
COMPUTATIONAL
INTELLIGENCE

COMPUTATIONAL
INTELLIGENCE
SYNERGIES OF FUZZY LOGIC,
NEURAL NETWORKS AND
EVOLUTIONARY COMPUTING

Nazmul Siddique
University of Ulster, UK

Hojjat Adeli
The Ohio State University, USA

A John Wiley & Sons, Ltd., Publication

This edition first published 2013
C© 2013 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

MATLAB R© is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant
the accuracy of the text or exercises in this book. This books use or discussion of MATLAB R© software or related
products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or
particular use of the MATLAB R© software.

Library of Congress Cataloging-in-Publication Data

Siddique, N. H.
Computational intelligence : synergies of fuzzy logic, neural networks, and evolutionary computing / Nazmul

Siddique, Hojjat Adeli.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-33784-4 (cloth)
1. Computational intelligence. I. Adeli, Hojjat, 1950– II. Title.
Q342.S53 2013
006.3–dc23

2012047736

A catalogue record for this book is available from the British Library

ISBN: 9781118337844

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

To Kaniz, Oyndrilla, Opala and Orla
– Nazmul

To Nahid, Amir, Anahita, Cyrus and Mona
– Hojjat

Contents

Foreword xiii

Preface xv

Acknowledgements xix

1 Introduction to Computational Intelligence 1
1.1 Computational Intelligence 1
1.2 Paradigms of Computational Intelligence 2
1.3 Approaches to Computational Intelligence 3

1.3.1 Fuzzy Logic 4
1.3.2 Neural Networks 5
1.3.3 Evolutionary Computing 5
1.3.4 Learning Theory 6
1.3.5 Probabilistic Methods 6
1.3.6 Swarm Intelligence 7

1.4 Synergies of Computational Intelligence Techniques 11
1.5 Applications of Computational Intelligence 12
1.6 Grand Challenges of Computational Intelligence 13
1.7 Overview of the Book 13
1.8 MATLAB R© Basics 14

References 15

2 Introduction to Fuzzy Logic 19
2.1 Introduction 19
2.2 Fuzzy Logic 20
2.3 Fuzzy Sets 21
2.4 Membership Functions 22

2.4.1 Triangular MF 23
2.4.2 Trapezoidal MF 23
2.4.3 Gaussian MF 24
2.4.4 Bell-shaped MF 24
2.4.5 Sigmoidal MF 26

2.5 Features of MFs 27
2.5.1 Support 27
2.5.2 Core 27

viii Contents

2.5.3 Fuzzy Singleton 27
2.5.4 Crossover Point 28

2.6 Operations on Fuzzy Sets 29
2.7 Linguistic Variables 33

2.7.1 Features of Linguistic Variables 33
2.8 Linguistic Hedges 35
2.9 Fuzzy Relations 37

2.9.1 Compositional Rule of Inference 38
2.10 Fuzzy If–Then Rules 39

2.10.1 Rule Forms 40
2.10.2 Compound Rules 40
2.10.3 Aggregation of Rules 41

2.11 Fuzzification 43
2.12 Defuzzification 44
2.13 Inference Mechanism 48

2.13.1 Mamdani Fuzzy Inference 49
2.13.2 Sugeno Fuzzy Inference 50
2.13.3 Tsukamoto Fuzzy Inference 53

2.14 Worked Examples 54
2.15 MATLAB R© Programs 61

References 61

3 Fuzzy Systems and Applications 65
3.1 Introduction 65
3.2 Fuzzy System 66
3.3 Fuzzy Modelling 67

3.3.1 Structure Identification 67
3.3.2 Parameter Identification 70
3.3.3 Construction of Parameterized Membership Functions 70

3.4 Fuzzy Control 75
3.4.1 Fuzzification 75
3.4.2 Inference Mechanism 76
3.4.3 Rule Base 78
3.4.4 Defuzzification 80

3.5 Design of Fuzzy Controller 81
3.5.1 Input/Output Selection 82
3.5.2 Choice of Membership Functions 82
3.5.3 Creation of Rule Base 82
3.5.4 Types of Fuzzy Controller 83

3.6 Modular Fuzzy Controller 97
3.7 MATLAB R© Programs 99

References 100

4 Neural Networks 103
4.1 Introduction 103
4.2 Artificial Neuron Model 106
4.3 Activation Functions 107

Contents ix

4.4 Network Architecture 108
4.4.1 Feedforward Networks 109

4.5 Learning in Neural Networks 124
4.5.1 Supervised Learning 124
4.5.2 Unsupervised Learning 138

4.6 Recurrent Neural Networks 149
4.6.1 Elman Networks 150
4.6.2 Jordan Networks 152
4.6.3 Hopfield Networks 153

4.7 MATLAB R© Programs 155
References 156

5 Neural Systems and Applications 159
5.1 Introduction 159
5.2 System Identification and Control 160

5.2.1 System Description 160
5.2.2 System Identification 160
5.2.3 System Control 161

5.3 Neural Networks for Control 163
5.3.1 System Identification for Control Design 164
5.3.2 Neural Networks for Control Design 165

5.4 MATLAB R© Programs 179
References 180

6 Evolutionary Computing 183
6.1 Introduction 183
6.2 Evolutionary Computing 183
6.3 Terminologies of Evolutionary Computing 185

6.3.1 Chromosome Representation 185
6.3.2 Encoding Schemes 186
6.3.3 Population 191
6.3.4 Evaluation (or Fitness) Functions 193
6.3.5 Fitness Scaling 194

6.4 Genetic Operators 194
6.4.1 Selection Operators 195
6.4.2 Crossover Operators 198
6.4.3 Mutation Operators 206

6.5 Performance Measures of EA 208
6.6 Evolutionary Algorithms 209

6.6.1 Evolutionary Programming 209
6.6.2 Evolution Strategies 213
6.6.3 Genetic Algorithms 218
6.6.4 Genetic Programming 223
6.6.5 Differential Evolution 230
6.6.6 Cultural Algorithm 233

6.7 MATLAB R© Programs 234
References 235

x Contents

7 Evolutionary Systems 239
7.1 Introduction 239
7.2 Multi-objective Optimization 243

7.2.1 Vector-Evaluated GA 246
7.2.2 Multi-objective GA 247
7.2.3 Niched Pareto GA 247
7.2.4 Non-dominated Sorting GA 248
7.2.5 Strength Pareto Evolutionary Algorithm 249

7.3 Co-evolution 250
7.3.1 Cooperative Co-evolution 253
7.3.2 Competitive Co-evolution 255

7.4 Parallel Evolutionary Algorithm 256
7.4.1 Global GA 257
7.4.2 Migration (or Island) Model GA 258
7.4.3 Diffusion GA 259
7.4.4 Hybrid Parallel GA 261
References 262

8 Evolutionary Fuzzy Systems 265
8.1 Introduction 265
8.2 Evolutionary Adaptive Fuzzy Systems 267

8.2.1 Evolutionary Tuning of Fuzzy Systems 268
8.2.2 Evolutionary Learning of Fuzzy Systems 281

8.3 Objective Functions and Evaluation 287
8.3.1 Objective Functions 287
8.3.2 Evaluation 289

8.4 Fuzzy Adaptive Evolutionary Algorithms 290
8.4.1 Fuzzy Logic-Based Control of EA Parameters 292
8.4.2 Fuzzy Logic-Based Genetic Operators of EA 302
References 303

9 Evolutionary Neural Networks 307
9.1 Introduction 307
9.2 Supportive Combinations 309

9.2.1 NN-EA Supportive Combination 309
9.2.2 EA-NN Supportive Combination 310

9.3 Collaborative Combinations 318
9.3.1 EA for NN Connection Weight Training 319
9.3.2 EA for NN Architectures 326
9.3.3 EA for NN Node Transfer Functions 338
9.3.4 EA for NN Weight, Architecture and Transfer Function Training 341

9.4 Amalgamated Combination 343
9.5 Competing Conventions 345

References 351

10 Neural Fuzzy Systems 357
10.1 Introduction 357
10.2 Combination of Neural and Fuzzy Systems 359

Contents xi

10.3 Cooperative Neuro-Fuzzy Systems 360
10.3.1 Cooperative FS-NN Systems 361
10.3.2 Cooperative NN-FS Systems 362

10.4 Concurrent Neuro-Fuzzy Systems 369
10.5 Hybrid Neuro-Fuzzy Systems 369

10.5.1 Fuzzy Neural Networks with Mamdani-Type Fuzzy Inference System 370
10.5.2 Fuzzy Neural Networks with Takagi–Sugeno-type Fuzzy

Inference System 372
10.5.3 Fuzzy Neural Networks with Tsukamoto-Type Fuzzy

Inference System 373
10.5.4 Neural Network-Based Fuzzy System (Pi–Sigma Network) 377
10.5.5 Fuzzy-Neural System Architecture with Ellipsoid Input Space 380
10.5.6 Fuzzy Adaptive Learning Control Network (FALCON) 382
10.5.7 Approximate Reasoning-Based Intelligent Control (ARIC) 384
10.5.8 Generalized ARIC (GARIC) 388
10.5.9 Fuzzy Basis Function Networks (FBFN) 393
10.5.10 Fuzzy Net (FUN) 396
10.5.11 Combination of Fuzzy Inference and Neural Network in Fuzzy

Inference Software (FINEST) 397
10.5.12 Neuro-Fuzzy Controller (NEFCON) 400
10.5.13 Self-constructing Neural Fuzzy Inference Network (SONFIN) 401

10.6 Adaptive Neuro-Fuzzy System 404
10.6.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 404
10.6.2 Coactive Neuro-Fuzzy Inference System (CANFIS) 407

10.7 Fuzzy Neurons 409
10.8 MATLAB R© Programs 411

References 412

Appendix A: MATLAB R© Basics 415

Appendix B: MATLAB R© Programs for Fuzzy Logic 433

Appendix C: MATLAB R© Programs for Fuzzy Systems 443

Appendix D: MATLAB R© Programs for Neural Systems 461

Appendix E: MATLAB R© Programs for Neural Control Design 473

Appendix F: MATLAB R© Programs for Evolutionary Algorithms 489

Appendix G: MATLAB R© Programs for Neuro-Fuzzy Systems 497

Index 507

Foreword

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary
Computing, or CIS for short, is a true magnum opus. Authored by Dr Nazmul Siddique and
Professor Hojjat Adeli, CIS is a profoundly impressive work. It breaks new ground on many
levels and in many directions. It contains a wealth of information which is new, and if not new,
hard to find elsewhere.

In recent years, computational intelligence (CI) has been growing rapidly in visibility and
importance. CIS’s coverage of CI is very thorough, very authoritative, very insightful and very
reader-friendly. CIS paves the way for making courses on CI a requirement in engineering
curricula.

What is computational intelligence? A bit of history is in order. The core of CI is the
conception, design and utilization of intelligent systems. The concept of an intelligent system
began to crystallize in the 1980s, at a time when AI was undergoing an identity crisis,
moving from logic to probability theory. There were many competing methodologies, among
them traditional AI, fuzzy logic, neuro-computing and evolutionary computing. Each of these
methodologies had a community, with each community claiming superiority over the others.
In that climate, I came to the conclusion that what was needed was a unification of the
methodologies which were competing with AI, gaining strength through unity. This was the
genesis of the concept of soft computing (SC) as a partnership of fuzzy logic, neuro-computing,
evolutionary computing and probabilistic computing. The guiding principle that underlies SC
is that generally, superior performance can be achieved when the constituent methodologies of
SC are employed in combination rather than in stand-alone mode. The Berkeley Initiative in
Soft Computing (BISC) was launched in 1991 with very lukewarm support of my colleagues
but strong backing from the Dean of the College of Engineering, David Hodges. Today, there
are 20 journals with ‘soft computing’ in the title.

A few years after the launch of BISC, Jim Bezdek used his influence to create a Compu-
tational Intelligence Society within the IEEE. The concept of computational intelligence is
closely related to the concept of soft computing. The principal difference between SC and
CI is that SC is a partnership of fuzzy logic, neuro-computing, evolutionary computing and
probabilistic computing, whereas CI is a partnership of fuzzy logic, neuro-computing and
evolutionary computing. There is no competition between CI and SC, but with the backing
of the IEEE, CI has been growing rapidly in visibility and acceptance. An important factor
in the growth of CI is that today the principal concepts and techniques which are employed
in the conception, design and utilization of intelligent systems are drawn, in large measure,
from CI rather than from AI. What is worthy of note is that in 1995, at about the time when CI
came into existence, Professors Adeli and Hung published a book entitled Machine Learning –

xiv Foreword

Neural Networks, Genetic Algorithms, and Fuzzy Systems, which in effect was the first treatise
on CI. In retrospect, the importance of this seminal treatise is hard to exaggerate.

CIS is a remarkable work. The introductory chapter on CIS presents the authors’ perception
of what CI is and what it has to offer. The introductory chapter is followed by two chapters on
the basics of fuzzy set theory and fuzzy logic. The authors’ exposition is succinct, insightful and
reader-friendly. I am highly impressed by their exposition of fuzzy logic and its applications.

The concepts of a linguistic variable, fuzzy if–then rules and fuzzy control received a great
deal of attention, with the stress on applications. The authors’ discussion of the concept of
a linguistic variable reminds me of the hostile criticism of what I wrote at the time, 1973,
about the concept of a linguistic variable. The criticism reflected a deep-seated tradition within
science and engineering – the tradition of respect for numbers and disrespect for words. What
my critics did not understand is that the use of words in place of numbers opens the door to
exploitation of tolerance for imprecision, and thereby reduces cost and achieves simplicity.
Today, almost all applications of fuzzy logic employ the concept of a linguistic variable. Several
important applications of fuzzy logic, among them fuzzy control, are discussed in detail. As
in other chapters of CIS, the exposition concludes with MATLAB R© programs and references.

Following their masterly exposition of the basics of fuzzy logic, the authors turn to neuro-
computing and neural systems. In the three decades since its debut, neuro-computing has
become a highly important body of concepts and techniques, with wide-ranging applications
in system identification, simulation and adaptation. A critical event in the evolution of neuro-
computing was the invention of the backpropagation algorithm, originally due to Paul Werbos
in the early 1970s and independently reinvented and developed by David Rumelhart in the
early 1980s. The backpropagation algorithm opened the door to a wide variety of applications
of neuro-computing. Many examples of such applications are described in CIS.

The exposition of neuro-computing is followed by an equally masterly exposition of
evolutionary computing. Evolutionary computing is rooted in the pioneering work of John
Holland on genetic algorithms, in combination with the seminal work of Larry Fogel. In
essence, evolutionary computing is systematized random search. What is surprising is that
systematized random search can be so effective in optimization, and especially in global
maximization. In CIS, one finds insightful expositions of various non-standard approaches
to optimization, including multi-objective optimization and Pareto optimization. But what is
really fascinating is what remarkable results can be achieved through the employment of John
Koza’s genetic programming.

I noted earlier that the guiding principle of computational intelligence is that, in general,
superior performance is achieved when fuzzy logic, neuro-computing and evolutionary com-
puting are used in combination rather than in stand-alone mode. The last part of CIS is
motivated by this guiding principle. There are very informative discussions of neuro-fuzzy
systems, evolutionary fuzzy systems, evolutionary neural systems and evolutionary fuzzy neu-
ral systems. Much of the information in these chapters is hard to find elsewhere. There is much
that is original to the authors.

In sum, CIS is a major contribution to the literature – it is authoritative, thorough, up-to-
date, insightful and reader-friendly. CIS should be on the desk of anybody who is interested
in the conception, design and utilization of intelligent systems. Professors Nazmul Siddique
and Hojjat Adeli (and their publisher, John Wiley & Sons Ltd) deserve our compliments and
loud applause.

Lotfi A. Zadeh
UC Berkeley

December 2012

Preface

Creating intelligent systems has been of interest to scientists for many years. In the early days
of science, scientists developed systems which imitated the behaviour of living organisms. A
famous example is Jacque De Vaucanson’s mechanical duck from 1735, which could move its
head, tail and wings as well as swallow food. This gave the illusion of intelligence and delighted
and amused people at the time. The whole control mechanism was based on rotating cylinders,
with gudgeons used in music boxes to control the timely execution of different behaviours.
The behaviour was mechanistic as the duck always showed the same behaviour according
to the mechanical control system used. To generate a new behaviour, the mechanical control
system had to be changed. That means, to generate different behaviours in different situations
and environments, the mechanical duck needed different control systems. Rather than using
different control systems for different behaviours, scientists attempted to provide different
behaviours with a single control system. This posed the challenge of developing adaptive and
learning systems. In the beginning, the hope of success was based only on the belief that
some general laws of adaptation should exist. The endeavour went through different stages of
development, such as deterministic, stochastic and adaptive. In the happy days of determinism,
various mathematical and analytical tools were developed to describe and analyse systems.
These methodologies were successful, especially for linear systems. Difficulties arose as soon
as nonlinear factors had to be considered. New tools had to be developed for nonlinear systems.

Uncertainty was an issue to be avoided at all costs and was not addressed until the late
nineteenth century. Newtonian mechanics was replaced by statistical mechanics to describe
uncertainty with the help of probability theory, developed by Thomas Bayes in the eighteenth
century, which continued until the late twentieth century. The gradual evolution of probability
theory for the expression of uncertainty was challenged by new theories of vagueness and fuzzy
set theory, developed by Lotfi Zadeh, which came into being in the latter part of the twentieth
century as a measure of uncertainty. Fuzzy systems theory has proved to be a powerful tool
for the approximation of nonlinear and complex systems where traditional analytic functions
or numeric relations are unable to manage.

The long-suffering stage is the time taken for model development of unknown systems,
which cannot even be determined experimentally. This is evidenced by the emergence of
new theories of adaptivity. The possibility of developing system models under incomplete
and very little a priori information is based on adaptation and learning. That is, a system
capable of adapting and learning is to be considered intelligent. Among the many interesting
mathematical and non-traditional apparatuses for adaptation and learning, neural networks are
the most widely used. Various learning algorithms have been developed since the 1960s.

xvi Preface

The problem of developing systems to satisfy specific criteria appeared at some stage due
to design, technology and development constraints. The problem of optimality then became
one of the key issues in developing models or systems. In fact, the problem of optimality is a
central issue in science, engineering, economy and everyday life. In deterministic or stochastic
processes, the criterion of optimality (i.e., the functional) should be known explicitly a priori
with sufficient information. The conditions of optimality only define local extrema. If the
number of such extrema is large, the problem of finding the global extremum becomes a com-
plex one. Various conventional mathematical and derivative-based optimization techniques
have been developed over the past decades. Unfortunately, very often these methods cannot
be applied to a wide range of problems since the functional (or the objective functions) are
not analytically treatable or even not available in closed form. Further, many real-life opti-
mization problems have constraints that either cannot be defined mathematically or are highly
nonlinear implicit and discontinuous functions of design variables. These led researchers to
seek stochastic methods such as evolutionary and bio-inspired optimization techniques that
are capable of searching a high-dimensional space.

The inherent capability and appeal of such traditional approaches diminished as the com-
plexity of systems grew. There arose a need for non-traditional approaches inspired by nature,
such as human thinking, perception and reasoning, biological neural networks and evolution
in nature.

In 1995 H. Adeli and S.L. Hung published a seminal book, Machine Learning – Neural
Networks, Genetic Algorithms, and Fuzzy Systems (John Wiley & Sons) as the first treatise to
present the three main fields of computational intelligence in a single book and demonstrate
that through integration of the three emerging computing paradigms, intractable problems
could be solved more effectively. Since then, research on computational intelligence has
grown exponentially and the field of computational intelligence is now well established. That
seminal book has inspired the current book. Computational intelligence schemes are presented
in this book with the development of a suitable framework for fuzzy, neural and evolutionary
computing, evolutionary/fuzzy systems, evolutionary neural systems, neuro-fuzzy systems
and finally hybridization of the three basic paradigms. Applications to linear and nonlinear
systems are discussed, with examples and MATLAB R© exercises.

This book is designed for final-year undergraduate, postgraduate, research students and
professionals. It is written at a comprehensible level for students who have some basic knowl-
edge in calculus, differential equations and some exposure to optimization theory. Owing to
the emphasis on systems and control, the book should be appropriate for electrical, control,
computer, industrial and manufacturing engineering students as well as computer and infor-
mation science students. With mathematical and programming references and applications in
each chapter, the book is self-contained. It should also serve already practicing engineers and
scientists who intend to study the field of computational intelligence and system science. In
particular, it is assumed that the reader has no experience in fuzzy logic, neural networks or
evolutionary computing.

The final goal of the authors is the adroit integration of three different computational
intelligence technologies and problem-solving paradigms: fuzzy systems, neural networks and
evolutionary computing. The book is organized in ten chapters. It includes three introductory
chapters (Chapters 2, 4 and 6) on basic techniques of fuzzy logic, neural networks and
evolutionary computing in order to introduce the reader to these three different computing
paradigms. It then presents different applications of the three technologies in a wide range
of application domains in Chapters 3, 5 and 7. Hybridization of the three technologies is an

Preface xvii

interesting feature, which has been presented in Chapters 8, 9 and 10. Most of the book covers
applications in systems modelling, control and optimization.

There have been many texts, research monographs and edited volumes published since the
1990s. There are a few books that cover some topics on the combination of the three basic
technologies. They are all referenced in each chapter of this book, which the reader may find
useful in further reading for research. There is no single book covering all topics on fuzzy,
neural networks or evolutionary computing or their combinations that is well suited for such
a wide-ranging audience, especially undergraduate, postgraduate and research students. This
book is an attempt to attract all groups, putting the emphasis on a combination of the three
methodologies. The book has not been written for any specific course, however, it could be
used for courses in computational intelligence, intelligent control, intelligent systems, fuzzy
systems, neural computing, evolutionary computing and hybrid systems. As such, the book is
appropriate for beginners in the field of computational intelligence. The book is also applicable
as prescribed material for a final-year undergraduate course. The book is written based on
the experience of many years following pedagogical features with illustrations, step-by-step
algorithms, worked examples and MATLAB R© code for real-world problems. The intention of
the book is not to provide a thorough discussion of all computational intelligence paradigms
and methods, but to give an overview of the most popular and frequently used methods.

Acknowledgements

It is necessary to thank a number of people who have helped in many ways (unknown to them)
in the preparation of this book. First of all, the authors would like to thank all staff at the learning
resource centre of the Magee Campus of the University of Ulster. Special thanks go to Mr
Lewis Childs, who was very kind in finding the latest and rare literature from different sources
across the UK. The initial material was developed and used for an MSc course at the School of
Computing and Intelligent Systems, University of Ulster. Useful feedback was received from
many postgraduate students: Dr Neil Glackin, Dr Leo Galway, Dr Patric Gormley, Dr Michael
McBride, Dr Julie Wall, Mr Brian McAlister, Mr Jai Verdhan Singh, Dr Erich Michols and
Dr Faraz Hasan among them. Thanks go to Dr Tom Lunney, who as the MSc course director
communicated many helpful suggestions for improving the course material. Professor Robert
John, as an external examiner of the MSc course, was very encouraging in developing the
material as a book. Thanks to Professor Liam Maguire, Head of the School of Computing and
Intelligent Systems, who was very supportive of the first author during the spring semester of
2012, allowing him to be dedicated full time to manuscript preparation.

The authors would like to thank many of their collaborators: Dr Bala Amavasai, Dr Richard
Mitchell, Dr Michael O’Grady, Dr Mourad Oussalah, Dr John St. Quinton, Dr Osman Tokhi,
Professor Alamgir Hossain, Professor Ali Hessami, Dr Takatoshi Okuno, Professor Akira
Ikuta, Professor Hydeuki Takagi, Dr Filip Ponulak, Dr David Fogel and Professor Bernard
Widrow. The authors would like to thank all the staff at John Wiley & Sons Ltd associated
with the publication of this book, especially Tom Carter, Anne Hunt, Eric Willner and Genna
Manaog for their support and help throughout the preparation of the manuscript and the
production of this book.

The first author’s eldest sister passed away during the preparation of the manuscript; she
would have been happy to see the book published. The first author would like to thank his
wife Kaniz for her love and patience during the entire endeavour of the book, without which
it would never have been published, and his daughters Oyndrilla, Opala and Orla for making
no complaints during this time.

1
Introduction to Computational
Intelligence

Keep it simple:
As simple as possible,
But not simpler.

–Albert Einstein

1.1 Computational Intelligence

Much is unknown about intelligence and much will remain beyond human comprehension.
The fundamental nature of intelligence is only poorly understood and even the definition
of intelligence remains a subject of controversy. Considerable research is currently being
devoted to the understanding and representation of intelligence. According to its dictionary
definition, intelligence means the ability to comprehend, reason and learn. From this point of
view, a definition of intelligence can be elicited whereby an intelligent system is capable of
comprehending (with or without much a priori information) the environment or a process;
reasoning about and identifying different environmental or process variables, their inter-
relationship and influence on the environment or process; and learning about the environment
or process, its disturbance and operating conditions. Other aspects of intelligence that describe
human intelligence are creativity, skills, consciousness, intuition and emotion.
Traditional artificial intelligence (AI) has tried to simulate such intelligent behaviour in sys-

tems requiring exact and complete knowledge representation (Turing, 1950). Unfortunately,
many real-world systems cannot be described exactly with complete knowledge. It has been
demonstrated that the use of highly complex mathematical description can seriously inhibit the
ability to develop system models. Furthermore, it is required to cope with significant unmod-
elled and unanticipated changes in the environment or process and in the model objectives.
This will involve the use of advanced decision-making processes to generate actions so that a
certain performance level is maintained even though there are drastic changes in the operating
conditions. Thus, the dissatisfaction with conventional modelling techniques is growing with

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

2 Computational Intelligence

the increasing complexity of dynamical systems, necessitating the use of more human exper-
tise and knowledge in handling such processes. Computational intelligence techniques are
thus a manifestation of the crucial time when human knowledge will become more and more
important in system modelling and control as an alternative approach to classical mathemati-
cal modelling, whose structure and consequent outputs in response to external commands are
determined by experimental evidence (i.e., the observed input/output behaviour of the system
or plant). The system is then a so-called intelligent system. Intelligent techniques are properly
aimed at processes that are ill-defined, complex, nonlinear, time-varying and stochastic. Intel-
ligent systems are not defined in terms of specific algorithms. They employ techniques that
can sense and reason without much a priori knowledge about the environment and produce
control actions in a flexible, adaptive and robust manner.

1.2 Paradigms of Computational Intelligence

Many attempts have been made by different authors and researchers to define the term com-
putational intelligence (CI). Despite the widespread use of the term, there is no commonly
accepted definition of CI. The term was first used in 1990 by the IEEE Neural Networks Coun-
cil. Bezdek (1994) first proposed and defined the term CI. A system is called computationally
intelligent if it deals with low-level data such as numerical data, has a pattern-recognition
component and does not use knowledge in the AI sense, and additionally when it begins to
exhibit computational adaptivity, fault tolerance, speed approaching human-like turnaround
and error rates that approximate human performance (Bezdek, 1994). At the same time, the
birth of CI is attributed to the IEEE World Congress on Computational Intelligence in 1994.
Since then there has been much explanation published on the term CI. The IEEE Computa-
tional Intelligence Society (formerly the IEEE Neural Networks Council) defines its subject
of interest as neural networks (NN), fuzzy systems (FS) and evolutionary algorithms (EA)
(Dote and Ovaska, 2001). Some authors argue that computational intelligence is a collection
of heuristic algorithms encompassing techniques such as swarm intelligence, fractals, chaos
theory, immune systems and artificial intelligence. There are also other approaches that satisfy
the AI techniques. Marks (1993) clearly outlined the distinction between CI and AI, although
both CI and AI seek similar goals. Based on three levels of analysis of system complexity,
Bezdek (1994) argues that CI is a subset of AI.
Zadeh (1994, 1998) proposed a different view of machine intelligence, where he distin-

guishes hard computing techniques based on AI from soft computing techniques based on CI.
In hard computing, imprecision and uncertainty are undesirable features of a system whereas
these are the foremost features in soft computing. Figure 1.1 shows the difference between AI
and CI along with their alliance with hard computing (HC) and soft computing (SC). Zadeh
defines soft computing as a consortium of methodologies that provide a foundation for design-
ing intelligent systems. Some researchers also believe that SC is a large subset of CI (Eberhart
and Shui, 2007). The remarkable features of these intelligent systems are their human-like
capability to make decisions based on information with imprecision and uncertainty.
Fogel (1995a) views adaptation as the key feature of intelligence and delineates the technolo-

gies of neural, fuzzy and evolutionary systems as the rubric of CI, denoting them as methods
of computation that can be used to adapt solutions to new problems without relying on explicit
human intervention. Adaptation is defined as the ability of a system to change or evolve its
parameters or structure in order to better meet its goal. Eberhart and Shui (2007) believe that

Introduction to Computational Intelligence 3

Machine

Intelligence

FS EANN

AI CI

HC SC

Figure 1.1 Difference between AI-HC and CI-SC

adaptation and self-organization play an important role in CI and argue that adaptation is
central to CI, comprising the practical concept, paradigms, algorithms and implementations
that facilitate intelligent behaviour. They argue further that CI and adaptation/self-organization
are synonymous (Eberhart and Shui, 2007).

1.3 Approaches to Computational Intelligence

Central to computational intelligence is the construction of a process or system model (King,
1999; Konar, 2005), which is not amenable to mathematical or traditional modelling because:

(i) the processes are too complex to represent mathematically;
(ii) the process models are difficult and expensive to evaluate;
(iii) there are uncertainties in process operation;
(iv) the process is nonlinear, distributed, incomplete and stochastic in nature.

The system has the ability to learn and/or deal with new or unknown situations and is able
to make predictions or decisions about future events. The term computational intelligence, as
defined by Zadeh, is a combination of soft computing and numerical processing. The area of
computational intelligence is in fact interdisciplinary and attempts to combine and extend the-
ories and methods from other disciplines, including modern adaptive control, optimal control,
learning theory, reinforcement learning, fuzzy logic, neural networks and evolutionary com-
putation. Each discipline approaches computational intelligence from a different perspective,
using different methodologies and toolsets towards a common goal. The inter-relationship
between these disciplines is illustrated in Figure 1.2.
Computational intelligence uses experiential knowledge about the process that generally

produces a model in terms of input/output behaviour. The question is how to model this human

4 Computational Intelligence

Computational

Intelligence

Fuzzy logic Neural

network

Learning

theory
Swarm

intelligence

Evolutionary

Computing

Probabilistic

methods

Figure 1.2 Periphery of computational intelligent methodologies

knowledge and represent it in such a manner as to be computationally efficient. Engelbrecht
(2002) considers the following five basic approaches to computational intelligence:

(i) Fuzzy logic,
(ii) Neural networks,
(iii) Evolutionary computing,
(iv) Learning theory,
(v) Probabilistic methods,
(vi) Swarm intelligence.

In this book, the three methodologies of fuzzy logic, neural networks and evolutionary com-
puting and their synergies will be covered and all other methodologies (such as swarm intelli-
gence, learning theory and probabilistic methods) will be addressed as supportive methods in
computational intelligence.

1.3.1 Fuzzy Logic

It has been suggested by researchers that measurements, process modelling and control can
never be exact for real and complex processes. Also, there are uncertainties such as incom-
pleteness, randomness and ignorance of data in the process model. The seminal work of Zadeh
introduced the concept of fuzzy logic to model human reasoning from imprecise and incom-
plete information by giving definitions to vague terms and allowing construction of a rule base
(Zadeh, 1965, 1973). Fuzzy logic can incorporate human experiential knowledge and give it

Introduction to Computational Intelligence 5

an engineering flavour to model and control such ill-defined systems with nonlinearity and
uncertainty. The fuzzy logic methodology usually deals with reasoning and inference on a
higher level, such as semantic or linguistic.

1.3.2 Neural Networks

Neurons are the fundamental building blocks of the biological brain. Neurons receive signals
from neighbouring neurons through connections, process them in the cell body and transfer
the results through a long fibre called an axon. An inhibiting unit at the end of the axon,
called the synapse, controls the signal between neurons. The axon behaves like a signal-
conducting device. An artificial neural network is an electrical analogue of the biological
neural network. Neural networks originated from the work of Hebb in the 1940s and more
recently the work of Hopfield, Rumellhart, Grossberg and Widrow in the 1980s has led to
a resurgence of research interest in the field (Hebb, 1949; Grossberg, 1982; Hopfield, 1982;
Rummelhart et al., 1986;Widrow, 1987). Neural networks are biologically inspired, massively
parallel and distributed information-processing systems. Neural networks are characterized
by computational power, fault tolerance, learning from experiential data and generalization
capability, and are essentially low-level computational algorithms that usually demonstrate
good performance in processing numerical data. The learning takes place in different forms in
neural networks, such as supervised, unsupervised, competitive and reinforcement learning.
Research on neural network-based control systems has received considerable interest over the
past several years, firstly because neural networks have been shown to be able to approximate
any nonlinear function defined on a compact set of data to a specified accuracy and secondly
because most control systems exhibit certain types of unknown nonlinearity, which suits neural
networks as an appropriate control technology.

1.3.3 Evolutionary Computing

Evolutionary computing is the emulation of the process of natural selection in a search proce-
dure based on the seminal work on evolutionary theory by Charles Darwin (Darwin, 1859). In
nature, organisms have certain characteristics that influence their ability to survive in adverse
environments and pass on to successive progeny with improved abilities. The genetic infor-
mation of species can be coded into chromosomes that represent these characteristics. The
species undergo reproduction and give birth to new offspring with features of capability to
combat the adverse environment and survive. The process of natural selection ensures that the
more fit individuals have the opportunity to mate most of the time, leading to the expectation
that the offspring will have a similar or higher level of fitness. Evolutionary computation
uses iterative progress and development in a population. This population is then selected in a
guided random search using parallel processing to achieve the desired population of solutions.
Such processes are often inspired by biological mechanisms of evolution. Nearly a century
after Darwin’s theory of evolution, Fraser (1957) was the first to conduct a simulation of
genetic systems representing organisms by binary strings. Box (1957) proposed an evolution-
ary operation to optimize industrial production. Friedberg (1958) proposed an approach to
evolve computer programs. The fundamental works of Lowrence Fogel (Fogel, 1962) in evo-
lutionary programming, John Holland (Holland, 1962) in genetic algorithms, Ingo Rechenberg
(Rechenberg, 1965) and Hans-Paul Schwefel (Schwefel, 1968) in evolutionary strategies have

6 Computational Intelligence

had significant influence on the development of evolutionary algorithms and computation as
a general concept for problem solving and a powerful tool for optimization. Since the devel-
opmental years of the 1960s there have been significant contributions to the field by many
people, including De Jong (1975), Goldberg (1989) and Fogel (1995b) to name a few. The
1990s saw another set of developments in evolutionary algorithms, for example Koza (1992)
developed genetic programming, Reynolds (1994, 1999) developed cultural algorithms and
Storn and Price (1997) developed differential evolution. Evolutionary algorithms have now
found widespread application in almost all branches of science and engineering.

1.3.4 Learning Theory

Humans appear to be able to learn new concepts without much effort in a conventional sense.
The mechanism of learning in humans is little known. In psychology, learning is the process of
bringing together cognitive, emotional and environmental effects and experiences to acquire,
enhance or change knowledge, skills, values and world views (Ormrod, 1995; Illeris, 2004).
For any learning, it is also important how information is input, processed and stored. Learning
theories provide explanations of such processes, and how exactly they occur (Vapnik, 1998).
Learning theories fall into three main philosophical frameworks: behaviourism, cognitive

theories and constructivism. Behaviourism deals with the objectively observable aspects of
learning. Cognitive theories look at how learning occurs in the brain. Constructivism views
learning as a process in which the learner actively constructs or builds new ideas or concepts.
A new scientific discipline of machine learning (Samuel, 1959) has evolved based on

the psychological learning theories. In machine learning, researchers use and apply four
basic forms of learning. Supervised learning generates a function that maps inputs to desired
outputs. Unsupervised learningmodels a set of input features andmaps them to similar patterns,
like clustering. Semi-supervised learning combines both labelled and unlabelled examples to
generate an appropriate function or classifier. Reinforcement learning indicates how to act on
a given observation from the environment. Every action has some impact on the environment,
and the environment provides feedback in the form of rewards that guide the learning process.
Learning mechanisms are an essential part of any intelligent system and hence are powerful
tools for computational intelligence.

1.3.5 Probabilistic Methods

Probability theory has been viewed as the methodology of choice for dealing with uncertainty
and imprecision. The probabilistic method involves considering an appropriate probability
space over a wider family of structures, and proving that a sample point corresponding to
the required structure has positive probability in this space. This method was introduced by
Erdos and Spencer (1974) and has made major contributions in areas of mathematics and
computer science such as combinatorics, functional analysis, number theory, topology, group
theory, combinatorial geometry and theoretical computer science. Probabilistic behaviour or
stochasticity (randomness) is also sometimes listed as an attribute of intelligent systems.
A complex nonlinear dynamic system very often shows chaotic behaviour, that is, chaotic
phenomena are features of complex dynamical systems (Grim, 1993). It is somewhat uncertain
whether the attribute should be represented as randomness or chaos.

Introduction to Computational Intelligence 7

The term chaos refers to complicated dynamical behaviour. There is no uniform agreement
as to the precise definition, but a significant body of literature uses the term to refer to systems
of a particular type with a set of periodic points and an orbit which are dense in a closed
invariant set � and these are very sensitive to initial conditions (Devaney, 1989). In principle,
the future behaviour of a chaotic system is completely determined by the past, but in practice,
any uncertainty in the choice of initial conditions grows exponentially with time. Chaotic
behaviour has been observed in the laboratory in a variety of systems, such as electrical
and electronic circuits, lasers, oscillating chemical reactions, fluid dynamics, mechanical and
magneto-mechanical systems (Sumathi and Surekha, 2010). The dynamic behaviour of a
chaotic system is predictable in the short term but impossible to predict in the long term.
Chaos theory is essentially a recent extension of a larger field of mathematics which is part of
complex nonlinear system dynamics. However, these theories seem to permeate many aspects
of natural intelligent systems, from basic biology to behavioural intelligence, as well as most
artificial intelligent processes and systems.

1.3.6 Swarm Intelligence

Swarm systems in nature are perhaps one of the most mesmerizing things to observe. A flock
of birds twisting in the evening light, the V-shaped structure of migrating geese, winter birds
hunting for food, the dancing of starlings in the evening light, ants marching to forage, the
synchronized flashing of fireflies and mound building by termites are some of the fascinating
examples of swarm systems. But how do they produce such well-choreographed collective
behaviour without any central coordinator or leader? How do they communicate with each
other? How does an ant which has found food tell other ants about the location of the food?
How do the flocks of migrating geese maintain a V-shaped structure? How do fireflies know
when to glow? Is there a central control or coordinator for the collective behaviours? Scientists
and biologists have been researching for decades to answer some of these questions.
The collective behaviours of insects living in colonies (such as ants, bees, wasps and

termites) have attracted researchers and naturalists for many years. Close observation of an
insect colony shows that the whole colony is very organized, with every single insect having
its own agenda. The seamless integration of all individual activities does not have any central
control or any kind of supervision. Researchers are interested in this new way of achieving a
form of collective intelligence, called swarm intelligence (SI) (Bonabeau et al., 1999; Kennedy
and Eberhart, 2001). SI is widely accepted as a computational intelligence technique based
around the study of collective behaviour in decentralized and self-organized systems typically
made up of a population of simple agents interacting locally with one another and with their
environment (Kennedy and Eberhart, 2001; Garnier et al., 2007). Although there is normally no
centralized control structure dictating how individual agents should behave, local interactions
between such agents often lead to the emergence of global behaviour. Examples of systems like
this can be found in nature, including particle swarms, ant colonies, birds flocking, animals
herding, fish schooling and bacterial foraging. Recently, biologists and computer scientists
have studied how to model biological swarms to understand how such social insects interact,
achieve goals and evolve.
Ants are social insects. They live in colonies and their behaviour is governed by the goal of

colony survival rather than the survival of individuals. When searching for food, ants initially
explore the surrounding area close to the nest in a random manner. While moving, ants leave a

8 Computational Intelligence

chemical pheromone trail on the ground. Ants can smell the pheromone. When choosing their
way, they tend to choose, in probability, paths marked by strong pheromone concentrations.
As soon as an ant finds a food source, it evaluates the quantity and the quality of the food and
carries some of it back to the nest. During the return trip, the quantity of pheromone that an
ant leaves on the ground may depend on the quantity and quality of the food. The pheromone
trails will guide other ants to the food source. It has been shown (Deneubourg et al., 1990;
Dorigo and Stützle, 2004) that the indirect communication between the ants via pheromone
trails enables them to find shortest paths between their nest and food sources.
Ant colonies or societies in general can be compared to distributed systems, which present

a highly structured social organization in spite of simple individuals. The ant colonies can
accomplish complex tasks far beyond their individual capabilities due to the structured organi-
zation of their society. The inspiring source of ant colony optimization (ACO) is the foraging
behaviour of real ant colonies (Blum, 2005). Dorigo et al. (1996)were the first to propose a sim-
ple stochastic model that adequately describes the dynamics of the ants’ foraging behaviour,
and in particular, how ants can find shortest paths between food sources and their nest.
ACO is a meta-heuristic optimization algorithm that can be used to find approximate

solutions to difficult combinatorial optimization problems and has been applied successfully
to an impressive number of optimization problems. Applications of ACO include routing
optimization in networks and vehicle routing, graph colouring, timetabling, scheduling and
solving the quadratic assignment problem, the travelling salesman problem (Blum, 2005).
Studies of the nest building of ants and bees have resulted in the development of clustering
and structural optimization algorithms.
Flocking is seen as a feature of coherent manoeuvring of a group of individuals in space.

This is a commonly observed phenomenon in some animal societies. Flocks of birds, herds
of quadrupeds and schools of fish are often shown as fascinating examples of self-organized
coordination (Camazine et al., 2001). Natural flocks maintain two balanced behaviours: a
desire to stay close to the flock and a desire to avoid collisions within the flock (Shaw, 1975).
Joining a flock or staying with a flock seems to be the result of evolutionary pressure from
several factors, such as protecting and defending from predators, improving the chances of
survival of the (shared) gene pool from attacks by predators, profiting from a larger effective
search for food, and advantages for social and mating activities (Shaw, 1962). Reynolds (1987)
was the first to develop a model to mimic the flocking behaviour of birds, which he described
as a general class of polarized, non-colliding, aggregate motion of a group of individuals. Such
flocking behaviours were simulated using three simple rules: collision avoidance with flock
mates, velocity matching with nearby flock mates, and flock centring to stay close to the flock.
Flocking models have numerous applications. Some include the simulation of traffic patterns,
such as the flow of cars on a motorway which has a flock-like motion, animating troop
movement in real-time strategy games and in simulating mobile robot movement (Momen
et al., 2007; Turgut et al., 2008).
One of the interesting features in the behaviour of fishes is the fish school. About half of

all fish species are known to form fish schools at some stage in their lives. Fish can form
loosely structured groups called shoals and highly organized structures called fish schools.
Fish schools are seen as self-organized systems consisting of individual autonomous agents
(Shaw, 1962). Fish schools also come in many different shapes: stationary swarms, predator-
avoiding vacuoles and flash expansions, hourglasses and vortices, highly aligned cruising
parabolas, herds and balls (Parrish et al., 2002). A fish school can be of various sizes, for
example, a herring school often exceeds 5000 individuals and spreads over 700 square metres

Introduction to Computational Intelligence 9

(Mackinson, 1999). Modelling the behaviour of fish schools has been a subject of research for
a long time. Niwa (1996) studied the collective behaviour of fishes and proposed amodel based
on Newtonian dynamics which results in emergent patterns. Couzin et al. (2002) proposed an
alternative model where each fish is considered as an autonomous agent interacting with its
local neighbours and producing a complex pattern by following three simple rules: (i) move
away from very near neighbours; (ii) follow the same direction as close neighbours; (iii) avoid
becoming isolated. Following the rules, each individual fish can have three zones: repulsion,
alignment and attraction. Individuals are attracted to neighbours over a larger range than
they align with in the attraction zone. Individuals always move away from neighbours in the
repulsion zone. If the radius of the alignment zone is increased, individuals would go from a
loosely packed stationary swarm to a torus where individuals circle round their centre of mass
and, finally, to a parallel group moving in a common direction.
Particle swarm optimization (PSO) was developed by Kennedy and Eberhart (1995) based

on the social behaviour of swarms such as fish and birds in nature. PSO has similarities with
evolutionary algorithms, but it is simpler in the sense that it does not apply any mutation or
crossover operation, instead using real-number randomness and global communication among
the swarming particles. Each particle, referring to an individual in the swarm representing a
candidate solution to the optimization problem, is flown through the multidimensional search
space, adjusting its position in the search space according to its own experience and that
of its neighbouring particles. Particles make use of the best positions encountered and the
best positions of their neighbours to position themselves towards an optimum solution. The
performance of each particle is measured according to a predefined fitness function which
is related to the problem being solved. Applications of PSO include function approximation,
clustering, optimization of mechanical structures and solving systems of equations. There are
now as many as about 20 different variants of PSO.
Rumours are a form of social communication. The way a rumour propagates within a

population in society was first modelled by Daley and Kendal (1965) at the University of
Cambridge. The spreading of a rumour often has severe consequences on the perception of
celebrities, financial markets and even society (Nekovee et al., 2007). Rumours can also be
manipulated intentionally to disrupt competitor organizations. They can cause panic during
wars and can create disaster in stock markets.
The flashing of fireflies in the summer sky in tropical regions has been one of the most

hypnotic and wonderful experiences for explorers and naturalists for many years. There are
about 2000 firefly species, and most fireflies produce short and rhythmic flashes. The flashing
light can be seen as a signalling system and the true function of such signalling system is not
really known yet. However, two fundamental functions of such flashes are to attract mating
partners and to attract potential prey; flashing may also serve as a warning mechanism. The
rhythm, rate and duration of flashing form part of the signal system that brings two fireflies
together. For example, females respond to a male’s unique pattern of flashing. This unique
feature of fireflies can be formulated in such a way as to make it possible to formulate new
optimization algorithms.
Yang (2009) proposed a new heuristic algorithm, called the firefly algorithm (FA), based

on three idealized rules: (i) fireflies attract one another with flashing lights; (ii) the level of
attractiveness is proportional to their brightness and a less bright firefly will move towards a
brighter one, otherwise it will move randomly; (iii) the brightness of a firefly is determined
by the landscape of its objective function. For a maximization problem, a population of
fireflies is generated and the brightness is simply proportional to the value of the objective

10 Computational Intelligence

function (fitness value). FA has found many applications in engineering and multi-objective
optimization problems (Yang, 2008, 2010).
Quite a number of cuckoo species engage in obligate brood parasitism by laying their eggs

in the nests of other host birds of different species. If the host bird discovers the eggs are not its
own, it either throws the eggs away or abandons the nest. Some cuckoo species are specialized
in the mimicry of colour and pattern of eggs of their chosen host species, thus reducing the
chances of their eggs being thrown out or abandoned. Yang and Deb (2010) developed a
new meta-heuristic optimization algorithm, called cuckoo search (CS), which is based on the
interesting breed behaviour of certain cuckoo species. There have been many applications of
cuckoo search reported in the literature (Yang, 2008, 2010).
MacArthur and Wilson (1967) began working together on mathematical models of bio-

geography in the 1960s. They were trying to develop mathematical models of biogeography
that describe how species migrate from one island to another, how new species arise and how
species become extinct. Since then biogeography has become a major area of research, which
studies the geographical distribution of biological species. The concept of biogeography can
be used to derive a new family of algorithms for optimization called biogeography-based
optimization (BBO). BBO has been applied to benchmark functions and to a sensor-selection
problem, providing performance on a par with other population-based methods (Simon, 2008).
Passino (2002) pointed out, in a seminal paper, how individual and groups of bacteria forage

for nutrients and how to model this as a distributed optimization process; the natural foraging
strategy can lead to optimization and the idea can be applied to solve real-world optimization
problems. Based on this concept, Passino (2002) proposed an optimization technique known
as the bacterial foraging optimization algorithm (BFOA). To date, BFOA has been applied
successfully to real-world problems such as optimal controller design, harmonic estimation,
transmission loss reduction, active power filter synthesis and learning of artificial neural
networks (Das et al., 2009).
Several newmeta-heuristic optimization algorithms inspired by nature have been introduced

in recent years. Among them are a galaxy-based search algorithm (Hosseini, 2011) and spiral
dynamics-inspired optimization (Tamura and Yasuda, 2011).
EA and SI together form a broader class of search and optimization paradigm termed global

search and optimization (GSO). The classification of the different algorithms and techniques
of GSO is shown in Figure 1.3.

GSO

EP

EA

ES GA GP DE CA PSO

SI

ACO FA CS BBO BFOA

Figure 1.3 Classification of GSO

Introduction to Computational Intelligence 11

1.4 Synergies of Computational Intelligence Techniques

The synergistic combination of all the methodologies has a very rational basis for applications
and designing intelligent systems. An individual method can be excellent in approximate
reasoning and modelling uncertainty but may not be good at learning with experiential data
or may not be good at adapting in an unknown environment. Thus, a combined approach with
computational intelligence techniques and their implementation is of importance for overall
performance, computation cost and convenience of application. This combination is called a
hybrid intelligent system by many researchers. Zadeh (1994) thinks hybrid intelligent systems
are definitely the way of the future.
Fuzzy logic is good at approximate reasoning but does not have any learning ability or

adaptive capacity. Neural networks, on the other hand, have efficient mechanisms in learn-
ing from experiential data. Evolutionary algorithms enable a system to adapt behaviour or
optimize structure. The synergistic combination of these methodologies can provide better
computational models that will complement the limitations of any single method. Depending
on the compatibility of the individual methodologies, the synergism can be classified into two
types: strongly coupled and weakly coupled. In strongly coupled synergism, the individual
methodologies are hybridized in such as way as to be inseparable and each individual method-
ology loses most of its identity in the combined structure. In weakly coupled synergism, each
individual methodology plays its own part by upholding the structural identity and working
towards a common goal.
The different forms of synergisms of fuzzy logic, neural networks and evolutionary algo-

rithms are shown in Figure 1.4. The common forms of synergism of fuzzy systems and
evolutionary algorithms include tuning, optimization and learning of membership functions,

Computational

Intelligence

Fuzzy logic

Evolutionary

Computing
Fuzzy logic

Fuzzy logic

Neural

networks

Evolutionary

Computing

Neural

networks
Evolutionary

Computing

Neural

networks

Figure 1.4 Synergies of computational intelligent methodologies

12 Computational Intelligence

parameters and rule-based fuzzy systems using evolutionary algorithms. Another form of syn-
ergism is the control of different parameters of evolutionary algorithm by a fuzzy controller.
Both forms of fuzzy evolutionary synergism are weakly coupled.
The common forms of weakly coupled synergisms of neural networks and evolutionary

algorithms include training, designing, optimizing architecture and parameters of neural net-
works and feature selection, transformation and scaling of training data for neural networks
using evolutionary algorithms. Also, neural networks are being used to control parameters of
evolutionary algorithms. There is also a strongly coupled synergism between the two method-
ologies where the genetic operations are represented in the form of a neural network and the
training epochs are meant to be the generations of evolution.
Synergisms of neural networks and fuzzy systems are the most common and have proved

to be very powerful tools for system modelling and control. In a weakly coupled synergism,
neural networks and fuzzy systems work independently towards a common goal, where neural
networks assist fuzzy systems to acquire knowledge and rules, tuning or adjusting membership
functions. In strongly coupled synergism, a fuzzy system is represented in the form of a neural
network, which can learn from experiential data. The literature is rich in this type of synergism.
The final type of synergism is a combination of the three methodologies. The most common

synergism is the training or optimizing structure of a hybrid neuro-fuzzy system using an
evolutionary algorithm. A strongly coupled synergism of the three methodologies may not
be possible. There are other types of synergisms possible between swarm intelligence, fuzzy
systems, evolutionary algorithms and neural networks.

1.5 Applications of Computational Intelligence

The essence of systems based on computational intelligence is the process that interprets
information and data of various natures. The other feature of computational intelligence is that
where processing of information in algorithms becomes difficult. Developed theories have
been quickly applied to various fields of computer science, engineering, data analysis and
biomedicine. Each component methodology of the CI has its application areas. Certainly,
more than one technology can be applied to the same application. For example, data clustering
can be performed using neural networks and fuzzy logic but the difference would be in the
accuracy of the performance. The application areas of neural networks can be categorized
into five groups, such as data analysis and classification, associative memory, clustering, gen-
eration of patterns and control. Neural networks have been applied to analyse and classify
medical data and images, for example, EEG, cancer data, etc. Neural networks have also
been widely used for face detection, fraud detection and pattern analysis. The use of neural
networks in nonlinear control applications is the most successful area. The inherent advantage
of neural networks is that they can deal with nonlinearities of a system and model such sys-
tems when sufficient data are available. The application areas of evolutionary algorithms are
optimization and multi-objective optimization. Since traditional mathematical optimization
techniques are difficult or too costly to apply to many problem domains such as robot tract
determination, scheduling problems, DNA analysis, optimization of large structural parame-
ters, etc., evolutionary algorithms are becoming popular for these problems. Fuzzy logic and
fuzzy systems have found a wide range of applications such as control, image processing and
decision making. Fuzzy logic control has been applied to many household appliances such
as washing machines, microwave ovens, toasters, vacuum cleaners, etc. One application of a
fuzzy controller is well known: its implementation on a video camera to stabilize the image

Introduction to Computational Intelligence 13

while holding the camera unsteadily. Fuzzy expert systems have been applied to many areas
of medical diagnostics, scheduling, foreign exchange trading and business strategy selection.

1.6 Grand Challenges of Computational Intelligence

Though the CI techniques have been applied successfully to scientific, engineering, economic,
business and industrial problems, CI seriously lacks efficient knowledge acquisition, represen-
tation and retrieval structures. The grand challenges for the CI community would be to propose
more efficient knowledge representation and retrieval mechanisms. Feigenbaum (2003) thinks
the grand challenge would be to build a large knowledge base by simply reading text and thus
reducing the knowledge engineering effort by one order of magnitude. Some researchers argue
that CI should be more human-centric, helping humans to formulate their goals and solve their
problems, leading to personal fulfilment (Duch, 2007). A long-term goal for CI would be to
create cognitive systems that can compete with humans in a large number of problems. A
good part of CI research is concerned with low-level cognitive functions such as perception,
object recognition, signal analysis, finding structure in data and association tasks. Despite
great progress in CI, artificial systems designed to solve lower-level cognitive tasks are far
behind simple natural systems. From this point of view, CI needs to focus on higher-level
cognitive systems using symbolic knowledge representation. CI is more than the study of the
design of intelligent systems; it includes all non-algorithmizable processes which humans can
perform with various degrees of competence. In that sense, Goldberg and Harik (1996) see CI
more as a way of thinking about problems rather than a solution to problems using specific
techniques.

1.7 Overview of the Book

Chapter 2 describes the concepts of fuzzy logic, fuzzy sets and the description of fuzzy sets by
membership functions, different types of membership functions and their features. To apply
fuzzy logic one needs to understand the operations of fuzzy sets and fuzzy relations, which
are discussed in the chapter with examples. The chapter also describes the interesting features
of linguistic variables and hedges. The chapter shows the fascinating features of fuzzy if–then
rules and inference mechanisms that will help in developing applications. The chapter also
provides a set of worked examples.
Chapter 3 presents an investigation into different types of fuzzy systems, fuzzy modelling

and fuzzy controlmethods and techniques in general. These include simpleMamdani-, Sugeno-
and Tsukomoto-type fuzzy modelling and control techniques. A comparative study of the
suitability of different methods for applications is made. The chapter also presents different
types of fuzzy controllers, namely PD, PI and PID. Different approaches to rule reduction are
investigated and analysed as well.
Chapter 4 presents an introduction to biological neurons, different models of neurons,

activation functions and basics of neural networks. The chapter then introduces different
feedforward architectures such as the multilayer perceptron, radial-basis function, regression
networks, probabilistic, belief and stochastic networks and recurrent architectures such as
Elman, Jordan and Hopfield networks. The chapter describes different learning algorithms of
neural networks, such as supervised and unsupervised.
Chapter 5 presents neural systems with application to nonlinear systems. Different tech-

niques of identification and modelling of nonlinear systems using neural networks have been

14 Computational Intelligence

discussed. Application of neural networks to control problems is a very popular and widely
used technique. Different schemes of neuro-control, such as direct, indirect, backpropaga-
tion through time and inverse control, have been discussed. Neural networks have also been
popular for predictive and adaptive control. Different schemes of predictive and adaptive
neuro-control with applications have also been discussed. This chapter introduces different
application developments with MATLAB R© as well.
Chapter 6 presents evolutionary computing and algorithms. Basic to any evolutionary com-

puting is the chromosome representation and genetic operators. This chapter describes dif-
ferent types of encoding scheme, selection and crossover and mutation operators. Finally,
it introduces different evolutionary algorithms such as genetic algorithms, genetic program-
ming, evolutionary programming, evolutionary strategies, differential evolution and cultural
algorithms.
Chapter 7 presents an investigation into different evolutionary systems and their applications.

Multi-objective optimization is one of the promising areas of application of evolutionary
algorithms. This chapter also investigates co-evolution of populations and different symbiotic
relationships between species. Another aspect in evolutionary algorithms is parallelism, where
multiple populations work together with a common goal. This chapter presents an account of
these techniques widely used in evolutionary computing.
Chapter 8 presents combinations of fuzzy systems and evolutionary computing. Different

kinds of combination are possible, such as controlling parameters of evolutionary algorithms
by fuzzy logic and optimizing parameters of a fuzzy system by evolutionary algorithms. This
chapter presents the optimization of fuzzy systems, especially membership functions, rule-
based or both using evolutionary algorithms and also highlights the fuzzy control of genetic
operators in limited applications.
Chapter 9 presents combinations of evolutionary algorithms and neural networks. Mainly

two types of combination, supportive and collaborative, between evolutionary algorithms and
neural networks have been reported in the literature. In supportive combinations, one of the two
technologies is the primary problem solver and the other plays a supporting role, such as setting
up initial conditions or parameters. In collaborative combinations, both of the technologies
act together as a problem solver. This chapter will explore these combinations in designing
and training neural networks, learning control parameters, activation functions and setting up
initial conditions.
Chapter 10 presents combinations of neural networks and fuzzy systems, the most important

of which are cooperative and hybrid combinations. In cooperative combinations, fuzzy systems
or neural networks are used to control parameters, initial conditions and/or structures of neural
networks or fuzzy systems. This chapter covers the detailed description, architectures and use
of possible combinations of these two technologies. In hybrid combinations, each of these
technologies loses its identity and presents a new single system to address the problem at
hand. The most successful and widely used hybrid system is the ANFIS. This chapter will
introduce ANFIS and different variants as well as other hybrids.

1.8 MATLAB R© Basics

MATLAB R© is a high-level language for scientific and engineering computation.MATLAB R© is
an integrated software environment and provides numeric computation, data analysis, graphics
visualization and system simulation. The integrated environment of MATLAB R© is shown in

Introduction to Computational Intelligence 15

MATLAB®

Simulink®

Toolbox

User-written

M-files

Figure 1.5 MATLAB R© environment

Figure 1.5. The language, tools and built-in maths functions enable users to explore multiple
approaches and reach faster solutions than with other programming languages. It provides
tools for creating customized toolboxes or harnessing with other toolboxes such as fuzzy
logic, direct search and genetic algorithms or neural network toolboxes. Applications are
developed by writing M-files and running at the command prompt. Simulink R© is a software
package for modelling, simulating and analysing dynamical systems under MATLAB R©. It
supports linear and nonlinear systems, modelled in continuous time, sampled time or a hybrid
of the two. Different parts of the system can have different rates. Simulink R© provides a
graphical user interface (GUI) for building models as block diagrams using click-and-drag
mouse operations. Simulink R© also includes a comprehensive block library of sinks, sources,
linear and nonlinear components and connectors.
This section provides a brief introduction to different command-line functions of

MATLAB R©. A brief introduction to MATLAB R©, different functions, control statements,
writing M-files and plot functions are discussed, with examples in Appendix A.

References

Bezdek, J.C. (1994) What is computational intelligence? In Computational Intelligence Imitating Life, J.M. Zurada,
R.J. Marks II and C.J. Robinson (eds), IEEE Press, New York, pp. 1–12.

Blum, C. (2005) Ant colony optimisation: introduction and recent trends, Physics of Life Reviews, 2, 353–373.
Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial Systems, Oxford
University Press, New York.

Box, G.E.P. (1957) Evolutionary operation: a method for increasing industrial productivity, Applied Statistics, 6(2),
81–101.

Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E. (2001) Self-Organization
in Biological Systems, Princeton University Press, Princeton, NJ.

Couzin, I.D., Karause, J., James, R., Ruxton, G.D. and Franks, N.R. (2002) Collective memory and spatial sorting in
animal groups, Journal of Theoretical Biology, 218, 1–11.

Daley, D.J. and Kendal, D.G. (1965) Stochastic rumours, Journal of the Institute of Mathematics and its Applications,
1, 42–55.

16 Computational Intelligence

Darwin, C. (1859) The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the
Struggle for Life, Mentor, New York (reprint 1958).

Das, S., Dasgupta, S., Biswas, A., Abraham, A. and Konar, A. (2009) On the stability of the chemotactic dynamics
in bacterial-foraging optimisation algorithm, IEEE Transactions on Systems, Man and Cybernetics A, 39(3),
670–679.

Dote, Y. and Ovaska, S.J. (2001) Industrial applications of soft computing: a review, Proceedings of the IEEE, 89(9),
1243–1265.

De Jong, K.A. (1975) Analysis of the behaviour of a class of genetic adaptive systems, PhD Thesis, University of
Michigan, Ann Arbor, MI.

Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J.-M. (1990) The self-organizing exploratory pattern of the
Argentine ant, Journal of Insect Behaviour, 3, 159–168.

Devaney, R.L. (1989) An Introduction to Chaotic Systems, 2nd edn, Addison Wesley, New York.
Dorigo, M., Maniezzo, V. and Colorni, A. (1996) Ant system: optimization by a colony of cooperating agents, IEEE

Transactions on System, Man and Cybernetics B, 26(1), 29–41.
Dorigo, M. and Stützle, T. (2004) Ant Colony Optimization, MIT Press, Cambridge.
Duch,W. (2007) Towards comprehensive foundations of computational intelligence. InChallenges for Computational

Intelligence, W. Duch and J. Mandziuk (eds), Springer-Verlag, Berlin.
Eberhart, R.C. and Shui, Y. (2007) Computational Intelligence – Concepts to Implementations, Elsevier, Amsterdam.
Engelbrecht, A.P. (2002) Computational Intelligence: An Introduction, John Wiley & Sons, New York.
Erdos, P. and Spencer, J. (1974) Probabilistic Methods in Combinatorics, Academic Press, New York.
Feigenbaum, E.A. (2003) Some challenges and grand challenges for computational intelligence, Journal of the ACM,
50(1), 32–40.

Fogel, D.B. (1995a) Review of computational intelligence: imitating life, IEEE Transactions on Neural Networks, 6,
1562–1565.

Fogel, D.B. (1995b) Evolutionary Computation – Toward a New Philosophy of Machine Intelligence, IEEE Press,
New York.

Fogel, L.J. (1962) Autonomous automata, Industrial Research, 4, 14–19.
Fraser, A.S. (1957) Simulation of genetic systems by automatic digital computers, I. Introduction, Australian Journal

of Biological Sciences, 10, 484–491.
Friedberg, R.M. (1958) A learning machine: Part I, IBM Journal of Research and Development, 2(1), 2–13.
Garnier, S., Gautrais, J. and Theraulaz, G. (2007) The biological principles of swarm intelligence, Swarm Intelligence,
1, 3–31.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, New
York.

Goldberg, D.E. andHarik, G. (1996)A case study in abnormal CI: the designmanufacturing and others anthropocentric
systems, International Journal of Computational Intelligence and Organisations, 1, 78–93.

Grim, P. (1993) Self-reference and chaos in fuzzy logic, IEEE Transactions on Fuzzy Systems, 1(4), 237–253.
Grossberg, S. (1982) Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition,

and Motor Control, Reidell Press, Boston, MA.
Hebb, D.O. (1949) The Organization of Behaviour: A Neuropsychological Theory, John Wiley, New York.
Holland, J.H. (1962) Outline for a logical theory of adaptive systems, Journal of ACM, 3, 297–314.
Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Pro-

ceedings of National Academy of Sciences, 79, 2554–2558.
Hosseini, H.S. (2011) Principal component analysis by galaxy-based search algorithm: a novel metaheurisitc for
continuous optimisation, International Journal of Computational Science and Engineering, 6(1&2), 132–140.

Illeris, K. (2004) Three Dimensions of Learning, Krieger Publishing, Malabar, FL.
Kennedy, J. and Eberhart, R.C. (2001) Swarm Intelligence, Morgan-Kaufmann, New York.
King, R.E. (1999) Computational Intelligence in Control Engineering, Marcel Dekker, New York.
Konar, A. (2005) Computational Intelligence: Principles, Techniques and Applications, Springer-Verlag, Berlin.
Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT
Press, Cambridge, MA.

MacArthur, R. and Wilson, E. (1967) The Theory of Biogeography, Princeton University Press, Princeton, NJ.
Mackinson, S. (1999) Variation in structure and distribution of pre-spawning Pacific herring shoals in two regions of
British Columbia, Journal of Fish Biology, 55, 972–989.

Marks, R. (1993) Intelligence: computational versus artificial, IEEE Transactions on Neural Networks, 4(5), 737–739.

Introduction to Computational Intelligence 17

Momen, S., Amavasai, B.P. and Siddique, N.H. (2007) Mixed species flocking for heterogenous robotic swarms. In
The International Conference on Computer as a Tool (EUROCON 2007), Piscataway, NJ. IEEE Press, New York,
pp. 2329–2336.

Nekovee, M., Moreno, Y., Bianconi, G. and Marsili, M. (2007) Theory of rumour spreading in complex social
networks, Journal of Physica A, 374, 457–470.

Niwa, H.S. (1996) Newtonian dynamical approach to fish schooling, Journal of Theoretical Biology, 181, 47–63.
Ormrod, J.E. (1995) Human Learning, Prentice Hall, Englewood Cliffs, NJ.
Parrish, J.K., Viscido, S.V. and Grunbaum, D. (2002) Self-organized fish schools: an examination of emergent
properties, The Biological Bulletin, 202, 296–305.

Passino, K.M. (2002) Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control System
Magazine, 22(3), 52–67.

Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem, Royal Aircraft Establishment, Library
Translation No. 1122, Farnborough, UK.

Reynolds, C. (1987) Flocks, herds, and schools: a distributed behavioural model, Computer Graphics, 21(4), 25–34.
Reynolds, R.G. (1994) Introduction to cultural algorithms. In Proceedings of the Third Annual Conference on

Evolutionary Programming, A.V. Sebald and L.J. Fogel (eds), World Scientific Press, Singapore, pp. 131–139.
Reynolds, R.G. (1999) An Overview of Cultural Algorithms: Advances in Evolutionary Computation, McGraw-Hill,
New York.

Rumelhart, D.E., Hinton, G.E. andWilliams, R.J. (1986) Learning representations by back-propagation errors,Nature,
323, 533–536.

Samuel, A.L. (1959) Some studies in machine learning using game checkers, IBM Journal of Research and Develop-
ment, 3, 211–229.

Schwefel, H.-P. (1968) Projekt MHD-Strausstrhlrohr: Experimentelle Optimierung einer Zweiphasenduese, Teil I,
Technischer Bericht 11.034/68, 35, AEG Forschungsinstitute, Berlin.

Shaw, E. (1962) The schooling of fishes, Scientific American, 206, 128–138.
Shaw, E. (1975) Fish in schools, Natural History, 84(8), 40–46.
Simon, D. (2008) Biogeography-based optimization, IEEE Transactions on Evolutionary Computation, 12(6), 702–
713.

Storn, R. and Price, K. (1997) Differential evolution – a simple and efficient heuristic for global optimisation over
continuous space, Journal of Global Optimisation, 11(4), 431–459.

Sumathi, S. and Surekha, P. (2010)Computational Intelligence Paradigms – Theory and Applications Using MATLAB,
CRC Press/Taylor & Francis, Boca Raton, FL.

Tamura, K. and Yasuda, K. (2011) Primary study of spiral dynamics inspired optimisation, IEEJ Transactions on
Electrical and Electronic Engineering, 6(S1), 98–100.

Turgut, A.E., Çelikkanat, H., Gökçe, F. and Sahin, E. (2008) Self-organized flocking in mobile robot swarms, Swarm
Intelligence, 2, 97–120.

Turing, A.M. (1950) Computing machinery and intelligence, Mind, 59, 433–460.
Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley & Sons, New York.
Widrow, B. (1987) Adaline and Madaline, Proceedings of the IEEE First International Conference on Neural

Networks, 1, 145–157.
Yang, X.S. (2008) Nature-Inspired Metaheuristic Algorithms, Luniver Press, Bristol.
Yang, X.S. (2009) Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Appli-

cations, SAGA 2009, Lecture Notes in Computer Sciences, Vol. 5792, Springer-Verlag, Berlin, pp. 169–178.
Yang, X.S. (2010) Engineering Optimisation: An Introduction with Metaheuristic Applications, John Wiley & Sons,
New York.

Yang, X.S. and Deb, S. (2010) Engineering optimisation by cuckoo search, International Journal of Mathematical
Modelling and Numerical Optimisation, 1(4), 330–343.

Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8(3), 338–353.
Zadeh, L.A. (1973) Outline of a new approach to the analysis of complex systems and decision process, IEEE

Transactions on System, Man and Cybernetics, 3, 28–44.
Zadeh, L.A. (1998) Roles of soft computing and fuzzy logic in the conception, design and deployment of infor-
mation/intelligent systems. In Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with
Applications, O. Kaynak, L.A. Zadeh, B. Tiirksen and I.J. Rudas (eds), Springer-Verlag, Berlin, pp. 10–37.

Zadeh, L.A. (1994) Fuzzy logic, neural networks and soft computing, Communications of the ACM, 37, 77–84.

2
Introduction to Fuzzy Logic

2.1 Introduction

In classical (Newtonian) mechanics, uncertainty was considered as undesirable and to be
avoided by any means. In the late nineteenth century, researchers started to realize that no
physical system exists without a certain amount of uncertainty. This is a phenomenon without
which the description of a system or model is incomplete. A trend started then in science
and engineering to incorporate uncertainty in system models. At this stage uncertainty was
quantified with the help of probability theory, developed in the eighteenth century by Thomas
Bayes (Price, 1763). The expression of uncertainty using probability theorywas first challenged
by Max Black (Black, 1937). He proposed a degree as a measure of vagueness. Vagueness can
be used to describe a certain kind of uncertainty. For example, John is young. The proposition
defined here is vague. He pointed out two main ideas: one is the nature and observability of
vagueness and the other is the relevance of vagueness for logic. Black proposed vague sets
defined by a membership curve. This was the first attempt to give a precise mathematical
theory for sets where there is a membership curve.
There was another movement present in the philosophy, among logicians. The most basic

assumptions of classical (or two-valued) propositional as well as first-order logic are the
principles of bivalence and compositionality. The principle of bivalence is the assumption that
each sentence is either true or false under any one of the interpretations, i.e., has exactly one of
the truth values usually denoted numerically by 1 and 0. The problem of future contingencies
was a source of many unresolved debates during the middle ages, continuing until the revival
of the field of logic in the second half of the nineteenth century. In the second half of the
nineteenth century, dissatisfaction with the principle of bivalence appeared (Gottwald, 2001).
Charles Sanders Peirce laughed at the ‘sheep and goat separators’ who split the world into
true and false. Around 1867, Peirce set up a triadic trichotomic semiotic as a new type of logic
of universal nature. It necessarily derives from a general philosophical system, the doctrine
of the continuum. All that exists is continuous and such a continuum governs knowledge and
implies generality (Eisele, 1979).
Following the doctrine of the continuum, new interest in multi-valued logic began in the

early twentieth century. The real starting phase of many-valued logic began in the 1920s
and continued until 1930. The main driving force behind the development was the Polish

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

20 Computational Intelligence

School of Logic under the leadership of Jan Lukasiewicz (Lukasiewicz, 1930; Lukasiewicz
and Tarski, 1930). Lukasiewicz proposed a formal model of many-valued logic, claiming that
the three-valued and the infinite-valued case are of interest for applications. His first intention
was to use a third truth value for ‘possible’. In his three-valued proposal, 1 stands for true, 0
stands for false and 1/2 stands for possible. This intended application to modal logic and the
Lukasiewicz system did not work out well. At the same time, the American mathematician
Post (1921) introduced a family of finitely valued systems. His interest was in the problem of
functional completeness.
Following themovement of the Polish School of Logic, thereweremany theoretical develop-

ments in many-valued logic in the 1930s and 1940s. The work of Goedel (1932) and Jaskowski
(1936) clarified the mutual relations between the intuitionist and many-valued logic. Goedel
tried to understand intuitionist logic in terms of many truth degrees. The outcome was the
family of Goedel systems. Also the result, namely, that intuitionist logic does not have a char-
acteristic logical matrix with only finitely many truth degrees. Jaskowski (1936) constructed
an infinite-valued characteristic matrix for intuitionist logic. It appeared that the truth degrees
of the matrix do not have a suitable intuitive interpretation.
It was Albert Einstein who first pointed out that mathematical precision does not correspond

to reality. His remarkable comment during the lecture on ‘Geometrie und Erfahrung’ clarified
that so far as the laws of mathematics refer to reality, they are not certain. And so far as they
are certain, they do not refer to reality (Einstein, 1921). This was a landmark assertion that
physical variables cannot be measured to their equivalent mathematical exactness despite the
availability of high-precision instruments. The tolerance and acceptance of imprecision and
uncertainty was gradually mounting among scientists and engineers, realizing that precision
and uncertainty incur costs for industry. Human thinking is also not stirred by numeric cal-
culations, rather by approximate reasoning based on manipulation of imprecise information.
Vagueness is consciously accepted in daily life to facilitate perception and communication.
Bertrand Russell sees both vagueness and precision as features of language, they are not reality.
He further argues that vagueness is clearly a matter of degree (Rolf, 1982). If all these are seen
as a historical consequence, the events of multi-valued logic and imprecision about the real
world have led to the development of fuzzy logic.
Beside these developments inside pure many-valued logic, Zadeh (1965) started an

application-oriented approach towards formalization of vague notions by generalized set-
theoretic means. His main argument was that as the complexity of a system increases, the
ability to make precise and significant statements about its behaviour diminishes until a
threshold is reached beyond which precision and significance become almost mutually exclu-
sive characteristics (Zadeh, 1973). He introduced the concept of a fuzzy set in his seminal
paper published in 1965 (Zadeh, 1965). As the father of fuzzy logic, he was instrumental in
making fuzzy logic a major field of study to complement probability theory and its widespread
use, with numerous applications.

2.2 Fuzzy Logic

Logic is a tool for reasoning propositions that can be manipulated with mathematical precepts.
A proposition is a declarative or linguistic statement within a universe of discourse. For
example, Elizabeth is tall. In classical logic a proposition is either true or false. That means
the proposition ‘Elizabeth is tall’ can be either true or false. As another example, Figure 2.1

Introduction to Fuzzy Logic 21

Almost Full ?

Empty FALSE

Full TRUE

Figure 2.1 A real-world situation

shows a real-world situation where the glass is more than half full of water. The values true
or false in classical two-valued logic cannot describe a situation like this. Fuzzy logic is a
transition from absolute truth to partial truth. That is, from a variable x (True or False) to a
linguistic variable ‘Almost full’, ‘Very close to empty’, etc. From this perspective, fuzzy logic
can be seen as a reasoning formalism of humans where all truths are partial or approximate
and any falseness is represented by partial truth.

2.3 Fuzzy Sets

A fuzzy set A in X is characterized by a membership function μA (x) which associates with
each point in X a real number in the interval [0, 1], with the values of μA (x) at x representing
the grade of membership of x in A. That is, the class of objects A belongs to X with a
continuum of grades of membership μA (x). For example, a fuzzy set A = {x1, x2, x3, x4} in
X is characterized by the membership function μA(x) which maps each point x in X to real
values 0.5, 1, 0.75 and 0.5. μA(x) represents the degree of membership of x in A and the
mapping is only limited by μA(x) ∈ [0, 1]. In classical set theory, the membership function
can take only two values: 0 and 1, i.e., either μA(x)=1 or μA(x) = 0. In set-theoretic notation
this is written as μA(x) ∈ {0, 1}. A fuzzy set is an extension of a classical set. If X is the
universe of discourse and its elements are denoted by x , then a fuzzy set A in X is defined as
a set of ordered pairs

A = {x, μA(x) | x ∈ X} (2.1)

This mapping can be depicted pictorially, as shown in Figure 2.2.
In Figure 2.2, x1, x2, x3 and x4 have membership grades of 0.5, 1, 0.75 and 0.5, respec-

tively, written as μA (x1) = 0.5, μA (x2) = 1, μA (x3) = 0.75 and μA (x4) = 0.5. A notational

A(xμ)

 x1 x2 x3 x4 x

1

0.5

0.75

Figure 2.2 Fuzzy set

22 Computational Intelligence

)(xμB

X

1
0.9

B1 = Tall B2 = very Tall

x4

0.5
1

0.6

x1 x2 x3

0.4

Figure 2.3 Set of tall boxes

convention of fuzzy sets for a discrete and finite universe of discourse X in practice is
written as

A = {μA(x1)/x1 + μA(x2)/x2 + · · · + μA(xn)/xn} =
n∑

i=1
μA(xi)/xi (2.2)

where ‘+’ does not mean arithmetic addition or logical OR.

Example 2.1 Let A = {x1, x2, x3, x4} in the universe of discourse X having membership
values of 0.4, 1.0, 0.7 and 0.8, respectively. This fuzzy set can be written as

A = {0.4/x1 + 1.0/x2 + 0.7/x3 + 0.8/x4}

Example 2.2 Let B1 = {x1, x2, x3, x4} be a set of tall boxes and B2 = {x1, x2, x3, x4} be a
set of very tall boxes in the universe of discourse X . The fuzzy sets for the tall and very tall
boxes can be written as

B1 = {0.5/x1 + 1.0/x2 + 0.4/x3 + 0/x4}
B2 = {0/x1 + 0/x2 + 0.6/x3 + 0.9/x4}

The two fuzzy sets for tall and very tall boxes are shown graphically in Figure 2.3. It should
be noted that box x3 belongs to fuzzy set B1 = Tall with a grade of membership 0.4 and to
B2 = very Tall with a grade of membership 0.6.

2.4 Membership Functions

Very often, real-world situations are not certain and cannot be described precisely. For example,
the uncertainty in Example 2.2 is belonging to Tall or very Tall. The uncertainties of expressions
like ‘very nice’, ‘too small’, ‘high value’ are called fuzziness. The function that characterizes
the fuzziness of a fuzzy set A in X, which associates each point in X with a real number in

Introduction to Fuzzy Logic 23

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MF1[1,4,8] MF2[4,8,9]

Symmetric MF
Asymmetric MF

M
em

be
rs

hi
p

va
lu

e

Figure 2.4 Triangular MF

the interval [0, 1], is called a membership function (MF). There is no strict rule for defining
a membership function. The choice of membership function is usually problem-dependent
and often determined heuristically and subjectively. Most widely used MFs in the fuzzy logic
literature are triangular, trapezoidal, Gaussian and bell-shaped functions.

2.4.1 Triangular MF

A triangular MF is specified by three parameters {a, b, c}, shown in Figure 2.4 and defined as

μ(x) = max

(
min

(
x − a

b − a
,

c − x

c − b

)
, 0

)
(2.3)

The parameters {a, b, c} with a < b < c determine the x coordinates of the three corners of
the underlying triangular MF. Triangular MFs can be asymmetric, depending on the relations
a ≤ b and b ≤ c. Figure 2.4 shows a symmetric and an asymmetric triangular MF.

2.4.2 Trapezoidal MF

A trapezoidalMF is specified by four parameters {a, b, c, d}, shown inFigure 2.5 and defined as

μ(x) = max

(
min

(
x − a

b − a
, 1,

d − x

d − c

)
, 0

)
(2.4)

24 Computational Intelligence

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trapezoidal MF1[a = 0, b = 2, c = 5, d = 7] MF2[a = 3, b = 7, c = 9, d = 10]

Symmetric MF

Asymmetric MF

M
e

m
b

e
rs

h
ip

 v
a

lu
e

Figure 2.5 Trapezoidal MF

The parameters {a, b, c, d} with a < b < c < d determine the x coordinates of the four
corners of the underlying trapezoidal MF. Trapezoidal MFs can be asymmetric, depending
on the relations a ≤ b and c ≤ d . Both triangular and trapezoidal MFs can be symmetric
or asymmetric, which is seen as an advantage for some applications. Owing to their simple
formulae and computational efficiency, both triangular and trapezoidal MFs have been used
extensively, especially in online applications.

2.4.3 Gaussian MF

A Gaussian MF is specified by two parameters {m, σ }, shown in Figure 2.6 and defined as

μ(x) = exp

[
−1
2

(
x − m

σ

)2]
(2.5)

The parameters m and σ represent the centre and width of the Gaussian MF, respectively.

2.4.4 Bell-shaped MF

Abell-shapedMF is specified by three parameters {m, σ, a}, shown in Figure 2.7 and defined as

μ(x) = 1

1+
∣∣∣∣ x − m

σ

∣∣∣∣
2a (2.6)

Introduction to Fuzzy Logic 25

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian MF1[sig = 1 m = 3.5] MF2[sig = 1 m = 6.5]

width width

M
em

be
rs

hi
p

va
lu

e

Figure 2.6 Gaussian MF

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 5, sig = 2 and a = 1, a = 2, a = 4 & a = 8

a = 1

a = 2

a = 4

a = 8

B
e

ll-
s
h

a
p

e
d

 f
u

n
c
ti
o

n
 w

it
h

 i
n

c
re

a
s
in

g
 a

Figure 2.7 Bell-shaped MF with increasing value of a

26 Computational Intelligence

The parameters m and σ represent the centre and width of the bell-shaped MF, respectively.
Parameter a, usually positive, controls the slope of the MF as shown in Figure 2.7. The MF is
narrower with increasing value of a.

2.4.5 Sigmoidal MF

Gaussian and bell-shaped MFs are smooth and symmetric MFs. There are many applications
where asymmetric MFs are useful. A sigmoidal MF is asymmetric and is either open left or
right (Jang et al., 1997). A parameterized sigmoidal MF is defined by

μ(x) = 1

1+ exp [−a (x − c)]
(2.7)

The parameter a controls the slope of the MF at the cross-point x = c. Two sigmoidal MFs
are shown in Figure 2.8. One is right open and the other is left open. The sign of the parameter
a determines the open-end direction of the sigmoidal MF. If a is positive, the MF will open to
the right and if a is negative, the MF will open to the left. This property of the sigmoidal MF
helps to define extreme positive or extreme negative MFs.
There is no general rule for choosing the type ofMFs for a particular problem or application.

It is rather application-dependent; the shape ofMFdepending on the parameters of theMFused,
which greatly influences the performance of a fuzzy system. There are different approaches to
construct membership functions, such as heuristic selection (the most widely used), clustering
approach, C-means clustering approach, adaptive vector quantization and self-organizingmap.

–6 –4 –2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

a = 1 & c = –0.5

a = –0.9 & c = 0.5

y
(x

)=
1
/[
1
+

e
x
p
(-

a
*(

x
-c

))
]

Figure 2.8 Two sigmoidal MFs

Introduction to Fuzzy Logic 27

For a detailed description of these approaches, interested readers are directed to Chi et al.
(1996). Some methods of tuning and optimization of MFs are discussed in Chapter 8.

2.5 Features of MFs

Several concepts used to define membership functions are discussed here: support set, core,
singleton, crosspoints (or crossover points), peak point, symmetric or asymmetric membership
function, left and right width.

2.5.1 Support

The support of a fuzzy set A is the set of all points x ∈ X at which μA(x) > 0. Assume A
is a fuzzy subset of X. The support of A, denoted Support(A), is the crisp subset of X whose
elements have nonzero membership grades in A, defined as

Support(A) = {x | μA(x) > 0 and x ∈ X} (2.8)

2.5.2 Core

The core of a fuzzy set A, denoted Core(A), is the crisp subset of X consisting of all elements
with membership grade 1. This is defined as

Core(A) = {x | μA(x) = 1 and x ∈ X} (2.9)

The support set Support(A) and core set Core(A) of a trapezoidal MF are shown in
Figure 2.9.

2.5.3 Fuzzy Singleton

A fuzzy set whose support is a single point in X at which μA(x) = 1 is called a singleton. A
singleton is shown in Figure 2.10.

(x)μ

1

xa b c d

Support set
0.5

Core
A

Figure 2.9 Support set and core of MF A

28 Computational Intelligence

)(xμ

1

x

0.5

Singleton

Figure 2.10 Singleton

2.5.4 Crossover Point

A crossover point of a fuzzy set A is a point x ∈ X at which μA(x) = α with α ∈ [0, 1]:

Crossover(A) = {x | μA(x) = 0.5} (2.10)

The crossover point of the membership function A with B is at 0.5. In other words, it is the
overlap of two neighbouring membership functions. The overlap of the two triangular MFs A
and B is shown in Figure 2.11. The crossover of A is the same as the crossover of B.
A triangular MF has three features by which it can be parameterized: the peak, left width

and right width. These are the anchor points of the three corners of a triangular MF. At the
peak point, point b of MF A and point c of MF B in Figure 2.11, the membership value is
1. The left width is the distance of the left anchor point from the peak point and the right
width is the distance of the right anchor point from the peak point. The left and right widths
for the MF B are shown in Figure 2.11. If the left and right widths are not equal the MF is
asymmetric, otherwise it is symmetric. The MF B in Figure 2.11 is asymmetric triangular
whereas the MF A is symmetric. Symmetric and asymmetric trapezoidal MFs are shown
in Figure 2.5.

)(xμ

1

xa b c d

Crosspoint of A and B

0.5
Left width

Right width

A B
Peak point

Figure 2.11 Crossover point, left and right width of MF

Introduction to Fuzzy Logic 29

2.6 Operations on Fuzzy Sets

The membership function is the main component defining the basic fuzzy set operations.
Zadeh and other researchers have given additional and alternative definitions for set-theoretic
operations.

α-cut of a fuzzy set: The α-cut of a fuzzy set A, denoted Aα , is a subset of X consisting of
all the elements in X defined by

Aα = {x | μAα
(x) ≥ α and x ∈ X} (2.11)

This means that the fuzzy set Aα contains all elements with a membership of α ∈ [0, 1] and
higher, called the α-cut of the membership function. The α-cut of a fuzzy set A is shown in
Figure 2.12. At a resolution level of α, it will have support of Aα . The higher the value of α,
the higher the confidence in the parameter.

Example 2.3 Let A be a fuzzy set in the universe of discourse X and (x1, x2, x3, x4) ∈ X
defined as follows:

A = {0.3/x1, 1/x2, 0.5/x3, 0.9/x4, 1/x5}

Aα for α > 0.5 is

Aα>0.5 = {1/x2, 0.9/x4, 1/x5}

Union of fuzzy sets: The union of two fuzzy sets A and B with membership functions μA

and μB , respectively, is a fuzzy set C, denoted C = A ∪ B, with the membership function
μC . There are two definitions for the union operation: the max membership function and the
product rule, as defined in Equations (2.12) and (2.13):

μC (x) = max [μA(x), μB(x)] (2.12)

μC (x) = μA(x)+ μB(x)− μA(x)μB(x) (2.13)

where x is an element in the universe of discourse X.

(xμ)

1

xa b c

A

α-cut

α

Aα

Figure 2.12 α-cut of the membership function

30 Computational Intelligence

0

1

0.7

0.2

0

0

0.4

0.7
0.8

1

0

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Figure 2.13 Union of fuzzy sets A and B using max operation

Example 2.4 Let A and B be two fuzzy sets in the universe of discourse X and (x1,
x2, x3, x4) ∈ X defined as follows:

A = {0/x1 + 1/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5 + 0/x6}
B = {0/x1 + 0.4/x2 + 0.7/x3 + 0.8/x4 + 1/x5 + 0/x6}

The union of fuzzy sets A and B using the max membership function is

Cmax = A ∪ B = {0/x1 + 1/x2 + 0.7/x3 + 0.8/x4 + 1/x5 + 0/x6}
where μC (xi) is calculated from max [μA(xi), μB(xi)] for i = 1, 2, 3, . . . , 6. Alternatively,
using the product rule it is

Cprod = A ∪ B = {0/x1 + 1/x2 + 0.91/x3 + 0.88/x4 + 1/x5 + 0/x6}
where μC (xi) is calculated using [μA(xi)+ μB(xi)− μA(xi) ∗ μB(xi)] for i = 1, 2, 3, . . . , 6.
The union operation of fuzzy sets A and B is shown in Figure 2.13.

Intersection of fuzzy sets: The intersection of two fuzzy sets A and B with membership
functions μA and μB , respectively, is a fuzzy set C, denoted C = A ∩ B, with membership
function μC defined using the min membership function or the product rule as

μC (x) = min [μA(x), μB(x)] (2.14)

μC (x) = μA(x)
∗ μB(x) (2.15)

Example 2.5 Let A and B be two fuzzy sets in the universe of discourse X and
(x1, x2, x3, x4) ∈ X defined as in the previous example.
The intersection of fuzzy sets A and B using the min membership function is

Cmin = A ∩ B = {0/x1 + 0.4/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5 + 0/x6}
where μC (xi) is calculated from μC (x) = min [μA(x), μB(x)] for i = 1, 2, 3, . . . , 6. Alterna-
tively, using the product rule it is

Cprod = A ∩ B = {0/x1 + 0.4/x2 + 0.49/x3 + 0.32/x4 + 0.2/x5 + 0/x6}

where μC (xi) is calculated from μC (x) = μA(x) ∗ μB(x) for i = 1, 2, 3, . . . , 6.

Introduction to Fuzzy Logic 31

0

1

0.7

0.2

0
0

0.4

0.7
0.8

1

0

0.4

1.2

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6

A B

C

Figure 2.14 Intersection of fuzzy sets A and B using the min operation

The intersection operation of fuzzy sets A and B is shown in Figure 2.14.

Complement of fuzzy set: The complement of a fuzzy set A with membership function μA is
a fuzzy set, denoted ∼A, with membership function μ∼A defined as

μ∼A(x) = 1− μA(x) (2.16)

Example 2.6 Let A be a fuzzy set in the universe of discourse X and (x1, x2, x3, x4,
x5, x6, x7, x8) ∈ X defined as follows:

A = {1/x1 + 1/x2 + 0.9/x3 + 0.8/x4 + 0.7/x5 + 0.3/x6 + 0.1/x7 + 0/x8}

The complement of fuzzy set A is ∼A:

∼ A = {0/x1 + 0/x2 + 0.1/x3 + 0.2/x4 + 0.3/x5 + 0.7/x6 + 0.9/x7 + 1/x8}

where μ∼A(x) is calculated from [1− μA(x)] for i = 1, 2, 3, . . . , 8.
The complement operation of fuzzy set A is shown in Figure 2.15.

Fuzzy subsets or containment: Let A and B be two fuzzy sets with membership functions μA

and μB , respectively. A is a subset of B (or A is contained in B), written A ⊂ B, if and only if

μA ≤ μB ∀x, x ∈ X (2.17)

1 1
0.9

0.8

0.6

0.3

0.1

0
0 0

0.1
0.2

0.4

0.7

0.9
1

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

A
~A

Figure 2.15 Complement of fuzzy set A

32 Computational Intelligence

Equality of fuzzy sets: Two fuzzy sets A and B with membership functions μA and μB ,
respectively are equal, written A = B, if and only if

μA = μB ∀x, x ∈ X (2.18)

Example 2.7 Let A and B be two fuzzy sets in the universe of discourse X and
(x1, x2, x3, x4) ∈ X defined as follows:

A = {0/x1 + 1/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5 + 0/x6}
B = {0/x1 + 1/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5 + 0/x6}

All the membership values of A are equal to those of B, i.e., μA = μB , therefore A = B.

Null (or empty) fuzzy set: A fuzzy set is null (or empty, denoted O/) if and only if its
membership function ∀x ∈ X (for all elements in X) is identically zero on X. This is defined as

μO/(x) = {x | μO/(x) = 0 and ∀x ∈ X} (2.19)

Properties of fuzzy sets: Assume A, B and C are fuzzy sets of X. The following properties
hold for union, intersection and fuzzy subsets.

(i) Commutativity

A ∪ B = B ∪ A

A ∩ B = B ∩ A

(ii) Idempotency

A ∪ A = A

A ∩ B = B ∩ A

(iii) Associativity

A ∪ (B ∪ C) = (A ∪ B) ∪ C = A ∪ B ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C = A ∩ B ∩ C

(iv) Distributivity

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ O/ = A

A ∩ O/ = O/

A ∪ X = X

A ∩ X = A

(v) Transitivity

If A ⊂ B then B = A ∪ B and A = A ∩ B

If A ⊂ B and B ⊂ C then A ⊂ C

The following properties hold for complements of fuzzy subsets.

Introduction to Fuzzy Logic 33

(vi) De Morgan’s Law

A ∪ B = Ā ∪ B̄

A ∩ B = Ā ∩ B̄

A significant feature of fuzzy set that distinguishes them from classical sets is that
Ā ∩ O/ �= O/ and Ā ∪ A �= X .

2.7 Linguistic Variables

A linguistic variable is a variable whose values are words or sentences, used as labels of fuzzy
subsets (Zadeh, 1975a,b, 1976a). Such linguistic variables serve as a means of approximate
characterization of systems which cannot be described precisely by numerical values or other
traditional quantitative terms. For example, speed is a linguistic variable if its values are slow,
medium, fast, not slow, very fast, not very slow, etc. In this case, fast is a linguistic value of
speed and is imprecise compared with an exact numeric value such as ‘speed is 77 mph’. The
relation between a numerical variable s = 77 and the linguistic variables slow, medium and
fast is illustrated graphically in Figure 2.16.
In general, a linguistic variable is characterized by a quintuple {X, T, U, G, M}, where X

is the name of the variable (e.g., Speed), T denotes the term set of X (i.e., the set of names
of linguistic labels of X over a universe of discourse U : slow, medium, fast, etc.), G is the
syntactic rule or grammar for generating names and M is the semantic rule for associating
with each X its meaning, M(X) ⊆ U (Zadeh, 1975a).

2.7.1 Features of Linguistic Variables

Theoretically, the term set T (X) is infinite but in practical applications, T (X) is defined with a
small number of terms so that each element of T (X) defines a mapping between each element
and the function M(X), which associates a meaning with each term in the term set. Let the term
set of the linguistic variable Speed be {slow, medium, fast} within the universe of discourse
U = [0, 120]. The term set can be expressed as

T (Speed) = {slow, medium, fast}

Slow Medium Fast

1

0.5

s30 45 60 75 90

)(sμ

s = 77

Figure 2.16 Relation between linguistic and numerical variables

34 Computational Intelligence

Slow Medium Fast
1

0.5

s5 10 15 20 25 30

)(sμ

Figure 2.17 Three fuzzy sets for speed – Slow, Medium and Fast

The semantic rule of linguistic variables can be expressed using context-free grammar. For
example

T = {slow, very slow, very very slow, . . .}

Using context-free grammar the above expression can be written as

T → slow

T → very T

Here, ‘very’ is called a linguistic hedge, which is used to derive new linguistic variables.
Linguistic hedges will be discussed further in the next section.
A linguistic variable can be a word or sentence and such natural language expressions

are fuzzy, e.g., Slow OR Medium, Medium AND Fast. Figure 2.17 shows three MFs: Slow,
Medium and Fast.
The linguistic variable ‘Slow OR Medium’ is shown graphically in Figure 2.18. It is the

shaded area representing the union of the membership functions ‘Slow or Medium’.

Slow Medium Fast
1

0.5

s5 10 15 20 25 30

Slow OR Medium

)(s

Figure 2.18 Expression for ‘Slow OR Medium’

Introduction to Fuzzy Logic 35

Slow Medium Fast

0.5

s5 10 15 20 25 30

Medium AND Fast

)(sμ
1

Figure 2.19 Expression for ‘Medium AND Fast’

The linguistic variable ‘Medium AND Fast’ is shown graphically in Figure 2.19. It is the
shaded area representing the intersection of the membership functions Medium AND Fast.
In the above examples, OR and AND are connectives, which play an important role in the

description of linguistic variables. It can be seen from Figures 2.18 and 2.19 that they are used
to derive new linguistic variables from the term sets. The role of connectives will be discussed
further in the use of linguistic hedges presented in the next section.

2.8 Linguistic Hedges

The purpose of the hedges is to generate a larger set of values for a linguistic variable
from a small collection of primary terms. Hedges are realized on primary terms through the
processes

• Intensification or concentration,
• Dilation and
• Fuzzification.

This can be represented as a quadruple {H, M, T, C}, where H is the set of hedges, M is
the marker, T is the set of primary terms (e.g., slow, medium, fast, etc.) and C is the set of
connectives. Parentheses are used as markers in the definition of linguistic variables to separate
the term set from the hedge, e.g., Very (Small). Figure 2.20 depicts the format of the use of
the different term sets, hedges and connectives for defining linguistic variables.
For example, Big but Not Very (Big). Here ‘Big’ is a primary term set, ‘but’ is a connective

(which means AND in this case) and ‘Very’ is a hedge. ‘Not’ is a complement operation on
the term set. Parentheses ‘()’ are used as a marker.

Example 2.8 The hedge ‘Very’ is a concentration (or intensification) operation and per-
formed by squaring the membership values of the primary fuzzy set. The operation is shown
for two primary fuzzy sets Small and U in the example below.

Very (Small) = Small2 = [μSmall]2

Very (Very (U)) = (Very ([μU]))2 = ([μU]2)2 = [μU]4

36 Computational Intelligence

Primary terms,

e.g. Small,

Medium, Big

Linguistic Variable

Connectives, e.g.

AND, OR, NOT

Markers, e.g.

Parenthesis

Hedges, e.g.

VERY, MORE or

LESS

{H, M, T, C}

Term set T Connectives CMarkers MHedges H

Figure 2.20 Linguistic variables and hedges

Example 2.9 Consider the fuzzy set A of short pencils defined by

A =
{
0.20

p1
+ 0.5

p2
+ 1

p3
+ 1

p4
+ 0.9

p5

}

Then the fuzzy set for very short pencils can be expressed by the use of a hedge on the fuzzy
set A:

Very (A) = [μA]
2 =

{
0.04

p1
+ 0.25

p2
+ 1

p3
+ 1

p4
+ 0.81

p5

}

The linguistic hedge ‘More or less’ is a dilation operation defined as More or less (A) = A1/2.
The fuzzy set for more or less short pencils can be expressed by the following:

More or less (A) = [μA]
1/2 =

{
0.45

p1
+ 0.71

p2
+ 1

p3
+ 1

p4
+ 0.95

p5

}

The application of the linguistic hedges ‘Very’ and ‘More or less’ is demonstrated through the
concentration (or intensification) and dilation process as shown in Figure 2.21.

1

Nice

M
o

re
 o

r
le

ss
 (

N
ic

e)
 =

 N
ic

e
1
/2

(D
il

at
io

n
)

Very(Nice)=Nice
2

(Intensification)

)(sμ

x

Figure 2.21 Dilation and concentration (or intensification)

Introduction to Fuzzy Logic 37

Table 2.1 Hedges and their meaning

Hedge Meaning

About, around, near, roughly Approximates a scalar
Above, more than Restricts a fuzzy region
Almost, definitely, precisely Contrasts intensification
Below, less than Restricts a fuzzy region
Generally, usually Contrasts diffusion
Neighbouring, close to Approximates narrowly
Not Negation or complement
Quite, rather, somewhat Dilutes a fuzzy region
Very, extremely Intensifies a fuzzy region

A linguistic variable can be used with more than one hedge, for example

Almost very fast but generally below 100 km/hr.

Close to 100 m but not very high.

Not more than about zero.

‘But’ is a connective here which is equivalent to AND. The equivalent versions of the above
linguistic variables with markers can be expressed as

Almost (Very (Fast)) AND Generally (below 100 km/hr).

Close (100 m) AND Not (Very (High)).

Not (More than (About zero)).

The operation of multiple hedges can result in the same primary fuzzy set. For example, the
operation of the hedges ‘More or less very nice’ is represented by the following expression. It
can be seen that the operation of the hedges on the primary term (fuzzy) set ‘Nice’ resulted in
the same primary fuzzy set:

More or less (Very (Nice)) = More or less (Nice2) = (Nice2)1/2 = Nice

Some widely used hedges and their meanings are given in Table 2.1.
Linguistic variables and hedges allow us to construct mathematical models for expressions

of natural language. These models can then be used to write process rules and computer
programs and simulate real-world processes and behaviour.

2.9 Fuzzy Relations

Having described the operations on fuzzy sets, we need to look at how we can represent
linguistic statements mathematically. In fact, many application problems are described using
fuzzy relations.
The concept of a relation has a natural extension to fuzzy sets and plays an important role in

the theory of such sets and their applications. A fuzzy relation R from the fuzzy set A in X to the

38 Computational Intelligence

fuzzy set B in Y is a fuzzy set defined by the Cartesian product A × B in the Cartesian product
space X × Y . R is characterized by the membership function expressing various degrees of
strength of relations:

R = A × B =
∑

μR(x, y)/(x, y) =
∑

min (μA(x), μB(y)) (2.20)

R = A × B =
∑

μR(x, y)/(x, y) =
∑

μA(x)
∗ μB(y) (2.21)

In Equations (2.20) and (2.21) the sum does not mean a mathematical summation operation,
it means all possible combinations of all elements.

R is also called the relational matrix. The Cartesian product is implemented in the same
fashion, as is the cross product of two vectors. For example, fuzzy set A with 4 elements
(a column vector of dimension 4×1) and fuzzy set B with 5 elements (a row vector of
dimension 1×5) will provide the resulting fuzzy relation R which is represented by a matrix
of dimension 4×5.

Example 2.10 Let A and B be two fuzzy sets defined by

A = {1/1+ 0.8/2+ 0.6/3+ 0.5/4}
B = {0.5/1+ 1/2+ 0.3/3+ 0/4}

The fuzzy relation (i.e., the Cartesian product of A and B using the min operation) will be

R = A × B =

⎡
⎢⎢⎢⎣

{1, .5} {1, 1} {1, .3} {1, 0}
{.8, .5} {.8, 1} {.8, .3} {.8, 0}
{.6, .5} {.6, 1} {.6, .3} {.6, 0}
{.5, .5} {.5, 1} {.5, .3} {.5, 0}

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0.5 1 0.3 0

0.5 0.8 0.3 0

0.5 0.6 0.3 0

0.5 0.5 0.3 0

⎤
⎥⎥⎥⎦

The fuzzy relation using the product operation will be

R = A × B =

⎡
⎢⎢⎢⎣

{1, .5} {1, 1} {1, .3} {1, 0}
{.8, .5} {.8, 1} {.8, .3} {.8, 0}
{.6, .5} {.6, 1} {.6, .3} {.6, 0}
{.5, .5} {.5, 1} {.5, .3} {.5, 0}

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0.5 1 0.3 0

0.4 0.8 0.24 0

0.3 0.6 0.18 0

0.25 0.5 0.15 0

⎤
⎥⎥⎥⎦

2.9.1 Compositional Rule of Inference

If R is a fuzzy relation in X × Y and A is a fuzzy set in X then the fuzzy set B in Y is given by

B = A ◦ R (2.22)

B is inferred from A using the relation matrix R which defines the mapping between X and Y
and the operation ‘◦’ is defined as the max/min operation.

Introduction to Fuzzy Logic 39

Example 2.11 Let A be a fuzzy set defined by

A = {0.9/1+ 0.4/2+ 0/3}

with the fuzzy relation R given by the following relational matrix:

R = A × B =

⎡
⎢⎣
1 0.8 0.1

0.8 0.6 0.3

0.6 0.3 0.1

⎤
⎥⎦

Then the fuzzy output B in Y using the max/min operation will be

B = A ◦ R =
[
0.9

1

0.4

2

0

3

]
◦

⎡
⎢⎣
1 0.8 0.1

0.8 0.6 0.3

0.6 0.3 0.1

⎤
⎥⎦

B =

⎡
⎢⎣

{0.9, 1} {0.9, 0.8} {0.9, 0.1}
{0.4, 0.8} {0.4, 0.6} {0.4, 0.3}
{0, 0.6} {0, 0.3} {0, 0.1}

⎤
⎥⎦

Taking the minimum values row-wise, we obtain

B =

⎡
⎢⎣
0.9 0.8 0.1

0.4 0.4 0.3

0 0 0

⎤
⎥⎦

Taking the maximum values column-wise, we obtain the fuzzy set B from the compositional
relation:

B = [
0.9 0.8 0.3

]

2.10 Fuzzy If–Then Rules

Fuzzy sets and their operations are the subjects and verbs of fuzzy logic. If–Then rule statements
are used to formulate the conditional statements that comprise fuzzy logic. A single fuzzy If–
Then rule assumes the form

If < fuzzy proposition> Then < fuzzy proposition> (2.23)

For example,

If < x is A1> Then < y is B2>

40 Computational Intelligence

(xμ)

1

x ≅ speed

A1 ≅ slow A2 ≅ fast (yμ)

1

y ≅ pressure

B1 ≅ low B2 ≅ high

Figure 2.22 If–Then rule

where A1 and B2 are linguistic variables defined by fuzzy sets on the ranges (i.e., the universe
of discourse) X and Y, respectively. The If part of the rule ‘x is A1’ is called the antecedent or
premise and the Then part of the rule ‘y is B2’ is called the consequent. In other words, the
conditional statement can be expressed in mathematical form:

If A1 Then B2 or A1 → B2 (2.24)

Example 2.12 The speed and pressure of a steam engine can be expressed with the following
linguistic conditional statement:

If Speed is SlowThenPressure should beHigh

Graphically, this statement is represented in Figure 2.22.

2.10.1 Rule Forms

In general, three forms exist for any linguistic variables:

(i) Assignment statement
e.g., x is not large AND not very small.

(ii) Conditional statement
e.g., IF x is very big THEN y is medium.

(iii) Unconditional statement
e.g., set pressure high.

2.10.2 Compound Rules

A linguistic statement expressed by a human might involve compound rule structures. By
using basic properties and operations defined for fuzzy sets, any compound rule structure may
be decomposed and reduced to a number of simple canonical rules.

Introduction to Fuzzy Logic 41

Conjunctive antecedents: A multiple conjunctive antecedent can have the following
form:

IF x is A1 AND x is A2 . . .AND x is An THEN y is BS (2.25)

Equation (2.25) can be rewritten as

IF x is AS THEN y is BS (2.26)

where AS = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An and AS is expressed bymeans of amembership function
based on the definition of fuzzy intersection operation as

μAS (x) = min
[
μA1 (x), μA2 (x), . . . , μAn (x)

]
(2.27)

Disjunctive antecedents: Similarly, a multiple disjunctive antecedent can have the following
form:

IF x is A1 OR x is A2 . . . OR x is An THEN y is BS (2.28)

Equation (2.28) can be rewritten as

IF x is AS THEN y is BS (2.29)

where AS = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An and AS is expressed bymeans of amembership function
based on the definition of fuzzy union operation as

μAS (x) = max
[
μA1 (x), μA2 (x), . . . , μAn (x)

]
(2.30)

2.10.3 Aggregation of Rules

Most rule-based systems have more than one rule. The process of obtaining the overall
consequent from the individual consequents contributed by each rule is the aggregation of
rules. In the case of a system of rules that must be jointly satisfied, the rules are connected
by AND connectives. The aggregated output y is found by fuzzy intersection of the entire
individual rule consequent yi , where i = 1, 2, 3, . . . , r :

y = y1 AND y2 AND · · · AND yr (2.31)

or

y = y1 ∩ y2 ∩ · · · ∩ yr

The output is defined by means of a membership function based on the definition of fuzzy
intersection operation as

μy(y) = min
[
μy1 (y), μy2 (y), . . . , μyr (y)

]
for y ∈ Y (2.32)

42 Computational Intelligence

For the case of a disjunctive system of rules where at least one rule must be satisfied, the rules
are connected by OR connectives. The aggregated output y is found by fuzzy union of all the
individual rule consequents yi , where i = 1, 2, 3, . . . , r :

y = y1 OR y2 OR · · · OR yr (2.33)

or

y = y1 ∪ y2 ∪ · · · ∪ yr

The output is defined by means of a membership function based on the definition of fuzzy
union operation as

μy(y) = max
[
μy1 (y), μy2 (y), . . . , μyr (y)

]
for y ∈ Y (2.34)

Example 2.13 Let us consider a fuzzy system with two inputs x1 and x2 (antecedents) and
a single output y (consequent). Inputs x1 and x2 have three linguistic variables small, medium
and big with a triangular membership function. Output y has two linguistic variables small and
big with a triangular membership function as shown in Figure 2.23. The rule base consists of
the following two rules:

Rule 1: IF x1 is small AND x2 is medium THEN y is big

Rule 2: IF x1 is medium AND x2 is big THEN y is small

x1 x2 y

1 9 1 9
x1= 3.89 x2=5.58

small

medium

medium

big

smallAND

AND big

() ()21 ,min μ μ ⎦⎣ xx k
r

k
r

1 7

Rule 1

Rule 2

Aggregation of ()yμ μbig and ()ysmall

small
big

(a) (b)

(c)

min

min

Figure 2.23 Max/min inference method

Introduction to Fuzzy Logic 43

The inputs x1 = 3.89 and x2 = 5.58 are crisp values for which the membership values
μk(x1) and μk(x2) (k denotes the MFs small, medium or big) are calculated for triangular
membership functions. The aggregated outputs for r rules are given by

r1 : μbig (y) = max �min �μsmall (x1) , μmedium (x2)��
r2 : μsmall (y) = max

⌊
min

⌊
μmedium (x1) , μbig (x2)

⌋⌋
In this example, r = 1, 2. The minimum membership values of �μsmall (x1) , μmedium (x2)�
and

⌊
μmedium (x1) , μbig (x2)

⌋
for the antecedents are calculated and propagate through to

the consequent part. This operation is shown in Figure 2.23(a). The membership func-
tion for the consequent of each rule is then truncated by taking the maximum values, i.e.
max �min �μsmall (x1) , μmedium (x2)�� and max

⌊
min

⌊
μmedium (x1) , μbig (x2)

⌋⌋
are computed,

which is shown in Figure 2.23(b). The truncated membership functions for each rule, i.e.
μbig (y) and μsmall (y) are aggregated using the graphical equivalent of either conjunctive or
disjunctive rules. The aggregation operation max results in an aggregated membership func-
tion comprising the outer envelope of the individual truncated membership forms from each
rule. This operation is shown in Figure 2.23(c).
It has been demonstrated in Figure 2.23 that any numeric value (or crisp value) has to be

converted into a fuzzy input and then a conclusion can be drawn using the rule of inference
on consequent fuzzy sets. There are three distinct steps in the process. They are described in
the following sections.

2.11 Fuzzification

The process that allows converting a numeric value (or crisp value) into a fuzzy input is called
fuzzification. There are two methods of fuzzification.

• Singleton fuzzification: This maps a real value xi ∈ X into a fuzzy singleton Axi which has
membership value 1 at x = xi and 0 at all other points in X . This is expressed as

μAxi
(x) =

{
1 if x = xi

0 otherwise
(2.35)

Singleton fuzzification greatly simplifies computation but is generally used in implementa-
tions where there is no noise. There is no widespread use of singleton fuzzification in fuzzy
systems and applications.

• Axi is fuzzy: This maps a real xi ∈ X into a fuzzy set Axi in X described by a membership
function:

μAxi
(x) =

{
1 if x = xi

[0, 1] decreases from 1 as x moves from xi
(2.36)

In other words, fuzzification actually provides a membership grade of a real (or crisp) value
xi ∈ X as its belongingness to a fuzzy set Axi . The fuzzy set can be described by various

44 Computational Intelligence

)(xμA

1

x

A1

ix

A2

A3
)(

1 iA x

)(
2 iA x

)(
3 iA x

μ

μ

μ

Figure 2.24 Fuzzification in different types of MFs

membership functions discussed in Section 2.4. Figure 2.24 shows the fuzzification of xi ∈ X
using three different types of membership functions: trapezoidal (A1), triangular (A2) and
Gaussian (A3). It demonstrates that x = xi ∈ X has a different fuzzified value, i.e. membership
grade, depending on the type (i.e., shape) of the membership function. The membership grades
are μA1 (xi) for trapezoidal MF, μA2 (xi) for triangular MF and μA3 (xi) for Gaussian MF.

Example 2.14 Let A be a fuzzy set defined by the bell-shaped MF (with centre m = 5,
width σ = 1 and shape parameter a = 1 in Equation (2.6)) as follows:

μA(x) = 1

1+
∣∣∣∣ x − 5
1

∣∣∣∣
2

The fuzzification of the value xi = 6 will yield the grade of membership as

μA(xi) = 1

1+
∣∣∣∣6− 5
1

∣∣∣∣
2 = 0.5

It is obvious that the shape of the MF plays an important role in fuzzification and in any
subsequent process. Fuzzification using well-defined MFs can suppress noise in the inputs of
a fuzzy system (Wang, 1997).

2.12 Defuzzification

Defuzzification is the reverse process of fuzzification. Mathematically, the defuzzification of
a fuzzy set is the process of conversion of a fuzzy quantity into a crisp value. This is necessary
when a crisp value is to be provided from a fuzzy system to the user. For example, if we
develop a fuzzy system for blood pressure control, we will probably want to tell the user what
blood pressure is expected to be in the next time instant.
Fuzzy control engineers have many different ways of defuzzifying. However, there are quite

simple methods in use. It is intuitive that fuzzification and defuzzification should be reversible.

Introduction to Fuzzy Logic 45

That is, if we fuzzify a number into a fuzzy set and immediately defuzzify it, we should be
able to get the same number back again.
There are many defuzzification methods available in the literature. Very often standard

defuzzification methods fail in some applications. It is, therefore, important to select the
appropriate defuzzification method for a particular application. Unfortunately, there is no
standard rule for selecting a particular defuzzification method for an application. The choice
of the most appropriate method depends on the application. A good study on the selection
of appropriate defuzzification methods has been reported by Runker (1997). In the next few
sections, some widely used methods of defuzzification are presented.

Max-membership method: Also known as the height method, the max-membership
method is both simple and quick. This method takes the peak value of each fuzzy set and
builds the weighted sum of these peak values. This method is given by the algebraic expres-
sion in Equation (2.38).

x∗ =

m∑
k=1

ck .hk

n∑
k=1

hk

(2.37)

Defuzzification using the max-membership method is shown in Figure 2.25(a). ck is the peak
value of the fuzzy sets and hk is the height of the clipped fuzzy sets, as shown in the figure.

Centre of gravity method: Also referred to as centre of area or centroid method in the
literature. This is the most widely used defuzzification method. The centre of area method
finds the centroid of the area under the membership function. In the continuous case it is given
by the expression in Equation (2.39).

x∗ =

∫
μc(x).xdx∫
μc(x)dx

(2.38)

and for a discrete universe with m quantization levels in the output it is given by

x∗ =

m∑
i=1

μc(xi).xi

m∑
i=1

μc(xi)

(2.39)

Figure 2.25(b) shows this operation in a graphical way. The value x∗ is the centroid of the
area, which is the defuzzified value of the combined overlapped consequent fuzzy sets of the
rule. Some numerical aspects of the centre of area method of defuzzification are reported by
Patel and Mohan (2002).

46 Computational Intelligence

x
*x

1

.5

(a) (b)

(c) (d)

(e)

)(xμ)(xμ

)(xμ
)(xμ

)(xμ

c1 c2

h1

h2

*x
x

1

.5

xa b
*x

1

.5

A B

*x
x

1

.5

C1 C2
Area

calculated
twice

x
*x

a b

1

.5

Figure 2.25 Different defuzzification methods. (a) Max-membership defuzzification; (b) Centre of
gravity defuzzification; (c) Weighted average defuzzification; (d) Mean-max defuzzification; (e) Centre
of sums defuzzification

Weighted average method: This method is suitable for symmetric membership functions.
It is given by the algebraic expression

x∗ =
∑

μc(x).x
′∑

μc(x)
(2.40)

where � denotes an algebraic sum. This is shown in Figure 2.25(c). In the figure, there
are two trapezoidal membership functions A and B. μA(x) = 1 is the weight for x ′ = a and

Introduction to Fuzzy Logic 47

μB(x) = 0.5 is the weight for x ′ = b. The defuzzified value of the two clipped trapezoidal
MFs can be calculated using Equation (2.41) as

x∗ = {a(1)+ b(0.5)}
(1+ 0.5)

Mean-max membership: Also known as the middle of maxima method, a single defuzzified
output is generated by the mean or average of all local maxima defined by

x∗ =

N∑
i=1

μmax(xi)

N
(2.41)

where maxμ(xi) is the maximum membership value and N is the number of times the
membership function reaches the maximum support value. Figure 2.25(d) shows the two
maxima a and b. The defuzzified output x∗ is calculated from the mean of the two values as
follows:

x∗ = (a + b)

2

Centre of sums: This process involves the algebraic sum of individual output fuzzy sets
instead of computing the union of the two fuzzy sets. Since it calculates the area of individual
fuzzy sets, the method is faster than the centre of gravity method. The defuzzified value x∗ is
formally given in the discrete case by the expression

x∗ =

m∑
i=1

xi .

n∑
k=1

μk(xi)

m∑
i=1

.

n∑
k=1

μk(xi)

(2.42)

One drawback of this method is that the overlapping area is added twice. There are two fuzzy
sets C1 and C2 in Figure 2.25(e) and the defuzzified value for the centre of sums method is
shown in the figure. The shaded area is the overlapped area of the fuzzy sets C1 and C2, which
is calculated twice.
Finally, Figure 2.26 shows the entire process of fuzzification, aggregation and defuzzification

in a fuzzy system. Figure 2.26(a) shows the fuzzification of the input MFs, Figure 2.26(c)
shows the aggregation of the output MFs and Figure 2.26(d) shows the defuzzification process
using the centre of gravity method.
There have been various studies reported on defuzzification methods in the literature

(Driankov et al., 1993). An empirical study of the performance of defuzzification meth-
ods applied to different fuzzy controllers has been reported by Lancaster andWierman (2003).
They investigated standard methods such as the true centre of gravity, fast centre of gravity
and mean of maxima and found these methods have some advantages over the other methods.

48 Computational Intelligence

x1 x2 y

1 9 1 9
x1 = 3.89 x2 = 5.58

small

medium

medium

big

smallAND

AND big

Fuzzification

1 7

Rule 1

Rule 2

Aggregation

(a) (b)

(c)

1 7
y*

=3.72

Defuzzification

(d)

min

min

small
big

Figure 2.26 Fuzzification, aggregation and defuzzification

They also developed some new methods, such as the plateau average, weighted plateau aver-
age, sparus, capitis and clivosus. These methods are not discussed further here, but interested
readers are referred to Lancaster and Wierman (2003) and Van Broekhoven and De Baets
(2004). A very comprehensive review of defuzzification methods can also be found in Van
Leekwijck and Kerre (1999) and Roychowdhury and Pedrycz (2001). A comparative analysis
of different defuzzification methods is given in Driankov et al. (1993). Good theoretical anal-
yses of defuzzification processes and problems have been reported in Yager and Filev (1994)
and Kickert and Mamdani (1978).

2.13 Inference Mechanism

Inference is the process of formulating a nonlinear mapping from a given input space to output
space. The mapping then provides a basis from which decisions can be made. The process of
fuzzy inference involves all the membership functions, operators and if–then rules.
There are three types of fuzzy inference mechanism, which have been widely employed in

various fuzzy systems and applications. The differences between these three fuzzy inferences,

Introduction to Fuzzy Logic 49

x

x y

y
x1 y1

A1

A2

B1

B2

min

z

z

z
z*

COA

C1

C2

Max

z

z

z

z*
COA

C1

C2

Max

product min/product

(a) (b)

(c)

(d)

(e)

Aggregation and

defuzzification

r1:

r2:

μ μ μ μ

μμ μ

μμ

μ

Figure 2.27 Two-input single-output Mamdani fuzzy model

also called fuzzy models, mainly lie in the consequent parts of their fuzzy rules, aggregations
and defuzzification procedures. These fuzzy inferences are:

1. Mamdani fuzzy inference,
2. Sugeno fuzzy inference,
3. Tsukamoto fuzzy inference.

2.13.1 Mamdani Fuzzy Inference

The Mamdani-type fuzzy inference was first proposed as an attempt to control a steam engine
and boiler using a set of linguistic control rules obtained from an experienced human operator
(Mamdani and Assilian, 1974). Figure 2.27 illustrates a Mamdani-type fuzzy inference model.
The system consists of two inputs x and y (antecedents) and a single output z (consequent).
Each input x, y and output z has two MFs: {A1, A2}, {B1, B2} and {C1, C2}, respectively. A
typical rule in a Mamdani-type fuzzy model is described by a collection of R rules of the form

k : If x is Ak
i and y is Bk

j then z isCk
l (2.43)

where k = 1, 2, . . . , R, i = 1, 2, . . . , N , j = 1, 2, . . . , M and l = 1, 2, . . . , L . N , M and L
are the numbers of membership functions for inputs and output, respectively. The maximum

50 Computational Intelligence

number of rules in the Mamdani-type fuzzy system here is R ⊂ N × M . There are only two
rules used to demonstrate the inferencing mechanism in Figure 2.27. These are:

r1 : IF x is A1 AND y is B1 THEN z isC1
r2 : IF x is A2 AND y is B2 THEN z isC2

In Mamdani’s fuzzy model, crisp values are used as inputs. For example, two crisp values x1
and y1 are measured for the inputs x and y, respectively. Figure 2.27(a) shows the fuzzification
and inferencing using a minimum or product rule for computing the firing strengths for
rules with ANDed antecedent. Figure 2.27(b,d) shows the consequent part of each rule using
max/min and max/product rule, respectively. An analogy of Example 2.13 will be helpful
for understanding this process. Max/min is the most common rule of composition. In the
max/min rule of composition the inferred output of each rule is a fuzzy set chosen from the
minimum firing strength. In the max/product rule of composition the inferred output of each
rule is a fuzzy set scaled down by its firing strength via the algebraic product. The truncated
membership functions for each rule, i.e., μC1 (z) and μC2 (z) in this case, are aggregated. The
aggregation operation is shown for both the max/min and max/product rule of composition in
Figure 2.27(c,e).
In Mamdani’s fuzzy model, defuzzification (see Section 2.12 for different defuzzification

methods) is carried out to convert a fuzzy set to a crisp value. Figure 2.27(c,e) shows the
defuzzified value z∗

COA using the centre of area method.

2.13.2 Sugeno Fuzzy Inference

The Sugeno fuzzy inference, also known as the TSK fuzzy model, was proposed by Takagi,
Sugeno and Kang (Takagi and Sugeno, 1985; Sugeno and Kang, 1988) in an effort to develop
a systematic approach to generate fuzzy rules from a given input/output data set. A typical
rule in the Sugeno-type fuzzy model for two-input single-output is described by a collection
of rules of the form

k : If x is Ak
i and y is BK

J then zk = f (x, y) (2.44)

where x and y are the inputs and z is the output, Ai and Bj are fuzzy MFs for the inputs in
the antecedent part, z = f (x, y) is a crisp function in the consequent part k = 1, 2, . . . , R,
i = 1, 2, . . . , N , j = 1, 2, . . . , M . N and M are the numbers of membership functions for
inputs and R is the maximum number of rules. Figure 2.28 illustrates a two-input single-output
Sugeno fuzzy model. In this example, each input x and y has two MFs {A1, A2} and {B1, B2}
while {z1, z2} are consequent functions. There are only two rules used to demonstrate the
Sugeno-type inferencing mechanism in Figure 2.28. These are:

r1 : IF x is A1 AND y is B1 THEN z1 = a1x + b1y + c1
r2 : IF x is A2 AND y is B2 THEN z2 = a2x + b2y + c2

Usually, z = f (x, y) is polynomial in the input variables x and y but it can be any function
as long as it can appropriately describe the output of the model within the fuzzy region
specified by the antecedent of the rule. {a1, b1, c1} and {a2, b2, c2} are the parameters of the

Introduction to Fuzzy Logic 51

x

x y

y x1 y1

A1

A2

B1

B2

min or product

w1

w2

1111 cybxaz ++=

2222 cybxaz ++=

(a) (b)

Weighted average

21

2211

ww
zwzw

z
+
+

=

(c)

Aggregation

r1:

r2:

μ μ

μ μ

Figure 2.28 Two-input single-output first-order Sugeno fuzzy model

polynomial function z = f (x, y). When z = f (x, y) is a first-order polynomial, the resulting
fuzzy inference system is called a first-order Sugeno fuzzy model as proposed by Takagi
and Sugeno (1985) and Sugeno and Kang (1988). In the Sugeno-type fuzzy model in Figure
2.28, two measured crisp values x1 and y1 are used for the inputs x and y, respectively.
Figure 2.28(a) shows the fuzzification and inferencing using the minimum or product rule for
computing the firing strengths w1 and w2 for the rules with ANDed antecedent. The firing
strength is calculated using the minimum or product rule as

wr = min(μAi , μB j) or wr = prod(μAi , μB j) for r = 1, 2 (2.45)

When z = f (x, y) is a constant, it is called a zero-order Sugeno fuzzy model. The rules of a
zero-order Sugeno fuzzy model are as follows:

r1 : IF x is A1 AND y is B1 THEN z1 = c1
r2 : IF x is A2 AND y is B2 THEN z2 = c2

where c1 and c2 are constant values. This can be considered as a special case of the Mamdani
fuzzy model, in which the consequent of each rule is specified by a fuzzy singleton or by a
pre-defuzzified value of the consequent fuzzy set of a Mamdani-type fuzzy system or a special
case of the Tsukamoto fuzzy model (described in Section 2.13.3) in which the consequent of
each rule is specified by an MF of a step function.

