Computer Interaction.
London: Prentice Hall.

Doel, M. (2009)’ Miserly Thinking/Excessful Geography: From Restricted
Economy to Global Financial Crisis. Environment and Planning D: Society and
Space, doi:10.1068/d7307

Doidge, N. (2007) The Brain That Changes Itself: Stories of Personal Triumph from
the Frontiers of Brain Science. New York: Viking.

Douglas, J. (2008) #Include Genre, Softwhere: Software Studies 2008, Calit2,
UC San Diego, video presentation, retrieved 18/10/2009 from http://emerge.
softwarestudies.com/files/11_Jeremy_Douglass.mov

Drahos, P. and Braithwaite, J. (2003). Information Feudalism: Who Owns the
Information Economy? Norton.

Dreyfus, H. (1995) How Heidegger Defends the Possibility of a Correspondence
Theory of Truth with respect to the Entities of Natural Science, retrieved
18/10/2009 from http://socrates.berkeley.edu/~hdreyfus/rtf/Heidegger-Realism_
5_95.rtf

Dreyfus, H. (2001b) Being-in-the-world: A Commentary on Heidegger’s Being and
Time, Division I. USA: MIT Press.

Dreyfus, H. (2001b) On the Internet. London: Routledge.
Dubray, J. (2009) On the Origins of Cognitive Science: The Mechanization of Mind.

London: MIT Press.
Dunt, I. and Stephenson, A. (2009) Guardian claims victory after Trafigura

Twitter frenzy, Guardian, retrieved 19/11/09 from http://www.politics.co.uk/
news/ culture-media-and-sport/guardian-gagging-order-sparks-twitter-frenzy-
$1333687.htm

Economist, The (2009) ‘Rise of the Machines’, retrieved 10/05/2010 from http://
www.economist.com/node/14133802

9780230244184_09_bib.indd 1859780230244184_09_bib.indd 185 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

186 Bibliography

Economist, The (2010a) ‘System Error’, retrieved 10/05/2010 from http://www.
economist.com/world/asia/displaystory.cfm?story_id=16068922

Economist, The (2010b) ‘Science Behind Closed Doors’, retrieved 10/05/2010 from
http://www.economist.com/node/16537628

Economist, The (2010c) ‘Data, Data Everywhere’, retrieved 11/05/2010 from
http://www.economist.com/node/15557443

Economist, The (2010d) ‘All Too Much’, retrieved 11/05/2010 http://www.
economist.com/node/15557421

Economist, The (2010e) ‘Needle in a Haystack’, retrieved 11/05/2010 http://www.
economist.com/node/15557497

Economist, The (2010f) ‘Handling the Cornucopia’, retrieved 11/05/2010 http://
www.economist.com/node/15557507

Ellul, J. (1973) The Technological Society. London: Random House.
Everett, S. P., Greene, K. K., Byrne, M. D., Wallach, D. S., Derr, K., Sandler, D.

and Torous, T. (2008) Electronic Voting Machines versus Traditional Methods:
Improved Preference, Similar Performance. CHI 2008, 5–10 April 2008,
Florence, Italy, retrieved 13/03/2010 from http://chil.rice.edu/research/pdf/
EverettGreeneBWDST_08.pdf

Finlayson, A. (2008) Characterising New Labour: The Case of the Child Trust
Fund, Public Administration, Vol. 86, 1, 2008.

FlowingData (2010) Discuss: Why collect data about yourself?, retrieved
03/08/2010 from http://flowingdata.com/2010/07/30/discuss-why-collect-
data-about-yourself/

Foucault, M. (2002) The Order of Things. London: Routledge Classics.
Freeman and Gelernter (1996) The Yale Lifestreams Project Page, Circa 1996,

retrieved 8/4/2010 from http://cs-www.cs.yale.edu/homes/freeman/lifestreams.
html

Frewin, J. (2010) Chaotic polling problems lead to calls for e-voting, retrieved
13/05/2010 http://news.bbc.co.uk/1/hi/technology/10102126.stm

Fuller, M. (2003) Behind the Blip: Essays on the Culture of Software. London:
Autonomedia.

Fuller, M. (2006) Software Studies Workshop, retrieved 13/04/2010 from http://
pzwart.wdka.hro.nl/mdr/Seminars2/softstudworkshop

Fuller, M. (2008) Software Studies\A Lexicon. London: MIT Press.
Fuller, S. (2006) The New Sociological Imagination. London: Sage.
Fuller, S. (2010) ‘Humanity: The Always Ready – or Never to be – Object of the

Social Sciences?’, in Bonwel, J. W. (ed.), The Social Sciences and Democracy.
London: Palgrave Macmillan.

Galloway, A. (2006) Protocol: How Control Exists After Decentralization. London:
MIT Press.

Gane, N. (2003) ‘Computerized Capitalism: The Media Theory of Jean-François
Lyotard’, Information, Communication & Society. 6:3: 430–50.

Garnham, N. (2005) ‘From Cultural To Creative Industries: An Analysis of the
Implications of the “Creative Industries” Approach to Arts and Media Policy
Making in the United Kingdom’, International Journal of Cultural Policy, Vol. 11,
No. 1, pp. 15–29.

Gauntlett, D. (2009) ‘Media Studies 2.0: a response’, Westminster Papers in
Communication and Culture, special issue on Media Studies 2.0, Vol. 1, No. 1,
pp. 147–58.

9780230244184_09_bib.indd 1869780230244184_09_bib.indd 186 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

Bibliography 187

Geere, D. (2010a) Tunable “Sound Cloud” alters acoustics at will, Wired,
retrieved 1/7/2010 from http://www.wired.co.uk/news/archive/2010-06/14/
tunable-sound-cloud-alters-acoustics-at-will

Geere, D. (2010b) Programmable origami folds itself into shape, Wired, retrieved
1/7/2010 from http://www.wired.co.uk/news/archive/2010-07/1/programmable-
origami

Gibson, J. J. (1977) ‘The Theory of Affordances’, In R. E. Shaw and J. Bransford
(eds), Perceiving, Acting, and Knowing. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Gill, R. and Pratt, A. (2008) ‘The Social Factory? Immaterial Labour, Precariousness
and Cultural Work’, Theory, Culture & Society, December 2008, Vol. 25 Nos 7–8,
1–30.

Gillespie, T. (2008) The Politics of “Platforms”, retrieved 11/7/2010 from http://
web.mit.edu/comm-forum/mit6/papers/Gillespie.pdf

Gliestoel (2010) Sitsim Demo II, retrieved 11/7/2010 from http://www.youtube.
com/watch?v=NliEGCnlSwM

Guatarri, F. (1996) Chaosophy: Soft Subversions. New York: Semiotext(e).
Google (2010a) What this is really about: keeping the Internet open for consum-

ers, retrieved 13/04/2010 from http://googlepublicpolicy.blogspot.com/search/
label/Net%20Neutrality

Google (2010b) 2010 Financial Tables: Income Statement Information, retrieved
13/04/2010 from http://investor.google.com/financial/tables.html

Greenwood, C. (2007) Air Force Looks at the Benefits of Using CPCs on F-16
Black Boxes, CorrDefence, retrieved 13/04/2010 from http://www.corrdefense.
org/CorrDefense%20Magazine/Spring%202007/feature.htm

Halavais, A. (2008) Search Engine Society. London: Polity.
Hansen, M. B. (2006) New Philosophy for New Media. London: MIT Press.
Hardt, M. And Negri, A. (2000) Empire. London: Harvard.
Harman, G. (2009) ‘On Vicarious Causation’, Collapse, No. II.
Harry (2009) READ ME for Harry’s work on the CRU TS2.1/3.0 datasets, 2006–2009!,

retrieved 10/06/2010 from http://www.anenglishmanscastle.com/HARRY_READ_
ME.txt

Hayles, N. K. (2004) ‘Print Is Flat, Code Is Deep: The Importance of Media-
Specific Analysis’, Poetics Today, 25(1): 67–90.

Hayles, N. K. (2005) My Mother Was a Computer. Chicago: Chicago University
Press.

Hayles, N. K. (2007) ‘Hyper and Deep Attention: The Generational Divide in
Cognitive Modes’, Profession, No. 13, pp. 187–99.

Heidegger, M. (1966). Discourse on Thinking. New York: Harper and Row.
Heidegger, M. (1978). Being and Time. London: Wiley–Blackwell.
Heidegger, M. (1988) The Basic Problems of Phenomenology. USA: Indiana

University Press.
Heidegger, M. (1993a) ‘The Question Concerning Technology’, In Krell, D. F

(ed.), Martin Heidegger: Basic Writings. London: Routledge, pp. 311–41.
Heidegger, M. (1993b) ‘Letter on Humanism’, In Krell, D. F (ed.), Martin Heidegger:

Basic Writings. London: Routledge, pp. 217–64.
Heidegger, M. (2010) Logic: The Question of Truth. Gesamtausgabe, Band 21.

Trans. Thomas Sheehand, Manuscript, retrieved 18/10/2009 from http://socrates.
berkeley.edu/%7Ehdreyfus/185_f07/pdf/HeideggerHandout04Sept07.pdf

9780230244184_09_bib.indd 1879780230244184_09_bib.indd 187 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

188 Bibliography

Heim, M. (1987) Electric Language: A Philosophical Discussion of Word Processing.
London: Yale University Press.

Heim, M. (1993) The Metaphysics of Virtual Reality. Oxford: Oxford University
Press.

Helmond, A. (2008) Video, slides and notes from my presentation on Software-
Engine Relations at HASTAC II and SoftWhere 2008, retrieved 18/10/2009 from
http://www.annehelmond.nl/2008/07/09/video-slides-and-notes-from-my-
presentation-on-software-engine-relations-at-hastac-ii-and-softwhere-2008/

Hesmondhalgh, D. (2009) ‘The Digitalisation of Music’, In Pratt, A.C. and
Jeffcut, P. (eds), Creativity and Innovation in the Cultural Economy. Abingdon and
New York: Routledge.

Heusser, M. (2005) Beautiful Code, Dr. Dobbs, August 09, 2005, retrieved 1/7/2010
from http://www.drdobbs.com/184407802

Hitwise (2010) Top 20 Sites & Engines, retrieved 29/07/2010 from http://www.
hitwise.com/us/datacenter/main/dashboard-10133.html

Hodges, A. (2000) Uncomputability in the work of Alan Turing and Roger
Penrose, retrieved 18/06/2010 from http://www.turing.org.uk/philosophy/
lecture1.html

Hofstadter, R. (1963) Anti-Intellectualism in American Life, USA: Vintage Books.
Hopkins, S. (n.d.) Camels and needles: computer poetry meets the perl pro-

gramming language, retrieved 18/10/2009 from http://www.digitalcraft.org/
iloveyou/images/Sh.Hopkins_Perl_Poetry.pdf

Honeycutt, C. and Herring, S. C. (2009). ‘Beyond Microblogging: Conversation
and Collaboration via Twitter’, Proceedings of the Forty-Second Hawai’i International
Conference on System Sciences. Los Alamitos, CA: IEEE Press.

Horkheimer, M. and Adorno, T. (2006) ‘The Culture Industry: Enlightenment as
Mass Deception’, In Durham, Meenakshi G. and Kellner, D. (eds), Media and
Cultural Studies: Keyworks. London: Blackwell.

HTCwire (2010) Algorithmic Terrorism on Wall Street, retrieved 06/08/2010
from http://www.hpcwire.com/blogs/Algorithmic-Terrorism-on-Wall-Street-
100079719.html

Huber, W. (2008) Soft authorship, Softwhere: Software Studies 2008, Calit2,
UC San Diego, video presentation, retrieved 18/10/2009 from http://emerge.
softwarestudies.com/files/08_William_Huber.mov

Hughes, T. P. (2005) Human-built World: How To Think About Technology and
Culture. Chicago: Chicago University Press.

Hutchins, E. (1996) Cognition in the Wild, US: MIT Press.
Hutchinson, A. (2009) Global Impositioning Systems: Is GPS technology actu-

ally harming our sense of direction?, The Walrus, November 2009, retrieved
7/7/2010 from http://www.walrusmagazine.com/articles/2009.11-health-
global-impositioning-systems/2/

IBM (2008) First-of-a-Kind Technology to Help Doctors Care for Premature
Babies, retrieved 18/10/2009 from http://www-03.ibm.com/press/us/en/press-
release/24694.wss

Independent (2009) ‘UK Politics on Twitter: A Regional Breakdown’, Independent,
retrieved 19/11/09 from http://www.independent.co.uk/news/uk/politics/uk-
politics-on-twitter-a-regional-breakdown-1813466.html

Jenkins, H. W. (2010)’ Google and the Search for the Future’, The Wall Street
Journal, 14 August 2010, retrieved from http://on.wsj.com/aippTz

9780230244184_09_bib.indd 1889780230244184_09_bib.indd 188 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

Bibliography 189

Jones, T. (2004) Statement about the public distribution of windows source,
retrieved 5/6/2010 from http://www.scribd.com/doc/2074843/Windows-
Internals-Expert-Speaks-on-Source-Code-Leak-Updated

Kelly, K. (2010) The Quantified Self, retrieved 03/08/2010 from http://www.
quantifiedself.com/

Kelty, C. K. (2008) Two Bits: The Cultural Significance of Free Software and the
Internet. US: Duke University Press.

Kelly, K. (2006) ‘The Computational Metaphor’, In Hassan, R. and Thomas, J.
(eds), The New Media Theory Reader, London: Open University Press.