52 Computational Intelligence

x

x y

y
x1 y1

A1

A2

B1

B2

min or product

w1

w2

z

z

C1

C2

*
11 cz =

*
1

Weighted average

21

2211

ww
zwzw

z
+
+

=

(c)

(b)(a)

Aggregation

r1:

r2:

*
22 cz =

μ μ

μ μ

Figure 2.29 Zero-order Sugeno-type fuzzy system

The two special cases for the consequentMFs, triangular and step function, of the zero-order
Sugeno system are shown in Figure 2.29. c∗

1 and c∗
2 are the defuzzified values of the MFs. The

output of the zero-order Sugeno model is a smooth function of its input variables when there
is a good overlap between the neighbouring MFs in the antecedent part. In other words, the
overlap of the MFs in the consequent of a Mamdani model does not have a decisive effect
on the smoothness of the output. It is the overlap of the antecedent MFs that determines the
smoothness of the resulting input/output behaviour of the fuzzy system (Jang, 1993; Jang and
Sun, 1993).
Once the parameters {ak, bk, ck}, k = 1, 2, . . . , R are known, the consequent zk are calcu-

lated for each rule using a first-order polynomial. Figure 2.28(b) shows the consequent part
of the Sugeno-type system where z1 and z2 are computed. An analogy of the Mamdani-type
system described in the previous section will be helpful for understanding this process.
The overall output of a Sugeno fuzzy model is obtained via the weighted average of the

crisp outputs zk , thus avoiding the time-consuming process of defuzzification required by a
Mamdani model using the centre of gravity method. The weights are the firing strengths of
each rule calculated in Equation (2.45). The weighted average defuzzification is computed by

z = w1z1 + w2z2
w1 + w2

Introduction to Fuzzy Logic 53

Figure 2.28(c) illustrates the aggregation and final defuzzified value for the Sugeno-type
system. In practice, the weighted average operator is sometimes replaced with the weighted
sum operator defined by

z = w1z1 + w2z2

The weighted sum helps reduce further computation, especially in the training of a fuzzy
inference system. However, this simplification could lead to the loss of MF linguistic meaning
unless the sum of firing strengths is close to unity (Jang et al., 1997).

2.13.3 Tsukamoto Fuzzy Inference

In the Tsukamoto fuzzy inference, the consequent of each fuzzy if–then rule is represented by
a monotonic MF (Tsukamoto, 1979). A typical rule in the Tsukamoto-type fuzzy model for
two-inputs single-output is described by a rule set of the form

k : If x is Ak
i and y is Bk

j then z isCk
l (2.46)

The system consists of two inputs x and y (antecedents) and a single output z (consequent),
where k = 1, 2, . . . , R, i = 1, 2, . . . , N , j = 1, 2, . . . , M and l = 1, 2, . . . , L . N , M and L
are the numbers of membership functions for inputs and output, respectively. The maximum
number of rules of the Tsukamoto-type fuzzy system is R ⊂ N × M . Figure 2.30(a) illustrates

x

x y

y
x1 y1

A1

A2

B1

B2

min or product

w1

w2

z

z

C1

C2

z1

z2

Weighted average

21

2211

ww
zwzw

z
+
+

=

(c)

(b)(a)

Aggregation

r1:

r2:

μ μ

μ μ

Figure 2.30 Two-input single-output Tsukamoto fuzzy model

54 Computational Intelligence

a two-input single-output Tsukamoto fuzzy model. In this case, each input x and y has two
MFs {A1, A2} and {B1, B2} while {C1, C2} are consequent monotonic functions. There are
only two rules used to demonstrate the inferencing mechanism in Figure 2.30(a). These are:

r1 : IF x is A1 AND y is B1 THEN z isC1
r2 : IF x is A2 AND y is B2 THEN z isC2

In a Tsukamoto-type fuzzy model, measured crisp values x1 and y1 are used for fuzzification.
Fuzzification and inferencing using the minimum or product rule for computing the firing
strengths wr , r = 1, 2 for the rules with ANDed antecedent are shown in Figure 2.30(a). The
firing strength is calculated using the minimum or product rule as

wr = �
(
μAi , μB j

)
for r = 1, 2 (2.47)

�(.) is a minimum or product operation in Equation (2.47). If a Tsukamoto fuzzy model
consists of R rules with firing strengths w1, w2, . . . , wR then the defuzzified outputs will be
z1, z2, . . . , zR (one z value for each rule), as shown in Figure 2.30(b). As shown in the figure,
it thus makes the computation of defuzzification simple. The overall output is taken as the
weighted average of each rule’s output. Since each rule infers a crisp output, the Tsukamoto
fuzzymodel aggregates each rule’s output by themethod of weighted averages. The aggregated
output of the fuzzy system will be

z = w1z1 + w2z2 + · · · + wRzR

w1 + w2 + · · · + wR
(2.48)

Figure 2.30(c) illustrates the aggregation and defuzzification of the consequent outputs of
the Tsukamoto fuzzy model. Despite the simplification of the defuzzification procedure, the
Tsukamoto fuzzy model is not used very often. Some researchers think it is not as transparent
as other models, such as Mamdani or Sugeno models (Jang et al., 1997).
In the next three examples, Mamdani-, Sugeno- and Tsukamoto-type fuzzy models will

be explained using a hypothetical simulation system. The objective here is to demon-
strate the differences between the three models, processes of fuzzification, inferencing and
defuzzification.

2.14 Worked Examples

Example 2.15 A steam engine simulation system has to be modelled using a Mamdani-type
fuzzy system,where x represents speed, y represents pressure and z represents throttle position.
No units of measurement of the three variables are used in this hypothetical simulation system.
The membership functions (MF) for speed x , pressure y and throttle position z, defined within
the same universe of discourse [0, 15], are shown in Figure 2.31(a–c). For each of the variables,
the MFs are taken to be low (L), medium (M) and high (H).

The rule base of the fuzzy model consists of nine rules, as given in Table 2.2. A single
iteration of graphical simulation of the steam engine is described in this example for the initial
values x = 9 and y = 10.

Introduction to Fuzzy Logic 55

y

.5

)(xμ

1 L M H

x

.5

z

.5

)(yμ μ)(z

1 L M H 1 L M H

7 9 11

(a) (b) (c)

13 7 9 11 13 7 9 11 13

Figure 2.31 MFs for x , y and z. (a) MFs for speed; (b) MFs for pressure; (c) MFs for throttle position

For initial values x = 9 and y = 10, only two rules are fired. These are:

R1 : IF x isM and y isMTHEN z isM

R2 : IF x isM and y is HTHEN z isH

Figure 2.32(a) shows the fuzzification of the two input values using the antecedent MFs
shaded in grey and inferencing using the min rule in the antecedent part, which yields the
output MF in the consequent part (shaded area) for rule 1. Similarly, Figure 2.32(b) shows the
fuzzification and inferencing using the min rule that yielded the output MF (shaded area) for
rule 2. The two consequent MFs (i.e., shaded M and H) are aggregated and defuzzified using
the centre of gravity method illustrated in Figure 2.32(c). This gives the throttle position of 9.8.

Example 2.16 The same steam engine simulation system has been developed using a
Takagi–Sugeno fuzzy model, where x represents speed, y represents pressure and z represents
throttle position. Two membership functions for speed x and pressure y, defined within the
same universe of discourse [0, 15], are shown in Figure 2.33(a–b). For variable x, the MFs are
taken to be {A1, A2} and for variable y, the MFs are taken to be {B1, B2}. The throttle position
z is defined by the four first-order polynomial functions below:

z1 = 3x + 2y + 1
z2 = x + 3y + 1
z3 = x + 2y

z4 = 2x + 5

Table 2.2 Rule base for a Mamdani-type fuzzy model

y

x L M H

L H M L
M H M H
H H M L

56 Computational Intelligence

y

.5

(x)

1 L M H

x

.5

x = 9 y = 10

min

z

.5

(y) (z)

1 L M H 1 L M H

7 9 11 13 7 9 11 13 7 9 11 13

(z)

7 9 11 z

.5

≈ 9.8*z

1 L M H

y

.5

)(xμ μ μ

μ

μ

μ μ

1 L M H

x

.5

x = 9 y = 10

(a)

(b)

(c)

min

z

.5

)(y)(z

1 L M H 1 L M H

7 9 11 13 7 9 11 13 7 9 11 13

Figure 2.32 Process of fuzzification, inferencing and defuzzification in Mamdani-type fuzzy system.
(a) Rule 1: IF x is M and y is M THEN z is M; (b) Rule 2: IF x is M and y is H THEN z is H;
(c) Aggregated and defuzzified output using COG method

Introduction to Fuzzy Logic 57

1 2 3 54

1

.5

6 x

(xμ μ)

A1 A2

4 5 6 87

1

.5

9 y

(y)

B1 B2

(a) (b)

Figure 2.33 MFs for inputs x and y. (a) MFs for x ; (b) MFs for y

The rule base of the fuzzy model consists of four rules, as given in Table 2.3.
A single iteration of graphical simulation of the Sugeno-type fuzzy model of the steam

engine is described in this example for initial values x = 3 and y = 7. For initial values x = 3
and y = 7, all four rules are fired. Each fired rule is shown in Figure 2.34(a–d).
Figure 2.34(a) shows the fuzzification of the two input values using the antecedent MFs

shaded in grey and the inferencing using the min rule in the antecedent part, which yields
the firing strength w1 = 0.5. The polynomial function z1 of the consequent part of rule 1 is
evaluated using the input values x = 3 and y = 7, which yields z1 = 24 and is shown in the
shaded area on the right. In the sameway, the firing strengthsw2,w3 andw4 and the consequent
polynomial functions z2, z3 and z4 are computed for rules 2, 3 and 4. Figure 2.34(b–d) shows the
firing strengths w2 = 1, w3 = 0.5 and w4 = 0.5 and the values of the consequent polynomial
functions z2 = 25, z3 = 17 and z4 = 11 for the rules 2, 3 and 4, respectively.
The consequent polynomial function values z1 = 24, z2 = 25, z3 = 17 and z4 = 11 for

all four rules are aggregated by appropriate weights. The weights are the firing strengths
calculated for each rule. The final throttle position is calculated using the weighted average of
defuzzification shown below. It gives a throttle position of 20.4.

z = w1z1 + w2z2 + w3z3 + w4z4
w1 + w2 + w3 + w4

z = 0.5 ∗ 24+ 1 ∗ 25+ 0.5 ∗ 17+ 0.5 ∗ 11
0.5+ 1+ 0.5+ 0.5

z = 12+ 25+ 8.5+ 5.5
2.5

z = 51.0

2.5
= 20.4

Table 2.3 Rule base for the Takagi–Sugeno-type fuzzy model

y

x B1 B2

A1 z1 z2
A2 z3 z4

58 Computational Intelligence

1 2

x = 3

54

1

.5

6 x

(xμ

μ

μ μ

μ μ

μ

μ)

A1 A2

4 5 6 8

y = 7

1

.5

9 y

(y)

B1 B2

1

.5

w1 = .5

min

241149

1231

=++=
++= yxz

1 2

x = 3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y = 7

1

.5

9 y

(y)

B1 B2

1

w2 = 1

min

251213

132

=++=
++= yxz

1 2

x = 3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y = 7

1

.5

9 y

(y)

B1 B2

.5

w3 = .5

min

17143

23

=+=
+= yxz

1 2

x = 3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y = 7

1

.5

9 y

(y)

B1 B2

1

.5

w4=.5

min

1156

524

=+=
+= xz

(a)

(b)

(c)

(d)

Figure 2.34 Fired rules in Sugeno-type fuzzy system. (a) Rule 1: IF x is A1 and y is B1 THEN z is
z1 = 3x + 2y + 1; (b) Rule 2: IF x is A1 and y is B2 THEN z2 = x + 3y + 1; (c) Rule 3: IF x is A2 and y
is B1 THEN z3 = x + 2y; (d) Rule 4: IF x is A2 and y is B2 THEN z4 = 2x + 5

Introduction to Fuzzy Logic 59

Table 2.4 Rule base for the Tsukamoto-type fuzzy model

y

x B1 B2

A1 C1 C2
A2 C2 C3

It is to be noted that if the product rule is used for calculating the firing strengths, a different
throttle position would have been reached.

Example 2.17 The same steam engine simulation system has been developed using a
Tsukamoto-type fuzzy model, where x represents speed, y represents pressure and z represents
throttle position. Two membership functions for speed x , pressure y and three membership
functions for throttle position z are defined within the same universe of discourse [0, 15]. For
variable x , the MFs are taken to be {A1, A2}. For variable y, the MFs are taken to be {B1,
B2}. For variable z, the MFs are taken to be {C1, C2, C3}. There are four rules that describe
the relationship between the inputs and output of the fuzzy model. Table 2.4 describes the rule
base of the system.

The MFs for speed (x) and pressure (y) are described by the membership functions shown in
Figure 2.35(a–b). The throttle positions are defined by three monotone membership functions
C1, C2 and C3 as shown in Figure 2.35(c).

1 2 3 54

(a) (b)

(c)

1

.5

6 x

(xμ)

A1 A2

4 5 6 87

1

.5

9 y

(yμ)

B1 B2

1 2 3 54

1

.5

6 z

(zμ)
C1 C2 C3

Figure 2.35 Membership functions for the inputs and output. (a) MFs for the input x ; (b) MFs for the
input y; (c) MFs for the output z

60 Computational Intelligence

1 2

x=3

54

1

.5

6 x

(xμ)

A1 A2

4 5 6 8

y=7

1

.5

9 y

(yμ μ

μ μ μ

μ μ μ

μμμ

)

B1 B2

1 2 3

z1=5

4

1

.5

6 z

(z)

C1

5

w1=.5

min

1 2

x=3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y=7

1

.5

9

(y)

B1 B2

w2=1

min

y 1 2 3 4

1

.5

6 z

(z)

C2

z2=6

5

1 2

x=3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y=7

1

.5

9

(y)

B1 B2

w3=.5

min

y 1 2 3 4

1

.5

6 z

(z)

C2

z3=2

5

1 2

x=3

54

1

.5

6 x

(x)

A1 A2

4 5 6 8

y=7

1

.5

9 y

(y)

B1 B2

1 2 3

z4=4

4

1

.5

6 z

(z)

C3

5

w4=.5

min

(a)

(b)

(c)

(d)

Figure 2.36 Fired rules in Tsukamoto-type fuzzy system. (a) Rule 1: IF x is A1 and y is B1 THEN z is
C1; (b) Rule 2: IF x is A1 and y is B2 THEN z is C2; (c) Rule 3: IF x is A2 and y is B1 THEN z is C2;
(d) Rule 4: IF x is A2 and y is B2 THEN z is C3

Introduction to Fuzzy Logic 61

It is required to compute the throttle position z at speed x = 3 and pressure y = 7 using
the Tsukamoto fuzzy model described above. All fired rules are shown graphically in Figure
2.36(a–d).
Figure 2.36(a) shows the fuzzification of the two input values x = 3 and y = 7 using the

antecedent MFs shaded in grey and the inferencing using the product rule in the antecedent
part of the rule, which yields the firing strengthw1 = 0.5. Using this membership grade of 0.5,
it then evaluates the consequent membership function C1 to produce the defuzzified value of
z1 = 5. This is shown in the consequent part for rule 1 in the figure. In the same way, the firing
strengthsw2,w3 andw4 are calculated and the defuzzified values of the consequent monotone
functions z2, z3 and z4 are computed for rules 2, 3 and 4. Figure 2.36(b–d) shows the firing
strengths w2 = 1, w3 = 0.5 and w4 = 0.5 and the values of the consequent functions z2 = 6,
z3 = 2 and z4 = 4 for rules 2, 3 and 4, respectively.
The consequent values z1 = 5, z2 = 6, z3 = 2 and z4 = 4 for all four rules are aggregated

by appropriate weights. The weights are the firing strengths calculated for each rule. The
final throttle position is calculated using the weighted average of defuzzification according to
Equation (2.48) shown below. It gives a throttle position of 4.6.

z = w1z1 + w2z2 + w3z3 + w4z4
w1 + w2 + w3 + w4

z = 0.5 ∗ 5+ 1 ∗ 6+ 0.5 ∗ 2+ 0.5 ∗ 4
0.5+ 1+ 0.5+ 0.5

z = 2.5+ 6+ 1+ 2
2.5

= 11.5

2.5
= 4.6

It is to be noted that if the minimum rule of inference is used for calculating the firing strengths,
the same firing strengths will result in the same throttle position.

2.15 MATLAB R© Programs

The Fuzzy Logic Toolbox in MATLAB R© provides tools to create and edit fuzzy membership
functions, define fuzzy variables, create fuzzy inference systems and create rule bases within
theMATLAB R© platform. Fuzzy systems can also be integratedwith Simulink R© for simulation.
The toolbox provides three categories of tools:

• Command-line functions,
• GUI interface tools and
• Simulink R© blocks.

In this chapter, only command-line functions are used. FewMATLAB R© programs are provided
to illustrate construction of membership functions, fuzzy inferencing, creating rule bases,
defuzzification and simulation of fuzzy inference systems described in this chapter. Details of
codes with associated descriptions and plots are given in Appendix B.

References

Black, M. (1937) Vagueness: an exercise in logical analysis, International Journal of General Systems, 17, 107–128.
Chi, Z.,Yan,H. andPhan, T. (1996)Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition,
World Scientific, Singapore.

62 Computational Intelligence

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993) An Introduction to Fuzzy Control, Springer-Verlag,
Heidelberg.

Einstein, A. (1921) Geometrie und Erfahrung, Offentlische Sitzung 27. Januar, 1921, Sitzungsbericte der Koeniglische
Presse, Akademie der Wissenschaften, Berlin, pp. 123–130.

Eisele, C. (1979) Studies in the Scientific and Mathematical Philosophy of Charles S. Peirce, R.M. Martin (ed.),
Mouton, The Hague.

Goedel, K. (1932) Zum Intuitionistischen Aussagenkalkuel, Anzeiger Akademie der Wissenschaften Wien, Math.-
naturwissenschaft Klasse, Vol. 69, pp. 65–66.

Gottwald, S. (2001) A Treatise on Many-Valued Logics, Studies in Logic and Computation, Vol. 9, Research Studies
Press, Baldock.

Jang, J.-S.R. (1993) ANFIS: adaptive-network-based fuzzy inference systems, IEEE Transactions on Systems, Man
and Cybernetics, 23(3), 665–685.

Jang, J.-S.R. and Sun, C.-T. (1993) Functional equivalence between radial basis function networks and fuzzy inference
system, IEEE Transactions on Neural Networks, 4, 156–159.

Jang, J.-S.R., Sun, C.-T. and Mizutani, E. (1997) Neuro-Fuzzy and Soft Computing: A Computational Approach to
Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ.

Jaskowski, S. (1936) Recherches sur le Systeme de la Logique Intuitioniste, Actes du Congres Internationale de
Philosophie Scientifique, Paris, Vol. 6, pp. 58–61 [English translation: Studia Logica, 34, 1975, pp. 117–120].

Kickert, W.J.M. and Mamdani, E.H. (1978) Analysis of fuzzy logic controller, Fuzzy Sets and Systems, 1, 29–44.
Lancaster, S.S. and Wierman, M.J. (2003) Empirical study of defuzzification. In Proceedings of the International

Conference of the North American Fuzzy Information Processing Society, pp. 121–126.
Lukasiewicz, J. (1930) Philosophische Bemerkungen zu Mehrwertigen Systemen des Aussagenkalkuels, Comptes

Rendus Sieances Societe des Sciences et Lettres Varsovie, cl. III, 23, 51–77.
Lukasiewicz, J. and Tarski, A. (1930) Untersuchungen ueber den Aussagenkalkuel, Comptes Rendus Sieances Societe

des Sciences et Lettres Varsovie, cl. III, 23, 30–50.
Mamdani, E.H. and Assilian, S. (1974) Application of fuzzy algorithms for control of simple dynamic plant, Pro-

ceedings of IEEI, 121, 1585–1588.
Patel, A. and Mohan, B. (2002) Some numerical aspects of centre of area defuzzification method, Fuzzy Sets and

Systems, 132, 401–409.
Post, E.L. (1921) Introduction to a general theory of elementary propositions, American Journal of Mathematics, 43,
163–185.

Price, R. (1763) An essay towards solving a problem in the doctrine of chances by the late Rev. Mr. Bayes,
Philosophical Transactions of the Royal Society of London, pp. 370–418.

Rolf, B. (1982) Russell’s Theses on Vagueness, History and Philosophy of Logic, Vol. 3, pp. 68–83.
Roychowdhury, S. and Pedrycz, W. (2001) A survey of defuzzification strategies, International Journal of Intelligent

Systems, 16, 679–695.
Runker, T.A. (1997) Selection of appropriate deffuzification methods using application specific properties, IEEE

Transactions on Fuzzy Systems, 5(1), 72–79.
Sugeno, M. and Kang, G.T. (1988) Structure identification of fuzzy model, Fuzzy Sets and Systems, 28, 15–33.
Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling and control, IEEE

Transactions on Systems, Man and Cybernetics, 15, 116–132.
Tsukamoto, Y. (1979) An approach to fuzzy reasoning method. In Advances in Fuzzy Set Theory and Applications,
M.M. Gupta, R.K. Ragade and R. Yager (eds), North-Holland, Amsterdam, pp. 137–149.

Van Broekhoven, E. and De Baets, B. (2004) A comparison of three methods for computing the centre of gravity
defuzzification. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, pp. 1537–1542.

Van Leekwijck, W. and Kerre, E. (1999) Defuzzification: criteria and classification, Fuzzy Sets and Systems, 108(2),
159–178.

Wang, L.-X. (1997) A Course in Fuzzy Systems and Control, Prentice-Hall International, Upper Saddle River, NJ.
Yager, R.R. and Filev, D.P. (1994) Essential of Fuzzy Modelling and Control, John Wiley & Sons, New York.
Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
Zadeh, L.A. (1968) Fuzzy algorithms, Information and Control, 12, 94–102.
Zadeh, L.A. (1972) A fuzzy-set-theoretic interpretation of linguistic hedges, Journal of Cybernetics, 2, 4–34.
Zadeh, L.A. (1973) Outline of a new approach to the analysis of complex systems and decision process, IEEE

Transactions on System, Man and Cybernetics, 3, 28–44.
Zadeh, L.A. (1975a) The concept of linguistic variable and its application to approximate reasoning – I, Information

Sciences, 8, 199–249.

Introduction to Fuzzy Logic 63

Zadeh, L.A. (1975b) The concept of linguistic variable and its application to approximate reasoning – II, Information
Sciences, 8, 301–357.

Zadeh, L.A. (1976a) The concept of linguistic variable and its application to approximate reasoning – III, Information
Sciences, 9, 43–80.

Zadeh, L.A. (1976b) The linguistic approach and its application to decision analysis. In Directions in Large Scale
Systems, Y.C. Ho and S.K. Mitter (eds), Plenum Press, New York, pp. 339–370.

Zadeh, L.A. (1999) From computing with numbers to computing with words – from manipulation of measurements
to manipulation of perceptions, IEEE Transactions on Circuits and Systems – I: Fundamental Theory and
Applications, 45(1), 105–119.

3
Fuzzy Systems and Applications

3.1 Introduction

The fundamental limitation of traditional mathematics, its tools and techniques is that they
cannot cope with humanistic or biological systems (Zadeh, 1999). Some examples of such
humanistic systems are economic systems, biological systems, social systems, political systems
and, more generally, man-made systems of various types. In other words, the conventional
quantitative approaches of system analysis and modelling are intrinsically unsuited for dealing
with humanistic systems or any system whose complexity is comparable to that of humanistic
systems. Thus, to dealwith such systems realistically,we need approaches that are not obsessive
about precision and rigorous mathematical formalisms. The alternative approach to traditional
notions of systems is based on Zadeh’s fuzzy sets and linguistic variables, which bear an
approximate relation to primary data. Fuzzy systems are those whose inputs and outputs are
described by fuzzy variables and fuzzy relations. The seminal ideas of fuzzy systems can be
found in the early papers of Zadeh (1968, 1971, 1972, 1973). Since then, fuzzy logic has found
applications in system identification (Zadeh, 1994; Espinosa et al., 2005), modelling (Yager
and Filev, 1994; Zadeh, 1994; Shin and Xu, 2009), control (Zadeh, 1994;Wang, 1997; Kovacic
and Bogdan, 2006), clustering (Hoeppner et al., 1997; Oliveira and Pedrycz, 2007), image
processing (Bezdek et al., 1999) and many others. This chapter will present the foundations
of fuzzy systems, the manner in which fuzzy logic, linguistic variables, fuzzy inferencing and
fuzzy theory are applied to the formulation and solution of real-world problems, along with
examples drawn from current research in the field of computational intelligence.
There are two justifications for fuzzy systems. Firstly, the real world is too complicated and

complex. It has been demonstrated that the use of highly complex mathematical description of
systems can seriously inhibit the ability to develop system models. Furthermore, it is required
to cope with significant unmodelled and unanticipated changes in the operating environment.
Fuzziness was introduced to obtain a reasonable model of such systems. Secondly, dissatisfac-
tion is growing with conventional approaches and human knowledge is becoming more and
more important in modelling and control of real-world systems. The fuzzy system concept
can formulate knowledge in a systematic manner and give it an engineering flavour. A fuzzy
system can combine the available information, such as the knowledge of the human expert, the
mathematical descriptions and sensory measurements, effectively. The combination of such

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

66 Computational Intelligence

Practical
system

Human expert –
Description in natural

language

Sensory measurement
+

Mathematical models

Fuzzy system

Figure 3.1 Example of a practical system

information is illustrated in Figure 3.1. The primary goal of this chapter is to introduce fuzzy
systems, modelling and control based on the foundation of the previous chapter.

3.2 Fuzzy System

Let u(t), y(t) and x(t) denote the input, output and state of a system S at time t , respectively,
where t = −1, 0, 1, 2, 3, . . . The state equations of the system S can be defined as

x(t + 1) = f (x(t), u(t)) (3.1)

y(t) = g(x(t), u(t)) (3.2)

where f and g are mappings defined by f : X × U → X and g : X × U → Y , respectively.
The system S is a fuzzy system if u(t) or y(t) or x(t) or any combination of them ranges
over fuzzy sets. Similarly, even if the state x(t) is described in terms of adjectives or linguistic
hedges such as light, heavy, more or less light, very heavy, etc., then the system S is still a fuzzy
system. If, for any given {x(t), u(t)}, X (t + 1) (x(t), u(t)) and Y (t + 1) (x(t), u(t)) denote the
sets of values of x(t + 1) and y(t), respectively, then the state equation of the fuzzy system S
defined above can be rewritten as

X (t + 1) = F(x(t), u(t)) (3.3)

Y (t) = G(x(t), u(t)) (3.4)

Extending the classical definition of a system model, we arrive at fuzzy models using the
apparatus of fuzzy set theory. Thus, the system model described by Equations (3.3) and (3.4)
is to be called a fuzzy system model.

Fuzzy Systems and Applications 67

3.3 Fuzzy Modelling

The general purpose of a model is to describe the functioning of a system in terms of
input/output behaviour. Traditional techniques of system modelling have significant limi-
tations. In many cases it is difficult to describe the system behaviour by a set of mathematical
equations when the system is nonlinear and partially known or unknown. Moreover, there
are many uncertainties and unpredictable dynamics that do not allow the system model to
be described mathematically. Such uncertainties and unpredictable behaviour in complicated
and ill-defined systems can be modelled using the linguistic approach as a model of human
thinking, which introduced fuzziness into systems theory (Zadeh, 1965, 1973). Therefore,
fuzzy system modelling is an important issue while control of such systems is of concern.
There are many interpretations of fuzzy system modelling. For instance, a fuzzy set is a
fuzzy model of a human concept. In this study, a fuzzy system model is understood as an
approach to form a system model using a descriptive language based on fuzzy logic with
fuzzy predicates. In other words, fuzzy models consist of linguistic explanations of system
behaviour. Apart from fuzzy control, there are many studies on fuzzy modelling. These are
divided into two groups. The first group deals with a fuzzy model of the system itself or a fuzzy
model for simulation (Tong, 1980; Pedrycz, 1984; Filev, 1991; Pedrycz and Gomide, 1998).
The second group deals with fuzzy modelling of a plant for control (Czogala and Pedrycz,
1981; Takagi and Sugeno, 1985; Lygeros, 1996). Just as in modern control theory, a fuzzy
controller can be designed based on a fuzzy model of a plant if the fuzzy model can be iden-
tified (Sugeno and Yasukawa, 1993; Gilachet and Foulloy, 1995) with appropriate structure
and variables.
In fuzzy system modelling, the identification method used is very important (Emami et al.,

1998). Identification for fuzzy modelling involves two distinct aspects:

• Structure identification and
• Parameter identification.

In general, structure identification is a difficult and extremely ill-defined process and not
readily amenable to automated techniques. The problem of parameter identification is closely
related to the estimation of the membership functions and parameters of the membership
functions, or alternatively the fuzzy relation associated with the fuzzy model.

3.3.1 Structure Identification

Generally, structure identification constitutes two problems.

• To find input/output variables from a number of input/output candidates by a heuristic
method based on experience and/or common sense.

• To find input/output relations in the form of if–then rules.

In a fuzzy model, the structure identification of this kind is stated in a different way. A
fuzzy model consists of a number of if–then rules. The number of rules, n, in a fuzzy model
corresponds to the order of the model in a conventional method (Jang, 1994). There are two

68 Computational Intelligence

μ(x)

1

speed

slow fast μ(y)

1

pressure

low high

If speed is slow Then pressure is high

Antecedent part Consequent part

Figure 3.2 Antecedent and consequent parts of the if–then rule

parts in an if–then rule. Figure 3.2 shows an example of an if–then rule. The ‘if’ part of the
rule is called the antecedent and the ‘then’ part is called the consequent.
The antecedent of a fuzzy rule defines a local fuzzy region, while the consequent describes

the behaviour within the region via various constituents. The consequent constituents can be
consequent membership functions (e.g., MFs in a Mamdani or Tsukamoto fuzzy model), a
constant value (e.g., in a zero-order Sugeno model) or a linear equation (e.g., in a first-order
Sugeno model). Different consequent constituents result in different fuzzy inference systems,
but their antecedents are always the same and determine the model order by partitioning the
input space.
For example, let us consider the fuzzy model with the following rules:

If x1 is A1, then y isC1
If x1 is A2 and x2 is B1, then y isC2
If x1 is A2 and x2 is B2, then y isC3

The inputs x1 and x2 in the above model are partitioned into three subspaces and the number
of rules corresponds to the number of subspaces. Different ways of partitioning the two-
dimensional input space are shown in Figure 3.3.
For example, let us consider the fuzzy model with three inputs and a single output defined

by the following rules:

If x1 is A2 and x2 is B1 and x3 isC1, then z is D2
If x1 is A2 and x2 is B2 and x3 isC2, then z is D3

The inputs x1, x2 and x3 of the above model are partitioned into three subspaces and the
number of rules corresponds to the number of subspaces. Different ways of partitioning the
three-dimensional input space are shown in Figure 3.4.
The problem in hand is combinatorial in nature and hence a heuristic rule can be applied to

find an optimal partition together with a criterion.

Fuzzy Systems and Applications 69

x2

x1A2A1

B1

B2

C1

C2

C3

x2

x1A2A1

B1

B2 C1

C2

C3

x2

x1A2A1

B1

B2 C1

C2 C3

x2

x1A2A1

B1

B2 C1

C2

C3

Figure 3.3 Partitioning of the input space

Conceptually, fuzzy modelling can be pursued in two stages, which are not totally disjoint.
The first stage is the identification of the structure, which includes the following tasks:

• selection of relevant inputs/outputs;
• choice of a specific type of fuzzy inference system, e.g. Mamdani, Sugeno or Tsukamoto;
• determining the number of linguistic terms associated with each input and output variable;
• generating a set of fuzzy if–then rules.

To accomplish these tasks, the designer mainly relies on knowledge such as common sense
and simple physical laws of the system, information provided by human experts or operators
or simply by trial and error. After the first stage of fuzzy modelling, a rule base is obtained
that describes the behaviour of the system in terms of linguistic variables.

x

x1

x3

D2 D3

D2

D2

D1

D2

D1 B3

A3 A2 A1

B2

B1

C3

C2

C1

Figure 3.4 Three-dimensional input space partitioning

70 Computational Intelligence

3.3.2 Parameter Identification

In ordinary system identification, parameters are the coefficients in a functional systemmodel.
For example

y(k + 1) = a0x(k)+ a1x(k − 1)+ a2x(k − 2)+ b0y(k)+ b1y(k − 1) (3.5)

where a0, a1, a2, b0, b1 are parameters of the systemmodel to be estimated. In fuzzymodelling,
the parameters are those in the membership functions of the fuzzy sets. In fuzzy modelling,
parameter identification is merely an optimization problem with a conventional criterion or
objective function, such as output error.
Determination of the meaning of linguistic variables is referred to as identification of the

deep structure. The deep structure determines the membership functions of each linguistic
variable (the coefficient of each rule’s output polynomial in a Sugeno-type fuzzy model). The
identification of the deep structure includes:

• choosing an appropriate family of parameterizedMFs (e.g., triangular, trapezoidal, Gaussian
or bell-shaped);

• applying heuristic selection or interviewing human operators to determine the parameters of
the MFs;

• refining the parameters of the MFs using suitable optimization techniques.

The first two tasks above can be achieved with a human expert, but for the third task
an input/output data set will be required or a tuning approach should be adopted. Various
parameter identification and optimization techniques can be used, such as least-squaremethods,
derivative-based methods and derivative-free methods (e.g., evolutionary algorithms). Some
of these are discussed in Chapter 8.

3.3.3 Construction of Parameterized Membership Functions

Choosing membership functions is the first and essential step in parameter identification
of fuzzy modelling. A convenient and concise way to construct an MF is to parameterize
it and then express the MF mathematically in terms of parameters. For example, the MF
shown in Figure 3.5(a) may be a good representation of the input space and may look attrac-
tive, but it will be difficult to express mathematically in terms of few parameters, which
leads to complications in model development. The full envelop of the input space in Fig-
ure 3.5(a) can be described by parametric MFs such as the trapezoidal function, as shown
in Figure 3.5(b).
A trapezoidal MF is specified by four parameters {a, b, c, d} as shown in Figure 3.6(a) and

defined by

μ(x) = max

(
min

(
x − a

b − a
, 1,

d − x

d − c

)
, 0

)
(3.6)

The parameters {a, b, c, d}with a < b < c < d determine the x coordinates of the four corners
of the underlying trapezoidal MF.

Fuzzy Systems and Applications 71

1

μ(x) μ(x)

x
(a) (b)

A
1

x

A1 A2

Figure 3.5 Hypothetical MF and parametric MF. (a) MF representing envelop of input space; (b)
Parametric representation of MFs

A triangular MF is specified by three parameters {a, b, c} as shown in Figure 3.6(b) and
defined by

μ(x) = max

(
min

(
x − a

b − a
,

c − x

c − b

)
, 0

)
(3.7)

The parameters {a, b, c} with a < b < c determine the x coordinates of the three corners of
the underlying triangular MF. Owing to the simple formulae and computational efficiency,
both triangular and trapezoidal MFs have been popular and used extensively, especially in
real-time applications.
A Gaussian MF is specified by two parameters {m, σ } and defined by

μ(x) = exp

[
−1
2

(
x − m

σ

)2]
(3.8)

(x)μ
1

xa b
(a) (b)

c d

(x)μ
1

xa b c

Figure 3.6 Parameters of MFs. (a) Trapezoidal MF; (b) Triangular MF

72 Computational Intelligence

where the parametersm and σ represent the centre and width of the GaussianMF, respectively.
A bell-shaped MF is specified by three parameters {m, σ, a} and defined by

μ(x) = 1

1+
∣∣∣∣ x − m

σ

∣∣∣∣2a
(3.9)

The parameters m and σ represent the centre and width of the bell-shaped MF, respectively.
Parameter a, usually positive, controls the slope of the MF at the crossover point. A sigmoidal
MF has two parameters and is defined by

μ(x) = 1

1+ exp [−a (x − c)]
(3.10)

where c is the centre and the parameter a controls the slope of the MF. The sign of the
parameter a determines the open-end direction of the MF.
Gaussian and bell-shaped MFs achieve smoothness but they are unable to specify asymmet-

ric MFs, which are important in certain applications. A sigmoidal MF, which is either open
left or right, can be used in such applications. There are other mixed types of membership
functions in use, such as difference sigmoidal, product sigmoidal, �-shaped, Z-shaped and
S-shaped. A detailed description of the different types of parameterized MFs is provided in
Section 2.4 of Chapter 2.
The shape of the MFs eventually represents the fuzziness of the variables that describe the

fuzzy system. Therefore, the shape of the MFs, their number and distribution influence the
performance of fuzzy systems and controllers (Kovacic and Bogdan, 2006). Many techniques
have been proposed which reflect the actual data distribution and using learning algorithms
where some input/output data are available. To further enhance system performance, the
generated membership functions can be tuned using techniques such as gradient descent with
neural networks or optimized using evolutionary algorithms for instance. The literature is
quite rich on this topic. Some of the techniques will be discussed later in this book. The
different approaches to construct and tune parameterized membership functions in use can
be categorized into groups such as (i) heuristic selection, (ii) clustering approach, (iii) neural
networks and (iv) evolutionary algorithms. A detailed description of these approaches can be
found in Chi et al. (1996) and Ross (2004).

(i) Heuristic selection
Heuristic selection of parameters of membership functions is widely used and practised in
fuzzy modelling and applications. This involves common-sense knowledge, application
of physical laws or general information about the system. For example, Figure 3.7 shows
various shapes in the universe of temperature. The parameters are chosen heuristically if
the MFs are referred to the ranges of human comfort. If the MFs are defined for a steam
engine, we get a different range of values as parameters.
If data are available, parameters can be chosen from the data distribution heuristically.

For example, Figure 3.8(a) shows a fairly linear distribution of available data. Inspecting
the data, two centres {c1, c2} can be chosen heuristically and define the two membership
functions S and B as shown in Figure 3.8(b).

Fuzzy Systems and Applications 73

(c)μ
1

c0 15 25 30 40 55

cold warm hot

Temperature (c)

Figure 3.7 Heuristic selection of parameters

The data distribution will not necessarily be linear as in Figure 3.8. It can be nonlinear
or scattered over the whole input space. An example of a scattered distribution is shown
in Figure 3.9. In such cases, heuristic selection of cluster centres may not work well. An
appropriate method for estimation of cluster centres is required (Tung and Quek, 2002).

(ii) Clustering approach
A clustering algorithm can be applied to estimate the actual data distribution and the
resulting clusters can be used to produce the membership functions, which will interpret
the data better and also be useful in producing a concise representation of a system’s
behaviour by identifying natural groupings of data from a large data set. For example,
two parameters, namely the centre and the width, are required to define Gaussian or
bell-shaped MFs. Clustering techniques can be used to determine the initial locations of
the centres and the width can be calculated from the distance between the two centres. In
the case of triangular MFs, the same centre can be used and the left and right width can
be calculated from the previous and next centres. Figure 3.9 shows the data distribution
of two variables, say the error and change of error. Three cluster centres {c1, c2, c3} are
determined using a clustering technique and the widths are determined from the distance
between centres.
Clustering performs partitioning of data into an appropriate number of subsets, i.e.

partitioning of the input space accordingly helps choose the parameters of the MFs.
Although for some applications users can determine the number of clusters K in terms

x

f (x)

C1

C2

S B

x

(x)μ

1

(b)(a)

Figure 3.8 Construction of MF from data. (a) Data distribution; (b) Parameters of MFs

74 Computational Intelligence

–5 0 5 10 15 20 25 30 35 40
–1

–0.5

0

0.5

1

1.5

A1 A2
A3

B1

B2

B3

C1
C2 C3

c1

c2

c3

Figure 3.9 Determining MF parameters using clustering

of their expertise, under some circumstances the value of K is unknown and needs
to be estimated exclusively from the data itself. Most of the clustering algorithms ask
for K to be provided as an input parameter, and it is obvious that the quality of the
resulting clusters is largely dependent on the estimation of K . A division with too
many clusters complicates interpretation and analysis of the data, while too few clusters
cause loss of information, misleading decisions or degraded performance. There are
different algorithms to determine clusters, such as the C-means algorithm (Bezdek, 1981),
the Gath–Geva algorithm (Gath and Geva, 1989) and the Gustafson–Kessel algorithm
(Gustafson and Kessel, 1979).

(iii) Neural networks
Neural networks have also been used to determine the parameters of MFs when data are
available. For example, adaptive vector quantization (Dickenson and Kosko, 1993) or
self-organized map (Kohonen, 1990) are well-suited methods for determining parameters
such as cluster centres or spread of the MFs. Takagi and Hayashi (1991) created MFs
using neural networks from input data sets. Mostly, neural network approaches are used
to tune the MFs’ parameters defined by clustering techniques (Espinosa et al., 2005).
Some methods will be discussed further in Chapter 10.

(iv) Evolutionary algorithms
The parameters determined by heuristic, clustering or neural network techniques may
not yield optimal performance of the fuzzy system as this depends on several other
issues, such as the position, shape and distribution of the MFs. Therefore, a tuning or
optimization of the parameters is necessary. Evolutionary algorithms are derivative-free

Fuzzy Systems and Applications 75

optimization techniques and are popular methods for optimizing parameters of MFs.
Different approaches and applications of evolutionary algorithms to fuzzy systems are
discussed in greater detail in Chapter 8.

A good account of discussions on constructing MFs using gradient descent, clustering and
gradient descent and evolutionary strategies can be found in Espinosa et al. (2005).

3.4 Fuzzy Control

Most of the classical design methodologies such as Nyquist, Bode, state-space and optimal
control are based on assumptions that the process is linear and stationary and hence is repre-
sented by a finite-dimensional constant-coefficient linear model. These methods do not suit
complex systems well because few of these represent uncertainty and incompleteness in pro-
cess knowledge or complexity in design. But the fact is that the real world is too complex. In
particular, many industrial processes are highly nonlinear and complex. As the complexity of
a system increases, quantitative analysis and precision become difficult. However, many pro-
cesses that are nonlinear, uncertain, incomplete or non-stationary have subtle and interactive
exchanges with the operating environment and are controlled successfully by skilled human
operators. Rather than mathematically modelling the process, the human operator models the
process in a heuristic or experiential manner. It is evident that human knowledge is becoming
more and more important in control system design. This experiential perspective in controller
design requires the acquisition of heuristic and qualitative, rather than quantitative, knowledge
or expertise from the human operator. During the past several years, fuzzy control has emerged
as one of the most active and powerful areas for research in the application of such complex
and real-world systems using fuzzy set theory (Zadeh, 1965, 1994). The control of complex
nonlinear systems has been approached in recent years using fuzzy logic techniques. A fuzzy
logic controller (FLC) has the basic configuration illustrated in Figure 3.10.

3.4.1 Fuzzification

In fuzzy control applications, the observed data are usually crisp. Since the data manipulation
in an FLC is based on fuzzy sets, fuzzification is necessary. Therefore, fuzzification is defined
as a mapping from an observed input space to fuzzy sets in a certain input universe of

Fuzzification Inference Defuzzification Plant

Rule base

yd

+
–

Fuzzy Logic Controller

y

Figure 3.10 Configuration of a fuzzy logic controller

76 Computational Intelligence

discourse. This process consists of associating to each fuzzy set a membership function.
These functions can be thought of as maps from the real numbers to the interval μ = [0, 1].
Fuzzification consists of associating a fuzzy vector with the quantity x by passing x through all
the membership functions pi providing grade of membership functions μi (x), i = 1, 2, . . . n:

F : R → μ(x) (3.11)

x →

⎡⎢⎢⎣
p1
...

pn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
μ1(x)
...

μn(x)

⎤⎥⎥⎦ (3.12)

3.4.2 Inference Mechanism

Inference is the process of formulating a nonlinear mapping from a given input space to an
output space. The mapping then provides a basis from which decisions can be taken. The
process of fuzzy inference involves all the membership functions, fuzzy logic operators and
if–then rules.
There are three basic types of fuzzy inference, which have been widely employed in

various control applications. Larsen’s product rule model is a variant of Mamdani-type model.
The differences between these four fuzzy inferences, also called fuzzy models, lie in the
consequents of their fuzzy rules, aggregations and defuzzification procedures. These fuzzy
models are:

(i) Mamdani-type fuzzy model;
(ii) Sugeno-type fuzzy model;
(iii) Tsukamoto-type fuzzy model;
(iv) Larsen’s product rule model.

(i) Mamdani-type fuzzy model
TheMamdani-type fuzzymodel was first proposed as an attempt to control a steam engine
and boiler using a set of linguistic control rules obtained from an experienced human
operator (Mamdani and Assilian, 1974). Figure 3.11 illustrates a two-input single-output
Mamdani-type fuzzy model.
A typical rule in a Mamdani-type fuzzy model with two-input single-output has the

form

If x is A and y is B then z isC

In Mamdani’s fuzzy model, crisp values are used as inputs and defuzzification (see
Chapter 2) is used to convert a fuzzy set to a crisp value.

(ii) Sugeno-type fuzzy model
The Sugeno-type fuzzy model, also known as the TSK fuzzy model, was proposed by
Takagi, Sugeno and Kang (Takagi and Sugeno, 1985; Sugeno and Kang, 1988) in an
effort to develop a systematic approach to generate fuzzy rules from a given input/output
data set. A typical fuzzy rule in a Sugeno fuzzy model has the form

If x is A and y is B then z = f (x, y)

Fuzzy Systems and Applications 77

(x)μ

x

x y

y
x1 y1

A1

A2

B1

B2

min

z

z

z

ZCOA

C1

C2

MAX

z

z

z

ZCOA

C1

C2

MAX

product

Centre of gravity method
of defuzzification

(x)μ
(y)μ

(z)μ

(y)μ (z)μ

(z)μ (z)μ

(z)μ

(z)μ

Figure 3.11 Mamdani-type fuzzy model

Usually, f (x, y) is polynomial in the input variables x and y but it can be any function
as long as it can appropriately describe the output of the model within the fuzzy region
specified by the antecedent of the rule (Wang and Langari, 1995; see also Chapter 2).
Figure 3.12 illustrates a two-input single-output Sugeno fuzzy model.

(iii) Tsukamoto-type fuzzy model
In the Tsukamoto-type fuzzy model, the consequent of each fuzzy if–then rule is repre-
sented by a fuzzy set with a monotonic MF (Tsukamoto, 1979). As a result, the inferred

x

x y

y

x y

A1

A2

B1

B2

min or product

w1

w2

Weighted average

z1 = p1x + q1y + r1

z2 = p2x + q2y + r2

w1 z1 + w2z2

w1 + w2

(x)μ

(x)μ

(y)μ

(y)μ

z =

Figure 3.12 Sugeno-type fuzzy model

78 Computational Intelligence

x

x y

y

x1 y1

A1

A2

B1

B2

min or product

z

z

C1

C2

z1

z2

(y)μ

(y)μ

(x)μ

(x)μ

(z)μ

(z)μ

Weighted average

w1 z1 + w2z2

w1 + w2

z =

Figure 3.13 Tsukamoto-type fuzzy model

output of each rule is defined as a crisp value included in the rule’s firing strength. The
overall output is taken as the weighted average of each rule’s output (see also Chapter 2).
Figure 3.13 illustrates a two-input single-output Tsukamoto fuzzy model.

(iv) Larsen’s product rule
Larsen’s product rule model is similar to the Mamdani-type fuzzy modelling. The only
difference is that it takes the product of the consequent membership functions as shown
in Figure 3.14, which is an illustration of a two-input single-output Mamdani-type fuzzy
model (Larsen, 1980; Figueiredo et al., 1993). A typical rule with two inputs and single
output has the form

If x is A and y is B then z isC

In Mamdani’s fuzzy model, crisp values are used as inputs and defuzzification (see Chapter 2)
is used to convert a fuzzy set to a crisp value.

3.4.3 Rule Base

A fuzzy system is characterized by a set of linguistic statements based on expert knowledge.
The expert knowledge is usually in the form of if–then rules, which are easily implemented
by fuzzy conditional statements in fuzzy logic (Wong and Lin, 1997). The collection of fuzzy
rules that are expressed as fuzzy conditional statements forms the rule base or the rule set
of an FLC. For example, a rule base with two inputs, error and change of error, is shown in
Table 3.1. Each input/output has five membership functions NB, NS, ZO, PS and PB, where
PB=positive big, PS=positive small, ZO=zero, NS=negative small and NB=negative big.

Fuzzy Systems and Applications 79

x

x y

y
x1 y1

A1

A

μ

μ

μ

μ

μ

μ

μ

2

B1

B2

z

z

z

ZCOA

C1

C2

MAX

product

Figure 3.14 Inferencing with Larsen’s product rule

The design parameters of the rule base include:

• Choice of process state and control output variables;
• Choice of the content of the rule antecedent and the rule consequent;
• Choice of term sets for the process state and control output variables;
• Derivation of the set of rules.

If one has made the choice to design a P-, PD-, PI-, or PID-like fuzzy logic controller
this already implies the choice of process state and control output variables, as well as the
content of the rule antecedent and rule consequent for each of the rules. The process state

Table 3.1 FLC rule base with error and change of error

Change of error

Error NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PS PS ZO NS
ZO PS ZO ZO ZO NS
PS PS ZO NS NS NB
PB ZO NS NB NB NB

80 Computational Intelligence

variables representing the contents of the rule antecedent (‘if’ part of the rule) are selected
as follows:

• Error, denoted by e;
• Change of error, denoted by �e;
• Sum of error, denoted by �e.

The control output (process input) variables representing the content of the rule consequent
(‘then’ part of the rule) are selected as follows:

• Control output, denoted by u;
• Change of control output, denoted by �u.

By analogy with the conventional controller, these are defined as

• e(k) = yd − y(k)
• �e(k) = e(k)− e(k − 1)
•

n∑
k=1

e(k) =
n−1∑
k=1

e(k)+ e(k)

• �u(k) = u(k)− u(k − 1) or u(k) = u(k − 1)+ �u(k)

where yd is the desired output or set point, y is the process output, k is the sampling time and
n is the maximum sample number.

3.4.4 Defuzzification

Basically, defuzzification is a mapping from a space of fuzzy control actions defined over an
output universe of discourse into a space of non-fuzzy (crisp) control actions. In a sense this
is the inverse of fuzzification, even though mathematically the maps need not be inverses of
one another. In general, defuzzification can be viewed as a mapping DF from a fuzzy vector
μ with n fuzzy sets to a real number:

DF : μ → R (3.13)

In general, there are different methods for defuzzifying a fuzzy set A defined over the universe
of discourse Z . A detailed description of the defuzzification methods is given in Chapter 2.
Considering the demand for low computation time in real-time applications, the following

defuzzification methods are widely used:

(i) centre of area ZCOA is the centre of gravity of the aggregated area of the output MFs;
(ii) bisector of area ZBOA is a vertical line that divides the area into two equal areas;
(iii) mean of maximum ZMOM is the average of the maximizing z at which the membership

function reaches a maximum μ∗;
(iv) smallest of maximum ZSOM is the minimum in terms of magnitude of the maximizing z;
(v) largest of maximum ZLOM is the maximum in terms of magnitude of the maximizing z.

Fuzzy Systems and Applications 81

The calculation needed to carry out these defuzzification operations is still time-consuming.
Researchers are trying to find new approaches to minimize the time involved. One example of
such an attempt is the zero-order Sugeno-type fuzzy system, where a pre-defuzzified constant
value is used in the consequent part of the rule. An overview of defuzzification methods and
the lack of a systematic approach to the defuzzification problem can be found in Lee (1990)
and Yager and Filev (1994).

3.5 Design of Fuzzy Controller

Let x = (x1, . . . , xn) be a vector of process state variables, y the process output variable and
u the process input variable or control variable. The conventional closed-loop model, when
linearized around the set point, is given by

x(k + 1) = A · x(k)+ bT · u(k) (3.14)

y(k) = cT · x(k) (3.15)

u(k) = k · y(k) (3.16)

where A is the process matrix, b and c are vectors and k is a scalar. The state equations can be
written as

x(k + 1) = A · x(k)+ bT · u(k) (3.17)

u(k) = k · cT · x(k) (3.18)

The fuzzy counterpart of the above model can be described as follows. Let the linguistic
variable xi (e.g., error, change of error, etc.) have the term set Xi (e.g., NB, NS, etc.) and the
membership function for Xi be denoted by X̃i . Thus, the linguistically defined process state
vector is denoted by X̃ = (X̃1, . . . , X̃n). Similarly, u takes linguistically defined valuesUwith
membership functions Ũ . Thus, the fuzzy model of the closed-loop system can be described
as

X̃ (k + 1) = [
X̃ (k)× Ũ (k)

] ◦ Ã (3.19)

Ũ (k) = X̃ (k) ◦ K̃ (3.20)

where Ã is a fuzzy relation on X × U × X , ◦ is the composition operation and K̃ is the
controller which is a fuzzy relation on X × U representing the meaning of a set of if–then
rules of the form

If x1 is Xi and . . . xn is X j then u isUk (3.21)

Ã can be obtained in explicit form by on/off-line identification or Ã is the fuzzy relation giving
the overall meaning of a set of production rules.

82 Computational Intelligence

Desired level
Water level

yd
y(t)

Figure 3.15 Water level in a tank

3.5.1 Input/Output Selection

Suppose the fuzzy controller has to control the water level of a tank as shown in Figure 3.15.
Rather than going for development of a mathematical model of the system with available
states, a fuzzy model using the available states, namely the error e, change of error �e, sum
of error �e and valve position u at each discrete time step during the control process, can be
developed.
The states of water level and state of valve can be measured directly from the system,

whereas the error e, change of error �e and sum of error �e can be derived from these states
as follows:

e = yd − y (3.22)

�e = e(k)− e(k − 1) (3.23)∑
e(k) =

∑
e(k − 1)+ e(k) (3.24)

where y is the measured water level and yd is the desired water level.

3.5.2 Choice of Membership Functions

Since Lotfi Zadeh introduced fuzzy sets, the main difficulties have been with the meaning and
measurement of membership functions as well as their extraction, modification and adaptation
to dynamically changing conditions. There is no general rule for choice of membership
functions, and this mainly depends on the problem domain. In general, use of narrower
membership functions results in a faster response but causes larger oscillations, overshoot and
settling time.
Gaussian and bell-shaped membership functions involve calculation of exponential terms

and use substantial processing time. Trapezoidal membership functions have four parameters
and can burden the optimization procedure. Triangular membership functions are the best
choice and used for simplicity.

3.5.3 Creation of Rule Base

The fuzzy rules R must be completed and covered by fuzzy partitioning the input space.
Figure 3.16 shows an input space partitioning for two-input single-output systems.

Fuzzy Systems and Applications 83

E

ΔE

R1:C1 R2:C1 R3:C2

R11:C3

R8:C2

R4:C4

R5:C1

R9:C1

R7:C3

R12:C3

R13:C1

R10:C2

R16:C4R15:C3R14:C2

R6:C2

B1

B2

B3

B4

A1 A2 A3 A4

Figure 3.16 Fuzzy input space partitioning

For example, the error and change of error and valve position of a PD-like FLC can be
divided into four partitions (i.e., partitioned into four fuzzy sets) as:

error E = {A1, A2, A3, A4}
change of error�E = {B1, B2, B3, B4}
valve positionU = {C1, C2, C3, C4}

where E,�E and U are the universe of discourse for error, change of error and valve position,
respectively. The nth rule for the two-input single-output system is

Rn : IF (e is Ai) and (�e is B j) THEN (u isCk)

where Rn, n = 1, 2, . . . , 16, is the nth fuzzy rule. Ai , B j and Ck , i = 1, 2, . . . , 4, j =
1, 2, . . . , 4 and k = 1, 2, . . . , 4, are primary fuzzy sets. There are 16 rules obtained from
this uniform partitioning. Initially, fuzzy rules are based on input/output data and these rules
are refined through trial and error.

3.5.4 Types of Fuzzy Controller

A fuzzy controller can be constructed using e, �e and �e as inputs and control input u as
output depending on the type of controller, e.g. PD, PI or PID type.

P-like FLC: The equation for a conventional proportional (P)-like controller is given as

u = kp · e(k) (3.25)

where kp is the proportional gain coefficient. The rule for a P-like controller is given in
symbolic form as

If e is Ai then u is B j (3.26)

84 Computational Intelligence

yd

Rule base

ye u
kc

–

+ Fuzzy
controller Plant

Figure 3.17 Block diagram of a P-type FLC with error

where Ai and B j , i, j = 1, 2, . . . , n, are the linguistic variables. Figure 3.17 shows the block
diagram of a P-type single-input single-output fuzzy controller for a plant. The function of the
control output for such a single-input single-output (SISO) system is then a curve, as shown
in Figure 3.18 for n = 4.

PD-like FLC: A conventional proportional differential (PD)-like FLC can be developed by
using an error and change of error model as

u = kp.e + kd .�e (3.27)

where kp and kd are the proportional and differential gain coefficients and e is the error, �e
is the change of error. In this type of FLC, it is assumed that no mathematical model for the
system is available except two states, namely, the error and change of error. Only output y is
measured from the system and the error and change of error are derived. The error and change
of error are defined as

e(k) = yd − y(k) (3.28)

�e(k) = e(k)− e(k − 1) (3.29)

where yd is the desired output and y(k) is the actual output. Figure 3.19 shows the
block diagram of a PD-like FLC with error and change of error as inputs. The PD-like

B1

B2

B3

B4

A4 A1A2A3

u

e

f (e)

Figure 3.18 Function of control output for SISO systems

Fuzzy Systems and Applications 85

Rule base

dy

Δe

e yu

Z–1

–
-

kc+
Fuzzy

controller
Plant

Figure 3.19 Block diagram of PD-like FLC with error and change of error

FLC consists of rules of the form

If e is Ai and�e is B j then u isCk (3.30)

where Ai , B j and Ck are the linguistic variables and i = 1, . . . , n1, j = 1, . . . , n2 and k =
1, . . . , m.
The control surface of a two-input single-output (MISO) system is shown in Figure 3.20,

where X and Y represent inputs and Z represents the controller output. For a PD-type controller,
X represents error and Y represents change of error. For a PI-type controller, X represents error
and Y represents sum of error.

Example 3.1: PD-like FLC with error and change of error A simple PD-like FLC
is developed for a manipulator. A schematic representation of the flexible-link manipulator
system considered here is shown in Figure 3.21, whereXoOYo andXOY represent the stationary
and moving coordinates, respectively and τ represents the applied torque at the hub. E , I , ρ,
V , Ih and MP represent the Young’s modulus, area moment of inertia, mass density per unit
volume, cross-sectional area, hub inertia and payload of the manipulator, respectively. In this
example, the motion of the manipulator is confined to the XoOYo plane.

In a PD-type FLC, it is assumed that no mathematical model for the flexible link is available
except two states, namely, the hub angle error and change of error. Only the hub angle θ is

Z

X

Y

Figure 3.20 Control surface of a two-input single-output system

86 Computational Intelligence

Xo

Yo

X

θ

Flexible link (ρ, E, I, L)

τ

Y

Rigid hub (Ih)

w(x, t)

mp

O

x

(t)

Figure 3.21 Schematic representation of the single-link flexible manipulator

measured from the system and the error and change of error are derived from θ . The hub angle
error and change of error are defined as

e(k) = θd − θ (k) (3.31)
�e(k) = e(k)− e(k − 1) (3.32)

where θd is the desired hub angle, e is the error and�e is the change in angle error. Figure 3.22
shows a block diagram of the PD-like FLC with error and change of error as inputs.
Triangular membership functions are chosen for inputs and output. The membership func-

tions for angle error, change of angle error and torque input are shown in Figure 3.23. The
universe of discourse for the angle error and change in angle error are chosen as [–36, +36]
degrees and [–25,+25] respectively. The universe of discourse of the output (i.e., input torque)
is chosen as [–3,+3] volts. To construct a rule base, the angle error, change of angle error and
torque input are partitioned into five primary fuzzy sets as

hub angle error E = {NB, NS, ZO, PS, PB}
change of angle errorC = {NB, NS, ZO, PS, PB}
torqueU = {NB, NS, ZO, PS, PB}

Rule base

Fuzzy
controller

Flexible
manipulator

Output
dθ

Δe

e u

Z –1

–
–

θ

kc+

Figure 3.22 PD-like FLC with angle error and change of angle error

Fuzzy Systems and Applications 87

–36 –20 –10 0 10 20 36
0

0.5

1
NB NS ZO PS PB

(a)

–20 –10 0 10 20
0

0.5

1
NB NS ZO PS PS

–25 25

(b)

–3 –2 –1 0 1 2 3
0

0.5

1
NB NS Z PS PB

(c)

Figure 3.23 Membership functions for inputs and output. (a) Angle error; (b) Change of angle error;
(c) Torque input

where E, C andU are the universes of discourse for hub angle error, change of angle error, and
torque input, respectively. The nth rule of the rule base for the FLC, with error and change of
error as inputs, is

Rn : IF (e is Ei) and (� e isC j) THEN (u isUk)

where Rn, n = 1, 2, . . . , Nmax is the nth fuzzy rule, Ei, Cj and Uk, for i, j, k = 1, 2, . . . , 5 are
the primary fuzzy sets. The rule base is shown in Table 3.2.
The membership functions defined in Figure 3.23 and the rule base defined in Table 3.2 form

the control surface of the controller, which is shown in Figure 3.24. The controller is applied
to the single-link manipulator described above. The response of the manipulator system is
shown in Figure 3.25. For a demanded angle of 36 degrees, it reached a maximum overshoot
of 50 degrees. The PD-type FLC shows rapid response at transient state, i.e., a rise time of
17 time units and a settling time of 44 time units. The performance of the PD-type FLC is

88 Computational Intelligence

Table 3.2 FLC rule base with angle error and change of angle error

Change of error

Error NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PS PS ZO NS
ZO PS ZO ZO ZO NS
PS PS ZO NS NS NB
PB ZO NS NB NB NB

–20
0

20

–20

0

20

–1
0
1

ErrorChange error

To
rq

ue

Figure 3.24 Control surface of the controller with hub angle error and change of hub angle error

0 10 20 30 40 50
–10

0

10

20

30

40

50

Time units, 1 unit = 0.14 sec

A
ng

le
 (

de
g)

Figure 3.25 Hub angle with FLC with hub angle error and change of hub angle error

Fuzzy Systems and Applications 89

very promising in respect of rise time, maximum overshoot and settling time but it shows a
significant amount of steady-state error of 2.56 degrees. Steady state error is a characteristic
feature of any PD-type controller.

PI-like FLC: A conventional proportional-integral (PI)-like controller is described as

u = kP e + kI

∫
edt (3.33)

where kP and kI are the proportional and integral gain coefficients. Taking the derivative with
respect to time of Equation (3.30) yields

u̇ = kP · ė + kI · e (3.34)

which can be rewritten as

�u = kP · �e + kI · e (3.35)

This yields an incremental PI-like controller equation. The PI-like FLC rule base accordingly
consists of rules of the form

If e is Ai and�e is B j then�u isCk

In this case, to obtain the value of the control output u(k), the change of control output�u(k)
is added to u(k − 1) such that

u(k) = �u(k)+ u(k − 1) (3.36)

Another way to express the PI-like controller is the absolute integral PI-like controller:

u = kP · e + kI · �e (3.37)

where�e is the sum of error, kp and kI are the proportional and integral gain coefficients. The
absolute PI-like FLC consists of rules of the form

If e is Ai and�e is B j then u isCk (3.38)

where Ai , B j and Ck are the linguistic variables. A block diagram of the absolute PI-type FLC
is shown in Figure 3.26. In this type, the output is measured from the system and the error and
sum of error are derived.

yd

Rule base

∑e

ye
u

kc

–

+
Fuzzy

controller
Plant

Figure 3.26 Block diagram of a PI-type FLC with error and sum of error

90 Computational Intelligence

Example 3.2: PI-type FLC with error and sum of error It is well known that the PI-type
FLC has good performance at steady state, like the traditional PI-type controllers. That is,
the PI-like FLC reduces steady-state error, but yields penalized rise time and settling time
(Chao and Teng, 1997). The PI-type controllers give inevitable overshoot when attempting to
reduce the rise time, especially when a system of order higher than one is under consideration
(Lee, 1993). These undesirable characteristics of fuzzy PI controllers are caused by integral
operation of the controller, even though the integrator is introduced to overcome the problem
of steady-state error.
The incremental PI-like FLC for the flexible-link manipulator will be like that described in

Equation (3.32). The inputs are the same as a PD-like FLC with error and change of error,
except the control input is incremented at each time. Actually, the rules of the fuzzy controller
are designed with a phase plane in mind, in which the fuzzy controllers drive a system into
the so-called sliding mode. The tracking boundaries in the phase plane, however, are related
not to the incremental control input but to the control input itself, which is calculated by
Equation (3.33). To select the maximum variation of the incremental control input �u giving
satisfactory rise time and maximum overshoot is not so easy as in the case where the control
input itself is to be determined (Lee, 1993). One natural approach to overcome such a difficult
situation is to adopt the rate of change of error. Such a controller may be called a PID fuzzy
controller, and will be addressed later. Furthermore, a primary objective of this example is
to demonstrate the performance of the PD- and PI-type FLCs with different inputs such as
error (e), change of error (�e) and sum of error (�e), and hence this type of controller is
not discussed further in this chapter. Rather, an absolute PI-type controller is presented. In
an absolute PI-type FLC, the error and sum of error are used as inputs and it is described
by Equation (3.34).
A block diagram of the absolute PI-type FLC is shown in Figure 3.27. In this type of

controller, the angle is measured from the system and the sum of angle error is derived
from the angle error. Triangular membership functions are chosen for inputs and output. The
membership functions for hub angle error, sum of hub angle error and torque input are shown
in Figure 3.28(a–c). The universes of discourse for the hub angle error and sum of hub angle
error are chosen as [–36, +36] degrees and [–150, +150] degrees respectively. The universe
of discourse of the output is chosen as [–3, +3] volts.

Rule base

Fuzzy
controller

Flexible
manipulator

Outputdθ

Σe
θ

e u

kc

–

+

Figure 3.27 Block diagram of an absolute PI-type FLC

Fuzzy Systems and Applications 91

–36 –20 –10 0 10 20 36
0

0.5

1
NB NS ZO PS PB

(a)

–150 –10 0 10 150
0

0.5

1
NB NS ZO PS PB

(b)

–3 –2 –1 0 1 2 3
0

0.5

1
NB NS ZO PS PB

(c)

Figure 3.28 Membership functions for inputs and output. (a) Angle error; (b) Sum of angle error;
(c) Torque input

To construct a rule base, the angle error, sum of angle error and torque input are partitioned
into five primary fuzzy sets as

angle error E = {NB, NS, ZO, PS, PB}
sum of angle S = {NB, NS, ZO, PS, PB}
torqueU = {NB, NS, ZO, PS, PB}

where E, S and U are the universes of discourse for hub angle error, sum of hub angle error
and torque input, respectively. The nth rule of the rule base for this PI-type FLC is

Rn : IF (e is Ei) and (s is Sj) THEN (u isUk)

where Rn , n = 1, 2, . . . , Nmax is the nth fuzzy rule, Ei, Sj and Uk, for i, j, k = 1, 2, . . . , 5 are
the primary fuzzy sets. The rule base for the PI-type controller is shown in Table 3.3.

92 Computational Intelligence

Table 3.3 Rule base for PI-type FLC with error and sum of error

Sum of error

Error NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PS ZO ZO NS
ZO PS ZO ZO ZO NS
PS PS ZO ZO NS NB
PB ZO NS NB NB NB

A difficulty arises from deciding on the number of time units to go back in calculating
the sum in Equation (3.34). Even the literature on conventional control theory tends to be
somewhat vague on this point, and many texts use an indefinite integral type of notation when
representing the integral term, though obviously it is not to be taken literally. The reason for this
vagueness may be that traditionally, in conventional control, the integral term is approximated
by analogue circuitry, and the integral limits cannot easily be stated precisely anyway (Lewis,
1997).
Experience with the system suggests using 10 time units to indicate recent tendencies in

the error, and experimentation demonstrates that this works very well. It is also convenient to
work with an average rather than a sum so that the base value can easily be compared with the
current error. Thus, the

∑
e base value is calculated as

∑
e(1) =

1∑
k=−8

e(k) (3.39)

The control surface of the controller with angle error and sum of angle error is shown in
Figure 3.29.
The controller was implemented on the flexible-link manipulator. The response of the

absolute PI-type FLC for the flexible-link manipulator is shown in Figure 3.30. It can be seen
that the response has a very good performance for a demanded hub angle of 36 degrees with a
small steady-state error of –0.34 degrees. It has a rise time of 12 time units, which is less than
the rise time of the PD-like FLCs in Example 3.1 and a larger overshoot of 66.45 degrees with

–36

0
36

–200
0

200

–3

0

3

Hub angle error
Sum of error

V
ol

ts

Figure 3.29 Control surface of the controller with error and sum of error

Fuzzy Systems and Applications 93

0 20 40 60 80 100
–10

0

10

20

30

40

50

60

70

Time units, 1 unit = in 0.14 sec

A
ng

le
 (

de
g)

Figure 3.30 Angle error with PI-type FLC

an excessive oscillation around the set point. The oscillations caused a prolonged settling time
of 85 time units.

PID-like FLC: A further option to obtain a better performance in respect of rise time,
settling time, overshoot and steady-state error is to develop a proportional-integral-derivative
(PID)-like FLC. The basic idea of a PID controller is to choose the control law by considering
the error e, change of error �e and integral of error �e (or

∫ t
0 edt). The PID-type fuzzy

controller is described by

uPID = kP · e + kd · �e + kI ·
t∫
0

e · dt (3.40)

By replacing the integral of error term
∫ t
0 edt with the sum of error term �e, the PID-type

fuzzy controller in discrete time is described by

uPID = kP · e + kd · �e + kI · �e (3.41)

The fuzzy control rule corresponding to the PID controller (as shown in Figure 3.31) has the
form

If e is Ai and�e is B j and�e isCk then u is Dl (3.42)

where i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3 and l = 1, . . . , m. Theoretically, the num-
ber of rules to cover all possible input combinations and variations for a three-term fuzzy
controller is n1 × n2 × n3, where n1, n2 and n3 are the number of linguistic labels of the three
input variables.

94 Computational Intelligence

yd

Rule base

Σ
Δ

e

ye
u

kc

–

+ Fuzzy
controller

e Plant

Figure 3.31 PID-type FLC with error, change of error and sum of error

Generally, a PD-type two-term fuzzy controller cannot eliminate steady-state error whereas
a PI-type two-term fuzzy controller can eliminate steady-state error but it has a slower response
due to the integral term in the control variable. These characteristics have been demonstrated
in the example PD- and PI-type FLCs in earlier sections for the flexible-link manipulator. In
order to meet the design criteria of fast rise time, minimum overshoot, shorter settling time and
zero steady-state error, a further option is to develop a PID-type FLC which enables fast rise
time, smaller overshoot and settling time from the PD part and minimum steady-state error
from the PI part of the PID controller. The generic fuzzy PID controller is a four-dimensional
(three-input single-output) fuzzy system. The basic idea of a PID controller is to choose the
control law by considering the error e, change of error�e and integral of error or sum of error
�e, thus giving the controller defined in Equation (3.37).
Theoretically, the number of rules to cover all possible input variations for a three-term

fuzzy controller is n1 × n2 × n3, where n1, n2 and n3 are the number of linguistic terms
of the three input variables. In particular, if n1 = n2 = n3 = 5, then the number of rules
R = 5× 5× 5 = 125. In practical applications the design and implementation of such a huge
rule base is a tedious task, and it will take a substantial amount of memory space and reasoning
time. Because of a long reasoning time, the response of such a generic PID-type FLC will be
too slow and hence not suitable for applications where a fast response is desired, for example
the flexible-link manipulator system discussed in two examples.
A variety of approaches have been proposed to overcome the problems of a generic PID-type

fuzzy controller in Tzafestas and Papanikolopoulos (1990) and Brehm (1994). The inherent
feature of a PD-type fuzzy controller is that it has fast rise time, less overshoot and steady-
state error. So Kwok et al. (1990, 1991) have considered a novel means of decomposing a
PID controller into a fuzzy PD controller in parallel with various types of fuzzy gains, fuzzy
integrators, fuzzy I controller and deterministic integral control to minimize the steady-state
error. The various PID configurations are shown in Figure 3.32. For a process whose steady-
state gain is known or can be measured easily as kp, then integral action is not necessary.
This combination of fuzzy PD with steady-state gain control is shown in Figure 3.32(a). The
output of the integral action is defined as uI = r

kP
, where r is the set point or desired output.

If the proportional gain kp is not known, then an integral action is necessary. The integral
action is implemented by placing a conventional integral controller in parallel with the fuzzy
PD controller. The implementation of the fuzzy PD with integral action controller is shown
in Figure 3.32(b). In this case, the output of the integral action is defined as uI = kI �e,
where kI is the integral gain to be determined by trial and error. Some researchers argue that
the two implementations in Figure 3.32(a,b) are not true fuzzy PID controllers as they apply

Fuzzy Systems and Applications 95

r

du

Iu

e
Fuzzy PD

y
Plant

ek I Σ

Σ

e

u

(b)

(a)

r

du

Iu

e
Fuzzy PD

y
Plant

eΣ

Σ

e

u

Fuzzy K Ik

(c)

r

du

Iu

eΔ

eΔ

eΔ

e
Fuzzy PD

y
Plant

Pk

1

Σ
u

Figure 3.32 Different PID-type FLC configurations. (a) Fuzzy PD with steady-state gain control;
(b) Fuzzy PD with integral action control; (c) Fuzzy PD with fuzzified kI

deterministic control for the integral part. As a remedy they suggest fuzzifying the integral
gain kI . The implementation of the fuzzy PD with fuzzified integral gain controller is shown
in Figure 3.32(c). The output of the integral action is defined as uI = fuzzy(kI)�e. A detailed
description of these kinds of decompositions can be found in Harris et al. (1993).
A typical method for rule reduction in a fuzzy PID-type controller is to divide the three-term

PID controller into two separate fuzzy PD and fuzzy PI parts (Kwok et al., 1990; Zhang and
Mizumoto, 1994; Chen and Linkens, 1998). The parallel combination of PD- and PI-type
fuzzy controllers is shown in Figure 3.33(a). This combination of PD and PI controllers with
n linguistic labels in each input variable requires only n × n + n × n = 2n2 rules (e.g., for
n = 5 there will be 5× 5+ 5× 5 = 50 rules), which is significantly smaller than the n3

rules (e.g., 5× 5× 5 = 125) required by a generic PID controller. A further possibility is to
combine a fuzzy I part with a fuzzy PD part, as shown in Figure 3.33(b). This combination
of PD and I controllers will require only n × n + n = n2 + n rules (e.g., for n = 5 there will
be 5× 5+ 5 = 30 rules), which is much smaller than 50 rules. This is the number of rules

96 Computational Intelligence

Fuzzy PD du

Iu

eΔ

e u

Fuzzy PI eΣ

Plant

dy

y

(a)

r

du

Iu

eΔ

e
Fuzzy PD

y
Plant

Fuzzy I

Σ

Σ

e

u

eΣ

(b)

Figure 3.33 Combination of fuzzy PD and fuzzy PI. (a) Combination of fuzzy PD and fuzzy PI;
(b) Combination of fuzzy PD and fuzzy I

processed during execution of the controller, consuming a significant amount of processing
time and memory space.
Siddique (2002) proposed a further rule reduction by employing a switching PD/PI-type

FLC where the fuzzy controller is switched from PD- to absolute PI-type after a certain period
of time. Only one rule base consisting of n × n rules for each type of controller is executed at
a time, and thus the number of executed rules in a controller will be reduced to only 25 rules
for 5 linguistic labels for each input variable. The state variables used in a PD/PI-type FLC are
the same as in the PD-type and PI-type FLCs described earlier in this section. The functional
block diagram of the switching PD/PI-type controller is shown in Figure 3.34.
Determination of a switching point is important and can result in poor performance if

chosen inappropriately. It is obvious that if the controller is switched at the point of maximum
overshoot of the PD-like FLC, it can yield the best performance. But surprisingly, it does

Set point

Rule base

Output

eΔ

Σe

dy +

_ y

e

kc

e
PlantFLC

Figure 3.34 Block diagram of a PD/PI-type FLC

Fuzzy Systems and Applications 97

not give a good result. Experimental investigations show that a switching point just before or
after the maximum overshoot gives a better result than at the point of maximum overshoot,
suggesting a trial-and-error method to find the switching point around the point of maximum
overshoot.
The above approaches may be useful in reducing the number of rules for a three-input

single-output PID fuzzy controller. A systematic study of the fuzzy PID controller has been
reported in Hu et al. (2001) and Siddique (2002). However, control problems are complicated
in the industry, where multiple variables need to be controlled. The situation becomes more
complicated when interaction effects exist among the cross-coupled input/output variables of
the system. In such situations, it is difficult to design fuzzy if–then rules for cross-coupled
input/output variables. The simplest way to design a fuzzy controller for such a problem
is to decompose the problem with respect to inputs, outputs or objectives and design fuzzy
controller modules for each task or subsystem. It has been demonstrated that the combined
performance of the modular fuzzy controllers is comparable to a single monolithic fuzzy
controller (Syljak, 1991; Chi, 1995; Chi et al., 1997; Shin and Xu, 2009).

3.6 Modular Fuzzy Controller

A generic problem with FLCs is that the number of rules grows exponentially with the number
of input/output variables and linguistic terms for each variable. For a complete rule base
with input variables {Xi |i = 1, . . . , n} with linguistic terms {Ai j | j = 1, . . . , mi } and output
variables {Yk |k = 1, . . . , l}with linguistic terms {Bk j | j = 1, . . . , pk}, the number of rules will
be

R = n
�
i=1

mi (3.43)

The rules have the form

If (X1 is A11) and . . . and (Xn is Anm) then (Y1 is B11) and . . . and (Yl is Blp) (3.44)

This large number of rules complicates the design of an FLC, because for each of the R
different premises the expert must provide a combination of term sets for the output variables,
which is nearly impossible for a human expert to guess. It is possible to omit a set of rules if
it could be guaranteed that a certain combination of input/output variables will never occur
during control of the dynamic system. A modular structure of FLCs with minimum number
of input/output variables can reduce the number of rules R.
For large-scale and complex systems, the reduction in computation and design complex-

ity remains a challenge of intelligent control systems. Hierarchical and modular method-
ologies have gained wide popularity because of their simplicity in design and robustness.
There are several approaches to decomposing a system into modules, such as the decentral-
ized approach, time-scale decomposition, hierarchical system and workspace decomposition
(Syljak, 1991; Chi et al., 1997). For control problems with multiple objectives of different
priority, a sub-controller with a subset of input/output variables can be designed for each
objective. Furthermore, antecedents can be decomposed into single input modules. Each
fuzzy module is designed to handle one specific input affiliated with one of the decoupled
antecedents {Xi |i = 1, . . . , n} and produces a crisp action {Yk |k = 1, . . . , l}. For example, an

98 Computational Intelligence

FLC

1x

2x

4x

3x
y

FLC 3
4x

FLC 2
1x

3x

FLC 1
1x

2x

y

1y

2y

1x
FLC 1

1x

2x

3x
FLC 2

4x

2y

1y

yΣ

(a)

(b)

(c)

Figure 3.35 Decomposition andmodular design of fuzzy controller. (a) Classical monolithic controller;
(b) Hierarchical combination of modular FLCs; (c) Parallel combination of modular FLCs

FLC with four inputs and a single output, as shown in Figure 3.35(a), can be modularized in
two ways. That is, the FLC can be a hierarchical or cascade combination of modules and a
parallel combination of modules. Figure 3.35(b) shows the hierarchical modular architecture
and Figure 3.35(c) shows the parallel modular architecture.
The total possible number of fuzzy rules that can be generated for the rule base is Lk , where

k is the number of inputs and L is the number of fuzzy linguistic terms or MFs. Compared with
the modular FLC design, each input represents one fuzzy control module. The total number of
rules for each module is determined by the number L of MFs. Thus, the total number of fuzzy
rules for all kmodules is kL. This clearly shows a significant reduction in the number of fuzzy
rules from Lk to kL , as well as savings in computation time.
Ahmad et al. (2010a,b) developed a parallel modular fuzzy controller (MFC) for a two-

wheeled wheelchair. The generic architecture of the parallel modular architecture is shown
in Figure 3.36. The objective of the MFC is to achieve a zero-degree upright position of the

Fuzzy Systems and Applications 99

u
X

Plant

Σ

FLC Module 1

FLC Module 2

1u

2u

u
FLC Module 3

FLC Module 4

3

4u

Figure 3.36 Modular FLC for control of a wheelchair

wheelchair on two wheels. The objectives of the four fuzzy controllers are to lift and stabilize
the two links of the wheelchair. They achieved a significant rule reduction with simplified
fuzzy controller structure and satisfactory performance.

3.7 MATLAB R© Programs

Fuzzy inference systems have been applied successfully to various fields such as control,
data classification, computer vision and decision systems. Because of their wide areas of
application, fuzzy inference systems are also well known by different names, such as fuzzy
rule-based systems, fuzzy expert systems, fuzzy modelling, fuzzy associative memory and
fuzzy logic controllers. All of these names eventually fall under the umbrella of fuzzy systems.
Many industrial processes are highly nonlinear and complex. As the complexity of a system

increases, quantitative analysis and controller design become difficult. Rather than mathe-
matically modelling the process, the human operator models the process in a heuristic or
experiential manner. This experiential perspective in controller design requires the acquisition
of heuristic and qualitative, rather than quantitative, knowledge or expertise from the human
operator. During the past several years, fuzzy logic has emerged as one of the most active and
powerful areas for research in the application of control systems design. Fuzzy systems and
applications can be developed using the Fuzzy Logic Toolbox in MATLAB R©. The toolbox
provides three categories of tools:

• Command-line functions,
• GUI interface tools and
• Simulink R© blocks.

In Chapter 2, command-line functions are discussed. With the help of these command-line
functions, examples of control applications are presented in Appendix B. In this chapter,
some fuzzy system applications are presented. A brief introduction to GUI interface tools and
Simulink R© blocks is also given. Details of codes with associated descriptions and plots are
given in Appendix C.

100 Computational Intelligence

References

Ahmad, S., Siddique, N.H. and Tokhi, M.O. (2010a) A modular fuzzy control approach for two-wheeled wheelchair,
Journal of Intelligent and Robotic Systems, 64(3&4), 401–426.

Ahmad, S., Tokhi, M.O. and Siddique, N.H. (2010b) Modular fuzzy control with input shaping technique for
transformation of two-wheeledwheelchair to four-wheeledmode, 2010 IEEE Symposium on Industrial Electronics
and Applications (ISIEA 2010), 3–5 October, Penang, Malaysia, pp. 562–566.

Bezdek, J.C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.
Bezdek, J.C., Keller, J., Krisnapuram, R. and Pal, N.R. (1999) Fuzzy Models and Algorithms for Pattern Recognition

and Image Processing, Kluwer Academic, Dordrecht.
Brehm, T. (1994) Hybrid fuzzy logic PID controller, Proceedings of 3rd IEEE Conference on Fuzzy Systems, Vol. 3,
pp. 1682–1687.

Chao, C.-T. and Teng, C.-C. (1997) A PD-like self-tuning fuzzy controller without steady-state error, Fuzzy Sets and
Systems, 87, 141–154.

Chen, M. and Linkens, D.A. (1998) A hybrid neuro-fuzzy PID controller, Fuzzy Sets and Systems, 99, 27–36.
Chi, C.W. (1995) Modular intelligent control, Master’s Thesis, Department of Electrical Engineering, Santa Clara
University, USA.

Chi, Z.,Yan,H. andPhan, T. (1996)Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition,
World Scientific, Singapore.

Chi, C.W., His, S.T.C. and Tseng, H.C. (1997) Adaptive aggregation of modular fuzzy control. IEEE International
Conference on Systems, Man and Cybernetics, Vol. 2, pp. 1329–1334.

Czogala, E. and Pedrycz, W. (1981) On identification in fuzzy systems and its application in control problems, Fuzzy
Sets and Systems, 6, 73–83.

Dickenson, J. and Kosko, B. (1993) Fuzzy function learning with covariance ellipsoids, Proceedings of IEEE Inter-
national Conference on Neural Networks, San Francisco, CA, Vol. 3, pp. 1162–1167.

Emami, M.R., Turksen, I.B. and Goldberg, A.A. (1998) Development of a systematic methodology of fuzzy logic
modelling, IEEE Transactions on Fuzzy Systems, 6(3), 346–361.

Espinosa, J., Vandewalle, J. and Wertz, V. (2005) Fuzzy Logic, Identification and Predictive Control, Springer-Verlag,
London.

Figueiredo, M., Gomide, F., Rocha, A. and Yager, R. (1993) Comparison of Yager’s level set method for fuzzy logic
control with Mamdani’s and Larsen’s method, IEEE Transactions on Fuzzy Systems, 1(2), 156–159.

Filev, D. (1991) Fuzzy modelling of complex systems, International Journal of Approximate Reasoning, 5, 281–290.
Gath, I. and Geva, A.B. (1989) Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 7, 773–781.
Gilachet, S. and Foulloy, L. (1995) Fuzzy controllers: synthesis and equivalences, IEEE Transactions on Fuzzy

Systems, 3(2), 140–148.
Gustafson, D.E. and Kessel, W.C. (1979) Fuzzy clustering with fuzzy covariance matrix, Proceedings of IEEE CDC,
San Diego, CA, pp. 761–766.

Harris, C.J., Moore, C.G. and Brown, M. (1993) Intelligent Control: Aspects of Fuzzy Logic and Neural Nets, World
Scientific, Singapore.

Hoeppner, F., Klawonn, F. and Kruse, R. (1997) Fuzzy-Clusteranalyse: Verfahren fuer die Bilderkennung, Klassi-
fizierung und Datenanalyse, Vieweg Verlag, Braunschweig.

Hu, B.-G., Mann, G.K.I. and Gosine, R.G. (2001) A systematic study of fuzzy PID controllers – function-based
evaluation approach, IEEE Transactions on Fuzzy Systems, 9(5), 699–712.

Jang, J.-S.R. (1994) Structure determination in fuzzymodelling: a fuzzyCART approach,Proceedings of International
Conference on Fuzzy Systems, Orlando, FL, pp. 380–385.

Klir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, Upper Saddle
River, NJ.

Kohonen, T. (1990) The self-organising map, Proceedings of the IEEE, 78(9), 1464–1480.
Kovacic, Z. and Bogdan, S. (2006) Fuzzy Controller Design: Theory and Application, CRC Press, Boca Raton, FL.
Kwok, D.P., Tam, D., Li, C.K. and Wang, P. (1990) Linguistic PID controllers, Proceedings of 11th IFAC World

Congress, Tallin, USSR, pp. 192–197.
Kwok, D.P., Tam, D. and Li, C.K. (1991) Analysis and design of fuzzy PID control systems, Proceedings of IEE

Control ’91 Conference, Herriot Watt University, Edinburgh, pp. 955–960.
Larsen, P.M. (1980) Industrial applications of fuzzy logic control, International Journal of Man-Machine Studies,
12(1), 3–10.

Fuzzy Systems and Applications 101

Lee, C.C. (1990) Fuzzy logic in control systems: fuzzy logic controller – Part II, IEEE Transactions on Systems, Man
and Cybernetics, 20, 419–435.

Lee, J. (1993) On methods for improving performance of PI-type fuzzy logic controllers, IEEE Transactions on Fuzzy
Systems, 1(1), 298–301.

Lewis, H.W. (1997) The Foundation of Fuzzy Control, Plenum Press, New York.
Lygeros, J. (1996) A formal approach to fuzzy modelling, Proceedings of American Control Conference, pp. 3740–
3744.

Mamdani, E.H. and Assilian, S. (1974) Application of fuzzy algorithms for control of simple dynamic plant, Pro-
ceedings of IEE, 121, 1585–1588.

Oliveira, J.V. De and Pedrycz, W. (2007) Advances in Fuzzy Clustering and its Applications, John Wiley & Sons,
Chichester, UK.

Pedrycz, W. (1984) An identification algorithm in fuzzy relational systems, Fuzzy Sets and Systems, 13, 153–167.
Pedrycz, W. and Gomide, F. (1998) An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, Cambridge, MA.
Ross, T.J. (2004) Fuzzy Logic with Engineering Applications, 2nd edn, John Wiley & Sons, New York.
Shin, Y.C. and Xu, C. (2009) Intelligent Systems: Modelling, Optimisation and Control, CRC Press, Boca Raton, FL.
Siddique, N.H. (2002) Intelligent control of flexible-link manipulator systems, PhD Thesis, Department of Automatic
Control and Systems Engineering, The University of Sheffield, UK.

Sugeno, M. and Kang, G.T. (1988) Structure identification of fuzzy model, Fuzzy Sets and Systems, 28, 15–33.
Sugeno, M. and Yasukawa, T. (1993) A fuzzy-logic-based approach to qualitative modelling, IEEE Transactions on

Fuzzy Systems, 1(1), 7–31.
Syljak, D. (1991) Decentralised Control of Complex Systems, Academic Press, New York.
Takagi, H. and Hayashi, I. (1991) NN-driven reasoning, International Journal of Approximate Reasoning, 5, 191–212.
Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling and control, IEEE

Transactions on Systems, Man and Cybernetics, 15, 116–132.
Tong, R.M. (1980) The evaluation of fuzzy models derived from experimental data, Fuzzy Sets and Systems, 4, 1–12.
Tsukamoto, Y. (1979) An approach to fuzzy reasoning method. In Advances in Fuzzy Set Theory and Applications,
M.M. Gupta, R.K. Ragade and R. Yager (eds), North-Holland, Amsterdam, pp. 137–149.

Tung, W.L. and Quek, C. (2002) DIC: a novel discrete incremental clustering technique for derivation of fuzzy
membership functions, PRICAI: Trends in Artificial Intelligence, Lecture Notes in Computer Science, Vol. 2417,
pp. 485–491.

Tzafestas, S. and Papanikolopoulos, N.P. (1990) Incremental fuzzy expert PID control, IEEE Transactions on Indus-
trial Electronics, 37, 365–371.

Wang, L.-X. (1997) Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood
Cliffs, NJ.

Wang, L. and Langari, R. (1995) Building Sugeno-type models using fuzzy discretization and orthogonal parameter
estimation techniques, IEEE Transactions on Fuzzy Systems, 3(4), 454–458.

Wong, C.-C. and Lin, N.-S. (1997) Rule extraction for fuzzy modelling, Fuzzy Sets and Systems, 88, 23–30.
Yager, R.R. and Filev, D. (1994) Essentials of Fuzzy Modelling and Control, John Wiley & Sons, Chichester, UK.
Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8, 338–353.
Zadeh, L.A. (1968) Fuzzy algorithms, Information and Control, 12, 94–102.
Zadeh, L.A. (1971) Towards a theory of fuzzy systems. In Aspects of Networks and Systems Theory, R.E. Kalman
and R.N. DeClairis (eds), Holt, Rinehart & Winston, New York, pp. 469–490.

Zadeh, L.A. (1972) A fuzzy-set-theoretic interpretation of linguistic hedges, Journal of Cybernetics, 2, 4–34.
Zadeh, L.A. (1973) Outline of a new approach to the analysis of complex systems and decision process, IEEE

Transactions on Systems, Man and Cybernetics, 3, 28–44.
Zadeh, L.A. (1994) The role of fuzzy logic in modeling, identification and control, Modelling, Identification and

Control, 15(3), 191–203.
Zadeh, L.A. (1999) From computing with numbers to computing with words – from manipulation of measurements
to manipulation of perceptions, IEEE Transactions on Circuits and Systems – I: Fundamental Theory and
Applications, 45(1), 105–119.

Zhang, Z.M. and Mizumoto, M. (1994) On rule self-generating for fuzzy control, International Journal of Intelligent
Systems, 9(12), 1047–1057.

4
Neural Networks

4.1 Introduction

The study of the human brain is hundreds of years old. Advances in brain research promise
an initial understanding of the mechanism of cognitive process in the brain. This shows that
the brain stores information as patterns. Some of these patterns are very complicated, for
example the ability to recognize individual faces from different angles. This process of stor-
ing information as patterns, utilizing those patterns, and then solving problems encompasses
a new field in computing, which does not utilize traditional programming. This involves
the creation of massively parallel networks and the training of those networks to solve
specific tasks.
The exact workings of the human brain are still a mystery. Yet, some aspects of this

amazing processor are known. In particular, the most basic element of the human brain is
a specific type of cell, which provides us with our abilities to remember, think and apply
previous experiences to our every action. These cells, all approximately 100 billion of them,
are known as neurons. Each of these neurons can connect with up to 200,000 other neurons,
although 1,000 to 10,000 is typical. The individual neurons convey information via a host
of electrochemical pathways. Together, these neurons and their connections form a process
which is not binary, not stable and not synchronous. This building block of the human brain has
a few general capabilities. Basically, a biological neuron receives inputs from other sources,
combines them in some way, performs a generally nonlinear operation on the result and then
outputs the final result. Figure 4.1 shows a biological neuron and Figure 4.2 shows the fourmain
functional parts and their relationships in a neuron. Recent experimental data has provided
further evidence that biological neurons are structurally more complex than the simplistic
explanation above.
The first model of artificial neural networks came in 1943 when Warren McCulloch, a

neurophysiologist and Walter Pitts, a young mathematician outlined the first formal model of
an elementary computing neuron (McCulloch and Pitts, 1943). McCulloch and Pitts’ artificial

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

104 Computational Intelligence

Figure 4.1 A biological neuron (motor neuron) – close to a schematic neuron

neuron model is shown in Figure 4.3. They modelled a simple neural network with electrical
circuits. The firing rule for this model is defined as

O =

⎧⎪⎪⎨
⎪⎪⎩
1 if

n∑
i=1

wi xi ≥ T

0 if
n∑

i=1
wi xi < T

(4.1)

where i = 1, 2, . . . , n and T is a threshold value.

Soma: Process the inputs

Dendrites: Accept inputs

Axons: Turn processed
inputs into outputs

Synapses: Electrochemical
contact between neurons

Figure 4.2 Four parts of a biological neuron

Neural Networks 105

w1

w2

...
T

x1

x2

xn

O

wn

Figure 4.3 McCulloch and Pitts’ neuron model

Reinforcing this concept of neurons, Donald Hebb first proposed a learning scheme for
updating a neuron’s connections that we now refer to as the Hebbian learning rule (Hebb,
1949). He pointed out that information can be stored in connections and postulated the learning
technique. As computers advanced from their infancy in the 1950s, it became possible to begin
to model the rudiments of these theories concerning human thought.
During the 1950s, neuron-like elements called perceptrons were invented by Frank Rosen-

blatt, a neurobiologist at Cornell University. A simple perceptronmodel is shown in Figure 4.4.
A single-layer perceptron was found to be useful in classifying a continuously valued set of
inputs into one of two classes (Rosenblatt, 1958). The perceptron computes a weighted sum
of the inputs, subtracts a threshold and passes one of two possible values out as a result. The
firing rule for this model is defined as

O =

⎧⎪⎪⎨
⎪⎪⎩
1 if

n∑
i=1

wi xi − b ≥ T

0 if
n∑

i=1
wi xi − b < T

(4.2)

where i = 1, 2, . . . , n and b is called bias.
In 1959, Bernard Widrow and Marcian Hoff of Stanford University developed models

they called ADALINE (ADAptive LINear Elements) and MADALINE (Multiple ADALINE)
(Widrow and Hoff, 1960, 1962). These formed the so-called Widrow–Hoff learning rule and
the first neural network to be applied to a real-world problem. The rule minimized the sum
of squares error during training involving pattern classification. It is an adaptive filter, which
eliminates echoes on phone lines.

x1

x2

xn

w1

w2

wn

OT...

b (bias)

Figure 4.4 Rosenblatt’s perceptron model

106 Computational Intelligence

Unfortunately, the perceptron is limited and was proven as such in Marvin Minsky and
Seymour Papert’s book Perceptrons in 1969 (Minsky and Papert, 1969). Disappointment set
in as promises were unfilled. The challenge was not answered until the mid-1980s. In 1982
several events caused a renewed interest in neural network research. John Hopfield of Caltech
presented a paper to the National Academy of Sciences. Hopfield’s approach was not to
simply model brains but to create useful devices. With clarity and mathematical analysis, he
showed how such networks could work and what they could do (Hopfield, 1982). Although
the mathematical framework for the new training scheme of layered networks was discovered
in 1974 by Paul Werbos (Werbos, 1974), it unfortunately went unnoticed at that time.
Another realization of the field came from the publication of two volumes on parallel

distributed processing, edited by McClelland and Rumelhart (McClelland and Rumelhart,
1986). The new learning rule and other concepts introduced in this work have removed one
of the most essential network training barriers. The publication opened a new era for the once
underestimated computing potential of layered networks.

4.2 Artificial Neuron Model

McCulloch and Pitts proposed a mathematical model of the neurons and showed how neural-
like networks could be computed. The weight vector W contains the weights connecting the
various parts of the network. The term ‘weight’ is used in neural network terminology and is a
means of expressing the strength of the connection between any two neurons (i.e., the weight
of information flowing from neuron to neuron in the neural network). However, the model
makes use of several drastic simplifications. It allows binary 0, 1 states only, operates under
a discrete-time assumption and assumes synchronous operations of all neurons in a larger
network. Weights and threshold are fixed in the model and no interaction among network
neurons takes place except for signal flow. It is probably not desirable to stretch the analogy
too far.
Every neuron model consists of a processing element with synaptic input connections and

a single output. The first stage is a process where the inputs x1, x2, . . . , xn multiplied by
their respective weights w1, w2, . . . , wn are summed by the neuron. The resulting summation
process may be shown as

net = (w1 · x1 + w2 · x2 + · · · + wn · xn) (4.3)

It can be written in vector notation form as

net =
(

n∑
i=1

wi · xi

)
(4.4)

where w is the weight vector defined as w = [w1, w2, . . . , wn]T and x is the input vector
defined as x = [x1, x2, . . . , xn].

Neural Networks 107

bx1

x2

xn

w1

w2

wn

netΣ
.
.
.

f (.) y

Figure 4.5 Perceptron model

A threshold value b, called the bias, plays an important role for some neuron models and
needs to be mentioned explicitly as a separate neuron model parameter. Then Equation (4.4)
looks like

net =
(

n∑
i=1

wi · xi

)
+ b (4.5)

In order to allow for varying input conditions and their effect on the output, it is usually
necessary to include a nonlinear activation function f (.) in the neuron arrangement. This is
so that adequate levels of amplification may be used where necessary for small input signals,
which avoids the risk of driving the output to unacceptable limits. Such a perceptron model is
shown in Figure 4.5. The output of the neuron is now expressed in the form

y = f (net) (4.6)

4.3 Activation Functions

There are a number of types of commonly used activation functions f (.), such as the step
function, linear function, ramp function and sigmoid functions. The activation functions are
selected specific to the applications. Some common types of activation functions are shown in
Figure 4.6.

Linear function: The effect of this function is to multiply the output by a constant factor,
such as

y = f (net) = K · net (4.7)

Step function: The output of a step function is limited to only –1 and +1 depending on the
value of the input signal (i.e., the value of y):

y = f (net) =
{+1

−1
if net > 0
if net < 0

(4.8)

108 Computational Intelligence

5

5

0

f(
ne

t)

–5

5

0

f(
ne

t)

–5
–5 0

net
(a)

net
(b)

net
(c)

net
(d)

5–5 0

5

5

0

f(
ne

t)

–5

5

0
f(

ne
t)

–5

–0.5

–0.5

0.5

–0.5

0.5

0.5

–5 0 5–5 0

Figure 4.6 Different types of activation function. (a) Linear function; (b) Step function; (c) Ramp
function; (d) Tansigmoidal function

Ramp function: The effect of the ramp function is to behave as a linear function between the
upper and lower limits and once these limits are reached to behave as a step function. The
output is limited within a max and min value and linear within this limit, such as

y = f (net) =
⎧⎨
⎩

max if net > upper limit
K · net if upper limit > net > lower limit
min if net < lower limit

(4.9)

Tansigmoid function: The tansigmoid function is an S-shaped curve. A number of mathemat-
ical expressions may be used to define an S-shaped curve. The most commonly used function
is expressed as

y = f (net) = 1− e−net

1+ e−net
(4.10)

This function is easy to differentiate and sometimes enables a simplification to be made in the
neural network formulation.

4.4 Network Architecture

Two or more neurons can be combined in a layer to form a network and a network architecture
can contain one ormore such layers. As research efforts continue, new and extended definitions

Neural Networks 109

f (.)

f (.)

f (.)

Y1

x1

Y2

Yn

x4

xm

x3

x2

b1

w1,1
N1

N2

Nn

b2

bn

wn,m

net1

net2

netn

.

.

.
.
.
.

Figure 4.7 Single-layer feedforward network

may develop, but this definition is sufficient for the introductory study of artificial neural
architectures and algorithms at this stage. Two basic types of networks are distinguished,
considering the connectivity of the neurons in a network:

• Feedforward network and
• Recurrent network or feedback network.

4.4.1 Feedforward Networks

In a feedforward network, only forward connectivity of the neurons is considered. Figure 4.7
shows a single-layer feedforward network. The inputs to the network are the input vector

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
...

xm

⎤
⎥⎥⎥⎥⎦ (4.11)

The weights of the network are defined by the weight matrix

W =

⎡
⎢⎢⎢⎢⎢⎣

w1,1 w1,2 · · · w1,m

w2,1 w2,2 . . .

...
...

...
...

wn,1 wn,2 . . . wn,m

⎤
⎥⎥⎥⎥⎥⎦ (4.12)

110 Computational Intelligence

and the biases are defined by the bias vector

b =

⎡
⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎦ (4.13)

The output Y of the network can be written in vector form as

Y = f (W · x + b) (4.14)

The information-processing ability of a neural network depends on its topology (Yao, 1993).
The selection of network architecture or topology is largely determined by the application and
the number of neurons, connections and choice of transfer functions are fixed during the design.
In the following sections, seven different types of feedforward neural network architectures
will be investigated for the suitability of different applications:

(i) Multilayer perceptron networks,
(ii) Radial basis function networks,
(iii) Generalized regression neural networks,
(iv) Probabilistic neural networks,
(v) Belief networks,
(vi) Hamming networks and
(vii) Stochastic networks.

4.4.1.1 Multilayer Perceptron Networks

A network with several layers of perceptrons is an MLP network. Each layer has a weight
matrixW, a bias vector b and output vector Y as shown in Figure 4.8.
The outputs of the first hidden layer are defined as 1Y = 1 f (1W · X + 1b) and the output is

defined as 2Y = 2 f (2W · 1Y + 2b), where f (.) is the chosen activation function.
In principle, the MLP can be employed in any sort of model, linear or nonlinear, and any

sort of network, single-layer or multilayer. However, MLP networks have traditionally been
associated with sigmoid, tansigmoid functions in a multiple-layer network (mostly three-
layer), such as that shown in Figure 4.8. Each of the m components of the input vector
x = {x1, x2, . . . , xm} feeds forward to n neurons with sigmoid function defined as f (x) =
1

1+e−x or tansigmoid or hyperbolic tangent function defined as f (x) = 1−e−x

1+e−x , whose outputs
are linearly combined with weights w = {w1, w2, . . . , wn} into the network output f (x).
These are three of the most commonly used activation functions in MLP networks. They
are popular because of the advantage of providing nonzero derivatives with respect to input
signals, and they exhibit smoothness and show asymptotic properties. It is customary to use a
linear activation function for the output of MLP networks for approximation of a continuous
function.
There is no exact rule for determining the number of hidden layers and neurons in the

hidden layer. In general, an MLP with one hidden layer will need at least (P − 1) hidden

Neural Networks 111

x1

x4

xm

x3

x2

1w1,1

1wn,m

1f (.)

1f (.)

1f (.)

1Y1

1Y2

1Yn

1N1

1N2

1Nn

1b1

1b2

1bn

1net1

1net2

1netn

2f (.)

2f (.)

2f (.)

2Y1

2Y2

2Yn

2N1

2N2

2Nn

2b1

2b2

2bn

2net1

2net2

2netn

2w1,1

2wn,n

)(1111 bXWfY +⋅=)(21222 bYWfY +⋅=

.

.

.

.

.

.

.

.

.

Figure 4.8 Multilayer perceptron network

neurons to classify P patterns (Huang and Huang, 1991; Choi et al., 2001). The hidden
layer may memorize the input patterns rather than learning the features when the number
of hidden-layer neurons exceeds the number of training patterns. If a single neuron mem-
orizes an input pattern, the network will be at risk of failure of that neuron. Therefore,
such memorization should be prevented and this can be done by varying the input patterns
during training. In other words, the same pattern should not be used more than once for
training. Applying a little noise to input patterns will make the training more robust. There
are some common rules, such as that a neuron in the first hidden layer forms a hyperplane,
which can approximate the boundaries between pattern classes in the pattern space. A neu-
ron in the second hidden layer forms a hyper-region (i.e., convex areas bounded by hyper-
planes). A neuron in the third hidden layer defines an area. Therefore, a three-layer network
is able to solve a wide range of classification and approximation problems (Jain et al., 1996;
Rutkowski, 2005).
The number of neurons in the hidden layer has a decisive impact on the network operation

and performance. It is not a critical parameter as the training time does not vary significantly
for similar sized hidden layers. A large number of neurons in the hidden layer will make
the training process lengthy. If the number of training samples is smaller than the size of the
network, it may overtrain the network and lose generalization capability (Tsoukalas and Uhrig,
1997; Rutkowski, 2005).

4.4.1.2 Radial Basis Function Networks

Radial basis function (RBF) networks consist of receptive field units (hidden units). The
activation of the receptive field units is defined by a special class of functions, whose response
decreases (or increases) monotonically with distance from a central point chosen arbitrarily.
The centre and shape of the radial function are the parameters of the radial basis function.

112 Computational Intelligence

x2

x1 h1(x)

h2(x)

h3(x)

w1

w2

w3

Σ
f(x)

Figure 4.9 Schematic diagram of RBF network

Figure 4.9 illustrates a schematic diagram of an RBF network with three receptive fields. The
activation function of the ith receptive field, also called the hidden unit, is defined as

hi (x) = Ri

(‖x − ci‖
σi

)
(4.15)

where x is the multidimensional input vector, the ci are the centres of the basis functions, the
σi are the radii of the basis functions and Ri (.) is the ith radial basis function. Ri (.) has a single
maximum at the centre. The advantage of the radial basis function network is that there are no
connection weights between the input layer and the hidden layer.
Typically, Ri (.) is a Gaussian function defined in Equation (4.16) or a sigmoidal function

defined in Equation (4.17):

Ri (x) = exp

(
−‖x − ci‖

2σ 2i

2)
(4.16)

Ri (x) = 1

1+ exp
(
−‖x−ci ‖

2σ 2i

2
) (4.17)

Mathematical background
Formally, the method of RBF is a technique for nonlinear discrimination and for multivari-
ate interpolation in high-dimensional spaces (Powell, 1985). RBF method can be seen as
an extension of spline functions of one variable to several variables. The problem here is,
given a set of m input vectors xi ∈ Rn , i = 1, 2, . . . , m and a set of real numbers yi ∈ R,
i = 1, 2, . . . , m to find a function f : Rn → R that satisfies the linear spline interpolation
condition

yi = f (xi), i = 1, 2, . . . , m (4.18)

Neural Networks 113

A set of n nonlinear arbitrary basis functions φi‖x − ξi‖ is introduced with ξi ∈ Rn such that
a strict interpolation or mapping from f : Rn → R is implemented according to

f (x) =
n∑

i=1
λiφi ‖x − ξi‖ (4.19)

where x ∈ Rn is the input vector, φi ‖·‖ is the radial basis function, λi : i = 1, 2, . . . , n are the
weights and ξi , i = 1, 2, . . . , n are the knots. To ensure continuity at the knots, an approach is to
introduce polynomial approximations which have higher derivatives at the knots. Commonly,
an approximation which has first two derivatives at the knots is introduced. This then forms a
basis for the space of well-known cubic splines. A different definition of cubic splines can be
found in Powell (1981):

f (x) =
n+2∑
i=1

λi Bi ‖x − ξi‖ (4.20)

For the RBF models, the knots ξi are initially renamed as an equivalent number of centres ci .
Again because continuity is required at the interjoints of the segments, an approximation of
the general form is as follows:

f (x) =
n∑

i=1
λiφi ‖x − ci‖ (4.21)

The measure of distance ‖.‖ is taken as Euclidean norm and φ(.) is a fixed radially symmetric
function. However, unlike the one-dimensional B-splines, the radial basis function for any x is
very dependent on the set of input/output data. Choices of φ(.) that yield a good approximation
include: linear φ(r) = r , cubic φ(r) = r3, thin-plate spline φ(r) = r2 log(r), Gaussian φ(r) =
e−r2/β2 , multiquadratic φ(r) = (r2 + k2)1/2, inverse multiquadratic φ(r) = (r2 + k2)−1/2 and
shifted logarithm φ(r) = log(r2 + k2) with r = (||x − c j ||) and β defined as the width of the
locally tuned function (Moody, 1989), while k describes the sharpness of the hyperbola cone
used in the radial basis function introduced by Hardy (1990). Both are positive constants.
The width or shape is controlled by the additional parameters in the case of Gaussian, mul-
tiquadratic, inverse multiquadratic and shifted logarithmic RBFs. It can clearly be seen that
all RBFs indicate a change of contributions in the approximation as they move radially away
from the centre. This simple observation seems to agree with other theoretical investigations
that the choice of φ(.) is non-crucial to the performance of the approximation problem (Moody
and Darken, 1989; Moody, 1992).

RBF networks
In principle, RBFs can be employed in any sort of model, linear or nonlinear, and any
sort of network, single-layer or multilayer. However, since Broomhead and Lowe’s sem-
inal paper (Broomhead and Lowe, 1988), RBF networks have traditionally been associ-
ated with radial functions in a single-layer network such as shown in Figure 4.9. Each
of m components of the input vector x = {x1, x2, . . . , xm} feeds forward to n basis func-
tions h(x) = {h1(x), h2(x), . . . , hn(x)} whose outputs are linearly combined with weights

114 Computational Intelligence

x1

xm

x3

x2

h1(x)

h2(x)

h

(a)

(b)

n(x)

w2

w1

wn

.

.

.
.
.
.

Σ f(x)

f(x)

x1

xm

x3

x2

h1(x)

h2(x)

hn(x)

w2

w1

wn

.

.

.
.
.
.

Σ

Σwi

/

Figure 4.10 RBF network architecture. (a) Simple RBF network; (b) Weighted average RBF network

w = {w1, w2, . . . , wn} into the network output f (x). The output of the RBF can be computed
in two ways. In the simpler way, the output is calculated as the weighted sum of the output
as shown in Figure 4.10(a). A second way is to calculate the weighted average of the output
as shown in Figure 4.10(b). An RBF network is nonlinear if the parameters of the basis func-
tions, namely centre and radius, are moving or changing. In order to avoid nonlinear learning,
RBF centres can be selected from the training data by some mechanism, and this effectively
determines the hidden layer.
The mechanism employed should be simple and effective, and selected centres should

suitably sample the input domain. The output layer of the RBF network is linear in the
parameters, and its weights can be determined using learning laws such as the least square
method (LSM). Thus the hidden layer performs a fixed nonlinear transformation with no
adjustable parameters, and it maps the input space onto a new space. The output layer then
implements a linear combiner on this new space and the only adjustable parameters are the
weights of this linear combiner. Learning is equivalent to performing a linear optimization of
the weight space to minimize the total output errors for a given input vector.

Neural Networks 115

The RBF network effectively constructs a linear function space, which depends on the
positions of the known data points according to an arbitrary distance measure. Alternatively, it
can be seen as a method to perform a hypersurface reconstruction (Poggio and Girosi, 1990).
This approach has been widely accepted to yield good multivariable approximation where
other techniques fail (Franke, 1982). Good convergence properties RBF have been discussed
by Jackson (1988).

4.4.1.3 General Regression Neural Network

The general regression neural network (GRNN) is Donald Specht’s term (Specht, 1991) for
Nadaraya–Watson kernel regression (Nadaraya, 1964; Watson, 1964), also reinvented in the
neural network literature by Schioeler and Hartmann (1992). Kernels are also called Parzen
windows.GRNNs can be thought of as normalizedRBFnetworks inwhich there is a hidden unit
centred at every training case. These RBF units are called kernels and are usually probability
density functions such as the Gaussian (Wand and Jones, 1995). The hidden-to-output weights
are just the target values, so the output is simply a weighted average of the target values of
training cases close to the given input case. The only weights that need to be learned are the
widths of the RBF units. These widths (often a single width is used) are called smoothing
parameters or bandwidths, and are usually chosen by cross-validation ormore esotericmethods
that are not well known in the neural network literature.
A GRNN is a universal approximator for smooth functions, so it should be able to solve any

smooth function approximation problem given enough data (Hocking, 1976, 1983). The main
drawback of GRNN is that, like kernel methods in general, they suffer badly from the curse of
dimensionality. A GRNN cannot ignore irrelevant inputs without major modifications to the
basic algorithm. So, a GRNN is not likely to be the top choice if there are more than five or
six non-redundant inputs (Caudill, 1993).
GRNNs are used to decide the problem of regression to find the most probable value of a

random variable Z in any point of space X. Such estimation is based only on values of Z at
some finite points of this space. We make the assumption that we have an equally normally
(Gaussian) distributed random variable on the whole space. Thus, due to the principle of
maximum likelihood, by the target function for minimization we understand the mean squared
error (MSE). The GRNN is a nonparametric estimator. This means that to decide the problem
there is no a priori given model; instead, it relies on the fact that the value of the function Z is
connected with the coordinates of space X only by means of the probability density function
(PDF). If the PDF is known, we can easily define the conditional mean of Z given X. This is
called the regression of Z on X, given by

Z =

+∞∫
−∞

Z p (X, Z) d Z

+∞∫
−∞

p (X, Z) d Z

(4.22)

where X = (x, y) =̂ space coordinates of data points, Z(X) = Z (x, y) =̂ measured (function)
values and p (X, Z) =̂ function of conditional probability.

116 Computational Intelligence

When p (X, Z) is not known, it has to be estimated from a sample of observations. p (X, Z)
can be estimated by nonparametric kernel estimates proposed by Parzen (1962) for n sample
observations with a p-dimensional vector variable:

p̂ (X, Z) = 1√
(2π)p+1σ p+1 · 1

n

n∑
i=1
exp

(
− D2

i

2σ 2

)
· exp

(
−
(
Z − Zi

)2
2σ 2

)
(4.23)

D2
i = (X − Xi

)T (
X − Xi

)
(4.24)

The estimate assigns a sample probability of width σ for each sample 〈Xi , Zi 〉. Substituting the
conditional probability p(X, Z) in Equation (4.23) into the conditional value in Equation (4.22)
yields

Ẑ (X) =

n∑
i=1

Zi exp
(
− D2

i
2σ 2

)
n∑

i=1
exp
(
− D2

i
2σ 2

) (4.25)

This can be written in a simplified way as

Ẑ (X) =

n∑
i=1

Ziwi

n∑
i=1

wi

(4.26)

where wi = exp
(−D2

i
2σ 2

)
and wi is treated as the weight of the ith data point (centre) for

estimation of value Ẑ at an estimated point with coordinate X, with distance Di from this point
to the centre and σ the only free (adaptive) parameter.
The denominator in Equations (4.25) and (4.26) is used as a normalized constant (common

for all centres). The expression in Equation (4.26), also known as the Nadaraya–Watson kernel
regression estimator, is at the heart of GRNN. The only free (adaptive) parameter σ defines
the bandwidth of the Gaussian kernel. Advanced GRNN realizations may use an anisotropic
parameter σ (different values along different directions).

Architecture of GRNNs
GRNNs comprise two layers of artificial neurons. The first layer consists of radial basis
neurons, whose transfer function is a Gaussian with spreading factor σ . The first layer weights
are simply the transpose of input vectors from the training set. A Euclidean distance is
calculated between an input vector and these weights, which are then rescaled by the spreading
factor. The radial basis output is then the exponential of the negativelyweighted distance having
the form

f (x) = exp

[
−dist (x, w)2

σ 2

]
= exp

[
−‖x − w‖2

σ 2

]
(4.27)

Neural Networks 117

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w1

w2

wn

Z

i

n

i
i wZ∑

=1

∑
=

n

i
iw

1

=

nx

x

x

x 2

1

|x-x1|

f2(x-x2)

fn(x-xn)

f1(x-x1)

Σ |x-x2|

|x-xn|

Σ

/

Figure 4.11 Architecture of GRNN

Therefore, if a neuron weight is equal to the input vector, the distance between the two is 0
giving an output of 1. This type of neuron gives an output characterizing the closeness between
input vectors and weight vectors. The weight matrix size is defined by the size of the training
data set (m parameters, n data points), while the number of neurons is the number of input
vectors (n).
The second layer consists of neurons with a linear transfer function. Weights in this layer

can be viewed as the slope (m) while the bias vector (b) is the y-intercept. Each is solved to
minimize the sum-squared error (SSE) between the output of the first layer (x) and the desired
output (y).
As the spreading factor σ increases, the radial basis function decreases in width. The

network will respond with the target vector associated with the nearest design input vector. As
the spreading factor σ becomes smaller, the radial basis function increases in width. Several
neurons may then respond to an input vector. This is because the network does a weighted
average of corresponding target vectors. As the radial basis function gets wider andwider, more
neurons contribute to the average resulting in a smoother model function. The architecture of
the GRNN described above is shown in Figure 4.11.
One advantage of the GRNN approach is its simplicity. The adjustment of the smoothing

parameter σ is sufficient for determining the network. When the underlying parent distribution
is not known, it is not possible to compute an optimum σ for a given number of observations
n. It is therefore necessary to find σ on an empirical basis. Drawbacks of the GRNN can
be the large network size and computational cost associated with developing this network
for a large set of input test vectors. To adequately characterize the training data, it is typical
that the number of neurons equals the number of training vectors. As the number of training
vectors increases, the network size and computational load increase. Therefore, implementing
a GRNN mainly involves reduction of the number of training vectors. One notable implicit
feature of the GRNN solution is that the solution is not in compact or closed form. The
function is essentially a look-up table of the network coefficients with matrix size equal to
the training set. A detailed analysis of the normalization of the input and selection of the
smoothing parameter can be found in Specht (1991).

118 Computational Intelligence

4.4.1.4 Probabilistic Neural Network

The probabilistic neural network (PNN) is based on well-established statistical principles
rather than heuristic approaches. Heuristic approaches usually involve making many small
modifications to the system parameters, which gradually improves the system performance.
The multilayer perceptron (MLP) neural network is typical of the heuristic approach and is
associated with long training times with no guarantee of achieving a suitable solution within
a reasonable training time. Specht introduced a three-layer, feedforward, nominal one-pass
training algorithm called the PNN, derived from Bayes’ decision strategy and nonparametric
kernel-based estimators of probability density functions (Specht, 1990a,b). Consequently, it
is guaranteed to approach the Bayes’ optimal decision surface as the number of training
samples increases and the Parzen or Parzen-like probability density function (PDF) (Parzen,
1962) estimator bandwidth approaches zero asymptotically, provided that the class of PDFs
is smooth and continuous. One common PNN method is to use sums of spherical Gaussian
functions centred at each training vector to estimate the class of PDFs. The spherical Gaussian
basis is a Parzen PDF estimator and can be used to implement the PNN according to the
following equation:

fi (x) = 1

(2π)
p
2 σ p

1

M

M∑
j=1
exp

[−(x − xi j)T (x − xi j)

2σ 2

]
(4.28)

where i indicates the class number, j indicates the pattern number, xij is the jth training (or
weight) vector from class i, x is the test vector, M is the number of test vectors in class i, p
is the dimension of the pattern vector x, σ is the smoothing factor and fi (x) is the sum of
multivariate Gaussian distributions centred at each of the training samples. Functions that are
centred at each training vector are to estimate the class of PDFs.

PNN architecture
The PNN network is simply a parallel three-layer feedforward architecture that implements
the PDF estimators for each class from their representative training samples (Watanabe and
Fukumizu, 1998). The equation for fi (x), as defined by Equation (4.28), is used as the basis for
the PNN. It can be written as a Bayes’ decision function Di (x), as defined by Equation (4.24),
if both vectors x and xij are normalized to unit length and if it is assumed that the number of
representative sample vectors Mi (in each class) is in proportion to their a priori probability
of occurrence. If the input vector x is normalized to unit length, then ‖x‖2 = x .x = ‖xi j‖2 =
xi j .xi j = 1. It can be shown that

exp

[−(x − xi j)T (x − xi j)

2σ 2

]
= exp

[
(Zi j − 1)

σ 2

]

The pattern units each form a dot product of the input pattern vector x with a weight vector xij

(i.e., Zi j = x .xi j) and then performs a nonlinear operation on Zi j before putting its activation
level to the summation unit. PNN uses the nonlinear operation exp[(Zi j −1)

σ 2
] instead of a sigmoid

activation function commonly used in backpropagation networks. A detailed derivation of the
above equation can be found in Zaknich (2003). Normalization of vector x is strictly required

Neural Networks 119

to justify the underlying theory. However, in practice the vector normalization is often not
necessary since it is still possible to form a satisfactory classification system without it. Often
the relative vector magnitudes contain relevant discriminating information and it may be best
not to normalize vectors for best performance. At other times vector normalization provides
scale invariance, which may be important in some problems.
Another way to see the need for this normalization is to note that the underlying PDF is to

be estimated with a basis function that has the same width in each direction. The factor 1
M is

proportional to the reciprocal of the a priori probability of occurrence fi and hence can be
removed from Equation (4.28). Thus, Equation (4.28) becomes

fi (x) = 1

(2π)
p
2 σ p

Mi∑
j=1
exp

(Zi j − 1)
σ 2

(4.29)

The factor 1

(2π)
p
2 σ p

in Equations (4.28) and (4.29) is the same constant for all classes and can

be ignored. This leaves the final equation for fi (x) as

fi (x) =
Mi∑
j=1
exp

(Zi j − 1)
σ 2

(4.30)

The decision function in Equation (4.30) is commonly implemented in the PNN architecture
because it only involves a simple dot product, represented by Zi j = x .xi j , and an exponential
activation function. The activation function is not limited to being an exponential or Gaussian,
it can be chosen from a number of different types. Thus, the architecture of the PNN can be
simplified as shown in Figure 4.12.
The input units are the distribution points for the vector elements and they supply the same

values to each of the pattern units for each class, as shown in Figure 4.12. Each pattern unit
represents a training vector xi j and performs the operation of the exponential term [exp

(Zi j −1)
σ 2

].

x1

xp

x2

1

f1(x)

M1

1

Mi

MN

1

Σ

Σ

Σ

fi(x)

fN(x)

Pattern units Summation
units

C1

Ci

CN

Figure 4.12 Architecture of PNN

120 Computational Intelligence

A

G

CB

E F

D

H I

P(B/A) P(D/A)P(C/A)

P(E/B)

P(F/B)
P(G/C) P(H/D)

P(I/D)

Figure 4.13 Tree of a belief network

These are summed for each classCi to produce fi (x). Finally, the highest fi (x) value is chosen
to determine the class decision for the unknown vector x . The smoothing factor σ has the
same value throughout the network and it is the only adjustment made for optimizing the
network. In practical problems it is not difficult to find a good value of σ by trial and error. The
training of a PNN is fast, easy and typically requires only a few passes, but the most annoying
disadvantage is that all training vectors must be stored and used – requiring a large memory
space.

4.4.1.5 Belief Networks

A belief network is described by a directed acyclic graph, where nodes represent the events
and connections to nodes represent cause-and-effect relationships between the nodes. A belief
network is shown in Figure 4.13. The node A may have a number of possible values denoted
by the probability distribution of A as {P(A1), P(A2), . . . , P(An)}. For any two nodes A and
B, a conditional probability matrix [P(B/A)] represents the directed link from node A to node
B if there exists a dependence A → B as shown in Figure 4.13. For example, the conditional
probabilities [P(B/A)], [P(C/A)] and [P(D/A)] represent the dependencies A → B, A → C
and A → D, respectively.
Given the probability distribution of P(A), the probability distribution of the event B can

be computed as

P(B) = [P(B1), P(B2), . . . , P(Bm)]

= [P(A1), P(A2), . . . , P(An)] ∗ [P (B/A)]

= [P(A)] ∗ [P (B/A)]

(4.31)

Each event in the directed graph in Figure 4.13 can have two possible values, true or false.
That is, P(A1) = true, P(A2) = false, P(B1) = true, P(B2) = false. Let P(A) and P(B/A)
be defined as

P(A) = [P(A1)P(A2)] = [0.8 0.2]

P(B/A) =

∣∣∣∣∣∣∣∣∣
A
. . . B B1 B2

- -
A1 P(B1|A1) P(B2|A1)
A2 P(B1|A2) P(B2|A2)-

-
-
-
-
-
-
-
-

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣0.7 0.3
0.4 0.6

∣∣∣∣ (4.32)

Neural Networks 121

The probability distribution of B can be computed according to Equation (4.31) as

P(B) = [P(A)] ∗ [P (B/A)]

= [0.8 0.2
] [0.7 0.3
0.4 0.6

]
= [0.64 0.36

] (4.33)

That means P(B1) = 0.64 and P(B2) = 0.36. Similarly, the probability distributions of C, D,
E, F, G, H and I can be calculated with known conditional probabilities [P(B/A)], [P(C/A)],
[P(D/A)], [P(E/B)], [P(F/B)], [P(G/C)], [P(H/D)] and [P(I/D)]. The interesting fea-
ture of the belief network is that the joint probability P(A, B, C, D, E, F, G, H, I), denoted
P(Z) in the equation, can be calculated using the network defined by

P(Z) = P(A/B).P(A/C).P(A/D).P(B/E, F)P(C/G).P(D/H, I) (4.34)

If E and F are independent and H and I are independent, then Equation (4.34) becomes

P(Z) = P(A/B).P(A/C).P(A/D).P(B/E).P(B/F).P(C/G).P(D/H).P(D/I) (4.35)

Pearl (1987) proposed schemes for propagating beliefs in Bayesian networks. Such networks
can be used as a causal reasoning tool and have found many applications (Neal, 1992; Haykin,
1999; Konar, 2005).