Kennedy, H. (2010) ‘Net Work: The Professionalisation of Web Design’, Media,
Culture and Society, Vol. 32, pp. 187–203.

KinsmanThoughts (2009) Debunking Climategate: The Source Code 2/2, Youtube,
retrieved 10/4/2010 from http://www.youtube.com/watch?v=Bo3A4aIUg-Y

Kirschenbaum, M. (2004) ‘Extreme Inscription: Towards a Grammatology of the
Hard Drive’, TEXT Technology, No. 2, pp. 91–125.

Kittler, F. (1987) ‘Gramophone, Film, Typewriter’, October, Vol. 41, Summer,
pp. 101–18.

Kittler, F. (1997). Literature, Media, Information Systems, Johnston, J. (ed.).
Amsterdam: OPA.

Kittler, F. (1999) Gramophone, Film, Typewriter. Stanford: Stanford University
Press.

Knight, Frank H. (1971) [orig. 1921] Risk, Uncertainty, and Profit, with an intro-
duction by George J. Stigler. Phoenix Books. Chicago: University of Chicago
Press.

Knorr Cetina, K. and Bruegger, U. (2002) ‘Global Microstructures: The Virtual
Societies of Financial Markets’,. The American Journal of Sociology, Vol. 107,
No. 4, January, pp. 905–50.

Kohno, T., Stubblefield, A., Rubin, A. D. and Wallach, D. S. (2004) Analysis of
an Electronic Voting System, retrieved 13/03/2010 from http://avirubin.com/
vote.pdf

Kramer, S. (2006) ‘The Cultural Techniques of Time Axis Manipulation: On
Fredrich Kittler’s Conception of Media’, Theory, Culture and Society, Vol. 23(7–8),
pp. 93–109.

Kuhn, T. S. (1996) The Structure of Scientific Revolutions. Chicago: Chicago
University Press.

Kurniawan, S.H. and Zaphiris, P. (2001) ‘Reading Online or on Paper: Which Is
Faster?’, Abridged Proceedings of the 9th International Conference on Human
Computer Interaction, pp. 220–22 5–10 August, New Orleans, LA.

INVENTIO-project (n.d.) Situated Simulations: Designing a Mobile Augmented
Reality Genre, retrieved 13/7/2010 from http://inventioproject.no/sitsim/

Lakatos, I. (1980) Methodology of Scientific Research Programmes, Cambridge:
Cambridge University Press.

Langley, P. (2008) ‘Sub-prime Mortgage Lending: A Cultural Economy’, Economy
and Society, 37:4, 469–94.

Latour (1986) ‘Visualization and Cognition: Thinking with Eyes and Hands’,
Knowledge and Society, 6, pp. 1–40.

Latour, B. (1987) Science in Action. Cambridge, MA: Harvard University Press.
Latour, B. (1988) The Pasteurization of France. Cambridge, Massachusetts: Harvard

University Press.

9780230244184_09_bib.indd 1899780230244184_09_bib.indd 189 2/9/2011 5:42:45 PM2/9/2011 5:42:45 PM

190 Bibliography

Latour, B. (1992) Where are the Missing Masses? Sociology of a Door, Retrieved
18/7/08 from http://www.bruno-latour.fr/articles/article/050.html

Latour, Bruno (2002) ‘Gabriel Tarde and the End of the Social’, In The Social
in Question: New Bearings in the History and the Social Sciences, ed. Joyce, P.)
London, Routledge, pp. 117–32.

Latour, B. (2004) ‘Why has Critique Run out of Steam? From Matters of Fact to
Matters of Concer’, Critical Inquiry, 30, pp. 225–48.

Latour, B. (2005) Reassembling the Social: An Introduction to Actor-Network-Theory.
Oxford: Oxford University Press.

Latour, B. (2010) ‘Tarde’s Idea of Quantification’, In Candea, M. (ed.), The Social
After Gabriel Tarde: Debates and Assessments. London: Routledge.

Lazer, D., A. Pentland, L. Adamic, S. Aral, A.-L. Barabási, D. Brewer, N. Christakis,
N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy and
M. Van Alstyne (2009) ‘Computational Social Science’, Science, Vol. 323, Issue
5915, 6 February 2009, pp. 721–3.

Legon, J. (2004) Profanity, partner’s name hidden in leaked Microsoft code, CNN,
retrieved 1/1/2011 from http://articles.cnn.com/2004-02-13/tech/microsoft.
source_1_mike-gullard-windows-code-source-code?_s=PM:TECH

Lessig, L. (1999) Code and Other Laws of Cyberspace, New York: Basic Books.
Lessig, L. (2002) The Future of Ideas: the Fate of the Commons in a Connected World.

New York: Vintage.
Levy, P. (1999) Collective Intelligence, London: Perseus.
Levy, S. (2001) Hackers: Heroes of the Computer Revolution. London: Penguin.
LilB (2010) The Age Of Information MUSIC VIDEO DIRECTED BY LIL B, retrieved

1/7/2010 from http://www.youtube.com/watch?v=corY-FZAZog&feature=player_
embedded

Lucas, R. (2010) ‘Dreaming in Code’, New Left Review, No. 62, March/April 2010,
pp. 125–32.

Lyotard, J. F. (1984) The Postmodern Condition: A Report on Knowledge. Manchester:
Manchester University Press.

Lyotard, J. F. (1993) ‘A Postmodern Fable’, Yale Journal of Criticism, 6:1,
p. 237.

Lyotard, J. F. (1993) The Inhuman: Reflections on Time. London: Polity.
Lyotard, J. F. (1999) Postmodern Fables. USA: University of Minnesota Press.
Mackenzie, A. (2003) The problem of computer code: Leviathan or common

power, retrieved 13/03/2010 from http://www.lancs.ac.uk/staff/mackenza/
papers/code-leviathan.pdf

Mackenzie, A. (2006) Cutting Code: Software and Sociality, Oxford: Peter Lang.
Malik, O. (2009) Google May Buy Twitter. Or Not. But Why is Twitter So Hot?,

Gigaom, retrieved 3/6/2010 from http://gigaom.com/2009/04/03/google-may-
buy-twitter-or-not-but-why-is-twitter-so-hot/

Manovich, L. (2001) The Language of New Media. London: MIT Press.
Manovich, L. (2008) Software takes Command, retrieved 03/05/2010 from http://

lab.softwarestudies.com/2008/11/softbook.html
Manovich, L. and Douglas, J. (2009) Visualizing Temporal Patterns In Visual Media:

Computer Graphics as a Research Method, retrieved 10/10/09 from http://
softwarestudies.com/cultural_analytics/visualizing_temporal_patterns.pdf

Marks, P. (2009) ‘Net Piracy: The People vs the Entertainment Industry@,
New Scientist, issue 2737, 3 December 2009, retrieved 13/03/2010 from

9780230244184_09_bib.indd 1909780230244184_09_bib.indd 190 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

Bibliography 191

http://www.newscientist.com/article/mg20427375.200-net-piracy-the-people-
vs-the-entertainment-industry.html

Marino, M. C. (2006) ‘Critical Code Studies’, http://www.electronicbookreview.
com/thread/electropoetics/codology.