4.4.1.6 Hamming Network

The Hamming network (HN) is a two-layer feedforward neural network for classification
of binary bipolar n-tuple input vectors using minimum Hamming distance denoted as DH

(Hamming, 1986). The first layer is the input layer for the n-tuple input vectors. The second
layer (also called the memory layer) stores p memory patterns. A p-class Hamming network
has p output neurons in this layer. The strongest response of a neuron is indicative of the
minimum Hamming distance between the stored pattern and the input vector. The Hamming
network for an n-tuple binary vector is shown in Figure 4.14. Let x = [x1, x2, . . . , xn] be the
n-tuple input vector, λ be the p-class of patterns (prototype vectors) λ = [λ1, λ2, . . . , λp

]
,

λm ∈ {−1,+1} (bipolar binary element); λm , m = 1, 2, . . . , p is a pattern stored in the mth
neuron in the network. The input pattern x is an n-dimensional vector of ±1 s, a randomly
generated version of one of the memory (stored) patterns. Each memory neuron is connected
to all n neurons of the input layer. A memory pattern λm is stored in the network by letting
the values of the connections between the memory neuron m and the input-layer neuron i , i =
1, 2, . . . , n (i.e., the weight vector) be Wm = [wm1, wm2, . . . , wmn] where m = 1, 2, . . . , p.
A Hamming network computes the Hamming distance between the input vector x and the

memory pattern λm stored in the network and selects the memory which has the smallest
Hamming distance, i.e., min DH (x, λm) form = 1, 2, . . . , p. Themth output of the Hamming
network will be 1 for an input vector x if and only if x = λm . This would require the weights to
be Wm = λm . Then, the network outputs are xT λ1, xT λ2, . . . , xT λp. The scalar product xT λm

of two bipolar binary n-tuple vectors is equal to the difference between the total number of
similar bit positions and the total number of different bit positions. The Hamming distance

122 Computational Intelligence

x1 x2 x3 x4 x5 x6 xn

…

net1 net2 netm netp

λ1 λ2 λm λ p…

Figure 4.14 Hamming network for n-tuple binary vector classifier

DH (x, λm) is the number of bit positions that differ. For an n-bit input vector, the scalar
product xT λm can be written as

xT λm = [n − DH (x, λm)]− DH (x, λm) = n − 2DH (x, λm)
1

2
xT λm = n

2
− DH (x, λm)

(4.36)

The Hamming distance can be derived from Equation (4.36) as

DH (x, λm) = 1

2
xT λm + n

2
(4.37)

where n
2 is seen as a fixed bias. From the earlier assumption that the weights should be

Wm = λm , the weights of the Hamming network can be created by encoding the class vector
prototypes as rows:

WH = 1

2

⎡
⎢⎢⎢⎢⎢⎣

λ
(1)
1 λ

(2)
1 · · · λ

(n)
1

λ
(1)
2 λ

(2)
2 · · · λ

(n)
2

...
...

. . .
...

λ(1)p λ(2)p · · · λ(n)p

⎤
⎥⎥⎥⎥⎥⎦ (4.38)

The factor 12 is used for scaling purposes. Thus, the output of the mth neuron of the Hamming
network is the Hamming distance DH (x, λm), that is

netm = 1

2
xT λm + n

2
(4.39)

Using the identity in Equation (4.36), netm can be expressed as

netm = n − DH (x, λm) (4.40)

Neural Networks 123

Applying any activation function will simply need scaling of the neurons’ output f (netm).
A perfect match of input vector to class m will result in DH (x, λm) = 0, giving the output
f (netm) = 1. The classification by a Hamming network is performed in a feedforward and
instantaneous manner. Therefore, Hamming networks have found many applications (Zurada,
1992; Meilijson et al., 1998; Siddique et al., 2010).

4.4.1.7 Stochastic Networks (or Machines)

Stochastic networks model statistical behaviours using the principles of statistical mechanics.
The network is shown some distribution of patterns to learn the internal model. The network is
then capable of generating the same distribution when a set of input patterns is presented to the
network. The laws of thermodynamics, concept of entropy, Gibbs distribution and Shannon’s
information theory are used as tools for the statistical mechanics. Examples of stochastic
neural networks are the Boltzmann machine, Cauchy machine, and Helmholtz machine.

Boltzmann machine
The Boltzmann network (or machine) was probably the first multilayer learning machine
inspired by statistical mechanics (Hilton, 1989). The network has two layers: the layer of
visible units and the layer of hidden units. The network consists of stochastic neurons, uses
bidirectional and symmetric connections between neurons, and neurons in the same layer have
no connections between them. Weights are the same in both directions. Primarily a Boltzmann
machine learns a neural network that can correctly model input patterns according to the
Boltzmann distribution (Hilton, 1989; Anderson and Titterington, 1998; Haykin, 2009). The
firing rule of the network may be expressed by the following:

Pj = 1

1+ exp(−�E j/T)
(4.41)

where �E j = net j = total inputs received by neuron j , T is the temperature of the net-
work. Slow cooling rate, for example T (n + 1) = T (0) ∗ [1/log(1+ n)], n ≥ 1, is used in
Boltzmann machine.

Cauchy machine
The Cauchy machine is similar to the Boltzmann machine, where different temperatures and
cooling rate patterns are used. Faster cooling rate such as T (n + 1) = T (0)/(1+ T) is used in
Cauchy machine. Cauchy distribution is characterised by longer tails than Boltzmann distri-
bution. It increases the probability that larger changes will be made to speed up convergence.
Thus, the presence of a few huge jumps enables faster escape from local minima. To move out
of local minima, both allow error to increase under some conditions (Tsoukalas and Uhrig,
1997). Cauchymachine represents a possible solution to the localminima problem encountered
with virtually every other neural network.

Helmholtz machine
The Helmholtz machine is a statistical inference engine. A recognition model is used to infer a
probability distribution over the underlying causes from the input. A generative model is used

124 Computational Intelligence

to train the recognition model. The wake-sleep learning is a way of training the Helmholtz
machine (Dayan et al., 1995).

4.5 Learning in Neural Networks

Learning in a network is a procedure for modifying the weights and biases of a network, also
referred to as a training algorithm, to force a network to yield a particular response to a specific
input. Many learning rules are in use. Most of these rules are some sort of variation of the
well-known rules. Research into different learning functions continues as new ideas routinely
show up in the literature. Some researchers have the modelling of biological learning as their
main objective. Others are experimenting with adaptations of their perceptions of how nature
handles learning. Learning is certainly more complex than the simplifications represented by
the learning rules used. Two different types of learning rules can be distinguished:

• Learning with supervision,
• Learning without supervision.

4.5.1 Supervised Learning

A supervised learning rule is provided with a set of input/output data (also called training data)
of proper network behaviour. As the inputs are applied to the network, the network outputs are
compared to the target outputs. The learning rule is then used to adjust the weights and biases
of the network in order to move the network outputs closer to the targets. Supervised learning
is illustrated in Figure 4.15.
The learning method tries to minimize the current errors of all processing elements. This

global error reduction is created over time by continuously modifying the weights until an
acceptable error goal is reached. Training consists of presenting input and output data to the

x1

x2

In
pu

t t
ra

in
in

g
da

ta

L
earning signal

e

W, b

t

y

Figure 4.15 Supervised learning

Neural Networks 125

network. This data is often referred to as the training set. That is, for each input set provided
to the system, the corresponding desired output set is provided as well:

{1(x1, x2),
1 (t1)}, {2(x1, x2),

2 (t1)}, . . . , {N (x1, x2),
N (t1)} (4.42)

This training can consume a lot of time. In prototype systems, with inadequate processing
power, learning can take days and even weeks. The rules that belong to supervised learning
are:

• Widrow–Hoff rule,
• Gradient descent,
• Delta rule,
• Backpropagation rule,
• Cohen–Grossberg learning rule, and
• Adaptive conjugate gradient model of Adeli and Hung.

4.5.1.1 Widrow–Hoff Learning Algorithm

TheWidrow–Hoff learning rule (Widrow and Hoff, 1960) is applicable for supervised training
of neural networks. It is independent of the activation function of the neurons used since it
minimizes the squared error between the desired output di and a neuron’s actual output value.
The Widrow–Hoff learning rule is shown diagrammatically in Figure 4.16. The weight vector
increment under this learning rule is

�wi = η(di − oi)x (4.43)

w1

w2

w3

wn

x1

x2

xn

Σ
oi

di

di-oi

+

-

η

x

Δw

x3

Π

Figure 4.16 Widrow–Hoff learning

126 Computational Intelligence

where η is the learning constant and x is the input vector. The output oi is defined as

oi = f (neti) = neti (4.44)

where neti is defined as

neti =
∑

wt
i x (4.45)

This rule can be considered a special case of the delta learning rule.

Example 4.1 Assume the neural network with a single neuron as shown below:

w1

w2

w3

w4

x1

x2

x3

x4

O

having initial weight vector w1 and three input vectors:

w1 =

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦ , x1 =

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

1
−0.5

−2
−1.5

⎤
⎥⎥⎦ and x3 =

⎡
⎢⎢⎣

0
1

−1
1.5

⎤
⎥⎥⎦

The network needs to be trained with a learning rate η = 1. The desired output is d =
[1 −1 0]. The activation function is defined as f (net) = net . Compute the weight vector
after the first iteration of Widrow–Hoff learning.

Solution In the first iteration, net1 is calculated according to Equation (4.34):

net1 = w1x1 = [1 −1 0 .5
]
⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ = 3

The output is defined according to Equation (4.44) in the Widrow–Hoff learning rule:

o1 = f (net1) = net1 = 3

Neural Networks 127

The weight update is

�w1 = η(d1 − o1)x1 = 1 ∗ (1− 3)

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2
4

−3
0

⎤
⎥⎥⎦

Finally, the weight after the first iteration is

w2 = w1 + �w1 =

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−2
4

−3
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1
3

−3
0.5

⎤
⎥⎥⎦

4.5.1.2 Gradient Descent Rule

This rule is similar to the Delta rule in that the derivative of the transfer function is still
used to modify the delta error before it is applied to the connection weights. Here, however,
an additional proportional constant tied to the learning rate is added to the final modifying
factor acting upon the weight. This rule is commonly used, even though the convergence to
a stable point is very slow. It has been shown that different learning rates for different layers
of a network help the learning process converge faster. Among the gradient descent learning
algorithms, backpropagation is the most popular and is an extension of the perceptrons to a
multilayered neural network. There are a number of variations on the basic algorithm based
on other optimization techniques, such as conjugate gradient and Newton methods.

Delta learning rule
This rule is a variation of Hebb’s rule and based on the simple idea of continuously modifying
the weights of the input connections to reduce the difference (the delta) between the desired
output and the actual output of the network. It changes the weights in such a way as tominimize
the mean squared error of the network. The delta error in the output layer is transformed by
the derivative of the transfer function and this error is backpropagated into previous layers one
layer at a time. The process of backpropagating the network errors continues until the first
layer is reached. When using the delta rule, it is important to ensure that the input data set is
well randomized. An ordered or structured presentation of the training data set can lead to a
network which cannot converge to the desired accuracy, meaning that the network is incapable
of learning the problem.
The delta learning rule is applicable for supervised training of neural networks and valid for

a continuous activation function. It minimizes the squared error between the desired output yd

and the actual output, calculating the gradient vector with respect to wi of the squared error
defined as

E = 1

2
(yd − oi)

2 = 1

2
e2 (4.46)

128 Computational Intelligence

where the output oi is defined as

oi = f (neti) = f
(
wt

i x
) = wt

i x (4.47)

Here f (.) is the activation function, which is continuous for delta learning. The minimization
of the error requires the weight vector changes to be in the negative gradient direction, so we
it is defined as

�wi = −η∇E (4.48)

where η is the learning rate (constant). ∇E is defined as

∇E = −(yd − oi) f ′(net)x (4.49)

Here, f ′(.) is the derivative of the activation function. The components of the gradient vectors
are

∂ E

∂wi j
= −(yd − oi) f ′(net)x j , j = 1, 2, . . . , n (4.50)

From Equations (4.48) and (4.49), the weight update for delta learning becomes

�wi = η(yd − oi) f ′(neti)x = ηei f ′(net)x (4.51)

The process of delta learning is shown in Figure 4.17.

w1

w2

w3

wn

x1

x2

M

xn

Σ
oi

yd

ei

+

-

η

x

M

x3
nete

netf −+
=

1

1
)(

f’(net)

Π Π
ei. f’(net)

Δw

Figure 4.17 Delta learning rule

Neural Networks 129

Example 4.2 Assume the neural network with a single neuron as shown below:

w1

w2

w3

w4

x1

x2

x3

x4

O1
1

2
)(−

+
= −nete

netfΣ

having initial weight vector w1 and three input vectors:

w1 =

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦ , x1 =

⎡
⎢⎢⎣

1
−2
0

−1

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

0
1.5

−0.5
−1

⎤
⎥⎥⎦ and x3 =

⎡
⎢⎢⎣

−1
1

0.5
−1

⎤
⎥⎥⎦

The desired responses for x1, x2 and x3 are d1 = −1, d2 = −1 and d3 = 1, respectively.
The network needs to be trained with a learning constant c = 1. The activation function is
defined as

f (net) = 2

1+ e−net
− 1

The delta learning rule requires the value of f ′(.) to be computed in each step. For this purpose
the following derivative is given:

f ′(net) = 1

2
(1− o2)

Compute the weight update vector after the second iteration of delta learning.

Solution In the first iteration, net1 is calculated using the input vector x1 and initial weight
vector w1

net1 = w1x1 = [1 −1 0 .5
]
⎡
⎢⎢⎣

1
−2
0

−1

⎤
⎥⎥⎦ = 2.5

Output of the net is calculated using the activation function and derivative of the activation
function is evaluated

o1 = f (net1) = 2

1+ exp(net1)
− 1 = 0.848

f ′(net1) = 1

2

[
1− (o1)2] = 0.140

130 Computational Intelligence

w2 is computed using the weight update rule in Equation (4.49) and the initial weight vector
w1

w2 = η
(
d1 − o1

)
f ′ (net1

)
x1 + w1

= 0.1 (−1− 0.848) ∗ 0.140 ∗

⎡
⎢⎢⎣

1
−2
0

−1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦ = −0.0259 ∗

⎡
⎢⎢⎣

1
−2
0

−1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.974
−0.948

0
0.487

⎤
⎥⎥⎦

In the second iteration, net2 is calculated using the input vector x2 and the weight vector w2

net2 = w2x2 = [0.974 −0.948 0 0.487
]
⎡
⎢⎢⎣

0
1.5

−0.5
−1

⎤
⎥⎥⎦ = −1.948

Output of the net is calculated using the activation function and derivative of the activation
function is evaluated

o2 = f (net2) = 2

1+ exp(net2)
− 1 = −0.75

f ′(net2) = 1

2

[
1− (o2)2] = 0.218

Weight update after second iteration is:

�w2 = η
(
d2 − o2

)
f ′ (net2

)
x2

= 0.1 ∗ (−1+ 0.75) ∗ 0.218 ∗

⎡
⎢⎢⎣

0
1.5

−0.5
−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−0.008
0.002
0.008

⎤
⎥⎥⎦

4.5.1.3 Generalized Delta Learning Rule

The delta learning rule can be generalized and applied to any feedforward layered network.
The architecture of a two-layer network is considered in this case and shown in Figure 4.18.
The delta learning rule can now be applied to adjust the hidden layer weights (1W) and

output layer weights (2W) of the two-layered network. This generalized delta learning rule is
error backpropagation learning – the algorithm is shown as a block diagram in Figure 4.19
and will be further explained in the next section.

Neural Networks 131

x1

x4

xm

x3

x2

1w1,1

1wn,m

1f (.)

1f (.)

1f (.)

1Y1

1Y2

1Yn

1N1

1N2

1Nn

1net1

1net2

1netn

2f (.)

2f (.)

2f (.)

2Y1

2Y2

2Yn

2N1

2N2

2Nn

2net1

2net2

2netn

2w1,1

2wn,n

)(1111 bXWfY +⋅=)(21222 bYWfY +⋅=

.

.

.

.

.

.

.

.

.

oj ok

Figure 4.18 Two-layer feedforward network

4.5.1.4 Backpropagation Learning Algorithm

Standard backpropagation is a gradient descent algorithm. The term ‘backpropagation’ refers
to the manner in which the gradient is computed for nonlinear multiplayer networks. For
example, we consider a three-layered NN shown in Figure 4.20.
Thus, the output layer is defined as

Ok = f (netk) (4.52)

netk =
∑

j

Wk j O j + θk (4.53)

and the hidden layer is defined as

O j = f (net j) (4.54)

net j =
∑

i

W ji Oi + θ j (4.55)

where f(net) is given by

f (net) = 1

1+ exp(−net)
(4.56)

The learning procedure involves the presentation of a set of pairs of input/output patterns.
The net propagates the pattern inputs to outputs to produce its own output patterns and then
compares this with the desired output. The difference is called the error. If there is error, it is
backpropagated to have the weights and biases changed. If there is no error, learning stops.

132 Computational Intelligence

Initialize 1W, 2W

Input pattern X

Compute layers response
1y = f [1WX]
2y = f [2W 1y]

Compute error function
2(y

2

1
y)EE d −+←

Calculate δ δj k

Adjust weights of output layer

kkoWW ηδ

ηδ

+← 1

Adjust weights of hidden layer

jjoWW +← 2

More patterns

E<Emax

Yes

No

Figure 4.19 Error backpropagation rule

Derivation of the backpropagation algorithm
The backpropagation algorithm is based on the gradient descent method, in that the error
function is defined by Equation (4.46). The principle of gradient descent method is shown in
Figure 4.21, where the error function is compared with a rolling ball going down a valley.

E = 1

2

∑
e2 = 1

2

∑
k

(tk − Ok)
2 (4.57)

Neural Networks 133

Oi Oj

Ok

θj

θk

Wji Wkj

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

1x

2x

nx

Figure 4.20 Three-layer network:Ok,Oj,Oi
∼= outputs of the output, hidden, input layers, respectively;

wk j
∼= connection weight from hidden layer j to output layer k;w j i

∼= connection weight from input layer
i to hidden layer j

Calculation of the output layer weight change. According to the steepest descent (gradient
descent) method:

�wk j = −η
∂ E

∂wk j
(4.58)

where η is the learning rate and η > 0, �wk j is the weight change and �wk j = wnew
k j − wold

k j .

0>
∂
∂
W

E

oldWnewW*W

WΔ

E

W

Figure 4.21 Principle of gradient descent method

134 Computational Intelligence

Using the chain rule, we get

∂ E

∂wk j
= ∂ E

∂netk
· ∂netk

∂wk j
= −δk · ∂netk

∂wk j
(4.59)

where δk = − ∂ E
∂netk

, termed the generalized error signal.

Now, we want to derive the term ∂netk
∂wk j

:

∂netk
∂wk j

=
∂

(∑
j

wk j O j + θk

)

∂wk j
= O j (4.60)

To compute the term δk , we apply the chain rule

δk = − ∂ E

∂netk
= − ∂ E

∂Ok

∂Ok

∂netk
(4.61)

∂ E

∂Ok
=

1
2

∑
k
(tk − Ok)2

∂Ok
= − (tk − Ok) (4.62)

∂Ok

∂netk
= f ′(netk) (4.63)

Note. f ′(x) denotes the derivative of f (x) with respect to x and can easily be derived as
follows:

f ′(x) = e−x

(1+ e−x)2
= 1

(1+ e−x)

(
1− 1

1+ e−x

)
f ′(x) = f (x) (1− f (x))

(4.64)

Hence,

∂Ok

∂netk
= Ok (1− Ok) (4.65)

Thus, we have

�wk j = ηδk O j

δk = Ok (1− Ok) (tk − Ok)
(4.66)

Similarly, we can calculate the bias change

�θk = −η
∂ E

∂θk
= η

(
− ∂ E

∂netk

∂netk
∂θk

)
= ηδk

∂

(∑
j

wk j O j + θk

)

∂θk
= ηδk (4.67)

Neural Networks 135

Calculation of the hidden-layer weight change. According to the gradient descent method:

�w j i = −η
∂ E

∂w j i
(4.68)

Using the chain rule we get

∂ E

∂w j i
= ∂ E

∂net j
· ∂net j

∂w j i
= −δ j · ∂net j

∂w j i
(4.69)

Now, we get

∂net j

∂w j i
= Oi (4.70)

Using the chain rule, we get

δ j = − ∂ E

∂net j
= −

∑
k

∂ E

∂netk

∂netk
∂O j

∂O j

∂net j
(4.71)

δ j =
∑

k

δkwk j f ′ (net j
)

(4.72)

δ j = O j
(
1− O j

)∑
k

δkwk j (4.73)

Thus, we have

�w j i = ηδ j Oi (4.74)

and the bias change

�θ j = −η
∂ E

∂θ j
= ηδ j (4.75)

Backpropagation algorithm
1. Initialize wk j , w j i , θk and θ j and set learning rate η.
2. Propagate inputs to network and calculate Oj, Ok.
3. Calculate δk by the formula

δk = Ok (1− Ok) (tk − Ok)

4. Calculate change of weights and biases by

�wk j = ηδk O j

�θk = ηδk

5. Calculate δj by the formula

δ j = O j
(
1− O j

)∑
k

δkwk j

136 Computational Intelligence

W
jX

N
eu

ro
ns

W
kY

N
eu

ro
ns

 []jj neto Γ= []kk neto Γ=

t
kk yw ηδ=Δt

jj xw ηδ=Δ

'
jk

t
jj fw δδ = [])()(kkkk netfot ′−=δ

k
t
jw δ

)(knetf ′

kt
kk ot −

knetx jnet

jf ′ jw

η

η

ΠΠ Π Π

Π

Figure 4.22 Backpropagation algorithm

6. Calculate change of weights and biases by

�w j i = ηδ j Oi

�θ j = ηδ j

7. Calculate new weights and biases

w j i (t + 1) = w j i (t)+ �w j i

θ j (t + 1) = θ j (t)+ �θ j

wk j (t + 1) = wk j (t)+ �wk j

θk(t + 1) = θk(t)+ �θk

8. Set t ← t + 1 and go to step 2.

The backpropagation algorithm is illustrated in Figure 4.22.

Problems with backpropagation learning
Backpropagation is based on the gradient descent algorithm to find the minimum error. We
seek global minima, which are sometimes surrounded by many local minima or plateaux. Very
often, backpropagation is stuck in a local minimum or plateau. This is shown in Figure 4.23.
A momentum term α is added to the learning rule when backpropagation is stuck in a local
minimum. Likewise, an acceleration term β is added to the learning rule when backpropagation
is stuck in a plateau. The modified learning rules for the output and hidden layer are given by
Equations (4.76) and (4.77):

�wk j (t) = −η
∂ E

∂wk j
+ α�wk j (t − 1)+ β�wk j (t − 2) (4.76)

�w j i (t) = −η
∂ E

∂w j i
+ α�w j i (t − 1)+ β�wk j (t − 2) (4.77)

Neural Networks 137

Wmin Wplateau Wlocal

E
α

β

Figure 4.23 Momentum and acceleration

The values of the momentum term α and acceleration term β are chosen arbitrarily. Too big
values will cause the algorithm to jump over the global minimum to another local minimum.
Too small values will slow down the learning speed.

4.5.1.5 Cohen–Grossberg Learning Rule

Cohen–Grossberg learning comes from the psychological model of Pavlovian learning devel-
oped from the dog and food experiment. In Cohen–Grossberg learning, for two associated
neurons:

• activity must increase with an external stimulus;
• activity must decrease when there is no stimulus;
• learning must respond to stimuli from neurons in the network.

Neuron j receives signals yi (t) from neurons i , i = 1, 2, . . . , n as shown in Figure 4.24. The
activity y j (t) of neuron j can be represented by the differential equation

y j (t)

dt
= −αy j (t)+ I0(t)+ β

n∑
i=1

wi j (t)yi (t) (4.78)

1=i)(tyi

)(twij

Σ.
.
.

)(tyj

)(0 tI

j

ni =

)(τ−tyi

Figure 4.24 Receiving neuron in Cohen–Grossberg learning

138 Computational Intelligence

where yi (t) is the activity of the ith neuron, y j (t) is the activity of the jth neuron, I0(t) is the
external stimulus, wi j (t) is the weight between the ith and jth neurons, and α and β are the
forgetting and learning constants, respectively. Two processes involved in the learning law
are Hebbian learning and forgetting. The weight update rule is expressed by introducing an
explicit forgetting factor, a threshold on the incoming activity term and a transmission delay:

wi j (t)

dt
= −Fwi j (t)+ Gyj (t) |yi (t − τ)− T | (4.79)

where τ is the average transmission time from neuron i to neuron j , T is the threshold, G
is the gain or learning constant and F is the forgetting factor (F ≤ 0.01). An appropriate
Cohen–Grossberg learning law would be to substitute the activities with the first derivative of
the activities, i.e.

wi j (t)

dt
= −Fwi j (t)+ G

yj (t)

dt

∣∣∣∣ yi (t − τ)

dt
− T

∣∣∣∣ (4.80)

Equation (4.80) is a version of the differential Hebbian learning (Tsoukalas and Uhrig,
1997).

4.5.1.6 Adaptive Conjugate Gradient Model of Adeli and Hung

The conjugate gradient method is an effective modification of the steepest descent method
that was first proposed by Fletcher and Reeves (1964) in order to overcome the shortcomings
of the backpropagation algorithm. Powell (1986) proposed a more robust approximate line
search algorithm for convergence. The problem of arbitrary trial-and-error selection of the
learning and momentum ratios encountered in the momentum backpropagation algorithm is
circumvented in the adaptive conjugate gradient model proposed by Adeli and Hung (1994).
Instead of constant learning and momentum ratios, the step length in the inexact line search
is adapted during the learning process. The new adaptive algorithm provides a more solid
mathematical foundation for neural network learning. The algorithm has been applied to the
domain of image recognition and demonstrated a superior convergence property compared
with backpropagation with momentum.

4.5.2 Unsupervised Learning

Unsupervised learning refers to learning without supervision, i.e., the target response is not
known. That means no external signals are used to adjust network weights. Instead, they
monitor internal representation for coding input patterns and learn to respond to different
input patterns with different parts of the network. Since no information is available as to
correctness or incorrectness of response, learning looks for features, regularities or trends
present in the input patterns, and makes adaptations according to the function of the network.
Even without being told whether it’s right or wrong, the network still has some information on
how to organize itself to respond to frequently occurring patterns. This information is built into
the network topology during learning. Thus, unsupervised learning is usually suitable for data

Neural Networks 139

x1

x2

In
pu

t t
ra

in
in

g
da

ta

W, b

y

Figure 4.25 Unsupervised learning

clustering, feature extraction, categorization of persistent features in signals, classification and
similarity measures.
An unsupervised learning algorithm might emphasize cooperation among clusters of pro-

cessing elements. In such a scheme, the clusters would work together. Competition between
processing elements could also form a basis for learning. Training of competitive clusters could
amplify the responses of specific groups to specific stimuli. As such, it would associate those
groups with each other and with a specific appropriate response. Normally, when competition
for learning is in effect, only the weights belonging to the winning processing element will be
updated.
Currently, this learning method is limited to networks known as self-organizing maps. At

present, unsupervised learning is not well understood and is still the subject of research. An
unsupervised learning scheme is illustrated in Figure 4.25.
The rules that belong to unsupervised learning are

• Hebb’s rule and
• Kohonen’s rule.

4.5.2.1 Hebbian Learning Rule

The first and undoubtedly the best known learning rule was introduced by Donald Hebb in his
book The Organization of Behavior in 1949. The basic rule is: ‘If a neuron receives an input
from another neuron and if both are highly active (mathematically have the same sign), the
weight between the neurons should be strengthened’. The Hebbian learning rule represents
purely feedforward and unsupervised learning. The rule implements the interpretation of the
classic statement – when an axon of cell A is near enough to excite cell B and persistently
takes place in firing it, some growth or metabolic change takes place in one or both cells such
that A’s efficiency is increased. The rule states that if the cross-product of output and input, or
correlation term oi x j is positive, this results in an increase of weightw j i , otherwise the weight
decreases.

140 Computational Intelligence

w1

w2

w3

wn

x1

x2

M

xn

Σ
oi

η

x

wji

M

x3 f (net)

f (neti)
Π

i th neuron

Figure 4.26 Hebbian learning rule

The weight update �w in Hebbian learning becomes

�w j i = ηoi x j = η f (neti)x j (4.81)

where

oi = f (neti) (4.82)

neti =
∑

w j i x j (4.83)

with i, j = 1, 2, 3, . . . Here f (.) is the activation function, which can be continuous or non-
continuous. Hebbian learning is shown in Figure 4.26.

Example 4.3 Assume the neural network with a single bipolar binary neuron, as shown
below:

w1

w2

w3

w4

x1

x2

x3

x4

Of (net) = sgn(net)Σ

Neural Networks 141

having initial weight vector w1 and three input vectors x1, x2 and x3:

w1 =

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦ , x1 =

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

1
−0.5

−2
−1.5

⎤
⎥⎥⎦ and x3 =

⎡
⎢⎢⎣

0
1

−1
1.5

⎤
⎥⎥⎦

The network needs to be trained with a learning rate η = 1. The activation function is
defined as

f (net) =
{+1 net ≥ 0

−1 net < 0

Compute the weight vector after the second iteration of Hebbian learning.

Solution First iteration: net1 is calculated using the input vector x1 and initial weight vec-
tor w1

net1 = w1T
x1 = [1 −1 0 .5

]
⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ = 3.0

Since net > 0, o1 will be o1= f (net1)= +1

�w1 = η f
(
net1
)

x1 = 1 ∗ (+1) ∗

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦

w2 = w1 + �w1 =

⎡
⎢⎢⎣

1
−1
0

0.5

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
−2
1.5
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
−3
1.5
0.5

⎤
⎥⎥⎦

Second iteration: net2 is calculated using input vector x2 and weight vector w2

net2 = w2T
x2 = [2 −3 1.5 0.5

]
⎡
⎢⎢⎣

1
−0.5

−2
−1.5

⎤
⎥⎥⎦ = −0.25

142 Computational Intelligence

Since net < 0, o2 will be o2= f (net2) = −1

�w2 = η f
(
net2
)

x2 = 1 ∗ −1 ∗

⎡
⎢⎢⎢⎣

1

−0.5
−2

−1.5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1
0.5

2

1.5

⎤
⎥⎥⎥⎦

w3 = w2 + �w2 =

⎡
⎢⎢⎢⎣

2

−3
1.5

0.5

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

−1
0.5

2

1.5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

−2.5
3.5

2.0

⎤
⎥⎥⎥⎦

The weight vector after the second iteration of Hebbian learning is w3=

⎡
⎢⎢⎢⎣

1

−2.5
3.5

2.0

⎤
⎥⎥⎥⎦

4.5.2.2 Kohonen Learning

Kohonen reported very interesting and useful results from his research on self-organizingmaps
used for pattern recognition tasks (Kohonen, 1988). Kohonen’s learning rule was inspired by
learning in biological systems. In this learning system, the processing elements compete for the
opportunity to learn, or update their weights. The processing element with the largest output is
declared the winner and has the capability of inhibiting its competitors as well as exciting its
neighbours. Only the winner is permitted an output, and only the winner plus its neighbours
are allowed to adjust their connection weights. Further, the size of the neighbourhood can
vary during the training period. The usual paradigm is to start with a larger definition of the
neighbourhood, and narrow it as training progresses. The winning neuron or element is defined
as the one that has the closest match to the input pattern. The result is that the wining neuron is
more likely to win the competition the next time a similar vector is presented, and less likely to
when a very different input vector is presented. As more and more inputs are presented, each
neuron in the layer closest to a group of input vectors soon adjusts its weight towards those
input vectors. Eventually, if there are enough neurons, every cluster of similar input vectors
will have a neuron that outputs 1 when a vector of the cluster is presented, while outputting
0 at other times. Thus, the Kohonen network learns to categorize the input vectors it sees.
In other words, networks model the distribution of the inputs. This is good for statistical or
topological modelling of the data and is sometimes referred to as self-organizing maps. For a
better understanding of the mechanism, see Zurada (1992).
Three types of learning will be considered:

• Competitive learning,
• Self-organizing maps, and
• Learning vector quantization or adaptive vector quantization.

Neural Networks 143

x1

x2

xn

1

m

p

wm1

wm2

wmn

Winning
neuron

M M

Figure 4.27 Winner-takes-all learning

Competitive learning
There are three basic elements to a competitive learning rule (Rumelhart and Zipser, 1985):

• A set of neurons that are all the same except for some randomly distributed synaptic weights,
and which respond differently to a given set of input patterns.

• There is a limit imposed on the strength of each neuron.
• There is a mechanism in place that permits the neurons to compete for the right to respond
to a given subset of inputs, such that only one output neuron, or only one neuron per group,
is active at a time. The neuron that wins the competition is called a winner-takes-all neuron.

Typically, the winner-takes-all learning rule is used for learning statistical properties of inputs.
The learning is based on the premise that one of the neurons in the layer, say the mth, has
maximum response due to input x, as shown in Figure 4.27. The neuron is declared the winner.
The winner selection is based on the following criterion of maximum activation among all p
neurons participating in a competition:

wm = max
i=1,2,...,p

{wi x} (4.84)

This criterion corresponds to finding the weight vector that is closest to the input x. As a
result of this winning event, neuron m with weight vector wm = [wm1 wm2 · · · wmn]T is the
only neuron to adjust its weights.
The weight increment is computed as follows:

�wm = α(x − wm) (4.85)

or the individual weight adjustment becomes

�wmj = α(x j − wmj) for j = 1, 2, . . . , n (4.86)

where α > 0 is a small learning constant (rate), typically decreasing as learning progresses.

144 Computational Intelligence

wi

x

wl

Figure 4.28 Two-dimensional SOM array

Self-organizing maps (SOM)
The self-organizing phenomenon is first demonstrated in an abstract system without reference
to any biological structure or signal types. Consider Figure 4.28. The SOM defines a mapping
from the input data x ∈ �n onto a two-dimensional array of nodes. With every node i is
associated a parametric reference vector wi = [wi1, wi2, . . . , win] ∈ �n . The lattice type of
the array can be defined to be rectangular, hexagonal or even irregular. Hexagonal is effective
for visual display. In the simplest case, an input vector x = [x1, x2, . . . , xn] ∈ �n is connected
to all neurons in parallel via variable scalar weights wi j (weight between ith neuron and jth
input), which are in general different for different neurons.
In an abstract scheme it may be imagined that the input x, by means of some parallel

computing mechanisms, is compared with all the wi and the location of the best match in
some metric is defined as the location of the response. The exact magnitude of the response
need not be determined: the input is simply mapped onto this location, like a set of decoders.
Vector x may be compared with all wi in any metric, the smallest of the Euclidean distance
‖x − wi‖ can be made to define the best-matching node, denoted by c:

c = ‖x − wi‖ = min
i

{‖x − wi‖} (4.87)

The Euclidean distance ‖x − wi‖ is defined by

‖x − wi‖ =
√√√√ n∑

j=1

(
x j − wi j

)2
(4.88)

where x = [x1, x2, . . . , xn] and wi = [wi1, wi2, . . . , win].
During learning, those nodes that are topographically close in the array up to a certain

geometric distance will activate each other to learn something from the same input x. This

Neural Networks 145

c

Nc(t3)

Nc(t2)

N

(a)

c(t1)

Nc(t3)

Nc(t2)

Nc(t1)

c

(b)

Figure 4.29 Different topological neighbourhoods in SOM. (a) Grid-type topological neighbourhood;
(b) Hexagonal topological neighbourhood

will result in a local relaxation or smoothing effect on the weight vectors of neurons in the
neighbourhood, which in continued learning leads to global ordering. The learning process
will eventually converge, whereby the initial values of wi (0) can be arbitrary (e.g., random):

wi (t + 1) = wi (t)+ hci (t) [x(t)− wi (t)] (4.89)

where t = 0, 1, 2, 3, . . .
hci (t) is the so-called neighbourhood function, a smoothing kernel defined over the lattice

points. For convergence, it is necessary that hci (t) → 0 when t → ∞. In the literature, two
simple choices for hci (t) occur frequently. The simpler of them refers to a neighbourhood set
of array points around node c, as shown in Figure 4.29. Let their index set be denoted by Nc

and Nc = Nc(t), whereby hci (t) = α(t). The value of α(t) is then identified with a learning
rate factor 0 < α(t) < 1. Both α(t) and Nc(t) are usually decreasing monotonically in time
during the ordering process.
The algorithm presented here for preliminary simulations is only representative of many

alternative forms. If the SOM network is not very large (say a few hundred nodes at most),
selection of the process parameters is not very crucial. Special caution is required in the
choice of the size of Nc = Nc(t). If the neighbourhood is too small to start with, the map will

146 Computational Intelligence

not be ordered globally. Instead, various kinds of mosaic-like parcellations of the map are
seen, between which the ordering direction changes discontinuously. This phenomenon can
be avoided by starting with a fairly wide Nc = Nc(0) and letting it shrink with time. The initial
radius can even be more than half the diameter of the network. During the first 1000 steps
or so, when the proper ordering takes place and α = α(t) is fairly large, the radius of Nc can
shrink linearly to one unit. During the fine-adjustment phase, Nc can still contain the nearest
neighbours of cell c. The choice of α = α(t) is critical during learning. Kohonen suggested
some criteria for choosing values of α(t):

• α(t) should start with a value close to unity for approximately the first 1000 steps.
• α(t) should decrease monotonically thereafter.
• An accurate timing function is not important: α = α(t) can be linear, exponential or inversely
proportional to t. For example, α(t) = 0.9

(
1− t

1000

)
may be reasonable.

• Ordering of the wi occurs during this initial period, while the remaining steps are only
needed for fine adjustment of the map.

• α = α(t) should attain small values (e.g., on the order of 0.2 or less) over a long period
during the fine-adjustment period.

• For a very large map, selection of an optimal α(t) law may be crucial for convergence.
• A rule of thumb is that, for good statistical accuracy, the number of steps in the fine-
adjustment phase must be at least 500 times the number of network units.

For a detailed analogy and other variants of SOM, readers are directed to the book by
Kohonen (1995).
The SOM algorithm can be summarized as follows:

1. Initialize weights wi (0). wi (0) can be set to equal the firstM samples.
2. Calculate the Euclidean distance of neuron D j from the inputs:

D j =
√√√√ n∑

j=1

(
x j − wi j

)2
(4.90)

3. Determine the winner neuron with weight vector wc. wc becomes the centre of a group of
weight vectors that lie within a distance D from wc.

4. Adjust all such neurons in the neighbourhood by

wi (t + 1) = wi (t)+ αt [x − wi (t)]

where 0 < αt < 1.

As the network trains, gradually reduce the values of D and α.

Example 4.4 Calculate the weight update of the two competing neurons shown in Figure
4.30 using a SOM with α = 0.5.

Neural Networks 147

1

2

x2 = 1.3

x1 = 1

w11 = 0.5

w12 = 0.5w21 = 0.6

w22 = 0.3

Figure 4.30 Two competing neurons

Solution The initial weights are provided. So the next step is to calculate Euclidean distance
of neuron 1 and 2 from x1 and x2 using Equation (4.88). Euclidean distance of neuron 1 from
x1 and x2 is:

D1 =
√
[x1 − w11]2 + [x2 − w12]2 =

√
[1− 0.5]2 + [1.3− 0.5]2

=
√
0.52 + 0.82 =

√
0.89 = 0.943

Euclidean distance of neuron 2 from x1 and x2 is:

D2 =
√
[x1 − w21]2 + [x2 − w22]2 =

√
[1− 0.6]2 + [1.3− 0.3]2

=
√
0.42 + 12 =

√
1.16 = 1.077

Determine thewinning neuron by finding theminimumdistance D1 = min {D1, D2}. There-
fore, the winning neuron is 1. The weights to neuron 1 are now allowed to update. The new
weights are

w11(t + 1) = w11(t)+ αt [x1 − w11(t)] = 0.5+ 0.5(1− 0.5) = 0.5+ 0.25 = 0.75

w12(t + 1) = w12(t)+ αt [x2 − w12(t)] = 0.5+ 0.5(1.3− 0.5) = 0.5+ 0.40 = 0.9

Learning continues until the maximum epoch is reached or the distance becomes an acceptable
minimum.

Learning vector quantization (LVQ) or adaptive vector quantization (AVQ)
Competitive or unsupervised learning systems have been a very rich research topic (Rumelhart
and Zipser, 1985; Grossberg, 1987; Kohonen, 1990). They can be used as a mechanism for

148 Computational Intelligence

Input space

Hidden (competitive) layer

Linear output layer

Input layer

Figure 4.31 LVQ network

adaptive or learning vector quantization, in which the system adaptively quantizes the pattern
space by discovering a set of representative prototypes. Therefore, the trained system can carry
out the task of classification or recognition (Kohonen, 1990).
There exist a number of variations of LVQ with different network configurations or algo-

rithms. However, the basic idea is quite similar (i.e., to categorize vector-valued stochastic data
into different groups by employing some metric measures with a winner-selection criterion).
AnLVQnetwork has two fully connected layers, an input layerwith n units and a competitive

layer with M units, and a second linear layer, shown in Figure 4.31. The competitive layer
learns to classify the input in much the same way as the competitive learning. The linear
layer transforms the competitive layer’s classes into a target classification defined by the user.
Classes learned by the competitive layer are referred to as subclasses and classes of the linear
layer as target classes. Both the competitive and linear layers have one neuron per (sub or
target) class. Thus, the competitive layer can learn up to S1 subclasses and is combined with
the linear layer to form the S2 target class; S1 is always larger than S2.

• The input layer receives the incoming vector x(t) ∈ Rn and forwards it to the competitive
layer through the weights w j (t) ∈ Rn .

• ‖x(t)− w j (t)‖ ≤ ε, a very small value, means w j (t) is close to x(t); the jth unit is the
winning unit.

• According to the winner-takes-all activation function, Ij of all units is set to 0 except for the
winning unit j, where Ij is set to 1.

• The winner’s weight is updated by adding a scaled difference ‖x(t)− w j (t)‖ to w j (t), i.e.

w(t + 1) = w(t)+ α[x(t)− w j (t)] (4.91)

α
�= scaling factor

The LVQ algorithm can be summarized as follows:

1. Initialize weights w j (0); w j (0) can be set to equal the firstM samples, i.e. w j (0) = x j , j =
1, 2, 3, . . . , M .

2. Calculate the distance metric ‖x(t)− w j (t)‖.

Neural Networks 149

3. Determine the winner among M units:

‖x(t)− w j (t)‖ = min
j

‖x(t)− w j (t)‖

4. Update the weight vectors:

w j (t + 1) =
{

w j (t)+ αt [x(t)− w j (t)] if j = I
w j (t) else

where 0 < αt < 1.

4.6 Recurrent Neural Networks

Recurrent networks are of considerable research interest. A recurrent network is obtained from
the feedforward network by connecting the neuron’s output to their inputs. Such a recurrent
or feedback network is depicted in Figure 4.32. The essence of closing a feedback loop is to
enable control of output through outputs. Such control is especially meaningful if the present
output O(t) controls the output at the following instant O(t + �). The time delay � has a
symbolic meaning – it is an analogy to the refractory period of an elementary biological neuron
model. Using the notation introduced for feedforward networks, the mapping of O(t) and
O(t + �) can now be written as

O(t + �) = �(W O(t)) (4.92)

f (.)

f (.)

f (.)

Y1

x1

Y2

Yn

x4

xm

x3

x2

b

Δ

Δ

Δ
1

w1,1
N1

N2

Nn

b2

bn

wn,m

net1

net2

netn

.

.

.
.
.
.

.

.

.

Figure 4.32 Single-layer recurrent network

150 Computational Intelligence

Δ

Γ[WO(t)]
O(t + Δ)

O(t)

x (0)

Figure 4.33 Block diagram of mapping in Equation (4.91)

This is represented by the block diagram in Figure 4.33. The input x(0) is only required to
initialize this network so that O(0) = x(0). The input is then removed and the system remains
autonomous for t > 0. Thus, a special case of this feedback configuration is considered such
that x(t) = x(0) and no input is provided to the network thereafter, or for t > 0. For a discrete-
time neural network we can write

O(k + 1) = �(WO(k)) for k = 1, 2, 3, . . . (4.93)

The network in Figure 4.33 is called recurrent since its response at the (k + 1)th instant
depends on the entire history of the network starting at k = 0. Indeed, Equation (4.92) can be
shown as a series of nested solutions:

O(1) = � [W x(0)]
O(2) = � [W� [W x(0)]]

...
O(k + 1) = � [W� [· · ·� [W x(0)] · · ·]]

(4.94)

The network begins state transitions once it is initialized at instant 0 with x(0), and it goes
through state transitions O(k) for k = 1, 2, 3, . . . until it possibly finds an equilibrium state.
This equilibrium state is often called an attractor. The sequence of states is generally non-
deterministic and in addition, there are often many equilibrium states that can potentially be
reached by the network.
Different variants of recurrent network have been discussed and their adaptive capacity

has been investigated by Siddique and Amavasai (2012). However, three types of recurrent
network are in wide use in the research community:

• Elman networks,
• Jordan networks and
• Hopfield networks.

4.6.1 Elman Networks

Elman networks are three-layer backpropagation networks with the addition of a feedback
connection from the output of the hidden layer to its input. This feedback path allows Elman

Neural Networks 151

networks to learn to recognize and generate temporal patterns as well as spatial patterns
(Elman, 1990).
Let’s consider a multilayer perceptron with input units i1, . . . , im and output units j1, . . . , jn

computing a function f : �m → �n with f (x1, . . . , xm) = (o j1, . . . , o jm
)
. For each unit j ,

the output o j is defined recursively by

o j =
{

xk for unit ik

σ
(∑

i w j i oi + θ j
)
otherwise

(4.95)

where the sum is taken over all units i in the previous layer, w j i are the weights, θ j is the bias
of unit j and σ is an activation function.
A function f : (�m)∗ → �l is computed by an Elman network if there exists a number

n ∈ N , two functions g : �m+n → �n and h : �n → �l computed by multilayer perceptrons
without hidden layers, and a context vector x ∈ � with f : h ◦ g̃x . The last n input units of
the function g are called context units in both cases.
The Elman architecture is more specific in that Elman networks have an extra layer of

neurons that copy the current activations in the hidden-layer neurons, and after delaying these
values for one time unit, feed them back as additional inputs into the hidden layer neurons. The
architecture of an Elman network is shown in Figure 4.34. The architecture shown depicts the
original Elman network with three layers of neurons. The first layer consists of two different
groups of neurons. These are the group of external input neurons and the group of internal
input neurons, also called context units. The inputs to the context units are the outputs of the
hidden-layer neurons. The outputs of all the context units and the external input neurons are
fed to the hidden neurons. Context units are also known as memory units as they store the
previous output of the hidden neurons. In the Elman network architecture, the feedback is
assumed to be unity (i.e., the feedback weights are not trainable).
Although, theoretically, an Elman network with all feedback connections from the hidden

layer to the context layer set to 1 can represent an arbitrary nth-order system, where n is the
number of context units, it cannot be trained using the standard backpropagation algorithm.
By introducing self-feedback connections to the context units of the original Elman network

g
h

θj

R
ec

ur
re

nt
co

nn
ec

ti
on

s

C
on

te
xt

 u
ni

ts

θk

u (k)

y (k)

x (k)

Figure 4.34 Architecture of Elman network

152 Computational Intelligence

g
h

θj

R
ec

ur
re

nt
co

nn
ec

ti
on

s

C
on

te
xt

 u
ni

ts

θk

)(ku

)(ky

)(kx

Figure 4.35 Structure of modified Elman network

and thereby increasing its dynamic memory capacity, it is possible to apply the standard BP
algorithm to teach the network that task. The modified Elman network is shown in Figure 4.35.
The idea of introducing self-feedback connections for the context units is borrowed from the
Jordan network. The values of the self-connection weights are fixed between 0 and 1 before
the start of training.

Training algorithm
At each epoch, the entire input sequence is presented to the network and its outputs are
calculated and compared with the target sequence to generate an error sequence. For each time
step, the error is backpropagated to find gradients of errors for each weight and bias. This
gradient is actually an approximation since the contributions of weights and biases to errors
via the recurrent connections are ignored and a user-chosen value for the gradient is used to
update the weights with the backpropagation training function.
Owing to the use of approximation for the error gradient, Elman networks may not be as

reliable as some other kinds of network as they are less capable of finding the most appropriate
weights for the hidden neurons. For an Elman network to be good at learning a problem it
needs more neurons in the hidden layer than are actually required for a solution by some other
kinds of network. Therefore, the training of the Elman network should start with a fair number
of hidden neurons.

4.6.2 Jordan Networks

Jordan neural networks are like modified Elman networks and have three layers, with the main
feedback connections taken from the output layer to the context layer. The structure of a Jordan
network is shown in Figure 4.36. It has been shown theoretically that a Jordan network is not
capable of representing arbitrary dynamic systems. Therefore, by adding feedback connections
from the hidden layer to the context layer, similar to the case of an Elman network, a modified
Jordan network is proposed. The Jordan network can be trained using the standardBP algorithm
to model different dynamic systems. The modified Jordan network is shown in Figure 4.37.

Neural Networks 153

g
h

θj

Recurrent
connections

C
on

te
xt

 u
ni

ts

θk

)(ku

)(ky

)(kx

Figure 4.36 Structure of original Jordan network

As with the modified Elman network, the values of the feedback connection weights have to
be fixed by the user if the standard BP algorithm is employed.

4.6.3 Hopfield Networks

A Hopfield network is a recurrent network proposed by Hopfield in 1982, which possesses
auto-associative properties. It is a fully connected network, except for connection to itself
(Hopfield, 1982). The network is used to store one or more stable target vectors. These stable
vectors can be viewed asmemories that the network recalls when providedwith similar vectors.
A classic paper in this field is that of Li et al. (1989). Following the postulates of Hopfield,
the single-layer feedback neural network is assumed as shown in Figure 4.38. It consists of

g
h

θj

Recurrent
connectionsC

on
te

xt
 u

ni
ts

θk

)(ku

)(ky

)(kx

Figure 4.37 Structure of modified Jordan network

154 Computational Intelligence

wij
θi

v1

v2

vn

z–1

z–1

z–1

Σ

Σ

Σ
MM

M

x1

x2

xn

Figure 4.38 Architecture of Hopfield network

n neurons having threshold values θi . The feedback input to the ith neuron is equal to the
weighted sum of neuron outputs v j , where j = 1, 2, . . . , n. Denoting wi j as the weight value
connecting the output of the jth neuron with the input of the ith neuron, we can express the
total input neti of the ith neuron as

neti =
n∑

j=1
wi jv j + xi − θi for j �= i, i = 1, 2, . . . , n (4.96)

where xi is the external input to the ith neuron. Using vector notation, Equation (4.95) can be
written as

neti = wT
i v + xi − θi for i = 1, 2, . . . , n (4.97)

where wi =

⎡
⎢⎢⎢⎢⎢⎣

wi1

wi2

...

win

⎤
⎥⎥⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎥⎥⎦ .

The complete matrix description of the linear portion of the system shown is given by

net = Wv + x − θ (4.98)

Neural Networks 155

where net =

⎡
⎢⎢⎢⎣

net1
net2
...

netn

⎤
⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ and θ =

⎡
⎢⎢⎢⎣

θ1
θ2
...
θn

⎤
⎥⎥⎥⎦. MatrixW , called the connectivity matrix,

is an n × n matrix defined as

W =

⎡
⎢⎢⎢⎣
0 w12 · · · w1n

w21 0 · · · w2n
...

... · · · ...
wn1 wn2 · · · 0

⎤
⎥⎥⎥⎦ (4.99)

The matrix of synaptic weightsW in this model is symmetric (i.e.,wi j = w j i) and the diagonal
elements are zero (i.e., wi j = 0 for i = j) which means that no connection exists from any
neuron back to itself.
The updated algorithm for a discrete-time recurrent network is then obtained as follows:

vk+1 = �(Wvk + x − θ) for k = 0, 1, . . . (4.100)

where � is the activation function defined as sgn(·) which operates on every scalar row of the
bracketed matrix.
It is to be noted that a Hopfield network may be operated in a continuous mode or discrete

mode, depending on the neuron model used. The continuous mode is based on an additive
model (Haykin, 2009). On the other hand, the discrete mode is based on the McCulloch–
Pitts model described previously. The discrete Hopfield network has attracted a great deal of
attention in the literature as a content-addressable memory (Haykin, 2009).

4.7 MATLAB R© Programs

TheNeural Network Toolbox provides tools to define architecture, initialize, train and simulate
networks within the MATLAB R© platform (Demuth and Beale, 2000). The toolbox contains
three categories of tools:

• Command-line functions,
• GUI interface tools and
• Simulink R© blocks.

The neural network systems can also be integrated for simulation with a Simulink R© toolbox.
Thefirst category of tools ismade up of functions (M-files) that can be called from the command
line. In this chapter, only command-line functions will be used. A description of the different
functions to define the network architecture and training of networks, and MATLAB R© codes
for the examples, are presented in Appendix D.

156 Computational Intelligence

References

Adeli, H. and Hung, S.-L. (1994) An adaptive conjugate gradient learning algorithm for effective training of multilayer
neural networks, Applied Mathematics and Computation, 62(1), 81–102.

Anderson, N.H. and Titterington, D.M. (1998) Boltzmann machines: statistical associations and algorithms for
training. In Neural Network Systems Techniques and Applications: Implementation Techniques, C.T. Leondes
(ed.), Academic Press, New York, Vol. 3, pp. 51–89.

Broomhead,D.S. andLowe,D. (1988)Multivariable functional interpolation and adaptive networks,Complex Systems,
2, 321–355.

Caudill, M. (1993) GRNN and bear it, AI Expert, 8(5), 28–33.
Choi, S., Ko, K. and Hong, D. (2001) A multilayer feedforward neural network having N/4 nodes in two hidden
layers, Proceedings of the IEEE International Joint Conference on Neural Networks, Washington, DC, Vol. 3, pp.
1675–1680.

Dayan, P., Hinton, G.E., Neal, R.M. and Zemel, R.S. (1995) The Helmholtz machine, Neural Computing, 7(5),
1022–1037.

Demuth, H. and Beale, M. (2000) Neural Network Toolbox for use with Matlab. User’s Guide, Version 4. The Math
Works Inc.

Elman, J.L. (1990) Finding structure in time, Cognitive Science, 14, 179–211.
Fletcher, R. and Reeves, R.M. (1964) Function minimisation by conjugate gradients, The Computer Journal, 7(2),
149–160.

Franke, R. (1982) Scattered data interpolation: tests of some methods, Mathematics of Computations, 38, 181–200.
Grossberg, S. (1987) Competitive learning: from interactive activation to adaptive resonance, Cognitive Science, 11,
23–26.

Haerdle, W. (1990) Applied Nonparametric Regression, Cambridge University Press, Cambridge.
Hamming, R. (1986) Coding and Information Theory, Prentice-Hall, Englewood Cliffs, NJ.
Hardy, R.L. (1990) Theory and applications of the multiquadratic biharmonic method, Computers Mathematics with

Applications, 19, 163–208.
Haykin, S. (1999) Neural Networks – A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, NJ.
Haykin, S. (2009) Neural Networks and Learning Machines, 3rd edn, Pearson Education, Oxford.
Hebb, D.O. (1949) The Organization of Behavior: A Neuropsychological Theory, John Wiley, New York.
Hilton, G.E. (1989) Deterministic Boltzmann machine learning performs steepest descent in weight space, Neural

Computation, 1, 143–150.
Hocking, R.R. (1976) The analysis and selection of variables in linear regression, Biometrics, 32, 1–49.
Hocking, R.R. (1983) Developments in linear regression methodology, Technometrics, 12(3), 219–249.
Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Pro-

ceedings of National Academy of Sciences, 79, 2554–2558.
Huang, S.-C. and Huang, Y.-F. (1991) Bounds on the number of hidden neurons in multilayer perceptrons, IEEE

Transactions on Neural Networks, 2(1), 47–55.
Jackson, I.R.H. (1988) Radial basis function methods for multivariable approximation, PhD Thesis, DAMTP, Uni-
versity of Cambridge.

Jain, A.K., Mao, J. and Mohiudding, K.M. (1996) Artificial neural networks: a tutorial, Computer, 29(3), 31–44.
Kohonen, T. (1988) Self-Organisation and Associative Memory, 3rd edn, Springer-Verlag, New York.
Kohonen, T. (1990) The self-organising map, Proceedings of the IEEE, 78(9), 1464–1480.
Kohonen, T. (1995) Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30, Springer-Verlag, Berlin.
Konar, A. (2005) Computational Intelligence – Principles, Techniques and Applications, Springer-Verlag, Berlin.
Li, J., Michel, A.N. and Porod, W. (1989) Analysis and synthesis of a class of neural networks: linear systems
operating on a closed hypercube, IEEE Transactions on Circuits and Systems, 36(11), 1405–1422.

McClelland, W.S. and Rumelhart, D.E. (1986) Parallel Distributed Processing, MIT Press, Cambridge, MA and the
PDP Research Group.

McCulloch, W.S. and Pitts, W.H. (1943) A logical calculus of the ideas imminent in nervous activity, Bulletin of
Mathematical Biophysics, 5, 115–133.

Meilijson, I., Ruppin, E. and Sipper,M. (1998) Fast computing inHamming andHopfield networks. InNeural Network
Systems Techniques and Applications: Algorithms and Architectures, C.T. Leondes (ed.), Academic Press, New
York, Vol. 1, pp. 123–154.

Minsky, M. and Papert, S. (1969) Perceptrons, MIT Press, Cambridge, MA.

Neural Networks 157

Moody, J.E. (1989) Fast learning in multi-resolution hierarchies. In Advances in Neural Information Processing
Systems, D.S. Touretzky (ed.), Morgan Kaufmann, San Mateo, CA.

Moody, J.E. (1992) The effective number of parameters: an analysis of generalisation and regularisation in nonlinear
learning systems. In Neural Information Processing Systems, J.E. Moody, S.J. Hanson and R.P. Lippmann (eds),
Morgan Kaufmann, San Mateo, CA, Vol. 4, pp. 847–854.

Moody, J.E. and Darken, C.J. (1989) Fast learning in networks of locally-tuned processing units, Neural Computing,
1, 281–294.

Nadaraya, E.A. (1964) On estimating regression, Theory of Probability and Applications, 10, 186–190.
Neal, R.M. (1992) Connectionist learning of belief networks, Artificial Intelligence, 56, 71–113.
Parzen, E. (1962) On estimation of a probability density function and mode, Annals of Mathematics and Statistics,
33, 1065–1076.

Pearl, J. (1987) Distributed revision of composite beliefs, Artificial Intelligence, 29, 241–288.
Poggio, T. and Girosi, F. (1990) Networks for approximation and learning, Proceedings of IEEE, 78(9).
Powell, M.J.D. (1981) Approximation Theory and Methods, Cambridge University Press, Cambridge.
Powell, M.J.D. (1985) Radial basis functions for multivariable interpolation: a review, IMA Conference Algorithm for

Approximation of Functions and Data, RMCS Shrivenham.
Powell, M.J.D. (1986) Convergence properties of algorithms for nonlinear optimisation, SIAM Review, 28(4), 487–
500.

Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage and organisation in the brain,
Psychology Review, 65, 386–408.

Rumelhart, D.E. and Zipser, D. (1985) Feature discovery by competitive learning, Cognitive Science, 9(1), 75–112.
Rutkowski, L. (2005) New Soft Computing Techniques for System Modelling, Pattern Classification and Image

Processing, Springer-Verlag, Berlin.
Schioeler, H. and Hartmann, U. (1992) Mapping neural network derived from the Parzen window estimator, Neural

Networks, 5, 903–909.
Siddique, N.H. and Amavasai, B.P. (2012) An investigation into adaptive capacity of recurrent neural networks. In

Innovations in Intelligent Machines – 3, SCI 442, Systems, I. Jordanov and L.C. Jain (eds), Springer-Verlag,
Berlin, pp. 119–138.

Siddique, N.H., Condell, J.V., McGinnity, T.M., Gatsoulis, Y. and Kerr, E. (2010) Hierarchical architecture for
incremental learning in mobile robotics. In 11th Conference Towards Autonomous Robotic Systems (TAROS
2010), T. Belpaeme, G. Bugmann, C. Melhuish and M. Witkowski (eds), University of Plymouth, pp. 271–277.

Specht, D.F. (1990a) Probabilistic neural networks and the polynomial ADALINE as complementary techniques for
classification, IEEE Transactions on Neural Networks, 1(1), 111–121.

Specht, D.F. (1990b) Probabilistic neural networks, Neural Networks, International Neural Network Society, 3,
109–118.

Specht, D.F. (1991) A general regression neural network, IEEE Transactions on Neural Networks, 2(6), 568–576.
Tsoukalas, L.H. and Uhrig, R.E. (1997) Fuzzy and Neural Approaches in Engineering, John Wiley & Sons, New
York.

Wand, M.P. and Jones, M.C. (1995) Kernel Smoothing, Chapman & Hall, London.
Watanabe, S. and Fukumizu, K. (1998) Probabilistic design. InNeural Network Systems Techniques and Applications:

Algorithms and Architectures, C.T. Leondes (ed.), Academic Press, New York, Vol. 1, pp. 181–229.
Watson, G.S. (1964) Smooth regression analysis, Sankhy, A26, 359–372.
Werbos, P.J. (1974) Beyond regression: new tools for prediction and analysis in the behavioural sciences, Doctoral
Dissertation, Applied Mathematics, Harvard University.

Widrow, B. and Hoff, M.E. (1960) Adaptive Switching Circuits, IRE Western Electric Show and Convention Record,
part 4, pp. 96–104.

Widrow, B. and Hoff, M.E. (1962) Associative storage and retrieval of digital information in networks of adaptive
neurons, Biological Prototypes and Synthetic Systems, 1, 16

Yao, X. (1993) Evolutionary artificial neural networks, International Journal of Neural Systems, 4(3), 203–222.
Zaknich, A. (2003) Neural Networks for Intelligent Signal Processing, World Scientific, Singapore.
Zurada, J.M. (1992) Introduction to Artificial Neural Systems, PWS Publishing Company, Boston, MA.

5
Neural Systems and Applications

5.1 Introduction

Neural networks (NNs) are meant to interact with the natural environment, and information
about the latter is usually collected from the real world through very noisy but redundant
sensory signals. On the other hand, in the control of effectors or actuators, one often has to
coordinate many mutually dependent and redundant signals. In both cases, neural networks
can be used to implement a great number of implicitly and/or poorly defined transformations
between variables (Rosenblatt, 1958; Minsky and Papert, 1959; Widrow and Hoff, 1960;
Werbos, 1974; McClelland and Rumelhart, 1986). Many applications have been found in sim-
ple mathematical methods, such as fitting nonlinear functional expansions into experimental
data, pattern recognition and data clustering. The 1988 DARPA Neural Network Study lists
various applications of NNs, beginning in about 1984 with an adaptive channel equalizer.
This device, which is an outstanding commercial success, is a single neuron network used in
long-distance telephone systems to stabilize voice signals. NNs have been applied in many
other fields since the DARPA report. Some of the applications mentioned in the literature are
as follows:

• Aerospace – high-performance autopilot, flight path simulation, aircraft control systems,
fault detection system.

• Automotive – automobile automatic guidance system.
• Banking, Financial and Business – cheque and other document reading, credit application
evaluation, credit card activity.

• Defence – weapon steering, target tracking, object discrimination, facial recognition.
• Industrial, Manufacturing and Electronics – control, process identification, machine diag-
nosis, quality inspection.

• Medical – cancer cell analysis, EEG and ECG signal analysis, optimization of transplant
times.

• Speech – speech recognition, compression, text-to-speech synthesis.
• Telecommunication – image and data compression, speech processing, real-time translation
of spoken language.

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

160 Computational Intelligence

These applications fall mainly into two categories (Miller et al., 1990; Kim and Lewis,
1998):

• Prediction and control applications;
• Data analysis and processing.

In this chapter, we will address some popular network architectures for modelling, identifica-
tion, prediction and control applications that have been implemented using neural networks.

5.2 System Identification and Control

5.2.1 System Description

Mathematical systems theory is a fairly old but powerful scientific discipline which deals
with the analysis and synthesis of linear and nonlinear dynamic systems. In general, a system
with concentrated parameters can be described by ordinary differential equations. It is now
well established to describe a dynamic system by a set of differential equations or difference
equations. For example, an n-input m-output system is described by differential equations of
the form

ẋ(t) = � [x(t), u(t)]

y(t) = � [x(t)]
(5.1)

where u(t) = [u1(t), u2(t), . . . , un(t)]T , x(t) = [x1(t), x2(t), . . . , xP (t)]T and y(t) =
[y1(t), y2(t), . . . , ym(t)]T are the input vector, the state vector and the output vector,
respectively. � : R p × Rn → R p and � : Rn → Rm are static nonlinear mapping functions.
In systems theory, the input/output state representation of a system is described by Equation
(5.1). The difference equation version of the system in Equation (5.1) can be described by

x(k + 1) = � [x(k), u(k)]

y(k) = � [x(k)]
(5.2)

where x(.), u(.) and y(.) are discrete time sequences. If the system described by Equation (5.2)
is assumed to be linear and time-invariant, the system can be expressed as

x(k + 1) = Ax(k)+ Bu(k)

y(k) = Cx(k)
(5.3)

where ∂�(x,u)
∂x = A, ∂�(x,u)

∂u = B and ∂�(x)
∂x = C . The system in Equation (5.3) is called a state-

space description, where A, B and C are stability, observability and controllability matrices.
The system is thus parameterized by the three matrices and is called a linear time-invariant
(LTI) system when A, B and C are known.

5.2.2 System Identification

A dynamical mathematical model is a mathematical description of the dynamic behaviour of a
system in either the time or frequency domain. System identification is a general mathematical
procedure to build dynamical models frommeasured input/output data. That means the system

Neural Systems and Applications 161

u(k)

y(k)

e(k) < ε

yp(k)

ˆ
Model

+

–

Plant

Figure 5.1 System (or plant or process) identification

identification needs to deal with analysis, determination of order, determination of parameters
and estimation of parameters of the dynamic system. When the system’s functions � and
� described in Equation (5.2) or the matrices A, B and C in Equation (5.3) are unknown,
then it is the problem of system identification. In other words, system identification is to
find the mapping of the functions � : X × U → X and � : X → Y for ∀x ∈ X , ∀u ∈ U and
∀y ∈ Y or estimate the values of the parameters A, B and C of the system model described
in Equation (5.3). The system identification problem is then transformed to constructing a
suitable model of the system from input/output data which, when subjected to the same input
u(k), produces an output ŷ(k) such that ‖yP (k)− ŷ(k)‖ < ε for some desired ε > 0 and ‖.‖
is a suitably defined norm. The general system identification process is shown in Figure 5.1,
where e(k) = yp(k)− ŷ(k) and the norm ‖yP (k)− ŷ(k)‖ is absolute error or squared error.
One of the aims of this chapter is to demonstrate the use of neural networks for system

identification. Therefore, a general discussion on system identification is beyond the scope
of this chapter. Readers more interested in systems identification are directed to the widely
accepted book by Lennart Ljung (Ljung, 1999).

5.2.3 System Control

Control theory is an interdisciplinary branch of engineering and mathematics that deals with
the behaviour of dynamical systems. The main objectives of control theory are to deal with
the analysis and synthesis of dynamical systems where certain variables are to be controlled
within prescribed limits so that the output follows a reference signal. If the functions� and�

in Equation (5.2) are known, the problem is to design a controller which generates the desired
control input u(k). There are a number of frequency and time domain techniques that are
available for synthesis of controllers for linear systems of the form described in Equation (5.3)
when A, B and C are known. Unfortunately, there are no known methods available for
nonlinear systems, even when �(.) and �(.) are known.
A block diagram of a feedback control system is illustrated in Figure 5.2. The desired output

of a system is called the reference. When one or more output variables of a system need to
follow a certain reference yr (k) over time, a controller is needed to manipulate the control
inputs u(k) to the system to obtain the desired effect on the output yp(k) of the system. There
are basically two approaches to NN control, namely, non-adaptive and adaptive approaches.
For non-adaptive NN control of a plant, an accurate approximation of the dynamics of the plant
has to be obtained first. This is carried out offline by training the NN using an input/output

162 Computational Intelligence

()kyp()ku()ke

Measurement

+

–

Controller Plant()kyr

Figure 5.2 Block diagram of feedback control system

data set. The approximation can be used to develop the appropriate control strategy. The non-
adaptive approach works well for many systems (Narendra and Parthasarathy, 1990; Nguyen
and Widrow, 1990; Lee et al., 1992). The non-adaptive approach has no mechanism to handle
changes in system parameters or in the environment (Ge et al., 1998). Moreover, the problem
of controlling a system can be difficult for two reasons: firstly, the system can be described
with a known structure but the parameters are unknown and secondly, the system model may
contain unknown dynamics or uncertainty. In such situations, an adaptive approach is chosen.
In adaptive control, a mechanism is devised to estimate or model uncertainty of the system
by adjusting the control parameters. Two distinct approaches to adaptive control are widely in
use: (i) direct control and (ii) indirect control. In direct control, the parameters of the controller
are adjusted directly by minimizing some performance criterion. A block diagram of direct
adaptive control is shown in Figure 5.3, where yr (k) is the reference signal, yp(k) is the plant
output, u(k) is the control signal to the system (or plant) and e(k) is the output error used for
adjustment of the controller parameters.
In indirect control, an approximator (often referred to as an identifier in the adaptive control

literature) is used to estimate the unknown parameters (or measures of uncertainty) of the
system assuming that the estimates are the true parameters of the system. The approximator is
then adjusted using some performance index. A block diagram of indirect adaptive control is
shown in Figure 5.4, where yp(k) is the plant output, ŷ(k) is the estimate from the approximator,
the same control signal u(k) is employed for the system and approximator and e(k) is the output
error between the plant output and the approximator output, which is used for adjustment of
the approximator’s parameters.

+

–

Controller Plant
u(k)

e(k)

yr(k) yp(k)

Figure 5.3 Block diagram of direct adaptive control system

Neural Systems and Applications 163

+

–

Controller Plant

Approximator

u(k)

e(k)

yp(k)

y(k)ˆ

Figure 5.4 Block diagram of indirect adaptive control system

The primary interest of this chapter lies in the identification and control of unknown
nonlinear dynamical systems using neural networks. Therefore, there is no general discussion
on control theories of linear and nonlinear control techniques. In the next few sections, the
different techniques of adaptive control based on neural networks will be explored.

5.3 Neural Networks for Control

Traditional control methodologies are mainly based on linear systems theory, while real sys-
tems are nonlinear in nature and have unmodelled dynamics, immeasurable noise, uncertainty,
multi-loops, etc. which create problems for engineers in trying to design control algorithms
(Kawato et al., 1987, 1988; Ungar, 1996). It is, therefore, very challenging for engineers to
design an efficient control algorithm. From the designer’s point of view, the specifications for
control algorithms should be simple enough to be implemented and understood with properties
such as learning ability, robustness and nonlinearity. One of the reasons that neural networks
have become very popular in control applications is that they satisfy some of these criteria for
design and implementation. From a practical point of view, the inherent massive parallelism
and fast adaptability of neural network implementations are additional advantages. Powerful
learning algorithms, variety of architectures and the ability to train the neural networks from
input/output functions and/or experiential data make neural networks the preferred technol-
ogy for many applications. Neural networks provide simpler solutions to complex control
problems. The success of the backpropagation algorithm to train multilayered networks led
to an explosion in the application of neural networks for control purposes. The use of neural
networks in control applications – including process control, robotics, manufacturing and
aerospace applications, among others – has recently experienced rapid growth. The basic
objective of neuro-control is to provide the appropriate input signal to a given physical system
(process or plant) to yield its desired response. There are typically two steps involved when
using neural networks for control:

• System (plant or process) identification and
• Control design.

164 Computational Intelligence

5.3.1 System Identification for Control Design

The key concept of system identification is the process of determining a dynamic model for
unknown systems. A brief description of system identification is given in Section 5.2.2. The
identified model can be used subsequently for control purposes. System identification consists
of two main steps: the first step is to choose an appropriate parametric model and the second
step is to adjust the parameters of the model according to some adaptive laws so that the
response of the model to an input signal can approximate the response of the real system.
The problem of identification of a model structure and estimation of its parameters can be
formulated as a problem of learning a mapping between known input/output spaces. Almost
all identification or approximation schemes can be mapped into a network. For example, the
autoregressive moving average with exogenous input (ARMAX) model can be represented
as a single-layer network with inputs comprising delayed system input/output data and error
(Turner et al., 1995). Since multilayer neural networks have good approximation capabilities,
they provide a powerful tool for identification of unknown systems with nonlinearities. The
neural network is composed of tapped delays of inputs and outputs, with a sufficient number
of layers and neurons in each layer to be able to match the input/output behaviour of the
corresponding nonlinear mapping of the plant. It implies that the nonlinear function of the
plant is replaced by neural networks with fixed but unknown weight matrices, which is learnt
using a suitable learning algorithm and available data set.
At the system identification stage, a neural network model of the plant to be controlled is

developed. The identifier is composed of a multilayer neural network incorporated in parallel
with a dynamical system, where the structure comes from the error function standard in the
system identification and control literature. The structural information is actually contained in
the neural network connectivity and weights. The system identification can be carried out in
two ways:

• Forward plant identification model and
• Direct inverse identification model.

The first stage of plant identification in neural network control is to train a neural network
to represent the forward dynamics of the plant. The error between the plant output yp and
the neural network model output ym is used as the neural network training signal. The basic
configuration for forward plant model identification is shown in Figure 5.5(a). The neural
network plant model uses previous inputs and previous plant outputs (shown as delayed signals
in the figure) to predict future values of the plant output. The network can be trained offline in
batch mode, using data collected from the operation of the plant. Any of the backpropagation
training algorithms discussed in Chapter 4 can be used for network training.
Perhaps one of the most widely applied neuro-model schemes is the direct inverse model

approach. Once a neural network has been trained to learn the inverse of the plant, it can then
be configured to control the plant directly. The basic configuration of the direct inverse model
is shown in Figure 5.5(b). In the direct inverse model architecture, the network is trained
offline using patterns obtained from the plant’s open-loop (or closed-loop) characteristics.
Different models of multi-input multi-output (MIMO) nonlinear autoregressive moving

average (NARMA) forms are common and cover a large range of systems in adaptive systems
literature for the identification and control of linear systems. These models can be considered

Neural Systems and Applications 165

(a)

(b)

Plant
ypu

e

Delayed
signals ym

+

–

Plant
ypup

e

Delayed
signalsum

+

–

Figure 5.5 Plant identification using neural networks. (a) Forward plant identification; (b) Direct
inverse model plant identification

as their generalization to nonlinear systems (Narendra and Parthasarathy, 1990; Nelles, 2001).
For a detailed treatment of these models and their identification using neural networks, readers
are referred to Sarangapani (2006).

5.3.2 Neural Networks for Control Design

Research on neural network-based control systems has received considerable attention over
recent years. The widely used neural control structures are similar to those employed in
adaptive control systems. A neural network is used to estimate the unknown nonlinear system.
The control formulation is then designed using the estimated neural network. The estimation
process uses the measured input/output from the system and is achieved through use of
various types of neural network architectures, such as the multilayer perceptron (MLP), radial
basis function (RBF), recurrent neural networks (RNN) and B-spline networks. The aim of
this chapter is to introduce some of the typical neural network control structures. A second

166 Computational Intelligence

objective is to show how some of these control schemes can be implemented using the Neural
Network Toolbox in MATLAB R©. The schemes considered are:

• NN-based direct control;
• NN-based indirect control;
• Backpropagation through time control;
• NN-based direct inverse control;
• NN-based model predictive control;
• NN-based adaptive control;
• NARMA-L2 (feedback linearization) control.

5.3.2.1 NN-Based Direct (Specialized Learning) Control

In the direct (specialized learning) control architecture illustrated in Figure 5.6, the controller
network is trained in an online way (goal-directed) to minimize some norm of error between
the output and reference signal. The error is backpropagated through the plant at every sample
to adjust the parameters of the network. This architecture was named specialized learning
control by Psaltis et al. (1999). One advantage is that no identification is involved in this
method. However, owing to the location of the plant, the Jacobian of the plant (i.e., ∂y

∂u) is
required (Saerens and Soquet, 1989), which is difficult to obtain if the plant dynamics is not
known a priori. In order to avoid this, the elements of the Jacobian may be approximated by
their signs, which are the orientations of the control parameters influencing the outputs of the
plant. The training involves the response r as input signals to the NN controller. The error
e = r − yp is backpropagated through the plant and used to adjust the NN controller. The
objective of the training of the NN controller is to generate the required control signal u to
drive the plant to the desired output such that the plant output yp matches the reference signal
r over the training epochs k, i.e., lim

k→∞
‖r − yp‖ ≤ ε, where ε ≥ 0. The disadvantage of the

direct NN control is that the plant’s initial stability is not guaranteed for this method of control.
Despite the disadvantages, many researchers have applied the direct adaptive control scheme

to a variety of unknownnonlinear and non-affine systemswith significant success and improved
performance (Noriega and Wang, 1998; Park et al., 2005).

Plant
py

u

e

Delayed
signals

r
 NN

+

–
NN controller

Figure 5.6 Direct (or specialized learning) control architecture

Neural Systems and Applications 167

5.3.2.2 NN-Based Indirect Control

Themain disadvantages in the direct control schemewere the plant’s Jacobian and initial stabil-
ity.When the plant inverse (or plant’s Jacobian) is not well defined or the plant’s initial stability
is critical, an indirect control scheme is considerably more successful than direct control. In
this architecture, a neuro-emulator of the plant is trained to represent the plant’s response.
The training of the neuro-emulator is shown in Figure 5.7(a), which is the same as forward
plant identification. The difference between the plant output yp and neuro-emulator response
ŷ is used to adjust the parameters of the neuro-emulator. Once the neuro-emulator is trained
sufficiently, a neuro-controller is trained using the same reference signal r and the performance
error ec = ŷ − r . The performance error ec is backpropagated through the neuro-emulator to
adjust the parameters of the neuro-controller. Training of the neuro-controller is shown in
Figure 5.7(b). This control scheme can be found under different names in the literature, such
as feedforward inverse control (Narendra, 1995) and specialized inverse learning (Hunt et al.,
1992). The added advantage of indirect control is that the parameters of the neuro-emulator can

Plant

(a)

(b)

ypu

e

ŷ

+

–

Plant
ypu

ce

ŷ
+

–

Neuro-
controller

Neuro-
emulator

r

Figure 5.7 Indirect control architecture. (a) Training of neuro-emulator; (b) Training of neuro-controller

168 Computational Intelligence

be readjusted online during operation of the controller if the neuro-emulator appears not to be
accurate. A close variant of indirect control is the internal model control, in which an internal
model is placed in parallel with the plant and a controller is used in series with the plant. The
internal model is eventually a forward plant model as shown in Figure 5.5(a). Details of the
internal model control architecture can be found in Sen et al. (1998).
Among the disadvantages of the indirect control scheme appears to be the robustness of the

controller, as there is no feedback loop used in the control strategy. While training the neuro-
controller using the same reference signal r and the performance error ec = ŷ − r (which is
backpropagated through the neuro-emulator), poor convergence and unstable control may be
a problem at the initial stage. Despite these disadvantages, indirect control is more successful
than direct control and has found a wide range of applications (Nguyen and Widrow, 1990;
Wu et al., 1992; Khalid et al., 1993; Yang and Linkens, 1994).

5.3.2.3 Backpropagation-Through-Time Control

There is another model of neural network control architecture using a backpropagation
learning algorithm which was proposed by Jordan and Rumelhart (1990), Narendra and
Parthasarathy (1990) and Nguyen and Widrow (1990). Werbos (1990b) classified this method
as the backpropagation-through-time architecture. The architecture resemblesmany traditional
adaptive control structures, called indirect adaptive control.
In this control scheme two neural networks are used to control the plant, as shown in

Figure 5.8. The first neural network is a neuro-emulator. The emulator network can be trained
offline using a generalized learning architecture or even online by injecting random inputs to
learn the forward plant dynamics. The second neural network is a controller. This architecture
allows training the neuro-controller online as the performance error e = ‖r − yp‖ can be
backpropagated through the emulator at every sample. Some applications of this architecture
can be found in Omatu et al. (1995).

Delayed
signals

Plant
u

r

Delayed
signals

e

Neuro-
controller

Neuro-
emulator

yp

+

–
ym

em

–

+

Figure 5.8 Backpropagation-through-time architecture

Neural Systems and Applications 169

5.3.2.4 NN-Based Direct Inverse Control

The most widely applied neuro-control scheme is the direct inverse model neuro-control
approach. As the term suggest, NN-based direct inverse control utilizes an inverse model of
the controlled system, which is simply cascaded with the controlled system in order that the
system results in an identity mapping the desired response (network input) and the output of the
controlled system. Thus the network acts directly as a feedforward controller, and the output of
the controlled system is equal to the desired output. The term ‘direct inverse control’ is adopted
fromWerbos (1990a). The modelling process shown in Figure 5.9(a) first constructs an inverse
of the plant to estimate the inverse model output û. The estimated output û is compared with
the training signal u and the error e = u − û is used to train the inverse model. Once the
inverse model is obtained, it is then cascaded with the plant as an open-loop controller. The
parameters of the neuro-controller are adjusted directly. The direct inverse control architecture
is shown in Figure 5.9(b). The reference signal r should cover a sufficiently large input/output
space while building the inverse model.

Plant

u

Inverse
model

(a)

(b)

yp

+

-

û

e

Delayed
signals

Plant

u

r

eNeuro-
controller

Neuro-
emulator

yp

+

-

û

e

Figure 5.9 Direct inverse control architecture. (a) Inverse modelling; (b) Open-loop control

170 Computational Intelligence

Direct inverse control is based on the assumption that there exists a one-to-one mapping
from the input state to the output state and the plant must be open-loop stable. Problems
are experienced with direct inverse control for several reasons summarized as follows (Sen
et al., 1999):

• lack of robustness, resulting from the fact that no direct feedback error is used in direct
inverse control;

• inefficient learning, caused by improper operational range of data;
• actual operational data may be hard to define a priori.

To overcome the problem of robustness, some researchers use a conventional PI controller
to incorporate the required feedback loop. This also helps reduce the sensitivity of the whole
control system against inverse modelling (Sen et al., 1999). Some researchers used an eval-
uation function comprised of output, input and reference signal (Cai, 1997). Khalid et al.
(1995) investigated the performance of an inverse neural network controller for temperature
regulation. They found the controller has encouraging advantages over a range of controllers
such as fuzzy logic control, generalized predictive control and PI control.

5.3.2.5 Model Predictive Control

Predictive control (or model-based predictive control) was developed in the 1970s. The
approach has proved to be stable for nonlinear systems (Mayne and Michalska, 1990).
The model predictive controller (MPC) uses a neural network model to predict future plant
responses to potential control signals. The first step in model predictive control is to determine
the neural network plantmodel (using system identification). The neural network plantmodel is
trained offline, in batch form, using any of the training algorithms (such as the backpropagation
algorithm) discussed in Chapter 4. This is the same procedure for all the control architectures.
At the current time instant, the NN model predicts ỹ over some time step into the future (or
horizon) based on the future control signal ũ. An optimization algorithm then computes the
control signal ũ that optimizes the future plant performance. The controller, however, requires
a significant amount of online computation, because an optimization algorithm is performed
at each sample time to compute the optimal control input. The MPC method is based on the
receding horizon technique (Soloway and Haley, 1996). The neural network model predicts
the plant response over a specified time horizon. The predictions are used by a numerical
optimization program to determine the control signal that minimizes the performance criterion
defined in Equation (5.4) over the specified horizon:

J =
N2∑

j=N1

(yr (t + j)− ym (t + j))2 + p
Nu∑
j=1
(ũ (t + j − 1)− ũ (t + j − 2))2 (5.4)

where the controller horizon N1 is kept fixed at a value, the cost horizon N2 is the number
of time steps over which prediction errors are minimized and the control horizon Nu is the
number of time steps over which the control increments are minimized. The variable ũ is the
tentative control signal, yr is the desired response and ym is the network model response. The
control weighting factor pmultiplies the sum of squared control increments in the performance

Neural Systems and Applications 171

Plant
u

ry
yp

ym
r~

e
+

–

NN model

Controller

Optimizer
y~

u~

+
–

Figure 5.10 NN-based model predictive control

function, which means it determines the contribution that the sum of squares of the control
increments has on the performance index. The generic block diagram in Figure 5.10 illustrates
the process of model predictive control.
In principle, a straightforward approach would be to replace the controller and the optimizer

by a single neural network (Hunt et al., 1992). The NN can be trained indirectly using the
approach shown in Figure 5.7. Figure 5.11 illustrates this version of the model predictive
control process. The controller consists of the neural network plant model and the optimization
block. The optimization block determines the values of ũ that minimize J , and then the optimal
u is input to the plant.
MPC has been widely accepted in industry as a powerful control strategy (Akesson and

Toivonen, 2006; Yuzgec et al., 2008). The potential problem of MPC is that the optimization
may be computationally very demanding, especially for nonlinear systems.
The Neural Network Toolbox in MATLAB R© provides an MPC controller block that can be

used with Simulink R© to implement any MPC control problem. An MPC controller has been
implemented for the continuous stirred tank reactor (CSTR) (see Appendix E).

Plant

NN model

u py

my

Optimizer

ry
Controller

u~

Figure 5.11 Block diagram of model predictive controller

172 Computational Intelligence

5.3.2.6 NN-Based Adaptive Control

In conventional adaptive control, a regression matrix for the dynamic system needs to be
computed that is computationally very expensive. On the contrary, NN-based adaptive control
of nonlinear systems does not require a priori information about the dynamics of the system
to be controlled. This makes the NN-based adaptive control of nonlinear systems a popular
choice. In the same way as for traditional adaptive control, the NN-based adaptive control is
classified into two types:

• Model reference adaptive control (MRAC) and
• Self-tuning control (STC).

The difference between MRAC and STC is that STC regulates the inner parameters of the
controller directly according to the results of the forward and/or inverse model identification
of the controlled system with the aim of satisfying a given performance index of the system.
In MRAC, the desired performance of the closed-loop control system is described in terms
of a stable reference model which is chosen based on some prior information about its
input/output behaviour. The reference model gives the desired response to a command signal
r . The objective is to make the plant output yp(t) match the reference model output ym(t)
asymptotically, i.e., lim

t→∞ ‖ym(t)− yp(t)‖ ≤ ε, where ε ≥ 0.

NN-based MRAC
The earliest approaches to adaptive control, introduced in the 1950s, were mainly model
reference adaptive control (Landau, 1979). In the case of complex systems where the plant
cannot be approximated by a linear time-invariant model or when its nonlinear parameters are
unknown, an NN-based MRAC approach is the best option for control design (Haykin, 2009).
The NN-based MRAC can be implemented in two ways – direct MRAC and indirect MRAC.
In the directMRAC scheme, the parameters are adjusted in the sameway as for the direct NN

control shown in Figure 5.6. Direct MRAC attempts to keep the difference between the output
of the controlled object and the output of the reference model ec(t) = lim

t→∞ ‖ym(t)− yp(t)‖ to
a minimum. The structure of direct MRAC is shown in Figure 5.12(a).
In the indirect MRAC scheme, the method of indirect control shown in Figure 5.7 can

be used. In this implementation a neuro-emulator first identifies the feedforward model
of the controlled plant offline, then online learning and revision are done using the error
defined by ei (t) = ye(t)− yp(t). The neuro-controller is adjusted using the error defined by
ec(t) = yp(t)− ym(t). Clearly, the neuro-controller can provide the error ec(t) or the backprop-
agation path of its gradient. The structure of indirectMRAC is shown in Figure 5.12(b). Indirect
MRAC was studied extensively by Narendra and Mukhopadhyay (Narendra, 1996; Narendra
and Mukhopadhyay, 1997). In general, NN-based MRAC poses stability problems for
nonlinear plants.
It is assumed that the referencemodels used inMRACare linear. This is because determining

general nonlinear models with desired input/output behaviour is difficult (Narendra, 1990).
That is why the linear reference models have been used in many practical applications.

NN-based STC
Similar to tuning of parameters of a controller by a human operator, a neural network is used
to tune the parameters of a conventional controller in the self-tuning control scheme (Astrom

Neural Systems and Applications 173

Delayed
signals

u
r

Neuro-
controller

yp

ym

ec

–

+

Reference
Model

Plant

(a)

(b)

Delayed
signals

Plant

ur

Neuro-
controller

yp

ym

ec

–

+

Neuro-
emulator

ye

ei +

–

Reference
Model

Delayed
signals

Figure 5.12 Model reference adaptive control architectures. (a) NN-based direct MRAC; (b) NN-based
indirect MRAC

and Wittenmark, 1973). The neural network can be trained using the experiential data and
then it is used in an online fashion. A generic NN-based self-tuning control scheme is shown
in Figure 5.13.
There are two types of NN-based STC: direct STC and indirect STC. NN-based direct STC

consists of a traditional controller and an NNmodel with high model accuracy. The NNmodel
is developed using an offline identification procedure and then used in an online fashion. An
example of NN-based direct STC for a PID controller is shown in Figure 5.14. The NN-based
indirect STC consists of an NN controller and an NN model that can be tuned online. The
structure of the NN-based indirect STC for a PID controller is shown in Figure 5.15. An
example of an NN-based STC for a PID controller is derived in the following.
PID controllers have a long history of success in control engineering and applications in

the industry. They have been proven to be robust, simple and stable for many real-world

174 Computational Intelligence

Plant
u

ry
yp

f

e

NN model

Controller+
–

Figure 5.13 NN-based self-tuning control

Plant
u

ry
y

kp

e
PID controller+

–

NN model

ki kd

Figure 5.14 NN-based self-tuning PID control

PID controller

NN tuner

kp ki kd

Plantu

r

y

ŷ

ec

–

+

Neuro-
emulator ei

+

–

Delayed
signals

Figure 5.15 NN-based indirect STC for PID controller

Neural Systems and Applications 175

applications. In Japan, almost 80% of the controllers used in the industry are PID controllers.
In general, PID controllers provide a compromised performance from PD and PI controllers
in terms of rise time, maximum overshoot and steady-state error. PD- and PI-type controllers
have been discussed in Chapter 3. The equation of a generic PID controller is given as

u(t) = kpe(t)+ kI

t∫
0

e(τ)dτ + kd
de(t)

dt
(5.5)

where kp is proportional, kI is integral and kd is derivative gain of the controller. In a discrete-
time system, it is possible to approximate the control input as follows:

u(t) = u(t − 1)+ kp(t) [e(t)− e(t − 1)]+ kI (t)e(t)

+ kd [e(t)− 2e(t − 1)+ e(t − 2)]
(5.6)

The error is defined as

e(t) = r (t)− y(t) (5.7)

where r (t) is the desired plant output and y(t) is the plant’s actual output. In NN-based STC,
the neural network adjusts the three gains kp (proportional), kI (integral) and kd (derivative)
of the PID controller, which are the three outputs of the neural network, to minimize the cost
function as follows:

E = 1

2
e2 (5.8)

Using a three-layered neural network (i , j and k are the input, hidden and output layer,
respectively), the learning rule for the PID gains is to be found. The outputs at the output layer
are O(1), O(2) and O(3) corresponding to kp, kI and kd , respectively. Based on the gradient
descent method, the weight update rules and the connection weights are defined as

�w(t) = −η
∂ E

∂w(t − 1) + α�w(t − 1)+ β�w(t − 2) (5.9)

w(t) = w(t − 1)+ �w(t) (5.10)

where η is the learning rate, α is the momentum rate and β is the acceleration rate. The term
∂ E

∂w(t−1) is calculated from the following equations:

∂ E

∂w(t − 1) = − [r (t)− y(t)]
∂y(t)

∂w(t − 1) = −e(t)
∂y(t)

∂w(t − 1) (5.11)

Using the chain rule, we can define ∂y(t)
∂w(t−1) as

∂y(t)

∂w(t − 1) = ∂y(t)

∂u(t − 1)
∂u(t − 1)
∂w(t − 1) (5.12)

∂u(t − 1)
∂w(t − 1) = ∂K(t − 1)

∂w(t − 1)
[

∂u(t − 1)
∂K(t − 1)

]T

(5.13)

176 Computational Intelligence

where K(t − 1) = [
kp(t − 1), kI (t − 1), kd (t − 1)] and ∂y(t)

∂u(t−1) is the Jacobian of the system.
It is to be noted that K(t − 1) is an output vector of the NN and the gradient with respect to
w(t − 1) is given by

∂K(t − 1)
∂w(t − 1) =

[
∂kp(t − 1)
∂w(t − 1) ,

∂kI (t − 1)
∂w(t − 1) ,

∂kd (t − 1)
∂w(t − 1)

]
(5.14)

Furthermore, we get from the control input

∂u(t − 1)
∂K(t − 1) ≡ [u1(t − 1), u2(t − 1), u3(t − 1)] (5.15)

where u1(t) = e(t)− e(t − 1), u2(t) = e(t), u3(t) = e(t)− 2e(t − 1)+ e(t − 2). Using Equa-
tions (5.11)–(5.13), the term ∂ E

∂w(t−1) can finally be defined as follows:

∂ E

∂w(t − 1) = −e(t)
∂y(t)

∂u(t − 1)[
u1(t − 1)∂kP (t − 1)

∂w(t − 1) + u2(t − 1)∂kI (t − 1)
∂w(t − 1) + u3(t − 1)∂kd (t − 1)

∂w(t − 1)
] (5.16)

The term ∂y(t)
∂u(t−1) is the system’s Jacobian, which is to be approximated using suitable means.

In indirect STC, the system’s Jacobian is estimated using a neural network. Figure 5.15 shows
the configuration of an indirect STC for a PID controller, where the NN tuner provides the
three gains to the PID controller. The error ec = r − y is used to adjust the NN tuner. The
neuro-emulator is used to estimate the system’s Jacobian and the error ei = y − ŷ is used to
adjust the emulator.
There have been many applications of NN-based STC for PI, PID and other conventional

controllers reported in the literature (Omatu et al., 1995; Wang and Chen, 1999; Potocnik and
Grabec, 2000; Wang et al., 2001).

5.3.2.7 NARMA-L2 (Feedback Linearization) Control

Analytical solution to complex and diverse nonlinear problems is difficult. A wide range of
techniques do exist for this kind of problem, such as the graphic method, overtone linearized
method, partial linearized method and feedback linearized method. The graphic method is
suitable for one- or two-step nonlinear systems. The overtone linearized method is suitable for
nonlinear systems such as continuous electrical forms, gear meshing, etc. The partial linearized
method is used to perturb a nonlinear system to linearize about an operating point. Brockett
(1978) first introduced the idea of transforming nonlinear systems into linear controllable
systems. Since then there has been considerable interest in feedback linearization (Isidori,
1985; Hunt et al., 1986). The feedback linearization is a systematic approach for nonlinear
control system design. The central idea is to transform nonlinear system dynamics into linear
dynamics by cancelling the nonlinearities so that known linear control techniques can be used
to design controllers (Ge et al., 1998).
NARMA-L2 is an approximate feedback linearization control method using neural networks

proposed by Narendra and Mukhopadhyay (1997). The main drawback of this method is that

Neural Systems and Applications 177

the plant must either be in companion form, or be capable of approximation by a companion
form model. It is referred to as feedback linearization control when the plant model has a
companion form (Pukrittayakame et al., 2002). The other model is referred to as NARMA-L2
control, when the plant model can be approximated by the same form.
NARMA-L2 control requires the least computation of all the architectures described in this

section. The controller is simply a rearrangement of the neural network plant model. The plant
model is trained offline in batch form. The only online computation is a forward pass through
the neural network controller.
There are two steps involved in the NARMA-L2 control design: systems identification and

control design.

Identification of the NARMA-L2 model
As with model predictive control, the first step in using feedback linearization (or NARMA-
L2) control is the identification of the system to be controlled. A neural network can be trained
to represent the forward dynamics of the system. In the identification process, the first step
is to choose a model structure of the system in question. One standard model that is used
to represent general discrete-time nonlinear systems is the nonlinear autoregressive moving
average (NARMA) model described by the following equation:

y(k + 1) = � [y(k), y(k − 1), . . . , y(k − n + 1), u(k), u(k − 1), . . . , u(k − n + 1)]
(5.17)

where u(k) is the system input and y(k) is the system output. In the identification phase, a
neural network is trained for the approximation of the nonlinear function �(.). This is the
same identification procedure used for the NN predictive controller. If the system output is
to follow some reference trajectory, say y(k + 1) = yr (k + 1), the next step is to develop a
nonlinear controller of the form

u(k) = �[y(k), y(k − 1), . . . , y(k − n + 1), yr (k + d), u(k − 1), . . . , u(k − m + 1)]
(5.18)

The controller in Equation (5.18) has a drawback while creating the function �(.). A neural
network is to be trained using a dynamic backpropagation algorithm to minimize the mean
squared error (Narendra and Parthasarathy, 1991). This can be quite slow. Narendra and
Mukhopadhyay (1997) proposed a solution to this problem where a NARMA-L2 model is
adapted to feedback linearization of the affine system described below:

y(k + 1) = f [y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − m + 1)]
+ g[y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − m + 1)] · u(k)

(5.19)

This model is in companion form, where the next controller input u(k) is not contained inside
the nonlinearity. The advantage of this form is that the control input that causes the system

178 Computational Intelligence

output to follow the reference y(k + 1) = yr (k + 1) can be solved. The resulting controller
using the NARMA-L2 model would have the form

u(k) = yr (k + d)− f [y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − n + 1)]
g[y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − n + 1)]

(5.20)

Using Equation (5.20) directly can cause realization problems, because the control input u(k)
must be determined based on the output y(k) at the same time. So, instead, the model in
Equation (5.21) is used:

y(k + 1) = f [y(k), y(k − 1), . . . , y(k − n + 1), u(k), u(k − 1), . . . , u(k − m + 1)]
+ g[y(k), . . . , y(k − n + 1), u(k), . . . , u(k − m + 1)] · u(k + 1)

(5.21)

A generic NARMA-L2 controller based on Equation (5.21) is shown in Figure 5.16.
TDL in Figure 5.16 denotes a tapped delay line whose output vector has for its elements

the delayed values of the input signals.
The NARMA-L2 approximate model is parameterized using two neural networks denoted

f̂ and ĝ, to be used to identify the system:

ŷ(k + 1) = f̂ [y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − m + 1)]
+ ĝ[y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − m + 1)] · u(k)

(5.22)

Plant

TDL

Reference
Model

f g

+ –

–

+

y

ry

u
Controller

r

e

TDL

/

Figure 5.16 Block diagram of NARMA-L2 controller

Neural Systems and Applications 179

Plant

TDL

Reference
Model

NN1

/

+ –

–

+

y

ry

u
Controller

r

e

TDL

f̂ ĝNN2

Figure 5.17 NARMA-L2 NN controller

NARMA-L2 neural controller
The NARMA-L2 controller design is simple, based on the NARMA-L2 plant model in Equa-
tion (5.22). Using the NARMA-L2 model, the controller is obtained as

u(k + 1) = yr (k + 1)− f̂ [y(k), y(k − 1), . . . , y(k − n + 1), u(k − 1), . . . , u(k − n + 1)]
ĝ[y(k), y(k − 1), . . . , y(k − n + 1), u(k), u(k − 1), . . . , u(k − n + 1)]

(5.23)

This controller can be implemented with the previously identified NARMA-L2 plant model.
The NARMA-L2 neural controller is shown in Figure 5.17.

5.4 MATLAB R© Programs

Neural networks have been applied to various identification and dynamic control systems
very successfully. The universal approximation capabilities of the multilayer perceptron make
it a popular choice for modelling nonlinear systems and for implementing general-purpose
nonlinear controllers. This section presents three examples of modelling, identification and
adaptive identification of systems. The MATLAB R© codes with associated descriptions are
given in Appendix E.
The appendix then presents a brief description of the GUI of the Neural Network Tool-

box. The section introduces three popular neural network architectures for prediction and

180 Computational Intelligence

control that have been implemented using Simulink R© block sets. The three Simulink R© block
sets are:

• Model predictive control,
• NARMA-L2 (feedback linearization) control and
• Model reference control.

The three control architectures (i.e., the model predictive, feedback linearization and model
reference control) are described with three examples. MATLAB R© codes, Simulink R© models,
plots of simulation results and system descriptions are provided in Appendix E.

References

Akesson, B.M. and Toivonen, H.T. (2006) A neural network model predictive controller, Journal of Process Control,
16, 937–946.

Astrom, K.J. and Wittenmark, B. (1973) On self-tuning regulators, Automatica, 9, 185–199.
Brockett, R.W. (1978) Feedback invariants for nonlinear systems, Proceedings of the IFAC World Congress, Helsinki,
Finland, pp. 1115–1120.

Cai, Z.-X. (1997) Intelligent Control: Principles, Techniques and Applications, World Scientific, Singapore.
Ge, S.S., Lee, T.H. and Harris, C.J. (1998) Adaptive Neural Network Control of Robotic Manipulators, World
Scientific, Singapore.

Haykin, S. (1999) Neural Networks – A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, NJ.
Haykin, S. (2009) Neural Networks and Learning Machines, 3rd edn, Prentice-Hall, Englewood Cliffs, NJ.
Hunt, K.J., Sbarbaro, D., Zbikowski, R. and Gawthrop, P.J. (1992) Neural networks for control systems: a survey,

Automatica, 28, 1083–1112.
Hunt, L.R., Luksic, M. and Su, R. (1986) Exact linearization of input–output systems, International Journal of

Control, 43(1), 247–255.
Isidori, A. (1985) Nonlinear Control Systems, Springer-Verlag, Berlin.
Jordan, M.I. and Rumelharrt, D.E. (1990) Forward models: supervised learning with distal teacher, Cognitive Science,
16, 313–355.

Kawato, M., Furukawa, K. and Suzuki, R. (1987) A hierarchical neural network model for control and learning of
voluntary movements, Biological Cybernetics, 57, 169–185.

Kawato, M., Uno, Y., Isobe, M. and Suzuki, R. (1988) Hierarchical neural network model for voluntary movement
with application to robotics, IEEE Control Systems Magazine, 8(2), 8–15.

Khalid, M., Omatu, S. and Yusof, R. (1993) MIMO furnace control with neural networks, IEEE Transactions on
Control Systems Technology, 1, 238–245.

Khalid, M., Omatu, S. and Yusof, R. (1995) Temperature regulation with neural networks and alternative control
schemes, IEEE Transactions on Neural Networks, 6(3), 572–582.

Kim, Y.H. and Lewis, F.L. (1998) Dynamic neural networks for closed-loop feedback control and estimation of
uncertain nonlinear systems. In Industrial and Manufacturing Systems, Vol. 4: Neural Network Systems Techniques
and Applications, C.T. Leondres (ed.), Academic Press, New York.

Landau, Y.D. (1979) Adaptive Control – The Model Reference Approach, Marcel Dekker, New York.
Lee, T.H., Hang, C.C., Lian, L.L. and Lim, B.C. (1992) An approach to the inverse non-linear control using neural
networks, Mechantronics, 2(6), 595–611.

Ljung, L. (1999) System Identification — Theory for the User, 2nd edn, PTR Prentice-Hall, Upper Saddle River, NJ.
Mayne, D.Q. and Michalska, H. (1990) Receding horizon control of non-linear systems, IEEE Transactions on

Automatic Control, 35, 814–824.
McClelland, W.S. and Rumelhart, D.E. (1986) Parallel Distributed Processing, MIT Press, Cambridge, MA and the
PDP Research Group.

Miller, T.W., Sutton, R.S. and Werbos, P.J. (1990) Neural Networks for Control, MIT Press, Cambridge, MA.
Minsky, M. and Papert, S. (1959) Perceptrons, MIT Press, Cambridge, MA.
Narendra, K.S. (1990) Adaptive control using neural networks. In Neural Networks for Control, W.T. Miller, R.S.
Sutton and P.J. Werbos (eds), The MIT Press, Cambridge, MA.

Neural Systems and Applications 181

Narendra, K.S. (1995) Adaptive control: neural network applications. In The Handbook of Brain Theory and Neural
Networks, M.A. Arbib (ed.), The MIT Press, Cambridge, MA, pp. 69–73.

Narendra, K.S. (1996) Neural networks for control: theory and practice, Proceedings of the IEEE, 84, 1385–1406.
Narendra, K.S. andMukhopadhyay, S. (1997) Adaptive control using neural networks and approximate models, IEEE

Transactions on Neural Networks, 8, 475–485.
Narendra, K.S. and Parthasarathy, K. (1990) Identification and control of dynamic systems using neural networks,

IEEE Transactions on Neural Networks, 1(1), 4–27.
Narendra, K.S. and Parthasarathy, K. (1991) Gradient methods for the optimization of dynamical systems containing
neural networks, IEEE Transactions on Neural Networks, 2(2), 252–262.

Nelles, O. (2001) Nonlinear System Identification, Springer-Verlag, Berlin.
Nguyen, D.H. and Widrow, B. (1990) Neural network for self-learning control systems, IEEE Control System

Magazine, 10(3), 18–23.
Noriega, J.R. and Wang, H. (1998) A direct adaptive neural-network control for unknown nonlinear systems and its
application, IEEE Transactions on Neural Networks, 9(1), 27–34.

Omatu, S., Khalid, M. and Yusof, R. (1995) Neuro-control and Its Applications, Springer-Verlag, London.
Park, J.-H., Huh, S.-H., Kim, S.-H., Seo, S.-J. and Park, G.-T. (2005) Direct adaptive controller for non-affine non-
linear systems using self-structuring neural networks, IEEE Transactions on Neural Networks, 16(2), 414–422.

Potocnik, P. and Grabec, I. (2000) Adaptive self-tuning neuro-control, Mathematics and Computers in Simulation,
51, 201–207.

Psaltis, D., Sideris, A. and Soquet, A. (1999) Amultilayer neural network controller, IEEE Control Systems Magazine,
8(2), 17–21.

Pukrittayakame, A., De Jesus, O. and Hagan, M.T. (2002) Smoothing the control action for NARMA-L2 controllers,
Proceedings of the 2002 45th Midwest Symposium on Circuit and Systems (MWSCS-2002), Vol. 3, pp. 37–40.

Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage and organisation in the brain,
Psychology Review, 65, 386–408.

Saerens, M. and Soquet, A. (1989) A neural controller, Proceedings of the 1st IEE International Conference on
Artificial Neural Networks, London, pp. 211–215.

Sarangapani, J. (2006) Neural Network Control of Nonlinear Discrete-Time Systems, CRC Press, London.
Sen, P., Hearn, G.E. and Zhang, Y. (1998) Adaptive neural controller. In Neural Network Systems Techniques and

Applications, Vol. 4: Industrial and Manufacturing Systems, C.T. Leondes (ed.), Academic Press, New York, pp.
273–344.

Soloway, D. and Haley, P.J. (1996) Neural generalized predictive control, Proceedings of the 1996 IEEE International
Symposium on Intelligent Control, pp. 277–281.

Turner, P., Morris, J. and Montague, G. (1995) Applications of dynamic artificial neural networks in state estimation
and nonlinear process control. In Neural Network Application in Control, G.W. Irwin, K. Warwick and K.J. Hunt
(eds), IEE Control Engineering Series 53, IEE Press, London, pp. 141–159.

Ungar, L.H. (1996) A bio-reactor benchmark for adaptive network-based process control. In Neural Networks for
Control, W.T. Miller, R.S. Sutton and P.J. Werbos (eds), The MIT Press, Cambridge, MA.

Wang, G.J. and Chen, T.C. (1999) A robust parameter self-tuning learning algorithm for multilayer feedforward neural
network, Neurocomputing, 25, 167–189.

Wang, G.-J., Fong, C.-T. and Chang, K.J. (2001) Neural network based self-tuning PI controller for precision motion
control of PMAC motors, IEEE Transactions on Industrial Electronics, 48(2), 408–415.

Werbos, P.J. (1974) Beyond regression: new tools for prediction and analysis in the behavioural sciences, Doctoral
Dissertation, Applied Mathematics, Harvard University.

Werbos, P.J. (1990a) Neuro-control and related techniques. In Handbook of Neural Computing Applications, A.
Maren, C. Harston and R. Pap (eds), Academic Press, San Diego, pp. 345–380.

Werbos, P.J. (1990b) Overview of designs and capabilities. In Neural Networks for Control, W.T. Miller III, R.S.
Sutton and P.J. Werbos (eds), The MIT Press, Cambridge, MA, pp. 59–65.

Widrow, B. and Hoff, M.E. Jr. (1960) Adaptive switching circuits, IRE Western Electric Show and Convention Record,
part 4 (August 23), pp. 96–104.

Wu, Q.H., Hogg, B.W. and Irwin, G.W. (1992) A neural network regulator for turbogenerators, IEEE Transactions
on Neural Networks, 3, 95–100.

Yang, Y.Y. and Linkens, D.A. (1994) Adaptive neural network-based approach for the control of continuously stirred
tank reactor, IEE Proceedings D: Control Theory and Applications, 141, 341–349.

Yuzgec, U., Becerikli, Y. and Turker, M. (2008) Dynamic neural network based model predictive control of an
industrial baker’s yeast process, IEEE Transactions on Neural Networks, 19(7), 1231–1242.

6
Evolutionary Computing

6.1 Introduction

We see a diversity of life on earth – millions of species each with its own unique behaviour
patterns and characteristics or traits. All of these plants, animals, birds, fishes and other
creatures have evolved, and continue evolving, over millions of years. They have adapted
themselves to a constantly shifting and changing environment in order to survive. Those
weaker and less fit members of species tend to die away, leaving the stronger and fitter to mate,
create offspring and ensure the continuing survival of the species. Their lives are dictated by
the laws of natural selection and Darwinian evolution – struggle for existence and survival of
the fittest. Such an evolutionary process is shown in Figure 6.1.
And it is upon these ideas that evolutionary computing (EC) is based. Evolutionary com-

puting is the emulation of the process of natural selection in a search procedure. In nature,
organisms have certain characteristics that influence their ability to survive and reproduce.
These characteristics are represented by encoding of information contained in the chromo-
somes of the organisms. New offspring chromosomes are created by means of mating and
reproduction mechanisms. The end result will be offspring chromosomes that contain the best
characteristics of each parent’s chromosomes, which enable them to survive in an adverse
environment. The process of natural selection ensures that more fit individuals have the oppor-
tunity to mate most of the time, leading to the expectation that the offspring will have similar
or better fitness.

6.2 Evolutionary Computing

The population can be viewed simply as a collection of interacting creatures. As each genera-
tion of creatures comes and goes, the weaker ones tend to die awaywithout producing children,
while the stronger mate in the process of recombination to produce new and perhaps unique
children with attributes from both parents to continue the evolutionary process. In nature, a
diverse population within a species tends to allow the species to adapt to its environment

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

184 Computational Intelligence

Population of species

with unique behaviour

and characteristics

Weaker die away

in adverse

environment

Fitter survive
Struggle for existence

Adapt in changing
environment

Mate and create

new generation
Evolution through

millions of years

Figure 6.1 Evolution in the nature

with more ease. The process of evolution can be modelled algorithmically and simulated on a
computer (Fogel, 1998). In the simplest form the model can be expressed as

� (g + 1) = � [� [� (g)]] (6.1)

The operations of random variation � and selection � are applied on a population of�(g) at
generation g to evolve to a newpopulation of� (g + 1) in the next generation.Useful variations
have the highest chance of surviving in the struggle for existence, leading to a process of
continual improvement (Darwin, 1859). The evolutionary algorithm cycle is shown in Figure
6.2. Successive application of the variations and selection drives the population towards
particular optima in a search space. Evolutionary computation is the field that studies the
properties of these algorithms and similar search procedures. Although the term ‘evolutionary
computation’ was coined in the 1990s, the field has a long history. The origins of evolutionary
computing can be traced back to the 1950s. A.S. Fraser was the first to conduct simulation
of genetic systems using diploid organisms represented by binary strings (Fraser, 1957). The
well-known statistician G.E.P. Box proposed an evolutionary approach to optimizing industrial
production. The method, termed ‘evolutionary operation’, was first published in 1957 (Box,
1957). R.M. Friedberg was among the first to evolve computer programs, but reported the
results as of limited success (Friedberg, 1958). But in another investigation, Friedberg et al.
(1959) suggested that ‘wherewe should go from here is not clear’. The field remained relatively

Evolutionary Computing 185

Fitness

Evaluation

Population

Selection

Variation

(Crossover, Mutation)

Offspring

Figure 6.2 Evolutionary algorithm cycle

unknown to the broader scientific community for many years. The fundamental works of Fogel
(1962), Holland (1962), Rechenberg (1965) and Schwefel (1968) had a great influence on the
research community to accept evolutionary computation as a general concept for problem
solving, especially for difficult optimization problems. Application of evolutionary algorithms
was possible to solve difficult real-world optimization problems due to the fact that powerful
computers were available in the 1980s. This eventually attracted a broader audience for
evolutionary computing in the 1990s and in the following decades (Fogel et al., 1996; Coella
et al., 2007; Deb, 2008).

6.3 Terminologies of Evolutionary Computing

6.3.1 Chromosome Representation

In nature, characteristics or traits of organisms are represented by long strings of information
encoded in the chromosomes. The first design step in EC is commonly called chromosome
representation, where each individual of a population represents a candidate solution to an opti-
mization or search problem. The characteristics of an individual are represented by the chromo-
some, or genome. A chromosome can be thought of as a vector X consisting ofm genes denoted
by x:

X = {x1, x2, x3, . . . , xm} (6.2)

186 Computational Intelligence

Each chromosome X represents a point in the m-dimensional search space, i.e., X ∈ �m .
A chromosome consists of a number of genes xi, where the gene is the functional unit of
inheritance. In terms of optimization, a gene represents one parameter of the optimization
problem.
Objects forming possible solutionswithin the original problem context are referred to as phe-

notypes, while their encodings are called genotypes. A phenotype is the expressed behavioural
traits of an individual in a specific environment. A genotype describes the genetic composition
of an individual as inherited from its parents. In other words, it is a mechanism to store expe-
riential evidence as gathered by parents. It is important to understand the difference between
the phenotype space and the genotype space. The evolutionary search essentially takes place
in the genotype space, whereas a set of good solutions is obtained from the phenotype space.
There are many synonymous terms for elements of individuals widely used in the EC

literature. In EC, a genotype is defined as a string of genes (a biology-oriented terminology).
These genes reside at various positions called a locus (plural loci) and have a value called an
allele. In optimization or search problems, these place-holders are commonly called variables.

6.3.2 Encoding Schemes

The first task in EC is to find a mechanism to encode the genetic information of a population
representing an entire search space of a problem domain into chromosomes. In fact, this is a
mapping from the phenotype to the genotype space. Encoding schemes in any evolutionary
algorithm (EA) should be such that the representation and the problem space are close together,
i.e., a natural representation of the problem. This also allows the incorporation of knowledge
about the problem domain into the EC system in the form of special genetic information and a
set of operations. As yet, there has been no general method of choosing an encoding scheme;
rather, it depends on the problem in question. Even two similar problems may require a
completely different encoding scheme. But the literature indicates some rule of thumb that can
be used to select an encoding scheme to be used for a particular EA. Any particular encoding
should embody the fundamental building blocks that are important to the problem domain. It is
very important to keep in mind – while encoding genetic information into chromosomes – that
the encoding scheme should also be invertible, i.e., to each genotype there has to be at most one
corresponding phenotype. The encoding scheme should also be amenable to a set of genetic
operators (discussed in Section 6.4) that propagates these building blocks from generation to
generation, i.e., from parents to children. A tractable mapping to phenotype should be ensured
to allow fitness values to be calculated at a minimum computation cost. Most EAs represent
their chromosomes as vectors of specific data types. In this section, some of the encoding
schemes will be introduced that have been in use with some success in the field.

6.3.2.1 Binary Coding

The most commonly used chromosome representation in the EC is the binary coding scheme.
For an n-dimensional search space, each individual consists of n variables with each variable
in the parameter set encoded as a binary string and concatenated to form a chromosome. Some
problems can be expressed very efficiently using binary coding, as follows:

X = {(b1, b2, . . . , bl), (b1, b2, . . . , bl), . . .}, bi ∈ {0, 1} (6.3)

Evolutionary Computing 187

For example

Chromosome A 10110010
Chromosome B 11111110

In this example, chromosomes A and B have eight genes. The position or locus of the ith gene
is simply the ith bit in the bit-string and the value or allele is given by the bit-string A[i] or
B[i].
The problem existing in the binary coding lies in the fact that a long string always occupies

the computer memory even though only a few bits are actually involved in the crossover
and mutation operations. This is particularly the case when a lot of parameters need to be
optimized and a higher precision is required for the final result. There are other pitfalls of
using binary coding. The value of a bit may suppress the fitness contribution of other bits. This
can also cause fitness insensitiveness to alleles. Some problems require higher-order genes
than binary symbol sets or building blocks. Genetic operators can produce illegal solutions due
to not being able to describe the search point. Also, empirical evidence suggests that a large
Hamming distance in the representational mapping between adjacent values, as in the case of
binary coding, can result in the search process being deceived or unable to efficiently locate
the global minimum (Caruana and Schaffer, 1988). To overcome the inefficient occupation
of memory and inefficient search process, there is increasing interest in alternative encoding
strategies such as integer or real-valued encoding.

Example 6.1 The problem is to optimize a function f (x1, x2, x3) that takes real values
between [0.0, 1.0] with each value represented by 8 digits. In binary coding the string
{00000000} corresponds to the real value 0.0 and {11111111} corresponds to 1.0. Now a
chromosome represented by {x1, x2, x3} looks like

X = {00000001 00101000 10110001}
↓ ↓ ↓

0.00390625 0.15625 0.69140625
↓

1/256 = 0.00390625

6.3.2.2 Gray Coding

While binary coding is frequently used, it has the disadvantage ofHammingCliffs. AHamming
Cliff is formed when two numerically adjacent values have bit representations with a large
Hamming distance. For example, consider the decimal numbers 7 and 8. The corresponding
binary representations using 4-bits are 7 = 0111 and 8 = 1000, with a Hamming distance of
4. This causes a problem when a small change in variables should result in a small change in
fitness. To overcome the problem of Hamming Cliffs, an alternative bit representation is to use
Gray coding. Gray coding has the advantage over binary coding in that the Hamming distance
between two successive numerical values is one. Binary numbers can easily be converted into
Gray coding using the conversion

g = g1gk

gk = (bk−1 ⊕ bk)
(6.4)

188 Computational Intelligence

where bk = b1, b2, . . . , bn and b1 is the most significant bit in binary representation, g1 = b1
and ⊕ represents XOR operation.

Example 6.2 Represent the decimal numbers 1–8 in binary and Gray code showing Ham-
ming Cliffs between two subsequent numbers. The difference in bit position is shown in italic
in the box below.

Hamming Hamming
Decimal Binary Cliff Gray Cliff

1
2
3
4
5
6
7
8

0001
0010
0011
0100
0101
0110
0111
1000

–
2
1
3
1
2
1
4

0001
0011
0010
0110
0111
0101
0100
1100

–
1
1
1
1
1
1
1

6.3.2.3 Real-valued Coding

The use of real-valued genes in EC is claimed to offer a number of advantages in numerical
function optimization over binary encoding (Wright, 1991). The efficiency of EC is increased
as there is no need to convert binary strings into real values before each function evaluation
and hence there is no loss in precision caused by conversion. For a detailed description of real-
valued encoding schemes, see Michalewicz (1992). When real values are used in chromosome
representation, chromosomes are simply a string of real values

X = {r, r, r} r ∈ � (6.5)
For example

Chromosome A 456.1, 0.6879, 4.589
Chromosome B 456.34, 0.7968, 5.984

Example 6.3 The problem is to optimize a function f (x1, x2, x3) that takes real values
between [0.0, 1.0] with each value represented by a real value rather than binary digits. Now
the chromosome represented by {x1, x2, x3} looks like

X = {0.00390625 0.15625 0.69140625}

The advantage of real-valued coding over binary coding includes increased precision and the
chromosome string becomes shorter. Also, real-valued coding gives greater freedom to use
special crossover and mutation techniques.

6.3.2.4 Hybrid Coding

There are many heterogeneously structured problems that occur very often in the industry
which have a large complex set of solutions. A simple homogeneous encoding scheme of

Evolutionary Computing 189

chromosome representation – such as a binary string, encoded integers, permutation of symbols
or expression trees – does not work out to a solution of such problems. Partitioning a problem
into components is sometimes realistic in terms of implementation issues. A component
is defined as a homogeneous collection of parameters or variable values of the same type or
structure. A component can be, for example, a set of integers, floating points, trees, permutation
strings, etc. The chromosome can thus be a combination of binary, real values and other
expressions depending on the problem:

X = {x1, x2, x3} = {(b1b2 · · · bl), (b1b2 · · · bl), (r)}, bi ∈ [0, 1] , r ∈ � (6.6)

An example of hybrid coding is shown below:

Chromosome A = {(100), (010), (8), (3)}
Chromosome B = {(001), (110), (C), (B)}

This type of coding poses extra constraints on the EA operators. Normal crossover can still be
applied but the mutation operator has to be modified in that it reinitializes a gene depending
on the coding of that gene.

6.3.2.5 Permutation Coding

Permutation problems require the optimal arrangement of a set of symbols in a list. The
travelling salesperson problem (TSP) is such a problem, where a symbol represents a city
and the arrangements of symbols in a list represent the order in which the person should
visit each city for a circuit of all cities. A permutation encoding can be used in sequencing
events represented by a list of distinct integers in the order they should occur. In permutation
encoding, every chromosome is a string of numbers that represent a position in a sequence.
Permutation coding is different from other EA chromosome representations in that the values
or numbers do not occur more than once. An example of chromosomes with permutation
encoding is shown below:

Chromosome A = {1 5 3 2 6 4 7 9 8}
Chromosome B = {a d e b f i c g h}

This representation, in fact, prohibits missing or duplicate allele values and facilitates a simple
decoding mechanism. For some types of crossover and mutation, corrections must be made to
leave the chromosome consistent (i.e., have a real sequence in it) for some problems. There are
actually two classes of problems that can be represented by permutation coding. The first kind
is the ordering problem in which events should occur in a fixed order, e.g., job shop scheduling.
The second kind is the adjacency problem. A typical problem is the TSP. The problem is to
find a complete tour of n given cities of minimal length. One complete tour is a permutation
of n cities. It is obvious that new variation operators are required to conserve the permutation
property. Building blocks in permutation-type problems are determined simultaneously by the
qualitative nature of the fitness function, genetic operators and encoding.

190 Computational Intelligence

6.3.2.6 Value Coding

Direct value encoding can be used in problems where some more complicated values such as
real numbers are used. Use of binary encoding for this type of problem would be difficult. In
the value encoding, every chromosome is a sequence of some values. Values can be anything
connected to the problem, such as (real) numbers, charts or any objects. An example of
chromosomes with value encoding is as follows:

Chromosome A = {1.2324 5.3243 0.4556 2.3293 2.4545}
Chromosome B = {ABDJEIFJDHDIERJFDLDFLFEGT}
Chromosome C = {(back), (back), (right), (forward), (left)}
Chromosome D = {NB,NB,ZO,ZO,PS,NS,NS,ZO}

Value encoding is a good choice for some special problems. However, for this encoding it is
often necessary to develop some new genetic operators such as crossover and mutation specific
to the problem.

6.3.2.7 Tree Coding

Tree encoding is used mainly for evolving programs or expressions, i.e., for genetic pro-
gramming (discussed in section 6.6.4). In the tree encoding every chromosome is a tree of
some objects, such as functions or commands in programming language. For example, an

algebraic expression
(

x + 5
y

)
can be described by the tree encoding shown in chromosome

A in Figure 6.3(a). Similarly, a computer command ‘steps do until wall’ is expressed using
tree encoding shown in chromosome B in Figure 6.3(b). Tree encoding is useful for evolving
programs or any other structures that can be encoded in trees. A programming language like
LISP is often used for this purpose, since programs in LISP are represented directly in the
form of a tree and can easily be parsed as a tree, so the crossover and mutation can be done
relatively easily. The task is to find a function that would approximate given pairs of values.

/x

+

y5

Step Wall

Do until

Chromosome A Chromosome B

 (a) (x + (5/y)) (b) (Step Do until Wall)

Figure 6.3 Tree coding of chromosome (a) algebraic expression; (b) computer command

Evolutionary Computing 191

 S|A|B|C|D A|c|p|a|c B|a|a|a|e C|a|a|a|a D|a|a|a|b

Figure 6.4 Chromosome encoding a grammar

6.3.2.8 Grammar Coding

Grammatical coding was introduced by Kitano (1990) to train neural network architectures.
A grammar is a set of rules that is applied to produce a set of structures (e.g., sentences in a
natural language, programs in a computer language). A simple example is the following:

S → aSb
S →∈

Here S is the start symbol and a non-terminal, a and b are terminals, and ∈ is the empty string
terminal. S → ∈ means that S can be replaced by the empty string. To construct a structure
from this grammar, start with S and replace it with one of the allowed replacements given by
the right-hand sides; take the resulting structure and continue until no non-terminals are left.
For example:

S → aSb → a(aSb)b → a(a(∈)b)b → aabb

Kitano applied this general type of grammar, called a ‘graph-generation grammar’, to rep-
resent the architecture of a neural network. A simple example of such a grammar-encoded
chromosome is shown in Figure 6.4, where the right-hand side of each rule is a 2 × 2 matrix
rather than a one-dimensional string. Capital letters are non-terminals and lowercase letters
are terminals. Each terminal represents one of 16 possible 2 × 2 arrays consisting of 1s or 0s.
For example, the terminals are defined as

a →
[
0 0

0 0

]
, b →

[
0 0

0 1

]
, c →

[
1 0

0 1

]
, . . . , e →

[
0 1

0 1

]
, . . . , p →

[
1 1

1 1

]
.

Thus, the mapping from genotype to phenotype follows as shown in Figure 6.5.
The matrix represents the directed graph shown in Figure 6.5, which is a feedforward neural

network. A detailed description of grammar coding can be found in Kitano (1990, 1994). A
useful application for the design of the architecture of neural networks with grammar-coding
chromosome representation is discussed in Vonk et al. (1997).

6.3.3 Population

The role of a population in EC is to represent the search space in a specific coding scheme,
discussed in Section 6.3.2, by a multi-set of genotypes. In a generation of population the
individuals do not change; it is the population that changes or adapts to yield a solution.
Once a coding scheme is chosen, a population is defined by a randomly generated set of
chromosomes or individuals. The maximum number of individuals in a population is called
the size of the population. The size of the population is an important parameter for any EA
performance. Too small a population will limit the diversity (variability) to act on and too

192 Computational Intelligence

⇒

10000000

00000000

00000000

00000000

10001000

10000100

00001110

00001101

0

1 3

2

7

⇒⇒⇒

ba
aa

aa
aa

ea
aa

ca
pc

DC
BA

S

Figure 6.5 Mapping from genotype to phenotype

large a population is inefficient and slow due to the extra computation required. Typically, a
population is composed of between 20 and 100 individuals (De Jong, 1975). A variant called
micro-GA uses a very small population, approximately 10, with restrictive genetic operators in
order to implement real-time execution (Karr, 1991). An example of a population for a search
space is shown in Equation (6.7), with N individuals each of which consists of m genes:

P =

⎡
⎢⎢⎢⎢⎣

1X1 1X2 . . . 1Xm

2X1 2X2 . . . 2Xm
...

...
...

...

N X1 N X2 . . . N Xm

⎤
⎥⎥⎥⎥⎦ (6.7)

Each chromosome X represents a point in the m-dimensional search space in �m .
De Jong (1975) introduced the ideas of overlapping populations and crowding for some prob-

lem domains, for example, multimodal function optimization. In overlapping populations, new
offspring replace similar solutions of the population. This maintains population diversity and
therefore can help prevent premature convergence. This causes a crowding effect, which is
introduced as a parameter called the crowding factor. The concept of crowding led to the ideas
of ‘niche’ (Deb, 2008), ‘speciation’ (Eiben and Smith, 2003) and ‘fitness sharing’ (Cordon
et al., 2001; Deb, 2008; Eiben and Smith, 2003) in EA. Biological species maintain a restrictive
mating scheme,which allows individuals tomatewithin the same niche. This strategy helps for-
mation of speciation. The strategy of forming speciation is generally termed ‘niching’ in EAs.

Initialization
The first population is seeded by randomly generated individuals. It is reasonable to discretize
and place upper and lower bounds on the solution spaces for each of these parameters. An
initial population of N chromosomes is generated using a random number generator that
uniformly distributes numbers within the desired search space. An example of such a search
space is shown in Figure 6.6. A variation is the extended random initialization procedure
whereby a number of random initializations are tried for each individual and the one with the

Evolutionary Computing 193

X

Y

Z

X=15

Y=22

Z=10

S
o

lu
ti

o
n

sp
ac

e

X=5

Y=12Z= –3

Figure 6.6 Search space in �3

best performance is chosen for the initial population (Bralette, 1991). Other users have seeded
the initial population with some individuals that are known a priori.
For example, let g = f (x, y, z) be the function to be optimized. The parameters are x, y and

z. The population P is initialized with a random number generator shown in Equation (6.8):

P =

⎡
⎢⎢⎣
1X 1Y 1Z
...

...
...

N X N Y N Z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2.37 13.8 −2.6
...

...
...

11.5 20.2 9.7

⎤
⎥⎥⎦ (6.8)

6.3.4 Evaluation (or Fitness) Functions

A criterion is required to evaluate each individual’s performance, which assigns a fitness value
to each individual. Depending on the fitness value, it is decided whether the individual will
go to the next generation to produce better populations of individuals or not. This eventually
defines the basis for improvement over generations. The only thing that the fitness function
must do is rank the individuals in some way by producing the fitness value. A common practice
is to calculate the relative fitness of each individual, F(xi), from each individual’s raw fitness,
f(xi), relative to the fitness of the whole population, i.e.

F(xi) = f (xi)
N∑

i=1
f (xi)

(6.9)

where N is the population size and xi is the ith individual. This fitness value ensures that
each individual has a probability of reproducing according to its relative fitness. The fit-
ness function f(xi) must be defined by the user, which is very problem-dependent. Different
problem-dependent fitness functions are discussed in Chapters 8 and 9. Evolutionary algo-
rithms are in general optimization techniques, where an objective function is very often used to
measure the optimization criterion. Therefore, the evaluation (or fitness) function is identical
to the objective function.

194 Computational Intelligence

6.3.5 Fitness Scaling

The evaluation of the relative fitness function in Equation (6.9) is simple and straightforward,
but it poses three potential problems. Firstly, a positive relative fitness value calculated using
Equation (6.9) may not be guaranteed for any kind of objective function. Secondly, propor-
tionate selection can cause premature convergence in early generations due to the presence of
an individual with high fitness value that eventually dominates a population. Thirdly, selection
pressure decreases in the later generations as most of the individuals achieve the same fitness
value. Therefore, readjustment of fitness values of solutions is essential to sustain a steady
selective pressure on the population and to prevent premature convergence of the population
to a sub-optimal solution. The use of fitness scaling is common among researchers. The calcu-
lated raw fitness f (xi) is transformed into a scaled fitness f̂ (xi), which is used for selection.
There have been a variety of methods proposed by researchers (Cordon et al., 2001). In linear
scaling, the scaled fitness is defined as

f̂ (xi) = c0 f (xi)+ c1 (6.10)

where c0 and c1 are parameters, which can be static or dynamic, to be adjusted based on
the raw fitness distribution over the current population. c0 and c1 are chosen such that the
expected number of offspring for the best individual becomes α ≈ 1.5 . . . 3.0 and for the
average individual becomes α ≈ 1. This determines the ratio

c0
c1

= α − 1
fmax − f̄ (x)

(6.11)

where fmax is the best fitness and f̄ (x) is the average fitness. The values of the parameters
c0 and c1 can be determined from the relations in Equations (6.12) and (6.13) as long as the
scaled fitness f̂ (xi) remains positive:

c0 = α − 1 (6.12)

c1 = fmax − f̄ (x) (6.13)

In sigma truncation scaling, the scaled fitness is defined as

f̂ (xi) = f (xi)− f̄ (x)− σ

σ
(6.14)

where σ is the standard deviation of the fitness values in the current population.

6.4 Genetic Operators

Each population of an EA produces a new generation of individuals, representing a set of new
potential solutions to the optimization problem. The new generation is formed through the
application of operators. There are three basic genetic operators found in every evolutionary

Evolutionary Computing 195

computation. Although some algorithms may not employ the crossover operator, we will refer
to them as evolutionary algorithms rather than genetic algorithms:

• Selection
• Crossover or recombination
• Mutation.

6.4.1 Selection Operators

The selection operator allows individuals (chromosomes) to be copied for possible inclusion in
the next generation. The chance that a string will be copied is based on the individual’s fitness
value, calculated from a fitness function. For each generation, the selection operator chooses
individuals that are placed into a mating pool, which is used as the basis for creating offspring
for the next generation. There are many different types of selection operators. One can select
the fittest and discard the worst, statistically selecting the rest of the mating pool from the
remainder of the population. In general, selection is typically probabilistic, which offers better
chances for individuals with high fitness to get selected into the mating pool. Low-fitness
individuals are also often given a small chance. There are two important factors closely related
to any EA: selective pressure and population diversity. A strong selective pressure essentially
means focusing on best-fit individuals in the population. This in turn instigates a decrease
in the population diversity, which may result in a premature convergence, whereas a weak
selective pressure can make a search ineffective. It takes many generations to converge as the
population increases. There are hundreds of variants of the selection scheme. None are right
or wrong. In fact, some will perform better than others depending on the problem domain
being explored. For the moment, we will look at the most commonly used selection methods
in evolutionary algorithms.

6.4.1.1 Random Selection

Random selection is the simplest method, where individuals are selected randomly with no
reference to fitness at all. Each individual, good or bad, has an equal chance or probability 1

N
of being selected, where N is the size of the population. As a result, random selection has a
low selective pressure causing a slow convergence to solution.

6.4.1.2 Proportional Selection

The chance of an individual being selected is proportional to the fitness value. A probability
distribution proportional to fitness is created, and individuals are selected through sampling of
the distribution

P(Ci) = f (Ci)
N∑

i=1
f (Ci)

= F(Ci) (6.15)

where P(Ci) is the probability that an individual Ci will be selected, f (Ci) is the fitness
of an individual, N is the size of the population and F(Ci) is the relative fitness of an

196 Computational Intelligence

Table 6.1 Three individuals with corresponding fitness values

Individual (string) Fitness value Relative fitness Percentage No. selected

01001 5
5

26
19% 0

10000 12
12

26
46% 2

01110 9
9

26
35% 1

individual. That is, the probability of an individual being selected (e.g., to produce offspring)
is directly proportional to the relative fitness value of that individual. This may cause an
individual to dominate the production of offspring, thereby limiting diversity in the new
population. Limiting the number of offspring produced by that single individual is of course
possible.
In the roulette wheel method the relative fitness values are calculated (or fitness values are

normalized by dividing each fitness value by the maximum fitness value). The probability
distribution can then be thought of as a roulette wheel, where each slice has a width corre-
sponding to the selection probability of an individual. Selection can then be visualized as the
spinning of the wheel. To look abstractly at this method, consider the three individuals in Table
6.1. From this table, it is obvious that the string 10000 is the fittest, and should be selected
for reproduction approximately 46% of the time. The string 01001 is the weakest, and should
only be selected 19% of the time. The corresponding roulette wheel looks like Figure 6.7. The
roulette wheel is spun three times, with the results indicating the string to be placed in the pool.
It is obvious from this wheel that there is a good chance of the string 10000 being selected
more than once. Multiple copies of the same string can exist in the mating pool. This is even
desirable, since the stronger strings will begin to dominate, eradicating the weaker ones from
the population. There are difficulties with this type of selection, as it can lead to premature
convergence on a local optimum.

19 %

01001

01110

35 %

46 %

10000

Figure 6.7 Roulette wheel selection

Evolutionary Computing 197

The following pseudocode can be used for the roulette wheel selection algorithm:

{
i ← 1 ; set chromosome index to 1
val← P(Ci) ; set val to P(Ci)
ξ ← random(0,1) ; choose a random value between (0,1)
while val < ξ

{
i++
val = val +P(Ci)
}

return Ci as selected individual
}

There are many techniques available in the literature for the roulette wheel selection method.

6.4.1.3 Tournament Selection

In tournament selection a group of k individuals is randomly selected from a population of
N individuals. These k individuals then take part in a tournament and the performance of the
selected individuals is evaluated. The individual with the best fitness is selected from the group.
For crossover operation, two tournaments are held to select the two parents. The advantage
of tournament selection is that the worst individuals of the population will not be selected
and will therefore not contribute to the genetic construction of the next generation, and the
best individual will not dominate in the reproduction process. As a result, the tournament
selection has a low selective pressure which ensures an optimum solution. It is very important
to remember that the size of k individuals is directly related to the selective pressure. It causes
a very high selective pressure for k = N and results in a low selective pressure for k = 1.

6.4.1.4 Rank-based Selection

Rank-based selection uses the rank ordering of the fitness values to determine the probability
of selection and not the fitness values themselves. This means that the selection probability is
independent of the actual fitness. Ranking therefore has the advantage that a highly fit individual
will not dominate in the selection process as a function of the magnitude of its fitness.
One example of the rank-based selection is non-deterministic linear sampling, in which

individuals are sorted by decreasing fitness value. The first individual is the fittest one. The
selection of the individual Ci from N individuals using the selection operator is defined as

i = random (random (N))

Ci ← P(i) (6.16)

The individual Ci is selected from the population P.
There are other nonlinear ranking techniques that have also been used, for example

P(Ci) = 1− e−r (Ci)

μ
(6.17)

P(Ci) = ρ (1− ρ)N−1−r (Ci) (6.18)

198 Computational Intelligence

Table 6.2 Mating pool

Strings in mating pool Fitness (%)

10000 46
10000 46
01110 35

where r (Ci) is the rank of the individual Ci , μ is a normalization constant and ρ is the
probability of selecting the next individual. These nonlinear selection operators are biased
towards the best individuals at the cost of possible premature convergence.

6.4.1.5 Elitism

Elitism is the selection of a set of individuals from the current generation to survive to the next
generation. The number of individuals to survive to the next generation, without mutation, is
referred to as the generation gap. If the generation gap is zero, the new generation will consist
entirely of new individuals. For a positive generation gap, say k, k individuals will survive to
the next generation. Elitism is generally used to prevent the loss of the fittest member in a
generation. Therefore, a trace is kept of the current fittest individual and always copied to the
next generation.

6.4.1.6 Mating Pool

After selecting the individuals, they are placed in a mating pool from which two parents are
chosen randomly for crossover. Table 6.2 shows the mating pool after selecting the individuals
according to proportional selection from Table 6.1. Multiple copies of string 10000 in the
mating pool can occur due to its highest fitness value.

6.4.2 Crossover Operators

Once the mating pool is created, the next operator in the EA is the crossover operator. The term
‘recombination’ is also used in the more general case. Crossover in biological terms refers to
mating of two parents to produce new chromosomes by blending of genetic information from
the parent chromosomes. The analogy carries over to crossover in EAs, whereby new solutions
are created from the information contained within two (or more) parent solutions. This is the
primary mechanism of creating new solutions (i.e., chromosomes) with higher fitness values
that survive to the next generation. Whether a chromosome will undergo a crossover operation
or not is determined by the crossover probability pc. The EA selects two individuals at random
from the mating pool and applies a crossover operation according to pc. Depending on the
number of parents involved in the crossover operation, crossover can be divided into three
classes.

• Asexual – when a single parent is involved in producing offspring.
• Sexual – when two parents are involved in producing offspring.
• Multi-parent –whenmore than two parents are involved in producing offspring. Bremermann

et al. (1966) first proposed the multi-parent crossover for binary representation.

Evolutionary Computing 199

100 00

011 10

100 10

011 00

Crossover point

Parent strings
Offsprings

Figure 6.8 Crossover operation

The individuals selected as parents may be different or identical.

Crossover probability: The EA then calculates whether crossover should take place using a
parameter called the crossover probability pc. This is simply a probability value pc ∈ [0, 1]
(calculated by flipping a weighted coin). The value of pc is set by the user, and the suggested
value ranges between 0.6 and 0.8 (although this value can be domain-dependent), which means
that 60–80% of the new population will be formed by crossover. If EA decides not to perform
crossover, the two selected strings are simply copied to the new population (they are not
deleted from the mating pool). They may be used multiple times during crossover.

Crossover point: If crossover does take place, then a random splitting point is chosen in a
string, the two strings are split and the split regions are mixed to create two (potentially) new
strings. These child strings or offspring are then placed in the new population. The crossover
point for a two-parent crossover is shown in Figure 6.8.

6.4.2.1 Single-point Crossover

A single point in the chromosome string is selected randomly. Holland (1975) suggested that
segments of genes be swapped between parents to create offspring. The binary string from the
beginning of the chromosome to the crossover point is copied from the first parent, and the
rest is copied from the other parent. For example:

P1 → 11001|011
+

P2 → 11011|111
- - - - - - - - - - - - - - - -
O1 → 11001|111

The single-point crossover operation is illustrated in Figure 6.9:

×

Parent A

Parent B

Offspring

Figure 6.9 Single-point crossover

200 Computational Intelligence

Parent A

Parent B

Offspring

Figure 6.10 Two-point crossover

6.4.2.2 Two-point Crossover

Two crossover points are selected randomly, the binary string from the beginning of the
chromosome to the first crossover point is copied from the first parent, the part from the first
to the second crossover point is copied from the other parent and the rest is copied from the
first parent again. For example:

P1 → 11|0010|11
×

P2 → 11|0111|11
- - - - - - - - - - - - - - - -
O1 → 11|0111|11

The two-point crossover operation is illustrated in Figure 6.10.

6.4.2.3 n-point Crossover

One- or two-point crossover can be generalized to n-point crossover. n points are selected
randomly to divide the chromosome into n segments of continuous genes. Offspring are
created by combining alternative segments from the parents, for example three-point crossover
is shown below:

P1 → 11|0010|11|001
×

P2 → 11|0111|11|111
- - - - - - - - - - - - - - - -
O1 → 11|0111|11|111
O2 → 11|0010|11|001

6.4.2.4 Uniform Crossover

Syswerda (1989) introduced a new form of crossover called uniform crossover. Uniform
crossover does not use any crossover point but instead creates offspring by swapping each
corresponding allele of both parents. The swap is made with probability P0. The bits of the
strings are randomly copied from the first or from the second parent, as shown in the example
below:

P1 → 1 1 0 0 1 0 1 1
×

P2 → 1 1 0 111 0 1
- - - - - - - - - - - - - - - -
O1 → 1 1 0 111 11

The uniform crossover operation is illustrated pictorially in Figure 6.11:

Evolutionary Computing 201

Parent A

Parent B

Offspring

Figure 6.11 Uniform crossover

6.4.2.5 Arithmetic Crossover

Some arithmetic operation is performed to make a new offspring from two parents, for
example:

P1 → 11001011
⊕(XOR)

P2 → 11011111
- - - - - - - - - - - - - - - -
O1 → 00010100

An XOR operation is performed on the parents for binary chromosomes.
Michalewicz (1992) described three types of arithmetic crossover: simple arithmetic, single

arithmetic and whole arithmetic. In all three types, it works by taking the weighted sum of
the two parental alleles xi and yi , i.e. the first offspring is oi1 = α.xi + (1− α).yi and the
second offspring is oi2 = (1− α).xi + α.yi where i = 1, . . . , n are the alleles of the parental
chromosomes. In simple arithmetic, choose a random point k in the chromosome, copy the
first k alleles from both parents to both children and the rest of the alleles are obtained by
arithmetic averaging of parents 1 and 2. In single arithmetic, choose a random allele k, copy
all alleles from parents 1 and 2 to children 1 and 2 and take the arithmetic average of the
kth allele from parents 1 and 2. In whole arithmetic, all alleles in children are calculated by
arithmetic averaging of parents 1 and 2. The three crossover operators are illustrated below
with three examples.

Simple arithmetic crossover
Simple arithmetic crossover is illustrated in the example below

P1 → 0.2 0.0 0.4 | 0.5 0.1 0.9 0.7 0.5
(avg)

P2 → 01 0.2 0.9 | 0.3 0.5 0.2 0.8 0.3
- -
O1 → 0.2 0.0 0.4| 0.4 0.3 0.55 0.75 0.4
O2 → 0.1 0.2 0.9 | 0.4 0.3 0.55 0.75 0.4

Single arithmetic crossover
Single arithmetic crossover is illustrated in the example below

P1 → 0.2 0.0 0.4 | 0.5 | 0.1 0.9 0.7 0.5
(avg)

P2 → 0.1 0.2 0.9 | 0.3 | 0.5 0.2 0.8 0.3
- -
O1 → 0.2 0.0 0.4 | 0.4 | 0.1 0.9 0.7 0.5
O2 → 0.1 0.2 0.9 | 0.4 | 0.5 0.2 0.8 0.3

202 Computational Intelligence

Whole arithmetic crossover
Whole arithmetic crossover is illustrated in the example below

P1 → 0.2 0.0 0.4 0.5 0.1 0.8 0.7 0.5
(avg)

P2 → 0.1 0.2 0.8 0.3 0.5 0.2 0.7 0.3
- -
O1 → 0.15 0.1 0.6 0.4 0.3 0.5 0.7 0.4
O2 → 0.15 0.1 0.6 0.4 0.3 0.5 0.7 0.4

6.4.2.6 Linear Crossover

Linear crossover was introduced by Wright (1991). Two parents i and j are selected and three
offspring are created by linearly combining the two parents. Three offspring represent three
different search regions: one inside the two parents, one on the left side of parent xi (t) and
one on the right side of parent x j (t), assuming parent xi (t) lies on the left of parent x j (t). The
mechanism is shown in the example below:

P1 → xi (t) = xi1, xi2, xi3, . . . , xin

P2 → x j (t) = x j1, x j2, x j3, . . . , x jn

- -
O1 → o1(t) = 0.5 ∗
xi (t)+ x j (t)�
O2 → o2(t) =
1.5 ∗ xi (t)− 0.5 ∗ x j (t)�
O3 → o3(t) =
−0.5 ∗ xi (t)+ 1.5 ∗ x j (t)�

From the three offspring, the best two are accepted as offspring from this crossover operation.

6.4.2.7 Naı̈ve Crossover

This crossover operator is similar to the single-point crossover operator used in binary chro-
mosomes. The crossover point is chosen at the variable boundary of the selected parents and
two offspring are created. The mechanism is shown in the example below:

P1 → xi (t) = xi1, xi2, xi3, |xi4, . . . , xin

P2 → x j (t) = x j1, x j2, x j3, |x j4, . . . , x jn

- -
O1 → o1(t) = xi1, xi2, xi3, |x j4, . . . , x jn

O2 → o2(t) = x j1, x j2, x j3, |xi4, . . . , xin

The operator does not have much search power, as the new search point lies on the variable
boundaries.

6.4.2.8 Blend Crossover

Eshelman and Schaffer (1993) proposed the blend crossover for real-valued chromo-
somes. The operator blends two parents xi (t) = xi1, xi2, xi3, . . . , xin and x j (t) = x j1, x j2,

Evolutionary Computing 203

x j3, . . . , x jn and generates offspring within the range
xi (t)− α(x j (t)− xi (t))� and

x j (t)+ α(x j (t)− xi (t))�. It then picks one offspring according to

x(t) = (1− γ) xi (t)+ γ x j (t) (6.19)

where γ = (1+ 2α) u − α, u ∈ [0, 1] and α is chosen arbitrarily. It is found that blend
crossover performs best for α = 0.5. The advantage of blend crossover is that it allows the
search to focus when the population tends to converge in some small region.

6.4.2.9 Unfair Average Crossover

Nomura and Miyoshi (1996) proposed an unfair average crossover using two parents that
produces two offspring. The crossover mechanism is illustrated in the example below:

P1 → xi (t) = xi1, xi2, xi3, . . . |xik, . . . , xin

P1 → x j (t) = x j1, x j2, x j3, . . . |x jk, . . . , x jn

- -

O1 → xi (t + 1) =
{
(1+ α)xi (t)− αx j (t) i, j = 1, . . . , k − 1

−αxi (t)+ (1+ α)x j (t) i, j = k, . . . , n

O1 → xi (t + 1) =
{
(1− α)xi (t)+ αx j (t) i, j = 1, . . . , k − 1
αxi (t)+ (1− α)x j (t) i, j = k, . . . , n

The parameter α ∈ [0, 0.5] causes the operator to be biased towards one parent rather than
preserving the mean of the parent solutions. k is the randomly chosen crossover point.

6.4.2.10 Crossover for Permutation Coding

Two genes may articulate meaningful information if they appear side by side (relative order).
They may even articulate information if one gene precedes the other gene in the chromosome
(absolute order) regardless of how many genes lie between. Syswerda (1989) inferred that
the order as well as the position of genes in the permutation is meaningful. Therefore, per-
mutation coding poses particular difficulties for crossover operation as a simple exchange of
substrings between parents does not maintain the permutation properties of the chromosomes.
The crossover operator has to comply with the semantic properties of the chromosome repre-
sentation, that is, combining building blocks to form larger building blocks which share the
phenotypical traits of the smaller building blocks. A number of specialized crossover opera-
tions have been devised to maintain the order in permutation coding, such as partially mapped
crossover (PMX), edge crossover, order crossover, cycle crossover.

Partially mapped crossover (PMX) – PMXwas first proposed byGoldberg and Lingle (1985)
as a crossover operator for the travelling salesman problem. A variant of PMX is presented in
Whitley (2000). Generalized PMX (GPMX) (Bierwirth et al., 1996) assembles one offspring
from two parent chromosomes (donator and receiver). In this technique a substring is chosen
from the donating chromosome. Then, all genes of the substring are deleted with respect to
their index of occurrence in the receiving chromosome. The rest of the genes are copied onto
the offspring. Figure 6.12(a) illustrates the mechanism of GPMX.

204 Computational Intelligence

(a)

(b)

Parent 1: 1 3 2 3 1 2 2 1 3

Parent 2: 2 3 1 1 2 3 3 1 2

GPMX: 2 3 3 3 1 2 2 1 1O
ff

sp
ri

n
g

Parent 1: 1 3 2 3 1 2 2 1 3

Parent 2: 2 3 1 1 2 3 3 1 2

GOX : 2 3 1 2 2 1 3 3 1O
ff

sp
ri

n
g

Figure 6.12 GPMX in comparison with GOX. (a) GPMX; (b) GOX

Order crossover (OX) – OX is based on the idea of preserving the relative order of positions
present in parents. It begins in a similar way to PMX. The generalized OX (GOX) operator
was first presented by Bierwirth (1995). GOX implants the substring into the receiver at the
position where the first gene of the substring occurs (before deletion) in the receiver. Unlike
GOX, GPMX implants the substring at the position where it occurs in the donator. Figure
6.12(b) illustrates the mechanism of GOX.

Edge crossover (EX) – EX is based on the idea of preserving edges that are present in one or
more parent. There have been a number of revisions of EX over the years.

Cycle crossover (CX) – CX preserves information on the absolute position of elements in
which they occur by dividing the elements into cycles, as shown in Figure 6.13. Offspring are
created by selecting alternate cycles from each parent.

6.4.2.11 Crossover for Tree Coding

The crossover operation on tree coding is performed by randomly selecting subtrees of parents
and swapping them. An example of crossover operation is shown in Figure 6.14. Two sub-trees,
shaded in Figure 6.14(a), are chosen from the parents and swapped to create two offsprings
shown in Figure 6.14(b). Asexual crossover is also possible in tree coding. Different variants
of sexual and asexual crossover operation of tree coding are discussed in Section 6.6.4.

6.4.2.12 Fuzzy Connective-based and Recombination Operator

Some researchers have proposed fuzzified genetic operators such as fuzzy connective-
based crossover (Herrera et al., 1997; Herrera and Lozano, 2000, 2001) and soft genetic

 a b c d e

e c b a d

a b c d e

e c b a d

a c b d e

e b c a d

Figure 6.13 Cycle crossover

Evolutionary Computing 205

*

+exp

a sin–

x3.4 a

Parent 1 Parent 2

(a)

Offspring 1 Offspring 2

(b)

*

+exp

a sin/

za a

+

sin z

/*

3.4

z a

+

sin x

–*

3.4

z 3.4

Figure 6.14 Crossover operation with two different parents. (a) Two parents in tree coding; (b) Two
offspring created by sexual crossover operation

operators (Voigt et al., 1995). It has been demonstrated by Herrera et al. (1997) that the
fuzzy connective-based crossover operator is able to balance the exploitation and exploration
and model the diversity of population. These operators are discussed in Section 8.4.2 of
Chapter 8.
There have been some other crossover operators reported in the literature, such as simu-

lated binary crossover developed by Deb and Agrawal (1995). This is a single-point crossover
applied to two binary chromosomes and produces two offspring. Ono and Kobayshi (1997)
suggested a unimodal normally distributed crossover with ellipsoidal probability distribu-
tion applied to three or more parents and producing two or more offspring. Tsutsui et al.
(1999) proposed a simplex crossover where more than two parents take part in the oper-
ation. The centroid of the parents is calculated. Offspring are created along the line of
the centroid and the parent with uniform distribution. Interested readers are directed to
Beyer and Deb (2000) and Deb (2008) for an account of analysis on the different crossover
operators.

206 Computational Intelligence

6.4.3 Mutation Operators

Depending on the initial population chosen, there may not be enough variety of strings to
ensure the EA sees the entire problem space. Or, the EA may find itself converging on strings
that are not quite close enough to the optimum it seeks due to a bad initial population. Some
of these problems are overcome by introducing a mutation operator into the EA.

Mutation probability: the mutation probability, mp ∈ [0, 1], dictates the frequency at which
mutation occurs. The mutation probability should be kept very low (usually about 0.001) as
a high mutation rate will destroy fit strings and degenerate the evolutionary algorithm into
a random walk, with all the associated problems. Mutation can be performed either during
selection or crossover (though crossover is more usual). The evolutionary algorithm checks to
see if it should perform a mutation. If it should, it randomly changes the gene value to a new
one. For example

1 0 0 0 0 1 0 0 1 0

Mutation

There are a variety of mutation operators available in the literature. Some of them are
discussed with examples in the following sections.

6.4.3.1 Mutation for Bit Coding

Inversion (for binary or Gray coding) – the most common mutation operator used for binary
or Gray encoding considers each gene separately and allows each bit to flip with a small
probability pm , i.e., selected bits are inverted. For example

1 1 0 0 1 0 0 1 → 1 0 0 0 1 0 0 1
Mutation

6.4.3.2 Mutation for Integer Coding

Random setting – a random cardinal value is chosen from a set of permissible intervals in
each position with a small probability pm . For example

(2 1 3 0 5 1 7 1) → (2 1 5 0 5 1 7 2)
Mutation

Creep mutation – a small value (positive or negative) is added to each gene with a small prob-
ability pm . It is to be ensured that random values are sampled from a zero-mean symmetric
distribution. Thus, creep mutation requires a number of parameters to control the distri-
bution, which poses some extra constraints on the algorithm to find appropriate parameter
settings.

Evolutionary Computing 207

6.4.3.3 Mutation for Real Coding

Since the allele values are continuous in a search space rather than discrete, it is common
practice to change the allele value xi ∈ [Li , Ui] to x ′

i ∈ [Li , Ui] for each gene randomly within
its domain specified by [Li , Ui]. Li and Ui are the lower and upper bounds, respectively. Two
types of mutation can be distinguished from the literature.

Uniform mutation – values of x ′
i ∈ [Li , Ui] are drawn random uniformly from within the

respective bounds.

Non-uniform mutation – analogous to creep mutation in integer coding. It is designed to
keep the change small by adding a small random value with zero-mean Gaussian distribution
and user-defined variance. This can be defined as

x ′
i =
xi + ω(n)� ∈ [Li , Ui] (6.20)

whereω(n) is a Gaussian randomvaluewith zeromean and user-defined variance. For example

(1.29 5.68 2.86 4.11 5.55) → (1.29 5.68 2.73 4.22 5.55)

6.4.3.4 Mutation for Permutation Coding

Swap mutation or order changing – two genes are selected randomly and their positions
exchanged. For example

(1 2 3 4 5 6 8 9 7) → (1 8 3 4 5 6 2 9 7)

Mutation

Insert mutation – two genes are chosen randomly and then moved next or close to each other
by shuffling the others along. For example

(1 2 3 4 5 6 8 9 7) → (1 2 8 3 4 5 6 9 7)

Mutation

Scramble mutation – all or a subset of genes are chosen randomly and their positions
scrambled. For example

(1 2 3 4 5 6 8 9 7) → (1 3 5 2 4 6 8 9 7)

Mutation

208 Computational Intelligence

Inversion mutation – a subset of genes is selected randomly and the order of their positions
reversed. For example

Mutation

6.4.3.5 Mutation for Tree Coding

Changing operator, number – mutation in tree coding is the same as for other EAs. That is,
the value of selected nodes is changed through some small random variation. For example

a

/ln

*

2.3sin

y

x

Mutation

a

/ln

*

3exp

y

x

Further examples of different variants of mutations on tree coding are discussed in
Section 6.6.4.

6.5 Performance Measures of EA

The standard performance measure of any optimization algorithm is the convergence property
or rate of convergence. That is, the average number of generations that the EA requires to
generate a solution with high fitness. In general, convergence means whether a solution can be
found and how quickly. Because of the population-based stochastic nature of EA, the notion of
convergence is different: an EA is said to be converged if the population converges to a uniform
population consisting of P copies of a single individual which may or may not correspond to
a global optimum. One possible way to measure the convergence of the EA is to observe the
average fitness (f̄) in relation to the maximum or best fitness (fbest) of the current population
curves as a function of the number of samples or generations (Spears, 2000). The value of the
term (fbest − f̄) is likely to be less for a population that has converged to an optimal solution
than for a population scattered in the entire solution space (Srinivas and Patnaik, 1994). It has
been shown by Srinivas and Patnaik that EA converges to a local optimum with fitness value
0.5 with decreasing value of (fbest − f̄), whereas a global optimum has a fitness value of 1.0.

Evolutionary Computing 209

6.6 Evolutionary Algorithms

The history of the field suggests that there are many different variants of evolutionary algo-
rithms, but the common underlying idea behind all these algorithms is the same. Given is a
population of individuals, the natural selection process causes a particular group of individuals
or species to survive depending on the fitness. Typically, the variants are:

• Evolutionary programming (EP),
• Evolution strategies (ES),
• Genetic algorithms (GA),
• Genetic programming (GP),
• Differential evolution (DE),
• Cultural algorithm (CA).

In the last two decades EP, ES, GA, GP, DE and CA have been very popular with the scientific
and research communities. These algorithms are discussed in subsequent sections.

6.6.1 Evolutionary Programming

Evolutionary programming, originally conceived by Lawrence J. Fogel in the 1960s, is a
stochastic optimization strategy (Fogel, 1962). EP was then developed further by David Fogel
in the 1990s (Fogel, 1991, 1995). EP differs substantially from GA and GP in that EP empha-
sizes the development of behavioural models and not genetic models. EP is derived from
simulation of adaptive behaviour in evolution. That is, EP considers phenotypic evolution.
The evolutionary process consists of finding a set of optimal behaviours from a space of
observable behaviours. For this purpose, the fitness function measures the behaviour error of
an individual with respect to the environment of that individual.
For EP, like GA, there is an underlying assumption that a fitness landscape can be character-

ized in terms of variables, and that there is an optimum solution (or multiple such optima) in
terms of those variables. For example, if one were trying to find the shortest path in a travelling
salesman problem, each solution would be a path. The length of the path could be expressed as
a number, which would serve as the solution’s fitness. The fitness landscape for this problem
could be characterized as a hypersurface proportional to the path lengths in a space of possible
paths. The goal would be to find the globally shortest path in that space, or more practically,
to find very short tours very quickly.
The basic EP method involves four steps (repeated until a threshold for iteration is exceeded

or an adequate solution is obtained):

1. Initialization of population. A population of individuals is created randomly, which uni-
formly covers the search space of the optimization problem. The number of individuals
in a population is highly relevant to the speed of optimization, but no definite answers
are available as to how many individuals are appropriate (other than >1) and how many
individuals are just wasteful.

2. Mutation. Each individual is replicated into a new population. Each of these offspring are
mutated according to a distribution of mutation types, ranging from minor to extreme, with
a continuum of mutation types between. The severity of mutation is judged on the basis of
the functional change imposed on the parents.

210 Computational Intelligence

3. Evaluation. Each offspring is assessed by computing its fitness values f (xi) from the
objective function by scaling them to positive values and sometimes by imposing some
random alternation νi . The fitness values actually quantify behavioural traits. Survival in EP
is usually based on a relative fitness measure. Individuals that go into the next generation
are selected based on relative fitness.

4. Selection. The purpose of the selection mechanism is to choose individuals from parents
and offspring that survive to the next generation. Typically, a stochastic tournament is
held to determine N individuals to be retained for the population of the next generation,
although this is occasionally performed deterministically. There is no requirement that the
population size be held constant, however, neither that only a single offspring be generated
from each parent. Different selection strategies for EP are discussed later in this section.

A general EP algorithm is formulated as follows:

g ← 0 ; generation 0
C(g)← {C(g)n | n = 1,2, . . . , N} ; create and initialize population of size N
Do while (No convergence)
{
f(x)← evaluate [C(g)] ; calculate fitness value
C′(g)← mutate [C(g)] ; generate offspring by mutation
C(g+1)← select [C(g) ∪ C′(g)] ; create new population by selecting from old

; population and offspring
}

g ← g+1

EP differs from the other evolutionary algorithms in that no crossover operation is imple-
mented. Only selection and mutation operators are applied to produce the new generation of
population. Selection is based on competition and mutation is based on the amount of variation
determined by a step size sampled from some probability distribution. There are a range of
implementations of the two operators found in the literature. Some of them are discussed in
the following section.

6.6.1.1 Mutation Operators

Mutation is applied to each of the individuals at a certain probability. The mutation operator
to be used depends on the specific application. In general, the mutation is defined as

x ′
i (t) ← x ′

i j (t) = xi j (t)+ �xi j (t) (6.21)

where x ′
i (t) is the offspring created from the ith individual xi (t) by mutating the jth gene of

the ith individual x ′
i j (t). The step size �xi j (t) is a random noise sampled from the probability

distribution with a standard deviation of σi , defined as

�xi j (t) = σi ∗ ν (6.22)

where ν is a random variable with probability distribution p(ν) = 1√
2π
exp(− v2

2) and σi is
called the strategy parameter, which scales the contribution of the noise ν. EP algorithms
can fall into three categories, depending on the values of σi : dynamic, when σi varies over

Evolutionary Computing 211

generations (Fogel et al., 1991); non-adaptive, when σi remains constant; and self-adaptive,
when σi is being learnt along with the optimization procedure (Fogel et al., 1991).

6.6.1.2 Selection Operators

A selection operator is applied in EP to generate a new population from both the parent
population and the offspring population, i.e., {C(g) ∪ C ′(g)}. That means both the parents and
offspring compete to survive in a q-tournament (q > 1) selection. A group of individuals is
randomly chosen from {C(g) ∪ C ′(g)}. The relative fitness of each individual of the group
is calculated to measure the performance of the individual. This performance enables each
individual to compete for survival to the next generation. There are a number of selection
methods based on the relative fitness:

• Elitist – transfer the group of best individuals to the next generation. The remainder of the
population is selected from the remainder of the parents and offspring.

• All individuals – parents and offspring have the same chance of being selected. Any of the
selection operators discussed earlier can be used to create the new population.

• First cull – the worst parents and offspring are marked and then the remaining ‘good’
individuals are selected from the population.

Example 6.4: Finite-state machine EP was originally developed to evolve finite-state
machines (FSMs) for prediction and control. FSMs embody a class of abstract machines
that represent the behaviour of sequential logic circuits. In other words, they are computer
programs that describe a sequence of actions to be executed. Characterized by a set of inputs,
outputs and internal states, a ‘memory’ of previous inputs is retained through the use of an
FSM’s internal states. FSMs, due to the outputs being dependent on the input and current state,
can be defined by the ordered sextuple M = 〈Q, I, O, ψ, φ, q〉, where Q is a finite set of
internal states, I is a finite set of input symbols, O is a finite set of output symbols (alphabet
of FSM), ψ is the transition (next state) function ψ : Q × I → Q, φ is the output function
φ : Q × I → O and q ∈ Q is the initial state. A three-state FSM is given in Figure 6.15 and
the response of the FSM to a given input symbol is shown in Table 6.3, where Q = {1, 2, 3}
with q = 3 illustrated in the figure by a double circle, I = {0, 1} and O = {a, b, c}.

A population of finite-state machines is exposed to the environment. As each input symbol is
input to the machine, each output symbol is compared with the next input symbol. The worth
of this prediction is measured with respect to the payoff function, which provides the fitness
of the machine. Offspring machines are created by applying mutation operation to parent
machines. For the FSM, there can be five possible mutation operations: (i) change initial state,
(ii) add a state, (iii) delete a state, (iv) change a state transition, and (v) change an output
symbol.
The states of the FSM can be represented using binary coding or value coding. In binary

coding, each state of the FSM can be represented by a 6-bit string. The first 1-bit represents
activation of the corresponding state {0 for not active, 1 for active}. The second 1-bit represents
the input symbols {0, 1}. The third 2-bits represent the next state {01 for state 1, 10 for state
2, 11 for state 3}. The fourth 2-bits represent the output symbols {00 for a, 01 for b, 10 for c}.

212 Computational Intelligence

1

2

3

0/c

1/b

0/b

1/c

0/b

1/a

Figure 6.15 A three-state FSM

For the three states of the FSM in Figure 6.15, each individual will be 18 bits long. For
example, an individual of the FSM will look like

Chromosome of FSM = {0, 1, 01, 10 | 0, 0, 10, 01| 1, 1, 11, 00}

For example, an initial population of five individuals using binary coding for the FSM will
look like

P =

⎛
⎜⎜⎜⎜⎝
101110 | 110000 | 011001
111110 | 110110 | 101110
100011 | 110010 | 010111
101001 | 100011 | 001101
001111 | 110101 | 001111

⎞
⎟⎟⎟⎟⎠

Because of the length of 2-bits for the states and output symbols, extra caution must be taken to
avoid the invalid state {00} and the invalid output symbol {11} during population generation
and also mutation operation. This restriction needs additional effort in coding programs. An
alternative to binary coding would be to choose value coding for chromosome representation.
In value coding, each state of the FSM is represented by four values. The first value represents
the present state value {1, 2, 3}, the second value represents the input symbol {0, 1}, the
third value represents the next state {1, 2, 3}, the fourth value represents the output symbol
{1 for a, 2 for b, 3 for c}. The values {a, b, c} can also be used instead of integer values. Each

Table 6.3 Response of FSM

Present state 3 2 3 1 1 2
Input 0 1 1 1 0 0
Next state 2 3 1 1 2 2
Output b a c b b c

Evolutionary Computing 213

individual for FSM will consist of 12 values. For example, an individual of the FSM in value
coding will look like

Chromosome of FSM = {1, 0, 2, 2 | 2, 1, 3, 1| 3, 1, 1, 3}

For example, an initial population of five individuals using integer coding for the FSM will
look like

P =

⎛
⎜⎜⎜⎜⎝
3031 | 3122 | 1331
3011 | 2013 | 2022
3011 | 2121 | 1032
1023 | 2022 | 2111
3032 | 0111 | 1131

⎞
⎟⎟⎟⎟⎠

Mutation: One of the five possible mutation operations mentioned earlier can be applied on a
gene chosen randomly. The gene itself can be a present state, input value, next state or output
value. For example:

Mutation {3031 | 3122 | 1331}→ {3031 | 2122 | 1331}

For a population in binary coding, the mutation would be flipping of a bit. For example:

Mutation {101110 | 110000 | 011001}→ {101111 | 110000 | 011001}

Fitness evaluation: The fitness value assigned to a given FSM behaviour, here evaluated
through an input/output sequence perspective, is defined by the fitness function F in the form

F =
N∑

i=1
wi Hi (6.23)

where wi is a weighting factor for fitness case i , N is the number of training sequences (TS)
and Hi is the number of output hits due to the training sequence i (TSi). Initially, the FSMmust
be in the reset (idle) state. In the sequence, for each input of the TSi , its output is compared
with the correct output. Hi = 1 in case of a match, otherwise Hi = 0. A partial matching can
also be considered, where Hi = 0.5.

6.6.2 Evolution Strategies

Evolution strategies were developed as a method to solve parameter optimization problems by
Rechenberg in the 1960s (Rechenberg, 1965) and further developed by Schwefel (1968, 1975,
1995). Evolution-strategic optimization is based on the hypothesis that during the biological
evolution the laws of heredity have been developed for fastest phylogenetic adaptation. ESs
imitate, in contrast toGAs, the effects of genetic procedures on the phenotype. The presumption
for coding the variables in ES is the realization of a sufficiently strong causality, i.e., small
changes of the causemust create small changes of the effect. The theory states that evolutionary
progress takes place only within a very narrow band of the mutation step size.
The earliest ESs were based on a population consisting of one individual only. There

was also only one genetic operator, mutation, used in the evolution process. However, the
interesting idea was to represent an individual as a pair of real-valued vectors v = (x, σ),

214 Computational Intelligence

where x represents a point in the search space and σ is a vector of standard deviations.
Mutations are realized by replacing x with

x(t + 1) = x(t)+ N (0, σ) (6.24)

where N (0, σ) is a vector of independent random Gaussian numbers with zero mean and
standard deviation.
This is in accordance with the biological observation that smaller changes occur more

often than larger ones. The offspring (mutated individual) is accepted as a new member of
the population if and only if (iff) it has improved fitness and all constraints are satisfied.
For example, if f is the objective function without constraints to be maximized, an offspring
(x(t + 1), σ) replaces its parent (x(t), σ) iff f (x(t + 1)) > f (x(t)), otherwise, the offspring
is eliminated and the population remains unchanged.
When implemented to solve real-valued function optimization problems, both typically

operate on the real values themselves (rather than any coding of the real values as is often
done in GAs). Multivariate zero-mean Gaussian mutations are applied to each parent in a
population and a selection mechanism is applied to determine which solutions to remove
(i.e., cull) from the population. The similarities extend to the use of self-adaptive methods for
determining the appropriate mutations to use – methods in which each parent carries not only
a potential solution to the problem at hand, but also information on how it will distribute new
trials (offspring).
The following pseudo-code is an illustration of a general ES algorithm:

g ← 0 ; generation 0
Cg ← {Cg,n | n = 1,2, . . . , N} ; initialize population
FEP ← evaluate (Cg,n) ; evaluate fitness of each individual

Do while no(convergence)
{
For l = 1 to λ (λ ∼= no. of offspring)
{

Pg,n (n2)← select(Cg,n) ; select at random
Og,λ ← crossover (Pg,μ) ; crossover
Og,λ ← mutate (Og,μ) ; mutate offspring
FEP ← evaluate (Og,λ)
}

Cg,μ ← select (Cg,μ, Og,λ) ; select best μ individuals from parent
and offspring

}
g ← g+1

There are a range of implementations of ES using selection, recombination and mutation
operators found in the literature. InES, the operator recombination is used rather than crossover.
Some of them are discussed in the following section.

6.6.2.1 Selection Operators

ES typically uses deterministic selection in which the worst solutions are purged from the
population based directly on their function evaluation. For each generation, λ offspring are

Evolutionary Computing 215

generated from μ parents and mutated. After crossover and mutation the individuals for the
next generation are selected. Two strategies have been developed:

• (μ + λ)-ES. In this case the ES generates λ offspring from μ parents, with 1 ≤ λ ≤ μ. The
next generation consists of the μ best individuals selected from μ parents and λ offspring.
The (μ + λ)-ES implements elitism to ensure that the fittest parents survive to the next
generation.

• (μ, λ)-ES. In this case the next generation consists of the μ best individuals selected from
λ offspring. (μ, λ)-ES requires that 1 ≤ μ < λ. By doing this, the life of each individual
is limited to one generation. This allows (μ, λ)-ES to perform better on problems with an
optimum moving over time, or on problems where the objective function is noisy.

The notations (1+1)-ES, (1+λ)-ES, (1, λ)-ES, (m/μ, λ)-ES characterize evolution strategies
with an increasing level of imitation of biological evolution. The letter m stands for the total
number of parents, μ marks the number of parents, which will be recombined, and λ stands
for the number of offspring.

6.6.2.2 Recombination Operators

There was no recombination operator in earlier ESs. In order to introduce recombination,
Rechenberg proposed (1+1)-ES. Later on this was extended to (μ + 1)-ES, which utilizes a
crossover operator. Many forms of recombination have been implemented within ES. Again,
the effectiveness of such operators depends on the problem at hand. The operators used in
(μ+λ)-ES and (μ, λ)-ES incorporate two-level learning: their control parameter σ is no
longer constant, nor is it changed by some deterministic algorithm, but it is incorporated in
the structure of the individual and undergoes the evolution process. To produce an offspring,
the system acts in several stages.

• Select two individuals

(x1, σ 1) = ((
x11 , . . . , x1n

)
,
(
σ 11 , . . . , σ

1
n

))
(x2, σ 2) = ((

x21 , . . . , x2n
)
,
(
σ 21 , . . . , σ

2
n

))
• Apply a recombination (crossover) operator. There are two types of recombination:
Discrete recombination – the new offspring is defined as

(x, σ) = ((
xqi

1 , . . . , xqi
n

)
,
(
σ

qi

1 , . . . , σ qi
n

))
where qi = 1 or qi = 2, i.e., each component comes from either the first or the second
pre-selected parent. Discrete recombination is shown in the example below:

0.8 0.5 1.0 1.1 0.2 1.2

1.2 0.5 1.0 1.1 0.8 1.2

1.2 0.3 0.0 1.7 0.8 1.2

Discrete recombination

216 Computational Intelligence

Intermediate recombination – the vectors of two parents are averaged together, element by
element, to form a new offspring where the new offspring is

(x, σ) = ((
(x11 + x21)/2, . . . ,

(
x1n + x2n

)
/2

)
,
((

σ 11 + σ 21
)
/2, . . . ,

(
σ 1n + σ 2n

)
/2

))
Intermediate recombination is illustrated in the example below.

1.2 0.3 0.0 1.7 0.8 1.2

Intermediate recombination

0.8 0.5 1.0 1.1 0.2 1.2

1.0 0.4 0.5 1.4 0.5 1.2

6.6.2.3 Mutation Operators

Mutation is applied to the offspring (x, σ) obtained after recombination operation. The result-
ing new offspring is (x, σ), where σ = σ.eN (0,�σ), x = x + N (0, σ) and�σ is a parameter of
the method.
The effects of these operators reflect the behavioural as opposed to the structural interpretation
of the representation, since knowledge of the values of vector elements is used to derive new
vector elements.

Example 6.5: Braitenberg vehicle Moving around while avoiding obstacles is a key
issue in autonomous agent research. Braitenberg has proposed a simple architecture for such
tasks (Braitenberg, 1984). Figure 6.16 shows a control architecture inspired by a Braitenberg
vehicle based on the idea that a sensor with high proximity activation accelerates the motor
on the sensor’s side. The activation of the left and right motors Ml and Mr is expressed by

Ml =
8∑

i=1
Piw

l
i + wl

0 and Mr =
8∑

i=1
Piw

r
i + wr

0, respectively, where Pi denotes the activation

of the proximity sensor i , wl
i and wr

i denote weights that connect the proximity sensors with
the left and right motors, respectively. wl

0 and wr
0 represent the idle activation of the left and

right motors, respectively, that are responsible for forward motion of the robot in the absence
of an obstacle.

Ml Mr

Figure 6.16 Control architecture for Braitenberg vehicle

Evolutionary Computing 217

The problem here is to determine the weights wl
i , w

r
i , w

l
0, w

r
0, i = 1, 2, . . . , 8 such that the

robot is moving around while avoiding obstacles. Since no training patterns are available for
training, the evolution strategy is an ideal candidate for this optimization problem.
In the evolution of aBraitenberg vehicle, the first important thing is to find an initial controller

that exhibits meaningful behaviour. In order to exploit the morphology of the robot, the left
and right parts of the controller weights are constrained to equal wl

i = wr
i and wl

0 = wr
0. This

leads to a reduced search space of nine parameters. Thus, the chromosome of the Braitenberg
vehicle will consist of nine weights and standard deviations σ0 and σi as follows:

{w0, σ0 | w1, σ1 | w2, σ2 | w3, σ3 | w4, σ4 | w5, σ5 | w6, σ6 | w7, σ7 | w8, σ8}

All weights wi , i = 1, 2, . . . , 8 are initialized with very small negative random values, i.e.,
wi ∈ [−0.5, 0] and the idle activationweightsw0 are set to very small positive values, i.e.,w0 ∈
[0, 0.1]. An initial standard deviation is set to 0.5. The initial population of three individuals
using real coding will thus look like

P =
⎡
⎣ 0.07,0.5|, −0.21,0.5|, −0.23,0.5|, −0.45,0.5|, −0.32,0.5|,0.12,0.5|, −0.50,0.5|, −0.34,0.5|, −0.27,0.5
0.01,0.5|, −0.10,0.5|, −0.40,0.5|, −0.20,0.5|, −0.11,0.5|,0.00,0.5|, −0.12,0.5|, −0.41,0.5|, −0.50,0.5
0.09,0.5|, −0.12,0.5|, −0.30,0.5|, −0.23,0.5|, −0.21,0.5|,0.10,0.5|, −0.15,0.5|, −0.31,0.5|, −0.25,0.5

⎤
⎦

Recombination operation. There are two types of recombination operator used in ES: discrete
and intermediate. In this example, intermediate recombination is applied, in which the vectors
of two parents are averaged together, element by element, to form a new offspring where the
new offspring is given by

Parent 1 0.07, 0.5|, −0.21, 0.5|, −0.23, 0.5|, −0.45, 0.5|, −0.32, 0.5|, 0.12, 0.5|, −0.50, 0.5|, −0.34, 0.5|, −0.27, 0.5
Parent 2 0.01, 0.5|, −0.10, 0.5|, −0.40, 0.5|, −0.20, 0.5|, −0.11, 0.5|, 0.00, 0.5|, −0.12, 0.5|, −0.41, 0.5|, −0.50, 0.5
- -
Offspring : 0.04, 0.5|, −0.15, 0.5|, −0.31, 0.5|, −0.32, 0.5|, −0.21, 0.5|, 0.06, 0.5|, −0.31, 0.5|, −0.37, 0.5|, −0.38, 0.5

Mutation. The mutation operator mentioned earlier can be applied on a gene chosen ran-
domly. The resulting new offspring is (w, σ), where σ = σ.eN (0,�σ) and w = w + N (0, σ),
for example, w = −0.30+ N (0, 0.5)=−0.30+ 0.16=−0.14 and σ = 0.5 ∗ eN (0,0.5)= 0.58:

Mutation {0.09, 0.5|, −0.12, 0.5|, −0.30, 0.50|, −0.23, 0.5|, −0.21, 0.5|, 0.10, 0.5|, −0.15, 0.5|, −0.31, 0.5|, −0.25, 0.5}
- -
Offspring {0.09, 0.5|, −0.12, 0.5|, −0.14, 0.58|, −0.23, 0.5|, −0.21, 0.5|, 0.10, 0.5|, −0.15, 0.5|, −0.31, 0.5|, −0.25, 0.5}

In order to evolve a good Braitenberg vehicle, the fitness function has to incorporate motor
speeds and distances to obstacles. The use of speed and distance in a fitness function may
result in useless activity, such as spinning of the robot with high speed far from the obstacles.
Therefore, a penalty term �vt = |Vl − Vr | has been used in the fitness function to avoid
spinning. Hence, the fitness measure for the evolution strategy at time t is defined as

ft = Vt

(
1−

√
�vt

) (
1− I P̂t

)
(6.25)

218 Computational Intelligence

where Vt = (Vl+Vr)
2 , I P̂t = max{IPi }, i = 1, 2, . . . , 8. Vl and Vr are the left and right wheel

speeds of the robot, respectively. The term
(
1− √

�vt
)
ensures the two wheels rotate in the

same direction, making it move forward. The fitness evaluation is carried out over a period of
time, e.g., tmax = 100 times. The final fitness value over tmax will thus be

F =
tmax∑
t=1

Vt

(
1−

√
�vt

) (
1− I P̂t

)
(6.26)

In this example, a (3+2)-ES has been applied to obtain a good set of controller weights for
the Braitenberg vehicle. A (3+2)-ES generates two new offspring per generation and the next
generation consists of the three best individuals selected from three parents and two offspring.
Offspring 1 is created by intermediate recombination and offspring 2 is created by mutation. A
typical run of the evolution of the Braitenberg vehicle can be performed by using the weights
wl

i , w
r
i , w

l
0, w

r
0, i = 1, 2, . . . , 8 for 100 time steps and the final fitness F is computed. The

offspring are evaluated and compared with parents Pi , i = 1, 2, 3. Out of the five individuals,
the best three are selected again for the next generation population. The evolution process thus
continues until the robot is able to move around avoiding obstacles.

6.6.3 Genetic Algorithms

What is known as a genetic algorithm today is the most widely applied and well-known
evolutionary algorithm. This is attributed entirely to John Holland, whose extensive work in
the field during the 1960s and 1970s made the GA a widely popular optimization method-
ology. John Holland is generally considered the father of GA. In GA, individuals are rep-
resented by means of strings (similar to the way genetic information is coded in organisms
as chromosomes) (Holland, 1975). Each individual in the population represents a potential
solution to the problem. Unlike other optimization techniques, GA does not require math-
ematical descriptions of the optimization problem, but instead relies on a cost function in
order to assess the fitness of a particular solution to the problem in question (Goldberg,
1989). The GA then iteratively creates new populations from old by ranking the strings and
interbreeding the fittest to create new strings, which are (hopefully) closer to the optimum
solution of the problem in question. So, in each generation, the GA creates a set of strings
from the bits and pieces of the previous strings, occasionally adding random new data to
keep the population from stagnating. The end result is a search strategy that is tailored for
vast, complex, multimodal search spaces. A genetic adaptive plan can then be defined as a
quadruple

� = {�,�N ,�,�} (6.27)

where� is the coding format,�N is a population of size N,� is a fitness re-scaling algorithm
and � = [ω1, ω2, . . . , ωm] is the set of genetic operators.
The most common genetic operators in GA are selection, crossover and mutation. The

genetic plan refers to the process through which successive populations are generated using
evaluation, selection, mating and deletion. Let� be a probability distribution over� which is
derived from the fitness of each trial,μ(A ∈ �). A genetic plan can then be formally expressed

Evolutionary Computing 219

as the mapping� : (� × �(g)× �) → �(g + 1). The structure of the genetic algorithm can
be stated as follows.

t ← 0
initialize [P(t)]
evaluate [P(t)]
do while (not termination-condition)
{
P ′

M (t)← reproduce [PN(t)]
P ′

M (t)← evaluate[P ′
M (t)]

Q ← select[P ′
M (t)]

PN(t)← replace[Q]
P(t+1)← [PN(t)]
t ← t+1
}
enddo

where PN(t) denotes a population of N individuals at generation t, P ′
M (t) denotes an offspring

population of size M generated by means of reproduction, reproduction operators are such as
crossover and mutation, and Q is an intermediate population in the mating pool.

6.6.3.1 Chromosome Representation

The classical chromosome representation scheme for a GA is a binary vector of fixed length.
In the case of an n-dimensional search space, each individual consists of n variables with each
variable encoded as a bit string. In the case of nominal-valued variables, each nominal value
can be encoded as a D-dimensional bit vector, i.e., the variable can have 2D nominal values. In
the case of continuous-valued variables, each variable should be mapped to a D-dimensional
bit vector, i.e., � : � → {0, 1}D .
The range of continuous space needs to be restricted to a finite range [α, β]. Using stan-

dard binary decoding, each continuous variable Cn,i of chromosome Cn is encoded using
a fixed-length bit string. For example, if z ∈ [zmin, zmax] needs to be converted to a 30-bit
representation, the following conversion can be used:

(
230 − 1) z − zmin

zmax − zmin
(6.28)

Binary coding is frequently used, but it has the disadvantage of Hamming Cliffs – formedwhen
two numerically adjacent values have bit representations with a large Hamming distance. This
causes a problem when a small change in variables should result in a small change in fitness.
An alternative bit representation is to use Gray coding. Gray coding has the advantage over
binary coding in that the Hamming distance between two successive numerical values is one.
GAs have also been developed that use integer or real-valued representations. The advantage of
real-valued coding over binary coding includes increased precision and the chromosome string
becomes shorter. Also, real-valued coding gives a greater freedom to use special crossover
and mutation techniques.

220 Computational Intelligence

6.6.3.2 Selection Operators

The selection (reproduction) operator allows individual (strings) to be copied for possible
inclusion in the next generation. The chance that a string will be copied is based on the
individual’s fitness value, calculated from a fitness function. Themost commonly used selection
methods are random, proportional, tournament, rank-based and elitism. These have been
discussed in Section 6.4.1.

6.6.3.3 Crossover Operators

The aim of crossover is to produce offspring from two parents selected using a reproduction
operator, which takes place at a certain probability called the crossover probability (Cp).
The value of Cp is set by the user, and the suggested value ranges between 0.6 and 0.8,
although this value can be domain-dependent. Several crossover operators are in wide use
in GAs, such as single-point, uniform and multi-point crossover. These are discussed in
Section 6.4.2.

6.6.3.4 Mutation Operators

There may not be enough variety of strings in the initial population generated randomly, which
should be uniformly distributed within the entire problem space. The aim of mutation is to
produce new genetic material in an existing individual and maintain genetic diversity at all
generations of GA. The mutation probability should be kept very low (usually between 0.01
and 0.02). Widely used mutation operators are bit inversion (mainly used for binary or Gray
coding) and adding a small number (usually used for real-value coding). Different mutation
operators are discussed in Section 6.4.3.

Example 6.6: Simple function optimization problem The problem is simply stated. Find
the maximum value of the function in Equation (6.29). The GA to be used in this example is
based almost exactly on the description given above. The population size will be 4, and strings
of bits of length 5 will be used. A crossover probability of 0.6 is assumed and a mutation
probability of 0.001. With such a low chance of mutation, it does not occur in the following
example.

y = f (x) = −x2 + 8x + 15 0 ≤ x ≤ 25 (6.29)

In order to make things easy for us, we will assume that the maximum is between 0 and 25
(the actual maximum is at x = 4) and that the maximum is an integer value. See Figure 6.17.

Coding scheme: We can represent integer values in the range [0 . . . 31] with a 5-bit string,
e.g.

String Decoded value

00001 1
00101 5
10110 22

Evolutionary Computing 221

0 5 10 15 20 25
–450

–400

–350

–300

–250

–200

–150

–100

–50

0

50

0 < = X < = 25

y
 =

 f
(X

)

Figure 6.17 Values of f(x)

Fitness function: This will give the relative fitness values. The simplest method to employ
here is to use the decoded x value to calculate the y coordinate and use the y coordinate as the
fitness value:

f (x) = −x2 + 8x + 15 (6.30)

Selection: The fitness value for string i, as a percentage, will be the y value at i divided by the
sum of all the y values for every string. The fitness function for string i in the string population
is as follows:

Fitness valuei = fi∑
f

(6.31)

For example, say y = x2 and we are trying to find the maximum value of the function between
[0 . . . 31]. Then the following strings would have the relative fitness indicated below:

String x Value f(x) Relative fitness

00101 5 25 0.04
01101 13 169 0.25
10110 22 484 0.71

In reality, since the value of the function we want to minimize can take on negative values, the
fitness function is slightly more complex than the one used above. However, in essence, the
two remain equivalent.

222 Computational Intelligence

Running the GA: First iteration
Firstly, we need to create a random population of strings. Say we start with the following:

String population

00010
00111
10110
01011

Now we perform selection. The fitness value of each string is calculated and the strings are
selected the following number of times:

Relative No. of times
String x Value f(x) fitness value selected

00010 2 27 0.35 1
00111 7 22 0.34 2
10110 22 –293 0.008 0
01011 11 –18 0.30 1

With these selections, the mating pool now looks like this:

String population

00111
00010
00111
01011

Finally, the crossover probabilities need to be calculated (two crossovers need to be performed
to create a new population of two). The GA calculates that it should perform splitting twice
on two sets of randomly selected genes. Crossover performs the following to create the new
population:

Mating pool strings New population

0001|0
0011|1

00011
00110

01|011
00|010

01010
00011

Evolutionary Computing 223

So, at the end of the first iteration, the new population looks like the following:

String population x Value

00011 3
00110 6
01010 10
00011 3

Even after one generation of evolution, with no knowledge except for the relative fitness value,
the GA has begun to quickly converge on the optimum value of 4. This is startling, considering
the GA knows nothing about the problem space in which it searches. It is effectively blind.
Yet, just by examining a measure of goodness, having a large number of points to examine
simultaneously and having a large amount of randomization thrown in, the GA efficiently
searches the problem space for possible answers.

6.6.4 Genetic Programming

Friedberg (Friedberg, 1958; Friedberg et al., 1959) was among the first to evolve computer
programs. The word ‘evolution’ was not used at that time, although the author intended to
simulate evolution. Dunham and North pursued this line of research within IBM through the
1970s and 1980s up to the early 1990s (Dunham et al., 1974). It was John R. Koza who
applied the GA approach to perform an automatic derivation of equations, logical rules or
program functions (Koza, 1992). He first used the term ‘genetic programming’ where, rather
than representing the solution to the problem as a string of parameters as in a conventional GA,
he used a tree encoding scheme or structure. The leaves of the tree, called terminals, represent
input variables or numerical constants. Their values are passed to nodes, at the junctions of
branches in the tree, which perform some arithmetic or program function before passing on
the result further towards the root of the tree.
GP ismuchmore powerful than genetic algorithms in that the output of the genetic algorithm

is a quantity, while the output of the GP is another computer program. GPworks best for several
types of problem. The first type is where there is no ideal solution (for example, a program that
drives a car). Furthermore, GP is useful in finding solutions where the variables are constantly
changing.
There are five major steps in using GP for a particular problem. These need to be specified

by the user.

• Set of terminals (e.g., the independent variables of the problem, zero-argument functions
and random constants) for each branch of the to-be-evolved program.

• Set of functions for each branch of the to-be-evolved program.
• Fitness measure (for explicitly or implicitly measuring the fitness of individuals in the
population).

• Selection of certain parameters for controlling the run.
• Selection of termination criterion and method for designating the result of the run.

GP typically starts with a population of randomly generated computer programs composed
of the available programmatic ingredients within the hyperspace of valid programs. These

224 Computational Intelligence

programs are represented in the form of rooted trees. Langdon (1988) demonstrated in his
excellent volume how a large collection of abstract data structures such as stacks, queues, lists,
rings, etc. can be beneficial when evolving programs. GP iteratively transforms this population
of computer programs into a new generation of the population by applying genetic operations
such as crossover and mutation. These operations are applied to individual(s) selected from
the population. The individuals are probabilistically selected to participate in the genetic
operations based on their fitness. The iterative transformation of the population is executed
inside the main generational loop of the run of GP. The structure of the GP can be stated as
follows:

t ← 0 ; set generation
[F(t)]← randomly initialize trees ; trees composed of functions and terminals

do while (not termination-condition)
{
evaluate [F(t)] ; using the problem’s fitness measure
Q ← select [F(t)] ; with a probability based on fitness into the

; mating pool Q
F ′

C (t)← crossover [Q]
F ′

M (t)← mutate [Q]
[f (t+1)]← new population

{
F ′

C (t), F ′
M (t)

}
t ← t+1
}

The single best program in the population produced during the run – the best-so-far individual –
is harvested and designated as the result of the run. If the run is successful, the result may be
a solution (or approximate solution) to the problem.

6.6.4.1 Fitness Evaluation

It is to be determined how good the individuals are at solving the given problem. As with
GAs, the crossover and mutation operations are separate from the actual evaluation of the
fitness, making the GP operators problem-independent. The fitness function is determined
subjectively. For example, we could include the depth of the tree as a potential quality we wish
to control, and therefore we could develop a fitness function which takes this into account.
The measurement of fitness is a rather nebulous subject. Since it is highly problem-

dependent, we consider massaging the results to make fitness evaluation much easier, through
a process known as scaling. Simply put, scaling standardizes the measurement of how fit a
particular individual is with respect to the rest of the population.

6.6.4.2 Selection Operators

Based on the fitness value, selection operators is chosen for survival in one of two ways:

• Choose the individuals with the highest fitness for reproduction.
• Assign a probability that a particular individual will be selected for either mutation or
crossover. This method of choice allows for more diversity. Some weak individuals may
contain branches of code which are strong.

Evolutionary Computing 225

6.6.4.3 Crossover Operators

Koza (1995) considers crossover, along with reproduction, to be the two foremost genetic
operations. It is mainly responsible for the genetic diversity in the population of programs.
Similar to its performance under GA, crossover operates on two programs (or tress) and
produces two child programs. Two random nodes are selected from within each program and
then the resultant ‘subtrees’ are swapped, generating two new programs. These new programs
become part of the next generation of programs to be evaluated. For the next couple of
examples, parents are generated randomly using the terminal set specified by {a, b, x, y, z, 3.4}
with {a, b, x, y, z} ∈ � and the function set given by {−,+, ∗, /, sin, exp, ln}. A crossover
operationwith different parents is shown in Figure 6.18 and a crossover operationwith identical
parents is shown in Figure 6.19.

6.6.4.4 Mutation Operators

Several mutation operators have been developed for GP. The most frequently used operators
are function node mutation, terminal node mutation, swap mutation, grow mutation, Gaussian
mutation and trunk mutation.

*

+exp

a sin–

x3.4 a

+

sin z

/*

3.4

z a

*

+exp

a sin–

za a

+

sin x

/*

3.4

z 3.4

Parent 1 Parent 2

(a)

Offspring 1 Offspring 2

(b)

Figure 6.18 Crossover operation with two different parents

226 Computational Intelligence

+

sin z

/*

3.4

z a

+

sin

Identical parents

Offspring 1 Offspring 2

z

/*

3.4

z a

+

*

z

za

za

 +

sin

/ *

3.4

z 3.4

/

sin

Figure 6.19 Asexual crossover operation with identical parents

Function node mutation: A non-terminal node or function node is randomly selected and
replaced with a function selected randomly from the function set.

Terminal node mutation: A leaf node or terminal node is randomly selected and replaced
with a new terminal node selected from the terminal set.

Swap mutation: Two function nodes are randomly selected and the arguments of the nodes
are swapped.

Grow mutation: A randomly selected node is replaced by a randomly generated subtree.

Gaussian mutation: A terminal node with a constant value is randomly chosen and mutated
by adding a Gaussian random value.

Trunk mutation: A function node is selected randomly and replaced by a random terminal
node.

Figure 6.20 illustrates the concept of different mutation described in this section. Parent
trees are generated randomly using the terminal and the function set defined above.

Example 6.7: Automatic programming The problem is to find a computer program through
evolution with a single variable x , which will output the value of the quadratic polynomial
y(x) = x2 + x + 1 with x ∈ � and −1 ≤ x ≤ +1. This process is sometimes called system
identification or symbolic regression.

Evolutionary Computing 227

+

sin

(a)

(b)

(c)

(d)

(e)

(f)

–

x3.4 a

+

exp–

x3.4 a

+

sin–

x3.4 a

+

sin–

xa a

+

z

/*

z az

+

z

*/

z az

+

sin

/*

3.4

z 3.4

+

sin

*

3.4

z z

/

a

+

sin–

x3.4 a

+

sin–

x3.5 a

+

*

z

a

z

+

z

/ *

z a z

Figure 6.20 Widely used mutation in tree coding. (a) Function node mutation; (b) Terminal node
mutation; (c) Swap mutation; (d) Grow mutation; (e) Gaussian mutation; (f) Trunk mutation

GP is the suitable EA to create the computer program for symbolic processing of the polyno-
mial. That is, the goal is to create a computer program that matches certain numerical data.
This is to find a mathematical function of one independent variable, therefore, the terminal set
includes the independent variable x . Thus, the terminal set T = {X}.
The possible choice for the function set consists of the four ordinary arithmetic functions

{−,+, ∗, /}. This choice is reasonable because mathematical expressions typically include
these functions. Thus, the minimal function set is given by F = {−,+, ∗, /}. A common
run-time problem of a program is division by 0. To avoid run-time error, the division function
(/) is protected and the division function returns a value of 1 when division by 0 occurs and
even 0 divided by 0 is also set to 1.
The purpose of the fitness measure is to specify what the human programmer wants. The

high-level goal of this problem is to find a program whose output is equal to the values of the
quadratic polynomial x2 + x + 1. Therefore, the fitness assigned to a particular individual in
the population for this problem must reflect how closely the output of an individual program
comes to the target polynomial x2 + x + 1. The fitness measure could be defined as the
value of the integral (taken over values of the independent variable x between –1.0 and
+1.0) of the absolute value of the differences (errors) between the value of the individual

228 Computational Intelligence

12 ++ xx]0.1,0.1–[x ∈

Program

Fitness

GP

e

)(xy

py

Figure 6.21 Genetic programming process for symbolic regression problem

mathematical expression and the target quadratic polynomial x2 + x + 1. That is f = ∑ |e(x)|
over x = [−1.0,+1.0], where e(x) = y(x)− yp. yp is the program output. A smaller value
of fitness (error) is better. A fitness (sum of absolute error) of zero would indicate a perfect
match but if a program’s fitness is less than 0.1, it will be an acceptable program in this case.
The genetic programming process is shown in Figure 6.21.
For most problems of symbolic regression or system identification, it is not practical or

possible to analytically compute the value of the integral of the absolute error. Thus, in practice,
the integral is numerically approximated using dozens or hundreds of different values of the
independent variable x in the range between –1.0 and +1.0. The population size in this small
illustrative example will be just 4. In actual practice, the population size for a run of genetic
programming consists of thousands of individuals. A population of four individuals is shown
in Figure 6.22. The crossover operation will be performed on two individuals and the mutation
operation will be performed on one individual.
The four individuals (a)–(d) in Figure 6.22 are evaluated and the outputs y(x) and yp are

shown in Figure 6.23. The relative fitness (minimum is sought) of the individuals (a), (b), (c)
and (d) in Figure 6.22 is 0.15, 0.22, 0.61 and 0.45, respectively.
The individuals (a) and (b) are fitter than the other two. Therefore, the individuals (a) and

(b) are selected for crossover operation. The crossover operation is performed by swapping
the selected subtrees, shown encircled in Figure 6.22. Two offspring are created and replace
their parents, as shown in Figure 6.24(a,b). One individual is randomly chosen for mutation.
This is shown in Figure 6.24(b). The new population after crossover and mutation is shown
in Figure 6.25. The four individuals of the new population (Figure 6.25(a)–(d)) are evaluated

–

+

1x

0

+

*

xx

1 *

x 0.5

+

*

xx

x

(a) (b) (c) (d)

Figure 6.22 Initial population of four chromosomes at generation 0. (a) x + 1; (b) x2 + 1; (c) x∗0.5;
(d) x2 + x

Evolutionary Computing 229

–1 –0.5 0 0.5 1
–2

0

2

4

6

(a)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(b)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(c)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(d)

Figure 6.23 The fitness of the four individuals at generation 1. (a) y = x + 1, relative fitness =
0.15; (b) y = x2 + 1, relative fitness = 0.22; (c) y = x∗.5, relative fitness = 0.61; (d) y = x2 + x,

relative fitness = 0.45

–

1 0

+

*

xx

+

1x

*

x 0.5

+

*

xx

x

(a) (b) (c) (d)

Figure 6.24 Population after crossover operation. (a) 1− 0; (b) x2 + x + 1; (c) x∗0.5; (d) x2 + x

–

1

(a) (b) (c) (d)

0

+

*

x x

+

0.9 x

*

x 0.5

+

*

x x

x

Figure 6.25 Population (after crossover and mutation operation) in generation 2. (a) 1− 0; (b) x2 +
x + 0.9; (c) x∗0.5; (d) x2 + x

230 Computational Intelligence

–1 –0.5 0 0.5 1
–2

0

2

4

6

(a)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(b)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(c)

–1 –0.5 0 0.5 1
–2

0

2

4

6

(d)

Figure 6.26 The fitness of the four individuals at generation 2. (a) y = 1− 0, relative fitness =
0.17; (b) y = x2 + x + 1, relative fitness = 0.03; (c) y = x∗.5, relative fitness = 0.61; (d) y = x2 + x,

relative fitness = 0.45

and the outputs y(x) and yp are shown in Figure 6.26(a)–(d). The relative fitness (minimum
is sought) of the individuals (a)–(d) is 0.17, 0.03, 0.61 and 0.45, respectively. As can be seen
from Figures 6.25 and 6.26, the individual (b) is very close to the desired function and the
fitness is less than 0.1. Therefore, GP is terminated at this stage. The example demonstrates
the GP in a very simplified way but in the real simulation it may take several generations to
converge.

6.6.5 Differential Evolution

DE is a population-based direct search algorithm which has mainly been used to solve contin-
uous optimization problems (Storn, 1995, 1999; Storn and Price, 1997). DE was developed by
Kenneth Price in an attempt to solve the Chebyshev polynomial fitting problem that had been
posed to him by Rainer Storn. This was done bymodifying genetic annealing, originally devel-
oped by Price (1994) to use a floating-point encoding scheme. The main difference between
DE and other EAs is that DE uses differences of two randomly selected individuals (parameter
vectors) as the source to perturb the vector population rather than a probability function as
an evolution strategy. DE performs mutation based on the distribution of the solutions in the
current population first and then applies a crossover operator to generate offspring. In this way,
search directions and possible step sizes depend on the location of the individuals selected to
calculate the mutation values.

Evolutionary Computing 231

The basic algorithm of DE is simple and straightforward and consists of the following four
steps:

1. Initialization of parameter vectors.
2. Mutation with difference vectors.
3. Crossover operation: exponential (two-point modulo) or binomial (uniform).
4. Selection.

A practical optimization technique should satisfy three demands for any problem. First, the
method should find the true global minimum. Second, the algorithm should ensure fast conver-
gence. Third, the algorithm should have a minimum of control parameters. Considering these
three demands, DE is a fast, simple technique, involves only three parameters and performs
extremely well on a wide variety of test problems (Storn et al., 2005).
In the DE literature, a parent vector xi (t) from the current generation is called the target

vector, a mutant vector obtained through the differential mutation operator is known as a
donor vector ui (t) and finally an offspring formed by recombining the donor with the tar-
get vector is called a trial vector. The general structure of DE algorithm is described as
follows:

t ← 0
initialize [P(t)]
do while (not termination-condition)
{
for each individual xi (t) ∈ P(t) do
{
evaluate fitness fi ← evaluate [xi (t)]
create donor vector ui (t) ← mutate [xi (t)]
create offspring x ′

i (t) ← crossover [xi (t)]
if f

[
x ′

i (t)
]
> f [xi (t)] ; > meaning better than

P(t) ← P(t) + x ′
i (t) ; add x ′

i (t) to P(t)
else P(t) ← P(t) + xi (t) ; add xi (t) to P(t)
}

t ← t+1
}

6.6.5.1 Chromosome Representation

The classical chromosome representation scheme for any EA is a vector of fixed length. In
the case of an N-dimensional search space, each individual (also called parameter vector) in
DE consists of N variables with each variable encoded as a real number. The ith individual
(i.e., chromosome) of the population at generation t is an N-dimensional vector of a set of N
parameters to be optimized. The ith chromosome of the DE is presented below:

xi (t) = [
xi,1(t), xi,2(t), . . . , xi,N (t)

]
(6.32)

232 Computational Intelligence

)(3 txi

x*

)(3 txi−

)(2 txi

)()(32 txtx ii −

)]()([32 txtx ii −α

)(txi

)(tui

)(1 txi

Figure 6.27 Mutation in differential evolution

6.6.5.2 Mutation Operators

Mutation in DE produces a donor vector by randomly selecting two individuals xi,2 and xi,3

from the population. The difference between the two is scaled by a scalar factor α and added
to a target vector xi,1 to form the donor vector ui (t). The process of the jth component of the
mutation operation is described by

ui, j (t) = xi,1(t)+ α
xi,2(t)− xi,3(t)� (6.33)

where α ∈ (0,∞) is the scale factor that controls the amplification of the differential variation.
The process of the mutation operation is shown in Figure 6.27.

6.6.5.3 Crossover Operators

At the heart of every direct searchmethod is a strategy that generates variations of the parameter
vectors. Once a variation is generated, a decision must be made whether or not to accept the
newly derived offspring. The DE crossover is performed by a discrete recombination of the
donor vector ui (t) and the parent vector xi (t) to produce offspring x ′

i (t). In general, crossover
in DE is implemented as follows:

x ′
i j =

{
ui j (t) if j ∈ C

xi j (t) otherwise
(6.34)

where xi j (t) represents the jth element of the vector xi (t) and C is the set of crossover
points (element indices) selected in the variation. The crossover operation in DE is shown in
Figure 6.28. The DE family uses two different schemes of crossover, namely, binomial and
exponential.

Evolutionary Computing 233

)(tui

)(txi

x*

)(' txi

Figure 6.28 Crossover in differential evolution

Binomial crossover: The crossover points are selected randomly with a probability of pc

from the set of crossover points C . The probability pc ensures a binomial distribution of the
parameters inherited from the mutant.

Exponential crossover: A sequence of adjacent crossover points is selected, treating the list
of potential crossover points as a circular array.

6.6.5.4 Selection Operators

The selection operator allows DE to keep the population size to a constant by deciding between
the target and trial vector to be selected for possible inclusion in the next generation. If the trial
vector has a better fitness value, it replaces its target vector in the next generation otherwise
the parent is retained:

xi (t + 1) =
{

x ′
i (t) if f (x ′

i) > f (xi)

xi (t) otherwise
(6.35)

The DE has been applied successfully to diverse domains of engineering and scientific prob-
lems. A study on the performance of DE and its comparison with other population-based
optimization algorithms is reported in Vesterstrom and Thomson (2004), which shows that DE
outperforms over several numerical benchmarks. Different variants of DE have been reported
in the literature (Engelbrecht, 2007; Das and Suganthan, 2011).

6.6.6 Cultural Algorithm

Culture is the sum total of the learned behaviour of a population, which is generally considered
to be the tradition of that population and transmitted from generation to generation. Some
social researchers suggest that culture might be symbolically encoded and transmitted within
and between populations, as an inheritance mechanism. Using this idea, Robert Reynolds

234 Computational Intelligence

developed a computational model (Reynolds, 1994, 1999a,b) called the cultural algorithm
(CA). A cultural algorithm is a dual-inheritance mechanism where the population space
represents the genetic traits and the belief space represents the cultural traits. These behavioural
traits are passed from generation to generation using several socially motivated operators.
The concept is to preserve beliefs that are socially accepted and reject unacceptable beliefs

in a population. A population of individuals is used in CA, similar to evolutionary algorithms
discussed in earlier sections. Each of these individuals is, however, described in terms of a set
of traits or behaviours. An evaluation function is required to evaluate the performance of each
individual in solving a problem, analogously to the fitness function of EAs. A selection process
is used to choose the parents to be evolved in the next generation. The evolution process is
done with certain operators that tend to be domain-specific. The interactions between belief
space and population are performed via a communication channel.
CA supports two modes of inheritance, one at the micro-evolutionary level in terms of traits

and the other at the macro-evolutionary level in terms of beliefs. The two modes interact via
a communications channel that enables the behaviour of individuals to change or the belief
structure to be modified. The communication channel allows the belief structure to constrain
the individuals’ behaviour. Thus, CAs can be described in terms of three basic components,
namely, the belief space, the population and the communications channel. The basic structure
of CA algorithm is described by the following pseudo-code:

t = 0;
P(t)← initialize population
BLF(t)← initialize belief network
CHL(t)← initialize communication channel
evaluate [P(t)]
t = 1
repeat (until termination condition)
{
communicate [P(t), BLF(t)]
adjust [BLF(t)]
communicate [BLF(t), P(t)]
modulate fitness [BLF(t), P(t)]
t = t + l
P(t)← select [P(t – 1)]
evolve [P(t)]
evaluate [P(t)]
}

CA has found many applications in different problem domains (Franklin and Bergerman,
2000; Reynolds et al., 2006). Different variants of CA have been reported in the literature
(Reynolds and Peng, 2005; Engelbrecht, 2007).

6.7 MATLAB R© Programs

MATLAB R© provides the Genetic Algorithm and Direct Search Toolbox, which is a collection
of functions to support direct search, genetic algorithm and simulated annealing for solving a
variety of optimization problems. The toolbox provides two categories of tools: command line

Evolutionary Computing 235

functions and GUI tools. The command line functions can also be used in an M-file to run the
genetic algorithmmany times with different option settings. In this section, only command line
functions will be discussed and GA will be run from an M-file. All the toolbox functions are
implemented using MATLAB R© statements. The functions can also be extended using other
functions and statements in combination with other toolboxes.
The toolbox provides three different types of approach to solving optimization problems,

such as direct search, simulated annealing and genetic algorithms. The advantage of these
methods is that they do not require any gradient information or higher derivatives of the
objective function as opposed to traditional optimization methods. Direct search and simulated
annealing compute a sequence of points and get closer and closer to the optimal point by testing
them, whereas the genetic algorithm is a parallel search algorithm based on a population and
natural selection. The evolutionary algorithms discussed in this chapter are all population-based
optimization methods. Therefore, this section will specifically demonstrate a few examples
of optimization problems using the genetic algorithm provided by the toolbox. MATLAB R©

codes for the examples and plots of results are provided in Appendix F.

References

Beyer, H.-G. and Deb, K. (2000) On the desired behaviour of self-adaptive evolutionary algorithms. In Parallel
Problem Solving from Nature VI (PPSN-VI), pp. 59–68.

Bierwirth, C. (1995) A generalized permutation approach to job shop scheduling with genetic algorithms. OR
Spektrum, 17, 87–92.

Bierwirth, C., Mattfield, D.C. and Kopfer, H. (1996) On permutation representation for scheduling problems, Parallel
Problem Solving from Nature, 4, 310–318.

Box, G.E.P. (1957) Evolutionary operation: a method for increasing industrial productivity, Applied Statistics, 6(2),
81–101.

Braitenberg, V. (1984) Vehicles: Experiments in Synthetic Psychology, The MIT Press, Cambridge, MA.
Bralette, M.F. (1991) Initialisation, mutation, and selection methods in genetic algorithms for function optimisation.

Proceedings of ICGA 4, pp. 100–107.
Bremermann, H., Rogson, M. and Salaff, S. (1966) Global properties of evolution processes. In Natural Automata

and Useful Simulations, H. Pattee, E. Edlsack, L. Fein and A. Callahan (eds), Spartan Books, Washington, DC,
pp. 3–41.

Caruana, R.A. and Schaffer, J.D. (1988) Representation and hidden bias: Gray vs. binary coding. Proceedings of 6th
International Conference on Machine Learning, pp. 153–161.

Coella, C.A.C., Lamont, G.B. and Van Veldhuizen, D.A. (2007) Evolutionary Algorithms for Solving Multi-objective
Problems, 2nd edn, Springer-Verlag, Berlin.

Cordon, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001) Genetic Fuzzy Systems: Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases, World Scientific, Singapore.

Darwin, C. (1859) The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the
Struggle for Life, Mentor Reprint 1958, New York.

Das, S. and Suganthan, P.N. (2011) Differential evolution: a survey of the state-of-the-art, IEEE Transactions on
Evolutionary Computation, 15(1), 4–31.

De Jong, K.A. (1975) Analysis of the behaviour of a class of genetic adaptive systems, PhD Thesis, Department of
Computer and Communications Sciences, University of Michigan.

Deb, K. (2008)Multi-objective Optimisation using Evolutionary Algorithms, 2nd edn, JohnWiley& Sons, Chichester.
Deb, K. and Agrawal, S. (1995) Simulated binary crossover for continuous search space, Complex Systems, 9(2),
115–148.

Dunham, B., Lewitan, H. and North, J.H. (1974) Simultaneous solution of multiple problems by natural selection,
IBM Technical Disclosure Bulletin, 17(7), 2191–2192.

Eiben, A.E. and Smith, J.E. (2003) Introduction to Evolutionary Computing, Springer-Verlag, Heidelberg.
Engelbrecht, A.P. (2007) Computational Intelligence: An Introduction, John Wiley & Sons, New York.

236 Computational Intelligence

Eshelman, L.J. and Schaffer, J.D. (1993) Real-coded genetic algorithms and interval schemata.Foundations of Genetic
Algorithms 2 (FOGA-2), pp. 187–202.

Fogel, D.B. (1991) System Identification through Simulated Evolution: A Machine Learning Approach to Modelling,
Ginn Press, Needham Heights, MA.

Fogel, D.B. (1995) Evolutionary Computation – Toward a New Philosophy of Machine Intelligence, IEEE Press, New
York.

Fogel, D.B. (1998) Evolutionary computation – the fossil record. In An Introduction to Evolutionary Computation,
D.B. Fogel (ed.), IEEE Press, New York.

Fogel, D.B., Fogel, L.J. and Atmar, J.W. (1991) Meta-evolutionary programming. Proceedings of 25th Conference
on Signals, Systems and Computers, Vol. 1, pp. 540–545.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1996) Artificial Intelligence through Simulated Evolutionary, John Wiley
& Sons, Chichester.

Fogel, L.J. (1962) Autonomous automata, Industrial Research, 4, 14–19.
Franklin, B. and Bergerman, M. (2000) Cultural e-algorithms: concepts and experiments, 2000 IEEE Congress on

Evolutionary Computation, pp. 1245–1251.
Fraser, A.S. (1957) Simulation of genetic systems by automatic digital computers, I. Introduction, Australian Journal

of Biological Sciences, 10, 484–491.
Friedberg, R.M. (1958) A learning machine: Part I, IBM Journal of Research and Development, 2(1), 2–13.
Friedberg, R.M., Dunham, B. and North, J.H. (1959) A learning machine: Part II, IBM Journal of Research and

Development, 3, 282–287.
Goldberg, D.E. (1989)Genetic Algorithms in Search, Optimization, and Machine Learning, AddisonWesley, Boston,
MA.

Goldberg, D.E. and Lingle, R. (1985) Alleles, loci and the travelling salesman problem. In Proceedings of the
1st International Conference on Genetic Algorithms and Their Applications, J.J. Grefenstette (ed.), Lawrence
Erlbaum, Hillsdale, NJ.

Herrera, F. and Lozano, M. (2000) Gradual distributed real-coded genetic algorithms, IEEE Transactions on Evolu-
tionary Computation, 4(1), 43–63.

Herrera, F. and Lozano, M. (2001) Adaptive genetic algorithms based on co-evolution with fuzzy behaviours, IEEE
Transactions on Evolutionary Computation, 5(2), 149–165.

Herrera, F., Lozano, M. and Verdegay, J.L. (1997) Fuzzy connectives based crossover operators to model genetic
algorithms population diversity, Fuzzy Sets and Systems, 92(1), 21–30.

Holland, J.H. (1962) Outline for a logical theory of adaptive systems, Journal of ACM, 3, 297–314.
Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University Michigan Press, Ann Arbor, MI.
Karr, C.L. (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm. Proceedings of the 4th

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 450–457.
Kitano, H. (1990) Designing neural networks using genetic algorithms with graph generation system, Complex

Systems, 4, 461–476.
Kitano, H. (1994) Neurogenetic learning: an integrated method of designing and training neural networks using
genetic algorithms, Physica D, 75, 225–228.

Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, The
MIT Press, Cambridge, MA.

Langdon, W.B. (1998) Genetic Programming and Data Structures: Genetic Programming + Data Structures =
Automatic Programming, Kluwer Academic, Dordrecht.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin.
Nomura, T. and Miyoshi, T. (1996) Numerical coding and unfair average crossover in GA for fuzzy rule extraction
in dynamic environments. In Fuzzy Logic, Neural Networks and Evolutionary Computation, Y. Uchikawa and T.
Furuhashi (eds), Lecture Notes in Computer Science, Vol. 1152, Springer-Verlag, Berlin, pp. 55–72.

Ono, I. and Kobayshi, S. (1997) A real-coded genetic algorithm for function optimisation using unimodal nor-
mal distribution crossover. Proceedings of the 7th International Conference on Genetic Algorithms, pp. 246–
253.

Price, K. (1994) Genetic annealing, Dr. Dobb’s Journal, October, pp. 127–132.
Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem, Royal Aircraft Establishment, Library
Translation No. 1122, Farnborough, UK.

Reynolds, R.G. (1994) Introduction to cultural algorithms. In Proceedings of the Third Annual Conference on
Evolutionary Programming, A.V. Sebald and L.J. Fogel (eds), World Scientific, Singapore, pp. 131–139.

Evolutionary Computing 237

Reynolds, R.G. (1999a) Cultural algorithms: theory and application. In New Ideas in Optimisations, D. Corne, M.
Doriago and F. Glover (eds), McGraw-Hill, New York, pp. 367–378.

Reynolds, R.G. (1999b) An Overview of Cultural Algorithms: Advances in Evolutionary Computation, McGraw-Hill,
New York.

Reynolds, R. and Peng, B. (2005) Cultural algorithms: computational model of how cultures learn to solve problems:
an engineering example, International Journal of Cybernetics and Systems, 36, 753–771.

Reynolds, R.G., Peng, B. and Alomari, R.S. (2006) Cultural evolution of ensemble learning for problem solving.
2006 IEEE Congress on Evolutionary Computation, July 16–21, Vancouver, Canada, pp. 1119–1126.

Schwefel, H.-P. (1968) Projekt MHD-Strausstrhlrohr: Experimentelle Optimierung einer Zweiphasenduese, Teil I,
Technischer Bericht 11.034/68, 35, AEG Forschungsinstitute, Berlin.

Schwefel, H.-P. (1975) Evolutionsstrategie und numerische Optimierung, PhD Thesis, Department of Process Engi-
neering, Technical University of Berlin.

Schwefel, H.-P. (1995) Evolution and Optimum Seeking, John Wiley & Sons, Chichester.
Spears, W.M. (2000) Evolutionary Algorithms: The Role of Mutation and Recombination, Springer-Verlag, Berlin.
Srinivas, M. and Patnaik, L.M. (1994) Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE

Transactions on Systems, Man and Cybernetics, 24(4), 656–667.
Storn, R. (1995) Constrained optimization, Dr. Dobb’s Journal, May, pp. 119–123.
Storn, R. (1999) System design by constraint adaptation and differential evolution, IEEE Transactions on Evolutionary

Computation, 3(1), 22–34.
Storn, R. and Price, K. (1997) Differential evolution – a simple and efficient heuristic for global optimisation over
continuous space, Journal of Global Optimisation, 11(4), 431–459.

Storn, R., Price, K. and Lampinen, J. (2005) Differential Evolution – A Practical Approach to Global Optimisation,
Springer-Verlag, Berlin.

Syswerda, G. (1989) Uniform crossover in genetic algorithms. ICGA89, pp. 2–9.
Tsutsui, S., Yamamura, M. and Higuchi, T. (1999) Multi-parent recombination with simplex crossover in real-coded
genetic algorithms. Proceedings of the Genetic and Evolutionary Computing Conference (GECCO’99), pp. 657–
664.

Vesterstrom, J. and Thomson, R. (2004) A comparative study of differential evolution, particle swarm optimisation,
and evolutionary algorithms on numerical benchmark problems. Proceedings of the 6th IEEE Congress on
Evolutionary Computation, IEEE Press, New York, pp. 1980–1987.

Voigt, H.M., Muehlenbein, H. and Cvetkovic, H. (1995) Fuzzy recombination for breeder genetic algorithms. Pro-
ceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), L. Eshelman (ed.), Morgan
Kaufman, San Mateo, CA, pp. 104–111.

Vonk, E., Jain, L.C. and Johnson,R.P. (1997)Automatic Generation of Neural Network Architecture using Evolutionary
Computation, World Scientific, Singapore.

Whitley, D. (2000) Permutations. In Evolutionary Computation 1: Basic Algorithms and Operators, T. Back, D.B.
Fogel and Z. Michalewicz (eds), Institute of Physics Publishing, Bristol, pp. 274–284.

Wright, A. (1991) Genetic algorithms for real parameter optimisation. Proceedings of the Foundations of Genetic
Algorithms 1 (FOGA-1), pp. 205–218.

7
Evolutionary Systems

7.1 Introduction

Optimum seeking is one of the central issues in science, engineering, industry, economy,
business and even in everyday life. Every problem we solve, every product we design and
produce and every single thing we do are the outcome of the best possible choice. A variety
of tools and techniques have been developed and applied to manmade artificial systems for
optimum seeking; meanwhile, optimum seeking in nature, biological and social systems takes
place in a completely different way by means of natural evolution. In all optimum seeking in
artificial or natural systems, there are goals or objectives to be satisfied and there are constraints
to meet within which the optimum has to be found. Eventually, the optimum seeking can be
formulated as an optimization problem. That is, it is reduced to finding the best solution
measured by a performance index. The performance indices are functionals (often known as
objective functions in many areas of computing and engineering) that vary from problem to
problem. In general, a performance index can be given by

J (c) =
∫
x

Q(x, c)p(x)dx (7.1)

where Q(x, c) is the functional of the vector c = (c1, c2, . . . , cN), which depends on the
random sequence or process x = (x1, x2, . . . , xN) with probability density function p(x).
The goal is to find the extremum of the functional Q(x, c), i.e., the minimum or maximum
depending on the problem. The expression in Equation (7.1) is generally known as the criterion
of optimality. For ease of application for certain problems, the criterion can also be defined
based on the averaging of Q(x, c) with respect to time depending on x . If x is a random
sequence, i.e., x = {x[n], n = 1, 2, . . . , N }, then J (c) is expressed as

J (c) = lim
N→∞

1

N

N∑
n=1

Q(x[n], c) (7.2)

If x is a random process, i.e., x = {x[t], 0 ≤ t < ∞}, then J (c) is expressed as

J (c) = lim
T →∞

1

T

T∫
0

Q(x[t], c)dt (7.3)

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

240 Computational Intelligence

The criterion of optimality, i.e., the term Q(x, c), can have a different interpretation or physical
meaning when implemented on a real system. For example, it is the deviation from the desired
behaviour (or output) of a system in a control application. Thus, the solution to the optimality
problem described by Equations (7.1)–(7.3) is now a problem of finding the vector c = c∗,
also called the optimal vector, which satisfies J (c). It is to be noted here that a process or
system for which the optimality is sought can be deterministic or stochastic in nature.
It is now obvious that for any deterministic or stochastic system the criterion of optimality,

i.e., the functional J (c) in Equations (7.1)–(7.3), should be known explicitly with sufficient
a priori information along with the constraints. If the functional J (c) is differentiable, its
extremum (i.e., maximum or minimum) can be obtained for the values of the parameter vector
c = (c1, c2, . . . , cN) when the partial derivatives ∂ J (c)/∂cv , v = 1, 2, . . . , N are simultane-
ously equal to zero. That is

∇ J (c) =
(

∂ J (c)

∂c1
,
∂ J (c)

∂c2
, . . . ,

∂ J (c)

∂cN

)
= 0 (7.4)

The vectors c = (c1, c2, . . . , cN) for which ∇ J (c) = 0 are called the stationary or singular
vectors. The problem is that not all stationary vectors are optimal and they do not correspond
to the desired solution, i.e., the desired extremum of the functional. Therefore, ∇ J (c) = 0
is only a necessary condition (Tsypkin, 1971). The sufficient conditions can be derived in
the form of an inequality based on the determinant containing the partial derivatives of the
second order of the functional with respect to c = (c1, c2, . . . , cN). However, it is not worth
doing even in cases where the computational effort is not huge. If there is only one extremum,
the stationary vector corresponding to the maximum or minimum can be found from the
physical conditions of the problem. The conditions of optimality define only local extrema.
Finding the global extremum becomes extremely difficult when the number of such extrema
is large.
There have been different methods for finding the unique optimal value of the vector c∗.

Gradient-based optimization techniques use derivative information in determining the search
direction. Among the gradient-based techniques, the steepest descent method and Newton’s
method are well known. Conjugate gradient, Gauss–Newton and Levenberg–Marquardt are
well-known variants of these methods. There is no guarantee that a gradient-based descent
algorithm will find the global optimum of a complex objective function within a finite time.
All descent methods are deterministic, requiring the initial points to be selected randomly,
which has a decisive effect on the final results. If the initial points are to be chosen randomly,
then the approach must be stochastic in nature or derivative-free.
If the criterion of optimality J (c) and its distribution are known, the approach for opti-

mization is to be called ordinary. There exist many ordinary approaches and they are mainly
analytic and algorithmic methods. These methods are suitable for simple problems of first and
second order. Approximations are used for higher-order problems. Algorithmic methods seem
not very promising for this kind of problem.
On the other hand, if the distribution is not known or not sufficient a priori information

is available, then an adaptive approach is used for optimization. In an adaptive approach,
current information is actively used to compensate the insufficient a priori information. When
a process is unknown (i.e., when it is not certain whether the process is deterministic or
stochastic), an adaptive approach is also applicable. The adaptive approach is mainly an

Evolutionary Systems 241

algorithmic (or iterative) method where a unique optimal vector is sought in an iterative
manner such that ∇ J (c) = 0. The algorithm is written as

c = c − η∇ J (c) (7.5)

where η is a scalar. The optimal vector c = c∗ can be found using the method of approximation
derived iteratively from Equation (7.5):

c[n] = c[n − 1]− η[n]∇ J (c[n − 1]) (7.6)

where n = 1, 2, . . . ,∞ and η[n] is the step size of the iterative method. Starting with an initial
vector c = c[0], the iterative method will converge to an optimal vector c∗:

lim
n→∞ c[n] = c∗ (7.7)

The optimal vector c∗ can be determined using the iterative procedure given by Equation (7.6).
The problem arises when the gradient of the functional in Equation (7.5) cannot be computed
in an explicit form. There exist such situations when the functional J (c) is discontinuous,
non-differentiable or dependence of the parameter vector c cannot be expressed explicitly
(Tsypkin, 1971). If the gradient of the functional ∇ J (c) in Equation (7.6) is not known but
some realization of ∇Q(x, c) is known, for example estimation by measurements, then the
algorithm of adaption can be written in the recursive form by substituting the gradient of the
functional ∇ J (c) with a sample of ∇Q(x, c):

c[n] = c[n − 1]− �[n]∇Q(x[n], c[n − 1]) (7.8)

where �[n] is a suitable step matrix and �[n] = Iη[n] where I is an identity matrix. To ensure
convergence, certain constraints are imposed on �[n]. For the simplest adaptive algorithm,
�[n] is a diagonal matrix given by:

�[n] = Iη[n] =

⎡
⎢⎢⎢⎣

η1[n] 0 · · · 0
0 η2[n] · · · 0
...

...
. . .

...
0 0 · · · ηN [n]

⎤
⎥⎥⎥⎦ (7.9)

where η[n] is a row vector. Owing to the diagonal property of the matrix �[n], it is useful for
the computation of the adaptive algorithm. In the case of the adaptive algorithm in Equation
(7.8), ∇Q(x, c) is not equivalent to zero for an optimal vector c = c∗. Various algorithms
have been proposed based on the selection of �[n] or η[n], such as Newton’s algorithm or the
steepest descent method.
But the problem is that, in real-world situations, the objective function and the constraints

are often not analytically treatable or even not available in closed form (Baeck, 1996). In such
situations, the algorithm in Equation (7.8) cannot be employed. The only possible solution of
the optimization problem under such conditions is possibly the search methods. Obviously
this suggests applying a stochastic method that is capable of searching a high-dimensional
space. In the methods of search, a transition from c[n − 1] to c[n] is based on a search step

242 Computational Intelligence

ηψ , whereψ is a random vector uniformly distributed inN-dimensional (c = [c1, c2, . . . , cN])
space (Tsypkin, 1971). That is, the algorithm in Equation (7.8) can be expressed as

c[n] = c[n − 1]− ηψ[n] (7.10)

where n = 1, 2, . . . , M and M is the maximum number of iterations.
It is now quite clear that the gradient term in Equation (7.8) is replaced with a random step

ηψ in Equation (7.10). There are a variety of stochastic search methods that are applicable
to the optimization of problems of this nature. These methods rely extensively on repeated
evaluations of the objective function and use heuristic guidelines for estimating the next search
direction. The guidelines used are very simply based on thermodynamics, such as simulated
annealing (Kirkpatrick et al., 1983), tabu-search (Glover, 1989), random search (Matyas, 1965)
and the downhill simplex method (Nelder and Mead, 1965). The searching strategies used by
simulated annealing, tabu-search, random search and downhill simplex search are local search
techniques and use a generate-and-test search, manipulating one feasible solution based on
physical characteristics. Without further explanation, it can be presumed that the selection of
the initial values of c (i.e., c[0]) has a decisive effect on the final solution. In practice, knowing
these initial values is nearly impossible. There is no known suitable heuristic approach, other
than selecting them randomly.
A conclusion can be drawn based on the transition from Equation (7.5) (derivative-based

approach) to Equation (7.10) (derivative-free approach) that even with these well-established
analytical methods, the stochastic nature of all the approaches cannot be avoided. This assump-
tion leads us to the choice of derivative-free stochastic optimization methods.
Evolutionary algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1992; Fogel, 1995;

Eiben and Smith, 2007; Engelbrecht, 2007; Deb, 2008) are based on natural evolution and bio-
logical analogy and work on a population of potential solution of the parameters (or structure)
in parallel. EAs are particularly attractive due to their ability to explore an initially unknown
search space and to exploit this information to guide the subsequent search over generations
and identify useful subspaces in which the global minimum is located. The advantage of the
implicit mechanism is that the search consists of a combination of high-performance building
blocks discovered during past trials (De Jong, 1975). Very often the term ‘adaptation’ is used,
which is a process of modifying the parameters or the structure of the system. The character-
istic features of adaptation are accumulation and use of current information that compensates
the insufficient a priori information for the purpose of optimization. Different variants of
EAs, such as evolutionary programming, evolution strategies, genetic algorithms, genetic pro-
gramming, differential evolution and cultural algorithms, have been discussed in Chapter 6.
The purpose of this chapter is to explore EA-based approaches in different application and
problem domains.
EAs have been applied to higher-dimensional and real-world complex problems ranging

from simple optimization to multi-objective optimization and from simple evolution to sym-
biotic evolution of multiple species. In the last few decades, EAs have found wide-ranging
application domains – specifically, multi-objective optimization, co-evolutionary systems with
multiple populations and parallel evolutionary algorithms. The purpose of this chapter is to
demonstrate a few examples in each domain. New ideas and concepts have enriched the EA
paradigm, with new directions.

Evolutionary Systems 243

7.2 Multi-objective Optimization

Real-world problems are complex and the definition of optimality is not simple as they need
to satisfy multiple competing objective functions at the same time. Moreover, some of these
objectives may have conflicting relations with others, which in fact makes the optimization
a difficult task. Problems requiring simultaneous optimization of more than one objective
function are known as multi-objective optimization problems (MOOPs). They can be defined
as problems consisting of multiple objectives, which are to be minimized or maximized while
maintaining some constraints. Formally, they can be defined as:

Minimize/maximize f (x) (7.11)

Subject to g j (x) ≥ 0, j = 1, 2, 3, . . . , J (7.12)

hk (x) = 0,k = 1, 2, 3, . . . , K (7.13)

where f (x) = { f1(x), f2(x), . . . , fn(x)} is a vector of objective functions, x =
{x1, x2, . . . , x p} is a vector of decision variables, n is the number of objectives and p is
the number of decision variables. Here, the problem optimizes n objectives and satisfies J
inequality and K equality constraints. This type of problem has no unique perfect solution.
In traditional multi-objective optimization, it is very common to simply aggregate all the
objectives together to form a single (scalar) fitness function. However, the obtained solution
using a single scalar is sensitive to the weight vector used in the scaling process. This requires
knowledge about the underlying problem which is not known a priori in most cases. More-
over, the objectives can interact or conflict with each other. Therefore, trade-offs are sought
when dealing with such MOOPs, rather than a single solution. Most MOOPs do not provide
a single solution; rather, they offer a set of solutions. Such solutions are the ‘trade-offs’ or
good compromises among the objectives. In order to generate these trade-off solutions, an old
notion of optimality called the ‘Pareto-optimum set’ (Ben-Tal, 1980) is normally adopted.
In multi-objective optimization, the definition of quality of solution is substantially more

complex than for single-objective optimization problems. The main challenges in a multi-
objective optimization environment are: converge as closely as possible to the Pareto-optimal
front, and maintain as diverse a set of solutions as possible. The first task ensures that the
obtained set of solutions is near optimal, while the second task ensures that a wide range of
trade-off solutions is obtained.
Owing to the advantageous features of derivative-freeness and population-based approach to

solutions of optimization problems, EAs are applied in MOOPs and the combination became
known as a multi-objective evolutionary algorithm (MOEA). An MOEA will be considered
good only if both the goals of convergence and diversity are satisfied simultaneously. The
MOEA’s population-based approach helps to preserve and emphasize the non-dominated
diverse set of solutions in a population. The MOEA converges to a Pareto-optimal front with
a good spread of solutions in some reasonable number of generations. Most MOEAs use the
concept of domination to attain the set of Pareto-optimal solutions. In total absence of infor-
mation for preferences of the objectives, solutions to multi-objective problems are compared
using the notion of Pareto dominance (Corne et al., 2000). For problems having more than
one objective function, any two solutions x (1) and x (2) can have one of two possibilities: one
dominates the other, or neither dominates the other. A particular solution x (1) with performance

244 Computational Intelligence

vector u is said to be dominant, or better than the solution x (2) with performance vector v, if
both the following conditions hold: (i) the solution x (1) is no worse than x (2) in all objectives
and (ii) the solution x (1) is strictly better than x (2) in at least one objective. This notion can be
generalized in the following equation:

u ≺ v iff [∀i ∈ {1, 2, . . . , n} , ui ≤ vi] ∩ [∃i ∈ {1, 2, . . . , n} |ui < vi] (7.14)

where it holds that u ≺ v ⇔ x (1) ≺ x (2). For a given finite set of solutions, we need to perform
pairwise comparisons to find out which solutions dominate and which are dominated. From
these comparisons, we can find a subset of the finite set of solutions such that any two solutions
which do not dominate each other, and all the other solutions of the finite set, are dominated
by one or more members of this subset. This subset is called the non-dominated set for the
given set of solutions. A solution is said to be Pareto-optimal if it is not dominated by any
other possible solution. This is described by:

x (1) ∈ xPO iff ∃/ x (2) ∈ �|x (2) ≺ x (1) (7.15)

where xPO is the set of Pareto optimal solutions and � is the set of all feasible solutions.
The Pareto front is the set of points in the criterion space that correspond to Pareto-optimal
solutions.
In an MOEA, a randomly selected population is generated within a specific range. Each

individual of the population is evaluated with the objective functions. Figure 7.1 shows many
solutions trading off differently between the objectives for a two-objective minimization
problem. Any two solutions from the feasible objective space can be compared. For a pair of
solutions, it can be seen that one solution is better than the other in the first objective but worse
in the second objective. The individuals that fall close to either axes or the origin of the two-
dimensional objective space are better than those away from the axes or origin. In the objective

o Non-dominated solutions
Dominated solutions

G

F

O
bj

ec
tiv

e
2

9

1

Pareto optimal set

Objective 1

1
1

1

1

1

1

1

3

A

E

3

6
5

6 7

3

2

4

D

C

B

Figure 7.1 Dominated and non-dominated solutions with ranking

Evolutionary Systems 245

space, some individuals may be found (such as the individuals denoted by E, A, G and F in
Figure 7.1) falling on an outer edge and close to the axes or origin and having one objective
better than the other. For clarity, these individuals are joined by a dotted line in Figure 7.1. All
the individuals lying on this curve form a set called the non-dominated solution set or Pareto-
optimal set. The curve formed by joining these solutions is called the Pareto-optimal front.
Individuals A, E, F and G are called non-dominated because no other individuals provide

better performance in the objective space. On the other hand, individuals falling away from
edges, such as B, C and D, are called dominated solutions since many individuals provide
better performance than these in terms of both objectives. The dominated and non-dominated
solutions are shown in Figure 7.1. For example, individual A dominates individual B, similarly
B dominates C and C dominates D in the objective space in terms of both objectives. In the pro-
cess, each individual is ranked according to their degree of dominance. An individual’s ranking
equals the number of individuals better than it in terms of both objectives plus one. Individuals
on the Pareto-optimal front (denoted by a small circle) are non-dominated and have a ranking
of one. Individuals inside the Pareto-optimal front (denoted by a small triangle) have higher
ranking than one. The numbers shown in Figure 7.1 correspond to their ranking. The main
goal of an ideal multi-objective optimization is to find as many Pareto-optimal solutions as
possible. Therefore, the objective of EAs would be to provide a diverse population of solutions.
Owing to the advantages of population-based EAs over the various difficulties in find-

ing multiple Pareto-optimal solutions using classical multi-objective optimization techniques,
currently researchers are exploiting EAs extensively for multi-objective optimization. A brief
discussion on the difficulties of classical multi-objective optimization methods can be found
in Deb (2008). The first application of EAs in multi-objective optimization was reported by
Schaffer (1985). He proposed a vector-evaluated GA (also known as VEGA). Since then,
research in MOEAs was dispersed up until the mid-1990s. Inspired by Goldberg’s (1989)
suggestion, different versions ofMOEAwere reported, such as the Niched Pareto genetic algo-
rithm (NPGA) proposed by Horn et al. (1993, 1994). Fonseca and Fleming (1993) introduced
a multi-objective GA (also known asMOGA) and the non-dominated sorting GA (NSGA) was
developed by Srinivas and Deb (1994). Multi-objective evolutionary algorithms have proved
to be very powerful tools for many complex problems and have become increasingly popular
in a wide variety of application domains.
The basic principle of developing an EA-based algorithm is to use Pareto-based fitness

to identify non-dominated individuals from the current population. Thus, an MOEA should
guide the search towards a Pareto-optimal front andmaintain diversity of knownPareto-optimal
solutions. A generic algorithm of anMOEAwould consist of the meta-level procedures shown
in Figure 7.2.
The genetic diversity of a population can be lost due to the stochastic selection pressure.

Fitness sharing based on the nichingmethod can overcome this. The basic idea of fitness sharing
is that all individuals within the same region (called a niche) share their fitness. Therefore,
individuals in over-populated regions will experience a greater fitness decrease than isolated
individuals. A new fitness function based on a ranking process has been suggested by Goldberg
and Richardson (1987). A non-dominated sorting-based fitness-sharing technique was used in
MOGA. Here, share counts are computed based on an individual’s distance in the objective
domain, but only between individuals with the same rank. Details of this method can be found
in Fonseca and Fleming (1998a,b). The stochastic universal sampling method is used to select
the best individuals. However, mating restrictions are employed in order to protect genetic
drifts and premature convergence.

246 Computational Intelligence

Start

Evaluate objective
functions

 Gen > MAXGEN?
Yes

Find non-dominated
solutions

Stop

No

Output

Fitness assignment

Selection

Recombination

Mutation

Initialize population

Ranking

Figure 7.2 Flow diagram of a generic MOEA procedure

The general procedure for fitness assignment and sharing can be described as follows:

(i) Sort population according to ranking.
(ii) Assign fitness by interpolating from the best individual to the worst according to some

function, in the form of a fitness function, such as linear or exponential. The lower the
rank of an individual, the smaller the fitness of the individual.

(iii) Average the fitness assigned to individuals with the same rank, so that all of them are
sampled at the same rate while keeping the global population fitness constant.

In the next few sections, we are going to discuss briefly the mainstream of MOEAs. In the
discussion, the terms ‘individual’ and ‘solution’ will be used interchangeably.

7.2.1 Vector-Evaluated GA

VEGA is a straightforward extension of single-objective GA for multi-objective optimization
problems, developed by Schaffer (1985). For anM-objective problem, the population is divided
into M equal subpopulations randomly. Each subpopulation is evaluated against an objective

Evolutionary Systems 247

function and assigned a fitness value. Selection is restricted only within subpopulations.
Crossover and mutation operators are applied on the combined population.

7.2.2 Multi-objective GA

Fonseca and Fleming (1993) first proposed the non-dominated solutions of MOGAs. They
also emphasized maintaining the diversity in non-dominated solutions. The fitness of the
individuals (i.e., solutions) is computed and then each solution is checked for its domination
in the population. A ranking procedure is carried out for all solutions in the population. An
individual’s ranking equals the number of individuals better than it in terms of all the objectives
plus one. There must be at least one solution with rank 1 and the maximum rank of a solution
cannot be more than the population size N . All ranks between 1 and N may not necessarily be
assigned to solutions in a population. Non-dominated solutions are assigned a rank equal to 1.
Fitness is assigned to a solution based on its rank. In order to maintain diversity among non-
dominated solutions, Fonseca and Fleming (1993) used the niching technique for solutions of
each rank. A pseudo-code for generic MOGA is given below:

gen← 0
Initialize population
Evaluate objective values
Assign rank based on Pareto dominance
Compute niche count
Assign linearly scaled fitness
Assign shared fitness
Do while (gen <Max generation)
{
Select using Stochastic Universal Sampling
Perform crossover
Perform mutation
Evaluate objective values
Assign rank based on Pareto dominance
Compute niche count
Assign linearly scaled fitness
Assign shared fitness
gen← gen + 1
}

7.2.3 Niched Pareto GA

NPGAwas proposed byHorn et al. (1993, 1994), where a tournament selection based on Pareto
dominance is applied. In the tournament selection, two individuals are randomly chosen and
compared against a subset of the population (typically 10%) for dominance. If one of them is
dominated by the subset of population and the other is not, then the non-dominated individual
is selected. If both the individuals are dominated or non-dominated by the subset of population,
they are checkedwith the offspring population and the niche count is calculated. The individual
with smaller niche count wins the tournament selection. The advantage of NPGA is that the
fitness assignment to each individual is not needed.

248 Computational Intelligence

7.2.4 Non-dominated Sorting GA

NSGA is a modification of the ranking procedure proposed by Srinivas and Deb (1994). After
evaluating the population, the procedure is to sort the population according to non-dominance.
The procedure divides the population into a number of mutually exclusive classes (i.e., non-
dominated sets). All non-dominated individuals are classified into one class (or front). For
example, a population for a two-objective minimization problem is classified into four fronts
after non-dominated sorting, as shown in Figure 7.3. Obviously, the solutions in the first front
are the best non-dominated set and the last set is the worst set. For example, front 1 is the
best and front 4 is the worst in Figure 7.3. Therefore, the highest fitness is assigned to the
best non-dominated front and the lowest fitness is assigned to the worst non-dominated front.
The fitness assignment procedure starts from the first non-dominated set with the highest
fitness equal to N (size of the population) and successively proceeds with lower fitness values
to dominated sets. For example, the solutions of front 1 (in Figure 7.3) have a fitness value
of 11 (population size). Assigning higher fitness values to better non-dominated solutions
creates a selection pressure towards the Pareto-optimal front as these sets are closer to the
Pareto-optimal front.
Maintaining diversity in the solution set (i.e., front) is important in MOEA and solutions

should be well distributed within a front. NSGA preserves diversity among solutions of each
non-dominated front using a sharing strategy. For example, the shared fitness of solution 4 (in
Figure 7.3) in front 1 is 11 and the shared fitness of solutions 1, 2 and 3 would be 11/3 or
3.66. The fitness of solutions in the next front should start with a slightly smaller value than
the minimum shared fitness value. Pseudo-code for a generic NSGA is given below:

gen← 0
Initialize population
Evaluate objective values
Rank based on Pareto dominance in each class
Compute niche count

O
bj

ec
tiv

e
2

10

Objective 1

2

Front 1

1
9

6

5 8

3

4

7

Front 2

Front 3

Front 4

11

Figure 7.3 A population classified into four non-dominated classes

Evolutionary Systems 249

Compute shared fitness
Do while (gen <Max generation)
{
Selection using Stochastic Universal Sampling
Perform crossover
Perform mutation
Evaluate objective values
Rank based on Pareto dominance in each class
Compute niche count
Compute shared fitness
gen← gen + 1
}

An improved version of NSGA, proposed byDeb et al. (2002), is known asNSGA-II. NSGA-II
has been used as a foundation for many other multi-objective optimization algorithm design.

7.2.5 Strength Pareto Evolutionary Algorithm

In an attempt to combine the different features of VEGA, NPGA, NSGA and HLGA (not
discussed above), Zitzler and Thiele (1999) proposed a new approach to find multiple Pareto-
optimal solutions in parallel – called the strength Pareto evolutionary algorithm (SPEA).HLGA
is a non-Pareto approach of aggregation by variable objective weighting methods proposed by
Hajela and Lin (1992). HLGA will not be discussed further. SPEA maintains an external set
for storing non-dominated solutions at each generation. A strength value is computed for each
solution in this set. This strength value is similar to the ranking used in other methods. SPEA
has the following distinct features:

(i) SPEA uses techniques such as storing the non-dominated solutions in an external set,
Pareto dominance to assign fitness and pruning of the external set.

(ii) The fitness of an individual is determined from the solutions in the external non-dominated
set.

(iii) All solutions stored in the external set take part in the selection process.
(iv) Pareto-based niching is used to preserve population diversity.

Pseudo-code for a generic SPEA is given below:

gen← 0
Initialize population P
Create empty external set P ′

Do while (gen <Max generation)
{
P ′← non-dominated solutions of P
P ′← non redundant solutions of P ′

Prune P ′ (by means of clustering) if |P ′| > N ′ (a given maximum)
Evaluate individuals of P and P ′

Select from (P + P ′) until mating pool is full

250 Computational Intelligence

Perform crossover
Perform mutation
gen← gen+1
}

There is also a new version of SPEA called SPEA2 (Zitzler et al., 2001). SPEA2 has three
improved features compared with SPEA: SPEA2 uses a fine-grained fitness assignment strat-
egy, nearest-neighbour density estimation technique for efficient search and improved storing
to preserve boundary solutions.
NSGA-II and SPEA2 are the two benchmark methods widely used by the MOEA research

community to compare the performance of new approaches and algorithms. There have been
various other MOEAs reported in the literature over the last two decades. Knowles and Corne
(2000) proposed a Pareto-archived evolution strategy (PAES) based on (1+ 1) evolution strat-
egy. Van Veldhuizen and Lamont (2000) proposed a multi-objective messy genetic algorithm
(MOMGA) based on messy GA. Corne et al. (2000) proposed a Pareto envelope-based selec-
tion algorithm (PESA) using a hypergrid division of phenotype space for maintaining selection
diversity. The micro-genetic algorithm for multi-objective optimization, called micro-GA, was
proposed by Coello Coello and Pulido (2005) using a small population with reinitialization
process. A comprehensive review of all these evolutionary multi-objective optimization algo-
rithms can be found in Coello Coello et al. (2007) and Deb (2008).

7.3 Co-evolution

Traditional evolutionary algorithms are not adequate for solving increasingly complex prob-
lems as they are highly simplified and abstract computational models of evolution that occur
in nature. In these EAs, evolution is viewed as a process of adaptation of a population in
a fixed environment. The environmental changes caused by populations are not taken into
consideration. There are multiple species existing and interacting with each other in a natural
environment. The selection, crossover and mutation mechanisms are far too simplified from
natural ones. There are various feedback mechanisms between the individuals undergoing
selection and crossover processes. Therefore, co-evolution is the complementary evolution
of multiple species with interdependency or intertwined relationships with each other in an
environment or eco-system (Watson and Pollack, 1999).
A complication of the Darwinian evolution is the fact that many species enter into close

ecological relationships with other species. The species work together towards some common
goals. However, in order to survive and produce offspring, they have to adapt themselves to the
changing environment. The adaptive value of an organism is determined by the environmental
niche. The characteristics of the niche are determined by the presence of a niche of the same
species or other species (Eiben and Smith, 2003). The impact of the species on fitness depends
on the inter-relationship between species. In this process, there are symbiotic relationships
between species such as competition, exploitation and benefitting. The general term for this
relationship is ‘symbiosis’, and it is a common phenomenon in co-evolution.
Beforewe discuss different forms of co-evolution,wewill introduce different symbiotic rela-

tionships between species using graphical representations that have been used by researchers
(Morrison, 1998). The nodes in Figure 7.4(a) represent individuals. The symbiotic relation-
ship is denoted by a directed edge as shown in the figure. The relationship can be protagonist

Evolutionary Systems 251

A

B

(a)

(b)

A

B+

+

–

Figure 7.4 Symbiotic relationships between species. (a) Nodes represent species and edges repre-
sent relationship; (b) Protagonist (B

+→A), antagonist (A
−→B) and adaptism (A

+→A) relationships
between species

(labelled+) or antagonist (labelled by –), as shown in Figure 7.4(b). All relationships between
species and individuals can be represented and explained using the symbiosis graph.
While co-evolution occurs because of symbiotic relationships between species, there are

differences between them. There are two types of co-evolutionary process identified:

• Cooperative
• Competitive

In cooperative co-evolution, different species cooperate with each other. This means species
help each other to improve the fitness (survival strength). In competitive co-evolution, different
species compete against each other to gain a fitness advantage at the expense of the other. The
interplay of inverse fitness means a fitness gain for one species and a fitness loss for the other.
The relationships among species in cooperative co-evolution can have different forms

(Watson and Pollack, 2001): commensalism, amensalism and mutualism.
In commensalism, one organism gets benefit with no significant detriment or benefit to the

other organism. The symbiosis is between two organisms, called the host and the commensal.
Figure 7.5(a) shows the commensalism, where A is the host and B is the commensal. The
commensal derives benefit from the host (protagonist relationship denoted by B

+→A) without
causing any harm to the host. The fitness of the host does not change as a result of the fitness
change in the commensal. A change in the fitness of the host causes benefit or loss to the
fitness of the commensal.
In amensalism, the symbiosis is between two individuals, called the host and the commensal.