Martin, R. (2002) Financialization of Daily Life. US: Temple University Press.
Marx, K. (2004) Capital, London: Penguin.
Mathew, B., Shaon, A., Bicarregui, J. and Jones, C. (2010) ‘ Framework for

Software Preservation’, The International Journal of Digital Curation, Issue 1,
Vol. 5, retrieved 20/6/2010 from http://www.ijdc.net/index.php/ijdc/article/
viewFile/148/210

May, C. (2006)’ Escaping the TRIPs’ Trap: The Political Economy of Free and
Open Source Software in Africa’, Political Studies, Vol. 54, pp. 123–46.

Mayer, M. (2010) ‘Regulating What Is “Best” in Search?, Financial Times, Thursday,
July 15, 2010, retrieved 16/07/10 from http://www.ft.com/cms/s/0/0458b1a4-
8f78-11df-8df0-00144feab49a.html

McChesney, R.W. (2007) Communication Revolution: Critical Junctures and the
Future of Media. London: New Press.

McLuhan, M. (2001) Understanding Media. London: Routledge.
Merrin, W. (2009) ‘Media Studies 2.0’, In Westminster Papers in Communication

and Culture, special issue on Media Studies 2.0, Vol. 1, No. 1, pp. 17–34.
Metcalfe, B. (2004) If Open-source Software is So Much Cooler, Why Isn’t

Transmeta Getting it?, retrieved 12/12/04, from http://www.infoworld.com/
articles/op/xml/00/02/14/000214opmetcalfe.html

Minsky, H. (1992) The Financial Instability Hypothesis. Working Paper No. 74,
retrieved 01/11/09 from http://levy.org/pubs/wp74.pdf

Misztal, B. (1996) Trust in Modern Societies: The Search for the Bases of Social Order,
London: Polity.

Miwa, M. (n.d.a) The MATARISAMA, retrieved 01/11/09 from http://www.iamas.
ac.jp/~mmiwa/XORensemble.html.

Miwa, M. (n.d.b) The Jaiken-Operation, retrieved 01/11/09 from http://www.
iamas.ac.jp/~mmiwa/jaikenop.html.

Miwa, M. (2003a) Bolelo by Muramatsu Gear Engine for Orchestra played by
New Japan Philharmonic Orchestra at Suntory Hall’, Tokyo, retrieved 01/11/09
from http://www.iamas.ac.jp/~mmiwa/mgear.mov.

Miwa, M. (2003b) A definition of Reverse-Simulation Music founded on the three
aspects of music, retrieved 01/11/09 from http://www.iamas.ac.jp/~mmiwa/
rsmDefinition.html.

Miwa, M. (2003c) Formant Brothers “Ordering a Pizza de Brothers!”, retrieved
01/11/09 from http://www.youtube.com/watch?v=FFvFlpVjEjM&feature=
related.

Miwa, M. (2004a) Matarisama, performed by The Method Machine “The
Computing Bodies”, Yokohama, at the 11th Festival in Kanagawa Contemporary
Arts Series. [Video]

Miwa, M. (2004b) “Jiyai Kagura”, composed by members of the workshop
“Making the imaginary folk entertainment”, Sendai Mediatheque, Sendai.
[Video]

Miwa, M. (2005a) Jaiken-bugaku. Performed by Time Travellers Ensemble.
Exploration of Time at Yamaguchi Center for Arts and Media (YCAM),
Yamaguchi. [Video]

9780230244184_09_bib.indd 1919780230244184_09_bib.indd 191 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

192 Bibliography

Miwa, M. (2005b) Music for ‘Hibi’, performed by the members of a workshop at
‘Possible Futures, Japanese postwar art and technology’. Intercommunication
Center (ICC). Tokyo, retrieved 01/11/09 from http://www.youtube.com/
watch?v=AWGZMuUHXP4.

Miwa, M. (2005c) Shaguma-sama, composed and performed by members of the
workshop ‘Folk Entertainment in the Future’ at Yamaguchi Center for Arts and
Media (YCAM). Yamaguchi (2005). [Video]

Miwa, M. (2006a) Jaiken-beats. Performed in 2006 at the Computing Music IV
conference in Cologne, 2004. [Video]

Miwa, M. (2006b) ‘369’ homage for Mr. B., played by the New Japan Philharmonic
Orchestra at Suntory Hall, Tokyo. [Video]

Miwa, M. (2007) Reverse-Simulation Music, Cyber Arts 2007, Prix Ars Electronica.
[DVD]

Miwa, M. (2009) “Le Tombeau de Freddie / L’Internationale” by Formant Brothers,
retrieved 18 June 2010 from http://www.youtube.com/watch?v=hkfrU-EOQ-E

Miwa, M. (2010a) “NEO DO-DO-I-TSU” Formant Brothers (Part 1: Introduction),
retrieved 18 June 2010 from http://www.youtube.com/watch?v=qrKQ-
7BjubE&feature=player_embedded

Miwa, M. (2010b) “NEO DO-DO-I-TSU” Formant Brothers (Part 2: Perfor-
mance), retrieved 18 June 2010 from http://www.youtube.com/watch?v=Gvok
DEEHujQ&NR=1

Montfort, N. (2008) My Generation About Talking, Softwhere: Software Studies
2008, Calit2, UC San Diego, video presentation, retrieved 18 /10/2009 from
http://emerge.softwarestudies.com/files/14_Nick_Montfort.mov

Montfort, N. (2009) Expressive Processing. London: MIT Press.
Montfort, N. and Bogost, I. (2009) Racing the Beam: The Atari Video Computer

System, London: MIT Press.
Moretti, F. (2007) Graphs, Maps, Trees: Abstract Models for a Literary History,

London, Verso.
Morrison, K. (1997) Marx, Durkheim, Weber: Formations in Modern Social Thought.

London: Sage.
Mosco, V. (ed.) (1988) The Political Economy of Information, London: University

of Winsconin.
Mosco, V. (2009) The Political Economy of Communication. London: Sage.
Nature (2007) ‘A Matter of Trust, 449, pp. 637–38, 11 October.
Newman, J. H. (1996) The Idea of a University. Yale: Yale University Press.
New York Times (2010) A Multitasker’s Perspective, 6 June 2010, retrieved

18/06/2010 from http://www.nytimes.com/interactive/2010/06/06/business/
kord-pano.html

New York Times (2010) The Google Algorithm, 14 July 2010, retrieved 16/07/2010
from http://www.nytimes.com/2010/07/15/opinion/15thu3.html?_r=2

Niccolai, J. (2010) ‘I/o promises new kind of containerised data centre’, Techworld,
retrieved 24/07/2010 from http://news.techworld.com/data-centre/3232369/
i-o-promises-new-kind-of-containerised-data-centre/?olo=rss

Noll, L. C., Cooper, S., Seebach, P. and Broukhis, L. A. (2009) The International
Obfuscated C Code Contest: The IOCCC FAQ, retrieved 1/06/2010 from http://
www.ioccc.org/faq.html

Norris, P. (2001) Digital Divide: Civic Engagement, Information Poverty, and the
Internet Worldwide. Cambridge: Cambridge University Press.

9780230244184_09_bib.indd 1929780230244184_09_bib.indd 192 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

Bibliography 193

Open Access (n.d.) What is Open Access?, retrieved 13/03/2010 from http://
www.eprints.org/openaccess/

Ordinateurs-de-Vote (2010) Ordinateurs-de-Vote.org, Citoyens et informaticiens
pour un vote vérifié par l’électeur, retrieved 14/04/2010 from http://www.
ordinateurs-de-vote.org/

O’Reilly, T. (2005a) What Is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software, retrieved 18/06/2010 from http://oreilly.
com/web2/archive/what-is-web-20.html

O’Reilly, T. (2005b) Web 2.0: Compact Definition?, October 1, 2005, retrieved
18/062010 from http://radar.oreilly.com/archives/2005/10/web-20-compact-
definition.html

Oram, A. and Wilson, G. (2007) Beautiful Code. London: O’Reilly.
ORG (2007a) May 2007 Election Report, Findings of the Open Rights Group

Election Observation Mission in Scotland and England, retrieved 14/04/2010
from http://www.openrightsgroup.org/wp-content/uploads/org_election_report.
pdf

ORG (2007b) Electronic Voting. A challenge to democracy?, retrieved 14/04/2010
from http://www.openrightsgroup.org/wp-content/uploads/org-evoting-briefing-
pack-final.pdf

ORG (2010) Open Rights Group, retrieved 14/04/2010 from http://www.
openrightsgroup.org/

Outhwaite, W. (2009) ‘How much capitalism can democracy stand (and vice
versa)?’, Radical Politics Today, May 2009, retrieved 14/03/2010 from http://
doiop.com/outhwaite

Parikka, J. (2007) Digital Contagions: A Media Archaeology of Computer Viruses,
London: Peter Lang.

Parnas, D. L. (1994) ‘Software Aging’, International Conference on Software
Engineering, Proceedings of the 16th international conference on Software engineering:
279–87.

Pearce, F. (2010) ‘ockey Stick Graph Took Pride of Place in IPCC Report, Despite
Doubts’, Guardian, Tuesday 9 February 2010, retrieved 5/6/2010 from http://
www.guardian.co.uk/environment/2010/feb/09/hockey-stick-graph-ipcc-report

Perelman, M. (2002) Steal This Idea: Intellectual Property Rights and the Corporate
Confiscation of Creativity. London: Palgrave.

Pingdom (2010) Google, undisputed heavyweight champion of mobile search,
retrieved 29/07/2010 from http://royal.pingdom.com/2010/07/29/google-
undisputed-heavyweight-champion-of-mobile-search/

Plutarch (2010) Life of the Theseus, retrieved 14/03/2010 from http://www.theoi.
com/Text/PlutarchTheseus.html

Poldrack, R. A. (2010) ‘Addictive Signals’, New York Times, retrieved 19/06/2010
from http://roomfordebate.blogs.nytimes.com/2010/06/07/first-steps-to-digital-
detox/

Post (2009) E-Democracy, Parliamentary Office for Science and Technology
POSTnote, retrieved 14/03/2010 from http://www.parliament.uk/documents/
post/postpn321.pdf

Prosser, A. and Krimmer, R. (2004) Electronic Voting in Europe – Technology,
Law, Politics and Society, Workshop of the ESF TED Programme together with
GI and OCG Proceedings, retrieved 13/03/2010 from http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.92.9091&rep=rep1&type=pdf#page=82

9780230244184_09_bib.indd 1939780230244184_09_bib.indd 193 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

194 Bibliography

Project Canvas (2010) Home, Project Canvas, retrieved 01/07/2010 from http://
www.projectcanvas.info/

Pryke, M. (2006) Speculating on geographies finance, retrieved 14/3/08 from
http://www.cresc.ac.uk/documents/papers/wp24.pdf

Raley, R. (2008) The Time of Codework, Softwhere: Software Studies 2008, Calit2,
UC San Diego, video presentation, retrieved 18 Oct 2009 from http://emerge.
softwarestudies.com/files/16_Rita_Raley.mov

Raymond, E. (2009) ‘Hiding the Decline: Part 1 – The Adventure Begins’, Armed
and Dangerous, retrieved 3/7/2010 from http://esr.ibiblio.org/?p=1447

Readings, B. (1996) The University in Ruins, London: Harvard University Press.
Reisinger, D. (2009) Finland makes 1Mb broadband access a legal right, CNet News,

14 October retrieved 13/03/2010 from http://news.cnet.com/8301-17939_109-
10374831-2.html

Richtell, M. (2010)’ Hooked on Gadgets, and Paying a Mental Price’, New
York Times, 7 June 6, retrieved 18 June 2010 from http://www.nytimes.
com/2010/06/07/technology/07brain.html

Ross, A. (2008) ‘The New Geography of Work: Power to the Precarious?’, Theory,
Culture & Society, December, Vol. 25, Nos 7–8, 31–49.

Rumsey, E. (2009)’ Did Salman Rushdie envision the Web in 1990?’, Seeing the Picture,
retrieved 4/5/2010 from http://blog.lib.uiowa.edu/hardinmd/2009/05/13/did-
salman-rushdie-envision-the-web-in-1990/

Sandler, J. (2010) Killed by Code: Software Transparency in Implantable
Medical Devices, retrieved 29/07/2010 from http://www.softwarefreedom.org/
resources/2010/transparent-medical-devices.html

Sandler, D., Derr, K. and Wallach, D. S. VoteBox: a tamper-evident, verifiable
electronic voting system, retrieved 13/03/2010 from http://www.usenix.org/
events/sec08/tech/full_papers/sandler/sandler_html/index.html

Schloz, T. (2008) ‘Market Ideology and the Myths of Web 2.0’, First Monday,
Vol. 13, No. 3 - 3 March, retrieved 13/03/2010 from http://firstmonday.org/
htbin/cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2138/1945

Schonfeld, E. (2009) ‘Jump Into The Stream’, TechCrunch, 17 May, retrieved
1/7/2010 from http://techcrunch.com/2009/05/17/jump-into-the-stream/

Schreibman, S., Siemans, R. and Unsworth, J. (2008) A Companion to Digital
Humanities. London: Wiley–Blackwell.