Figure 7.5(b) shows the amensalism where A is the host and B is the commensal. The amensal
has no benefit from the host and is detrimentally affected by the host (antagonist relationship
denoted by A

−→B), whereas the host is unharmed by the amensal. The fitness of the host does

252 Computational Intelligence

A

+

B

(a) (b)
N

o
be

ne
fi

t

A

–

B

N
o

be
ne

fi
t

Figure 7.5 Symbiosis of commensalism and amensalism. (a) Commensalism; (b) Amensalism

not change as a result of the fitness change in the commensal. A change in the fitness of the
host causes benefit or loss to the fitness of the commensal.
In mutualism, both or all species benefit from the relationship. This is known to be the

first form of co-evolution. The species taking part in the mutualism are called symbiont. In
mutualism both the species (symbionts) are benefitted (mutual relationship denoted A

+↔B).
Figure 7.6 shows the symbiosis of mutualism. The fitness change in one symbiont will make
a positive change in the fitness of the other.
The relationships among species in competitive co-evolution can have different forms:

competition, predator–prey (parasitism) and adaptism.
In competition, different species fight each other for limited resources critical to fitness. In

the competition one wins and takes all or the majority of the share of the resource. A positive
change in the fitness of one will cause a negative change to the other. Figure 7.7 shows the
symbiosis of the competing relationship between two species.
Predator–prey relationships are the best-known examples in co-evolution. In predator–prey,

the predator derives benefit from the prey whereas the prey is detrimentally affected by the
predator. That is, the change in fitness of the predator is always positive and that of the prey is
always negative. The predator–prey symbiosis is shown in Figure 7.8. For example, the prey
needs to develop a superior defending mechanism for survival (e.g., running faster, growing
bigger shields, better camouflage technique, etc.). As a result, the prey has strong evolutionary
pressure over the predator to develop better attacking strategies in future generations (e.g.,
stronger claws, better eye-sight, etc.). The success of one species is the failure of the other. The
co-evolution results in a stepwise improvement of both species, with increased complexity of
the co-evolutionary process.

A

+

B

+

Symbiont

Symbiont

Figure 7.6 Symbiosis of mutualism (A
+↔B)

Evolutionary Systems 253

A

–

B

–

Competitor

Competitor

Figure 7.7 Symbiosis of competition (A
−↔B)

A

–

B

+

Predator

Prey

Figure 7.8 Symbiosis of predator–prey

In adaptism, species (or individuals) modify themselves or the environment without any
assistance of other species that have an impact on their own, resulting in a change in fitness.
The change in fitness can be positive or negative, as shown in Figure 7.9. The symbiotic
relationships are denoted A

+→A or A
−→A. This is seen as co-evolution of another sort. These

individuals are referred to as adaptive individuals, and have somehow been overlooked in the
literature (Morrison, 1998).

7.3.1 Cooperative Co-evolution

Evolving full solutions causes the population to converge and fail to find solutions for high-
dimensional large and complex problems. Maintaining population diversity in such high-
dimensional problems is a challenge. One strategy would be to decompose the larger problem

A

+

Individual

A

–

Individual

OR

Figure 7.9 Symbiosis of adaptism

254 Computational Intelligence

into tractable subproblems, each represented by a subpopulation (or species) of solutions. In
cooperative co-evolution, a number of different species offer a way of interaction between
solutions represented by each species and cooperate to come up with a solution to the larger
problem. Thus, the evolution establishes solutions in diverse populations and is able tomaintain
diversity in prolonged evolution. Such cooperative co-evolution has been proposed by many
researchers, for example, high-dimensional function optimization (Potter and De Jong, 1995a)
and complex structures (Potter and De Jong, 1995b). These representations, adapted to the
solutions currently in the population, have been found to speed up the search and provide even
better solutions.

7.3.1.1 A Generic Algorithm for Cooperative Co-evolution

Amutual cooperative co-evolutionary algorithm is presented here. The fitness of an individual
is calculated based on the ability to collaborate with individuals from other species. That is,
individuals of different species collaborate with each other towards the solution of a common
goal that defines their collective fitness. The problem is then how to distribute the fitness
share among participating individuals from this collective effort. Potter and De Jong (1995a,b)
proposed a general framework for evolving subpopulations independently andmerging them to
form a complete solution, which is evaluated to determine global fitness. The fitness share goes
back to each subpopulation, reflecting their performance in the collaboration. A cooperative
co-evolution should have the following characteristics:

(i) A species represents a subcomponent of a potential solution.
(ii) Complete solution is obtained bymerging representative individuals of each of the species.
(iii) A fitness award (or credit assignment) is given to the species, proportional to their

participation in the complete solutions.
(iv) Species (subpopulations) should themselves evolve when necessary.
(v) Standard EAs are used for evolution at species level.

A generic co-evolutionary algorithm is given here for cooperating subpopulations Sj , j =
1, 2, . . . , n. Each subpopulation Sj is co-evolved in a round-robin fashion using standard
EAs. The fitness of each individual of subpopulation Sj is computed by combining it with
the current best subcomponent of the remaining subpopulations. This is the simplest form of
fitness award.

t=0;
For j=1, . . . , N

Sj [t] ← Initialize
For i=1, . . . , n

Fi (Sj [t]) ← evaluate(Sj [t])
Endfor
Endfor
While not (termination condition)
{
For j=1, . . . , N

Sj [t] ← select(Sj [t − 1])
Sj [t] ← recombine(Sj [t])

Evolutionary Systems 255

For i=1, . . . , n
Fi (Sj [t]) ← evaluate(Sj [t])

Endfor
Endfor
t=t+1
}

7.3.2 Competitive Co-evolution

Competitive co-evolution (CCE) works with the goal of producing an optimal species though
competition. In general, CCE evolves two competing populations. Individuals in one popu-
lation represent solutions to a problem, while individuals in the other population represent
test cases.

7.3.2.1 Fitness Sampling and Relative Fitness Computation

The fitness of each individual is calculated independently. The relative fitness of individuals
is calculated against a sample of individuals from the competing population. Two aspects
are of importance for calculation of the relative fitness: which individuals are used from the
competing population, and how these competing individuals are used in the fitness calculation.
The relative fitness provides the number (score) of opponents that are beaten by an individual.
The following sampling schemes are used to compute the fitness.

• All versus all – individual is tested against all individuals of the other population.
• Random – individuals are tested against a group of individuals selected from the other
population.

• Tournament – uses relative fitness to select the best opponent individual.
• All versus best – individuals are tested against the best individual of the other population.
• Shared – sample is selected from the opponent individuals with maximum competitive
shared fitness. The opponent is selected which beat the largest number of individuals from
the competing population.

7.3.2.2 A Generic Competitive Co-evolution Algorithm

A generic co-evolutionary algorithm is given here for two competing populations A and B.
Samples from each population, AS and BS , are chosen for calculation of the relative fitness
f̄ Ai and f̄ Bi . The individual populations are evolved for one generation (using standard EA) to
produce offspring that undergo selection for the new generation:

t ← 0;
{A[t], B[t]} ← Initialize
While not (termination condition)
{
For each Ai [t], i = 1, . . . , N do
Select BS (a sample from B)
Evaluate relative fitness f̄ Ai=

f Ai
fBS
with respect to BS

256 Computational Intelligence

Endfor
For each Bi [t], i=1, . . . , N do
Select AS (a sample from A)
Evaluate relative fitness f̄ Bi=

fBi
f AS
with respect to AS

Endfor
Reproduce from A
Reproduce from B
A[t]=select(A[t])
B[t]=select(B[t])
S=A[t] ∪ B[t]
t ← t+1
}Endwhile
Select the best individuals from solution population S

There have been many implementations of cooperative and competitive co-evolution reported
in the literature so far. Some of these are under the generic term of symbiosis. Eguchi et al.
(2006) reported a comprehensive study on multi-agent models based on symbiosis in ecosys-
tems. The study was based on simulation of the symbiotic evolution of multi-agents and
investigated the performance of the different relationships among the agents, such as mutual-
ism, harm, predation and altruism. Goulermas and Liatsis (2003) reported a good application of
adaptive symbiotic evolution for image–space matching and three-dimensional space analysis,
where the super-problem was decomposed into a large set of small patches each represented
by a separate species. All species evolved concurrently, maintaining a mutual relationship.
Their study showed better performance compared to equivalent non-symbiotic optimizations.
A good example of symbiotic evolution in designing a fuzzy controller was reported by Juang
et al. (2000). The application showed that fuzzy system design and symbiotic evolution can
complement each other and result in a robust controller within fewer trials and less computa-
tional time than classical GA.

7.4 Parallel Evolutionary Algorithm

Maintaining diversity in populations is very difficult and remains an open research issue in
evolutionary algorithms. The most common methods are less aggressive selection strategy and
high mutation rate. Poor selection strategies lead to slow convergence of the evolution. A high
mutation rate only gives an artificial diversity through noise, and the search can turn into a
random walk. Therefore, the mutation rate is kept low and introduces genetic material that
may have been missing in the initial population or lost during crossover operations. In general,
mutation is not a mechanism for creating population diversity. There have been some other
methods developed by different researchers to enforce population diversity through adaptive
mutation (Whitley et al., 1994), crowding (De Jong, 1975), fitness sharing (Goldberg and
Richardson, 1987), local mating (Collins and Jefferson, 1991) and implicit fitness sharing
(Smith et al., 1993; Horn et al., 1994). But each of these techniques relies on external genetic
functions and the diversity is achieved through very expensive operations.
Another inherent problem with the traditional evolutionary algorithm is that it cannot

preserve different high-fitness individuals in a single population.When a suboptimal individual
dominates the population, the selection strategy preserves such an individual by preventing

Evolutionary Systems 257

genetic operations on it. As a result, premature convergence cannot be hindered for the
evolutionary algorithm.
Using multiple and independent populations in parallel with occasional interchange (or

migration) of individuals between populations would be an alternative approach to deal with
high-dimensional problems. Each population can explore different parts of the search space.
Diversity will be maintained via migration of high-fitness individuals from other popula-
tions and premature convergence can be delayed through diversity. Therefore, EAs are good
candidates for parallelization, for effective searching of large-dimensional search problems.
The basic idea behind parallel EAs is to take advantage of the divide-and-conquer approach.
Parallel EAs are close to a biological metaphor, with diversity of structures and geographic
locations incorporated into the population. In the literature, parallel EAs are mostly termed
‘parallel GAs’. In the sequel, we will use ‘parallel GA’ and ‘parallel EA’ interchangeably.
There are many variations of parallel GAs based on the population structure and methods

of recombination. In this section, we will discuss three broad categories of parallel GA:

• Global GA
• Migration GA
• Diffusion GA

7.4.1 Global GA

Global GA treats the entire population as single breeding and exploits parallelism in the imple-
mentations of the algorithm, i.e., applying genetic operators and evaluations of the objective
functions for individuals. The master/slave architecture shown in Figure 7.10 demonstrates
the parallelism implemented in global GA.
The master GA initializes and contains the entire population. Selection and fitness assign-

ments are performed globally by themaster GA,whereas the slaveGAs perform recombination
and mutation operations for producing offspring. Evaluation of objective functions for indi-
viduals is performed by individual slaves. Exploration of the inherent parallelism in a single
population can achieve only a near-linear speedup for significantly complicated objective func-
tions (Chipperfield and Fleming, 1994). Powerful computational resources may be employed

Master GA
Selection

Fitness assignment

Slave GA1

Recombination
Mutation

Evaluation

Slave GA2

Recombination
Mutation

Evaluation

Slave GAn

Recombination
Mutation

Evaluation

…

Figure 7.10 Architecture of the global GA

258 Computational Intelligence

GA1

GA6

GA2

GA5

GA3

GA4

Figure 7.11 Architecture of the migration (island) GA

for a robust implementation of the master/slave GA, e.g., a number of parallel processors can
be used in concurrent operation for genetic operator and objective function evaluation by the
slave GAs. Such an implementation has been reported by Valdez et al. (2011), where a cluster
of four computers was used to evolve a modular neural network. A variety of global GAs have
been reported in the literature (Cantu-Paz, 1998, 2000, 2001a; Cantu-Paz and Goldberg, 2000).

7.4.2 Migration (or Island) Model GA

In natural evolution, the population is divided into subgroups (also called species) and indi-
viduals tend to mate and reproduce within their own species. There is always a possibility of
mating occurring across the species. The migration (or island) model of the GA introduces
the concept of dividing a large population into smaller semi-isolated (island) subpopulations
or demes. Each subpopulation is a separate breeding unit and uses local selection and repro-
duction operations to evolve the subpopulation (species). Individuals of one subpopulation are
allowed to migrate to other subpopulations. The migration pattern defines the genetic diversity
of the global population, which is determined by the number of individuals migrating between
subpopulations, the time interval of migration and the route of migration between population
islands. A simple architecture of a migration GA is shown in Figure 7.11, with six population
islands and migration paths.
The migration model is also known as a coarse-grained parallel GA. The main concept is to

divide the population into a number of subpopulations and evolve each of the subpopulations
using an independentGA.An additional procedure is used to handle the exchange of individuals
(migration) between island populations at certain intervals using fixed migration routes. A
simple pseudo-code is given below for the migration GA:

For i = 1 to n
GA[i]← initialize subpopulation
While not (termination condition)
{
For i = 1 to n

Evolutionary Systems 259

{
Perform selection on GA[i]
Perform recombination on GA[i]
Perform evaluation on GA[i]
For j =1 to n – 1 (not emigrating or immigrating to/from itself)
{
Send emigrants to GA[j]
Receive immigrants from GA[j]
}
}
}

Sekaj and Perkacz (2007) have investigated the migration model with different forms of
migration routes. Cantu-Paz and Goldberg (2000) reported a theoretical study and practical
problems of migration GAs. A number of other studies on migration GAs have been reported
in the literature (Cantu-Paz, 1998, 2000, 2001b; Yang et al., 2004; Skolicki and De Jong,
2005). Migration model GAs are also known as distributed GAs, since they are implemented
on distributed MIMD computers. They are also widely known as coarse-grained parallel GAs.

7.4.3 Diffusion GA

An alternative to the distributed population structure is the diffusion GA. In diffusion GAs,
the population is partitioned into a large number of small subpopulations. Diffusion GAs
are also known as fine-grained GAs because of the fine partitioning of the population and
its treatment as a single continuous structure. There is no island for a subpopulation, rather
a contiguous distribution of individuals. The population distribution of a diffusion GA is
shown in Figure 7.12, where each individual G j,k is assigned a separate node on a toroidal

G12G11 G13 G15G14

G22G21 G23 G25G24

G32G31 G33 G35G34

G42G41 G43 G45G44

G52G51 G53 G55G54

Figure 7.12 Architecture of diffusion GA

260 Computational Intelligence

mesh of the parallel processing network. Each node uses individuals from the neighbouring
nodes to apply genetic operations; for example, the individual node G2,3 uses individuals from
nodes G1,3, G2,2, G3,3 and G2,4. The selection is based on the fitness of the neighbouring
individuals. A recombination operation is applied to produce a single offspring and replace
the parent individual residing in the node. A simple pseudo-code is given below for the
diffusion GA:

G[i,j]← Initialize population
While not (termination condition)
{
For i = 1 to n
For j = 1 to n
{
Perform evaluation on G[i,j]
{
Send individual to neighbours
Receive individuals from neighbours
}
Perform selection
Perform recombination
}

}

In a few generations, the individuals start forming clusters of similar genetic material. In
the fitness landscape of the population, these individuals will look like virtual islands. This
scenario is shown in Figure 7.13. The darker shading in the figure represents higher fitness
values of the individuals.
Robertson (1987) is known to have been the first to implement fine-grained GAs on a

SIMD connection machine. One processor per individual was used for function evaluation,
and global selection and recombination was implemented on a host machine. A significant

Figure 7.13 Virtual islands of high-fitness individuals

Evolutionary Systems 261

Figure 7.14 Hierarchical parallel GA

speedup was achieved, which inspired other researchers to implement diffusion model GAs.
A notable implementation was reported by Muehlenbein (1989) and Gorges-Schleuter (1989)
using an asynchronous parallel GA. The proposed architecture, called ASPARAGOS, is based
on population genetics and implemented on a connected ring topology using transputers.
One processor was assigned per individual. ASPARAGOS showed good performance for
numerical optimization problems. A number of good implementations of fine-grained GAs
were reported in the early 1990s (Baluja, 1993; Maruyama et al., 1993). A number of other
studies on diffusion GAs have been reported in the literature (Chipperfield and Fleming, 1994;
Cantu-Paz, 1998, 2000, 2001a; Alba et al., 2004).

7.4.4 Hybrid Parallel GA

The three basic forms of parallel GA, discussed in the above sections, have shown good
performance when implemented properly. Analysis soon uncovered their limitations. Several

Figure 7.15 Coarse-grained and fine-grained combination of parallel GAs

262 Computational Intelligence

Figure 7.16 Coarse-grained and coarse-grained combination of parallel GAs

issues relating to communication topology or deme size, migration rate and frequency and
search space segmentation remain unanswered. To overcome the limitations of the basic
forms, researchers proposed various hybrid architectures by combining the three basic forms
of architecture. Cantu-Paz and Goldberg (2000) proposed a set of simple rules for combining
global GAs and migration GAs. They called this a hierarchical parallel GA, with master/slave
demes. Figure 7.14 shows the hybrid architecture proposed by Cantu-Paz and Goldberg.
The architecture in Figure 7.14 has been implemented by Bianchini and Brown (1993) on

transputers. Similarly, coarse-grained (migration model) and fine-grained (diffusion model)
can be combined, as well as coarse-grained and coarse-grained. These two hybrid architec-
tures are shown in Figures 7.15 and 7.16. Different combinations of parallel GAs have been
investigated by Sekaj and Perkacz (2007). A good analysis on the hybrid architectures can
also be found in Cantu-Paz and Goldberg (2000).

References

Alba, E., Luna, F. and Nebro, A.J. (2004) Advances in parallel heterogeneous genetic algorithms for continuous
optimisation, International Journal of Applied Mathematics and Computer Science, 14, 317–333.

Baeck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York.
Baluja, S. (1993) Structure and performance of fine-grain parallelism in genetic search. Proceedings of the 5th

International Conference on Genetic Algorithms, pp. 155–162.
Ben-Tal, A. (1980) Characterization of Pareto and lexicographic optimal solutions. In Multiple Criteria Decision

Making: Theory and Application, G. Fandel and T. Gal (eds), Lecture Notes in Economics and Mathematical
Systems, Vol. 17, Springer-Verlag, Berlin, pp. 1–11.

Bianchini, R. and Brown, C. (1993) Parallel genetic algorithms on distributed-memory architectures, Transputer
Research and Applications, 6, 67–82.

Cantu-Paz, E. (1998) A survey of parallel genetic algorithms, Calculateurs Paralleles, Reseaux et Systems Repartis,
10(2), 141–171.

Cantu-Paz, E. (2000) Markov chain models of parallel genetic algorithms, IEEE Transactions on Evolutionary
Computation, 4(3), 216–226.

Cantu-Paz, E. (2001a) Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic, Dordrecht.
Cantu-Paz, E. (2001b) Migration policies, selection pressure, and parallel evolutionary algorithms, Journal of Heuris-

tics, 7(4), 311–334.
Cantu-Paz, E. and Goldberg, D. (2000) Efficient parallel genetic algorithms: theory and practice, Computer Methods

in Applied Mechanics and Engineering, 186(2–4), 221–238.

Evolutionary Systems 263

Chipperfield, A.J. and Fleming, P.J. (1994) Parallel Genetic Algorithms: A Survey, ACSE Research Report 518,
Department of Automatic Control and Systems Engineering, University of Sheffield, UK.

Coello Coello, C.A. and Pulido, G.T. (2005) Multi-objective structural optimisation using a micro-genetic algorithm,
Structural and Multidisciplinary Optimisation, 30(5), 388–403.

Coello Coello, C.A., Lamont, G.B. and Van Veldhuizen, D.A. (2007) Evolutionary Algorithms for Solving Multi-
Objective Problems, 2nd edn, Springer-Verlag, Berlin.

Collins, R.J. and Jefferson, D.R. (1991) Selection in massively parallel genetic algorithms. Proceedings of the 4th
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 249–256.

Corne, D.W., Knowles, J.D. and Oates, M.J. (2000) The Pareto envelope-based selection algorithm for multi-objective
optimisation. Proceedings of the VI Conference on Parallel Problem Solving from Nature, Paris, France, Lecture
Notes in Computer Science, Vol. 1917, pp. 839–848.

De Jong, K.A. (1975) Analysis of the behaviour of a class of genetic adaptive systems, PhD Thesis, Department of
Computer and Communications Sciences, University of Michigan, Ann Arbor, MI.

Deb, K. (2008)Multi-objective Optimisation using Evolutionary Algorithms, 2nd edn, JohnWiley& Sons, Chichester.
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A fast and elitist multi-objective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Eguchi, T., Hirasawa, K., Hu, J. and Ota, N. (2006) A study of evolutionary multi-agent models based on symbiosis,
IEEE Transactions of Systems, Man and Cybernetics – Part B: Cybernetics, 36(1), 179–193.

Eiben, A. and Smith, J. (2007) Introduction to Evolutionary Computing, 2nd edn, Springer-Verlag, Berlin.
Engelbrecht, A.P. (2007) Computational Intelligence: An Introduction, John Wiley & Sons, Chichester.
Fogel, D.B. (1995) Evolutionary Computation – Toward a New Philosophy of Machine Intelligence.
Fonseca, C.M. and Fleming, P.J. (1993) Genetic algorithms for multiobjective optimization: formulation, discussion
and generalization. Genetic Algorithms: Proceeding of the Fifth International Conference, San Mateo, CA, pp.
416–423.

Fonseca, C.M. and Fleming, P.J. (1998a) Multi-objective optimization and multiple constraints handling with evolu-
tionary algorithms – Part I: A unified formulation, IEEE Transactions on Systems, Man and Cybernetics – Part
A: Systems and Humans, 28(1), 26–37.

Fonseca, C.M. and Fleming, P.J. (1998b) Multi-objective optimization and multiple constraints handling with evolu-
tionary algorithms – Part II: Application example, IEEE Transactions on Systems, Man and Cybernetics – Part
A: Systems and Humans, 28(1), 38–47.

Glover, F. (1989) Tabu Search – Part I, ORSA Journal on Computing, 1, 190–206.
Goldberg,D.E. (1989)Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading,
MA.

Goldberg, E. and Richardson, J. (1987) Genetic algorithms with sharing for multimodal function optimization. In
Proceedings of the Second International Conference on Genetic Algorithms, J. Grefenstette (ed.), Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 41–49.

Gorges-Schleuter, M. (1989) ASPARAGOS: An asynchronous parallel genetic optimisation strategy. Proceedings of
the 1st International Conference on Genetic Algorithms, pp. 422–427.

Goulermas, J.Y. and Liatsis, P. (2003) A collective-based adaptive symbiotic model for surface reconstruction in
area-based stereo, IEEE Transactions on Evolutionary Computation, 7(5), 482–502.

Hajela, P. and Lin, C.-Y. (1992)Genetic Search Strategies in Multi-criterion Optimal Design, Structural Optimization,
Vol. 4, Springer-Verlag, New York, pp. 99–107.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University Michigan Press, Ann Arbor, MI.
Horn, J., Nafpliotis, N. and Goldberg, D. (1993)Multi-objective Optimization using the Niched Pareto Genetic Algo-

rithm, Technical Report IlliGaL, Department General Engineering, University of Illinois at Urbana Champaign,
Urbana, IL.

Horn, J., Nafpliotis, N. and Goldberg, D. (1994) A niched Pareto genetic algorithm for multi-objective optimization.
Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87.

Juang, C.-F., Lin, J.-Y. and Lin, C.-T. (2000) Genetic reinforcement learning through symbiotic evolution for fuzzy
controller design, IEEE Transactions of Systems, Man and Cybernetics – Part B: Cybernetics, 30(2), 290–302.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing, Science, 220, 671–680.
Knowles, J.D. and Corne, D.W. (2000) Approximating the non-dominated front using the Pareto archived evolution
strategy, Evolutionary Computation, 8(2), 149–172.

Maruyama, T., Hirose, T. and Konagaya, A. (1993) A fine-grained parallel genetic algorithm for distributed parallel
systems. Proceedings of the 5th International Conference on Genetic Algorithms, pp. 155–162.

Matyas, J. (1965) Random optimization, Automation and Remote Control, 26, 244–251.

264 Computational Intelligence

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution Programs, 2nd edn, Springer-Verlag,
Berlin.

Morrison, J. (1998) Co-evolution and genetic algorithms, PhD Thesis, School of Computer Science, Carleton Uni-
versity, Ottawa, Canada.

Muehlenbein, H. (1989) Parallel genetic algorithms, population genetics and combinatorial optimisation, parallelism,
learning and evolution, In Workshop on Evolutionary Models and Strategies, J.D. Becker, I. Eisele and F.W.
Mundemann (eds), Lecture Notes in Artificial Intelligence, Vol. 565, Springer-Verlag, Berlin, pp. 398–406.

Nelder, J. and Mead, R. (1965) The downhill simplex method, Computer Journal, 7, pp. 308–313.
Potter,M.A. andDe Jong, K.A. (1995a)A cooperative co-evolutionary approach to function optimisation.Proceedings

of the 3rd Conference on Parallel Problem Solving from Nature, Y. Davidor, H.-P. Schwefel and R. Manner (eds),
pp. 249–257.

Potter, M.A. and De Jong, K.A. (1995b) Evolving complex structures via cooperative co-evolution. Proceedings of
the 4th Annual Conference on Evolutionary Programming, The MIT Press, Cambridge, MA, pp. 307–317.

Robertson, G. (1987) Parallel implementation of genetic algorithms in classifier systems. In Genetic Algorithms and
Simulated Annealing, L. Davis (ed.), Pitman, London, pp. 129–140.

Schaffer, J.D. (1985) Multiple objective optimizations with vector evaluated genetic algorithm. Proceedings of
International Conference on Genetic Algorithms and their Applications, J. Grefenstett (ed.), Morgan-Kaufmann,
New York, pp. 93–100.

Sekaj, I. and Perkacz, J. (2007) Some aspects of parallel genetic algorithms with population re-initialization. IEEE
Congress on Evolutionary Computation, pp. 1333–1338.

Skolicki, Z. and De Jong, K. (2005) The influence of migration sizes and intervals on island models. Proceedings of
GECCO ’05, Washington, DC, June 25–29.

Smith, R.E., Forrest, S. and Perelson, A.S. (1993) Searching for diverse, cooperative populations with genetic
algorithms, Evolutionary Computation Journal, 1(2), 127–149.

Srinivas, N. andDeb,K. (1994)Multi-objective function optimization using non-dominated sorting genetic algorithms,
Evolutionary Computation, 2(3), 221–248.

Tsypkin, Y.Z. (1971) Adaptation and Learning in Automatic Systems, Z.J. Nikolic (transl.), Academic Press, New
York.

Valdez, F., Melin, P. and Parra, H. (2011) Parallel genetic algorithms for optimisation of modular neural networks in
pattern recognition. Proceedings of the IEEE International Joint Conference on Neural Networks, San Jose, CA,
pp. 314–319.

Van Veldhuizen, D.A. and Lamont, G.B. (2000) Multi-objective optimisation with messy genetic algorithms. Pro-
ceedings of the 2000 ACM Symposium on Applied Computing, Como, Italy, pp. 470–476.

Watson, R.A. and Pollack, J.B. (1999) How symbiosis can guide evolution. Proceedings of European Conference on
A Life V, D. Florean, J.-D. Nicoud and F. Mondada (eds), Springer-Verlag, Berlin, pp. 29–38.

Watson, R.A. and Pollack, J.B. (2001) Symbiotic composition and evolvability. Proceedings of European Conference
on ALife VI, J. Kelemen and P. Sosik (eds), Springer-Verlag (LNAI), Berlin, pp. 480–490.

Whitley, D., Gordon, V.S. andMathias, K. (1994) Lamarckian evolution, the Baldwin effect and function optimisation.
In Parallel Problem Solving from Nature – PPSN III, Y. Davidor, H.-P. Schwefel and R. Manner (eds), Springer-
Verlag, Berlin, pp. 6–15.

Yang, Y., Vincent, J. and Littlefair, G. (2004) A Coarse-Grained Parallel Genetic Algorithm Employing Cluster
Analysis for Multi-modal Numerical Optimisation, Lecture Notes in Computer Science, Vol. 2936, Springer-
Verlag, Berlin, pp. 229–240.

Zitzler, E. and Thiele, L. (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength
Pareto approach, IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

Zitzler, E., Laumanns, M. and Thiele, L. (2001) SPEA2: Improving the strength Pareto evolutionary algorithm.
Proceedings of the Evolutionary Methods for Design, Optimisation, and Control with Applications to Industrial
Problems, EUROGEN 2001, Athens, Greece, pp. 95–100.

8
Evolutionary Fuzzy Systems

8.1 Introduction

Although fuzzy systems have been applied successfully to many complex industrial processes,
they experience a deficiency in knowledge acquisition and rely to a great extent on empirical
and heuristic knowledge, which, in many cases, cannot be elicited objectively. One of
the most important considerations in designing fuzzy systems is the construction of the
membership functions for each linguistic variable, as well as the rule base. In most existing
applications, the fuzzy rules are generated by an expert in the area, especially for control
problems with only a few inputs. The correct choice of MFs is by no means trivial but plays
a crucial role in the success of an application. Previously, the generation of MFs had been
a task mainly done either interactively, by trial and error, or by human experts. With an
increasing number of inputs and linguistic variables, the possible number of rules for the
system increases exponentially, which makes it difficult for the experts to define a complete
set of rules and associated MFs for a reasonable performance of the system. There are many
different methodologies available in the literature for systematic design of fuzzy systems (FS)
and especially fuzzy logic controllers (FLC). However, three main methods have emerged:
nonlinear systems analysis, neural fuzzy and direct optimization. The nonlinear systems
analysis approach is beyond the scope of this book and not addressed further here. Interested
readers are referred to Vidyasagar (2002). The neural fuzzy approach has been in widespread
use and very popular among researchers. This approach will be discussed in Chapter 9. The
direct optimization approach is mainly a direct search strategy for finding optimality either in
the set of all design parameters or only a subset of parameters.
In the direct search approach, the design of a fuzzy system can be formulated as a search

problem in a high-dimensional space where each point in the space represents a rule set, mem-
bership function, scaling functions and the corresponding system performance, that is, the
performance of the system forms a hypersurface in the space according to given performance
criteria. Thus, finding the optimal location of this hypersurface is a search problem, which is
equivalent to developing the optimal fuzzy system design (Shi et al., 1999). These characteris-
tics make evolutionary algorithms a suitable method for searching the hypersurface rather than
many other stochastic or derivative-free optimization methods such as simulated annealing
(Kirkpatrick et al., 1983), tabu-search (Glover, 1989), random search method (Matyas, 1965)

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

266 Computational Intelligence

and downhill simplex method (Nelder and Mead, 1965). In contrast to smart heuristics such
as simulated annealing, tabu-search, random search and downhill simplex search are local
search techniques which use a generate-and-test search manipulating one feasible solution
based on a physical rather than a biological analogy. The EA works in parallel on a number of
search points (potential solutions) and not on a unique solution, which means that the search
method is rather global over the entire search space. An EA-based optimization technique has
been applied to many control engineering problems with significant success in improving the
system performance (Goldberg, 1989; Whidborne and Istepanian, 2001; Chou, 2006; Kwon
and Sudhoff, 2006; Loop et al., 2010).
Solving a particular optimization task using an EA requires the designer to decide on five

components (also discussed in Chapter 6): (i) genetic (chromosome) representation of the
solution space; (ii) creation of an initial population representative of the entire solution space;
(iii) definition of a fitness function capable of describing the quality of solution; (iv) selection of
an appropriate set of genetic operators; and (v) appropriate choice of EA parameter values such
as population size, maximum number of generations and probabilities of genetic operators.
Each of these components has parameters. There is no straightforwardway to determine the EA
parameter values. Empirical methods like trial-and-error are common practice in evolutionary
computing, which is a time-consuming task. Therefore, a systematic approach to the choice of
EA parameter values is very demanding. Considerable efforts have been made in developing
heuristics for choosing these parameter values as well (Davis, 1989; Fogarty, 1989; Srinivas
and Patnaik, 1994; Yun and Gen, 2003). The two issues discussed above lead to two synergistic
combinations of fuzzy systems and evolutionary algorithms:

(i) Evolutionary adaptive fuzzy systems,
(ii) Fuzzy adaptive evolutionary algorithms.

The objective of an EA adaptive fuzzy system is to adapt knowledge in fuzzy system design.
The knowledge base of a fuzzy system is not a monolithic structure, rather it is composed
of information about MFs, scaling parameters and the rule base. In an EA adaptive fuzzy
system, the EA collaborates with a fuzzy system to tune, optimize or learn the parameters,
membership functions and rule base of a fuzzy system. To assess the performance of the
fuzzy system (or FLC), a plant is embedded within the loop. Owing to the computational
effort and time required for an EA, it is obviously an offline approach. The EA adaptive fuzzy

Fuzzy system:
FIS, MFs Plant

Performance
metric

EA

Pa
ra

m
et

er
s

Rule base

Figure 8.1 A generic EA adaptive fuzzy system

Evolutionary Fuzzy Systems 267

Evolutionary
algorithms Solutions

Fitness
metric

Fuzzy
system

E
A

 p
ar

am
et

er
s

Figure 8.2 A generic fuzzy adaptive EA system

collaboration is shown in Figure 8.1. In fuzzy adaptive EA, the fuzzy system (or FLC) helps
in adapting or controlling different parameters of the EA during the run, which has a decisive
influence on the performance of the EA. The performance of the EA can be estimated from the
quality of the solutions (e.g., best fitness, average fitness, convergence speed, etc.) and based
on the estimation, the EA parameters are adjusted. This is obviously an online approach. The
fuzzy EA combination is shown in Figure 8.2. This chapter will focus mainly on these two
synergistic combinations.

8.2 Evolutionary Adaptive Fuzzy Systems

Large dimensionality, strong nonlinearity, non-differentiability, and noisy and time-varying
objective functions are the associated factors involved in the optimization problem of a
fuzzy system, which lead to difficult optimization tasks. In real-world situations the objective
functions and constraints are often not analytically treatable or even available in a closed form
(Baeck, 1996). The traditional approach in this class of problems is to develop a formal model
that resembles the original functions closely enough in a real system, solvable by means of
traditional mathematical methods. Most of these mathematical methods are gradient-based
approaches. The unfortunate thing is that no gradient-based descent optimization algorithm is
guaranteed to find the global optimum of a complex objective function within a finite period
of time (Jang et al., 1997). Moreover, selecting the initial points for the deterministic methods
clearly has a decisive effect on the final result of the optimization algorithms being used. In
practice, knowing such initial points is nearly impossible. Some of the issues are discussed in
Chapter 7. If the initial points are to be randomly selected, then there is no strong argument
for supporting the choice of employing a deterministic method. It would rather be better
to employ a stochastic method that perturbs the final points when the method converges.
Therefore, the optimization approach being used must be stochastic in nature. Furthermore,
if the calculation of the gradient is time-consuming or difficult due to the complexity of the
objective function, then the stochastic or derivative-free optimization methods mentioned
earlier should be chosen. EAs are stochastic optimization methods based on the principle of
Darwinian evolution theory. Different EAs are discussed in Chapter 6.
Efforts have been made to automate the construction and adjustment of MFs (Karr and

Gentry, 1993), rule bases (Ishibuchi et al., 1995; Chin and Qi, 1997) and scaling factors
(Ahmed et al., 2012) in various ways using evolutionary algorithms. In most cases, either
the rule base is fixed and the parameters of the MFs are adjusted or the MFs are fixed and
evolutionary algorithms optimize the rule base (Linkens and Nyongesa, 1995a,b). Some
researchers have optimized the rule base, the MFs, scaling factors and system/controller

268 Computational Intelligence

Input MFs
(Fuzzification) Inference

Output MFs
(Defuzzification) Plant

Rule base

EA
Performance

index

FLC

+
–

OutputSet point

e

e u

Sc
al

in
g

Sc
al

in
g

Figure 8.3 EA-based synthesis/optimization of FLC

parameters (Homaifar and McCormick, 1995), which seems somewhat redundant. A block
diagram of the EA-based synthesis, optimization and tuning of a fuzzy system (e.g., a fuzzy
controller) is shown in Figure 8.3.
The performance of the fuzzy systems is aggregated into a scalar performance index on

which basis the EA selects the outperforming rule base, MFs or scaling parameters or their
combinations. It is important in the design of the EA fuzzy system to decide which parts of
the fuzzy system are subject to optimization (i.e., the different blocks in Figure 8.3). Different
types of fuzzy system (e.g., Mamdani, Sugeno and Tsukamoto) are discussed in Chapters 2
and 3. EA fuzzy systems are discriminated along two main approaches (Hoffmann, 2000):

(i) Evolutionary tuning of fuzzy system,
(ii) Evolutionary learning of fuzzy system.

Tuning deals with optimization of an existing fuzzy system with predefined MFs, rule base
and scaling parameters, whereas learning deals with automated design (synthesis) of the fuzzy
system, carrying out an elaborate search for a set of MFs, rule base and scaling functions
which ensures an optimal performance of a fuzzy system.

8.2.1 Evolutionary Tuning of Fuzzy Systems

In general, the design of the MFs and rule base of a fuzzy system is carried out with the help of
human experts with domain knowledge and experience. Very often, the design of the MFs and
construction of the rule base using expert knowledge do not reflect the actual data distribution of
the system, which is the main reason behind the poor performance. A readjustment or tuning
of the MFs and rule base is essential for the improvement in performance and robustness
of operation of the fuzzy system over the entire data range in changing operating conditions.

Evolutionary Fuzzy Systems 269

–36 –20 –10 0 10 20 36
0

0.5

1
ns zo ps

min
0

0.5

1
ns zo ps

max

L
in

ea
r

S
ca

li
ng

Figure 8.4 Normalization of MFs onto fixed range E = [min,max]

Therefore, a further enhancement of the performance is sought by tuning the scaling functions,
input and output MFs, and rule base.

8.2.1.1 Tuning of Scaling Functions

Very often the designer uses normalized domains (universe of discourse) for input/output MFs
for ease of design process and to reduce the design time, which again requires undergoing a
scale transformation. The transformationmaps the physical values of the process state variables
into a normalized domain. The normalization of the input range of respective variables into a
fixed relative distribution is shown in Figure 8.4. This is input normalization. Consequently,
output denormalization maps the normalized values of the control output variables into their
respective physical domains. Scaling functions transform the input and output MFs into
the universe of discourse within which MFs are defined. The simple way to do this is to
parameterize the scaling functions by a single scaling factor, or a lower and an upper limit in
case of linear scaling and a contraction factor in case of nonlinear scaling. A linear scaling
function of the form is given by:

f (x) = k1x + k2, ∀x ∈ X, X = [Xmin, Xmax] (8.1)

The scaling factor k1 widens or reduces the operating range of the respective input or output
variable and the corresponding gain. The parameter k2 is an offset and shifts the operating
range of the corresponding variable. Scaling allows it to define the MF over a normalized
universe of discourse. Such linear scaling of MFs is shown in Figure 8.4. A disadvantage of
the linear scaling function is that the MFs are distributed within a fixed upper and lower limit.
The scaling does not affect the shape of the MFs. Nonlinear scaling provides a solution to
this problem, whereby it modifies the relative distribution and shape of the MFs. Nonlinear
scaling of the respective MFs into a fixed relative distribution with changed shape is shown in
Figure 8.5. A nonlinear scaling function is of the form

f (x) = sgn (x) . |x |α ,with α > 0, ∀x ∈ X, X = [Xmin, Xmax] , (8.2)

–36 –20 –10 0 10 20 36
0

0.5

1
ns zo ps

min
0

0.5

1
ns zo ps

max

N
on

li
ne

ar
 S

ca
li

ng

Figure 8.5 Nonlinear scaling to change shape of MFs

270 Computational Intelligence

The parameter α increases (for α > 1) or decreases (for α < 1) the sensitivity in the region
around the origin and has opposite effect at the boundaries of the operating range. Interested
readers are directed to the book by Cordon et al. (2001) for a detailed description of the linear
and nonlinear scaling functions.
From a control engineering point of view, the scaling factors describing the particular

input normalization and output denormalization play an equivalent role, like that of the gain
coefficients in a conventional controller. The gain coefficients are responsible for the perfor-
mance defined in terms of rise time, settling time, steady-state error, overshoot and undershoot,
stability, oscillation and deteriorated damping effects of the system.
There are basically two major approaches to the determination of the scaling factors: (i)

heuristic and (ii) analytical. The heuristic approach is a trial-and-error method. Daugherity
et al. (1992) gave a rule of thumb for tuning the scaling factors of a fuzzy system, particularly
a fuzzy controller, where the performance criteria are defined in terms of desired value of
rise time, overshoot and amplitude of oscillation and heuristic production rules are used for
adjusting the scaling factors. The production rules can be explained as follows: if the system
response is slower than the desired response, then the change of rise time should be positive.
This means we need to increase the effect of error on the system. Therefore, we increase the
proportional scaling factor. Similarly, if the overshoot or amplitude of oscillation is higher
than the desired overshoot or amplitude of oscillation, then it needs to increase the effect
of change of error, hence we increase the derivative scaling factor. The analytical approach
aims to establish a relationship between the scaling factors and the closed-loop behaviour
of the control process. In this case it is assumed that a mathematical model of the systems
under control is available and the fuzzy model is considered as a nonlinear transfer element
(Driankov et al., 1993). Both the heuristic and analytical methods do not guarantee a global
optimum value for the scaling factors. Therefore, an evolutionary tuning is desirable, which
can ensure a global optimum and robustness of the solution of the fuzzy system (or the
fuzzy controller).
Evolutionary tuning of the scaling function requires parameterization, which is done by

means of two parameters discussed above: a scaling factor and an offset. Scaling corresponds to
a linear transformation of the interval [a, b] onto a normalized interval, e.g., [−1, 0], [−1,+1],
[0,+1]. A single scaling factor maps the interval [−a,+a] to a symmetric normalized interval
[−1,+1]. The scaling factor does not necessarily map the interval [−a,+a] onto a normalized
interval. It can be any arbitrary interval within the operating range of the inputs and outputs.
Once this is achieved, the evolutionary algorithm needs the parameters to be encoded into a
suitable chromosome representation within the upper and lower limits of the operating range.
Partial coding of the individual parameters is concatenated to form the chromosome. For
example, consider the two-input single-output fuzzy controller with scaling functions ke, k�e

and ku in Figure 8.6.
For linear scaling, the functions ke, k�e and ku are parameterized according to Equation

(8.1) as follows:

ke = f (e) = k1e + k2 (8.3)

k�e = f (�e) = k3�e + k4 (8.4)

ku = f (u) = k5u + k6 (8.5)

Evolutionary Fuzzy Systems 271

Rule base

Fuzzy
controller

Plant
Output

dθ

Δe

e

θ

u

Z –1

–
+

–

ke
ku

kΔe
+

Figure 8.6 PD-like fuzzy controller with scaling functions

The performance of the fuzzy controller can be improved by optimizing the different scaling
factors and offset values of ki , i = 1, 2, 3, . . . , 6. In general, most designers set the values of
{k2, k4, k6} to zero and tune the scaling factors {k1, k3, k5} by trial and error, which is time-
consuming. The other option is to optimize ki , i = 1, 2, 3, . . . , 6 by EA. The chromosome
representation will look like that in Figure 8.7. ki , i = 1, 2, 3, . . . , 6 can be encoded as binary
or real depending on the required precision for the system.
The objective can thus be expressed in terms of minimization of the system performance

indices or in terms of desired value of rise time, overshoot and amplitude of oscillation, which
are in common use. These include the integral of absolute error (IAE), integral of square error
(ISE) and integral of time-weighted absolute error (ITAE). These criteria eventually include
all three performance indices (rise time, overshoot and oscillation) implicitly in this definition.
For example, in the case of ITAE, it is defined as

J (p) =
T∑

t=1
�t · |e(t)| (8.6)

where e(t) is the output error of the system. T is some reasonable number of time units by
which the system can be assumed to have settled quite close to a set point. �t takes care of
ensuring a reasonable rise time and settling time for the FLC. Obviously the objective is to
minimize J (p) subject to the parameter set p = {k1, k2, . . . , k6}. Different objective functions
suitable for any FLC or fuzzy system design are described in detail in Section 8.3.1.
Any standard genetic operators (such as crossover, mutation and selection) can be applied

to the chromosome representation. Different crossover and mutation operators on binary and
real-valued chromosomes are discussed in detail in Chapter 6.

{ }654321 ,,,,, kkkkkk

Figure 8.7 Chromosome representation of scaling factors and offsets

272 Computational Intelligence

–36 –20 –10 0 10 20 36
0

0.5

1
nb ns zo ps pb

Figure 8.8 Mapping MFs onto domain E = [−36, +36]

8.2.1.2 Tuning of MFs

For computational efficiency and the need for performance analysis, a uniform representation
of the MFs is required. Such uniform representation is achievable by employing MFs with
uniform shape, parametric and functional definition. As discussed in Chapter 2, the most
widely used and popular MFs are triangular, trapezoidal, sigmoidal, Gaussian, bell-shaped,
etc. MFs can be classified into two main groups: piecewise linear and differentiable. Among
piecewise linear MFs are the triangular and trapezoidal MFs while differentiable MFs are
Gaussian, radial-basis, sigmoidal and bell-shaped. There is no exact method of selecting the
shape of MFs. The choice of shape of MFs depends mainly on heuristic rules such as ease of
parametric and functional description, computational cost and efficiency of manipulation of
MFs. For example, triangularMFs are the most economic according to this heuristic rule. Once
the shape is selected, one has to map the MFs onto the corresponding domain. For example,
the input variable error of a fuzzy controller mapped onto the domain E = [−36,+36] is
shown in Figure 8.8.
This simple mapping of theMFs onto the domain for each linguistic termmay not guarantee

the optimal performance of the fuzzy system or an FLC. There are many reasons for this, for
example, the shape of MFs, number of MFs, influence of overlapping (cross-point) of MFs,
symmetry, width of MFs and distribution of MFs (Kovacic and Bogdan, 2006). Various
combinations of shapes and distributions of MFs result in a varying performance of fuzzy
systems. If the overlap between two neighbouring MFs is at a cross-point of 0 as shown in
Figure 8.9, then a single rule is fired at a time (Driankov, 1993). In general, if the cross-point
of two adjacent MFs is 0.5 as shown in Figure 8.10, then a fuzzy controller provides faster rise
time, significantly less overshoot and less undershoot. In such cases, the shape of theMFs does
not play a dominant role in the performance of a fuzzy system. It is found that the trapezoidal

–30 –20 –10 0 10 20 30
0

0.5

1
ns ps

Figure 8.9 Overlapping of MFs at cross-point of 0

Evolutionary Fuzzy Systems 273

–3 –2 –1 0 1 2 3
0

0.5

1
nb ns zo ps pb

Figure 8.10 Overlapping of MFs at cross-point of 0.5

shape of MFs causes slower rise time (Driankov, 1993). Though these results are empirical
in nature, in general an overlap of two adjacent MFs at a cross-point of 0.5 provides the best
results, as has been reported by many researchers (Boverie et al., 1991; Yager and Filev, 1994;
Margaliot and Langholz, 2000; Kovacic and Bogdan, 2006).
The width of the MF is the sum of the left and right width of the MF. The left width is

the length of the interval from the peak value to the point to the left where the membership
value is zero and the right width is the length of the interval from the peak value to the point to
the right where the membership value is zero. If the left width is equal to the right width then
the MF is symmetric, otherwise it is asymmetric. The width and symmetry of MFs also play
an influential and decisive role in the defuzzified value of the consequent MFs when using the
centre-of-gravity or mean-of-maxima method of defuzzification. For example, the resulting
defuzzified value will be close to the peak of the MF when a symmetrical MF is used in the
case of a single-rule system. In contrast, the defuzzified value drifts away from the peak of the
MF when an asymmetric MF is used (Driankov, 1993). The influence of the symmetric and
asymmetric shape of MFs on defuzzification is shown in Figure 8.11.
To translate the membership functions to a representation useful as genetic material, they

are parameterized with one to four coefficients and each of these coefficients constitutes a
gene of the chromosome for evolutionary algorithms.
In fuzzy system design, one can frequently assume triangular MFs for which each MF

can be specified by just a few parameters. In the case of a triangular MF, it is determined
by three parameters: left position, peak and right position. Once the choice of MF is made,
the input/output MFs of the variables are mapped onto the domain as shown previously in
Figure 8.8. As discussed above, an overlapping (not more than 0.5) of the MFs is desired

–30 –20 –10 0 10 20 30
0

0.5

1
ns zo ps

z* z* z*

Figure 8.11 Influence of symmetric and asymmetric shape of MFs

274 Computational Intelligence

a

μ

1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 b7 c1 c2 c3 c4 c5 c6 c7

Figure 8.12 Parameterized input/output MFs

to ensure a good performance of the fuzzy system. Therefore, the left and peak position of
the next MF is the same as the peak and right position of the previous MF. An example of
parameterized triangular MFs of a two-input single-output fuzzy system with five MFs for
each variable (e.g., the FLC in Figure 8.6) is shown in Figure 8.12. Seven parameters are
needed to define five MFs for each input and output, that is, the five MFs each having 3-tuple
parameters.

Input 1: {(a1, a2, a3), (a2, a3, a4), (a3, a4, a5), (a4, a5, a6), (a5, a6, a7)}
Input 2: {(b1, b2, b3), (b2, b3, b4), (b3, b4, b5), (b4, b5, b6), (b5, b6, b7)}
Output: {(c1, c2, c3), (c2, c3, c4), (c3, c4, c5), (c4, c5, c6), (c5, c6, c7)}

There are 21 parameters in total for all inputs and outputs. A reduction in the number of
parameters can be achieved by fixing the upper and lower limits of the domain for each input
and output, as shown in Figure 8.13(a). Hence, the entire chromosome for MFs looks like in
Figure 8.13(b).
{ai , bi , ci} with i = 1, 2, 3, . . . , 5 can be encoded as binary or real depending on the

precision required for the system. The problem associated with binary or integer coding is

(a)

(b)

b1 b2 b3 b4 b5 c1 c2 c3 c4 c5a1 a2 a3 a4 a5 bmin bmax

amin amax cmin cmax

μ

a1, a2, a3, a4, a5 b1, b2, b3, b4, b5 c1, c2, c3, c4, c5

Parameters of
input 2

Parameters of
input 1

Parameters of
output

Figure 8.13 Chromosome representation for MFs. (a) Fixed upper and lower limit of MFs; (b) Chro-
mosome representation of MFs

Evolutionary Fuzzy Systems 275

that it brings in inaccuracy when representing high-precision real-value MF parameters and
even difficulties in mapping from genotypes to phenotypes. Moreover, a long bit string always
occupies computer memory even though only a few bits are actually involved in the crossover
and mutation operations. This is particularly the case when a large number of parameters need
to be adjusted for the same problem and higher precision is required for the final result. To
overcome the problem of inefficient use of computer memory, the real-valued chromosome
representation of membership functions is preferred. Hatanaka et al. (2004) used GA to learn
the MFs of a fuzzy system for nonlinear system identification. A real-valued encoding was
used for the parameters of the trapezoidal MFs. For Gaussian, bell-shaped or sigmoidal MFs,
it is the centre and width of the MFs that are used as the parameters of the MFs and coded
into the chromosome as genetic material. The parametric Gaussian, bell-shaped and sigmoidal
MFs are discussed in Chapter 2.
Application of genetic operators such as crossover, mutation and selection to real-valued

or binary string chromosome representation is very straightforward and discussed in detail
in Chapter 6.
The objective function can be defined in terms of minimization of the system performance

indices, such as sum of squared error or mean squared error. A minimum of the sum of
squared error or mean squared error does not guarantee other performance indices of the fuzzy
controller. For example, the performance index can be defined in terms of a desired value of
rise time, overshoot and amplitude of oscillation or steady-state error for a fuzzy controller.
Widely used objective functions include the integral of absolute error (IAE), integral of square
error (ISE) and integral of time-weighted absolute error (ITAE). Obviously the objective
is to minimize J (p) subject to the parameter set p = {θ1, θ2, . . . , θn}. Different objective
functions suitable for the design of a fuzzy controller or fuzzy system are described in detail
in Section 8.3.1.

8.2.1.3 Tuning of Rule Base

The fuzzy rule base is the backbone of any fuzzy system. The success and performance of a
fuzzy system depends largely on the rule base. The rule base consists of if–then rules (also
known as fuzzy implication, fuzzy conditional statement). An obvious question is how a set of
rules can be derived. The designer depends mainly on expert knowledge or skilled operators
available to provide the necessary knowledge. When no expert or skilled operators available,
the rule base is constructed by operating the process directly. Moreover, the number of rules in
a fuzzy system grows with the number of input/output variables and linguistic terms for each
variable. As a result, it is difficult for a human expert to suggest a combination of input terms for
an output variable as there could be certain combinations of input variables that do not appear
in the dynamical system during operation. Rules constructed in this way are actually influenced
by subjective decisions of the expert operator and result in incomplete, inconsistent, partly
incorrect, redundant and sometimes useless rules, especially when the operating conditions
are changed. This has great influence on the performance or optimal performance, for which it
is required to refine and tune the rough rules. The refining or tuning of the fuzzy rule base can
be formulated as a search problem in a high-dimensional space where each point in the space
represents a rule set, MF and the corresponding system performance, that is, the performance
of the system forms a hypersurface in the space according to given performance criteria. Owing
to the difference in presentation of the rule base in Mamdani- and Sugeno-type fuzzy systems,
EA-based tuning is applied in two different ways for Mamdani- and TSK-type (widely known

276 Computational Intelligence

Table 8.1 Rule base for two-input one-output Mamdani system

Input 2 (Y)

Input 1 (X) NB NS ZO PS PB

NB PB PB PB PS ZO
NS PB PS ZO ZO NS
ZO PS ZO ZO ZO NS
PS PS ZO ZO NS NB
PB ZO NS NB NB NB

as Sugeno-type) fuzzy systems. It is mainly the difference in chromosome representation. The
chromosome representation of the rule base for Mamdani-type fuzzy systems is carried out in
the following way.
The linguistic variables are represented by integer values, for example 1 for NB, 2 for NS,

3 for ZO, 4 for PS and 5 for PB. Applying this code to the fuzzy rule base shown in Table 8.1,
the encoded rule base shown in Table 8.2 is obtained. A chromosome is thus obtained from
the decision table by going through row-wise and coding each output fuzzy MF as an integer
in {1, 2, . . . , n}, where n is the maximum number used to label the MFs defined for the output
variable of the fuzzy system. In the case of n = 5, i.e., five linguistic variables (or MFs), the
chromosome for the rule base of a Mamdani-type fuzzy system is shown in Figure 8.14.
The problem associated with binary coding of the rule base is that a long string always

occupies the computer memory even though only a few bits are actually involved in the
crossover and mutation operations. Another problem with binary coding is encountered in
chromosome representation of the rule base when a mutation operation is applied. Mutation
applied to a linguistic code of the rule base alters it to another valid linguistic code, which
is restricted to a linguistic distance of two, i.e., up a level or down a level. This is illustrated

Table 8.2 Encoding of the rule base

Input 2 (Y)

Input 1 (X) NB NS ZO PS PB

NB 5 5 5 4 3
NS 5 4 4 3 2
ZO 4 3 3 3 2
PS 4 3 2 2 1
PB 3 2 1 1 1

1st row 2nd row 3rd row 4th row 5th row

{5 5 5 4 3 | 5 4 4 3 2 | 4 3 3 3 2 | 4 3 2 2 1| 3 2 111}
14243 14243 14243 14243 123

Figure 8.14 Chromosome representation of the rule base

Evolutionary Fuzzy Systems 277

Ri→ 0 1 0 = 2

Invalid rule
Mutation

Ri→ 1 1 0 = 6

Valid rule

Figure 8.15 Problem in rule-base mutation using binary coding

in Figure 8.15. It requires three bits to represent integer values from 1 to 5 for five linguistic
variables. Performing mutation on a single bit of the chromosome, it can change to a value 6,
which is not a valid linguistic variable at all and thus will cause disruption to the fuzzy system.
Such a jump of the value by mutation will be difficult to manage in binary coding. Integer
coding is much easier to handle in any programming language. Therefore, an integer-valued
coding is suggestive for chromosome representation of the rule base.
The chromosome representation of the rule base in a Sugeno-type fuzzy system will be

different from that in aMamdani-type fuzzy system as there are two different sets of parameters
that are subject to tuning, i.e., parameters of the antecedent MFs and consequent parameters of
the linear function. Assume the rule of the two-input single-output Sugeno-type fuzzy system

IF X is Ai and Y is B j THEN Zk = ak X + bkY + ck

with i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . , M and M ∈ N × N . The antecedent part of
the Sugeno-type fuzzy system is similar to that of the Mamdani-type fuzzy system and it
is the consequent linear function Zk and its parameters {ak, bk, ck} that are different. There
are two possible ways the rules can be tuned for a Sugeno-type fuzzy system: firstly, tuning
of the linear function Zk when the parameters {ak, bk, ck} are defined and secondly, tuning
of the parameters of the linear function {ak, bk, ck}. Tuning of the linear function Zk would
be the same as tuning Mamdani-type fuzzy rules where MFs of the consequent part of the
Mamdani-type fuzzy system are replaced with Zk . In other words, the linguistic variables (for
example, in Table 8.1) are replaced with Zk . For k = 1, . . . , 5, the rule base will look like
that shown in Table 8.3. Zk (k = 1, . . . , 5) can be represented by integer values, for example
1 for Z1, 2 for Z2, 3 for Z3, 4 for Z4 and 5 for Z5. Applying this code to the fuzzy rule base
shown in Table 8.3, the encoded rule base shown in Table 8.4 is obtained. A chromosome

Table 8.3 Rule base for two-input single-output Sugeno system

Input 2 (Y)

Input 1 (X) NB NS ZO PS PB

NB Z5 Z5 Z5 Z4 Z3
NS Z5 Z4 Z4 Z3 Z2
ZO Z4 Z3 Z3 Z3 Z2
PS Z4 Z3 Z2 Z2 Z1
PB Z3 Z2 Z1 Z1 Z1

278 Computational Intelligence

Table 8.4 Encoding of the rule base

Input 2 (Y)

Input 1 (X) NB NS ZO PS PB

NB 5 5 5 4 3
NS 5 4 4 3 2
ZO 4 3 3 3 2
PS 4 3 2 2 1
PB 3 2 1 1 1

1st row 2nd row 3rd row 4th row 5th row

{5 5 5 4 3 | 5 4 4 3 2 | 4 3 3 3 2 | 4 3 2 2 1| 3 2 111}
14243 14243 14243 14243 123

Figure 8.16 Chromosome representation of the rule base of a Sugeno-type system

is thus obtained from the decision table by going through row-wise and coding each output
function Zk as an integer in {k = 1, . . . , M}, where M is the maximum number used to label
the linear functions defined for the output variable of the fuzzy system. In the case of M = 5,
the chromosome for the rule base of a Sugeno-type fuzzy system is shown in Figure 8.16.
Since Zk is a function of the parameters {ak, bk, ck}, the second option of carrying out the

tuning process would be to replace the Zk with respective 3-tuple parameters in the rule base.
Applying this, the rule base in Table 8.3 would look like that in Table 8.5. A chromosome
is thus obtained from the decision table by going through the 3-tuple parameter sets and
choosing the parameters of the five output functions Zk , {k = 1, . . . , M}, where M = 5 is the
maximum number used to label the linear functions. In this case, the chromosome for the rule
base of the Sugeno-type fuzzy system is shown in Figure 8.17, where {ak, bk, ck} ∈ � (set of
real numbers).
An alternative would be to choose the parameters of the 25 output functions Zk , {k =

1, . . . , M}, with M = 25. In this case, the chromosome would consist of 25 times 3-tuple
parameter sets shown in Figure 8.18, i.e., there will be 75 genes in the chromosome, which

Table 8.5 Rule base for two-input single-output Sugeno system

Input 2 (Y)

Input 1 (X) NB NS ZO PS PB

NB {a5, b5, c5} {a5, b5, c5} {a4, b4, c4} {a4, b4, c4} {a3, b3, c3}
NS {a5, b5, c5} {a4, b4, c4} {a3, b3, c3} {a3, b3, c3} {a2, b2, c2}
ZO {a5, b5, c5} {a4, b4, c4} {a3, b3, c3} {a2, b2, c2} {a1, b1, c1}
PS {a4, b4, c4} {a3, b3, c3} {a3, b3, c3} {a2, b2, c2} {a1, b1, c1}
PB {a3, b3, c3} {a2, b2, c2} {a2, b2, c2} {a1, b1, c1} {a1, b1, c1}

Evolutionary Fuzzy Systems 279

{ }111 ,, cba , { }222 ,, cba , { }333 ,, cba , { }444 ,, cba , { }555 ,, cba

Figure 8.17 Chromosome representation of the rule base of a Sugeno-type system

{ }111 ,, cba , { }222 ,, cba , { }333 ,, cba , { }L ,..., { }L ,{ }252525 ,, cba

Figure 8.18 Chromosome representation of the rule base of a Sugeno-type system

would be an exhaustive search and make the tuning process somewhat redundant.
Though the rule base is the core of a fuzzy controller, the choice of the linguistic terms,

MFs, number of MFs, their shape and distribution also greatly influence the behaviour of
the fuzzy controller (Chang et al., 1991; Kovacic and Bogdan, 2006; Qi and Chin, 1997).
The optimal parameters of the MFs in the rule base will reflect the performance of the fuzzy
controller. Therefore, the objective function can be defined in terms of minimization of the
system performance indices. For example, it can be defined in terms of the desired value of the
rise time, overshoot and amplitude of oscillation. An indirect measure of all the performance
indices is the sum squared error for a fuzzy controller.
Most researchers apply standard genetic operators such as crossover, mutation and selec-

tion on the chromosome representation, shown in Figure 8.18, when a real-valued or binary
encoding scheme is used.

Example 8.1 Consider a Sugeno-type fuzzy system with two inputs and a single output.
The fuzzy system is described by the two input MFs shown in Figure 8.19, where x1 ∼=
error and x2 ∼= change of error and the output functions defined by z1 = a1x1 + b1x2 + c1,
z2 = a2x1 + b2x2 + c2, z3 = a3x1 + b3x2 and z4 = a4x1 + b4, where {a1, b1, c1}, {a2, b2, c2},
{a3, b3} and {a4, b4} are the consequent parameters. An EA is to be applied for tuning the
rule base of the fuzzy system assuming that the MFs {A1, A2, B1, B2} do not need any further
tuning. The behaviour of the system is described by the rule base shown in Table 8.6.

1 2 3 54

1

.5

6

μ(x1) μ(x2)

x1 x2

A1 A2

4 5 6 87

1

.5

9

B1 B2

Figure 8.19 Membership functions for x1 and x2

280 Computational Intelligence

Table 8.6 Rule base for a Sugeno-type FLC

x2 ∼= change of error
x1 ∼= error B1 B2

A1 z1 z3
A2 z2 z4

Table 8.7 Rule base represented by the consequent parameters of the FLC

x2 ∼= change of error
x1 ∼= error B1 B2

A1 {a1, b1, c1} {a3, b3}
A2 {a2, b2, c2} {a4, b4}

Since the fuzzy system is restricted to some predefined fuzzy if–then rules and fuzzy sets,
the given task will be realized by assuming that the structure is fixed. Since the antecedent
MFs do not require any further tuning, therefore, tuning the consequent part of the rule base
will suffice for tuning the rule base (Siarry and Guely, 1998). Tuning the consequent part is
equivalent to tuning the parameters of the four output functions zk , {k = 1, . . . , 4}, where the
parameters of the output functions are {a1, b1, c1} for z1, {a2, b2, c2} for z2, {a3, b3} for z3 and
{a4, b4} for z4. Applying these parameters to the rule base in Table 8.6, we obtain the rule base
shown in Table 8.7.
The chromosome representation would look like Figure 8.20, where {ak, bk, ck} ∈ � (set

of real numbers). Once the chromosome is defined, application of EP, ES and GA is straight-
forward. Any standard genetic operators (such as crossover, mutation and selection) can be
applied to the chromosome when initialized with real-valued encoding. If the performance of
the fuzzy controller is measured against the behaviour of a plant, then any of the fitness mea-
sures discussed in Section 8.3.1 can be used for this problem. For example, Kang et al. (2000)
applied EP to determine an optimal rule set and parameters for fuzzy modelling and control.
EP was used to simultaneously evolve the structure and the parameters of a fuzzy rule base
for a given task with no predefined assumption about the rule-base structure and parameters.

8.2.1.4 Tuning Both MFs and Rule Base

In most cases, either the rule base is fixed and the parameters of the MFs are tuned or adjusted
or the MFs are fixed and the rule base is tuned or optimized by EAs. Some researchers have

{ }111 ,, cba , { }222 ,, cba , { }33,ba , { }44 , ba

Figure 8.20 Chromosome representation of the rule base for a Sugeno-type fuzzy system

Evolutionary Fuzzy Systems 281

{ }{ }{ }

Chromosome for MFs Chromosome for rule base

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1st row 2nd row 3rd row 4th row 5th rowinput 1 input 2 output

{5 5 5 4 3| 5 4 4 3 2| 4 3 3 3 2| 4 3 2 2 1| 3 2 111}a a a a a b b b b b c c c c c
64444444744444448

14243 14243 14243 14243 1231442443 1442443 1442443

644444444474444444448

Figure 8.21 Chromosome representation of MFs and rule base

tuned the rule base, the MFs and the scaling factors simultaneously. In general, MFs are
accommodated within a rule base during an optimization process. Therefore, optimizing both
the MFs and the rule base is somehow redundant. In this case, a designer does not expect a
drastic improvement in performance of the fuzzy system, rather a design simplification in a
systematic manner.
The chromosome representation for MFs in Figure 8.13(b) and the rule base in Table 8.2

can be combined by concatenating the strings of the chromosomes for MFs and the rule base
to make a simple chromosome representation. For example, such a representation is illustrated
in Figure 8.21.
A homogeneous representation may be sought and binary bit strings can be used for both

MFs and rule base. The homogeneous representation has the advantage that it has simple and
existing genetic operators, which can be employed easily. Owing to the inaccuracy in MFs
and difficulties in mapping rules, heterogeneous representation is preferred. For example, a
real-valued coding scheme for MFs and binary or integer-valued coding scheme for the rule
base can be used for the chromosome representation. It is more natural to represent a fuzzy
system encoded in a chromosome in the way it appears in the implementation. Therefore,
a heterogeneous coding scheme is proposed for the combined MFs and rule base as shown
in Figure 8.21. Shi et al. (1999) used integers for rule base and real values for MFs. This
increases complexity while applying genetic operators such as mutation. If the possible ranges
of the parameters are not known in advance, conservatively large intervals for the parameter
ranges are chosen (Setness and Roubos, 2000). But this does not guarantee the optimal
solution lying within the chosen parameter ranges. Large parameter ranges also increase the
number of bits per parameter, which makes the chromosome string too long – demanding
computation time.
The crossover operation will be straightforward, but there are two different mutation oper-

ators for both parts of the chromosome string. The genes in the MF part of the chromosome
will be replaced by a real value whereas the genes of the rule-base part of the chromosome
will be changed either up a level or down a level from the integer value to avoid a possibly
large deterioration in performance.
Any of the fitness functions defined in Section 8.3.1 can be used for evaluation of the fuzzy

system. The objective should be to keep the number of rules to a minimum. A penalty term
can also be included in the fitness function, as defined in Table 8.1. This will help reduce the
number of rules by eliminating useless and redundant rules from the rule base.

8.2.2 Evolutionary Learning of Fuzzy Systems

One of the disadvantages of any fuzzy rule-based system is that it does not have any kind of
knowledge acquisition or learning capability. Very often the acquired knowledge represents
a partial, incomplete or incorrect description of the system. When acquired knowledge is not

282 Computational Intelligence

enough for the systems to be modelled or controlled, some kind of learning or adaptation is
essential. Researchers have been striving to employ learning mechanisms that start from an
empty or randomly generated knowledge and learn towards an optimal knowledge. Among
these are neural networks simulating a fuzzy rule base and parameters and general-purpose
optimization methods. Neural networks-based learning will be discussed in Chapter 10. The
other possibility is learning by evolutionary methods. An influential paper by Hinton and
Nowlan (1987) showed that learning can guide evolution and learning-evolution can work
synergistically together. Evolutionary algorithms are general-purpose optimization algorithms
that can be deployed as a learning tool for the fuzzy rule base and parameters of MFs. In this
case, evolutionary learning is seen as an optimization or search problem requiring a simple
scalar performance index. Evolutionary learning is suitable as it can incorporate a priori
knowledge (Belarbi and Titel, 2000; Bonarini and Trianni, 2001). The a priori knowledge
may be in the form of linguistic variables, MF parameters, fuzzy rules and number of rules.
There can be two kinds of learning involved in this process: structure learning (i.e., rule base
learning) and parameter learning (i.e., MF learning). Considering this, EA can be used for
three levels of complexity of learning fuzzy rules:

• Michigan approach,
• Pittsburgh approach and
• Iterative rule learning approach.

8.2.2.1 Michigan Approach

In the Michigan approach, each chromosome in the population represents a single rule and a
rule set is represented by the entire population. The foundation of the Michigan approach was
laid by Holland (1975). There have been different implementations of the Michigan approach,
mainly to learn an approximate fuzzy rule base and/or parameters of the MFs. The Michigan
approach involves continuous (online) learning in a non-inductive problem represented by
individual rules and MF parameters, learning through interaction with the environment and
consequently adapting to it. An initial population of M fuzzy rules is generated randomly by
specifying the possible combinations of antecedent MFs. A set of K ⊆ M rules is selected
as the rule base to apply on a plant to evaluate the performance of the rule base. Fitness is
calculated for the rule base from the performance index. Here, EA plays the role of credit
assignment by computing the fitness of the individual rules and/or MF parameters. The fitness
of the K rules is shared among K individuals. New rule generation is accomplished by EA
using genetic operators such as selection, crossover and mutation.
The Michigan approach is outlined as follows:

1. Generate a random initial population of M fuzzy {if . . . then} rules by specifying all
possible combinations of antecedent MFs.

2. Select K ,K ⊆ M , fuzzy {if . . . then} rules to the rule base of the fuzzy system as shown
in Figure 8.24 and evaluate the performance of the rules, applying them to a plant.

3. Generate new individuals of fuzzy {if . . . then} rules by applying genetic operators such
as selection, crossover and mutation.

4. Replace individuals with new individuals of the population.
5. Continue until a termination condition is satisfied.

Evolutionary Fuzzy Systems 283

FIS

Rule base:
{r(1)…r(K)}

r(1): If x1=A1j,...,xn=Anj y1=C1i,…,ym=Cmi

r(2): If x1=A1j,...,xn=A

→

→

→

nj y1=C1i,…,ym=Cmi

… …

r(M): If x1=A1j,...,xn=Anj y1=C1i,…,ym=Cmi

Action Plant/
environment

Fitness
measure

EA

Rule population

Output/
response

Figure 8.22 Working principle of Michigan approach

The Michigan approach is illustrated in Figure 8.22. The original Michigan approach was
developed for classifier systems but this mechanism can be applied to any fuzzy system for
learning its rule base using EA.
Each fuzzy {if . . . then} rule is coded as a string. For example, consider the three fuzzy

rules below.

R1: If X1 is Small and X2 is Medium and X3 is Large Then Y is Low

R2: If X1 is Medium and X2 is Medium and X3 is Small Then Y is High

R3: If X1 is Small and X2 is Large and X3 is Medium Then Y is Low

The coded string of rules is shown in Figure 8.23, where Small=1, Medium=2, Large=3,
Low=1 and High=2.

8.2.2.2 Pittsburgh Approach

In the Pittsburgh approach, each chromosome in the population represents the entire rule
set, maintains a population of candidate rule sets and applies genetic operators (selection,
crossover and mutation) to produce new generations of rule sets. Individuals compete among
themselves through evolution and adapt to their environment. The Pittsburgh approach is
outlined as follows:

1. Generate a random initial population of N fuzzy rule bases. The number of fuzzy
{if . . . then} rules in the rule base is fixed.

284 Computational Intelligence

|1231|

|2122|

|1321|

3

2

1

43421

43421

43421

R

R

R

Figure 8.23 An example of a string-coded rule base

2. Select a rule base for the fuzzy system as shown in Figure 8.23 and evaluate the performance
of each rule base, applying it to the plant.

3. Generate new individuals of fuzzy rule bases by applying genetic operators such as selec-
tion, crossover and mutation.

4. Replace individuals with new individuals of the population.
5. Continue until a termination condition is satisfied.

The Pittsburgh approach is illustrated in Figure 8.24 and the above mechanism can be
applied to any fuzzy system for learning its rule base. Each fuzzy {if . . . then} rule is coded as
a substring and a rule base is the concatenation of all substrings. For example, consider a fuzzy
systems with three inputs {X1, X2, X3} and a single output Y with MFs (linguistic terms sets)

FIS

Rule base:
rb(k)={rule(1), rule(2)

, …, rule(M)}

rb(1): {rule(1), rule(2)
, …, rule(M)}

rb(2): {rule(1), rule(2)
, …, rule(M)}

…….

rb(N): {rule(1), rule(2)
, …, rule(M)}

EA

Action

Fitness
measure

Rule base population

Plant/
environment

Output/
response

Figure 8.24 Pittsburgh approach

Evolutionary Fuzzy Systems 285

|2333||1231|2122|1321|
43421

L
434214342143421

R1 R2 R3 R27

Figure 8.25 Example of a string-coded rule base in the Pittsburgh approach

{Small, Medium, Large} and {Low, High}, respectively. There are 27 possible combinations
of the three inputs {X1, X2, X3}with three MFs for each input. The entire rule base will consist
of 27 rules as follows.

R1: If X1 is Small and X2 is Medium and X3 is Large Then Y is Low

R2: If X1 is Medium and X2 is Medium and X3 is Small Then Y is High

R3: If X1 is Small and X2 is Large and X3 is Medium Then Y is Low

. . .

. . .

. . .

R27: If X1 is Large and X2 is Large and X3 is Large Then Y is High

The coded string of the rule base is shown in Figure 8.25, where the input MFs are Small=1,
Medium=2, Large=3 and the output MFs are Low=1 and High=2. The output MF is shown
in the last digit of each rule.

8.2.2.3 Iterative Approach

In the iterative rule learning approach, known as the third approach to reduce the dimension of
the search space by encoding individual rules like the chromosome in the Michigan approach,
a new rule is adopted and added to the rule base in an iterative way during execution of the EA.
The evolution takes cooperation between rules into account, as in the Pittsburgh approach. In
this case, the EA needs to be run over several iterations to obtain a complete set of rules. The
iterative approach is outlined as follows:

1. Generate a random initial population of M fuzzy {if . . . then} rules by specifying all
possible combinations of antecedent MFs.

2. Select a single {if . . . then} rule randomly from the rule base of the fuzzy system as shown
in Figure 8.26, which is empty initially (i.e., rb = O/).

3. Evaluate the performance of the rule base by applying it to the plant.
4. Generate a new individual fuzzy {if . . . then} rule by applying genetic operators such as
selection, crossover and mutation.

5. Add rule to the rule base or replace rule with a new rule if performance is not satisfactory.
6. Continue until a termination condition is satisfied.

The iterative approach is illustrated in Figure 8.26. The above mechanism can be applied to
any fuzzy system for learning its rule base using EA.

286 Computational Intelligence

FIS

Rule base:
rb = rb ∪ r (k)

Action

Fitness
measure

EA

Rule population

Plant/
environment

Output/
response

r(1): If x1=A1j,...,xn=Anj y1=C1i,…,ym=Cmi

r(2): If x1=A1j,...,xn=Anj y1=C1i,…,ym=Cmi

… …

r(M): If x1=A1j,...,xn=Anj y1=C1i,…,ym=Cmi

→
→

→

Figure 8.26 Iterative rule learning approach

In an iterative rule learning approach, each fuzzy {if . . . then} rule is coded as a string. For
example, consider a fuzzy system with three inputs {X1, X2, X3} and a single output Y with
MFs (linguistic terms sets) {Small, Medium, Large} and {Low, High}, respectively. There are
27 possible combinations of the three inputs {X1, X2, X3} with three MFs for each input. The
entire rule base consists of 27 rules.

R1: If X1 is Small and X2 is Medium and X3 is Large Then Y is Low

R2: If X1 is Medium and X2 is Medium and X3 is Small Then Y is High

R3: If X1 is Small and X2 is Large and X3 is Medium Then Y is Low

. . .

. . .

. . .

R27: If X1 is Large and X2 is Large and X3 is Large Then Y is High

The coded string of rules is shown in Figure 8.27, where the input MFs are Small=1,
Medium=2, Large=3 and the output MFs are Low=1 and High=2. The output MF is shown
in the last digit of each rule.
The learning process in the iterative rule learning approach works in two stages. In the

generation stage, it enforces the current best rule to be added incrementally to the intermediate
rule base and rules that are covered by this rule are removed from the training set. In the

Evolutionary Fuzzy Systems 287

|2333|

|1231|

|2122|

|1321|

27

3

2

1

43421

M

43421

43421

43421

R

R

R

R

Figure 8.27 An example of a string of coded rules

post-processing stage, redundant or useless rules are eliminated in order to obtain a final rule
base that demonstrates optimal performance.

8.3 Objective Functions and Evaluation

The performance of any EA-based fuzzy system depends mainly on the definition of an
appropriate objective function or fitness measure. Although it is problem-dependent, finding
a good general fitness measurement is quite important for evolving practical systems using
EAs. Unlike traditional gradient-based methods, EAs can be used to evolve systems with
any kind of fitness measurement function, including those that are non-differentiable and
discontinuous. How to define the fitness measurement function for a system to be evolved is
problem-dependent. The second issue is the evaluation of the fitness function. Obviously it is
an offline procedure due to the nature of the problem and the computation involved.

8.3.1 Objective Functions

The procedure to evaluate the fuzzy system (i.e., MFs and rule base; also called the knowledge
base of a fuzzy system) consists of submitting to a simulation model or real system, and
returning an assessment value according to a given cost function J subject to minimization.
In many cases J is determined as a summation over time of some instantaneous cost rate.
As an example, a trial fuzzy system can be made to control the model of a process and then
sum the errors over the response trajectory. The sum of errors is then directly related to the
objective function (fitness) of the trial. The fitness of the trial is a measure of the overall worth
of a solution, which takes into account the factors of an objective criterion; in this case, the
performance of a fuzzy system implementable with the trial knowledge base. The objective
is simply stated as the ability to follow a set point with minimal error. This objective can
thus be expressed in terms of minimization of the system performance indices, which are in
common use. These include the integral of absolute error (IAE), integral of square error (ISE)
and integral of time-weighted absolute error (ITAE).

288 Computational Intelligence

Assume a system with multiple inputs and outputs whose overall design effectiveness can
be measured by just one output of the overall system, such as error. Finally, all MFs and
the rule base can be expressed by some list of m (number of MFs and rules) parameters,
(p1, p2, . . . , pm) = p, where each parameter takes only a finite set of values. In the case of
IAE, it can be specified by the function

min J (p) = E
min

=
n∑

k=1
|e(k)| (8.7)

In the case of ISE, it is defined as

min J (p) = E
min

=
n∑

k=1
e(k)2 (8.8)

In the case of ITAE, it is defined as

min J (p) = E
min

=
n∑

k=1
�t · |e(k)| (8.9)

where e(k) is the output error of the system and n is some reasonable number of time units
by which the system can be assumed to have settled quite close to a set point. Obviously the
objective is to minimize J (p) subject to p in the parameter space.
There are other objective functions such as the one used by Cho et al. (1997), defined as

follows:

min J (p) =
n∑

i=1
ai Ci (8.10)

where the ai are the correction factors that adjust the dimensions or orders of the functions Ci .
A proper selection of the correction factors is critical so that EAs provide effective solutions
for multiple criteria problems.
Finding a good fitness measurement can make it easier for the EA to evolve to a useful

system. Shi et al. (1999) defined the fitness function in terms of the difference between the
maximum allowable error (Emax) and the mean squared error or mean absolute error

(
Ē

)
:

min J (p) = Emax − Ē (8.11)

Ē = 1

n

n∑
k=1

e(k)2 or Ē = 1

n

n∑
k=1

|e(k)| (8.12)

The objective of any fuzzy controller is to drive the system’s output to the desired set point
in the shortest time possible and maintain the output at the desired value. Some researchers
(Kang et al., 2000) have defined the fitness function as

min J (p) = E
min

=
T∑

t=1

|e(t).�t |
Yd

(8.13)

where t is the time index, T is the total time, e(t) is the error, �t is the sampling time and Yd

is the desired output or set point.

Evolutionary Fuzzy Systems 289

If the objective is to minimize the number of rules in the fuzzy system, then a penalty term
can be used in the fitness function to force the solution to eliminate redundant or useless rules
from the rule set. Maximizing F means minimizing the error E and the number of rules P ,
where E is defined by Equations (8.7)–(8.9):

F
max

= min J (p) = 1

E + P
(8.14)

As mentioned earlier that the fitness function is problem-dependent. Therefore, the fitness
functions defined in Equations (8.7)–(8.14) may not be suitable for problems such as fuzzy
clustering or fuzzy pattern recognition. In general, the fitness function provides a measure
for evaluating the performance of the fuzzy system with the selected set of fuzzy rule base,
MFs or structure in the optimization or tuning process. Hatanaka et al. (2004) used a different
fitness function for a system identification problem, arguing that the fitness function should
be evaluated based on its phenotype performance. This should reflect the accuracy and quality
of the global system model estimated by the mean squared error. The fitness function is then
defined as

Fi = log

(
msemax
msei

)
(8.15)

where Fi is the fitness of the ith individual and msei is the mean squared error of the model
by the ith individual, defined by

msei = 1

N

N∑
t=1
[y(t)− ŷi (t)]

2 (8.16)

where y(t) is the desired output and ŷi (t) is the estimated output produced by the ith individual.
msemax is the maximum mean squared error of the population.

8.3.2 Evaluation

Optimization of a fuzzy system using EA can be distinguished by two different groups. The
first group encompasses problems like modelling, identification, prediction and classification,
where a desired behaviour of the system is sought. The performance index in this case is the
error measure characterizing the difference between the desired and actual behaviour of the
system. The second group encompasses problems like control, where the objective is to tune
or learn the fuzzy system (described by MFs and the rule base) such that the plant shows
the desired behaviour. The performance index in this case characterizes the behaviour of the
closed-loop system. Evaluation or computation of the performance index is, therefore, critical
depending on the problem at hand (closed-loop or open-loop) and can be performed either
offline or online. The demand on computation time sometimes prohibits online application.
Offline application of EAs is carried out through closed-loop simulation using a simplified
model of the plant for fitness computation. The practical problem of implementation is how
to evaluate each chromosome in the population. In this case, the fuzzy system is applied to
the plant for each individual of the population. Its performance is evaluated using one of
the objective functions (8.7)–(8.15) discussed in Section 8.3.1, depending on the problem

290 Computational Intelligence

at hand. Then, the obtained value is assigned to the individual’s fitness. The time taken in
the evaluation of genetic structures, especially in the case of a fuzzy system or fuzzy control,
imposes restrictions on the size of the population and also the number of generations required to
run the EA to a final solution. The optimal setting of population size and maximum generation
is an issue related to implementation, which is discussed further in Section 8.4.

8.4 Fuzzy Adaptive Evolutionary Algorithms

In order to improve the performance of an EA, a fuzzy system is used to adapt the EA
parameters and operators in fuzzy evolutionary algorithms. This leads to two variants of
fuzzy EA:

• Adapt EA parameters using fuzzy logic,
• Adapt genetic operators of EA using fuzzy logic.

Standard GA in the 1980s was mainly based on binary chromosome representation, single-
point crossover, bit-flip mutation and a roulette wheel selection mechanism. Parameter control
was limited to crossover probability, mutation probability, size of tournament selection and
population size. Researchers mostly found these parameter values by hand. De Jong recom-
mended a set of parameter values based on extensive experiments on single-point crossover
and bit mutation (De Jong, 1975). The parameter values recommended by De Jong are shown
in Table 8.8. This can only provide reasonable performance in De Jong’s test problems. On the
other hand, Grefenstette proposed parameters for online and offline performance (Grefenstette,
1986). The best set of parameters obtained by Grefenstette is shown in Table 8.9.
The optimal and general set of parameters obtained by De Jong and Grefenstette cannot

be generalized for all problem domains. It has also been found that the EA’s behaviour is
strongly determined by the balance between an exploiting and exploring relationship (EER).
Poor parameter setting can cause the EER to be disproportionate, resulting in a lack of diversity
in the population, which is the main cause of premature convergence. A secondary effect of
disproportionate EER is a wasteful, time-consuming evolutionary procedure. This stresses the
need for efficient techniques to find good parameter settings for a given problem. Mainly, we
distinguish two major forms of parameter setting:

• Parameter tuning and
• Parameter control.

Table 8.8 Parameter values proposed by De Jong (1975)

Parameters Values

Population size 50
Crossover probability 0.6
Mutation probability 0.001
Generation gap 100%
Scaling window infinity
Selection strategy elitist

Evolutionary Fuzzy Systems 291

Table 8.9 Parameter values proposed by Grefenstette (1986)

Parameters Values online Values offline

Population size 30 80
Crossover probability 0.95 0.45
Mutation probability 0.01 0.01
Generation gap 100% 90%
Scaling window 1 1
Selection strategy elitist non-elitist

In parameter tuning, good values of the parameters are sought using some heuristics (com-
monly by hand, i.e., trial and error) and the EA is run using the parameter values fixed during
the run. Typically, one parameter is tuned at a time. Since parameters interact in a complex
way, single-parameter tuning may result in a suboptimal solution. On the other hand, simulta-
neous tuning of multiple parameters leads to enormously time-consuming experimentations.
The main technical pitfalls of parameter tuning can be summarized as follows:

• Parameters are all interdependent, requiring evaluation of all the different combinations of
parameters, which is practically impossible.

• The process of parameter tuning is time-consuming.
• The selected parameter values are not necessarily optimal for a given problem.

The other option for parameter tuning would be to choose parameters by analogy, where
parameter settings are chosen that have been proven successful in similar problems. However,
similarity between problems does not necessarily always guarantee similarity between optimal
parameter sets. Therefore, researchers are inclined to parameter control, whereby they can
use some heuristic feedback mechanism from the current state of the search and modify the
parameters accordingly. Eiben et al. (1999) classified themethods formodifying the parameters
into three categories and proposed the taxonomy illustrated in Figure 8.28.

Parameter setting

Parameter tuning Parameter control

Deterministic Adaptive Self-adaptive

Figure 8.28 Taxonomy of parameter setting in EA

292 Computational Intelligence

Adaptive techniques have been suggested to control the parameters of the EA during the
run. The three widely accepted parameter control techniques are as follows.

• Deterministic parameter control: the parameter set is updated according to some determin-
istic rule, such as a time-varying schedule.

• Adaptive parameter control: the direction and/or magnitude of the parameter set are updated
based on the feedback information from the search, such as a credit assignment.

• Self-adaptive parameter control: the parameter set is encoded into the chromosome repre-
sentation and undergoes evolution along with the EA.

8.4.1 Fuzzy Logic-Based Control of EA Parameters

All three parameter control techniques can involve adapting any component of an EA such as
chromosome representation, fitness function, variation operators (e.g., mutation and crossover)
and their probabilities, selection operator, replacement operator and population size. There are
many widely accepted control techniques but there has been a growing interest in combining
FS and EA. The motivation is to control the EA parameters using EA performance measures or
current control parameters as inputs to a fuzzy controller and compute new control parameters
for the EA to be adaptive. The possible measures are diversity measures, best (maximum),
average, worst (minimum) fitness, etc. Two diversity measures are widely used: genotypical
diversity, which measures the average distance of the population from the best individual
and phenotypical diversity, which measures the ratio between the best fitness and the average
fitness. Current control parameters are also suggested as inputs to the FS. Possible outputs
are control parameters or changes in them, such as crossover and mutation rate, population
size and selective pressure. A mapping between the inputs and outputs should be established,
then associated linguistic terms and a rule base describing the relationships between them
should be defined. Finding a good rule base has been recognized as a difficult task, as reported
in the literature. A brief review of adaptive EA using fuzzy control is reported in Schaffer
and Morishima (1987), Xu and Vukovich (1993) and Herrera and Lozano (2001). Different
combinations of FS-based EA components exist in the literature. Among them are two widely
used approaches, which will be discussed in the following sections:

• FS to control crossover and/or mutation probability and
• FS to control population size.

The adaptive mechanism being sought must have two characteristics. Firstly, it should
have the capacity to converge to an optimum on reaching the region of optimum solutions.
Secondly, it must be able to explore a new region of the solution space. The two characteristics
are dictated by the crossover probability (Pc) and the mutation probability (Pm), as well as the
type of crossover. Increasing the values of Pc and Pm promotes exploration (meaning diversity
of the population), which again increases exploitation (meaning computation cost). In general,
large values for Pc (0.5–1.0) and small values for Pm (0.001–0.05) are chosen by trial and
error to strike a balance between the two. An adaptive mechanism to control Pc and Pm can be
devised in response to the fitness values of the solutions to obtain an optimal solution or prevent
premature convergence. Such an adaptive mechanism is shown in Figure 8.29. In devising such
mechanisms, it is important to identify the state of convergence of the EA according to which

Evolutionary Fuzzy Systems 293

Evolutionary
algorithms

ux
Solutions

Fitness metric

Adaptive
mechanism

Figure 8.29 Adaptive mechanism for EA parameters

the values of Pc and Pm will be changed. The state of convergence can be observed by simply
measuring the average fitness value f̄ of the population in relation to the best (maximum)
fitness value fbest of the population. The value of the term (fbest − f̄) is likely to be less for
a population that has converged to an optimal solution than for a population scattered in the
entire solution space (Srinivas and Patnaik, 1994). It has been shown by Srinivas and Patnaik
that the EA converges to a local optimum with a fitness value of 0.5 with decreasing value of
(fbest − f̄), whereas a global optimum has a fitness value of 1.0.
Srinivas and Patnaik (1994) proposed that when the value of (fbest − f̄) decreases, Pc and

Pm should be varied inversely with (fbest − f̄). Thus, the relationship can be expressed as

Pc = kc

(fbest − f̄)
(8.17)

Pm = km

(fbest − f̄)
(8.18)

where kc and km are chosen arbitrarily and should be less than 1.0. The adaptive mechanism
for EA shown in Figure 8.29 can be described by Equations (8.17) and (8.18). A variety of
deterministic and adaptive mechanisms for controlling the parameters can be constructed using
the relationships in Equations (8.17) and (8.18). Use of an automatic technique such as a fuzzy
controller can reveal new high-performance EAs. The choice of fuzzy control is made not only
because it is easy to design, but because new knowledge on the complex relationship between
the different control parameters and their effects on performance is more understandable. The
adaptive mechanism for the EA proposed here is a fuzzy system as illustrated in Figure 8.30.
The input x in Figure 8.30 can be any performance measure, like average fitness (f̄), average

fitness/best fitness (f̄ / fbest), worst fitness/average fitness (fworst/ f̄), difference between best
and average fitness (fbest − f̄), current population size (N), or current control settings (s),
i.e., x = { f̄ / fbest, fworst/ f̄ , fbest − f̄ , N , s} and the output u can be any of the EA control
parameters identified byGrefenstette, such as population size (N), crossover rate (Pc),mutation
rate (Pm), generation gap (G), scaling window (W) or selection strategy (S) (Grefenstette,
1986), i.e., u = {N , Pc, Pm, G, W, S}. The performance of an EA can be expressed by the
control parameters

f (EA) = g(u) = g (N , Pc, Pm, G, W, S) (8.19)

The control parameters u = {N , Pc, Pm, G, W, S} have a strong relationship with the perfor-
mance measures and can best be described by

u(x) = g(f̄ / fbest, fworst/ f̄ , fbest − f̄ , N , s) (8.20)

294 Computational Intelligence

Inference Output MFs EA

Rule base
Fuzzy controller
as an adaptive

mechanism

Solutionx u
Intput MFs

Fitness
metric

Figure 8.30 FL-based adaptive mechanism for EA parameters

The behaviour of the EA is strongly determined by the balance between exploitation and
exploration. Poor parameter setting makes the relationship between exploitation and explo-
ration disproportionate, causing a loss of diversity in the population (Last and Eyal, 2005). An
immediate consequence of this is the premature convergence, leading to a non-optimal solu-
tion. One promising approach would be to control the crossover rate, mutation rate, population
diversity and stopping condition of the EA using the relationships defined in Equations (8.19)
and (8.20). A variety of fuzzy control techniques can be developed to control the population
size with fixed crossover and mutation rates, to control the crossover and mutation rates with
fixed population and to determine a stopping condition for the EA to be terminated. These
combinations of FS and EA remain to be discussed.
De Jong designed two measures to quantify the performance of an EA: online performance

to measure the ongoing performance of EA and offline performance to measure convergence.
Online performance based on current control setting s is the running average of all fitness
values up to a given time T , defined as

Fon(s) = 1

T

T∑
t=1

f (t) (8.21)

Offline performance based on current control setting s is the running average of the best fitness
value up to a given time T , defined as

Foff (s) = 1

T

T∑
t=1

fbest(t) (8.22)

Researchers use both online and offline performance depending on the problem at hand.

8.4.1.1 Fuzzy System to Control Crossover and Mutation Probability

An EA expert formulates fuzzy control rules to adapt the EA parameters, and achieve a
balance between exploitation and exploration through EA execution. Some researchers like

Evolutionary Fuzzy Systems 295

to emulate natural evolution processes with a varying population size by introducing the
concept of lifetime and age into the evolution process. Last and Eyal (2005) considered a
lifetime extension of individuals as a state variable that controls the crossover probability.
The proposed method takes into account the lifetime extension of the two parents and adapts
the crossover probability according to a fuzzy rule base. Defining the rule base of the fuzzy
system to eventually improve the performance of the EA is not straightforward. A qualitative
measure of the state variables is taken to adapt the EA control parameters, such as crossover or
mutation probability. The linguistic terms representing the range of each fuzzy variable, such
as lifetime extension and crossover probability, are defined as

Age ∈ {Young, Middle aged, Old} (8.23)

Pc ∈ {Low, Medium, High} (8.24)

A lifetime can be allocated to each individual from initialization of the population, and each
individual will grow older as it evolves with its generation. Tracking of the lifetime of each
individual will make the EA computation-intensive and may not contain any useful genetic
information, unless any fitness component is included in the lifetime calculation strategies.
Last and Eyal (2005) proposed a bilinear allocation strategy. An individual has a maximum
and minimum allowable lifetime. A lifetime is assigned to each individual i according to its
fitness, as follows:

lifetime(i) =
{

lifetimemin + η.
f (i)− fworst

f̄ − fworst
if f̄ ≥ f (i)

1
2 (lifetimemin + lifetimemax)+ η.

f (i)− f̄
fbest− f̄

if f̄ < f (i)
(8.25)

where η = 1
2 (lifetimemax − lifetimemin), lifetimemax and lifetimemin are the maximum and

minimum allowable lifetimes of individuals, respectively.
A rule base can be developed by trial and error or by an expert. Table 8.10 shows a rule

base for a two-parent lifetime extension and crossover probability. Eyal (2003) has developed
such a rule base through extensive experiments. The MFs for the linguistic terms are defined
in Figure 8.31. The rule base will provide satisfactory results for similar problem domains
only when the MFs are defined close to the MFs in Last and Eyal (2005).
Using the lifetime extension of the parents as inputs and crossover probability as output, a

fuzzy controller can be designed as shown in Figure 8.32. Similarly, the mutation probability
can also be controlled.

Table 8.10 FL rule base for crossover probability

Parent 1

Parent 2 Age Young Middle-aged Old

Young Low Medium Low
Middle-aged Medium High Medium
Old Low Medium Low

296 Computational Intelligence

0.2 .3 .5
(a) (b)

.4

1

.5

.6 Age

μ(Age)

Y OM

.7 1 0 .2 .3 .8.4

1

.5

1 Pc

μ(Pc)

L HM

Figure 8.31 MFs for lifetime extension and crossover probability. (a) MFs for lifetime extension;
(b) MFs for crossover probability. Here the symbols used are: Y for Young, M for Middle-aged, O for
Old, L for Low, M for Medium and H for High

Some researchers use the current generation run by an EA and the actual population size
for a two-input single-output fuzzy controller, which can adapt the crossover or mutation
rates. The linguistic terms representing the generation, population size and crossover and
mutation probability are defined in Equations (8.26)–(8.28). MFs for the linguistic terms are
not shown for this fuzzy controller. The two inputs are generation and population size and the
output is crossover or mutation probability. The rule base for the two-input single-output fuzzy
controller is shown in Table 8.11. The two-input single-output fuzzy controller for this case is
not shown here but will be similar to the fuzzy controller shown in Figure 8.32, with inputs
of generation and population size and crossover or mutation probability as the single output.

Generation ∈ {Short, Medium, Large} (8.26)

Population size ∈ {Small, Medium, Large} (8.27)

Pm or Pc ∈ {Low, Medium, High} (8.28)

EA

Fuzzy controller

Solution

Parent 2

PcInference

Rule base

Parent 1

Population

Figure 8.32 Fuzzy control of crossover or mutation probability

Evolutionary Fuzzy Systems 297

Table 8.11 Fuzzy controller’s rule base for crossover/mutation probability

Population size

Generation Small Medium Large

Short Medium Low Low
Medium High High Medium
Large Very High Very High High

(a) (b) (c)

1

μ

0 0.4 0.9

S M B

bestff /

.5

1

μ

0 0.2 0.8

S M B

ffworst /

.5

1

μ

0 6 14

S M B

bestfΔ

.5

Figure 8.33 Input MFs for f̄ / fbest, fworst/ f̄ and � fbest. (a) MFs for average/best fitness (f̄ / fbest);
(b) MFs for worst/average fitness (fworst/ f̄); (c) MFs for change in best fitness (� fbest)

Lee and Takagi (1993) used input variables such as average fitness/best fitness (f̄ / fbest),
worst fitness/average fitness (fworst/ f̄), change in best fitness (� fbest) and output variables
such as change in crossover rate (�Pc), change in mutation rate (�Pm) to design a three-input
single-output fuzzy controller to control the crossover or mutation rate. The linguistic terms
representing the input and output variables are defined in Equations (8.29) and (8.30), i.e.,
mostly three MFs are used for each input and output variables. For example, the input MFs
are shown in Figure 8.33 and the output MFs are shown in Figure 8.34. The universes of

1

0.5 1.0

(a) (b) (c)

2.0

S

μ μ

Δ Δ Δ

μ

M B

Pc

.5

1

0.5 1.5 2.5

S M B

Pm

.5

1

0 1.5 3

S M B

N

.5

Figure 8.34 Output MFs for�Pc,�Pm and�N . (a) MFs for change of crossover rate (�Pc); (b) MFs
for change of mutation rate (�Pm); (c) MFs for change of population size (�N)

298 Computational Intelligence

Table 8.12 Rule base for change in mutation rate

Inputs

f̄ / fbest fworst/ f̄ � fbest Output �Pm

S S S S
S S B M
S M M M
S M B B
S B S M
M S S M
M S M B
M S B M
M M S M
M B S B
M B M M
M B B M
B S S S
B S B B
B M B B
B B B S

discourse of the input/output variables shown in Figures 8.33 and 8.34 may vary depending
on the optimization problem at hand.

{
f̄ / fbest, fworst/ f̄ ,� fbest

} ∈ {Small, Medium, Big} (8.29)

{�Pc,�Pm} ∈ {Small, Medium,Big} (8.30)

The rule base for the three-input { f̄ / fbest, fworst/ f̄ ,� fbest} single-output {�Pm} fuzzy con-
troller is shown in Table 8.12. A generic rule would read

IF f̄ / fbest is S and fworst/ f̄ is S and � fbest is B THEN�Pm is M

The fuzzy controller is shown in Figure 8.35. The output�Pm is to be considered in Table 8.12
for controlling the mutation rate. In a similar way, a fuzzy controller for crossover change can
be developed.

8.4.1.2 Fuzzy Control of Population

De Jong and Goldberg have been researching the effect of population size on EA performance;
for example, as the current population size grows, the sensitivity to mutation rate decreases
and the best mutation rate to use also decreases (De Jong and Spears, 1990; Goldberg et al.,
1992). A typical fuzzy rule to control the EA parameters relating to population size N may be
as follows:

IF (f̄ / fbest) is Big THEN increase (N)

IF (fworst/ f̄) is Small THEN decrease (N)

IF (Pm) is Small AND (N) is Small THEN increase (N)

Evolutionary Fuzzy Systems 299

Fitness
metric

()fworst / f

Inference EA

Rule base
Fuzzy control

So
lu

tio
n

ΔP
 ,

ΔN
m

()bestf / f

()bestfΔ

Population

Figure 8.35 Fuzzy control of mutation rate/population size

Here, an increase or decrease in N means a change of the population by adding or subtracting
a small value �N to or from N . Using the suggestions of De Jong and Goldberg, researchers
designed fuzzy controllers to control the population size, crossover rate or mutation rate. The
three input variables used are (f̄ / fbest), (fworst/ f̄) and � fbest and the output variable is �N
(Lee and Takagi, 1993). The linguistic terms representing the output variable are defined in
Equation (8.31), i.e., three MFs are used for the output variable. For example, the input MFs
are shown in Figure 8.33(a–c) and the output MFs are shown in Figure 8.34(c).

{�N } ∈ {Small, Medium,Big} (8.31)

The universes of discourse of the input/output variables shown in Figures 8.33 and 8.34 may
vary depending on the application, as the definition of the fitness function is very subjective
to problems. For a three-input single-output fuzzy controller, the input and output variables
are { f̄ / fbest, fworst/ f̄ ,� fbest} and {�N}, respectively. A rule base for the fuzzy controller to
control the population size would look like that in Table 8.13. A generic rule would read:

IF f̄ / fbest is B and fworst/ f̄ is M and � fbest is S THEN�N is B

The fuzzy controller for the population change is the same as shown in Figure 8.35, with the
output variable �N .
The current EA parameters {Pc, Pm , N} are multiplied by the change in EA parameters

{�Pc, �Pm , �N} obtained from the fuzzy controller. The three-input single-output fuzzy
control for the population size is shown in Figure 8.35. This is the same as that used for control
of the crossover or mutation probability, except the output is �N in this case. As the number
of inputs and outputs of a fuzzy system increases, the rule base increases exponentially. The
three-input single-output fuzzy controller with three MFs for each variable requires 81 rules to

300 Computational Intelligence

Table 8.13 Rule base for change in population

Inputs

f̄ / fbest fworst/ f̄ � fbest Output �N

S S B B
S M S B
S M M S
S M B B
S B S S
S B B M
M S S S
M S M M
M S B S
M M S S
M M M M
M M B B
B S S M
B S B S
B M S B
B M M B
B M B B

process, which is certainly very time-consuming. There are different strategies for reduction
of the rule base. Some techniques to handle the dimensionality problem have been discussed
in Chapter 3.
Poluzzi et al. (1997) proposed a fuzzy knowledge base (fuzzy government) to control the

EA parameters dynamically and to detect the emergence of a solution so that any undesired
behaviour of the evolutionary process can be avoided. They also developed a fuzzy estimate of
the fitness of individuals based on the recorded outcomes of competitions taking into account
three quantities: number of competitions taken part in by an individual (denoted c), number of
times an individual wins (denoted w) and number of times an individual succeeds (denoted s).
The membership function of the fitness is then defined as

μ f (x) = N (a, b) xa (1− x)b (8.32)

where N (a, b) = (a+b)a+b

aabb is a normalization factor with a = w + s and b = c − s. The fuzzy
fitness helps avoid useless competition among individuals and the fitness of individuals in the
population is aggregated to provide population statistics to be used by the fuzzy controller.
The statistics that can be used as inputs to the fuzzy controller are: genotypic diversity (D�),
phenotypic diversity (D�), maximum fitness (fmax), average fitness (f̄), minimum fitness
(fmin), fitness range (fmax − fmin), tie rate (Ptie), success rate (Psucc), actual mutation rate
(Pm act) and time out rate (Pt/o). The outputs of the fuzzy controller are: mutation rate (Pm),
crossover rate (Pc), selective strategy (S) and window of success (W). There are other measures
such as emergence and premature convergence. The statistics and parameters can be used for
any EA and applications. All the statistics and parameters are normalized and six MFs are

Evolutionary Fuzzy Systems 301

1

μ

0 0.1

Z M L

x

.5

0.25 0.5 0.75 1.0

S MS ML

0.9

Figure 8.36 Six MFs defined for all inputs x ∈ [−1, 1]

defined within the normalized range [−1, 1]. TheMFs are defined using the threshold function
μ(x) for all x ∈ [−1, 1]:

μ(x) =
⎧⎨
⎩

1 x ≤ α

(β − x)/(β − α) α < x < β

0 x ≥ β

(8.33)

The six MFs {Z, S, MS, M, ML, L} can be defined by choosing suitable values for {α, β} ∈
[0, 1] in Equation (8.33). The MFs {Z, S, MS, M, ML, L} are shown in Figure 8.36 and the
corresponding values of {α, β} are shown in Table 8.14.
Linguistic hedges such as Very and More or less can also be used to intensify or dilute

the MFs defined in Figure 8.36, respectively. The objective of the fuzzy system (controller)
is to keep the EA in dynamical equilibrium. Therefore, the mapping between the population
statistics defined earlier and the EA parameters defined by the fuzzy system will inversely
relate the mutation rate to the population diversity (i.e., the higher the mutation rate, the less
diverse the population). A generic set of rules would read

IF NOT(Ptie) is MS and Ptie is M THEN Pm is 0.01

IF NOT(Psucc) is S and Psucc is MS THEN W is 0.01

IF Very(NOT(Pt/o)) is MS THEN Emergence is 0.5

IF NOT(Pt/o) is Very(M) THEN Emergence is 1.0

Table 8.14 MFs with corresponding values of {α, β}

MF α β

Z 0.0 0.1
S 0.1 0.25
MS 0.25 0.5
M 0.5 0.75
ML 0.75 0.9
L 0.9 1.0

302 Computational Intelligence

Table 8.15 A generic rule base for fuzzy control of population

Inputs Outputs

If (Ptie,P̄tie,Psucc,P̄succ,P̄t/o,(P̄t/o)2) Then (Pm ,W ,E)

Ptie P̄tie Psucc P̄succ P̄t/o (P̄t/o)2 Pm W E

Z 0.0
MS Z 0.004
M MS 0.01

M 0.1
S 0.0
MS S 0.01

MS 0.02
MS 0.5

M2 1.0
MS 0.02

A rule base is developed for the fuzzy system as shown in Table 8.15. (P̄t/o)2 is read as
Very(NOT(Pt/o)), M2 is read as Very(M) and Emergence is represented by E in the figure.
Some researchers considered a two-input single-output fuzzy controller to control the values

of two different variables, such as a parameter establishing the frequency of application of
crossover operators and a parameter establishing the selective pressure performed by the
selection operator (Herrera and Lozano, 1996). The rule base is generally derived by a human
expert following the behaviour of encouraging exploration when the population diversity is
low and encouraging exploitation when the population diversity is high. There have been
lots of researches on controlling the EA parameters reported in the literature in the last two
decades, under the umbrella of adaptive systems. Interested readers are directed to read the two
classic papers by De Jong (1980) and Grefenstette (1986), where the problems are discussed
of designing an adaptive system and optimizing a complex system using a genetic approach
by controlling the parameters of EA.

8.4.2 Fuzzy Logic-Based Genetic Operators of EA

One of the major problems of an EA is the premature convergence caused by the loss of critical
alleles in the chromosomes due to selection, crossover and mutation and their probabilities. In
order to solve the problem, some kind of mechanism is needed in the genetic process. There
are several strategies, such as modified selection and crossover operators and adaptation of
control parameters. Adaptation of control parameters has been addressed in Section 8.4.1.
Genetic operators such as crossover, mutation and selection are mainly numeric operations.
Some researchers have proposed fuzzified genetic operators such as fuzzy connective-based
crossover (Herrera et al., 1997; Herrera and Lozano, 2000, 2001) and soft genetic operators
(Voigt et al., 1995). This is amodified version of arithmetic crossover. Three types of arithmetic
crossover (e.g., simple, single and whole) were discussed in Section 6.4.2 of Chapter 6. All
three types can be modified with max/min arithmetic crossover. A generic example of arith-
metic crossover will make clear how to apply the operator on two parents. Let us consider two

Evolutionary Fuzzy Systems 303

chromosomes Ci (t) = {
ci,1, . . . , ci,k, . . . , ci,M

}
and C j (t) = {

c j,1, . . . , c j,k, . . . , c j,M
}
rep-

resenting the ith and jth individuals of the population. Averaging and max/min arithmetic
crossover can be applied to produce four offspring. Applying the averaging operation will
generate two offspring, where 0 ≤ λ ≤ 1 and k = 1, 2, . . . , M :

Parent 1: Ci (t) = {
ci,1, . . . , ci,k, . . . , ci,M

}
Parent 2: C j (t) = {

c j,1, . . . , c j,k, . . . , c j,M
}

- -
Offspring 1: C1,k(t + 1) = (1− λ) ci,k + λc j,k

Offspring 2: C2,k(t + 1) = (1− λ) c j,k + λci,k

Applying the max/min operation will generated two offspring as follows:

Parent 1: Ci (t) = {
ci,1, . . . , ci,k, . . . , ci,M

}
Parent 2: C j (t) = {

c j,1, . . . , c j,k, . . . , c j,M
}

- -
Offspring 3: C3,k(t + 1) = max

{
ci,k, c j,k

}
Offspring 4: C4,k(t + 1) = min

{
ci,k, c j,k

}
For more details on these operations, interested readers are directed to Herrera et al. (1997).

It has been demonstrated by Herrera et al. that the fuzzy connective-based crossover operator
is able to balance the exploitation/exploration and model the diversity of population, and can
avoid premature convergence.

References

Ahmad, S., Siddique, N.H. and Tokhi, M.O. (2012) Evolutionary tuning of modular fuzzy controller, International
Journal of Computational Intelligence and Applications, 11(2), 1–23.

Baeck, T. (1996) Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York.
Belarbi, K. and Titel, F. (2000) Genetic algorithm for design of a class of fuzzy controllers: an alternative approach,

IEEE Transactions on Fuzzy Systems, 8(4), 398–405.
Bonarini, A. and Trianni, V. (2001) Learning fuzzy classifier systems for multi-agent coordination, Information

Sciences, 136, 215–239.
Boverie, S., Demaya, B. and Titly, A. (1991) Fuzzy logic control compared with other automatic control approaches.

Proceedings of 30th IEEE-CDC Conference on Decision and Control, Brighton, pp. 1212–1216.
Chang, T.C., Hasegawa, K. and Ibbs, C.W. (1991) The effects of membership function on fuzzy reasoning, Fuzzy Sets

and Systems, 41, 169–186.
Chin, T.C. and Qi, X.M. (1997) Genetic algorithms for learning the rule base of fuzzy logic controller, Fuzzy Sets

and Systems, 97, 1–7.
Cho, H.-J., Cho, K.-B. and Wang, B.-H. (1997) Fuzzy–PID hybrid control: automatic rule generation using genetic
algorithms, Fuzzy Sets and Systems, 92, 305–316.

Chou, C.-H. (2006)Genetic algorithm-based optimal fuzzy controller design in the linguistic space, IEEE Transactions
on Fuzzy Systems, 14(3), 372–385.

Cordon, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001) Genetic Fuzzy Systems: Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases, World Scientific, Singapore.

Daugherity, W.C., Rathakrishnan, B. and Yen, J. (1992) Performance evaluation of a self-tuning fuzzy controller.
Proceedings of the First IEEE International Conference on Fuzzy Systems, San Diego, pp. 389–397.

304 Computational Intelligence

Davis, L. (1989) Adapting operator probabilities in genetic algorithms. Proceedings of Third International Conference
on Genetic Algorithms, pp. 61–69.

De Jong, K.A. (1975) Analysis of the behaviour of a class genetic adaptive system. PhD Thesis, Department of
Computer and Communications Sciences, University of Michigan, Ann Arbor, MI.

De Jong, K.A. (1980) Adaptive system design: a genetic approach, adaptive systems, IEEE Transactions on Systems,
Man and Cybernetics, 10(9), 566–574.

De Jong, K.A. and Spears, W.M. (1990) An analysis of interacting roles of population size and crossover in genetic
algorithms. Proceedings of the 1st Workshop on Parallel Problem Solving in Nature (PPSN ‘90), Dortmund,
Germany, pp. 38–47.

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993) An Introduction to Fuzzy Control, Springer-Verlag, Berlin.
Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999) Parameter control in evolutionary algorithms, IEEE Trans-

actions on Evolutionary Computation, 3(2), 124–141.
Eyal, S. (2003)A fuzzy-based age extension of genetic algorithm. Master’s Thesis, Department of Information Systems
Engineering, Ben-Gurion University of the Negev, Israel.

Fogarty, T.C. (1989) Varying the probability of mutation in genetic algorithms. Proceedings of Third International
Conference on Genetic Algorithms, pp. 104–109.

Glover, F. (1989) Tabu Search – Part I, ORSA Journal on Computing, 1, 190–206.
Goldberg, D.E. (1989)Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading,
MA.

Goldberg, D.E., Deb, K. and Clark, J.H. (1992) Genetic algorithms, noise, and sizing of populations,Complex Systems,
6(4), 333–362.

Grefenstette, J.J. (1986) Optimisation of control parameters for genetic algorithms, IEEE Transactions on Systems,
Man and Cybernetics, 16(1), 122–128.

Hatanaka, T., Kawaguchi, Y. and Uosaki, K. (2004) Nonlinear system identification based on evolutionary fuzzy
modelling, IEEE Congress on Evolutionary Computing, 1, 646–651.

Herrera, F. and Lozano, M. (1996) Adaptation of genetic algorithm parameters based on fuzzy logic controllers.
In Genetic Algorithms and Soft Computing, F. Herrera and J.L. Verdegay (eds), Studies in Fuzziness and Soft
Computing, Vol. 8, Physica-Verlag, Berlin, pp. 95–125.

Herrera, F. and Lozano, M. (2000) Gradual distributed real-coded genetic algorithms, IEEE Transactions on Evolu-
tionary Computation, 4(1), 43–63.

Herrera, F. and Lozano, M. (2001) Adaptive genetic algorithms based on co-evolution with fuzzy behaviours, IEEE
Transactions on Evolutionary Computation, 5(2), 149–165.

Herrera, F., Lozano, M. and Verdegay, J.L. (1997) Fuzzy connectives based crossover operators to model genetic
algorithms population diversity, Fuzzy Sets and Systems, 92(1), 21–30.

Hinton, G.E. and Nowlan, S.J. (1987) How learning can guide evolution, Complex Systems, pp. 495–502.
Hoffmann, F. (2000) Evolutionary algorithms for fuzzy control system design, Proceedings of the IEEE, 89(9),
1318–1333.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
Homaifar, A. and McCormick, E. (1995) Simultaneous design of membership functions and rule sets for fuzzy
controllers using genetic algorithms, IEEE Transactions on Fuzzy Systems, 3(2), 129–139.

Ishibuchi, H., Nozaki, K., Yamamoto, N. and Tanaka, H. (1995) Selecting fuzzy if–then rules for classification
problems using genetic algorithms, IEEE Transactions on Fuzzy Systems, 3, 260–270.

Jang, J.-S.R., Sun, C.-T. and Mizutani, E. (1997) Neuro-Fuzzy and Soft Computing, Prentice-Hall, Englewood Cliffs,
NJ, pp. 335–363.

Kang, S.-J., Woo, C.-H., Hwang, H.-S. and Woo, K.B. (2000) Evolutionary design of fuzzy rule base for nonlinear
system modelling and control, IEEE Transactions on Fuzzy Systems, 8(1), 37–45.

Karr, C.L. andGentry, E.J. (1993) Fuzzy control of pH using genetic algorithms, IEEE Transactions on Fuzzy Systems,
1(1), 46–53.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simulated annealing, Science, 220, 671–680.
Kovacic, Z. and Bogdan, S. (2006) Fuzzy Controller Design: Theory and Application, CRC Press, Boca Raton, FL.
Kwon, C. and Sudhoff, S.D. (2006) Genetic algorithm-based induction machine characterization procedure with
application to maximum torque per amp control, IEEE Transactions on Energy Conversion, 21(2), 405–415.

Last, M. and Eyal, S. (2005) A fuzzy-based lifetime extension of genetic algorithm, Fuzzy Sets and Systems, 149,
131–147.

Lee, M.A. and Takagi, H. (1993) Dynamic control of genetic algorithms using fuzzy logic techniques. Proceedings
of the 5th International Conference on Genetic Algorithms (ICGA’93), Urbana-Champaign, IL, pp. 76–83.

Evolutionary Fuzzy Systems 305

Linkens, D.A. and Nyongesa, H.O. (1995a) Genetic algorithms for fuzzy control, Part 1: Offline system development
and application, IEE Proceedings of Control Theory and Application, 142(3), 161–176.

Linkens, D.A. and Nyongesa, H.O. (1995b) Genetic algorithms for fuzzy control, Part 2: Online system development
and application, IEE Proceedings of Control Theory and Application, 142(3), 177–185.

Loop, B.P., Sudhoff, S.D., Żak, S.H. and Zivi, E.L. (2010) Estimating regions of asymptotic stability of power
electronics systems using genetic algorithms, IEEE Transactions on Control Systems Technology, 18(5), 1011–
1022.

Margaliot, M. and Langholz, G. (2000)New Approaches to Fuzzy Modelling and Control, World Scientific, Singapore.
Matyas, J. (1965) Random optimization, Automation and Remote Control, 26, 244–251.
Nelder, J. and Mead, R. (1965) The downhill simplex method, Computer Journal, 7, 308–313.
Poluzzi, R., Rizzotto, G.G. and Tettamanzi, A.G.B. (1997) An evolutionary algorithm for fuzzy controller synthesis
and optimization based on SGS-Thomson’s WARP fuzzy processor. In Genetic Algorithms and Fuzzy Logic
Systems: Soft Computing Perspectives, E. Sanchez, T. Shibata and L.A. Zadeh (eds), World Scientific, Singapore,
pp. 71–89.

Qi, X.M. and Chin, T.C. (1997) Genetic algorithms based fuzzy controller for higher order systems, Fuzzy Sets and
Systems, 91, 279–284.

Schaffer, J.D. and Morishma, A. (1987) An adaptive crossover mechanism for genetic algorithms. Proceedings of
Second International Conference on Genetic Algorithms, pp. 36–40.

Setness, M. and Roubos, H. (2000) GA-fuzzy modelling and classification: complexity and performance, IEEE
Transactions on Fuzzy Systems, 8(5), 509–522.

Shi, Y., Eberhart, R. and Chen, Y. (1999) Implementation of evolutionary fuzzy systems, IEEE Transactions on Fuzzy
Systems, 7, 109–119.

Siarry, P. and Guely, F. (1998) A genetic algorithm for optimizing Takagi–Sugeno fuzzy rule bases, Fuzzy Sets and
Systems, 99, 437–471.

Srinivas, M. and Patnaik, L.M. (1994) Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE
Transactions on Systems, Man and Cybernetics, 24(4), 656–667.

Vidyasagar, M. (2002) Nonlinear Systems Analysis, 2nd edn, Prentice-Hall, Englewood Cliffs, NJ.
Voigt, H.M., Muehlenbein, H. and Cvetkovic, H. (1995) Fuzzy recombination for breeder genetic algorithms. Pro-

ceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), L. Eshelman (ed.), Morgan
Kaufman, New York, pp. 104–111.

Whidborne, J.F. and Istepanian, R.S.H. (2001) Genetic algorithm approach to designing finite-precision controller
structures, IEE Proceedings – Control Theory and Applications, 48(5), 377–382.

Yager, R.R. and Filev, D.P. (1994) Essential of Fuzzy Modelling and Control, John Wiley & Sons, Chichester.
Yun, Y. and Gen, M. (2003) Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics,

Fuzzy Optimisation and Decision Making, 2, 161–175.

9
Evolutionary Neural Networks

9.1 Introduction

Layered feedforward neural networks have become very popular, for several reasons: they have
been found in practice to generalize well and there are well-known training algorithms such
as Widrow–Hoff, backpropagation, Hebbean, winner-takes-all, Kohonen self-organizing map
which can often find a good set of weights. Despite using minimal training sets, the learning
time very often increases exponentially and they often cannot be constructed (Muehlenbein,
1990). When global minima are hidden among the local minima, the backpropagation (BP)
algorithm can end up bouncing between local minima without much overall improvement,
which leads to very slow training. BP is a method requiring the computation of the gradient
of error with respect to weights, which again needs differentiability. As a result, BP cannot
handle discontinuous optimality criteria or discontinuous node transfer functions. BP’s speed
and robustness are sensitive to parameters such as learning rate, momentum and acceleration
constant, and the best parameters to use seem to vary from problem to problem (Badi and
Homik, 1995). A method called momentum decreases BP’s sensitivity to small details in the
error surface. This helps the network avoid getting stuck in shallow minima which would
prevent the network from finding a lower-error solution (Vogt et al., 1988).
The automatic design of artificial neural networks has two basic sides: parametric learning

and structural learning. In structural learning, both the architecture and parametric information
must be learned through the process of training. Basically, we can consider three models of
structural learning: constructive algorithms, destructive algorithms and evolutionary computa-
tion. Constructive algorithms (Gallant, 1993; Honavar and Uhr, 1993; Parekh et al., 2000) start
with a small network (usually a single neuron). This network is trained until it is unable to con-
tinue learning, then new components are added to the network. This process is repeated until
a satisfactory solution is found. These methods are usually trapped in local minima (Angeline
et al., 1994) and tend to produce big networks. Destructive methods, also known as pruning
algorithms (Reed, 1993), start with a big network that is able to learn but usually ends in
over-fitting and try to remove the connections and nodes that are not useful. A major problem
with pruning methods is the assignment of credit to structural components of the network in
order to decide whether a connection or node must be removed. Both methods, constructive

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

308 Computational Intelligence

and destructive, limit the number of available architectures, which introduce constraints in the
search space of possible structures that may not be suitable for the problem. Although these
methods have been proved useful in simulated data (Thodberg, 1991; Depenau and Moller,
1994), their application to real problems has been rather unsuccessful (Hirose et al., 1991;
Hassibi and Stork, 1993; Kamimura and Nakanishi, 1994).
Several researchers have begun to research robust methods for overcoming these kinds of

problems. One such method may be the application of EAs. Evolutionary neural network
systems mainly means the design and training of neural networks by evolutionary algorithms.
The interest in combinations of neural networks and evolutionary search procedures has
grown rapidly in recent years. There are several arguments in favour of applying EAs to NN
optimization (weights and/or topology), as EAs have the potential to produce a global search of
the parameter space and thereby avoid local minima. Also, it is advantageous to apply EAs to
problems where gradient information is difficult or costly to obtain. This implies that EAs can
potentially be applied to reinforcement learning problems with sparse feedback for training
NNs with non-differentiable neurons. The only obvious disadvantage with EAs is their slow
time scale.
In EAs it is not only the algorithm, representation and operators used for the problem but

also the strategy parameter values and operator probabilities to be chosen which influence
the performance (meaning a good set of solutions) and the convergence (meaning a good
set of solutions in good time, i.e. finding the solution efficiently). The process of finding the
appropriate parameter values and operator probabilities is a time-consuming task. Researchers
have put in considerable amounts of effort and experimented with various problems from
a particular domain and attempted to tune the strategic parameters. It is obvious that an
EA is intrinsically a dynamic and adaptive process. Moreover, there are also drawbacks of
the traditional approach in the sense that strategic parameters are static and an inappropriate
choice of parameters may lead to suboptimal performance. Tuning of the parameters will cost a
significant amount of time and the optimal parameter value may also vary during the evolution
process. A detailed discussion on EA parameters and their settings is provided in Section 8.4
of Chapter 8. Therefore, an adaptive mechanism for the strategy parameters is more desirable
as the deterministic parameter setting varies from problem to problem. Different fuzzy logic-
based approaches to adaptive mechanisms for EA parameter settings have been discussed in
Section 8.4.1 of Chapter 8. The main difficulties of the fuzzy logic-based approaches are the
construction of the MFs and the rule-based learning, which mainly require expert knowledge.
In a similar way, NNs can also be applied to develop adaptive mechanisms for EAs. The
advantage of NNs over fuzzy logic-based approaches is that an NN is capable of learning
from experiential data. Adaptive learning of EA parameters has been reported and discussed
by many researchers in various conferences and journals in a dispersed way. It needs to be
addressed in a more structured way.
Various schemes for combining EAs and NNs have been proposed and tested by many

researchers in the last two decades (Yao and Liu, 1998; Cantú-Paz and Kamath, 2005; Jung
and Reggia, 2006) but the literature is scattered among a variety of journals, proceedings
and technical reports. Mainly, three types of combination have been reported hitherto in the
literature:

• Supportive combination,
• Collaborative combination and
• Amalgamated combination.

Evolutionary Neural Networks 309

In supportive combination, EAs and NNs are used sequentially where one is the primary
problem solver and the other is secondary. In collaborative combination, they are used simul-
taneously where both EAs and NNs solve the problem together. In amalgamated combination,
the EA search mechanism is represented in an NN paradigm. The supportive, collaborative
and amalgamated combinations are discussed in the following sections.

9.2 Supportive Combinations

An EA uses a population representative of the entire solution space of an optimization problem
at hand. The EA then converges depending on the population, and different strategic parameters
of the EA subject to a predefined fitness metric. In contrast, an NN uses an experiential data set
representative of the input/output space. The learning then converges depending on the data
set, learning parameters and architecture of the NN subject to a predefined performancemetric.
The performances of both EAs and NNs can be improved and the convergence accelerated if
an appropriate population of data sets and strategic parameters or learning parameters can be
found. A supportive combination between the EA andNN can help in finding these parameters.
The supportive combination typically involves the use of one of these technologies to prepare
data for use by the other. In other words, one technology plays the primary role and the other
plays a supporting role to solve the problem.The supportivemechanismcan be one of twoways:

• Neural networks to assist evolutionary algorithm (NN-EA) and
• Evolutionary algorithm to assist neural networks (EA-NN).

9.2.1 NN-EA Supportive Combination

In the case of NN-EA, the concept is that there seems to be some natural grouping within the
problems. There are certain sets of heuristics that make better starting points for some groups
than for others. The NN’s job is to learn this grouping and suggest starting points for any
evolutionary algorithms. In this case, neural networks are mostly used as pattern associators
matching the descriptions of the incoming problem with a good parameter set. These neural
networks are trained using standard BP algorithms. The diagram shown in Figure 9.1 explains
the supportive combination of NN and EA, where the NN produces the initial population from
the raw data for an EA. Kadaba et al. (1991) used an NN to produce an initial population for
genetic algorithms (GA), where the GA plays the role of finding a set of good parameters for a
heuristic procedure and finding a good set of selection-heuristics for a vehicle routing problem.

EA

S
et

 o
f

se
le

c
ti

o
n

-

h
eu

ri
st

ic
 o

r

p
ar

am
et

er
s

R
aw

 d
a
ta

In
it

ia
l

p
o

p
u

la
ti

o
n

NN

Figure 9.1 NN for grouping and suggesting initial population for EA

310 Computational Intelligence

EA

S
et

 o
f

se
le

ct
io

n
-h

eu
ri

st
ic

o
r

p
ar

am
et

er
s

E
A

 p
ar

am
et

er
s

NN-based adaptive

mechanism

F
it

n
es

s,
 c

ro
ss

o
v
er

,

m
u
ta

ti
o
n
,
p
o
p
u
la

ti
o
n

in
fo

rm
at

io
n

Figure 9.2 NN-based adapting parameter control of EA

The performance of an EA depends mainly on the choice of strategy parameter values.
Finding a good set of strategy parameters in an EA is a time-consuming trial-and-error process.
There are also technical disadvantages associatedwith traditional methods, such as that a user’s
choice in setting the parameters can be a source of errors and/or suboptimal performance, and
optimal parameter values may vary during evolution. Therefore, an automated modification
of the parameter values is sought during execution of an EA by using some heuristic rule
or feedback information from the current state of the EA. An NN can assist in learning the
parameter values of the EA. Such a supportive combination is shown in Figure 9.2.
Grefenstette (1986) identified the EA strategy (or control) parameters such as popula-

tion size (N), crossover rate (Pc), mutation rate (Pm), generation gap (G), scaling window
(W) and selection strategy (S), i.e., the possible set of control variables can be any of the
{N , Pc, Pm, G, W, S}. Different performance indices can be computed from the fitness values
of the individuals of the current population such as average fitness (f̄), average fitness/best
fitness (f̄ / fbest), worst fitness/average fitness (fworst/ f̄), difference between best and average
fitness (fbest − f̄) or the current population size (N). That is, the possible set of controller
inputs can be any of the { f̄ , f̄ / fbest , fworst/ f̄ , fbest − f̄ , N }. De Jong and Goldberg have
been researching the effect of population size on EA performance. They found that as the
current population size grows, the sensitivity to mutation rate decreases and the best mutation
rate to use also decreases (De Jong and Spears, 1990; Goldberg et al., 1992). The relationship
between performance measures and strategy (or control) parameters has been discussed in
Chapter 8, and led to the design of a fuzzy controller. The main difficulty in developing a
multi-input multi-output (MIMO) fuzzy logic controller is the huge rule base. To overcome
the problem of processing a huge rule base, a MIMO control mechanism using an NN can be
used to control the EA parameters as shown in Figure 9.3. The NN’s job here is to learn the
strategy parameters of the EA using the error function derived from the difference between
the desired or expected solution and the current solution. The standard BP with error feedback
can be applied to train the NN (Kadaba and Nygard, 1990; Kadaba et al., 1991).

9.2.2 EA-NN Supportive Combination

Most researchers have found it more natural to use EA to support NN. In the case of EA-NN,
the supportive mechanism can be divided into three categories according to which stage they
are used in the process:

• EA to select input features or to transform the feature space used by the NN classifier;
• EA to select the learning rules or parameters that control learning in the NN;
• EA to analyse an NN.

Evolutionary Neural Networks 311

Fitness
metric

()ffw /

NN EA

Solution

()bestff /

()ff best −

Pc

Pm

N

Error function Desired

solution
-

+

Figure 9.3 NN-based adaptive control of population size, crossover and mutation rate

9.2.2.1 Feature Space Selection

An important issue in NN-based pattern classification and recognition problems is the feature
selection. Given certain features or measurements of an object, one would like to determine
which of these features is best suited for classifying or identifying the object from a given set
of patterns or objects. One can naively attempt to examine each of the features to establish
a preference ordering for the features. But if there are P features, then there are 2P feature
sets to be examined, which will be a time-consuming, tedious task. Moreover, it may be the
case that the single best feature S∗ is not present in the P features, i.e., S∗ /∈ P . Generally, the
feature set is assumed to be a representative sample of the entire input space and we select
a subspace Rn ⊆ R P in which features in Rn can be assigned to one of the N classes with
minimum error. The minimum error is the expected number of misclassifications over some
test set in Rn (Brill et al., 1990). The transformation of the features may also be possible in Rn

with minimum error. EAs are used in such cases to guide the search for optimal combination
and transformation of the input features to NNs to satisfy the criteria of minimum inputs, faster
training and accurate recall. EA has been used in preparing data for NN in two ways:

• Transforming the feature space and
• Selecting a subset of restricted features.

In the first approach, transforming the feature space has mainly been applied to nearest-
neighbour-type algorithms. A very common example of transformation would be the tempera-
ture x f measured in Fahrenheit scale being transformed into Celsius scale xc using the formula
xc = (x f − 32)/1.8. A further example may help in perceiving the meaning of transformation
of data: let xi = [xik], i ∈ P , k ∈ K be a feature vector, where P is the set of features and K
is the set of variables. The Euclidean space Rn (where n = |K |) consists of all n-dimensional
vectors of the form x = [x1, x2, . . . , xn]. The feature vector x = [x1, x2, . . . , xn] can be trans-
formed into z = [z1, z2, . . . , zn] by applying a formula such as zik = (xik − ak)/bk , where ak

312 Computational Intelligence

x1

x2

z1

z2

Feature

transformation

Two classes in x-plane Three classes in z-plane

)(PS ψ=

Feature space P Feature space S

Figure 9.4 Two different classifications based on feature transformation

is the shift of the origin and bk is the change of scale factor. By transformation is meant the
shifting, rotation and scaling of the data to be aligned in such a manner that intraclass differ-
ences are diminished and interclass differences are magnified (Kelly and Davis, 1991; Mirkin,
1996; Yao, 1999). Figure 9.4 shows an example of two different classifications obtained by
applying feature transformation on the same set of features. Interested readers are referred to
Mirkin (1996) for a variety of transformation techniques used in mathematical classification
and clustering.
As can be seen from Figure 9.4, inter-data distances and data clusters vary depending

on which space x or z is considered. This reflects the contradiction between the features,
their geometrical representation and comparability. The problem of finding a mechanism to
aggregate the incomparable variables and their distance is a major problem in classification
and clustering. By letting the EA choose the rotation and scaling parameters, the data is aligned
for appropriate classification and clustering. An NN is used for the classification, where an EA
provides the appropriate transformation. Such a supportive combination of EA-NN is shown
in Figure 9.5, where the NN uses a subset of features for classification transformed by the
EA. Here, S is the set of transformed features, i.e., S = ψ(P), where ψ(.) is a transformation
function and P is the set of all features. F is the fitness measure for the EA.
Verma and Zhang (2007) transformed all the feature values to be positive and then nor-

malized these values to the range [0, 1] prior to digital mammogram classification for breast

NN ⇒=

nmmmm

n

n

n
T

n xxxx

xxxx
xxxx
xxxx

x

x
x
x

P

…

…
…
…

321

3332313

2322212

1312111

3

2

1

()PS ψ=

C
la

ss
if

ic
at

io
n
/

re
co

g
n
it

io
n

EA

F

Population of transformed

feature set Chromosome

Figure 9.5 EA-based feature transformation for NN

Evolutionary Neural Networks 313

cancer. Ramasubramanian and Kannan (2006) transformed alphabetic attributes of the data
set into appropriate numeric values and then normalized the numeric values to the range
[0.05, 0.95] in their application.
Very often the feature set to be used for training the NN contains redundant, useless and

irrelevant data, which leads to higher computation costs without improving the performance
of the NN and can even sometimes degrade the performance. A practical example of such a
problem is the task of selecting a subset of clinical tests. Each test involves a financial cost,
diagnostic value and associated risks. Other examples of such applications are large-scale data
mining using NNs. In the second approach, therefore, a set of input features is selected as
a restricted feature set that will improve the performance of a neural network classifier as
well as reduce the computational requirements. Elimination of the irrelevant and redundant
features, in other words selecting a subset of features, i.e., S ⊆ P , will help reduce the size
of the NN, reduce the training time and can also improve the accuracy of the NN. Some
applications require important variables to be distinguished from other variables. When no a
priori knowledge is available to guide the selection, the EA can help in selecting inputs for
neural networks for such applications.
Chromosome representation for the EA is straightforward. A binary-coded chromosome

is used for the EA. This is also called the wrapper approach (Kohavi and John, 1997). The
traditional binary bit strings are used as individuals to form a population for the EA search.
Each position in a bit string is associated with an input variable, i.e., a feature which may
or may not be selected as an input to the neural network depending upon the value of 1 or
0 in that position. Therefore, the number of bits in a string equals the number of variables
(features) listed for the EA search, and the number of 1’s in a string equals the number of
variables selected by the EA as the inputs to the neural networks. That is, xi = 1, if xi ∈ P
and xi = 0, if xi /∈ P with i = 1, 2, . . . , n. Siedlecki and Sklansky (1988, 1989) were the first
to introduce the pioneering work on feature selection formulation using EAs. Since then, there
have been many researches reported in the literature (Brill et al., 1990; Vafaie and De Jong,
1993; Brotherton and Simpson, 1995; Yang and Honavar, 1998). For a population size of m,
the supportive combination for feature selection by EA is shown in Figure 9.6. The individuals
are evaluated by training the NN using the feature subset S ⊆ P with a predefined fixed
architecture for NN. The resulting accuracy is used as the fitness value of the individual. The
main drawback of this approach is the high computation time required to train each network

NN⇒=

1011

1110

0111

1101

3

2

1

L

MOMMM

L

L

L

M

T

nx

x
x
x

P
PS ⊆

C
la

ss
if

ic
at

io
n
/

re
co

g
n
it

io
n

EA

F

Population of

feature set Chromosome

Figure 9.6 EA-base feature selection for NN

314 Computational Intelligence

classifier using the features specified by the chromosome. Cantú-Paz and Kamath (2005)
performed an empirical evaluation of different combinations of EA and NN for classification
problems of 15 public-domain and artificial data sets. They used a binary-coded GA with one
bit for each feature to represent a subset of features that are being used to train an NN. A
population of �3√l� individuals was initialized uniformly at random with an enforcement of
a minimum population size of 20. Here, l is the chromosome length. A uniform crossover
with probability 1.0 and mutation with probability 1/ l were used. The fitness function used
was the generalization ability of the NN. The results indicate that EA feature selection proved
significantly accurate and significantly reduced the feature set.
For a given number of training cycles, the NN will have different performances (measured

by the recall error of the network) for different sets of input variables. The NN performance and
the number of variables selected as network inputs can be used to evaluate the fitness function
whose value will be used to guide the selection process in the EA. A general procedure can
be outlined as below:

1. Create an initial population of individuals, transformed features or bit strings of features,
each of which can be interpreted as a group of selected inputs to the NN.

2. Set up and train the NN with the inputs selected in step 1.
3. Transfer the training error and the number of inputs selected to the fitness function to
evaluate the fitness for each NN.

4. Perform the EA operation to create a new population.
5. Repeat steps 2–4 until convergence or max generation is reached.

The fitness function F for both the feature transformation and feature selection (in Fig-
ures 9.5 and 9.6, respectively) mechanism can be defined by combining two criteria: one is
the accuracy of the classification realized by the NN and the other is the cost of classification
(Yang and Honavar, 1998). The accuracy is calculated from the percentage of patterns that
are correctly classified by NN. Several measures of classification cost are suggested, e.g., the
cost of performing necessary tests in medical diagnosis applications. For simplicity, the fitness
function can be defined as

F(S) = accuracy(S)− cost (S)

accuracy(S)+ 1 + costmax (9.1)

Here, accuracy(S) is the percentage of patterns that are correctly classified by the NN, cost (S)
is the computational or test cost involved for the patterns and costmax is the maximum cost
that may be involved in performing the pattern classification correctly. The goal of any
fitness function should be to guide the search for fewer features, faster training and higher
accuracy. Both fewer features and smaller training errors produce higher fitness function
values. Therefore, some researchers have defined the fitness function as the function of three
independent variables: the number of selected features (i.e., inputs), the training error and the
generation indices.
In an EA with small population, there are few superstrings with much higher fitness values,

which will lead the superstrings to take over a significant proportion of the population in
a single generation and cause premature convergence. One way to prevent such premature
convergence is to maintain the population diversity. To keep the diversity of the population, the
fitness function should be scaled down in the early stages to reduce the fitness difference among

Evolutionary Neural Networks 315

individuals and be scaled up in the later stage. Including the generation indices in the fitness
function helps in scaling the fitness appropriately and guiding the search over generations.
There are three commonly used scaling procedures: linear scaling, sigma truncation and power
law scaling (Guo and Uhrig, 1992). The fitness function used by Guo and Uhrig (1992) in
their study is defined as follows:

F =
(
1.0− e−(r−1)0.15(g+1))

.e−0.01err−0.01err0.7(g+1)1/3
(9.2)

where r = number of features

number of selected features
, err is the NN training error and g is the generation

index. Many researchers have proposed an evaluation function based on the hypothesis that
the relevant feature is highly correlated with the response variables and less correlated with
the other features in the feature subset (Ozdemir et al., 2001).

9.2.2.2 Finding Parameters and Learning Rule

The most widely used and well-known learning algorithms for NN are backpropagation,
Widrow–Hoff, Hebbian and Kohonen self-organizing map. Among them, BP is known to
implement a gradient descentmethodwhich has the drawbacks of being slow for large problems
and being susceptible to becoming stuck in local minima or in a plateau, can stop at early
convergence or can take too long time to converge due to heuristic selection of control
parameters. The control parameters are learning rate η, 0 < η ≤ 	, momentum α, 0 ≤ α ≤ 	
and acceleration β, 0 ≤ β ≤ 	 as defined in Equation (9.3). 	 is a positive real value. Several
researchers have investigated different modifications to speed up the convergence of the BP
algorithm by applying dynamic adaptation of the learning rate such as adding a momentum
and acceleration term in the weight update rule as described by Equation (9.3):

�wi (t) = −η
∂ E

∂wi
+ α�wi (t − 1)+ β�wi (t − 2) (9.3)

Dynamic adaptation of the learning rate can be done by line search in the gradient direction,
dynamically adjusting the learning rate commonly for all weights or separately for each weight
(Caudell and Dolan, 1989; Kamarthi and Pittner, 1999). Therefore, the weight update �wi (t)
depends mainly on the learning parameters {η, α, β} and the local gradient ∂ E

∂w
. The local

gradient depends mainly on the first derivative term of the activation function ϕ(.), i.e., ϕ′(.).
The factor ϕ′(.) involved in the computation of the local gradient δ j (t) (see derivation of
BP algorithm in Chapter 4) depends solely on the activation function ϕ(.) associated with
hidden-layer neurons. This means that the set of activation functions ϕ(.) plays a vital role
in the weight updating in the BP learning rule. BP’s speed and robustness are sensitive to
several of its control parameters such as {η, α, β} and the activation function ϕ(.). A detailed
description of control parameters and different activation functions is given in Chapter 4.
There is no straightforward way to choose these parameters and the best parameters to use
seem to vary from problem to problem. Mostly, these control parameters are determined by
trial and error, which depends on the type of architecture being used. Different variants of
the Hebbian leaning rule have been proposed to deal with different architectures. However,
determining an optimal set of control parameters and learning rule becomes difficult when
the type of architecture is not known a priori. Therefore, the NN needs to adjust the control
parameters and learning rule adaptively according to the problem and its architecture rather

316 Computational Intelligence

NN ⇒=

mmmm

T

P

ϕβαη

ϕβαη
ϕβαη
ϕβαη

ϕ

β
α
η

L

MOMMM

L

L

L

M

3333

2222

1111

Φ

EA

F

Population of

parameter set

C
la

ss
if

ic
at

io
n
/

re
co

g
n
it

io
n
/

ap
p
ro

x
im

at
io

n

Chromosome

Figure 9.7 EA for parameter learning and learning rule

than having a fixed design. Several researchers used EA to learn the control parameters and
learning rule of the NN (Harp et al., 1989; Kim et al., 1996; Taheri and Mohebbi, 2008).
Figure 9.7 illustrates a supportive combination of EA and NN, where EA provides the NN
parameters and the learning rule. In the diagram,
 represents the set of NN parameters and
learning rule, that is
 = {η, α, β, ϕh, ϕo}. ϕh and ϕo are the activation functions of the hidden
and output layers of the NN, respectively. It is assumed that the activation functions are the
same for the same layer and may vary from layer to layer.
To evaluate the effectiveness of the set of parameters, the NN is trained for a fixed number of

iterations. During the training process, the NN will achieve different performance levels (mea-
sured by the recall error of the network) for different sets of learning and control parameters.
A typical procedure of the evolution of the learning rules can be outlined as below:

1. Create an initial population of individuals consisting of learning and control parameters,
each of which can be interpreted as a group of selected parameters to the NN.

2. Set up and train the NN for a fixed number of iterations.
3. Transfer the training error and the set of parameters to evaluate the fitness for each NN.
4. Perform EA operations to create a new population.
5. Repeat steps 2–4 until convergence or max generation is reached.

It is assumed that the architecture of the NN is predefined and fixed in the above procedure
(Belew et al., 1991; Kim et al., 1996). If varied NN architectures are to be considered for a
near optimal learning rule in the evolution, the fitness should be the average fitness of the set of
architectures (Jacob, 1988; Harp et al., 1989). Some researchers applied an EA to extract rules
of reinforcement learning and used these rules to train the NN (Zitar and Hassoun, 1995). As
the performance of any NN also depends on the architecture, optimization of the architecture
is an important issue in the combination of EA and NN. The evolution of the architecture is
addressed in Section 9.3.2 in this chapter.
Another key issue is how to encode the dynamic behaviour of a learning rule into static

chromosomes. A universal representation schemewould be impractical due to the prohibitively
long computation time required to search the large learning rule space. Two assumptions
that have been made often on learning rules are: (i) weight updating is dependent on local
information such as activation of input and output nodes and current connection weights;
(ii) learning rule is the same for all connections in the NN. Based on the two assumptions, a

Evolutionary Neural Networks 317

learning rule can be assumed to be a linear function of the local variables and their products
(Yao, 1995, 1999) and defined as follows:

�w(t) =
n∑

k=1

n∑
i1,i2,...,ik=1

⎛
⎝θi1,i2,...,ik

k∏
j=1

xi j (t)

⎞
⎠ (9.4)

where t is time, �w is the weight change, x1, x2, . . . , xn are local variables and the θi ’s are
real-valued coefficients that determine the learning rules and undergo evolution. The number
of terms in Equation (9.4) involved in the evolution is large, whichmakes the evolution imprac-
tical. Therefore, a small subset of terms is to be determined and a real-valued chromosome
representation is to be used for the coefficients to be evolved. Using a linear combination
of four local variables and their six pairwise products with no third- or fourth-order terms,
ten coefficients and a scale parameter encoded in a binary string, an EA discovered the well-
known delta learning rule and some of its variants within 1000 generations of the evolution
(Chalmers, 1990; Fontanari and Meir, 1991). Fontanari and Meir used four local variables and
seven terms, which included one first-order, three second-order and three third-order terms in
their EA.

9.2.2.3 Explaining and Analysing Neural Networks

One inherent drawback of the solutions offered by NN to dynamical systems is their limited
explanation capability. The solutions are hard to trace back or explain and are often due to
random factors. Instead of using an EA to construct a better NN in terms of performance and
architecture, a few researchers have used an EA to help explain or analyse the NN. In order
to explore the ‘decision surface’ of an NN, the EA can be used to discover input patterns that
result in maximum or nearly maximum activation values for given output neurons. The input
patterns are represented in the chromosome by a set of real values between 0.0 and 1.0. The
EA is to discover three different types of vectors: (i) maximum activation vectors, meaning
output node is activated; (ii) minimum activation vectors, meaning output node is off; and (iii)
decision vectors, meaning output node is at the decision threshold. Multiple runs of any EA
with different random seeds can be used to find a set of vectors of each type (Eberhart, 1992).
The NN model of a dynamical system processes the initial condition information over time

while moving through a sequence of states. An attractor is a state towards which the system
evolves over time from an initial condition. The set of conditions for an attractor is called the
basin of attraction. The attracting sets may be represented algebraically as an n-dimensional
vector. In physical systems the n dimensions may be, for example, two or three positional
coordinates for each of one or more physical entities. An attractor can be a point, a finite set
of points, a curve, a manifold or even a complicated set with a fractal structure known as a
strange attractor. Some researchers used EAs to analyse the basins of attraction of a correlation
associate memory model of an NN. The recall process of the attractor basin shows threshold
and monotonous transition phenomena, which can be represented by a polynomial function of
degree 2. The polynomial is a characteristic measurement of the attractor basin. Suzuki and
Kakzu (1991) used GA to determine the optimal coefficients of the polynomial function, i.e.,
for the characteristic measurement.

318 Computational Intelligence

Weight update

EA

T
ra

in
in

g

d
at

a

Target

Fitness
measure

Figure 9.8 Learning weights of NN

9.3 Collaborative Combinations

In collaborative combinations, EAs and NNs work to solve a problem together. Among the
collaborative approaches, there are two main groupings.

• Nguyen andWidrow demonstrated that weights and biases generated with certain constraints
result in a faster learning speed for an NN (Nguyen and Widrow, 1990). Also, known
weight training procedures for NNs are biased towards the data and parameter sets used
for training. Very often these training procedures do not guarantee a global optimal weight
set for the NN. There have been attempts to use evolutionary search to find appropriate
connection weights in fixed architectures. Such a general mechanism of training NNweights
using EA is shown in Figure 9.8. The issues relating to weight training are discussed in
Section 9.3.1.

• Finding an appropriate architecture (topology) of an NN for a given problem is a time-
consuming trial-and-error task. Alternatively, EAs have been used to find the optimal net-
work architecture and are then trained and evaluated using known learning procedures (BP,
Widrow–Hoff, Hebbian, SOM, etc.). Such a general collaborative combination to determine
the network topology using an EA is shown in Figure 9.9. The issues relating to network
topology are discussed in Section 9.3.2.

Update topology

EA

T
ra

in
in

g

d
at

a

Target

Fitness
measure

Figure 9.9 Learning architecture

Evolutionary Neural Networks 319

New weights

EA

T
ra

in
in

g

d
at

a

Target

Fitness
function

[]= ⇒

nmmm

n

n

n

www

www
www

wwwW

L

MOMM

L

L

L

21

22212

12111

21 ,,,

Population of weights

Chromosome

Figure 9.10 Weight training of an NN using EA

9.3.1 EA for NN Connection Weight Training

Supervised or unsupervised learning in an NN has mostly been formulated as a weight training
process in which efforts are made to find an optimal set of connection weights according to
some optimality criteria. To overcome the shortcomings in gradient descent, Widrow–Hoff or
Hebbian learning, a global search procedure like EA can be used effectively in the training
process as an evolution of connection weights towards an optimal set defined by a fitness
function (Fogel et al., 1990; Schaffer et al., 1992; Zhao and Higuchi, 1996; Nikolaev and Iba,
2001, 2003). The other advantage is that an EA can handle large, complex, multimodal and
non-differentiable functions.
The EA approach to weight training in an NN consists of three phases: chromosome rep-

resentation of connection weights, definition of a fitness function and definition of genetic
operators in conjunction with the representation scheme. Different representations and appli-
cable genetic operators can lead to different training performance. A typical weight training
process for the NN using an EA is shown in Figure 9.10.

9.3.1.1 Chromosome Representation

A major issue that is vital in the evolutionary training approach is to decide on the represen-
tation scheme of the connection weights. Different representations can lead the EA to quite
different training performance in terms of training time and accuracy. The most convenient
representation of connection weights is with binary strings. In such a representation scheme
each connection weight is represented by some binary bits of certain length.
Themost convenient and straightforward chromosome representation of connection weights

and biases is in string form. In such a representation scheme, each connection weight and bias
is represented by some value {w, b} ∈ 	 where 	 can be a real number or a binary number.
An example of such a string representation scheme for a feedforward NN with five neurons is
shown in Figure 9.11.

320 Computational Intelligence

w1

w2

w3

w4

w5

w6

1

b3

2

b1

3

b2

4

5

{w1, w2, w3, w4, w5, w6, b1, b2, b3}

Figure 9.11 Chromosome represented in string form

9.3.1.2 Binary Representation

The advantage of binary representation is its simplicity and ease of applying genetic operators
such as crossover (single-point or uniform) and mutation (bit inversion). In binary representa-
tion, each connection weight or bias {w, b} ∈ 	 is represented by a number of bits of length
l such that 2l ≈ 	. An NN is then encoded by concatenating all the connection weights and
biases. A rule of thumb is to order the neurons of the NN in some way, as shown in Figure 9.11.
Separating inputs to the same hidden node far apart in the binary representation would increase
the difficulty of constructing useful feature detectors as the hidden nodes in an NN act as a
feature extractor. The binary encoding of connection weights need not be uniform, as adopted
by many researchers. It can also be Gray, exponential or a more sophisticated encoding. A
limitation of binary representation is the precision of discretized connection weights. If too
few bits are used to represent weights, training may take an extremely long time or even fail.
On the other hand, if too many bits are used, the chromosome string for a large NN becomes
very long, which will prolong the evolution dramatically and make the evolution impractical.
It is still an open issue how to optimize the number of bits for each connection weight, range
encoded and encoding scheme used. A dynamic encoding scheme can be adopted to allevi-
ate those problems. An example of binary coding of the chromosome for the NN shown in
Figure 9.11 can be as follows:

String representation: {w1, w2, w3, w4, w5, w6, b1, b2, b3}

Binary coding: {0100 | 1010 | 0011 | 1010 | 0010 | 0001 | 1101 | 1001 | 1011}

A detailed discussion on different genetic operators applicable to binary coding is presented
in Chapter 6.

9.3.1.3 Real-Value Representation

To overcome these shortcomings of the binary representation scheme, real numbers were
proposed {w, b} ∈ 	, i.e., 	 is a real number per connection weight or bias. The chromosome

Evolutionary Neural Networks 321

is then represented by concatenating these numbers as a string. For example, a real number
representation of the chromosome for the NN shown in Figure 9.11 is given by

String representation: {w1, w2, w3, w4, w5, w6, b1, b2, b3}

Real coding: {1.91 | 2.55 | 1.9 | 3.12 | 0.88 | 0.91 | 1.1 | 1.9 | 0.98}

The advantages of real coding are many-fold, such as shorter string length with increased
precision. Various kinds of crossover and adaptive crossover are applicable here. The standard
mutation operation in binary strings cannot be applied directly in the real representation
scheme. In such circumstances, an important task is to carefully design a set of genetic operators
suitable for the real encoding scheme. For example, mutation in real number chromosome
representation can be as follows:

wi (t) = wi (t − 1)± random(0, 1) (9.5)

bi (t) = bi (t − 1)± random(0, 1) (9.6)

Montana and Davis (1989) defined a large number of domain-specific genetic operators incor-
porating many heuristics about training NNs. A detailed discussion on different genetic oper-
ators applicable to real coding can be found in Chapter 6.

9.3.1.4 Matrix Representation of Chromosome

Another way of representing a chromosome for a feedforward NN is that an NN can be thought
of as a weighted digraph G = {E, V }with no closed paths and described by an upper or lower
diagonal adjacency matrix with real-valued elements, where E is the set of all edges of the
graph and V is the set of vertices (neurons in NN) in the digraph. The nodes in the NN should
be in a fixed order according to layers. An adjacency matrix is an N × N array in which
elements

ni j = 0 if 〈i, j〉 /∈ E ∀ i ≤ j (9.7)

ni j �= 0 if 〈i, j〉 ∈ E ∀ i ≤ j (9.8)

where i, j = 1, 2, . . . , N and 〈i, j〉 is an ordered pair and represents an edge or link between
neurons i and j, and N is the total number of neurons in the network. The biases of the network
are represented by the diagonal elements of the matrix expressed as

ni, j �= 0 ∀i = j (9.9)

Thus, an adjacency matrix of a digraph can contain all information about the connectivity,
weights and biases of a network. For example, the adjacency matrix for the three-layered
feedforward NN with bias, shown in Figure 9.12, is illustrated in Figure 9.13.

322 Computational Intelligence

ijw
j

layer jlayer i

k

layer k

jkw

θ

θ

1

2

3

4

5

6

Figure 9.12 Digraph of a three-layered NN

Nodes 1, 2 and 3 are the input neurons and they are connected to hidden layer neurons 4 and
5. These connection weights are represented by {w14, w15, w24, w25, w34, w35}. The hidden-
layer neurons are connected to the only output neuron 6 and the connection weights are
represented by {w46, w56}. The hidden-layer and output-layer neurons have biases. The biases
are represented by {w44, w55, w66}. An example of real-valued chromosome representation in
matrix form is shown in Figure 9.14.
A layered feedforward network is one such that a path from input node to output node will

have the same path length. Thus, an n-layered neural network has path length n. The added
advantage of the matrix representation is that it can be used for a fully recurrent network as
well. In this case the matrix will be a full matrix in that the weights and biases are the elements
as defined below:

ni j �= 0 if 〈i, j〉 ∈ E ∀ i �= j (for weights) (9.10)

ni, j �= 0 ∀i = j (for bias) (9.11)

The matrix or two-dimensional representation of the genes has the advantage of having the
positional information of the connectivity of the network. For example, the incoming connec-
tions or outgoing connections of a neuron are kept in the rows or in the columns. Theoretical
analysis suggests that the performance of an EA is better for a chromosome representation

1514

2524

3534

4644

5655

66

654321node

00001

00002

00003

00004

00005

000006

ww

ww

ww

ww

ww

w

HiddenInput Output

Figure 9.13 Matrix representation of chromosome

Evolutionary Neural Networks 323

654321node

00.60.90001

00.41.10002

01.91.50003

0.100.30004

1.20.200005

1.0000006

HiddenInput Output

Figure 9.14 Real-valued chromosome represented in matrix form

where the functionally similar genes are kept close together. The population can be thought
of as a matrix of layers, as shown in Figure 9.15. The diagonal elements {w11, w22, . . . , wnn}
represent the bias of the NN. Any standard genetic operators can be applied to the chromosome
representation scheme shown in Figure 9.15. For example, crossover could be implemented
by swapping rows (incoming connections), columns (outgoing connections) or swapping a
submatrix (functional groups of neurons), which will prevent disruption of the closeness of
similar genes within the chromosome.
Siddique and Tokhi (2001) developed different types of crossover and mutation operations

for matrix representation of chromosomes, as discussed in the following sections.

9.3.1.5 Weight Crossover

From programming point of view, handling matrices is simple. Rows and columns can be
swapped or modified easily. Two types of crossover are shown in the example here, firstly
row-wise crossover and secondly column-wise crossover. In row-wise crossover, an offspring
is generated by choosing alternate rows (or swapping rows) from parent chromosomematrices.
This is shown in Figure 9.16. It is similarly done column-wise, as shown in Figure 9.17.

O
1

21

22221

11211

nnnn

n

n

www

www
www

L

MOMM

L

L

2

21

22221

11211

nnnn

n

n

www

www
www

L

MOMM

L

L

m

nnnn

n

n

www

www
www

L

MOMM

L

L

21

22221

11211

O

O

Figure 9.15 Population of weight matrices

324 Computational Intelligence

0.30.20.3

0.20.30.2

0.10.10.1

0.60.60.6

0.50.30.5

0.40.10.4

0.30.20.3

0.50.30.5

0.10.10.1

0.60.60.6

0.20.30.2

0.40.10.4

Parent 2 Parent 1

Offspring 2Offspring 1

Figure 9.16 Row-wise crossover operation in matrix representation

9.3.1.6 Weight Mutation

A weight value from the set of weights and biases is selected with a certain probability and
its value is modified by a random value. The mutation for weights and biases is shown in
Equations (9.12) and (9.13), respectively:

wi j (g) = wi j (g)± random(0, 1) (9.12)

wi i (g) = wi i (g)± random(0, 1) (9.13)

Here, g is the generation index.

9.3.1.7 Bias Swap

Siddique and Tokhi (2001) applied bias swap to matrix chromosomes. Bias is an adjustable
scalar parameter added to the summation of the neuron contributing to shift the output of the

0.60.60.6

0.50.30.5

0.40.10.4

0.30.20.3

0.20.30.2

0.10.10.1

0.30.60.3

0.20.30.2

0.10.10.1

0.60.20.6

0.50.30.5

0.40.10.4

Parent 2Parent 1

Offspring 1 Offspring 2

Figure 9.17 Column-wise crossover operation in matrix representation

Evolutionary Neural Networks 325

0.40.30.20.5

0.70.60.50.4

0.40.30.30.2

0.30.20.20.1

0.70.60.40.3

0.50.40.50.2

0.30.20.30.1

0.10.20.20.2

weak bias 1.4 1.6 strong bias

T
ra

c
e

o
f

m
at

ri
x

Bias swap

Figure 9.18 Bias mutation operator in matrix representation

neuron left or right depending on the sign of the bias. Adaptation of the bias can be carried
out to verify the influence of bias on the output of the network. Weak biases are replaced by
strong biases as determined by the trace of the adjacency matrix defined below:

T (g) =
n∑

i=1
wi i (g) (9.14)

Strong biases have a greater trace value than weak biases. That is, if T1(g) < T2(g) then the
biases in parent 1 are weaker. The entire weak biases (diagonal elements of the chromosome
matrix) are replacedwith entire strong biases. The bias swap is shown in Figure 9.18. Similarly,
bias crossover can be implemented by swapping the diagonal elements between two matrices.

9.3.1.8 Fitness Function for Weight Evolution

The fitness can be defined as the minimum of the sum squared error (SSE) or mean square
error (MSE) of the network over a set of training data after training the network for a fixed
number of iterations:

f (NN) =
∑

P

e2 (9.15)

f (NN) = 1

P

∑
P

e2 (9.16)

Here the network is predefined and fixed, denoted NN and defined by NN = 〈A, W,
〉,
where A is the architecture, W is the set of weights,
 is the set of activation functions and P
is the number of patterns used for training.
Some researchers used a fitness function based on the sample counter-changing method

(Gao, 2003). As to network individual training of each generation, the whole set of training
sample is not used, i.e., a part of the training sample set (say about 80% of the sample) is
randomly chosen to train the individual of each generation. So, the training sample set used
(denoted xa in the equation) for the neural network of each generation is changed, and then the

326 Computational Intelligence

fitness of the individual whose generalization capacity is poor will be smaller while the fitness
of the individual whose generalization capacity is strong will become large. Consequently, the
performance of the whole NN model is improved through selection. The error function of the
neural network is expressed as follows:

E = 1

2

N∑
a=1

M∑
k=1

[
yk

(
wk ; x

a
) − ta

k

]2
(9.17)

where yk is the network output and ta
k is the target output for the sample set xa . The individual

fitness of the neural network is expressed by the following transformation of the error function
of the neural network:

f (NN) = 1

1+ E
(9.18)

Some researchers have defined the fitness as the number of correctly labelled instances
returned by NN among inputs (Tong and Mintram, 2010). This fitness function may be better
suited for feature selection than weight training.

9.3.2 EA for NN Architectures

It is well known that an NN’s architecture (or topology) plays a significant role in the NN’s
information-processing abilities. The architecture of an NN includes the topological structure
or connectivity and the transfer function of each node of the NN. Unfortunately, there is no
systematic way to design an optimal architecture for a particular task and they are mostly
designed by experienced experts through tedious trial-and-error processes. For example, given
a learning task, an NNwith few connections (inputs to hidden layer), hidden neurons and linear
node transfer (activation) functions may not be able to show the prediction or approximation
capability due to limited information-processing ability, while an NN with large number of
connections (inputs to hidden layer), hidden neurons and nonlinear node transfer functions
may demonstrate a significant performance improvement.
Figure 9.19 shows two different RBF network architectures (discussed in detail in Chapter 4)

with one input and three inputs (one input and two delayed inputs) for two-step prediction

h1(x)

h2(x)

hN (x)

w2

wN

.

.

.

Σ

w1

x(t)
x(t+2)

x(t–4)

h1(x)

h2(x)

hN (x)

w2

wN

.

.

.

Σ

w1

x(t–2)

x(t) x(t+2)

(a) (b)

Figure 9.19 Two different RBF networks. (a) 1-1 I/O RBF; (b) 3-1 I/O RBF

Evolutionary Neural Networks 327

of MacKey–Glass time series. The RBF network in Figure 9.19(b) has three times more
connections from input to hidden layer than that of the network in Figure 9.19(a). The respective
prediction errors of the network architectures are shown in Figure 9.20. Similarly, varying the
number of neurons in the hidden layer will also cause a change in the performance (Billings
and Zheng, 1994).
Therefore, the optimal NN architecture can be viewed as a complex search problem in the

design space according to some optimality criterion such as NN performance, minimal number
of neurons, fast learning, simplicity of connectivity, etc. and thus forms a complex surface that
has to satisfy the optimality criteria. The surface has the following characteristics according
to Miller et al. (1989) and Yao (1999):

• The surface is infinitely large since the number of possible neurons and connections is
unbounded.

• The surface is non-differentiable since changes in the number of neurons or connections are
discrete and can have a discontinuous effect on the performance.

• The surface is complex and noisy since the mapping from the NN’s architecture to perfor-
mance after training is indirect, strongly epistatic and dependent on initial conditions.

• The surface is deceptive, since NNswith similar architecturemay have dramatically different
information-processing abilities and performances.

• The surface is multimodal, since NNs with quite different architectures can have very similar
performance and capabilities.

Finding an optimal architecture is equivalent to finding the optimal point on the complex
surface. As the EA is a parallel and stochastic search technique, these characteristics make the
EA a better candidate for searching the surface (Yao, 1993b). Theoretical analyses suggest that
the EA can quickly locate high-performance regions on the surface. The key issue in applying
the EA is to decide how much information about the architecture should be encoded into the
chromosome representation for the EA to be successful. There are several ways to encode
the NN architecture into chromosomes suitable for different variants of EA. These encoding
schemes are divided into the following approaches (Yao, 1993a,b, 1999; Vonk et al., 1997;
Igel and Stagge, 2002; Igel and Kreutz, 2003; Teoh et al., 2006):

• Direct encoding
• Indirect encoding

◦ Parametric encoding
◦ Grammar encoding
◦ Tree encoding

• Fractal encoding of connectivity.

9.3.2.1 Direct Encoding

In direct encoding, all information about the architecture can be represented as a binary
string that directly represents the NN architecture with one-to-one correspondence between
the genes and the connectivity of the NN, i.e., the entire network structure is encoded into
the chromosome. This kind of representation is called a direct encoding scheme. In a direct
encoding scheme, a network can be represented by an N × N -dimensional connectivity matrix

328 Computational Intelligence

0 50 100 150 200 250 300 350 400 450 500
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time index

RBF network with 1 input

Predicted value

Target

Prediction error

SSE = 2.10

0 50 100 150 200 250 300 350 400 450 500
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time index

RBF network with 3 inputs

Predicted value

Target

Prediction error

SSE = 0.059

(a)

(b)

P
re

di
ct

io
n

er
ro

r,
 p

re
di

ct
ed

 v
al

ue
P

re
di

ct
io

n
er

ro
r,

 p
re

di
ct

ed
 v

al
ue

Figure 9.20 Approximation error of the two RBF networks. (a) Error in 1-1 I/O RBF networks;
(b) Error in 3-1 I/O RBF networks

Evolutionary Neural Networks 329

1

2

3

4

5

Figure 9.21 Connectivity of a feedforward NN

C = [ci j], i = 1, 2, . . . , N and j = 1, 2, . . . , N that constraints connections between the N
neurons of the network, where ci j = 1 indicates the presence of a connection from node i to
node j and ci j = 0 indicates that there is no connection between nodes i and j . Figure 9.21
shows the connectivity of a feedforward network of five neurons. The connection matrix (also
called the adjacency matrix) is then converted to a bit string genotype of length N × N by
concatenating the successive rows, as shown in Figure 9.22. A common problem is that the
chromosome length becomes very large with increasing network size, which results in high
computation cost and slow performance. This is a common problem with any large NN.
It can be seen that the connectivity matrix in Figure 9.22 for a feedforward NN is a lower-

diagonal matrix. It will be an upper-diagonal matrix if the order of the nodes is changed.
Using the lower- or upper-diagonal matrix, the length of the chromosome can be reduced
significantly for feedforward NN architectures. It is obvious that this coding scheme can
handle both feedforward and recurrent NN architectures.
The direct encoding also suffers from competing conventions, meaning that the same archi-

tecture can be represented by many connectivity matrices. The bit-string representation also
causes functionally similar genes to go far apart from each other, i.e., outgoing connections.
This is caused by the mapping from a two-dimensional representation of structural informa-
tion into a one-dimensional chromosome. But the incoming connectivity information remains
close together, which may help improve the performance of the EA according to the schema
theorem. In order to improve the performance, the schema theorem (Holland, 1975) suggests
keeping functionally similar genes together and not dispersing them by genetic operators.
Individuals are translated into networks and evaluated using standard training procedures. A
typical evolution process for the NN architecture using a direct encoding scheme will look
like that in Figure 9.23.

 1 2 3 4 5

 1 0 0 0 0 0 00000

 2 0 0 0 0 0 00000
 3 1 1 0 0 0 11000

 4 1 1 0 0 0 11000

 5 0 0 1 1 0 00110

 00000 00000 11000 11000 00110

T
o
 n

o
d
e

node

 Chromosome

Figure 9.22 Chromosome representation of the connectivity matrix

330 Computational Intelligence

1

1011

0011

1110

1011

L

MOMMM

L

L

L

Population of

connectivity

Chromosome

weights 2

1011

0011

1110

1011

L

MOMMM

L

L

L

= ijcC
m

1011

0011

1110

1011⇒

L

MOMMM

L

L

L

EA

T
ra

in
in

g

d
a
ta

Target

Fitness of
NN

Translation into

architecture

Figure 9.23 Evolution of NN architecture using direct encoding

One major problem with the evolution of an NN architecture is the permutation problem,
which represents functionally equivalent NN architectures in different genotype representa-
tions. The permutation problem is quite vulnerable to the crossover operation and hence some
researchers have adopted only the mutation operation in the evolution of the architecture.
Though the direct encoding scheme is suitable for deterministic handling of small NN archi-
tecture, it does not scale well since a large architecture require large matrices to represent
the architecture, which makes the evolution slower. To reduce the size of the chromosome,
domain knowledge is used to restrain the search space.
The flexibility of direct encoding of the architecture has no limitation, such as differentiable

or continuous, on how the fitness is defined. The training error pertaining to the architecture,
such as training time and error, is often used in the fitness definition. The complexity of the
architecture, such as number of neurons and connections, is also used in the fitness definition.

9.3.2.2 Indirect Encoding

Long bit strings of chromosomes in direct encoding are problematic to handle and demand
higher computational effort. An alternative would be to use the most important features of an
architecture that can be encoded or parameterized into the chromosome, such as the number
of nodes, number of connections and type of activation functions (Dasgupta and McGregor,
1992a,b). Other details are left to the learning process to decide. Such a representation is
called an indirect encoding scheme. An immediate benefit of an indirect encoding scheme is a
compact representation of a relatively large NN architecture, which is easy to handle and easy
to apply with genetic operators. There have been many researches reported in the literature
on how to represent the architecture of an NN, so that EA operations can be applied without

Evolutionary Neural Networks 331

much computational effort. These approaches can be classified as parametric representation,
deterministic developmental rules representation, fractal subsets representation and hidden-
node representation, which are discussed below.

Parametric encoding
In parametric encoding, the chromosomes do not contain the detail of the network topology.
Rather, they contain abstract information about the network topology such as number of hidden
layers, number of neurons per hidden layer and type of activation functions and associated
learning parameters. The number of inputs and outputs of an NN is almost always predefined
and it is the number of hidden layers, number of neurons in the hidden layer and associated
activation functions that determine the architecture of the NN. Certainly, such an encoding
scheme has some restrictions on the network topology, e.g., feedforward architecture, full
connectivity between consecutive layers or no connection from input layer to output layer.
Harp et al. (1990) encoded network parameters in one long string of bits. The bit string is
composed of one or more segments. Each segment represents an area (possibly a layer) and
its efferent connectivity (or projections). Each segment is an area specification substring and
consists of two parts. The first part is of fixed length and contains layer-specific information, the
number of nodes in the layer, organization of the nodes and the learning parameters associated
with the nodes. The second part consists of one or more projection specification fields, where
each field describes the efferent connectivity between areas, connection density, target area
address, organization of connections and learning parameters associated with connection
weights.
An important aspect of the parametric representation by Harp et al. is the exploration of

learning parameters along with the connectivity parameters. The searching of the learning
rules for an architecture obtained by an EA is another computationally intensive task. Though
the parametric representation reduces the chromosome length, the search space is limited to
only a subset of the whole feasible architecture space (Yao, 1999). The parametric method
requires more a priori information about the architecture of the NN, so that the construction
of the NN architecture can be carried out from the optimized parametric description.

Grammar (or developmental rule) encoding
Though the parametric representation can reduce the length of bit string in coding of the
NN architecture, it suffers from scalability as the number of nodes increases in a real-world
problem. The grammar encoding representation is a shift from the direct optimization of the
NN architecture to optimization of the developmental rule. Grammar encoding was introduced
by Kitano (1990, 1994) to train the NN architecture. A grammar is a set of rules that is applied
to produce a set of structures, e.g., sentences in a natural language, programs in a computer
language. A simple example is the following grammar:

S → aSb (9.19)

S → ∈

Here, S is the start symbol and a non-terminal, a and b are terminals and ∈ is the empty string
terminal. S → ∈ means that S can be replaced by the empty string. To construct a structure
from this grammar, start with S and replace it by one of the allowed replacements given by the

332 Computational Intelligence

S|A|B|C|D A|c|p|a|c B|a|a|a|e C|a|a|a|a D|a|a|a|b

Figure 9.24 Chromosome using grammar encoding

right-hand sides; take the resulting structure and continue until no non-terminals are left. For
example:

S → aSb → a(aSb)b → a(a(∈)b)b → aabb (9.20)

Kitano applied this general type of grammar, called a ‘graph-generation grammar’, to rep-
resent the architecture of a neural network. A simple example of such a grammar-encoded
chromosome is shown in Figure 9.24, where the right-hand side of each rule is a 2 × 2 matrix
rather than a one-dimensional string. Uppercase letters are non-terminals and lowercase letters
are terminals. Each terminal represents one of 16 possible 2× 2 arrays consisting of 1’s or
0’s, where a 0 means no connectivity and a 1 means connectivity. The developmental rule is a
compact genotypical representation and capable of preserving promising building blocks. The
definitions of the non-terminals and terminals are given in Figure 9.25.
The developmental rules are repetitively applied to initial non-terminal elements until

they contain terminal elements, i.e., until the connectivity pattern of an NN architecture is
completely specified. A typical procedure of constructing a connectivity matrix from the
production rules is shown in Figure 9.25. The final matrix represents the connectivity of an
NN with eight neurons, as shown in Figure 9.26.

ca

pc
A →

ea

aa
B →

aa

aa
C →

ba

aa
D →

1110010000
,..., p →,..., e →, c →, b →

1110101000
a →

((((((((

Figure 9.25 Developmental rule in grammar coding

⇒⇒

ba

aa

aa

aa
ea

aa

ca

pc

DC

BA
S ⇒

1000

0000

0000

0000

0000

0000

0000

0000
1000

1000

0000

0000

1000

0100

1110

1101

Figure 9.26 Genotype representation of the connection matrix

Evolutionary Neural Networks 333

1

2

3

4

8

Figure 9.27 Phenotype representation of an NN architecture

The phenotype representation of theNN architecture can be constructed from the description
provided by the genotype representation of the connection matrix in Figure 9.26. The neurons
5, 6 and 7 have no connections with the other neurons, so they are discarded from the NN
architecture. A detailed description of the developmental rules and construction of the NN
architecture using production rules can be found in Vonk et al. (1997) and Yao (1999). Thus the
mapping (translation) from a genotype (as shown in Figure 9.26) to a phenotype representation
of the NN architecture is shown in Figure 9.27.
It is clearly demonstrated in Figures 9.26 and 9.27 that the NN architecture can be con-

structed from the set of rules shown in Figure 9.25. An optimized or suitable architecture for a
given application can be obtained by evolving a set of developmental rules. The whole rule set
can be encoded as an individual (the so-called Pittsburgh approach) or each rule can be encoded
as an individual (the so-called Michigan approach). For details of the Pittsburgh and Michigan
approaches, see Chapter 8. The rule set in Figure 9.25 can have non-terminals ranging fromA to
Z and from a to p and they are involved in the evolution process. The rule set with terminal ele-
ments {0, 1} is not involved in the evolution. A population is generated randomly from the chro-
mosome representation of the rule set with non-terminal elements (shown in Figure 9.28). The
evolution process using the developmental rules is shown in Figure 9.28. The matrix grammar
representation scheme relies on three different spaces (shown in grey boxes in Figure 9.28): the
representation space (chromosomes), the intermediate space consisting of connectivity matri-
ces and the evaluation space (network structures). The mapping from the representation space
to the intermediate space and the mapping from the intermediate space to the network structure
space suffer from competing conventions. The matrix grammar encoding scheme is unable to
generate any arbitrary feedforward network structure. The connectivity matrix must contain
some kind of regularity, so that the evaluation space is only part of the complete problem space.
Good results have been reported in the literature, but the method does not allow recursive rules.
The method is also not very good at evolving detailed connectivity of the architecture.

Tree encoding (or GP-coding)
Tree encoding using GP offers another approach to encode an NN architecture into a chro-
mosome (Sanger, 1991). A feedforward neural network is represented by a connected tree
structure consisting of a function set F and a terminal set T . The function and terminal sets of
the GP are discussed in Chapter 6. The advantage of tree encoding is that the topology and the
connection weights can be defined within the structure. The terminal set T is made up of data
inputs D to the NN and random real values R to be used as connection weights. The terminal
set is defined as

T = {D, R} (9.21)

334 Computational Intelligence

aeaeaeaebaacaaaaACDD

aeaebaacaeaeaaaaADCA
aeaebaacbaacaaaaACBD
aeaebaacbbbaaaaaABCD

||||

||||

||||

||||

M

1

1

0

1011

M

L

1

01

0

1011

M

1

L

1011

0011

11

1011

L

MOM MM

L

L

L

EA

Fitness of
NN

T
ra

in
in

g

d
a
ta

Target

Population of

production rules

Translation into

connectivity matrices

Translation into
networks

Evaluation of
networks

Figure 9.28 Evolution of NN architectures using production rules

For example, the terminal set T for a two-input NN is T = {D0, D1, R}. The function
set F is made up of a processing function P representing a neuron (processing unit) and a
weight function W . P performs the weighted sum of its inputs and forwards it to an activation
function (also known as a node transfer function). For example, the function set F for an NN
is F = {P, W }. The values of the weights are represented by random constant values R and
their values are only modified by crossover or mutation operators.

Example 9.1 An example of a chromosome representation using tree encoding for a
two-input single-output NN is given in Figure 9.29.

(P(W(P(W, –0.656, D)(W, 1.59, D0)), 1.015)(W, 1.453(P(W, 1.703, D1)(W, –0.828, D0))))1

Figure 9.29 Chromosome representation using GP

Evolutionary Neural Networks 335

P

P

–0.65

W

D1 1.59

W

D0

W

1.015 P

1.70

W

D1
–0.85

W

D0

W

1.453

(a)

(b)

P

–0.65 –0.85

P

D1

1.59

P

D0

1.015

1.70

D1D0

1.453

Figure 9.30 Tree-coding representation of NN architecture. (a) Tree-coding (genotype) representation
of two-input single-output NN; (b) Condensed tree coding of NN

The tree representation of the chromosome in Figure 9.29 is shown in Figure 9.30(a). The
tree in Figure 9.30(a) is further reduced in Figure 9.30(b) showing the inputs, nodes, output
and connection weights. The phenotype representation of the NN architecture is then defined
by translating the genotype representation in Figure 9.30. The final two-input single-output
NN architecture is shown in Figure 9.31.

P

–0.65

P

1.59

P

D0

1.015

1.70

D1

–0.85

1.453

Figure 9.31 Phenotypic representation of NN architecture

336 Computational Intelligence

(P(W(P(W,.3, D1)…(W,0.7,D0))))

(P(W(P(W,5,D0)…(W,0.1,D1))))

(P(W(P(W,.0,D0)…(W,0.0,D1))))

(P(W(P(W,2,D1)..(W,0.5,D1))))
…

EA

Fitness of
NN

T
ra

in
in

g

d
at

a

Target

Population of

Tree coding

Translation from

genotype into trees

Translation into
networks

Evaluation of
networks

P

-0.65

P

D1

1.59

P

D0

1.015

1.70

D1

-0.85

D0

1.453
P

-0.65

P

D1

1.59

P

D0

1.015

1.70

D1

-0.85

D0

1.453
P

-0.65

P

D1

1.59

P

D0

1.015

1.70

D1

-0.85

D0

1.453

Figure 9.32 Evolution of NN architecture using tree coding

The evolution process using the tree coding is shown in Figure 9.32. A one-bit adder
problem was to be solved using an NN. Koza and Rice (1991) applied tree coding to evolve
the NN architecture. Good results have been reported in the literature (Koza and Rice, 1991;
Vonk et al., 1995, 1997). Severe restrictions are to be imposed on the network topology, i.e.,
only tree-structured networks can be evolved using this approach. As a result, the number of
arguments of a function is always fixed, i.e., neurons can only have two inputs. This means
that tree coding does not scale up well with larger problems. The advantage of tree coding is
that the topology and weights are evolved simultaneously. The risk of this advantage is that an
NN with optimized topology can demonstrate poor performance (poor fitness value), which
will result in elimination of the individual from the population.

Fractal representation for architecture
There is strong evidence that parts of the human body (e.g., the lung) are fractally structured
(West, 1988). Some researchers have applied the concept of such fractal structures to NN
architecture. It is argued that there are problems where specially tailored network structures
are essential to achieve the desired performance or behaviour. Merrill and Port (1991) pre-
sented a method to derive such network structures. Fractal representation of NN connectivity

Evolutionary Neural Networks 337

is biologically more plausible than the rule-encoding representation. The representation com-
bines three properties that are desirable in a configuration search: plasticity, stability and
biological plausibility. Each node represents three real parameters, namely an edge code, an
input coefficient and an output coefficient, to specify each node in a connectivity pattern. The
edge code is represented by a single real number in [−1, 1] and all edge decisions are based
upon that number. The input and output coefficients are chosen from the interval [2,∞). If
two nodes are in successive layers of the network, there is a potential edge between them. The
nodes then compete to form an edge. The process depends on the behaviour of a deterministic
dynamic system, which is sufficiently unstable in the interval of interest that a small change in
the control parameters of the system can change the outcome of the competition. The compe-
tition is a partition of the interval [−1, 1]2 into two basins with fractal boundary. The dynamic
system is then defined as

xi (t + 1) ← (ci (1− |xi (t)|))− 1 (9.22)

ec1 and ec2 denote the input and output codes, c1 and c2 denote the input and output coefficients
of two nodes, respectively and x1 = (ec1 + ec2)/2 and x2 = (ec1 − ec2)/2 are two parameters
of the dynamical system. If the pair of codes due to any initial condition {x1, x2} corresponding
to the two nodes is in one partition, then the edge is created, otherwise the edge is not created.
In order to reduce the research parameters, the network is divided into cliques and the edge
coefficients are distributed linearly through the clique. The optimal coefficients of the cliques
are searched. Each network consists of entirely standard semi-linear nodes; each node computes
the weighted inputs added with a bias and uses a sigmoidal activation function to transfer the
node output. An evolutionary search can be employed over the space of all possible edge
configurations of a network to learn some pattern. It is unlikely that the fractal representation
scheme will have better scalability than the rule-encoding method.

9.3.2.3 Fitness Function for Architecture Evolution

There have been many fitness functions used for evolving NN architectures. The simplest
fitness function can be the sum squared error (SSE) or mean squared error (MSE) defined
in Equations (9.15) and (9.16) over a validation set containing P patterns after training the
network for a fixed number of iterations. Prechelt (1994) suggested a different fitness function
to make the error measure less dependent on the size of the validation set and the number of
outputs neurons and proposed adopting the percentage of the mean squared error defined as
follows:

f (NN) = E = 100.
omax − omin

P.M

P∑
i=1

M∑
k=1
[yk − tk]

2 (9.23)

Here, omax and omin are the maximum and minimum values of the outputs, P is the number of
patterns, M is the number of outputs, yk and tk are the actual and desired outputs of the k th
node of the network.
The fitness function in Equation (9.23) does not take into account the size of the archi-

tecture or the number of connectivities. Considering the relative connectivity of the network

338 Computational Intelligence

architecture, the following fitness function can be used for evaluation of the NN architecture
generated by the EA:

f (NN) = E(NN)

Nout
+ α.

C(NN)

Cmax
+ β.P(NN) (9.24)

where E(NN) is the cumulative squared error of the NN on the training set, Nout is the number
of outputs, C(NN) is the number of connectivities in NN, Cmax is the maximum possible
connectivity in NN and P(NN) is the number of connectivities to be pruned for a specific NN
(e.g., feedforward or recurrent). α and β are two weighting parameters for the connectivity
and pruning terms, which can be chosen arbitrarily depending on the problem at hand.

9.3.3 EA for NN Node Transfer Functions

In general, the transfer function (or activation function) of a neuron in the architecture of an
NN is assumed to be fixed and chosen arbitrarily by an expert. The same transfer function
is used for all neurons of the same layer and very often different transfer functions are used
for different layers. The choice of transfer function is by no means a trivial task, as the
transfer function is an important part of the architecture and has significant impact on the
performance of the NN (Stork et al., 1990; DasGupta and Schniter, 1992; Tong and Mintram,
2010). Most neural network applications for supervised learning use sigmoidal or radial
basis functions as the gradient information for these transfer functions is easy to obtain. The
difference in transfer functions for nodes could be large (e.g., ranging from a hard-limiting
threshold function to a Gaussian function) and could be small (e.g., just a change in the slope
parameter of the sigmoidal function). However, applications may require more complex kinds
of neuron or transfer function, such as product neurons. There are many applications reported
in the literature that have tried non-logistic-function neurons, for example, threshold neurons
(Bornholdt and Graudenz, 1991; Collins and Jefferson, 1991; Koza and Rice, 1991), linear
neurons (Bergmann and Kerszberg, 1987), Grossberg field neurons (Lehr and Weaver, 1987)
and biologically motivated neurons (Dress and Knisley, 1987). Computation of the gradient
information for these neurons would be far more costly. EA-based training of these neural
networks with non-logistic-function neurons is a viable alternative. Stork et al. (1990) were the
first to apply EA to the selection of a node transfer function in a neural network. The transfer
function used in this application was more complex than the usual sigmoidal function and was
specified in the genotype representation of the chromosome. Liu and Yao (1996) applied EP
for the selection of sigmoidal or Gaussian nodes in a neural network, where the EP allowed
growth or shrinking of the neural network by adding or deleting a sigmoidal or Gaussian node.
Experimentation on a set of benchmark problems demonstrated good performance.
Another issue with the sigmoidal node transfer function is its shape, which is assumed

fixed throughout the network. However, parameters such as the optimal shape of the sigmoidal
function are determined by trial and error or heuristically in most cases. There have been few
studies on the optimal shape of the sigmoidal function. Yamada and Yabuta (1992) proposed
an auto-tuning method for the sigmoidal function shape in order to apply it to a servo-control
system. Their method is based on the steepest descent method and confirmed the characteristics

Evolutionary Neural Networks 339

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input x

O
ut

pu
t

f(x
)

a = 0.1
a = 0.2
a = 0.5
a = 1.0
a = 2.0
a = 4.0

Figure 9.33 Shape of sigmoidal function for different values of a

and practicality of the method with simulation results. The usual tan-sigmoidal function f(x)
is defined as

f (x) = 1− e−ax

1+ e−ax
(9.25)

where x is the network output and a defines the shape of the activation function. The shape
of the sigmoidal function for different values of shape parameter a is shown in Figure 9.33.
The activation function is defined in Equation (9.25) and the parameter a defines the shape of
the sigmoidal function. The use of different shapes of sigmoidal function can lead to different
weights and biases during learning with the backpropagation algorithm, which is experienced
in many applications (Yamada and Yabuta, 1992). That is, the shape of sigmoidal functions
should be fixed during execution of the backpropagation algorithm. This type of activation
function is characterized by its gain (slope) and seriously affects the control characteristics. If
this gain tuning is used in control applications, the network output may become unstable in
certain cases. When the usual sigmoidal function is used only in the hidden layer, sigmoidal
function shape tuning is the same as weight tuning. A mathematical proof is given in Yamada
and Yabuta (1992). Therefore, sigmoidal function shape tuning in a neural network can
contribute significantly in improving performance of the neural system or neuro-controller.

340 Computational Intelligence

Σ

w1x1

b1

x2

f1(x)
Σ

Σ

f2(x)

b2

f3(x)
w2

2w3

w4

w5

w6

b3

Figure 9.34 Single-neuron network with nonlinear activation function

Consider a neural network with three neurons, two inputs and a single output as shown in
Figure 9.34. The two activation functions f1(x) and f2(x) at the hidden layer are tan-sigmoidal
functions with shaping parameters a1 and a2, respectively and the activation function f3(x) at
the output layer is a linear function with scaling parameter a3 (we can also call it a shaping
parameter):

f1(x) = 1− e−a1x

1+ e−a1x
, f2(x) = 1− e−a2x

1+ e−a2x
, f3(x) = a3x (9.26)

The transfer functions of the three neurons in the network can be different due to the shaping
parameters {a1, a2, a3}, which will impose restrictions on using the backpropagation algorithm
for training of the network. Moreover, training of the weights {w1, w2, . . . , w6} and biases
{b1, b2, b3} of the network along with the sigmoidal function shape parameters {a1, a2, a3}
using the backpropagation learning algorithm would be computationally intensive and cum-
bersome. Evolutionary learning can automatically decide the optimal shape of the sigmoidal
function as well as optimize the weights and biases.
The decision on how to encode the transfer functions in the chromosome representation

depends on the a priori information and computational time allowed for training the network.
In general, nodes in the same layer tend to have the same type of transfer function with
possible differences in the parameter set, e.g., the parameters {a1, a2} of { f1(x), f2(x)} in
layer two of Figure 9.34. Nodes in different layers can have different transfer functions,
e.g., { f1(x), f2(x)} in layer two are tansigmoidal functions and f3(x) in layer three is linear.
The training is possible in two ways: firstly, using EA for optimizing transfer functions and
weight training (weights and bias) using the backpropagation algorithm and secondly, using
EA for both the function and weight training. Use of EA and backpropagation would be
slow and computationally exhaustive. Furthermore, it may not guarantee optimal network
performance due to the nonlinear relationship between the two parameter spaces. Evolution
of both transfer functions and weights at the same time would be advantageous since they
constitute a complete architecture. Encoding weights and parameters of the transfer functions
into the same chromosome would make it easier to find the optimal performance of the
network by exploring the two sets of parameter space. The chromosome representation is very
straightforward, as shown in Figure 9.35.
The different techniques of evolution discussed earlier in this chapter can be applied for the

weights, biases and function shape parameters. One simple example is shown in Figure 9.36.

Evolutionary Neural Networks 341

{w1,w2,..., w6},{b1,b2,b3},{a1,a2,a3}

Figure 9.35 Chromosome for weights and function shape parameters

The fitness function for the evolution in Figure 9.36 could be any of the fitness functions
used for weight learning, such as SSE or MSE defined in Equations (9.15)–(9.18).
The connectivity of the network is assumed to be fixed during learning of the weights and

parameters in the evolution shown in Figure 9.36. Some researchers suggested evolving the
topology, connection weights and parameters at the same time (Hwang et al., 1997).

9.3.4 EA for NN Weight, Architecture and Transfer Function Training

The major problem with designing an NN architecture using indirect coding, such as the
parameterized, grammar and tree encoding schemes (discussed in Section 9.3.2), is that the
weight training has to be done after a near-optimal architecture is found. This causes a noisy
fitness evaluation due to the fact that the fitness is measured against the architecture with
a full set of weights whereas the indirect encoding only provides the architecture without
any weight information. For example, consider the encoding of the architecture shown in
Figure 9.37(a). The architecture (genotype) encoded into the string is translated into a network
(phenotype) shown in Figure 9.37(b). There exists a one-to-many mapping from genotype to
phenotype. This contributes noise in the fitness evaluation. For example, to compute the fitness
of the architecture, random weights are generated as shown in Figure 9.37(c) and used in the
evaluation of the architecture against a set pattern, which is the fitness value of the architecture.
Therefore, the fitness obtained in this way is called noisy. The noisy fitness comes from two
sources: random initialization of weights for the training results in different fitness values
and different training algorithms produce different fitness values for the same set of weights.
In order to reduce the noise, the network (i.e., architecture) has to be trained several times
with randomly generated weights and an average fitness is to be computed for the network’s

Weights,
parameters

EA

T
ra

in
in

g

d
at

a

Target

F
Population

W = [w1,...,w6,b1,...,b3,a1,...,a3]⇒

… …

…

Chromosome w11 ... b11 ... a31

w12 ... b12 ... a32

w1m ... b1m ... a3m

Figure 9.36 Evolution of weights and function shape parameters

342 Computational Intelligence

1

2

3

4

5
b

b

b

1

2

3

4

5
.2

.1

.5
.3

.1

.6

.4

.1

.2

x1

x2

y

(b)

(c)

000000 000000 110001 110001 001101

000000

000000
110001
110001
001101

 1 2 3 4 5 b

1 0 0 0 0 0 0

2 0 0 0 0 0 0
3 1 1 0 0 0 1

4 1 1 0 0 0 1

5 0 0 1 1 0 1

(a)

Figure 9.37 Mapping from genotype to phenotype for fitness evaluation. (a) NN in genotype (rep-
resentation) space; (b) NN in phenotype (evaluation) space; (c) Random weights assigned for fitness
evaluation

mean fitness. As a result, the overhead computation for fitness evaluation is high and hence
not feasible for designing a large network architecture (Yao and Liu, 1997). It is evident that
evolution of the network architecture alone without weight information is computationally
expensive and results in inaccurate fitness, which does not guarantee an optimal network after
the whole evolutionary process.
Therefore, the simplest way to alleviate the problem would be to evolve the network

architecture and connection weights at the same time (Koza and Rice, 1991; Angeline et al.,
1994; Maniezzo, 1994; Liu and Yao, 1995; Yao, 1999; Leung et al., 2003). The information
about the architecture and weights is encoded into the chromosome representation. A detailed
discussion on the chromosome representation of the weights, architecture and node transfer
function is presented in Sections 9.3.1, 9.3.2 and 9.3.3, respectively. A combined chromosome
representation for weights, connectivity and node transfer function can easily be developed
from the three previous representations. Let’s consider a feedforward neural network with N
neurons with different node transfer functions. The weights of the network can be represented
by an N × N -dimensional weight matrixW = (wi j)N×N that constrains the connection weight
between neurons i and j in subsequent layers, where i �= j . The biases of the nodes form an
N × 1-dimensional vector represented by the weights wi i (i.e., i = j , meaning the diagonal
elements of the matrix W). The architecture (topology) of the network can be represented by
an N × N -dimensional connection matrix C = (ci j)N×N that constrains connections between

Evolutionary Neural Networks 343

Weights {W}

EA

T
ra

in
in

g

d
at

a

Target

F

[]= ⇒

mmm CW

CW
CW

CW
MMM

222

111

,,

Population

Chromosome

Translation of {C, Φ

Φ

Φ
Φ

Φ

Π

}

into architecture

Figure 9.38 Evolution of architecture, weights and function parameters

the N neurons, where ci j = 1 indicates the presence of a connection from node i to node j
and ci j = 0 indicates no connection. The node transfer functions with their parameters can
be represented by an N × p-dimensional matrix
 = (φi j)N×p, where p is the number of
parameters of the node transfer function.
Thus, the chromosome for the weight, architecture and node transfer function =

[W, C,
]N×(2N+p) is an N × (2N + p)-dimensional matrix. It has been shown in Sections
9.3.1, 9.3.2 and 9.3.3 that handling the matrix as a chromosome is simple. Converting the
matrix into a long string of values would be cumbersome without any benefit to computation,
precision or evolution. The process of simultaneous evolution of weights, architecture and
transfer function is shown in Figure 9.38 with a population size of m. Genetic operators such
as crossover and mutation can be applied with convenience using the matrix representation
of the chromosome (Siddique and Tokhi, 2001). Some examples are given in Section 9.3.1.
Hwang et al. (1997) evolved weights, network architecture and node transfer functions simul-
taneously. Angeline et al. (1994) and Yao and Liu (1997) applied EP to learn the architecture
and weights of the network with only a mutation operator. The crossover operator appears not
to be useful and renders problems like competing conventions, also called the permutation
problem. The permutation or competing convention problem is discussed in Section 9.5.
The fitness function for the evolution of weights, architecture and node transfer function

should ensure minimal SSE or MSE and minimal topology. Therefore, any combination can
be used of the fitness functions defined in Equations (9.15)–(9.18) for weight learning and the
fitness function defined in Equations (9.23)–(9.24) for architecture learning.

9.4 Amalgamated Combination

In supportive and collaborative combinations of EA and NN, the characteristics of both the
EA and NN are distinguishable from each other. These combinations are investigated in
Sections 9.2 and 9.3. However, the vast majority of these combinations do not represent a
functional integration of both technologies that are found in neuro-fuzzy systems (discussed
in Chapter 10). In amalgamated combination, the EA’s search mechanism is represented in

344 Computational Intelligence

f

jip
1

1 2{ , ,..., }mx x x
1

j

m

Gene

layer

Output

layer

M

M

M

2
1 2{ , ,..., }mx x x

1 2{ , ,..., }N
mx x x

Solution layer
Population

M

1

2

i

N

Figure 9.39 Schematic of an amalgamated EA-NN combination

a structure similar to the architecture of a feedforward neural network proposed by Koeppen
et al. (1997a,1997b). The proposed architecture is called the neural evolutionary strategy
system (NESSY). The hybrid architecture (we use the term ‘amalgamated combination’ of
EA and NN with a view to reflecting the purpose of this chapter) consists of three layers of
neuron-like processing units. The first layer is the solution layer. Each neuron in this layer
represents a solution vector or individual of the population. The second layer is the gene layer.
Each neuron represents a gene of the chromosome. That means, if there are n variables to be
optimized, then there are n neurons in this layer. All the neurons in the second layer together
present a complete solution to the optimization problem. There is one neuron in the third layer,
which provides the value of the objective function for single-objective optimization problems.
If it is a multi-objective optimization problem, then there will be multiple neurons in this layer
representing each objective with one neuron.
An iteration of the NN training is equivalent to one generation of the EA cycle. The genetic

operations are performed as the chromosomes are passed through to the gene layer from the
input layer. The working principles are described below and illustrated in Figure 9.39.
Every neuron in the solution layer contains a chromosome indicated by {x1, x2, . . . , xm}i ,

i = 1, 2, . . . , N , where N is the population size and m is the number of genes in the chromo-
some. All the neurons in the solution layer comprise the population of the EA. Each neuron i
in the solution layer is assigned a fitness fi calculated from the objective function value xi .
Every neuron in the gene layer represents a gene of the chromosome x j , j = 1, 2, . . . , m.

The number of neurons in the gene layer corresponds to the number of genes in the chromo-
some, i.e., the size of the gene layer corresponds to the size of the chromosome as indicated
by m in the figure. The generation layer is the counterpart of the selection operation in
conventional EA.
The solution layer and the gene layer are fully connected and the connections are repre-

sented by the weights p ji , which are considered as probabilities in this hybrid architecture.
Every neuron in the gene layer randomly selects a neuron of the solution layer based on the
probabilities p ji . All weights are initialized randomly in [0, 1]. For example, the probability

Evolutionary Neural Networks 345

p32 indicates that neuron 3 in the gene layer selects neuron 2 of the solution layer (i.e., chro-
mosome 2) with probability p32. The important thing to note here is that each neuron j in the
gene layer chooses exactly one neuron i in the solution layer with probability proportional to
p ji . After the association is made, each neuron in the gene layer is assigned a fitness g j .
The single neuron in the third layer represents the lower bound of the fitness of the chromo-

some. The lower bound is represented by the output neuron state O. The neurons in the gene
layer are all connected to the output layer with weight unity (i.e., no special weights in the
connectivity here). The fitness values of all solutions produced by the gene layer are summed
up and compared with the lower bound. The relative error of every generation-layer neuron
is backpropagated and the weights p ji are updated according to the learning rule. The weight
update is carried out according to

p ji (t) = p ji (t − 1)− η
fi − g j

O
(9.27)

where η is the learning rate and O represents the state of the output neuron used to normalize
the difference in fitness value. It can be the best fitness of the solution neurons at generation
t . As can be seen from Equation (9.27), if fi > g j then p ji is increased, otherwise p ji is
decreased. During learning (i.e., evolution), high weights are assigned to good solutions. This
improves the probability of repetitive choice of good solutions in the gene layer.
Since the solution layer contains the population, two genetic operators are applied to the

solution-layer neurons. These are the transduction operator and the mutation operator. Each
solution-layer neuron is modified by comparing its fitness with that of an arbitrary neuron
in the gene layer. If the fitness of the gene-layer neuron is better, the corresponding gene in
the solution-layer neuron is replaced. This operation is called the transduction operation. The
notion came from bacterial genetics, which is equivalent to the crossover operation in tradi-
tional EA. The mutation operation is necessary when the transduction operation is applied.
Mutation is performed by adding a random number to a gene with zero-mean Gaussian distri-
bution. There are two parameters that control the mutation operator: the mutation probability
pm and the standard deviation of the Gaussian distribution σ . There are four parameters in the
NESSY algorithm: structural parameter (i.e., size of solution layer), learning rate η, mutation
probability pm and standard deviation of Gaussian distribution σ .

9.5 Competing Conventions

EA operates on strings called chromosomes, or often called genotypes. Before evaluating
a given genotype, it is first mapped onto a solution to the task space called a phenotype.
For example, the width, height and depth of a box are represented by three parameters. The
mapping from genotype to phenotype representation can then be viewed as a construction of
a box from three measurements {A, B, C} meaning width, height and depth, respectively, as
shown in Figure 9.40.
If this mapping ismany-to-one, then the different genotypesmap onto the same or equivalent

phenotypes, i.e., permuting the three values will not change the shape or the volume of
the box. That is, the same evaluation space is obtained by very different chromosomes from
the representation space. Standard crossover between two such chromosomes having the same
convention will be unlikely to result in useful offspring; in this case, it will result in the same
box as illustrated in Figure 9.41.

346 Computational Intelligence

C
A

BA B C

Genotype

representation

Phenotype

representation

Figure 9.40 Mapping from genotype to phenotype

A similar problem occurs when applying an EA to a neural network structure – called
competing conventions, also known as the permutation problem. This problem is of particular
interest when designing network architecture (or topology) and has been reported by a number
of researchers (Whitley et al., 1990; Belew et al., 1991). The topology of NNs can be encoded
into a genotype using a direct or indirect encoding scheme. In direct encoding, the connectivity
in the NN is represented explicitly in the genotype, e.g., in the adjacency matrix. Thus, the
effect of the genetic operator, especially crossover, on the genotypes is more or less very direct
on the phenotype space. In indirect encoding, connectivity in the NN is represented in the
genotype using parametric information or a rule of construction process for the NN. Therefore,
the effect of the genetic operator on the structure (i.e., the phenotype space) is not obvious.
The problem of indirect encoding is that functionally equivalent NNs can be represented
by numerous genotypes where the hidden neurons are ordered differently. Genetic operators

A

BA B C

C

B

B C A

Genotype

representation

Phenotype

representation

C

A

Figure 9.41 Mapping from genotype to the same phenotype

Evolutionary Neural Networks 347

A

B

C

D

E

F

ABCDEF

A
B

C

D

E

F

DCBAFE

Genotype Phenotype

Figure 9.42 Mapping from genotype to phenotype of NN

generally produce NNs by simply permuting the hidden neurons. Up to now there has been
neither a proven best representation/operator setting nor a constructive way to generate a good
setting for a given problem except some general design heuristics (Igel and Stagge, 2002).
The known genetic operation results in different genotype representations of NNs but when
the representations are mapped onto phenotypes, they form the same network. For example,
consider the two NN architectures in Figure 9.42. The only difference in the phenotypes is the
switching of the two hidden nodes and such permuting of the hidden nodes of a feedforward
network does not alter the function and will exhibit the same fitness. Applying a crossover
operation to functionally equivalent network structures will not produce any better offspring.
The number of competing conventions grows exponentially with increasing number of hidden
neurons in a network as each permutation represents a different ordering of hidden neurons
and so represents a different convention. Some researchers, therefore, avoid the crossover
operation and use only mutations in the evolution of architectures (Palmes et al., 2005).

Example 9.2 An XOR gate is to be realized using a feedforward neural network. The
configuration of the network is shown in Figure 9.43. The truth table for the two-input XOR
is shown in Table 9.1, which is to be used as training pattern. The weights of the NN circuit
are to be trained using an EA.

A

B

C

D

E

F

x1

x2

y

Figure 9.43 NN circuit for an XOR gate

348 Computational Intelligence

Table 9.1 Truth table for an XOR gate

x1 x2 yd

0 0 0
0 1 1
1 0 1
1 1 0

The XOR problem has historically been considered a good test of a network model and
learning algorithm. The XOR problem has been chosen as one of the benchmark problems for
many EA-NN simulations. There are many reasons for this choice. Firstly, the XOR problem
is one of the simplest problems, which is not linearly separable and complex enough for
the backpropagation algorithm to be trapped in local minima without reaching the global
optimum. Secondly, there are significant numbers of researches reporting analytical work on
XORwhich claim that the XOR problem exhibits local minima, a view that is widely accepted
in the neural network literature (Dayhoff, 1990; Gori and Tesi, 1992; Cetin et al., 1993). A
simple hand-calculated example of GA has been contrived to demonstrate the methodology
step by step for weight training a feedforward NN for an XOR gate.
The connectivity of the NN is shown using symbols for weights, {A, B, C, D, E, F} ∈ R.

There is no bias used in this network. A real-valued chromosome representation is chosen for
the weights of the NN and can be represented as follows:

Chromosome = {A, B, C, D, E, F} ∈ R (9.28)

A population of five individuals of real values is generated randomly, as shown in Figure 9.44.
A small population is chosen for this hand-calculation of the GA. Each row represents an
individual or chromosome ci . The columns indicate the weights of the connectivity between
nodes, as shown in Figure 9.44. The fitness function considered here is the mean of sum
squared error, which is subject to being minimized, as defined below:

f (ci) = 1

N

N∑
k=1

e(k)2 (9.29)

A B C D E F

∏ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.19 0.27 0.09 0.91 0.17

0.23 0.49 0.58 0.10 0.73 0.06

0.56 0.48 0.36 0.39 0.63 0.99

0.23 0.23 0.29 0.67 0.52 0.37

0.76 0.34 0.19 0.47 0.03 0.80

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Figure 9.44 Population of NN weights

Evolutionary Neural Networks 349

.1

.19

.27

.09

.91

.17

x1

x2

y

Figure 9.45 NN with weights

where e(k) = yd (k)− y(k) and y(k) is the network output for each pattern. In this case the
optimal value is a minimum. It is common to have the GA process provide the maximum value
of the fitness function. It is reasonable to have the fitness function be the reciprocal of f (ci),
i.e., fi = 1/ f (ci).
The NN looks like the network shown in Figure 9.45 using the first individual of the weights

from the population shown in Figure 9.44.
The four input patterns of {x1, x2} are propagated through the NN and the output values are

calculated. A general equation is used for this calculation of the output y as follows:

yi (k) = ψ
(
φ[x1(k)

∗ Ai + x2(k)
∗ Ci]

∗ Ei + φ[x1(k)
∗ Bi + x2(k)

∗ Di]
∗ Fi

)
(9.30)

where i = 1, . . . , 5 represents the individuals in the population and k = 1, . . . , 4 represents
the input patterns of the truth table. φ(.) and ψ(.) are the linear activation functions for the
hidden layer and the output layer, respectively. Since linear functions are used, they are not
shown in the following calculations. The first pattern {0 0} is propagated through the NN and
the output y(1), error e(1) and squared error e(1)2 are calculated as follows:

y(1) = [{x1(0.1)+ x2(0.27)}0.91]+ [{x1(0.19)+ x2(0.09)}0.17]
y(1) = [{0(0.1)+ 0(0.27)}0.91]+ [{0(0.19)+ 0(0.09)}0.17] = 0

e(1) = yd (1)− y(1) = 0− 0 = 0

e(1)2 = 0

Similarly, the rest of the three input patterns are propagated through the NN and the outputs,
errors and mean of sum of squared errors are calculated, as shown in Table 9.2. The fitness of
the first individual is calculated using Equation (9.30) and shown in Table 9.2.

Table 9.2 Computation of the fitness of individual 1

Input y(k) = (x1 ∗ A + x2 ∗ C)E+
k pattern (x1 ∗ B + x2 ∗ D)F e(k) = yd (k)− y(k) e(k)2

1 00–0 0 0–0 0
2 10–1 0.26 1–0.26 0.547
3 10–1 0.123 1–0.123 0.769
4 11–0 0.383 0–0.383 0.146

msse = mean of sum squared error 14
4∑

k=1
e(k)2 = 0.3656

350 Computational Intelligence

Table 9.3 Relative fitness of the individuals

msse fi = 1/msse fi/
∑

fi Times selected Mating pool

0.3656 2.7352 0.2044 c1 × 1 {.10 .19 .27 .09 .91 .17}
0.3407 2.9354 0.2194 c2 × 1 {.23 .49 .58 .10 .73 .06}
0.5639 1.7733 0.1325 c3 × 0 –
0.3395 2.9452 0.2201 c4 × 1 {.23 .23 .29 .67 .52 .37}
0.3343 2.9912best 0.2235 c5 × 2 {.76 .34 .19 .47 .03 .80}

{.76 .34 .19 .47 .03 .80}

The fitness value of each individual and its relative fitness are calculated. This is tabulated
in Table 9.3. In this population, the best fitness is fbest = 2.9912 and the average fitness is
f̄ = 2.6761. The reproduction process consists of copying individuals proportional to their
fitness values. This means that individuals with higher fitness values (in this case the reciprocal
of themean sum of squared error, denoted fi = 1/msse) have higher chances of being selected
for the crossover operation. The selection probability for an individual may be defined as

pi = fi∑
fi

(9.31)

The mating pool of the next generation is selected according to the probability pi (shown in the
third column of Table 9.3). The selection of the individual ci in the mating pool is shown in the
fourth column of Table 9.3 according to the probability pi . Random crossover mates (shown in
bold) are chosen for each individual in the mating pool. A single-point crossover is performed
on the pair of individuals and 10 offspring are created. Two genes of two individuals are
randomly chosen for mutation. The mating pool, randomly selected crossover mate, crossover
operation and mutation operator are shown in Table 9.4. The mutated value of the gene is
shown encircled.
After crossover and mutation, 10 individuals are created which form the population of

the second generation. The mean sum of squared error, fitness, relative fitness (i.e., selection

Table 9.4 Mating pool, crossover mate, crossover and mutation operation

Mating pool Random crossover mate Offspring

{.10 .19 .27 .09 .91 .17} {.10 .19 .27 |.09 .91 .17}
{.23 .23 .29| .67 .52 .37}

{.10 .29© .27.67 .52 .37}
{.23 .23 .29 .09 .91 .17}

{.23 .49 .58 .10 .73 .06} {.23 .49| .58 .10 .73 .06}
{.76 .34| .19 .47 .03 .80}

{.23 .49 .19 .47 .03 .80}
{.76 .34 .58 .10 .73 .06}

{.23 .23 .29 .67 .52 .37} {.23 .23 .29 .67| 52 .37}
{.10 .19 .27 .09| .91 .17}

{.23 .23 .29 .67 .91 .17}
{.10 .19 .27 .09 52 .37}

{.76 .34 .19 .47 .03 .80} {.76 |.34 .19 .47 .03 .80}
{.23 |.49 .58 .10 .73 .06}

{.76 .49 .58 .10 .73 .06}
{.23 .34 .19 .47 .33© .80}

{.76 .34 .19 .47 .03 .80} {.23 .23 .29| .67 .52 .37}
{.10 .19 .27| .09 .91 .17}

{.23 .23 .29 .09 .91 .17}
{.10 .19 .27.67 .52 .37}

Evolutionary Neural Networks 351

Table 9.5 Population of second generation and its fitness

New population msse fi = 1/msse fi/
∑

fi Times selected

{.10 .29 .27 .67 .52 .37} .3452 2.8968 0.1022 c1 × 0
{.23 .23 .29 .09 .91 .17} .3407 2.9351 0.1035 c2 × 0
{.23 .49 .19 .47 .03 .80} .3382 2.9565 0.1043 c3 × 2
{.76 .34 .58 .10 .73 .06} .3788 2.6398 0.0931 c4 × 0
{.23 .23 .29 .67 .91 .17} .3360 2.9758best 0.1050 c5 × 2
{.10 .19 .27 .09 .52 .37} .3852 2.5961 0.0916 c6 × 0
{.76 .49 .58 .10 .73 .06} .3815 2.6215 0.0925 c7 × 0
{.23 .34 .19 .47 .33 .80} .3398 2.9433 0.1038 c8 × 1
{.23 .23 .29 .09 .91 .17} .3407 2.9351 0.1035 c9 × 0
{.10 .19 .27.67 .52 .37} .3513 2.8465 0.1004 c10 × 0

probability pi) for each individual of the second generation are calculated, as shown in Table
9.5. The mating pool of the next generation is selected according to the probability. The fifth
column of Table 9.5 shows the number of copies chosen for each individual. In this population,
the best fitness is fbest = 2.9785 and the average fitness is f̄ = 2.8347. As can be seen, the
best fitness has decreased in the second generation but the average fitness of the population
in the second generation has increased significantly. Different performance indices such as f̄ ,
f̄ / fbest , fworst/ f̄ , fbest − f̄ and N are discussed in Section 9.2.1. It is indicative that fbest − f̄
has improved with an increase in the population size N , which is a measure of the convergence
of the GA. The evolution continues until the maximum generation when the value of fbest − f̄
reaches a steady value and the NN is able to behave like an XOR gate; that is, it can generate
the truth table given in Table 9.1 fairly closely.

References

Angeline, P.J., Saunders, G.M. and Pollack, J.B. (1994) An evolutionary algorithm that constructs recurrent neural
networks, IEEE Transactions on Neural Networks, 5(1), 54–65.

Badi, P.F. and Homik, K. (1995) Learning in linear neural networks: a survey, IEEE Transactions on Neural Networks,
6(4), 837–858.

Belew, R.K.,McInerney, J. and Schraudolph, N. (1991) Evolving networks: using genetic algorithmwith connectionist
learning. Proceedings of Second Conference on Artificial Life, New York, pp. 511–547.

Bergmann, A. and Kerszberg, M. (1987) Breeding intelligent automata. IEEE International Conference on Neural
Networks, San Diego, CA, Vol. II, pp. 63–70.

Billings, S.A. and Zheng, G.L. (1994) Radial Basis Function Network Configuration using Genetic Algorithms.
Research Report No. 521, Department of Automatic Control and Systems Engineering, University of Sheffield.

Bornholdt, S. and Graudenz, D. (1991) General Asymmetric Neural Networks and Structure Design by Genetic
Algorithms, Deutsches Electronen Symchrotron (DESSY’91), Hamburg, Germany.

Brill, F.Z., Brown, D.E. and Martin, W.N. (1990)Genetic Algorithms for Selection for Counterpropagation Networks,
University of Virginia, Institute of Parallel Computing, Charlottesville, VA, Technical Report IPC-TR-90-004.

Brotherton, T.W. and Simpson, P.K. (1995) Dynamic feature set training of neural nets for classification. In Evolu-
tionary Programming IV, J.R. McDonnell, R.G. Reynolds and D.B. Fogel (eds), MIT Press, Cambridge, MA,
pp. 83–94.

Cantú-Paz, E. and Kamath, C. (2005) An empirical comparison of combinations of evolutionary algorithms and neural
networks for classification problems, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics,
35(5), 915–927.

352 Computational Intelligence

Caudell, T.P. and Dolan, C.P. (1989) Parametric connectivity: training of constrained networks using genetic algo-
rithms. ICGA’89, pp. 370–374.

Cetin, B.C., Burdick, J.W. and Barhen, J. (1993) Global descent replaces gradient descent to avoid local minima
problem in learning with artificial neural networks. Proceedings of IEEE International Conference on Neural
Networks, Piscataway, NJ, Vol. 2, pp. 836–842.

Chalmers, D.J. (1990) The evolution of learning: an experiment in genetic connectionism. Proceedings of 1990
Connectionist Models Summer School, D.S. Touretzky, J.L. Elman and G.E. Hilton (eds), San Mateo, CA, pp.
81–90.

Collins, R. and Jefferson, D. (1991) An artificial neural network representation for artificial organisms. In Parallel
Problem Solving from Nature, H.-P. Schwefel and R. Maenner (eds), Springer-Verlag, Berlin.

DasGupta, D. and McGregor, D.R. (1992a) Designing neural networks using the structured genetic algorithm.
Proceedings of the International Conference on Artificial Neural Networks (ICANN), I. Aleksander and J. Taylor
(eds), Elsevier Science, Brighton, pp. 263–268.

DasGupta,D. andMcGregor,D.R. (1992b)Designing application-specific neural networks using the structured genetic
algorithm. International Workshop on Combinations of Genetic Algorithms and Neural Networks, Baltimore, MD,
pp. 87–96.

DasGupta, B. and Schnitger, G. (1992) Efficient Approximation with Neural Networks: A Comparison of Gate
Functions. Technical Report, Department of Computer Science, Pennsylvania State University.

Dayhoff, J.E. (1990) The exclusive-OR: a classic problem. In Neural Network Architectures: An Introduction, Van
Nostrand Reinhold, New York, pp. 76–79.

De Jong, K.A. and Spears, W.M. (1990) An analysis of interacting roles of population size and crossover in genetic
algorithms. Proceedings of 1st Workshop on Parallel Problem Solving in Nature (PPSN’90), Dortmund, Germany,
pp. 38–47.

Depenau, J. and Moller, M. (1994) Aspects of generalization and pruning. Proceedings of World Congress on Neural
Networks, Vol. III, pp. 504–509.

Dress, W.B. and Knisley, J.R. (1987) A Darwinian approach to artificial neural systems. IEEE Conference on Systems,
Man and Cybernetics, New York, pp. 572–577.

Eberhart, R.C. (1992) The role of genetic algorithms in neural network query-based learning and explanation facilities.
Proceedings of the IEEE International Workshop on Combinations of Genetic Algorithms and Neural Networks
(COGANN-92), Baltimore, MD, pp. 169–183.

Fogel, D.B., Fogel, L.J. and Porto, V.W. (1990) Evolving neural networks, Biological Cybernetics, 63(6), 487–493.
Fontanari, J.F. and Meir, R. (1991) Evolving a learning algorithm for the binary perceptron, Network, 2(4), 353–359.
Gallant, S. (1993) Neural-Network Learning and Expert Systems, MIT Press, Cambridge, MA.
Gao, W. (2003) Study on new evolutionary neural network. Proceedings of the Second International Conference on

Machine Learning and Cybernetics,Wan, pp. 1287–1292.
Goldberg, D.E., Deb, K. and Clark, J.H. (1992) Genetic algorithms, noise, and sizing of populations,Complex Systems,
6(4), 333–362.

Gori, M. and Tesi, A. (1992) On the problem of local minima in backpropagation, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14, 76–85.

Grefenstette, J.J. (1986) Optimisation of control parameters for genetic algorithms, IEEE Transactions on Systems,
Man and Cybernetics, 16(1), 122–128.

Guo, Z. and Uhrig, R.E. (1992) Using genetic algorithms to select inputs for neural networks. Proceedings of the
IEEE International Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN-92),
Baltimore, MD, pp. 223–234.

Harp, S.A., Samad, T. and Guha, A. (1989) Towards the genetic synthesis of neural networks. Proceedings of the 3rd
International Conference on Genetic Algorithms (ICGA’89), Morgan Kaufmann, San Mateo, CA, pp. 360–369.

Harp, S.A., Samad, T. and Guha, A. (1990) Designing application specific neural networks using genetic algorithms.
In Advances in Neural Information Processing Systems 2, D.S. Touretzky (ed.), Morgan Kaufmann, San Mateo,
CA, pp. 447–454.

Hassibi, B. and Stork, D. (1993) Second order derivatives for network pruning: optimal brain surgeon, Advances in
Neural Information Systems, 5, pp. 164–172.

Hirose, Y., Yamashita, K. and Hijiya, S. (1991) Backpropagation algorithm which varies the number of hidden units,
Neural Networks, 4, 61–66.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
Honavar, V. and Uhr, V.L. (1993) Generative learning structures for generalized connectionist networks, Information

Science, 70(1/2), 75–108.

Evolutionary Neural Networks 353

Hwang, M.W., Choi, J.Y. and Park, J. (1997) Evolutionary projection neural networks. Proceedings of the 1997 IEEE
International Conference on Evolutionary Computation (ICEC’97), pp. 667–671.

Igel, C. and Kreutz, M. (2003) Operator adaptation in evolutionary computation and its application to structure
optimization of neural networks, Neurocomputing, 55(1/2), 347–361.

Igel, C. and Stagge, P. (2002) Effects of phenotypic redundancy in structure optimization, IEEE Transactions on
Evolutionary Computation, 6(1), 74–85.

Jacob, R.A. (1988) Increased rates of convergence through learning rate adaptation, Neural Networks, 1(3), 295–307.
Jung, J.-Y. and Reggia, J.A. (2006) Evolutionary design of neural network architectures using a descriptive encoding
language, IEEE Transactions on Evolutionary Computation, 10(6), 676–688.

Kadaba, N. and Nygard, K.E. (1990) Improving the performance of genetic algorithms in automated discovery of
parameters. In Proceedings of the Seventh International Conference on Machine Learning, B.W. Porter and R.J.
Mooney (eds), Morgan Kaufmann, San Mateo, CA, pp. 140–148.

Kadaba, N., Nygard, K.E. and Juell, P.L. (1991) Integration of adaptive machine learning and knowledge-based
systems for routing and scheduling applications, Expert Systems with Applications, 2(1), 15–27.

Kamarthi, S.V. and Pittner, S. (1999) Accelerating neural network training using weight extrapolations. Neural
Networks, 12, 1285–1299.

Kamimura, R. and Nakanishi, S. (1994) Weight-decay as a process of redundancy reduction. Proceedings of World
Congress on Neural Networks, III, pp. 486–489.

Kelly, J.D. andDavis, L. (1991)Hybridizing the genetic algorithm and theKnearest neighbors classification algorithm.
InFourth International Conference on Genetic Algorithms, R.K. Belew and L.B. Booker (eds),MorganKaufmann,
San Mateo, CA, pp. 377–383.

Kim, H.B., Jung, S.H., Kim, T.G. and Park, K.H. (1996) Fast learning method for backpropagation neural network
by evolutionary adaptation of learning rates, Neurocomputing, 11(1), 101–106.

Kitano, H. (1990) Designing neural networks using genetic algorithms with graph generation system, Complex
Systems, 4, 461–476.

Kitano, H. (1994) Neurogenetic learning: an integrated method of designing and training neural networks using
genetic algorithms, Physica D, 75, 225–238.

Koeppen, M., Teunis, M. and Nicholay, B. (1997a) A neural network that uses evolutionary learning. Proceed-
ings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97), Indianapolis, MN,
pp. 635–639.

Koeppen, M., Teunis, M. and Nicholay, B. (1997b) NESSY – an evolutionary learning neural network. Proceedings
of the 2nd International ICSC Symposium on Soft Computing (SOCO’97), Nimes, France, pp. 243–248.

Kohavi, R. and John, G. (1997) Wrappers for feature subset selection, Artificial Intelligence, 97(1/2), 273–324.
Koza, J.R. and Rice, J.P. (1991) Genetic generation of both the weights and architecture for a neural network. IEEE

International Joint Conference on Neural Networks, Seattle, WA, Vol. II, pp. 397–404.
Lehr, S. andWeaver, J. (1987) A developmental approach to neural network design. In IEEE International Conference

on Neural Networks, M. Caudill and C. Butler (eds), San Diego, CA, Vol. II, pp. 97–104.
Leung, F., Lam, H., Ling, S. and Pam, P. (2003) Tuning of the structure and parameters of a neural network using an
improved genetic algorithm, IEEE Transactions on Neural Networks, 14(1), 79–88.

Liu, Y. and Yao, X. (1995) A population-based learning algorithm which learns both architecture and weights of
neural networks. Proceedings of ICYCS’95 Workshop on Soft Computing, pp. 29–38.

Liu, Y. and Yao, X. (1996) Evolutionary design of artificial neural networks with different nodes. Proceedings of the
1996 IEEE International Conference on Evolutionary Computation (ICEC’96), Nagoya, Japan, pp. 670–675.

Martienzzo,V. (1994)Genetic evolution of the topology andweight distribution of neural networks, IEEE Transactions
on Neural Networks, 5(1), 39–53.

Merrill, J.W.L. and Port, R.F. (1991) Fractally configured neural networks, Neural Networks, 4, 53–60.
Miller, G.F., Todd, P.M. and Hedge, S.U. (1989) Designing neural networks using genetic algorithms. Proceedings

of the 3rd International Conference on Genetic Algorithms and their Applications, J.D. Schaffer (ed.), Morgan
Kaufmann, San Mateo, CA, pp. 379–384.

Mirkin, B. (1996)Mathematical Classification and Clustering, Kluwer Academic, Dordrecht.
Montana, D.J. and Davis, L. (1989) Training feedforward neural network using genetic algorithms. Proceedings of

11th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, pp. 762–767.
Muehlenbein, H. (1990) Limitations of multi-layer perceptron networks – steps towards genetic neural networks,

Parallel Computing, 14, 249–260.
Nguyen, D. andWidrow, B. (1990) Improving the learning speed of 2-layer neural networks by choosing initial values
of adaptive weights. International Joint Conference on Neural Networks, 3, 21–26.

354 Computational Intelligence

Nikolaev, N. and Iba, H. (2001) Regularization approaches to inductive genetic programming, IEEE Transactions on
Evolutionary Computation, 5, 359–375.

Nikolaev, N. and Iba, H. (2003) Learning polynomial feedforward neural networks by genetic programming and
backpropagation, IEEE Transactions on Neural Networks, 14(2), 337–350.

Ozdemir, M., Embrechts, M.J., Arciniegas, F., Breneman, C.M., Lockwood, L. and Bennett, K.P. (2001) Feature
selection for in-silico drug design using genetic algorithms and neural networks. IEEE Mountain Workshop on
Soft Computing in Industrial Applications, Blacksburg, VA, pp. 53–57.

Palmes, P.P., Hayasaka, T. and Usui, S. (2005) Mutation-based genetic neural network, IEEE Transactions on Neural
Networks, 16(3), 587–600.

Parekh, R., Yang, J. and Honavar, V. (2000) Constructive neural-network learning algorithms for pattern classification,
IEEE Transactions on Neural Networks, 11, 436–450.

Prechelt, L. (1994) Proben 1 – A Set of Neural Network Benchmark Problems and Benchmarking Rules, Fakultaet
fuer Informatik, University of Karlsruhe, Germany, Technical Report 21/94.

Ramasubramanian, P. and Kannan, A. (2006) A genetic algorithm based neural network short-term forecasting
framework for database intrusion prediction system, Soft Computing, 10, 699–714.

Reed, R. (1993) Pruning algorithms – a survey, IEEE Transactions on Neural Networks, 4, 740–747.
Sanger, T.D. (1991) A tree-structured adaptive network for function approximation in high-dimensional spaces, IEEE

Transactions on Neural Networks, 2, 285–293.
Schaffer, J.D., Whiteley, D. and Eshelman, L.J. (1992) Combinations of genetic algorithms and neural networks:
a survey of the state of the art. International Workshop on Combinations of Genetic Algorithms and Neural
Networks, Baltimore, MD, pp. 1–37.

Siddique, N.H. and Tokhi, M.O. (2001) Training neural networks: backpropagation vs genetic algorithms. IEEE
International Joint Conference on Neural Networks, Washington, DC, pp. 2673–2678.

Siedlecki, W. and Sklansky, J. (1988) On automatic feature selection, International Journal of Pattern Recognition
and Artificial Intelligence, 2(2), 197–220.

Siedlecki, W. and Sklansky, J. (1989) A note on genetic algorithms for large-scale feature selection, Pattern Recog-
nition Letters, 10(5), 335–347.

Stork, D.G., Walker, S., Burns, M. and Jackson, B. (1990) Pre-adaptation in neural circuits. Proceedings of the
International Joint Conference on Neural Networks, Washington, DC, Vol. I, pp. 202–205.

Suzuki, K. and Kakazu, Y. (1991) An approach to the analysis of the basins of associative memory model using
genetic algorithms. In Fourth International Conference on Genetic Algorithms, R.K. Belew and L.B. Booker
(eds), Morgan Kaufmann, San Mateo, CA, pp. 539–546.

Taheri, M. and Mohebbi, A. (2008) Design of artificial neural networks using genetic algorithm to predict collection
efficiency in Venturi scrubbers, Journal of Hazardous Materials, 157(1), 122–129.

Teoh, E.-J., Tan, K.C. and Xiang, C. (2006) Estimating the number of hidden neurons in a feedforward network using
the singular value decomposition, IEEE Transactions on Neural Networks, 17(6), 1623–1629.

Thodberg, H.H. (1991) Improving generalization of neural networks through pruning, International Journal of Neural
Systems, 1(4), 317–326.

Tong, D.L. and Mintram, R. (2010) Genetic algorithm-neural network (GANN): a study of neural network activation
functions and depth of genetic algorithm search to feature selection, International Journal of Machine Learning
and Cybernetics, 1, 75–87.

Vafaie, H. and De Jong, K. (1993) Robust feature selection algorithms. Proceedings of the 1993 IEEE International
Conference on Tools with AI, Boston, MA, pp. 356–363.

Verma, B. and Zhang, P. (2007) A novel neural-genetic algorithm to find the most significant combination of features
in digital mammograms, Applied Soft Computing, 7(2), 612–625.

Vogt, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T. and Alkon, D.L. (1988) Accelerating the convergence of the
backpropagation method, Biological Cybernetics, 59, 257–263.

Vonk, E., Jain, L.C., Veelenturf, L.P.J. and Johnson, R.P. (1995) Automatic generation of neural network architecture
using evolutionary computation. Electronic Technology Direction to the Year 2000, IEEE Computer Society Press,
pp. 142–147.

Vonk, E., Jain, L.C. and Johnson, R.P. (1997) Automatic Creation of Neural Network Architecture using Evolutionary
Computation, World Scientific, Singapore.

West, B. (1988) The fractal structure of human lung. Proceedings of the Conference on Dynamic Patterns in Complex
Systems, S. Kelso (ed.), Lawrence Erlbaum, New York.

Whitley, D., Starkweather, T. and Bogart, C. (1990) Genetic algorithms and neural networks: optimizing connections
and connectivity, Parallel Computing, 14, 347–361.

Evolutionary Neural Networks 355

Yamada, T. and Yabuta, T. (1992) Neural network controller using auto-tuning method for nonlinear functions, IEEE
Transactions on Neural Networks, 3(4), 595–601.

Yang, J. and Honavar, V. (1998) Feature subset selection using a genetic algorithm, IEEE Intelligent Systems, 13(2),
44–49.

Yao, X. (1993a) A review of evolutionary artificial neural networks, International Journal of Intelligent Systems, 8(4),
539–567.

Yao, X. (1993b) Evolutionary artificial neural networks, International Journal of Neural Systems, 4(3), 203–222.
Yao, X. (1995) Evolutionary artificial neural networks. In Encyclopaedia of Computer Science and Technology, Vol.
33, A. Kent and J.G. Williams (eds), Marcel Dekker, New York, pp. 137–170.

Yao, X. (1999) Evolving artificial neural networks, Proceedings of the IEEE, 87(9), 1423–1447.
Yao, X. and Liu, Y. (1997) A new evolutionary system for evolving artificial neural networks, IEEE Transactions on

Neural Networks, 8(3), 694–713.
Yao, X. and Liu, Y. (1998) Making use of population information in evolutionary artificial neural networks, IEEE

Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 28(3), 417–425.
Zhao, Q. and Higuchi, T. (1996) Evolutionary learning of nearest-neighbour MLP, IEEE Transactions on Neural

Networks, 7(3), 762–767.
Zitar, R.A. and Hassoun, M.H. (1995) Neuro-controllers trained with rules extracted by genetic assisted reinforcement
learning system, IEEE Transactions on Neural Networks, 6, 859–878.

10
Neural Fuzzy Systems

10.1 Introduction

In general, there are two main but apparently separate methodological developments relevant
to computational intelligence: fuzzy logic systems and neural networks. Fuzzy logic systems
try to emulate human-like reasoning using linguistic expression, whereas neural networks try
to emulate the human brain-like learning and storing information on a purely experiential
basis. Both the methodologies have been successfully applied in many complex and industrial
processes though they experience a deficiency in knowledge acquisition.
The most important considerations in designing fuzzy systems are the construction of the

membership functions (MF) and constructing the rule-base and have been a tiring process.
The choice of MFs also plays a decisive role in the success of an application. But there is no
automated way of constructing the MFs. They are mainly done by trial and error, or by human
experts. As is well recognized, rule acquisition has been and continues to be regarded as a
bottleneck for implementation of any kind of rule-based system. In most existing applications,
fuzzy rules are generated by an expert in the area, especially for systems with only few inputs.
With an increasing number of inputs, outputs and linguistic variables, the possible number
of rules for the system increases exponentially, which makes it difficult for experts to define
a complete set of rules and associated MFs for reasonable system performance. In Chapter
8, the construction of MFs, generation of rule base and tuning of scaling parameters using
evolutionary algorithms were investigated. Evolutionary algorithms are the suitable choice
where no a priori information about the MFs and the rule base is available. There have been
many successful applications of evolutionary fuzzy systems reported in the literature, and
Chapter 8 presents an overview of these techniques and their applications. As is well known,
evolutionary algorithms are a slow process and the performance of an evolutionary algorithm
depends inherently on the size of the population and the number of generations required for a
solution to be robust for specific problems. Some designers may not like this. Then the problem
is, if there is no expert knowledge available for constructing the MFs and the rule base, they
must be constructed from environmental data, which may or may not be available. A second
issue in fuzzy systems is processing of the rule base consisting of R = n1 × n2 × · · · × nN

rules with ni , i = 1, 2, . . . , N , the number of MFs (primary fuzzy sets) for each of the N
inputs. The processing of such a huge rule base is time-consuming. Consequently, computing

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

358 Computational Intelligence

the outputs using known defuzzification procedures (such as the centre of gravity method)
also takes up significant time, which in some applications can degrade the system response
(Siddique, 2002). The problem of such defuzzification methods has been eliminated by the use
of Sugeno-type or Tsukamoto-type fuzzy systems, where each consequent MF is replaced by
a polynomial or monotone function with two to three parameters (even more for higher-order
nonlinear systems) (Tsukamoto, 1979; Takagi and Sugeno, 1985). This imposes a further set of
consequence parameters to be estimated. The objective at this stage of the development of fuzzy
systems is to facilitate the construction of MFs and the rule base, and minimize the processing
time for generating outputs by a simple rule-processing and defuzzification procedure. That
is, an automated way of designing and tuning fuzzy systems is deemed necessary. Therefore,
the main interest of this chapter lies in constructing, learning or training fuzzy MFs, rule base
and tuning parameters using a suitable neural network technology and required information
such as experiential data, partial numerical data, partial linguistic data and/or description.
In contrast, most successful applications of neural networks are used for pattern recognition,

signal processing, modelling and control of complex systems due to their flexible structures
and available learning algorithms. The learning procedure is not knowledge-based, rather data-
driven. If a set of experiential data is available, the neural system can be trained with sufficient
accuracy, which builds a mapping between inputs and outputs. The input/output mapping is
encoded into a layered neural structure which we call a neural network (NN). A variety of
NN architectures and learning algorithms are available, suitable for a variety of offline or
online applications. Different architectures and learning algorithms are discussed in detail in
Chapter 4. Different architectures and learning procedures require different experiential data.
For example, a supervised learning algorithm for a feedforward NN requires pairs of data
sets consisting of inputs and the desired outputs. Unsupervised training algorithms require
only input data. An NN generally requires a long training time depending on the architecture,
but recall involves only a single pass. NNs such as the probabilistic NN (PNN), radial-basis
function NN (RBFNN) and generalized regression NN (GRNN) (see Chapter 4 for details)
require less training time (generally they require a single pass), which is better suited for
online applications. New methodologies are to be found for the correct combinations of both
technologies for new applications.
There is no straightforward rule for the choice of network size. The number of neurons in

the input and output layer is determined by the problem and data samples. The hidden layers
and number of neurons in each layer mainly decide the size of the NN. Some NN architectures
have a predetermined number of layers, such as the Hopfield, ART-1, Kohonen SOM and
LVQ NN. Backpropagation NNs have three layers. In general, the exact size of the hidden
layer in a three-layer NN is not a critical parameter and the training time does not vary much
for similar-sized hidden layers. Increasing the size of the hidden layer sometimes provides
feature detectors. Too few neurons in the hidden layer fail to map features correctly or too
many neurons hinder the generalization. Nonlinearity of a system can be represented by a
higher number of hidden layers that also increases the processing powers of NNs. Large NNs
usually require a large training sample, longer training time and higher computation time.
It is of immense importance that the training sample should be representative of the entire
input/output space, otherwise the NN does not generalize well. NNs can work with incomplete
data sets, but missing data can cause a problem. Redundant data sets or useless data points
will cause unnecessary training time and computation costs. It is important how data are
represented or translated to an NN. It is very often useful to convert the observed or measured
data into another form to be meaningful to NNs. For example, temperature can be represented
by actual measured values or can be translated into linguistic terms such as ‘very cold’, ‘cold’,

Neural Fuzzy Systems 359

‘mild’, ‘warm’ and ‘hot’. NNs are very sensitive to magnitudes of values, for instance, when
the difference between the maximum and minimum value is too high. It is very often useful
and necessary to normalize or scale the continuous data into a suitable range when the natural
range of the data is different from the NN’s operating range or reference range.
Therefore, research efforts have been exerted to combine the features of both technologies.

Firstly, we need to analyse the features of fuzzy systems and neural networks to find out what
features allow them to be supportive of or collaborative with each other. It is clear from the
above discussion that there are features in both systems that can be combined towards a clever
system. Fuzzy systems and neural networks are both mathematical model-free systems and
contain their own advantages and pitfalls. The main objective of neural fuzzy systems would
be combining them into a system to maximize the desirable properties and reduce the disad-
vantages of both systems. However, subjective phenomena (such as perceptions and reasoning)
are often regarded beyond the domain of conventional neural network theory. Fuzzy systems
possess great power in representing linguistic and structured knowledge by fuzzy sets and
fuzzy reasoning for modelling uncertainties associated with human cognition, thinking and
perception. The limitation of a fuzzy system is that it usually relies on domain experts to acquire
knowledge. On the other hand, neural networks are powerful in representing nonlinear map-
pings into its structure. Knowledge is generally acquired by training using a set of experiential
data. Therefore, the integration of fuzzy systems and neural networks is believed to be capable
of modelling systems without much a priori information and associated with uncertainties
that can learn from experiential data. Paradigms based upon this integration are believed to
have considerable potential in control systems, adaptive systems and autonomous systems.
The advantages and comparative features of both technologies are highlighted in Table 10.1.

10.2 Combination of Neural and Fuzzy Systems

A neuro-fuzzy system finds the parameters of a fuzzy system by means of learning methods
obtained from neural networks. The most important reason for combining neural networks
with fuzzy systems is their learning capability. Such a combination should be able to learn
linguistic rules and/or membership functions or tune existing ones. Learning in this case means

• Creating a rule base,
• Adjusting MFs from scratch and
• Determining other system parameters.

Table 10.1 Comparison of neural and fuzzy systems

Neural networks (NN) Fuzzy systems (FS)

� No mathematical model required.
� Acquire knowledge usually from samples
and knowledge is encoded into the network
structure.

� Supervised and unsupervised learning
algorithms available.

� Rules cannot be extracted.
� Capable of learning from experiential data.

� No mathematical model required.
� Acquire knowledge from domain experts and
knowledge is represented by rule base.

� No learning algorithms available but simple
implementation possible.

� Rules must be available.
� Capable of working without much a priori
information.

360 Computational Intelligence

The combination can be a fuzzy-neural system to support a neural network. A fuzzy-neural
system is a neural network that uses a fuzzy approach to enhance learning capabilities and
improve performance. The term ‘fuzzy-neural system’ is not common in the literature. A
fuzzy-neural system controls inputs to the NN, different learning parameters and architectural
parameters of a neural network to minimize the training effort and computation cost (Hu and
Hertz, 1994; Ishibuchi et al., 1993, 1995). Controlling in this case means

• Controlling learning speed,
• Scaling input data and
• Adjusting other architectural parameters.

In general, three kinds of combination between neural networks and fuzzy systems are
distinguished in a survey of the literature:

• Cooperative neuro-fuzzy systems,
• Concurrent neuro-fuzzy systems and
• Hybrid neuro-fuzzy systems.

A cooperative system is considered as a pre-processor, wherein an NN learning mechanism
determines the FS membership functions or fuzzy rules from the training data and then the NN
recedes into the background, leaving the FS to work independently. In a concurrent system, the
NN and FS assist each other in determining the required parameters continuously. In a hybrid
system, the FS is represented in a special NN-like architecture so that a learning algorithm can
be applied to the fuzzy system. The three synergisms of NN and FS are discussed in detail in
the following sections.

10.3 Cooperative Neuro-Fuzzy Systems

The cooperative combination lies in the determination of certain parameters of a fuzzy system
(mentioned above) by a neural network and vice versa, where both the neural network and the
fuzzy systemwork independently of each other and provide necessary support. In the late 1980s
both the neural and fuzzy technologies were well established and research started in combining
the NN and FS to improve the overall system performance and design time of various system
designs and consumer products. There have been many consumer products available in the
market since the 1990s which use both NN and FS in a variety of cooperative combinations.
Although the two systems can be combined inmany possible ways, the following combinations
have found applications in different consumer products since the 1990s and are in widespread
use (Takagi, 1992, 1995, 1997):

• NN and FS as development tool,
• NN and FS as correcting mechanism,
• NN and FS in cascade combination.

The three categories will be discussed in two broad groups: cooperative FS-NN systems
and cooperative NN-FS systems. In FS-NN systems, the FS provides prerequisite information
for an NN to control (or solve) a plant (or problem). In NN-FS systems, the NN provides
prerequisite information or learns parameters, MFs or rules for an FS. Cooperation in both
directions at the same time may seem attractive, but computationally may not be an advantage
or a viable approach.

Neural Fuzzy Systems 361

Perceptions

as NN inputs

NN

Plant

L
in

g
u

is
ti

c

d
es

cr
ip

ti
o

n

1x

2x
FS

Figure 10.1 Cascade combination of cooperative FS-NN system

10.3.1 Cooperative FS-NN Systems

In this cooperation, a fuzzy system translates linguistic statements or descriptions into suitable
perceptions or estimates system parameters in the form of input data to be used by an NN.

10.3.1.1 Cascade Combination

The FS-NN combination has been implemented in many applications of consumer products
by Hitachi, Sanyo and Toshiba. A generic cascade combination of FS-NN is shown in Figure
10.1. Figure 10.2 shows a cascade combination of FS and NN where the FS estimates system
parameters required by the NN. The NN provides the control output for the plant using the
parameters supplied by the FS and sensor information. An example application is an electric
fan developed by Sanyo, which detects the location of its remote controller with three infrared
sensors {s1, s2, s3} and changes the direction of the fan to a user’s location. An FS estimates
the distance between the remote controller and the fan. The estimated distance and the ratio of
sensor information are used by the NN to determine the angle between the fan and the remote
controller assuming the user is in close proximity to the remote. A two-stage estimation has
been applied because the three infrared sensor values change on varying the distance of the
remote controller, even though the angle remains the same.

10.3.1.2 Developing Tool Type

In general, the learning rate of an NN using backpropagation or other techniques is fixed
during the training process. The convergence of such training algorithms can be accelerated
through learning rate adaptation. An FS can be used to dynamically adapt the learning rate
using the error information. Some researchers proposed heuristic rules for adaptation of
the learning parameters (Jacobs, 1988; Haykin, 1999). They suggested that every adjustable
network parameter of the cost function should have its own learning rate parameter to be

NNFS Electric fan

Ratio of
sensors

Strength of signal from remote

Distance Direction
θδs1, s2, s3

Figure 10.2 Cascade combination – FS collaborating with NN

362 Computational Intelligence

FS
In

pu
ts

NN
C

on
ve

rg
en

ce
in

fo
rm

at
io

n
Output

Learning rate

Target

+

–

e

Δe
e

η(t) Learning
algorithm

Figure 10.3 Fuzzy system to control the learning rate in an NN

varied from iteration to iteration. When the derivative of the cost function with respect to
weight has the same sign for consecutive iterations, the learning rate parameter should be
increased and it should be decreased when the sign alters for several consecutive iterations.
Halgamuge et al. (1994) reported a fast training approach by adapting the learning rate of an
NN training algorithm using an FS. A simple developing tool-type combination between FS
and NN is shown in Figure 10.3, where the FS provides the appropriate learning parameters
using the convergence information based on e and �e or other derivative information for the
NN to accelerate the training.

10.3.2 Cooperative NN-FS Systems

In NN-FS cooperation, an NN is used as supportive technology to determine or estimate
different parameters of an FS such as MFs, rule base, scaling factors and rule weighting
from available experiential or sensor data. It is also important to make sure that the available
data are sufficient for extracting the desired parameters and training of the NN. The process
of determination of the parameters can be offline or online during the operation of the FS.
Besides this cooperation, an NN can be used as a pre-processor or post-processor to an FS
where the structure of the FS is fixed and predetermined. The role of the NN here is to improve
the performance of the combined system. Additionally, there are other important issues to be
considered, such as whether the cooperation is for an existing FS to be modified or if the FS
has to be designed completely. There have been various techniques, learning algorithms and
heuristic approaches reported in the literature over the last two decades (Takagi and Hayashi,
1991; Yager, 1994; Yea et al., 1994; Takagi, 1995). Some useful and important techniques
using NNs will be discussed in the following sections.

10.3.2.1 NN as Correcting Mechanism

More sensor data are required to meet the increased demand of users for smoother control,
precision and sensitivity of household appliances. An increased number of inputs complicates
the fuzzy control design, which also demands computation time. To reduce the processing

Neural Fuzzy Systems 363

NN

Plant+

Large
sensor data Corrections

Control signal

+
FS

Figure 10.4 Correcting output mechanism

time by the fuzzy controller, fewer inputs are used by the FS and the larger number of sensor
inputs is dedicated to the NN. This saves substantial processing time for the FS. By using
the NN, the larger sensor data are handled and necessary corrections to the fuzzy system are
made. The model in Figure 10.4 shows the NN-FS combination to correct the output of an FS
using an NN to increase the precision. This kind of combination has been implemented by
many companies for consumer products – such as a washer/drier machine by Hitachi and a
microwave oven by Sanyo.

10.3.2.2 NN for Determining MFs (Developing Tool Type)

One of the features of a fuzzy system is that it separates the inference engine part from the
fuzziness of the linguistic terms used. The inference engine consists of if . . . then rules and
the fuzziness is represented by the linguistic terms defined using suitable MFs. Therefore,
it is easy to tackle knowledge which is expressed as rules using qualitative (or linguistic)
terms. But the construction of the MFs (the meaning of the terms) remained a difficult task
for the designer. Poor performance of an FS is mainly caused by improperly defined MFs. A
widely accepted approach is the trial-and-error method, which is mostly a time-consuming
method. Therefore, the problem of constructing MFs has been a central issue in FS design
with a number of subjective, statistical and neural approaches being proposed. If experiential
data are available for the system, the NN clustering approach can be used to extract parameter
values of the MFs. In general, an NN in an NN-FS cooperative system determines the number
of rules by clustering the data for designing the fuzzy system. Using this clustered data, a
neural network decides on a multi-dimensional, nonlinear MF, and this network is then used
as a generator of the MF. One-dimensional MFs can be constructed based on the parameters,
such as cluster centres and distance metric from multi-dimensional data clusters. One useful
contribution of this approach is to introduce neural networks into the design process of fuzzy
systems. Secondly, the MFs are designed completely at one stroke, rather than separately
along each input axis. In this cooperative combination, an NN provides the MFs’ parameters.
Such a cooperative combination is shown in Figure 10.5. Adeli and Hung (1995) proposed an
algorithm to determine MFs using a topology-and-weight-change classification with a two-
layer NN. The number of input nodes equals the number of patterns (M) in each training
instance and the number of output nodes equals the number of clusters.

364 Computational Intelligence

FS

y

MFs

NN

. .
 .

D
at

a

C1

Cn

A1

if x1 = A1 & x2 = B1 ⇒ y = C1

if x1 = An & x2 = Bn ⇒ y = Cm

An

Figure 10.5 NN learning MFs’ parameters from available data

The algorithm starts with an NN(M,1) network with M inputs and 1 output. As the training
goes on with training instances, the algorithm adds output for a new cluster when the Euclidean
distance (also called the degree of difference) between an instance X and a cluster C is greater
than a predefined threshold. That is, the new instance is classified as a new cluster. Thus, it
creates an NN(M,P) network with P outputs (or clusters) from N instances. The prototype
for each cluster CP is defined as the mean of all instances (nP equals number of instances)
belonging to cluster p, i.e., CP = 1/n p

∑n P
i=1 X P

i . The degree of membership of each instance
in the cluster p is based on the similarity measure between X P

i and CP , which is defined
as a weighted norm of the similarity function Dw(X P

i , CP) = ‖wP (X P
i , CP)‖w. The weight

parameters wP and w are chosen arbitrarily depending on the application. A fuzzy MF can
be defined for the ith instance belonging to the pth cluster as μP (X P

i) = f [Dw(X P
i , CP)]. A

triangular MF would be defined as

μP
(
X P

i

) =

⎧⎪⎨
⎪⎩

0 if Dw
(
X P

i , CP
)

> σ

1− Dw
(
X P

i , CP
)

σ
if Dw

(
X P

i , CP
) ≤ σ

(10.1)

Here, σ is the crossover value for overlapping MFs.
Though an FS can be constructed using expert knowledge and MFs defined in a qualitative

manner, the precise definition of the parameters of the MFs from data clustering is not always
possible as the data distribution may not be representative of the entire input space. As a
first attempt, an NN is employed to acquire knowledge from the set of experiential data. A
multi-dimensional function is then decomposed into single-dimensional functions. The error
between the designed FS and the actual data depends on the parameters of the one-dimensional
MFs. These MFs are tuned to minimize error in a manner similar to backpropagation learning.
The model in Figure 10.6 uses an NN to optimize the parameters of the FS (i.e., the parameters
of the MFs) by minimizing the error between the specification and the output of the FS. This
type of combination is widely used in many applications and consumer products, such as
washing machines, vacuum cleaners, rice cookers, dishwashers and photocopiers developed
by Japanese companies.