Scratch (n.d) ‘Scratch, Imagine, Program, Share’, http://scratch.mit.edu/.
Sell, S.K. (2003) Private Power, Public Law: The Globalization of Intellectual Property

Rights. Cambridge: Cambridge University Press.
Sellars, W. (1962) Philosophy and the Scientific Image of Man, In Colodny, Robert

(ed.) Frontiers of Science and Philosophy, Pittsburgh: University of Pittsburgh Press,
pp. 35–78.

Selznak (2004) We Are Morons: a quick look at the Win2k source, Kino5hin,
Monday, 16 February2004, retrieved 7/7/2010 from http://www.kuro5hin.
org/story/2004/2/15/71552/7795

Serres, M. (2007) The Parasite. London: University of Minnesota Press.
Shunmugam, V. (2010) Financial markets regulation: The tipping point, retrieved

from http://www.voxeu.org/index.php?q=node/5056
Sieglar, M. G. (2010) Google Revenue Up 24% For The Year, But Only Slightly For

The Quarter As Paid Clicks Fell, retrieved 16/07/2010 from http://techcrunch.
com/2010/07/15/google-q2-2010/

9780230244184_09_bib.indd 1949780230244184_09_bib.indd 194 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

Bibliography 195

Silver, D. (2008) ‘History, Hype, and Hope: An Afterward’, First Monday, Vol. 13,
No. 3, 3 March, retrieved 16/03/2010 from http://firstmonday.org/htbin/
cgiwrap/bin/ojs/index.php/fm/article/viewArticle/2143/1950

Simondon, Gilbert (1980) [orig. 1958] On the Mode of Existence of Technical
Objects, Mellamphy, N. (trans.). Paris: Aubier, Editions Montaigne.

Slashdot (2004) ‘Windows 2000 & Windows NT 4 Source Code Leaks’, Slashdot,
retrieved 5/4/2010 from http://slashdot.org/article.pl?sid=04/02/12/2114228

Smythe, D. W. (2006) ‘On the Audience Commodity and Its Work’, In Kellner,
D. and Durham, M. G. (eds), Media and Cultural Studies: Keyworks. London:
Blackwell.

Sommer, J. (2010) ‘The Tremors From a Coding Error’, New York Times, 18 June,
retrieved 15/07/2010 from http://www.nytimes.com/2010/06/20/business/20stra.
html?partner=rss&emc=rss

Spivak, N. (2009) Welcome to the Stream – Next Phase of the Web, retrieved 1/6/2010
from http://novaspivack.typepad.com/nova_spivacks_weblog/2009/05/is-the-
stream-the-next-new-metaphor.html

Stallman, R. M. (2002) Free Software, Free Society: Selected Essays of Richard
M. Stallman. Boston: GNU Press.

Sterling, B. (2010) Atemporality for the Creative Artist, Wired, retrieved 1/7/2010
from http://www.wired.com/beyond_the_beyond/2010/02/atemporality-for-
the-creative-artist/

Stickney, D. (2008) ‘Charticle Fever’, American Journalism Review, retrieved
18/03/2010 from http://www.ajr.org/Article.asp?id=4608

Stiegler, B. (1998) Technics and Time: The Fault of Epimetheis. Stanford: Stanford
University Press.

Stiegler, B. (2007) ‘The Discrete Image’, In Derrida, J. and Stiegler, B. (eds),
Echographies of Television. London: Polity.

Sussman, G. (1997) Communication, Technology, and Politics in the Information Age,
London: Sage.

Taleb, N. (2008) The Black Swan: The Impact of the Highly Improbable. London:
Penguin.

Terranova, T. (2007) ‘Futurepublic: On Information Warfare, Bio-racism and
Hegemony as Noopolitics’, Theory, Culture & Society, Vol. 24(3), pp. 125–45.

Terras, M. (2010) Present, Not Voting: Digital Humanities in the Panopticon,
retrieved 10/7/2010 from http://melissaterras.blogspot.com/2010/07/dh2010-
plenary-present-not-voting.html

Thaler, R. H., and Sunstein, C. R. (2009) Nudge: Improving Decisions About Health,
Wealth and Happiness. London: Penguin.

The Invisible Committee (2009) The Coming Insurrection, London: Semiotext(e).
The Matrix (1999) Directed by Andy Wachowski. USA, Groucho II Film Partnership.

[Film].
Thompson, J. B. (1995) Media and Modernity: A Social Theory of the Media. London:

Polity.
Thomson, I. (2003) ‘Heidegger and the Politics of the University’, Journal of the

History of Philosophy, Vol. 41, No. 4, pp. 515–42.
Thomson, I. (2009) ‘Understanding Technology Ontotheologically, or: The

Danger and the Promise of Heidegger, an American Perspective, In Jan-Kyrre
Berg Olsen, Evan Selinger, and Søren Riis (eds), New Waves in the Philosophy of
Technology. New York: Palgrave Macmillan, pp. 146–66.

9780230244184_09_bib.indd 1959780230244184_09_bib.indd 195 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

196 Bibliography

Thrift, Nigel (n.d) Re-inventing Invention. The Generalization of Outsourcing
and Other New Forms of Efficacy under Globalization, retrieved 18/7/08 from
http://www.gold.ac.uk/media/thrift.pdf

Toppling, A. and Muir, H. (2009) ‘Gordon Brown Joins Twitter Campaign
Defending NHS’, Guardian, retrieved 19/11/09 from http://www.guardian.
co.uk/society/2009/aug/13/stephen-hawking-nhs-twitter-welovethenhs

Trechsel, A. and Mendez, F. (2005) The European Union and e-voting: Addressing the
European Parliament’s Internet Voting Challenge, London: Routledge.

Tucker, J.V. and Zucker, J.I. (2007) ‘Computability of Analog Networks’, Theoretical
Computer Science, 371, 115–46

Turing, A. M. (1939) Systems of Logic defined by Ordinals, PhD thesis, retrieved
13/06/2010 from http://plms.oxfordjournals.org/cgi/reprint/s2-45/1/161.pdf

Turing, A. M. (1950) ‘Computing Machinery and Intelligence’, Mind, October,
pp. 433–60.