Neural Fuzzy Systems 365

FS

y

MFs

NN

Rule-base

1θ

2θ

nθ

yd

- +

Figure 10.6 Developing tool-type combination of NN-FS

10.3.2.3 NN for Fuzzy Rules Learning

A neural network determines fuzzy rules from training data. A clustering approach is usually
used by implementing self-organizing feature maps. SOMs are trained offline and then applied
to the fuzzy system. TheMFs of the fuzzy system are predetermined. Such a cooperative neuro-
fuzzy system is shown in Figure 10.7. Pedrycz and Card (1992) used SOM to extract fuzzy
rules from the data. Another way to create a fuzzy rule base is to use fuzzy associative memory
(FAM), as proposed by Kosko (1992), where fuzzy rules are interpreted as an association
between antecedent and consequents. If fuzzy sets are seen as points in the unit hypercube and
rules are associations, then it is possible to use neural associative memory to represent fuzzy
rules. A neural associative memory is also called a bidirectional associative memory (BAM),
because creating its connection matrix corresponds to the Hebbian learning rule (Kosko,
1992). Kosko (1992) suggests a form of adaptive vector quantization (AVQ) to learn FAM
from available data. AVQ is also known as learning vector quantization (LVQ). AVQ or LVQ
learning is similar to SOM and realized using competitive learning. A detailed discussion on
competitive learning is presented in Section 4.5.2.2 of Chapter 4.
If a fuzzy system usesmultiple input andmultiple output variables, it is difficult for an expert

to formulate the fuzzy if . . . then rules. In that case it is desirable to extract the rules from

FS
y

AVQ NN

R
ul

e
ba

se

Data

. .
.

if x1 = A1 & x2 = B1 ⇒ y = C1

if x1 = An & x2 = Bn ⇒ y = Cm

x1

x2

Figure 10.7 NN learning rules for FS

366 Computational Intelligence

NNR

NN2

NN1

x1

y1

y2 y∗

w2
w1

x2

xn
yR

wr

∏

∏

∏

Σ

NN for
antecedent MFs

C
on

se
qu

en
t N

N

…

…

NNMF

Figure 10.8 A block diagram of the Takagi–Hayashi method

available data from the physical systems to be modelled. Takagi and Hayashi (1991) proposed
a neural network-driven fuzzy reasoning for a Sugeno-type fuzzy system of the form

If x1 is A1 and x2 is A2, . . . , xn is An Then y = f (x1, x2, . . . , xn)

The Takagi–Hayshi method consists of three steps:

(i) Partition the input space into number of rules. This is done through clustering the available
data.

(ii) Determine the MFs by identifying the given rule’s antecedent values. This is done by
employing an NN to derive the MF for each rule.

(iii) Determine the consequent value by identifying the consequent function. In the Takagi–
Hayashi method, each rule’s consequent function is replaced with an NN and the NN is
trained with supervised learning, i.e., the rule would look like

If (x1, x2, . . . , xn) is As Then ys = NNs(x1, x2, . . . , xn)

Here, x = (x1, x2, . . . , xn) is the input vector, As is the antecedent MFs and
NNs(x1, x2, . . . , xn) is the consequent NN of the sth rule that generates the output. A generic
block diagram of the Takagi–Hayashi method is given in Figure 10.8. The neural network
NNMF generates the MFs for the rule antecedent and neural networks NN1, . . . ,NNr gener-
ate the consequent function values. The final output y∗ is the sum of all weighted outputs

Neural Fuzzy Systems 367

Features { }21 , xx

y

1 1 2 1 1

1 2

if &

if &n n m

x A x B y C

x A x B y C

= = =

= = =

1x

2x

NN

Measurements

1 2, ,...,
… ⇒

⇒

km m m

FS

Figure 10.9 Extracting features as inputs to a fuzzy system

ys , defined as y∗ =∑R
s=1 ws ys . Further details of the procedure can be found in Takagi and

Hayashi (1991) and Tsoukalas and Uhrig (1997).

10.3.2.4 NN for Feature Selection

In many real-world systems, data obtained by measurements may have noisy, redundant
and useless information that cannot be used effectively by the FS. The measurements are
fed into an NN to extract useful information and provide the numerical values as inputs
to the FS. Figure 10.9 shows a cooperative NN-FS system where the measurement space
{m1, m2, . . . , mk} is mapped to the feature space {x1, x2} as inputs to the FS.

10.3.2.5 Cascade Combination

A similar configuration to that in Figure 10.9 can be thought of, where the NN does the pre-
estimation of input parameters for the FS and the FS controls the system parameters. Toshiba
applied such a combination for a range of toasters, as shown in Figure 10.10. The NN estimates
the initial temperature and the number of pieces of bread from sensor information. Using this
information and other sensor inputs, the FS determines the optimum time and energy required
for the toasting process.

Sensor information from toaster

FS NN Toaster

Initial temperature
& no. pieces Time & energy

s T0, n t, E

Figure 10.10 Cascade combination – NN collaborating with FS

368 Computational Intelligence

Output y

1 1 2 1 1 1

1 2

if & ()

if & ()n n m m

x A x B y C w

x A x B y C w

= = =

= = =

FS

iw
NN

Measurements
Rule weights

…

⇒

⇒

1 2, , ,... km m m

Figure 10.11 Learning fuzzy rule weights cooperatively from an NN

10.3.2.6 NN for Parameter Determination

A neural network determines parameters (scaling parameters) online (i.e., during use of the
fuzzy system) to adapt the membership functions and it can also learn the weights of the rules
online or offline. Figure 10.11 shows the cooperative combination of NN and FS where the
NN determines the rule weights {w1, w2, . . . , wm} of the FS. The NN can be trained offline
using the error function derived from the difference between the desired output and the output
y of the FS.
After designing an FS, it is sometimes necessary to adapt the MFs. Adapting the MFs can

be done using the data distribution as shown in Figure 10.5. The other possibility for adapting
the MFs is tuning or learning the scaling parameters of the FS. In many cases, tuning the
scaling factors or adjusting the membership functions can lead to the same result. Adjustment
of membership functions requires learning of several parameters, and hence scaling factor
tuning is a much simpler task than adjusting the MF parameters (Chen and Linkens, 1998).
Figure 10.12 shows the cooperative combination of NN-FS where the NN determines the

scaling factors for the MFs. The NN can be trained offline using the error function derived
from the difference between the desired output and the output y of the FS.

Output y

1 1 2 1 1

1 2

if &

if &n n m

x A x B y C

x A x B y C

= = =

= = =

FS
ik

NNMeasurements

… ⇒

⇒

1 2, , ,... km m m

Figure 10.12 Learning scaling parameters from an NN

Neural Fuzzy Systems 369

FS

NN

Air conditioner

Sensor data PVM

Figure 10.13 FS and NN working concurrently on the same plant

10.4 Concurrent Neuro-Fuzzy Systems

Fuzzy systems and neural networks can work in parallel for a plant without mutual cooperation
among themselves. For example, some Japanese air conditioners use an FS to prevent a
compressor from freezing in the winter and use an NN to estimate index parameters of comfort,
known as predictive mean vote (PMV). PMV can be defined as a function of room temperature,
mean radiant temperature, relative air velocity, humidity, thermal resistance of users’ clothing,
metabolic rate. Some of the PMV parameters cannot be measured using sensors, e.g., thermal
resistance of clothing and metabolic rate.
An NN can be used to estimate the PMV index from a set of measured variables such as

room temperature, time differential of room temperature, outdoor air temperature, air flow,
setting temperature and direction of air flow (Saito et al., 1990). Sensor data and PVM are
used as the inputs and outputs of the NN and are defined as sextuples:

PVM= {room temperature,mean radiant temperature, relative air velocity, humid-
ity, thermal resistance of users’ clothing, metabolic rate}
Sensor data= {room temperature, time differential of room temperature, outdoor
air temperature, air flow, setting temperature, direction of air flow}

The NN performs a nonlinear mapping from the measured sensor values onto the PMV
index. The technique has been used by Matsushita Electric Company in their air-conditioning
products as shown in Figure 10.13.

10.5 Hybrid Neuro-Fuzzy Systems

In any fuzzy system, inferencing using the rule base and defuzzification using differentmethods
such as centre of gravity are the most time-consuming part. The idea of a hybrid approach
is to interpret a fuzzy system in terms of a neural network. The strategy adopted here with
a neuro-fuzzy system is, firstly, to replace the rule base with a neural network so that the
inference processing is simplified and secondly, to find the parameters of a fuzzy system by
means of learning methods obtained from neural networks. A common way to apply a learning
algorithm to a fuzzy system is to represent it in a special neural-network-like architecture so
that a learning algorithm, such as backpropagation, can be used to train the system. In the
first kind of neuro-fuzzy system, there can be three types of fuzzy neural network where
only the rule base is replaced and the input and output MFs are kept the same. Different
pre-defuzzification methods are applied to minimize processing time. No learning algorithms

370 Computational Intelligence

are used to tune the MFs or parameters of the system. These are the three basic types of fuzzy
system. Heuristic or trial-and-error methods are applied for tuning and adjusting parameters:

• Fuzzy neural networks with Mamdani-type fuzzy inference system,
• Fuzzy neural networks with Takagi–Sugeno–Kang-type fuzzy inference system,
• Fuzzy neural networks with Tsukamoto-type fuzzy inference system.

In the second kind of neuro-fuzzy system, learning algorithms such as backpropagation or
hybrid training are applied to tune or adjust the parameters of the system. There are different
types of neuro-fuzzy system reported in the literature of the 1990s. Some of these will be
discussed in detail in the following sections:

• Fuzzy adaptive learning control network (FALCON),
• Approximate reasoning-based intelligent control (ARIC),
• Generalized approximate reasoning-based intelligent control (GARIC),
• Fuzzy basis function networks (FBFN),
• Fuzzy net (FUN),
• Adaptive neuro-fuzzy inferencing systems (ANFIS),
• Fuzzy inference and neural network in fuzzy inference software (FINEST),
• Neuro-fuzzy controller (NEFCON),
• MANFIS, CANFIS,
• Self-constructing neural fuzzy inference network (SONFIN),
• Fuzzy neural network (NFN).

10.5.1 Fuzzy Neural Networks with Mamdani-Type Fuzzy Inference System

The fuzzy-neural network discussed in this section is a Mamdani-type fuzzy system where
the rule base is replaced with a neural network. A detailed description of Mamdani-type fuzzy
inference system is provided in Chapter 3. For simplicity, a simple two-input single-output
system is shown in Figure 10.14. The fuzzy-neural network shown in Figure 10.14 consists of
five layers, described as follows.

Layer 1: The nodes in this layer represent fuzzy MFs {A j , B j } where x1 and
x2 are two inputs. These nodes calculate the membership grade of the inputs by
fuzzification operation:

μAj(x1), μBj(x2) (10.2)

where j = 1, 2. There are two MFs for each input.

Layer 2: Every node in this layer represents a rule of the fuzzy system. There are
four rules, labelled r1, r2, r3, r4. Each node determines the firing strength of a rule,
defined as

wi = �
{
μA j (x1), μB j (x2)

}
, i = 1, 2, 3, 4; j = 1, 2 (10.3)

The function � (.) represents the inferencing operation using the product rule
or min rule. For example, Equation (10.4) defines the firing strength using the
product rule:

wi = μA j (x1)
∗ μB j (x2), i = 1, 2, 3, 4; j = 1, 2 (10.4)

Neural Fuzzy Systems 371

x1

x2

B1

B2 r4

c4
*

c3
*

c2
*

c1
*

wici
*wi

r3

r2

C2

C3

C4

C1

r1

A2

A1

Y

μii

Σ

Figure 10.14 Hybrid Mamdani-type fuzzy-neural system

A normalization of the weights can be carried out which will provide the relative
firing strength of the individual rules. The normalization is calculated according
to Equation (10.5). The normalized weights are not used here in the above
architecture.

w̄i = wi

4∑
i=1

wi

, i = 1, 2, . . . , 4 (10.5)

Layer 3: Every node in this layer represents the fuzzy MF Ck , k = 1, 2, 3, 4 for
the output. The output MFs are pre-defuzzified and the defuzzification operation
is denoted

c∗
i = �(Ck) (10.6)

�(.) is a defuzzification operation applied on the MFs Ck , i.e., c∗
i , i = 1, 2, . . . , 4

are the defuzzified values of the consequent MFs of each rule. Different types of
defuzzification operation, discussed in Chapter 2, can be applied here.

Layer 4: The single node in this layer produces the final output by aggregating all
the fired rule values, defined as

Y =
∑

i

wi .c
∗
i , i = 1, 2, . . . , 4 (10.7)

As mentioned earlier, in a Mamdani-type fuzzy-neural system the rule base is
replaced with a neural-network-like structure to simplify the inferencing mecha-
nism. Therefore, the layer performing the normalization of the firing strength can
be omitted without any significant performance degradation of the system.

372 Computational Intelligence

10.5.2 Fuzzy Neural Networks with Takagi–Sugeno-type Fuzzy
Inference System

The fuzzy-neural network discussed in this section is a Sugeno-type system (also known as
Takagi-Sugeno-Kang-type fuzzy system). Current fuzzy-neural systems are mainly Sugeno-
type fuzzy systemswith the rule base replaced by a neural network and outputMFs described by
linear functions rather than fuzzy MFs. A detailed description of Sugeno-type fuzzy inference
system is provided in Chapter 3. For simplicity, a simple two-input single-output system is
shown in Figure 10.15. The fuzzy-neural network shown in Figure 10.15 consists of four
layers, described as follows.

Layer 1: Every node i in this layer is a node with fuzzy membership functions
where x1 and x2 are two inputs. These nodes calculate the membership grade of
the inputs:

μAj(x1), μBj(x2) (10.8)

where j = 1, 2.

Layer 2: Every node in this layer is a fixed node representing the rules labelled
r1, . . . , r4. Each node determines the firing strength of a rule:

wi = �
{
μA j (x1), μB j (x2)

}
, i = 1, 2, 3, 4; j = 1, 2 (10.9)

The function�(.) represents the inferencing operation using the product rule ormin
rule. For example,� (.) is amin operation:min{μA j (x1), μB j (x2)}. A normalization
of the weights can be carried out which will provide the relative firing strength of

iw

x1 x2

ii fw
r1

r2

r3

r4

x1

x2

Y

A1

A2

B1

B2

Σ

f1

f2

f4

f3

μi

Figure 10.15 Hybrid Sugeno-type fuzzy-neural system

Neural Fuzzy Systems 373

the individual rules. The normalization can be calculated according to Equation
(10.5).

Layer 3: Every node in this layer is an output node representing a linear function,
defined by

fi = ai .x1 + bi .x2 + ci , i = 1, 2, . . . , 4 (10.10)

where ai, bi and ci, i = 1, 2, . . . , 4 are the parameters of the consequent part of
the rule. Each node calculates the weighted value of the consequent part of each
rule as

wi . fi = wi (ai x1 + bi x2 + ci), i = 1, 2, . . . , 4 (10.11)

The normalized weights are not used in the architecture in Figure 10.15.
The parameters ai , bi and ci are to be estimated using any heuristic or trial-and-
error method. If the parameters ai = 0 and bi = 0, then fi = ci is a constant
value. Some researchers call it a zero-order Takagi–Sugeno-type system. ci can
be chosen arbitrarily or by trial and error. If ci is chosen as c∗

i from the pre-
defuzzified value of the output MFs of Mamdani-type, as shown in Figure 10.14,
then the Takagi–Sugeno-type system is equivalent to a Mamdani-type system.

Layer 4: The single node in this layer produces the output by aggregating all the
fired rule values:

Y =
∑

i

wi . fi , i = 1, 2, . . . , 4 (10.12)

If it is a zero-order Takagi–Sugeno-type system, the output is defined as

Y =
∑

i

wi .ci , i = 1, 2, . . . , 4 (10.13)

If ci is chosen as c∗
i , then the output is defined as

Y =
∑

i

wi .c
∗
i , i = 1, 2, . . . , 4 (10.14)

Thus, a fuzzy-neural system has been created that is functionally equivalent to a Takagi-
Sugeno-type fuzzy model. For a Mamdani-type inference system with max/min composition,
a corresponding fuzzy-neural system can be constructed if discrete approximations are used
to replace the integrals in a centroid (or other type) defuzzification scheme.

10.5.3 Fuzzy Neural Networks with Tsukamoto-Type Fuzzy
Inference System

Tsukamoto-type fuzzy-neural systems are mainly Tsukamoto-type fuzzy systems with the rule
base replaced by a feedforward neural network and output MFs described by monotonic MFs.

374 Computational Intelligence

iw

iiw z

r1

r2

r3

r4

x1

x2

Y

A1

A2

B1

B2

Σ

C1

C2

C3

C4

μi

Figure 10.16 Hybrid Tsukamoto-type fuzzy-neural system

A detailed description of Tsukamoto-type fuzzy inference system is provided in Chapter 3. A
Tsukamoto-type fuzzy-neural systemwith two inputs and one output is shown in Figure 10.16.
The layers are described as follows.

Layer 1: Every node i in this layer is a node with fuzzy membership functions
where x1 and x2 are two inputs. These nodes calculate the membership grade of
the inputs:

μAj(x1), μBj(x2) (10.15)

where j = 1, 2.

Layer 2: Every node in this layer is a fixed node representing the number of rules,
labelled r1, . . . , r4. Each node determines the firing strength of a rule as

wi = �
{
μA j (x1), μB j (x2)

}
, i = 1, 2, 3, 4; j = 1, 2 (10.16)

The function � (.) represents the inferencing operation using the product rule or
min rule. For example, � (.) defines a product rule as {μA j (x1)

∗ μB j (x2)}.
Layer 3: Every node in this layer represents a monotone functionCk , k = 1, 2, 3, 4
for the output MFs. The output MFs’ defuzzification operation is denoted as

zi = �(Ck) i = 1, 2, . . . , 4 (10.17)

�(.) is a defuzzification operation applied to the MFs Ck , i.e., zi , i = 1, 2, . . . , 4
are the defuzzified values of the consequent MFs of each rule. The defuzzification
operation on a monotone function is discussed in Chapter 2.

Neural Fuzzy Systems 375

1

–15 –5 5

M

μ μ μ

H

error

15

1

–5 0 5

HM

ch-error

10

1

0 2

L M

torque

4 6 8

H

Figure 10.17 Membership functions for error, change of error and torque

Layer 4: The single node in this layer produces the output by aggregating all the
fired rule values:

Y =
∑

i

wi .zi , i = 1, 2, . . . , 4 (10.18)

It is to be noted that the three models (Mamdani-type, Takagi–Sugeno-type and Tsukamoto-
type) discussed above do not use any learning algorithms, rather they depend on heuristic or
trial-and-error methods for the input and output MFs and other parameters. The fuzzy-neural
system developed in this section is functionally equivalent to a Tsukamoto-type fuzzy model.
For a Mamdani-type inference system with max/min composition, a corresponding system
can be constructed if discrete approximations are used to replace the integrals in a centroid (or
other type) defuzzification scheme.

Example 10.1 Construction of a zero-order Takagi–Sugeno-type fuzzy-neural system from
the description of a Mamdani-type fuzzy system.

A Mamdani-type fuzzy system is described by two inputs, error and change of error, and a
single output torque. There are two MFs for each input and three MFs for the output as shown
in Figure 10.17. The rule base is shown in Table 10.2.
A zero-order Takagi–Sugeno-type fuzzy-neural system is to be developed from the above

description of the Mamdani-type fuzzy system.

Table 10.2 Rule base for Mamdani-type fuzzy system

Change of error

Error M H

M r1: M r2: M
H r3: H r4: L

376 Computational Intelligence

iw
iw

*
ki zw

N

N

N

N

r1

r2

r3

r4

error

Ch error

Y

M

H

M

H

μi

ΣM

H

L

Figure 10.18 Mamdani-type FS converted into fuzzy-neural system

The fuzzy-neural system with two inputs and one output is shown in Figure 10.18. The
description of the layers is as follows.

Layer 1: Every node i in this layer is a fixed node with triangular membership
functions where x1 and x2 are error and change of error. These nodes calculate the
membership grade of the inputs by fuzzification:

μAj(x1), μBj(x2) (10.19)

where j = 1, 2.

Layer 2: Every node in this layer is a fixed node representing four rules, labelled
r1, . . . , r4. Each node determines the firing strength of a rule. � [·] defines the
product or minimum operation of

{
μA j (x1), μB j (x2)

}
:

wi = �
[
μA j (x1), μB j (x2)

]
, i = 1, 2, 3, 4; j = 1, 2 (10.20)

Layer 3: Every node in this layer is a fixed node labelled N. Each node calculates
the normalized firing strength:

w̄i = wi

4∑
i=1

wi

, i = 1, 2, . . . , 4 (10.21)

Layer 4: Every node in this layer contains a pre-defuzzified constant value of the
consequent MFs defined by

zk = � (MFk) , k = 1, 2, 3 (10.22)

Neural Fuzzy Systems 377

where � (MFk) is the chosen defuzzification operation on MFs and zk is the
defuzzified values of MFs in the consequent part of the Mamdani-type fuzzy
system. Each node calculates the weighted value of the consequent part of each
rule as

w̄i .zk, (10.23)

Layer 5: The single node in this layer produces the output by aggregating all the
fired rule values:

Y =
∑

w̄i .zk, (10.24)

10.5.4 Neural Network-Based Fuzzy System (Pi–Sigma Network)

The fuzzy-neural systems described in Sections 10.4.1–10.4.3 usually replace the rule base
with a neural network and apply a product or minimum rule for inferencing. The Takagi–
Sugeno fuzzy system seems to be more flexible than the Mamdani-type fuzzy system. Nev-
ertheless, there are still two shortcomings. Firstly, identification of the fuzzy system is not
trivial, which makes it difficult to apply to real-time systems. Secondly, not only are the
MFs limited to piecewise linear functions, but the consequent part is also assumed to be
linear. This problem remains unresolved until neural networks are combined with fuzzy
systems to incorporate suitable learning ability and nonlinear mapping capacity. Jin et al.
(1995) proposed a hybrid neuro-fuzzy system where the rule firing strength is computed
from the antecedent part of the Takagi–Sugeno fuzzy systems in the one part and the out-
put of the consequent part is estimated from a pi–sigma neural network in the other part.
In this architecture, a fuzzy neuron is used which performs some fundamental fuzzy opera-
tions (such as minimum and maximum operations). The fuzzy-neural architecture is shown
in Figure 10.19. The architecture of the fuzzy-pi–sigma neural network is an extension of the
Takagi–Sugeno fuzzy model (bottom) where a layered neural network model (upper) is used to
estimate the consequent outputs and the two models are combined using a set of product nodes
(pi-nodes).
The FS part of the model (lower part of Figure 10.19) represents the antecedent part of the

Takagi–Sugeno fuzzy system and computes the rule firing strength wi as follows.

Layer 1: Every node in this layer is a node with fuzzy linguistic term (MF)
Ak(x j), where k = 1, 2, . . . , m and x j , j = 1, 2, . . . , n are the inputs. These nodes
calculate the membership grade of the inputs μAk (x j).

Layer 2: Every node in this layer represents a rule node and each node determines
the firing strength of a rule as

wi = �
(
μAk (x1), . . . , μAk (xn)

)
, where i = 1, 2, . . . , N (10.25)

�(.) represents a fuzzy neuron that performs a minimum or product operation. N
is the number of rules of the fuzzy system.

378 Computational Intelligence

ljw

iw

if

x1

xn

Y

Ak

A1

Ak

Σ

Σ

Σ

Σ

Λ

Λ

Λ

Λ

μA1

Π

Π

Π

Π

Σ

iw

1

0iw

(x1)

μAk
(xn)

μAm
(x1)

1

ii fw *
ilwNN

FS

1=i

Ni =

1=i

Ni =

Ni =

1=i

1=l

Ml =

1=j

j = n

A1

Σ

Figure 10.19 Hybrid fuzzy pi–sigma neural network

The NN part of the model represents the consequent part of the Takagi–Sugeno system and
computes the output fi as follows.

Layer 1: Every node in this layer is a neuron with nonlinear activation function.
The outputs of this layer is calculated as

ol = g

⎛
⎝ n∑

j=1
wljx j

⎞
⎠where j = 1, 2, . . . , n, l = 1, 2, . . . , M (10.26)

where wlj are the connection weights between the inputs and the first layer and
g (.) is a sigmoidal-type nonlinear function.

Layer 2: Every node in this layer is a linear summation neuron (sigma-neuron).
The outputs of this layer are calculated as

fi = wi0 +
N∑

l=1
wilol = wi0 +

N∑
l=1

⎧⎨
⎩wilg

⎛
⎝ n∑

j=1
wljx j

⎞
⎠
⎫⎬
⎭where i = 1, 2, . . . , N

(10.27)
where wil are the connection weights between the first and second layer and wi0

are the biases to the second-layer neurons.

Neural Fuzzy Systems 379

Layer 3: This is a common layer for both parts of the fuzzy neural system. Each
node in this layer is a pi-neuron (�) and calculates the product of wi and fi , i.e.,
(wi · fi).

Layer 4: This is also a common layer for both parts of the fuzzy neural system and
calculates the sum of the products multiplied by the term 1∑N

i=1 wi
to yield the final

output of the system Y as follows:

Y =

N∑
i=1

wi fi

N∑
i=1

wi

=
N∑

i=1
w̄i fi (10.28)

This hybrid fuzzy-neural network is equivalent to a Takagi–Sugeno-type fuzzy system where
the linear consequent functions have been extended to nonlinear functions and the parameters
are estimated by the neural network shown in the upper part of the diagram in Figure 10.19.
To adjust the consequence parameters and the parameters of the MF, the error backpropa-

gation algorithm should be extended as the gradient method requires differentiable functions.
Therefore, the minimum operator will need to be transformed. Suppose the desired output of
the pi–sigma network is Yd . The error function is defined as follows:

E = 1

2
(Y − Yd)

2 (10.29)

According to the principle of error backpropagation, the generalized error of the final output
node� is (Yd − Y) /�wi . Since the consequence fi and the overall truth value of the premises
wi of the ith implication are multiplied in the multiplication node �, the error cannot be
backpropagated directly. However, consideringwi as the ‘weight’ connecting the consequence
node � and the final output node �, the product node can be ‘eliminated’. In this way, the
generalized error of the ith consequence node � is obtained approximately as

δ1i = (Yd − Y)wi

/ N∑
i=1

wi (10.30)

Similarly, the generalized error of each fuzzy node is calculated as

δ2i = (Yd − Y) fi

/ N∑
i=1

wi (10.31)

Therefore, the consequence parameters are adjusted according to the following formulae:

�wi0 = ηδ1i (10.32)

�wlj = ηx j

N∑
l=1

⎧⎨
⎩wilg

⎛
⎝ n∑

j=1
wljx j

⎞
⎠
⎫⎬
⎭δ1i (10.33)

�wil = ηx j g

⎛
⎝ n∑

j=1
wljx j

⎞
⎠ δ1i (10.34)

380 Computational Intelligence

Here, η is a positive learning rate and the other parameters are defined as before. The MF used
in the fuzzy part (lower) is a Gaussian MF defined by

μAk (x j) = exp

⎡
⎢⎣−

(
x j − m j

k

)2
σ

j
k

⎤
⎥⎦ (10.35)

where m j
k is the centre and σ

j
k is the width of the membership function Ak(x j), respectively.

The MF parameters can be adjusted according to the following rules:

�m j
k =

⎧⎨
⎩
2η
(

x j − m j
k

)
wiδ

2
i

/
σ

j
k if Ak(x j) minimum

0 else
(10.36)

�σ
j

k =
⎧⎨
⎩η

(
x j − m j

k

)2
wiδ

2
i

/
σ

j
k if Ak(x j) minimum

0 else
(10.37)

Here, η is a positive learning rate and the other parameters are defined as before. A detailed
derivation of the different update rules and terms can be found in Jin and Jiang (1999).

10.5.5 Fuzzy-Neural System Architecture with Ellipsoid Input Space

Traditional partitioning of the input space leads to exponential growth of fuzzy rules with
increasing number of inputs. In order to control the exponential growth of the rules, Aoyama
and Venkatasubramanian (1995) proposed a combination of grid partitioning and ellip-
soidal partitioning. Grid partitioning is used for input dimensions where a priori knowl-
edge is available and ellipsoidal partitioning is used for other input dimensions (Aoyama
et al., 1995). The fuzzy-neural network consists of four layers. The input dimensions are
divided into two groups: a fuzzy grid partition denoted as g-dimensions and a fuzzy ellip-
soid partition denoted as e-dimensions. Figure 10.20 shows the FS-NN architecture with
ellipsoid inputs.

Layer 1: Nodes in this layer are g-nodes and e-nodes and linear transfer nodes
responsible for inputs X g and Xe

i , i = 1, . . . , n from the g-dimensions and e-
dimensions, respectively. The number of nodes is equal to the number of input
dimensions. They transfer the inputs to the fuzzification layer:

xg = f
(
X g
)

(10.38)

xe
i = f

(
Xe

i

)
, i = 1, 2, . . . , n (10.39)

Layer 2: This is the fuzzification layer consisting of bell-shaped MFs. Each node
represents the antecedent part of the rule of the FS. The fuzzified outputs are

Neural Fuzzy Systems 381

kjw

e-nodes

e-dimension

eX1 Π

Π

Π

Π

Π

)(e
k

e
k x

(g
j xg)μ

μ

Σ

Σ

Σ

eX 2

e
nX

g
X g-nodes

Fuzzification

Inferencing

Defuzzification

1Y

2Y

mY

g-dimension

…

…

…

…

…

Figure 10.20 FS-NN architecture with ellipsoid input space

defined as

μ
g
j = exp

⎛
⎜⎝−

(
mg

j − xg
)2

σ
g
j

⎞
⎟⎠ , j = 1, 2, . . . , G (10.40)

μe
k =

n∏
i=1
exp

(
−
(
me

ki − xe
i

)2
σ e

ki

)
, k = 1, 2, . . . , E (10.41)

wheremg
j andme

ki are the centres, σ
g
j and σ e

ki are the variances of the g-dimensions
and e-dimensions, respectively.

Layer 3: This is the fuzzy inference layer where each node corresponds to a
rule. The nodes compute the rule firing strength wk j defined as the product of μ

g
j

and μe
k :

wk j = μe
k × μ

g
j (10.42)

382 Computational Intelligence

Layer 4: This is the defuzzification layer and computes outputs. The number of
nodes in this layer is equal to the output dimension. The output is defined as
follows:

Yl =

E∑
k=1

G∑
j=1

mk jwk j

E∑
k=1

G∑
j=1

wk j

(10.43)

where G and E are the number of g-nodes and e-nodes in the fuzzification layer
with l = 1, 2, . . . , m and mk j are the centres of the MFs.

If the parameters of fuzzification operations and interference rules are determined by meth-
ods such as fuzzy clustering, the consequent parameters can be estimated by least- squares
calculations. However, a gradient descent-based method like the backpropagation algorithm is
normally applied to adaptive fuzzy systems where the goal is to minimize the error function

E = 1

2
(Y − Yd)

2 (10.44)

where Yd is the desired output and Y is the actual output.
Each training data set is propagated through the network starting from the input nodes and

the output Y is calculated. The error function E is calculated and backpropagated through the
network starting from the output node in order to compute ∂ E/∂w for all hidden-layer nodes.
Assuming that w is an adjustable parameter, the general learning rule is defined as

w(t + 1) = w(t)+ η

(
−∂ E

∂w

)
(10.45)

Here, η is a positive learning rate and the other parameters are defined as before. In most of
the applications, a structure of the fuzzy neural network is provided, i.e., fuzzy rules are given
as a priori knowledge and backpropagation learning is used to fine-tune the parameters. A
detailed description of the derivation of the learning rule and different terms can be found in
Aoyama et al. (1999).
The fuzzy neural network described in Equations (10.38)–(10.45) has been used to model

physical systems. Chen and Teng (1995) used a fuzzy neural network with two membership
functions for each dimension to model a SISO nonlinear system. The model was then used to
identify a fuzzy neural network controller in a model reference control scheme.

10.5.6 Fuzzy Adaptive Learning Control Network (FALCON)

The learning rate in the backpropagation learning algorithm is limited due to the fact that the
weights of the network are determined by the error function defined in terms of output subject
to minimization. A substantial amount of computation time is spent in discovering the internal
representation. To minimize the internal representation time, a fuzzy adaptive learning control
network (FALCON) is proposed by Lin and Lee (1991), which is a connectionist model of a
fuzzy logic controller and decision-making system. In this connectionist structure, the input
and output nodes represent the input states and output control decision signals, respectively, and

Neural Fuzzy Systems 383

in the hidden layers there are nodes functioning as MFs and rules. The FALCON architecture
consists of five layers of neurons (Lin and Lee, 1991, 1994) as shown in Figure 10.21. The
individual layers are discussed in the following.

Layer 1: The nodes in this layer are input linguistic nodeswhich represent linguistic
variables. The nodes in this layer transmit input values to the next layer directly.

Layer 2: The nodes in this layer act as MFs to represent the terms of the respective
linguistic variable. In this layer, there can be either a single node that performs a
simple MF (e.g., a triangle-shaped or bell-shaped function) or multilayer nodes (a
subnet) to perform a complex MF (e.g., in an acoustic cue detector). In this case,
the total number of layers in FALCON can be more than five. The typical MF used
in FALCON is bell-shaped. A bell-shaped MF is defined using two parameters
A j (mij, σij), such as the centre or mean mij (for the jth MF of the ith input xi) and
the width or variance σij (for the jth MF of the ith input xi). The link weights at
this layer wij can be interpreted as mij when a bell-shaped MF is used. The nodes
in this layer are fully connected between linguistic nodes and their corresponding
term nodes:

μ j (xi) = − (xi − mij)2

σij
, i = 1, . . . , n, j = 1, . . . , m (10.46)

Here, n is the number of inputs and m is the number of MFs.

Layer 3: The nodes in this layer are rule nodes. The links in this layer are used
to perform precondition matching of fuzzy logic rules. Each node represents one
fuzzy rule performing a fuzzy AND operation, i.e., the minimum operation as
defined in Equation (10.47).

wk = min
[
μk
1(xi), . . . , μ

k
m(xi)

]
, k = 1, . . . , M (10.47)

where μ j (xi) is the membership grade of the jth MF of the ith input, wk is the
rule firing strength of the kth rule and M is the number of rules. The rule base is
represented by this layer.

Layer 4: The nodes in this layer are the output term nodes and they operate in two
modes. The first mode is the down/up transmission mode, in which the links at
layer four perform the fuzzy OR operation to integrate the fired rules. The second
mode is the up/down transmission mode. The nodes in layer four and the links in
layer five function exactly the same as those in layer two. Only a single node is
used to perform a membership function for output linguistic variables.

Layer 5: This layer is the output layer. There are two types of node for each output
variable. The first type of node performs the up/down transmission for the training
data to feed the desired outputs yk , k = 1, . . . , m into the network. The second
type of node performs the down/up transmission for the decision signal outputs
y∗

k , k = 1, . . . , m. The arrow on the link indicates the normal signal flow direction
when this network is in use after it has been built and trained. These nodes and
the layer-five links attached to them act as the defuzzifier.

384 Computational Intelligence

kjw
[]1min (),..., ()k i m iw x x=

Σ
…

……

…
…

… …

R
ul

e
no

de
s

D
ef

uz
zi

fi
ca

tio
n

1y

*
1y

nx

1x

In
pu

t n
od

es

M
F

 n
od

es

O
ut

pu
t n

od
es

Σ

my

*
my

)(11 xA

)(nm xA

)(ij xA

)(ij x

μ μ

μ

Figure 10.21 FALCON architecture

A two-phase hybrid learning scheme has been developed for FALCON combining a self-
organizing and supervised learning algorithm. In the first phase, the self-organizing learning
determines the initial MFs and builds the rule nodes. In the second phase, the supervised
learning adjusts the MFs. Training data and the desired partitioning of the input/output MFs
are provided. It has been shown that the hybrid learning algorithm outperforms the purely
supervised learning algorithm due to the a priori classification of training data through an
overlapping receptive field before the supervised learning.

10.5.7 Approximate Reasoning-Based Intelligent Control (ARIC)

The ARIC architecture, first proposed by Berenji (1992), is a fuzzy controller consisting of two
specialized NNs: the action-state evaluation network (AEN) and the action selection network
(ASN). The AEN is an adaptive critic that evaluates the ASN and provides advice to the main
controller. The ASN is the direct representation of the fuzzy controller. The AEN and ASN
modules are shown along with the ARIC architecture in Figure 10.22.

Neural Fuzzy Systems 385

Weight updates

Plant

Wb

Predict r̂

Wa|Wb|Wc|Wd|We|Wf

Wa Wc

Wd

We

Wf

F
ai

lu
re

 s
ig

n
al

 r

v

ASN

AEN

 Stochastic

 Action

 Modifier

xn

x4

x3

x2

x1

xn

x4

x3

x2

x1

Wd

Wf

xn

x3

x2

x1

x0

S
y

st
em

 s
ta

te
s

jy

Fuzzy inference

Neural net

)(tu

)1(+tp

ψ

)(tu ′

)(ts

Figure 10.22 ARIC architecture with AEN and ASN modules (Berenji, 1992)

Action-State Evaluation Network

The AEN is a three-layer network, which assumes the role of an adaptive critic (Barto et al.,
1983). The input layer consists of n input units and receives information on the states of the
physical system to be controlled in terms of its state variables xi , i = 1, 2, . . . , n and a failure
signal r .

386 Computational Intelligence

The hidden layer consists of h j , j = 1, 2, . . . , m hidden units. The inputs from the environ-
ment (x1, . . . , xn) and a bias (x0) are connected to all hidden units. The connection weights
between input and hidden units are denotedWaji, with i = 0, 1, 2, . . . , n and j = 1, 2, . . . , m.
The hidden unit outputs h j are defined as

h j (t + 1) = g

(
n∑

i=0
Waji(t)xi (t + 1)

)
(10.48)

where g(.) is a sigmoidal activation function.
The output layer consists of a single unit and receives inputs from n + 1 input-layer units

(i.e., xi) and m hidden-layer units (i.e., h j). The output v is defined as

v(t + 1) =
n∑

i=0
Wbi (t)xi (t + 1)+

m∑
j=1

Wc j (t)h j (t + 1) (10.49)

where Wbi are the connection weights between the input layer and the output layer. Wci

are the connection weights between the hidden layer and the output layer. The output v is
the prediction of reinforcement. The AEN plays the role of an adaptive critic element and
constantly predicts the future reinforcements for a given state. The AEN evaluates the action
recommended by the action network (ASN) as a function of the failure signal and the change
in state evaluation based on the system state at time (t + 1):

r̂ (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

0 starting state

r (t + 1)− v(t) failure state

r (t + 1)+ αv(t + 1)− v(t) otherwise

(10.50)

where 0 ≤ α ≤ 1 is the discount rate. In general, Sutton’s AHC algorithm (Sutton, 1984, 1988)
is used to train the weightsWb andWc and the backpropagation algorithm is used to train the
weights Wa. The weights Wb and Wc are updated according to

Wbi (t + 1) = Wbi (t)+ βr̂ (t + 1)xi (t) (10.51)

Wc j (t + 1) = Wc j (t)+ βr̂ (t + 1)h j (t) (10.52)

where β > 0 is the learning constant and r̂ (t + 1) is the internal reinforcement at time (t + 1).
The weight update function forWa is based on a modified version of the error backpropagation
algorithm as there is no direct measurement of error possible. r̂ is used as an error measure
and the weights Wa are updated according to

Waij(t + 1) = Waij(t)+ βr̂ (t + 1)h j (t)�1− h j (t)�sgn�Wc j (t)�xi (t) (10.53)

A positive change in the state evaluations, i.e., a positive r̂ , results in an increase in weights
and a negative r̂ results in a decrease in weights.

Neural Fuzzy Systems 387

Action Selection Network

The ASN consists of two networks. The first network is a fuzzy controller consisting of a
fuzzifier, a rule base and decision-making logic, and a defuzzifier. The fuzzy controller is
modelled by a two-layer neural network. The input layer performs fuzzification of the input
variables {x1, . . . , xn} against the labels represented by the MFs and determines the degree of
MFs {μi1(xi), . . . , μim(xi)}, i = 1, 2, . . . , n and m is the number of MFs for each input. The
hidden layer corresponds to the rules of the fuzzy controller and includes the decision-making
logic. The antecedents are not visible in the structure in Figure 10.22. The inputs to the neuron
are the preconditions of a rule and the output of the neuron is its conclusion. A multi-input
single-output (MISO) control system is considered here. Let w j represent the degree that a
rule j is fired by an input state variable xi in X, which means

w j = min
{
Wd j1μ1 j (x1), . . . , Wdjiμij(xi), . . . , Wdjnμnj(xn)

}
(10.54)

where μij(xi) represents the degree of membership of the input xi in a fuzzy set representing
the label used in the first precondition of the rule j ,Wdji is the weight from the j th rule node
to the i th input node, i.e., the link between neuron i and neuron j (i.e., from input layer to
hidden layer). Then, m j represents the result of applying thew j on the consequent part of rule
j and is calculated as follows:

m j = μ−1
C j
(w j) (10.55)

where j = 1, 2, . . . , M , M is the number of rules (or number of nodes in the hidden layer),
μC j represents the monotonic membership function of the consequent part of rule j . The
inverse μ−1

C j
of the MF μC j is taken to mean a suitable defuzzification operation applicable

to an individual rule. The output layer performs the defuzzification process and combines the
consequent part of the individual rules by using the centre of area (COA) method. The amount
of control action u(t) is then calculated assuming discretized MFs according to

u(t) =

M∑
j=1

Wf j × m j × w j

M∑
j=1

w j × Wf j

(10.56)

whereWf j are the connection weights from the hidden-layer nodes to the output-layer nodes.
The architecture allows the rules in the control knowledge base to be simply translated into
the action selection network. Adjusting the weights in the network represents fine-tuning of
the control rules.
The second network of the ASN is a neural network that computes a probability value p to

signify a measure of confidence associated with the selected action. The probability measure
is used to modify the control action u(t). The output of the hidden-layer units is

z j (t) = g

(
n∑

i=1
Wdji(t)xi (t + 1)

)
, j = 1, 2, . . . , H (10.57)

388 Computational Intelligence

where g(.) is a sigmoidal function and H is the number of units in the hidden layer. The
units in the output layer receive inputs from the hidden layer and input layer and compute the
probability p(t + 1) as follows:

p(t + 1) =
n∑

i=1
Wei (t)xi (t + 1)+

H∑
j=1

Wf j (t)z j (t + 1) (10.58)

Wei are the connection weights between the input layer and output layer, and p(t + 1) is
used to modify the action u(t) of the fuzzy controller. The stochastic action modification is
performed as follows:

u′(t) = � [u(t), p(t + 1)] (10.59)

�[.] is a stochastic modification function based on the probability p(t + 1). Berenji (1992)
uses a final measure s(t) for stochastic action modification and it is computed based on the
comparison of u(t) and u′(t) according to

s(t) = k
[
u(t), u′(t)

]
(10.60)

The function k[.] should be chosen depending on the application. s(t) is then used to update
the weights of ASN. AHC and the backpropagation algorithm are used to train the weights.
The weight changes of We and Wf are proportional to r̂ , s and the corresponding output. The
weights are updated as follows:

Wei (t + 1) = Wei (t)+ ηr̂ (t + 1)s(t)xi (t) (10.61)

Wf j (t + 1) = Wf j (t)+ ηr̂ (t + 1)s(t)z j (t) (10.62)

The weight update for Wd is based on a modified version of the backpropagation algorithm
using r̂ with s(t) as an error measure. Backpropagating this error, the weightsWd are updated
according to

Wdji(t + 1) = Wdji(t)+ ηr̂ (t + 1)z j (t)�1− z j (t)�sgn�Wf j (t)�s(t)xi (t) (10.63)

where η > 0 is a learning constant. The AEN and ASN do not have the same number of nodes
in the hidden layer or in the output layer. The ARIC architecture discussed above allows the
rules in the control knowledge base to be translated into the ASN. It has also been demonstrated
that changing the weights in this network represents fine-tuning the control rules.

10.5.8 Generalized ARIC (GARIC)

GARIC is an extension to ARIC developed by Berenji and Khedkar (1992, 1993). Like ARIC
it consists of an evaluation network (AEN) and an action network (ASN). The architecture
and learning algorithm for AEN of GARIC are exactly the same as ARIC, as described in the
preceding section 10.5.7. The ASN is replaced with a modified five-layer feedforward network

Neural Fuzzy Systems 389

Plant

Wb

P
re

d
ic

t

Wa|Wb|Wc

Wa Wc

F
ai

lu
re

 s
ig

n
al

 r

v

ASN

AEN

 Stochastic

 Action

 Modifier

xn

x3

x2

x1

xn

x2

x1

x0

System states

jy

Neural net

)(tu

ψ

)(tu ′

)(ts

vjμ

vmn

v11

r1

r2

rM

R
u

le

rk

kw

Fuzzy inference

r̂

*
kv

∑ kw

Figure 10.23 Architecture of the GARIC (Berenji and Khedkar, 1992)

where all the connection weights between the layers are unity. The five-layer GARIC model
is shown in Figure 10.23 and the layers are discussed in the following.

Layer 1: This layer is the input layer consisting of real-valued input variables.
Inputs are passed on to layer two.

Layer 2: The nodes in this layer representm fuzzy MFs {Aji(xi)}, j = 1, 2, . . . , m
for the inputs xi , i = 1, 2, . . . , n. These nodes calculate the membership grade
of the inputs by fuzzification operation. GARIC uses asymmetric triangular MFs,
defined as

μvji (xi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− |xi − c j |
r j

if xi ∈ [c j , c j + r j]

1− |xi − c j |
l j

if xi ∈ [c j − l j , c j]

0 otherwise

(10.64)

390 Computational Intelligence

jcjl jr

1
jvjμv

Figure 10.24 Asymmetric triangular MF used for the input and output variables

where c j , r j and l j are the centre, right width and left width of the triangular MF,
respectively as shown in Figure 10.24. The membership values are passed on to
the second hidden layer.

Layer 3: Every node in this layer represents a rule of the fuzzy system. The rules
are labelled r1, r2, . . . , rM and M is the number of rules. Each node determines the
degree of fulfilment (or firing strength) of a rule. A different minimum operation
called softmin is used here, which is defined as

∼
min {μ1, μ2, . . . , μn} =

n∑
i=1

μi e−αμi

n∑
i=1

e−αμi

(10.65)

Here, α > 0 is a parameter which defines the behaviour of the function. When
α = 0,

∼
min means an arithmetical mean. Each node in this layer calculates the

∼
min operation for each rule as

wk = ∼
min

{
μk

v j
(x1), μ

k
v j
(x2), . . . , μ

k
v j
(xn)
}

, j = 1, 2, . . . , m (10.66)

where k = 1, 2, . . . , M . The rule firing strengthwk is passed on to the fourth layer
and the fifth (output) layer.

Layer 4: Every node in this layer represents a consequent fuzzy MF. It is assumed
that once again an asymmetric triangularMF is used. It is a similarMF used for the
inputs shown in Figure 10.24. The defuzzification procedure used here is called
the local mean-of-maximum and defined as follows:

v∗
jk = c j + 1

2

(
r j − l j

)
(1− wk) (10.67)

Here, v∗
jk is the defuzzified value of the jth MF v jk for the kth rule. c j , r j and

l j are the centre, right width and left width of the triangular MF v j , r j
= l j and
j = 1, 2, . . . , m.m is the number of membership functions in the consequent part.
The unusual feature of the nodes in the fourth layer is that they can producemultiple

Neural Fuzzy Systems 391

output values. The non-standard feature is eliminated by a single integrated value
for the nodes in layer four (v4j) computed as follows:

v4jk = c j + 1

2

(
r j − l j

)∑
k

wk − 1

2

(
r j − l j

)∑
k

(wk)
2 (10.68)

The integrated output value in Equation (10.68) is necessary if strict compliance
is required for a neural network model and the GARIC model is not influenced by
the above integration of values.

Layer 5: The single node in the output layer produces the final output by aggre-
gating all the fired rule values defined as

u =

M∑
k=1

wk .v
∗
jk

M∑
k=1

wk

=
M∑

k=1
w̄k .v

∗
jk (10.69)

Or, by taking advantage of the single integrated value computed in layer four, it
can be written as

u =

M∑
k=1

v4jk

M∑
k=1

wk

(10.70)

Thus, layer five produces a continuous value, which is the action selected by ASN.
The action output is modified by the stochastic action modifier using the previous
prediction r̂ (t − 1) from the AEN and the action selection u(t) from the ASN. The
stochastic action modification is performed as follows:

u′(t) = � [u(t), σ [r̂ (t − 1)]] (10.71)

�[.] is a stochastic modification function based on a Gaussian random variable
with mean u(t) and standard deviation σ [r̂ (t − 1)]. σ [.] is a non-negative mono-
tonically decreasing function, e.g., e−r̂ . Berenji and Khedkar (1992) use a final
measure s(t) for stochastic action modification using a perturbation at each time
step computed based on the normalized deviation of u(t) and u′(t) according to

s(t) = u′(t)− u(t)

σ [r̂ (t − 1)] (10.72)

This contributes as a learning factor in the weight updates of ASN.

Learning of the weights Wa , Wb and Wc in the AEN of GARIC is the same as the learning
mechanism ofARIC. TheweightsWa ,Wb andWc in theAENofGARIC are updated according

392 Computational Intelligence

to Equations (10.53), (10.51) and (10.52), respectively. The connection weights of the neural
net in ASN are unity. It is the parameters of the fuzzy MFs in layer two and four in the
ASN of the GARIC that are to be learnt. Let p be the parameter vector that contains all the
parameters (i.e., centre, left width and right width) of the antecedent and consequent MFs. v
is the objective function to be maximized with respect to the parameter vector p. This can be
done using a gradient descent learning algorithm

�p = η
∂v

∂p
= η

∂v

∂u

∂u

∂p
(10.73)

Berenji and Khedkar used an approximation for the first term as

∂v

∂u
≈ �v

�u
≈ v(t)− v(t − 1)

u(t)− u(t − 1) (10.74)

The sign of the quotient in Equation (10.74) is enough for updating the parameters. The second
term ∂u

∂p can be determined easily for the consequent parameters by using Equations (10.67)
and (10.69):

∂u

∂p j
=
∑

k

w̄k

∂v∗
jk

∂p j
(10.75)

The differentiation of the term v∗
jk with respect to the three parameters p j = {c j , r j , l j } of the

consequent MF provides the following:

∂v∗
jk

∂c j
=

∂

(
c j + 1

2
(r j − l j)(1− wk)

)
∂c j

= 1 (10.76)

∂v∗
jk

∂r j
=

∂

(
c j + 1

2
(r j − l j)(1− wk)

)
∂r j

= 1

2
(1− wk) (10.77)

∂v∗
jk

∂l j
=

∂

(
c j + 1

2
(r j − l j)(1− wk)

)
∂l j

= −1
2
(1− wk) (10.78)

The update rule for the consequent parameters p j = {c j , r j , l j } is then defined as

�p j = ηsgn

(
�v

�u

)
s(t)r̂

∂u

∂p j
(10.79)

where η is the learning rate. The use of s(t) and r̂ as factors in the learning rule is to give an
extra reward to the large perturbation results in a good action. Updating only the consequent
parameters may be sufficient in many applications.
The updating of the antecedent MF parameters can be done in a similar way. The action

depends on the degrees of wk , which in turn depends on the degrees of μ j in layer two.

Neural Fuzzy Systems 393

The updates can only be determined if the functions μ j , defined in Equation (10.64), are
differentiable with respect to p j . To maximize u with respect to the parameters p j of the
antecedent MF, the gradient descent learning rule follows:

∂u

∂p j
= ∂u

∂μ j

∂μ j

∂p j
(10.80)

The first term ∂u
∂μ j

is computed as

∂u

∂μ j
=
∑

k

∂u

∂wk

∂wk

∂μ j
(10.81)

The terms ∂u
∂wk

and ∂wk
∂μ j

are derived as follows:

∂u

∂wk
=

c j + 1

2

(
r j − l j

)
(1− 2wk)− u∑

k
wk

(10.82)

∂wk

∂μ j
= e−αμ j (xi)

(
1+ α[wk − μ j (xi)]

)
∑

i
e−αμ j (xi)

(10.83)

The second term ∂μ j

∂p j
can be determined only if μ j is differentiable at all points. An example

of such a smooth function is given by

μ j (xi) = 1

1+
∣∣∣ xi −c j

s

∣∣∣b (10.84)

where s = l j , if xi < c j and s = r j , if xi ≥ c j and b is a parameter which controls the
shape of the function. An approximation according to Berenji and Khedkar (1992) for a
triangular-shaped MF is given in Equation (10.64). Computation of the derivatives of μ j with
respect to the parameters p j = {c j , r j , l j } is very straightforward. Details of the derivations
for individual parameters can be found in Nauck et al. (1997). The updates of the antecedent
parameters p j = {c j , r j , l j } are computed using Equation (10.79). The derivatives can be
computed locally using Equations (10.80)–(10.83). GARIC represents a general hybrid neuro-
fuzzy architecture, which has been applied to various control problems with success. For
example, Berenji and Khedkar (1992) demonstrated the application of GARIC to balance the
well-known cart-pole system.

10.5.9 Fuzzy Basis Function Networks (FBFN)

The FBFN has a similar structure to the RBFN. The RBFN has been discussed in Chapter
4. The FBFN was first proposed by Wang and Mendel (1992) using the Stone–Weierstrass
theorem, where it is shown that linear combinations of fuzzy basis functions are capable
of approximating any real continuous function. In general, the backpropagation algorithm
requires thousands of iterations in learning the fuzzy basis functions. Therefore, an orthogonal
least squares (OLS) learning algorithm is proposed for designing fuzzy systems based on given

394 Computational Intelligence

input/output pairs. The algorithm selects significant fuzzy basis functions from an initial set of
functions. These are then used to construct the final fuzzy system. The OLS learning algorithm
is a one-pass procedure, which is much faster compared with the backpropagation algorithm.
The basic configuration of FBFN is similar to the fuzzy systems described in Section 3.4

in Chapter 3, where the main components such as fuzzification, rule base, inference engine
and defuzzification are discussed in detail. An FBFN consists of five layers and uses Gaussian
MF as inputs, a fuzzy inference system with product inference and singleton output MF
with centroid defuzzification procedure. A multiple-input single-output (MISO) system is
considered in this section. Consider an n-input single-output system withM rules of the form

Rk : If x1 is Ak
1 j and x2 is Ak

2 j and · · · and xn is Ak
nj Then y is Bk

j (10.85)

where Aij are the Gaussian MFs for inputs and B j are the singleton output MFs with i =
1, 2, . . . , n and j = 1, 2, . . . , m. m is the number of MFs for each input and output assuming
each input and output have the same number of MFs. k = 1, 2, . . . , M and M is the number
of rules of the fuzzy system. The FBFN architecture with three inputs, single output and four
rules is shown in Figure 10.25.

Layer 1: This layer is the input layer and responsible for transferring input values
through to the second layer.

Layer 2: This layer is the fuzzification layer and consists of Gaussian MFs
defined by

μAji (xi) = exp

[
−1
2

(
xi − mji

σji

)2]
(10.86)

wheremji and σji are the centre and width of the jth Gaussian MF for input xi . The
membership value μAji (xi) is passed on to the rule layer.

Layer 3: This layer is the rule layer and uses the product rule for inferencing
defined as follows:

pk(xi) =
n∏

i=1
μAji (xi), k = 1, 2, . . . , M (10.87)

Layer 4: This layer is the defuzzification layer and performs a defuzzification
operation on the singleton output MF using a centroid defuzzifier. wk are the
connection weights between layer four and five.

Layer 5: This is the aggregation layer and defines the FBF as

y = f (x) =

M∑
k=1

pk(x)wk

M∑
k=1

pk(x)

, k = 1, 2, . . . , M (10.88)

It is shown that the fuzzy inference system is equivalent to a FBF expansion, i.e., a linear
combination of FBF or FBFN.

Neural Fuzzy Systems 395

1w

y
/

3=nx

A31

A32

A33

A11

A12

A13

2w

3w

A21

A22

A23

Π

Π

Π

A41

A42

A43

Π

4=mw

Σ

k
p

M

1x

1x

M

ijAμ

Figure 10.25 FBFN architecture with four rules

Assume an N -input/output data set {(x1, d1), (x2, d2), . . . , (xN , dN)} is available for training.
The task of training the FBFN is to design an FBFN f (x) such that

d(t) = f [x(t)]+ e(t) =
M∑

k=1
p̄k(x)wk + e(t) (10.89)

where p̄k(x) = pk (x)∑M
k=1 pk (x)

. Equation (10.89) can now be written in matrix notation form as

d = Pw + e (10.90)

where d = [d1, . . . , dN], P =

⎡
⎢⎣

p11 · · · p1M
...
. . .

...
pN1 · · · pN M

⎤
⎥⎦, w = [w1, . . . , wN] and e = [e1, . . . , eN].

The FBFN becomes a simple linear least-squares problem once the matrix P is known. The
column vectors of P are the response vectors of the FBF nodes. In order to perform the OLS

396 Computational Intelligence

procedure, the learning of the parameters λ = {(m1, σ1), . . . , (mm, σm)} of the FBF is to be
performed on the input/output pairs (Shin and Xu, 2009).

10.5.10 Fuzzy Net (FUN)

Neural networks have been applied to fuzzy systems mainly to extract rules. Many researchers
have appliedNNs for learning fuzzy rules. NNs have also been applied to finding the parameters
of MFs. There have been few attempts at learning rules and MFs in a system at the same time.
Sulzberger et al. (1993) proposed a method for translating the fuzzy rules and MFs into a
network called FUN (Fuzzy Net). The FUN uses special neurons which can evaluate logic
expressions using their activation functions. The performances of the network and the quality
of the rule base are improved by training the neural network. The network consists of five
layers. Neurons of each layer have different activation functions representing different stages
of the fuzzy inferencing.
The FUN architecture with inputs {x1, x2, . . . , xn} and a single output y is shown in Fig-

ure 10.26. The network consists of an input, an output and three hidden layers. The neurons
of each layer have different activation functions. The network is initialized with MFs and a
fuzzy rule base. The architecture is described layer by layer in the following.

Layer 1: The neurons in this input layer are sensors and simply transfer the inputs to
the next layer (fuzzification layer) without performing any kind of transformation:

xi = f (xi) , i = 1, 2, . . . , n (10.91)

y

ijA

δ

xn

x1 A12
r1

rk

rK

F
uz

zi
fi

ca
tio

n

R
ul

e
la

ye
r

D
ef

uz
zi

fi
ca

tio
n

M

M

C1

Cl

CL

M

S1

Sn

In
pu

t l
ay

er

An3

An2

An1

A13

A11

M

M

kw

μ

F
uz

zy
 A

N
D

F
uz

zy
 O

R

lz

Figure 10.26 FUN architecture

Neural Fuzzy Systems 397

Layer 2: The neurons in this layer (fuzzification layer) contain the MFs and
perform fuzzification of the input values:

μAk = ��Aij(xi)�, j = 1, 2, . . . , m, k = 1, . . . , i × j, . . . , n × m

(10.92)

where Aij is the jth MF for the ith input (xi). � [.] is the fuzzification operation.
μAij is the fuzzified value for each MF. There are m membership functions for
each input. There are only three MFs shown in Figure 10.26, i.e., m = 3.

Layer 3: In this layer (conjunction layer), the conjunctions (fuzzy-AND) are
calculated:

wk =
K⋂

k=1
μAk , k = 1, 2, . . . , K and K ⊆ n × m (10.93)

Layer 4: The MFs of the output variables are stored in the third hidden layer. Their
activation function is a fuzzy-OR.

Layer 5: Finally, the output neuron performs the defuzzification.

The network is initialized with a fuzzy rule base and the corresponding MFs and thereafter
uses a stochastic learning technique that randomly changes parameters ofMFs and connections
within the network structure. The rules are represented by the connections between layers.
To learn the rules, connections between the fuzzification and rule layer are changed. The
learning algorithm for the MF is a combination of gradient descent and a stochastic search.
To learn the MFs, data to the fuzzification layer (first hidden layer) and the fuzzy-OR layer
(third hidden layer) are changed. The learning process is driven by a cost function, which is
evaluated after the randommodification. If themodification results in an improved performance
the modification is kept, otherwise it is undone. The network can be trained with standard
neural network training algorithms such as reinforcement or supervised learning (Sulzberger
et al., 1993).
Sulzberger et al. (1993) demonstrated, by applying FUN to different examples, that it has

the ability to optimize a given rule base and the corresponding MFs.

10.5.11 Combination of Fuzzy Inference and Neural Network in Fuzzy
Inference Software (FINEST)

The tuning of fuzzy inference mostly investigated fuzzy rules while other factors like param-
eters of aggregation operators, implication functions, combination functions and fuzzy predi-
cates remained under-explored. The FINEST architecture was proposed by Tano et al. (1994,
1996) to develop a tuning mechanism for fuzzy inference and fuzzy predicates. It has two
kinds of tuning process: tuning of fuzzy predicates, combination functions and the tuning of
an implication function. The generalized modus ponens is improved in four ways: (i) aggre-
gation operators that have synergy and cancellation nature; (ii) a parameterized implication
function; (iii) a combination function that can reduce fuzziness; and (iv) backward chaining

398 Computational Intelligence

A1j

Y
Σ

xn

x1

r1

ri

rm

R
ul

e
la

ye
r

C
on

cl
us

io
n

M

M

A11

Amn

B1

Bi

Bm

M

A1n

Am1

Amj

M

ijAμ

iBμ

iAτ

Figure 10.27 Four-layer FINEST architecture

based on generalized modus ponens. The backpropagation algorithm is used for fine-tuning
the parameters. FINEST provides a framework to tune any parameter which appears in the
nodes of the network representing the calculation process of the fuzzy data if the derivative
function with respect to the parameters is given.
Consider the case of a fuzzy inference of the form given by the rule

Rule i: if x1 is Ai1 and · · · and xn is Ain then y is Bi (10.94)

where i = 1, . . . , m and m is the number of rules, x j with j = 1, . . . , n and n is the number
of MFs for each input variable to the network, y is the conclusion of the fuzzy inference, and
Aij and Bi are the input and output membership functions, respectively. In order to carry out
the tuning process, the fuzzy inferencing mechanism is converted into a neural network-like
structure. There are four layers of neural structure in the FINEST architecture, which is shown
in Figure 10.27. The calculation of the output of each layer is described layer by layer in
the sequel.

Layer 1: This layer calculates the output of the neurons using a supremumoperation
as follows:

τAij(aij) = sup
μAij (x j)= f (aij)

{
μAi1 (x1), μAi2 (x2), . . . , μAin (xn)

}
(10.95)

τAij(aij) is the truth value from the sup(.) operation and aij is the set of parameters
of the MFs.

Neural Fuzzy Systems 399

Layer 2: This is the aggregation layer and calculates the antecedent part of the ith
rule as follows:

τAi (ai) = sup
andi (ai1,···,ain)

{
τAi1 (ai1) ∧ · · · ∧ τAin(ain)

}
(10.96)

where i = 1, . . . , m. τAi (ai) is the truth value of the antecedent part of the ith rule.
andi is the parameterized aggregation function for rule i.

Layer 3: This layer performs inferencing, i.e., deduction of the conclusion of the
ith rule according to

μBi (y) = sup
ai

{
τAi (ai) ∧ Ii

(
ai , μB ′

i
(y)
)}

(10.97)

τBi (y) is the conclusion of the consequent part of the ith rule. Ii is the parameterized
implication function of rule i.

Layer 4: This layer performs combinations of the conclusions of all rules accord-
ing to

μ∗
B(y) = comb

{
μB1 (y) ∧ · · · ∧ μBm (y)

}
(10.98)

where comb is the parameterized combination function.

The important feature of FINEST is the parameterization of the inference procedure. There
are many parameterized functions used in fuzzy inference. There are variants of the t-norm and
t-conorm operations, such as max, min, average or product. A new parameterized aggregation
function, denoted andi , is defined in FINEST by adding a synergistic effect to an ordinary
t-norm (Tano et al., 1996). There are four parameters γ , (α, β) and p to be chosen arbitrarily
by the user:

andi (xi , yi) = wi × synergy(xi , yi)+ (1− wi)× basic(xi , yi) (10.99)

with the following definitions of the terms:

wi = equal(xi , yi)× high(xi , yi)× γ (10.100)

equal(xi , yi) = almost(0, xi − yi , α) (10.101)

high(xi , yi) = almost(1, xi , β)× almost(1, yi , β) (10.102)

synergy(xi , yi) = 1 (10.103)

almost(a, xi , b) = exp
(
ln 0.5× (xi − a)2/b2

)
(10.104)

basic(xi , yi) = 1

1+ p
√
((1− xi)/xi)p + ((1− yi)/yi)p

(10.105)

There are various implications used in fuzzy systems, but it is difficult to choose the appropriate
function for a particular application. Therefore, a parameterized implication function Ii is

400 Computational Intelligence

defined in FINEST, which can easily be selected by changing the value of the parameters.
Details of the parameterized implication function can be found in Tano et al. (1996).
A combination operation is the method of producing a combined-result fuzzy set from

two fuzzy sets deduced by two inference processes. Mostly, the max operator is used as
combination operator in applications, which causes a constant increase of the fuzziness. Tano
et al. (1996) proposed two new parameters: the equilibrium E and dependence factors (α, β).
A detailed description can be found in Arnould and Tano (1994), Oyama et al. (1994) and
Tano et al. (1994, 1996).

10.5.12 Neuro-Fuzzy Controller (NEFCON)

A major problem encountered in designing a neuro-fuzzy controller is that it requires a set
of input/output data for learning. A control problem cannot be solved by supervised learning
as there may not be an input/output data set available. An alternative approach would be to
use reinforcement learning. Reinforcement learning is employed when a teacher signal is not
available and the learning is performed through continued interaction with the environment in
order tominimize a scalar performance index (Barto et al., 1983). TheNEFCON is aMamdani-
type FIS implemented using reinforcement learning. The NEFCON consists of three layers
of a neural network-like structure where an input layer represents input variables, a hidden
layer represents fuzzy rules and an output layer consists of a single node. The NEFCON
architecture can learn MFs as well as the rule base. The idea of NEFCON is to explore a priori
knowledge such as known rules and measures of error. This architecture can be used to learn
an initial rule base, if there is no a priori knowledge of the system available, or to optimize an
initial manually defined rule base. The hidden layer represents the rules of the NEFCON of
the form

Rule: if xi is Aij then u is Bk (10.106)

where Aij with i = 1, . . . , n and j = 1, . . . , p. n is the number of inputs, p is the number
of antecedent MFs, k = 1, . . . , q and q is the number of consequent MFs. The NEFCON
architecture, shown in Figure 10.28, is a controller consisting of two inputs {x1, x2} and a
single control action u. Triangular MFs are used for the input layer. The input units perform
the function of fuzzification. The fuzzified values are passed on to rule nodes. The firing
strength is calculated for each rule represented by the nodes in the hidden layer. The output
nodes are responsible for the defuzzification. The outputs are combined to a final output.
The process of learning in NEFCON is carried out in two stages: learning the structure (i.e.,

learning the rules) and learning the parameters (i.e., learning the MFs). When learning the
parameters, it is assumed that the structure is already known. The learning is carried out using
a backpropagation algorithm. If there is no known control strategy (i.e., rules), the neuro-fuzzy
controller should be developing its own rules of operation. Barto et al. (1983) showed that
neuro-controllers can learn the rules using reinforcement learning. A detailed description of
the learning process can be found in Nauck et al. (1997).
There are two variants of NEFCON found in the literature: NEFPROX (Nauck and Kruse,

1997) and NEFCLASS (Nauck and Kruse, 1995; Nauck et al., 1996). The NEFPROX model
(for function approximation) is very similar to NEFCON, which can havemore than one output
and be trained using a supervised learning algorithm. The supervised training algorithm uses

Neural Fuzzy Systems 401

1v

r1

r9

uδ

x2

A21

A22

B23

x1

A11

A12

A13

r2

ri

r8

2v

3v

F
uz

zi
fi

ca
tio

n
la

ye
r

R
ul

e
la

ye
r

D
ef

uz
zi

fi
ca

tio
n

M

M

ijAμ

Figure 10.28 NEFCON architecture

an error defined by the difference between the desired and actual output. In NEFPROX, a fuzzy
error measure can also be used. NEFCLASS (for classification tasks) was created to determine
classes of given data. The classification problem is represented by an unknown function. The
rule base of the NEFCLASS model approximates the unknown function by mapping the input
pattern to an output class.

10.5.13 Self-constructing Neural Fuzzy Inference Network (SONFIN)

SONFIN is a modified Takagi–Sugeno-type fuzzy system which uses an NN learning mech-
anism. SONFIN starts with an empty rule base, then creates and adapts the rule base using
an online learning mechanism. Both the structure and parameter identification are performed
simultaneously to form fast learning. In the structure identification of the antecedent part, the
input space is partitioned in a flexible way according to an aligned clustering-based algorithm.
As to the structure identification of the consequent part, only a singleton value selected by a
clustering method is assigned to each rule initially. Afterwards, some additional significant
terms (input variables) selected via a projection-based correlation measure for each rule are
added to the consequent part (forming a linear equation of input variables) incrementally as
learning proceeds. For parameter identification, the consequent parameters are tuned opti-
mally by either least mean squares or recursive least-squares algorithms and the antecedent
parameters (i.e., MF parameters) are tuned by a backpropagation algorithm. To enhance the
knowledge representation in the SONFIN, a linear transformation of the input variables can
be incorporated into the network for further reduction of the rules.

402 Computational Intelligence

The architecture of the SONFIN consists of six layers, which realize a TSK-type fuzzy
system of the form

Rule k: if xi is Aij then yk = m0k + a1k x1 + · · · + ankxn (10.107)

where Aij with i = 1, . . . , n and j = 1, . . . , p. n is the number of inputs, p is the number of
antecedent MFs, m0k is the centre of a symmetric MF on y, aik are the consequent parameters
with k = 1, . . . , m. One important difference of SONFIN from TSK fuzzy systems is that not
all of the parameters {a1k, a2k, . . . , ank} are used in the linear output function. The SONFIN
architecture is shown in Figure 10.29. Only two inputs are shown in the figure, but can be
extended to n inputs. The architecture is described layer by layer in the following.

Layer 1: Each node in this layer corresponds to one input variable. Nodes do not
involve any processing and transmit the input values to the next layer, i.e.

xi = f (xi), i = 1, 2, . . . , n (10.108)

Only two inputs are shown in Figure 10.29.

Layer 2: Each node in this layer corresponds to an MF (linguistic label) and
fuzzifies the inputs. MFs can be of any type, such as triangular, Gaussian, bell-
shaped, etc. In SONFIN, a Gaussian MF is used for the inputs μji(xi):

μji(xi) = f

(
−
(
xi − mji

)2
σji

)
(10.109)

where mji and σji are the centre (or mean) and width of the jth Gaussian MF of
the ith input and i = 1, . . . , n, j = 1, . . . , p. p is the number of MFs for the input
xi . f (.) denotes the chosen activation function of the nodes. One important thing

x2

x1 A21

F
uz

zi
fi

ca
tio

n

r1

rk

rm

M

M

M

In
pu

ts

A32

A22

A21

A31

A11

Y1

Σ

C1

Cl

M

M

13 =kw

M

M

x

x

x

a1

a2

an

M

14 =kw

ijAμ

Figure 10.29 SONFIN architecture (Feng and Teng, 1998)

Neural Fuzzy Systems 403

to note here is that the number of MFs for each input is not necessarily identical
in SONFIN and the number of MFs for each input is also not the same. The
maximum number of nodes in layer two is m = n × p.

Layer 3: This is the rule layer, where each node represents the antecedent part of
the rule:

τk =
m∏

k=1
μk=i× j (10.110)

where k = 1, . . . , m and m is the number of nodes from layer 2 contributing to
precondition matching of a rule, i.e., the firing strength τk of the k th rule. The
AND operation is used in SONFIN. The connection weights of layer 3 are unity,
i.e.,w3

k = 1.

Layer 4: The number of nodes in this layer is equal to the number of nodes in layer
3. The firing strength τk , k = 1, . . . , m, is normalized in this layer and calculated
as follows:

τ̄k = τk
m∑

k=1
τk

(10.111)

The connection weights of layer 4 are also unity, i.e., w4
k = 1.

Layer 5: This is the consequent layer consisting of two types of node: blank and
shaded nodes. The first type (blank) represent consequent MFs (i.e., MFs for
output variable). The local mean of maximum defuzzification is applied to the
Gaussian MFs and the width is used for output clustering. m0k are the centre of
the Gaussian MFs. This eventually delivers the centre of each Gaussian MF m0k

as the output to the next layer. Each blank node provides the output yb
k as

yb
k = m0k (10.112)

The other type (shaded) of node generates the consequent part of the rules. Each
node receives one input from layer 4 outputs and the other input from layer 1
outputs. Each shaded node provides the output ys

k as

ys
k = m0k + (a1k x1 + · · · + ankxn) = m0k +

n∑
i=1

aikxi (10.113)

aik is the corresponding parameter of the input xi . Combining these two types of
node in layer 5, the whole function performed by this layer is given by

yk = (ys
k

)
yb

k =
(

m0k +
n∑

i=1
aikxi

)
yb

k (10.114)

Layer 6: Each node in this layer corresponds to one output variable. The node in
this layer performs defuzzification by integrating all actions from layer 5:

Y1 =
m∑

k=1
yk (10.115)

404 Computational Intelligence

Two types of learning occur in SONFIN: structure learning and parameter learn-
ing. The structure learning involves both the antecedent and consequent structure
identification of the fuzzy if–then rule. The antecedent structure identification
corresponds to the input space partitioning, which can be formulated as a combi-
natorial optimization problem. The objective of the optimization is to minimize the
number of rules and MFs. The consequent structure identification corresponds to
the creation of a new MF for output variables and inclusion of the input variables
in the linear function of the consequent part. The parameter learning involves
supervised algorithms such as backpropagation for the antecedent parameters and
LMS or RLS algorithms for the consequent parameters. Details of the learning
process are discussed in Feng and Teng (1998).

10.6 Adaptive Neuro-Fuzzy System

The neuro-fuzzy synergism comes from adaptive networks. An adaptive network is a network
structure described by a set of modifiable parameters. Such an adaptive network combines both
neural networks and fuzzy systems. Fuzzy systems under the framework of adaptive networks
are known as ANFIS. The only constraint of an adaptive network is that the node transfer
function should be piecewise differentiable. The only limitation of network configuration is that
it should be of feedforward type.A decomposition of the antecedent and consequent parameters
is required in order to apply a suitable learning rule. Besides, it is also shown how to apply the
Stone–Weierstrass theorem to ANFIS with simplified fuzzy if–then rules and how the radial
basis function network relates to this kind of simplified ANFIS (Jang and Sun, 1993). Different
variants of ANFIS have appeared in the literature, as will be discussed in the following sections.

10.6.1 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS, a class of adaptive networks that are functionally equivalent to a fuzzy inference
system, was first proposed by Jang (Jang, 1993; Jang et al., 1997). The ANFIS architecture
represents both the Sugeno and Tsukamoto fuzzymodels (discussed in Chapter 2 and 3, respec-
tively). It has also been shown that under minor constraints, the RBFN (discussed in Chapter 4)
is functionally equivalent to the ANFIS architecture. For simplicity and ease of understanding
of the ANFIS architecture discussed in this section, two inputs and a single output are used.
The architecture is shown for a first-order Sugeno fuzzy model with four rules in Figure 10.30.

Layer 1: Every node in this layer is an adaptive node with bell-shaped MF, where
x1 and x2 are the two input variables. Any parameterizedMFs can be used for input
variables. For simplicity, two MFs are used for each input variable here. These
nodes calculate the membership grade of the inputs according to

μAj(x1) = 1

1+
∣∣∣∣ x1 − mAj

σAj

∣∣∣∣
2bAj

, μBj(x2) = 1

1+
∣∣∣∣ x2 − mBj

σBj

∣∣∣∣
2bBj

(10.116)

{mAj, σAj, bAj} and {mBj, σBj, bBj} with j = 1, 2 are the parameter set of the input
MFs. Two MFs are used for each input in Figure 10.30.

Neural Fuzzy Systems 405

iw
iw

x1 x2

ii fw

N4

N1

N3

N2

r1

r2

r3

r4

x1

x2

Y

A1

A2

B1

B2

Σ

Bj

1f

2f

3f

4f

jAμ

μ

Figure 10.30 ANFIS architecture

Layer 2: Every node in this layer is a fixed node representing the rules labelled ri ,
i = 1, . . . , 4. Each node determines the firing strength of a rule, defined as

wi = μA j (x1).μB j (x2), j = 1, 2 (10.117)

Layer 3: Every node in this layer is a fixed node labelled Ni , i = 1, . . . , 4. Each
node calculates the normalized firing strength of the i th rule according to

wi = wi

4∑
i=1

wi

, i = 1, 2, . . . , 4 (10.118)

Layer 4: Every node in this layer is an adaptive node with a linear function
defined by

fi = ai .x1 + bi .x2 + ci , i = 1, 2, . . . , 4 (10.119)

where {ai , bi , ci }, i = 1, . . . , 4 are the parameters of the consequent part of the
rule ri . Each node calculates the weighted value of the consequent part of each
rule as

wi . fi = wi (ai x1 + bi x2 + ci), i = 1, 2, . . . , 4 (10.120)

Layer 5: The single node in this layer produces the overall output by aggregating
all the fired rule values:

Y =
∑

i

wi . fi , i = 1, 2, . . . , 4 (10.121)

406 Computational Intelligence

By using adaptive nodes in layer one and layer four, an adaptive network has been created
that is functionally equivalent to a Sugeno-type fuzzy model. A Tsukamoto-type neuro-fuzzy
inference system can be constructed by replacing the consequent function with a parameter-
ized piecewise linear function with two parameters. For a Mamdani-type inference system
with max/min composition, a corresponding adaptive system can be constructed if discrete
approximations are used to replace the integrals in a centroid defuzzification scheme. TheMFs
to be used should reasonably be shaped so that they can be parameterized correctly to reflect
the adequate constraints. It is also expected that the MFs should remain bell-shaped regardless
of their parameter values. The fuzzy-neural systems discussed in Sections 10.5.1–10.5.3 are
very similar to ANFIS. The only difference is that they don’t have any adaptive nodes and
no learning mechanism is applied for adjusting the antecedent and consequent parameters.
If the MFs are kept fixed at the antecedent part and the consequent parameters are adapted,
then ANFIS is seen as a functional-link network (Klassen et al., 1988), where the enhanced
representations of the input variables are obtained via the MFs. Similar adaptive fuzzy-neural
structures have also been proposed independently by Lin and Lee (1991) andWang andMendel
(1992). The adaptive capability of ANFIS makes it directly applicable to learning and control
problems.
Learning in ANFIS can be separated into two learning schemes: learning of the antecedent

MFs and learning of the consequent parameters. There are arguments that learning mecha-
nisms should not be applied to MFs in Sugeno-type ANFIS since they represent a subjective
description of the problem. MFs should be kept fixed if the available input/output data set is
small. Learning of the MFs will not be useful in this case. If the input/output data set is large,
fine-tuning of MFs is necessary as the MFs determined by an expert may not be optimal. If
the antecedent parameters are fixed, the output can be expressed as a linear combination of
the consequent parameters:

y = w(ax1 + bx2 + c) = (w̄x1)a + (w̄x2)b + w̄c (10.122)

For a training data set N , Equation (10.122) can be written in vector-matrix form

Ap = y (10.123)

where p is the unknown parameter vector and A is the coefficient matrix. Since the number of
training pairs N is greater than |p|, there is no unique solution to Equation (10.123). Instead, a
least-squares method of estimation (LSE) is suitable for identification of the parameter vector
p which minimizes ‖Ap − y‖2:

p̂ = (AT A)−1AT y (10.124)

(AT A)−1AT is the pseudo-inverse of A when AT A is non-singular. In general, the structure of
ANFIS is assumed fixed and the parameter identification is solved through a hybrid learning
rule. In the forward pass of the hybrid learning, node outputs are propagated through to layer
four and the consequent parameters are estimated using a least-squaresmethod. In the backward
pass, the error (difference between the desired output and the actual output) is backpropagated

Neural Fuzzy Systems 407

through to layer one and the antecedent parameters are updated using gradient descent while
the consequent parameters are fixed. Since the antecedent and consequent parameters are
decoupled in a hybrid learning rule, further speedup of the learning is possible by using other
variants of gradient methods or optimization techniques (Jang et al., 1997).

10.6.2 Coactive Neuro-Fuzzy Inference System (CANFIS)

The problem encountered in ANFIS is that the model provides automatic tuning of a Sugeno-
type fuzzy inferencing system generating a single output. As a result, the application of
ANFIS is limited to multiple-input single-output (MISO) systems only and not multiple-
input multiple-output (MIMO) systems. Attempts have been made to apply a multiple ANFIS
(MANFIS), where each ANFIS has an independent set of adjustable parameters and fuzzy
rules. In MANFIS, it is therefore difficult to find the correlation between inputs and outputs.
As the number of outputs increases, the adjustable parameters also increase drastically. The
problem is to find howmultiple outputs can be generated from anANFIS system.A generalized
ANFIS is called CANFIS, where an NN and an FIS play an active role in the system (Mizutani
et al., 1994; Mizutani and Jang, 1995). The architecture of CANFIS is shown with two inputs
and a single output in Figure 10.31. The CANFIS here consists of two parts: an FS model
(upper part) that computes the normalized weights of the antecedent part of the rules and a
layered NN model (lower part) that computes the consequent outputs using the weights from
the FS of the MIMO system.

iw

N

N

x1

x2

A1

A2

B1

B2

Aj

1w

2w

1w

1w

2w

y1

y2

f1

f2

f3

f4

bi
as

2w

Σ
Y

FS

NN

Bj

a

b

c

μ

μ

Figure 10.31 CANFIS architecture

408 Computational Intelligence

The FS model consists of three layers, described as follows.

Layer 1: This is the fuzzifucation layer that calculates the membership grade
μAj(xk) and μBj(xk), k = 1, 2 and j = 1, 2 for the two input variables {x1, x2}.
Layer 2: The second layer determines the firing strength of the individual rule
according to

wi = �
(
μA j (x1), μB j (x2)

)
,where i = 1, 2, . . . , M(= 2× 2) (10.125)

� represents a fuzzy neuron that can perform a minimum or product operation. M
is the number of rules in the fuzzy system.

Layer 3: The normalized firing strengths wi are calculated as

wi = wi

M∑
i=1

wi

(10.126)

The NN model represents the consequent part of the rules of the Takagi–Sugeno
system and computes the output fi = ai x1 + bi x2 + ci as follows.

Layer 1: The nodes in this layer transfer the inputs {x1, x2} to the next layer.
The connection weights are the consequent parameters {ai , bi , ci } of the Takagi–
Sugeno system.

Layer 2: The nodes in this layer are summation nodes and calculate the linear
function of the consequent part of the rules:

fi = ai x1 + bi x2 + ci where i = 1, 2, . . . , 4 (10.127)

The nodes calculate the consequent parts f1 = a1x1 + b1x2 + c1, . . . , f4 = a4x1 +
b4x2 + c4.

Layer 3: The nodes compute the outputs yi using the consequent functions fi

weighted by the normalized firing strengths wi of the rules as shown in the NN
model of Figure 10.31:

y1 = w1 f1 + w2 f2 and y2 = w1 f3 + w2 f4 (10.128)

Layer 4: The overall output y is calculated as follows:

Y = y1 + y2 (10.129)

The NN model of the CANFIS architecture is a simple backpropagation MLP network rep-
resenting the rule consequences. The connection weights are numeric values representing
connection strengths. The hidden layer represents the number of rules in the CANFIS. The
connection weights between the hidden layer and the output layer correspond to member-
ship values between the consequent layer and the fuzzy association layer. Membership values

Neural Fuzzy Systems 409

are dynamically changing, depending on the input patterns. That is, the CANFIS is locally
tuned. This is where the powerful capability of CANFIS comes from. Performance may be
improved without increasing the rules or MFs by using a nonlinear consequent function such
as a sigmoidal function, defined as

f = 1

1+ exp(ax1 + bx2 + c)
(10.130)

CANFIS can be extended tomultiple outputs by puttingANFIS in juxtaposition for the required
number of outputs. The combination is called multiple ANFIS (MANFIS). The problem with
MANFIS is that eachANFIS has its own fuzzy rules and nomodifiable parameters are shared by
the ANFIS. The modifiable parameters increase drastically as the number of outputs increases
inMANFIS. A clever way of designingmultiple outputs would be to share parameters by using
the same antecedent fuzzy rules. That is, fuzzy rules are constructed with shared membership
values to establish possible correlations between outputs. Further precision can be obtained
for the consequent NN by entwining multiple neural modules (also called local experts) for
each neural rule. The advantage of neural modules is that they help in reducing modifiable
parameters. The architecture is equivalent to modular networks. The architecture of a MIMO
CANFIS, i.e., two inputs, two outputs and two neural rules, is shown in Figure 10.32.

10.7 Fuzzy Neurons

The neurons in neural networks and neural systems, discussed in Chapters 4 and 5, respec-
tively, consist of processing units that handle numeric inputs (mostly sensor measurements)
and outputs. There are many examples from real-world applications where such numerical
measurements are not available or are corrupt with noise and involve uncertainties. Therefore,
some researchers have suggested that neurons should be able to handle such real-world situ-
ations and attempted to incorporate them into a fuzzy neuron. A fuzzy neuron has the same
basic structure as the artificial neuron except the inputs, processing and outputs are described
through fuzzy logic. Therefore, a variety of fuzzy neurons are devised and found in the litera-
ture and a few of them are shown in Figure 10.33. The architecture of a fuzzy-neuron network
is shown in Figure 10.34.
Figure 10.33(a) shows a fuzzy Min neuron, which performs the aggregation operation that

selects the minimum of the weighted inputs defined by

O = f

(
n∧

i=1
xiwi + b

)
(10.131)

Similarly, Figure 10.33(b) shows a fuzzy Max neuron, which performs the aggregation oper-
ation that selects the maximum of the weighted inputs defined by

O = f

(
n∨

i=1
xiwi + b

)
(10.132)

410 Computational Intelligence

iw

N

N

x1

x2

A1

A2

B1

B2

1w

2w

1w

1w

2w

y1

y2

f1

f2

f3

f4

bi
as

2w

Σ
Y1

1w
y3

y4

f5

f6

f7

f8

bi
as

2w Y2

Σ

NN

FS
Ajμ

Bjμ

1w

2w

Figure 10.32 MIMO CANFIS (MANFIS) architecture

(a) (b) (c)
n

x1

x2

x

w1

w2

wn

O
∩...

bias

x1

x2

xn

w1

w2

wn

O
∪...

bias

x1

x2

xn

w1

w2

wn

O
×...

bias

Figure 10.33 Different fuzzy neurons. (a) AND (Min) fuzzy neuron; (b) OR (Max) fuzzy neuron; (c)
Product (x) fuzzy neuron

Neural Fuzzy Systems 411

∩

Y

jiw

∪

xn

x1
×

×

×

kjw

In
pu

t l
ay

er

Hidden layers

O
ut

pu
t l

ay
er

l

M

M

∩

∩

M

∩

∩

∩

M

lkwla
ye

r
k

layer j

la
ye

r
i

Figure 10.34 A simple fuzzy-neuron network

Figure 10.33(c) shows a fuzzy product neuron, which performs the product operation of all
the weighted inputs defined by

O = f

(
n×

i=1
xiwi + b

)
(10.133)

f (.) is the activation function. Different types of activation function are discussed in Chapter 3.
Figure 10.34 shows a multilayer fuzzy neural network. The first layer is an input layer which
transfers the inputs xi weighted by wji to the second layer. The second layer consists of AND
(Min) neurons and outputs the maximum of its input values. The third layer consists of product
neurons and outputs the product of all its inputs. The final layer is the output layer, which
aggregates all the inputs using the OR (Max) neuron. It is obvious that training algorithms like
backpropagation can be used for training with a set of input/output data. There have been a
number of applications of fuzzy neural networks reported in the literature (Pedrycz and Rocha,
1993; Tsoukalas and Uhrig, 1997; Zhang and Kandel, 1998).

10.8 MATLAB R© Programs

MATLAB R© provides ANFIS tools to use with the Fuzzy Logic Toolbox. ANFIS is a method
of fuzzy modelling to learn the MF parameters, inference system and rules. The learning
method works similarly to that of neural networks. Using a given input/output data set, the
ANFIS constructs a fuzzy inference system whose membership function parameters are tuned
(adjusted) using either a backpropagation algorithm alone, or in combination with a least-
squares type method. This allows the fuzzy systems to learn from the data. ANFIS is much
more complex than the fuzzy inference systems discussed so far, and is not available for all

412 Computational Intelligence

of the fuzzy inference system options. Specifically, ANFIS only supports Sugeno-type fuzzy
systems, and these must have the following properties:

• First- or zeroth-order Sugeno-type fuzzy system.
• Have a single output, obtained using weighted average defuzzification. All output member-
ship functions must be either linear or constant and must be of the same type.

• Different rules cannot share the same output membership function, namely the number of
output membership functions must be equal to the number of rules.

• Have unity weight for each rule.

An error occurs if the ANFIS structure does not comply with these constraints. Moreover,
ANFIS cannot accept all the customization options which the basic fuzzy inference allows.
That is, ANFIS does not accept customized membership and defuzzification functions. ANFIS
can be accessed either from the command line or through the ANFIS GUI editor. Since the
functionality of the command-line function and GUI editor is similar, further description of the
GUI editor will not be provided in this section. Appendix G presents a description of ANFIS
tools and demonstrates examples of modelling and control using these tools.

References

Adeli, H. and Hung, S.-L. (1995)Machine Learning – Neural Networks, Genetic Algorithms and Fuzzy Systems, John
Wiley & Sons, New York.

Aoyama, A. and Venkatasubramanian, V. (1995) Internal model control using neural networks for modelling and
control of a bio-reactor, Engineering Application and Artificial Intelligence, 8, 689–701.

Aoyama, A., Doyle, F.J. and Venkatasubramanian, V. (1995) Fuzzy neural network approach for nonlinear process
control, Engineering Application and Artificial Intelligence, 8, 483–493.

Aoyama, A., Doyle III, F.J. and Venkatasubramanian, V. (1999) Fuzzy neural network systems techniques and their
applications to nonlinear chemical process control systems. InFuzzy Theory Systems: Techniques and Applications,
C. Leondes (ed.), Academic Press, New York, Vol. II, pp. 485–526.

Arnould, T. and Tano, S. (1994) Definition and formulation of backward-reasoning with fuzzy if . . . then . . . rules.
Proceedings of the 3rd IEEE Conference on Fuzzy Systems (FUZZ-IEEE’94), IEEE World Congress on Compu-
tational Intelligence, Vol. 2, pp. 864–869.

Barto, A.G., Sutton, R.S. and Anderson, C.W. (1983) Neuronlike adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 834–846.

Berenji, H.R. (1992) A reinforcement learning-based architecture for fuzzy logic control, International Journal of
Approximate Reasoning, 6, 267–292.

Berenji, H.R. and Khedkar, P. (1992) Learning and tuning fuzzy logic controllers through reinforcements, IEEE
Transactions on Neural Networks, 3(5), 724–740.

Berenji, H.R. and Khedkar, P. (1993) Clustering for product space for fuzzy inference. IEEE International Conference
on Neural Networks, San Francisco, pp. 1402–1407.

Chen, M. and Linkens, D.A. (1998) A hybrid neuro-fuzzy PID controller, Fuzzy Sets and Systems, 99, 27–36.
Chen, Y.-C. and Teng, C.-C. (1995) A model reference control structure using a fuzzy neural network, Fuzzy Sets and

Systems, 73, 291–312.
Feng, J.C. and Teng, L.C. (1998) An online self constructing neural fuzzy inference network and its applications,

IEEE Transactions on Fuzzy Systems, 6(1), 12–32.
Halgamuge, S.K., Mari, A. and Glesner, M. (1994) Fast perceptron learning by fuzzy controlled dynamic adaptation
of network parameters. In Fuzzy Systems in Computer Science, R. Kruse, J. Gebhardt and R. Palm (eds), Vieweg,
Braunschweig.

Haykin, S. (1999) Neural Networks – A Comprehensive Foundation, Prentice-Hall, Upper Saddle River, NJ.
Hu, Q. and Hertz, D.B. (1994) Fuzzy logic controlled neural network learning, Information Sciences Applications,
2(1), 15–33.

Neural Fuzzy Systems 413

Ishibuchi, H., Fujioka, R. and Tanaka, H. (1993) Neural networks that learn from fuzzy if–then rules, IEEE Transac-
tions on Fuzzy Systems, 1(2), 85–97.

Ishibuchi, H., Morioka, K. and Turksen, I. (1995) Learning by fuzzified neural networks, International Journal of
Approximate Reasoning, 13(4), 327–358.

Jacobs, R.A. (1988) Increased rates of convergence through learning rate adaptation, Neural Networks, 1, 295–307.
Jang, J.-S.R. (1993) ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man

and Cybernetics, 23(3), 665–685.
Jang, J.-S.R. and Sun, C.-T. (1993) Functional equivalence between radial basis function networks and fuzzy inference
systems, IEEE Transactions on Neural Networks, 4(1), 156–159.

Jang, J.-S.R., Sun, C.-T. and Mizutani, E. (1997) Neuro-fuzzy and Soft Computing, Prentice-Hall, Englewood Cliffs,
NJ.

Jin, Y. and Jiang, J. (1999) Techniques in neural network based fuzzy systems identification and their application
to complex systems. In Fuzzy Theory Systems: Techniques and Applications, C. Leondes (ed.), Academic Press,
New York, Vol. I, pp. 111–128.

Jin, Y.C., Jian, J.P. and Zhu, J. (1995) Neural network-based fuzzy identification and its application to modelling and
control of complex systems, IEEE Transactions on Systems, Man and Cybernetics, 25(6), 990–997.

Klassen, M.S. and Pao, Y.-H. (1988) Characteristics of the functional link net: a higher order delta rule net. IEEE
Proceedings of the International Conference on Neural Networks, San Diego, pp. 507–513.

Kosko, B. (1992) Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Learning,
Prentice-Hall, Englewood Cliffs, NJ.

Lin, T.C. and Lee, C.S. (1991) Neural network based fuzzy logic control and decision system, IEEE Transactions on
Computers, 40(12), 1320–1336.

Lin, T.C. and Lee, C.S. (1994)Neural Fuzzy Control Systems with Structure and Parameter Learning,World Scientific,
Singapore.

Mizutani, E. and Jang, J.-S.R. (1995) Coactive neural fuzzy modelling. Proceedings of the International Conference
on Neural Networks, pp. 760–765.

Mizutani, E., Jang, J.-S.R., Nishio, K., Takagi, H. and Auslander, D.M. (1994) Coactive neural networks with
adjustable fuzzy membership functions and their applications. Proceedings of the International Conference on
Fuzzy Logic and Neural Networks, Japan, pp. 581–582.

Nauck, D. and Kruse, R. (1995) NEFCLASS – a neuro-fuzzy approach for the classification of data. Proceedings of
ACM Symposium on Applied Computing, K. George, J.H. Carrol, E. Deaton, D. Oppenheim and J. Hightower
(eds), ACM Press, New York, pp. 461–465.

Nauck, D. and Kruse, R. (1997) Neuro-fuzzy systems for function approximation. 4th International Workshop on
Fuzzy-Neuro Systems, A. Gruel, W. Becker and F. Belli (eds), pp. 316–323.

Nauck, D., Nauck, U. and Kruse, R. (1996) Neuro-fuzzy classification with NEFCLASS. Operation Research Pro-
ceedings 1995, P. Kleinschmidt, A. Bachem, U. Derigs, D. Fischer, U. Leopold-Wildburger and R. Moehring
(eds), Springer-Verlag, Berlin, pp. 294–299.

Nauck, D., Klawonn, F. and Kruse, R. (1997) Foundations of Neuro-Fuzzy Systems, John Wiley & Sons, Chichester.
Oyama, T., Tano, S. and Arnould, T. (1994) A tuning method for fuzzy inferencing with fuzzy input and fuzzy
output. Proceedings of the 3rd IEEE Conference on Fuzzy Systems (FUZZ-IEEE’94), IEEE World Congress on
Computational Intelligence, Vol. 2, pp. 876–881.

Pedrycz, W. and Card, H.C. (1992) Linguistic interpretation of self-organising maps. Proceedings of the IEEE
International Conference on Fuzzy Systems, San Diego, CA, pp. 371–378.

Pedrycz, W. and Rocha, R.A. (1993) Fuzzy set based models of neurons and knowledge-based networks, IEEE
Transactions on Fuzzy Systems, 1(4), 254–266.

Saito, M., Naka, M., Yoshida, K. and Akamine, I. (1990) Estimation of thermal comfort by neural network. Japanese
Association of Refrigeration Annual Conference, pp. 125–128.

Shin, Y.C. and Xu, C. (2009) Intelligent Systems: Modelling, Optimisation and Control, CRC Press, Boca Raton, FL.
Siddique, N.H. (2002) Intelligent control of flexible-link manipulator system, PhD Thesis, Department of Automatic
Control and Systems Engineering, The University of Sheffield, UK.

Sulzberger, S.M., Tschicholg-Gurman, N.N. and Vestli, S.J. (1993) FUN: optimization of fuzzy rule based systems
using neural networks. Proceedings of the IEEE Conference on Neural Networks, San Francisco, pp. 312–316.

Sutton, R.S. (1984) Temporal credit assignment in reinforcement learning. PhD Thesis, University of Massachusetts.
Sutton, R.S. (1988) Learning to predict by method of temporal differences, Machine Learning, 3, 9–44.
Takagi, H. (1992) Applications of neural networks and fuzzy logic to consumer products. The First International
Workshop on Industrial Applications of Fuzzy Control and Intelligent Systems, Texas, pp. 1629–1633.

414 Computational Intelligence

Takagi, H. (1995) Applications of neural networks and fuzzy logic to consumer products. Industrial Applications of
Fuzzy Control and Intelligent Systems, J. Yen, R. Langari and L. Zadeh (eds), IEEE Press, Piscataway, NJ, pp.
93–106.

Takagi, H. (1997) Introduction to fuzzy systems, neural networks and genetic algorithms. In Intelligent Hybrid
Systems, Da Ruan (ed.), Kluwer Academic, Dordrecht, pp. 3–33.

Takagi, H. and Hayashi, I. (1991b) NN-driven fuzzy reasoning, International Journal of Approximate Reasoning,
5(3), 191–212.

Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control, IEEE
Transactions on System, Man and Cybernetics, 15, pp. 116–132.

Tano, S., Oyama, T., Arnould, T. and Bastian, A. (1994) Definition and tuning of unit-based fuzzy systems in FINEST.
FUZZ-IEEE’94, pp. 436–441.

Tano, S., Oyama, T. and Arnould, T. (1996) Deep combination of fuzzy inference and neural network in fuzzy
inference, Fuzzy Sets and Systems, 82(2), 151–160.

Tsoukalas, L.H. and Uhrig, R.E. (1997) Fuzzy and Neural Approaches in Engineering, John Wiley & Sons, New
York.

Tsukamoto, Y. (1979) An approach to a fuzzy reasoning method. In Advances in Fuzzy Set Theory, M. Gupta, R.
Ragade and R. Yager (eds), North-Holland, Amsterdam.

Wang, L.X. and Mendel, J.M. (1992) Fuzzy basis functions, universal approximation, and orthogonal least-squares
learning, IEEE Transactions on Neural Networks, 3(5), 807–814.

Yager, R.R. (1994) Modelling and formulating fuzzy knowledge bases using neural networks, Neural Networks, 7(8),
1273–1283.

Yea, B., Konishi, R., Osaki, T. and Sugahara, K. (1994) Discrimination of many kinds of odor species using fuzzy
reasoning and neural networks, Sensors and Actuators, A: Physical, 45(2), 159–165.

Zhang, Y.-Q. and Kandel, A. (1998) Compensatory neuro-fuzzy systems with fast learning algorithms, IEEE Trans-
actions on Neural Networks, 9(1), 83–105.

Appendix A
MATLAB® Basics

A.1.1 Variables

The prompt (>>) in the command window indicates that MATLAB R© is ready to accept
input. A variable (x or a) is entered at the prompt and MATLAB R© responds in the following
way:

>> x=2.66

x =

2.6600

>> a=x+0.0099

a =

2.6699

Numerical output is suppressed by putting a semicolon (;) at the end of the line. For example:

>> x=2.66;

>> x=x+0.33

x =

2.9900

A.1.2 Input and Output Commands

MATLAB R© supports simple input/output commands. The command ‘input’ can be used for
assigning values to variables. The general form of use is shown as follows:

variable = input('prompt')

The command displays the prompt as a message to the user on the screen, waits for input
from the keyboard and returns the value entered in the variable. The response to the input

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

416 Computational Intelligence

prompt can be anyMATLAB R© expression, which is evaluated using the variables in the current
workspace. For example:

>> x = input('Enter x: ')

Enter x: 5

x =

5

>> y = input('Enter y: ')

Enter y: x+2

y =

7

The input command can also be used to assign a string to a variable. The general form of use
is shown as follows:

variable = input('prompt', 's')

The command returns the entered string as a text variable rather than as a variable name or
numerical value. For example:

>> val = input('Enter y/n: ', 's')

Enter y/n: y

val =

y

MATLAB R© automatically generates a display when commands are executed. In addition to
this automatic display,MATLAB R© has several commands that can be used to generate displays
or outputs. Two commands that are frequently used to generate output are ‘disp’ and ‘fprintf’.
The command ‘disp’ outputs (displays) text or array. The general form is as follows:

disp(x)

disp(x) displays an array. It does not print the array name. If x contains a text string, the string
is displayed. For example:

>> x=5;

>> disp(x)

5

>> x='yes';

>> disp(x)

Yes

The command ‘fprintf’ is slightly complicated. More detail about the command can be found
in MATLAB R© documentation.

A.1.3 Vectors

A vector in MATLAB R© is represented by any variable, e.g., x, y. A row vector x can be
initialized as

>> x = [6 5 4 8]

x =

6 5 4 8

Appendix A: MATLAB® Basics 417

If elements are separated by a semicolon, a column vector y is initialized as

>> y = [1; 2; 3; 4]

y =

1

2

3

4

Individual elements of a vector can be accessed by the vector name followed by an index
running from 1 to n (max number of elements) to point to the elements. For example:

>> x(4)

ans =

8

returning the fourth element of vector x, which is 8.
The transpose of a column vector results in a row vector, and vice versa. For example:

>> z=y'

z =

1 2 3 4

Vectors of the same size can be added or subtracted, where addition is performed component-
wise. However, for multiplication, specific rules must be followed in order to obtain the
correct resulting values. The operation of multiplying a vector x by a scalar k is performed
component-wise. For example:

>> x=[1 3 -5];

>> k=5;

>> z=k*x

z =

5 15 -25

The operator ‘.*’ performs element-by-element operation. For example:

>> x.*z % x and z are both row vectors

ans =

5 45 125

The inner product or dot product of two vectors x and z (both row vectors) is a scalar quantity.
The inner product is given by

>> s=x*z'

s =

175

Various norms (measures of size) of a vector can be obtained. For example, the Euclidean
norm is the square root of the inner product of the vector and itself. For example:

>> N=norm(z)

N =

29.5804

418 Computational Intelligence

The angle between two vectors x and y is defined by cos θ = x∗ y
‖x‖∗‖y‖ , where x∗y is the inner

product and ‖x‖, ‖y‖ are the norms of the vectors. The angle between the vectors is calculated
as follows:

>> x=[1 6 9];

>> y=[2.5 3.1 7.0];

>> theta=acos(x'*y/(norm(x)*norm(y)))

theta =

1.5422 1.5354 1.4907

1.3985 1.3566 1.0700

1.3107 1.2462 0.7668

The zero vector is a vector with all components equal to zero. To generate a zero vector of size
4, use

>> Z=zeros(1,4)

Z =

0 0 0 0

The sum vector is a vector with each component equal to one. To generate a sum vector of
size 4, use

>> E=ones(1,4)

E =

1 1 1 1

In MATLAB R©, the colon (:) can be used to generate a row vector. For example, x = 1 : 5
generates a row vector of integers from 1 to 5:

>> x=1:5

x =

1 2 3 4 5

For increments other than unity, any value can be used as follows:

>> z=0:pi/3:pi

z =

0 1.0472 2.0944 3.1416

For negative increments:

>> x=5.5:-1.5:0

x =

5.5000 4.0000 2.5000 1.0000

A.1.4 Matrices

A matrix is represented by a variable name (e.g., w), elements in each row are separated by
blanks or commas. A semicolon must be used to indicate the end of a row. If a semicolon is

Appendix A: MATLAB® Basics 419

not used, each row must be entered in a separate line. Matrix elements can be any MATLAB R©

expression. For example, a 3× 3 matrix can be initialized as
>> w = [4 5 6; 0 4 7; 3 5 1]

w =

4 5 6

0 4 7

3 5 1

>> w=[2*2 5 3*2; 0 2*2 7; 3 5 1]

w =

4 5 6

0 4 7

3 5 1

Individual elements of a matrix can be accessed by the matrix name followed by two indices
running from 1 to n (max row) and 1 tom (max column) to point to the elements. For example,
w (2, 3) returns the element on row 2 column 3, which is 7:

>> w(2,3)

ans =

7

The entire row of a matrix can be addressed by means of the symbol (,:). For example, w (2, :)
returns the second row of the matrix w:

>> r2w=w(2,:)

r2w =

0 4 7

Similarly, the entire column of the matrix can be accessed by means of (:,). For example,
w (:, 2) returns the second column of the matrix w:

>> c2w=w(:,2)

c2w =

5

4

5

MATLAB R© has dozens of functions that create different kinds of matrices. Pascal(n) creates
an n × n symmetric matrix. For example:

>> A=pascal(3)

A =

1 1 1

1 2 3

1 3 6

Magic(n) creates an n × n non-symmetric matrix. For example:

>> B=magic(3)

B =

8 1 6

3 5 7

4 9 2

420 Computational Intelligence

Addition and subtraction of matrices is defined, just as it is for vectors, element by element.
Addition and subtraction require both matrices to have the same dimension or one of them to
be a scalar. For example:

>> X=A+B

X =

9 2 7

4 7 10

5 12 8

>> Y=B-A

Y =

7 0 5

2 3 4

3 6 -4

Matrix B can be transposed (rows will convert to columns) by using the transpose operator.
For example:

>> B'

ans =

8 3 4

1 5 9

6 7 2

The matrix product C = A × B is defined when the column dimension of A is equal to the
row dimension of B. If A is m × p and B is p × n, their product C is m × n. MATLAB R© uses
a single asterisk to denote matrix multiplication. For example:

>> C=A*B

C =

15 15 15

26 38 26

41 70 39

>> D=B*A

D =

15 28 47

15 34 60

15 28 43

It can be seen from the above two products that A∗ B �= B∗ A.
An identity matrix has ones in the diagonal and zeros elsewhere. Generally, I is used to

denote the identity matrix. These matrices have the property that AI = I A = A. The function
eye(n) returns an n × n identity matrix. For example:

>> I=eye(3)

I =

1 0 0

0 1 0

0 0 1

Appendix A: MATLAB® Basics 421

The determinant of a square matrix is computed by the function det(). For example, the

determinant of A =
⎡
⎣
1 1 1
1 2 3
1 3 6

⎤
⎦ is computed by

>> d=det(A)

d =

1

If the determinant of a matrix is not equal to zero, the matrix is called non-singular. If A
is a square and non-singular matrix, then the equations Ax = I and x A = I have the same
solution x . This solution is called the inverse of A and denoted A−1. The inverse of a matrix
is computed by the function inv(). For example:

>> X=inv(A)

X =

3 -3 1

-3 5 -2

1 -2 1

Rectangular matrices do not have determinants or inverses. That means at least one of the
equations Ax = I and x A = I does not have a solution. In that case, the Moore–Penrose
pseudo-inverse is to be computed for rectangular matrices. MATLAB R© provides the function

pinv() for computing pseudo-inverses. For example, the pseudo-inverse of M =

⎡
⎢⎢⎣
1 2 3
2 3 4
5 1 3
1 2 6

⎤
⎥⎥⎦

is computed by

>> Z=pinv(M)

Z =

-0.0214 0.0129 0.2208 -0.1083

0.2390 0.4566 -0.1618 -0.3430

-0.0600 -0.1640 0.0182 0.2969

A.1.5 Polynomials

MATLAB R© provides functions for standard polynomial operations such as polynomial roots,
evaluation and differentiation. Advanced operations such as curve fitting and partial fraction
expansion are also supported by MATLAB R©. Polynomials are represented by row vectors
containing coefficients ordered by descending powers. For example, the polynomial p(x) =
x3 − 2x − 5 is represented by the row vector p = [1 0 −2 −5].
The solutions to the polynomial (roots) can be found using the function roots(). There is

one real solution and two imaginary solutions to the polynomial. For example:

>> r=roots(p)

r =

2.0946

-1.0473 + 1.1359i

-1.0473 - 1.1359i

422 Computational Intelligence

The polynomial can be evaluated at a specific value. The function polyval() evaluates the
polynomial at x = 5.9. For example:

>> p1=polyval(p,5.9)

p1 =

188.5790

The derivative of the polynomial can also be found using the function polyder(). For example:

>> p_dash=polyder(p)

p_dash =

3 0 -2

The derivative of the polynomial function can be reconstructed from the vector as ṗ(x) =
3x2 − 2.

A.1.6 Control Structures

MATLAB R© has four control structures:

• if statement,
• for loop and
• while loop.

A.1.6.1 The if . . . end structure

MATLAB R© supports the following variants of the ‘if’ construct:

if...end

if...else...end

if...elseif...else...end

The general form of the ‘if’ statement is as follows:

if expression

statements

elseif

statements

else

statements

end

The following examples of solutions to the well-known quadratic equation will make the usage
of the three constructs clear.

Example A.1.1

%Example A.1.1

%Control construct if...end

%Quadratic equation - discr<0

Appendix A: MATLAB® Basics 423

a=1;b=2;c=3;

discr = b*b - 4*a*c;

if discr < 0

disp('Warning: Discriminant is negative.')

disp('Solutions are imaginary');

end

Example A.1.2

%Example A.1.2

%Control construct if...else...end

%Quadratic equation - discr<0 or discr>0

discr = b*b - 4*a*c;

if discr < 0

disp('Warning: Discriminant is negative.')

disp('Solutions are imaginary');

else

disp('Discriminant is positive.')

disp('There are two real solutions')

end

Example A.1.3

%Example A.1.3

%Control construct if...elseif...else...end

%Quadratic equation - discr<0, discr==0 or discr>0

discr = b*b - 4*a*c;

if discr < 0

disp('Warning: Discriminant is negative.')

disp('Solutions are imaginary');

elseif discr == 0

disp('Discriminant is zero.');

disp('There are two identical solutions')

else

disp('Discriminant is positive.')

disp('There are two real solutions')

end

A.1.6.2 The for . . . end structure

In the ‘for . . . end’ structure a sequence of commands (or statements) is executed repeatedly,
a fixed and predetermined number of times. The general form of the ‘for . . . end’ structure is
as follows:

for variable = expression

statements

end

424 Computational Intelligence

Usually, the expression is a vector of the form

initial_value : step : end_value.

A simple example of the ‘for’ loop is

for i = 1: 0.5: 5

x=i*i

end

It is a good idea to indent the loops for readability, especially when they are nested. The
following example demonstrates a nested loop that creates a 5× 5 symmetric matrix A with
(i, j) element i/j for j ≥ i .

Example A.1.4

%Example A.1.4

n = 5;

A = eye(n);

for j=2:n

for i=1:j-1

A(i,j)=i/j

A(j,i)=i/j

end

end

A.1.6.3 The while . . . end structure

The ‘while . . . end’ structure is used when the number of iterations is not specified. The
looping continues until the expression is satisfied. The general form of the ‘while’ loop is as
follows:

while expression

statements

end

The statements are executed as long as the expression is true. For example:

x = 1

while x <= 10

x = 3*x

end

Care must be taken when defining the condition for the loop. If it is not well-defined, it will
enter into an infinite loop, i.e., the looping will continue indefinitely. Other control statements
include ‘return’, ‘continue’, ‘switch’, etc. More detailed information about these commands
can be found in MATLAB R© documentation.

A.1.7 Reading Data Files

MATLAB R© provides many ways to load data from disk files into workspace (the process of
importing data) and to save workspace variables to disk files (the process of exporting data).

Appendix A: MATLAB® Basics 425

The command ‘load’ reads workspace variables from disk. For example, loading variables
from the disk file (e.g., ‘signal.dat’) can be done in the following way:

>> load d:\signal.dat;
d : \specifies the path and the semicolon stops displaying values on the screen. The loaded
data can be assigned to any other variable. For example:

>>s = signal;

Only specified variables from the data file can be read. For example:

>> load signal x y z

The command above just loads the specified variables x, y and z.
The load command can be used in functional form, such as load(‘file name’). For example:

>> s=load(' d:\signal.dat');
s = load (‘. . .’) returns the contents of the data file in variable s. If the data file is a MAT-file,
s is a structure containing fields matching the variables. If the data file is an ASCII file, s is an
array.

A.1.8 Plotting Functions

MATLAB R© has an excellent set of graphic tools for representing experimental results in 2-D
and 3-D plots. Plotting a given data set or the results of a computation is possible with very few
commands. The function plot() is used to plot 2-D figures; it has different forms depending on
the input arguments. The general form is as follows:

plot(y)

plot(x,y)

plot(x,y,LineSpec,...)

plot(y) plots the columns of y versus their index, plot (x, y) plots vector x versus vector y,
plot (x, y,LineSpec, . . .) plots all lines defined by x, y, LineSpec. If x or y is a matrix, then the
vector is plotted versus the rows or columns of the matrix, whichever line up. If x is a scalar
and y is a vector, length(y) disconnected points are plotted.
Various line types, plot symbols and colours may be used with plot (x, y, ‘s’), where s is

a character string made up of one element from any or all the columns in Table A.1.1. For
example:

>>plot(x, y, 'c+:') %plots a cyan dotted line with a plus at each

data point;

>>plot(x, y, 'bd') %plots a blue diamond at each data point

but does not draw any line.

The title, labels for x-axis and y-axis and legend of a figure can also be created by

xlabel('x-axis')

ylabel('y-axis')

title('Title of plot')

legend('Fist plot', 'Second plot')

426 Computational Intelligence

Table A.1.1 Plot symbols for colour, marker and line types

Symbol Colour Symbol Marker Symbol Marker Symbol Line type

b blue . point v triangle(down) - solid
g green o circle ˆ triangle(up) : dotted
r red x x-mark < triangle(left) -. dashdot
c cyan + plus > triangle(right) – dashed
m magenta * star p pentagon
y yellow s square h hexagon
k black d diamond

–4 –3 –2 –1 0 1 2 3 4
–3

–2

–1

0

1

2

3

x values

y
va

lu
es

Example of multiple plots

Actual

Scaled

Figure A.1.1 2-D multiple plots of trigonometric function

A sample code of a 2-D plot is given in Example A.1.5, which creates a 2-D plot shown in
Figure A.1.1.

Example A.1.5

%Example A.1.5

%Example of plot functions

x = -pi:pi/20:pi;

y1 = tan(sin(x)) - sin(tan(x));

y2 = 0.5*(tan(sin(x)) - sin(tan(x)));

plot(x,y1,'-ks',x,y2,'-ko','LineWidth',1,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','k',...

'MarkerSize',3)

Appendix A: MATLAB® Basics 427

–1
–0.5

0
0.5

1

–1

–0.5

0

0.5

1
0

10

20

30

40

sin(t)

Plot of 3-D helix

cos(t)

t

Figure A.1.2 3-D plot in MATLAB R©

xlabel('x values')

ylabel('y values')

legend('Actual','Scaled')

grid

title('Example of multiple plots')

MATLAB R© also provides functions for displaying a 3-D plot of a set of data points. The
function plot3() is used to plot 3-D figures. The general form is as follows:

plot3(X, Y, Z, LineSpec,...)

where X, Y, Z are vectors or matrices. It plots one or more lines in 3-D space through the
points whose coordinates are the elements of X, Y, Z. A sample code of a 3-D plot is given in
Example A.1.6, which creates a 3-D plot shown in Figure A.1.2.

Example A.1.6

%Example A.1.6

%Example of 3-D plot

t = 0:pi/50:10*pi;

plot3(sin(t),cos(t),t,'-k')

grid on

axis square

xlabel('sin(t)')

428 Computational Intelligence

–3
–2

–1
0

1
2

3

–2

0

2

–10

–5

0

5

X

Mesh and contour plot

Y

Z

Figure A.1.3 Mesh and contour plot

ylabel('cos(t)')

zlabel('t')

title('Plot of 3-D helix')

MATLAB R© also provides other powerful 3-D plot functions such as mesh, surface and contour
plots. The functions mesh(.), meshc(.) and meshz(.) create parametric surfaces specified by
X, Y and Z, with colour specified by C. mesh (X, Y, Z) draws a mesh with colour, which is
proportional to surface height and determined by Z. If X and Y are vectors of dimension n and
m, respectively, the dimension of Z is [m, n]. If X (j) and Y (i) are matrices, then X (j), Y (i)
and Z (i, j) are the intersections of the grid lines. meshc(.) draws a contour plot beneath the
mesh. meshz(.) draws a curtain plot (i.e., a reference plane) around the mesh. A sample code
for a mesh and contour plot is given in Example A.1.7, which creates a 3-D mesh and contour
plot shown in Figure A.1.3.

Example A.1.7

%Example A.1.7

%Example of mesh and contour plot

[X,Y] = meshgrid(-3:.125:3);

Z = peaks(X,Y);

meshc(X,Y,Z);

axis([-3 3 -3 3 -10 5])

grid on

xlabel('X')

ylabel('Y')

zlabel('Z')

title('Mesh and contour plot')

Appendix A: MATLAB® Basics 429

A.1.9 Mathematical Functions

MATLAB R© offers a wide range of built-in mathematical functions supporting advanced tech-
nical computing. Trigonometric and exponential functions such as sin(), cos(), tan(), log() and
exp() can be used in MATLAB R©. For example:

sin(x) is the sine of the elements of x,
cos(x) is the cosine of the elements of x,
tan(x) is the tangent of the elements of x,
log(x) is the natural logarithm, i.e., log base e.

To find out how many bits are required to represent the decimal number 128 as a binary
number, use the log base 2 function as follows:

>> log2(128)

ans =

7

To evaluate sin(x2 + 5) where x = [1 2 3], use the sin() function in the following way:

>> x=[1 2 3];

>> sin(x.ˆ2+5)

ans =

-0.2794 0.4121 0.9906

Here, (.ˆ) is the array exponential operator. This enables the function to accept x as an array.
Table A.1.2 lists some commonly used mathematical functions, where variables x and y can

be numbers, vectors or matrices.

A.1.10 User-Defined Functions

The first line in a function should begin with the function definition, with a list of inputs and
outputs. This line distinguishes a function M-file from a script M-file. The general format is
as follows:

function [output variables] = name (input variables)

body of function

Table A.1.2 MATLAB R© mathematical functions

Function Description Function Description

cos(x) cosine abs(x) absolute value
sin(x) sine sign(x) signum function
tan(x) tangent max(x) maximum value
acos(x) arc cosine min(x) minimum value
asin(x) arc sine ceil(x) round towards +∞
atan(x) arc tangent floor(x) round towards −∞
exp(x) exponential round(x) round to nearest integer
sqrt(x) square root rem(x) remainder after division
log(x) natural logarithm angle(x) phase angle
log10(x) common logarithm conj(x) complex conjugate

430 Computational Intelligence

‘name’ should be a valid function name, input variables are the function arguments and output
variables are the values to be returned by the function. For example:

Example A.1.8

%Example A.1.8

%Definition of a function

function z = fun (x,y)

u = 5*x;

z = u+6*y.ˆ2;

The function can be called from the command prompt with actual arguments. For example:

>> z=fun(3.33,7.5)

z =

354.1500

Mathematical functions can be represented by expressing them as MATLAB R© functions in
M-files or as inline objects. For example, consider the function described by

f (x) = 1

(x − 0.3)2 + 0.01 + 1

(x − 0.9)2 + 0.04 − 6

The inline object can be created and evaluated as follows:

>> f=1./((x-0.3).ˆ2+0.01)+1./((x-0.9).ˆ2+0.04)-6;

>> f(2.0)

ans =

-5.8261

This function can be used as input to any function as well as being defined in an M-file named
humps.m. For example:

Example A.1.9

%Example A.1.9

%Example of humps function

function y=humps(x)

y=1./((x-0.3).ˆ2+0.01)+1./((x-0.9).ˆ2+0.04)-6;

It is also common to use a handle for functions defined using @ as follows:

fh=@humps;

The function can be evaluated at any point. For example:

>> feval(fh,2.0)

ans =

-4.8552

MATLAB R© also supports plotting mathematical functions between a given set of values using
the function fplot(). In Example A.1.10, the ‘humps’ function is plotted within the interval of
[–5 5]. The plot is shown in Figure A.1.4.

Appendix A: MATLAB® Basics 431

–5 –4 –3 –2 –1 0 1 2 3 4 5
–20

0

20

40

60

80

100
Humps function

x values

f(
x)

 v
al

ue
s

Figure A.1.4 Plot of humps function

Example A.1.10

%Example A.1.10

%Plot of Humps function

fplot(fh,[-5 5],'k')

grid

xlabel('x values')

ylabel('f(x) values')

title('Humps function')

A.1.11 M-file Scripting

MATLAB R© allows writing lines of code using MATLAB R© functions and statements in a
file and saving it as an M-file. The M-file can be run from the command prompt. M-file
scripts operate on existing data in the workspace, or they can create new data on which
to operate. Any variables that the script creates remain in the workspace. For example, the
following code calculates the radius of several trigonometric functions for angles, then creates
a series of polar plots. The code is saved in an M-file named flower.m to be run from the
command prompt.

Example A.1.11

%Example A.1.11: flower.m

%Example of M-file script for flower petal

theta=-pi:0.01:pi

r(1,:)=2*sin(5*theta).ˆ2;

r(2,:)=cos(10*theta).ˆ3;

432 Computational Intelligence

 1

 2

30

210

60

240

90

270

120

300

150

330

180 0

Petals - Flower 1

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180 0

Petals - Flower 2

 0.5

 1

30

210

60

240

90

270

120

300

150

330

180

Petals - Flower 3

 2.5

 5

30

210

60

240

90

270

120

300

150

330

180 00

Petals - Flower 4

Figure A.1.5 Output of the M-file

r(3,:)=sin(theta).ˆ2;

r(4,:)=5*cos(3.5*theta).ˆ3;

%Polar makes a polar plot using angle and radius

subplot(221)

polar(theta, r(1,:),'k')

title('Petals - Flower 1')

subplot(222)

polar(theta, r(2,:),'k')

title('Petals - Flower 2')

subplot(223)

polar(theta, r(3,:),'k')

title('Petals - Flower 3')

subplot(224)

polar(theta, r(4,:),'k')

title('Petals - Flower 4')

The M-file flower.m can now be run from the command prompt, which will generate the
petals of flowers as shown in Figure A.1.5.

>> flower

The remaining appendices will illustrate and demonstrate different ways of writing M-files for
a wide range of applications.

Appendix B
MATLAB® Programs for
Fuzzy Logic

B.1.1 Membership Functions

The Fuzzy Logic Toolbox provides a number of membership functions. The most widely used
MFs are triangular, Gaussian, bell-shaped and trapezoidal. trimf(), trapmf(), gaussmf() and
gbellmf() are built-in functions for triangular, trapezoidal, Gaussian and bell-shapedMFs. The
general forms of use with parameters are described below:

y = trimf(x,[a b c])

y = trapmf(x,[a b c d])

y = gaussmf(x,[a c]),

y = gbellmf(x,[a b c])

Different parametric membership functions are discussed in Section 2.4 of Chapter 2. The
triangular membership function trimf() depends on three parameters a, b and c. The parameters
a, b and c locate the ‘feet’ of the triangle and the parameter c locates the peak. The trapezoidal
function trapmf() depends on four scalar parameters a, b, c and d. The parameters a and
d locate the ‘feet’ of the trapezoid and the parameters b and c locate the ‘shoulders’. The
symmetric Gaussian membership function gaussmf() depends on two parameters a and c. The
parameter c is the centre of the function and the width is determined by the parameter a of
the Gaussian function. The generalized bell function gbellmf() depends on three parameters
a, b and c. The parameter b is usually positive. The parameter c locates the centre and the
parameter a determines the width of the membership function. Sample plots of these MFs are
shown in Figure B.1.1.
A second set of built-in MFs sigmf(), dsigmf(), psigmf(), pimf(), zmf() and smf() are sig-

moidal, difference sigmoidal, product sigmoidal,�-shaped, Z-shaped and S-shaped functions,

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

434 Computational Intelligence

0 5 10
0

0.5

1

(a)
0 5 10

0

0.5

1

(b)

(c) (d)
0 5 10

0

0.5

1

0 5 10
0

0.5

1

Figure B.1.1 (a) Triangular MF= [3 6 8]; (b) Gaussian MF= [2 5]; (c) Bell-shaped MF= [2 3 5] and
(d) Trapezoidal MF = [1 5 7 9]

respectively. The parameterized general forms are described below:

y = sigmf(x,[a c])

y = dsigmf(x,[a1 c1 a2 c2])

y = psigmf(x,[a1 c1 a2 c2]),

y = pimf(x,[a b c d])

y = zmf(x,[a b])

y =smf(x,[a b])

The sigmoidal membership function sigmf() depends on the two parameters a and c and is

given by f (x, a, c) = 1

1+ e−a(x−c)
. The parameter c is the centre of the sigmoidal function.

The sign of the parameter a determines the spread of the sigmoidal membership function, i.e.,
whether it inherently open to the right or to the left. Thus, the parameter a is appropriate for
representing concepts of linguistic hedges such as ‘very large’ or ‘more or less small’.
The difference sigmoidal function dsigmf() depends on four parameters a1,c1, a2 and c2 and

is the difference between two sigmoidal functions defined by f1 (x, a1, c1)− f2 (x, a2, c2) =
1

1+ e−a1(x−c1)
− 1

1+ e−a2(x−c2)
. The product sigmoidal function psigmf() is simply the prod-

uct of two sigmoidal curves defined by

f1 (x, a1, c1) ∗ f2 (x, a2, c2) = 1

1+ e−a1(x−c1)
∗ 1

1+ e−a2(x−c2)
.