Twitter (2010) Tweets per day, retrieved 1/08/2010 from http://www.flickr.com/
photos/twitteroffice/4990581534/sizes/l/in/photostream/

Ullman, E. (2004) The Bug, London: Anchor Books.
Votebox (2009a) IAuditoriumParams.java, retrieved 13/03/2010 from http://code.

google.com/p/votebox/source/browse/trunk/votebox/IAuditoriumParams.java
Votebox (2009b) ChallengeEvent.java, retrieved 13/03/2010 from http://code.

google.com/p/votebox/source/browse/trunk/votebox/VoteBox.java
Votebox (2009c) VoteBox.java, retrieved 13/03/2010 from http://code.google.

com/p/votebox/source/browse/trunk/votebox/ChallengeEvent.java
Votebox (2009d) The VoteBox Electronic Voting System, retrieved 13/03/2010

from http://votebox.cs.rice.edu/
XcottCraver (2008) The 2008 Underhanded C Contest, retrieved 01/05/2010

from http://underhanded.xcott.com/?p=8
Waldrip-Fruin (2009) Expressive Processing: Digital Fictions, Computer Games, and

Software Studies, London: MIT Press.
Wark, M. (2007) Gamer Theory. Boston: Harvard University Press.
Weber, M. (2002) The Protestant Ethic and the Spirit of Capitalism. London:

Routledge.
Weber, S. (2005) The Success of Open Source, Boston: Harvard University Press.
Weiner, L. R. (1994) Digital Woes. New York: Addison Wesley.
Weizenbaum, J. (1984) Computer Power and Human Reason: From Judgement to

Calculation. London: Penguin Books.
Williams, R. (2003) Television: Technology and Cultural Form. London: Routledge.
Wilson, D. (2010) Google nabs patent to monitor your cursor movements,

retrieved 29/07/2010 from http://www.techeye.net/internet/google-nabs-patent-
to-monitor-your-cursor-movements#ixzz0v4FeFXNJ

Winner, L. (2001) Autonomous Technology: Technics-out-of-control as a Theme in
Political Thought. London: MIT Press.

wijvertrouwenstemcomputersniet (2009) The Netherlands return to paper ballots
and red pencils, retrieved 13/03/2010 from http://wijvertrouwenstemcomputers
niet.nl/English

Wright, R. (1988) ‘Did the Universe Just Happen?’, The Atlantic Monthly, Vol. 261,
No. 4, p. 29.

Zuboff, S. (1988) In the Age of the Smart Machine: The Future of Work and Power,
New York: Basic Books.

9780230244184_09_bib.indd 1969780230244184_09_bib.indd 196 2/9/2011 5:42:46 PM2/9/2011 5:42:46 PM

197

include, 40

Advertising, 7, 99
Affective, 158
Affordance, 15, 132, 136, 140, 168
Agencement, 157
Agile programming, 45
Aiken, Howard, 47
AJAX, 18
Algorithm, 7, 100, 159
Alpha, 41, 67
Analogue computing, 12
Analytical engine, 4
Application programming interface(s),

15, 7
Arnold, Matthew, 19
Assembly language, 45
Atanasoff, John, 47
Atemporal, 150
Audience commodity, 7
Augmented reality, 124
Autonomy, 9

Babbage, Charles, 47
BBC, 50, 71
Behavioural marketing, 8
Beta, 41, 67
Bildung, 19, 20, 26, 168, 169
Black box, 15, 41, 67, 137
Born digital, 25
Bug, 45, 69

C++, 35
Capitalism, 162
Carr, Nicholas, 120
Circumspection, 124
Click-stream, 7
Climategate, 73
Clock, 12, 97, 104
Cloud computing, 56, 99
Code, 2, 9, 17, 31, 33, 36, 43, 52, 61,

62, 64, 66, 75, 92, 104, 136, 149,
161, 167, 169

Aesthetics, 49
As container, 50
As engine, 46
As image or picture, 48
As medium of communication, 49
Assembly, 95
Beautiful, 48
Binary, 96
Commentary, 51, 54, 74, 100
Critical, 51, 53
Delegated, 51, 52, 101
Ethnography, 94
Everyday, 97
Illiterate, 82
Literate, 29, 82
Object, 51, 55, 103, 104
Prescriptive, 51, 53, 103, 104, 105,

137
Running, 94, 97, 107, 114, 117, 123
Spatiality, 98

Codebase, 41
Codex, 54
Code libraries, 9
Code work, 32, 37, 40
Cognition, 141
Communication, 13, 49, 117
Compiler, 44
Computable, 16
Computation, 2, 7, 10, 125, 127
Computational, 21, 145, 171

Humanities, 21
Computational image, 131, 141, 168,

169
Computational turn, 23
Computationalism, 11
Computationality, 10, 22, 27, 129, 169
Computational knowledge society, 3
Computational rationality, 13
Computer code, 5, 104
Computer science, 10, 14, 21, 44, 64,

114, 129
Copyright, 61
Correlational induction, 131

Index

9780230244184_10_index.indd 1979780230244184_10_index.indd 197 2/5/2011 7:10:40 PM2/5/2011 7:10:40 PM

198 Index

Craft, 82
Creative industries, 5
Critical code studies, 4, 113
Cryptography, 110
Culture, 19
Cultural analytics, 4, 24, 167
Cultural software, 6, 17, 32
Cultures of software, 17
Cyberculture, 18
Cybernetics, 136, 147
Cyberspace, 153

Dark pools, 160
Dasein, 130, 168, 169
Data, 1, 6, 51, 165

Visualisation, 24, 26, 48, 154, 155
Database, 26, 50, 120, 128, 141, 142
Dataflow, 6
Dataspace, 153
Data centre, 50
Data-mine, 2
Debugger, 38
DeCSS, 53
Derrida, 11
Difference engine, 47
Digital, 20

Bildung, 20
Literacy, 20
Stream, 51, 53, 55

Digital culture, 17
Digital data structure, 51, 54, 95, 107
Digital divide, 22, 113
Digital humanities, 18, 23, 167
Digital media, 5, 61
Digital philosophy, 11
Digital rights, 107
Digital Rights Managements (DRM),

9, 61
Digitalisation, 54
Discrete, 15

e-democracy, 108
e-government, 57, 108
e-voting, 107, 109, 111
Embedded, 2
Episteme, 15
Equipment, 127
Ethics, 24
Eurofighter typhoon, 3

Everyday computational, 14
Eyjafjallajökull volcano, 7

F16 Fighting Falcon, 3
Facebook, 1, 6, 109, 120, 165
Familiarity, 124
Financialisation, 155, 156, 161
Flow-chart, 113
Fly-by-wire, 3
Folksonomies, 60
Fordism, 36
Free software, 5, 62, 111
Function, 56

Geo, 6, 151, 163, 165
Gelassenheit, 140
German Idealism, 19
Glass-box testing, 67
Google, 1, 6, 55, 111, 118, 122, 125,

135, 169
GPS, 6, 122, 123, 165
Graphic user interface (GUI), 4, 5, 37,

136

Hacking, 32, 35, 65, 70, 89, 137
Hammer, 130, 135
Hardware, 104
Heidegger, Martin, 2, 13, 27, 123, 126,

141, 154, 161, 167
Hello, world!, 64, 84, 95
Hermeneutic(s), 86, 107
Heteronomy, 9
High frequency trading, 159
HTML, 18, 118
HTTP, 59
Humanities, 24, 118
Hybridity, 24
Hypertext, 139