The parameters of dsigmf() and psigmf() are listed in the order [a1 c1 a2 c2]. The �-shaped
membership function pimf() is a spline-based curve. It is named�-shape because of its shape.

Appendix B: MATLAB® Programs for Fuzzy Logic 435

0 5 10
0

0.5

1

(a)
0 5 10

0

0.5

1

(b)

0 5 10
0

0.5

1

(c)
0 5 10

0

0.5

1

(d)

Figure B.1.2 (a) SigmoidalMF= [2 4]; (b) Difference sigmoidalMF= [5 2 5 7]; (c) Product sigmoidal
MF = [2 3 −5 8] and (d) �-shaped MF = [1 4 5 10]

The parameters a and d locate the ‘feet’ of the curve, while b and c locate its ‘shoulders’. Plots
of sigmf(), dsigmf(), psigmf() and pimf() MFs on a vector x are shown in Figure B.1.2.
There are also two spline-based functions zmf() and smf(). They are so named because

of their Z-shape and S-shape (also called Zadeh’s S-function) (Driankov et al., 1993). The
parameters a and b locate the extremes of the sloped portion of the curve. Plots of S-shaped
and Z-shaped functions are shown in Figure B.1.3. A sample of MATLAB R© code is given in
Example B.1.1 and Example B.1.2 for difference sigmoidal and �-shaped functions below.

0 5 10
0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

(a)
0 5 10

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

(b)

Figure B.1.3 (a) S-shaped MF = [1 10]; (b) Z-shaped MF = [1 10]

436 Computational Intelligence

Example B.1.1

x=0:0.1:10;

y=dsigmf(x,[5 2 5 7]);

plot(x,y)

xlabel('dsigmf, P=[5 2 5 7]')

Example B.1.2

x=0:0.1:10;

y=pimf(x,[1 4 5 10]);

plot(x,y)

xlabel('pimf, P=[1 4 5 10]')

B.1.2 Fuzzy Inference

To build a fuzzy system entirely from the command line, the following commands are used:
newfis(), addvar(), addmf(), addrule(). MATLAB R© supports only Mamdani- and Sugeno-type
inference systems. To perform a fuzzy inference calculation, the evalfis() command is used.
To view the control surface, the gensurf() command is used.
There are two types of fuzzy inference system that can be implemented in the Fuzzy Logic

Toolbox: Mamdani-type and Sugeno-type. newfis() creates a new fuzzy inference system.
newfis() can be used to create a Mamdani-type or Sugeno-type FIS structure and can be used
in the following general format:

A = newfis(FIS_Name, [FIS_Type], [AND_Method], [OR_Method],

[Imp_Method], ...

[Agg_Method], [Defuzz_Method]) creates a FIS structure for a

Mamdani or Sugeno-style system with the name FIS_Name

The other six optional arguments are as follows: FIS_Type, which specifies the FIS structure
of ‘Mamdani’ or ‘Sugeno’ type and by default is Mamdani-type; AND_Method, OR_Method,
Imp_Method, Agg_Method and Defuzz_Method, which specify the methods for AND, OR,
implication, aggregation and defuzzification, respectively.
For example:

A=newfis ('NewSys', 'mamdani');

A=newfis ('NewSys', 'sugeno');

Once an FIS is created, addvar() defines input or output variables for an FIS structure with
respective input and output ranges. The general form of the command is

A = addvar (A, 'Var_Type', 'Var_Name', Var_Bounds)

addvar() has four arguments in this order. A is the name of a FIS structure created by newfis()
in the MATLAB R© workspace. A string representing the type of the variable is specified by
Var_Type and can be ‘input’ or ‘output’. Var_Name is a string representing the name of the
variable, e.g., ‘X1’, ‘Y2’. Var_Bounds is a vector describing the range values for the variables,
e.g., [–5 11]. Indices are applied to variables in the order in which they are added, so the first
input variable added to a system will always be known as input variable number one for that
system. Input and output variables are numbered independently.

Appendix B: MATLAB® Programs for Fuzzy Logic 437

For example:

A=newfis ('NewSys');

A=addvar (A,'input','X1',[10 20]);

A=addvar (A,'input','X2',[-7 9]);

A=addvar(A,'output','Y1',[-5 5]);

A=addvar(A,'output','Y2',[-15 10]);

Once the input/output variables are defined, addmf() adds membership functions to the FIS
structure. The general format of the command is as follows:

A = addmf (A, 'Var_Type', Var_Index, 'mfName', 'mfType', mfParams)

A membership function can only be added to a variable in an existing FIS structure in the
MATLAB R© workspace. Indices are assigned to membership functions in the order in which
they are added, so the first membership function added to a variable will always be known as
membership function number one for that variable. Amembership function cannot be added to
input variable number two of a system if only one input has been defined. The function requires
six input arguments in this order. A is the FIS structure name in the workspace. Var_Type is
a string ‘input’ or ‘output’ representing the type of variable to be added to the membership
function. Var_Index is the index of the variable. String ‘mfName’ represents the name of the
membership function described in Section 2.14.1 of Chapter 2. String ‘mfType’ is the type
of the new membership function, such as ‘gaussmf’, ‘trimf’, etc. mfParam is the vector of
parameters that specify the membership function, e.g., a triangular membership function has
three parameters [–3, 1, 5], a Gaussian membership function has two parameters [0.5, 5].
For details of different parameters of membership functions, see Sections 2.4 and 2.15.1 in
Chapter 2.
For example:

A = newfis ('NewSys');

A = addvar (A,'input','X1',[-10 10]);

A = addvar (A,'input','X2',[-5 15]);

A = addvar(A,'output','Y',[-5 5]);

A = addmf(A,'input',1,'nagative','gaussmf',[1.5 -5]);

A = addmf(A,'input',1,'zero','gaussmf',[1.5 5]);

A = addmf(A,'input',2,'small','gaussmf',[1.5 0]);

A = addmf(A,'input',2,'medium','gaussmf',[1.5 10]);

A = addmf(A,'output',1,'small','gaussmf',[1.5 0]);

A = addmf(A,'output',1,'medium','gaussmf',[1.5 2.5]);

B.1.3 Fuzzy Rule Base

Once the FIS structure is defined with appropriate variables and membership functions, a rule
base has to be defined. addrule() adds a list of rules to an FIS structure. The following general
form is used:

A = addrule(A, ruleList)

addrule() has two arguments. The first argument is the name of the FIS structure. The second
argument is a matrix of one or more rows, each of which represents a given rule. The format

438 Computational Intelligence

Table B.1.1 Rule base of a simple fuzzy system

x2

x1 mf1 mf2

mf1 mf1 mf2
mf2 mf2 mf1

that the rule list matrix must take is very specific. If there are m inputs to a system and n
outputs, there must be exactly m + n + 2 columns to the rule list. The entries in the first m
columns refer to the inputs of the system. Each column contains a number that refers to the
index of the membership function for that variable. The entries in the next n columns refer
to the outputs of the system. Each column contains a number that refers to the index of the
membership function for that variable. The m + n + 1 column contains the weight that is to
be applied to the rule. The weight must be a number between 0 and 1, and is generally left as
1. The m + n + 2 column contains a 1 if the fuzzy operator for the rule’s antecedent is AND.
It contains a 2 if the fuzzy operator is OR. For example, if the FIS structure A has two inputs
x1, x2 and one output y with each input/output having two membership functions mf1 and mf2,
the rule base will look like Table B.1.1.
The first two rules (first row of rule table) can be described as:

If x1 is mf1 and x2 is mf1 Then y is mf1 (rule weight 1)

If x1 is mf1 and x2 is mf2 Then y is mf2 (rule weight 1)

The above rule list can be written as a rule matrix below:

ruleList = [1 1 1 1 1

1 2 2 1 1];

The rule matrix is then added to the FIS system using the addrule() function:

A = addrule(A, ruleList)

The fuzzy inference diagram for an FIS is stored in a file; ‘A.FIS’ can be viewed by invoking
the rule viewer function ruleview(). This is used to view the entire implication process from
beginning to end. You can move around the line indices that correspond to the inputs and then
watch the system readjust and compute the new output.
For example:

ruleview('A')

B.1.4 Defuzzification

The Fuzzy Logic Toolbox provides a number of defuzzificationmethods. Themost widely used
methods are centroid of area, bisector of area, mean value of maximum, smallest (absolute)
value of maximum and largest (absolute) value of maximum. The following general form is
used for the defuzz() function in MATLAB R©:

df = defuzz (x, mf, type)

Appendix B: MATLAB® Programs for Fuzzy Logic 439

defuzz (x,mf, type) returns a defuzzified value df of a membership function mf positioned at
the associated variable value x, using one of several defuzzification strategies, according to
the specified type. The variable type can be one of the following:

• ‘centroid’ for centroid of area
• ‘bisector’ for bisector of area
• ‘mom’ for mean value of maximum
• ‘som’ for smallest (absolute) value of maximum
• ‘lom’ for largest (absolute) value of maximum.

If type is not specified, the Fuzzy Logic Toolbox assumes it to be a user-defined function. x
and mf are passed to this function to generate the defuzzified output value.

Example B.1.3

x = -10:0.1:10;

%Trapezoidal MF is defined for defuzzification

mf = trapmf(x,[-10 -8 -4 7]);

%Defuzzification of trapezoidal MF is carried out using different

methods supported by

%MATLAB toolbox

dfc = defuzz(x,mf,'centroid');

dfb = defuzz(x,mf,'bisector ');

dfm = defuzz(x,mf,'mom');

dfs = defuzz(x,mf,'som');

dfl = defuzz(x,mf,'lom');

B.1.5 Simulation of FIS

evalfis() simulates the FIS for the input data and returns the output data. The general form is

Y = evalfis (X, A)

X is the input data matrix of M × N dimension. Each row of the matrix is a particular input
vector. Y is the return output data, an M × L matrix, each row being a particular output vector.
For example, if an FIS structure A has two inputs x1 and x2 with x1 = 4 and x2 = 9, then the
FIS A can be simulated using the function evalfis().
For example:

Y = evalfis ([4 9], A)

Example B.1.4 The membership functions for x1, x2 and y of a Mamdani-type fuzzy
system are defined within the universes of discourse [2 11], [4 14] and [1 9], respectively and
are shown in Figure B.1.4. For each of the variables, the MFs are taken to be {A1, A2}, {B1,
B2} and {C1, C2}.

The rule base of the Mamdani-type fuzzy inference system is shown in Table B.1.2.

440 Computational Intelligence

1

2 5 11

A1

μ μ μ

A2

x1

.5

8

1

4 9 14

B1 B2

x2

.5

1

1 5 9

C1 C2

y

.5

Figure B.1.4 MFs for x1, x2 and y

Table B.1.2 Rule base for Mamdani-type FLC

X2

X1 B1 B2

A1 C1 C2
A2 C2 C1

Simulate the Mamdani-type fuzzy system for initial conditions x1(0) = 4 and x2(0) = 8:

%Mamdani-type Fuzzy Inferencing

clear all;

close all;

sys=newfis('ExampleB.1.4');

%Inputs ---

%Define input variable x1 to FIS within interval [2 11]

sys=addvar(sys,'input', 'x1', [2 11]);

%Define input variable x2 to FIS within interval [4 14]

sys=addvar(sys,'input', 'x2', [4 14]);

%Define Triangular MFs A1 and A2 for input x1

sys=addmf(sys,'input',1,'A1','trimf',[2 5 8]);

sys=addmf(sys,'input',1,'A2','trimf',[5 8 11]);

%Define Trinagular MFs B1 and B2 for input x2

sys=addmf(sys,'input',2,'B1','trimf',[4 4 9]);

sys=addmf(sys,'input',2,'B2','trimf',[4 9 14]);

%outputs---

%Define output variable y to FIS within interval [1 9]

sys=addvar(sys,'output', 'y', [1 9]);

%Define MFs C1 and C2 for output y

sys=addmf(sys,'output',1,'C1','zmf',[1 9]);

sys=addmf(sys,'output',1,'C2','smf',[1 9]);

Appendix B: MATLAB® Programs for Fuzzy Logic 441

%Rules---

%Define rules and add to FIS

rule=[1 1 1 1 1;

1 2 2 1 1;

1 1 2 1 1;

2 2 1 1 1];

sys=addrule(sys,rule);

%Plot--

figure(1);

plotfis(sys);

figure(2)

ruleview(sys)

%Perform fuzzy inference for x1=4 and x2=8

y=evalfis([4 8], sys)

%------end of program----------------------------------

Example B.1.5 The membership functions A1, A2, B1, B2 for the inputs x1 and x2 of a
Takagi–Sugeno-type fuzzy system are defined by Gaussian functions:

μA1 (x1) = exp

[
−1
2

(
x1 − m1

σ1

)2]
, μA2 (x1) = exp

[
−1
2

(
x1 − m2

σ2

)2]
,

μB1 (x2) = exp

[
−1
2

(
x2 − m3

σ3

)2]
, μB2 (x2) = exp

[
−1
2

(
x2 − m4

σ4

)2]
,

Assume m1 = 2, m2 = 3, m3 = 3, m4 = 4 and σ1 = σ2 = σ3 = σ4 = 2. Consider the follow-
ing rules for the Takagi–Sugeno fuzzy system:

If x1 is A1 and x2 is B1 Then z1 = x1 + x2 + 1
If x1 is A2 and x2 is B1 Then z2 = 2x1 + x2 + 1
If x1 is A1 and x2 is B2 Then z3 = 2x1 + 3x2
If x1 is A2 and x2 is B2 Then z4 = 2x1 + 5

Compute the value of the output z for x1 = 1 and x2 = 4:

%Sugeno-type Fuzzy System

%Chapter 2 Example B.1.5

clear all;close all;

sys=newfis('Example2.14.4','sugeno');

%Inputs ---

%Define input variable X1 within interval [1 4]

sys=addvar(sys,'input', 'X1', [1 4]);

%Define MFs A1 and A2 for input X1

sys=addmf(sys,'input',1,'A1','gaussmf',[1 2]);

sys=addmf(sys,'input',1,'A2','gaussmf',[1 3]);

442 Computational Intelligence

%Define input variable X2 within interval [2 5]

sys=addvar(sys,'input', 'X2', [2 5]);

%Define MFs B1 and B2 for input X2

sys=addmf(sys,'input',2,'B1','gaussmf',[1 3]);

sys=addmf(sys,'input',2,'B2','gaussmf',[1 4]);

%outputs---

%Define output variable Z within interval [-9 9]

sys=addvar(sys, 'output', 'Z', [-9 9]);

sys=addmf(sys,'output',1,'Z1','linear',[1 1 1]);

sys=addmf(sys,'output',1,'Z2','linear',[2 1 1]);

sys=addmf(sys,'output',1,'Z3','linear',[2 3 0]);

sys=addmf(sys,'output',1,'Z4','linear',[2 0 5]);

%Rules---

%Define rules and add to FIS

%1If (x1 is A1) and (x2 is B1) then (z is z1) (1)

%2If (x1 is A2) and (x2 is B1) then (z is z2) (1)

%3If (x1 is A1) and (x2 is B2) then (z is z3) (1)

%4If (x1 is A2) and (x2 is B2) then (z is z4) (1)

% A1 B1 C1 W &=1

rule=[1 1 1 1 1;

2 1 2 1 1;

1 2 3 1 1;

2 2 4 1 1];

sys=addrule(sys,rule);

figure(1);

plotfis(sys); %Figure is not shown here

figure(2)

ruleview(sys) %Figure is not shown here

%Perform fuzzy inference for x1=1.5 and x2=4

y=evalfis([1.5 4], sys)

%------end of program----------------------------

Appendix C
MATLAB® Programs for
Fuzzy Systems

Example C.1.1 A system is described by two inputs (X1, X2) and a single output (Y) within
the universes of discourse−10 ≤ X1 ≤ 10,−30 ≤ X2 ≤ 30 and−20 ≤ Y ≤ 20, respectively.
In order to develop a Mamdani-type fuzzy system, the membership functions for (X1, X2) and
(Y) are defined in Figure C.1.1. The rule base for the Mamdani-type fuzzy system is given in
Table C.1.1.

A Mamdani-type fuzzy inference system for the above MFs and rule base is developed
using MATLAB R© and the Fuzzy Logic Toolbox.

%Fuzzy system - Example C.1.1

clear all;close all;

sys=newfis('ExampleFS_1');

%-----------------Inputs definition ---------------------

%Define input variable X1 to FIS within interval [-10 10]

sys=addvar(sys,'input', 'X1', [-10 10]);

%Define MFs N, Z and P for input X1

sys=addmf(sys,'input',1,'N','trimf',[-10 -10 0]);

sys=addmf(sys,'input',1,'Z','trimf',[-10 0 10]);

sys=addmf(sys,'input',1,'P','trimf',[0 10 10]);

%Define input variable X2 to FIS within interval [-30 30]

sys=addvar(sys,'input', 'X2', [-30 30]);

%Define MFs N, Z and P for input X2

sys=addmf(sys,'input',2,'N','trimf',[-30 -30 0]);

sys=addmf(sys,'input',2,'Z','trimf',[-30 0 30]);

sys=addmf(sys,'input',2,'P','trimf',[0 30 30]);

%------------------output definitions -------------------

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

444 Computational Intelligence

(a)

1

–10 0 10

N

μ μ

Z P

X1 X2

1

–30 0 30

N Z P

(b)

μ

1

–20

NB ZN

Y–10 0 10 20

P PB

Figure C.1.1 Input and output membership functions. (a) Input membership functions; (b) Output
membership function

%Define output variable Y to FIS within interval [-20 20]

sys=addvar(sys,'output', 'Y', [-20 20]);

%Define MFs NB, N, Z, P, PB for output Y

sys=addmf(sys,'output',1,'NB','trimf',[-20 -20 -10]);

sys=addmf(sys,'output',1,'N','trimf',[-20 -10 0]);

sys=addmf(sys,'output',1,'Z','trimf',[-10 0 10]);

sys=addmf(sys,'output',1,'P','trimf',[0 10 20]);

sys=addmf(sys,'output',1,'PB','trimf',[10 20 20]);

Table C.1.1 Rule base for a Mamdani-type system

X2

X1 N Z P

N PB P N
Z P Z N
P Z Z NB

Appendix C: MATLAB® Programs for Fuzzy Systems 445

%----------------Rules----------------------------

%Define rules and add to FIS

% N Z P

%---|-------------------

%N | PB P N

%Z | P Z N

%P | Z Z NB

%The rule-base is interpreted as If Input_1 is Mf_1 and Input_2 is

Mf_1 Then %Output_1 is Mf_5, followed by weight of rule and

connective used i.e.

% N N PB W=1 &=1

rule =[1 1 5 1 1;

1 2 4 1 1;

1 3 2 1 1;

2 1 4 1 1;

2 2 3 1 1;

2 3 2 1 1;

3 1 3 1 1;

3 2 3 1 1;

3 3 1 1 1];

sys=addrule(sys,rule);

Example C.1.2 A system with single input and single output is shown in Figure C.1.2.
The mathematical description of the system is given by the difference equation (C.1). An
incremental PI-like fuzzy controller is to be developed so that the system’s output follows a
reference signal.

y(k + 1) = 0.0237u(k)+ 0.0175u(k − 1)+ 1.407y(k)− 0.407y(k − 1) (C.1)

The incremental PI-like fuzzy controller is described in Section 3.5.4 of Chapter 3. The
control output is defined, and can be rewritten as �u = kP · �e + ki · e where kp and ki are
the proportional and the integral gain coefficients to be adjusted.
In this case, to obtain the value of the control output u(k), the change of control output

�u(k) is added to u(k − 1) such that

u(k) = �u(k)+ u(k − 1) (C.2)

System y(k)u(k)

Delay unit

Figure C.1.2 System described by equation (C.1)

446 Computational Intelligence

Table C.1.2 Rule base for Mamdani-type
fuzzy controller.

CE

E B1 B2

A1 C1 C2
A2 C2 C3

The PI-like Mamdani-type fuzzy controller’s rule base accordingly consists of rules of the
form

If e is Ai and�e is B j Then�u isCk

The rule base is shown in Table C.1.2.
Triangular membership functions are chosen for all inputs and outputs and are defined as

A1 = {−1,−1, 1}, A2 = {−1, 1, 1}, B1 = {−1,−1, 1}, B2 = {−1, 1, 1}, C1 = {−1,−1, 0},
C2 = {−1, 0,−1} and C3 = {0, 1, 1}. The final fuzzy controller with inputs {e(k),�e(k)} and
output �u(k) is shown in Figure C.1.3.
Note that the incremental PI-type fuzzy controller in Figure C.1.3 looks like a PD-type

fuzzy controller but is different from a PD-type controller. For details, see Section 3.5.4 of
Chapter 3.
The MATLAB R© codes for implementation of a PI-like fuzzy controller are given in the

following:

%Fuzzy system -- Example C.1.2

clear all;close all;

sys=newfis('ExampleFS_2');

%Inputs --

%Define input variable E to FIS within interval [-1 1]

sys=addvar(sys,'input', 'E', [-1 1]);

%Define MFs A1 and A2 for input E

sys=addmf(sys,'input',1,'A1','trimf',[-1 -1 1]);

Plant y(k)
u(k)Fuzzy

controller

yd

e(k)

Δe(k)
Δu(k)

u(k–1)

+
+

+

−

Figure C.1.3 Incremental PI-like fuzzy controller

Appendix C: MATLAB® Programs for Fuzzy Systems 447

sys=addmf(sys,'input',1,'A2','trimf',[-1 1 1]);

%Define input variable CE to FIS within interval [-1 1]

sys=addvar(sys,'input', 'CE', [-1 1]);

%Define MFs B1 and B2 for input CE

sys=addmf(sys,'input',2,'B1','trimf',[-1 -1 1]);

sys=addmf(sys,'input',2,'B2','trimf',[-1 1 1]);

%outputs--

%Define output variable CU to FIS within interval [-1 1]

sys=addvar(sys,'output', 'CU', [-1 1]);

%Define MFs C1 and C2 for output CU

sys=addmf(sys,'output',1,'C1','trimf',[-1 -1 0]);

sys=addmf(sys,'output',1,'C2','trimf',[-1 0 1]);

sys=addmf(sys,'output',1,'C3','trimf',[0 1 1]);

%----------------Rules----------------------------------

%Define rules and add to FIS

% B1 B2

%A1 C1 C2

%A2 C2 C3

%The rule-base is interpreted as If Input_1 is Mf_1 and Input_2 is

Mf_1 Then %Output_1 is Mf_1, followed by weight of rule and

connective used i.e.

% A1 B1 C1 W=1 &=1

rule=[1 1 1 1 1;

1 2 2 1 1;

2 1 2 1 1;

2 2 3 1 1];

sys=addrule(sys,rule);

%Define constants

kp=0.029;

ki=0.049;

kc=60;

%Define reference signal

for k=1:500

if(k<=250)

yd(k)=15;

else yd(k)=25;

end

end

%Simulation of the FLC

y(1)=0;

y(2)=0;

u(1)=0;

v(1)=0;

for k=1:499

e(k)=yd(k)-y(k);

if(k==1)

v(1)=0;

448 Computational Intelligence

else

v(k)=(e(k)-e(k-1))/0.25;

end; %end if

einp(k)=e(k)*kp;

vinp(k)=v(k)*ki;

%deltau calculated by FLC

delu(k)=evalfis([vinp(k) einp(k)],sys);

u(k+1)=u(k)+delu(k)*kc;

if(k==1)

y(2)=0;

else

y(k+1)=0.0237*u(k)+0.0175*u(k-1)+1.407*y(k)-0.407*y(k-1);

end;%end if

end; %end for

%Plot---

k=1:500;

plot(k,yd,'- k',k,y,'-. k');

grid

title('Incremental PI-like FLC')

xlabel('Time index')

ylabel('Desired output & response')

figure

gensurf(sys)

ruleview(sys)

The performance of the Mamdani-type fuzzy controller with triangular membership func-
tions is shown in Figure C.1.4, where the dotted line represents the desired output and the
solid line shows the response of the system. The control surface is shown in Figure C.1.5.
As mentioned earlier, the shape of the membership function is arbitrary from the point of
view of simplicity, convenience, speed and efficiency. The fuzzy controller shows better
performance if the membership functions for A1 and A2 are chosen as Z- and S-shaped,
respectively. See Figures C.1.6 and C.1.7. A1 and A2 are defined as A1 = {−1,−1, 1},
A2 = {−1, 1, 1}, B1 = {−1,−1, 1}, B2 = {−1, 1, 1}, C1 = {−1,−1, 0}, C2 = {−1, 0,−1}
and C3 = {0, 1, 1}.

Example C.1.3 An incremental PI-like Sugeno-type fuzzy controller is to be developed for
the system given by the difference equation (C.1) described in Example C.1.2. Themembership
functions for the inputs are the same as in Example C.1.2. The output membership functions in
a Sugeno-type fuzzy controller are linear functions defined as Z1 = a1e + b1�e + c1, Z2 =
a2e + b2�e + c2 and Z3 = a3e + b3�e + c3 with a1 = 0.01, b1 = 0.0, c1 = −1.001, a2 =
0.0, b2 = 0.0, c2 = 0.0, a3 = 0.01, b3 = 0.0 and c3 = 0.999. The rule base of the Sugeno-
type fuzzy controller consists of rules of the form

If e is Ai and�e is B j Then�u is Zk = a.e + b.De + c

The rule base is shown in Table C.1.3.

Appendix C: MATLAB® Programs for Fuzzy Systems 449

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30
Incremental PI-like Mamdani-type FLC

Time index

Desired output

Response

D
es

ire
d

ou
tp

ut
 &

 r
es

po
ns

e

Figure C.1.4 Performance of theMamdani-type fuzzy controller with triangular membership functions

–1
–0.5

0
0.5

1

–1

–0.5

0

0.5

1

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

ErrorChange of Error

C
ha

ng
e

of
 U

Figure C.1.5 Control surface of the Mamdani-type fuzzy controller with triangular MFs

450 Computational Intelligence

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25
Incremental PI-like Mamdani-type FLC

Time index

Desired output

D
es

ire
d

ou
tp

ut
 &

 r
es

po
ns

e

Response

Figure C.1.6 Performance of the Mamdani-type fuzzy controller with Z- and S-shaped membership
functions

–1
–0.5

0
0.5

1

–1

–0.5

0

0.5

1

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

ErrorChange of Error

C
ha

ng
e

of
 U

Figure C.1.7 Control surface of the Mamdani-type fuzzy controller with Z,S-shaped MFs

Appendix C: MATLAB® Programs for Fuzzy Systems 451

Table C.1.3 Rule base for Sugeno-type
fuzzy controller.

CE

E B1 B2

A1 Z1 Z2
A2 Z2 Z3

The MATLAB R© code for implementation of an incremental PI-like Sugeno-type fuzzy
controller is given in the following:

%Sugeno-type Fuzzy Controller

%Chapter 3 Example C.1.3

clear all;close all;

sys=newfis('ExampleFS_3','sugeno');

%Inputs --

%Define input variable x1 to FIS within iterval [-1 1]

sys=addvar(sys,'input', 'Error', [-1 1]);

%Define MFs A1 and A2 for input x1

sys=addmf(sys,'input',1,'A1','gbellmf',[1 0.5 -1]);

sys=addmf(sys,'input',1,'A2','gbellmf',[1 0.5 1]);

%Define input variable x2 to FIS within iterval [-1 1]

sys=addvar(sys,'input', 'Change of Error', [-1 1]);

%Define MFs B1 and B2 for input x2

sys=addmf(sys,'input',2,'B1','gbellmf',[1 0.5 -1]);

sys=addmf(sys,'input',2,'B2','gbellmf',[1 0.5 1]);

%outputs--

%Define output variable y to FIS within iterval [-1 1]

sys=addvar(sys,'output', 'Change of U', [-1 1]);

%Define linear MFs Z1, Z2 and Z3 for output y

%Z1=a1x1+b1x2+c1 with a1=0.01, b1=0.0, c1=-1.001

%Z2=a2x1+b2x2+c2 with a2=0.0, b2=0.0, c2=0.0

%Z3=a3x1+b3x2+c3 with a3=0.01, b3=0.0, c3=0.999

sys=addmf(sys,'output',1,'Z1','linear',[0.01 0.0 -1.001]);

sys=addmf(sys,'output',1,'Z2','linear',[0.0 0.0 0.0]);

sys=addmf(sys,'output',1,'Z3','linear',[0.01 0.0 0.999]);

%Rules--

%Define rules and add to FIS

% B1 B2

%A1 Z1 Z2

%A2 Z2 Z3

% A1 B1 Z1 W &=1

452 Computational Intelligence

rule=[1 1 1 1 1;

1 2 2 1 1;

2 1 2 1 1;

2 2 3 1 1];

sys=addrule(sys,rule);

%Define constants

kp=0.029;

kd=0.049;

kc=60;

%Define referece signal

for k=1:500

if(k<=250)

yd(k)=15;

else yd(k)=25;

end

end

%Simulation of the FLC

y(1)=0;

y(2)=0;

u(1)=0;

v(1)=0;

for k=1:499

e(k)=yd(k)-y(k);

if(k==1)

v(1)=0;

else

v(k)=(e(k)-e(k-1))/0.25;

end;%end if

einp(k)=e(k)*kp;

vinp(k)=v(k)*kd;

%deltau calculated by FLC

delu(k)=evalfis([vinp(k) einp(k)],sys);

u(k+1)=u(k)+delu(k)*kc;

if(k==1)

y(2)=0;

else

y(k+1)=0.0237*u(k)+0.0175*u(k-1)+1.407*y(k)-0.407*y(k-1);

end;%end if

end;%end for

%Plot---

k=1:500;

plot(k,yd,'-. b',k,y,'- b');

grid

title('Incremental PI-like Sugeno-type FLC')

xlabel('Time index')

ylabel('Desired output & response')

figure

gensurf(sys)

Appendix C: MATLAB® Programs for Fuzzy Systems 453

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30
Incremental PI-like Sugeno-type FLC

Time index

Desired output

D
es

ire
d

ou
tp

ut
 &

 r
es

po
ns

e

Response

Figure C.1.8 Performance of the Sugeno-type fuzzy controller

The performance of the Sugeo-type fuzzy controller is shown in Figure C.1.8, where the
dotted line represents the desired output and the solid line shows the response of the system.
The control surface is shown in Figure C.1.9.

Example C.1.4 The Khepera is a miniature robot that has diameter 55 mm, height 30 mm
and weight 70g, as shown in Figure C.1.10. The robot is supported by two wheels and two
small Teflon balls placed under its platform. The wheels are controlled by two DC motors
with an incremental encoder (12 pulses per millimetre of robot advancement) and can rotate
in both directions. The geometrical shape and the motor layout of the Khepera make the robot
able to navigate in a sophisticated environment even when its control system is immature.
It is provided with eight infrared proximity sensors placed around its body, which are based
on emission and reception of infrared light, as shown in Figure C.1.11. Each receptor can
measure both the ambient infrared light and the reflected infrared light emitted by the robot
itself. The Khepera robot includes eight infrared sensors, allowing it to detect by reflection
(small rectangles) the proximity of objects in front of it, behind it and to the right and left
of it. Each sensor returns a value ranging between 0 and 1023 represented in gradual colour
levels. 0 means that no object is perceived whereas 1023 means that an object is very close
to the sensor (almost touching the sensor). Intermediate values may give an approximate idea
of the distance between the sensor and the object. Each motor can take a speed value ranging
between –10 and +10. A Sugeno-type fuzzy controller has to be developed for the Khepera
robot to navigate in a cluttered environment by avoiding obstacles.

To develop a fuzzy controller for the Khepera robot, a reasonable number of inputs and
outputs of the system are to be chosen. The eight infrared sensors are used to detect objects

454 Computational Intelligence

–1
–0.5

0
0.5

1

–1

–0.5

0

0.5

1
–0.5

0

0.5

ErrorChange of Error

C
ha

ng
e

of
 U

Figure C.1.9 Control surface of the Sugeno-type fuzzy controller

Infrared
sensor

Figure C.1.10 Khepera robot

VL VR

Left

Front

Right

Rear

Figure C.1.11 Layout of infrared sensors and wheels of Khepera robot

Appendix C: MATLAB® Programs for Fuzzy Systems 455

in different directions of the Khepera. The two wheel speeds are the outputs of the system.
Design of a fuzzy controller for a systemwith eight inputs and two outputs will be complicated.
Therefore, to reduce the number of inputs of the Khepera, the eight sensors are grouped into
four pairs {s1, s2}, {s3, s4}, {s5, s6} and {s7, s8}. Each pair of sensors can be fused to obtain
an accurate measure of distances to obstacles in the four directions left, front, right and rear,
respectively as shown in Figure C.1.11.
Since the robot will move forward only avoiding obstacles to the left or right, we will not

use the two rear sensors. Thus, the number of inputs to the system reduces to only three: left,
forward and right. The two membership functions are chosen for each input. Simple triangular
membership functions are chosen for all inputs and are defined as small = {−1023, 0, 1023},
big = {0, 1023, 2046}. A Sugeno-type fuzzy system uses a linear polynomial as output mem-
bership function (see Section 3.4.2 of Chapter 3). When the linear polynomial is constant, it
is a zero-order Sugeno fuzzy system, which can be considered as a special case of a Mamdani
fuzzy system, in which the consequent of each rule is specified by a fuzzy singleton or by a
pre-defuzzified consequent (see Section 2.13.2 of Chapter 2). Two constant values are chosen
for all outputs and are defined as C1 = {10} and C2 = {−10}. The final fuzzy controller with
three inputs (left, forward, right) and two outputs VL (v_l = velocity of left wheel) and VR
(v_r = velocity of right wheel) has the following rule base:

If (left is small) and (forward is small) and (right is small)
then (v l is C2)(v r is C2) (1)

If (left is small) and (forward is small) and (right is big)
then (v l is C1)(v r is C2) (1)

If (left is small) and (forward is big) and (right is small)
then (v l is C1)(v r is C2) (1)

If (left is small) and (forward is big) and (right is big)
then (v l is C1)(v r is C2) (1)

If (left is big) and (forward is small) and (right is small)
then (v l is C2)(v r is C1) (1)

If (left is big) and (forward is small) and (right is big)
then (v l is C2)(v r is C2) (1)

If (left is big) and (forward is big) and (right is small)
then (v l is C2)(v r is C1) (1)

If (left is big) and (forward is big) and (right is big)
then (v l is C1)(v r is C2) (1)

The MATLAB R© code for implementation of a Sugeno-type fuzzy controller for the Khepera
robot is given in the following:

%Sugeno-type Fuzzy Controller for Khepera Robot

%Chapter 3 Example C.1.4

clear all;close all;

sys=newfis('Khepera','sugeno');

%Inputs ---

%Define input variable Left to FIS within interval [-1023 2046]

sys=addvar(sys,'input', 'left', [-1023 2046]);

%Define MFs small and big for input Left

456 Computational Intelligence

sys=addmf(sys,'input',1,'small','trimf',[-1023 0 1023]);

sys=addmf(sys,'input',1,'big','trimf',[0 1023 2046]);

%Define input variable Forward to FIS within iterval [-1023 2046]

sys=addvar(sys,'input', ' forward ', [-1023 2046]);

%Define MFs small and big for input Front

sys=addmf(sys,'input',2,'small','trimf',[-1023 0 1023]);

sys=addmf(sys,'input',2,'big','trimf',[0 1023 2046]);

%Define input variable Right to FIS within interval [-1023 2046]

sys=addvar(sys,'input', 'right', [-1023 2046]);

%Define MFs small and big for input Right

sys=addmf(sys,'input',3,'small','trimf',[-1023 0 1023]);

sys=addmf(sys,'input',3,'big','trimf',[0 1023 2046]);

%outputs--

%Define output variable y to FIS within interval [-10 10]

sys=addvar(sys, 'output', 'v_l', [-10 10]);

sys=addmf(sys,'output',1,'C1','linear',[0 0 0 10]);

sys=addmf(sys,'output',1,'C2','linear',[0 0 0 -10]);

%Define linear MFs C1, C2 for outputs VL and VR

%C1=a1x1+b1x2+c1x3+d1 with a1=0, b1=0, c1=0, d1=10

%C2=a2x1+b2x2+c2x3+d2 with a2=0, b2=0, c2=0, d2=-10

sys=addvar(sys, 'output', 'v_r', [-10 10]);

sys=addmf(sys,'output',2,'C1','linear',[0 0 0 10]);

sys=addmf(sys,'output',2,'C2','linear',[0 0 0 -10]);

%Rules--

%Define rules and add to FIS

%If (left is small) and (forward is small) and (right is small)

then (v_l is C1)(v_r is C1)

%If (left is small) and (forward is small) and (right is big)

then (v_l is C2)(v_r is C1)

%If (left is small) and (forward is big) and (right is small)

then (v_l is C2)(v_r is C1)

%If (left is small) and (forward is big) and (right is big)

then (v_l is C2)(v_r is C1)

%If (left is big) and (forward is small) and (right is small)

then (v_l is C1)(v_r is C2)

%If (left is big) and (forward is small) and (right is big)

then (v_l is C1)(v_r is C1)

%If (left is big) and (forward is big) and (right is small)

then (v_l is C1)(v_r is C2)

%If (left is big) and (forward is big) and (right is big)

then (v_l is C2)(v_r is C1)

% 1st rules is coded as small small small C1 C1 W &=1

% indexed as 1 1 1 1 1 1 1;

Appendix C: MATLAB® Programs for Fuzzy Systems 457

rule=[1 1 1 1 1 1 1 ;

1 1 2 2 1 1 1 ;

1 2 1 2 1 1 1 ;

1 2 2 2 1 1 1 ;

2 1 1 1 2 1 1 ;

2 1 2 1 1 1 1 ;

2 2 1 1 2 1 1 ;

2 2 2 2 1 1 1];

sys=addrule(sys,rule);

%An alternative will be to read the FIS file created using GUI

%e.g. sys=readfis('khepera.fis');

max_time=700;

i=1;

ref= kopen([0,9600,1])

sen=zeros(max_time,8);

vel=zeros(max_time,2);

while i<max_time,

s= kProximity(ref);

left=max(s(1),s(2));

front=max(s(3),s(4));

right=max(s(5),s(6));

v = evalfis([left, front, right], sys);

kSetSpeed(ref,v(1),v(2));

vel(i,:)=v;

sen(i,:)=s;

i=i+1;

end

kStop(ref)

kclose(ref)

v1=vel(:,1);

v2=vel(:,2);

t=1:max_time;

plot(t, v1, '.-k',t,v2,'-k')

ylabel('Wheel speed')

xlabel('Time instance')

legend('Left wheel speed', 'Right wheel speed')

kopen([0,9600,1]), kclose(ref), kProximity(ref), kSetSpeed (ref, left, right), kStop(ref) are
MATLAB R© routines that permit the user to interact with Khepera over a serial connec-
tion. Windows DLLs are included to perform the system-level serial-port communication,
and a library of useful MATLAB R© M-files to read proximity sensors, set wheel speeds, stop
moving, etc. The first thing is to open the serial port com1 at band rate 9600 with 1-s timeout
using the command kopen ([0, 9600, 1]). kopen() returns a reference value to be used for
subsequent commands. We used ‘ref’ as the return variable for the above example and will use

458 Computational Intelligence

0 50 100 150 200 250 300 350 400 450 500
–5

0

5

10

Time instance

Left wheel speed

Right wheel speed

W
h

e
e

l
s
p

e
e

d

Figure C.1.12 Left and right wheel speed

this variable in all examples in subsequent chapters. The serial port must be closed using the
command kclose(ref). kProximity(ref) returns the proximity sensor readings as an 8-element
vector. kSetSpeed (ref, left, right) sets the motor speed of the left and right wheel. To stop the
Khepera, use kStop(ref).
For an explanation of the actual Khepera commands sent by these MATLAB R© routines,

please consult Appendix A of theKhepera UserManual to be found at http://www.k-team.com.
The performance of the Sugeo-type fuzzy controller for the Khepera robot can be illustrated

by the left and right wheel speeds as shown in Figure C.1.12. The rise of the right wheel speed
and the fall of the left wheel speed down to a negative value within a time interval represent a
left turn to avoid an obstacle on the right. Otherwise the Khepera moves straight forward.

C.1.1 GUI Interface Tools

Section 3.6.1 of Chapter 3 describes how to develop a control application by working from
the command line. It is much easier to build a system using GUI tools. There are five GUI
tools for developing an application: FIS Editor, MF Editor, Rule Editor, Rule Viewer and
Surface Viewer. The tools are dynamically linked to each other, meaning change of any tool
will automatically update other tools. Figure C.1.13 shows the different editors of the GUI
tools and the links between them.

FIS Editor

The FIS Editor handles the high-level issues of the system (e.g., number of input and output
variables and their names). The Fuzzy Logic Toolbox does not limit the number of inputs.

Appendix C: MATLAB® Programs for Fuzzy Systems 459

Fuzzy
Inference
System

Read-only
tools

Rule Viewer

Rule Editor

Fis Editor

Membership
Function Editor

Surface Viewer

Figure C.1.13 Five GUI tools of the Fuzzy Logic Toolbox

However, the number of inputs may be limited by the complexity of the system (i.e., if the
number of inputs and outputs is too large or if the number of MFs is too big, then it may be
difficult to analyse the system using the GUI tools).

MF Editor

The MF Editor is used to define the shapes of the MFs by changing the parameters and ranges
of each MF associated with each input and output variable. The names of each MF can also
be edited here.

Rule Editor

The Rule Editor is for editing the list of rules that defines the behaviour of the system. Creation
of the rule base is very straightforward, simply by clicking the appropriate MFs, connection

460 Computational Intelligence

and rule weight for each rule. There are three ways to express the rules: verbose, symbolic and
indexed. The rule base appearing in the window in verbose form looks like

If (error is NB) and (change_error is NS) then (torque is PB) (1)

If (error is NB) and (change_error is ZO) then (torque is PB) (1)

If (error is NB) and (change_error is PS) then (torque is PS) (1)

If (error is NB) and (change_error is PB) then (torque is ZO) (1)

If (error is NS) and (change_error is NB) then (torque is PB) (1)

The rule base appearing in the window in symbolic form looks like

(error == NB) & (change_error == NS) => (torque == PB) (1)

(error == NB) & (change_error == ZO) => (torque == PB) (1)

(error == NB) & (change_error == PS) => (torque == PS) (1)

(error == NB) & (change_error == PB) => (torque == ZO) (1)

(error == NS) & (change_error == NB) => (torque == PB) (1)

The rule base appearing in the window in indexed form looks like

1 3, 3 (1) : 1

where error and change_error are inputs and torque is the output.

Rule Viewer

The Rule Viewer and the Surface Viewer are strictly read-only tools. They are used for looking
at the FIS as a diagnostic. It can show (for example) which rules are active, or how individual
MF shapes are influencing the results. The Rule Viewer shows one calculation at a time and
in great detail. In this sense, it presents a sort of overview of the fuzzy inference system.

Surface Viewer

The Surface Viewer is used to display the dependency of one of the outputs on any one or two
of the inputs – that is, it generates and plots an output surface map for the system. If an entire
output surface of the system is to be examined based on the entire span of the output set over
the entire span of the input set, then Surface Viewer is useful for such an analysis.

C.1.2 Simulink R© Blocks

The Fuzzy Logic Toolbox is designed to work with Simulink R©, the simulation software
available fromMathWorks. Once we have created a fuzzy system using the GUI tools or some
other method, it can be embedded directly into a simulation system. The Fuzzy Logic Toolbox
provides different Simulink R© blocks. These are called Fuzzy Logic Controller blocks.

Appendix D
MATLAB® Programs for
Neural Systems

D.1.1 Defining Feedforward Network Architecture

Feedforward networks often have one or more hidden layers of sigmoid neurons followed by
an output layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions
allow the network to learn nonlinear and linear relationships between input and output vectors.
The function newff() creates a feedforward backpropagation network architecture with desired
number of layers and neurons. The general form of use of the function is given below, which
returns an N-layer feedforward backpropagation network object:

net = newff([PN],[S1 S2...SN],{TF1 TF2...TFN},BTF,LF,PF);

where the first input PN is an N × 2 matrix of minimum and maximum values for N input
elements. S1 S2 . . . SN are the sizes (number of neurons) of the layers of the network architec-
ture. TFi is the transfer function of the ith layer; the default is ‘tansig’. The transfer functions
TFi can be any differentiable transfer function such as tansig, logsig or purelin. BTF is the
backpropagation network training function; the default is ‘trainlm’. Different training func-
tions with their features are described in Section 4.7.2 of Chapter 4. LF is the backpropagation
weight/bias learning function with gradient descent, such as ‘learngd’, ‘learngdm’. The default
is ‘learngdm’. The function ‘learngdm’ is used to calculate the weight change dW for a given
neuron from the neuron’s input P and error E. Learning occurs according to learngdm’s learning
parameters such as the weight (or bias) W, learning rate and momentum constant, according
to gradient descent with momentum and returns weight change and new learning states. PF is
the performance function such as mse (mean squared error), mae (mean absolute error) and
msereg (mean squared error with regularization). The default is ‘mse’. For example:

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd',

'learngdm', 'mae');

The function creates a two-input single-output feedforward network with single hidden layer.
The first input [–1 2; 0 5] specifies the minimum and maximum values for each of the input
vectors. The second input is an array containing the sizes of each layer, i.e., the network

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

462 Computational Intelligence

has 3 neurons in the hidden layer and 1 neuron in the output layer. The third input is a cell
array containing the names of the transfer functions to be used in each layer, i.e., tansig for
hidden layer and purelin (linear) activation function for output layer. There are other different
activation functions with distinct features, such as logsig, hardlim. The final input contains the
name of the training function to be used. ‘traingd’ is one of the training functions used by the
network. newff() will also automatically initialize the weights and biases of the network.

D.1.1.1 Creating RBF Network Architecture

In an RBF network, there can be a maximum of M inputs and a maximum of N radial basis
neurons in the hidden layer. There are no weights between inputs and hidden neurons. Each
radial basis neuron is connected to the output neuron through the weight matrix W, which has
to be learned. Using the MATLAB R© functions, the architecture of an RBF network with
m = 1, 2, 3, . . . , M input elements and n = 1, 2, 3, . . . , N radial basis neurons (in the hidden
layer) can be created. All details of designing a radial basis function network are built into
the design functions newrbe() and newrb(), and their outputs can be obtained with sim(). The
functions are called in the following way:

net = newrbe(P, T, Spread);

The function newrbe() takes matrices of input vectors P and target vectors T, and a spread
for the radial basis layer, and returns a network with weights and biases such that the outputs
are exactly T when the inputs are P. The value for the spread constant should be larger than
the distance between adjacent input vectors, so as to get a good generalization, but smaller
than the distance across the whole input space. The function newrbe() creates as many radial
basis neurons as there are input vectors in P. The drawback to newrbe() is that it produces a
network with as many hidden neurons as there are input vectors. For this reason, newrbe()
does not return an acceptable solution when many input vectors are needed to properly define a
network, as is typically the case (Demuth and Beale, 2000). newrb() is a more efficient design
function, which creates a radial basis network one neuron at a time. Neurons are added to
the network until the sum-squared error falls beneath an error goal or a maximum number of
neurons have been reached. The call for this function is

net = newrb(P, T, Goal, Spread);

The function newrb() takes matrices of input vectors P and target vectors T, and design
parameters goal and spread for radial basis layer, and returns the desired network with weights
and biases such that the outputs are exactly T when the inputs are P. The design method of
newrb() is similar to that of newrbe(). The difference is that newrb() creates neurons one
at a time. The error of the new network is checked, and if low enough newrb() is finished.
Otherwise the next neuron is added. This procedure is repeated until the error goal is met or
the maximum number of neurons is reached.
Thus, newrbe() creates a network with zero error on training vectors. The only condition

required is to make sure that SPREAD is large enough so that the active input regions of
the radbas neurons overlap enough so that several radbas neurons always have fairly large
outputs at any given moment. This makes the network function smoother and results in better
generalization for new input vectors occurring between input vectors used in the design.
(However, SPREAD should not be so large that each neuron is effectively responding in the
same large area of the input space.)

Appendix D: MATLAB® Programs for Neural Systems 463

RBF networks, even when designed effectively with newrbe(), tend to have many times
more neurons than a comparable MLP network with tansig or logsig neurons in the hidden
layer. This is because sigmoid neurons can have outputs over a large region of the input space,
while RBF neurons only respond to relatively small regions of the input space. The result
is that the larger the input space (in terms of number of inputs, and the ranges those inputs
vary over) the more RBF neurons are required. On the other hand, designing an RBF network
often takes much less time than training a sigmoid/linear network, and can sometimes result
in fewer neurons being used.

D.1.1.2 Creating GRNN Network Architecture

A generalized regression neural network is often used for function approximation. A GRNN
network with m = 1, 2, 3, . . . , M input elements and n = 1, 2, 3, . . . , N radial basis neurons
(in the hidden layer) can be created using the function newgrnn() where the first layer is just
like that of newrbe() or newrb() but has a slightly different second layer. It has as many neurons
as there are input/target vectors in P. Specifically, the first-layer weights are set to P’. The bias
b1 is set to a column vector of 0.8326/Spread. The user chooses ‘Spread’, the distance an input
vector must be from a neuron’s weight vector to be 0.5. Each neuron’s weighted input is the
distance between the input vector and its weight vector. The second layer also has as many
neurons as input/target vectors, but there the weights are set to target T. The function is called
in the following way:

net = newgrnn(P, T, Spread);

The function newgrnn() takes matrices of input vectors P and target vectors T, and a spread
for the radial basis layer, and returns a network with weights and biases such that the outputs
are exactly T when the inputs are P. The value for spread constant should be larger than the
distance between adjacent input vectors, so as to get good generalization, but smaller than the
distance across the whole input space. To fit data closely, a smaller spread is suggested, i.e.,
smaller than the typical distance between input vectors. To fit the data more smoothly, a larger
spread is to be chosen.
A larger spread leads to a large area around the input vector where layer 1 neurons will

respond with significant outputs. Therefore, if the spread is small the radial basis function is
very steep, so that the neuron with weight vector closest to the input will have a much larger
output than other neurons. The network tends to respond with the target vector associated with
the nearest design input vector.
As the spread becomes larger the radial basis function’s slope becomes smoother and several

neurons can respond to an input vector. The network then acts as if it is taking a weighted
average between target vectors whose design input vectors are closest to the new input vector.
As the spread becomes larger, more and more neurons contribute to the average, with the result
that the network function becomes smoother.

D.1.1.3 Creating PRNN Network Architecture

A PNN network can be created by calling the function in the following way:

net = newpnn(P, T, Spread);

The function newpnn() takes matrices of input vectors P and target vectors T, and a spread
for the radial basis layer, and returns a network with weights and biases such that the outputs

464 Computational Intelligence

are exactly T when the inputs are P. If the spread is near zero, the network will act as a
nearest-neighbour classifier. As the spread becomes larger, the designed network will take into
account several nearby design vectors.
Although the PNN was derived from the same mathematical merits and similarities to those

of RBF and GRNN networks, after defining the architecture it is found to be more appropriate
for classification problems rather than prediction or approximation problems.
Probabilistic neural networks can be used for classification problems. When an input is pre-

sented, the first layer computes distances from the input vector to the training input vectors and
produces a vector whose elements indicate how close the input is to a training input. The second
layer sums these contributions for each class of inputs to produce as its net output a vector of
probabilities. Finally, a complete transfer function on the output of the second layer picks the
maximum of these probabilities, and produces a 1 for that class and a 0 for the other classes.

D.1.2 Training Networks

Different backpropagation training algorithms are available as functions in MATLAB R©. They
have their own features and advantages. Some of the most widely used functions are discussed
briefly.

traingd – basic gradient descent learning algorithm. It has slow response but can
be used in incremental mode training.

traingdm – gradient descent with momentum. It is generally faster than traingd
and can be used in incremental mode training.

traingdx – adaptive learning rate. It has faster training time than traingd but can
only be used in batch mode training.

trainrp – resilient backpropagation. It is a simple batch mode training algorithm
with fast convergence and minimal storage requirements.

trainlm – Levenberg–Marquart algorithm. It is a faster training algorithm for
networks of moderate size. It has a memory reduction feature for use when the
training set is large.

There are several parameters associated with training algorithms. The parameters are learning
rate, error goal, epochs and show. These parameters are defined as:

net.trainParam.lr - specifies learning rate

net.trainParam.goal - specifies error goal

net.trainParam.epochs - specifies the number of iterations

net.trainParam.show - displays status for every show.

Once the network has been defined and the parameters are set, the network can be trained
using the function train() as

[net, tr] = train(net, P, T)

where net is the network object, tr contains information about the progress of training, P and T
are the input and output vectors, respectively. Typically, one epoch of training is defined as a

Appendix D: MATLAB® Programs for Neural Systems 465

single presentation of all input vectors to the network. The network is then updated according
to the results of all those presentations. Training occurs until a maximum number of epochs
occur, the performance goal is met or any other stopping condition of the function is met. For
example:

net.trainParam.lr =0.05;

net.trainParam.goal = 0.01;

net.trainParam.epochs =100;

net.trainParam.show = 25;

[net,tr]=train(net, P, T)

The network will be trained using the input and output data P and T, respectively for up to 100
epochs or when an error goal of 0.01 is reached.

D.1.3 Simulating Networks

The function sim() simulates a network. It takes the network input P and the network objects
net and returns the network output ŷ. A single matrix of concurrent vector is presented to the
network and the network produces a single matrix of concurrent vector as output:

ŷ= sim(net, P)

D.1.4 Creating Neural Network Subsystem

Once the network has been trained and tested with training and checking data, a Simulink R©

model can be created using theMATLAB R© function gensim(). The function gensim() generates
block descriptions of networks so that it can simulate the neural network in Simulink R©. The
function is called in the following way:

gensim(net, st)

gensim() takes these inputs net =̂ neural network defined either in an M-file or NN Toolbox
and st =̂ sample time and creates a Simulink R© system containing a block which simulates a
neural network with a specified sampling time:

gensim(net,st)

The second argument to gensim() determines the sample time, which is normally chosen to
be some positive real value. If the network has no delays associated with its input weights or
layer weights, this value is set to –1. For example:

gensim(net,-1)

The value of the parameter st is –1, i.e., –1 tells gensim to generate a network with continuous
sampling.

Example D.1.1: Define a feedforward network, train and simulate with input data In
this example, a two-layer feedforward network is created. The network’s input ranges from 0

466 Computational Intelligence

to 10. The first layer has five neurons with tansig function; the second layer has one neuron
with linear function. The training function ‘traingd’ is used to train the network.

%Chapter 4 Example D.1.1

%Create a feedforward NN and train with data set [P T]

%Training set

P = [0 1 2 3 4 5 6 7 8 9 10];

T = [0 1 2 3 4 3 2 1 2 3 4];

net = newff([0 10],[5 1],{'tansig' 'purelin'},'traingd');

%Set network parameters as follows

net.trainParam.lr = 0.01 %Learning rate

net.trainParam.goal = 0.1 %Performance goal

net.trainParam.epochs = 50 %This sets maximum number of epochs

in a training

net.trainParam.show = 25 %This displays training status

after each 25 epoch

net.trainParam.time = inf %Maximum time to train in seconds

net.trainParam.min_grad=1e-10 %Minimum performance gradient

%Here the network is simulated and its output plotted against

the targets.

net = train(net,P,T);

Y = sim(net,P);

plot(P,T, '-k', P,Y, 'ok')

Example D.1.2: Updating weights of a two-layer neural net A two-layer neural network
with two inputs x = [x1, x2] and one output y is given by y = W T

2 [f
(
W T
1 x + b1

)
]+ b2, where

W T
1 =

[−2.69 −2.78
−2.39 −3.56

]
, b1 =

[−2.29
3.67

]
,W T

2 = [−3.91 5.95] and b2 = [−2.81]. Update the
weights and biases of the network, simulate the network and plot the output surface over the
grid [−2, 2]× [−2, 2]:

%Chapter 4 Example D.1.2

%A two layer NN is given by y=W2'[f(W1'x+b1)]+b2

%with W1=[-2.69 -2.78; -2.39 -3.56]; b1=[-2.29; 3.67]; W2=[-3.91

5.95]; b2=[-2.81];

%Update NN with W1, W2, b1 and b2

%Plot the NN output surface y as a function of x over grid [-2,2]

x[-2,2]

%Weights and bias

W1=[-2.69 -2.78; -2.39 -3.56];

b1=[-2.29; 3.67];

Appendix D: MATLAB® Programs for Neural Systems 467

W2=[-3.91 5.95];

b2=[-2.81];

%Output surface

[x1, x2]=meshgrid(-2:0.1:2);

%Compute NN output

p1=x1(:);

p2=x2(:);

p=[p1';p2'];

%NN weights and bias

%nnt2ff () updates NN with specified weights and biases

net=nnt2ff(minmax(p),{W1,W2},{b1,b2},{'tansig', 'purelin'});

%Simulate

a=sim(net,p);

%Arrange results for mesh plot

a1=eye(41);

a1(:)=a';

mesh(x1,x2,a1);

AZ=60, EL=30;

view(AZ,EL);

xlabel('x1');

ylabel('x2');

title('NN output surface for tansigmoid function')

See Figure D.1.1 for the result.

Example D.1.3: Approximation of output surface In this example, an output surface
of a nonlinear function is approximated. The nonlinear function is defined by f (x, y) =

2
1

0

x2

NN output surface for tansigmoid function

x1
–1

–2

–2
–1

–5

0

5

10

2
1

0

Figure D.1.1 Output surface of a two-layer network

468 Computational Intelligence

sin (πx)∗ cos (πy) with x ∈ [−2, 2] and y ∈ [−2, 2]. An MLP with 20 tansigmoidal neu-
rons and 1 linear neuron can approximate the function after training the network for
500 epochs:

%Chapter 4 - Example D.1.3

%NN Function approximation

[x, y]=meshgrid(-2:0.1:2);

%Nonlinear function defined by

z=sin(pi*x).*cos(pi*y);

%Generate Input & Target data

for i=1:2000

p(:,i)=4*(rand(2,1)-0.5);

T(:,i)=sin(pi*p(2*i-1))*cos(pi*p(2*i));

end

%---

%Two-layer NN created with 20 tansig

%and one purelin neuron

net=newff(minmax(p), [20,1], {'tansig', 'purelin'}, 'trainlm');

net.trainParam.show=50;

net.trainParam.epochs=500;

net.trainParam.goal=1e-6;

[net,tr]=train(net,p,T)

%Simulate the net

a=zeros(41,41);

[x1, y1]=meshgrid(-2:0.1:2);

for i=1:1681

a(i)=sim(net,[x1(i);y1(i)]);

end

figure(1)

%Original nonlinear function

subplot(1,2,1)

mesh(x,y,z);

title('Original function graphics');

xlabel('<--x-->')

ylabel('<--y-->')

zlabel('<--z-->')

AZ=151; EL=59;

view(AZ,EL)

subplot(1,2,2)

mesh(x1,y1,a);

title('NN approximated graphics')

xlabel('<--x-->')

ylabel('<--y-->')

zlabel('<--z-->')

AZ=151; EL=59;

view(AZ,EL)

Appendix D: MATLAB® Programs for Neural Systems 469

2

1

0

<
--

z-
-><
--

z-
->

<--x--><--x-->

(a) (b)

<--y--><--y-->

–1

–1

–2
–1

0
1

2
0

1

2

–2

–2
–1

–1

–1
–2

0

1

2 2
1

0

0

1

Original function graphics NN approximated graphics

–2

Figure D.1.2 Approximation of a nonlinear function. (a) Nonlinear function; (b) NN approximated
function

See Figure D.1.2.

Example D.1.4: Approximation of a nonlinear function In this example, a nonlinear
function defined by the input/output data is approximated using a two-layer feedforward
network. The network’s weights and biases are shown after training. The plot will also show
how good the approximation is:

%Chapter 4 Example D.1.4

%Function approximation

clear all; close all;

%Training data:examplar input pattern and target output vector

x=-1:0.1:1;

y=[-0.96,-0.577,-0.073, 0.377, 0.641, 0.66, 0.461, 0.134,...

-0.201, -0.434, -0.5, -0.393, -0.165, 0.099, 0.307, 0.396,...

0.345, 0.182, -0.031, -0.219, -0.32];

%Define a NN and initialise weights

net=newff(minmax(x), [7 1], {'tansig', 'purelin'},'trainlm');

%Output of NN with initial weights

ycapl=sim(net,x);

%Train the NN

net.trainParam.epochs = 5000 %Maximum number of epochs to train

net.trainParam.goal = 0.001 %Performance goal

net.trainParam.lr = 0.01 %Learning rate

%net.trainParam.min_grad=1e-10 %Minimum performance gradient

470 Computational Intelligence

net.trainParam.show = 100 %Epochs between displays

net.trainParam.time = inf %Maximum time to train in seconds

[net,tr]=train(net,x,y);

%Output of NN

figure(1)

%Generalisation: input vector is different

%from the one used for training

x2=-1:0.01:1;

ycap2=sim(net,x2);

plot(x1,ycap1,x2,ycap2,'-',x,y,'o');

plot(x,ycapl,'--k', x2,ycap2,'-.k',x,y,'ok');

title('Function approximation');

xlabel('x-values');

ylabel('y-values');

legend('Before Training', 'After Training','Function');

%Show weights and biases of NN

w=net.IW{1,1}

bw=net.b{1}

v=net.LW{2,1}

bv=net.b{2}

See Figure D.1.3.

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8
Function approximation

x-values

y-
va

lu
es

Before Training

After Training
Function

Figure D.1.3 Function approximation

Appendix D: MATLAB® Programs for Neural Systems 471

y{1}

T

Target

p{1} y{1}

Neural Network

P

Input

double
double (2)

double

double

Figure D.1.4 NN block description for Simulink R©

Example D.1.5: Creating an NN subsystem for simulation In this example, a neural
network block description is created for simulation to be used under Simulink R©. To do this,
an NN is trained with a set of input/output data and simulated. Once this is done, an NN block
description is created using the gensim() function:

%Chapter 4 Example D.1.5

%Training data set

p=[-1:0.05:1];

%noisy sine wave

t=sin(2*pi*p)+0.1*randn(size(p));

net=newff([-1 1],[20,1],{'tansig','purelin'},'traingdx');

net.trainParam.show=50;

net.trainParam.epochs=1300;

pt=p*0.979;

y=sim(net,pt)

plot(p,t,'-',p,y,'o')

%generate NN block description

gensim(net,-1)

The generated NN Simulink R© block description is shown in Figure D.1.4.
The Neural Network Toolbox provides three popular neural network Simulink R© blocks

for prediction and control that have been applied to many applications: Model Predictive
Control, NARMA-L2 (or Feedback Linearization) Control and Model Reference Control.
These Simulink R© control blocks are discussed in detail in Chapter 5.

Appendix E
MATLAB® Programs for Neural
Control Design

Example E.1.1: Neural network for systems modelling The universal approximation
capabilities of the multilayer perceptron make it a popular choice for modelling nonlinear
systems. It is desired to design a two-layer feedforward neural network to model the nonlinear
system described by the function y = f (x). The input/output data given below describes the
input/output behaviour of the system.

x = [−1 : 0.1 : 1]
y = [−0.96,−0.577,−0.073, 0.377, 0.641, 0.66, 0.461, 0.134,−0.201, −0.434, −0.5, . . .

−0.393,−0.165, 0.099, 0.307, 0.396, 0.345, 0.182,−0.031,−0.219, −0.320]

A neural network model has to be developed using the input/output data.

The hidden layer with five neurons has tansigmoidal activation functions and the output layer
is linear. Using batch gradient descent with momentum, train the network so that the mean
square error (mse) < 0.005. The learning rate η = 0.01. Repeat training three times with
different initial weights. What is the conclusion of the experiment?

%Chapter 5 Example E.1.1

%Function approximation

clear all;close all;

%Training data:examplar input pattern and htarget output vector

x=-1:0.1:1;

y=[-0.96,-0.577,-0.073, 0.377, 0.641, 0.66, 0.461, 0.134,...

-0.201, -0.434, -0.5, -0.393, -0.165, 0.099, 0.307, 0.396,...

0.345, 0.182, -0.031, -0.219, -0.32];

%Define a NN and initialise weights

net=newff(minmax(x), [10 1], {'tansig', 'purelin'},'traingd');

%Output of NN with initial weights

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

474 Computational Intelligence

ycapl=sim(net,x);

figure(1)

plot(x,ycapl,'-',x,y,'o');

%Train the NN

figure(2)

net.trainParam.epochs = 5000 %Maximum number of epochs to train

net.trainParam.goal = 0.001 %Performance goal

net.trainParam.lr = 0.01 %Learning rate

%net.trainParam.min_grad=1e-10 %Minimum performance gradient

net.trainParam.show = 100 %Epochs between displays

net.trainParam.time = inf %Maximum time to train in seconds

[net,tr]=train(net,x,y);

%Output of NN

figure(3)

%Generalisation: input vecto is different

%from the one used for training

x2=-1:0.01:1;

ycap2=sim(net,x2);

plot(x2,ycap2,'-',x,y,'o');

%Weights and biases of NN

w=net.IW{1,1}

bw=net.b{1}

v=net.LW{2,1}

bv=net.b{2}

Example E.1.2 Neural network for system identification The nonlinear system is
described by the following equation:

y(k + 1) = y(k) [y(k − 1)+ 2] [y(k)+ 2.5]
8.5+ [y(k)]2 + [y(k − 1)]2 + u(k)

where y(k) is the output of the system at the kth time step and u(k) is the input. The system is
stable for u(k) ∈ [−2, 2] and u(k) is a uniformly bounded function of time. The above equation
can be written in the following form for identification purposes:

ŷ(k + 1) = f (y(k), y(k − 1))+ u(k)

where f (y(k), y(k − 1)) is to be represented by a feedforard neural network. A neural network-
based system for identification of the above model is to be developed:

%Chapter 5 Example E.1.2

%System Identification

clear all;close all;

%Define initial values

y(1)=0;y(2)=0;

%Create 500 random values within [-2,2]

%and obtain training pattern

N=500;

Appendix E: MATLAB® Programs for Neural Control Design 475

for k=2:N

f(k)=y(k)*(y(k-1)+2)*(y(k)+2.5)/(8.5+...

y(k)*y(k)+y(k-1)*y(k-1));

u(k)=(rand-0.5)*4;

y(k+1)=f(k)+u(k);

end

for k=1:(N-1)

input(1,k)=y(k+1);

input(2,k)=y(k);

target(k)=f(k+1);

end

%Define a NN and initialise weights

net=newff(minmax(input), [10 1], {'tansig', 'purelin'});

net.trainParam.goal = 0.005 %Performance goal

net=train(net,input,target);

%Test NN

for k=1:200, u(k)=2*cos(2*pi*k/100);end

for k=201:500, u(k)=1.2*sin(2*pi*k/20);end

yp(1)=0;yp(2)=0;ycap(1)=0;ycap(2)=0;

%yp - from direct calculation

%ycap - NN simulation

for k=2:500

yp(k+1)=yp(k)*(yp(k-1)+2)*(yp(k)+2.5)/(8.5+...

yp(k)*yp(k)+yp(k-1)*yp(k-1))+u(k);

ycap(k+1)=sim(net,[ycap(k); ycap(k-1)])+u(k);

end

figure(2)

plot(1:501,yp,'r',1:501,ycap,'g');

Example E.1.3: Neural network for adaptive identification A linear system is described
by the following equation:

y(k) = u(k)+ 0.5u(k − 1)− 1.5u(k − 2)
The input signal is defined by u(k) = 0.6 sin(2πk/10)+ 1.2 cos(2πk/10) with k ∈ {1, 2, . . .}.
A neural network-based prediction system is to be developed for the system output y for given
current and two previous inputs. The parameters of the linear system are not robust and hence
should be taken care of by implementing an adaptive identification method and training the
network incrementally. Assume that the measurements are ym = y + 0.1∗randn(size(y)).

%Chapter 5 Example E.1.3

%Adaptive Identification

clear all;close all;

%Input signal

N=100; T=10;

index=1:N;

u=0.6*sin(2*pi*index/T)+11.2*cos(2*pi*index/T);

%Measured values of output

476 Computational Intelligence

y(1)=u(1);y(2)=u(2)+0.5*u(1);

for k=3:N

y(k)=u(k)+0.5*u(k-1)-1.5*u(k-2);

end

randn('state',0);

ym=y+0.1*randn(size(y));

%Training data

for k1=3:N

k=k1-2;

P(1,k)=u(k1);

P(2,k)=u(k1-1);

P(3,k)=u(k1-2);

t(k)=ym(k1);

end

%Define a NN and initialise weights

a=min(u);b=max(u);

net=newff([a b;a b;a b], [20 1], {'tansig', 'purelin'},'traingdm');

%Incremental training

net.trainParam.epochs = 200;

net.trainParam.goal = 1.0e-4;

net.trainParam.lr = 0.5;

%Convert the input and output from numeric array to

%cell array for incremental training

P1=num2cell(P,1);

t1=num2cell(t,1);

disp('Starting adaptation. Please wait....');

for i=1:10

[net, netOut, netError]=adapt(net,P1,t1);

disp(strcat('Pass',num2str(i),'Complete'));

end;

%Display mean squared adaptation error

figure(1)

%Combine a cell array into one matrix

plot(cell2mat(netError));

disp(strcat('Mean squared adaptation error=',num2str(mse(netError))));

%Plot measured output and NN estimate

figure(2)

plot(1:N-2,t,'b',1:N-2,sim(net,P),'r');

E.1.1 GUI Interface of Neural Network Toolbox

This section introduces three popular neural network architectures for prediction and control
that have been implemented in the Neural Network Toolbox:

• Model Predictive Control,
• NARMA-L2 (or Feedback Linearization) Control and
• Model Reference Control.

Appendix E: MATLAB® Programs for Neural Control Design 477

In the system identification stage, a neural network model of the plant has to be developed
before it can be controlled. The prediction error between the plant output and the neural
network output is used as the neural network training signal. The process is described in
Section 5.3.1 and illustrated in Figures 5.1 and 5.2 of Chapter 5. This network can then
be trained offline in batch mode using data collected from the operation of the plant. In
the control design stage, the neural network plant model is used to design (or train) the
controller. In each of the three control architectures described in this chapter, the system
identification stage is the same. It is the control design stage that is different for each of the
architectures:

• For model predictive control, the plant model is used to predict future behaviour of the
plant, and an optimization algorithm is used to select the control input that optimizes future
performance.

• For NARMA-L2 control, the controller is simply a rearrangement of the plant model.
• For model reference control, the controller is a neural network that is trained to control a
plant so that it follows a reference model. The neural network plant model is used to assist
in the controller training.

These three controllers are implemented as Simulink R© blocks, which are contained in the
Neural Network Toolbox block set. Each controller has its own advantages and pitfalls for any
application. The choice of controller is eventually problem-dependent.

Example E.1.4: NN predictive control of continuous stirred tank reactor The CSTR,
also known as a vat reactor or backmix reactor, is a common ideal reactor type in chem-
ical engineering. A CSTR often refers to a model that is used to estimate the key unit
operation variables when using a continuous agitated-tank reactor to reach a specified out-
put. From a control point of view, product concentration at the output of the process is
an interesting control problem. The mathematical model works for all fluids: liquids, gases
and slurries. A CSTR system for mixing two liquids of concentration Cb1 and Cb2 with
flow rates w1 and w2 is shown in Figure E.1.1. The problem here is to control the con-
centration Cb of the mixture in the reactor by adjusting the flow w1 while the flow w2 is

Cb2Cb1

w2

w0

Cb

w1

h

Figure E.1.1 Continuous stirred tank reactor

478 Computational Intelligence

X(2Y)
Graph

Random
reference

Plant
(Continuous stirred tank reactor)

Plant
output

Reference

Control
signal

Optim.

NN
Model

NN Predictive controller

Clock

W1(t) Cb(t)

Figure E.1.2 NN Predictive Control of a CSTR system

fixed. The dynamic model of a CSTR system is described by the two differential equations
below:

dh(t)

dt
= w1(t)+ w2(t)− 0.2

√
h(t) (E.1)

dCbh(t)

dt
= (Cb1 − Cb(t))

w1(t)

h(t)
+ (Cb2 − Cb(t))

w2(t)

h(t)
− k1Cb(t)

(1+ k2Cb(t))2
(E.2)

where h(t) is the liquid level, Cb(t) is the product concentration at the output of the process,
w1(t) is the flow rate of the concentrated feedCb1(t) andw2(t) is the flow rate of the diluted feed
Cb2. The input concentrations are set to Cb1 = 24.9 and Cb2 = 0.1. The constants associated
with the rate of consumption are k1 = 1 and k2 = 1. The objective of the controller is to
maintain the product concentration by adjusting the floww1(t). To simplify the demonstration,
set w2(t) = 0.1. The level of the tank h(t) is not controlled for this experiment. A Simulink R©

model of a CSTR, shown in Figure E.1.2, has been developed from the differential equations
(E.1) and (E.2).
The Neural Network Toolbox provides a blockset for an NN Predictive Controller. The first

step is to copy the NN Predictive Controller block from the blockset to the Simulink R© model
window. Connect both the NN Predictive Controller block and the CSTR model as shown in
Figure E.1.1. A random reference signal is used from the Simulink R© source.
Double-clicking on the NN Predictive Controller block brings up the design window for

the model predictive controller. This window enables us to set the controller horizons N2
and Nu where N1 is kept fixed at 1. The weighting parameter p is also defined in this
window. The search parameter α is used to control the optimization. It determines how
much reduction in performance is required for a successful optimization step. The linear
minimization search routine to be used by the optimization algorithm is also selected here. The
linear minimization routines are slight modifications of those discussed in backpropagation,
for example backtracking or Brent’s methods. It is also possible to decide how many iterations
of the optimization algorithm are performed at each sample time. Once the Neural Network
Predictive Control parameters are set, plant identification can be started by clicking on the
Plant Identification button. This opens up the Plant Identification window.

Appendix E: MATLAB® Programs for Neural Control Design 479

Plant identification is carried out in three steps: defining the neural network architecture,
generating the training data and training the neural network model. The defined neural network
will be used as the plant model and hence will be called the NNmodel. The NNmodel predicts
the future plant outputs. The optimization algorithm uses these predictions to determine the
control inputs that optimize future performance. The plant model neural network has one hid-
den layer. The size of the hidden layer and the number of delayed inputs and delayed outputs are
set in this window. A set of input/output data is required to train the neural network plant model.
The next step is to generate a set of input/output data using the Simulink R© model for the

CSTR described above. Training samples, maximum and minimum of plant input/output data
and minimum interval value are set and then the data-generation process started by clicking
on the Generate Training Data button. The program generates training data by applying a
series of random step inputs to the CSTR Simulink R© model. The potential training data is then
generated and displayed in a separate window. Once the data generation is complete, accept
the data by clicking on the Accept Data button in this window.
The final step is to train the NNmodel using the accepted data. Any of the training functions

described in the backpropagation algorithm can be used to train theNNmodel. To do this, train-
ing epochs and training function are selected and then, by selecting Train Network from the
Plant Identificationwindow, the plantmodel training is started. The training proceeds according
to the chosen training algorithm (trainlm, traingdx, etc.). This is a straightforward
application of batch training, as described in backpropagation. After the training is complete,
the responses of the resulting plant model and NNmodel are displayed. The random input data
to the plant model and its response are shown in Figure E.1.3(a,b). The training error after train-
ing and the NNmodel output after training are shown in Figure E.1.3(c,d). There are also sepa-
rate plots for validation and testing data, if they exist. Training can be continued with the same
data set by selecting Train Network again or data can be deleted by selecting Erase Generated
Data. Once the NNmodel has been trained, accept the current NN plant model and begin simu-
lating the closed-loop system. For this example, follow the steps below to begin the simulation.
Select OK in the Plant Identification window. This loads the trained neural network plant

model into the NN Predictive Controller block. Select OK in the Neural Network Predictive
Control window. This loads the controller parameters into the NN Predictive Controller block.
Return to the Simulink R© model and start the simulation by choosing the Start command from
the Simulation menu. As the simulation runs, the plant output and the reference signal are
displayed as in Figure E.1.4.

Example E.1.5: NARMA-L2 control of magnetic levitation system Amagnetic levitation
system (MagLev) is a system that uses magnetic fields as a means to levitate an object in a
certain position. If an object is placed far away from the magnetic source, the magnetic force
is too weak to support the weight of the object. If placed too close to the magnetic source, the
magnetic field becomes too strong and causes the object to move towards the source and come
into contact with the magnet. Thus, the MagLev device is inherently an unstable system and
thus poses a very interesting control problem. In this example, the objective is to control the
position y(t) of a magnet suspended above an electromagnet, where the magnet is constrained
so that it can only move in the vertical direction. A simple MagLev system is shown in Figure
E.1.5. The equation of motion for the system is given by

ÿ(t) = −g + α

m

i2(t)

y(t)
− β

m
ẏ(t) (E.3)

480 Computational Intelligence

0 500 1000
0

1

2

3

4

(a)

0 500 1000
20

21

22

23

(b)

0 500 1000
–0.02

–0.01

0

0.01

0.02

(c)

time (s)

(d)

time (s)

0 500 1000
20

21

22

23

Figure E.1.3 Plant identification. (a) random input data; (b) CSTR plant output data; (c) error after
training; (d) NN model output after training

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing
in the electromagnet, m is the mass of the magnet and g is the gravitational constant. The
parameter β is a viscous friction coefficient that is determined by the material in which the
magnet moves, and α is a field strength constant that is determined by the number of turns of
wire on the electromagnet and the strength of the magnet.
A Simulink R© model of the MagLev system, shown in Figure E.1.6, has been developed

from the differential equation (E.3). The Neural Network Toolbox provides a blockset for the
NARMA-L2 Controller. The NARMA-L2 Controller block is copied from the blockset to the
Simulink R© model window. Connect both the NARMA-L2 Controller block and the MagLev
model as shown in Figure E.1.6. A random reference signal is used from the Simulink R© source.

Appendix E: MATLAB® Programs for Neural Control Design 481

0 10 20 30 40 50 60
20

20.5

21

21.5

22

22.5

23

Time

C
on

ce
nt

ra
tio

n
C

b(
t)

Plant output

Reference

Figure E.1.4 Performance of the NN Predictive Controller showing CSTR plant output compared with
reference signal

y(t)

i(t)

m

g

Figure E.1.5 Magnetic levitation system

X(2Y)
Graph

Random
reference

Plant
(Magnet levitation)

Plant
output

Reference

Control
signal

NARMA-L2 Controller

Clock
N
S

Current Position
f g

Figure E.1.6 Simulink R© model of NARMA-L2 Controller

482 Computational Intelligence

Figure E.1.7 Plant identification window of NARMA-L2 Controller

Plant identification of the MagLev system is carried out first. It is the same procedure
as the plant identification in Model Predictive Control. Double-clicking on the NARMA-L2
Controller block brings up the plant identification window of NARMA-L2 shown in Figure
E.1.7. The network architecture and training data parameters are specified to generate training
data. The random input data to the MagLev plant model and its output data are shown in
Figure E.1.8(a,b). The training parameters and algorithm are chosen for training the network.
The training error after training and the NN model output after training are shown in Figure
E.1.8(c,d). There is no separate window for the controller design, because the controller is
determined directly from the model, unlike the Model Predictive Controller. This window
works the same as the other Plant Identification windows, so the training process is not
repeated. Instead, simulation of the NARMA-L2 Controller can be started.
Select OK in the Plant Identification window. This loads the trained neural network plant

model into the NARMA-L2 Controller block. Select OK in the NARMA-L2 Control window.
This loads the controller parameters into the NARMA-L2 block. Return to the Simulink R©

model and start the simulation by choosing the Start command from the Simulation menu.
As the simulation runs, the plant output and the reference signal are displayed as shown in
Figure E.1.9.

Example E.1.6: Model reference control of robot arm Online computation of the Model
Reference Controller, like NARMA-L2, is also minimal. However, one difference is that
the model reference architecture requires a separate neural network controller to be trained

Appendix E: MATLAB® Programs for Neural Control Design 483

0 10 20 30
–1

0

1

2

3

4

(a) (b)

(c)
time (s)

(d)
time (s)

0 10 20 30
0

2

4

6

0 10 20 30
–0.05

0

0.05

0.1

0.15

0 10 20 30
0

2

4

6

Figure E.1.8 Plant identification. (a) random input data; (b) MagLev plant output data; (c) error after
training; (d) NN model output after training

offline, in addition to the neural network plant model identification. The controller training is
computationally expensive, because it requires the use of dynamic backpropagation (Narendra
and Parthasarathy, 1991). The advantage is that the model reference control applies to a larger
class of plant than that of NARMA-L2 control. The neural networkMRC architecture uses two
neural networks: a controller network and a plant model network. The architecture is shown in
the block diagram of Figure E.1.10. The plant model is identified first, and then the controller
is trained so that the plant output follows the reference model output.
In this example, the objective is to control the movement of a rigid single-link robot arm,

as shown in Figure E.1.11. The equation of motion for the arm is given by the differential
equation

d2θ

dt2
= −10 sin θ − 2dθ

dt
+ u (E.4)

484 Computational Intelligence

0 5 10 15 20 25 30
–1

0

1

2

3

4

Time

D
is

ta
nc

e
y(

t)

Plant output

Reference

Figure E.1.9 Performance of the NARMA-L2 Controller showing MagLev plant output compared
with reference signal

Robot arm
u

r

Reference
model

yp

ym

ec

+

ye

em +

–

–

NN arm model

Plant identification

Model reference control

NN controller

Figure E.1.10 Block diagram of model reference control

θ

Figure E.1.11 Single-link robot arm

Appendix E: MATLAB® Programs for Neural Control Design 485

X(2Y)
Graph

Random
reference

Plant
(Robot arm)

Plant output

Reference

Control
signal

Normal
network
controller

Model reference controller

Clock

Torque Angle

Figure E.1.12 Model reference control of single-link robot arm

where θ is the angle of the arm and u is the torque supplied by the DC motor. The objective
is to train the controller so that the arm tracks the reference model. The reference model is
described by the differential equation

d2yr

dt2
= −9yr − 6dyr

dt
+ 9ur (E.5)

where yr is the output of the reference model and ur is the input reference signal. A detailed
description of the model can be found in Kim and Lewis (1998).
A Simulink R© model of the robot arm system has been developed from the differential

equation (E.4). The Neural Network Toolbox provides a blockset for the MRC. The MRC
block is copied from the blockset to the Simulink R© model window. Connect both the MRC
block and the robot arm model. Figure E.1.12 shows details of the MRC as implemented in the
Neural Network Toolbox, and the Simulink R©model of the robot arm. A referencemodel is also
required which will generate the reference signal to be traced by the controller. A Simulink R©

model of the reference model has also been developed using the differential equation (E.5).
A random reference signal generator from the Simulink R© source is used here to provide a
reference signal to both the MRC and the reference model.
Double-clicking on the MRC block brings up the Model Reference Control window. The

first step would normally be to select Plant Identification, which opens the Plant Identifica-
tion window. A neural network plant model is defined and trained from the generated data.
A Simulink R© plant model for the robot arm defined in (E.4) is used for plant identifica-
tion. Because the Plant Identification window is identical to the one used with the previous
controllers in Model Predictive or NARMA-L2 Control, that process is repeated here.
Once the plant identification is complete, the MRC architecture is defined. The architecture

is defined by the number of neurons to use in the hidden layer and three other input parameters.
The three sets of controller parameters are: delayed reference inputs, delayed controller outputs
and delayed plant outputs. For each of these inputs, select the number of delayed values to
use. Typically, the number of delays increases with the order of the plant. In this example, the
architecture of the controller is a 5–13–1 neural network. The inputs to the controller consist
of two delayed reference inputs, two delayed plant outputs and one delayed controller output.
A sampling interval of 0.05 s is used. The Simulink R© model of the reference model defined

486 Computational Intelligence

in (E.5) is used for this experiment. After entering the maximum/minimum reference value,
interval value and training samples, select Generate Data. The program starts generating the
data for training the controller. After the data is generated, a window appears prompting us to
accept the data.
On return to the Model Reference Control window, select Train Controller. The controller

training requires two parameters: controller training epochs and controller training segments.
The program presents one segment of data to the network and trains the network for a specified
number of iterations. This process continues, one segment at a time, until the entire training
set has been presented to the network. Controller training can be significantly more time-
consuming than plant model training. This is because the controller must be trained using
dynamic backpropagation (see Hagan et al., 1999). After training is complete, the response of
the resulting closed-loop system is displayed, as shown in Figure E.1.13.
If the performance of the controller is not satisfactory, then train the controller again, which

continues the controller training with the same data set. If there is a problemwith the generated
data, generate or import a new data set to continue training. Be sure that Use Current Weights
is selected if you want to continue training with the same weights. It might also be necessary to
retrain the plant model. If the plant model is not accurate, it can affect the controller training.

0 20 40 60 80 100 120 140
–1

–0.5

0

0.5

1

(a)
time (s)

0 20 40 60 80 100 120 140
–1

–0.5

0

0.5

1

(b)
time (s)

NN output

Ref model output

Figure E.1.13 Controller training. (a) reference model input; (b) reference model output and neural
network output after training the controller for 10 epochs in 10 segments

Appendix E: MATLAB® Programs for Neural Control Design 487

0 10 20 30 40 50 60
–1

–0.5

0.5

0

1

Time (s)

A
rm

 a
ng

le

Plant output

Reference output

Figure E.1.14 Performance of the Model Reference Controller showing robot arm plant output com-
pared with reference signal

For this example, make sure that the controller is accurate enough. If so, select OK. This loads
the controller details and weights into the Simulink R© model.
Return to the Simulink R© model and start the simulation by selecting the Start command

from the Simulation menu. As the simulation runs, the plant output and reference signal are
displayed, as shown in Figure E.1.14.

Appendix F
MATLAB® Programs for
Evolutionary Algorithms

F.1.1 Using the Genetic Algorithm Toolbox

The toolbox provides the function ga() to implement the genetic algorithm at the command
line or in M-files to minimize an objective function. The general form of the function ga() is

x = ga(fitness_function, no_variables, options)

[x, fval, reason, output, population, scores] = ga(...)

where fitness_function, no_variables and options are the input arguments. For standard opti-
mization algorithms, fitness_function is known as the objective function. The objective func-
tion is written as an M-file and used as a function handle input argument in the ga() function.
no_variables is the number of independent variables of the fitness function, and options is the
set of parameters of the genetic algorithm defined with gaoptimset.
After running the algorithms for the maximum number of generations, ga(. . .) returns x,

fval, reason, output, population and scores. x is the final solution, fval is the final value of the
fitness function at x, reason is a string containing the reason for termination of the algorithm,
output is a structure that contains the following fields:

randstate – the state of the MATLAB R© random number generator
randnstate – the state of the MATLAB R© normal random number generator
generations – the number of generations computed
funccount – the number of evaluations of the fitness function
message – the reason the algorithm terminated (same as reason).

ga(. . .) also returns a population of solutions in matrix form, whose rows are the solution to
the optimization problem. Finally, ga() returns the scores of the final population.

F.1.1.1 Defining the Fitness Function

The ga() function actually minimizes the objective function f (x), i.e., it solves a problem
of the form min

x
f (x). To maximize f (x), it finds − f (x). Firstly an objective function is

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

490 Computational Intelligence

defined for the optimization problem and then an M-file is written. For example, the function
f (x1, x2) = x21 + x22 − 6x1 + 6x2 represents an objective function to be optimized. TheM-file
is written as follows:

function z = objfcn(x)

z=x(1)ˆ2+x(2)ˆ2-6*x(1)+6*x(2);

A function handle is used for the fitness (objective) function as @objfcn that computes the
fitness value.

F.1.1.2 Setting the Options for GA

Option is the set of parameters of the genetic algorithm defined with gaoptimset, which creates
the genetic algorithm options structure. The general form is as follows:

options = gaoptimset('param1',value1,'param2',value2,...)

gaoptimset() creates a structure of options and sets the value of ‘param1’ to value1, ‘param2’ to
value2, and so on. Any unspecified parameters are set to their default values. The parameters,
for example, are population size, selection function, crossover function, mutation function,
plot functions. It is sufficient to type enough leading characters to define the parameter name
uniquely. Case is ignored for parameter names. For example:

options = gaoptimset('PopulationSize', 100, 'PlotFcns', @gaplotbestf)

This creates an options structure with field values set to their default except for populationSize
and PlotFcns, which are set to 100 and @gaplotbestf, respectively. A new set of parameters
can be set or changed. For example:

options = gaoptimset(options, 'SelectionFcn', @selectionstochunif)

This preserves the current values of all fields of the options and sets the selection function to
@selectionstochunif.
The toolbox provides a variety of selection, crossover and mutation functions.

Selection functions
SelectionFcn is a handle to functions that selects parents for crossover and mutation. The
toolbox provides a number of functions: @selectionremainder, @selectionuniform, @selec-
tionstochunif, @selectionroulette, @selectiontournament.

Crossover functions
CrossoverFcn is a handle to crossover functions. There are a number of such functions:
@crossoverheuristic, @crossoverintermediate, @crossovertwopoint, @crossoverarithmatic,
@crossoversinglepoint, @crossoverscattered.

Mutation functions
MutationFcn is a handle to mutation functions. There are a number of mutation functions
provided by the toolbox: @mutationuniform, @mutationadaptfeasible, @mutationgaussian.
The GA Toolbox also supports a number of plot functions using the handle PlotFcns. Some

of these are @gaplotbestf, @gaplotbestindiv, @gaplotdistance.

Appendix F: MATLAB® Programs for Evolutionary Algorithms 491

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

Generation

Best: 25.4242 Mean: 25.5869

Best fitness

Mean fitness
F

itn
es

s
va

lu
e

Figure F.1.1 Best and mean fitness over generations

Example F.1.1 This example demonstrates the optimization of Rastrigin’s function, defined
by

f (x1, x2) = 20+ x21 + x22 − 10(cos 2πx1 + cos 2πx2)

The handle to the objective function is @rastriginsFcn. The number of variables is set to
10. The options parameters are single point crossover and uniform mutation with all other
parameters set to default. After running the GA for maximum generations (default 100), it
will plot the best and mean fitness over the generations as shown in Figure F.1.1. Finally, the
following code (M-file) will output the solution vector x, final fitness at x and the reason for
termination of the GA:

clear all; close all; format compact

%Finding the Minimum of Rastrigins Function using GA

%Refer to Example F.1.1

FitnessFcn=@rastriginsFcn;

No_Variables=10;

options=gaoptimset('CrossoverFcn',@crossoversinglepoint,...

'MutationFcn',@mutationuniform, 'PlotFcns',@gaplotbestf);

%Run GA with options

[x,fval,reason]=ga(FitnessFcn,No_Variables,options)

x =

Columns 1 through 7

492 Computational Intelligence

0.8008 0.0672 0.0767 0.0383 0.2520 0.1295 0.0211

Columns 8 through 10

0.9975 0.0475 0.0612

fval =

25.4242

reason =

Optimization terminated: maximum number of generations exceeded.

Example F.1.2 This example demonstrates the effect of different settings for crossover
fraction. The following code runs the GA 21 times, varying the crossover fraction (probability)
from 0 to 1 in increments of 0.05 then records the result and plots the fitness value over the
crossover fractions as shown in Figure F.1.2. The plot shows that the GA provides the best
result for a crossover setting between 0.65 and 0.95.

clear all; close all; format compact

%Finding the Minimum of Rastrigins Function using GA

%Refer to Example F.1.2

FitnessFcn=@rastriginsFcn;

No_Variables=10;

record=[];

for n=0:0.05:1

options=gaoptimset('Generations', 300, 'CrossoverFraction',n);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Crossover Fraction

Performance of GA based on crossover fraction

F
itn

es
s

Figure F.1.2 Performance of GA based on crossover fraction (probability)

Appendix F: MATLAB® Programs for Evolutionary Algorithms 493

%Run GA with options

[x,fval]=ga(FitnessFcn, No_Variables, options);

record=[record; fval];

end

%Plot values of fval against the crossover fraction

plot(0:0.05:1,record);

xlabel('Crossover Fraction');

ylabel('Fitness')

title('Performance of GA based on crossover fraction')

Example F.1.3 This example demonstrates the GA plot functions. The following code
(M-file) generates the four plots showing the best and mean fitness, current best individual,
fitness scaling and diversity in Figure F.1.3:

clear all; close all; format compact

%Finding the Minimum using GA

%Refer to Example F.1.3

FitnessFcn=@rastriginsFcn;

No_Variables=3;

options=gaoptimset('PlotFcns',{@gaplotbestf,@gaplotbestindiv,...

@gaplotexpectation,@gaplotscorediversity});

20 40 60 80 100
0

10

20

30

40

Generation

Best: 0.05918 Mean: 0.44158

1 2 3
–0.01

0

0.01

0.02

Number of variables (3)

Current Best Individual

0 0.5 1 1.5 2
0

2

4

6

Raw scores

Fitness Scaling

0 0.5 1 1.5 2
0

2

4

6
Score Histogram

Best fitness

Mean fitness

F
it
n

e
s
s
 v

a
lu

e
E

x
p

e
c
ta

ti
o

n

C
u

rr
e

n
t
b

e
s
t
in

d
iv

id
u

a
l

Figure F.1.3 Illustration of plot functions supported by the toolbox

494 Computational Intelligence

%Run GA with options

[x,fval,reason]=ga(FitnessFcn,No_Variables,options)

The University of Sheffield developed a GA Toolbox under MATLAB R©. It has many pow-
erful functions. A few functions are discussed in this section, and a simple GA example is
demonstrated in Example F.1.4. For these exercises, the user needs to install or write a few
functions and put them in their work directory. These functions are crtbp(), crtrp(), bs2rv(),
select(), xovrsp() and mut(). These functions are a simple demonstration of the concepts of
evolutionary computing. To create a binary or real-valued population, functions such as crtbp()
or crtrp() are used. To convert a binary population into a real-valued population, use bs2rv().
For genetic operators such as selection, crossover and mutation, use the functions select(),
xovrsp() and mut(), respectively.
The function crtrp() creates a population of given size of random real values. Nind is a

scalar containing the number of individuals in the new population and FieldDR is a matrix of
size 2 by number of variables describing the boundaries of each variable. For example:

Nind = 6;

FieldDR = [-10 -5 -3 -2; % lower bound

10 5 3 2] % upper bound

Chrom = crtrp(Nind, FieldDR)

The function bs2rv() decodes binary chromosomes into vectors of real values. The chro-
mosomes are seen as the concatenation of binary strings of given length, and decoded into
real numbers in a specified interval using either standard binary or Gray decoding. FieldD
is a matrix describing the length and how to decode each substring in the chromosome. For
example:

FieldD = [8; -1; 25; 1; 0; 1; 1];

Phen = bs2rv(Chrom,FieldD)

The function select() performs a universal selection from the population. Consider a population
of six individuals with assigned fitness values and generation gap as follows:

FitnV = [0.5; 1.16; 0.83; 0.723; 1.6; 0.19];

GGap = 0.9;

Using the Stochastic Universal Sampling ‘sus’ function, the new population will be

SelCh= select('sus', Chrom, FitnV, GGap)

The function xovrsp() performs a single-point crossover between pairs of individuals and
returns the current generation after mating. For example:

Xovrp = 0.87; %cross over probability

OldChrom = Chrom; %Chrom created in example 1

NewChrom = xovrsp(OldChrom, Xovrp)

The function mut() takes the representation of the current population, mutates each element
with given probability and returns the resulting population. For example:

pm=0.12; %mutation probability

OldChrom = NewChrom; %Chrom created in example 6

NewChrom = mut(OldChrom, pm)

Appendix F: MATLAB® Programs for Evolutionary Algorithms 495

0 5 10 15 20 25
18

18.5

19

19.5

20

20.5

21

Generations

F
itn

es
s

Figure F.1.4 GA achieves the maximum at 4

Example F.1.4 The function given by f (x) = x2 + 8x + 15 is to be optimized using GA.
The function has a maximum at 4. The following M-file generates an initial binary population
of 20 individuals of length 8. It runs the GA for 50 generations using the functions explained
above. The GA achieves the maximum of the function in only 5 generations, as shown in
Figure F.1.4.

%Refer to Example F.1.4

%--GA parameter settings

Nind = 20; % No of chromosomes

Lind = 8; % Length of string

xovpr = 0.87; % Crossover probability

mutpr = 0.12; % Mutation probability

maxgen = 50; % Maximum generation

%create a binary population of 20 chrom of string length 8

Chrom = crtbp(Nind, Lind);

%Field description for convertion

FieldD=[8; 0; 25; 1; 0; 1; 1];

gen = 1;

while gen < maxgen

%convert the binary strings into real value

Phen = bs2rv(Chrom, FieldD);

x = Phen;

496 Computational Intelligence

%Calculate Fitness value FitnV - scale the fitness value between 0 and 2

ObjV = -x.ˆ2+8*x+5;

mx = max(abs(ObjV));

FitnV = ObjV./mx+2;

%Show the max value at each gen

mxx = ObjV(1);

for i = 2:length(x)

if mxx < ObjV(i)

mxx = ObjV(i);

ix = i;

end

end

mxx;

p = x(ix);

%Select using 'sus' selection

SelCh = select('sus', Chrom, FitnV);

% Single point Cross over is performed

% here with a cross over probability of 0.87

% that means 87% of the individuals undergoe crossover

OldChrom = SelCh;

NewChrom = xovsp(OldChrom, xovpr);

% Mutation is performed here with a mutation probability of 0.12

% that means 12% of the individuals undergoe mutation

Chrom = mut(NewChrom, mutpr);

%Plot the max value and x at each generation

plot(p, mxx, 'ok')

xlabel('Generations')

ylabel('Fitness')

hold on

grid

gen = gen +1

end

Appendix G
MATLAB® Programs for
Neuro-Fuzzy Systems

The modelling approach used by ANFIS is similar to many system identification techniques
and can be broken down into the following steps:

• Set of input/output data,
• Parameterized model structure relating to input/output MFs and rules.

In some cases, data is collected using noisy measurements, and the training data cannot be
representative of all the features of the data that will be presented to the model. This is where
model validation and testing come into play. The whole model-building process is divided into
three steps:

• Model building,
• Model validation and
• Model testing.

Model validation is the process by which the input vectors from testing the I/O data set
are presented to the trained ANFIS model to see how well the ANFIS model predicts the
corresponding data set output values. To perform the above tasks, the whole data set is divided
into three sets of data:

• Training data,
• Testing data and
• Checking data.

To create a training set from the available historical sequence first requires the choice of how
many and which delayed outputs affect the next output. Each item in the training data set
should have a value, because that is what the classifier uses to learn how to predict. In the
checking data, each item may or may not have a correct value specified for the class value.

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

498 Computational Intelligence

To evaluate how accurate the classifier is, the true class values or checking data are needed.
The classifier won’t use them when making predictions, but they will be used to calculate
how accurate the predictions are. If there are about 1000 I/O data points, the first 500 data
points are used for ANFIS training (called the training data set) while the others are used as
checking data for validating the identified model. To perform the above tasks, the whole data
set is divided into two sets of data:

• Training data and
• Checking data.

The following simple code can be used to generate the data sets:

train_Data=data(1:500,:);

check_Data=data(501:end,:);

In order to achieve good generalization capability, it is important to ensure that the number of
training data points is several times larger than the number of parameters being estimated.

G.1.1 Creating ANFIS Structure

The first thing inANFISmodelling is to define anANFIS structure and set the initial parameters
for learning. The tools provide two functions, genfis1() and genfis2(), to generate the ANFIS
structure. The general form of the two functions is as follows:

fismat = genfis1(data, numMFs, inmftype, outmftype)

fismat = genfis2(Xin, Xout, radii, xBounds, options)

genfis1() generates a Sugeno-type FIS structure from a training data set using a grid partition
on the data without applying clustering. The number of MFs (numMFs), type of input and
output MFs (inmftype, outmftype) can also be specified. genfis1 uses the following arguments:
‘data’ is the training data matrix, which must be provided with all columns representing input
data, and the last column should represent the single output. numMFs specifies the number of
membership functions associated with each input. If numMFs is omitted, the default value of
2 is used. If the same number of membership functions is desired for each input, it suffices
to make a single number. inmftype is a string that specifies the type of membership function
for each input. If the same membership type is desired for each input, it suffices to name a
single type. If the membership function type is omitted, the default input membership function
type ‘gbellmf’ is used. outmftype is a string that specifies the membership function type for
the output. There can only be one output, since this is a Sugeno-type system. The output
membership function type must be either linear or constant. The default output membership
function type is ‘linear’.
The number of membership functions associated with the output is the same as the number

of rules generated by genfis1. Default settings are used whenever genfis1 is invoked without
numMFs, inmftype, outmftype.

Example G.1.1

%Example G.1.1 - use of genfis1 function

data = [rand(100,1) 10*rand(100,1)-5 rand(100,1)];

numMFs = [3 3];

mfType = str2mat('pimf','trimf');

Appendix G: MATLAB® Programs for Neuro-Fuzzy Systems 499

fismat = genfis1(data, numMFs, mfType);

[x,mf] = plotmf(fismat, 'input',1);

subplot(2,1,1), plot(x, mf);

xlabel('input 1 (pimf)');

[x,mf] = plotmf(fismat, 'input',2);

subplot(2,1,2), plot(x, mf);

xlabel('input 2 (trimf)');

The genfis1 function generates initial MFs that are equally spaced and cover the whole input
space. The genfis1-generated MFs are shown in Figure G.1.1.
Given separate sets of input and output data, genfis2 generates an initial ANFIS structure

for training by first implementing subtractive clustering on the data set. genfis2 does this by
extracting a set of rules that models the behaviour of the system represented by the data set. The
rule extraction method determines the number of rules and antecedent membership functions
and then uses linear least-squares estimation to determine each rule’s consequent equations.
genfis2 uses the following arguments: Xin is a matrix in which each row contains the input
values of a data point. Xout is a matrix in which each row contains the output values of a data
point. radii is a vector that specifies a cluster centre’s range of influence in each of the data
dimensions. For example, if the data dimension is 3 (i.e., two columns of Xin and one column
of Xout), radii = [0.5 0.4 0.3] specifies the ranges of influence in the first, second and third
data dimensions. xBounds is a 2-by-N optional matrix that specifies how to normalize the data
in Xin and Xout into values in the range [0 1] for processing. N is the data (or row) dimension
of the matrix. The first row of xBounds contains the minimum and the second row contains
the maximum range values for scaling the data in each dimension. For example, xBounds =
[–10 0 –2; 10 30 1] specifies that the first, second and third data dimension values are to be

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

input 1 (pimf)

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.5

1

input 2 (trimf)

Figure G.1.1 Input MFs of the ANFIS

500 Computational Intelligence

scaled from the range [–10+10], [0 30] and [–2 1] into values in the range [0 1], respectively.
If xBounds is not provided, then xBounds uses the minimum and maximum data values found
in each data dimension. ‘options’ is an optional vector for specifying algorithm parameters to
override the default values. There are four options available. The parameters are explained in
the help text for subclust. Default values are in place when this argument is not specified.

Example G.1.2

%Example G.1.2 - use of genfis2 function

data = [rand(100,1) 10*rand(100,1)-5 rand(100,1)];

Xin=data(:,1:2); % column 1 and 2 of data

Xout=data(:,3); % column 3 of data

fismat = genfis2(Xin,Xout,[0.5 0.25 0.3]);

[x,mf] = plotmf(fismat, 'input',1);

subplot(2,1,1), plot(x, mf,'k');

xlabel('input 1');

[x,mf] = plotmf(fismat, 'input',2);

subplot(2,1,2), plot(x, mf, 'k');

xlabel('input 2');

G.1.2 Training ANFIS

Once a Sugeno-type FIS is generated, an ANFIS can be trained using the function anfis(). The
general form is as follows:

[fismat, error, stepsize] = anfis(trnData, fismat)

This is the major training function for Sugeno-type fuzzy inference systems. anfis() uses a
hybrid learning algorithm to identify parameters of Sugeno-type fuzzy inference systems. It
applies a combination of the least-squares method and the backpropagation gradient descent
method for training FIS membership function parameters to emulate a given training data set.
anfis() can also be invoked using an optional argument for model validation. trnData is the
training data used in defining the ANFIS structure. fismat is the ANFIS structure created by
the function genfis1(). chkData is the optional checking data for overfitting model validation.
The training process stops whenever the maximum epoch number is reached or the training
error goal is achieved. When anfis is invoked with two or more arguments, the rest of the
optional arguments will take on their default values.

Example G.1.3 A re-vibration system is described by the equation y = sin(2x)
exp(−x/5) , where x

is the input to the system. A prediction model has been developed using ANFIS. The following
segment of code shows how to cerate and train the ANFIS model and predict the output for a
noisy input:

clear all;

clc;

%ANFIS for prediction of a re-vibration system

%--

%The re-vibration system is described by the equation

%y = sin(2*x)./exp(-x/5);

Appendix G: MATLAB® Programs for Neuro-Fuzzy Systems 501

%To identify the re-vibration system, I/O data is generated first

x = (0:0.1:10)';

y = sin(2*x)./exp(-x/5);

trnData=[x y];

%--Setting ANFIS parameters

nummfs = 5;

mftype = 'gbellmf';

epoch_n = 20;

%--ANFIS structure is created using the training data

in_fis = genfis1(trnData,nummfs,mftype);

%--ANFIS is then trained using training data

out_fis = anfis(trnData,in_fis,epoch_n);

%--Prediction of y with additive noise using the model

x=x+0.01;

yp=evalfis(x,out_fis)

%--Plot the plant input and output and reference output.

plot(x,y,'--k',x,yp,'.-k');

grid;

legend('Desired output','Predicted Output');

xlabel('Input x');

ylabel('Model output');

disp('Sum of absolute error: ')

SAE=sum(abs(y-yp))

See Figure G.1.2.

Example G.1.4: Developing ANFIS controller for water bath system The temperature
control of a water bath plant is an interesting problem and used as a benchmark problem for
much control system research. The water bath temperature plant is described by

y(k + 1) = a(T)y(k)+ b(T)u(k)

1+ exp(0.5y(k)− r)
+ (1− a(T))Y0

where a(T) = exp(−αT) and b(T) = β(1−exp(−αT))
α

. The parameters of the plant are α =
1× 10−4, β = 8.7× 10−3, r = 40 and Y0 = 25 oC. The plant input u(k) is defined as 0 ≤
u(k) ≤ 5 V. The sampling period is Ts = 25 s. This reference signal is defined by

ref(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

35 ◦C for 0 ≤ t ≤ 40min
50 ◦C for 40 < t ≤ 80min
65 ◦C for 80 < t ≤ 120min
80 ◦C for 120 < t ≤ 180min

502 Computational Intelligence

0 2 4 6 8 10 12
–6

–4

–2

0

2

4

6

8

Input x

Desired output

Predicted output
M

od
el

 o
ut

pu
t

Figure G.1.2 Model output with additive input noise

A neuro-fuzzy (ANFIS) controller has to be developed to control the water temperature to
follow a reference signal as closely as possible. One of the uses of ANFIS in a control system
is to learn the inverse of the plant model, so that it can be used as a controller after training. The
general procedure is to generate a random input signal u(k), apply it to the plant and measure
the output y(k + 1). Using the output and delayed output signal {y(k + 1),y(k)} and input u(k),
an inverse ANFIS model of the plant is trained. Figure G.1.3 shows the learning stage of the
inverse ANFIS model. Notice that the learning of ANFIS is based on error backpropagation.

Plant
1)+y(k

y(k)

u(k)

y(k)

1)+y(k
+ −

1−z

ANFIS
1−zu(k) ~u(k)

Figure G.1.3 Training stage of the ANFIS model

Appendix G: MATLAB® Programs for Neuro-Fuzzy Systems 503

Plant
1)+y(k

u(k)

y(k)

1)+y(k

1−z

ANFIS controller

Figure G.1.4 ANFIS controller deployed for the plant

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

Sampling Time Step KT T = 25 seconds

Control Signal

Actual Output
Reference Signal

T
em

pe
ra

tu
re

 (
de

gr
ee

)

Figure G.1.5 Plant’s response using the ANFIS controller

Once the ANFIS model is trained with sufficient training data, it is used as a controller for
the plant. The ANFIS controller deployed for the water bath plant is shown in Figure G.1.4.
The following segment of MATLAB R© code shows how to create an ANFIS model, train the
ANFIS model and apply it as a controller for the water bath plant. Figure G.1.5 shows the
control signal produced by the ANFIS controller, which is able to control the plant’s output
following the reference signal closely.

clear all;

clc;

%ANFIS Controller for the Water Bath System

%---

504 Computational Intelligence

%The water bath system is described by the equation

%y(k+1) = a(T)*y(k)+b(T)/(1+exp(0.5*y(k)-r))*u(k)+(1-a(T))*yo;

%with 0<= u(k)<=5 volts.

p = 1*10ˆ(-4);

q = 8.7*10ˆ(-3);

yo = 25;

y(1) = yo;

%--Sampling period Ts=25 sec

Ts = 25;

%--Parameters of plant a(T),b(T)& r are defined as

a = exp(-p*Ts);

b = (q/p)*(1-exp(-p*Ts));

r = 40.0;

%--The reference signal is defined as

for k = 1:180

if (k <= 40)

ref(k) = 35;

elseif (k > 40 & k <= 80)

ref(k) = 50;

elseif (k > 80 & k <= 120)

ref(k) = 65;

elseif (k > 120)

ref(k)=80;

end;

end;

%To identify the water bath plant, I/O data set is required

%The simplest wat to do it is to input random signal to

%the plant and measure the output.

%Random input signal is generated and ouput signal is collected

for k = 1:120

u(k) = rand(1,1)*5;

y(k+1) = a*y(k)+b/(1+exp(0.5*y(k)-r))*u(k)+(1-a)*yo;

end;

%--Training data created

trndata = [y(2:101);y(1:100);u(1:100)]';

%To start the ANFIS training, we need an FIS structure

%and initial parameters of the FIS for learning.

%The user can use the command "genfis1" to generate an FIS matrix

%from the training data using the grid-type partition

%according to the given number and types of membership functions.

%In this demonstration, five 'gaussmf'-type MFs are used.

%--Setting ANFIS parameters: 5 Gaussian MFs are chosen

nummfs = 3;

mftype = 'gaussmf';

Appendix G: MATLAB® Programs for Neuro-Fuzzy Systems 505

%--ANFIS structure is created using the training data

fismat = genfis1(trndata,nummfs,mftype);

%--MFs before training

figure

[x,mf] = plotmf(fismat, 'input',1);

subplot(2,1,1), plot(x, mf,'k');

xlabel('input 1 (gaussmf)');

[x,mf] = plotmf(fismat, 'input',2);

subplot(2,1,2), plot(x, mf, 'k');

xlabel('input 2 (gaussmf)');

%--The ANFIS is then trained to identify the inverse model

%--of the water bath system using the gathered training data.

[outfismat, error,stepsize] = anfis(trndata, fismat,5);

% Save ANFIS data

save myanfis.mat outfismat

disp('--')

%--The ANFIS outfismat is now used as a controller for the

%--water bath system

controller=outfismat;

%--Test 180 time-steps.

for k=1:179

%Controller is simulation using ref signal & plant output

u(k) = evalfis([ref(k+1) y(k)],controller);

if (u(k) >= 5)

u(k)=5;

elseif (u(k) <= 0)

u(k)=0;

else

u(k)=u(k);

end;

%Plant simulation using the control input

y(k+1)=a*y(k)+b/(1+exp(0.5*y(k)-r))*u(k)+(1-a)*yo;

end;

figure

%--Plot the plant input and output and reference output.

hold on;

grid;

plot(u(1:179),'--k');

plot(y(1:180),'-.k');

plot(ref(1:180),'-k');

506 Computational Intelligence

xlabel('Sampling Time Step KT T = 25 seconds');

ylabel('Temperature(degree)');

legend('Control Signal','Actual Output','Reference Signal');

disp('Sum of absolute error: ')

AE=sum(abs(ref-y));

Index

α-cut, 29
(1 + 1)-ES, 215
(1 + λ)-ES, 215
(1, λ)-ES, 215
(μ + λ)-ES, 215
(μ, λ)-ES, 215

activation function, 107
linear function, 107
step function, 107
ramp function, 108
tansigmoid function, 108

ADALINE, 105
adaptive evolutionary algorithms, 266, 290
adapt EA parameters, 290
adapt genetic operators, 290

adaptive neuro-fuzzy system, 404
ANFIS, 404
CANFIS, 407
MANFIS, 407

adaptive vector quantisation, 147
aggregation of rules, 41
ant, 7
ant colony, 8
ant colony optimisation, 8
approximate reasoning-based intelligent control,

370, 384
artificial intelligence, 1
artificial neural network, 103
artificial neuron model, 104, 106
automatic programming, 226

backpropagation leaning algorithm, 131
backpropagation-through-time, 168
bacterial foraging optimization algorithm, 10

belief space, 234
bell-shaped MF, 24
bias, 107
binary coding, 186
biogeography-based optimisation, 10
Boltzmann machine, 123
Braitenberg vehicle, 216

CANFIS, 407
chaos theory, 7
chromosome representation, 319
clustering approach, 73
co-evolution, 250
adaptism, 253
amensalism, 251
commensalism, 251
competition, 251
competitive, 255
cooperative, 251
cooperative, 253
fitness sampling, 255
mutualism, 252
parasitism, 252
predator-prey, 252
relative fitness, 255
symbiosis, 250

combination of neural and fuzzy systems,
359

competing convention, 345
competitive learning, 143
computational intelligence, 1, 3
applications of, 12
approaches to, 3
cauchy machine, 123
challenges of, 13

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, First Edition.
Nazmul Siddique and Hojjat Adeli.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

508 Index

computational intelligence (Continued)
paradigm of, 1
synergies of, 11

computational intelligence, 1
applications, 12
approaches, 3
grand challenges, 13
paradigms, 2
synergies, 11

concurrent neuro-fuzzy system, 360, 369
context units, 151
cooperative neuro-fuzzy system, 360
cascade combination, 360, 361, 367
correcting mechanism, 360, 362
development tool, 360, 361, 363
feature selection, 367
FS-NN system, 360, 361
fuzzy rules learning, 365
NN-FS system, 360, 362
parameter determination, 368

core, 27
criterion of optimality, 240
crossover operators, 232
crossover operators, 198
arithmetic, 201
asexual, 198
blend, 202
cycle, 204
edge, 204
fuzzy connective-based, 204
linear, 202
multi-parent, 198
naı̈ve, 202
n-point, 200
order, 204
partially mapped, 203
point, 199
probability, 199
recombination operator, 204
sexual, 198
single point, 199
two point, 200
unfair average, 203
uniform, 200

cultural algorithm, 233
belief space, 234
communication channel, 234

Darwinian evolution, 183
defuzzification, 44
centre of gravity method, 45
centre of sums, 47

max-membership method, 45
mean-max membership, 47
weighted average method, 46

differential evolution, 230
binomial crossover, 233
chromosome representation, 231
crossover operators, 232
exponential crossover, 233
fitness function, 193
mutation operators, 232
selection operators, 233

elitism, 198
Elman recurrent neural network, 150
context units, 151

encoding scheme, 186
binary coding, 186
grammar coding, 191
Gray coding, 187
hybrid coding, 188
permutation coding, 189
real-valued coding, 188
tree coding, 190
value coding, 190

error function, 132
evolutionary algorithms, 209
cultural algorithm, 233
differential evolution, 230
evolutionary programming, 209
evolution strategies, 213
genetic algorithms, 218
genetic programming, 223

evolutionary computing, 5, 183
binary coding, 186
chromosome representation, 185
encoding scheme, 186
evaluation function, 193
fitness scaling, 194
genetic operator, 194
grammar coding, 191
Gray coding, 187
hybrid coding, 188
initialisation, 192
permutation coding, 189
population, 191
real-valued coding, 188
terminologies, 185
tree coding, 190
value coding, 190

evolutionary fuzzy systems, 265
adaptive fuzzy systems, 266, 267
fuzzy adaptive evolutionary algorithms, 266

Index 509

evolutionary learning, 281
evaluation, 289
iterative approach, 285
Michigan approach, 282
objective functions, 287
Pittsburgh approach, 283

evolutionary neural networks, 307
amalgamated combination, 343
collaborative combination, 318
EA-NN supportive combination, 310
explaining and analysis, 317
feature space selection, 311
NN connection weight training, 319
NN-EA supportive combination, 309
parameters and learning rule, 315
supportive combination, 309

evolutionary NN architectures, 326
direct encoding, 327
fitness function, 337
fractal representation, 336
grammar encoding, 331
indirect encoding, 330
parametric encoding, 331
tree encoding, 333

evolutionary node transfer function, 338
evolutionary programming, 209
elitist, 211
finite-state machine, 211
first cull, 211
fitness evaluation, 213
mutation operators, 210
selection operators, 211

evolution strategies, 213
(1 + 1)-ES, 215
(1 + λ)-ES, 215
(1, λ)-ES, 215
(μ + λ)-ES, 215
(μ, λ)-ES, 215
mutation operators, 216
recombination operators, 215
selection operators, 214

evolutionary tuning, 268
tuning MFs, 272
tuning MFs and rule-base, 280
tuning rule-base, 275
tuning scaling function, 269

feature selection, 367
feedforward network, 109
finite-state machine, 211
firefly algorithm, 9
fish schools, 8

fitness function, 193
fitness sampling, 255
fitness scaling, 194
flocking, 8
flocking behaviour, 8
FS-NN system, 360, 361
function optimization, 220
fuzzification, 43, 75
fuzzy adaptive EA, 290
control crossover probability, 294
control mutation probability, 294
control of EA parameters, 292
control population, 298
parameter control, 290
parameter tuning, 290

fuzzy control, 75
defuzzification, 80
fuzzification, 75
inference mechanism, 76
Larsen’s product rule model, 78
Mamdani-type fuzzy model, 76
rule-base, 78
Sugeno-type fuzzy model, 76
Tsukamoto-type fuzzy model, 77

fuzzy controller, 81, 83
modular fuzzy controller, 97
P-like, 83
PD-like, 84
PI-like, 89
PID-like, 93

fuzzy inferencing, 48
fuzzy logic, 4, 20
genetic operators, 302

fuzzy modelling, 67
parameter identification, 70
structure identification, 67

fuzzy neuron, 409
fuzzy neuron network, 409

fuzzy relation, 37
compositional rule of inference, 38

fuzzy rule, 39
aggregation of rules, 41
compound rule, 40
conjunctive antecedent, 41
disjunctive antecedent, 41
rule forms, 40

fuzzy rules learning, 365
fuzzy sets, 21
complement, 31
containment, 31
core, 27
α-cut, 29

510 Index

fuzzy sets (Continued)
equality, 32
intersection, 30
membership function, 22
null, 32
properties, 32
subset, 31
union, 29

fuzzy singleton, 27
fuzzy systems, 66

galaxy-based search algorithm, 10
Gaussian MF, 24
gene, 185
genetic algorithm, 218
chromosome representation, 219
crossover operators, 220
mutation operators, 220
selection operators, 220

genetic operators, 194
selection, 195
crossover, 198
mutation, 206

genetic programming, 223
crossover operators, 225
fitness evaluation, 224
fitness measure, 223
functions, 223
Gaussian mutation, 226
grow mutation, 226
mutation operators, 225
node mutation, 226
selection, 223
swap mutation, 226
symbolic regression, 226
terminal node mutation, 226
terminals, 223
trunc mutation, 226

Gray coding, 187

Hamming cliffs, 187
Hamming distance, 121
hard computing, 2
Hebbian learning rule, 104
hierarchical modular architecture, 98
hierarchical parallel GA, 262
hybrid neuro-fuzzy system, 360, 369
hybrid parallel GA, 261
action selection network, 387
action-state evaluation network, 385
AEN, 385

ARIC, 384
ASN, 387
ellipsoid input space, 377
FALCON, 382
FBFN, 393
FINEST, 397
FUN, 396
fuzzy basis function networks, 393
fuzzy net, 396
GARIC, 388
NEFCLASS, 401
NEFCON, 400
NEFPROX, 401
pi–sigma network, 377
SONFIN, 401

inference mechanism, 48, 76
first-order Sugeno fuzzy model, 51
Mamdani fuzzy inference, 49
Sugeno fuzzy inference, 50
Tsukamoto fuzzy inference, 53
zero-order Sugeno-type fuzzy system, 51

initialization, 192
integral of absolute error, 288
integral of square error, 288
integral of time weighted absolute error, 288
intelligent system, 2

Jordan networks, 152

Kohonen learning, 142
Kohonen’s learning rule, 142

learning neural networks, 124
acceleration, 136
adaptive conjugate gradient model of Adeli
and Hung, 138

adaptive vector quantisation, 147
Adeli and Hung learning, 138
backpropagation leaning algorithm, 131
Cohen-Grossberg learning rule, 137
competitive learning, 143
delta learning rule, 127
generalized delta learning rule, 130
gradient descent rule, 127
Hebbian learning, 139
Kohonen’s rule, 142
learning rate, 133
learning vector quantisation, 147
momentum, 136
self-organising feature maps, 144

Index 511

supervised learning, 124
unsupervised learning, 138
Widrow-Hoff rule, 125

learning theory, 6
linear function, 107
linguistic hedge, 35
linguistic variable, 33
features, 33

local minimum, 136

machine intelligence, 2, 3
MADALINE, 105
MANFIS, 407
many-valued logic, 19
membership function, 22
bell-shaped MF, 24
clustering approach, 73
core, 27
crossover point of MFs, 28
evolutionary algorithms, 74
Gaussian MF, 24
heuristic selection, 72
neural networks, 74
parameterised MF, 70
sigmoidal MF, 25
support, 27
trapezoidal MF, 23
triangular MF, 23

mating pool, 198
modular fuzzy controller, 97
momentum, 136
multi-layered perceptron network, 110
multi-objective optimization, 243
multi-objective GA, 247
niched Pareto GA, 247
non-dominated sorting GA, 248
Pareto-optimum, 244
strength Pareto evolutionary algorithm, 249
vector evaluated GA, 246

mutation operator, 206
changing number, 208
changing operator, 208
creep, 206
insert, 207
inversion, 206
inversion, 208
non-uniform, 207
order changing, 207
probability, 206
random setting, 206
scramble, 207

swap, 207
uniform, 207

network architecture, 108
belief networks, 120
Boltzmann machine, 123
Cauchy machine, 123
feed forward network, 109
generalised regression neural networks, 115
Hamming networks, 121
Helmholtz machine, 123
multilayer perceptron networks, 110
probabilistic neural networks, 118
radial basis function networks, 111
recurrent network, 149
stochastic networks, 123

neural evolutionary strategy system, 344
neural fuzzy systems, 357
concurrent neuro-fuzzy, 360, 369
cooperative neuro-fuzzy, 360
fuzzy neuron, 409
hybrid neuro-fuzzy, 360, 369

neural networks, 5, 103
activation function, 107
artificial neuron model, 106
learning, 124

neural networks for control, 163
backpropagation through time control, 168
control design, 161, 165
NARMA-L2 control, 176
NARMA-L2 neural control, 179
NN-based adaptive control, 172
NN-based direct control, 166
NN-based direct inverse control, 169
NN-based indirect control, 167
NN-based model predictive control, 170
NN-based MRAC, 172
NN-based STC, 172
system identification, 160, 164

neural systems, 159
NN connection weight training, 319
bias swap, 324
binary representation, 320
chromosome representation, 319
competing convention, 345
fitness function, 325
matrix representation, 321
real valued representation, 320
weight crossover, 323
weight mutation, 324

NN-FS system, 360, 362

512 Index

objective function, 193, 287
optimal vector, 241
optimum seeking, 239
order crossover, 204

parallel evolutionary algorithm, 256
coarse-grained GA, 258
diffusion GA, 259
fine-grained GA, 259
global GA, 257
hierarchical parallel GA, 262
hybrid parallel GA, 261
island model GA, 258
migration model GA, 258

parallel modular architecture, 98
Pareto-optimal, 244
front, 244
set, 243

particle swarm optimization, 9
perceptron, 106
performance index, 239
predator–prey, 252
probabilistic methods, 6

ramp activation function, 108
random selection, 195
rank-based selection, 197
recurrent neural network, 149
Elman networks, 150
Hopfield networks, 153
Jordan networks, 152

roulette wheel method, 196
rule-base, 82
creation of, 82

rumours, 9

selection operators, 195
elitism, 198
mating pool, 198
proportional, 195
random, 195
rank-based, 197
tournament, 197

soft computing, 2
spiral dynamics-inspired optimisation,

10
step activation function, 107
stochastic search methods
tabu-search, 242

swarm intelligence, 7
ant colony optimization, 8
bacterial foraging optimization, 10
biogeography-based optimisation, 10
cuckoo search, 10
firefly algorithms, 9
fish school, 8
flocking, 8
global search and optimization, 10
particle swarm optimization, 9
rumours, 9

swarm systems, 7
symbiosis, 250
symbiosis, 250
adaptism, 253
amensalism, 251
commensalism, 251
competition, 251
cooperative, 251
mutualism, 252
parasitism, 252
predator-prey, 252

synapse, 104
system control, 161
neural network for control, 163

system identification, 160, 164
forward plant identification model, 164
direct inverse identification model, 164

Tabu search, 242
Tansigmoid function, 108
Tournament selection, 197
Trapezoidal MF, 23
Triangular MF, 23
Tuning MFs, 272

unsupervised learning, 138
adaptive vector quantisation, 147
competitive learning, 143
Hebbian learning, 139
Kohonen’s rule, 142
learning vector quantisation, 147
self-organising feature maps, 144

vagueness, 19
vector evaluated GA, 246

Widrow-Hoff learning, 125
Widrow-Hoff rule, 125