IBM, 47, 51
Imaginary, 143
Immaterial labour, 40
Information, 59, 122, 143
Information literacy, 20
Information society, 60, 62
Innovation, 49
Instrumental rationality, 13
Intellect, 20
Intellectual property rights, 5, 39

9780230244184_10_index.indd 1989780230244184_10_index.indd 198 2/5/2011 7:10:40 PM2/5/2011 7:10:40 PM

Index 199

Intelligence, 20
Interactivity, 115, 142
Interface, 97, 99
Internet, 4, 58, 64, 74, 117, 134, 142,

165
iPhone, 53, 79, 132, 149, 158, 162
iPad, 132
iPod, 15, 50, 53, 79, 122, 132

Jailbreak, 53, 79, 132
Journalism, 27

Kant, Immanuel, 18, 27
Kuhn, Thomas, 21, 131

Labour, 39, 61
Lifestream(s), 147, 155, 162, 166
Linux, 64
Literacy, 5, 27
Literature, 19
Location, 6
Logic, 47
Long-tail, 60
Lovelace, Ada, 47

Machines, 1
Manifest image, 129, 131, 136, 140,

168
Marx, Karl, 124
Materiality, 32, 62, 65, 75, 77, 85,

100, 151, 154, 166
Media

Archaeology, 4
Genealogy, 4
Mechanology, 4
Studies, 5

Mediation, 9, 16, 38, 109, 117, 127,
166, 168

Medium, 10, 35, 155, 163, 167
Medium theory, 5, 152
Memory, 152, 154, 171
Metaphor, 46
Methods, 56
Microblogging, 163
Microcode, 45
Microsoft, 67, 68
Mill, John Stuart, 131
Miwa, Masahiro, 95, 99
Mobile, 48

Mobile phone, 120, 123, 132
Moral depreciation, 42, 112
Multitasking, 134, 149
Music, 102

Napster, 59
Narrative, 26, 100
Network, 58, 62, 97, 99, 170
Network neutrality, 61
Newman, John Henry, 19
Nietzsche, Freidrich, 151

Obfuscated code, 75, 82
Object-oriented philosophy, 132
Object oriented design, 34
Object oriented programming, 56
Ontology, 43, 129
Ontotheology, 27, 129, 131
Open source, 5, 45, 61, 73, 86, 111
Oracles, 12

Patterns, 9, 26, 170
Parasite, 170
Peer-to-peer, 59, 61
Phenomenology, 119, 121
Philosophy, 18, 28
Plasma, 152
Platform, 56, 119
Platform studies, 4, 97
Plato, 120
Poetry, 30, 49
Political economy, 6, 39, 62, 113
Politics of code, 8, 107
Post, Emil, 47
Posthuman, 158
Post-Fordist, 36
Present-at-hand, 127, 129, 130, 134,

135
Privacy, 7
Processor, 38, 46, 104
Profit, 150
Program(ming), 46, 101
Protocol, 62, 165
Pseudocode, 52
Public, 144
Public sphere, 27, 108

Raymond, Eric, 73
Reading code, 9

9780230244184_10_index.indd 1999780230244184_10_index.indd 199 2/5/2011 7:10:40 PM2/5/2011 7:10:40 PM

200 Index

Ready-to-hand, 127, 129, 130, 134, 155
Real-time, 7, 60, 164
Reason, 18
Redact, 76
Regime of Computation, 11, 139
Regulation, 9
Release candidate, 67
Reverse-simulation music, 100
Riparian, 144
Risk, 160
Rushdie, Salman, 144

Schmidt, Eric, 8, 55, 136
Scientific image, 129, 140
Screen essentialism, 36, 65, 137
Screenic, 48, 167
Search, 7
Search engine, 6
Search neutrality, 8, 9
Sellars, Wilfred, 121
Shannon, Claude, 47
Skill, 132
Social media, 6, 18
Social science(s), 21, 23, 118
Society of code, 66
Socio-technical device, 15, 62, 135
Sociology, 5, 24, 66
Socrates, 120
Software, 2, 4, 5, 15, 25, 31, 32, 39, 53,

64, 68, 97, 136, 137, 161, 167, 169
Breakdown, 40
Error, 41, 44, 69, 80
Logics, 42

Software engineering, 32, 65, 114
Softwareized, 18
Software avidities, 6
Software engines, 4
Software studies, 4, 113
Software work, 32
Source code, 29, 52, 64, 73, 75, 81,

86, 92, 113
Windows 2000, 68, 72

Speculative philosophy, 131
Speculative realism, 132
Squarciafico, Hieronimo, 120
Standing reserve, 2, 171
Stream, 14, 37, 53, 104, 134, 142, 143,

150, 152, 159, 160, 165, 170, 171
Computational, 145

Data, 144, 155, 170
Real-time, 108, 142, 164, 166

Structure of feeling, 6
Subscopic, code, 33
Super-medium, 10

Tagging, 60
Tarde, Gabriel, 24, 66, 164, 166
Techne, 15, 108
Technical device(s), 41, 63, 108, 125,

130, 149, 158, 169
Technical system, 120
Technological determinism, 119
Television, 135, 167
Temporality, 5, 97
Tests, 66
Test case, 65
Trial of strength, 65, 67, 82
Turing, Alan, 14, 20, 47, 125
Twitter, 109, 151, 155, 162, 169

UML, 66
Underhanded C contest, 75
Universitatis, 21
University, 18, 26

Of Excellence, 19
Post-modern, 19
Of East Anglia, 72

Unreadiness-to-hand, 133, 141, 167,
168

Viacom, 8
Vicarious, 132, 137
Virtual, 4
Voter, 113

Wall-mart, 1
Waterfall model, 66
Web, 4, 59, 122
Web 2.0, 56, 67, 142
Web science, 5
Williams, Raymond, 119
Writing code, 9, 15

XOR gate, 102

YouView, 50

Zuse, Konrad, 47

9780230244184_10_index.indd 2009780230244184_10_index.indd 200 2/5/2011 7:10:40 PM2/5/2011 7:10:40 PM

	Cover
	Contents
	List of Figures
	Acknowledgements
	1 The Idea of Code
	Understanding computation
	Towards digital humanities

	2 What Is Code?
	Code
	Towards a grammar of code
	Web 2.0 and network code
	Understanding code

	3 Reading and Writing Code
	Tests of strength
	Reading code
	Writing code
	Obfuscated code examples

	4 Running Code
	The temporality of code
	The spatiality of code
	Reverse remediation
	Running code and the political

	5 Towards a Phenomenology of Computation
	Phenomenology and computation
	The computational image

	6 Real-Time Streams
	Being a good stream
	Financial streams
	Lifestreams
	Subterranean streams

	Notes
	Bibliography
	Index

